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Lay Abstract 

 The ability to accurately model hydrological systems is essential, as that allows for 

better planning and decision making in water resources management. The better we can 

forecast the hydrologic response to rain and snowmelt events, the better we can plan and 

manage our water resources. This includes better planning and usage of water for 

agricultural purposes, better planning and management of reservoirs for power generation, 

and better preparing for flood events. Unfortunately, hydrologic models primarily used are 

simplifications of the real world and are therefore imperfect. Additionally, our 

measurements of the physical system responses to atmospheric forcing can be prone to both 

systematic and random errors that need to be accounted for. To address these limitations, 

data assimilation can be used to improve hydrologic forecasts by optimally accounting for 

both model and observation uncertainties. The work in this thesis helps to further advance 

and improve data assimilation, with a focus on enhancing hydrologic forecasting in urban 

and semi-urban watersheds. The research presented herein can be used to provide better 

forecasts, which allow for better planning and decision making. 
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Abstract 

Accurate hydrologic forecasting is vital for proper water resource management. 

Practices that are impacted by these forecasts include power generation, reservoir 

management, agricultural water use, and flood early warning systems. Despite these needs, 

the models largely used are simplifications of the real world and are therefore imperfect. 

The forecasters face other challenges in addition to the model uncertainty, which includes 

imperfect observations used for model calibration and validation, imperfect meteorological 

forecasts, and the ability to effectively communicate forecast results to decision-makers. 

Bayesian methods are commonly used to address some of these issues, and this thesis will 

be focused on improving methods related to recursive Bayesian estimation, more 

commonly known as data assimilation. 

Data assimilation is a means to optimally account for the uncertainties in 

observations, models, and forcing data. In the literature, data assimilation for urban 

hydrologic and flood forecasting is rare; therefore the main areas of study in this thesis are 

urban and semi-urban watersheds. By providing improvements to data assimilation 

methods, both hydrologic and flood forecasting can be enhanced in these areas. This work 

explored the use of alternative data products as a type of observation that can be assimilated 

to improve hydrologic forecasting in an urban watershed. The impact of impervious 

surfaces in urban and semi-urban watersheds was also evaluated in regards to its impact on 

remotely sensed soil moisture assimilation. Lack of observations is another issue when it 

comes to data assimilation, particularly in semi- or fully-distributed models; because of 

this, an improved method for updating locations which do not have observations was 
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developed which utilizes information theory’s mutual information. Finally, we explored 

extending data assimilation into the short-term forecast by using prior knowledge of how a 

model will respond to forecasted forcing data. 

 Results from this work found that using alternative data products such as those from 

the Snow Data Assimilation System or the Soil Moisture and Ocean Salinity mission, can 

be effective at improving hydrologic forecasting in urban watersheds. They also were 

effective at identifying a limiting imperviousness threshold for soil moisture assimilation 

into urban and semi-urban watersheds. Additionally, the inclusion of mutual information 

between gauged and ungauged locations in a semi-distributed hydrologic model was able 

to provide better state updates in models. Finally, by extending data assimilation into the 

short-term forecast, the reliability of the forecasts could be improved substantially. 
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1.1 Hydrologic and flood forecasting 

Hydrologic forecasting can be performed using data-driven methods such as 

Artificial Neural Networks (ANN), statistical models such as Autoregressive Integrated 

Moving Average (ARIMA) and Multiple Linear Regression (MLR), and conceptual 

models (Hapuarachchi et al., 2011; Singh and Woolhiser, 2002). Some of these methods 

can be used under a lumped, semi-distributed, or full-distributed framework. Data-driven 

methods have been used for flow forecasting because they are simple to set up, can provide 

results with minimal input data, and when little is known about the underlying interactions 

and physical processes they can be good alternative methods (Hapuarachchi et al., 2011). 

However, long-term data records are required for calibration, and they do not provide 

predictive uncertainty. Due to the ease of use, low computational cost, and simplicity, 

lumped models are a popular choice for hydrologic forecasting. Semi- and fully-distributed 

models, however, are expected to provide more accurate results than lumped models when 

there is sufficient data to properly develop them (Singh and Woolhiser, 2002; Carpenter 

and Georgakakos, 2006). Both of these model types are not without their disadvantages. 

Lumped models have inherently higher uncertainty in their results, and distributed models 

have a much higher computational cost and data requirement (Moore et al., 2006; Singh 

and Woolhiser, 2002; Young, 2002).  

There are several modeling approaches used for flood forecasting, each with 

different levels of uncertainty and forecasting lead times. Generally, the methods used to 

forecast river discharges with the least amount of uncertainty are those which use a purely 

hydraulic approach. However, these models are limited when it comes to forecasting lead 
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times. One way to improve on these lead times is to incorporate the use of hydrological 

rainfall-runoff models. Several flood forecasting systems have been developed around the 

world. The goal of these systems is to provide real-time forecasts that help institutions and 

individuals make informed decisions that help minimize damages attributed to extreme 

weather events such as flooding. These systems include the Advanced Hydrologic 

Prediction System (AHPS) in the US (http://water.weather.gov/ahps/) and the European 

Flood Awareness System (EFAS) in Europe (https://www.efas.eu/). To help implement 

flood forecasting services, shell systems such as the Delft Flood Early Warning System 

(FEWS) have been developed. These shell systems are used to incorporate several data 

sources and forecasting models (Werner et al., 2013, 2004). 

1.1.1 Rational 

Hydrologic and flood forecasting are essential aspects of water resources 

management. Accurate forecasting leads to more efficient reservoir management, 

hydropower generation, agricultural water use, and more effective flood early warning 

systems. It is especially important to have accurate forecasts in urban watersheds where 

there is the most potential for impact on large numbers of people during flood events. In 

Canada, between 1900 and 2016, there have been 309 flood events recorded by the 

Canadian Disasters Database (CDD), which have lead to 115 fatalities and nearly 400,000 

people needing to be evacuated (Public Safety Canada, 2019). Additionally, these flood 

events have had an estimated total cost of 9.75 billion dollars (Public Safety Canada, 2019). 

It is important to note that the events recorded by the CDD are not comprehensive; they 

only record events that have direct and significant impact to people. Figure 1-1 illustrates 
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the frequency of various weather events between 1907 and 2016 and compares them to 

increasing atmospheric carbon dioxide (CO2) levels and the increasing Canadian 

population. There is an increasing risk of extreme events associated with climate change 

(Seneviratne et al., 2012); which, along with increasing population, leads to more extreme 

weather and flood events that impact people. Based on this data we can see there is an 

increasing need for flood forecasting, which leads to need for researching ways to improve 

those forecasts. 

 

Figure 1-1: Frequency of meteorological and hydrological natural disasters in Canada from 1907 to 2016 (Public 

Safety Canada, 2019). Frequency is compared to the global annual average CO2 in parts per million (ppm) 

(Dlugokencky et al., 2019; Institute for Atmospheric and Climate Science, 2016) and the Canadian population 

(Statistics Canada, 2018, 2015). Population* is shown on the same scale as the annual average CO2. 
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1.1.2 Deterministic, ensemble, and probabilistic methods 

There are several methods used for hydrologic forecasting, which can be broadly 

classified as either deterministic, ensemble, or probabilistic methods. Deterministic 

methods are the simplest form of forecasting. A deterministic approach will take one input 

and provide one output without considering any of the associated uncertainties. This can 

be beneficial when computation time is an issue; additionally it makes interpreting the 

results straightforward. However, when the inherent uncertainties are not accounted for, 

the forecasts can be less reliable; additionally, with the increase of computational power it 

can be just as efficient to use ensemble methods.  

Ensemble methods provide an extension to deterministic models and can be used to 

quantify the various sources of uncertainty that can influence hydrological forecasts. In the 

most basic sense, there are three ways ensembles are used in hydrologic modeling: (1) 

performing the forecast multiple times with perturbed forcing data as a way to account for 

forcing uncertainty, (2) using multiple hydrologic models to account for uncertainty related 

to each model’s structure, and (3) using a combination of both (1) and (2). Probabilistic 

methods are not independent of ensemble methods, as both can be used to quantify 

uncertainty better and provide more informative forecasts. These forecasts are generally 

superior to deterministic ones because they can provide probability associated with a 

forecast; though this can potentially make interpreting the results more difficult for those 

without a background in statistics. Bayesian methods such as Bayesian Model Averaging 

(BMA; Najafi and Moradkhani, 2016; Raftery et al., 2005), Sequential Data Assimilation 

(SDA; Liu et al., 2012; Moradkhani, 2008), and Bayesian Forecasting System (BFS; 
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Krzysztofowicz, 1999) are commonly used for ensemble and probabilistic hydrologic 

forecasting. The predictive distribution of multiple models can be combined using BMA. 

BFS can be used to better quantify predictive uncertainty in forecasts for deterministic or 

ensemble methods (Han and Coulibaly, 2019, 2017; Krzysztofowicz, 1999). Data 

assimilation can be used to optimally merge the various sources of uncertainty in 

hydrologic models such as forcing data, initial condition, parameter, model, and 

observation uncertainties (Moradkhani et al., 2006). The research presented in this thesis 

will be focused explicitly on improving SDA methods.  

1.2 Data assimilation in hydrology 

Data assimilation methods have been increasingly used to improve hydrologic 

forecasting by updating estimations as new information becomes available (Dumedah and 

Coulibaly, 2012; Komma et al., 2008; Li et al., 2013; Wanders et al., 2014). They do this 

by optimally merging the imperfect model and uncertain data in a way that reduces and 

quantifies the uncertainty in the system (Liu and Gupta, 2007). The most common 

assimilated observation in hydrology is streamflow (Abbaszadeh et al., 2018, 2019; 

DeChant and Moradkhani, 2012; Moradkhani et al., 2005b; Seo et al., 2003; Thiboult et 

al., 2015). However, other informative variables have been assimilated as well such as soil 

moisture (Alvarez-Garreton et al., 2014, 2015; Dumedah and Coulibaly, 2013a; Samuel et 

al., 2014) and snow water equivalent (Bergeron et al., 2016; Dziubanski and Franz, 2016; 

Franz et al., 2014; Huang et al., 2017). These observations are available from in-situ gauges 

or through remote sensing methods. In general, the more accurate the assimilated 

observation is, the closer the assimilation estimates will be to the measured values. 
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Likewise, if that observation is inaccurate or unavailable, the assimilation estimate will be 

closer to the modeled solution (Reichle, 2008). There are several sequential data 

assimilation methods with the most popular being the Ensemble Kalman Filter and the 

Particle Filter.  

1.2.1 Ensemble Kalman filter 

The Ensemble Kalman filter (EnKF) proposed by Evensen (1994) uses randomly 

generated ensemble members to estimate the probability density function (pdf) of state 

variables (Burgers et al., 1998; Evensen, 2003, 1994). It was developed as a nonlinear 

extension to the Kalman filter to address filtering problems (Liu et al., 2012). The ensemble 

members are generated by randomly perturbing input values as they are propagated to the 

next time step. These input values include model parameters, states, forcing data, and their 

uncertainties. The ensemble members are then input into the chosen hydrologic model to 

produce an ensemble of predictions. The ensemble members are updated using the Kalman 

gain function, which is computed using the covariance between states, parameters and 

forcing data as well as the residual between the simulated output and perturbed observations 

(Burgers et al., 1998; Evensen, 2003, 1994). Some advantages to using the EnKF are its 

ease of use: it does not require the use of a model in state-space form, it does not require 

an adjoint model, and it does not require temporally constant error covariances. However, 

the EnKF does assume a Gaussian distribution for model errors, and it is known to have 

issues when there are strong non-linear relationships between model states and observations 

(Clark et al., 2008; Moradkhani et al., 2005a). Optimal implementation of the EnKF can 
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also be difficult as some models have compatibility issues with EnKF updating (Thiboult 

and Anctil, 2015). 

There are several studies in which EnKFs are used in hydrologic modeling and 

forecasting (Abaza et al., 2014; Clark et al., 2008; Dumedah and Coulibaly, 2013b; Komma 

et al., 2008; Moradkhani et al., 2005b; Neal et al., 2007; Samuel et al., 2014; Thiboult and 

Anctil, 2015; Vrugt and Robinson, 2007; Wanders et al., 2014; Weerts and El Serafy, 

2006). By using a multi-model approach, Thiboult and Anctil (2015) found it was easier to 

implement the EnKF and account for possible compatibility issues between the models and 

the EnKF. Samuel et al. (2014) used the SAC-SMA model and EnKF with dual state 

parameter estimation. They found that by using both streamflow and soil moisture 

observations together to update state and model parameters, streamflow forecasts would be 

more accurate than when using streamflow or soil moisture alone (Samuel et al., 2014). 

Abaza et al. (2014) used the EnKF with hydrotel for streamflow forecasting of up to 240 

hours, and they compared the forecasting results of the EnKF with a manual assimilation 

method as well as the reference model. The results showed the EnKF had more accurate 

estimates than both the reference model and the manual assimilation method. Clark et al. 

(2008) found that by performing a log transformation on streamflow before computing 

error covariances improved the EnKF ability to deal with non-linear relationships between 

the observations and model states. Using the EnKF, it was observed that when remotely 

sensed soil moisture data and observed discharge was assimilated in the distributed 

hydrological model LISFLOOD as part of EFAS, the timing errors in the flood predictions 

were decreased, especially for shorter lead times (Wanders et al., 2014). Komma et al. 
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(2008) showed improved performance for 3 and 6-hour lead times when updating soil 

moisture with observed runoff in a real-time mode EnKF concept and an iterative similarity 

approach. Using the EnKF with a 1D hydraulic model, Neal et al. (2007) showed that 

updating model state and boundary conditions provided more accurate flood forecasts. 

1.2.2 Particle filter 

The Particle filter (PF) was developed by Gordon et al. (1993) and improved with 

residual resampling by Liu and Chen (1998).  It approximates the state posterior pdf using 

prior knowledge of the state, likelihood, and observation data, with a set of weighted 

particles using recursive Bayesian estimation (Bengtsson et al., 2003; Snyder et al., 2008; 

van Leeuwen, 2009). The posterior pdf is generated from the random particles, and their 

associated likelihoods are determined using the residuals between the simulation and 

observation. Updates are usually performed indirectly on the particles (Weerts and El 

Serafy, 2006). PFs can be used to propagate Gaussian and non-Gaussian distributions 

through both linear and non-linear models unlike the standard Kalman filter which relies 

on the models being linear and the assumption that the distributions are Gaussian (Liu et 

al., 2012; Moradkhani et al., 2005a).  

Originally, a large number of particles were needed to avoid the collapse of particle 

weights (Snyder et al., 2008), and particle weights tended to degenerate after a few 

iterations (Clark et al., 2008; van Leeuwen, 2009; Weerts and El Serafy, 2006). Using 

sequential importance resampling (SIR) and residual resampling (RR), variance reduction 

approaches where low weighted particles are discarded and replaced with high normalized 

weighted particles, the weight degeneration could be reduced (Snyder et al., 2008; van 



Ph.D. Thesis – J. Leach McMaster University – Civil Engineering 

10 

 

Leeuwen, 2009). More advanced resampling methods have since addressed the issues 

relating to particle degeneracy. First by using Markov Chain Monte Carlo resampling (PF-

MCMC) (Moradkhani et al., 2012) and Evolutionary PF-MCMC (EPFM) (Abbaszadeh et 

al., 2018) the number of particles and degeneracy issues could be reduced greatly, and the 

most recent Hybrid Ensemble and Variational Data Assimilation Framework (HEAVEN) 

method has now removed particle degeneracy issues entirely (Abbaszadeh et al., 2019). 

1.2.3 Other data assimilation methods 

There are several other data assimilation methods which have been used with 

hydrologic models to improve forecasting. Some of these methods include the Extended 

Kalman Filter (EKF; Branisavljevic et al., 2014; Karunasingha and Liong, 2018; Sun et al., 

2015), Evolutionary Data Assimilation (EDA; Dumedah and Coulibaly, 2014, 2013b, 

2013a), and Variational data assimilation (VAR; Alvarado-Montero et al., 2017; Lee et al., 

2012, 2011; Montero et al., 2016; Seo et al., 2009, 2003).  

The Extended Kalman Filter is a nonlinear extention to the Kalman filter; it uses a 

Taylor Series expansion of a model around a point and ignores higher moment terms as a 

way to linearize the models (Wishner et al., 1969). Sun et al. (2015) found that the EKF 

could perform well during flood rising periods and streamflow forecasts could be improved 

for short lead times. By using the EKF to assimilate water level data into an urban rainfall-

runoff model, Branisavljevic et al. (2014) showed that water level in a retention pond could 

be better simulated. 

Evolutionary Data Assimilation employs a flexible procedure which can be applied 

for both sequential and smoothing problems (Dumedah, 2012). EDA employs a multi-
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objective evolutionary algorithm (MOEA) combined with the cost function from a 

variational data assimilation approach to evolve a population of solutions through several 

cycles of evolution (Dumedah, 2012). MOEAs employ stochastic search algorithms that 

utilize the concepts of evolution and natural selection to find solutions to problems (Deb, 

2001; Dumedah and Coulibaly, 2013a). The competition and natural selection in the 

EDA/MOEA is comparable to the Kalman gain function of the EnKF and the ensemble 

weights of the PF (Dumedah, 2012). EDA is characterized by the inclusion of the 

assimilated ensemble members into subsets of all the members that are evaluated for a time 

step, and that solutions are evolved both between time steps and several cycles during each 

time step (Dumedah, 2012). Pareto-dominance is employed to ensure that the evolved 

solutions are competitive under multiple evaluation conditions. The Pareto-optimal 

populations from each current time step are then used as the assimilated ensembles which 

feed into the next time steps (Dumedah, 2012). It was shown by Dumedah and Coulibaly 

(2013a) that EDA can estimate model state and parameterizations simultaneously for real-

time forecasting, as well as improve both streamflow and soil moisture estimates.  

Variational data assimilation methods are more commonly used in meteorological 

and oceanographic forecasting, however they have been used for hydrologic forecasting as 

well. They can achieve the optimal performance of Kalman filters while being more 

computationally efficient since they do not explicitly evaluate large error covariance 

matrices. Instead, variational algorithms can be used to process all data within a given 

assimilation interval, and take dynamic error information into account by propagating an 

adjoint variable (Reichle, 2008; Reichle et al., 2001). In general, variational methods 
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produce an optimal state estimate that balances uncertainties in the model initial conditions, 

and measurement errors by minimizing a weighted least squares cost function. If the 

performance function is minimizing terms for single instants in time, the variational data 

assimilation method used to handle them include Optimal Interpolation, Physical Space 

Statistical Analysis System (PSAS), 1DVAR, and 3DVAR. If the objective function 

contains measurements at several different times within an assimilation interval, the 

assimilation method is known as 4DVAR. The 4DVAR includes dynamic features such as 

the propagation of the model to the exact time of the observation, and the evolution of the 

background error covariance within the assimilation interval (Reichle, 2008; Reichle et al., 

2001). Seo et al. (2009) showed that using variational data assimilation with the 

Sacramento-Soil Moisture Accounting model (SAC-SMA) and the unit hydrograph model, 

forecast improvement was more significant for low stages and slow responding basins than 

it was for high stages and fast-responding basins. The more important factors limiting the 

performance of variational methods include large structural and/or parametric errors in soil 

moisture accounting and routing models and lack of flow-dependent modeling of 

uncertainty. Errors in hydrologic forecasting have been efficiently reduced by using 

variational data assimilation techniques such as 4DVAR (Bélanger and Vincent, 2005). 

1.3 Research objectives 

Data assimilation is an effective tool for improving hydrologic modeling. The 

proposed research aims to further advance sequential data assimilation methods, with a 

focus on urban and semi-urban watersheds. These improvements include evaluating the 

efficacy of assimilating data products in an urban watershed, providing justification for 
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assimilating soil moisture into urban and semi-urban watershed models, modifying the 

EnKF to provide better updates in semi-distributed hydrologic models, and enhancing 

forecast reliability. The contributions of this research include an improved methodology to 

follow when using data assimilation in urban and semi-urban watersheds that can help 

provide more accurate forecasts. Additionally, this research provides an improved 

methodology for data assimilation in ungauged basins. 

1.3.1 Thesis outline 

This thesis consists of six chapters. Chapter 1 provides an introduction to hydrologic 

forecasting and data assimilation methods. It provides a general context for the research as 

well as outlines the research objectives for the remainder of the thesis.  

Chapter 2 presents a study in which the assimilation of derived data products for 

soil moisture and snow water equivalent were combined with streamflow data assimilation 

to improve urban watershed modeling. The chapter presents a comparison of different 

combinations of soil moisture, snow water equivalent, and streamflow assimilation 

schemes for both state and dual state and parameter updating on the Don River basin in 

southern Ontario using multiple hydrologic models. This work was published in the Journal 

of Hydrology.  

Chapter 3 is a follow up to work presented in Chapter 2, as it further evaluates 

remotely sensed soil moisture assimilation in urban and semi-urban watersheds. The 

chapter attempts to identify a general imperviousness threshold for watersheds, beyond 

which it is unproductive to assimilate soil moisture. Additionally, the chapter presents a 

method that can be used to quickly determine if it would be beneficial to assimilate soil 
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moisture into a basin given some basin characteristics. This work has been submitted to the 

Journal of Hydrology. 

Chapter 4 presents a modification to the EnKF, which incorporates the mutual 

information from entropy or information theory. The modification to the EnKF is meant to 

aid in state updating of ungauged basins in semi-distributed hydrologic models when there 

are non-linear dependencies present. This work has been submitted to the Journal of the 

American Water Resources Association. 

Chapter 5 extends data assimilation into the short-term forecast by utilizing a 

prebuilt database of observations, states, predictions, and forcing data. The purpose of this 

chapter is to evaluate whether improvements to real-time forecasts can be made given the 

knowledge of how well, historically, the forecast performed. This work was published in 

Advances in Water Resources journal. 

Chapter 6 is a summary of the main conclusions as well as recommendations for 

future research. 
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Summary of Paper 1: Leach, J.M., Kornelsen, K.C., and Coulibaly, P. (2018). 

Assimilation of near-real time data products into models of an urban basin, Journal of 

Hydrology, 563, 51-64, doi: 10.1016/j.jhydrol.2018.05.064 

Summary: 

This research sets the focus for the rest of the thesis to be on the application and 

improvement of data assimilation in urban watersheds. This work used the Ensemble 

Kalman Filter (EnKF) to assimilation SNODAS Snow Water Equivalent and SMOS L2 

Soil Moisture products into models of an urban basin to improve hydrologic forecasting. 

The results of this research demonstrated: 

 Simple models such as HyMod and GR4J can be better suited to modelling flashy 

urban watersheds compared to more complex models like SAC-SMA or MAC-

HBV. 

 Was able to combined assimilation of streamflow observations with SMOS soil 

moisture and/or SNODAS snow water equivalent data products into urban models 

using the Ensemble Kalman Filter for improved performance. 

 Spectral unmixing can be used to better evaluate an urban basin’s level of 

development for determining if it could benefit from soil moisture assimilation. 

 Soil moisture assimilation can benefit urban hydrologic modelling and forecasting, 

and the soil moisture assimilation scheme was able to provide the best forecast 

results. 
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2.1 Abstract 

The goal of this study was to determine if assimilating a combination of various 

derived data products can help circumvent some of the difficulties associated with urban 

watershed modeling. Combinations of the SNODAS (Snow Data Assimilation System) 

snow water equivalent data, the SMOS (Soil Moisture and Ocean Salinity) L2 soil moisture, 

and streamflow observations were used for the data assimilation schemes. Combinations of 

these observation data sets were assimilated into lumped conceptual rainfall-runoff models 

of the highly-urbanized Don River basin (in southern Ontario) to determine if assimilation 

of geophysical variables will have a significant impact on simulations and forecasting in an 

urbanized watershed. The Ensemble Kalman Filter (EnKF) data assimilation method was 

used for these analyses, with various rainfall-runoff models that include GR4J, HyMod, 

MAC-HBV, and SAC-SMA models. The best data assimilation scheme for hydrologic 

modeling involved using a combination of streamflow, soil moisture, and snow water 

equivalent while performing both state and parameter updating. These results suggest that 

using a combination of soil moisture and snow water equivalent from the SMOS and 

SNODAS data products can improve simulations and ensemble forecasts in an urban basin. 

Keywords: Data assimilation, urban watershed, ensemble forecasting, hydrologic 

modeling, soil moisture, snow water equivalent 

2.2 Introduction 

Urbanization is an increasing global trend which can have impacts on the hydrology 

of a watershed. These impacts include an increase in impervious surfaces, reduced 

infiltration, lower baseflow, increased runoff, and more flashy-ness in the hydrograph, all 
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of which contribute to the difficulty in simulating an urbanized basin (McPherson and 

Schneider, 1974). Urban hydrology is important to understand and model due to the impacts 

it has on the often dense local population. Therefore, it is important to determine simple 

and easy methods which can be used to overcome the difficulties and improve rainfall-

runoff modeling in urban areas. Previous studies have assessed the use of data assimilation 

to improve urban basin modeling by integrating one observation type such as water level 

or discharge (Branisavljevic et al., 2014; Hutton et al., 2014). This paper will explore the 

improvements data assimilation, which integrates multiple observation types, can have on 

urban basin modeling with various conceptual rainfall-runoff models. 

Both the soil moisture and snow water equivalent (SWE) play important roles in 

the hydrology of a watershed and have been shown to improve streamflow estimations 

when assimilated into a hydrologic model (Huang et al., 2017; Moradkhani, 2008; Samuel 

et al., 2014). Better quantification of soil moisture in a watershed leads to a more accurate 

estimation of the rainfall quantity that becomes runoff or infiltration. In northern and/or 

snow-dominated basins snowmelt can be a large contributor to runoff, therefore better 

estimates of snowmelt, in the form of snow water equivalent, can lead to better estimation 

of streamflow (Moradkhani, 2008). These observations are available through several data 

products which can provide informative variables at near real-time frequency, can be used 

for data assimilation, and are of interest to hydrologists. 

Possible data products include the European Space Agency’s (ESA) Soil Moisture 

and Ocean Salinity (SMOS) data (Rodríguez-Fernández et al., 2017), the National 

Aeronautics and Space Administration’s (NASA) Soil Moisture Active Passive (SMAP) 
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data, and the National Operational Hydrologic Remote Sensing Center’s (NOHRSC) Snow 

Data Assimilation System (SNODAS) data to name a few (Entekhabi et al., 2008; Kerr et 

al., 2010; National Operations Hydrologic Remote Sensing Center, 2004). The NOHRSC 

has provided daily gridded estimates of snow parameters such as SWE through the 

SNODAS program since 2004 (National Operations Hydrologic Remote Sensing Center, 

2004). This paper will explore the use of the SMOS L2 soil moisture and the SNODAS 

snow water equivalent data products for assimilation into conceptual rainfall-runoff models 

to determine if they can be used to improve hydrologic modeling in an urban basin. Data 

assimilation will be used to help merge these datasets with the hydrologic models while 

also accounting for the uncertainty in both the models and the data products (Liu et al., 

2012; Reichle, 2008).  

The Ensemble Kalman Filter (EnKF) proposed by Evensen (1994) was used for 

data assimilation in these analyses. There are several examples in which the EnKF has been 

used for hydrologic modeling and forecasting (Abaza et al., 2014; Alvarez-Garreton et al., 

2015; Clark et al., 2008; Crow and Ryu, 2009; Dumedah and Coulibaly, 2013; Komma et 

al., 2008; Massari et al., 2015; Moradkhani et al., 2005; Neal et al., 2007; Samuel et al., 

2014; Thiboult and Anctil, 2015; Vrugt and Robinson, 2007; Wanders et al., 2014; Weerts 

and El Serafy, 2006). Moradkhani et al., (2005) proposed dual state parameter updating 

using the EnKF, and Samuel et al. (2014) found that using both streamflow and soil 

moisture observations together to update state and model parameters provided more 

accurate forecasts. Snow data assimilation, which includes assimilation of SWE, has also 

been examined in previous studies and has been shown to improve hydrologic simulations 



Ph.D. Thesis – J. Leach McMaster University – Civil Engineering 

31 

 

and forecasts (Bergeron et al., 2016; Dziubanski and Franz, 2016; Huang et al., 2017; Liu 

et al., 2012; Moradkhani, 2008). Building on these previous findings, this study will assess 

some combinations of streamflow, SWE, soil moisture in a dual state parameter updating 

scheme with different hydrologic models to enhance streamflow forecast in urban 

watershed.  

