Anomaly Detection for Water Quality Data

ANOMALY DETECTION FOR WATER QUALITY DATA

By Yan YAN,

A Thesis Submitted to the School of Graduate Studies in the Partial Fulfillment of the
Requirements for the Degree Master of Science

McMaster University © Copyright by Yan YAN June 20, 2019

McMaster University
Master of Science (2019)
Hamilton, Ontario (Computing and Software)

TITLE: Anomaly Detection for Water Quality Data
AUTHOR: Yan YAN (McMaster University)
SUPERVISORS: Dr. John Copp, Dr. Emil SEKERINSKI
NUMBER OF PAGES: x, 123

ii

Abstract

Real-time water quality monitoring using automated systems with sensors is becoming increas-
ingly common, which enables and demands timely identification of unexpected values. Technical
issues create anomalies, which at the rate of incoming data can prevent the manual detection
of problematic data.

This thesis deals with the problem of anomaly detection for water quality data using machine
learning and statistic learning approaches. Anomalies in data can cause serious problems in pos-
terior analysis and lead to poor decisions or incorrect conclusions. Five time series anomaly
detection techniques: local outlier factor (machine learning), isolation forest (machine learn-
ing), robust random cut forest (machine learning), seasonal hybrid extreme studentized deviate
(statistic learning approach), and exponential moving average (statistic learning approach) have
been analyzed. Extensive experimental analysis of those techniques have been performed on
data sets collected from sensors deployed in a wastewater treatment plant.

The results are very promising. In the experiments, three approaches successfully detected
anomalies in the ammonia data set. With the temperature data set, the local outlier factor
successfully detected all twenty-six outliers whereas the seasonal hybrid extreme studentized
deviate only detected one anomaly point. The exponential moving average identified ten time
ranges with anomalies. Eight of them cover a total of fourteen anomalies. The reproducible
experiments demonstrate that local outlier factor is a feasible approach for detecting anomalies
in water quality data. Isolation forest and robust random cut forest also rate high anomaly
scores for the anomalies. The result of the primary experiment confirms that local outlier
factor is much faster than isolation forest, robust random cut forest, seasonal hybrid extreme
studentized deviate and exponential moving average.

iii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Prof. Emil Sekerinski
for the continuous support of my study and research.

I would like to thank Dr. John Copp from Primodal and other team members for their
support, feedback, cooperation which helped me get results of better quality.

iv

Contents

Abstract
Acknowledgements
Declaration of Authorship

1 Introduction

1.1 Imtroduction L
1.2 Water Quality Monitoring
1.3 RSM30 Water Monitoring System
1.3.1 PrecisionNow Software
1.4 Anomaly Detection in Water Quality Data.
1.5 Case Study o e
1.6 Reproducible Research o
1.6.1 Jupyter Notebook oL
1.6.2 Resources

2 Anomaly Detection Techniques

2.1 Related Work e e
2.2 Techniques Comparison i v it i
2.3 Anomaly Detection using Machine Learning
2.3.1 Artificial Intelligence
2.3.2 Machine Learningo
2.3.3 Machine Learning Methods
2.3.4 Anomaly
2.3.5 Local Outlier Factor
2.3.6 Example for Anomaly Detection with LOF
2.3.7 Isolation Forest e
2.3.8 Robust Random Cut Forest,
2.4 Statistical Techniques
2.4.1 Seasonal Hybrid Extreme Studentized Deviate
2.4.2 Example for S-H-ESD
2.4.3 Exponential Moving Average
2.4.4 Example for EMA
3 Experiments
3.1 Anomaly Detection Techniques
3.2 Generic Python Code for Experiment,
3.3 Evaluation using Jupyter Notebook I

iii

iv

11
11
12
12
15
17
24
28
29
31
31
33
36
37

3.4

4.1

4.2

3.3.1 Test Data Sets
3.3.2 Notebook e e
Evaluation using Jupyter Notebook IT
3.4.1 Test Data Sets
3.4.2 Notebook
4 Analysis and Discussion
Evaluation I
4.1.1 Temperature Data L
4.1.2 Ammonia Data e
4.1.3 Execution Time. e e
Evaluation IT
4.2.1 Results e e
4.2.2 Execution Time. e

5 Conclusions and Future Work

Bibliography

vi

104
104
104
111
114
115
115
117

118

120

List of Figures

1.1
1.2

2.1
2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

Structure of RSM30 e 2
Anomalous Time Series e e 4
Anomaly Detection Techniques 8
Relationship between Artificial Intelligence, Machine Learning and Deep Learn-

INEZ o o o e e e e e e 11
Supervised Learning L oL L 13
Unsupervised Learning L Lo 13
Framework of Reinforcement Learning 14
Point Anomaly 15
Contextual Anomaly 16
Collective Anomalies L 17
k-Nearest Neighbors 18
Examples of Reachability Distance for k=4 20
Identifying Normal and Abnormal Instances 28
Random Cut Tree e 30
Temperature Data Set 44
Ammonia Data Set 45
Temperature Data Set 2018 80
Ammonia Data Set 2018 L 81
Chloride Data Set 2018 81
Potassium Data Set 2018o Lo 82
Chart of LOF Result for Temperature 105
Temperature on Nov 10 o L o o 106
Temperature on Nov 10 afternoon 106
Temperature on Nov 17 o Lo 107
Temperature on Nov 21 e 107
Temperature on Nov 24 108
Temperature on Nov 27 L 108
Temperature on Nov 30o e 109
Temperature on Dec 05 e e 109
Temperature on Jan 09 Lo 110
Ammonia on Dec 05 112
Ammonia on Jan 23 L L e 112
Chart of LOF Result for Ammonia 113
Chart of LOF Result for Water Temperature 2018 115
Chart of LOF Result for Ammonia Data 2018 116
Chart of LOF Result for Chloride Data 2018 116

vii

4.17 Chart of LOF Result for Potassium Data 2018

viii

List of Tables

2.1 Popular Anomaly Detection Algorithms 10
2.2 Test Data e e e e e e e 25
3.1 Water Temperature Data o 43
3.2 Ammonia Data e 44
3.3 Water Quality Data 80
4.1 Experiment Result for Temperature 104
4.2 LOF Result for Temperature 105
4.3 S-H-ESD Result for Temperature 111
4.4 EMA Result for Temperature o 111
4.5 LOF Result for Ammonia 113
4.6 S-H-ESD Result for Ammonia 114
4.7 EMA Result for Ammonia Lo 114
4.8 Execution Time for Temperature 0. 114
4.9 Execution Time for Ammonia 114
4.10 Number of Anomalies Detected by Each Technique 115
4.11 Execution Time for Data of 2018 117

ix

Declaration of Authorship

I, Yan YAN, declare that this thesis titled, “Anomaly Detection for Water Quality Data” and
the work presented in it are my own. Where I have consulted the work of others, this is always

clearly stated.

Chapter 1

Introduction

1.1 Introduction

Water makes up more than 70% of the surface of the Earth. It is essential to all the aspects of
our lives and all life needs water to survive. Monitoring the quality of water bodies can help to
protect the quality of that water. It can be difficult to measure the quality of a water body. For
example, water is a vast network of linked parts such as rivers, creeks, wetlands, estuaries, and
lakes. Furthermore, assessing water quality may be complicated if these linked parts contain
different levels of pollution.

1.2 Water Quality Monitoring

Water quality is used to describe the chemical, physical, biological and other content of water
that change with the seasons and geographic areas. It is affected by environmental influences and
human activities. Geological, hydrological and climate are the most important environmental
influences that affect both the quantity and the quality of available water. On the other hand,
the effects of human activities on water quality are widespread and vary in the degree to which
they disrupt the ecosystem and restrict water use (Jamie Bartram and Ballance 1996). Water
quality issues influence both human and environmental health, thus the more our water is
monitored the more likely contamination problems will be recognized and prevented.

Anomalies (Section 2.3.4) in water quality data can cause serious problems in posterior
analysis and lead to false decisions or incorrect conclusions. Anomalies are caused by many
things:

1. They may be caused by ecological phenomena like rainfall or floods. These anomalies are
expected.

2. They may arise from both human and technical errors which are unexpected. For instance:
o Communication errors happen between server and sensors.
e The senor probe is dirty.
e Senor is pulled out of water for cleaning.

e Equipment is malfunctioning.

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Collaborating with Primodal System, this research focused on possible approaches to auto-
matically detect anomalies in time series water quality data.

Various new technologies have been developed for remote autonomous sensing of water sys-
tems. In cooperation with Primodal Systems, an RSM30 Water Monitoring System has been
deployed on site at the Dundas wastewater treatment plant in Hamilton, Ontario. This system
aimed to monitor temperature, ammonia, potassium and chloride in the primary efluent.

1.3 RSM30 Water Monitoring System

Alarms, Warnings, \\\‘ﬁ
Maintenance, Planning N
' NS

Central Server Data Back-up

rad@ l_t—l @tellite

etherne

irele@ telephon((GSM

Base Station 1 Base Station 2 *** n

Telemetry

Visualisation

3 Visualisation

S Control] Control
- wamaree | - narree |
— Database —— Database

-1

Framework
Framework

Source: (Primodal 2013)
FIGURE 1.1: Structure of RSM30

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

The RSM30 water monitoring system is a high-tech system used to monitor real-time wa-
ter quality data. Built upon the combination of highly customized software and cutting-edge
technology, the RSM30 is a user-friendly and a flexible waterside monitoring station.

The RSM30 is a high-level monitoring system which has been designed to perform all types
of monitoring tasks. And it has the ability to avoid the errors that other systems have experi-
enced. The RSM30 is so flexible that it can simultaneously execute different tasks at different
measurement locations. Furthermore, it fully supports multiple transmission protocols between
sensor and base station. As a consequence, it allows users to choose the most suitable sensor
for the application very conveniently.

The RSM30 provides different telemetry options and a proactive maintenance feature with
very low consumption of energy. Therefore, the monitoring network can be used remotely as
well. More importantly, it supports advanced evaluation of the data quality. The risk of storing
erroneous data can be largely reduced by real-time evaluation of data quality performed by
RSM30.

The RSM30 combines hardware with comprehensive software (PrecisionNow) that logs and
analyses the data for errors and problems in real-time. Flexibility in the software means that
users can easily expand and customize the analysis to suit the specific system under study.

1.3.1 PrecisionNow Software

PrecisionNow is a software designed and developed by Primodal Systems to run the RSM30.
It controls both the storage and analysis of the measurement data. It manages communication
with the sensors and information flows to the central server. As the culmination of continuous
development and testing, PrecisionNow is not just intuitive and fluid, but powerful and flexible.
It is the perfect mix of easy to use combined with the flexibility of a fully customizable solution.

1.4 Anomaly Detection in Water Quality Data

Detecting anomalous data also known as outlier detection, refers to the process of finding
patterns in data that do not conform to the expected behavior (Chandola, Banerjee, and Kumar
2009). Anomaly detection is under study by countless research groups to resolve problems in
various application domains and several techniques have been specifically developed. Anomaly
detection is very important because many applications use the collected data as significant and
actionable information and therefore data quality is paramount. For instance, an anomalous
traffic pattern in a computer network could mean that a hacked computer is sending out sensitive
data to an unauthorized destination (Ertoz, Lazarevic, E. Eilertson, Tan, Dokas, Kumar, and
Srivastava 2003). An anomalous MRI image may indicate the presence of malignant tumors
(Spence, Parra, and Sajda 2001) or anomalies in credit card transaction data could indicate
credit card or identity theft (Aleskerov, Freisleben, and Rao 1997).

Anomaly detection algorithms use models of normal behaviors to automatically detect devi-
ations. One of the major benefits of anomaly detection algorithms is their capability to detect
unforeseen changes.

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

train data

1200

1000”* 1 w
800 .
oo E—
400 l r —T
200
0

6

2012-08-30
20120813
0120827

2012-08
2012-10-11

timestamp

FIGURE 1.2: Anomalous Time Series

In water quality monitoring systems, temporal data is collected by various kinds of sensors.
Theoretically, abnormal data can be detected by distinguishing outliers in the time series corre-
sponding to the historical data. This research investigates the problem of anomaly detection in
univariate time series. In statistics analysis, univariate time series data is a single set of values
over time.

1.5 Case Study

The research involved the analysis of water quality data in order to determine the trends in
signals with the hopes of creating software capable of spotting outliers and validating the data’s
accuracy.

The following is the system deployment information:

e Location: Data was collected using an RSM30 located at the Dundas wastewater treat-
ment facility, Hamilton, Ontario, Canada.

e Probe: 1Q Sensor Net Varion@ Plus 700 1Q
e Sensors: ammonia, potassium, chloride, temperature

e Time Interval: 5 minutes and 1 minute

1.6 Reproducible Research

Reproducible research has been used to describe the concept that publications of academic
research, and more generally, scientific claims, are published with their full computational en-
vironment, raw data, notebook and software code (Fomel and Claerbout 2009).

Reproducible research enables other researchers to reproduce the results, verify the findings
and possibly build upon previous work. However, one must bear in mind that even though a
study can be reproduced, the conclusions or claims still could be wrong. The reproducibility
might be the only thing that a researcher can guarantee about a study.

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

1.6.1 Jupyter Notebook

Jupyter Notebook is a publishing format for reproducible computational workflows. It is an
open-source web application on which users can create and share documents that contain both
computer code (such as Python) and rich text elements (like equations or figures). It can
be used for data cleaning and transformation, numerical simulation, statistical modeling, data
visualization, machine learning (Jupyter 2019).

Jupyter Notebook allows users to execute code in a browser. It provides various pluggable
kernels to support more than 40 different programming languages like Python, R, C++, Java
and Scala. It can be shared with others using the Jupyter Notebook Viewer as well as Dropbox
and GitHub. Jupyter Notebook can display the computation output using rich media represen-
tations such as HTML, images and LaTeX. More importantly, Jupyter Notebook also leverages
big data tools, such as Apache Spark, from Python, R and Scala and users can explore that
same data with Pandas, Scikit-learn, ggplot2, TensorFlow (Jupyter 2019).

Until recently, most scientific research has reproducibility problems as they are simply sum-
marized in scientific papers without any original calculations, and even worse, the raw data
might be lost eventually. Jupyter Notebook is a tool to support the reproducibility in science
as it can be accessed by anyone to reproduce the final result by following the same calculations
and more importantly, user can easily interact with the original experimental data.

1.6.2 Resources

This thesis is based on the concept of reproducible research using Jupyter Notebook. The
Notebooks for these experiments are included in this thesis in Section 3.3 and Section 3.4 in
Chapter 3. The following are the links to the resources which have been used for this thesis.

e The project repository is hosted on Gitlab including the test data and Jupyter Notebook.
https://gitlab.cas.mcmaster.ca/waterquality /reports/tree/master/YanYan19/Experiments

e Anaconda is used to setup the environment for experiments. It installs the Python devel-
opment environment with standard libraries and Jupyter Notebook.

https://www.anaconda.com

o Jupyter is used to create the shareable documents for experiments with embedded Python
code, visualizations and explanatory markdown.

https://jupyter.org
e The programming language for experiment is Python 3.6.
https://www.python.org

e Pandas, the Python data analysis library, is used for data retrieving and processing in
Notebook.

https://pandas.pydata.org
« Matplotlib, the Python plotting library, is used to generate figures in Notebook.

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

https://matplotlib.org

Python machine learning library Scikit-learn has been used in evaluation experiments
(Chapter 3). Specifically, Local Outlier Factor (Section 2.3.5) in Scikit-learn is used to
detect anomaly. Scikit-learn is a free open source Python library for machine learning
and it provides a lot of simple and efficient tools for data mining as well as data analysis.
Dedicate documentation and numerous examples are available on its official website.

https://scikit-learn.org

Twitter AnomalyDetection is an open-source R package to detect anomalies which is used
in evaluation experiments (Section 2.4.1).

https://github.com/twitter /AnomalyDetection

LinkedIn Luminol is a light weight python library for time series data analysis which is
used in evaluation experiments (Section 2.4.3).

https://github.com/linkedin/luminol
Package eif is a Python library for the extended isolation forest algorithm (Section 2.3.7).
https://github.com/sahandha/eif

Package rrcf is a Python implementation of the robust random cut forest algorithm for
anomaly detection proposed by (Guha, Mishra, Roy, and Schrijvers 2016) (Section 2.3.8).

https://github.com/kLabUM /rrcf

Chapter 2

Anomaly Detection Techniques

2.1 Related Work

Intrusion detection system is a valuable security tool because it can detect new unknown cyber
attacks. Many computers are vulnerable to attack because of bad security practices, for example,
security software is not installed or updated as needed. In response to corporate cyber attacks,
(Auskalnis, Paulauskas, and Baskys 2018) created an application based on Local Outlier Factor
algorithm to detect anomalies in computer networks.

In 2015 Twitter launched AnomalyDetection to detect anomalies by means of statistics.
AnomalyDetection is an open-source R package. It was designed to detect both global and
local anomalies and is very robust if data presents seasonality and trends. This package can be
used in various applications and has, for example, been used to detect spikes in user engagement,
find spam, or resolve issues in financial engineering. Although used with time series, the package
can also be used to detect anomalies in a vector of numerical values (Twitter 2015).

LinkedIn also created a lightweight python library, Luminol, for temporal data analysis in
2015. The two major functionalities Luminol supports are anomaly detection and correlation
and it can be used to investigate possible causes of anomalies (LinkedIn 2015).

2.2 Techniques Comparison

In this section, a brief overview of popular techniques is given for anomaly detection and then
discuss three chosen techniques in detail in the following sections.

Figure 2.1 shows popular techniques for anomaly detection.

Nearest neighbors based anomaly detection techniques are based on local density and built on
the k-nearest neighbors algorithm which is introduced in Section 2.9. Generally speaking, they
are based on the assumption that the normal data instances sit around a dense neighborhood
whereas the anomalies are far away. The nearest data instances are evaluated using scores
which are measured by distance. Local outlier factor (LOF) is one of the density-based anomaly
detection algorithms, and it is built on a distance metric called reachability distance (Section
2.3.5). Connectivity-based outlier factor (COF) (Tang, Chen, Fu, and Cheung 2002), local
outlier probability (LoOP) (Kriegel, Kroger, Schubert, and Zimek 2009), influenced outlierness

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

(INFLO) (Jin, Tung, Han, and Wang 2006) and local correlation integral (LOCI) are popular
nearest neighbors based anomaly detection algorithms.

- ,
&Anomaly Detection Techniques)

v ! , v v p v ,
(| . . a Y -
Q\learest Nelghborsj | Clustering L Classification) K Statistics k Random Forest
K-NN Cluster based Local Neural Networks Deviations By Isolation Forest

Outlier Factor (CBLOF)

Local Outlier Factor
(LOF)

Local Density Cluster
Based Outlier Factor

Bayesian Networks

mean, median,
mode, and quantiles

Robust Random
Cut Forest

| (LDCOF)

Connectivity-based
Outlier Factor (COF)

Local Outlier
Probability (LoOP)

Influenced
Outlierness (INFLO)

Local Correlation
Integral (LOCI)

FIGURE 2.1: Anomaly Detection Techniques

Clustering based anomaly detection is unsupervised learning (Section 2.4). These algorithms
assume that objects that are similar tend to belong to similar groups (clusters) and the similarity
is determined by distance.

For anomaly detection, clustering based anomaly detection techniques assume that anomalies
are in sparse and small clusters or not in any cluster. In practice, k-means is widely used to
cluster the data in a first step due to the low computational complexity. Cluster-based local
outlier factor (CBLOF) uses clustering to determine dense areas and then performs a density
estimation for each cluster to identify the anomalies (He, Xu, and Deng 2003). The local density
cluster-based outlier factor (LDCOF) estimates the densities of each cluster by assuming a
spherical distribution of the cluster members (Amer and Goldstein 2012).

Classification is a technique to categorize data into different classes with labels. There are
only two distinct classes for anomaly detection as normal class and abnormal class. The support
vector machine (SVM, also refers to support-vector network) is a supervised machine learning
algorithm (Section 2.3) for two-group classification problems. The machine conceptually im-
plements the following idea: input vectors are non-linearly mapped to a very high-dimension
feature space (Cortes and Vapnik 1995). Bayesian nonlinear SVM was developed by (Wenzel,
Galy-Fajou, Deutsch, and Kloft 2017) which enables the application of Bayesian SVMs to big
data for classification. Artificial neural network (ANN) is an information processing systems

8

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

that is inspired by biological neural networks. An autoencoder is a type of artificial neural
network used to learn efficient data coding in an unsupervised manner (Liou, Cheng, Liou,
and Liou 2014). The autoencoder network is trained on a data set that represents the normal
operating state. It monitors the re-construction errors and uses a probability distribution to
classify if a data point is normal or not.

Statistical methods usually calculate deviations from common statistical properties of a
distribution and flag the abnormal points with deviations above a threshold. Mean, median,
mode, and quantiles are commonly used properties for such calculation. For example, the
definition of an anomaly can be defined as the one that deviates beyond a certain threshold
from the mean.

Random forests or random decision forests is a learning algorithm for classification, regression
and other tasks that operates by constructing a multitude of decision trees at training time
and outputting the class that is the mode of the classes (classification) or mean prediction
(regression) of the individual trees (Ho 1995).

Table 2.1 lists the advantages and disadvantages of these common algorithms. Local Outlier
Factor, Seasonal Hybrid Extreme Studentized Deviate and Exponential Moving Average are
used in this research mainly because:

o Water quality data is time series data with only one variable and is not suitable for
clustering.

e Classification based algorithms like neural networks and SVM require model training with
labeled data. It is difficult to train a generic model for classification and different models
may generate different results for the same data point.

e LOF is based on K-NN and other nearest neighbors-based algorithms are extensions of
LOF.

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Algorithms

Advantages

Disadvantages

K-Nearest Neighbors

Simple to implement
Easy to understand
No training involved

Large storage requirements
High computational complexity
Sensitive to distance function

Local Outlier Factor

Well-known and good algorithm
for contextual anomaly detec-
tion

Relies on its direct neighbor-
hood

Performs
point anomalies

poorly with many

Clustering based algo-
rithms

Suitable for many types of data
Low computational complexity

Effectiveness depends on the
clustering method
May fail if normal data does not
create any clusters

Support vector Ma-
chine (SVM)

Find the best separation hyper-
plane
Deal
data
Can learn elaborate concepts

with high dimensional

Require both positive and neg-
ative examples

Require lots of memory

Some numerical stability prob-
lems

Need to select a good kernel
function

Neural Networks

Fulfil tasks that a linear pro-
gram cannot

Does not need to be repro-
grammed for each learning

Needs training to operate
Requires high processing time
for large neural networks

The architecture needs to be
emulated

Isolation Forest

Explicitly identifies anomalies
instead of profiling normal data
points

Can be scaled up to handle
large, high-dimensional data

Training time can be very long
and computationally expensive
May produce inconsistent scores
for particular points

Robust Random Cut
Forest

Analyzes real-time streaming
data

Does not need to be repro-
grammed for each learning

Is time-consuming to construct
trees and forests

Requires more computational
resources

10

TABLE 2.1: Popular Anomaly Detection Algorithms

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

2.3 Anomaly Detection using Machine Learning

2.3.1 Artificial Intelligence

The notion of intelligence can be defined in many different ways. In computer science, it usually
refers to an ability to take the right decisions, according to some criterion. To make better
decisions requires adequate knowledge in a form that is operational. For instance, a machine
should be able to interpret sensory data and then use that kind of information to make rational
decisions.

Artificial Intelligence

Allow machines to mimic human behaviors

Machine Learning

Automatically learn & improve

Deep Learning

Apply
multi-layer neural network

FIGURE 2.2: Relationship between Artificial Intelligence, Machine Learning and
Deep Learning

Computers already possess some intelligence thanks to all the programs that humans have
written over the past decades. These programs allow computers to do some things that are
considered useful. In other words, it means that computers can make the 'right" decisions
given a series of the inputs. However, in contradiction of natural intelligence that presented by
humans or animals, there are still a lot of tasks which animals and humans are able to do rather
easily but still remain out of reach of computers. Many of these tasks fall into the category
of artificial intelligence, to which include many perception and control tasks. Colloquially, the
term "artificial intelligence" is applied when a machine mimics "cognitive" functions that humans
associate with human mind, such as "learning" and "problem solving" (Stuart J. Russell 2009).
Using data, examples and rules to build operational knowledge is what learning is about.

11

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

2.3.2 Machine Learning

Originated from pattern recognition, machine learning (ML) is a method of data analysis that
gives computers the ability to learn without being explicitly programmed (Samuel 1959). Ma-
chine learning explores the study and construction of algorithms that can learn from data,
identify patterns and make decisions (Ron Kohavi 1998). Instead of executing strictly static
programmed instructions, ML algorithms build models from training sets of input and then
make predictions, classifications or decisions expressed as outputs based on the developed mod-
els.

Even though a lot of machine learning algorithms have emerged, the ability of computers to
automatically apply sophisticated mathematical computation to large volume of data is quite
recent. Here are some real-world examples of machine learning applications:

e Voice Recognition Voice recognition is the ability of a system to understand voice
dictation and carry out spoken commands. For example, Microsoft Cortana, Amazon
Alexa and Apple Siri apply both machine learning and deep learning to imitate human
interaction. As a consequence, they have the ability to gradually learn and understand
human languages and even give the appropriate answers to questions.

« Facial Recognition Facebook’s DeepFace can recognize the differences on human faces
with accuracy very close to a human being. Making use of some machine learning tech-
nologies and algorithms, DeepFace can identify familiar faces from a user’s contact list.

« Semantic Recognition In 2015, Google introduced RankBrain which utilizes an intuitive
neural network. RankBrain employs algorithms which can decipher the semantic content
of search engine queries and then offer tailored information.

2.3.3 Machine Learning Methods

Machine learning algorithms can be categorized as supervised, unsupervised, semi-supervised
and reinforcement learning (Wilcox, Woon, and Aung 2013).

e Supervised Learning

Supervised learning requires labelled data for training. In the training data set, each
instance consists of an input object and a desired output in order to provide a learning
basis. During the training stage, the supervised learning algorithm analyzes the training
set to generate a model. After the training is done, the generated model can be applied
to a new data set to make decisions or predictions.

12

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Train
C T T T .
Training o !
Feature
Data) !
Extraction Machine L
Feature [. .
> Learning Model —»@valu—ano@
Matrix .
Algorithm
Predict ﬁ
New

Feature ——Feature Vector—> Predict ——— > Output with
. Labels
Extraction

FIGURE 2.3: Supervised Learning

Data

e Unsupervised Learning

In contrast to supervised learning, unsupervised learning does not require either desired
classified or labeled test data. Unsupervised learning algorithm is able to infer a function
to describe hidden data structures from unclassified or uncategorized test data without
guidance. It can be used for more complicated processing tasks than supervised learning
algorithms. One common example is clustering for exploratory analysis, which is used to
find hidden patterns in data set or grouping a set of instances.

] ﬁ/lachine
L

]ntrer retation | LI
P Algorithm

Processing

‘KOutput with
" Labels

FIGURE 2.4: Unsupervised Learning

e Semi-supervised Learning

This lies between unsupervised and supervised learning. It is similar to supervised learn-
ing but some of the training data are not labeled with the desired output. Semi-supervised
learning performs well when there is only a very small amount of labeled data in a training
set. Many studies suggest that in comparison with supervised learning which uses only
labeled data, predictions with semi-supervised learning will be more accurate by consid-
ering the unlabeled input data. However, this is only accurate if some assumptions hold
(Olivier Chapelle 2006), such as instances are more likely to share a label if they are close

13

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

to each other or instances in the same cluster are more likely to share a label when the
data tend to form discrete clusters (Jie Wang and Xu 2019).

e Reinforcement Learning

This is used to resolve the problem that to maximize outcome of cumulative reward in the
long term, what kind of behaviors or actions should software agents take in an environment
(Pack Kaelbling, Littman, and P Moore 1996). The environment takes the current state
and action as an input and returns the next state and reward; the agent takes actions and
receives the new state and reward from the environment and then figures out the best
actions to take.

Reinforcement learning is iterative and in most of the applications, the process begins
without any clue about which state-action and reward will result.

State Reward Action

~— Environment +——

FI1GURE 2.5: Framework of Reinforcement Learning

Lazy Learning

Lazy Learning (also known as memory-based learning, instance-based learning and locally
weighted learning), defers processing of the examples until an explicit request for informa-
tion is received (Atkeson, Moore, and Schaal 1997). That means in contrast to eager learning
which generalizes the training data into a model before receiving any queries, lazy learning does
not have a training phase. During the generalization, the whole data set is searched for the
most relevant instances to answer the request according to some criteria.

One advantage of lazy learning is that it is particularly suitable for examples that are not all
available from the beginning but are collected constantly (i.e., website visits or wireless signals).
Another benefit is that lazy learning does not suffer from data interference (Atkeson, Moore,
and Schaal 1997). Catastrophic data interference is a tendency of an artificial neural network to
completely and abruptly forget previously learned information upon learning new information
(McCloskey and Cohen 1989). It is caused by the negative interference between original and
new training data. Algorithms forget the old data as that data is not included in the new

14

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

training data set. Lazy learning avoids the potential interference as it retains all the original
data.

2.3.4 Anomaly

Anomalies, also known as outliers, novelties or noise, are a subset of instances that are substan-
tially different from the rest of the data set. An outlier may happen because of measurement
variability or might occur because of some experimental errors that are often excluded from the
data set (Grubbs 1969).

An anomaly may cause serious problems in data analysis and lead to improper decisions.
Anomalies may be introduced into the data set due to various reasons. For instance, hardware
which is used for taking measurements might experience a transient malfunction. Sometimes,
errors occur during data transmission. Anomalies can also happen because of system behavior
changes, instrument errors, human impacts or fraudulent behaviors.

Anomaly Types

Generally speaking, anomalies can be categorized into the following three types (Arindam Baner-
jee and Kumar 2009):

Point Anomalies

Point
Anomaly

FIGURE 2.6: Point Anomaly

A point anomaly is an individual data point that is far away from others and therefore can
be considered anomalous. Point anomalies are also called global anomalies and are the simplest
anomaly type. Point anomaly detection is the main focus of most research.

Figure 2.6 illustrates a point anomaly. The red point lies outside the boundary of the normal
data cluster (the grey points), and hence is a point anomaly as it is different from other normal
data points.

15

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Consider credit card fraud detection as a real-life example. One transaction will be classified
as a point anomaly if its amount is high compared to the normal range of expenditures.

Contextual Anomalies

If a data instance is anomalous in a specific context, but not otherwise, then it is termed
as a contextual anomaly (also referred to as a conditional anomaly) (Song, Wu, Jermaine, and
Ranka 2007). Contextual anomalies are what this research is trying to detect in water quality
data.

Contextual anomalies are very common in time series data. For example, spending $150 on
food every day may be odd but might be quite normal during the holiday season. Figure 2.7
shows an example for a temperature time series. In this example, a temperature of 5 Celsius
might be an anomaly during that period of time, but the same value would be considered as
normal in winter.

16
14 A
12 - \N
10 A
— temperature

8 .

Contextual
6 - Anomaly
4 -
2 .
0 T T T T T T T T T T T T T T T T

1 3 5 7 9 11 13 156 17

F1GURE 2.7: Contextual Anomaly

Collective Anomalies

Collective anomalies are a collection of data instances which are considered as anomalous
when compared to the entire data set. Under some circumstances, the individual data instance
of collective anomalies may not be considered as anomaly.

Figure 2.8 shows a group of star points that are considered collective anomaly to the collection
of grey points, even though the stars which are very close to the grey points might be normal
data individually.

16

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Collective /

Anomalies /()
\ 90

FIGURE 2.8: Collective Anomalies

2.3.5 Local Outlier Factor
k-Nearest Neighbors

The k-nearest neighbors algorithm (k-NN) is a non-parametric and lazy learning method which
has been used for classification and regression (Altman 1992). Non-parametric methods are
mathematical procedures that do not require the population to meet certain assumptions, or
parameters. The nearest neighbor methods are used to find a certain number of instances in
the training data set that are closest to new data using distance measurements, and then make
a prediction or classification of the label of the new data based on these instances. This has
been studied for quite a while:

o Instance-Based Learning (also known as Memory-based learning): The raw training data
is stored in memory and used to make predictions.

o Lazy Learning: Lazy learning means that it does not explicitly generate a model at the
beginning as discussed in Section 2.3.3. Instead, it loads the whole training data set into
memory for the classification phase. Thus, there is no learning phase for model generation
and all the tasks execute at the time when a prediction is requested.

e Non-Parametric: It means that k-NN does not make any assumption about the functional
forms of the issue to be resolved.

o k-NN can be used for both regression and classification (Altman 1992).

17

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

The k-NN algorithm is a very robust and versatile classifier and is one of the simplest
machine learning algorithms. Even though it is pretty simple, k-NN can outperform very
powerful classifiers and has been successful in many classification and regression problems. As
such, it has been used in various applications such as data compression, economic forecasting,
and genetics.

Figure 2.9 shows the classification of a point based on its closest three neighbors. As it is
a lazy learning method, k-NN makes predictions using the training data set directly instead of
constructing a general internal model in advance. For prediction, the new instance is predicted
by querying the entire data set for the k nearest instances at first and then summarizing the
output of each instance. And for regression, the result might be the average of the values of
its k nearest neighbors. For classification, the result is the class which defined by the plurality
vote of its k nearest neighbors based on the calculation of distance.

X

F1GURE 2.9: k-Nearest Neighbors

The value for k is an integer which is specified by the user. It is highly data-dependent,
and it is better to try as many different values as possible during algorithm tuning to find the
suitable k. However, one of the disadvantages is that while the size of the training data set
grows, the computational complexity of k-NN rises as well because this algorithm must store all
the data in memory to compute the result. Alternatively, for large training sets, k-NN could be
stochastic by dividing the training data set into small portions in order to calculate the k-most
closest instances.

In general, the distance can be any metric measure to determine how many of the k instances
are closest to a new instance in the training data set. Euclidean distance is the most common

18

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

choice for real-valued input variables. Generally speaking, for an n-dimensional space, the
Euclidean distance between points p and ¢ can be defined as:

distance(p, q) = \/(pl —q1)?+ (P2 = @2+ A+ (Pam1 — G1)2 + (Pn — @0)? (2.1)

There are several other popular distance measures:

e Hamming Distance: This concept was introduced by Richard Hamming in his paper
(Hamming 1950). It is used to calculate the distance between binary vectors, but it can
only be calculated for lines that are the same length. Calculation of the Hamming distance
is not complicated and works by simply adding up the number of spots where the values
of the lines are different. The Hamming Distance is defined as:

Given two binary vectors v; and ve, the Hamming Distances between v; and wve is the
number of digits where vy and vy defer.

For instance, the distance between the two binary numbers 10100101 and 10101010 is four
as only the last four digital are different.

« Manhattan Distance: This is also known as L' distance or City Block distance. The L'
metric was first used in regression analysis in 1757 by Roger Joseph Boscovich (Stigler
1986).The Manhattan distance between two point p and ¢ in n-dimensions is defined as
Equation 2.2. This is the distance between real vectors which calculated by sum of their
horizontal and vertical distances. It works very well when the instances are not similar in

type.

n
distance(p,q) = Z | pi — qi | (2.2)
i—1

o Minkowski Distance: This is named after the German mathematician Hermann
Minkowski. This can be considered as a generalization of both the Euclidean distance
and the Manhattan distance (Merigo and Casanovas 2012). The Minkowski Distance of
order X\ between two points p and ¢ in n-dimensions is defined as Equation 2.3. Actually, it
is equivalent to the Manhattan Distance when A = 1 and becomes the Euclidean Distance
when A =2 .

n 1/x
distance(p,q) = (Z |pi — qi|’\> where X €R (2.3)
i=1

Other distance measures can also be used like Tanimoto, Jaccard and Mahalanobis. Alter-
natively, a user-defined function of the distance can be used for calculation as well.

The distance to the k' nearest neighbor can be used as an outlier score in anomaly detection
as it can be considered as estimation of a local density. The larger the distance to the k-NN,
the lower the local density, and the more likely the query point is an outlier (Angiulli 2005).
Although quite simple, this outlier model, along with another classic data mining method, local

19

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

outlier factor, works quite well in comparison to more recent and more complex approaches,
according to a large scale experimental analysis (Garcia, Derrac, Cano, and Herrera 2012).

Local Outlier Factor

The local outlier factor (LOF) is an unsupervised outlier detection algorithm that detects the
outliers by comparing the local density of the data instance with its neighbors (Breunig, Kriegel,
Ng, and Sander 2000). It was the first algorithm based on local density and k-neighborhood.
The anomaly score of each sample in the training data set is called local outlier factor and
indicates its outlier-ness degree. LOF has been well studied and developed because it has the
capability to detect anomalies that were unperceived by the global methods.

The LOF of an instance is based on the number of nearest neighbors which are used to
determine its local neighborhood. The following definitions are used for the LOF to accomplish
the whole process. The k-distance of instance p, denoted as k-distance(p), is defined as the
distance d(p,0) between p and an object o € D so that for at least k instances o’ € D\{p}
it holds that d(p,0’) < d(p,0), and for at most k — 1 instances o' € D\{p} it holds that
d(p,0’) < d(p, o) (Breunig, Kriegel, Ng, and Sander 2000).

The k-distance neighborhood of instance p is a subset that contains the instances whose
distances from it are not greater than the k-distance.

The definition of reachability distance of instance p in regard to instance o is:

reach-disty(p, 0) = max{k-distance(o),d(p,0)} (2.4)
. —_—
- ~
d
/ P1 h
/ reach-dist,(p;, 0) = k-distance(o)
| ° |
/
°
\ . » °
e

reach-dist,(p,, 0)

P2

Source: (Breunig, Kriegel, Ng, and Sander 2000)
Ficure 2.10: Examples of Reachability Distance for k = 4

Figure 2.10 shows examples of reachability distance for k = 4. Generally speaking, the
reachability distance between these two instances is their actual distance if they are far away
from each other(like 0 and po in the above figure); but, the reachability distance is k-distance

20

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

of o if they are close enough (like 0 and p; in the above figure). As a consequence, the statistical
fluctuations of d(p, 0) for all of the p's close to o can be significantly reduced.

The parameter k£ controls the strength of this smoothing effect so that the higher the value
of k, the more similar the reachability distances are for instances within the same neighborhood
(Breunig, Kriegel, Ng, and Sander 2000).

For object 0 € Nasinpts(p), the definition of the local reachability density of point p is:

o) reach-distarinpts(p, 0
rdasinpes(p) = 1 / (Z Shtineeo®) inre?)> (2.5)
|NMznPts(p)‘

where
e MinPts specifys a minimum number of objects

o reach-distyrinpis(p,0) represents the reachability distance of object p with respect to
object o

For object 0 € Nyrinpis(p), the definition of (local) outlier factor of p is:

lrdarinpes(0)

ZO N inPts T 1
LOFMinPts(p) _ 1/(€ TNZ'(I;;Z((Z;I‘MHS@)) (2.6)

where

o Irdyrinpes(p) is the local reachability density of p

o Irdyrinpis(0) represents the local reachability density of p’s MinPts-nearest neighbors
There are five steps to calculate the LOF for a data set:

1. Calculate all the distances between each two instances

2. Calculate all the distances between p and its k*" nearest neighbors

3. Calculate all the k& nearest neighbors of p

4. Calculate the Local Reachability Density of p

5. Calculate all the LOFs of p

LOF vibrates with different size of neighborhood. Thus, a range for the size of the neigh-
borhood should be defined in order to improve the results. Therefore, the final score is the
maximum LOF score over that range. Instances with LOF scores of approximately equal to
1 are considered as normal data, whereas instances with scores much greater than 1 would be
anomalies. Because local density would be similar to its neighbors if the instance lies within a
cluster. Then a score of this instance equals to 1. The problem is that there is no clear rule
for the threshold for which a point can definitely considered as an anomaly. For a clean data
set without large fluctuations, an instance with LOF score of around 2 would be an anomaly.
Whereas an instance with LOF of 20 still is an inlier for a dirty data set with a lot of large
fluctuations.

21

S © w

W oW N NN NN NN N NN = e e
H O © 0 N O U A W N = ¢

o3

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Choosing optimal k is essential for detection performance and it is impossible to estimate
the optimal k& based on the training data. If k is too small, unwanted statistical fluctuations
will affect the result, but if & is too large, the error will go up again due to under-fitting. The
author of LOF suggested in his paper (Breunig, Kriegel, Ng, and Sander 2000) that &k in the
range of 10 to 50 generally works well.

The following is a simple implementation of Local Outlier Factor written in Python.

import pickle

import pandas as pd

import numpy as np

from itertools import combinations
from math import inf

from math import sqrt, inf

def read__data(file_name) :
LI}

Retrieves data from text file
and stores as data frame using pandas
T

data_frame = pd.read_table(file_name, header=None, delim_whitespace=True)

data_frame = data_frame.iloc [:, :—1]
data_frame = (data_frame — data_frame.min()) / (data_frame.max() — data_frame
.min ())

return data_ frame.values

def get_euclidean_distance (p, q):
T
Calculates the euclidean distance
between two instances of the data

LI}

return sqrt ((p'x'] — p['x']) ** 2 + abs(q['y'] — q['y']) ** 2)

def create_distance_ matrix (data, N):
LI}
Computes the distance matrix and then
writes to to a pickle file in order to
save time on future runs
T
distance matrix = np.zeros ((N, N))
i=0
for a in data:
j =0
for bin data:
distance__matrix[i][j] = get_euclidean_distance(a, b)
i=1
i+=1
f = open('distancematrix', 'wb')
pickle .dump(distance_matrix, f)
f.close()
return distance matrix

def get_local_ reachability density (N, distance_matrix, k, data):

22

ey

SIS B e |
@ N

SRS IS

J

(SIS, T B, BV B

60
61
62
63
64
65
66

67

69

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96

98
99
100
101
102
103

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

def

LI}

Finds local reachability density for each sample by the following steps:
1. Calculate all the distances for each instances

2. Calculate the number of points that fall within the k—distance
neighbourhood

3. Calculate reachability distances

4. Calculate all the Local Reachability Density of p

LI}

k_dist = np.zeros (N)
k_neighbours = {}
num_ of neighbours = 0
Ird = np.zeros(N)

for i in range(N):
distance point = distance matrix[i]
knn = np.partition (distance_point, k—1)
k_dist[i] = knn[k—1]
sort_index = np.argsort(distance point)

j =0
temp = []
for dist in distance_ point:
if dist <= k_dist[i]:
temp . append (sort_index[j])
num_ of neighbours += 1
j+=1
k neighbours[i] = temp

reachability distance = get_reachability_distances (N, data, k_dist,
distance matrix)

for i in range(N):
sum_ of reachability_distances = 0
for value in k_neighbours[i]:
sum_ of_reachability distances += reachability distance[int (value)][1i]
if sum_ of reachability distances = 0:
Ird[i] = inf
Ird[i] = len(k_neighbours[i])/sum_of_ reachability distances

return lrd

get_reachability distances (N, data, k_dist, distance_ matrix):
T

Calculates the reachability distance
between each two instances
T

reachability__distance = np.zeros ((N, N))

i=20
for _ in data:
i=0
for _ in data:
reachability distance[i][j] = max(k_dist[i], distance_matrix[i][j])
i+=1
i+=1

23

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

104 return reachability_distance
105
106

107 def main(file_name, k):
T

108

109 Gets distance matrix, the LRD, and the first O
110 points after sorting of LRD

111

112 Parameters

113 -

114 file mame : The name of the data file

115 k : to get kNN, kdist, and then LOF

116 et

117 data = read_Data(file_name)

118 total _num = len (data)

119 distance_matrix = create_distance_matrix (data, N)
120 Ird = get_local reachability density (total num , distance_ matrix, k, data)
121 sorted__outlier_factor_indexes = np.argsort (lrd)
122 outliers = sorted_outlier_factor__indexes[—O:]

123

124

125 if _ _nmame — ' main_ ':

126 main ()

2.3.6 Example for Anomaly Detection with LOF

The following Jupyter Notebook shows how to use LOF for anomaly detection. Table 2.2 shows
the data set used for this example.

24

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Timestamp | Value
2018/1/1 0:00 | 8.2
2018/1/1 0:01 8.1
2018/1/1 0:02 8
2018/1/1 0:03 | 8.1
2018/1/1 0:04 | 8.2
2018/1/1 0:05 | 8.2
2018/1/1 0:06 | 8.1
2018/1/1 0:07 | 8.1
2018/1/1 0:08 8
2018/1/1 0:09 | 8.2
2018/1/1 0:10 | 8.1
2018/1/1 0:11 8.2
2018/1/1 0:12 8
2018/1/1 0:13 | 8.2
2018/1/1 0:14 | 8.1
2018/1/1 0:15 1
2018/1/1 0:16 8
2018/1/1 0:17 | 8.2
2018/1/1 0:18 8
2018/1/10:19 | 8.2

TABLE 2.2: Test Data

In the above data set, the value "1" at "2018/1/1 0:15" is the anomaly. The following example
shows that LOF successfully detects this anomaly.

Jupyter Notebook
Run the reusable Python code for library importing and auxiliary functions. Details of this file
are in Section 3.2.
In [1]: %run anomaly_detection.py
Get temperature test data from “TestData.csv” file.
In [2]: test_data = pd.read_csv("TestData.csv")
Display the test data.
In [3]: print(test_data)

Timestamp Value
2018-01-01 00:00:00 8.2
2018-01-01 00:01:00
2018-01-01 00:02:00
2018-01-01 00:03:00
2018-01-01 00:04:00

D W N - O
0o 00 0
N = O =

25

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

2018-01-01 00:05:00
2018-01-01 00:06:00
2018-01-01 00:07:00
2018-01-01 00:08:00
2018-01-01 00:09:00
10 2018-01-01 00:10:00
11 2018-01-01 00:11:00
12 2018-01-01 00:12:00
13 2018-01-01 00:13:00
14 2018-01-01 00:14:00
15 2018-01-01 00:15:00
16 2018-01-01 00:16:00
17 2018-01-01 00:17:00
18 2018-01-01 00:18:00
19 2018-01-01 00:19:00

© 00N O O

QO 0 0 O = 00 0 00 00 0 00 0 0 00
NONODOFLRNONEFEFNOFLEFLN

Function process_ data is a function to parse “Timestamp” column as date time and set it
as index.

In [4]: processed_data = process_data(test_data)
Plot the test data.

In [5]: f1 = plt.figure(figsize=(20,10))
test_datal['Value'] .plot()
plt.xlabel("Timestamp")
plt.ylabel("Value")
plt.title("Test Data')
plt.show()

Test Data

Value

0000 0005 0010 0015
01Jan
2018

Timestamp

26

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Reshape “Value” column test data as training data.

In [6]: training data = prepare_training_dataset(processed_data)
Initialize an instance for outlier detection with n_ neighbors(k) = 10

In [7]: clf = LocalOutlierFactor(n_neighbors=10)
Make prediction of training data set.

In [8]: prediction = lof_prediction(clf,traing_data, processed_data)
Display detection result.

In [9]: print(prediction)

Value isinlier
Timestamp
2018-01-01 00:15:00 1.0 -63.55

Plot the result.

In [10]: plot_lof_result(processed_data,prediction, 'Anomalies In Test Data')

Anomalies In Test Data

Value

01 00:03 01 00:08 01 00:13 01 00:18
Timestamp

27

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

2
1| @ O
o o0 o © o o o ¢
0000) 0. 0¢0C
QO OO(e ’O\)/OQQ O
00 O 00 O O 0 00 O 0g O oF 9
O P66 ¢ 0o Onl0 %
00~ 09 F000 1 4 0 0% 0|©Q §~o0 ¥ o
o 00 00 0 0 O QOO Q¢
Q0”0 ©Q o WO 002F 00 o
© O X 090 © O30~ -0n 55 e O
0%8008 O o©° - 0 QLo o0 o ©
O ‘ Y D ~O O | Qe
©0 008 OOOOOQOOQQO 00 008 OQDQOQQJ&O
‘ O~0O O | (-
PP OQO%% “0 00 N %QOOO%O%% “0 00
0 0V P05 0 0 0 0V AO5 084 ©
0 000 50 QY ~O 0 0002980 QP ~O
S 09700500 5 ¢ S P00 00| 4
0- 0 000" 5 O~ g o0 o7 Y 5
Q 00 ~ C O 0«
O OO o 00 OO O 0O o DO OO

(A) Anomaly (B) Normal Point

F1cURrE 2.11: Identifying Normal and Abnormal Instances

2.3.7 Isolation Forest

Isolation Forest (IF) was proposed by (Liu, Ting, and Zhou 2012) to identify anomalies in a
data set purely based on isolation without relying on any distance or density measure. Isolation
means separating an instance from the rest of the instances. IF was used by (Ding and Fei
2013) to detect outliers and change points from non-stationary time series data.

IF is an unsupervised algorithm for detecting outliers within a data set. It utilizes two

quantitative properties for anomalies:
e There are only a few anomalies in the data set.
e Anomalies have attributes that are distinct from normal data.

A binary tree structure called an isolation Tree (iTree) is used to isolate instances. In an
iTree, each node has either zero or two daughter nodes. Let X = x1,--- ,z, be the given data
set of a d-variate distribution. A sample of instances Xy - X is used to build an isolation tree
(iTree). Xy is recursively divided by a randomly selected attribute ¢ and a split value p, until
either the node has only one instance or all data at the node have the same value.

In an iTree, the anomalies are isolated and closer to the root of the tree, while the normal
instances are isolated at the deep end of the tree. Figure 2.11 denotes the idea of identifying
a normal and abnormal instances using iTree. It shows that the abnormal point (red point in
diagram A) can be directly isolated, while the normal point (black point in diagram B) requires
multiple random partitions to be isolated.

28

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Each instance is given an anomaly score for decision making. The anomaly score s of an
instance x is defined as:

_E((=)

s(z,m) =2 <0 (2.7)

where

o h(x) is the path length of observation x.

o c¢(n) is the average path length of unsuccessful search in a Binary Search Tree.
e n is the number of external nodes.

The score range is [0,1]. The following decision can be made based on the scores:
e Score close to 1 indicates anomaly.

e Score much smaller than 0.5 indicates a normal instance.

o There is no distinct anomaly in the entire data set if all scores are close to 0.5.

Extended Isolation Forest (EIF) was proposed by (Hariri, Carrasco Kind, and Brunner 2018)
to improve the consistency and reliability of the anomaly score of a given instance. Unlike IF
which selects a random attribute and random value, EIF randomly selects slopes for the branch
cut and randomly chooses intercepts from available values within the training data set.

2.3.8 Robust Random Cut Forest

Robust Random Cut Forest (RRCF) was proposed by (Guha, Mishra, Roy, and Schrijvers 2016).
It is an unsupervised algorithm for anomaly detection on streaming data. Current records in
the stream are used to develop the machine learning model. RRCF does not use older records
nor does it use statistics from previous executions.

The following is the procedure of anomaly detection using RRCF:
1. RRCF takes a bunch of random instances (Random).
2. Then, it cuts them into the same number of instances and creates trees (Cut).

3. Finally, it determines whether a particular instance is an anomaly by considering all of
the trees together (Forest).

A Robust Random Cut Tree (RRCT) on point set S is generated as follows (Guha, Mishra,
Roy, and Schrijvers 2016):

1. Choose a random dimension proportional to Zei 7 where ; = maxicsT; — Mingesx;
j

2. Choose X; ~ Uniform[mingegxi, maxcs;]
3. Let S1={z|z € S,z; < X;} and S2 = S\S1 and recurse on S1 and S2

Figure 2.12 shows the idea how RRCF cut instance into pieces recursively. The cutting stops
when each point is isolated.

29

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

@
QOOOQ
9 © @
o Q0O O
o9 ©
o)
Sote
O\
000 @ do@
0% eYe
@ 0000 ¢
® o

FIGURE 2.12: Random Cut Tree

Robust Random Cut Trees can be dynamically maintained using Insertion and Deletion
operations when RRCF is used to detect anomalies on stream data.

o Deletion: If T" were drawn from the distribution RRCF(S) then Algorithm 1 produces a
tree T" which is drawn at random from the probability distribution RRCF (S — {p})

o Insertion: Given T drawn from distribution RRCF(S) and p € S produce a T" drawn
from RRCF(S Up). The algorithm is provided in Algorithm 2.

Algorithm 1 ForgetPoint

1: Find the node v in the tree where p is isolated in 7.

2: Let u be the sibling of v . Delete the parent of v (and of u) and replace that parent with u
(i.e., short circuit the path from u to the root).

3: Update all bounding boxes starting from u’s (new) parent upwards —this state is not neces-
sary for deletions, but is useful for insertions

4: Return the modified tree T

Source: (Guha, Mishra, Roy, and Schrijvers 2016)

30

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Algorithm 2 Algorithm InsertPoint
1: Given a set of points S’ and a tree T'(S”). Insert new point p and produce tree T"(S’ U {p}).

2: If S’ = ¢ then return a node containing the single node p.

3: Otherwise S’ has a bounding box B(S') = [z{, 2] x [2§, 2] x ... |25, 2"]. Let 2f < 2l for
all 4.

4: For all i let 2f = min{p;, z{} and 2" h; = max{z?, p;}.

5: Choose a random numberr € [0, Y, (27 — 25)].

6: This r corresponds to a specific choice of a cut in the construction of RRCF (5" U {p}).
For instance, compute arg min{j| >>7_,(## — 2{) > r} and the cut corresponds to choosing
iﬁ + >0 (#h — 2%) — r in dimension j.

7. If this cut separates S’ and p (i.e., is not in the interval [xﬁ,m?]) then use this as the first
cut for T'(S" U {p}). Create a node —one side of the cut is p and the other side of the node
is the tree T'(5").

8: If this cut does not separate S’ and p then throw away the cut! Choose the exact same
dimension as T'(S") in T'(S" U {p}) and the exact same value of the cut chosen by T'(S’)
and perform the split. The point p goes to one of the sides, say with subset S”. Repeat
this procedure with a smaller bounding box B(S”) of S”. For the other side, use the same
subtree as in T'(5").

9: In either case update the bounding box of T”.

Source: (Guha, Mishra, Roy, and Schrijvers 2016)

RRCF assigns an anomaly score to each instance. The anomaly score of a point is defined by
its collusive displacement, which measures the change in model complexity incurred by inserting
or deleting a given point p (Guha, Mishra, Roy, and Schrijvers 2016). Low scores indicate that
the instances are considered as normal. High scores indicate the presence of anomalies in the
data set.

2.4 Statistical Techniques

2.4.1 Seasonal Hybrid Extreme Studentized Deviate

Seasonal Hybrid Extreme Studentized Deviate (S-H-ESD) is an algorithm developed by Twitter
in 2015 to detect when anomalies occurred in the corresponding time series. It has the ability
to detect both point and contextual anomalies through applying time series decomposition. It
is built upon the generalized Extreme Studentized Deviate (ESD) test which is used to detect
one or more outliers in a univariate data set that follows an approximately normal distribution
(Rosner 1983).

The generalized ESD is defined based on the assumption of the dataset:
o There is no outlier in the data set.

e There are at most r outliers in the data set.

31

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

For a data set D of size n, given x € D, essentially the generalized ESD test runs r separate
tests to compute the largest absolute deviation from the sample mean in units of the sample

standard deviation:
maz;|z; — T|

Gi = (2.8)

s
where

e 1=1,2--- 7.
e T is the sample mean.
e s is sample standard deviation.
This results in the r test statistics G1,Go, - - -, G,

In order to determine whether a value is anomalous or not, the test result is then compared
with a critical value which is calculated using following equation:

(n —lpn—i-1
Jo—i—1+2, . Hn—i+1)

A = (2.9)

where
e i=1,2,--- 1.
e T is the sample mean.

e p=1-— m and « is the significance level that represents the probability of rejecting
the null hypothesis when it is true in statistics.

e tpn—i—1 represents the p'" percentile point from the t distribution with d degrees of freedom

The value will be deleted from the data set if it is considered to be anomalous and the critical
value will be recalculated using the remaining data. ESD repeats this process for r times, and
the largest (G, > \,) is the number of anomalies in the data set.

Seasonal-ESD (S-ESD) uses a modified STL (seasonal-trend decomposition procedure based
on Loess (Cleveland, Cleveland, McRae, and Terpenning 1990)) decomposition to extract the
residual component of the input time series and then applies ESD to detect anomalies (Hochen-
baum, Vallis, and Kejariwal 2017). Thus S-ESD has the ability to detect both global and local
anomalies. However, S-ESD does not work well when applied to data sets that have a high
percentage of anomalies. Therefore, Twitter introduced Seasonal Hybrid ESD (S-H-ESD) that
adopts the S-ESD algorithm and uses the robust statistical techniques and metrics as discussed
before. As a consequence, S-H-ESD is capable of detecting tendency of a time series with a
high percentage of anomalies.

Twitter AnomalyDetection

Twitter AnomalyDetection is an open-source R package that can be used to detect anomalies
by means of statistics. The primary algorithm of AnomalyDetection is S-H-ESD. This package
was designed to detect both point and contextual anomalies and is very robust and versatile
if data presents seasonality and trends. This complementary package can be used in various

32

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

applications. For example, it has been used for detecting anomalies in system metrics after
a new software release, for problems in econometric, financial engineering, political and social
sciences (Twitter 2015).

Twitter’s AnomalyDetection is easy to use, but it is an R library. In the experiments, a
Python implementation of S-H-ESD (Marcnuth 2018) was used for comparison of the perfor-
mance. This implementation rewrites Twitter’s Anomaly Detection algorithms in Python, but
provides the same functions.

The repository (Marcnuth 2018) is the main Python implementation of Twitter’s Anomaly-
Detection for time series data.

2.4.2 Example for S-H-ESD

The following Jupyter Notebook shows how to use S-H-ESD for anomaly detection. Test data
normal range is [8, 8.2]. There are two abnormal records: [2018-02-02 02:02:00, 7.0] and [2018-
02-02 20:02:00, 8.9].

Run the reusable Python code for library importing and auxiliary functions.
In [1]: %run anomaly_detection.py

Get test data from csv file.
In [2]: test_data = pd.read_csv('TestData-ESD.csv')

Display the test data.

In [3]: print(test_data)

Timestamp Value
0 2018-02-02 0:00 8.2
1 2018-02-02 0:01 8.1
2 2018-02-02 0:02 8.0
3 2018-02-02 0:03 8.1
4 2018-02-02 0:04 8.2
5 2018-02-02 0:05 8.2
6 2018-02-02 0:06 8.1
7 2018-02-02 0:07 8.1
8 2018-02-02 0:08 8.0
9 2018-02-02 0:09 8.2
10 2018-02-02 0:10 8.1
11 2018-02-02 0:11 8.2
12 2018-02-02 0:12 8.0
13 2018-02-02 0:13 8.2
14 2018-02-02 0:14 8.1
15 2018-02-02 0:15 8.0
16 2018-02-02 0:16 8.0
17 2018-02-02 0:17 8.2
18 2018-02-02 0:18 8.0

33

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

19 2018-02-02 0:19 8.2
20 2018-02-02 0:20 8.2
21 2018-02-02 0:21 8.1
22 2018-02-02 0:22 8.0
23 2018-02-02 0:23 8.1
24 2018-02-02 0:24 8.2
25 2018-02-02 0:25 8.2
26 2018-02-02 0:26 8.1
27 2018-02-02 0:27 8.1
28 2018-02-02 0:28 8.0
29 2018-02-02 0:29 8.2
3391 2018-02-04 8:31 8.0
3392 2018-02-04 8:32 8.2
3393 2018-02-04 8:33 8.0
3394 2018-02-04 8:34 8.2
3395 2018-02-04 8:35 8.2
3396 2018-02-04 8:36 8.1
3397 2018-02-04 8:37 8.0
3398 2018-02-04 8:38 8.1
3399 2018-02-04 8:39 8.2
3400 2018-02-04 8:40 8.2
3401 2018-02-04 8:41 8.1
3402 2018-02-04 8:42 8.1
3403 2018-02-04 8:43 8.0
3404 2018-02-04 8:44 8.2
3405 2018-02-04 8:45 8.1
3406 2018-02-04 8:46 8.2
3407 2018-02-04 8:47 8.0
3408 2018-02-04 8:48 8.2
3409 2018-02-04 8:49 8.1
3410 2018-02-04 8:50 8.0
3411 2018-02-04 8:51 8.0
3412 2018-02-04 8:52 8.2
3413 2018-02-04 8:53 8.0
3414 2018-02-04 8:54 8.2
3415 2018-02-04 8:55 8.2
3416 2018-02-04 8:56 8.1
3417 2018-02-04 8:57 8.0
3418 2018-02-04 8:58 8.1
3419 2018-02-04 8:59 8.2
3420 2018-02-04 9:00 8.2

[3421 rows x 2 columns]

Pre-process data: parse “Timestamp” column as datetime and set it as index.

34

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [4]: processed_data = process_data(test_data)
Plot the test data.

In [5]: f1 = plt.figure(figsize=(20,10))
test_datal['Value'] .plot()
plt.xlabel("Timestamp")
plt.ylabel("Value")
plt.title("Test Data")
plt.show()

Test Data

850

8.00

Value

725

P o0 W 12700 n0-00
02-Feb 03-Feb 04-Feb
2018

Timestamp

It shows clearly there are two anomalies in the data set.
Read data from csv file.

In [6]: data = pd.read_csv('TestData-ESD.csv', index_col='Timestamp',
parse_dates=True, squeeze=True,
date_parser=pd_parser4)

Detect anomalies in data set.

In [7]: results = detts.anomaly_detect_ts(data, max_anoms=0.01,
direction='both', plot=False)

Display detection result.

In [8]: results['anoms']

35

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Out[8]: 2018-02-02 02:02:00 7.0
2018-02-02 20:02:00 8.9
dtype: float64

S-H-ESD successfully detects all the anomalies in the data set.

2.4.3 Exponential Moving Average

In statistics, a moving average (rolling average, moving mean or running average) is a calculation
that creates series of averages of different subsets of the full data set. It is generally used to
analyze temporal data such as to gauge the direction of the current stock trend.

Given a sequence of N values ({p}X,), and a window size n > 0; an n moving average of the
given sequence is a new sequence ({S}Y"*!) that is defined from p; by taking the arithmetic

mean of subsequences of n terms,

1 i+n—1

s= 1'%y, 2.10)
n
Thus the n moving averages are defined as:
1
S2 = 5(p1+p2, P2+ P30 Dot + Dn) (2.11)
1

S3 = 2 (p1+p2+p3,p2+ D3 +Pay -, Pn—2 + Pn—1 + DPn) (2.12)

3

and so on.

Exponential moving average (EMA), also known as an exponentially weighted moving aver-
age (EWMA), places a greater weight and significance on the most recent data points rather
than the old ones.

The calculation of the EMA of current point is defined as:
EMA, = ax (p+(1—a)pi+(1-a)p+ (1—a)ps+--) (2.13)

where:
o The coefficient « is a constant smoothing factor between 0 and 1.
e pis current point
e p; the previous point
e and so on so forth

Exponentially weighted moving averages react more significantly to recent value changes.
The weighting for each previous data exponentially decreases but never reaches zero. Luminol
uses EMA to compute exponential moving averages of derivatives.

36

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

LinkedIn Luminol Anomaly Detection and Correlation Library

LinkedIn Luminol is a Python library for time series data analysis (LinkedIn 2015). It supports
anomaly detection as well as correlation and can be used to investigate possible root causes for
anomalies as well. With collected time series data, Luminol is able to:

e Detect anomalies in temporal data and return a time range to indicate when the anoma-
lies occurred and a timestamp when the anomaly exactly happened (reached the large
severity), and a score to show how severe the anomaly was in regards to other data.

e Determine correlation coefficient in two time series data as the correlation mechanism
allows for a shift, users are able to correlate two peaks that are apart in time.

Luminol is configurable so that users can choose which algorithm they want to use for
anomaly detection or correlation. In addition, the library does not rely on any predefined
threshold on the values of a time series. Instead, it assigns each data point an anomaly score
and identifies anomalies using the scores (LinkedIn 2015).

By using the Luminol, users would be able to establish a logic flow for the root cause analysis
of anomalies. For instance, suppose there is a spike in network latency:

e Luminol discovers the spike in time series data of network latency

e gets the anomaly period of that spike, and then correlates that with other system metrics
such as [0, CPU within the same time range

o gets a ranked list of correlated metrics, and the ones with high rank on the list could be
the root cause candidates

2.4.4 Example for EMA

The following Jupyter Notebook shows how to use EMA for anomaly detection. This example
uses test data which are listed in Table 2.2. In the data set, the value "1" at "2018/1/1 0:15" is
the anomaly. The following example shows that EMA successfully finds this anomaly.

Run the reusable Python code for library importing and auxiliary functions. Details of this
file is in Section 3.2.

In [1]: %run anomaly_detection.py

Initialize the detector instance using test data and choose Exponential Moving Average
Algorithm.

In [2]: detector = AnomalyDetector('TestData-LinkedIn.csv',
algorithm_name='exp_avg_detector')

Get the anomalies of test data set.
In [3]: result = detector.get_anomalies()

Display the anomalies. Timestamp in the result is epoch, so we need to convert it to UTC
data time string.

37

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [4]: anomalies = format luminol result(result, False)

In [5]: anomalies

Out [5] : Number Start On End On Exactly Happen On
0 1 2018-01-01 00:15:00 2018-01-01 00:15:00 2018-01-01 00:15:00

The result of Luminol actually gives the time when the anomalies start, the time when the
anomalies end, and the exact time when the anomaly happens.

38

Chapter 3

Experiments

3.1 Anomaly Detection Techniques

In this chapter, the techniques discussed in the previous chapter have been evaluated thoroughly
using Jupyter Notebooks:

e Machine Learning
— Local Outlier Factor
o Statistic Techniques
— Seasonal Hybrid Extreme Studentized Deviate
— Exponential Moving Average
Two separated experiments have been performed for the evaluation.

o Experiment I (Section 3.3) evaluates these three techniques on two data sets of water
temperature and ammonia data. Each data set has over 70,000 records (data details are
in Section 3.3.1).

o Experiment II (Section 3.4) evaluates these three techniques on four data sets of water
temperature, ammonia, chloride and potassium data. Each data set has nearly 300,000
records (data details are in Section 3.4.1).

Experiment I is the primary evaluation and Experiment II was used for verification.

3.2 Generic Python Code for Experiment

All auxiliary functions that are called in Jupyter Notebook are predefined in a separate Python
file which was run at the beginning. These functions include reading data from a csv file, data
pre-process and result plotting. The following is the reusable Python code of this file.

import pandas as pd

import numpy as np

import math

import time

import matplotlib.pyplot as plt

6 from sklearn.base import TransformerMixin

N

o

39

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

7 from sklearn.pipeline import Pipeline

s from sklearn.pipeline import make_pipeline

9 from sklearn.preprocessing import StandardScaler
10 from sklearn.preprocessing import MinMaxScaler
11 from sklearn.neighbors import LocalOutlierFactor
12 import matplotlib.pylab as pylab

14 #lmpor LinkedIn luminol

15 import luminol

16 from luminol import utils , anomaly_ detector

17 from luminol.anomaly detector import AnomalyDetector

19 #Twitter AnomalyDetect
20 import anomaly_ detect ts as detts

#Date Time Parser
def pd_parser(date):
return pd.datetime.strptime (date, '%Y-%m-%d YH:%M:%S ')

NN N NN
[STE O U R

26 #Date Time Parser
27 def pd__parser2(date):
28 return pd.datetime.strptime (date, '%Y/%m/%d %H:%M')

30 #Date Time Parser

31 def pd__parser3(date):

32 return pd.datetime.strptime (date, '%m/%d/%Y YH:%M')

33

34 #Now we create two methods: set_col as_ index is a method to set column as index
and sort time series is a method to sort data based on the date time series
data. They will be used later on to process and transform data to the index by
time data column format .

35 #set index column

36 class set__col_as_index(TransformerMixin):

37 def __init__ (self, col):

38 self.col = col

39

40 def transform (self , X, xxtransform_ params):

41 X.index = X.loc[:, self.col].apply(lambda x: pd.to_ datetime(x))
42 return X

43

44 def fit(self, X, y=None, #*xfit_params):

45 return self

47 #sort data based on the index
18 class sort__time_series(TransformerMixin):
49 def transform (self, X, xxtransform__params):

50 X = X.sort__index ()

51 return X

52

53 def fit (self, X, y=None, #*xfit_params):

54 return self

56 #A common method which is used to create index and transform data the 'TimeStamp'
collomn

57 def process data(x):

58 process__pipeline = make_ pipeline (set_col_as_index('Timestamp') ,

59 sort time series())

40

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

60 x = process_ pipeline. fit_transform (x)
61 del x['Timestamp ']

62 return x

63

64 #At the beginning, we create methods to get data from csv files , process and then
display them.
65 #Belowing method get_ temp_data is to read water temperature test data from csv

file .
66 def get_temp_datal():
67 return pd.read_csv("Temp.csv")

69 #Method get__ammonia_data is to read water ammonia test data from csv file.
70 def get_ammonia_data() :
71 return pd.read_csv ("Ammonia.csv")

3 #display the general information of dataset

4+ def display_info (df):

print ("Data Range")

print ("Start Date %s"%(df.head (1) ['Timestamp']))
print ("End Date %s"%(df. tail (1) ['Timestamp']))
print ("num_ values: %s"%(df.shape[0]))

[

o e B S B B B |
S I

©

#Plot the orginal data set
s1 def plot_original data(df, title):

®

82 f1 = plt.figure(figsize=(20,10))
83 df['Value']. plot ()

84 plt.xlabel (" Timestamp")

85 plt.ylabel ("Value")

86 plt.title (title)

87 plt .show ()

88

89 #prepare traning dataset
90 def prepare_traning dataset (df):

91 #get value of dataset

92 X = df['Value']. values

93 #Then change the precision of value to 4.
94 #X= np.round (X,4)

95 #Reshape data to only one column

96 X = X.reshape(—1, 1)

97 return X

98
99 #prepare traning dataset
100 def reshape_traning dataset(df):

101 #get value of dataset

102 X = df['Value']. values

103 #Then change the precision of value to 2.
104 X= np.round (X,2)

105 #Reshape data to only one column

106 X = X.reshape(—-1, 1)

107 return X

108
109 def lof_ prediction (clf ,training data_set, data_set):

110 #fit clf with training dataset

111 y_pred = clf.fit_predict (training data_set)

112 #Get the prediction score

113 y_pred = clf._decision_function (training_data_ set)

41

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

114 #Combine test data and prediction result as the prediction only contains
value and score.

115 data set['isinlier'] =y pred

116 #Sort combined data by result score, lower score indicates the higher
potential to be an outlier.

117 #We consider those data score less than —10 are outliers (threshold)

118 #Get the data whose score are less than —10 from the prediction result.

119 anomalies = data_set.loc[data_set['isinlier'] < —10]

120 data_set

121 return anomalies

122

123 #Method to plot the result of LOF anomaly detection
124 def plot_lof_result(dataset ,anomalies, title):

125 if '"isinlier' in dataset.columns:
126 del dataset['isinlier ']

127 if '"isinlier' in anomalies.columns:
128 del anomalies['isinlier ']

129 f2 = plt.figure(figsize =(20,10))
130 plt.plot (dataset , color='green')
131 plt . plot (anomalies, "r*", markersize=10)
132 plt.xlabel (" Timestamp")

133 plt.ylabel ("Value")

134 plt.title (title)

135 plt .show ()

136

137 #Method 'get anormalies(y, clf)' is to score each data using Local Outlier Factor
inside subset and return those whose score is less than —10 (threshold which
we consider is anomaly).

138 #Parameters :

139 #y: Subset of test data set

140 #clf: Instance of Class LocalOutlierFactor of Scikit—learn library

141 #return: Anomalies

112 def get__anormalies(y, clf):

143 y.is_copy = False

144 y_pred = clf._decision_function (y)
145 y['isinlier'] = y_pred

146 return y.loc[y['isinlier '] <=10]
147

148 #Method 'calculate_ outlier (x, window_size, clf)' is used to get the outlier of
the data set by dividing it into subsets. It calls function 'get_anormalies
to make decision on each subset and return the accumulated anomalies.

149 #Parameters :

150 #x: the data set

151 #window__size: The size of each subset

152 #clf: Instance of Class LocalOutlierFactor of Scikit—learn library

153 def calculate_outlier (x, window_size, clf):

154 length = x.shape[0]

155 result = pd.DataFrame(columns = x.columns)
156 i=20

157 while i< length:

158 begin_index = i

159 i += window_ size

160 end index = i

161 if (i > length):

162 end_index = length

163 y = x.iloc [begin_ index:end index]
164 y.is_copy = False

42

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

165 yield get_ anormalies(y, clf)

166

167 #Method to display result for luminol

68 #return list of anomalies

60 def format_ luminol result(anomalies, display):
0 rows_ list =[]

71 i=l1

72 for timestamp in anomalies:

73 start = time.localtime (timestamp.start timestamp/1000)
74 start_str = time.strftime ('%Y—"Yan-%d YH:%M:%S "', start)

end =time.localtime (timestamp.end_ timestamp/1000)
6 end_str = time.strftime ('%Y—Ym-%d Y7H:%M:%S "', end)

77 exact = time.localtime (timestamp.exact_timestamp /1000)
178 ex_str = time.strftime ('%Y-—%u-%d YH:%M:%S', exact)

179 rows_ list .append ([i,start_str, end_str,ex_str])

180 if display:

181 print ("Anomaly %s:"%(i))

182 print ("Start: %s"'%(start str))

183 print ("End: %s"%(end_ str))

184 print ("Exact: %s"%(ex_str))

185 i= i+1

186 return pd.DataFrame(rows_ list ,

187 columns=['Number', 'Start On',
188 '"End On', 'Exactly Happen On'])

3.3 Evaluation using Jupyter Notebook I

3.3.1 Test Data Sets

To evaluate the performance of each algorithm, two data sets from the RSM30 water monitoring
system were used in this experiment. These data sets were provided by Primodal System and
retrieved from the Dundas wastewater treatment plant.

Table 3.1 summarizes the properties of the water temperature data set.

File Name temp.csv
Location Dundas Treatment Facility
Sensor model 1Q Sensor Net Varion@ Plus 700 1Q
Interval Every minute
Number of Records 78338
Columns Timestamp and Value
Date Range 2017/11/1 14:20:00 to 2018/1/9 19:55:00

TABLE 3.1: Water Temperature Data

Figure 3.1 illustrates data for water temperature.

43

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Value

Water Temperature

WWWNW AV

15

0o

o 10000 20000 30000 40000 50000 60000 70000
Timestamp

FIGURE 3.1: Temperature Data Set

Table 3.2 summarizes the properties of the ammonia data set.

File Name ammonia.csv
Location Dundas Treatment Facility
Sensor model 1Q Sensor Net Varion@ Plus 700 1Q
Interval Every minute
Number of Instances 71926
Columns Timestamp and Value
Date range 2017/12/05 19:00:00 to 2018/1/26 18:07:00

TABLE 3.2: Ammonia Data

Figure 3.2 illustrates data for ammonia.

44

80000

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Ammaonia Data

Value

0 10000 20000 30000 40000 50000 60000 70000
Timestamp

FIGURE 3.2: Ammonia Data Set

3.3.2 Notebook

Machine Learning
First of all, the unsupervised outlier detection class ‘LocalOutlierFactor’ in scikit-learn was used
to detect outliers in water temperature data and ammonia data.
Run Python file for the auxiliary functions.
In [1]: %run anomaly_detection.py

Read temperature data from “Temp.csv” file and save to df temp. “Temp.csv” contains two
columns: “Timestamp” and “Value”.

In [2]: df_temp = get_temp_data()
Then display the general information of the test temperature data.
In [3]: display_info(df_temp)

Data Range

Start Date 0 2017/11/1 14:20
Name: Timestamp, dtype: object
End Date 78338 2018/1/9 19:55
Name: Timestamp, dtype: object
num_values: 78339

The data set has 78339 records in total.

Now plot temperature test data.

45

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [4]: plot_original_data(df_temp, "Water Temperature")

WWWNW Ay

Water Temperature

100

Value

75

0o

0 10000 20000 30000 40000 50000 60000 70000 80000
Timestamp

The above output diagram clearly shows that there are several instances which are far from
the others which probably indicate point anomalies.

The following steps get ammonia test data from csv file, process and then display it.

Call function “get__ammonia_ data” to retrieve ammonia test data from “Ammonia.csv” file.
“Ammonia.csv” contains two columns: “Timestamp” and “Value”.

In [5]: df_ammonia = get_ammonia_data()
Display general information of anomaly test data.
In [6]: display_info(df_ammonia)

Data Range

Start Date O 2017-12-05 19:00:00
Name: Timestamp, dtype: object

End Date 71925 2018-01-26 18:08:00
Name: Timestamp, dtype: object
num_values: 71926

There are 71926 records in the ammonia data:
And then plot ammonia test data.

In [7]: plot_original_data(df_ammonia, "Ammonia Data")

46

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Ammania Data

0 10000 20000 30000 40000 50000 60000 70000
Timestamp

Outliers have been detected using Local Outlier Factor in the scikit-learn library.

Prepare training data set of temperature values.

Function “process_data” creates index on “Timestamp” column for temperature data.
In [8]: df_temp = process_data(df_temp)

Function “prepare_ training dataset” gets data of “Value” column which is used to fit LOF
class later.

In [9]: temp_data = prepare_training dataset(df_temp)

Prediction of test data is done by an instance of LocalOutlierFactor class. The constructor
of LocalOutlierFactor has several parameters:

e 1n_neighbors : The value for k. The default value is 20.
e metric : The metric used for the distance computation.

As discussed in Section 2.3.5, k in range 10 to 50 generally works well. n_ neighbors = 50 is
used for k, and euclidean distance is used to measure the distance. Other distance metrics have
been discussed in Section 2.3.5.

In [10]: clf = LocalOutlierFactor(n_neighbors=50, metric='euclidean')
Get the prediction result of temperature test data.

In [11]: 7%time
temp_anomalies = lof_prediction(clf,temp_data, df_temp)

47

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

CPU times: user 745 ms, sys: 122 ms, total: 867 ms
Wall time: 890 ms

In [12]: print ("Number of Anomalies:’%s"’(temp_anomalies.shapel[0]))

Number of Anomalies:26

Save all the abnormal instances with their score to a csv file for further analysis.
In [13]: temp_anomalies.to_csv('temp_anomalies.csv')
Plot the prediction result for temperature test data to deliver the whole picture.

In [14]: plot_lof_result(df_temp,temp_anomalies, 'Anomalies in Temperature Data')

Anomalies in Temperature Data

0.0

ko
b

Value

75

0.0 x x L r * * *

2017-11-05 2017-11-19 2017-12-03 2017-12-17 2017-12-31
Timestamp

The red stars in the above output diagram are the twenty-six instances detected as anomalies.
These twenty-six instances are all anomalies and are discussed in detail in Chapter 4.

Next, try to detect anomalies on the ammonia test data using the same approach.
Set index on “Timestamp” column for ammonia test data.
In [15]: df_ammonia = process_data(df_ammonia)

Function “prepare_ training dataset” returns data of “Value” column which is used to fit
LOF class later.

In [16]: amm_data = prepare_training_dataset(df_ammonia)

Initialize an instance of LocalOutlierFactor class.

48

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [17]: c1f = LocalOutlierFactor(n_neighbors=50, metric='euclidean')
Get the prediction result.

In [18]: %%time
amm_anomalies = lof_prediction(clf,amm_data, df_ammonia)

CPU times: user 727 ms, sys: 11.5 ms, total: 738 ms
Wall time: 785 ms

In [19]: print ("Number of anomalies:’%s"Y (amm_anomalies.shape[0]))

Number of anomalies:4

Save all the anomal instances with their score to a csv file for further analysis.
In [20]: df_ammonia.to_csv('ammonia_anomalies.csv')
Plot the prediction result for ammonia test data.

In [21]: plot_lof_result(df_ammonia,amm_anomalies, 'Anomalies in Ammonia Data')

Anomalies in Ammeonia Data

: LM

2017-12-10 2017-12-17 2017-12-24 2017-12-31 2018-01-07 2018-01-14 2018-01-21 2018-01-28
Timestamp

The red stars in the above output diagram are the four instances detected as anomalies.
These four instances are all anomalies and are discussed in detail in Chapter 4.

49

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Statistic Approach

A Python library which rewrites Twitter’s AnomalyDetection algorithms is used here for testing
purposes.

Read data from Temp.csv file, parse “Timestamp” column using date time parser and set it
as index column.

In [22]: data = pd.read_csv('Temp.csv', index_col='Timestamp',
parse_dates=True, squeeze=True,
date_parser=pd_parser2)

Function anomaly detect_ ts is used to detect anomalies for seasonal univariate time series
data. The following are its parameters:

e x: Time series data which has two columns. The first column is timestamp data and the
second column contains values.

e max_anoms: Maximum percentage of the data that S-H-ESD will detect as anomalies.
e max_anoms: Maximum percentage of the data that S-H-ESD will detect as anomalies.

o direction: Anomalies direction. There are three options: ‘pos’ (positive), ‘neg’ (negative)
and ‘both’

e plot: A Boolean value to indicate if a plot needs to return for test data and anomalies. It
is not implemented yet.

In [23]: %Jtime
results = detts.anomaly_detect_ts(data, max_anoms=0.005,
direction='both', plot=False)

CPU times: user 3.65 s, sys: 51.4 ms, total: 3.7 s
Wall time: 3.79 s

Display the result.
In [24]: results['anoms']

Out[24]: 2017-11-24 14:20:00 0.0
dtype: float64

Only one anomaly has been found.
Detect on ammonia data.

In [25]: data = pd.read_csv('Ammonia.csv', index_col='Timestamp',
parse_dates=True, squeeze=True,
date_parser=pd_parser)

In [26]: %%time
results = detts.anomaly_detect_ts(data, max_anoms=0.005,
direction='both', plot=False)

20

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

CPU times: user 3.15 s, sys: O ns, total: 3.15 s
Wall time: 3.25 s

Display the test result.
In [27]: results['anoms']

Out [27]: 2017-12-05 19:44:00 69.996399
2018-01-23 14:30:00 45.311798
2017-12-05 19:43:00 44.756802
2017-12-05 19:42:00 39.700600
dtype: float64

A total of four outliers were found for ammonia which is the same as what was found using
LOF.

Plot the result.

In [28]: amm_plot = plt.figure(figsize=(20,10))
plt.plot(data, color='green')
plt.plot(results['anoms'],"r*", markersize=10)
plt.xlabel("Timestamp")
plt.ylabel("Value")
plt.title("Anomalies in Ammonia Data")
plt.show()

Anomalies in Ammonia Data

: LM

2017-12-10 2017-12-17 2017-12-24 2017-12-31 2018-01-07 2018-01-14 2018-01-21 2018-01-28
Timestamp

Next, try LinkedIn Python library for time series data analysis.

51

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Initialize the detector instance using test data and choose the Exponential Moving Average
algorithm which is discussed in Section 2.4.3.

In [29]: %%time
detector = AnomalyDetector('TempLinkedIn.csv', algorithm_name='exp_avg_detector')

CPU times: user 18 s, sys: 300 ms, total: 18.3 s
Wall time: 20 s

Get the anomalies of test data set.
In [30]: anomalies = detector.get_anomalies()

Display the anomalies. Timestamp in the result is epoch, convert it to UTC date time string.
In [31]: temp_anomalies = format_luminol_result(anomalies, False)
In [32]: temp_anomalies

Out [32] : Number Start On End On Exactly Happen On
2017-11-10 15:45:00 2017-11-10 15:45:00 2017-11-10 15:45:00
2017-11-17 12:08:00 2017-11-17 12:09:00 2017-11-17 12:09:00
2017-11-21 12:26:00 2017-11-21 12:29:00 2017-11-21 12:29:00
2017-11-21 12:31:00 2017-11-21 12:32:00 2017-11-21 12:32:00
2017-11-24 14:19:00 2017-11-24 14:22:00 2017-11-24 14:22:00
2017-11-24 14:25:00 2017-11-24 14:26:00 2017-11-24 14:26:00
2017-11-27 12:52:00 2017-11-27 12:52:00 2017-11-27 12:52:00
2017-11-30 13:13:00 2017-11-30 13:13:00 2017-11-30 13:13:00
2017-12-05 17:39:00 2017-12-05 17:39:00 2017-12-05 17:39:00
2017-12-05 17:47:00 2017-12-05 17:47:00 2017-12-05 17:47:00

© 0 N O O W N+~ O
© 0 NO O W N+~

[N
o

The result of Luminol actually gives the start time of the anomaly and the end time of the
anomaly as well.

Test Luminol on ammonia data following the above steps.

In [33]: %%time
detector = AnomalyDetector('AmmonialinkedIn.csv',
algorithm_name='exp_avg_detector')

CPU times: user 16.3 s, sys: 239 ms, total: 16.5 s
Wall time: 17.4 s

In [34]: anomalies = detector.get_anomalies()

Display the anomalies. Timestamp in the result is epoch, now convert it to UTC date time
string.

In [35]: ammonia_anomalies = format_luminol_result(anomalies, False)
Display the results.

In [36]: ammonia_anomalies

52

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Out [36] : Number Start On End On Exactly Happen On
0 1 2017-12-05 19:42:00 2017-12-05 19:45:00 2017-12-05 19:44:00
1 2 2018-01-23 14:30:00 2018-01-23 14:30:00 2018-01-23 14:30:00

Two anomaly periods were detected. They cover all 4 anomalies found by other algorithms.

Isolation Forest

In this section, the standard isolation forest is compared with the extended isolation forest using
the EIF package. Then, detect anomalies in the temperature data and ammonia data using the
scikit-learn implementation of the isolation forest algorithm.

In [1]: Ymatplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import multivariate_normal
import random as rn
import eif as iso
import seaborn as sb
sb.set_style(style="whitegrid")
sb.set_color_codes()
import scipy.ndimage
from scipy.interpolate import griddata
import numpy.ma as ma
from numpy.random import uniform, seed
import pandas as pd

These two functions are used to find the depth a given data point reaches in an IF tree.

In [2]: def getDepth(x, root, d):
n = root.n
p = root.p
if root.ntype == 'exNode':
return d
else:
if (x-p).dot(n) < O:
return getDepth(x,root.left,d+1)
else:
return getDepth(x,root.right,d+1)

def getVals(forest,x, sorted=True):
theta = np.linspace(0,2*np.pi, forest.ntrees)
r =[]
for t in forest.Trees:
r.append(getDepth(x,t.root,1))
if sorted:

93

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

r = np.sort(np.array(r))
return r, theta

Load water temperature data from csv file.
In [3]: df_temp = pd.read_csv("Temp.csv")

In [4]: f1 = plt.figure(figsize=(20,10))
df _temp['Value'].plot()
plt.xlabel("Timestamp")
plt.ylabel("Value")
plt.title('Water Temperature')
plt.show()

o vawm"f\f'\m'

125

Water Temperature

0.0

Value

)

[10000 20000 30000 40000 50000 £0000 70000 80000
Timestamp

Change timestamp to epoch.
In [5]: epoch = pd.to_datetime(df_temp['Timestamp']).values.astype(np.int64)
In [6]: df _temp['Timestamp'] = epoch
Convert dataframe to array.
In [7]: X = np.array(df_temp)
Set values of axis x for plotting.
In [8]: x = np.array(df_temp['Timestamp'])
Set values of axis y for plotting.

In [9]: y = np.array(df_temp['Value'l])

54

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Two sets of forests, FO and F1 are trained for comparison.

FO0 is the standard Isolation Forest, which corresponds to extension level 0 in the context of
EIF.

In [10]: %%time
#ExtensionlLevel=0 is the same as regular Isolation Forest
FO = iso.iForest(X , ntrees=100, sample_size=256, ExtensionLevel=0)

CPU times: user 770 ms, sys: 8.97 ms, total: 779 ms
Wall time: 921 ms

F1 is the Extended Isolation Forest with extension 1, which is the fully extended case.

In [11]: %%time
F1 = iso.iForest(X , ntrees=100, sample_size=256, ExtensionLevel=1)

CPU times: user 920 ms, sys: 16.7 ms, total: 936 ms
Wall time: 1.03 s

Function compute_ paths returns that anomaly score. It computes the depth each points
reaches in each trained tree, and converts the ensemble aggregate to an anomaly score

In [12]: %Jtime
Score the training data itself to see the distribution of
#the anomaly scores each point receives.
SO = FO.compute_paths(X_in=X)

CPU times: user 2min 54s, sys: 14.7 ms, total: 2min 54s
Wall time: 2min 56s

In [13]: %J%time
S1 = F1.compute_paths (X_in=X)

CPU times: user 2min 49s, sys: 47.1 ms, total: 2min 49s
Wall time: 3min 3s

Plot the points and highlight 30 points with highest and 30 points with lowest anomaly
scores. The two plots provide a comparison between the two algorithms.

In [14]: ssO=np.argsort(S0)
ssl=np.argsort(S1)

f = plt.figure(figsize=(12,6))

plt.subplot(1,2,1)
plt.scatter(x,y,s=15,c='b',edgecolor='b")
plt.scatter(x[ss0[-30:1],y[ss0[-30:]1],s=55,c="k")
plt.scatter(x[ss0[:30]],y[ss0[:30]],s=55,c="'r")
plt.title('Score data by IF')

95

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

plt.subplot(1,2,2)
plt.scatter(x,y,s=15,c='b',edgecolor='b")
plt.scatter(x[ss1[-30:1],y[ss1[-30:]1],s=55,c="k")
plt.scatter(x[ss1[:30]],y[ss1[:30]],s=55,c="'r")
plt.title('Score data by EIF')

plt.show()

Score data by IF Score data by EIF

o v Ty
. Py, . T
| : -h . hh

12.5 2 i 12.5 : 1
L]
10.0 i ' 10.0 i $
75 15
50 50
25 25
00 * 0000 @ 0o e & N =
1510 1511 1512 1513 1514 1515 1510 1511 1512 1513 1514 1515
118 1elB

The distribution of anomaly scores are shown above. By definition, anomalies are those that
occur less frequently. So it makes sense that the number of points with higher anomaly scores
reduces as the score increases.

The plotting above shows that standard IF works better than EIF and found more anomalies.
Some point anomalies were missed by EIF.

In [15]: f = plt.figure(figsize=(12,6))
plt.subplot(1,2,1)
sb.distplot (S0, kde=True, color="b")
plt.title('Score distribution by IF')

plt.subplot(1,2,2)

sb.distplot(S1, kde=True, color="b")
plt.title('Score distribution by EIF')
plt.show()

56

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Score distribution by IF Score distribution by EIF
14

30
12

5
10
20

15

10

045 0.50 055 0.60 065 070 0 0475 0500 0525 0550 0575 0.600 0625 0650 0675

A meshgrid is created on a square domain. Each point on the grid is then scored using the
trained forests. The resulting score map is visualized using contour plots.

In [16]: xx, yy = np.meshgrid(np.linspace(-5, 30, 30), np.linspace(-3, 3, 30))

S0 = FO.compute_paths(X_in=np.c_[xx.ravel(), yy.ravel()])
SO = SO.reshape(xx.shape)
S1 = F1.compute_paths(X_in=np.c_[xx.ravel(), yy.ravel()])

S1 = S1.reshape(xx.shape)

In [17]: f = plt.figure(figsize=(12,6))

= f.add_subplot(121)
levels = np.linspace(np.min(S0),np.max(S0),10)
CS = axl.contourf(xx, yy, SO, levels, cmap=plt.cm.Y10rRd)
plt.scatter(x,y,s=15,c='None',edgecolor="k")
plt.title('Score map by IF')

ax2 = f.add_subplot(122)

levels = np.linspace(np.min(S1) ,np.max(S0),10)

CS = ax2.contourf(xx, yy, S1, levels, cmap=plt.cm.Y10rRd)
plt.scatter(x,y,s=15,c='None',edgecolor="k")
plt.title('Score map by EIF')

plt.show()

o7

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Score map by IF Score map by EIF

15 15

10

10 E

Lo

5 5
0] o]
00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14

1e18 1e18

The following code is used to get a meaningful threshold to distinguish anomalies and normal
data.

In [18]: anomaliesO = SO[SO > 0.7]
In [19]: anomaliesO.size

Out [19]: 900

In [20]: anomaliesl = S1[S1 > 0.7]
In [21]: anomaliesl.size

Out[21]: O

In [22]: anomaliesO = SO[SO > 0.65]
In [23]: anomaliesO.size

Out [23]: 900

In [24]: anomaliesl = S1[S1 > 0.65]
In [25]: anomaliesl.size

Out [25] : 900

For each case, the forest is visualized by passing a single anomalous and a single nominal
point through the forest. Each radial line in the plots below corresponds to a tree. The gray
circle is the depth limit each tree can reach. Blue lines show the depth the nominal point
reached on each tree, while the red lines show the depth each anomalous point reaches for each

o8

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

tree. This visualization provides a quick view of how an average anomalous points reaches much
lower depths than the normal points.

In [26]: Sorted=False
fig = plt.figure(figsize=(12,6))
axl = plt.subplot(121, projection='polar')
rn, thetan = getVals(FO,np.array([0,0]),sorted=Sorted)
for j in range(len(rn)):
axl.plot([thetan[j],thetan[jl], [1,rn[jl], color='b',alpha=1,lw=1)

ra, thetaa = getVals(FO,np.array([3.3,3.3]),sorted=Sorted)
for j in range(len(ra)):
axl.plot([thetaal[j],thetaaljl], [1,raljl], color='r',alpha=0.9,lw=1.3)

title ="Forest visualization by IF\nNominal: Mean={0:.3f}, Var={1:.3f}\n" + \
"Anomaly: Mean={2:.3f}, Var={3:.3f}"
axl.set_title(title.format (np.mean(rn),np.var(rn),np.mean(ra),np.var(ra)))

axl.set_xticklabels([])
axl.set_xlabel("Anomaly")
axl.set_ylim(0,F0.limit)

axl.axes.get_xaxis().set_visible(False)
axl.axes.get_yaxis() .set_visible(False)

ax2 = plt.subplot(122, projection='polar')
rn, thetan = getVals(F1l,np.array([0,0]),sorted=Sorted)
for j in range(len(rn)):
ax2.plot([thetan[j],thetan[jl], [1,rn[jl], color='b',alpha=1,lw=1)

ra, thetaa = getVals(Fl,np.array([3.3,3.3]),sorted=Sorted)
for j in range(len(ra)):
ax2.plot([thetaal[j],thetaaljl], [1,ral[jl], color='r',alpha=0.9,lw=1.3)

title ="Forest visualization by EIF \nNominal: Mean={0:.3f}, Var={1:.3f}\n" + \
"Anomaly: Mean={2:.3f}, Var={3:.3f}"
ax2.set_title(title.format(np.mean(rn) ,np.var(rn),np.mean(ra),np.var(ra)))

ax2.set_xticklabels([])
ax2.set_xlabel("Anomaly")
ax2.set_ylim(0,F0.limit)

ax2.axes.get_xaxis() .set_visible(False)
ax2.axes.get_yaxis() .set_visible(False)

99

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Forest wisualization by IF Forest wisualization by EIF
Mominal: Mean=5.970, Var=3.009 Nominal: Mean=6.950, Var=2 848
Anomaly: Mean=6.040, Var=2.818 Anomaly: Mean=6.950, Var=2.848

A 2-D dataset is produced with a sinusoidal shape and Gaussian noise is added on top.
In [27]: df_amm = pd.read_csv("Ammonia.csv")

In [28]: f1 = plt.figure(figsize=(20,10))
df _amm['Value'].plot()
plt.xlabel("Timestamp")
plt.ylabel("Value")
plt.title('Ammonia Data')
plt.show()

60

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Ammonia Data

Value

0 10000 20000 30000 40000 50000 60000 70000
Timestamp

Change timestamp to epoch.

In [29]: df_amm['Timestamp'] = \
pd.to_datetime(df _amm['Timestamp']).values.astype(np.int64)

Set values of axis x for plotting.
In [30]: x = df _amm['Timestamp']
Set values of axis y for plotting.

In [31]: y = df_amm['Value']
Setup training data.
In [32]: X = np.array([x,y]).T

In [33]: fig=plt.figure(figsize=(6,6))
fig.add_subplot(111)
plt.plot(X[:,0],X[:,1],'0"', color=[0.5,0.5,0.5])
#plt.zlim([-5,30])
#plt.ylim([-3.,3.])
plt.title('Ammonia Data')
plt.show()

61

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Ammonia Data

0.
=0
50
Y L
40
30

20

1513 1514 1515 1516 1517
1el8

Two sets of forests are trained, FO and F1. FO is the standard IF, which corresponds to
extension level 0 in the context of EIF. F1 is the EIF with extension 1, which in the case of
2_D data (as in here), is the fully extended case.

In [34]: %%time
FO = iso.iForest(X,ntrees=100, sample_size=256, ExtensionLevel=0)

CPU times: user 730 ms, sys: O ns, total: 730 ms
Wall time: 825 ms

In [35]: %%time
F1 = iso.iForest(X,ntrees=100, sample_size=256, ExtensionLevel=1)

CPU times: user 840 ms, sys: O ns, total: 840 ms
Wall time: 911 ms

62

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Function compute_ paths returns that anomaly score. It computes the depth each points
reaches in each trained tree, and converts the ensemble aggregate to an anomaly score.

In [36]: %%time
Score the training data itself to see the distribution of
the anomaly scores each point receives.
S0 = FO.compute_paths(X_in=X)

CPU times: user 2min 32s, sys: 20.2 ms, total: 2min 32s
Wall time: 2min 34s

In [37]: 7%time
S1 = F1l.compute_paths(X_in=X)

CPU times: user 2min 33s, sys: 12.1 ms, total: 2min 33s
Wall time: 2min 35s

In [38]: ssO=np.argsort(S0)
ssl=np.argsort(S1)

f = plt.figure(figsize=(12,6))

plt.subplot(1,2,1)
plt.scatter(x,y,s=15,c='b',edgecolor='b")
plt.scatter(x[ss0[-10:]1],y[ss0[-10:]1],s=55,c="k")
plt.scatter(x[ss0[:10]],y[ss0[:10]],s=55,c="'r")
plt.title('Score data by IF')

plt.subplot(1,2,2)
plt.scatter(x,y,s=15,c='b‘,edgecolor='b')
plt.scatter(x[ss1[-10:1],y[ss1[-10:]1],s=55,c="k")
plt.scatter(x[ss1[:10]],y[ss1[:10]],s=55,c="'r")
plt.title('Score data by EIF')

plt.show()

63

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

20

10

Score data by IF

1513 1514 1515

1516

1517
1e18

10

Score data by EIF

1513 1514 1515 1516 1517
1e18

The distribution of the anomaly scores is shown above. By definition, anomalies are those

that occur less frequently. So it makes sense that the number of points with higher anomaly

scores reduces as the score increases.

by EIF.
In [39]: f = plt.figure(figsize=(12,6))

plt.subplot(1,2,1)

sb.distplot (S0, kde=True, color="b")

The black dots in the above plotting clearly shows that the four point anomalies are missed

plt.title('Score distribution by IF')

plt.subplot(1,2,2)

sb.distplot(S1, kde=True, color="b")

plt.title('Score distribution by EIF')

plt.show()

64

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Score distribution by IF Score distribution by EIF
12 30
10 25
B 20
3 15
4 10
2 5
%.40 045 050 055 0ed 065 070 0 0.50 0.55 060 065

The following code is used to get a meaningful threshold to distinguish anomalies and normal
data.

In [40]: anomaliesO = SO[SO > 0.7]
In [41]: anomaliesO.size

Out[41]: 1

In [42]: anomaliesl = S1[S1 > 0.7]
In [43]: anomaliesl.size

Out[43]: O

In [44]: anomaliesO = SO[SO > 0.65]
In [45]: anomaliesO.size

Out [45]: 157

In [46]: anomaliesl = S1[S1 > 0.65]
In [47]: anomaliesl.size

Out [47]: 356

A meshgrid is created on a square domain. Each point on the grid is then scored using the
trained forests. The resulting score map is visualized using contour plots.

In [48]: xx, yy = np.meshgrid(np.linspace(-5, 30, 30), np.linspace(-3, 3, 30))

65

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [49]:

70

50

30

20

10

In [50]:
In [51]:

SO = FO.compute_paths(X_in=np.c_[xx.ravel(), yy.ravel()])
S0 = S0.reshape(xx.shape)
S1 = F1.compute_paths(X_in=np.c_[xx.ravel(), yy.ravel()])
S1 = S1.reshape(xx.shape)

f = plt.figure(figsize=(12,6))

axl = f.add_subplot(121)

levels = np.linspace(np.min(S0),np.max(S0),10)

CS = axl.contourf(xx, yy, SO, levels, cmap=plt.cm.Y10rRd)
plt.scatter(x,y,s=15,c='None',edgecolor="k')
plt.title('Score map by IF')

ax2 = f.add_subplot (122)

levels = np.linspace(np.min(S1),np.max(S0),10)

CS = ax2.contourf(xx, yy, S1, levels, cmap=plt.cm.Y10rRd)
plt.scatter(x,y,s=15,c='None',edgecolor="k")
plt.title('Score map by EIF')

plt.show()

Score map by IF Score map by EIF

o 70

(]

50

&

o 40

30

20

10

0
04 06 08 10 12 14 00 02 04 O0& 08 10

1e18

anomalies = SO[SO > 0.7]

anomalies

66

12

14

118

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Out[561]:
In [52]:
In [53]:
Out [53] :

array ([], dtype=float64)
anomalies = SO[SO > 0.65]
anomalies.size

900

For each case, the forest is visualized by the same for temperature data.

In [54]:

Sorted=False
fig = plt.figure(figsize=(12,6))
axl = plt.subplot(121, projection='polar')
rn, thetan = getVals(FO,np.array([10,0]),sorted=Sorted)
for j in range(len(rmn)):
axl.plot([thetan[j],thetan[jl], [1,rn[jl], color='b',alpha=1,lw=1)

ra, thetaa = getVals(FO,np.array([-5,-3]),sorted=Sorted)
for j in range(len(ra)):
axl.plot([thetaal[j],thetaalj]], [1,ral[jl], color='r',alpha=0.9,1lw=1.3)

title="Forest visualization by IF\nNominal: Mean={0:.3f}, