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Abstract
The search for quantum spin liquids (QSLs) introduces some of the most challenging and
interesting problems in contemporary physics. The recently discovered iridate Cu2IrO3,
which contains a honeycomb lattice of Ir4+ ions with effective spin 1/2 coupled by frus-
trated Ising interactions, presents itself as a promising candidate for a Kitaev QSL.

In this study, we use nuclear magnetic resonance (NMR), a spectroscopic technique
based on the energy levels of nuclear spin states, to probe the intrinsic spin excitations
of Cu2IrO3. By measuring the NMR frequency shift of 63Cu from 4.2 K to 298 K,
we demonstrate that its spin susceptibility χspin behaves nearly identically to its parent
compound Na2IrO3, without showing evidence of magnetic ordering at low temperatures.
We showed that the upturn of bulk susceptibility χ below T = 50 K is due to the
contribution of defect spins. The hyperfine coupling constant Ahf between Cu and Ir4+

was also estimated by comparing the Knight shift 63K to χ.
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Chapter 1

Introduction

1.1 Background and Motivation

One of the most exotic phases of matter is known as a quantum spin liquid (QSL).
While magnetic moments in conventional materials are usually either dominated by
thermal fluctuations (paramagnets), or exhibit long range ordering (ferromagents and
antiferromagnets). QSLs in contrast, remain paramagnetic and behave like a highly
entangled and fluctuating "liquid" in the absence of thermal energy as its spins do not
order to a static ground state [1].

Figure 1.1: Three neighboring spins in a triangular lattice interact-
ing antiferromagnetically. Since all three spins cannot be simultaneously
antiparallel to each other, there is no single energetically favoured config-
uration for the three spins to align. This principle applies to every set of
3 neighboring spins in the entire lattice.

A typical example of a QSL involves a material with layers of 2-dimensional triangular
lattices of Ising spins interacting antiferromagnetically, resulting in what is known as
geometric frustration. As demonstrated in figure (1.1), there is no way to satisfy every
pair of nearest neighbor Ising interactions, thus leading to a near-infinite number of
possible ways to orient the spins in the ground state of the system.
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Chapter 1. Introduction

Quantum mechanically, the ground state of a QSL is a superposition of these orientations
in which the spins are highly correlated [1].

Though we have yet to confirm its existence, identifying a QSL may prove to be greatly
beneficial to the field of condensed matter, as studying its unconventional properties
will further our understanding of the quantum nature of materials and present new
possibilities for technological innovation.

1.2 Kitaev Quantum Spin Liquids

There exists many potential QSL candidate materials such as those possessing Kagomé
[2] or Pyrochlore [3] lattices. Recently in 2006, theoretical calculations by Alexei Ki-
taev demonstrated that a honeycomb lattice of spin 1/2 fermions dominated by bond-
dependent ferromagnetic interactions with their nearest neighbors can lead to a quantum
spin liquid ground state [4].

The Kitaev Hamiltonian is defined as

ĤK =
∑
<i,j>

JγKSγi Sγj , (1.1)

where JγK is the energy of the anisotropic, bond-dependent Ising interactions. The indices
i and j represent nearest neighbors in the honeycomb lattice. γ is defined for each pair
of nearest neighbors to be the x−, y−, or z− axis oriented in the direction of their bond,
as illustrated by Takagi et al. in figure (1.2).

Figure 1.2: Diagram of bonds on a Kitaev honeycomb lattice. The 3
bonds adjacent to each lattice point has their easy axes parallel to the
x−, y−, or z− axes. Figure from [5]

2



Chapter 1. Introduction

Since each spin in the Kitaev lattice is only able to energetically satisfy one of its 3 neigh-
boring spins by aligning with it according to the direction of their bond. The countless
ways to pair up these spins leads to geometric frustration and a highly degenerate ground
state, as illustrated in figure (1.3).

Figure 1.3: The Kitaev spin-liquid state as a superposition of the many
possible arrangements of spin pairs. Figure from [5]

However, realistic materials exhibit additional interactions between their neighboring
spins and may be described by the Kitaev-Heisenberg model. Their spin Hamiltonians
contain the isotropic Heisenberg exchange term

ĤH =
∑
<i,j>

JHS i · Sj , (1.2)

and the symmetric off-diagonal exchange term

ĤΓ =
∑
<i,j>

Γ(Sαi S
β
j + Sβi S

α
j ), (1.3)

where α and β are defined as Cartesian directions not equal to the direction of the bond
γ.

The Kitaev-Heisenberg Hamiltonian is written as the sum of the Kitaev, Heisenberg,
and symmetric off-diagonal exchange Hamiltonians [6]

3



Chapter 1. Introduction

3

ĤKH = ĤK + ĤH + ĤΓ, (1.4)

Evidence for a Kitaev QSL have been observed in materials with honeycomb planes in
their crystal lattices. These materials contain S = 1/2 late transition metal ions in an
octahedral environment with strong spin-orbit coupling λ, such as the Ir4+ in Na2IrO3
[7], and Ru4+ in α-RuCl3 [8].

Experiments on Na2IrO3 have established that it undergoes antiferromagnetic ordering
at a Néel temperature of TN ≈ 15K [9]. However, the behaviour of its bulk magnetic sus-
ceptibility χ in its paramagnetic state suggests a much higher Curie-Weiss temperature
ΘCW of -125 K [10], which is a signature of the strong frustration of spin liquids.

