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Marginal turbulent state of viscoelastic fluids: A polymer drag reduction perspective

Li Xi* and Xue Bai
Department of Chemical Engineering, McMaster Universtiy, Hamilton, Ontario, Canada L8S 4L7
(Received 20 August 2015; revised manuscript received 28 January 2016; published 19 April 2016)

The laminar-turbulent (LT) transition of dilute polymer solutions is of great interest not only for the complex
transition dynamics itself, but also for its potential link to the maximum drag reduction (MDR) phenomenon.
We present an in-depth investigation of the edge state (ES), an asymptotic solution on the LT boundary, in
viscoelastic channel flow. For given Re and simulation domain size, mean flow statistics of the ES do not
vary with the introduction of polymers, proving that there is a region of turbulent states not susceptible to
polymer drag reduction effects. The dynamics of the ES features low-frequency fluctuations and in the longer
domains we studied it is nearly periodic with regular bursts of turbulent activities separated by extended quiescent
periods. Its flow field is dominated by elongated vortices and streaks, with very weak extensional and rotational
flow motions. Polymer stretching is almost exclusively contributed by the mean shear and polymer-turbulence
interaction is minimal. Flow structures and the kinematics of the ES match hibernating turbulence, an MDR-like
phase intermittently occurring in turbulent dynamics. Its observation now seems to result from recurrent visits to
certain parts of the ES. The ES offers explanations for the existence and universality of MDR, the quantitative
magnitude of which, however, still remains unsolved.

DOI: 10.1103/PhysRevE.93.043118

I. INTRODUCTION

The interaction of linear long-chain polymer molecules
with flow turbulence has attracted immense interest since the
1940s, when it was first discovered that these additives, at
extremely low levels of concentration [O(10 − 100) weight
parts per 106], can cause significant reduction in the turbulent
friction drag [1–4]. The study of this polymer-induced drag
reduction (DR) phenomenon largely boils down to two major
problems [5]: the onset of DR and the maximum drag reduction
(MDR) asymptote. The first problem in essence is about
understanding how polymers affect turbulence and reduce
its drag, based on which the onset point of DR can be
predicted. It is now widely accepted that polymers suppress
turbulent vortex motions, which redistributes the momentum
to the flow direction [6–10], although the exact nature of this
polymer-turbulence interplay is still under debate [1,5,11,12].
The gap in our understanding is especially manifested in
the laminar-turbulent (LT) transition behaviors of dilute
polymer solutions, where conflicting observations were made
in experiments. From the aforementioned vortex-suppression
effect, it would be intuitive to predict a delayed transition
with the addition of polymers, i.e., turbulence occurring at
higher Re than that in Newtonian fluids, which was indeed
reported in many studies [13–15]. Meanwhile, early turbulence
in polymer solutions has also been observed under certain
conditions [16,17].

The problem of MDR is an even larger puzzle. With stronger
polymer influence, through more effective polymer molecules
or higher concentration, the level of DR normally increases.
This trend, however, eventually saturates to an upper bound.
Contrary to common intuition, the MDR asymptote is universal
with respect to changing polymer solution properties: At given
Re, the measured flow rate at MDR is the same regardless of
the polymer species, molecular weight, or concentration. Mean
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velocity profiles at MDR were empirically fitted by Virk [2] to
the logarithmic law formulation

U+
m (y+) = A+ ln y+ + B+, (1)

with A+
Virk = 11.7 and B+

Virk = −17.0 across most of the
domain. [In comparison, the Prandtl–von Kármán (PvK)
logarithmic law of Newtonian turbulence with A+

PvK = 2.5
and A+

PvK = 5.5 [18] is only valid in a near-wall layer [19];
hereinafter, + denotes quantities in turbulent inner scales
(see Sec. II A).] Advancement in flow imaging and direct
numerical simulation (DNS) techniques in the past two
decades has further revealed that flow patterns at MDR are
distinctively different from Newtonian turbulence [20–24].
Therefore, in highly elastic polymers solutions, turbulence
does not completely vanish; instead, traditional turbulent states
are replaced by a new type of turbulence whose mean flow is
invariant with changing polymer properties.

Early theoretical attempts of explaining MDR focused on
the length scale of polymer effects [2,25]. Despite their lack
of physical details, these phenomenological theories offered
important guidance for earlier DR research. However, as data
have become increasingly available, contradictory evidence
has emerged in both experiments and numerical simulations
(see detailed discussions in [21,26]). On the other hand, the
universality of MDR prompted the speculation that it may
be associated with a class of weak or marginal turbulent
states already existing in Newtonian flows but only become
unmasked with high levels of polymer elasticity [3]. The
assumption that marginal turbulent states cannot be further
suppressed by polymers has also led to phenomenological
models predicting MDR mean flow statistics [27,28]. Evidence
for this hypothesis was only discovered recently, when inter-
mittent transitions between strong active turbulence and weak
hibernating turbulence were first reported in DNS [26,29,30].
Many similarities, both qualitative and quantitative, are found
between hibernating turbulence and MDR. As fluid elasticity
increases, the transition to hibernating states becomes much
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more frequent, resulting in them taking up a larger proportion
of the overall statistics or a flow more dominated by features
of MDR. Similar MDR-like Newtonian turbulent states were
also found in transitional turbulence [31] and boundary layer
flow [32]. Traveling-wave solutions that closely resemble
hibernating turbulence and MDR were found recently in
Newtonian channel flow and DNS trajectories were shown
to visit these states intermittently [33], offering the strongest
support yet for this dynamical perspective of MDR.

