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Effects of precursor topology on polymer networks simulated with molecular
dynamics

Shimiao Zhang and Li Xi1

Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada

Abstract

Molecular modeling of crosslinked polymers often follows arbitrary pathways for network generation, with different
precursor topology from experimental systems. We use coarse-grained molecular simulation to study the effects of
precursor choice on the predicted network structure and properties. Three sets of precursors with different molecular
architectures are designed such that they would form identical networks at the limit of perfect conversion. Little
difference is observed between the resulting networks in typical properties including the radial distribution function,
macroscopic statistics of network connectivity, and glass transition behaviors. However, the stress-strain relationship in
tensile deformation clearly depends on the formation pathway when compared at the same crosslinking density. The
elastic modulus of the network is found to correlate strongly with the number of elastic strands in the network, except
at the highly-crosslinked limit where substantial discrepancy is observed between networks from different precursors.
Although these final networks contain a similar average density of structural defects, the choice of precursor has significant
impact on their spatial distribution, leading to the precursor dependence of their mechanical properties. Uniform defect
distribution and fast defect elimination can be achieved by designing precursor units with a proper stoichiometric ratio
of different monomers.

Keywords: molecular dynamics, polymer networks, cross-linking kinetics, precursor dependence, defect distribution

1. Introduction

Network polymers are one of the most important
classes of soft materials composed of multiple crosslinked
polymer chains which assemble into a percolating three-
dimensional structure[1–3]. Interconnection of molecular
chains by chemical bonds confers many unique proper-
ties to these materials, such as improved elasticity and
high resistance to heat and organic solvents[4–6]. Be-
cause of their superior performance, network polymers
have grabbed much attention in both industrial practice
and theoretical research. Typical applications include vul-
canized rubber and thermosetting polymers (e.g., epoxy
resins and phenolic resins) which have been widely used in
the manufacturing of tires, parts, and consumer products;
they are also a common ingredient for adhesives and coat-
ings, and remain the focus of both experimental and the-
oretical research[5, 7–10]. Recent attention in hydrogels,
crosslinked hydrophilic polymers swollen by water, further
extended their application to the biomedical area [11].

Topologically speaking, the same network can be as-
sembled from different sets of precursors, typically either
by reaction between multifunctional monomeric precursors
or by connecting linear polymer chains with crosslinkers.
Both pathways are regularly used in practice. For instance,

1corresponding author, E-mail: xili@mcmaster.ca

crosslinked phenolic resins can be synthesized from scratch
using phenols and formaldehydes mixed at a proper molar
ratio or by curing novolac phenolic resins – uncrosslinked
macromolecular precursors – with a crosslinking agent [12].
Effects of precursor topology, if present, on the structure
and properties of the prepared polymer networks are not
well understood.

Development of computer power and molecular simula-
tion techniques over the past three decades have not only
significantly advanced our understanding of polymer ma-
terials, but also brought us closer to reliable prediction of
their properties [13–16]. Building molecular models repre-
senting realistic microscopic structures of polymers is how-
ever not a trivial task [17–20] and the difficulty only mul-
tiplies for crosslinked polymers. Ideally, it would be best
to have a network formation method that resembles the
realistic experimental crosslinking process. It is however
prohibitively expensive to simulate the motion and diffu-
sion of all molecules involved for the entire duration of
the formation process using chemically realistic full-atom
molecular models. Methods for the “virtual” synthesis of
polymer networks found in the literature are thus all ar-
tificial in this sense. A typical procedure starts with a
liquid structure of corresponding monomers, mixed with
crosslinker molecules when applicable; new chemical bonds
are added between eligible reacting atom pairs within a
specified cutoff distance to form a network [21–23]. In
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this sing-step approach, optimization techniques are often
needed to identify as many potential bonding pairs as pos-
sible [24, 25]. The resulting structure normally needs to
undergo extensive molecular dynamics runs, often with re-
peated heating and compression cycles, to relax the stress
singularities. Alternatively, these steps can be repeated to
form a multi-step crosslinking process, in which new bonds
are added in batches and between the bond addition steps
the structure is relaxed using molecular dynamics (MD) or
Monte Carlo (MC) simulations [26, 27]. To achieve high
crosslinking density, where atom motion becomes topolog-
ically constrained, it is often necessary to use unrealisti-
cally long cutoff distance to push the conversion close to
experimental values [22, 27].