Figure 1.4: Phase diagram showing the possible ordering of spins in a
Kitaev-Heisenberg system arising from JK and JH . ψ is defined such that
JH = cos(ψ) and |JγK | = sin(ψ). Figure from [11]
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Chapter 1. Introduction

In the Kitaev-Heisenberg model, the existence of ordering in Kitaev QSL candidates is
dependent on the magnitude of the Ising and exchange energies JK and JH , as the bond-
dependent Ising interactions favour a spin liquid state while the Heisenberg exchange
interaction favours antiferromagnetic or ferromagnetic ordering depending on its sign.
A phase diagram of the Kitaev-Heisenberg model is shown in figure (1.4). More complex
orders such as zig-zag can be explained by effect of the off-diagonal exchange term Γ [6].

Distortions in the lattice which deviate from the ideal Kitaev geometry as well as fur-
ther neighbor interactions will introduce additional terms into the Kitaev-Heisenberg
Hamiltonian, but their effects remain unaddressed for now [6].

1.3 Copper Iridate (Cu2IrO3)

In this study, our focus is on the Kitaev QSL candidate Cu2IrO3, which has a very
similar layered honeycomb structure as its parent compound Na2IrO3. Our Cu2IrO3
sample was synthesized at Boston College by Abramchuk et al.. This was done by
replacing the Na+ ions in Na2IrO3 with Cu+ via metathesis with CuCl [12]. The crystal
structure of Cu2IrO3 is shown in figure (1.5) and a perpendicular view of its honeycomb
planes is shown in figure (1.6).

Figure 1.5: Crystal structure of Cu2IrO3 viewed along the a-axis. This
material consists of layers of Ir2/3Cu1/3O6 honeycomb planes. The Ir4+

ions are bonded to each other via two O2− ligands
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Chapter 1. Introduction

Cu2IrO3 has two different types of Cu sites. Cu ions within the honeycomb planes are
labeled as Cu(H) while interlayer Cu are labeled as Cu(I). Due to the stacking faults,
there are 2 distinct Cu(I) lattice sites labeled Cu(I1) and Cu(I2), with Cu(I1) occupying
twice as many lattice sites as Cu(I2).

Cu2IrO3 possesses Ir-Ir-Ir (122.5◦ to 118.7◦) and Ir-O-Ir (98.1◦ to 95.0◦) bonds angles
closer to the ideal Kitaev geometry (120◦ and 90◦) [13] than Na2IrO3, which has 114.9◦
to 124.2◦ Ir-Ir-Ir and 98◦ to 99.4◦ Ir-O-Ir bond angles. This is important, as deviation
from the ideal geometry tends to increase the Heisenberg exchange term JH .

Figure 1.6: Honeycomb lattice of Ir4+ ions viewed along the c’-axis with
Cu(H) sites at the center of the hexagonal cells. The bond-dependent Ising
interactions JγK are superimposed onto the Ir-Ir bonds.
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Chapter 1. Introduction

Heat capacity measurements of Cu2IrO3 and Na2IrO3 conducted by Abramchuk et al.
is shown in figure (1.7). Since the Cu2IrO3 data does not display a sharp peak within
the observed temperature range, there is no evidence for its magnetic ordering. This
is unlike Na2IrO3, which clearly has a peak at its Néel temperature [12], indicating an
antiferromagnetic transition. α-RuCl3 has also been shown to exhibit such a peak in its
heat capacity at TN ≈ 6.2 K [14].

Figure 1.7: Heat capacity of Cu2IrO3 and Na2IrO3 vs temperature.
Figure from [12]

Bulk susceptibility measurements of Cu2IrO3 and Na2IrO3 were done by Abramchuk et
al. and the results are shown in figure (1.8). Effective magnetic moment µeff and ΘCW

were determined by fitting χ to the Curie-Weiss model

χ = C

T −ΘCW
, where C = gµB)2J(J + 1)

3kB
, (1.5)

NA is Avogadro’s number, µB is the Bhor magneton, g is the Landé g-factor, J is the
angular momentum quantum number, and kB is the Boltzmann constant. It is apparent
that Cu2IrO3 and Na2IrO3 exhibit similar behaviour of χ down to ∼ 50 K. Below this
temperature, the χ of Cu2IrO3 exhibits an extreme upturn while the χ of Na2IrO3 peaks
at T = 15 K, both deviating from the Curie-Weiss model.
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Chapter 1. Introduction

Figure 1.8: Bulk molar susceptibility χ vs temperature of Cu2IrO3
(Red) and Na2IrO3 (Blue) measured at an external field of |B| = 1 T.
Figure from [12]

In this thesis, a spectroscopic technique known as nuclear magnetic resonance (NMR) is
used to investigate the intrinsic behaviour of χ, free of defects, and to better understand
the local magnetic structure of Cu2IrO3.
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Chapter 2

Fundamentals of NMR

2.1 Energy Levels of Nuclear Spin

In the presence of a static magnetic field, the energy level of a nucleus splits due to the
Zeeman interactions between its magnetic moment µ and the external field B0 according
to the Hamiltonian [15]

Ĥ = −µ ·B0 = −γN h̄B0Iz, (2.1)

where µ = γN h̄I is the magnetic moment of the nucleus and the z-axis is defined parallel
to B0. Iz is the z-component of the nuclear angular momentum, and γN is the nuclear
gyromagnetic ratio. This results in energy levels of

E = −γN h̄B0m, where m = −I,−I + 1, ....I − 1, I, (2.2)

as shown schematically in the left column of figure (2.1). In addition to the Zeenman
interaction, the nuclear spin Hamiltonian is dependent on other local effects such as the
hyperfine and quadrupole interactions, as discussed in sections (2.5) and (2.7) respec-
tively.

Transitions between these energy levels can be induced by applying an alternating mag-
netic field at the resonant frequency ν = ∆E/h = (Em−1−Em)/h = γN B0/2π.
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Chapter 2. Fundamentals of NMR

Figure 2.1: Visualization of energy level splitting of a spin 3/2 nucleus.
The horizontal blue lines in each column represent the 4 energy levels
each corresponding to a value of Iz. The light blue regions in the right
column represent a continuum of possible energy levels which depend on
the relative angle between the crystal and the applied field.

2.2 Classical Motion of Spin

For a particle with magnetic moment µ in a field B0, the field exerts a torque τ on the
particle

τ = µ×B0. (2.3)

The equation of motion of µ is therefore

dµ
dt = γN

dI
dt = µ× γNB0. (2.4)

In a rotating reference frame of angular velocity Ω, it can be shown via change of
coordinates that equation (2.4) becomes

dµ
dt = µ× (γNB0 + Ω). (2.5)

10



Chapter 2. Fundamentals of NMR

By choosing Ω = −γNB0, we see that µ is static in the rotating reference frame and
is thus precessing about B0 at the Larmor frequency ωL = −γNB0 in the laboratory
frame.

If an additional rotating magnetic field B1 is applied perpendicular to B0 such that

B0 = B0ẑ, B1 = B1(x̂cos(ωLt) + ŷsin(ωLt)), (2.6)

then, in the Ω = −γNB0 rotating reference frame

dµ
dt = µ× (γNB0 + Ω + γNB1x̂) = µ× γNB1x̂, (2.7)

µ will then precess about the rotating frame x-axis at an angular velocity of

ω = γNB1. (2.8)

In reality, this allows us to control the orientation of the spins within the sample relative
to B0. By placing the sample inside a solenoid, a radio frequency (RF) alternating
current can be used to generate B1 (the details of which are outlined in appendix (A)).
Starting from thermal equilibrium, the total spin is in the direction of B0. According to
equation (2.8), for a spin I = 1/2 nucleus, turning on B1 for a duration of t90 = π/2γN |B1|
rotates the spins by 90◦ about the rotating frame x-axis, while turning it on for a duration
of t180 = π/γN |B1| rotates the spins by 180◦, as shown in figure (2.2).

Figure 2.2: (a) Coil with sample in thermal equilibrium, spins are paral-
lel to B0. (b) Spins are perpendicular to B0 after t90 pulse. (c) Spins are
flipped from (b) after t180 pulse, and remain perpendicular to B0. Image
from [15]
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Chapter 2. Fundamentals of NMR

For nuclei with spin I > 1/2, quadrupole interactions cause the energies of Iz = m ←→
m+1 transitions to be different for each set of I andm values. This causes the precession
rates about B1 in the rotating frame to be faster compared to I = 1/2 nuclei with
the same γN and |B1| [16]. The rate of precession is proportional to the parameter
A =

√
I(I + 1)−m(m+ 1). For example, in our sample Cu2IrO3 with spin 3/2 Cu nuclei,

t90 = π/2
√

3γN |B1| and t90 = π/4γN |B1| for Iz = ±3/2 ←→ ±1/2 and Iz = ±1/2 ←→ ±1/2
transitions respectively [17]. A full table of transition rates for given I and m can be
found on pages 110-111 of [17].

Following a t90 pulse, the spins, and hence the net nuclear magnetization of the sample,
precess about the z-axis in the stationary frame. This induces a current in the solenoid
oscillating at the resonant frequency and is known as free induction decay (FID). The
amplitude of the current can then be measured using our equipment.

2.3 Spin Echo Pulse Sequence

Measurements of the FID signal are partially obscured by unwanted currents in the
solenoid and detection equipment. Random noise can be minimized by repeating the
experiment and averaging the signal over many iterations [17]. This increases the signal
to noise ratio by a factor of

√
N where N is the number of iterations.

Figure 2.3: Spin echo pulse sequence

However, a transient noise known as ringdown persists after the RF pulse and may greatly
obscure the FID signal. Ringdown is caused by the dissipation of standing waves within
the solenoid and nearby conductors, which were built up by the high-energy RF pulse.
Since it is coherent with the RF pulse, signal averaging does not reduce ringdown. Thus
it requires more sophisticated techniques to be eliminated. One method of mitigating
ringdown is by employing a spin echo sequence. Instead of measuring the FID signal,
an additional t180 pulse is applied to the sample after time τ , as shown in figure (2.3).

12



Chapter 2. Fundamentals of NMR

Figure 2.4: Behaviour of nuclear spins within sample during spin echo
sequence. x̂′ and ŷ′ are x̂ and ŷ in the Ω = −γNB0 reference frame. a)
The sample is in thermal equilibrium and magnetization is parallel with
B0. b) t90 pulse rotates the spins perpendicular to B0. c) Spins are
dephased over time τ . d) t180 pulse flips the spins. e) Spins realign after
time τ .

Due to the inherent inhomogeneity of the applied magnetic field ∆B0, the spins precess
at different rates after the t90 pulse, drifting apart from each other at an angular velocity
of approximately γ∆B0. Thus, they dephase over time, causing the FID signal to decay.
Since the t180 pulse flips each of the dephased spins about the y-z plane, the spins refocus
at time 2τ , generating a second signal known as a spin echo. Since ringdown dies out
approximately 2 µs to 50 µs after the end of the t90 and t180 pulses, it can be separated
from the spin echo signal by a sufficiently long τ .