2.3 Study area and data 

The study area being focused on in this paper is the Don River basin (DRB) in 

Toronto, Ontario, Canada (Figure 2-1). The DRB is managed by the Toronto Region 

Conservation Authority (TRCA). It contains several sub-catchments, the largest of them 

being the Upper East Don, German Mills Creek, Lower East Don, Upper West Don, Lower 

West Don, Taylor-Massey Creek, and the Lower Don River. The DRB is approximately 

350 km2 and is a mostly urban watershed being roughly 80% developed, with the remaining 

area being split between crops, and pasture, forest, and wetland (Natural Resources Canada, 

2009). This area has an average daily temperature of 9.4 °C (the average daily minimum 

and maximum temperatures are 5.9 °C to 12.9 °C respectively) and an average annual 

precipitation of 831.3 mm/year based on the 1981-2010 Canadian Climate Normals 

(Environment and Climate Change Canada, 2017). Major soils in the DRB include sandy 

loam, loam, clay loam, and clay (Ontario Ministry of Agriculture, 2015), and its elevation 

ranges from 75 to 330 meters above mean sea level (masl). 

Daily precipitation, temperature, and snow depth data sets were obtained from 

Environment and Climate Change Canada (ECCC) weather stations, and 

evapotranspiration was estimated using the Penman-Monteith equation (Monteith, 1965). 
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Three observation data sets were used for data assimilation, they are daily streamflow data 

from Environment Canada’s hydrometric database (HYDAT), daily SWE from SNODAS 

(National Operations Hydrologic Remote Sensing Center, 2004), and daily soil moisture 

(SM) from the ESA’s SMOS satellite (Kerr et al., 2010). 

 

Fig. 2-1. Land use and land cover (left) (Natural Resources Canada, 2009), and topography (right) for the Don 

River basin in Ontario. 

2.4 Methodology 

2.4.1 Data processing 

2.4.1.1 SNODAS Snow water equivalent data 

One of this study’s goals is to assess the assimilation of snow data as SWE into 

models of an urban basin. Several SNODAS data products are available including SWE 

and snow depth. The SNODAS SWE data product will be the source for the data being 

assimilated. The SNODAS products are developed as follows. First, data from the Rapid 

Refresh numerical weather prediction model (Rapid Update Cycle numerical weather 
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prediction model for dates before May 1, 2012) are downscaled from 13 to 1 km2. Next, 

these data are used to drive the NOHRSC Snow Model (NSM) at a resolution of 1 km2. 

Finally, available remote sensing, radar, and ground station snow observations are 

assimilated into the model using a Newtonian nudging technique to produce a best estimate 

of near real-time snow conditions (Carroll et al., 2006; Clow et al., 2012). To determine the 

validity of using the SNODAS data, the ECCC snow on ground (snow depth) data available 

at gauges within and near the DRB was used to validate and bias correct the SNODAS 

snow depth and SWE data. This was done since SWE and snow depth are related and there 

are no SWE measurements available from ECCC. 

A cumulative distribution function (CDF) matching bias correction method which 

uses polynomial fitting (Drusch et al., 2005; Kornelsen and Coulibaly, 2015) was used to 

correct the SNODAS snow depth such that it’s CDF matched the ECCC snow depth. A 

consequence of this method is the ability to apply the polynomial to other data sets in order 

to implement a similar bias correction. Since no actual ECCC SWE data set is available in 

the study area, the bias correction used to correct SNODAS snow depth was applied to the 

SNODAS SWE data set to correct potential bias it may have. This assumes that, since snow 

depth and SWE are related, they would contain a similar relative bias when compared with 

the ECCC observations. For comparison only, a pseudo SWE data set was generated using 

a quick estimate from the ECCC snow depth values to compare with the bias corrected 

SNODAS SWE. This quick estimate was based on Environment Canada (2013) and Dubé 

(2003) where it is shown that using a 10:1 ratio, although not exact, for converting snow 

depth to SWE can provide a good estimate. To evaluate the correction method, the Bias, 
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the Root Mean Square Error (RMSE), and the Nash-Sutcliffe Efficiency (NSE) were used. 

They are defined as follows: 

𝐵𝑖𝑎𝑠 = �̅� − �̅� (2-1) 

𝑅𝑀𝑆𝐸 = (
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where 𝑋𝑖 is the observed data (ECCC data) at time i, �̅� is the mean of the observed data, 𝑌𝑖 

is the simulated data (SNODAS data) at time i, �̅� is the mean of the simulated data, and N 

is the sample size. The RMSE was used to measure the fit between the observed and 

simulated data (lower values being preferable). The bias shows the consistent difference 

between the data and is better as the absolute bias approaches zero. NSE can be used to 

show how accurately the simulated and observed values match each other and ranges from 

-∞ to 1, with 1 being a perfect match.  

2.4.1.2 SMOS L2 Soil moisture data 

The SMOS satellite was launched in November 2009, it has a revisit time for both 

its ascending (6 am) and descending (6 pm) passes every three days at the equator (Kerr et 

al., 2012, 2010). Soil moisture data from the SMOS Soil Moisture Level 2 User Data 

Products, which also contains retrieved parameters such as optical thickness and surface 

temperature, was used for this study (Kerr et al., 2010). This dataset is retrieved using the 

SMOS satellite’s L-Band Microwave radiometer which operates in the 1.4 GHz band range 

(Kerr et al., 2012). In the SMOS L2 data product, soil moisture is retrieved on a 15 km 
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Discrete Global Grid (DGG), however, the resolution of the instrument on the satellite is 

43 km around each DGG center (Kerr et al., 2012, 2010). Therefore, there is overlap in the 

sensing area between DGGs. Within the DRB there are two SMOS DGG points, 

DGG206279 and DGG206792, that have retrieved soil moisture data available every three 

days. Because of the inherent overlap and to minimize uncertainty the mean of the two 

DRB DGGs was calculated as the basin average soil moisture when two retrievals were 

available. To use the soil moisture values at these points, the data was first filtered based 

on their probability of radio frequency interference (RFI) as well as their data quality index 

values. This filtering was done for both the ascending overpass, which is retrieved in the 

mornings, and descending overpass, which is retrieved during the evenings, soil moisture 

data. Retrievals with RFI probability and data quality index values greater than 0.1 were 

removed (Kornelsen et al., 2016). Assimilation of soil moisture only occurred during the 

non-freezing months of May to October to avoid the impact of retrievals of frozen soils. 

Figure 2-2 illustrates the similarity of the SMOS soil moisture data from each DGG point 

within the DRB. Using the two sample Kolmogorov-Smirnov test, the distribution of the 

ascending and descending retrievals at each DGG were compared and shown to be from 

the same distribution (α = 0.01). From this comparison it was determined that a 

combination of the data from each DGG could be used to obtain one ascending and one 

descending soil moisture data set for the DRB which could both be used for assimilation. 
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Fig. 2-2. Comparison of SMOS L2 soil moisture at each DGG point within the DRB for 2011-01-01 to 2015-12-31 

data for both the ascending and descending passes. 

The significance of the role of soil moisture in rainfall runoff modeling can often 

be under-valued in urban areas due to the influence of impervious surfaces. This 

presumption may also hold for the DRB as a highly-urbanized basin (Figure 2-1). To 

explore the validity of this assumption and justify the use of assimilation of SMOS soil 

moisture, spectral unmixing was used to determine the pervious areas of the watershed.  

2.4.1.3 Spectral unmixing 

Spectral unmixing is a method that can determine the contents of an image pixel if 

that pixel contains more than one material (Nascimento and Dias, 2005). For this research, 

it will be used to identify the pervious land cover in the DRB as part of the justification for 
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assimilating soil moisture data in a highly developed urban basin (Figure 2-1). Using 

Google’s Earth Engine (Google Earth Engine Team, 2015), a mosaic of Landsat 8 surface 

reflectance images over the DRB was created to help filter out cloud cover and other 

atmospheric interferences, the mosaic was then spectrally unmixed to find the relative 

proportion of pervious versus impervious regions. Each pixel is presumed to contain some 

mixed proportion of relevant land cover types (pervious, impervious and water). By 

comparing the spectral characteristics of the mixed pixel to within scene pure pixels, 

referred to as endmembers, the relative proportion of each land cover type with a Landsat 

pixel can be determined (Small, 2002, 2001). The vertex component analysis (VCA) 

method was chosen to identify spectral endmembers since it is quick and performs as well 

as manually determining the endmembers (Nascimento and Dias, 2005). VCA exploits the 

fact that the endmembers used to identify substances are the vertices of a simplex, and it is 

based on the assumption that pure pixels exist in the data. The VCA algorithm iteratively 

finds a preset number of purest endmembers which correspond to the most abundant land 

covers. In this case, VCA was used to determine three endmembers of the Landsat 8 mosaic 

using bands 1 - 7 (Ultra Blue, Blue, Green, Red, Near Infrared, Shortwave Infrared 1, 

Shortwave Infrared 2) which were then spectrally unmixed into a 3-band image that could 

be used to determine the land cover fraction of each pixel (water, vegetation, urban).  

2.4.2 Hydrologic models 

Four lumped hydrologic models were used in this study to model the DRB. They 

are the GR4J (modèle du Génie Rural à 4 paramètres Journalier), HYMOD (HYdrologic 

MODel), MAC-HBV (McMaster University - Hydrologiska Byråns 
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Vattenbalansavdelning), and SAC-SMA (Sacramento Soil Moisture Accounting) models. 

These models were calibrated using the particle swarm optimization (PSO) (Kennedy and 

Spears, 1998), which has been used to calibrate rainfall-runoff models previously (Chau, 

2006; Gill et al., 2006; Li et al., 2009), to determine optimal parameter sets for the open 

loop simulations used for comparison with the data assimilation results. Each model was 

calibrated using data from 2001-01-01 to 2010-12-31 and validated against 2011-01-01 to 

2013-12-31 values. Using the PSO, the optimal parameter sets were found by maximizing 

the Nash-Volume Error (NVE) performance metric from Samuel et al., (2012): 

𝑁𝑉𝐸 = 0.5𝑁𝑆𝐸 − 0.1|𝑉𝐸| + 0.25𝑁𝑆𝐸𝑙𝑜𝑔 + 0.25𝑁𝑆𝐸𝑠𝑞𝑟 (2-4) 

where NSE is the Nash-Sutcliffe efficiency, VE is the volume error (𝑉𝐸 = 𝐵𝑖𝑎𝑠/�̅�), NSElog 

is the NSE calculated using the log streamflow values (for low flows), and NSEsqr is the 

NSE found using the squared streamflow values (for high flows).  

The GR4J is an empirical hydrologic model that has four parameters and runs on a 

daily scale (Perrin et al., 2003). In this study, GR4J was modified to include the degree day 

snow routine described in Samuel et al. (2011) so that it would contain a SWE state which 

could be updated during assimilation; the modified model will henceforth be referred to as 

GR4J-SR. Inputs for the GR4J-SR model include precipitation, evapotranspiration, 

temperature, and the parameter set optimized by the PSO. The model parameters and states 

are shown in Table 2-1. 
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Table 2-1. Description of GR4J-SR model parameters and state variables updated through data assimilation. 

Parameter Description Range Units Calibrated 

Value 

x1 Capacity of the production soil store 1 – 1500 mm 1499.997 

x2 Water exchange coefficient -10 – 5 mm -0.319 

x3 Capacity of the routing store 1 – 500 mm 18.507 

x4 Time parameter for unit hydrographs 0.5 – 4 days 1.244 

tr Rainfall threshold temperature 0 – 2.5 °C 0.252 

scf Snow correction factor 0.4 – 1.6 - 1.052 

ddf Degree day factor 0 – 5 mm/day/°C 4.194 

rcr Rainfall correction factor 0.5 – 1.5 - 1.473 

State variable    

S Production Store - mm - 

R Routing store - mm - 

swe Snow water equivalent - mm - 

 

The hydrologic model HYMOD, developed by Boyle (2001), is a simple conceptual 

rainfall-runoff model. As with the GR4J model, the HYMOD model used for these analyses 

was modified to include the snow routine from Samuel et al. (2011); the modified model 

will be referred to as HYMOD-SR. Inputs for the HYMOD-SR model include precipitation, 

evapotranspiration, temperature, and the parameter set optimized by the PSO. The model 

parameters and states are shown in Table 2-2. 
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Table 2-2. Description of HyMod-SR model parameters and state variables updated through data assimilation. 

Parameter Description Range Units Calibrated 

Value 

Alpha Factor distributing the runoff between the 

quick and slow reservoirs 

0.1 – 

0.99 

- 0.332 

Bexp Degree of spatial variability of soil moisture 

capacity 

0.1 – 3 - 0.664 

Cmax Maximum storage capacity 1 – 1000 mm 263.219 

Rs Residence time of slow flow reservoir 0.01 – 

0.99 

day 0.370 

Rq Residence times of quick flow reservoirs 0.001 – 

0.1 

day 0.009 

tr Rainfall threshold temperature 0 – 2.5 °C 2.126 

scf Snow correction factor 0.4 – 1.6 - 0.773 

ddf Degree day factor 0 – 5 mm/day/°C 3.634 

rcr Rainfall correction factor 0.5 – 1.5 - 1.212 

State variable    

S Watershed storage - mm - 

qfr1 Quick flow reservoir 1 - mm - 

qfr2 Quick flow reservoir 2 - mm - 

qfr3 Quick flow reservoir 3 - mm - 

sfr Slow flow reservoir - mm - 

swe Snow water equivalent - mm - 

 

The MAC-HBV model is a lumped conceptual rainfall-runoff model developed by 

Samuel et al. (Samuel et al., 2012, 2011), based on the HBV model (Bergsröm, 1976), for 

estimating streamflow in ungauged Ontario basins. The MAC-HBV incorporates a 

nonlinear response function, a routing routine, a degree day snow routine that is used to 

determine the SWE from the forcing data, a soil moisture routine used to show the change 

in soil moisture storage in the catchment, and uses a nonlinear storage-discharge 

relationship in the soil layers (Samuel et al., 2012, 2011). Both the SWE and soil moisture 

states from these routines will be updated using the chosen data assimilation method. Inputs 

into the MAC-HBV model include precipitation, temperature, and the calibrated parameter 

set from the PSO. The parameters and state variables used are summarized in Table 2-3. 
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The SAC-SMA is a lumped conceptual rainfall-runoff model with several 

parameters and model states (Table 2-4). There are five storages within the model used to 

represent the water accumulation in the catchment (Burnash, 1995; Burnash et al., 1973; 

Koren et al., 2004). The upper soil layer consists of both upper zone water storage contents, 

while the lower soil layer consists of the three lower zone water storage contents. The sum 

of the upper and lower soil layers was considered as the soil moisture for use in data 

assimilation (Samuel et al., 2014). The degree day snow routine within the model is used 

to determine the SWE from the forcing data (Samuel et al., 2014). The SAC-SMA model 

has been applied in several studies and is extensively used for operational streamflow 

forecasting (Samuel et al., 2014; Vrugt et al., 2006b, 2006a; Vrugt and Robinson, 2007). 

Table 2-3. Description of MAC-HBV model parameters and state variables updated through data assimilation. 

Parameter Description Range Units 
Calibrated 

Value 
tr Rain threshold 0 – 2.5 °C 1.194 

scf Snow correction factor 0.4 – 1.6 - 0.677 

ddf Degree-day factor 0 – 5 mm/day/°C 3.914 

athorn 
Coefficient of a simplified version of Thornthwaite 

formula to calculate potential evapotranspiration 
0.1 – 0.3 - 0.160 

fc Maximum soil moisture storage 50 – 800 mm 69.740 

flp 

Fraction of maximum soil moisture value above which 

actual evapotranspiration reaches evapotranspiration 

potential 

0.1 – 0.9 - 0.693 

beta 
Nonlinear function parameter represents the relative 

contribution to runoff from rain or snowmelt 
0 – 10 - 0.792 

k0 Storage coefficient 0 1 – 30 day 2.889 

lsuz Threshold value 1 – 100 mm 1.000 

k1 Storage coefficient 1 30 – 100 day 66.079 

cperc Constant percolation parameter 0.01 – 6 mm/day 2.261 

k2 Storage coefficient 2 
100 – 

500 
day 263.227 

maxbas Runoff distribution parameter 1 – 20 day 1.597 

rcr Rainfall correction factor 0.5 – 1.5 - 1.092 

alpha Non-linearity coefficient 
0.5 – 

1.25 
- 1.099 

State variable  
  

swe Snow water equivalent - mm - 

ssm Soil moisture storage - mm - 

suz Upper zone storage - mm - 

slz Lower zone storage - mm - 

qg Routed runoff - mm/day - 
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2.4.3 Data Assimilation using the Ensemble Kalman Filter 

The EnKF was used for both state and dual state parameter estimating (Moradkhani 

et al., 2005; Samuel et al., 2014). For this study, eight data assimilation schemes were used 

for each hydrologic model (Table 2-5). State updating was performed using streamflow, 

soil moisture, snow water equivalent, and combined soil moisture-snow water equivalent 

observations. Dual state-parameter updating was also performed using streamflow 

observations to update the parameter values in each case. Samuel et al., (2014) previously 

showed that using streamflow to update the parameter values and soil moisture to update 

state values allowed for more accurate estimates of streamflow and soil moisture since the 

combination allows for the model to better adjust over time. 

The SM and SWE values were used to update their related states and parameters 

while the streamflow observations were used to update all (or remaining) states and 

parameters, this is illustrated in Figure 2-3. The related states and parameters updated for 

each model using SNODAS SWE, based on notation from Tables 2-1 to 2-4, are swe, tr, 

scf, ddf, and rcr. The related states and parameters updated using SMOS SM, based on 

notation from Tables 2-1 to 2-4, are S and x1 (GR4J-SR); S, Bexp, and Cmax (HyMod-SR); 

ssm, fc, and flp (MAC-HBV); and uztwc, uzfwc, lztwc, lzfpc, lzfsc, uztwm, uzfwm, lztwm, 

lzfpm, and lzfsm (SAC-SMA). 

For the assimilation schemes using SNODAS SWE, the updates to state values were 

performed for the months of November – April, if data was available. When updating using 
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SMOS soil moisture the ascending pass data was prioritized over the descending pass such 

that the descending retrieval was  

Table 2-4. Description of SAC-SMA model parameters and state variables updated through data assimilation. 

Parameter Description Range Units 
Calibrated 

Value 

uztwm Upper-zone tension water maximum storage 1 - 150 mm 66.858 

uzfwm Upper-zone free water maximum storage 1 - 150 mm 69.711 

uzk Upper-zone free water lateral depletion rate 0.1 - 0.5 1/day 0.356 

pctim Impervious fraction of the watershed area 0 - 0.9 - 0.160 

adimp Additional impervious area 0 - 0.4 - 0.119 

zperc Maximum percolation rate 1 - 250 - 73.071 

rexp Exponent of the percolation equation 1 - 5 - 3.659 

lztwm Lower-zone tension water maximum storage 1 - 500 mm 406.084 

lzfsm Lower-zone free water supplemental maximum storage 1 - 1000 mm 66.081 

lzfpm Lower-zone free water primary maximum storage 1 - 1000 mm 654.933 

lzsk Lower-zone supplemental free water depletion rate 0.01 - 0.25 1/day 0.178 

lzpk Lower-zone primary free water depletion rate 
0.0001 - 

0.025 
1/day 0.004 

pfree 
Fraction percolating from upper to lower-zone free water 

storage 
0 - 0.6 - 0.596 

rq Residence time parameters of quick flow 0 - 0.99  0.758 

ddf Degree day factor 0 - 5 mm/day/°C 3.932 

scf Snowfall correction factor 0.4 - 1.6 - 0.843 

tr 
Upper threshold temperature, to distinguish between 

rainfall, snowfall and a mix of rain and snow 
0 - 2.5 °C 1.164 

athorn A constant for thornthwaite’s equation 0.1 - 0.3 - 0.199 

rcr Rainfall correction factor 0.5 - 1.5 - 1.175 

State variable    

uhg1 Linear reservoir to route upper-zone channel inflow 1 - mm - 

uhg2 Linear reservoir to route upper-zone channel inflow 2 - mm - 

uhg3 Linear reservoir to route upper-zone channel inflow 3 - mm - 

swe Snow water equivalent - mm - 

uztwc Upper-zone tension water storage content - mm - 

uzfwc Upper-zone free water storage content - mm - 

lztwc Lower-zone tension water storage content - mm - 

lzfpc Lower-zone free primary water storage content - mm - 

lzfsc Lower-zone free secondary water storage content - mm - 

adimc 
Additional impervious area content linked to stream 

network 
- mm - 

 

assimilated only if there was no soil moisture data available from the ascending retrieval. 

Since the models are run at a daily timestep the ascending overpass (6 am retrieval) is 

assumed to provide a better representation of the antecedent soil moisture conditions of the 
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day, additionally the ascending has been shown to perform better than the descending pass 

(Jackson et al., 2012; Kornelsen et al., 2016). Since data assimilation is used to help remove 

random error in the model outputs, the SMOS soil moisture data was bias corrected using 

CDF matching to each of the models’ soil moisture states (ascending and descending 

separately). CDF matching was chosen based on the results of Kornelsen and Coulibaly 

(2015). This adjustment was made so that the observations better fit the model to help avoid 

systematic errors, since unbiased errors are an important assumption for data assimilation 

methods (Reichle, 2008). 

The EnKF, developed by Evensen (2003, 1994), uses a Monte Carlo approach to 

estimate the posterior distributions of the model output by using an ensemble estimate of 

their priors. Due to uncertainty related to initial conditions, especially when using data 

assimilation for both parameter and state estimating, several simulations can be run to 

determine the performance of the data assimilation method. The optimal ensemble size was 

determined for each model based on this fact (See Section 3.3.1).  
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Fig. 2-3. Flowchart illustrating updating procedure used for data assimilation schemes. 

The EnKF was formulated as follows (Moradkhani et al., 2005; Samuel et al., 

2014): 

𝑢𝑡
𝑖 = 𝑢𝑡 + 𝜁𝑡

𝑖 (2-5) 

where 𝑢𝑡
𝑖  is the perturbed forcing data at time t for ensemble member i, ut is the unperturbed 

forcing data, and 𝜁𝑡
𝑖 is the noise added to the forcing data to generate i ensemble members. 

The precipitation was perturbed using lognormally distributed noise, 𝜁𝑡
𝑖~𝑙𝑜𝑔𝑁(0, Σ𝑡

𝑢), 

whereas the temperature and evaporation was perturbed using normally distributed noise, 

𝜁𝑡
𝑖~𝑁(0, Σ𝑡

𝑢). The variance of the noise, Σ𝑡
𝑢, is used to influence the ensemble spread to 
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better account for uncertainty, it is calculated by taking the square of the product of the 

forcing data 𝑢𝑡 and a proportionality factor 𝛾. This proportionality term is considered a 

hyper-parameter which can be adjusted to improve results and ensure adequate ensemble 

spread (Moradkhani et al., 2005; Thiboult and Anctil, 2015).  

The state variables being updated in each model are, in general, calculated as 

follows: 

x𝑡+1
𝑖− = 𝑓(𝑥𝑡

𝑖+, 𝑢𝑡
𝑖 , 𝜃) (2-6) 

where x𝑡+1
𝑖−  is the non-updated vector of state variables in the model at time t+1 for 

ensemble member i, f(.) is the operator within the models that propagate the state variables, 

𝑥𝑡
𝑖+ is the updated vector of state variables at time t for ensemble i, and 𝜃 is the vector of 

parameters (𝜃𝑡
𝑖+ for dual state parameter updating). For the dual state parameter updating 

assimilation scheme, the parameter set 𝜃𝑡
𝑖+ at t = 1 is generated from a uniform distribution 

for each ensemble member and each parameter based on the ranges in Tables 2-1 to 2-4. 

Table 2-5. Description and naming convention of each data assimilation scheme used in this study. 

DA Scheme 

Number 
Description of Assimilation scheme 

DAS1 State updating using streamflow observations 

DAS2 State updating using SMOS L2 soil moisture data 

DAS3 State updating using SNODAS SWE data 

DAS4 State updating using SMOS L2 soil moisture and SNODAS SWE data sets 

DAS5 Dual state and parameter updating using streamflow observations. 

DAS6 Dual state and parameter updating in which SMOS L2 soil moisture dataset was used to 

update related parameter and state variables when available, otherwise streamflow is used.  

DAS7 Dual state and parameter updating in which SNODAS SWE dataset was used to update 

related parameter and state variables when available, otherwise streamflow is used.  

DAS8 Dual state and parameter updating in which SMOS L2 soil moisture data and SNODAS 

SWE are used to update related parameter and state variables when available, otherwise 

streamflow is used. 

 

The hydrologic model outputs are then calculated as follows: 
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 �̂�𝑡+1
𝑖 = ℎ(𝑥𝑡+1

𝑖− , 𝜃) + 𝜈𝑡+1
𝑖 , 𝜈𝑡+1

i ~𝑁(0, Σt+1
m ) (2-7) 

where �̂�𝑡+1
𝑖  is the simulated model output at time t+1 for ensemble member i, h(.) is the 

hydrologic model, 𝜈𝑡+1
𝑖  is normally distributed noise at time t for ensemble member i, and 

Σ𝑡+1
𝑚  is the variance of the noise found by taking the square of the product of the model 

output and its hyper-parameter 𝜔. This noise is used to represent uncertainty related to the 

model structure. 

To perform the update, an ensemble of observations is generated at each time step 

by perturbing measured data as follows:  

𝑦𝑡+1
𝑖 = 𝑦𝑡+1 + 𝜂𝑡+1

𝑖 , 𝜂𝑡+1
𝑖 ~𝑁(0, Σ𝑡+1

𝑦
) (2-8) 

where 𝑦𝑡+1
𝑖  is the perturbed observation data used for updating the state (or parameter) 

vector for i ensemble members at time t+1, 𝑦𝑡+1 is the observation at time t+1, 𝜂𝑡+1
𝑖  is the 

normally distributed noise with variance Σ𝑡+1
𝑦

 used for perturbing the observations into i 

ensemble members, and the variance of the noise is found by taking the square of the 

product of the observation data with the hyper-parameter 𝜌. 

The Kalman gain used in the EnKF is calculated as follows: 

𝐾𝑡+1 = Σ𝑡+1
𝑥𝑦

(Σ𝑡+1
𝑦𝑦

+ Σ𝑡+1
𝑦

)
−1

 (2-9) 

where 𝐾𝑡+1 is the Kalman gain at time t+1, Σ𝑡+1
𝑥𝑦

 is the cross-covariance of the state variable 

ensembles with the prediction ensemble (streamflow, soil moisture, or snow water 

equivalent), and Σ𝑡+1
𝑦𝑦

 is the error covariance of matrix of the streamflow (or soil moisture 

or snow water equivalent) prediction ensemble. 
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After calculating equations 2-5 to 2-9, the updated state (or parameter) vector is 

then found by: 

𝑥𝑡+1
𝑖+ = 𝑥𝑡+1

𝑖− + 𝐾𝑡+1(𝑦𝑡+1
𝑖 − �̂�𝑡+1

𝑖 ) (2-10) 

where 𝑥𝑡+1
𝑖+  is the updated state (or parameter) vector for time t+1 and ensemble member i. 

After the states (or parameters) are updated, realism is checked to ensure values are not out 

of their allowed ranges. This is repeated every time step until the simulation has been 

completed. 

2.4.3.1 Determining hyper-parameter values and optimal ensemble sizes 

The hyper-parameters are used to control the ensemble spread caused by 

perturbation of forcing data (𝛾), observations (𝜌), and simulated model results (𝜔) 

(Moradkhani et al., 2005; Thiboult and Anctil, 2015). The Normalized RMSE Ratio (NRR) 

was used to help determine the optimal ensemble size and hyper-parameter values such that 

they would not cause too much or too little spread (Murphy, 1988), and has been used in 

previous studies (Alvarez-Garreton et al., 2014; Moradkhani et al., 2005; Thiboult and 

Anctil, 2015). The NRR is defined as follows: 

𝑁𝑅𝑅 =
√1

𝑇
∑ ([

1
𝑁

∑ �̂�𝑡
𝑖𝑁

𝑖=1 ] − 𝑦𝑡)
2

𝑇
𝑡=1

1
𝑁

{∑ √1
𝑇

[∑ (�̂�𝑡
𝑖 − 𝑦𝑡 )

2𝑇
𝑡=1 ]𝑁

𝑖=1 } √𝑁 + 1
2𝑁

 (2-11) 

where T is the length of the time series, N is the number of ensemble members 𝑦𝑡 is the 

observation at time t, and �̂�𝑡
𝑖 is the simulated value at time t for ensemble i. The ideal value 

for NRR is 1, while if NRR < 1 or NRR > 1 there is too much or too little spread 

respectively.  
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Using the DAS5 assimilation scheme, hyper-parameter values for the forcing data, 

streamflow observations, and models were generated from the uniform distribution 

U(0,0.5) and tested against ensemble sizes ranging from 25 to 500. The combinations which 

provided the best NSE value along with an NRR value closest to 1 were chosen for each 

model. Additionally, the hyper-parameter used to perturb the SMOS L2 soil moisture and 

the SNODAS SWE were determined based on uncertainty analysis performed in previous 

studies (Al Bitar et al., 2012; Clow et al., 2012; Kerr et al., 2012; Kornelsen and Coulibaly, 

2015; Zhang and Yang, 2016). Finally, a pairwise comparison of the ensemble means was 

used to confirm that at the chosen ensemble size, based on NRR, the mean NSE was not 

significantly different from subsequent increases in ensemble size. 