Currently there is no standard protocol for the gener-
ation of network models. Specific implementation of these
methods varies from one research group to another. Mean-
while there is little knowledge of how the choice of forma-
tion pathway affects network properties. The only study
in this regard is the recent work of Jang et al. [25], which
compared a single-step and a multi-step method. Substan-
tial difference was found in the fragment molecular weight
between the resulting networks, while all other statistics
inspected in the study appear similar.

Model validation is another concern. In most studies,
networks in molecular simulation are formed to the same
level of crosslinking density as the targeted experimental
systems. These models can typically predict volumetric
properties such as density and glass transition tempera-
ture satisfactorily. However, prediction reliability of many
other properties, such as mechanical properties, is not fully
examined. As a broader question, if two networks have the
same crosslinking density and even the same radial dis-
tribution function, does it necessarily ensure their equiv-
alence in all properties? If not, how to detect the dis-
crepancy between a molecular model and its experimen-
tal counterpart and which of its predictions are reliable?
These questions all remain unexplored.

A realistic reaction-diffusion process for network for-
mation can be simulated at the coarse-grained (CG) level.
The earliest CG simulations used a similar approach as
the aforementioned full-atom studies, where monomeric
precursors are frozen in the space and systematically con-
nected [28, 29]. Seminal work of Kremer, Grest, and
coworkers [30–32] pioneered the dynamical approach for
network synthesis, which is still widely used today [33–
35]. Here, diffusion and mobility of polymer chains are
fully simulated using MD and crosslinking reaction is as-
sumed to take place when eligible atom pairs fall into a
certain cutoff distance. It has been widely used to study
the crosslinking kinetics of end-linked polymer networks,
i.e., networks formed by connecting the chain ends of linear
polymers with multifunctional crosslinkers [30–33, 35–37].
Network formation from other precursor architectures has
not been reported. CG molecular simulation also provides
a powerful tool for understanding the behaviors of network
polymers such as their elasticity [38, 39], volume phase

transitions [40], and interfacial adhesion behaviors[37, 41].
The advantage of CG models in simulating crosslinking ki-
netics makes it naturally suited for studying the effects of
network generation conditions. Using a bond-fluctuation
model [42], Gilra et al. [43] observed clear dependence of
crosslinking conversion on the cutoff distance. Recent de-
velopment of systematic coarse-graining methods [44–46]
makes it possible to map a network model generated at
the CG level, using either MD [47] or MC [48], back to
a full-atom representation. Following the same idea, Liu
et al. [49] used dissipative particle dynamics (DPD) [50] to
model the reaction-diffusion process of the network forma-
tion and mapped the generated network structure to the
full-atom level for property characterization.

The goal of our study focuses on the effects of for-
mation pathway on the network structure and properties.
Almost all full-atom models in the literature were syn-
thesized from monomeric precursors (with the exception
of Abbott et al. [23]), it is of interest to understand if
crosslinked materials prepared by curing linear polymer
precursors can be represented by such models. We design
three sets of model precursors in such a way that at the
limit of perfect conversion, they would result in identical
networks. Our results indicate that precursor topology has
non-trivial impact on the network properties. In particu-
lar, a precursor design based on the reaction stoichiometry
is most efficient in eliminating network defects. Further-
more, differences between these networks are not captured
by typical macroscopic structural characterization. These
findings show that effects of formation pathway on the
molecular model of a polymer network should not be over-
looked and new validation protocols need to be developed
to adequately vet models for property prediction.

2. Methodology

2.1. Molecular Model and Precursor Systems

We use the classical bead-spring model of Kremer
and Grest [51]: a group of successive repeating units
are lumped into one bead (also referred to as one CG
“monomer” or atom below), which are connected by
finitely-extensible nonlinear elastic (FENE) “bonds” to
form a polymer. Interaction between bonded monomers
are given by

UFENE(r) =− 1

2
kR2

0 ln

[
1−

(
r

R0

)2
]

+ 4ε

[(σ
r

)12
−
(σ
r

)6
+

1

4

] (1)

where r is the inter-particle distance. The first term is
attractive which models a spring force that diverges at the
maximum bond length R0 (= 1.5σ in our study); the sec-
ond term is only included for r < 21/6 which captures the
repulsion between beads at short distance. The spring con-
stant k = 30ε/σ2, which is small enough to allow the use of
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Figure 1: Precursor configurations tested in this study. Solid lines
represent existing bonds and dashed lines indicate potential bonding
sites.

a relatively large time step while large enough to prevent
bonds from cutting through each other[31]. The pairwise
interaction between non-bonded beads are calculated with
the standard Lennard-Jones (LJ) potential [52]

ULJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
. (2)

The potential is truncated at r = 2.5σ and shifted by a
constant to ensure continuity at the cutoff. Results in this
study will be reported in standard LJ reduced units: i.e.,
length is scaled by σ, energy by ε, mass by the bead mass
m, time by

τ ≡ σ
√
m/ε, (3)

and temperature by ε/kB , kB being the Boltzmann con-
stant.