Another technique used to cancel out ringdown is known as phase cycling. The phase of
the t90 and t180 pulses, as well as the sign of the observed spin echo are changed for every
sequence such that the ringdown is canceled out in the sum of the resulting signals, as
its phase is also dependent on the phase of the RF pulses. In our spin echo experiments,
a set of 4 spin echo sequences is used [18]:

13
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Sequence 1: t90 about +x′ axis, t180 about +x′, spin echo is added.

Sequence 1: t90 about −x′ axis, t180 about +x′, spin echo is subtracted.

Sequence 1: t90 about −x′ axis, t180 about +y′, spin echo is added.

Sequence 1: t90 about +x′ axis, t180 about +y′, spin echo is subtracted.

Since only RF pulses near the resonant frequency ν will generate a spin echo, the ν of
certain isotopes in a material (in our case 63Cu and 65Cu) can be determined by per-
forming spin echo sequences at varying frequencies and using a phase sensitive detector
to observe the signal intensity, which should peak at ν, as seen in figure (2.5).

Figure 2.5: Theoretical NMR spectrum for resonant frequency ν. The
width of the resonance peak depends on a variety of factors such as nuclear
dipole-dipole interactions, distribution of Knight shift, and quadrupole
interaction.

2.4 NMR Electronics

A block diagram of the equipment used in our experiments can be seen in figure (2.6).
The RF frequency source generates a continuous RF current of a set frequency. The
RF current is then converted into the desired t90 and t180 pulses via TTL gating signals
from the Aries, which are then amplified by a factor of 60 dB (i.e. 1000 times) through
the power amplifier.

These high voltage pulses from the amplifier are then sent to an RLC circuit inside the
NMR probe through a pair of antiparallel series of diodes. Since the diodes each have
a well-defined threshold voltage, they are able to eliminate low-voltage noise created by
the power amplifier while allowing the intended high voltage RF pulses to pass through.
This is especially important during the data-acquisition phase of the pulse sequence as
the RF pulses have low voltage tails [17].

14
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Figure 2.6: Schematic of NMR spectrometer at Imai labs [18]

The NMR probe which includes the sample and RLC circuit is inserted into a cryostat
and sometimes immersed in liquid N2 or He cryogen. The sample is fitted into the
inductor of the RLC circuit. The segment of the cryostat containing the sample is
placed in the center of a |B0| = 9T magnet.

To prevent the high-voltage pulses going into the RLC circuit from reflecting back to
the power amplifier, the capacitance of the matching and tuning capacitors (Cm and
Ct respectively) must be changed such that the resonant frequency of the RLC circuit
equals that of the RF pulses [17]

ω0 ≈
1√

L(Cm + Ct)
, (2.9)

where ω0 is the RF pulse frequency and L is the inductance of the solenoid. Additionally,
to maximize the power transfer to the RLC circuit, its impedance must match the
characteristic impedance of 50 Ω of the transmission cable such that

ω2L2[1 + Cm/Ct]2

r
= 50 Ω, (2.10)
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where r is the small but non-zero resistance of the solenoid. This gives us 2 degrees of
freedom, Ct and Cm, to satisfy the 2 conditions (2.9) and (2.10). In our experiments,
adjustment of Ct and Cm is done manually by connecting the input of the RLC circuit
to a network analyzer and tuning the values of Ct and Cm until the maximum amount
of power is absorbed by the RLC circuit.

Inside the preamplifier box, the quarter-wavelength (λ/4) cable and grounded diodes are
used to isolate the sensitive detection equipment from the remains of the RF pulses
not absorbed by the RLC circuit. Another pair of antiparallel diodes, similar to those
connected to the amplifier, is grounded and used to divert the high voltage RF from
the detection equipment while not affecting the low-voltage spin echo signal. Since
a standing wave is formed between the output of the power amplifier diodes and the
grounded diodes, its amplitude at the grounded diodes can be minimized using the λ/4
cable [18]. Additionally, since electrical propagation in the cable is different than in
a vacuum, the length of the λ/4 cable we use in our experiments is related to the RF
frequency by the equation l = 45m/f where l is the length of the cable and f is the RF
frequency in MHz [17].

The spin echo signal is collected in the same solenoid containing the sample and is sent
back to Aries via the RF preamplifier box. The entire process is controlled using a
computer program called MacNMR.

2.5 The Knight Shift

Due to couplings between the spin of magnetic cations (Ir4+ in our case) and the magnetic
moment of nearby electrons, the local magnetic field at the nucleus differs from the
applied field B0. Thus, the resonant frequency ν is shifted from the Lamor frequency
by a factor of (1 +K)

ν = γNB0
2π (1 +K), (2.11)

where K is known as the Knight shift. The Knight shift comprises of two components,
the chemical shift Kchem and the electron spin shift Kspin, such that K = Kspin +
Kchem. The chemical shift is due to the orbital magnetic moment of the electrons and
is dependent on the diamagentic and Van Vleck susceptibility of the orbital electrons,
evaluated respectively as [19]

χdia = − e2

4mc2 < 0|
∑
i

(x2
i + y2

i )|0 >, (2.12)
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χV.V. = 2µ2
B

∑
n

| < 0|Lz|n > |2

En − E0
, (2.13)

where |n> are the excitation states of the orbital electrons. xi and yi are coordinate
operators for the i-th electron, and Lz is the z-component of the angular momentum
operator. Since En−E0 is on the order of 104 K, χdia and χV.V. (and consequently Kdia

and KV.V.) are essentially temperature independent when it comes to NMR experiments
(unless another orbital level energy En is close to E0).