2.4.4 Evaluation of assimilation schemes 

To determine the performance of each data assimilation scheme and model 

combination for the Don River basin, the ensemble means of the hydrologic assimilation 

experiments were evaluated using the Kling-Gupta efficiency (KGE) performance metric 

(Gupta et al., 2009): 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (2-12) 

where r is the linear correlation coefficient between the simulated and observed runoff 

values, 𝛼 = 𝜎𝑠 𝜎𝑜⁄  is the measure of relative variability in the simulated and observed 

values, and 𝛽 = 𝜇𝑠 𝜇𝑜⁄  is the ratio between the simulated and observed values and is used 

to represent bias (Gupta et al., 2009). The KGE has a range from −∞ to 1, with 1 being the 

optimal value. This metric uses the same components as the NSE; when these components 



Ph.D. Thesis – J. Leach McMaster University – Civil Engineering 

50 

 

are near their optimal values the KGE will be near its optimal value, which is not always 

the case for the NSE (Gupta et al., 2009). 

Additionally, the ensemble forecast performance of each assimilation scheme and 

model combination was also examined. In this case, the mean Continuous Ranked 

Probability Score (CRPS) performance metric, which assesses accuracy and resolution, was 

used to evaluate the one to fourteen-day ensemble forecast performances. The CPRS is 

formulated as (Matheson and Winkler, 1976; Unger, 1985): 

𝐶𝑅𝑃𝑆(𝐹, 𝑥) = ∫ (𝐹(𝑦) − 𝟏{𝑦 ≥ 𝑥})2𝑑𝑦
∞

−∞

 (2-13) 

where F(y) is the cumulative distribution function of the forecast distribution (ensemble 

forecasts), y is the predicted variable (simulated runoff), x is used to verify the distribution 

(observed runoff), and 𝟏{𝑦 ≥ 𝑥} is the Heaviside step function that provides a value of 1 if 

the predicted value is larger than the observed and 0 otherwise. A perfect forecast is 

indicated with a CPRS value of 0, there is no upper limit to the value. 

Using these performance metrics the potential improvements of each assimilation 

scheme will be easily quantified which will help identify the best performing assimilation 

scheme, hydrologic model, and combination of the two for performing hydrologic 

simulations and forecasts in an urban basin. 
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2.5 Results and Discussions 

2.5.1 Data processing results 

2.5.1.1 SNODAS 

The raw and bias corrected SNODAS data sets were compared with ECCC data at 

various weather gauges as well as a Thiessen polygon weighted basin average value for the 

period of 2011-01-01 to 2015-12-31. Over this period, the SNODAS data showed 

systematically higher values than the observations, shown in Tables 2-6 and 2-7, which is 

likely attributed to SNODAS not being ideally calibrated for small urban basins coupled 

with forcing data issues due to downscaling 13 km to 1 km grids. This bias can be seen in 

the mean annual maximum values for snow depths being 435 mm and 299 mm and the 

average snow cover days being 110 days and 88 days for SNODAS and ECCC data 

respectively.  

Table 2-6. Bias, RMSE, and NSE of raw and bias corrected SNODAS Snow depth values at grid point nearest to 

ECCC weather station. 

Station 
Raw Snow Depth Bias Corrected Snow Depth 

Bias (mm) RMSE (mm) NSE Bias (mm) RMSE (mm) NSE 

615HMAK 24.14 69.27 0.17 0.24 40.52 0.72 

6157012 27.99 77.52 0.39 0.46 49.97 0.75 

6158350 45.15 88.25 -0.24 0.00 41.62 0.73 

615S001 21.84 67.02 0.19 0.38 38.71 0.73 

6158751 12.94 48.27 0.55 0.00 32.87 0.79 

Basin Average 19.16 53.50 0.39 0.55 27.02 0.85 
 

Table 2-7. Bias, RMSE, and NSE of raw and bias corrected SNODAS SWE values at grid point nearest to ECCC 

weather station. 

Station 
Raw SWE Bias Corrected SWE 

Bias (mm) RMSE (mm) NSE Bias (mm) RMSE (mm) NSE 

615HMAK 7.71 19.14 -5.30 -1.02 5.33 0.51 

6157012 9.77 22.50 -4.16 0.46 6.01 0.63 

6158350 14.51 27.06 -10.62 -1.57 6.19 0.39 

615S001 7.10 18.62 -5.26 -0.37 4.94 0.56 

6158751 5.71 15.88 -3.85 0.70 4.95 0.53 

Basin Average 6.48 16.79 -5.02 -0.13 3.72 0.72 
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Fig. 2-4. Comparisons of raw (red) and bias corrected (blue) SNODAS basin average SWE data to ECCC SWE 

estimates for 2011-01-01 to 2015-12-31. The correlation between the SNODAS SWE and ECCC SWE estimate is 

illustrated (top left). The CDF plot shows how well the distributions are matched before and after bias correction 

(top right). A timeseries comparison of the ECCC SWE estimate with the raw and bias corrected SNODAS SWE 

(bottom). 

The basin average estimate of SWE is illustrated in Figure 2-4, where there still 

exists a slight bias to the SNODAS SWE product. Despite this, the corrected SNODAS 

SWE values can be used to provide a good estimate for the basin average SWE. 

2.5.1.2 VCA Spectral unmixing 

The DRB is recognized as a highly developed urban basin (Figure 2-1), in which 

the assimilation of soil moisture would often be dismissed. To demonstrate the potential 

value of soil moisture assimilation in such a basin, a better estimate of pervious land cover 



Ph.D. Thesis – J. Leach McMaster University – Civil Engineering 

53 

 

was produced by spectrally unmixing a Landsat 8 surface reflectance image mosaic of the 

DRB. A temporal mosaic of images was used to better remove cloud cover and using data 

from the period 2013-06-01 to 2015-09-30. In the unmixed image, it was assumed that 

vegetation cover was equivalent to pervious areas. This is shown by vegetation fraction in 

Figure 2-5. Taking the averages of each pixel, the urban, vegetation, and water coverages 

are shown to be 54%, 44%, and 2% respectively. Based on these results there is a significant 

portion of the study area that can be considered pervious surface and it should be acceptable 

to use soil moisture assimilation in the DRB. 

 

Fig. 2-5. ‘Vegetation’ band of spectrally unmixed Landsat 8 image mosaic illustrating the fraction of each pixel 

in the Don River basin containing pervious surface (vegetation). 
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2.5.2 Model calibration and validation  

The resulting performance metrics for both the calibration (2001 – 2010) and 

validation (2011 – 2013) periods are summarized in Table 2-8. Of note, the performance 

during calibration varies between each model much more than during the validation period, 

in which the GR4J-SR performs noticeably better than the other three models. During the 

validation, however, the GR4J-SR, HyMod-SR, and SAC-SMA have relatively similar 

performances with the SAC-SMA being slightly better. In both cases, the MAC-HBV 

model does not perform as well. These results are likely due to the differing model 

structures. The GR4J-SR and HyMod-SR are both simple and easily adaptable models 

therefore applying and using them in an urban basin is fairly easy. The SAC-SMA model 

can handle impervious areas due to the wide variety of parameters within the model making 

it adaptable for use in an urban basin as well. However, the MAC-HBV model does not 

have any parameters specifically for urban areas within the basin, which may have led to 

its poorer performance. These validation results will be used as an open loop comparison 

to the data assimilation schemes being tested to help illustrate the improvements the 

assimilation has on the hydrologic simulations. 

Table 2-8. Summary of the calibration and validation results for the GR4J-SR, HyMOD-SR, MAC-HBV, and 

SAC-SMA hydrologic models in the DRB. 

Hydrologic Model 

CALIBRATION (2001-2010) VALIDATION (2011-2013) 

NVE KGE NSE NVE KGE NSE 

GR4J-SR 0.66 0.79 0.68 0.58 0.78 0.61 

HyMod-SR 0.57 0.74 0.64 0.58 0.71 0.60 

MAC-HBV 0.43 0.63 0.40 0.31 0.56 0.32 

SAC-SMA 0.54 0.75 0.60 0.60 0.72 0.63 
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2.5.3 Optimal hyper parameters and ensemble size for each hydrologic model 

The ensemble size test results are illustrated in Figure 2-6. These results show that 

increasing the ensemble size increases the NSE performance of the models’ ensemble mean 

and decreases the amount that the performance can vary. This test showed that for the 

HyMod-SR the optimal ensemble size was 200, for the MAC-HBV and SACSMA models 

the optimal ensemble size was 250, and the optimal ensemble size for GR4J-SR was 325. 

Additionally, Figure 2-6 shows that the MAC-HBV and SAC-SMA model performances 

have higher variability than the other two models, this is due to them having more 

parameters to update. 

 

Fig. 2-6. NSE and NRR performance for each model at different ensemble sizes under the DAS5 scheme. For 

each ensemble size, the model was run 25 times. The dashed line represents the NRR considered acceptable for 

this study. 

To ensure the best results from the assimilation schemes tuning of the hyper-

parameters was done to better quantify the uncertainty in the observations and models 
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(Moradkhani et al., 2005; Thiboult and Anctil, 2015). Summarized in Table 2-9 are the 

hyper-parameter values used for each model.  

Table 2-9. Hyper-parameter set used for data assimilation with the EnKF for each hydrologic model. 

Model 𝜸𝑷𝒓𝒆𝒄𝒊𝒑 𝜸𝑻𝒆𝒎𝒑 𝜸𝑬𝑻 𝝆𝑸 𝝆𝑺𝑴 𝝆𝑺𝑾𝑬 𝝎 

GR4J-SR 0.28 0.01 0.25 0.42 0.15 0.25 0.27 

HyMod-SR 0.24 0.08 0.27 0.21 0.15 0.25 0.30 

MAC-HBV 0.45 0.01 - 0.16 0.15 0.25 0.22 

SAC-SMA 0.32 0.07 - 0.24 0.15 0.25 0.47 

 

2.5.4 Hydrologic model performance using different data assimilation schemes 

The main focus of this study is to determine the effects of assimilating soil moisture, 

snow water equivalent, and streamflow, under various data assimilation schemes, can have 

on hydrologic simulation and forecasting in an urban basin. To assess the effect 

assimilating these observations have on simulating the DRB two performance metrics were 

examined, the KGE and the NSE. The NSE being the traditional measure of hydrologic 

model performance, and the KGE which is relatively newer and uses the same components 

as NSE to partition performance into contributing components (Gupta et al., 2009). Due to 

the metrics similarities, the assimilation schemes being compared are considered acceptable 

if they perform better than the calibrated model for only one of the metrics.  

From the results shown in Figure 2-7, it is apparent that models perform the best 

under the assimilation schemes DAS1-4 based on the improvements seen compared to the 

open loop simulation. When comparing the average relative improvements over the open 

loop simulation for both KGE and NSE, DAS2 performed the best. The GR4J-SR model 

had the largest improvement over the OL seen from DAS6 which had an increase in NSE 

from 0.6 to 0.69, with similar increase in performance seen from the other dual state 
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parameter estimating schemes. This agrees with the results of Samuel et al. (2014), which 

stated that the combination helped to account for variations through time in the model 

parameters. HyMod-SR showed minor improvement in KGE for DAS3 and DAS4, MAC-

HBV showed minor KGE improvement in DAS1-4, and SAC-SMA showed minor 

improvements in KGE for DAS2-8. These results indicate that the only model, of the four 

tested, to significantly benefit from data assimilation when simulating the runoff of an 

urban basin is GR4J-SR. Additionally, these results suggest that the improvement from 

state updates is smoothed out the longer the simulation which can be seen in the forecast 

results. Finally, the results show that data assimilation which updates both states and 

parameters has the potential to reduce the performance of a model (MAC-HBV DAS5-8), 

although this may be due to MAC-HBV lacking a parameter which explicitly considers 

urban areas.  

 

Fig. 2-7. Results of 20 simulations for each data assimilation scheme and model. This figure illustrates the spread 

of (a) KGE values and (b) NSE values in relation to the open loop (OL) runs for the 2011-01-01 to 2013-12-31 

time period. 

Illustrated in Figure 2-8 are the 2013-01-01 to 2013-12-31 simulated ensemble 

means for each hydrologic model and the four best performing data assimilation schemes. 
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Here it is apparent that the ensemble means do not always capture the peak flows despite 

the model’s performances. However, when looking at the ensemble simulation results from 

DAS2 for example (Figure 2-9), the extreme ensemble values can capture the majority of 

those peak flows. Also apparent in Figure 2-9 is that MAC-HBV has some issues capturing 

low flows within the DRB, which is likely due to it being initially developed to simulate 

natural catchments, and its inability to account for impervious areas.  

 

Fig. 2-8. Each model’s simulation results, for January – December 2013, under the DAS1, DAS2, DAS3, and 

DAS4 assimilation schemes comparing ensemble means to observed streamflow. 
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Fig. 2-9. The ensemble results, for January – December 2013, illustrating the 95% interval of each ensemble 

simulation for the DAS2 assimilation scheme. 

2.5.5 Performance of ensemble forecasts 

Ensemble forecasts were made using ‘perfect’ weather forecasts (meteorological 

observations) and the updated states and parameter values for each model and assimilation 

scheme. The perfect forecast was chosen to help reduce uncertainty in the forcing data. 

These forecasts were made for lead times of up to 14 days over the 2011-01-01 to 2013-

12-31 period. To evaluate the performance of these ensemble forecasts the CRPS was used, 

the results for each model and assimilation scheme are shown in Figure 2-10. For the 

HyMod-SR, MAC-HBV, and SAC-SMA models, the best performances for each 

assimilation scheme are generally shown for the 1-day ahead forecast. The GR4J-SR, 

however, performed its best for the 2-day ahead forecast which is likely due to the model’s 

structure, more specifically how it utilizes unit hydrographs for routing. As the forecast 

lead times increase the mean CRPS values begin to degrade and converge towards the OL 

values for each model and assimilation scheme, with the exception of DAS8 for SAC-SMA 

which shows consistent performance over the forecast horizon. The performance of the 
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state updating assimilation schemes show as good or better performance for each model 

over all forecast horizons, which agrees with the literature in that more accurate states 

produce better forecast results (Moradkhani, 2008; Reichle, 2008). However, the 

performance of the dual state parameter assimilation schemes varies depending on the 

model, which is most apparent with the HyMod-SR and MAC-HBV forecast results. 

Where, for short term forecasts, updates to states and parameters (DAS5-8) provide the 

HyMod-SR model with better ensemble forecasting skill which degraded slower when 

compared to only state updating (DAS1-4), while for MAC-HBV DAS5-8 provides much 

worse performance which is also seen in Figure 2-10. These differences could be attributed 

to structural differences in the models such as the simple fast and slow storages in HyMod 

and GR4J which can easily adapt to urban basins as well as SAC-SMAs explicit 

consideration of urban areas, while MAC-HBV lacks the ability to account for the quicker 

runoff from more than half the basin. 
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Fig. 2-10. Mean CRPS values for each assimilation scheme and hydrologic model for the 1 to 14 day running 

forecast. 

Among the four models, the top performing assimilation schemes for ensemble 

forecasting were DAS2, DAS3, and DAS4 when compared to the OL, which suggests that 

assimilating the SMOS L2 SM and/or the SNODAS SWE data can improve the short-term 

forecasts for an urban model. Additionally, the best overall performance was seen from the 

SAC-SMA model under DAS8, however, the GR4J-SR, HyMod-SR, and SAC-SMA 

models had similar forecasting performances on average. The DAS2 assimilation scheme 

showed the most improvement in ensemble forecast performance over all forecast horizons 

compared to the OL. This is likely caused by the size and climate of the basin, the watershed 

response is quick, and the snow cover time is short, allowing for antecedent soil moisture 

estimation to be the most meaningful variable of the three for runoff prediction. When 

comparing the forecast performance from each assimilation scheme and model, by ranking 
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them from lowest to highest CRPS, the best to worst performing for ensemble forecasting 

are DAS8, DAS2, DAS3, DAS7, DAS4, DAS6, DAS5, and DAS1. This shows that the 

forecasts benefit from the additional information provided from soil moisture and SWE. 

Ultimately, these results show that assimilation of the SMOS L2 soil moisture and 

the SNODAS SWE data products can improve hydrologic modeling and forecasting in the 

Don River basin. This indicates that assimilating soil moisture and snow water equivalent 

could potentially improve hydrologic models of urban basins. Additionally, when moving 

forward into semi-distributed or distributed models, these gridded data products would 

likely be more useful as there will be less chance of losing information due to aggregation 

of data when computing the basin average. 

2.6 Conclusions 

This study examined the performance of four lumped conceptual rainfall-runoff 

model’s ability to simulate the streamflow in the urban Don River Basin under various data 

assimilation schemes. As with previous studies, assimilation of streamflow can improve 

the urban models performance (e.g. Branisavljevic et al., 2014; Hutton et al., 2014, and 

others), additionally this study showed that further improvements to model performance 

could be made through assimilating soil moisture and/or SWE, although some models 

benefitted more than others. The results showed that the simpler GR4J-SR model had the 

most improved hydrologic simulations, based on NSE, from data assimilation under the 

dual state and parameter updating assimilation schemes, with the best performing being 

that of DAS6. For flow forecasting, SAC-SMA performed the best followed by HyMod-

SR, however, the GR4J-SR model was comparable for 2-days forecasts or longer. DAS2-
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4 performed the best for the 1-day forecast, while the DAS2, DAS3, and DAS8 provided 

the best overall performance when comparing all assimilation schemes for every forecast 

horizon.  

In general, the results show that assimilating the SNODAS SWE and SMOS L2 SM 

data products can provide some improvement to different aspects of hydrologic simulation 

and forecasting, which is apparent through the use of multiple performance metrics, even 

in urban basins such as the DRB. However, further improvements could likely be made to 

the results by using a different snow models such as SNOW17 which has been used in 

previous studies when assimilating SWE data (DeChant and Moradkhani, 2011; 

Dziubanski and Franz, 2016; Huang et al., 2017), or a more comprehensive analysis for 

error quantification since the EnKF is known to perform better when the uncertainties 

associated with the model and observations are better quantified (Huang et al., 2017; 

Moradkhani et al., 2005). Additionally, potential improvements could be made through 

identifying and addressing problematic variables which could arise from updating with 

different types of observational data. Finally, the analysis performed here were for one 

basin on the daily time scale with lumped models; further analyses are needed to determine 

if these results are valid at finer spatial and temporal scales as well as other basins. 
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Summary of Paper 2: Leach, J.M. and Coulibaly, P. (submitted) The limits of soil 

moisture assimilation in urban watersheds, Journal of Hydrology, Manuscript Number: 

HYDROL33206 

Summary: 

This research was a follow-up to Chapter 2 with the goal of further evaluating remotely 

sensed soil moisture assimilation in urban watersheds. From this work, a general 

imperviousness threshold was able to be determined for assimilating soil moisture. 

The key findings of this research include: 

 Assimilation of remotely sensed soil moisture has limiting impervious threshold, 

beyond which the assimilation may negatively impact model performance 

 A method was developed to quickly identify imperviousness threshold for urban 

basins using some basin characteristics 

 A general imperviousness threshold range for soil moisture assimilation was also 

able to be determined based on results from both synthetic and real world 

experiments. 
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3.1 Abstract 

Data assimilation is well suited for merging observed and simulated values to 

improve hydrologic forecasts. Typically, observation data that is assimilated into 

hydrologic models can be obtained from in situ gauges, radar, and remote sensing. In an 

urban environment, the benefits of soil moisture assimilation are not clearly defined. This 

work aims to identify the feasible imperviousness range at which it is advantageous to 

assimilate remotely sensed soil moisture to improve hydrologic forecasting in an urban 

watershed. A synthetic experiment was set up to simulate the retrieval of soil moisture onto 

a spatial grid and assimilate it into a hydrologic model. Sub-catchments were set up such 

that they would represent areas within that retrieval grid with varying levels of 

development. Multiple rainfall events were simulated with forecasts of up to 12 hours for 

each sub-catchment. The results of these simulations indicate that when areal average soil 

moisture is assimilated into an urban sub-catchment model which has a level of impervious 

that exceeds a threshold value, there is a decrease in model forecast performance, indicating 

that soil moisture assimilation is no longer beneficial. A quick way to determine the 

imperviousness threshold was then derived using a modified NRCS-CN method which 

matches the results of the synthetic experiments. This methodology was then further tested 

using real-world urban watersheds and shown to be a valid approach which can be used to 

quickly determine whether soil moisture assimilation would be beneficial for the watershed 

of interest. 

Author keywords: Soil moisture, urban, data assimilation, ensemble Kalman filter 
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3.2 Introduction 

In hydrologic modeling, data assimilation methods are used to assimilate 

observation data, obtained from in-situ gauges or remote sensing methods, into models to 

improve state and parameter estimates for better forecasts (Moradkhani, 2008; Moradkhani 

et al., 2005a, 2005b; Reichle, 2008). There are several data assimilation methods which 

have been used with hydrologic models to improve forecasts, some common ones being 

the Extended Kalman Filter (Sun et al., 2015; Wishner et al., 1969), the Ensemble Kalman 

Filter (EnKF) (Evensen, 1994; Thiboult and Anctil, 2015; Vrugt et al., 2006), and the 

Particle Filter (DeChant and Moradkhani, 2014; Gordon et al., 1993; Moradkhani et al., 

2005a). Each assimilation method has been shown to improve forecasts by integrating 

available observations into the model while also accounting for uncertainty in those 

observations and the model. 

Remote sensing techniques can provide informative variables for hydrologic 

modeling such as snow depth, snow water equivalent, and soil moisture (Andreadis and 

Lettenmaier, 2006; Moradkhani, 2008). Remote sensing soil moisture data products are 

available from satellite missions such as the Advanced Microwave Scanning Radiometer 

for Earth observation science (AMSR-E) (Njoku et al., 2003), the Advanced Scatterometer 

(ASCAT) (Bartalis et al., 2007), the Soil Moisture Active Passive (SMAP) (Entekhabi et 

al., 2008), and the Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2010). Remotely 

sensed soil moisture data sets, for example, have been used in many data assimilation 

studies, and have been shown to improve hydrologic forecasts (Alvarez-Garreton et al., 

2015; Dziubanski and Franz, 2016; Leach et al., 2018; Moradkhani, 2008). However, these 
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previous studies have focused on assimilation of soil moisture into larger rural basins with 

little urban development and have rarely been used to improve urban hydrologic forecasting 

(Alvarez-Garreton et al., 2015; Leach et al., 2018; Lee et al., 2011; Leroux et al., 2016; 

Massari et al., 2015; Samuel et al., 2014).  

Soil moisture plays an important role in the hydrologic cycle by controlling the 

partition between runoff and infiltration (Kornelsen and Coulibaly, 2014; Moradkhani, 

2008). Antecedent soil moisture can directly influence surface runoff, and by properly 

accounting for the antecedent soil moisture conditions rainfall-runoff modeling can be 

improved (Nishat et al., 2010). However, antecedent soil moisture has also been shown to 

have less influence in urban watersheds for small precipitation events when runoff is 

dominated by the impervious area’s contribution (Boyd et al., 1993; Miller and Viessman, 

1972), and large events where the rainfall volume dominates the runoff (Nishat et al., 2010). 

These studies then indicate that there is a range of storm events which could be better 

simulated through better quantification of the soil moisture in an urban watershed.  

The role of soil moisture in rainfall-runoff modeling is often under-valued in urban 

areas due to the influence of impervious surfaces. The lack of studies which investigate the 

assimilation of soil moisture within urban catchments can likely be attributed to the level 

of impervious surfaces within those watersheds. However, even in highly urbanized 

watersheds, soil moisture assimilation has been shown to improve hydrologic forecasts 

(Leach et al., 2018). This is possible since watersheds considered highly-urbanized still 

have pervious areas in which antecedent soil moisture conditions have influence. These 
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areas can easily be revealed through image analysis, such as spectrally unmixing multi-

band Earth images like those available from the Landsat missions. 

The work presented here will attempt to identify a potential limiting threshold for 

the level of development/imperviousness which will aid in determining whether it is useful 

to assimilate soil moisture data when modeling an urban watershed. For the analysis herein, 

the EnKF data assimilation method was chosen due to its relative simplicity and ease of 

use. A synthetic experiment was used to represent the assimilation of remotely sensed soil 

moisture into similar watersheds with various levels of development. This synthetic 

experiment aided in identifying the limiting imperviousness threshold and in developing an 

efficient method for identifying the threshold using available information about the 

watershed. The experiment is meant to emulate urban catchments, which can vary widely 

in their levels of development. The goal of this work is to determine the impact that the 

percent of impervious surface in a watershed has on soil moisture assimilation and at what 

impervious percentage threshold the impact occurs. This threshold identification method 

will then be applied to selected real-world watersheds to aid in validating its accuracy and 

generalizability.  

3.3 Methodology 

3.3.1 Hydrologic Models 

3.3.1.1 Storm Water Management Model 

The Storm Water Management Model (SWMM) was used for this study. SWMM 

is an established semi-distributed model for event-based and continuous simulation in semi-

urban and urban watersheds. Within SWMM, sub-catchments are represented by a non-
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linear reservoir model, and runoff is solved for through conservation of mass and the 

Manning equation.  

𝜕𝑑

𝜕𝑡
= 𝑖 − 𝑒 − 𝑓 − 𝑞 

(3-1) 

𝑞 =
1.49𝑊𝑆1/2

𝐴𝑛
(𝑑 − 𝑑𝑠)5/3 

(3-2) 

where d is the depth, t is timestep, i is the rate of rainfall and snowmelt, e is the surface 

evaporation rate, f is the infiltration rate, q is the runoff rate, W is the characteristic width, 

S is the average slope, A is the surface area of the sub-catchment, n is the surface roughness, 

and ds is the depression storage. SWMM sub-catchments are also partitioned into sub-areas 

of pervious surface or impervious surface (with or without depression storage), which can 

also be subject to flow re-routing in which some fraction of runoff from one sub-area gets 

routed through the other. There are also multiple infiltration methods available for use 

within SWMM (Green-Ampt was used for this study), an optional two-layer groundwater 

component (unsaturated upper zone and saturated lower zone), and an optional three-layer 

snowmelt component (plowable snow, pervious area snow, and impervious area snow). 

The interested reader can find more information on SWMM from Rossman and Huber 

(2016).  

3.3.1.2 NRCS Curve Number 

 The Natural Resources Conservation Service (NRCS) Curve Number (CN) method 

is an empirical model that relates precipitation volume to direct runoff. It can be defined 

through the following equations (NRCS 2004): 
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𝑆 =
25400

𝐶𝑁
 − 254 

(3-3) 

𝐼𝑎 = 𝑐𝑆 (3-4) 

𝑄 = {

(𝑅 − 𝐼𝑎)2

𝑅 − 𝐼𝑎 + 𝑆
, 𝑅 > 𝐼𝑎

0,                           𝑅 ≤ 𝐼𝑎

 

(3-5) 

where S is the maximum potential soil moisture storage (mm), Ia is the initial abstraction 

(mm), c is the ratio of Ia to S and has been shown to range from 0.05 to 0.2 (for this study 

0.1 was used) (Lim et al., 2006), CN is the NRCS curve number which is an empirical 

parameter related to soil type and land use, R is the rainfall (and snowmelt) volume (mm), 

and Q is the direct runoff (mm).   

The CN model was set up to be analogous to how sub-areas are partitioned in 

SWMM sub-catchments (Fig. 3-2b). Instead of having one model with a CN being the 

weighted average of the impervious and pervious areas, two NRCS-CN models were 

created where the CN for the impervious area was 95 and the CN for the pervious area was 

50. This set up was chosen so that the internal routing from the impervious to the pervious 

area could be accounted for. The direct runoff from the pervious sub-area would then be a 

function of the routed runoff from the impervious sub-area, and the total runoff that leaves 

the watershed is the sum of the direct runoff from the pervious sub-area and the non-routed 

direct runoff from the impervious sub-area. 

3.3.2 The Ensemble Kalman Filter 

Since it is a conventional data assimilation method, and due to its relative ease of 

implementation, the Ensemble Kalman Filter (EnKF) (Evensen, 2003, 1994) was used for 
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these analyses. The general formulations of the EnKF for state updating are as follows 

(Evensen, 2003; Moradkhani et al., 2005b): 

𝑃𝑡
𝑏 =

(�̂�𝑡
𝑏 − �̅̂�𝑡

𝑏)(�̂�𝑡
𝑏 − �̅̂�𝑡

𝑏)
𝑇

𝑁 − 1
 

(3-6) 

𝒒𝑡 = 𝐻𝑡(�̂�𝑡
𝑏 − �̅̂�𝑡

𝑏) = (�̂�𝑡 − �̅̂�𝑡) (3-7) 

𝑃𝑡
𝑏𝐻𝑡

𝑇 =
(�̂�𝑡

𝑏 − �̅̂�𝑡
𝑏)

𝑁 − 1
𝒒𝑡

𝑇 = Σ𝑡
�̂��̂� = 𝐶𝑜𝑣(�̂�𝑡 , �̂�𝑡) 

(3-8) 

𝐻𝑡𝑃𝑡
𝑏𝐻𝑡

𝑇 =
𝒒𝑡𝒒𝑡

𝑇

𝑁 − 1
= Σ𝑡

�̂��̂� = 𝐶𝑜𝑣(�̂�𝑡 , �̂�𝑡) 
(3-9) 

𝐾𝑡 = 𝑃𝑡
𝑏𝐻𝑡

𝑇(𝐻𝑡𝑃𝑡
𝑏𝐻𝑡

𝑇 + 𝑅𝑡)
−1

= Σ𝑡
�̂��̂�(Σ𝑡

�̂��̂� + 𝑅𝑡)
−1

 (3-

10) 

�̂�𝑗,𝑡
𝑎 = �̂�𝑗,𝑡

𝑏 + 𝐾𝑡(𝑦𝑡 + 𝜀𝑗,𝑡 − �̂�𝑗,𝑡) (3-

11) 

where N is the number of Ensemble Members, j (subscript) is the ensemble member, T 

(superscript) is the transpose operator, H is the observation operator, t (subscript) the time 

step, �̂� is the state estimate, �̂� is the state vector, K is the Kalman gain, b (superscript) is 

the background estimate, a (superscript) is the analysis estimate, Pb is the background 

covariance matrix, R is the observation uncertainty, y is the observation being assimilated, 

�̂� is the simulated observation, �̂� is the simulated observation vector, and 𝜀 is zero-mean 

random noise. These equations are repeated every time step that observations are available 

for assimilation until the final time step has been reached. For these analyses, the 

assimilated observation was the areal average soil moisture, and it was used to update the 

SWMM’s states whenever observations were available. 
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3.3.3 Experiment design 

Two experiments were set up to aid in determining a quick method for determining 

the limiting imperviousness threshold of a sub-catchment at which soil moisture 

assimilation would be no longer beneficial. The first experiment used synthetic watersheds 

in SWMM to evaluate the method under ideal conditions and then a surrogate model was 

created using the NRCS-CN method which could be quickly used to identify the 

imperviousness threshold using simple watershed characteristics. The second experiment 

involved modeling real watersheds using SWMM, assimilating SMOS L2 soil moisture 

into SWMM using the EnKF, and then checking if the surrogate model threshold value 

would be consistent with them as well. 

3.3.3.1 Synthetic experiment 

Two synthetic test basins of different sizes were developed for these analyses. Test 

basin 1 (TB1) has an area similar to a small town, whereas test basin 2 (TB2) was set to 

have the area of an average neighborhood. Each test basin had 20 near-identical sub-

catchments within them, which differed only in their impervious percentage (Fig. 3-2a.). 

The test basins were also set up to have different aquifer characteristics, with TB1 and TB2 

having those of silt-loam and sandy-clay-loam, respectively. The different synthetic basins 

were used to help show that the method applies to multiple cases. The parameter values 

used for the synthetic urban sub-catchments, and their descriptions, are listed in Table 3-1. 

The chosen parameter values are also similar to existing urban watersheds (Liu et al., 2013). 
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Table 3-1. SWMM parameters used for the synthetic urban sub-catchments. Parameter descriptions adapted from 

Rossman and Huber (2016). The infiltration and aquifer parameters were obtained from Table A.2 in Rossman 

and Huber (2016). Other parameter values were chosen as they were similar to real-world urban watershed 

parameters (Liu et al., 2013). 

Parameter Description TB1 TB2 Unit 

 Sub-catchments 

area Sub-catchment area 1600 70 ha 

%Imperv Impervious percentage of sub-catchment 5 - 100 5 - 100 % 

Width Characteristic width of sub-catchment 500 200 m 

Slope Sub-catchment slope 0.5 1 % 

 Sub-areas 

Nimp Manning's n for impervious area 0.01 0.01 - 

Nperv Manning's n for pervious area 0.1 0.1 - 

Simp Depression storage for impervious area 0.05 1 mm 

Sperv Depression storage for pervious area 0.05 2 mm 

%Zero Percent of impervious area without depression storage 25 85 % 

%Routed percent of runoff routed from impervious to pervious area 25 - 75 25 - 75 % 

 Infiltration - Green-Ampt 

Psi Soil capillary suction 

166.87

8 

169.92

6 mm 

Ksat Saturated hydraulic conductivity 6.604 

6.604 mm/h

r 

IMD Initial soil moisture deficit (porosity - field capacity) 0.2 0.217 - 

 Aquifers 

Por Porosity 0.501 0.398 - 

WP Wilting point 0.135 0.136 - 

FC Field capacity 0.2 0.244 - 

Ks Aquifer saturated hydraulic conductivity 7.5 

1.524 mm/h

r 

Kslp 

Slope of the logarithm of hydraulic conductivity vs. moisture 

deficit 27 

15 

- 

Tslp Slope of soil tension vs. moisture content 15 15 mm 

ETu Fraction of total evaporation available in unsaturated zone 0.4 0.2 - 

ETs Maximum depth evapotranspiration can occur 10 1.5 m 

Seep Deep groundwater seepage rate 0.04 

0.01 mm/h

r 

Umc Unsaturated zone moisture content at start of simulation 0.3 0.244 - 

 Groundwater 

A1 Groundwater flow coefficient 0.08 0.1 - 

B1 Groundwater flow exponent 5 1 - 

A2 Surface water flow coefficient 0.05 0.1 - 

B2 Surface water flow exponent 6 1 - 

A3 GW-SW interaction coefficient 0.1 0 - 

 

The synthetic experiment flowchart is illustrated in Fig. 3-1. The precipitation data 

set used to force the models contains eight years of hourly data and was from a rain gauge 

located in Toronto, Ontario. This precipitation data set was chosen since it could provide 
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real-world precipitation depths, event durations, and inter-event times. By forcing the 

models with hourly precipitation, synthetic observations of runoff and soil moisture were 

generated for each sub-catchment in each test basin. This method was repeated with 25, 50, 

and 75 percent of impervious runoff being routed internally to the pervious area first before 

contributing to total runoff. 

 

Figure 3-1. Synthetic experiment flowchart for TB1 and TB2. This process was repeated for each test basin when 

using a percent routed value of 25, 50, and 75 percent. 

Taking the average of the synthetic soil moisture observations that were generated 

for each sub-catchment, the areal average soil moisture was calculated for each test basin. 

The areal average soil moisture values were then perturbed to represent observation error 

as follows: 

𝑦𝑡 = �̃�𝑡 + 𝜀𝑡 , 𝜀𝑡~𝑁(0, Σ) (3-12) 

where 𝑦𝑡 is the synthetic areal average soil moisture with observation error, �̃�𝑡 is the 

synthetic areal average soil moisture observations, and 𝜀𝑡 represents the normally 

distributed random noise with zero mean and 𝛴 variance added to represent measurement 

error. The variance of the random noise was equivalent to 20% observation error. In this 
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case, only random measurement error was used since systematic errors should be removed 

from observations before they are assimilated (Reichle, 2008).  

The generated soil moisture was meant to represent retrieved soil moisture values 

similar to those from ASCAT, SMAP, or SMOS. Data retrieved through remote sensing 

methods are mapped to regular Discrete Global Grids (DGG) (Bartalis et al., 2007; 

Entekhabi et al., 2008; Kerr et al., 2010; Wagner et al., 1999). One of these is the 

Icosahedral Snyder Equal Area (ISEA) grid. For example, the SMOS data retrievals are 

mapped onto the ISEA4H9 grid which is a 15-km hexagonal DGG. Illustrated in Fig. 3-2 

is an example of a hexagonal DGG, as well as a simple example of how the imperviousness 

of a watershed could vary within a grid cell. The synthetic areal average soil moisture 

generated for these analyses are meant to emulate this type of retrieved data, since it has 

been shown that the SMOS data can be directly used on the 15-km DGG despite the spatial 

discrepancy between the grid and the instrument’s resolution (Al Bitar et al., 2012; 

Dumedah et al., 2014; Kerr et al., 2010).  
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Figure 3-2. Synthetic example in which the areal average soil moisture is assumed to be retrieved onto hexagonal 

grids like those of SMOS (Dumedah et al., 2014). For this test, the sub-catchments within the hexagonal grid (a) 

are assumed to have different imperviousness percentages. Each sub-catchment is discretized (b) into Pervious 

(P), Impervious (I), and Impervious with Depression Storage (I+DS) sub-areas within SWMM (Rossman and 

Huber, 2016). 

To set up the assimilation experiment, precipitation events were first identified for 

each runoff routing scheme. These events were chosen by identifying high flow events that 

occurred, ignoring the first year of generated synthetic observations. This was done so that 

the model states would be stabilized, and each storm event’s synthetic runoff observations 

would have had at least one year of spin up. Doing this provided 58-67 precipitation events, 

depending on the basin and routing scheme, to account for uncertainty due to different 

initial conditions. A data assimilation run was set up for each event that modeled a seven-

day window, centered around each peak, in which the synthetic areal average soil moisture 

observations were assimilated at each timestep. After each assimilation step, the SWMM 

was run 12 hours ahead to determine the influence that the soil moisture assimilation had 

on the short-term forecast within the urban sub-catchment. Additionally, this forecast 

horizon allowed for determining how long the soil moisture assimilation would influence 

the predicted runoff.  



Ph.D. Thesis – J. Leach McMaster University – Civil Engineering 

88 

 

The synthetic data assimilation experiment was used to explore the benefit of 

assimilating remotely sensed areal average soil moisture data for use in event forecasting. 

The experiment was meant to simulate the areal average soil moisture that would be 

retrieved over some urban area; this is illustrated in Fig. 3-2. This average soil moisture 

was assimilated into the hydrologic models which were set up in such a way as to represent 

multiple sub-catchments within a retrieval grid. Each sub-catchment contains a different 

level of development, which is represented as the impervious percentage of the basin. The 

results of the SWMM data assimilation runs were then compared with the NRCS-CN model 

to provide further insight into the results and to develop a surrogate model which could 

quickly identify the imperviousness threshold values using sub-catchment characteristics. 

3.3.3.2 Real-world experiment 

To confirm that the synthetic experiments results and threshold method are 

consistent with real-world data, the method was then tested using several urban watersheds. 

The urban watersheds used for testing were identified based on the classifications in the 

Dudley et al. (2019) dataset. Hourly streamflow data for each watershed were obtained 

using the R-Studio package “dataRetrieval” (De Cicco et al., 2018). The NCEP-CPC Stage 

4 Precipitation dataset, which contains 4-km gridded hourly data generated from gauge and 

radar data, was used for precipitation forcing (Cooperative Distributed Interactive 

Atmospheric Catalog System et al., 2000), hourly temperature was obtained from the Local 

Climatological Data (LCD) Dataset through National Oceanic and Atmospheric 

Administration (NOAA), and soil moisture observations for each watershed were the 

SMOS L2 Soil moisture. Imperviousness percentage for each watershed was determined 
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using the National Land Cover Database (NLCD) 2016 Urban Imperviousness dataset 

(Yang et al., 2018); the NLCD 2016 database provides impervious surface percent for the 

CONUS on 30x30 meter pixels. Yang et al. (2018) reported that the overall agreement of 

land use pixel identification ranged from 70 to mid 80% in the Eastern United States. More 

specifically, they reported that the pixels which identify developed areas, which were used 

to determine the imperviousness of a pixel, were mislabeled 18 to 50% of the time. This 

uncertainty will be accounted for when calculating the imperviousness threshold for each 

watershed. 

The forcing datasets were preprocessed and filtered based on their level of missing 

data. If more than 5% of the precipitation and temperature were missing for a grid or gauge 

it was omitted from the analysis, and if less than 5% of the data was missing it was infilled 

using simple linear regression. The infilled data was then converted to mean areal 

precipitation and temperature data, MAP and MAT respectively, using the Thiessen 

polygon method. The SMOS soil moisture data were filtered based on probability of radio 

frequency interference and data quality index values; when those values exceeded 0.1, the 

corresponding data was removed (Kornelsen et al., 2016). After filtering the soil moisture 

data, there were 43 remaining watersheds with available soil moisture; their locations are 

shown in Fig. 3-3. These watersheds range in size from 11.55 to 198.91 square kilometers, 

their level of development ranges from 10 to 100 percent (Dudley et al., 2019), and their 

level of imperviousness ranges from 1 to 55 percent (Yang et al., 2018); each watershed 

was modeled using the SWMM.  
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Figure 3-3. Urban watershed locations illustrating their level of development (Dudley et al., 2019) (left) and their 

level of imperviousness (Yang et al., 2018) (right). Notice that the impervious percentage is less than the percent 

developed and that the relationship between percent impervious and percent developed is non-linear (a high 

level of development does not indicate a high level of imperviousness). 

Each of the real-world urban watersheds was modeled in a lumped fashion within 

the SWMM. Additionally, unlike the synthetic SWMM watershed setups, the snowmelt 

routine was included for the real watersheds since they were calibrated by running the 

model continuously. The parameters which were calibrated for each urban watershed are 

listed in Table 3-2. The Dynamically Dimensioned Search (DDS) algorithm (Tolson and 

Shoemaker, 2007) was used to calibrate the selected urban watersheds with a calibration 

period of 2009-01-01 to 2011-12-31 (2008 was used for spin-up), and a validation period 

of 2012-01-01 to 2014-12-31. The Nash Volume Efficiency (NVE) cost function was used 

(Samuel et al., 2012) with modified weights placing more emphasis on peak flows: 

𝑁𝑉𝐸 = 0.3𝑁𝑆𝐸 − 0.1|𝑉𝐸| + 0.2𝑁𝑆𝐸𝑙𝑜𝑔 + 0.5𝑁𝑆𝐸𝑠𝑞𝑟 (3-13) 

where NSE is the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970), VE is the volume 

error, NSElog is the NSE calculated using log-transformed streamflow, and NSEsqr is the 

NSE calculated using squared streamflow.  
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Table 3-2. The SWMM parameters were calibrated for each of the real urban watersheds using the provided 

parameter ranges. Parameter descriptions and ranges adapted from Rossman and Huber (2016). 

Parameter Description Range Unit 

Snowmelt 

Stemp Air temperature at which precipitation falls as snow -3 to 3 C 

ATIwt Antecedent temperature index weight 0 to 1 - 

RNM Negative melt ratio 0 to 1 - 

Sub-catchments 

Width Characteristic width of sub-catchment 100 to 100000 m 

Slope Sub-catchment slope 0.1 to 10 % 

Sub-areas 

Nimp Manning's n for impervious area 0.011 to 0.15 - 

Nperv Manning's n for pervious area 0.05 to 0.8 - 

Simp Depression storage for impervious area 1.27 to 2.54 mm 

Sperv Depression storage for pervious area 2.54 to 3.302 mm 

%Zero Percent of impervious area without depression storage 0 to 100 % 

%Routed percent of runoff routed from impervious to pervious area 0 to 100 % 

Infiltration - Green-Ampt 

Psi Soil capillary suction 

49.022 to 

320.04 mm 

Ksat Saturated hydraulic conductivity 

0.254 to 

120.396 

mm/h

r 

IMD Initial soil moisture deficit (porosity - field capacity) 0.37 to 0.5 - 

Aquifers 

Por Porosity 0.398 to 0.501 - 

WP Wilting point 0.024 to 0.265 - 

FC Field capacity 0.062 to 0.378 - 

Ks Aquifer saturated hydraulic conductivity 

0.254 to 

120.396 

mm/h

r 

Kslp 

Slope of the logarithm of hydraulic conductivity vs. moisture 

deficit 5 to 100 - 

Tslp Slope of soil tension vs. moisture content 5 to 100 mm 

ETu Fraction of total evaporation available in unsaturated zone 0 to 1 - 

ETs Maximum depth evapotranspiration can occur 0 to 5 m 

Seep Deep groundwater seepage rate 0 to 8 

mm/h

r 

Ebot Elevation of the bottom of the aquifer * m 

Egw Groundwater table elevation at the start of the simulation * m 

Umc Unsaturated zone moisture content at start of simulation 0.37 to 0.5 - 

Groundwater 

A1 Groundwater flow coefficient 

0.00005 to 

0.001 - 

B1 Groundwater flow exponent 0 to 4 - 
*Note: Ebot and Egw range from 0 to their mean elevation above sea level in meters, this changes for each watershed. 

Once the watersheds were calibrated, the data assimilation experiment was set up 

to assimilate SMOS L2 Soil moisture into each SWMM model. The assimilation was 

performed during the same time period as the model validation for comparison. The NRCS-
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CN surrogate model was then set up for each real watershed, and the results were evaluated 

to determine if the fast threshold identification method is consistent with real data. 

3.3.4 Performance metrics 

To determine the impact soil moisture assimilation had on the short term forecast, 

the following performance metrics were used: the Kling-Gupta efficiency (KGE) (Gupta et 

al., 2009), Bias, Root Mean Square Error (RMSE), and Mean Continuous Ranked 

Probability Score (CRPS) (Matheson and Winkler, 1976). Better performance is indicated 

when Bias, CRPS, and RMSE approach zero and when KGE approaches unity. The metrics 

are defined as follows: 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (3-14) 

𝐵𝑖𝑎𝑠 = E[�̂� − 𝑦] (3-15) 

𝑅𝑀𝑆𝐸 = (
1

𝑁
∑(𝑦𝑡 − �̂�𝑡)2

𝑁

𝑡=1

)

1/2

 

(3-16) 

𝐶𝑅𝑃𝑆(𝐹, 𝑦) =
1

𝑁
∑ ∫ (𝐹(�̂�𝑡) − 𝟏{�̂�𝑡 ≥ 𝑦𝑡})2𝑑�̂�

∞

−∞

𝑁

𝑡=1

  
(3-17) 

where 𝑟 is the linear correlation coefficient between the simulated and synthetic observed 

runoff values, 𝛼 is the measure of relative variability in the simulated and synthetic 

observed values, 𝛽 is the ratio between the simulated and observed values, 𝑦𝑡 is the 

observed runoff at time t, �̂�𝑡 is the simulated streamflow at time t, N is the number of time 

steps in the event, 𝐹(�̂�𝑡) is the cumulative distribution function of the forecast, and 

𝟏{�̂�𝑡 ≥ 𝑦𝑡} is the Heaviside step function that provides a value of 1 if the predicted value 

is larger than the observed and 0 otherwise.  
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3.4 Results and Discussion 

3.4.1 Synthetic urban watershed results 

The results of the synthetic experiments, where 50% of the impervious flow was 

routed, are illustrated in Fig. 3-4 and 3-5. From the figures, the KGE, Bias, RMSE, and 

CRPS are all shown to have similar performances. These results show how the model 

performance changes with imperviousness and forecast horizon after the states are updated 

with areal average soil moisture. Fig. 3-4 and 3-5 allows for visualizing how far the 

update’s influence propagates forward in the forecast. From these results, it appears that 

there is an impervious threshold beyond which assimilating areal average soil moisture is 

not beneficial and may negatively impact the model’s performance. The results also show 

that when the basin is almost entirely impervious, the effects on the model’s performance 

caused by the assimilation are negligible within two hours, while at lower imperviousness 

percentages the effects can last several hours longer. These results are caused by the update 

increasing the water in the sub-areas, particularly the very high impervious subareas (95-

99%) by an amount larger than they can store, so it instead runs off immediately causing a 

large, but limited, effect in the forecast. 
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Figure 3-4. Surface plots of 1-KGE, Bias, RMSE, and CRPS for the large synthetic basin (TB1) results with 50 

percent of impervious runoff routed to the pervious area. The surfaces which represent the minimum (dotted 

line), average (dashed line), and maximum (solid line) performance values for the 65 events modeled at various 

impervious percentages and forecast horizons. These plots represent the region in which the results for all the 

experiment runs are located within. 

 
Figure 3-5. Surface plots of 1-KGE, Bias, RMSE, and CRPS for the small synthetic basin (TB2) results with 50 

percent of impervious runoff routed to the pervious area. The surfaces which represent the minimum (dotted 

line), average (dashed line), and maximum (solid line) performance values for the 61 events modeled at various 

impervious percentages and forecast horizons. These plots represent the region in which the results for all the 

experiment runs are located within. 

To further analyze the results several statistical tests were performed, the first being 

the Jarque-Bera (JB) test for normality. The JB test showed that the distribution of 

performances from the events was not normally distributed, indicating that nonparametric 
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tests should be used for analysis. The Mann-Kendall (MK) trend test was utilized to 

determine if the decrease in performance was statistically significant for each forecast 

horizon. The MK test results in Table 3-3 show that there was a significantly decreasing 

trend in performance as imperviousness increased, on average, for all the performance 

metrics, which diminished as the forecast horizon increased. This indicated that there was 

a decrease in performance caused when the areal average soil moisture was assimilated into 

basins with higher imperviousness. Finally, the Kruskal-Wallis (KW) test was used to 

determine at what impervious percent a significant decrease in performance was seen. The 

KW indicated that there was a significant decrease in performance when the 

imperviousness was greater than 90 percent. 

Table 3-3. TB1 P-values for Mann-Kendall test for trend absence, at a significance level of α=0.05, for each forecast 

horizon out to 12 hours. P-values less than 0.05 indicate a significantly decreasing trend is present for each 

performance metric as the imperviousness level of the watershed increases. The results of TB2 are omitted since 

the trend analysis shows similar results. 

  Forecast Horizon 

Performance 

Metric 1 hr 2 hr 3 hr 4 hr  5 hr 6 hr 7 hr 8 hr 9 hr 10 hr 11 hr  12 hr 

KGE             
   max 0.26 0.97 0.72 0.18 0.35 0.92 0.46 0.28 0.18 1.00 0.58 0.82 

   average 0.00 0.01 0.01 0.06 0.07 0.18 0.28 0.28 0.32 0.54 0.92 1.00 

   min 0.00 0.01 0.01 0.00 0.00 0.00 0.31 0.02 0.01 0.04 0.06 0.18 

Bias             
   max 0.00 0.00 0.00 0.06 0.97 0.04 0.02 0.00 0.00 0.00 0.00 0.00 

   average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.42 0.23 0.16 

   min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

RMSE             
   max 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

   average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

   min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CRPS             
   max 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

   average 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

   min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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 From visual inspection of the results illustrated in Fig. 3-4 and 3-5, the impact of 

the soil moisture assimilation was noticeable when the imperviousness is greater than 75 

percent. However, the KW test showed that the soil moisture assimilation significantly 

impacted the performance when the imperviousness was greater than 90 percent. When 

considering these results, it is important also to note that synthetic experiments tend to have 

higher performances. Therefore this threshold should be lower than the point at which the 

KW test shows significant declination in performance. The visual inspection of the results 

then led to the suggested general threshold value of 75 percent watershed imperviousness 

when 50 percent of impervious sub-area runoff is rerouted to the pervious sub-area, beyond 

which it is not beneficial to assimilate soil moisture in an urban model.  

 The previously discussed analysis focused on the results from when 50 percent of 

impervious sub-area runoff was first routed to the pervious sub-area before contributing to 

total runoff of the watershed. Similar results are shown when that routing percentage is 25 

and 75. However, the thresholds are shifted to higher (85%) and lower (65%) 

imperviousness values, respectively. To determine the cause of the impervious threshold 

value and why it is shifted when the routing percentage changes, a simple example was set 

up using the NRCS-CN method. The ratio of runoff from the impervious fraction (Qimp) of 

a sub-catchment to total runoff (Qtot) of a watershed was determined for the different levels 

of connectivity of impervious to pervious sub-areas within the sub-catchments and for 

different rainfall volumes. The threshold values were then found to correlate well to where 

the maximum of the Qimp/Qtot ratio was as a function of imperviousness and percent routed, 

these thresholds are illustrated with vertical lines in Fig. 3-6. Beyond the threshold value 
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the performances of the modeled events begin to degrade, which is shown by the 

interquartile range of KGE performance beginning to decline in performance beyond the 

thresholds. These thresholds exist because the effects that soil moisture from the pervious 

sub-area have on the total runoff are small compared to the runoff being routed to the 

pervious sub-area from the impervious sub-area of the sub-catchment. The larger this 

connection between pervious and impervious areas is, the lower the impervious percent of 

the basin has to be before the influence of soil moisture is no longer meaningful. 

 

Figure 3-6. Test basin 1 (circle) and 2 (square) KGE performances from 1-hr forecast and the ratio of runoff 

from impervious sub-area to total runoff from the sub-catchment for (a) 25% connected watershed, (b) 50% 

connected watershed, and (c) 75% connected watershed. The runoff generated from the impervious portions of 

the sub-catchment (I and I+DS in Fig. 3-2b.) is denoted as Qimp, and the total runoff from the sub-catchment is 

denoted as Qtot. Impervious threshold values are shown to be a function of both precipitation volume (R) and 

basin connectivity. 

3.4.2 Real urban watershed results 

The calibration and validation results for the real urban watersheds are summarized 

in Fig. 3-7. From Fig. 3-7, we see that the performance during the calibration period is 

similar to that of the validation period for most of the watersheds. Additionally, we see that 
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many of the urban watersheds were modeled by SWMM reasonably well.  However, only 

watersheds which obtained a minimum KGE value of 0.6 were chosen for the data 

assimilation experiment. The justification for this KGE value was that the threshold method 

requires the %Routed parameter to be very well-calibrated. 

 

Figure 3-7. KGE Performances during Calibration (2009-01-01 to 2011-12-31) and Validation (2012-01-01 to 

2014-12-31) periods for selected urban watersheds modeled in SWMM. The dashed line indicates the minimum 

acceptable KGE during the validation period. 

 Unlike for the calibration and validation periods, where the performance metrics 

were calculated from a continuous time series, the data assimilation results were evaluated 

based on the performance of the 12 hours immediately following each soil moisture 

assimilation. This was done so that the real-world watersheds would be evaluated similarly 

to the synthetic watersheds, and to observe how the soil moisture assimilation would 

influence the short term forecast. Illustrated in Fig. 3-8 are the predicted threshold ranges 

which are similar to where the Qimp/Qtot graphs in Fig. 3-6 reach their maximum values as 

a function of precipitation, which rarely exceeds 75 mm, and %Routed (%Routed is 
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described in Table 3-2). The percent impervious estimate was also included in this figure 

for comparison to the derived threshold range. To account for the uncertainty in the percent 

impervious estimate, the imperviousness was assumed to be up to 25 percent larger (or 

smaller) for each watershed. This assumption was then used to determine whether there 

would be a negative impact when assimilating remotely sensed soil moisture into the urban 

watershed model.  

 Evaluation of the data assimilation results to determine if there was a significant 

impact or not was performed as follows. First, the difference between the open-loop model 

and the data assimilation results was taken for each forecast step out to 12 hours. Next, the 

MK test for significant trend was used to determine if there was a significantly increasing 

trend in those residuals, which would indicate that immediately after assimilation there was 

a performance drop that diminished over time. The predicted and actual impacts are 

illustrated in the confusion matrix in Fig. 3-8. From the confusion matrix we see that the 

overall accuracy of the method is 87% and Type I errors occur 18% of the time; there are 

no Type II errors.  
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Figure 3-8. Summary of derived imperviousness threshold (top) and the impact of soil moisture assimilation in 

real-world urban watersheds (bottom). The boxplots represent the derived impervious threshold range which 

corresponds to the vertical lines in Fig. 3-6 and is a function of the calibrated percent routed parameter and 

precipitation. The circles with error bars represent the imperviousness estimate for each basin with uncertainty. 