All simulations are performed with the Large-
scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) package [53]. The equation of motion is in-
tegrated by the velocity-Verlet algorithm [52] with a time
step of ∆t = 0.005τ . Periodic boundary conditions are
applied in all dimensions.

Precursor configurations tested in this study are shown
in Fig. 1. Our model networks are composed of two types
of beads with different valences and bonds are only al-
lowed between atoms of opposite types. Three sets of
precursors are studied and in all cases we have a 3 :
2 stoichiometric ratio between the total numbers of bi-
functional and trifunctional atoms in the system. The
monomer/monomer (MM) system models network forma-
tion from scratch, starting from monomeric precursors.
In the long-chain/monomer (LM) system, linear polymer
chains with an alternative sequence of 100 trifunctional
and 99 bifunctional monomers are mixed with a com-
plimentary number of free bifunctional atoms to model
the curing of polymer melts by crosslinking agents. The
third case, the short-chain/short-chain (SS) system, con-
tains five-bead chains; since the 3 : 2 molar ratio is sat-
isfied within the precursor molecules, no additional free
atoms are added. This represents a test case in which
monomers are “pre-assembled” into oligomeric precursors
before crosslinking. The same system size of 50, 000 atoms
is used in all cases. For the LM system, this corresponds to
200 linear chains and 10, 200 free bifunctional atoms. The

initial thinking was to compare cases with identical atom-
istic makeup but different precursor sizes, which leads to
different precursor diffusion rates and crosslinking kinet-
ics. Our results, however, will show that the precursor
topology affects network properties for an entirely differ-
ent reason.

2.2. Precursor Equilibration and Network Formation

Precursor molecules are randomly packed into the sim-
ulation box at an atom number density of 0.85. For linear
chains, constituting atoms are added to random positions
one by one in the order of the chain sequence. These con-
figurations require further relaxation owing to atom over-
lapping and for the LM case an unrealistic initial chain
conformation. For MM and SS systems, overlaps are re-
moved by a so-called fast push-off step [54], in which pair-
wise interactions between non-bonded atoms are first re-
placed with a soft potential

Usoft(r) =

{
Asoft

[
1 + cos

(
πr
rc

)]
r < rc

0 r ≥ rc
(4)

with a cut-off distance of rc = 21/6σ. The potential am-
plitude Asoft is ramped up from 4ε to 200ε over a time
period of 10τ . We then switch to the regular LJ potential
(Eq. (2)) and further equilibrate the configuration using
MD (NV T ensemble) for 250τ .

For the LM system, we use instead a DPD push-off
method designed for fast equilibration of melt structures
of long linear chains [19]. During the equilibration stage,
the non-bonded pairwise interaction is set to

UDPD(r) =

{
ADPD

2 rc

(
1− r

rc

)
r < rc

0 r ≥ rc
(5)

which is the potential energy corresponding to the conser-
vative force of DPD [50]; the cut-off distance rc = σ. DPD
simulation is run at T = 1ε/kB using a constant ADPD =
25kBT for 500τ ; ADPD is then ramped to 1000kBT over
5.5τ . The system is further equilibrated with the regular
LJ potential (Eq. (2)) for 500τ in an NV T ensemble.

Starting from the equilibrated precursor configuration,
network formation is performed with MD in the NV T en-
semble. The Nosé-Hoover thermostat [55] is used to main-
tain T = 1ε/kB and the box size is fixed at 19.45σ in
all three dimensions, corresponding to an atom density
of 0.85. Distances between atoms of opposite types are
checked every 10 time steps and a new FENE bond is cre-
ated between each eligible reactant pair within a critical
reaction radius of 1.0σ. If at a given step, an atom finds
more than one eligible reaction partners, the closest one
is chosen. Reactions between atoms of the same type are
forbidden during the network formation process.

All simulations in this study are repeated from three in-
dependent initial configurations. Unless otherwise noted,
results presented below are the averages of the three runs
and error bars show the standard errors.
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Figure 2: Time evolution of (a) the degree of atom saturation and
(b) weight-averaged molecular weight of SS, LM and MM systems.
Error bars smaller than the symbol size are not shown.

3. Results and Discussion

3.1. Network Formation and Structure

We define the

degree of atom saturation ≡
number of bonds

theoretical maximum number of bonds

(6)

where the denominator is the number of bonds in a
perfectly-formed network with all bonding sites fully sat-
urated; for a system size of 50, 000 (20, 000 of the atoms
are trifunctional) this number is 60, 000. This ratio is cal-
culated for all three precursor systems as a universal mea-
surement of polymerization progress and the results are
plotted in Fig. 2a. In forming the precursor chains, some
bonding sites are taken; thus the number starts from non-
zero values for LM and SS systems. All three cases show an
initial stage of fast growth until t ∼ 10τ after which the re-
action rate drops down sharply. The final atom saturation
degrees are all above 98%. Figure 2b shows the evolution
of the weight-averaged molecular weight (Mw) during the
formation process. As expected, the gelation point, indi-
cated by a sharp increase in the molecular weight, occurs
earlier as the chain length of precursors increases. This
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Figure 3: Distribution of elastic-strand lengths – measured by the
number of consisting bonds – of the final network images. Error bars
are too small to show.

observation stems from the fact that staring from longer
polymer chains, it takes less new bonds to form a percolat-
ing network. In all three cases, the final Mw is close to the
limit of fully connected network where Mw,max = 50, 000.

To focus on the precursor effect, we now compare net-
works at nearly the same crosslinking density, which is
measured by the degree of atom saturation. For each pro-
cess, we select an image with ≈ 99% atom saturation as
a representation of the final product. Structures of these
final networks are first characterized in terms of the topol-
ogy of network connectivity. The elastic part of a network
is composed of elastic strands – chain segments whose two
ends connect to different junction points – and elastic junc-
tions – atoms where multiple (in our case 3) elastic strands
meet. All other chain segments only have one end attached
to the network and thus do not contribute to the elasticity.
These defects are called dangling chains. (Chain loops are
another major type of topological defects often discussed
in the literature[56]. However, in our model, a loop can
only be formed with a chain starting from and ending in
a same trifunctional atom. By that the loop occupies two
of its three bonding sites, leaving only one for connection
with the network. Therefore, loops can only appear at the
end of a dangling chain and thus they are lumped into the
same category of defects.)

These topological features are analyzed using the struc-
ture searching method of Duering et al. [57], which is based
on the “burning method” [58]; the results are listed in Ta-
ble 1. The numbers of elastic junctions and elastic strands
are statistically indistinguishable between different precur-
sor systems. The number of dangling chains is only slightly
different with the SS case having the least and MM the
most. In all three cases, this number is small for the size
of the network. In addition, these dangling chains are all
short, most of which contain only one atom each. Length
distributions of elastic strands are compared in Fig. 3.
Note that in our model setup, only trifunctional atoms act
as junction points; in the limit of perfectly-formed net-
work, there will be exactly one bifunctional atom between
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Table 1: Structural parameters of the final network images (normalized by the parameters of a perfect network at full conversion)

Precursor
system

Mw (%)a bonds (%)a,c
dangling chains
(%)b

elastic junctions
(%)a

elastic strands
(%)a

SS 99.42± 0.01 99.17± 0.01 1.82± 0.03 93.52± 0.12 93.52± 0.12
LM 99.85± 0.01 98.88± 0.00 2.02± 0.02 93.56± 0.02 93.56± 0.02
MM 99.75± 0.06 99.00± 0.00 2.15± 0.06 93.23± 0.10 93.23± 0.10

a The molecular weight Mw, number of bonds, number of elastic junctions, and number of elastic strands are normalized
by their maximum possible values as in a perfect network (50000, 60000, 20000, and 30000, respectively).
b The number of dangling chains is normalized by the maximum number of elastic strands as in a perfect network
(30000).
c The normalized number of bonds is the same as the degree of atom saturation (eq. 6).
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Figure 4: Radial distribution functions of the final network images.

every two neighboring junction points. Therefore, all elas-
tic strands will have the exact same length of 2 bonds. Fi-
nal networks from different precursors are all close to this
limit with over 90% of the strands containing 2 bonds. A
small fraction of 4-bond and 6-bond strands are found.

Radial distribution functions g(r) of the final network
images are shown in Fig. 4. No discernible difference is
observed between different cases, indicating that the atom
arrangement, at least at the average level, is essentially
the same. Specific volume during a controlled cooling pro-
cess is shown in Fig. 5. The selected final structures are
first subject to several heating and cooling cycles to re-
move their thermal history. The system is then cooled at
a constant rate of 1.6×10−4ε/(kBτ) using the Nosé-Hoover
thermo- and baro-stats (P = 0) [55]. The glass transition
temperature Tg is identified from a sudden change in the
slope. For an uncrosslinked melt consisting of 200 199-
bead linear chains, our Tg = 0.435, which is in excellent
agreement with the Tg = 0.43 found by Makke et al. [59]
(whose system is closest to ours). It is also within the range
of 0.4 − 0.45 typically reported for linear chains [60, 61].
For networks, glass transition occurs at Tg = 0.479 regard-
less of the precursor choice. Higher Tg is expected at high
crosslinking density owing to the shorter average strand
length [62]. Not only is there no discernible dependence
of Tg on the precursor topology, volumetric curves from
these three cases are essentially indistinguishable.
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Figure 5: Temperature dependence of specific volume in a controlled
cooling process of the final network images.

3.2. Mechanical Properties and Structural Defects

Topological parameters and macroscopic properties ex-
amined so far showed little lasting effect of the choice of
precursors. Mechanical properties of the networks will
however reveal a different side of the story. Tensile elon-
gation tests are simulated by deforming the simulation
box along one dimension, denoted as z, with the time-
dependent box length set to

Lz(t) = Lz,0 exp(ėt) (7)

and zero pressure maintained in the transversal directions
(x and y) by the Nosé-Hoover barostat. Here Lz,0 is the
initial box length and ε̇ ≡ dL/(Ldt) is the constant strain
rate; in our simulation ε̇ = 0.0327σ/τ . The tensile stress is
calculated from the measured pressure difference between
the elongation and transversal directions:

s = −Pz +
1

2
(Px + Py), (8)

which is plotted against the engineering strain

e ≡ Lz − Lz,0
Lz,0

(9)

in Fig. 6. The qualitative trends observed in the stress-
strain curves are typical for polymer networks. Beyond the
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Figure 6: Stress-strain curves of the final network images during ten-
sile deformation; the inset shows a blowup of the small-stain regime.
Error bars smaller than the symbol size are not shown.

linear regime, which is only observed for e up to O(0.01),
the networks enter the strain-softening regime first before
the strain-hardening regime at large strain. Networks from
different precursors show no discernible difference at small
or moderate deformation. Agreement between different
cases is expected at the limit of small strain according to
classical theories for rubber elasticity. For example, the
affine network model (ANN) predicts that [63]

E ∝ G = νstrandkBT (10)

where E is the Young’s modulus, G is the shear modu-
lus, νstrand is the number density of elastic strands, kB
is the Boltzmann constant, and T is temperature. Net-
works being compared here have nearly the same νstrand
(see Table. 1) and thus same modulus. However, at the
large-strain limit e & 0.7, where ANN is no longer appli-
cable, the curves start to separate. The network stiffness
increases from the SS to the LM case, with the MM case
being the highest. These differences are clearly larger than
the statistical uncertainty. Note again that the images
compared here are selected at a nearly identical degree
of atom saturation (and thus crosslinking density), differ-
ences in mechanical response can only originate from the
precursor topology. This precursor effect is not reflected in
g(r) and specific volume V (T ) curves (Figs. 4 & 5) where
data are indistinguishable between the three cases. Since
the structural parameters listed in Table. 1 are statistically
nearly the same, there must be other structural differences
not captured by these measurements.

To understand this precursor dependence, we need to
first identify the structural origin of the property differ-
ences. In Fig. 7, we take the apparent elastic modulus

Eapp ≡
s

e
(11)

at the strain of e = 1 as a measurement of mechanical
properties and attempt to find the structural parameter
with which it best correlates. Images spanning a broad
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Figure 7: Correlation between the apparent elastic modulus and the
(a) total number of bonds, (b) number of bonds on elastic strands,
and (c) number of elastic strands. For each precursor system, results
from independent runs are shown as separate points.
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than the symbol size.