In contrast, the spin contribution to the Knight shift is temperature dependent and is
proportional to the electron spin susceptibility χspin(T ) and the spin hyperfine coupling
constant A [18] [20]. Thus, the Knight shift is evaluated

K = Kspin +Kdia +KV.V. = (γeγnh̄2)−1[Aχspin(T ) +AorbχV.V.] +Kdia, (2.14)

The orbital hyperfine coupling constant is theoretically estimated to be

Aorb = 2γeγnh̄2 < (
∑
i

ri)−3 >, (2.15)

where < (
∑
i ri)−3 > is the average cubic inverse of the radial distance of the orbital

electrons, while γe and γn are the gyromagnetic ratios of the electron and nucleus re-
spectively. Note that, in our representation, the unit of Aorb is [erg] (omitting a factor of
µ0). The value of A is discussed in the next section. By plotting the experimental data
of the Knight shift K against spin susceptibility χspin for a range of temperatures, the
hyperfine coupling constant and chemical shift can be determined from the slope and
intercept of the linear relation, respectively.

2.6 The Hyperfine Coupling Constant

The spin hyperfine coupling constant is composed of 5 components [20]

A = Acontact +Acp +Adipolar +Aspin−orbit +Btransfer, (2.16)

where Acontact arises from the Fermi contact interaction between the nucleus and s-
electron spins. Acp is from core polarization, where outer electron spins polarize the

17



Chapter 2. Fundamentals of NMR

s-electrons. Adipolar comes from the dipolar interaction between electron spins and the
nucleus. Aspin−orbit is due to the polarization of electron orbits by electron spins [18].
Lastly, the transferred term Btransfer is due to the mixing of states between the s-
electrons and the electrons of neighboring atoms [20]. In our material Cu2IrO3, the
transferred hyperfine field from neighboring magnetic Ir4+ ions is the dominant compo-
nent of the Knight Shift. We define Ahf as the hyperfine coupling strength from one of
the neighboring Ir4+ ions such that

Ahf = Btransfer
Nn.n.γN h̄

, (2.17)

where Nn.n. is the number of Ir4+ nearest neighbors and the factor of γN h̄ is used to
convert the hyperfine coupling constant from units of energy into units of [Oe/µB]. Thus,
to calculate Ahf we use the slope of the K vs χ plot in the equation

Ahf = ∆K
∆χ

NAγeγN h̄
2

Nn.n.γN h̄
= NAµB

Nn.n.

∆K
∆χ ,

(2.18)

where χ is in units of [emu/mol].

In transition metals, the spin contribution to the Knight shift mainly depends on Fermi
contact and core polarization from itinerant s-band and d-band electrons. The Fermi
contact contribution from s-electrons is [21]

Ks = 8π
3 < |Ψ(0)|2 >F χ

s
p, (2.19)

where < |Ψ(0)|2 >F is the average over the Fermi surface of the probability density of
itinerant s-electrons at the nucleus, and χsp is the Pauli spin susceptibility of itinerant s-
electrons. Similarly, the Knight shift due to core polarization of s-electrons by d-electrons
is

Kd = −8π
3 < |Φcp(0)|2 > χdp(T ), (2.20)

where < |Φcp(0)|2 > is defined in [21] and is representative of an admixture of s-electrons
due to polarization by itinerant d-electrons, and χdp(T ) is the temperature-dependent
Pauli spin susceptibility of itinerant d-electrons.
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2.7 Quadrupole Interaction

An additional interaction affecting the resonant frequency is the energy associated with
the electric quadrupole moment of the nucleus and the electric field gradient (EFG)
exerted on it by external charges. This results in a quadrupole term in the Hamiltonian
[15]

ĤQ = 1
6

∑
α,β

VαβQ
(op)
αβ , (2.21)

where Vα,β is the EFG tensor at the site of the nucleus and Q
(op)
α,β is the quadrupole

operator [15]

Q
(op)
α,β = e

∑
protons

(xαkxβk − δαβr2
k), (2.22)

where k is the index for each proton. Since the electric quadrupole operator is dependent
on the spin state, the quadrupole Hamiltonian can be written as [16]

ĤQ = e2qQ

4I(2I − 1) [3I2
Z − I(I + 1) + 1

2η(I2
+ + I2

−)]. (2.23)

Equation (2.23) is defined in the axis X,Y, Z, which are the principle axis of the EFG
tensor Vαβ such that

|VZZ | ≥ |VY Y | ≥ |VXX |, eq = VZZ , η = |VXX − VY Y
VZZ

|, 1 ≥ η ≥ 0. (2.24)

eq is therefore the EFG along the principal axis of the EFG tensor, η is known as
the asymmetry parameter, and eQ is defined as the electric quadrupole moment of the
nucleus

eQ = 1
2

∫
(3z2 − r2)ρ(r)d3x. (2.25)
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Chapter 2. Fundamentals of NMR

In high magnetic fields where the Zeeman interaction is much stronger than the quadrupole
interaction the effect the quadrupole interaction has on the energy levels can be calcu-
lated using perturbation theory to second order. In the case of an axially symmetric
EFG tensor with η = 0, one can show that [16]

E(1)
m = 1

4hνQ(3µ2 − 1)(m2 − 1
3a), (2.26)

E(2)
m = −h

ν2
Q

12νL
m[32µ

2(1− µ2)(8m2 − 4a+ 1) + 3
8(1− µ2)2(−2m2 + 2a− 1)], (2.27)

where

a = I(I + 1), µ = cos θ, νL = γH

2π , and νQ = 3(eq)(eQ)
h2I(2I − 1) . (2.28)

We see that for I = 1/2 ←→ I = −1/2 transitions (central transitions), the first order
energy shift is zero. While for other transitions (satellite transitions), the first order
energy shift is the dominant term since νL >> νQ.