In search of this marginal state, one needs to consider the
layout of the dynamical state space: two basins of attraction,
the laminar state and normal turbulence, are separated by
a boundary or ridge termed the edge of chaos [34,35].
Dynamical trajectories initiated from one side of the boundary
are destined for the turbulent basin and those from the other
will decay to the laminar state. Trajectories starting on this
boundary head to neither of the basins. They move along this
boundary and asymptotically approach an edge state (ES),
a saddle point (consisting of traveling waves and relative
periodic orbits [36]) on this ridge that is pivotal to the LT
transitions [37]. To perturb a laminar flow into turbulence,
the disturbance must be strong enough to overpass the ES. In
this sense, the ES is the marginal state defining the weakest
form of turbulence that can be sustained. In an encouraging
recent development [38], it was found, at least for one Re and
domain size, that introducing drag-reducing polymers does not
change the mean flow measurements of the ES. Considering
the unique positioning of the ES in the state space, this suggests
that between the laminar and turbulent basins, there is a band
of states not susceptible to the drag-reducing effects, which
would explain why MDR must exist.

An interesting connection has thus emerged between the
LT transition and MDR. Although MDR is typically studied
at much higher Re, it should be stressed that experimental
observation of MDR in the LT transition regime dates back
to the time of its initial discovery [2]. Recently, Samanta
et al. [39] experimentally explored the LT transition regime in
pipe flow of dilute polymer solutions. Both early and delayed
turbulence were observed in the study. Delayed turbulence
occurs at lower polymer concentration and is qualitatively
similar to the Newtonian LT transition. For higher polymer
concentration, early turbulence kicks in, which appears to be
a new type of instability driven by both elasticity and inertia.
This study reconciled the seemingly conflicting phenomena
of delayed and early transition and offered a consistent
explanation for the coexistence of two parallel transition
mechanisms. In addition, for at least one parameter set, the
flow rate of this instability follows the MDR asymptote,
suggesting a potential link between this so-called elastoinertial
turbulence (EIT) and MDR. Direct numerical simulation
of EIT showed different vortex structures than the regular
inertia-driven turbulence [40].

Whether MDR is dominated solely by weak Newtonian
turbulent states or it becomes overtaken by EIT at high levels
of elasticity (as suggested by Dubief et al. [40]) is still a
subject for further investigation. However, these advances in
the past five years do point toward one consensus, that the
LT transition is a region connecting all important unsolved
problems in viscoelastic turbulence, including the transition,
DR onset, and MDR. At the center of this region is the

ES. Hitherto, Xi and Graham [38] remains the only reported
study of viscoelastic ES. In addition to its major observation
that ES mean flow is insensitive to polymer effects, mean
velocity profiles obtained in that study were strikingly close
to the Virk [2] logarithmic law. However, solutions were
found for only one computational domain: System-size effects
still need to be investigated for a definitive answer. It is
also unclear how the ES fits in the recent framework that
explains the convergence to MDR based on the dynamical
transition between active and hibernating states [4,26,29].
The current study aims to address these issues. On the other
hand, compared with the large volume of recent research on
Newtonian ESs [35,36,41–48], the current study will offer a
fresh perspective of direct relevance to DR research. Particular
focus will be on flow statistics and polymer-flow interaction at
the ES.

II. METHODOLOGY

A. Formulation and simulation details

We consider flow driven by a constant mean pressure
gradient in the plane Poiseuille geometry. The x, y, and z

coordinates are aligned with the streamwise, wall-normal,
and spanwise directions, respectively. The no-slip boundary
condition is applied at both walls and periodic boundary
conditions are adopted in the x and z directions. The half
height of the channel l is chosen as the characteristic length
scale and the Newtonian laminar centerline velocity U at the
same pressure drop is the velocity scale. The nondimensional
size of the simulation box is denoted by Lx × 2 × Lz.

The conservation equations of momentum and mass are

∂v

∂t
+ v · ∇v = −∇p + β

Re
∇2v + 2(1 − β)

Re Wi
(∇ · τp), (2)

∇ · v = 0, (3)

in which all variables are nondimensionalized with the
turbulent outer scales: velocity by U , distance by l, time by
l/U , and pressure by ρU 2. Correspondingly, the Reynolds
number is Re ≡ ρUl/η. Here ρ is the total density of the fluid;
η ≡ ηs + ηp is the total zero-shear-rate viscosity, where s and
p denote the solvent (i.e., the Newtonian fluid) and polymer
contributions, respectively. The Weissenberg number Wi ≡
2λU/l is defined as the product of the polymer relaxation
time λ and the Newtonian mean wall shear rate. (With the
constraint on the mean pressure gradient, it can be shown
from a total force balance that the mean wall shear rate is
constant for Newtonian flows – dUm/dy = 2U/l; for dilute
polymer solutions, shear thinning is negligible and dUm/dy ≈
2U/l.) The viscosity ratio β ≡ ηs/η depends on the polymer
concentration cp: In dilute solutions, 1 − β ∝ cp.

Near-wall turbulent structures and statistics are often
measured in turbulent inner scales [19], where stresses are
scaled with the mean wall shear stress τw (averaged over
time and the wall surface area as well as between the two
walls), velocities by the friction velocity uτ ≡ √

τw/ρ, and
lengths by the viscous length scale or wall unit δν ≡ η/ρuτ .
Quantities nondimensionalized with these scales are marked
with a superscript +, e.g., v+

x ≡ vx/uτ . Because of the constant
mean wall shear rate, τw is constant and so are the friction
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Reynolds number Reτ ≡ ρuτ l/η = √
2 Re and eddy turnover

time l/uτ = √
Re/2. Meanwhile, many quantities we report

are instantaneous (i.e., defined at a given time instant) and
describe events near one wall only. It is thus more relevant to
use the instantaneous wall shear stress τ ∗

w (averaged over the
surface of the nearer wall for a given time) to calculate the inner
scales. The corresponding nondimensionalized variables will
be marked with a superscript ∗. The wall-normal coordinate in
inner scales, i.e., y+ and y∗, has its origin defined at the wall,
as per convention.

The last term on the right-hand side of Eq. (2) contains
the polymer stress tensor τp, obtained from the finitely
extensible nonlinear elastic – Peterlin approximation (FENE-
P) constitutive equation [49]

α

1 − tr(α)
b

+ Wi

2

(
∂α

∂t
+ v · ∇α − α · ∇v − (α · ∇v)T

)

=
(

b

b + 2

)
δ, (4)

τp = b + 5

b

[
α

1 − tr(α)
b

−
(

b

b + 2

)
δ

]
. (5)

Here δ is the Kronecker delta tensor. In the FENE-P, polymer
molecules are described with a dumbbell model: two beads
connected by a finitely extensible nonlinear elastic spring.
Extension and orientation of a polymer chain is measured
by its end-to-end vector Q and the conformation tensor α ≡
〈 Q Q〉 (〈·〉 denotes ensemble average). The trace of the α tensor
measures the polymer chain extension, whose upper limit is
determined by the b parameter: max[tr(α)] < b.

A total of four nondimensional parameters specify the entire
system: Re, Wi, β, and b. Three different Re, 3600 (Reτ =
84.85), 7200 (Reτ = 120), and 14 400 (Reτ = 169.71), are
studied here for Newtonian flow, but only Re = 3600 is studied
for viscoelastic cases, due to the high computational cost of
edge tracking (see Sec. II B). (The LT transition occurs at
Recrit ≈ 1000 in plane Poiseuille flow [50].) The importance of
β and b becomes apparent in considering the nondimensional
extensibility parameter E , defined as the polymer contribution
to the steady-state stress in uniaxial extensional flow at the
high Wi limit. For the FENE-P,

E = 2b(1 − β)

3β
. (6)

For a dilute solution (1 − β 
 1), significant effects of poly-
mer on turbulence are only expected when E � 1. Viscoelastic
simulations reported in this study are all performed with
β = 0.97 and b = 5000, corresponding to E = 103.09.

Equations (2)–(5) are coupled and numerically inte-
grated in time with a third-order semi-implicit backward-
differentiation–Adams-Bashforth scheme [51]. Fourier-
Chebyshev-Fourier spatial discretization is applied in all
variables and nonlinear terms are calculated with the collo-
cation method. The numerical grid spacings for the periodic
directions are δ+

x = 8.57 and δ+
z = 5.11 or 5.19 (depending

on L+
z ). The number of Chebyshev modes used in the y

direction increases with Re, Ny = 73 for Re = 3600, 101 for
Re = 7200, and 145 for Re = 14 400, to keep the range of
δ+
y roughly the same. For Re = 3600, at which most data

will be reported, Ny = 73 gives δ+
y,min = 0.081 at the walls

and δ+
y,max = 3.7 at the channel center. The time step size

is chosen considering the Courant-Friedrichs-Lewy stability
condition and also varies with Re: δt = 0.02 for Re = 3600,
δt = 0.0125 for Re = 7200, and δt = 0.01 for Re = 14 400.
An artificial diffusion term 1/(Sc Re)∇2α with Sc = 0.5 is
added to the FENE-P equation to improve its numerical
stability. Usage of artificial diffusivity and its effects on
simulation results are well studied in the literature [52]. Our
choice of diffusivity magnitude is no larger than most other
DNS studies and should not affect the physical interpretation of
the results [10,22,23,53,54]. The numerical procedure we use
is the same as a number of previous studies; see, e.g., [24,55],
where more details can be found. The DNS code used in this
study is custom developed based on CHANNELFLOW, a C++
library for Newtonian DNS [56].

B. Numerical edge tracking

Edge-state solutions can be numerically computed using a
standard DNS code. The method has been well established in
Newtonian ES studies and can be straightforwardly extended
to viscoelastic cases. Here we briefly recapitulate the essence
of the method; interested readers are referred to the works of
Skufca et al. [34], Schneider et al. [44], and Duguet et al. [45]
for details.

Given a pair of initial states XT = [vT ,αT ] and XL =
[vL,αL] known to bound the turbulent basin and laminar state,
respectively, a straight line connecting them in the state space

Xω ≡ ωXT + (1 − ω)XL (7)

must intersect with the LT boundary at least once, say, at
ω = ωe. Numerical approximations to the intersection can be
found through repeated bisections and DNS shooting tests.
A pair of such states is denoted by Xω+

e
and Xω−

e
: ω+

e

(ω−
e ) is infinitesimally larger (smaller) than ωe. Dynamical

(DNS) trajectories initiated therefrom, Xω+
e

(t) and Xω−
e

(t),
will travel along the edge for a while before diverging to
opposite destinations, effectively pinching and numerically
approximating an edge trajectory for a time period. A new
round of repeated bisections and shootings are started at the
diverging point to further extend the numerical edge solution.

In this study, bisections are carried out to a numerical
precision of ω+

e − ω−
e = 10−8. A new round is initiated when

the difference in the turbulent kinetic energy (TKE) kb between
the pinching trajectories grows into the range of 10−6–10−5,
where

k ≡ 1
2

(
v′2

x + v′2
y + v′2

z

)
. (8)

(Hereinafter, a prime denotes the fluctuating component,
e.g., v′

x ≡ vx − 〈vx〉, and the subscript b indicates quantities
averaged over the bulk, i.e., over the x, y, and z directions.)
Time series of kb from a typical edge-tracking process are
shown in Fig. 1. From an arbitrarily chosen pair of initial
states, the kb value becomes statistically converged after about
2000 time units (TUs), indicating that the asymptotic ES has
been reached. Different initial state pairs have also been tested
and the same converged state is found.

The simulation box used in Fig. 1, L+
x × L+

z = 360 × 140,
is a typical size of a so-called minimal flow unit (MFU) [55,57],

043118-3



LI XI AND XUE BAI PHYSICAL REVIEW E 93, 043118 (2016)

FIG. 1. Time series of bulk-averaged TKE of DNS shooting
trajectories pinching an edge solution (Newtonian, with L+

x × L+
z =

360 × 140). Different colors are used for different rounds of shooting.
Shooting start points are shown with circles. Solid lines denote Xω+

e
(t)

and dashed lines Xω−
e

(t).

the smallest periodic domain that sustains turbulence, for
Newtonian channel flow. Results reported below are however
all from longer boxes with L+

x = 720, because viscoelastic
turbulence typically features elongated flow structures and
longer streamwise correlations [20–24,30]. Two spanwise
domain sizes L+

z = 140 and 230 are studied (L+
z = 140 was

used in [38]). All our qualitative conclusions, such as structural
features of ESs, flow-polymer interactions, and implications
on DR, are consistent between different box sizes, although
quantitative results do vary (discussed below). The narrower
(720 × 140) box does not support sustained turbulent solutions
at high Wi (e.g., the minimal L+

z for sustained turbulence at
Wi = 28 is 230 [30,55]), meaning that the turbulent attractor
is now replaced by a transient saddle or repeller [58] and the
edge becomes a weak basin boundary [59]. In this case and
for edge-tracking purposes, a shooting trajectory is identified
as turbulence bound if there is at least one strong burst in kb

(one order of magnitude higher than typical ES values) before
its decay toward the laminar state.

III. RESULTS

A. Overview

Our discussion henceforth focuses only on the asymptotic
ES, the statistically converged part of an edge solution.
Figure 2 shows the time series of a typical viscoelastic ES
(the Newtonian case is similar [38]). In contrast to regular
DNS trajectories, which show chaotic fluctuations (see Fig. 3),
the ES is dominated by nearly periodic dynamical patterns.
The blue line shows the peak magnitude of the instantaneous
Reynolds shear stress (RSS) profile −〈v′∗

x v′∗
y 〉 (∗ indicates

quantities in instantaneous inner scales (see II A), 〈·〉 indicates
average over x and z, and the absolute value | · | is taken
because −〈v′∗

x v′∗
y 〉 changes sign across the channel centerline

[see Fig. 7(b)]). We arbitrarily define a period to start at
a minimum in |v′∗

x v′∗
y |max (instant I), i.e., when near-wall

turbulent activity is lowest. A rapid shoot up of |v′∗
x v′∗

y |max

then quickly leads to a peak at instant II. The rise of kb comes

FIG. 2. The ES time series for Wi = 28 and L+
x × L+

z = 720 ×
140: the blue solid line (left axis) shows the peak value of the
instantaneous RSS profile and the green dashed line (right axis) shows
the TKE (bulk average).

after the RSS and the maximum is reached at instant III. This
short burst of higher turbulent activities around instants II and
III is followed by a longer quiescent period when kb slowly
decays to its minimum.

Note that, despite our use of the word burst, the Reynolds
stress magnitude, both |v′∗

x v′∗
y |max and kb, of the ES during

these periods is still much lower than regular turbulence.
For example, in the 720 × 230 box (Fig. 3), |v′∗

x v′∗
y |max of

the ES is on average 2–3 times lower than a regular DNS
trajectory. The difference is even larger when bulk averages
(instead of profile peaks) are compared, e.g., kb of the ES is
about 5–6 times lower than that of a regular DNS (Fig. 4).
Comparing the time series in Fig. 3, not only are fluctuations
at the ES more regular (quasiperiodic), their time scale is also
much longer than a regular DNS and reaches O(1000) TUs.
Newtonian ES solutions are very similar to the viscoelastic
ones and thus are not shown here. Periodic dynamics has
also been commonly observed in previous studies of plane
Poiseuille ESs [42,48]. Interestingly, in the shorter 360 × 140
box (Fig. 1), the fluctuations are not periodic but are still
smoother and less chaotic than a regular DNS. Alternation

FIG. 3. Time series of the peak value of the instantaneous RSS
profile: comparison between regular DNS (top) and the ES (bottom)
(both with Wi = 28 and L+

x × L+
z = 720 × 230).
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FIG. 4. State-space projections of regular DNS trajectories and
the ES with L+

x × L+
z = 720 × 650 for Wi = 55 DNS, as per [30],

and 720 × 230 for the rest. Two diverging DNS trajectories from the
ES are shown in thin blue (solid and dashed) lines.

between periodic and aperiodic dynamics was also reported in
Newtonian plane Poiseuille flow with varying Re [48].

State-space trajectories of different solution objects are
projected onto the kb-Ub (bulk average of vx) plane in Fig. 4(a).
Newtonian turbulence has the highest friction drag and the
corresponding DNS solution cloud sits at the upper left
corner. Solution clouds for viscoelastic DNS move toward
the direction of higher Ub and lower kb as Wi increases. The
ES has significantly lower friction drag and is found farther to
the lower right. With an infinitesimal perturbation, the ES can
either (thin blue solid) grow into full turbulence or (thin blue
dashed) decay to the laminar state (Ub = 2/3 and kb = 0).