range of polymerization progress (or crosslinking density),
from the gel point to nearly full conversion, are included.
The total number of bonds (Fig. 7a) does not adequately
predict Eapp; especially, data points of the SS system are
systematically lower than the rest. This is not surprising
since bonds on structural defects, such as dangling chains
or loops, do not carry the stress during deformation and
thus do not contribute to the mechanical strength. We
then count the number of bonds on elastic strands only
(Fig. 7b), which again falls short. Especially, in the in-
termediate range of crosslinking density, Eapp of the LM
case is significantly lower than the other two at the same
number of elastic-strand bonds. This is due to its unique
network formation mechanism: a small number of bonds
are sufficient to connect the individual chains into a per-
colating network, where initially there are on average a
large number of bonds separating the elastic junctions (i.e.,
large elastic strand length); additional crosslinking bonds
are then added in between to stitch it into a denser net-
work. By contrast, in the MM and SS cases, networks are
generated by grafting small pieces on to growing tree-like
clusters before the gel point and it is unlikely to form a
long strand without branching. This prompts us to look
instead into the number of elastic strands, which as shown
in fig. 7c correlates strongly with Eapp for a broad range
of crosslinking density. The data points however become
scattered at the highly-crosslinked limit (where the num-
ber of elastic strands exceeds 83% of that of a perfect net-
work). Indeed, at least for the final networks, the numbers
of elastic strands are statistically the same between differ-
ent precursor systems (see Table. 1), yet Eapp can differ
by ≈ 30% depending on the precurors used. There must
be other structural differences to account for the different
mechanical properties at this limit.

Topological defects are known to impact the mechan-
ical properties of networks [36, 64] and it is intuitive to
expect that their effects would become more pronounced
as the network gets close to completion. However, al-
though the number of dangling chains is slightly different
between precursor systems (see Table. 1), it cannot explain

the varying elastic modulus, since dangling chains do not
directly contribute to the network elasticity. Indeed, we
have repeated the tensile tests with all dangling chains re-
moved and the precursor-dependence is still obvious. Ad-
ditional types of defects thus need to be examined. As ex-
plained above, the only other difference between a perfect
and an imperfect network is that the latter contains elastic
strands longer than 2 bond lengths. These strands contain
at least one unsaturated trifunctional atom in the mid-
dle. Atoms on these unsaturated strands are expected to
have higher mobility, resulting in different elastic response
than the standard 2-bond strands. Hereinafter, atoms on
dangling chains and unsaturated strands are both consid-
ered defect atoms. As shown in Fig. 8, the total number
of defect atoms are closely correlated with the number of
elastic strands, especially for highly-crosslinked polymers.
Therefore, it cannot account for the precursor dependence
of Eapp between networks with the same number of elastic
strands (see Fig. 7c).

The lack of explanation from domain-average statistics
prompts us to look into the spatial distribution of struc-
tural characteristics. Figure 9 shows the density distribu-
tion of defect atoms in the simulation domain. Here, the
contribution of atom i to the density field is modeled with
a Gaussian distribution function [65]

ρi (x) = exp

(
−‖x− xi‖2

2r2atom

)
(12)

where xi is the position of atom i and ratom ≡ 0.5σ is its
radius. Defect atom density is obtain by adding up indi-
vidual contributions: i.e., ρdefect(x) =

∑
i ρi(x), where the

summation goes over all defect atoms. This field is calcu-
lated on a 20×20×20 grid and Fig. 9 shows the isosurface
of ρdefect = 0.90 for the final network of one independent
run of each case. It is worth noting that the final networks
being compared here also have nearly identical crosslinking
degree. Such condition is always maintained when char-
acterizing structure and properties of final networks (e.g.
Table 1 & Figs. 3 - 6). Distribution of defects in the SS
case is mostly homogeneous: they appear in small groups
that are uniformly found across the domain. In the LM
case, clusters of defects are observed and clustering only
intensifies in the MM case. This clustering effect is further
quantified with the g(r) of defect atoms in Fig. 10, where
results from all independent runs are included. Both pri-
mary and secondary peaks grow in the order of SS, LM,
and MM cases, consistent with images in Fig. 9. Therefore,
unlike domain-average structural parameters, the spatial
distribution of defects has a strong dependence on precur-
sor topology, which also affects the mechanical properties
of the network. Indeed, comparing the observations here
with the tensile test results (Figs. 6 & 7c), it is clear that
the extent of defect clustering is correlated with network
stiffness: higher clustering is observed in networks with
larger apparent modulus. This effect is not observed at
the limit of small deformation where the elastic modulus is
solely determined by the number density of elastic strands

7



(a) (b) (c)

Figure 9: Density distribution of defect atoms in final network images from selected polymerization runs: (a) SS, (b) LM, and (c) MM.
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Figure 10: Radial distribution functions of defect atoms in final net-
work images; the inset shows an enlarged view of the small-distance
range. Error bars are smaller than the symbol size.

(and thus defects). In the non-linear regime, theoretical
prediction is not readily available. In particular, to our
best knowledge, there is no existing theory that considers
the effect of the spatial distribution of structural features:
strands or defects. Indeed, the importance of spatial dis-
tribution was not known until this study and further in-
vestigation is needed to fully establish the relationship be-
tween defect distribution and the network mechanics in the
non-linear regime. Meanwhile, we may also draw an anal-
ogy with findings in polymer nano-composites, where solid
nano-scale particles are blended with a host polymer to re-
inforce its mechanical strength. During material deforma-
tion, stress absorption concentrates around these particles.
This reinforcement effect is most effective when particles
are uniformly dispersed in the polymer matrix [66]. Sim-
ilarly, in a polymer network under tensile strain, regions
with defects are less capable of absorbing stress which thus
weaken its mechanical strength. This weakening effect be-
comes more pronounced when defect distribution is more

uniform, leading to a lower modulus.
We focus instead on the kinetic origin of defect clus-

tering and its precursor dependence. Obviously, precur-
sor topology plays a crucial role in the network formation
mechanism. Small-molecule precursors, including both SS
and MM cases, first assemble into molecular clusters and
gelation occurs when chemical linkages are built between
a few major clusters. Meanwhile for the LM case, a few
crosslinkers are sufficient to connect the linear chains into
a coarse network and form a gel, whose crosslinking den-
sity is further increased by “stitching up” the space be-
tween these linkage points. However, our observation that
in terms of both defect clustering and mechanical stiff-
ness, the LM network is ranked between the SS and MM
ones cannot be explained by this difference in the gela-
tion pathway. In another direction of thought, the MM
and LM cases both contain monomeric precursors whose
diffusion is relatively unconstrained, whereas the SS case
contains short-chain precursors only whose slow diffusion,
especially after the gel point, can result in significant ki-
netic trapping. This would however predict a higher ex-
tend of non-uniformity in the MM case, opposite to our
observation.

Realizing that topological defects only occur around
atoms whose bonding sites are not fully occupied, we plot
the density distribution of these unsaturated atoms (only
including those on the gel – the biggest molecule in the
system) in Fig. 11 for the final networks (one independent
run for each case). These density fields are generated in
the same way as Fig. 9 but an isosurface level of 0.35 is
shown. It is clear that for both LM and MM systems, un-
saturated atoms of opposite types accumulate to separate
localized regions. Since these atoms are topologically con-
strained in the network by chemical bonds, further elim-
ination of these defects is nearly impossible and large re-
gions of clustered defects are left. By contrast, unsatu-
rated atoms of both types are uniformly distributed in the

8
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Figure 11: Density distribution of unsaturated atoms on the network in final network images from selected polymerization runs: (a) SS, (b)
LM, and (c) MM. Green (light): trifunctional atoms; red (dark): bifunctional atoms.
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Figure 12: Radial distribution functions of unsaturated trifunctional
atoms using unsaturated bifunctional atoms as references in final
network images. For both atom types, only those on the network are
included.

SS network, leaving only small spots of defects. This ob-
servation is confirmed with the g(r) between unsaturated
atoms of opposite types. Using unsaturated bifunctional
atoms as references, profiles in Fig. 12 are proportional
to the density of unsaturated trifunctional atoms at given
distances. Compared with the LM and MM cases, where
a layer depleted of atoms of opposite type for potential
bonding exists near most unsaturated atoms, there is a
much better chance for unsaturated atoms in the SS case
to find a nearby bonding partner.

Local disparity of unsaturated atoms increases in the
order of SS, LM, and MM cases, which is not only con-
sistent with increasing defect clustering and mechanical
stiffness observed above, but also predicts that defects in
the LM and MM cases are harder to eliminate than those
in the SS case. This is confirmed in Fig. 13 where the time
evolution of defect atoms in the network (i.e., the largest
cluster in the domain) is compared between different pre-
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Figure 13: Time evolution of structural defects during the polymer-
ization processes. Error bars smaller than symbol size are not shown.

cursor systems. The profiles initially rise up because the
number of defect atoms increases with the increasing total
number of polymerized atoms. A peak is reached shortly
after the gel point (cf. Fig. 2b), after which the reaction is
dominated by defect elimination. Although the LM case is
the quickest in reaching gelation, the rate of defect elim-
ination is 10 times higher in the SS case, which is two
orders of magnitude higher than that of the MM case.

The reason for this spatial separation between atoms
of opposite types in the LM and MM case, and the lack
thereof in the SS case, becomes clear when we look at the
atom molar ratio distribution during the polymerization
process in Fig. 14. Here, we divide the simulation do-
main into a uniform 5× 5× 5 grid and the molar ratio be-
tween bifunctional and trifunctional atoms are calculated
in each cell. Only atoms chemically bonded to multi-atom
molecules are counted, since single atoms are free to move
in the space and thus not expected to have a lasting ef-
fect on the local molar ratio. The color scale shows the
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Figure 14: Time evolution of the spatial distribution of the molar ratio between bonded bifunctional atoms and bonded trifunctional atoms:
(a) SS, (b) LM and (c) MM. The color scale is proportional to the probability density of finding a region with a certain molar ratio at the
given time: bright – high; dark – low. White dashed lines show the molar-ratio range covering 95% of the domain.

probability density of each molar ratio value at the given
time. Note that with the overall atom ratio fixed at 3 : 2
between the two types, all cases have to converge to an
average of 1.5 as the network completes. For the SS case,
the molar ratio is around 1.5 throughout the polymeriza-
tion process, which is a direct consequence of the precursor
design: each precursor molecule has exactly 3 bifunctional
and 2 trifunctional atoms and thus the 3 : 2 ratio is main-
tained across the domain. The LM case starts with a ratio
around 1, a reflection of the 99 : 100 ratio in the polymeric
precursors. It gradually increases to 1.5 as additional bi-
functional crosslinkers connect with the polymer. The MM
case also starts near 1 because at the beginning, each time
a new bond is formed, it creates a dimer containing one
atom of either type. Note that the reaction stoichiometry
requires a ratio of 3 : 2 for complete conversion. Com-
paring all three cases, the SS case not only maintains this
ratio throughout the whole process, variation between dif-
ferent spatial regions (cells) is also small. Meanwhile, from
the LM case to the MM one, spatial variation of the mo-
lar ratio substantially increases, indicating that there is
a better chance of having local surplus of a certain atom
type. Higher spatial variation in these two cases is not sur-
prising, considering, for example, that the MM case allows
the highest degree of freedom, i.e., more randomness, for
the assembly of atoms into molecules. This large variation
eventually leads to the difficulty of defect elimination at
certain regions and thus defect clustering.

4. Conclusion

Formation of a model polymer network is studied us-
ing CG MD simulation starting from three different sets
of precursors. The precursors are designed such that at
the ideal limit of perfect conversion, they would result in
an identical network structure. At the same level of atom
saturation (and thus crosslinking density), networks gen-
erated from different precursor systems show little differ-

ence in domain-average statistics of network connectivity.
Other commonly examined properties, including the ra-
dial distribution function and the glass transition tempera-
ture, also show no discernible dependence on the precursor
choice. Precursor effects are however clearly observed in
the mechanical properties of polymer networks: although
the stress-strain curves overlap one another in the linear
regime of deformation, at larger deformation a clear de-
pendence on the precursor choice is observed, where net-
works formed from SS precursors are more ductile than
those from individual monomers (MM). Compared with
other structural parameters, the number of elastic strands
is found to best correlate with the elastic modulus (in the
non-linear regime). This correlation however breaks down
near the limit of full conversion, where the elastic modu-
lus can change by ≈ 30% for the same elastic-strand den-
sity, depending on the precursor choice. This change is
found to correlate with the spatial distribution of topolog-
ical defects and a higher degree of defect clustering leads
to higher network stiffness. The origin of defect cluster-
ing roots in the precursor design. The SS case, which es-
sentially pre-assembles constituting monomers into small-
molecule precursors with the exact stoichiometric ratio,
maintains this ratio in different spatial regions, leading to
not only uniform network structure but also faster defect
elimination. From the LM case to the MM case, increas-
ing randomness in the monomer assembling process leads
to larger variation in local atom molar ratios, resulting in
defect clustering and slower defect elimination.

There are several important takeaways from these find-
ings especially for the development of molecular models
of polymer networks. First, the choice of precursors has
lasting impact on the structure and properties of polymer
networks. It is therefore important to design a virtual
synthesis pathway that resembles the realistic crosslinking
process in experiments, for which CG simulation followed
by reserve mapping will be necessary to get a full-atom
model. Second, validation of network models needs to con-
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sider defect distribution, in addition to typical characteri-
zations currently used in the literature. Finally, when the
goal is to maximize the network uniformity and minimize
the residual defects, it is advantageous to prepare precur-
sors with the required stoichiometric ratio of monomers,
before the start of the simulated polymerization process.
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