The effect the quadrupole interaction has on the spin state energies thus depends on the
relative angle of the crystal to B0. For powder samples with uniform angular distribution
of grains, quadrupole effects results in multiple broadened peaks for each transition, as
seen in figure (2.7).

2.8 Powder Alignment

To minimize the angle distribution θ, the sample can be converted into a uniaxially
aligned powder by being suspended in STYCAST 1266 and cured in a strong magnetic
field, as shown in figure (2.8). Due to the anisotropy of magnetic susceptibility, the
crystals rotate until their easy axis (the direction with the highest magnetic susceptibil-
ity) aligns with B0, as this is the most energetically favourable configuration. This was
done on our Cu2IrO3 sample. Considering the anisotropic magnetic susceptibilities of
Na2IrO3 [7], we expect the crystal c-axis of Cu2IrO3 to align with B0.
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Chapter 2. Fundamentals of NMR

Figure 2.7: Simulated high-field NMR spectrum of spin 3/2 powder sam-
ple with large νQ and η = 0.1. νQ

Figure 2.8: Diagram outlining process of creating a uniaxially aligned
powder sample.
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Results and Analysis

3.1 NMR Lineshapes

Spin Echo experiments were conducted on ∼220 mg of Cu2IrO3 powder in an applied
field of B0 = 9T. The RF frequency f is swept through intervals between 75 and 135
MHz for a variety of temperatures ranging between 4.2 K and 298 K, in order to probe
the spectrum of transition energies of 63Cu and 65Cu with nuclear spin 3/2.

Throughout our experiments, the value of τ ranges from 7µs to 30µs depending on
the relative strength of ringdown. Due to the decrease of signal to noise ratio at higher
temperatures, up to 15000 scans were needed per data point. The NMR signal intensity
I was integrated over the entire duration of the spin echo (approximately 20 − 30µs)
and normalized by a factor of

1
N × exp(−hf/kBT )× f ∼

T

Nf2 , (3.1)

where exp(−hf/kBT ) is the Boltzmann factor of the energy splitting and N is the
number of scans. The Boltzmann factor accounts for the population difference between
spin states at equilibrium, which is proportional to the magnitude of the precessing
magnetic moment. We approximate the Boltzmann factor to T/f since hf << kBT for
the temperatures in our experiments. The additional factor of f is due to the amplitude
of the signal being proportional to the precession rate of the sample magnetic moment,
which is proportional to f . The result of the frequency sweep for T = 125K is shown in
figure (3.1) for unaligned powder.

22



Chapter 3. Results and Analysis

Figure 3.1: 63Cu and 65Cu full line shape at 125K and B0 = 9T.

We see that due to the large νQ of Cu(I) (measured to be 26 MHz), the NMR spectra
of 63Cu and 65Cu overlap. It is also apparent that the ratio of the integrated intensity
of the 63Cu and 65Cu central transitions is approximately the natural abundance of
the two isotopes, 69% to 31%. As predicted by equation (2.27), the central transitions
each contain 2 peaks corresponding to portions of the powder where crystal c-axis is
perpendicular to B0 (90◦) and at a 41◦ angle to B0. The steep drop in the middle of
the central transition corresponds to the c-axis being parallel with B0 (0◦). We can also
see the upper and lower satellite peaks of 63Cu in accordance with equation (2.26).
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The value of νQ for the Cu(I) and Cu(H) sites were determined by Takahashi et al. [22].
Nuclear Quadrupole Resonance (NQR) was conducted on Cu2IrO3 in order to determine
the value of νNQR for each Cu site, where

νNQR = νQ

√
1 + η2. (3.2)

Figure 3.2: Measurements of the νNQR of 63Cu and 65Cu H-site and
I-sites. Figure acquired from [22].

As temperature decreases, defect spins polarized by B0 increasingly broaden the NMR
peaks. It was observed by Kenny et al. [23] that a fraction of the Cu(H) sites were
occupied by spin 1/2 Cu2+ ions instead of Cu1+. Charge conservation thus implies
that some of the spin 1/2 Ir4+ sites are occupied by spinless Ir3+ atoms. Though the
temperature dependence of the broadening is reminiscent of RKKY spin oscillations, the
effect of defect spins on Cu2IrO3 and other Iridates has not yet been fully understood
in current theoretical condensed matter research. The Knight shift can be observed
qualitatively as the 41◦ and 90◦ peaks shift towards higher frequencies as temperature
decreases.
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However, since the width of the 90◦ and 41◦ peaks exceed the scale of the Knight shift,
it is difficult to deduce the Knight shift using an unaligned powder sample. In order to
accurately quantify the Knight shift, we aligned the sample powder using the process
described in section (2.8). NMR frequency sweeps were done for a set of temperatures
on the uniaxially aligned sample with the crystal c-axis mounted both parallel and
perpendicular to B0. The resulting lineshapes are shown in figure (3.3) in comparison
to the unaligned powder results.