The red dashed line indicates a general imperviousness threshold based on impact and expected precipitation 

values. The bottom plot illustrates the confusion matrix comparing whether there was a negative impact or not 

from assimilating soil moisture and what the predicted impact was using the NRCS-CN surrogate method. 

In general, the surrogate model accurately predicted all the watersheds which would 

be negatively impacted from assimilating remotely sensed soil moisture, while also having 

a false discovery rate of 33%. However, it should be noted that the imperviousness 

threshold range is dependent on the %Routed parameter, which needed to be calibrated and 

therefore may not be the actual value for the watershed due to equifinality. There is also 

the assumed parameter value of c=0.1 in equation 3-4, which, if increased or decreased, 

will cause the threshold to shift down or up, respectively. Finally, there may be some 
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additional uncertainties that influence the results based on the structural error of the 

SWMM, or due choosing to model each watershed as lumped instead of semi-distributed.  

These results suggest that using the surrogate NRCS-CN method is a quick way to 

determine if assimilating remotely sensed soil moisture into an urban model will be 

beneficial. Additionally, they show that there is a limiting imperviousness threshold which 

should be considered before using assimilating remotely sensed soil moisture data. For the 

real-world urban watersheds, the general threshold is suggested to be about 65 percent 

imperviousness; this is due to the expected precipitation event volumes which occur. In the 

synthetic experiment the suggested threshold was about 75 percent imperviousness. 

Therefore depending on precipitation and actual basin characteristics, it can be expected 

that the threshold of imperviousness could be in the range of 65% to 75%. 

3.5 Conclusions 

 From the modeling results presented here for the synthetic basin experiment, an 

imperviousness threshold was identified which shows some limits to the usefulness of soil 

moisture assimilation in urban watersheds. This threshold was shown to be mainly a 

function of the impervious to pervious connectivity within a watershed, the basin’s 

imperviousness, and the precipitation volume. We found that for the synthetic case the 

assimilation of soil moisture had little impact on the model performance at the lower 

impervious levels, which was to be expected since the difference between the simulated 

and synthetic soil moistures should be negligible. It was also shown that the assimilation 

of areal average soil moisture into a model of an urban watershed that is more impervious 

than the threshold allows for, could cause the model’s performance to deteriorate. For a 
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real-world case, it is expected that this degradation will be more pronounced as it is known 

that synthetic cases tend to have better performances than real-world cases.  

Additionally, we found that the threshold method is reasonably consistent when 

using real-world data. We conclude that, in general, it is feasible to assimilate areal average 

soil moisture data into a model of an urban watershed as long as the imperviousness of the 

watershed is below the threshold value of 65% impervious. This threshold can then be 

refined further on a case-by-case basis. If the impervious percentage of the watershed 

exceeds the threshold, the modeler will need to adjust their assimilation strategy for soil 

moisture data, as it may begin to degrade model performance otherwise. 
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Summary of Paper 3: Leach, J.M. and Coulibaly, P. (submitted) Data assimilation in 

ungauged basins using mutual information, Journal of the American Water Resources 

Association, Manuscript Number: JAWRA-19-0136-P 

Summary: 

The goal of this research was to improve data assimilation with semi-distributed models. 

Modifying the Kalman gain with mutual information, an information entropy measure, we 

showed that a better update to model states could be made in sub-basins which do not have 

gauges.  

The results of this research demonstrate: 

 The Ensemble Kalman Filter (EnKF) could be modified to include the mutual 

information entropy measure, termed the MIEnKF. 

 The EnKF was compared to the MIEnKF using the Lorenz 63 model, a common 

testbed model. This comparison showed that by using the MIEnKF to update 

unmeasured states with measured ones (analogous to using observations from a 

gauged sub-basin to update states in an ungauged one), the performance could be 

improved. 

 After showing its validity for a simple case, the MIEnKF was then tested using the 

HyMod and Raven models. These results showed that it could be used to update 

ungauged sub-basin states more effectively than the EnKF. 
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4.1 Abstract 

The primary goal for this work was to improve the ability of the Ensemble Kalman 

Filter (EnKF) to update states and parameters of a semi-distributed hydrologic model when 

streamflow observations are not available for all sub-basins. The developed method utilizes 

an entropy term, namely Mutual Information (MI) between the gauged and ungauged 

locations, to improve model states and parameter updating using EnKF. The proposed 

Mutual Information EnKF (MIEnKF) was first tested using Lorenz 63 model for theoretical 

understanding, then on a small semi-distributed HyMod model, and finally using a larger 

semi-distributed model built using the Raven hydrologic model. The Don and Humber 

River basins in Southern Ontario were chosen as study areas; they are urban and semi-

urban watersheds, respectively. Overall, the results show that incorporating the MI into the 

EnKF for updating model states in ungauged sub-basins can improve streamflow prediction 

in those ungauged basins. However, when attempting to use the MIEnKF to also update 

model parameters in ungauged sub-basins, the method was not as effective because of the 

differences in parameter distributions. Finally, the proposed MIEnKF method was shown 

to be applicable in different models and is scalable from a low to a high number of 

ungauged sub-basins. 

(KEYWORDS: data assimilation; ensemble Kalman filter; hydrologic model; entropy; 

mutual information; streamflow) 

4.2 Introduction 

 As computation power increases, it is becoming more and more viable to use higher 

resolution models for hydrologic forecasting. In general, it is expected that as the spatial 
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resolution of a model increases and the watershed characteristics are better represented, the 

forecast can be improved (Singh and Woolhiser 2002; Carpenter and Georgakakos 2006). 

However, increasing the model’s spatial resolution can be limited by data availability 

(Singh and Woolhiser 2002). As the model becomes more discretized, it would be ideal to 

have the number of streamflow gauges match the number of sub-basins in the model. In 

practice, however, this is not always the case. For example, when using the hydrologic 

response unit (HRU) method, there may be many more discretized areas than there are 

gauges. Additionally, as the drainage area becomes more discretized, the more difficult it 

becomes to calibrate the several sub-basins by using few or one streamflow gauge (Awol, 

Coulibaly, and Tolson 2018). At first glance, it seems like a simple solution to this gauging 

problem would be to increase the number of gauges. However, there is a trend in which the 

number of gauged basins is actually on the decline (Mishra and Coulibaly 2010, 2009), 

which is an important issue to hydrologists and decision-makers. The need arises then for 

regionalization methods, which can use the information from existing gauges to estimate 

ungauged basins (Razavi and Coulibaly 2013). These estimations, however, come with 

unavoidable uncertainty. 

Sequential data assimilation (SDA) is a recursive application of Bayes theorem 

which uses new observations as they become available to update the prior estimate for a 

more accurate posterior estimate (Liu et al. 2012). In the case of hydrologic modeling, 

observations such as streamflow are used to update the states and parameters of a model to 

improve hydrological simulations and forecasts (Moradkhani et al. 2005; Samuel et al. 

2014). It does this by accounting for the uncertainties in the model, forcing data, and 
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observations to provide an optimal solution (Liu et al. 2012; Reichle 2008). For the simplest 

cases of hydrologic models, lumped models, using SDA methods to update model states 

and parameters is straightforward because the basin is considered homogenous and the 

observations are directly relatable to the model states and parameters. This becomes more 

difficult as the complexity of the model increases, specifically when the model is semi or 

fully distributed. The reason for this is due to the number of states and parameters requiring 

updating becoming disproportionately larger than the available observations, and those 

observations being more likely related to a further downstream sub-basin.  

Streamflow observations remain the most common observation used for updating 

hydrologic model states, despite there being several distributed data products available, 

such as those from the Soil Moisture Ocean Salinity (SMOS), Soil Moisture Active Passive 

(SMAP), and Advanced Microwave Scanning Radiometer (AMSR) missions (Leach, 

Kornelsen, and Coulibaly 2018; Abbaszadeh, Moradkhani, and Yan 2018; Pathiraja et al. 

2016; Abaza et al. 2015; Thiboult and Anctil 2015; Dumedah and Coulibaly 2012; Clark 

et al. 2008; Moradkhani et al. 2005). Since it is infeasible to have a gauge for every river, 

stream, and creek in a watershed, updating ungauged locations continues to be a challenge 

in hydrologic data assimilation due to the lack of available observations. Although it is 

possible to use observations from nearby gauges to update these basins, not knowing the 

underlying spatial covariance/correlations between them makes updating the ungauged 

locations difficult (Clark et al. 2008). Despite this, data assimilation has been used to update 

locations where observations are not available (Clark et al. 2008; Rakovec et al. 2012; Xie 
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and Zhang 2010), in some cases by using a localization method which gives more weight 

to updates closer to where observations are available (Rasmussen et al. 2015).  

Information theory can be used to describe the amount of information a random 

variable contains (Shannon 1948). The information content between two or more random 

variables can be quantified; this value is known as mutual information. Mutual information 

is a measure of the linear and non-linear dependence between random variables and is 

independent of the original units of measurement. Put another way, the mutual information 

between variables X and Y, if we know Y, is the information known about X|Y. This is 

analogous to how the states and parameters of a hydrologic model can be updated by 

assimilating streamflow. A recent application of information theory with data assimilation 

was Nearing et al. (2018), in which the efficiency of the Ensemble Kalman Filter (EnKF) 

update was evaluated. They found for their case study that the EnKF used a small portion 

of the information content of remote sensing retrievals to provide updates.  

Currently, uses of information theory entropy with data assimilation are limited. 

However, due to the relationship of mutual information with correlation and covariance, it 

is reasonable to assume that entropy could be used to help in performing updates. The main 

goal of this paper is to determine if accounting for the mutual information, a measure of 

shared information between random variables, can provide a more effective update of states 

and parameters. This work explores the use of mutual information as a stand-in for the 

unknown spatial correlation/covariance between gauged and ungauged sub-basins, and if 

doing so allows for an improved update at the ungauged locations. A modified EnKF was 

developed which incorporates the mutual information between the ungauged and gauged 
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basins, denoted as the Mutual Information EnKF (MIEnKF), to test this. Several iterations 

of the MIEnKF were tested to determine which produced the best updates of states and 

parameters in ungauged locations. These results were tested against the results of the EnKF 

and the implementation of the EnKF from Clark et al. (2008).  

4.3 Study area and data 

4.3.1 Study area 

The study area focused on in this paper is the Don River basin (DRB) and Humber 

River basin (HRB) in Toronto, Ontario, Canada (Figure 4-1); the Toronto Region 

Conservation Authority (TRCA) manages both basins. These two basins contain several 

sub-catchments, the largest of them being the East Don, West Don, Taylor-Massey Creek, 

East Humber River, West Humber River, and Black Creek. The DRB is 316 km2 and is a 

mostly urban watershed being roughly 93% developed, with the remaining area being split 

between crops, forest, and wetland (Agriculture and Agri-Food Canada 2015). The HRB is 

892 km2 and is a semi-urban watershed being roughly 37% developed, primarily in the 

downstream region, with the remaining area being split between crops (44%), 

forest/wetland (18%), and water/other (1%) (Agriculture and Agri-Food Canada 2015). 

These basins have an average daily temperature of 8.0 °C, the average daily minimum and 

maximum temperatures being 3.4 °C to 12.5 °C respectively, and average annual 

precipitation of 841.1 mm/year based on the 1981-2010 Canadian Climate Normals 

(Environment and Climate Change Canada 2017). Major soils in the basins include sandy 

loam, loam, clay loam, and clay (Government of Canada 2018). The DRB’s elevation 
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ranges from 75 to 330 meters above mean sea level (masl), and the HRB’s elevation ranges 

from 85 to 490 masl (Natural Resources Canada 2015). 

 
Figure 4-1: The Don and Humber River basins illustrating land-use and land cover (left) and elevation (right). 

Also shown are the streamflow and precipitation gauge locations (right), the sub-basins used in the HyMod 

Model (right - red boundaries), and the sub-basins in the Raven model (right - grey boundaries). 

4.3.2 Data preprocessing 

Hourly streamflow was provided by the TRCA and by Environment and Climate 

Change Canada (ECCC)/Water Survey of Canada (WSC). Hourly precipitation data was 

provided by the TRCA, and hourly temperature data was provided by the TRCA and 

ECCC. Missing temperature data was infilled using ordinary kriging. Missing precipitation 

data was infilled using a combination of ordinary kriging and disaggregated, daily to 

hourly, ECCC precipitation data. The disaggregation was performed using Multiplicative 

Random Cascade-based disaggregation (Olsson 1995, 1998; Ganguli and Coulibaly 2017). 

Potential evapotranspiration was estimated using the Penman-Monteith equation (Monteith 

1965). 



Ph.D. Thesis – J. Leach McMaster University – Civil Engineering 

118 

 

4.4 Methodology 

4.4.1 Numerical Models 

The research presented here will compare variants of the EnKF which have been 

developed to better update states from ungauged (or unmeasured locations) using data from 

another location that is gauged (or measured). We provide a conceptual method for 

modifying the Kalman gain and empirically test it with three models, the Lorenz 63 model 

(Lorenz 1963), the HyMod model (Boyle 2001), and the Raven model (Craig and the Raven 

Development Team 2018). The Lorenz 63 model is meant to be a simple case for comparing 

the methods. The HyMod model is meant to be more complex than Lorenz, but simpler 

than Raven. The Raven model is meant to be the most complex case, as well as to show 

that the method is scalable to largely discretized watershed models and is valid with 

different hydrologic models and watersheds (urban and semi-urban).  

4.4.1.1 Lorenz 63 Model.  

The Lorenz system is meant to be a simplified atmospheric convection model and 

is a common testbed for data assimilation methods. The Lorenz 63 model is a chaotic 

system which is both dynamic and non-linear; it is represented using three ordinary 

differential equations (ODEs; Lorenz 1963): 

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦𝑡 − 𝑥𝑡) + 𝜀𝑡

𝑥 
(4-1) 

𝑑𝑦

𝑑𝑦
= 𝑥𝑡(𝜌 − 𝑧𝑡) − 𝑦𝑡 + 𝜀𝑡

𝑦
 

(4-2) 

𝑑𝑧

𝑑𝑡
= 𝑥𝑡𝑦𝑡 − 𝛽𝑧𝑡 + 𝜀𝑡

𝑧 
(4-3) 
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where x is the rate of convection, y is the horizontal temperature variation, z is the vertical 

temperature variation, σ is the Prandtl number, ρ is the normalized Rayleigh number, β is a 

non-dimensional wavenumber, and ε is Gaussian random noise added to represent model 

error. The fourth-order Runge-Kutta method using an iteration step of Δt=0.01 was used to 

solve this system of ODEs.  

 To evaluate the data assimilation techniques, the Lorenz 63 model was first run 

without random noise being added. The results of this run were saved as the true value to 

be used for evaluation. When performing the assimilation experiment with the Lorenz 63 

model, a vector of observations was created by adding Gaussian random noise to the vector 

of true values to simulate measurement error.  

4.4.1.2 HyMod Model.  

The HyMod model (Boyle 2001) was used to set up a simple distributed model in 

the DRB with three sub-basins corresponding to the ECCC-WSC streamflow gauges within 

the basin (02HC056, 02HC005, and 02HC024). HyMod is a simple conceptual rainfall-

runoff model and for this research was modified to include a degree-day snow routine and 

Muskingum-Cunge routing. The calibrated parameters, as well as the model states, are 

listed in Table 4-1. The HyMod model was used to test the data assimilation methods on a 

simpler semi-distributed hydrologic model before using them on more complex semi-

distributed hydrologic models. 
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Table 4-1: Description of HyMod model parameters and state variables updated through data assimilation. 

Parameter Description Range Units 
Calibrated Value 

02HC056 02HC005 02HC024 

Alpha 

Factor distributing the runoff 

between the quick and slow 

reservoirs 

0.1 – 

0.99 
- 0.438 0.209 0.268 

Bexp 
Degree of spatial variability of 

soil moisture capacity 
0.1 – 3 - 0.497 2.992 0.569 

Cmax Maximum storage capacity 
1 – 

1000 
mm 170.877 139.466 568.734 

Rs 
Residence time of slow flow 

reservoir 

0.01 – 

0.99 
day 0.417 0.210 0.423 

Rq 
Residence times of quick flow 

reservoirs 

0.001 – 

0.1 
day 0.007 0.020 0.011 

tr Rainfall threshold temperature 0 – 2.5 °C 2.395 1.345 0.062 

scf Snow correction factor 
0.4 – 

1.6 
- 0.664 1.346 0.768 

ddf Degree day factor 0 – 5 
mm day-

1 °C-1 
2.788 4.986 4.949 

rcr Rainfall correction factor 
0.5 – 

1.5 
- 0.737 1.499 1.312 

K Storage coefficient 0 – 1 day 0.407 0.304 - 

X Weighting factor 0 – 0.5 - 0.126 0.494 - 

State variables 

S Watershed storage - mm - - - 

qfr1 Quick flow reservoir 1 - mm - - - 

qfr2 Quick flow reservoir 2 - mm - - - 

qfr3 Quick flow reservoir 3 - mm - - - 

sfr Slow flow reservoir - mm - - - 

swe Snow water equivalent - mm - - - 

 

4.4.1.3 Raven Model.  

More discretized models for both the DRB and the HRB were built using the Raven 

modeling framework (Craig and the Raven Development Team 2018). The Raven models 

are set up to be semi-distributed with multiple soil layers, and to use iterative hydrologic 

routing for channel routing. The calibrated parameters, as well as the states that were 

updated, are shown in Table 4-2.  The DRB and HRB were discretized into several HRUs 

using land use-land cover, soil, and elevation data; each HRU was then used as sub-basin 

within the model framework. In total, by using the HRU method for discretizing a 
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watershed, 58 sub-basins were identified for the DRB Raven model, and 149 sub-basins 

were identified for the in HRB Raven model. 

Table 4-2: Description of calibrated Raven model parameters and state variables updated through data 

assimilation. 

Parameter Description Range Units 
Global Parameters 

Rainsnow Delta The range of temperature where mixed precipitation occurs 0.0 - 2.0 °C 

Rainsnow Temperature 

Center of the range of temperature where mixed precipitation 

occurs -1.0 - 1.0 °C 

Precipitation Lapse Rate Precipitation lapse rate 0 - 5.0 

mm/d/k

m 

Adiabatic Lapse Rate Adiabatic lapse rate 4.0 - 12.0 °C/km 

Irreducible snow 

saturation The maximum liquid water content of snow (fraction) 0 - 1.0 - 

Soil Parameters for each Soil Class 

Beta Infiltration exponent 0 - 10.0 - 

Baseflow coefficient Linear baseflow storage/routing coefficient 

0.001 - 

10000.0 1/d 

Baseflow N Baseflow exponent 1.0 - 10.0 - 

Max Perc Rate Percolation rate 1.0 - 20.0 mm/d 

Max Interflow Rate Max interflow rate 0.01 - 1000.0 mm/d 

Land Use Parameters for each Land Use Class 

Impermeability The fraction of the surface that is impermeable 0 - 1.0 - 

Forest Cover The fraction of land covered by a canopy 0 - 1.0 - 

Forest Sparseness Canopy sparseness 0 - 0.99 - 

Refreeze factor Maximum refreeze factor 0 - 5.0 

mm/d/°

C 

Depth max Maximum depression storage 0 - 20.0 mm 

Vegetation Parameters for each Vegetation Class 

Max HT Maximum vegetation height 0 - 30.0 m 

Max LAI Maximum leaf area index 0 - 6.0 - 

Max Leaf Cond Maximum leaf conductance 0 - 14.0 mm/s 

Max Capacity Maximum rain canopy capacity 0 - 5.0 mm 

Rain icept frac Rain throughfall fraction 0 - 0.2 - 

Max snow capacity Maximum snow canopy capacity 0 - 5.0 mm 

Snow icept frac Snow throughfall fraction 0 - 0.2 - 

Seasonal Canopy LAI Relative leaf area index. Found for each month (fraction). 0 - 1.0 - 

State variables 

Surface water 
Streams, rivers, rivulets routed to basin outlet through in-

catchment routing - 
mm 

Atmospheric water Receiving water - mm 

Atmospheric 

Precipitation 
Providing water 

- 
mm 

Ponded Water Water waiting to infiltrate or runoff - mm 

Soil Layer Storage Water stored in soil layers - mm 

Canopy Liquid water on the canopy - mm 

Canopy Snow Snow on canopy - mm 

Snow Frozen snow depth - mm 

Snow liquid Liquid snow cover - mm 

Depression Storage Depression/surface storage - mm 
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4.4.1.4 Model Calibration.  

The hydrologic models were calibrated using the Dynamically Dimensioned Search 

algorithm (DDS), a heuristic global search algorithm (Tolson and Shoemaker 2007). The 

Nash-Volume Error (NVE) (Samuel, Coulibaly, and Metcalfe 2012) was used as the cost 

function for calibration. The NVE was modified by using different weights for its 

components, as follows: 

𝑁𝑉𝐸 = 𝑤1𝑁𝑆𝐸 − 0.1|𝑉𝐸| + 𝑤2𝑁𝑆𝐸𝑙𝑜𝑔 + 𝑤3𝑁𝑆𝐸𝑠𝑞𝑟 (4-4) 

𝑁𝑆𝐸 = 1 −
∑ (𝑋𝑖 − 𝑌𝑖)

𝑁
𝑖=1

2

∑ (𝑋𝑖 − �̅�)2𝑁
𝑖=1

 
(4-5) 

𝑉𝐸 = (�̅� − �̅�)/�̅� (4-6) 

where NSE is the Nash-Sutcliffe efficiency (Nash and Sutcliffe 1970) with X being 

observed values and Y being simulated values, VE is the volume error, NSElog is the NSE 

calculated using the log streamflow values, NSEsqr is the NSE found using the squared 

streamflow values, and w={w1, w2, w3} is the corresponding weights for each NSE 

controlling how much weight is applied to the mean (w1), low (w2), and high (w3) flows.  

4.4.2 Information theory 

The amount of information, or uncertainty, a random variable contains is its 

marginal entropy (Shannon 1948). Marginal entropy is analogous to variance and is defined 

mathematically as: 

𝐻(𝑋) = − ∑ 𝑝𝑖 log 𝑝𝑖

𝑛

𝑖=1

 
(4-7) 



Ph.D. Thesis – J. Leach McMaster University – Civil Engineering 

123 

 

where H(X) is the marginal entropy of a random variable X, n is the number of bins being 

used to represent the random variable, and pi is the probability of the value being in bin i. 

The data quantization method used for has been shown to impact the results of the entropy 

calculation (Keum and Coulibaly 2017); for simplicity, however, Sturges’ method was used 

(Sturges 1926). The marginal entropy can be expanded to two or more variables as follows 

(Shannon 1948): 

𝐻(𝑋1, 𝑋2, … , 𝑋𝑁)

= − ∑ ∑ … ∑ 𝑝(𝑥1,𝑖1
, 𝑥2,𝑖2

, … , 𝑥𝑁,𝑖𝑁
) log (𝑝(𝑥1,𝑖1

, 𝑥2,𝑖2
, … , 𝑥𝑁,𝑖𝑁

))

𝑛𝑁

𝑖𝑁=1

𝑛2

𝑖2=1

𝑛1

𝑖1=1

 

(4-8) 

where H(X1,X2,…,XN) is the joint entropy of N random variables, n1, n2,…, nN are the 

number of bins being used to represent the corresponding N random variables, and 

𝑝(𝑥1,𝑖1
, 𝑥2,𝑖2

, . . . , 𝑥𝑁,𝑖𝑁
) is the joint probability of the N variables.  

The information content that is found in one random variable but not another in a 

system is defined as the conditional entropy (Shannon 1948; V. P. Singh 1997): 

𝐻(𝑋|𝑌) = 𝐻(𝑋, 𝑌) − 𝐻(𝑌) ≤ 𝐻(𝑋) (4-9) 

where H(X|Y) is the conditional entropy between two random variables and H(X,Y) is the 

joint entropy. Knowing the marginal and conditional entropies between random variables 

the mutual information can be determined. Mutual information is the measure of the shared 

information, both linear and non-linear dependencies, between two or more random 

variables and it is analogous to covariance. The two-variable form of mutual information, 

also known as transinformation, is defined as follows (Shannon 1948; V. P. Singh 1997): 

𝑇(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋) = 𝑇(𝑌, 𝑋) (4-10) 
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where T(X,Y) is the mutual information between two variables or two groups of variables. 

A generalized measure of dependence between continuous random variables was 

developed by Linfoot (1957) called the informational coefficient of correlation. This 

measure can aid in showing the relationship between mutual information and covariance:  

𝑅𝑋𝑌 = √1 − exp(−2𝑇(𝑋, 𝑌)) 
(4-11) 

where 𝑅𝑋𝑌 is the informational coefficient of correlation and 𝑇(𝑋, 𝑌) is the mutual 

information (transinformation) between random variables X and Y. Note that for discrete 

random variables, the modification by Lu (2011) denoted as the L-measure should be used. 

The informational coefficient of correlation becomes the Pearson correlation coefficient 

when the two random variables are linearly correlated, continuous, and have a joint 

bivariate normal distribution. The Pearson correlation coefficient can be calculated as 

follows: 

𝑟𝑋𝑌 =
Σ𝑋𝑌

√Σ𝑋𝑋Σ𝑌𝑌
 

(4-12) 

where 𝑟𝑋𝑌 is the Pearson correlation coefficient, Σ𝑋𝑌 is the covariance between random 

variables X and Y, Σ𝑋𝑋 is the variance of X, and Σ𝑌𝑌 is the variance of Y. 

4.4.3 Data assimilation techniques 

4.4.3.1 The Ensemble Kalman Filter.  

The EnKF, developed by Evensen (1994, 2003), is a technique used for sequential 

data assimilation. The EnKF uses a Monte Carlo approach for prior and posterior 

distribution estimation and can be used to update both states and parameters of a model as 

new observations become available (Moradkhani et al. 2005; Samuel et al. 2014). Ensemble 
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size and hyper-parameter selection are important considerations that can influence the 

performance of the EnKF (Moradkhani et al. 2005; Thiboult and Anctil 2015), however 

these are beyond the scope of the work in this manuscript and have instead been chosen 

based on previous work done in the study area (Leach, Kornelsen, and Coulibaly 2018).  

The following steps are taken when performing the update (Moradkhani et al. 2005; 

Samuel et al. 2014). First the states are propagated forward in time: 

𝑥𝑗,𝑡
− = 𝑓(𝑥𝑗,𝑡−1

+ , 𝑢𝑗,𝑡 , 𝜃) (4-13) 

where 𝑥𝑗,𝑡
−  is the prior estimate of state variables in the model at time t for ensemble member 

j, f(.) is the operator within the models that propagate the state variables, 𝑥𝑗,𝑡−1
+  is the 

posterior estimate of state variables at time t-1 for ensemble j, 𝑢𝑗,𝑡 is the perturbed forcing 

data at time t for ensemble member j, and 𝜃 is the vector of parameters. When updating 

states and parameters, 𝜃 is replaced with 𝜃𝑗,𝑡−1
+  following the dual updating method of 

Moradkhani et al. (2005).  

  The streamflow is then predicted using the prior estimated states as follows: 

�̂�𝑗,𝑡 = ℎ(𝑥𝑗,𝑡
− , 𝜃) + 𝜈𝑗,𝑡 (4-14) 

where �̂�𝑗,𝑡 is the simulated streamflow at time t for ensemble member j, h(.) is the 

hydrologic model and 𝜈𝑗,𝑡 is normally distributed noise at time t for ensemble member j 

used to represent the model’s structural uncertainty. 

 Streamflow observations at time t are then perturbed to generate an ensemble to 

represent the uncertainty related to the observations:  

𝑦𝑗,𝑡 = 𝑦𝑡 + 𝜂𝑗,𝑡 (4-15) 
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where 𝑦𝑗,𝑡 is the perturbed streamflow used to update the model states (or parameters) at 

time t for ensemble j, 𝑦𝑡 is the observation at time t, 𝜂𝑗,𝑡 is the normally distributed noise 

used for perturbing the streamflow. 

The Kalman gain, which determines how much confidence should be put in the new 

observation, is then calculated as follows: 

𝐾𝑡 = 𝛴𝑡
𝑋�̂�(𝛴𝑡

�̂��̂� + 𝛴𝑡
𝑌𝑌)

−1
 (4-16) 

where Kt is the Kalman gain for time t, 𝛴𝑡
𝑋�̂� is the background covariance at time t, Σ𝑡

�̂��̂� is 

the variance of the predicted streamflow at time t, and Σ𝑡
𝑌𝑌 is the variance of the observed 

streamflow a time t. 

