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1. INTRODUCTION

Efforts to understand how Earth’s climate system re-

sponds to external radiative or anthropogenic forcing

are crucial for informing present and future human be-

haviour. Climate models are our greatest tool for under-

standing how and why the climate changes in response

to these driving forces. Simulations of the climate un-

der different socioeconomic and emission scenarios yield

quantitative predictions of our future.

There are two good reasons why the scientific com-

munity has and continues to develop multiple indepen-

dent climate models. Firstly, it is a critical truth that

the mean of a collection of models has smaller error,

ie. is more accurate, than any one individual model

(Flato 2011; Annan & Hargreaves 2010; Lambert & Boer

2001). All individual models are outperformed by both

the mean and the median of the ensemble. The second

reason is the fact that no single model outperforms the

others in all respects (Flato 2011). One model may per-

form best for the temperature climate variable, but may

not hold the same title with respect to precipitation.

As expected, model diversity yields an equally diverse

range of future climate predictions. Even small differ-

ences in the predicted value of one climate variable, for

example global average temperature, can translate to

extreme changes to the way of life for ecosystem in-

habitants. It is therefore very important to understand

model diversity and isolate the aspects of climate models

from which it arises. What is it about different models

that lead them to predict different futures?

On the flip side, model diversity can and should

be taken advantage of in efforts to quantify the un-

certainty of future climate predictions. The ensem-

ble mean benefits from “cancellation of errors” (Flato

2011), enabling more accurate quantification of uncer-

tainty. International collaborations and standardized

experiments, such as the Coupled Model Intercompar-

ison Project (CMIP; Taylor et al. 2012; Meehl et al.

2009; Hibbard et al. 2007) are key for making steady

progress towards understanding climate variability, cli-

mate change, and garnering robust predictions of the

future.

In this work, we obtain the future climate predictions

of the CMIP Phase 5 (CMIP5) multi-model ensemble

under four radiative or anthropogenic forcing scenarios,

and analyze the diversity in this collection of models

both qualitatively and quantitatively. We focus on two

specific large-scale climate variables: global mean tem-

perature and average monthly precipitation. In order

to quantify the diversity in the range of future climate

predictions, we invoke the concept of the “envelope,”

which we define as the region within one standard devi-

ation of the ensemble mean. To understand the source

of the differences, we discuss the inner workings of over-

arching model classes and universal concepts in climate

modelling.

2. DATA

Our data consist of a subset of the Decadal Predic-

tions Simulations of the CMIP5 multi-model ensemble,

as shown in Table 1 (Taylor et al. 2012; Meehl et al. 2009;

Hibbard et al. 2007). The Coupled-Model Intercompari-

son Project Phase 5 (CMIP5) is an extensive experimen-

tal framework for studying the output of the global sci-

entific community’s atmosphere-ocean general circula-

tion models (GCMs) using a standardized method, and

as such is ideal for our purposes.

The downscaled Intergovernmental Panel on Climate

Change (IPCC) CMIP5 climate predictions of the fu-

ture1 from general circulation models use WorldClim 1.4

as a baseline climate. The outputs predict climate vari-

ables distributed over all of Earth’s land surface, and

are given as monthly averages of 2050 (which themselves

are averages of each month for 2041-2060) and 2070 (the

same but for 2061-2080). We extracted monthly aver-

age maximum and minimum temperatures, as well as

average monthly total precipitation, at 10 minute spa-

tial resolution (corresponding roughly to equatorial grid

1 Available for non-commercial use and free download at:
http://worldclim.org/CMIP5v1
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cells of 18.5 km sides at the equator). The data exist

for four representative concentration pathways (RCP26,

RCP45, RCP60 and RCP85).

3. COUPLED MODEL CLASSES

All of the models included in the CMIP5 multi-model

ensemble are coupled climate models (CMs), meaning

their components (eg. the atmosphere, ocean, sea ice,

and land surface) interact via a coupler (Meehl 1990).