Recall the logarithmic law relationship in Eq. (1); an
analogous formulation can be written for the instantaneous
mean velocity profile U ∗

m(y∗). It was previously found that the
logarithmic law slope A∗ from the DNS of the MFU instantly
reflects the activities of near-wall coherent structures and the
correlation is strongest within the layer of 20 � y∗ � 30 [26].
To calculate this slope, we obtain from the logarithmic law
that

A∗ = y∗ dU ∗
m

dy∗ ; (9)

DNS and ES solutions shown in Fig. 4(a) are then reprojected
to the |v′∗

x v′∗
y |max-A∗

25 (A∗
25 being the A∗ value at y∗ = 25)

plane in Fig. 4(b). In this projection, the turbulence-bound

dynamical trajectory initiated from the ES (thin blue solid line)
quickly converges to the same region as the steady-state DNS,
after a strong initial burst in RSS. (Note that steady-state DNS
solutions for Newtonian and Wi = 55 cases are omitted for
clarity: Both solution clouds overlap heavily with the Wi = 28
cloud; the Newtonian one shifts slightly to the upper left
and Wi = 55 to the lower right.) The converged part densely
samples the core of the steady-state cloud, corresponding
to active turbulence, and hibernating turbulence appears as
occasional excursions toward the ES. The ES fluctuates near
the laminar state most of the time, but during its bursting
phase (peaks in Fig. 3) it extends toward the upper left and
overlaps the hibernating region. Interestingly, A∗

25 of this
junction is very close to A+

Virk = 11.7. This suggests that
one or more of the traveling-wave solutions forming the
ES [33,36] are also governing the dynamics of turbulence
hibernation, a promising lead for pinpointing the origin of
MDR. These coordinates A∗

25 and |v′∗
x v′∗

y |max directly measure
the activities of near-wall coherent structures, from which the
active-hibernating transition and hibernation-ES connection
are more readily revealed. These dynamical features are less
sensitive to domain-wide averages, such as kb and Ub used in
Fig. 4(a). For instance, when a coherent structure enters the
hibernating phase, the local velocity gradient, measured by
A∗, quickly shoots up [26]; it will, however, take O(Re) TUs
for this effect to be felt across the channel. By comparison,
at Wi = 28 the typical duration of hibernating periods is only
∼200 TUs [26,29], which explains why such transitions are
not reflected in Ub. In Fig. 4(a), hibernating turbulence only
becomes visible at much higher Wi (=55).

Structural evolution is best observed in the spatiotemporal
distribution of wall shear rate ∂vx/∂y|w shown in Fig. 5. The
image of the 720 × 140 box [Fig. 5(a)] starts in a quiescent
period when a single low-shear streak is observed. The burst
occurs at t ≈ 600 as this streak suddenly turns into a high-shear
one, with another high-shear streak emerging next to it. Both
streaks are strong in terms of the ∂vx/∂y|w magnitude and
coexist for a short period of time. The average of ∂vx/∂y|w
over the wall also sharply increases during the burst, indicating
strong near-wall turbulent activities. At t ≈ 1000 (around
instant III in Fig. 2), the high-shear streak at z+ ≈ 50 becomes
wider in size and remains strong in magnitude until t ≈ 1200.
Meanwhile, the one at z+ ≈ 120 quickly decays. Behind it
two low-shear streaks merge into one, which dominates the
domain for the next quiescent period. This new low-shear
streak is shifted for about half L+

z compared with the old
one. Alternation between single-streak and double-streak
structures, as well as the shift of streak location between
periods, was also reported for plane Poiseuille Newtonian ESs
in near-minimal channels [42].

The bursting-quiescent periodic dynamics is qualitatively
similar in the wider box (720 × 230 [Fig. 5(b)]). The quiescent
period is still dominated by one strong low-shear streak,
which is sometimes accompanied by another significantly
weaker low-shear streak (e.g., for t � 400). At the beginning
of the bursting period (t ≈ 400) the dominant low-shear
streak again turns into a high-speed one, which is strong
but short-lived. Low-shear streaks on its flanks converge at
z+ ≈ 100, forming the dominant pattern for the next quiescent
period. In comparison, dynamics of regular DNS [Fig. 5(c)] in
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FIG. 5. Spatiotemporal wall shear rate evolution (Wi = 28) for
(a) the ES with L+

x × L+
z = 720 × 140, (b) the ES with 720 × 230,

and (c) DNS with 720 × 230. The distribution of ∂vx/∂y|w is
measured along the x = 0 line and is plotted in z+-t coordinates.
The same color scale, from 1 (dark) to 6 (bright), is used for all
panels. The time axes are consistent with those in Figs. 2 and 3.

the same box size is almost always dominated by two low-shear
streaks, giving an average streak spacing of ≈115 (close to
the experimental measurement of ≈100 [60]). Unlike the ES,
where the streaks sit at the same position for extended periods
with sudden shifts occurring with the bursts, streaks in regular
DNS constantly drift in the z direction. Rapid oscillations in
color shades along the t axis reflect strong and fast fluctuations
in regular turbulent dynamics, whereas at the ES color changes
are smooth except for the bursts.

B. Flow statistics and DR

Flow statistics of ES received little previous attention even
for the well-studied Newtonian case, but are central to our
interest in DR. The most important statistic in this regard is the
mean velocity: U+

m (y+) profiles of Newtonian and viscoelastic
(Wi = 28) ESs are plotted in Fig. 6 for different box sizes.
Reference lines are given for the viscous sublayer [19]

U+
m = y+ (10)

as well as the PvK (for Newtonian turbulence) and Virk (for
MDR) logarithmic laws [see Eq. (1)]. For both box sizes,
Newtonian and viscoelastic profiles overlap one another. The
collapsed profiles of the 720 × 140 box are strikingly close
to the Virk MDR, whereas those of the 720 × 230 box lie
slightly above. For the 720 × 140 box, several other Wi were
also tested previously and the U+

m (y+) profile showed no Wi
dependence [38]. This study further demonstrates that the
insensitivity of mean flow to polymer effects is a general

FIG. 6. Mean velocity profiles of Newtonian (Newt.) and vis-
coelastic (VE) (Wi = 28) ESs for L+

x × L+
z = 720 × 140 (140) and

720 × 230 (230). The viscous sublayer is denoted by , the PvK
logarithmic law by , and the Virk MDR by .)

observation irrespective of the domain size. The magnitude
of U+

m does vary with the domain size however. This can be
understood by comparing the patterns in Figs. 5(a) and 5(b):
In the wider box the streak dynamics is mostly localized in
a limited z range, whereas in the narrower box the domain is
almost filled entirely. This finding is consistent with previous
Newtonian ES studies [36,48]. Since a localized turbulent
spot is surrounded by near-laminar flow regions [61,62], the
xz-area average of vx depends on the relative proportions of
the two flow patterns and thus must vary with the domain
size. Nevertheless, our ES study offers clear explanations for
both the existence and universality of MDR. With the most
marginal form of turbulence not yielding under the influence
of polymers, polymer-induced DR has to be bounded by an
upper limit and the limit must be the same for different polymer
solutions. It also explains why complete laminarization is
not observed in experiments. Meanwhile, with the ES mean
velocity dependent on the domain size, the quantitative origin
of the Virk asymptote remains elusive. The ES is likely only
one of many flow states invariant under polymer effects: How
their collective dynamics results in the Virk logarithmic law is
a subject for future investigation.

In Fig. 7(a) we break down the time average and present the
mean velocity at different ES instants. The profile of instant I,
taken at the end of a quiescent period, is only slightly higher
than the time average. At instants II and III, i.e, within the
bursting period, the profiles are lower and crooked. The profile
slopes are markedly suppressed between y∗ ≈ 20 and 40, a
sign of significant turbulent activities localized in that layer.

Structural localization in the y direction is more obvious
in the RSS profiles −〈v′+

x v′+
y 〉 [Fig. 7(b)]. For regular DNS

trajectories, both Newtonian and viscoelastic, the profiles
are antisymmetric across the center plane y = 0. (The sign
changes because at y < 0 positive vy points away from the
bottom wall, whereas at y > 0 it points toward the top wall.)
The total shear stress

〈τ+
xy〉 = βdU+

m /dy+ + 〈−v′+
x v′+

y 〉 + 1 − β

Wi
〈τp,xy〉 (11)
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FIG. 7. Flow and polymer conformation statistics for (a) mean
velocity (viscous sublayer, ; PvK logarithmic law, ; and Virk
MDR, ), (b) Reynolds shear stress [dashed line shows total shear
stress (12)], and (c) tr(α). Profiles include the time average of the
Wi = 28 ES (L+

x × L+
z = 720 × 140), marked with ES (VE), and its

selected instants (indicated in Fig. 2), as well as time averages of
the Newtonian (Newt.) and Wi = 28 (VE) DNS (L+

x × L+
z = 720 ×

230). In (a) and (c), + units are used for time-average profiles and ∗
units for instantaneous ones; in (b) + units are used for all profiles.

contains components of [in the order given on the right-hand
side of Eq. (11)] mean viscous shear stress, RSS, and polymer
shear stress [54,63]. Its magnitude, derived from the steady-
state shear stress balance [19], is

〈τ+
xy〉 = 1 − y (12)

FIG. 8. Newtonian ES flow statistics at different Re (L+
x × L+

z =
720 × 140) for the (a) mean velocity (viscous sublayer, ; PvK
logarithmic law, ; and Virk MDR, ) and (b) RSS.

[dashed line in Fig. 7(b)]. Viscous shear stress is large only in
the region closest to the walls, beyond which 〈τ+

xy〉 is dominated
by −〈v′+

x v′+
y 〉 [19]. The −〈v′+

x v′+
y 〉 profile of viscoelastic DNS

is lower than the Newtonian one because of the rise of polymer
stress [54,63–65].

For the ES, however, the RSS distribution is highly
skewed: Large magnitude and strong fluctuations are only
observed at one side of the channel. The RSS measures the
momentum transfer from mean flow to fluctuating velocities
through near-wall coherent structures. Strong asymmetry in
these profiles indicates that turbulent activities at the ES
are only significant near one of the walls, whereas the rest
of the channel is occupied by near-laminar flow patterns.
Localization is also found in Newtonian ESs [42,48] and is
physically plausible: It only takes a localized disturbance to
trigger turbulence from a laminar base flow [66,67]. Because of
this asymmetry, when plotting ES results we always choose the
side with significant turbulent activities wherever applicable
[Figs. 4(b), 5(a), 5(b), 6, 7(a), 7(c), 8, 11, and 12].

As the bursting phase starts (I → II), −〈v′∗
x v′∗

y 〉 rapidly
shoots up: The spike magnitude of instant II is more than
double that of regular DNS. From II to III, RSS quickly decays
while kb increases (see Fig. 2). Vanishing RSS was often cited
as a feature of MDR as well as the hypothetical marginal
turbulent state [27,28,64]. It is clear now that even for the
ES in its quiescent phase, −〈v′∗

x v′∗
y 〉 never drops to zero. The
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distinction of RSS at the ES, compared with regular DNS, is,
however, its localization. This suggests that the real indicator
of MDR is likely the spatial distribution of RSS rather than
its magnitude. Indeed, a localized RSS distribution (in y) has
been consistently observed at high levels of DR (HDR) and
MDR, as well as in hibernating turbulence [23,26,54,55,68].

Polymer extension in the flow field is measured by tr(α)
and plotted in Fig. 7(c). Interestingly, despite its lower overall
turbulent activities, the tr(α) magnitude of the ES is compa-
rable with that of regular DNS. It also does not vary much
between quiescent and bursting phases when instantaneous
profiles are compared. The most notable difference is in
the curve shape: The DNS profile has a maximum at 5 �
y+ � 10, whereas all ES profiles monotonically decrease with
y+ (or y∗). To understand this, note first that even without
turbulent fluctuations, the mean velocity Um(y) can still
provide sufficient shear motion to stretch polymer chains. This
effect is strongest at the walls where dUm(y)/dy is highest and
decreases monotonically with increasing y+ (y∗). The mean
shear aligns polymers in the x direction, whose contribution
will all go to the αxx component. Turbulent activities, on
the other hand, deform polymer chains through strong but
transient local extensional motions, which can occur in any
direction. This contribution is zero at the walls and highest
where coherent structures are most active, i.e., the buffer layer
5 � y+ � 30 [19,69]. Monotonic profiles observed at the ES
indicate that its flow field is dominated by the mean shear.
Indeed, at the ES as well as in hibernating turbulence, αyy

and αzz are orders of magnitude lower than both αxx and their
respective magnitudes in active turbulence [26,38]. An off-wall
peak in tr(α) can only come from strong polymer-turbulence
interaction and in DNS it is typically observed at HDR [55].

Figure 8 shows the Re dependence of the Newtonian ES
in the 720 × 140 box. With increasing Re, the U+

m (y+) profile
[Fig. 8(a)] deviates from the Virk logarithmic law and rises
to higher magnitude. This of course is not in accord with
the scaling behavior of MDR, which has the same U+

m (y+)
logarithmic law for different Re [2]. It again can be explained
by the spatial localization of the ES dynamics and is yet
another indication that although the ES, with its invariance
against polymer effects, explains the existence and universality
of MDR, the quantitative magnitude of Virk logarithmic law
remains unsolved. Localization of the −〈v′∗

x v′∗
y 〉 magnitude

[Fig. 8(b)] is observed at all Re studied and all profiles have a
primary peak at 35 � y+ � 45. Interestingly, for the highest
Re = 14 400, a secondary peak shows up at y+ ≈ 80, whose
origin is as yet unclear. At least for a normal component of
Reynolds stress, the emergence of a secondary peak as Re
increases is a feature recently found in experiments [70].

C. Flow structures and interaction with polymers

It is now increasingly evident that the ES and hibernating
turbulence are intrinsically connected. Similarities between the
two are also observed in flow structures and their interaction
with polymers.

Near-wall turbulent activities are dominated by vortices
and velocity streaks [71–74]. Vortices in a flow field can
be identified using the Q criterion [75,76], in which vortex
strength is measured with

Q ≡ 1
2 (‖�‖2 − ‖�‖2), (13)

with � being the vorticity tensor

� ≡ 1
2 (∇v − ∇vT ), (14)

� being the rate of strain tensor

� ≡ 1
2 (∇v + ∇vT ), (15)

and ‖ · ‖ representing the Frobenius tensor norm. A positive
Q value indicates stronger local rotation than deformation
and an isosurface there gives direct visualization of vortex
configuration. In Figs. 9 and 10 Q isosurfaces are shown
along with those of tr(α) and αyy + αzz. Isosurface lev-
els are different for each image and are chosen accord-
ing to the maximum and minimum values found in each
domain: Qiso = 0.25Qmax, tr(α)iso = 0.5[tr(α)max + tr(α)min],
and (αyy + αzz)iso = 0.5[(αyy + αzz)max + (αyy + αzz)min].

For the ES (Fig. 9), all activities are concentrated at one side
of the channel owing to the spatial localization. At the end of
the quiescent period (instant I), the vortices are elongated and
extend across the whole domain. With the burst of RSS (instant
II), vortices move much closer to the wall and their spacing is
substantially reduced. The following drop of RSS and rise of kb

(instant III) come as vortices lift up to the bulk region. The Qiso

magnitude at instant II is one order of magnitude higher than
that of the other two, which reaffirms the burst of RSS as the
primary moment of turbulent activity. Note that in all instants,
tr(α) isosurfaces do not conform to the shape and position of
vortices and lie as flat sheets near the walls, where the mean
shear is strongest. Meanwhile, isosurfaces of the transversal
components αyy + αzz always accompany the vortices. This
is consistent with the discussion in Sec. III B that yy and zz

components offer a more reliable depiction of the polymer-
turbulence interaction. Note also the small magnitudes of αyy

and αzz: Even at instant II, they are only slightly higher than
the equilibrium (unstretched) value of

αxx,eq = αyy,eq = αzz,eq = b

b + 5
≈ 1. (16)

FIG. 9. Isosurfaces of Q (pink solid), tr(α) (light blue meshed), and αyy + αzz (dark blue translucent) for the three selected instants
indicated in Fig. 2; the isosurface levels [Qiso,tr(α)iso,(αyy + αzz)iso] used in each instant are different: (a) I [1.68 × 10−3,529.61,2.99], (b) II
[1.12 × 10−2,670.98,10.52], and (c) III [6.00 × 10−4,847.56,2.22].
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FIG. 10. Isosurfaces of Q (pink solid), tr(α) (light blue meshed),
and αyy + αzz (dark blue translucent) for typical active and hi-
bernating instants in the regular DNS (Wi = 28); the isosurface
levels [Qiso,tr(α)iso,(αyy + αzz)iso] used in each instant are different:
(a) active [5.25 × 10−2,1455.36,1370.65] and (b) hibernating
[1.83 × 10−2,514.78,156.16].