 The updated state (or parameter) can then be found as follows: 

𝑥𝑗,𝑡
+ = 𝑥𝑗,𝑡

− + 𝐾𝑡(𝑦𝑗,𝑡 − �̂�𝑗,𝑡) (4-17) 

where 𝑥𝑗,𝑡
+  is the updated posterior state for ensemble j and time t and is the optimal estimate 

given the uncertainties in the model and observations. Equations 4-13 to 4-17 are repeated 

until the simulation is completed. 

4.4.3.2 Distributed Ensemble Kalman Filter.  

Data assimilation using the EnKF with semi-distributed hydrologic models has been 

done previously (Clark et al. 2008; Xie and Zhang 2010). The method described in Clark 

et al. (2008) was used for distributed data assimilation as a comparison, denoted as DEnKF. 

The procedure is similar to the EnKF update strategy with some exceptions highlighted in 

the following. 
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 When observations are available from one or more gauge a 𝑛𝑜𝑏𝑠 ×  1 observation 

vector, 𝒀𝒕, and an 𝑛𝑜𝑏𝑠 ×  𝑛𝑜𝑏𝑠 observation error matrix, 𝜮𝑡
𝑌𝑌  = 𝜌 × 𝑑𝑖𝑎𝑔(𝒀𝑡), are 

created. Where 𝒀𝑡 = {𝑦𝑡,1, . . . , 𝑦𝑡,𝑛𝑜𝑏𝑠}  is the vector of streamflow observations made at 

time 𝑡, 𝑑𝑖𝑎𝑔(. ) is the vector diagonalization function, 𝜌 is the observation hyper-parameter 

(coefficient of variation), and 𝑛𝑜𝑏𝑠 is the number of gauged basins with observations at 

timestep 𝑡. The streamflow observations are then perturbed into a 𝑛𝑜𝑏𝑠 ×  𝑁 matrix using 

normally distributed noise. Next, the 𝑛𝑜𝑏𝑠 ×  𝑛𝑜𝑏𝑠 model error covariance matrix, 𝜮𝑡
�̂��̂� =

𝑐𝑜𝑣(�̂�𝑡), is calculated in which �̂�𝑡 represents the 𝑛𝑜𝑏𝑠 ×  𝑁 matrix of ensemble 

streamflow predictions for time 𝑡 at the gauged locations.  

 The next step in this implementation is to cycle through each unobserved model 

state (or parameter) and update it using data from observed locations, and this is done as 

follows. A (𝑛𝑜𝑏𝑠 + 1)  ×  𝑁 matrix is created of the prior state estimates, 𝑿𝑡𝑘
− , in which 

the extra row is from a location without observations for time t and state k. Then the 

(𝑛𝑜𝑏𝑠 + 1)  ×  𝑛𝑜𝑏𝑠 background covariance matrix is found, 𝜮𝑡𝑘
𝑋�̂� = 𝑐𝑜𝑣(𝑿𝑡𝑘

− , �̂�𝑡), and the 

(𝑛𝑜𝑏𝑠 + 1)  ×  𝑛𝑜𝑏𝑠 Kalman gain can be determined, 𝑲𝑡𝒌  =  𝜮𝑡𝑘
𝑋�̂�(𝜮𝑡

�̂��̂�  +  𝜮𝑡
𝑌𝑌)−1. Each 

ensemble member j for each state k is then updated using the following: 

𝑿𝑡𝑘
+ = 𝑿𝑡𝑘

− + 𝑲𝑡𝑘(𝒀𝑡 − �̂�𝑡) (4-18) 

where 𝑿𝑡𝑘
+  is the updated state (or parameter) vector in which the (𝑛𝑜𝑏𝑠 + 1) entry is the 

updated vector of state (or parameter) k for the ungauged basin at time t, 𝑿𝑡𝑘
−  is the 

background state (or parameter) vector for state k being updated at time t, 𝑲𝑡𝑘 is the Kalman 

gain used to update state k at time t, 𝒀𝑡 is the vector of observed streamflows at time t, �̂�𝑡 
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is the vector of predicted streamflow for the observed basins for at time t. This is repeated 

for each of the state (or parameters) listed in Tables 1 and 2 until the final timestep.  

4.4.3.3 Mutual Information Ensemble Kalman Filter.  

One of the assumptions used in the derivation of the Kalman gain is that there is no 

correlation between model and observation error (Evensen 1994). Without that assumption, 

the Kalman gain and the analysis error covariance can be shown to be: 

𝐾𝑡 = (𝛴𝑡
𝑋�̂� + 𝛴𝑡

𝑋𝑌) (𝛴𝑡
�̂��̂� + 𝛴𝑡

�̂�𝑌 + (𝛴𝑡
�̂�𝑌)

𝑇
+ 𝛴𝑡

𝑌𝑌)
−1

 
(4-19) 

𝛴𝑡
𝑋𝑋+ = 𝛴𝑡

𝑋𝑋− − 𝐾𝑡(𝛴𝑡
�̂�𝑋− + 𝛴𝑡

𝑋𝑌−) (4-20) 

where 𝐾𝑡 is the Kalman gain, 𝛴𝑡
𝑋�̂� is the covariance of the states and the predictand, 𝛴𝑡

𝑋𝑌 is 

the covariance of the states and observations, 𝛴𝑡
�̂�𝑌 is the covariance of the predictand and 

observations, + (superscript) indicates posterior estimate, and - (superscript) indicates prior 

estimate. It should be expected that ungauged sub-basins in a semi-distributed model would 

have a non-zero correlation between the model and observation error (states at ungauged 

location and observation at gauged location). This is because those ungauged sub-basins 

were calibrated using observations from the gauged sub-basins; though this relationship 

may be non-linear/non-Gaussian. Because of this potential non-linearity, mutual 

information is proposed to be used in place of the cross-covariance between ungauged sub-

basin states and gauged sub-basin observations. From some empirical testing, the modified 

Kalman gain used for the MIEnKF was found to be: 

𝐾𝑡 = (𝛴𝑡
𝑋�̂� + 𝑇(𝑋, 𝑌)/𝐻(𝑋, 𝑌)) (𝛴𝑡

�̂��̂� + 𝑇(�̂�, 𝑌)/𝐻(�̂�, 𝑌) + 𝛴𝑡
𝑌𝑌)

−1
 (4-21) 
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where T(,) is the mutual information, H(,) is the joint entropy, X is the matrix containing 

states (or parameters) from both gauged and ungauged basins, T (superscript) is the 

transpose operator, Y is the matrix containing observed streamflow from one or more 

gauged locations, and �̂� is the matrix containing predicted streamflow at one or more 

gauged locations.  

4.4.4 Method comparison and evaluation 

The Lorenz model was used to evaluate the performance of the proposed method 

against previously developed EnKF implementations. To do this, multiple tests were run 

which evaluated the performance of the Lorenz system with the EnKF using the standard 

Kalman gain (Eq. 4-16), the Kalman gain considering correlation between model and 

measurement error (Eq. 4-19), the DEnKF implementation, and the modified Kalman gain 

using mutual information (Eq. 4-21). To set up an analogous test for updating ungauged 

basins using observations from gauged basins, the Lorenz states were used to update each 

other (x update y and z, y update x and z, z update x and y). These tests were run 100 times 

and then evaluated using the Root Mean Square Error (RMSE). The RMSE is: 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑(𝑌 − �̅̂�)

2
𝑇

𝑡=1

 

(4-22) 

where Y is the measured (observed) value, �̅̂� is the ensemble mean of the prediction, t is 

the model step, and T is the total number of steps. The RMSE values range from zero to 

infinity, with zero being a perfect fit. 
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To test the performance of each data assimilation method on the hydrologic models, 

several leave one/multiple out cross-validations were run and compared using the DRB 

HyMod model. These leave one/multiple out comparisons allowed for evaluating how well 

the proposed method could be used to update one or multiple ungauged locations 

efficiently. Each test was run 20 times using an ensemble size of 200, and the average 

performance of them was compared. To test the scalability of the MIEnKF method to more 

discretized models, it was also evaluated using the Raven models of DRB and HRB. For 

the tests run using the HyMod model, it was effective to update every timestep that 

observations were available; however, due to the high computational cost when using a 

distributed model, an optimal updating strategy was determined for Raven. The 

performance of Raven was tested against different ensemble sizes, model time steps, and 

update frequencies on the DRB Raven model to determine the best update strategy. The 

best performing options chosen for the DRB were then applied to the HRB. The evaluation 

using the Raven model also allows for determining if the method is useful for other models 

and at different time steps (since HyMod was run as daily and Raven run as hourly).  

For the Raven model, the ensemble means from each data assimilation scheme were 

evaluated using the Peak Flow Criteria (PFC) (Coulibaly, Anctil, and Bobée 2001), and 

Kling-Gupta Efficiency (KGE) (Gupta et al. 2009). The PFC was chosen to highlight how 

well the methods could improve peak flow prediction, since the peak flows are more 

pronounced at the hourly timestep, and the KGE was chosen to show how well, in general 

the methods could improve the modeling of the hydrographs. Both metrics are defined as 

follows: 
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𝑃𝐹𝐶 =
(∑ (𝑄𝑝 − �̅̂�𝑝)

2𝑇𝑝

𝑝=1 𝑄𝑝
2)

1/4

(∑ 𝑄𝑝
2𝑇𝑝

𝑝=1 )
1/2

 

(4-23) 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝜎�̅̂� 𝜎𝑌⁄ − 1)
2

+ (𝜇�̅̂� 𝜇𝑌⁄ − 1)
2
 

(4-24) 

where 𝑄𝑝 is the observed runoff peak, �̅̂�𝑝 is the ensemble mean of the simulated runoff 

peak, 𝑇𝑝 is the number of observed peaks above a threshold, and 𝑝 ∈ {1, . . . , 𝑇𝑝}. The 

threshold value for peak flows was found by identifying the peaks, then taking one-third of 

the mean of those peaks. The KGE is found using the Pearson correlation coefficient, 𝑟, the 

relative variability, 𝜎�̅̂� 𝜎𝑌⁄ , and the mean ratio, 𝜇�̅̂� 𝜇𝑌⁄ , between the ensemble mean of the 

simulated runoff and the observed runoff. Since an essential consideration in urban and 

flood-prone environments is the peak flow values, the PFC will be used to evaluate how 

well the data assimilation methods can improve the peak flow simulation in the ungauged 

basins. The KGE will be used to evaluate the general performance of the data assimilation 

methods, specifically how effective they are at improving performance in ungauged basins. 

The PFC values can range from zero to infinity with zero being optimal, and the KGE can 

range from negative infinity to one with one being optimal. 

4.5. Results and discussions 

4.5.1 Comparison of data assimilation methods in a chaotic system 

 The Lorenz 63 model performance using the data assimilation methods are 

summarized in Table 4-3. From these results, we can see that when assuming there is a 

linear correlation between model and measurement error using the EnKF, the performance 

is worse. Additionally, these results show that using observations of one state to update 
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another can reduce performance. This reduction in performance can, however, be 

dampened when considering model and measurement error to be correlated. From these 

results, we also see that the MIEnKF can better update variables when their direct 

observations are not available. The MIEnKF can also perform comparably well to the EnKF 

when all observations are available, and in general outperforms the EnKF when 

observations are not available; both in cases when the measurement and model error are 

considered linearly correlated or not. This suggests that replacing the cross-covariance with 

the entropy terms allows for better transfer of information from measured to unmeasured 

states. Although using the Lorenz 63 model is not exactly the same as when considering 

gauged and ungauged locations in a watershed, these results can be considered somewhat 

analogous to that kind of scenario. 

Table 4-3: Mean and standard deviation of RMSE for 100 runs of Lorenz 63 model with the EnKF and the 

MIEnKF. Considered cases where model and measurement error are correlated or not (C or noC), and 

considering when measurements are available or not (noUG meaning all are available, XY meaning that XY are 

unavailable, etc.). DEnKF values are (nearly) identical to the EnKF ones for the Lorenz 63 model, so they were 

omitted. 

Test options µX ± σX µY ± σY µZ ± σZ 

EnKF_noC_noUG 0.58 ± 0.03 0.81 ± 0.05 0.87 ± 0.04 

EnKF_noC_XY 12.70 ± 0.07 12.40 ± 0.06 6.77 ± 0.08 

EnKF_noC_XZ 5.95 ± 0.18 11.22 ± 0.21 16.59 ± 0.23 

EnKF_noC_YZ 7.57 ± 0.20 13.44 ± 0.25 16.93 ± 0.25 

EnKF_C_noUG 0.63 ± 0.03 0.87 ± 0.05 0.91 ± 0.04 

EnKF_C_XY 17.68 ± 0.24 15.29 ± 0.20 9.89 ± 0.20 

EnKF_C_XZ 4.40 ± 0.19 9.66 ± 0.27 18.98 ± 0.22 

EnKF_C_YZ 5.99 ± 0.19 11.84 ± 0.26 19.16 ± 0.19 

MIEnKF_C_noUG 0.64 ± 0.03 0.86 ± 0.05 0.91 ± 0.04 

MIEnKF_C_XY 0.66 ± 0.03 0.87 ± 0.05 0.93 ± 0.04 

MIEnKF_C_XZ 4.09 ± 8.78 1.38 ± 0.24 21.15 ± 17.85 

MIEnKF_C_YZ 0.87 ± 0.03 3.07 ± 5.03 19.80 ± 19.80 

Note: Extreme outliers removed (RMSE>100). 

 A comparison of the EnKF and the MIEnKF, when using the measurement of the Z 

state to update the X and Y states, can be seen in Figure 4-2. Here we see that the standard 

EnKF is not able to correct for the error added to the Lorenz 63 model when using measured 
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states to update unmeasured states. This is not the case for the MIEnKF; it can model the 

system much better when information is missing. We also see from the analysis error 

covariance plot in Figure 4-2d that the MIEnKF variance generally stays lower than the 

EnKF with correlation considered, with occasional spikes. This implies that including the 

entropy measures is useful in updating systems when there are non-linear dependencies 

present. 

 

Figure 4-2: Comparison of EnKF and MIEnKF results when the measurement of Z is used to update X and Y 

with the open-loop (OL) results in blue, and the data assimilation (DA) results in orange (for a, b, and c). (a) is 

the results of the EnKF with correlation of model and measurement error assumed to be zero, (b) is the EnKF 

with non-zero correlation, (c) is the MIEnKF results, and (d) is a comparison of the analysis error covariance of 

X. 
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4.5.2 Simple hydrological model 

4.5.2.1 Calibration and Validation of HyMod model.  

The HyMod model calibration and validation results are provided in Table 4-4. 

HyMod was calibrated using observations from 2007-01-01 to 2012-12-31 and validated 

using observations from 2013-01-01 to 2015-12-31. The upstream sub-basins, gauges 

02HC056 and 02HC005, were calibrated first in the case of the semi-distributed HyMod 

model. All three sub-basins have similar performances in the calibration and validation 

periods. However, gauge 02HC005 (basin 2) performs significantly poorer. This lower 

performance in basin 2 is likely due to the G. Ross Lord Dam which is upstream of the 

gauge since its operations are not adequately modeled by HyMod. 

Table 4-4: Calibration and validation results for the semi-distributed HyMod model setup for the Don River basin 

using daily streamflow. The optimization function used was the NVE with the values used to control weighting on 

medium, low, and high flows being w={0.3,0.2,0.5}. 

Sub-basin Gauge 

Calibration period 2007-2012 Validation Period 2013-2015 

NVE VE NSE NVE VE NSE 

1 02HC056 0.54 0.01 0.60 0.55 0.03 0.55 

2 02HC005 0.43 0.18 0.46 0.39 0.19 0.43 

3 02HC024* 0.62 0.01 0.66 0.56 0.05 0.60 
Note: * Indicates most downstream gauge of the semi-distributed model. 

4.5.2.2 Data Assimilation with HyMod.  

Several implementations of the MIEnKF were evaluated to identify the best way to 

incorporate the mutual information between gauged and ungauged locations for improving 

state and parameter updating in ungauged locations. From those tests, the modified Kalman 

gain shown in Eq. 4-21 proved to be the best. The EnKF, DEnKF, and MIEnKF were then 

all evaluated using multiple assimilation schemes. These assimilation schemes included all 

combinations of the three daily streamflow gauges being used or not used for updating. 

Since the focus of these analyses is on the ability to update ungauged locations more 



Ph.D. Thesis – J. Leach McMaster University – Civil Engineering 

135 

 

effectively, the performance of each ‘ungauged’ basin was compared for each assimilation 

scheme, shown in Tables 4-5 and 4-6.  From these results, it is apparent that the selected 

MIEnKF methods perform better than both the EnKF and DEnKF methods at updating the 

states of ungauged basins. The improvement to state updating by incorporating mutual 

information in the EnKF can likely be attributed to the similarity in the ensemble 

distributions of the states and observations. More specifically, the cumulative distribution 

of the ensemble for each state variable from an ungauged sub-basins is similar to that of 

the cumulative distribution of the gauged sub-basins’ streamflow (Figure 4-3a). For mutual 

information there is more information shared between random variables when their 

distributions are similar; thus the more information is available for the update. However, 

the ensemble distributions for each parameter are not very similar between sub-basins, 

which leads to little or no added information (Figure 4-3b).  

Table 4-5: NVE for DA methods using observations from sub-basins 1 and 2 for updating HyMod. The italicized 

performances are those from the ‘ungauged’ basin during the run. 

 Sub-basin Gauge EnKF DEnKF MIEnKF 

State 

1 02HC056 0.43 0.28 0.59 

2 02HC005 0.35 0.24 0.38 

3 02HC024 0.43 0.41 0.51 

Dual 

1 02HC056 0.45 -0.27 0.60 

2 02HC005 0.31 -0.23 0.03 

3 02HC024 0.40 0.18 0.37 

 

Table 4-6: NVE for DA methods using observations from sub-basin 3 for updating HyMod. The italicized 

performances are those from the ‘ungauged’ basins during the run. 

 Sub-basin Gauge EnKF DEnKF MIEnKF 

State 

1 02HC056 0.43 0.45 0.55 

2 02HC005 0.34 0.34 0.38 

3 02HC024 0.43 0.43 0.52 

Dual 

1 02HC056 -1.89 -8.69 -1.82 

2 02HC005 -0.34 -0.29 -0.34 

3 02HC024 0.48 0.43 0.47 
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Figure 4-3: Comparison of the normalized ensemble streamflow cumulative distribution functions (CDFs) from 

100 timesteps with (a) the normalized ensemble CDFs of states listed in Table 4-1 and (b) the normalized 

ensemble CDFs of parameters listed in Table 4-1. The green lines are the ensemble streamflow CDFs from sub-

basin 1, the red lines are the ensemble streamflow CDFs from sub-basin 2, and the blue are the ensemble CDFs 

for either states or parameters. Values were normalized for easier comparison since mutual information depends 

on distribution shape, not magnitude. 

Additionally, selected model runs of the MIEnKF hydrographs are illustrated in 

Figure 4-4. These results are meant to show how well the ensemble mean can match the 

observations despite the data assimilation update being made using observations from a 

different sub-basin. Here Figure 4-4a shows the results from when the states from sub-basin 

1 are updated using streamflow from sub-basin 3, Figure 4-4b shows the results from when 

sub-basin 2 states are updated using streamflow from sub-basin 3, and Figure 4-4c shows 

the results from sub-basin 3 states are updated using streamflow from both sub-basins 1 

and 2. We concluded that the ensemble results can reasonably match the observed values 

when updating using observations from other sub-basins. These results agree with those of 

the Lorenz63 model and strengthen the justification for incorporating mutual information 

into the EnKF to better update ungauged locations. To further test the MIEnKF in its 

applicability to different models, as well as its scalability, it will also be used with Raven 

models of both the DRB and the HRB. 
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Figure 4-4: Comparison of ensemble mean and 95% confidence interval of the MIEnKF method against the 

observed streamflow hydrographs for (a) sub-basin 1 states being updated using observations from sub-basin 3, 

(b) sub-basin 2 states being updated using observations from sub-basin 3, and (c) sub-basin 3 states being 

updated using observations from sub-basins 1 and 2. 

4.5.3 Complex hydrological model 

4.5.3.1 Calibration and validation of Raven Model.  

The Raven model calibration and validation results are provided in Tables 4-7 and 

4-8. Raven was calibrated with observations from 2009-01-01 to 2012-12-31 and validated 

from 2013-01-01 to 2015-12-31. The differences in calibration periods between the HyMod 

and Raven models were simply due to the availability of hourly and daily streamflow 

observations. 



Ph.D. Thesis – J. Leach McMaster University – Civil Engineering 

138 

 

Table 4-7: Calibration and validation results for the semi-distributed semi-physically based Raven model of the 

Don River basin using hourly streamflow. Gauges that start with ‘02HC’ are ECCC gauges, and those that start 

with ‘HY’ are TRCA gauges; some gauges may be used by both agencies. 

Sub-basin Gauge 

Calibration period 2009-2012 Validation Period 2013-2015 

NVE VE NSE NVE VE NSE 

12 02HC056 0.36 0.53 0.41 0.09 0.59 0.19 

30 HY017 0.34 0.64 0.47 0.21 0.68 0.40 

46 HY018 (02HC005) 0.33 0.09 0.43 -2.27 0.19 -0.91 

56 HY062 0.22 0.32 0.38 -1.21 0.30 -0.07 

58 HY019 (02HC024)* 0.45 0.27 0.59 0.03 0.25 0.14 
Note: * Indicates most downstream gauge of the semi-distributed model. 

Table 4-8: Calibration and validation results for the semi-distributed semi-physically based Raven model of the 

Humber River basin using hourly streamflow. Gauges that start with ‘02HC’ are ECCC gauges, and those that 

start with ‘HY’ are TRCA gauges; some gauges may be used by both agencies. 

Sub-basin Gauge 

Calibration period 2009-2012 Validation Period 2013-2015 

NVE VE NSE NVE VE NSE 

32 02HC047 -0.16 0.67 -0.31 -0.30 0.65 -0.56 

57 02HC032 0.01 0.66 0.05 0.18 0.61 -0.16 

59 02HC051 - - - -0.44 0.72 -0.59 

69 02HC023 0.08 0.64 0.07 -0.09 0.63 -0.11 

86 HY054 0.11 0.55 0.26 0.02 0.69 0.05 

91 02HC025 0.01 0.61 -0.07 -0.08 0.60 -0.20 

104 02HC009 0.11 0.62 0.14 0.04 0.62 0.02 

111 HY053 -0.08 0.79 0.01 -1.40 0.50 0.08 

119 HY035 0.16 0.65 0.25 -0.41 0.61 -0.04 

127 02HC031 0.18 0.59 0.32 0.15 0.55 0.21 

145 02HC003* 0.19 0.58 0.28 0.34 0.52 0.51 

148 02HC027* 0.43 0.51 0.62 0.37 0.49 0.54 
Note: * Indicates the two most downstream gauges of the semi-distributed model. 

Both the DRB and HRB Raven models were calibrated using hourly streamflow 

data. The NVE objective function weights were chosen so that peak and mean flows would 

be prioritized (w={0.5,0,0.5}). This weighting of the NVE was chosen since including low 

flows provided worse performance in both the calibration and validation period. The HRB 

Raven model is shown to have similar performance for both the calibration and validation 

periods, while the DRB Raven model generally performs worse during the validation 

period. Additionally, the DRB Raven model is also shown to have poorer performance than 

the DRB HyMod model. The reason for this difference is due to the average daily 

streamflow being fairly consistent between calibration and validation periods while the 
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hourly streamflow is much higher during the validation period, as illustrated in Figure 5. 

In general, the model validation results for the DRB are considered to be acceptable when 

considering these points.  

 

Figure 4-5: Comparison of hourly and average daily streamflow values for gauge 02HC024(HY019) in the DRB. 

4.5.3.2 Optimal Timestep and Update Strategy for Raven Models.  

Distributed and semi-distributed models generally have larger computational time 

requirements compared with those of lumped models; this computation time is further 

increased as the temporal resolution increases. When these factors are considered in an 

ensemble data assimilation framework, the computation time of assimilation experiments 

can quickly increase. It is desirable to determine an optimal updating strategy because of 

this fact. Due to the setup being used for the semi-distributed HyMod model, three sub-

basins and daily timesteps, it was feasible to update whenever observations were available. 

For the semi-distributed Raven models, an optimal update strategy had to be determined.  

In order to determine the best data assimilation update strategy, different update 

frequencies, model time steps, and ensemble sizes were compared. The results of the 

different ensemble sizes showed little improvement in performance compared to the 

increased computation time. However, the update frequency and model timestep did affect 

the model performance, as illustrated in Figure 4-6. From these results, it seems that the 
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optimal updating strategy for the Raven models should be to perform the update every 24 

hours while the model should run with 1-hour time steps. This update strategy was then 

used for both the DRB and the HRB Raven models. 

 

Figure 4-6: Comparison of update frequency and model timesteps to computation time for the DRB Raven 

model; run on a 2.1GHz 12-Core Processor. The point labels indicate the update frequency, the blue line shows 

the model performance with 1-hour time steps, and the red line shows the model performance when the timestep 

is equal to the update frequency. 

4.5.3.3 Data Assimilation with Raven Models.  

To further evaluate the chosen MIEnKF implementation, it was used to update the 

Raven models of the DRB and HRB. This was done to show the applicability of the method, 

mainly that it is scalable to largely discretized models, it can be used for both urban and 

semi-urban watersheds, and that it can be used with multiple models. Just as with the 

HyMod tests, leave 1-to-N gauges out tests were performed, and the performances of the 

EnKF, DEnKF, and MIEnKF methods were compared. Shown in Table 4-9 is a summary 

of the DRB and HRB Raven models’ performances, specifically the percentage of 

ungauged sub-basins that have improved performance compared to the open-loop. From 
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these results, it seems like the methods have similar results to those of the semi-distributed 

HyMod model. 

Additionally, none of the methods perform particularly well when updating 

parameters and states. Focusing on the state updating results for the DRB and directly 

comparing the assimilation methods, the MIEnKF provides the better KGE performance 

for 52% of the ungauged sub-basins, while the EnKF and DEnKF provide better 

performance in 23% and 25% of the ungauged sub-basins respectively. The PFC provides 

similar results with the MIEnKF providing better performance for 69% of the sub-basins.  

Table 4-9: Percentage of ungauged sub-basins, updated using data from gauged basins, which have the same or 

better performance than the open-loop run. Percentages are found from the leave 1-to-N gauges out tests. For 

example, the DRB has 30 possible scenarios in which one or more gauged basins can be considered ungauged, of 

those tests, there would be 75 ‘ungauged’ basins, and if all 75 has better performance than the validation run, it 

would be indicated as 100%. 

 
 State Updating Dual Updating 

Metric EnKF DEnKF MIEnKF EnKF DEnKF MIEnKF 

DRB 
KGE 40% 41% 57% 23% 31% 20% 

PFC 20% 20% 20% 20% 20% 1% 

HRB 
KGE 82% 79% 93% 13% 15% 0% 

PFC 18% 18% 18% 27% 17% 19% 

 

Although it is not the focus of the paper, Table 4-10 provides the KGE performances 

when all gauges are used for updating in the DRB Raven model. Here, results suggest that 

the MIEnKF method can improve model performance of gauged basins as well when using 

it to update model states. However, as with the ungauged sub-basins, the MIEnKF method 

performs poorly at updating the model parameters. 
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Table 4-10: KGE performance for state and dual updating with assimilation methods in the DRB Raven model. 

Bolded values indicate the best performing state or dual assimilation method for each gauge if it also performs 

better than the OL validation. 

Method HC056 HY017 HY018 HY062 HY019 

Open Loop Validation 0.24 0.09 0.20 0.45 0.51 

State 

EnKF 0.24 0.18 0.00 0.41 0.69 

DEnKF 0.10 0.15 0.05 0.42 0.66 

MIEnKF 0.40 0.24 -0.09 0.41 0.77 

Dual 

EnKF -0.30 0.46 -1.12 -0.12 0.50 

DEnKF -0.70 0.14 -0.41 0.12 0.76 

MIEnKF -1.81 0.26 -0.98 -1.07 0.29 

 

The results indicate that for state updating, the MIEnKF is the superior method and 

that it performs as well or better than the open-loop more often than either the EnKF or 

DEnKF for both the KGE and PFC performance criteria (Table 4-9). Additionally, these 

results indicate that for parameter updating, all methods perform poorly. The difference in 

performance between the state and the parameter updating is likely due to parameters being 

more spatially variable in these sub-basins. More specifically, when updating only states, 

the values are easily related between the gauged and ungauged sub-basins even when using 

data from a rural location to update an urban one (Figure 4-3a). However, when attempting 

to use data from an urban sub-basin to update the parameters of a rural sub-basin or vice 

versa, the values are not well related, and therefore the performance is not improved by any 

of the data assimilation methods (Figure 4-3b).  

This work suggests that the MIEnKF method can use observation information from 

gauged sub-basins to update the states of ungauged sub-basins better than either EnKF or 

DEnKF, and can potentially act as a pseudo-replacement for the unknown spatial 

covariances between the locations. Therefore, when using data assimilation to update states 
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in an ungauged location, the MIEnKF will provide improved updates over the original 

EnKF implementation. 

4.6 Conclusions 

The goal of this work was to utilize the mutual information between gauged and 

ungauged locations to provide an improved update for states and parameters when using 

data assimilation. To test this, a method was developed which utilized the entropy metric 

of mutual information, called the MIEnKF. The MIEnKF was first tested using the Lorenz 

63 model, and then on a small semi-distributed HyMod model. The results of the Lorenz 

63 model with MIEnKF implied that it could better update the system when non-linear 

dependencies are present. It was also shown to be able to update the states of an ungauged 

sub-basin better when compared to the EnKF or DEnKF. Next, the scalability of the method 

was evaluated by testing it on larger semi-distributed models built using the Raven 

hydrologic modeling framework. Similar performance was shown with the larger Raven 

model implementations as those from the HyMod model. Additionally, this showed that 

the MIEnKF method was usable in different hydrologic models as well as being valid for 

both urban and semi-urban watersheds. Finally, it was shown that the proposed method was 

particularly good at updating the states of ungauged basins, while it was not good at 

updating parameters, especially when land use was significantly different.  

Future work will be aimed at optimally transferring information about basin 

parameters from gauged to ungauged sub-basins, which would be useful for both data 

assimilation and optimization of semi-distributed and distributed hydrologic models. 
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Additionally, future work will be used to solidify better the theory behind the improvements 

gained by using MIEnKF.  
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Summary of Paper 4: Leach, J.M. and Coulibaly, P. (2019). An extension of data 

assimilation into the short-term hydrologic forecast for improved prediction reliability, 

Advances in Water Resources, doi:10.1016/j.advwatres.2019.103443 

Summary: 

This research developed and evaluated a methodology which allows for the extension of 

data assimilation into the forecast. By building a database which contains the prior 

knowledge of how a watershed modelled with a particular hydrologic model responds to 

forcing data, pseudo-observations could then be pulled from it and assimilated during the 

forecast period. This method was tested using the Ensemble Kalman Filter (EnKF) and the 

Particle Filter (PF) on two highly urbanized watersheds. The results suggest that this can 

improve the forecast reliability. 

The results of this research demonstrate: 

 Using the pre-built database which stores prior information about how a watershed 

model responds to inputs, as well as the corresponding historical observations, the 

capability of data assimilation can be extended into the forecast period.  

 This database allows for pseudo-observations to be assimilated into a model when 

real observations are not available. These pseudo-observations are true observations 

from the past which have been looked-up based on the current model states, forcing 

data, and prediction, or they are artificially generated observations from a pre-

trained neural network. 

 By extending data assimilation into the short-term forecast using this lookup 

method, the reliability of forecasts can be improved.  
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5.1 Abstract 

Typically, when using data assimilation to improve hydrologic forecasting, 

observations are assimilated up to the start of the forecast. This is done to provide more 

accurate state and parameter estimates which, in turn, allows for a better forecast. We 

propose an extension to the traditional data assimilation approach which allows for 

assimilation to continue into the forecast to further improve the forecast’s performance and 

reliability. This method was tested on two small, highly urbanized basins in southern 

Ontario, Canada; the Don River and Black Creek basins. Using a database of forcing data, 

model states, predicted streamflow, and streamflow observations, a lookup function was 

used to provide an observation during the forecast which can be assimilated. This allows 

for an indirect way to assimilate the numerical weather prediction forcing data. This 

approach can help in addressing prediction uncertainty, since an ensemble of previous 

observations can be pulled from the database which correspond to the forecast probability 

density function given previous information. The results show that extending data 

assimilation into the forecast can improve forecast performance in these urban basins, and 

it was shown that the forecast reliability could be improved by up to 78 percent. 

Keywords: Data Assimilation; Ensemble Kalman Filter; Particle Filter; Short-term 

forecast; nearest neighbour; artificial neural network 

5.2 Introduction 

 With our changing climate, extreme weather events, especially heavy rainfalls, are 

becoming more common which leads increasing need for improved flood forecasting 

methods. Historically, deterministic methods were used to predict floods with a chosen 
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model being forced with a deterministic Numerical Weather Prediction (NWP) product; 

but we know that this method is not ideal. Advances over the last two decades have led to 

ensemble and probabilistic approaches to better improve flood forecasting as well as to 

quantify the associated uncertainties related to the forecast (Liu et al., 2012). These more 

advanced forecasting and uncertainty quantification methods include sequential data 

assimilation (SDA) (Liu et al., 2012; Moradkhani et al., 2005), Bayesian forecasting system 

(BFS) (Biondi and De Luca, 2012; Han and Coulibaly, 2019; Krzysztofowicz, 1999), 

Bayesian model averaging (BMA) (Najafi and Moradkhani, 2016; Raftery et al., 2005), 

and model conditional processor (MCP) (Todini, 2008). With improved methods we are 

able to more accurately predict floods sooner, leading to a faster response and a reduced 

associated cost. 

Sequential data assimilation is a popular method used in hydrologic modeling to 

improve hydrologic and flood forecasting. As an application of Bayes Theorem, SDA can 

incorporate the uncertainty from both the model and observations to update boundary 

conditions and improve forecasts. There are several SDA methods which have been used 

for hydrologic forecasting such as the Extended Kalman Filter (EKF) (Sun et al., 2015), 

Ensemble Kalman Filter (EnKF) (Leach et al., 2018; Moradkhani et al., 2005; Samuel et 

al., 2014; Thiboult et al., 2015; Vrugt and Robinson, 2007), Ensemble Kalman Smoother 

(EnKS) (Crow and Ryu, 2009; Li et al., 2013), Evolutionary Data Assimilation (EDA) 

(Dumedah and Coulibaly, 2013), the Particle Filter (PF) (DeChant and Moradkhani, 2014; 

Moradkhani et al., 2005; Parrish et al., 2012; Yan and Moradkhani, 2016), and most 

recently the Evolutionary PF Hybrid methods (Abbaszadeh et al., 2019, 2018; Ju et al., 
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2019; Zhu et al., 2018); with the EnKF and PF being popular due to them being relatively 

simple to implement. Additionally, various types of observations have been successfully 

assimilated into hydrologic models, using these SDA techniques, such as streamflow 

(Abaza et al., 2017; Abbaszadeh et al., 2018; Yan and Moradkhani, 2016), soil moisture 

(Ju et al., 2019; Leach et al., 2018; Meng et al., 2017; Yan and Moradkhani, 2016), and 

snow water equivalent (Dziubanski and Franz, 2016; Huang et al., 2017; Leach et al., 2018; 

Smyth et al., 2019); these data sets are obtained from in situ gauges or remote sensing 

techniques. Through assimilating these observations, both models states and parameters 

can be updated to improve hydrologic simulation and forecasting (Leach et al., 2018; 

Moradkhani et al., 2005; Samuel et al., 2014).  

 One downside to hydrologic DA and modeling in general, is limited observational 

data due to many locations being ungauged. This causes issues for SDA with distributed 

models, as it has been shown that SDA in distributed modeling is better when more 

observations are available from multiple locations (Clark et al., 2008; Rakovec et al., 2012; 

Xie and Zhang, 2010). This data limitation also impacts forecasts, since the ability to update 

is limited by observations being available to assimilate at the start of a forecast. If a real-

time gauge, or a gauge in general, does not exist, then there may not be observations 

available at the beginning of the forecast to be used by SDA techniques to update the states 

and parameters. Due to the fact that these SDA methods are ensemble forecasting methods, 

they are limited in that they can address NWP uncertainty and merge model and observation 

uncertainty, but are not guaranteed to address prediction uncertainty (Biondi and Todini, 

2018). 



Ph.D. Thesis – J. Leach McMaster University – Civil Engineering 

156 

 

 In this study, we aim to address the limitation of SDA during the forecast mode, 

specifically the lack of available observations to assimilate (since there are none). To do 

this, we first build a database for our selected watershed. The database contains results from 

a chosen hydrologic model, such as predicted streamflows, predicted states, the forcings 

used to drive the model, and the corresponding observed streamflows. This database 

essentially stores how a specific watershed responds to forcings given some initial 

conditions, and it is used to generate a probability density function (pdf) of pseudo-

observations (�̃�), conditional on available information (I), denoted as 𝑓{�̃�|𝐼} (Biondi and 

Todini, 2018). This pdf is then assimilated back into the model at each forecast step with 

the goal of improving the forecast’s performance and reliability. This method could 

potentially also be extended to ungauged basins through the use of regionalization 

techniques to generate a database for any basin, although that is not explored within this 

work. 

 The proposed methodology will allow for data assimilation to be extended into the 

forecast period by using our prior knowledge of how the model responds to different inputs. 

In doing so, we can better account for the prediction uncertainty with SDA and provide 

better state estimates at each forecast horizon. Additionally, during a dual state and 

parameter updating scheme, this method will allow for the model parameters to be 

calibrated to the chosen weather forecast product. Real-time calibration to the weather 

forecast is beneficial since models are traditionally calibrated using historical gauge data, 

however, model parameter distributions can vary depending on what forcing data products 

are used to calibrate the model (Kornelsen and Coulibaly, 2016).   
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5.3 Study Areas and Data 

The study areas being focused on are the Black Creek and Don River basins in 

Toronto, Ontario, Canada (Figure 5-1). These watersheds are managed by the Toronto 

Region Conservation Authority (TRCA). Both the Black Creek basin (BCB) and the Don 

River basin (DRB) are highly urbanized, being roughly 97% and 93% developed, 

respectively (Agriculture and Agri-Food Canada, 2015). These basins have an average 

daily temperature of 8.0 °C, an average daily minimum and maximum temperatures of 3.4 

°C to 12.5 °C respectively, and an average annual precipitation of 841.1 mm/year based on 

the 1981-2010 Canadian Climate Normals (Environment and Climate Change Canada, 

2017).  

Hourly data was provided by the TRCA, Environment and Climate Change Canada 

(ECCC), and Water Survey of Canada (WSC) (20080101 to 20171231). Gaps in the 

precipitation data were infilled using a combination of disaggregated daily to hourly ECCC 

precipitation data and ordinary kriging. The disaggregation was performed using 

multiplicative random cascade (MRC)-based disaggregation (Ganguli and Coulibaly, 2017; 

Olsson, 1998, 1995). Ordinary kriging was also used to infill gaps in the temperature data. 

Forecast forcing data was obtained from the Regional Deterministic Prediction System 

(RDPS). The RDPS provides four 48-hour forecasts per day, in 3-hour increments, on a 10 

km grid. The 00-hour forecast was used for this study, with 3-hour precipitation and 

temperature data from 20150401 to 20171231. 
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Figure 5-1: Land-use/land-cover (left) and elevation (right) for Don River and Black Creek in Ontario, Canada. 

Locations of streamflow gauges, precipitation gauges, and RDPS grid points are also illustrated. 

5.4 Methodology 

5.4.1 Hydrologic Model 

HyMod is a lumped hydrologic model based on the probability distributed moisture 

model (PDM) (Moore, 1985). For this study HyMod was modified to include the degree-

day snow routine from Samuel et al. (2011) and the simplified Thornthwaite 

evapotranspiration method (Samuel et al., 2011). The model was calibrated using a 3-hour 

time interval, this timestep was chosen to match the RDPS dataset’s forecast timestep. Each 

watershed model was calibrated using the Dynamically Dimensioned Search (DDS) 

Algorithm (Tolson and Shoemaker, 2007), which has one algorithm parameter, r, used to 

control the neighborhood size for the random search. Using DDS, the calibration period 

was 20090101 to 20121231 and the validation period was 20130101 to 20151231, with the 

period of 20080101 to 20081231 used for spin-up. The Nash Volume Efficiency (NVE) 
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from Samuel et al. (2012), with modified weights, was the chosen objective function. The 

NVE is defined as follows: 

𝑁𝑉𝐸 = 0.3𝑁𝑆𝐸 − 0.1|𝑉𝐸| + 0.2𝑁𝑆𝐸𝑙𝑜𝑔 + 0.5𝑁𝑆𝐸𝑠𝑞𝑟 (5-1) 

𝑁𝑆𝐸 = 1 −
∑ (𝑦𝑡 − �̂�𝑡)2𝑇

𝑡=1

∑ (𝑦𝑡 − 𝐸[𝒚])2𝑇
𝑡=1

 
(5-2) 

𝑉𝐸 =
𝐸[𝒚 − �̂�]

𝐸[𝒚]
 

(5-3) 

where NSE is the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970), NSElog is the NSE 

calculated using log-transformed runoff (low flow), NSEsqr is the NSE calculated using the 

squared runoff (high flow), VE is the volume error, 𝑦𝑡 is the observed runoff at time t, �̂�𝑡 

is the simulated runoff at time t, and 𝐸[. ] is the expectation function. 

 Descriptions for the HyMod model parameters and states are listed in Table 5-1. 

The calibrated parameter sets for both the BCB and DRB are also provided in Table 5-1 

along with their parameter ranges and associated units. 
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Table 5-1: HyMod parameters and state variables, descriptions, parameter ranges, as well as the calibrated 

parameter sets for each watershed. 

Parameter Description Range Units 

Calibrated 

Value 

DRB BCB 

Alpha 
Factor distributing the runoff between the 

quick and slow reservoirs 

0.1 – 

0.99 
- 0.492 0.407 

Bexp 
Degree of spatial variability of soil moisture 

capacity 
0.1 – 3 - 1.497 2.963 

Cmax Maximum storage capacity 1 – 1000 mm 36.400 58.403 

Rs Residence time of slow flow reservoir 
0.01 – 

0.99 
day 0.182 0.345 

Rq Residence times of quick flow reservoirs 
0.001 – 

0.1 
day 0.004 0.002 

tr Rainfall threshold temperature 0 – 2.5 °C 1.827 2.187 

scf Snow correction factor 0.4 – 1.6 - 0.420 0.528 

ddf Degree day factor 0 – 5 mm/day/°C 0.221 3.845 

rcr Rainfall correction factor 0.5 – 1.5 - 1.457 1.482 

athorn 
Potential evapotranspiration coefficient for 

simplified Thornthwaite equation 
0.1 – 0.3 - 0.131 0.106 

State variables 

S Watershed storage - mm - - 

qfr1 Quick flow reservoir 1 - mm - - 

qfr2 Quick flow reservoir 2 - mm - - 

qfr3 Quick flow reservoir 3 - mm - - 

sfr Slow flow reservoir - mm - - 

swe Snow water equivalent - mm - - 

 

5.4.2 Data Assimilation 

For hydrologic forecasting, the benefit of SDA is that it can take new information 

at each time step and update our prior estimate of the states (and parameters), to provide a 

more accurate posterior which leads to a better forecast. The posterior distribution of states 

at time t can be found using the recursive Bayes’ Theorem: 

𝑃(𝑥𝑡|𝑦1:𝑡) = 𝑃(𝑥𝑡|𝑦𝑡 , 𝑦1:𝑡−1) =
𝑃(𝑦𝑡|𝑥𝑡)𝑃(𝑥𝑡|𝑦1:𝑡−1)

∫ 𝑃(𝑦𝑡|𝑥𝑡)𝑃(𝑥𝑡|𝑦1:𝑡−1)𝑑𝑥𝑡
 

(5-4) 

where 𝑃(𝑥𝑡|𝑦1:𝑡) is the posterior distribution, 𝑃(𝑥𝑡|𝑦1:𝑡−1) is the prior distribution, 

𝑃(𝑦𝑡|𝑥𝑡) is the likelihood for time t, and ∫ 𝑃(𝑦𝑡|𝑥𝑡)𝑃(𝑥𝑡|𝑦1:𝑡−1)𝑑𝑥𝑡  is the normalization 
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factor. Since the analytic solution is generally intractable, a numerical approximation can 

be made using Monte Carlo methods.  

5.4.2.1 Ensemble Kalman Filter 

The Ensemble Kalman Filter (EnKF) is a Monte Carlo based SDA method that can 

be used to optimally combine model and observation uncertainties to provide an improved 

forecast (Evensen, 2003, 1994). The EnKF is a commonly used data assimilation method 

which can be used to update model states and parameters; its update procedure is shown as 

follows (Moradkhani et al., 2005): 

�̂�𝑡
− = 𝑓(�̂�𝑡−1

+ , 𝜽, 𝒖𝑡) + 𝜻𝑡 (5-5) 

�̂�𝑡 = ℎ(�̂�𝑡
−, 𝜽) + 𝝂𝑡 (5-6) 

𝑲𝑡 =
cov(�̂�𝑡

−, �̂�𝑡)

var(�̂�𝑡) + 𝑅
 

(5-7) 

�̂�𝑡
+ = �̂�𝑡

− + 𝑲𝑡(𝒚𝑡 − �̂�𝑡) (5-8) 

where �̂�𝑡 is the predicted ensemble of states for time t, 𝜽 is the vector of model parameters, 

𝒖𝑡 is the ensemble of perturbed forcing data at time t, 𝑓(. ) is the state propagation functions 

which moves them forward in time, and 𝜻𝑡 is the random noise which represents process 

error. The superscripts – and + represent the prior and posterior updated states, 

respectively. The hydrologic model is represented by ℎ(. ), �̂�𝑡 is the predicted runoff at 

time t, and 𝝂𝑡 is noise which represents model uncertainty. The Kalman gain, 𝑲𝑡, at time t 

is found by dividing the cross-covariance of predicted states and runoff by the variance of 

the innovation (the difference of the observed and predicted runoff). The observed runoff 

𝒚𝑡 is perturbed by random noise N(0, 𝑅) to generate an ensemble of observations, with R 
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being the prior known observation uncertainty. The difference of the observed and 

predicted runoff is then multiplied by the Kalman gain and added to the prior state estimate 

to create the posterior state estimate. This process, Eq. 5-5 to 5-8, is repeated until there are 

no more observations, or the spin-up period is complete. 

5.4.2.2 Particle Filter 

Another common SDA method is the Particle Filter (PF). As with the EnKF, the PF 

can be used to update model states and parameters (Moradkhani, 2008; Moradkhani et al., 

2005). There are many variants of the particle filter that utilize different particle resampling 

methods. Four resampling methods were selected for this analysis, they were the Residual 

Resampling (RR) method (Liu and Chen, 1998), two versions of the Sample Importance 

Resampling method (SIR and SIRV) (Smith and Gelfand, 1992), and the Markov Chain 

Monte Carlo (MCMC) method (Leisenring and Moradkhani, 2012; Moradkhani et al., 

2012; Yan et al., 2015; Yan and Moradkhani, 2016). The SIR and RR methods add constant 

noise to the particles at every timestep in order to add particle diversity and combat 

degeneracy (Liu and Chen, 1998), while the SIRV and MCMC methods add variable noise, 

using the variable variance multiplier (VVM), to combat particle degeneracy (Leisenring 

and Moradkhani, 2012; Moradkhani et al., 2012). The general formulation of the PF, in 

conjunction with Eq. 5-5 and 5-6, is as follows (Gordon et al., 1993; Moradkhani et al., 

2005): 

𝐿(𝑦𝑡|𝒙𝑖,𝑡
− ) =

1

√2𝜋𝑅
exp (−

(𝑦𝑡 + 𝜀𝑖,𝑡 − �̂�𝑖,𝑡)
2

2𝑅
) 

(5-9) 
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𝑃(𝑦𝑡|𝒙𝑖,𝑡
− ) =

𝐿(𝑦𝑡|𝒙𝑖,𝑡
− )

∑ 𝐿(𝑦𝑡|𝒙𝑖,𝑡
− )𝑁

𝑖=1

 
(5-10) 

𝑤𝑖,𝑡
+ =

𝑤𝑖,𝑡
− 𝑃(𝑦𝑡|𝒙𝑖,𝑡

− )

∑ 𝑤𝑖,𝑡
− 𝑃(𝑦𝑡|𝒙𝑖,𝑡

− )𝑁
𝑖=1

 
(5-11) 

𝑃(𝑿𝑡
+|𝑦1:𝑡) ≈ ∑ 𝑤𝑖,𝑡

+ 𝛿(𝑿𝑡 − 𝒙𝑖,𝑡)

𝑁

𝑖=1

 

(5-12) 

where N is the number of particles, 𝑤𝑖,𝑡
−  is the prior weight (set to 1/N) for particle i at time 

t, 𝑤𝑖,𝑡
+  is the posterior weight for particle i at time t, 𝛿(. ) is the Dirac delta function, 

𝜀𝑖,𝑡~𝑁(0, 𝑅) is random noise which represents observation error, and 𝐿(. ) is the Gaussian 

likelihood function. The posterior estimate can then be resampled to eliminate low weight 

particles using the chosen resampling method.  

 There are many resampling methods that can be used with the PF, including the RR, 

SIR, and MCMC resampling methods. The RR method for reweighting residual particles 

(particles with a weight less than 1/N) is: 

𝑤𝑖,𝑡
∗+ =

𝑁𝑤𝑖,𝑡
+ − ⌊𝑁𝑤𝑖,𝑡

+ ⌋

𝑁 − ∑ ⌊𝑁𝑤𝑖,𝑡
+ ⌋𝑁

𝑖=1

 
(5-13) 

where 𝑤𝑖,𝑡
∗+ are the weights of the 𝑁∗ residual particles (𝑁∗ = 𝑁 − ∑ ⌊𝑁𝑤𝑖,𝑡

+ ⌋𝑁
𝑖=1 ), that will 

be used to construct an empirical cumulative distribution function (CDF). This CDF is then 

resampled from to increase the number of particles from 𝑁∗ to N, after which the particle 

weights are set to 1/N. When using SIR, like RR, a CDF of the particle weights is 

constructed. From this CDF, N particles are resampled proportionally to their weights with 

higher weighted particles being resampled more often (when their probability is higher than 

uniform probability). The MCMC resampling method is an extension of the SIR method, 



Ph.D. Thesis – J. Leach McMaster University – Civil Engineering 

164 

 

it uses a metropolis acceptance ratio, 𝛼, to decide if an update should be accepted or 

rejected. 

𝛼 = min (1,
𝑃(𝑿𝑡

𝑝
|𝑦1:𝑡)

𝑃(𝑿𝑡
+|𝑦1:𝑡)

) 
(5-14) 

The proposed joint probability distribution of the updated particles is 𝑃(𝑿𝑡
𝑝

|𝑦1:𝑡), 

and the particles are updated when the acceptance ratio exceeds a threshold value generated 

from a uniform random variable 𝑢~𝑈(0,1).  

5.4.3 Pseudo-observation lookup routine 

To provide pseudo-observations during the forecast period a database was built that 

contains past information about the watershed. By using this database, data assimilation 

can be extended into the forecast period. This database contains the HyMod state values 

(Table 5-1), the precipitation and temperature data used to force the model and generate 

those state values, and the predicted streamflow associated with those states and forcings 

for each timestep during the time period allocated for building the database. Additionally, 

the database contains the corresponding observed streamflow values, and the prediction 

error values for each timestep in the database. To evaluate the influence forcing data 

uncertainty may have on the lookup methods, two databases were built for this study using 

different forcing datasets.  

The first database was built using historical precipitation and temperature gauge 

data to run HyMod, denoted as the historical observation database (hdb). The hdb was built 

using gauge data from 20090101 to 20161231, and results from each timesteps were 

archived. The second database was created using archived RDPS precipitation and 
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temperature, denoted as the forecast forcing database (fdb). Since the available archive of 

RDPS forecasts is much shorter than that of the gauges, the period of 20150401 to 

20161231 was used to build the fdb. 

Three lookup methods were evaluated and used to pull pseudo-observations from 

the pre-built databases. The lookup methods are k-Nearest Neighbour (k-NN), direct lookup 

(DL), and a feedforward neural network (FNN). Each method was evaluated based on how 

they affected the performance of the forecasts. The term pseudo-observation was used to 

describe the values pulled from the database because they are true observations that 

correspond to past vectors (of states, forcings, and predicted streamflow) which most 

closely resembles the forecasted vector (of states, forcings, and predicted streamflow). The 

DL method directly provides the closest values from the database as a pseudo-observation, 

the k-NN method provides the average of the k closest values as a pseudo-observation, and 

the FNN generates a pseudo-observation which corresponds to the forecasted vector. The 

general flowchart illustrating how the method works, and where the lookup routine fits into 

the forecast, is provided in Figure 5-2. 
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Figure 5-2: Flowchart illustrating database setup, spin-up data assimilation, and data assimilation in the 

forecast. 

5.4.3.1 Direct lookup and k-Nearest Neighbour 

 The k-NN method is a simple machine learning algorithm which can be used for 

regression or classification (Altman, 1992). When using it for regression, the k nearest 

neighbours to the sample point of interest are averaged to provide a predicted value. In the 

case of this analysis, the sample point is a vector containing the initial model states, forcing 

data, and predicted streamflow for a timestep, which is then compared to the points in a 

database, either the hdb or fdb, and a corresponding streamflow observation, or prediction 

error, is returned. This observation is the mean of the k closest points to the sample point. 

The direct lookup method is the special case of the k-NN algorithm when k = 1. It is possible 

to use different distance and weighting methods for k-NN, however for this work the 

Euclidean distance with equal weights was used. The general formulation for the k-NN 

method is as follows: 
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{

𝑐(𝑗) = argmin
𝑖

‖𝒙𝑡 − 𝓓𝑖‖ , 𝑓𝑜𝑟 𝑗 = 1

𝑐(𝑗) = argmin
𝑖

‖𝒙𝑡 − 𝓓𝑖‖ , 𝑖 ≠ 𝑐(𝑗 − 1), 𝑓𝑜𝑟 𝑗 = 2, … , 𝑘
 

(5-15) 

�̃�𝑡 =
1

𝑘
∑ 𝓎𝑐(𝑗)

𝑘

𝑗=1

, 𝓎𝑐(𝑗) ∈ 𝓓 

(5-16) 

where 𝒙𝑡 is the vector of states, forcing data, and predicted streamflow at time t, 𝓓𝑖 is a 

database vector entry i that is of the same structure as 𝒙𝑡, ‖. ‖ is the Euclidean distance 

function (2-norm), and 𝑐(𝑗) is the database index value of the nearest 𝑗 = 1, … , 𝑘 

neighbours. The pseudo streamflow observation for time t, �̃�𝑡, is then found by taking the 

average of the archived streamflow observation, 𝓎𝑐(𝑗). The prediction error (or innovation) 

can be retrieved from the database in a similar manner. 

5.4.3.2 Feedforward Neural Network 

 To generate comparable results to those of the DL and k-NN lookup methods, a 

FNN was trained on each database and used to generate pseudo-observations which could 

be assimilated during the forecast period. More specifically, the FNN was trained to 

reproduce the past true observation which corresponds to a past vector (of states, forcings, 

and predicted streamflow), so that if given a forecasted vector the FNN would generate a 

pseudo-observation for it. The specific type of FNN used as a lookup routine was the 

multilayer perceptron (MLP). A simple formulation of the MLP is shown as follows (Hagan 

et al., 1997): 

�̃�𝑡 = 𝑓(𝑾2 g(𝑾1𝒙𝑡 + 𝒃1) + 𝒃2) (5-17) 

where 𝑾1 and 𝑾2 are the input layer and hidden layer neurons weight matrices, 

respectively; 𝒃1 and 𝒃2 are the input layer and hidden layer bias vectors, respectively; 𝑓(. ) 
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is the linear activation function for the output neuron, and 𝑔(. ) is the non-linear activation 

function (hyperbolic tangent) for the hidden neurons.  

The MLP was pre-trained separately for the hdb, and the fdb using the Levenberg-

Marquardt optimization method with Mean squared normalized error as the objective 

function. For training purposes, the databases were randomly split into 70% training data 

used for fitting, 15% validation data used for unbiased evaluation while tuning hyper-

parameters, and 15% testing data used for an unbiased evaluation of the final model. The 

network architecture included an input layer with nine neurons, one hidden layer with 

twenty neurons, and the output layer with one neuron. The input layer neurons were the 

initial model states, forcing data, and predicted streamflow for a timestep, and the output 

neuron returned either the streamflow observation or prediction error (innovation) for that 

timestep.  