Figure 3.3: Side by side B0 = 9T NMR lineshapes at various tempera-
tures. The lineshapes for each temperature are cascaded over one another
in order to emphasize the movement of the peaks. The 3 plots are catego-
rized as a) c-axis mounted perpendicular to B0, b) c-axis mounted parallel
to B0, and c) unaligned powder. The blue, red, and green arrows indicate
the Cu(I) 90◦ peak, Cu(I) 0◦ peak, and Cu(H) 0◦ peak respectively. The
vertical black line in each plot represents the Larmor frequency for bare
nuclear spins with no shifts.
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We immediately notice that the Knight shift can be more accurately determined from the
aligned powder lineshapes. However, residual Cu peaks can be seen in aligned powder
lineshapes since a fraction of the powder failed to align. The small peaks near 101.7
MHz and 101.3 MHz are likely from Cu metal and Na respectively, as the probe itself
is partially composed of Cu metal, and the process of synthesizing Cu2IrO3 leaves Na
impurities at the Cu lattice sites. Due to its proximity, the Cu metal signal slightly
shifts the apex of the Cu(I) 0◦ peak, leading to a higher range of error.

Cu(H) only has 1/3 times the occupancy of Cu(I). Moreover a twice larger νQ of approx-
imately 52 MHz decreases the peak intensity of its central transition by an additional
factor of 4 via broadening. Therefore, Cu(H) peaks in the NMR lineshape are much
smaller and broader than that of Cu(I). Due to its high quadrupole shift, the 63Cu(H)
90◦ central peak is likely overshadowed by the 65Cu(I) central transition in the c ⊥ B0
lineshapes. However, in the c ||B0 lineshapes, there appears to be small bumps between
102MHz to 103MHz at 100 K and below, while above 100 K, they become hidden by
the Cu(I) 0◦ peak. We attribute these bumps to be the 0◦ signal from Cu(H) sites. The
Knight shift of these peaks are thus tracked for the rest of the experiment.

3.2 Quadrupole Correction

To isolate the Knight shift from the temperature independent quadrupole shift, NMR
lineshapes were measured at the peak frequencies of Cu(I) 90◦, Cu(I) 0◦, and Cu(H) 0◦
with T = 295K and varying the external field B0 to values between 6.8 T and 9.0 T.

Figure 3.4: Lineshapes of 63Cu at select values of |B0|. The lineshapes
are zoomed in on a) the Cu(I) 0◦ peak, b) the Cu(I) 90◦ peak, and c) the
Cu(H) 0◦ peak. The x-axis is scaled by 1/γN B0 for each value of |B0| so
that the apparent Knight shift is clearly observable.
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We plot the apparent Knight shift of the peak ν from the Larmor frequency νL =
γN |B0|/2π, defined as Kapparent = (ν−νL)/νL, in figure (3.5) as a function of 1/ν2

L ∝ 1/|B0|2.
We can linearly extrapolate Kapparent to 1/ν2

L → 0 to calculate the true Knight shift K.
This is because second order quadrupole approximation of ν can be rearranged into the
form of

ν = γN |B0|(1 +K) + D

γN |B0|(1 +K)

=⇒ ν − γN |B0|
γN |B0|

= Kapparent ≈ K + D

γN |B0|2
,

(3.3)

where D is constant with respect to |B0|, and can be calculated using equations from
section (2.7). The straight lines in figure (3.5) shows the results of the linear extrapola-
tion.

Figure 3.5: Plot of 63Kapparent vs 1/(γN B0)2 used to isolate the Knight
shift from the quadrupole shift for Cu(I) 0◦ , Cu(I) 90◦ , and Cu(H) 0◦.
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It can be seen that there is almost no quadrupole shift for the Cu(I) 0◦ and Cu(H) 0◦
peaks, which implies that the η of the EFG tensor at the Cu(I) and Cu(H) sites are
close to 0. This is consistent with the axial symmetry of these Cu sites about the c-axis.
Using the slope of the 90◦ data, we calculate that for an external field of |B0| = 9T, a
quadrupole correction of −1.086% must be applied to the apparent Knight shift of Cu(I)
90◦ to get its true Knight shift.

3.3 Temperature Dependence of Knight Shift

After correcting for quadrupole effects, the Knight shift of Cu(I) 0◦, Cu(I) 90◦, and Cu(H)
0◦ are plotted against temperature alongside the spin susceptibility χspin of Cu2IrO3, as
shown in figure (3.6).

Figure 3.6: Temperature dependence of Knight shift of Cu(I) 0◦, Cu(I)
90◦, and Cu(H) 0◦. The Knight shift 63K is superimposed onto the spin
susceptibility χspin of Cu2IrO3.

28



Chapter 3. Results and Analysis

Since the paramagnetism of Cu2IrO3 comes mainly from the magnetic Ir4+ ions, we find
the spin susceptibility χspin by subtracting the Van-Vleck and diamagnetic susceptibility
of Ir4+ and Cu2IrO3 respectively (both of which are constant over our temperature range)
from the bulk susceptibility χ of Cu2IrO3, such that

χspin = χ− χdia − χV.V., (3.4)

where the χdia of Cu2IrO3 is estimated to be −0.089× 10−3emu/mol (using the χdia of
individual ions from [24]) and χV.V. is reported to be 0.16× 10−3emu/mol by [10]. The
temperature dependence data of χ comes from [12].

We see that the behaviour of the Knight shift follows that of χ down to approximately
50 K. Since the Knight shift is influenced only by the intrinsic spin susceptibility, the
upturn of bulk susceptibility χ below 20 K in Cu2IrO3 is likely due to the susceptibility
of defect spins.

The difference in the 0◦ and 90◦ Knight shift of Cu(I) indicates that the hyperfine
coupling between Cu(I) and Ir4+ is anisotropic and stronger along the ab-plane. We also
see that along the c-axis, Cu(H) has stronger hyperfine coupling than Cu(I) due to its
geometric proximity to the Ir atoms.
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Figure 3.7: Temperature dependence of Knight shift of honeycomb and
interlayer sites of 23Na in Na2IrO3. TN represents the Néel temperature
of Na2IrO3. This data is from [22].

The temperature dependence of the Knight shift of 63Cu in Cu2IrO3 is qualitatively
similar to that of 23Na in Na2IrO3, shown in figure (3.7). The ratios between the Knight
shift of the honeycomb and interlayer sites, ≈ 2.5, are close for 63Cu and 23Na. This
supports the hypothesis that the small peaks in figure (3.3 ) (B) are indeed Cu(H).

Thus, we have successfully used NMR to determine the intrinsic spin susceptibility of
Cu2IrO3. Additionally, Cu2IrO3 and Na2IrO3 are similar in terms of χspin, while greatly
differing in the behaviour of spin relaxation rate 1/T1 [22].
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3.4 Knight Shift vs Bulk Susceptibility

According to equation (2.14), χspin is proportional to the spin shift Kspin of both Cu (I)
and Cu (H) sites in the absence of a chemical shift. Thus, to get the hyperfine coupling
constant Ahf , we create a K vs χspin plot using the data from figure (3.6). The result
is shown in figure (3.8).

Figure 3.8: 63K vs χspin plot for Cu(H) and Cu(I) sites. A linear fit with
an assumed vertical intercept of 0 is used to calculate ∆K/∆χ for each of
the 3 species. The defect-dominated region corresponds to temperatures
below 50 K where the value of χ is greatly altered by defect spins. Thus,
only the data points above 50 K are considered in the linear fit.
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Outside the defect-dominated region (color shaded light blue), the Knight shifts of all
3 species appear proportional to χspin within their ranges of error. From figure (1.5),
we know that Cu(I) sites have 4 Ir4+ nearest neighbors while Cu(H) sites have 6 Ir4+

nearest neighbors. Hence, the hyperfine coupling constant Ahf between each pair of Cu
and Ir4+ ions can now be calculated for the 3 types of Cu using the equation (2.18). The
values of Ahf are reported in table (3.1).

Table 3.1: Calculated values of Ahf

Cu(I)-c Cu(I)-ab Cu(H)-c

Ahf [kOe/µB] 2.3± 0.1 7.6± 0.1 4.4± 0.2

In general Cu2+ ions have an additional Van-Vleck contribution to the Knight shift as
large as ∼ 1% due to the hole in their 3d orbitals [20]. The Cu(H) site we have observed,
which has a vertical intercept of ∼ 0%, cannot come from Cu2+. Thus, the Cu(H) sites
observed in our NMR experiments are occupied by Cu1+.

Comparing our results to that of 35Cl in α-RuCl3, as shown in figure (3.9), we see that
the Knight shift of 35Cl is also anisotropic and linear to the bulk susceptibility at high
temperatures. However, the saturation of K vs χ in Cu2IrO3 at low temperature is not
present in the K vs χ of α-RuCl3, which instead has a slight upturn below 75K.

Figure 3.9: NMR shift of 35Cl in α-RuCl3 with inset ofK vs χ, measured
at |B0| = 15 T by Baek et al.. The blue and red data represent the c′ ‖ B0
and c′ ⊥ B0 crystal orientations respectively. Figure from [14]
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Chapter 4

Conclusion

4.1 Summary

In this investigation, high field NMR techniques were used on a uniaxially aligned powder
sample of Cu2IrO3 to probe its intrisic spin excitations. It was determined that the
temperature dependence of the Knight shift is linear to χ down to 50 K, behaving as
K ∝ Ahfχspin, and that the low temperature behaviour of χ is likely due to defect
spins in the lattice. Additionally, the similar Curie-Weiss temperature of Cu2IrO3 and
Na2IrO3 observed by Abramchuk et al. was further supported by their nearly-identical
behaviour of χspin above 17 K. Finally, the hyperfine coupling constants of Ir4+ to Cu
sites were determined to be 2.3±0.1[kOe/µB], 7.6±0.1[kOe/µB], and 4.4±0.2[kOe/µB]
for Cu(I)-c, Cu(I)-ab, Cu(H)-c respectively.
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Appendix A

Chapter 2 Supplement

Instead of a magnetic field rotating about the z-axis (parallel to B1), a solenoid around
the sample positioned perpendicular to the z-axis generates a linear oscillating field of
the form

B = 2B1(x̂cos(ωLt)
= B1(x̂cos(ωLt) + ŷsin(ωLt)) + B1(x̂cos(ωLt)− ŷsin(ωLt))
= B1 + B′1,

(A.1)

in the stationary reference frame, where

B′1 = B1(x̂cos(ωLt)− ŷsin(ωLt)), (A.2)

which, in the Ω = −γNB0 rotating frame becomes

dµ
dt = µ× γNB1x̂+ µ× γNB1(x̂cos(2ωLt)− ŷsin(2ωLt)).

µ× γNB1x̂+ µ× γNB′1.
(A.3)

Equation (A.3) is similar to that of equation (2.7) except µ undergoes an additional pre-
cession about a field rotating about the z-axis at an angular velocity 2ωL. However, since
2ωL >> γNB1, precession of µ about B1 is relatively static compared to its precession
about B′1. Integrating over its period for a static and arbitrary µ0

dµ
dt = µ0 × γNB′1, (A.4)
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we see that µ simply precesses about a fixed point with radius |µ0|γN B1/2ωL << |µ0|,
which is too fast and small compared to the precession about B1 to alter its trajectory.
Thus the behaviour of µ reduces to that of equation (2.7) when inside a linear oscillating
field.
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