Therefore, almost all polymer extension observed in tr(α)
(Fig. 7) results from the mean shear. Polymer-turbulence
interaction at the ES is minimal, which explains its insensitivity
to Wi. (We do however observe that with increasing Wi the
period of ES dynamics becomes slightly longer, the reason for
which is unclear.)

Similar qualitative features are also observed during the
hibernating phase of a regular DNS trajectory [Fig. 10(b)].
The vortex strength, indicated by Qiso, is at the same order
of magnitude as instant II of the ES [Fig. 9(b)]. The tr(α)
isosurfaces are detached from the vortices, again indicating
a predominant contribution from the mean shear. This is in
sharp contrast to active turbulence shown in Fig. 10(a). The
value of Qiso is much higher than both the ES and hibernating
turbulence and so are tr(α)iso and (αyy + αzz)iso. Vortices are
much stronger and become more irregularly shaped, with a
much shorter length span and more random orientation. Both
tr(α) and αyy + αzz isosurfaces wrap around the vortices,
showing that in all directions turbulence-induced polymer
deformation surpasses that of the mean shear as the main
contribution to tr(α).

It is apparent from Eq. (13) that a large positive Q value
indicates strong rotational flow, a large negative Q value
indicates strong extensional flow, and for shear flow Q is
close to zero [77]. Choosing cutoffs between different types
of kinematics is however not obvious, especially given the
large variations in Q between flow fields. Here we propose a

FIG. 11. Distribution of Q̂ at y+ = 24.85 for the three selected
instants indicated in Fig. 2: (a) I, (b) II, and (c) III.

normalized variation of the Q criterion

Q̂ ≡ 2Q

‖∇v‖2
. (17)

It is easy to show that Q̂ ∈ [−1,1]: Q̂ is 1 for purely rotational
flow and −1 for purely extensional flow; for shear flow |Q̂| 

1.

Low Q̂ prevails at the ES (Fig. 11), indicating shear-
dominated flow kinematics. For most of the time, Q̂ �
O(10−2): Note its magnitudes at I and III and that the
III → I span is over 2/3 of a period (Fig. 2). During the RSS
burst (II), both extensional and rotational (vortical) motions
become appreciable, but rotation is comparatively stronger.
The lack of extension at the ES, which is required for strong
polymer deformation and polymer-flow interaction, is the
direct reason for its insensitivity to polymer effects. Flow fields
of active turbulence [Fig. 12(a)] are populated by regions of
strong extension and rotation, where |Q̂| → 1. By contrast, in
hibernating turbulence [Fig. 12(b)] Q̂ drops to the same level
as the ES [O(10−2)]. Quantitative similarities in near-wall
flow activities yet again demonstrate the connection between
hibernation and the ES (which as seen earlier is not reflected
in bulk flow measurements).

FIG. 12. Distribution of Q̂ at y+ = 24.85 for typical instants in
the regular DNS (Wi = 28): (a) active and (b) hibernating.
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IV. CONCLUSION

Adding to the well-known significance of the ES in under-
standing the LT transition, evidence is increasingly pointing to
its close connection with MDR. Mean flow statistics of the ES
are not influenced by polymer effects at least for moderately
high Wi [O(10)], a result first reported by Xi and Graham [38],
but further confirmed here for different domain sizes. This
clearly explains why polymer-induced DR must be bounded by
an upper limit and why this upper limit is necessarily universal
to different polymer solutions.

The dynamics at the ES, both Newtonian and viscoelastic,
is dominated by low-frequency (compared with regular DNS)
fluctuations. In the more extended domain, it is nearly periodic:
Each period includes a quick burst of the RSS followed by a
long quiescent period during which the TKE slowly decays.
Transitions between periods are accompanied by abrupt shifts
of velocity streaks. Flow structures of the ES are localized
in both spanwise and wall-normal directions and appear as
turbulent spots immersed in a laminar surrounding.

State-space projection of ES trajectories, using coordinates
measuring near-wall turbulent activities, shows a close con-
nection with hibernating turbulence: The latter now seems to
be intermittent visits by DNS trajectories to certain states on
the ES. Similarities between the two are also reflected in flow
structures and kinematics. Same as in active turbulence, near-
wall coherent structures at these states also feature streamwise
velocity streaks flanked by vortices. The vortices are however
more aligned in the flow direction, with an elongated shape and
very low vortical strength. This paints a generic description
of the so-called weak or marginal turbulence. These traits
are reminiscent of the so-call lower-branch exact coherent
states [78,79]. Kinematic analysis using the normalized Q̂

criterion shows that the flow fields are dominated by shear
motion. Although high polymer extension [tr(α)] is observed,

most of it comes from the mean shear. Absence of polymer-
turbulence interaction seems to be a universal feature of weak
turbulence (ES and hibernation), the key to explaining MDR.

A lingering question is the quantitative origin of the Virk
logarithmic law. The ES mean velocity profile varies with
the domain size, an inevitable consequence of structural
localization. It also scales differently with Re than the Virk
asymptote. To explain this seeming contradiction, we note that
the experimental state of MDR is not a single turbulent spot
but likely a collection of weak turbulent structures spreading
across the domain. How their coupling and interaction give rise
to the Virk logarithmic law remains an open question. Equally
interesting is to find out if and under what conditions the ES
can be shifted or suppressed. This will explain the higher-
than-Virk level of DR in surfactant solutions [80,81] and
also inspire new engineering approaches for turbulent friction
control.
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