5.4.3.3 Modification to Kalman Gain and Likelihood functions 

 When the prediction error (innovation) is retrieved from the databases, the data 

assimilation formulations need to be modified. This is because the prediction error is not 

independent from the predicted streamflow, therefore the variance of 𝒀𝑡  =  𝜺𝑡 +  �̂�𝑡 is 

var(𝒀𝑡)  =  var(�̂�𝑡) + var(𝜺𝑡) + 2 × cov(𝜺𝑡, �̂�𝑡). Since 𝑅 ≈ var(𝒀𝑡), the Kalman gain in 

Eq. 5-7 when using the prediction error becomes: 

𝑲𝑡 =
cov(�̂�𝑡

−, �̂�𝑡)

2 × var(�̂�𝑡) + var(𝜺𝑡) + 2 × cov(𝜺𝑡, �̂�𝑡)
 

(5-18) 

A similar modification can be made to the likelihood function used for the PF in 

Eq. 5-9, such that it becomes:  
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𝐿(𝑌𝑡|𝑋𝑖,𝑡
− ) =

exp (−
(𝜀𝑖,𝑡)

2

2 × (var(�̂�𝑡) + var(𝜺𝑡) + 2 × cov(𝜺𝑡, �̂�𝑡))
)

√2𝜋 × (var(�̂�𝑡) + var(𝜺𝑡) + 2 × cov(𝜺𝑡 , �̂�𝑡))

 

(5-19) 

The assimilation of the prediction error was motivated by the idea that there may 

be a large difference in the innovation during the forecast when the pseudo-streamflow 

observation is assimilated compared to what it was historically. In doing this test, the 

impact that difference has could be better evaluated. 

5.4.4 Evaluation methods 

 To evaluate the performance of the data assimilation methods when running the 

model using historical gauge forcing, the Kling-Gupta Efficiency (KGE) (Gupta et al., 

2009), the Root Mean Square Error (RMSE), and the Peak Flow Criteria (PFC) (Coulibaly 

et al., 2001) were used. These criteria were chosen to provide a baseline of performance for 

each data assimilation method before the extension into the forecast. These metrics are 

defined as follows: 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝜎�̅̂� 𝜎𝑌⁄ − 1)
2

+ (𝜇�̅̂� 𝜇𝑌⁄ − 1)
2
 

(5-20) 

𝑅𝑀𝑆𝐸 = (
1

𝑇
∑(�̅̂�𝑡 − 𝑌𝑡)

2
𝑇

𝑡=1

)

1
2

 

(5-21) 

𝑃𝐹𝐶 =
(∑ (𝑄𝑝 − �̅̂�𝑝)

2𝑇𝑝

𝑝=1 𝑄𝑝
2)

1/4

(∑ 𝑄𝑝
2𝑇𝑝

𝑝=1 )
1/2

 

(5-22) 
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The KGE is found using the linear correlation coefficient, 𝑟, the relative variability, 

𝜎�̅̂� 𝜎𝑌⁄ , and the mean ratio, 𝜇�̅̂� 𝜇𝑌⁄ , between the ensemble mean of the simulated runoff and 

the observed runoff. Where 𝑌𝑡 is the observed runoff, �̅̂�𝑡 is the ensemble mean of the 

simulated runoff, t is the timestep, T is the number of timesteps, 𝑄𝑝 is the observed runoff 

peak, �̅̂�𝑝 is the ensemble mean of the simulated runoff peak, 𝑇𝑝 is the number of observed 

peaks above a threshold, and 𝑝 ∈ {1, . . . , 𝑇𝑝}. The threshold value for peak flows was found 

by identifying the peaks, then taking one-third of the mean of those peaks. Since an 

essential consideration in urban and flood-prone environments is the peak flow values, the 

PFC will be used to evaluate how well the data assimilation methods can improve the peak 

flow simulation in the ungauged basins. The RMSE and KGE will be used to evaluate the 

general performance of the data assimilation methods, specifically how effective they are 

at improving performance in ungauged basins. The RMSE and PFC values can range from 

zero to infinity with zero being optimal, and the KGE can range from negative infinity to 

one, with one being optimal. 

The ensemble forecast performance of each assimilation scheme and model 

combination was evaluated using the mean Continuous Ranked Probability Score (CRPS) 

performance metric. The CRPS can be used to assess accuracy and resolution of the 48-

hour ensemble forecast performances. The mean CPRS is formulated as follows (Matheson 

and Winkler, 1976; Unger, 1985): 

𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅(𝐹, 𝑦) =
1

𝑁
∑ ∫ (𝐹(�̂�𝑡) − 𝟏{�̂�𝑡 ≥ 𝑦𝑡})2𝑑�̂�

∞

−∞

𝑁

𝑡=1

 (5-23) 
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where 𝐹(�̂�𝑡) is the cumulative distribution function of the ensemble forecasts, �̂�𝑡 is the 

predicted runoff, 𝑦𝑡 is the observed runoff, and 𝟏{�̂�𝑡 ≥ 𝑦𝑡} is the Heaviside step function 

that provides a value of 1 if the predicted value is larger than the observed and 0 otherwise. 

A CPRS value of 0 indicates a perfect forecast.  

To determine the reliability of the forecasts, the mean CRPS was decomposed 

according to Hersbach (2000), such that 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ = 𝑅𝑒𝑙𝑖̅̅ ̅̅ ̅̅ + 𝐶𝑅𝑃𝑆𝑝𝑜𝑡. This decomposition is 

analogous to that of the Brier score decomposition which can provide reliability, resolution, 

and uncertainty (Hersbach, 2000; Murphy, 1973). Reliability of a forecast is a measure of 

its statistical accuracy and whether or not the forecasting system has correct statistical 

properties (Hersbach, 2000; Murphy, 1973). More specifically, the forecast can be 

considered reliable if it is not over or under dispersed and is unbiased. In this way, the 

reliability also has a connection to the rank histogram, which can be used to evaluate the 

spread and bias of an ensemble. The reliability and potential CRPS are calculated as 

follows: 

𝑅𝑒𝑙𝑖̅̅ ̅̅ ̅̅ = ∑ �̅�𝑖(�̅�𝑖 − 𝑝𝑖)
2

𝑁

𝑖=0

 

(5-24) 

𝐶𝑅𝑃𝑆𝑝𝑜𝑡 = ∑ �̅�𝑖�̅�𝑖(1 − �̅�𝑖)

𝑁

𝑖=0

 

(5-25) 

where �̅�𝑖 is the average width of bin i, �̅�𝑖 is the average frequency that the observation is 

less than the middle of bin i, 𝑝𝑖 is the fraction i/N, and N is the ensemble size. There are 

N+1 bins and each is defined by the distance between consecutive ensemble members when 

0<i<N, while for i=0,N the bins are defined by the distance between the observation and 
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outlier members. The CRPSpot represents what the 𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ could be if the forecast was 

perfectly reliable, and 𝑅𝑒𝑙𝑖̅̅ ̅̅ ̅̅  is an indication of how reliable the forecast is. For both metrics 

the optimal value is 0. The interested reader can see Hersbach (2000) for a more detailed 

description of the decomposition. 

 The Reliability performance measure from Renard et al. (2010) and the 95% 

Exceedance Ratio (ER95) from Moradkhani et al. (2006) were also used for evaluating the 

performance of the forecasts. These metrics evaluate the overall reliability of the predictive 

distribution and the spread of the ensemble, respectively. They are calculated as follows: 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 −
2

𝑇
∑|𝑃(�̂�𝑡 ≤ 𝑦𝑡) − 𝑃𝑡

𝑈|

𝑇

𝑡=1

 

(5-26) 

𝐸𝑅95 =
1

𝑇
∑(�̂�97.5%,𝑡 < 𝑦𝑡 𝑜𝑟 �̂�2.5%,𝑡 > 𝑦𝑡)

𝑇

𝑡=1

× 100% 

(5-27) 

where 𝑃(�̂�𝑡 ≤ 𝑦𝑡) is the (sorted) probability that the ensemble prediction �̂�𝑡 will be less 

than the observation 𝑦𝑡, T is the total number of time steps, 𝑃𝑡
𝑈 is the theoretical cumulative 

probability (cumulative uniform distribution), �̂�97.5%,𝑡 is the 97.5 percentile of the predicted 

streamflow ensemble, and �̂�2.5%,𝑡 is the 2.5 percentile of the predicted streamflow 

ensemble. The Reliability measure can range from 0 to 1 with 1 being perfectly reliable, 

and the ER95 ranges from 0 to 100% with a perfect ensemble having a value of 5%. 

As part of assessing the impact of extending the assimilation into the forecast, four 

cases were evaluated: (1) for both the spin up and forecast period, the model was run 

without data assimilation; (2) for the spin-up period, data assimilation was used, and during 

the forecast it was just the model; (3) data assimilation was used in both the spin up and 
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forecast periods; and (4) the model was used during the spin-up period and data assimilation 

was used in the forecast. Additionally, for all four cases during the spin-up period the 

models were forced with historical gauge data, and during the forecast period the models 

were forced with the RDPS forecasted forcings. 

5.5 Results and discussions 

5.5.1 Model calibration, validation, and standard data assimilation results 

Using the DDS optimization, multiple calibrations for each basin were performed, 

with each run consisting of 50000 iterations with an r of 0.2, then another 50000 iterations, 

starting from the previous’ endpoint, with an r of 0.1. The best HyMod model calibration 

(20090101 to 20121231) and validation (20130101 to 20151231) results, for both basins, 

are summarized in Table 5-2. From these results, we see that both basins perform 

reasonably well during the calibration period. However, larger runoff events occurred 

during the validation period in both basins, which can explain why they perform slightly 

worse during that period. Additionally, the Black Creek basin model performs better than 

the Don River basin model, which is likely due to the controlled reservoir in the Don River 

basin, making it more difficult to model.  

Table 5-2: Calibration and Validation performance of 3-hour HyMod model for each watershed 

Basin 
Calibration Validation 

NSE NVE VE NSE NVE VE 

Don River 0.56 0.45 0.06 0.42 0.32 0.07 

Black Creek 0.66 0.54 0.03 0.55 0.37 0.03 

 

 The models were also run using each data assimilation during the validation period 

so that the performance of each method could be compared to the open loop case. The 

results of these runs are summarized in Table 5-3.; From this table, it can been seen that 
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the data assimilation with only state updating performs best for the 3-hour ahead forecast 

using the historical gauge data. This was likely due to the models being well calibrated 

using the historical gauge data, so re-calibrating using the dual state and parameter updating 

strategies was not beneficial. The PF methods with Sequential Importance Resampling and 

Residual Resampling performed the best for these state updating strategies, however the 

EnKF was comparable. Note that when using the dual state and parameter updating 

strategy, the EnKF method outperformed the other data assimilation methods.  

Table 5-3: Comparison of performances of data assimilation methods to open loop validation period (20130101 to 

20151231). Note that these runs provide only the 3-hour ahead forecasts using historical gauge data as forcing. 

DA Method Update 
Don River Black Creek 

KGE RMSE (mm/3hr) PFC KGE RMSE (mm/3hr) PFC 

Open loop - 0.66 0.20 0.41 0.60 0.41 0.61 

EnKF State 0.72 0.15 0.35 0.77 0.22 0.39 

 Dual 0.54 0.15 0.39 0.67 0.21 0.42 

PF-SIR State 0.75 0.14 0.33 0.86 0.16 0.31 

 Dual 0.28 0.17 0.40 0.46 0.23 0.46 

PF-RR State 0.75 0.14 0.33 0.85 0.16 0.33 

 Dual 0.14 0.19 0.43 0.06 0.28 0.46 

PF-SIRV Dual 0.40 0.16 0.38 0.58 0.19 0.37 

PF-MCMC Dual 0.51 0.16 0.38 0.57 0.20 0.41 

 

5.5.2 Standard data assimilation performance using the RDPS forecasts 

 The data assimilation methods were then evaluated based on their forecast 

performance with the RDPS forcing data. Illustrated in Figure 5-3 are the mean CRPS 

performances for both the Don River and Black Creek basin HyMod models using each 

assimilation method out to the 48-hour forecast. As a side note, a continuous archive of 

Regional Deterministic Prediction System (RDPS) was not available therefore only 302 of 

the RDPS forecasts were used from 2017 (forecasted at time 00), and the results in Figure 

5-3 are the average of them. From the forecast results it appears that the data assimilation 
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methods with only state updating performed nearly identically; but they were not the best 

performing methods as before (forced with historical gauge data for a 3-hour forecast). 

When forcing the HyMod model with RDPS it is instead better to use the dual state and 

parameter updating strategy with data assimilation to achieve the best performance; this is 

consistent with the literature (Leach et al., 2018; Moradkhani et al., 2005; Samuel et al., 

2014; Yan et al., 2015).  

Specifically, it is shown that the EnKF performs well for the first 6 hours for the 

Don River basin and the first 18 hours for the Black Creek basin. The particle filter with 

SIR, SIRV, and MCMC resampling outperforms the EnKF beyond those forecast horizons. 

Additionally, the particle filter with RR does not perform well for either basin when forcing 

with RDPS, and it will therefore be omitted from further analyses. 

 

Figure 5-3: Standard data assimilation ensemble forecast performances illustrating how the mean CRPS values 

for each assimilation method for each watershed changes out to the 48-hour forecast. Solid lines indicate state 

updating and dashed lines indicate dual state and parameter updating. The solid black line indicates the open 

loop (OL) performance with no data assimilation. 



Ph.D. Thesis – J. Leach McMaster University – Civil Engineering 

176 

 

5.5.3 Evaluation of data assimilation in the forecast 

 To evaluate the performance of extending data assimilation into the forecast, several 

scenarios were evaluated and compared.  These scenarios included different combinations 

of lookup methods, lookup values, along with which database was being used. These 

combinations meant that twelve scenarios were tested for each assimilation method under 

Cases 3 and 4 (listed in section 5.4.4), the forecast results of which are provided in Figures 

5-4 and 5-5 for the Don River basin and Black Creek basin, respectively. These results 

suggest that, in general, extending data assimilation into the forecast will provide better 

performance than the open loop model (Case 1). Additionally, many of the scenarios also 

outperform the traditional data assimilation (Case 2). However, how much of an 

improvement varies from method to method.  

 From Figure 5-4, the assimilation methods with state updating, EnKF and PF-SIR, 

have better performance under Cases 3 and 4. When updating both states and parameters 

in the forecast, the performances of the EnKF-D, PF-SIRV, and PF-MCMC can be further 

improved beyond that of Case 2, but only when data assimilation is performed during both 

the spin up and forecast. Both the PF-SIRV and PF-MCMC methods provide very similar 

performance here, as was also shown in Moradkhani et al. (2012), with the PF-SIRV 

providing slightly better performance in the Don River basin under Case 3 assimilating 

archived streamflow predictions provided using the direct lookup method and the fdb. 

These results suggest that even if observations are not directly available for a basin leading 

up to the forecast, but there were observations some time in the past, data assimilation could 
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still be used to improve the forecast performance as long as a similar event occurred 

previously. 

 

Figure 5-4: Don River basin ensemble forecast performance for the various data assimilation methods and tested 

cases out to the 48-hour forecast. The dashed black line is the open loop (Case 1), the solid black line is the 

standard data assimilation framework (Case 2), the blue lines illustrate the various tested scenarios with data 

assimilation in spin up and forecast (Case 3), and the orange lines illustrate the various tested scenarios with 

data assimilation only in the forecast (Case 4). 

 Similar performance is seen for the Black Creek basin model as with the Don River 

basin model with both the state updating methods being further improved for both Case 3 

and 4, and the dual state and parameter updating methods being further improved for Case 

3. However, there are some scenarios that also improve the dual updating for Case 4 in the 

Black Creek basin, and the best case was the same as that of the Don River basin (PF-

SIRV). We suspect that the ability for this proposed method to work in these basins is due 

to them being small urban basins with low memory and short time of concentrations. This 

makes the basins respond in a similar manner when similar boundary conditions exist, 

leading to the database lookup method working well. If the basins were larger, it is likely 
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that multiple time lags would need to be considered which would add more complexity to 

the lookup routine; although it would be possible to do. 

 

Figure 5-5: Black Creek basin ensemble forecast performance for the various data assimilation methods and 

tested cases out to the 48-hour forecast. The dashed black line is the open loop (Case 1), the solid black line is the 

standard data assimilation framework (Case 2), the blue lines illustrate the various tested scenarios with data 

assimilation in spin up and forecast (Case 3), and the orange lines illustrate the various tested scenarios with 

data assimilation only in the forecast (Case 4). 

 To better illustrate the difference between cases, a random event was selected from 

the Don River basin and its two-day modeled window was shown in Figure 5-6. The results 

presented here are from the best performing case and scenario options that were previously 

identified. From Figure 5-6 each case can perform reasonably well, however Case 3 is able 

to provide better results further into the forecast; this agrees with the results in Figure 5-4. 
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Figure 5-6: Hydrographs for selected event in the Don River basin illustrating ensemble forecast performance of 

the different cases with PF-SIRV updating states and parameters. The assimilated observation in Cases 3 and 4 

was the streamflow value found using the direct lookup method. The RDPS forecasted forcings database (fdb) 

was used. 

To evaluate the various options used for Cases 3 and 4, the results of the scenario 

options have been summarized in Figures 5-7 and 5-8 for the Don River and Black Creek 

basins, respectively. From these plots we can make a few conclusions about the best 

scenario options to use. The first is that PF-SIRV or PF-MCMC with dual updating during 

the forecast period should be used (Case 3). The results from using each database suggest 

that the fdb is slightly better to use, although it would likely be beneficial to use whichever 

database is larger, since there will be more archived events available. It is also slightly 

better to pull the archived streamflow instead of the archived prediction error from the 

database with either of the lookup methods; further optimization may change this, however. 

Since this manuscript is presenting a proof of concept for extending data assimilation into 

the forecast, there is likely some optimization that could be made to further improve the 
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lookup routine and functions. Suggested improvements include more neighbours or a 

different distance metric for the k-NN and more hidden layers and/or neurons for the FNN.  

 

Figure 5-7: Average performance for KGE in the Don River basin for (a) all cases, (b) each data assimilation 

method, (c) update method, (d) lookup database, (e) lookup method, (f) and lookup value, out to the 48-hour 

forecast. 
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Figure 5-8: Average performance for KGE in the Black Creek basin for (a) all cases, (b) each data assimilation 

method, (c) update method, (d) lookup database, (e) lookup method, (f) and lookup value, out to the 48-hour 

forecast. 

5.5.4 Effect on model forecast reliability 

 To evaluate the impact extending data assimilation into the forecast has on forecast 

reliability, the CRPS was decomposed based on Hersbach (2000) to get the potential CRPS 

and reliability components. The relative changes to these performance metrics are 

illustrated in Figure 5-9 for the using PF-SIRV data assimilation method. Here the 

difference between Case 2 and 3 and Case 2 and 4 are taken so that a positive percent 

difference indicates an improvement for Case 3 or 4. From these results we see for the Don 

River basin model that Case 3 scenarios improve the forecast reliability and potential 

CRPS, increasing forecast reliability by up to 70 percent. However, the Case 4 results in 

general are only able to improve the potential CRPS results. The Black Creek basin model 
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has similar performance to that of the Don River model, with forecast reliability of Case 3 

also improving by up to 78 percent. Unlike the Don River model, however, the Black Creek 

model also has improved forecast reliability with Case 4. With the potential CRPS for both 

cases instead having poorer performance.  

 

Figure 5-9: Percent difference of CRPS and its decomposed values, CRPS potential and Reliability, for each 

watershed when comparing cases using the PF-SIRV data assimilation method. The blue indicates the difference 

between Case 2 and Case 3 for the various tested scenarios with data assimilation in spin up and forecast. The 

orange indicates the difference between Case 2 and Case 4 for the various tested scenarios with data assimilation 

only in the forecast. Positive values indicate improvements over Case 2. 

Additional probabilistic performance metrics were also evaluated to determine the 

improvement of Case 3 and Case 4 over Case 2. Those metrics were the 95% Exceedance 

Ratio (Moradkhani et al., 2006) and Reliability (Renard et al., 2010). The percent difference 

of each metric was calculated between Case 3 and 2 and Case 4 and 2, so that improvements 

over the traditional data assimilation (Case 2) could be determined. From Figure 5-10 it is 

apparent that extending data assimilation into the forecast can both improve the spread of 

the ensemble and improve overall reliability, particularly under Case 3 where data 
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assimilation is used during both the spin-up period and is extended into the forecast. The 

Renard Reliability can be improved by up to 67% on the Don River and 28% on Black 

Creek for Case 3, and the ensemble spread (ER95) can be improved by up to 97% on the 

Don River and 98% on Black Creek. These results generally agree with those of the 

decomposed CRPS reliability. 

 

Figure 5-10: Percent difference in Reliability (Renard et al., 2010) and ER95 (Moradkhani et al., 2006) for Don 

River and Black Creek using PF-SIRV data assimilation method. The blue indicates the percent improvement in 

Case 3 over Case 2 for the various tested scenarios with data assimilation in spin up and forecast. The orange 

indicates the percent improvement in Case 4 over Case 2 for the various tested scenarios with data assimilation 

only in the forecast. Positive values indicate improvements over Case 2. 

These results lead to the conclusion that forecast performance can be improved if 

data assimilation is extended into the forecast by using pseudo-observations obtained from 

a historical database of the basin model. This improvement is enhanced when observations 

are available during the forecast spin-up period for assimilation, although they are not 

required by the method. The proposed method suggests that, if a database can be built which 

contains the information of how a basin will respond to precipitation and other forcings, 

data assimilation can be performed using pseudo-observations in the absence of real 

observation data to improve forecast reliability. Additionally, we suspect that the larger the 
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period of record used to build the database, the larger the improvement in forecast 

performance should be; as it will be more likely that a historical event occurred which 

matches the event being forecasted. 

5.6 Conclusions 

 The results of this work provide a proof of concept for the extension of data 

assimilation into the forecast. We found that when assimilating pseudo-observations pulled 

from a prebuilt database, which contains information on how a specific watershed modeled 

using a specific model responds to inputs, the short-term forecast can be improved. 

Specifically, we showed that for small, highly urbanized basins with short times of 

concentration, this method works well at improving forecast reliability. The largest 

improvements were shown when data assimilation was used during both the spin-up period 

to the forecast as well as into the forecast (Case 3). However, we also showed that forecast 

performance could be improved with just data assimilation in the forecast (Case 4). 

Although the improvements shown for Case 4 are not as significant as Case 3, they indicate 

that assimilating with pseudo-observations in the forecast is still better than the open-loop 

results (Case 1).  

A drawback to extending data assimilation into the forecast is that the method is 

largely dependent on the ability to build a database. For best results, it is suggested that a 

large period of record should exist for the watershed of interest. Additionally, since the 

database is watershed and model specific, if the modelers were interested in multi-

modeling, they would need to build a database for each model. Finally, as the model 

becomes more complex, such as a fully distributed model, there would be an increased 
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computational cost associated with the database and lookup function. There is potential to 

improve the developed method, however, through further optimization of the lookup 

method, or expanding the database lookup over a span of several timesteps; which may be 

needed on larger, more complex basins.  
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6.1 Conclusions 

This thesis presented advanced methods that can be used to improve data 

assimilation techniques for hydrologic modeling and forecasting. First, it was shown that 

assimilating data products using the Ensemble Kalman Filter (EnKF; Evensen 1994) can 

improve hydrologic modeling and forecasting in an urban watershed. Next, remotely sensed 

soil moisture assimilation was further evaluated in regards to its limits for assimilation into 

urban and semi-urban watersheds. Thirdly, the Mutual information Ensemble Kalman filter 

(MIEnKF) was developed as a way to better update ungauged basin states when using 

observations from a gauged basin in a semi-distributed hydrologic model. Finally, forecast 

reliability was improved by extending data assimilation into the short-term forecast through 

the use of a pre-built database; with the database containing information on how the 

selected watershed responds to initial conditions and forcing data.  

The main conclusions of the thesis are summarized as follows. 

6.1.1 Using data products to improve forecasting in an urban basin 

 Simple conceptual models like GR4J (Perrin et al., 2003) and HyMod (Boyle, 2001) 

can be used to model urban watersheds with similar or better performance as more 

complex models like SAC-SMA (Burnash, 1995; Burnash et al., 1973). 

 Assimilating data products like SMOS L2 soil moisture (Kerr et al., 2012, 2010) 

and SNODAS snow water equivalent (National Operations Hydrologic Remote 

Sensing Center, 2004) can be beneficial for hydrologic forecasting in urban 

watersheds. 
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 A combination of streamflow and soil moisture assimilation can provide the best 

hydrologic forecast performance in the Don River basin. 

6.1.2 Limits for assimilating soil moisture in urban basins 

 Through testing of synthetic urban catchments, it was determined that an 

imperviousness threshold exists, beyond which it is not beneficial to assimilate 

remotely sensed soil moisture data. This threshold is a function of the rainfall 

volume, internal basin routing, and the basin's imperviousness. 

 A surrogate model was developed using the NRCS-CN (Natural Resources 

Conservation Service (NRCS), 2004), which can be used to quickly determine the 

threshold value for a watershed using information about the watershed.  

 The method was then validated by modeling several real-world urban and semi-

urban watersheds. These real-world experiments involved assimilating SMOS soil 

moisture data and determining whether there was a negative impact on model 

performance. Based on the results of both the synthetic and real-world tests, a 

general limiting imperviousness range was identified to be between 65 and 75 

percent.  

 The results showed that the method was reasonably accurate in identifying the 

imperviousness threshold for each real-world watershed; with an accuracy of 87 

percent in determining if there will or will not be a negative impact. 

6.1.3 Combining information theory and data assimilation 

 As a way to account for non-linear dependencies, data assimilation and information 

theory were combined; specifically the EnKF (Evensen, 1994) and mutual 
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information (Keum et al., 2017; Shannon, 1948; Singh, 1997) and the new method 

was termed the MIEnKF. The purpose of this combination is to better aid in data 

assimilation for ungauged basins in semi-distributed hydrologic models. 

 The Lorenz 63 model (Lorenz, 1963) was used as a testbed to compare the EnKF 

and MIEnKF. The results of these tests showed that in the traditional case of data 

assimilation, that being when a measured variable is used to update the predicted 

value for that variable, the methods provided similar performance. However, when 

a measured variable was used to update another variable in which it had non-linear 

dependencies, the MIEnKF was able to provide more useful updates. 

 The MIEnKF was then tested using a simple semi-distributed hydrologic model and 

a more complex semi-distributed hydrologic model and again found similar results. 

These results show that the method is valid for different models, is scalable to more 

discretized models, is usable for both urban and semi-urban basins, and works at 

daily or hourly timescales. 

6.1.4 Using past information to improve the reliability of forecasts 

 It is possible to store the past information on how a hydrologic model for a specific 

watershed responded to input forcing data given the model’s initial conditions in a 

database. This database can be used to generate a probability density function (pdf) 

of observations that is conditional on previously known information which can then 

be assimilated back into a hydrologic model. 

 To extend data assimilation into the short-term forecast, given some meteorological 

forecast and the initial conditions for a timestep, a pdf can be generated using the 
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pre-built database, which can then be assimilated during the forecast. This method 

allows for assimilation to occur when observations are not available. 

 Through testing with the EnKF and various particle filter implementations (Gordon 

et al., 1993; Leisenring and Moradkhani, 2012; Moradkhani et al., 2012, 2005), this 

extension of data assimilation into the short-term forecast was shown to improve 

the ensemble spread and enhance the forecast reliability. 

6.2 Recommendations for Future Research 

The research presented in this thesis is aimed towards advancing data assimilation 

methodology in urban and semi-urban watersheds. The results demonstrate that 

improvements can be made to existing methods which can aid in improving hydrologic and 

flood forecasting. However, these methods could still be improved upon, and there are 

several recommendations for future work which can aid in this.  

One recommendation is to test the impact of assimilating data products into semi- 

and fully-distributed hydrologic models of urban basins to determine if the same 

improvements to forecasting are present. Additionally, using a more advanced snowmelt 

routine when assimilating SNODAS snow water equivalent could provide improved results 

over those of the degree-day snowmelt routine. Finally, these tests should be run on hourly 

or sub-hourly scales in the urban watersheds to better account for the time of concentration 

as well as to show validity for flood forecasting.  

It is recommended that the theoretical basis for the MIEnKF method be further 

developed. Additionally, further improvements to this method could be made to better 

allow for updating parameters of ungauged basins. 
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Finally, it is recommended that the database method used for extending data 

assimilation into the forecast be further evaluated using the EPFM (Abbaszadeh et al., 

2018) and the HEAVEN (Abbaszadeh et al., 2019) data assimilation methods. It should 

also be evaluated using larger watersheds in which the impact of the time of concentration 

will likely require modifications to the database. Further work should also be done to test 

this method on both semi- and fully-distributed hydrologic models. 
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