The coupler works to (1) monitor time for each simu-

lation and (2) input separate information for each cli-

mate component, sending it to any other component

that requires this information to create the next time

step (Rasch 2012).

Within the umbrella of coupled models are roughly

four different model classes (though some elude classifi-

cation and we deem them miscellaneous); however, they

share a common limitation. The phenomenon of model

drift is especially prevalent in coupled models precisely

because they depend on interactions between the atmo-

sphere and ocean. If one component drifts, the other

does so as well (Gupta et al. 2013). Refer to Figure

1 for a schematic representation of the climate model

components and the sub-classes.

3.1. Climate System Models (CSMs)

BC, CC: Climate System Models (CSMs) are com-

prehensive mathematical representations of the evolv-

ing state of four climatic components of the Earth: the

atmosphere, land surface, ocean, and sea ice. They

formulate mathematical expressions based on physical

principles such as thermodynamics, radiative transfer,

chemical reactions, and fluid motion. The calculations

are carried out in response to naturally occurring ex-

ternal forcings and stable equilibrium, which is reached

through millennial intervals with free exchanges of heat,

water, and stress on land, as well as water surfaces

(Council 2001). CSMs are known for their use of a

diverse range of radiative forcings, which include: so-

lar luminosity, atmospheric composition, and land use,

making them a valuable contributing subclass to CMIP5

(PCMDI 2018).

The limitations of these models mostly arise from er-

rors in the assumption of natural forcings (including so-

lar luminosity and volcanics) or the misrepresentation

of internal variability systems of the climate, through

formulated analogues such as El-Niño (Wu et al. 2014).

3.2. Community Atmosphere Models (CAMs)

CE: Community Atmosphere Models (CAMs) com-

prise the atmospheric component of Community Earth

System Models (CESMs, distinct from ESMs). CAMs

Figure 1. A schematic of the components of coupled mod-
els and their subclasses: (1) Earth System Models (ESMs),
(2) Community Atmosphere Models (CAMs), (3) Climate
System Models (CSMs), (4) Global Environmental Models
(GEMs), and (5) miscellaneous (not shown). Main Point:
We categorize coupled models into major sub-classes.

describe the physical parameterization of the dynamics

of atmospheric circulation. Though CAMs are capable

of running as a standalone model, they can also be cou-

pled to other models. The CMIP5 multi-model ensemble

includes one CAM, under the code CE, which is coupled

with an active land model, thermodynamic-only sea ice

model, and a data ocean model. The main parame-

terizations include processes relating to precipitation,

radiation, clouds, and turbulent mixing (Abiodun et al.

2011). The models represent features of the atmospheric

state, thermodynamics characteristics, as well as energy

and chemical transportation (Collins et al. 2006).
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The magnitude of errors concerning flux divergences

and heating rates tend to decrease output values, down-

playing the effects of aerosols on the atmosphere. The

limitations concerning aerosol effects of shortwave en-

ergy flow in the atmosphere tend to cause changes

in long wave emissivity and absorptivity, resulting in

fluctuations in surface albedo and global temperatures

(Abiodun et al. 2011).

3.3. Earth System Models (ESMs)

GD, MI, MR, MP, NO: Earth System Models

(ESMs) have been developed for the explicit purpose of

being able to represent the interaction, or feedback, be-

tween the physical climate and biogeochemical processes

(Hajima et al. 2014). The carbon cycle is a key exam-

ple of a biogeochemical process. The atmosphere and

ocean components of an ESM can take up carbon diox-

ide, and the climate can respond appropriately (Flato

2011). ESMs are included in CMIP5 because they incor-

porate feedback mechanisms between atmospheric car-

bon and the physical climate, and can therefore be used

to isolate the role that each feedback plays in climate

sensitivity (Hajima et al. 2014).

The inclusion of biogeochemical processes (as is the

trademark of ESMs) is a computationally intensive task,

and as such, requires significant simplifications to these

models. The atmosphere may be modelled with only one

layer or a zonally-averaged cross section (Flato 2011).

While ESMs thus cannot give insight into the transport

of matter in the atmosphere, they are still useful for

understanding long-term climate change, as essential,

slow processes are retained.

3.4. Global Environmental Models (GEMs)

HD, HG, HE: Global Environmental Multiscale

Models (GEMs) including HadGEM2 configurations

considered in CMIP5, rely on data assimilation systems

to develop forecasts for the future. In addition to tropo-

sphere, land surface, ocean, and sea ice processes, GEMs

include a well-resolved stratosphere component (Martin

et al. 2011). By using a second vertical resolution for

the atmosphere, an extension in the same direction is

created, encompassing the stratosphere and lower meso-

sphere (Martin et al. 2011). Inclusion of the mesosphere

with computation based in vertical motion improves

representation of stratospheric circulation (Senior et al.

2016). Stratospheric circulation is linked to changes

in Arctic sea ice extent, stratospheric sudden warming,

and strong polar vortices - all of which are vital to un-

derstanding climate variability (Smith et al. 2018). As

a consequence, in CMIP5, when investigating tempera-

ture, GEMs elucidate the purpose of vertically-extended

climate configurations on stratospheric circulation in the

extratropics (Martin et al. 2011).

Numerical feasibility is not optimal with relation to

output calculations, leading to high variability and un-

certainty when comparing forecasts in continental-scale

regions. These regions exhibit teleconnection patterns,

namely, the El-Nĩno-Southern Oscillation (ENSO) and

the North Atlantic Oscillation (NAO) (Wu & Lin 2012).

The consequence of uncertainty in these areas are cold

biases observed in the equatorial Pacific and South

America (Martin et al. 2011). Cold biases are not exclu-

sive to these regions for this subclass, as they are also

found in the northern hemisphere, where the greatest

warming occurs (Baek et al. 2013).

4. METHODS

Our work hinges on the robustness of the ensemble

mean and the concept of the “envelope.” As such,

monthly averages of minimum/maximum temperature

and total precipitation from WorldClim are converted

into annual and monthly averages, respectively, for each

grid cell on the land surface of Earth. We take an av-

erage value over all land-surface grid cells in order to

obtain the global mean temperature (average of Tmax

and Tmin) and the global mean total precipitation for

2050 and 2070, as predicted by each general circulation

model in the CMIP5 multi-model ensemble. For each of

the four RCPs, we find the statistical standard deviation

in the value of global mean monthly precipitation and

temperature predicted by the suite of models.

5. RESULTS

5.1. Consistencies in Global Temperature and

Precipitation Predictions

Figure 2 shows, for all four RCPs, each CMIP5

model’s prediction of global mean temperature and

global monthly mean precipitation, averaged over the

periods of 2041-2060 and 2061-2080. We find that, for

severer greenhouse gas concentration trajectories, the

models generally predict higher values of both global

temperature and precipitation. No model predicts a

global mean temperature above 12 ◦C under the RCP26

scenario, and most predict less than 11 ◦C. Under the

RCP85 scenario, the majority of models predict a global

mean temperature above 12 ◦C over the 2061-2080 year

period. A similar trend is seen in predictions of global

mean precipitation.

Comparing the predictions of individual models to the

mean of the collection, we can visually identify partic-

ular models that consistently “over-” or “under- pre-

dict,” in the sense that their predictions lie outside the

1 σ spread about the collection’s mean. The concept is

particularly clear chromatically in the bottom panel of

Figure 2. What’s more, we find a consistency between
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Figure 2. Top: The predicted global mean temperature (◦C) in each RCP scenario and model for which a prediction was made.
Bottom: The predicted monthly average precipitation (mm). Points at 2050 represent an average over 2041-2060 (light blue
region) and points at 2070 represent the average over 2060-2080 (light green region). Each model is colour-coded and labelled
such that the order is preserved. Shown in grey is the mean prediction and one standard deviation spread, or “envelope,” used
to identify “over/under-predictors.” Main point: Different climate models predict different values for the future’s global mean
temperature and mean monthly precipitation.

climate variables: temperature “over-predictors” tend

to also be precipitation “over-predictors.” The models

GF, MR, MI, CE tend to “over-predict,” and IN, GS,

HD tend to “under-predict.”

5.2. Sensitivities to Radiative Forcing

Under each greenhouse gas concentration trajectory,

each model predicts a value of global mean temperature

or precipitation for 2070 that is different to their predic-
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Figure 3. Top: The slope in global mean temperature (◦C) between the predicted 2041-2060 and 2061-2080 averages (top
panel, Figure 2). Bottom: The same but for precipitation (mm). Each model is colour-coded and labelled such that the order is
preserved. In grey is the mean slope and one standard deviation spread, or “envelope”, used to identify “pessimists/optimists.”
Main point: Different climate models are more sensitive or less sensitive to the same forcing.

tion for 2050. To understand how sensitive the different

models are in response to the same standard forcing,

we plot the slope between 2050 and 2070 predictions in

Figure 3. We find that only under RCP26 do any mod-

els predict a decrease in global mean temperature or

precipitation (with one exception in RCP45: GS). Un-

der all other greenhouse gas concentration scenarios, the

CMIP5 multi-model ensemble predicts increasing tem-

perature and precipitation.

Similar to the previous section, we use the mean pre-

dicted value ±1σ to identify which models have signifi-

cantly different responses to the same input compared to

the others in the collection. We term models with slopes

higher than those contained in the envelope as “pes-
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simistic” and the models with slopes lower than those in

the envelope as “optimistic.” The “pessimistic” models

consist of MI, MG, GF, MR and the “optimistic” models

consist of GS, MP and BC.

We note that our classifications are qualitative, not

quantitative, and are meant to inspire investigation

rather than suggest strict partitions in the collection.

To enhance comprehension, we represent our results

schematically in Figure 4 and 5.

6. DISCUSSION

6.1. Environment

One of our main findings (Figure 2) is a consistency

of the models in the CMIP5 multi-model ensemble:

over/under-predictors retain their status relative to the

mean in both their temperature and precipitation pre-

dictions over the 2050-2070 period. It is not necessarily

true, a priori, that the models’ predictions for different

climate variables should be correlated, as the climate

is highly complex with numerous interactions between

each variable. However, correlations between tempera-

ture and precipitation can be attributed to the hydro-

logical cycle.

The rate of the hydrological cycle is highly dependent

on evaporation rates, which are closely associated with

temperature. As temperature increases, vapour pres-

sure increases accordingly (Peixoto 1995). The intensi-

fication is realized within models as an increase in total

precipitation and the frequency of precipitation events,

though this phenomenon is most pronounced over land

(Slaymaker et al. 2009). As there is a predicted overall

increase in global temperature, the result is a greater

fraction of precipitation falling as rain rather than snow

(Peixoto 1995). This result is of significant interest to

vital global production industries, namely the agricul-

tural sector, as they are vulnerable to the implications

of an intensifying hydrological cycle manifested in the

form of heavy rain and extreme precipitation events.

6.2. Mob “Mean”-tality

That the mean predicted value of an ensemble of mod-

els has a smaller error than that of any individual model

can further elucidate our findings. Clearly, there is a

range in model performance. As shown in Figure 2 and

3 respectively, we find the model with the code GS to be

an “under-predictor” and an “optimist.” In a compar-

ison of the CMIP3 multi-model ensemble, Flato (2011)

finds GS to have the single largest root-mean-square er-

ror for precipitation of all the models carried over to

CMIP5. Therefore, it is possible that the predicted val-

ues of GS that we find do agree with the ensemble’s mean

if one considers the model’s own uncertainty. Because

the WorldClim data to which we had access are already

processed, we could not perform the statistical tests and

obtain the models’ root-mean-square error ourselves.

6.3. Model Drift

In climate simulations, models can drift away from the

correct solution over time. They show long-term changes

that are not caused by the critical factors of radiative or

anthropogenic forcing (Gupta et al. 2013). The cause of

model drift may be a slowly diverging numerical integra-

tion method, or an initial state that is not in dynamical

balance. Regardless, since the purpose of climate models

is to explore how external forcing determines the state

of the climate, model drift is problematic.

It may take thousands of model-years for a model

to self-correct and adjust via ocean advection or mix-

ing; however, it is too computationally expensive to al-

low models to spin-up for thousands of years (Gupta

et al. 2013). Instead, models are spun up for only a

few hundred years. Therefore, it is possible that the

model outputs do not represent climate response to ra-

diative or anthropogenic forcing, but rather the process

of equilibration. It is crucial not to conflate climate

changes associated with the spin-up adjustment period

and changes associated to external forcing.

While most models do not exhibit significant drift,

models with ocean and atmosphere components can

demonstrate statistically significant drift in large-scale

globally averaged quantities, because the direction of

drift is systematically consistent (Gupta et al. 2013).

Particularly susceptible are models with deep-ocean

components. The model with the code GF, which we

found to consistently over-predict mean global temper-

ature and precipitation (Figure 2), is one such model

(Griffies et al. 2011). Because the simulation does not

compute enough ocean observations from the 1860s for
the model to reach deep ocean equilibrium, it is still

adjusting during the simulated 22nd century decadal

years. This explains why GF predicts higher global

mean temperatures relative to the envelope.

6.4. Feedback Mechanisms

As seen in Figure 2, the models with codes MI and

MR yield higher predictions of global mean tempera-

ture than the ensemble mean for each of the RCPs in

which they appear. Additionally, as seen in Figure 3,

MI and MR are among the most sensitive models, ex-

hibiting a steep positive change in response to the forc-

ing scenarios. Biogeochemical feedback mechanisms, the

trademark of ESMs, may deserve attribution for this

result. For example, in the concentration-carbon feed-

back, terrestrial ecosystems uptake CO2 by photosyn-

thesis, increasing the dissolution and diffusion of CO2
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Figure 4. Schematic results: “over/under-predictors” and “optimists/pessimists” with the four coupled model sub-classes.
Refer to legend at the top. Pictorial representations of the trademark of each sub-class are included beneath their title. Main
point: We attempt to understand our results based on coupled model sub-class.

in the oceans (Hajima et al. 2014). The climate-carbon

feedback, on the other hand, has global warming induce

greater ecosystem respiration, which in turn induces

greater global warming (Friedlingstein et al. 2003). As

ESMs, the models MI and MR respond to the radiative

forcing by reducing the solubility of CO2 in sea-water,

inhibiting vertical mixing, increasing the rate at which

carbon exudes from the soil, and generally reducing the

ability of the land and ocean components to take up the

CO2 released in the emission scenario (Flato 2011).

All climate feedback mechanisms are crucial to un-

derstand because vicious cycles can be difficult or nearly
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Figure 5. Schematic results: “over/under-predictors” and “optimists/pessimists” with the miscellaneous sub-class. Legend
from Figure 4 applies. Horizontal/vertical resolution and limitations take the place of sub-class trademarks. Information sourced
from: Davy & Esau (2014); Voldoire et al. (2013); Griffies et al. (2011); Schmidt et al. (2014); Volodin (2013); Volodin et al.
(2010); Dufresne et al. (2013); Watanabe et al. (2010); Yukimoto et al. (2012). Main Point: Interpreting our results for
miscellaneous models cannot be done with broad strokes.
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impossible to reverse. Human activity is a powerful com-

ponent of the biogeochemical cycle. We need to inform

ourselves of these cycles in order to make prescient de-

cisions and effective global policies.

6.5. Intra-Class Variation

The next question then naturally arises: why aren’t

all ESMs over-predictors of temperature? Studies exam-

ining the behaviour of ESMs in response to a common

forcing scenario found that variations in the strength of

concentration-carbon feedback between models is likely

the cause of intra-class variability (Hajima et al. 2014).

Feedback strength is comprised of, for example, the sen-

sitivity of plant productivity to elevated CO2 levels.

Intra-class variability is demonstrated in our results

with the GEMs as well, though this variation stems from

differences in the components which have been included.

For instance, the model with the code HE incorporates

the terrestrial carbon cycle, ocean biogeochemistry, and

pure chemical principles; HG includes all of the afore-

mentioned processes with the exclusion of pure chemical

principles; HD retains all components of HG with the

exception of the terrestrial carbon cycle and ocean bio-

geochemistry (Martin et al. 2011). Different processes

require different levels of complexity, which are achieved

with modification to parameters. As shown in Figure 3,

there is clear intra-class variability in the sensitivities

exhibited by the ESMs (GD, MI, MR, MP, NO) and

GEMs (HE, HG, and HD).

Intra-class variation calls into question our approach

of understanding our results on the basis of model sub-

classes. The Coupled-Model Inter-comparison Project

makes no effort to distinguish the multi-model ensemble

by sub-class, and treats each model as a distinct entity.

Without loss of insight, future studies refraining from

searching for similarities based on class, and assessing

each model independently would avoid confirmation bias

and preserve appreciation for model diversity.

7. CONCLUSION

Under simulated scenarios of radiative or anthro-

pogenic forcing, the CMIP5 multi-model ensemble pre-

dicts increasing global mean temperature and precipita-

tion over the decadal years of 2041-2080. We have quan-

tified the spread in the ensemble’s predictions using the

concept of the “envelope” and investigated those mod-

els that demonstrated deviant behaviour relative to the

mean, either by “over/under-predicting” climate vari-

ables (Figure 2) or by responding more/less sensitively

to the same forcing (Figure 3). Precise predictions of

large-scale climate variables are necessary, as even slight

variations have significant impact on biodiversity and

quality of life for all species on Earth. This informa-

tion dictates international policy and our individual be-

haviour on a day-to-day basis.

Future work should be concerned with additional cli-

mate variables; the bio-climatic variables could be ex-

tracted from WorldClim and analyzed in order to ex-

plore model diversity further. A spatial dimension could

be added to the analysis by investigation of the World-

Clim outputs using QGIS software. Finally, we could

calculate the interquartile range for each model’s future

temperature and precipitation predictions and observe

how they change under different RCPs. Perhaps increas-

ing external forcing would increase the spread, and thus

amplify the differences between models, facilitating fur-

ther insight into the nature and source of model diver-

sity.
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APPENDIX

A. TERMINOLOGY

bias correction: a method that removes the effects produced by systematic errors to formulate a set of rescaled data

or variables

cold bias: tending toward colder temperatures than are observed

coupler: framework/hub that connects sub system component models to an overarching climate system, where each

component model independently shares information with the coupler

drift: spurious changes that occur over long periods of time in climate models, independent of factors such as external

or internal forcings and internal low-frequency variability

external forcing: climatic forcing agent that impacts a climate system from an external standpoint, including

mechanisms which can either be natural (volcanic, orbital, solar outputs) or anthropogenic (greenhouse gas emissions)

extratropic: mid-latitude region located outside global tropical climate region

long wave absorptivity: infrared energy absorbed by the Earth

long wave emissivity: infrared energy radiating from the Earth

mesoscale analysis: the study of atmospheric phenomena (thunderstorms, tornadoes, etc) spanning spatial scales

of 10 to 100km; mesoscale analysis specifically looks at occluded fronts (i.e. warm and cold fronts) found on the

mesoscale to describe the phenomena

natural forcing: an imposed influence that directly impacts the energy balance of the Earth, examples include

radiative luminosity and volcanic eruptions

shortwave energy flow: consists of emission and absorption of visible light, with relatively more energy than

longwave energy flow

spin-up: initial stabilization period for climate models

surface energy flux: measurement of rate of energy transfer in the form of latent heat that occurs due to surface-level

condensation or evaporation

teleconnection: climate anomalies connected to each other, while being located thousands of kilometers away from

each other

radiative forcing: alteration in energy balance on Earth using the difference between incoming solar radiation and

outgoing thermal infrared emission (ie. difference between incoming and outgoing radiation)

warm bias: tending toward warmer temperatures than are observed


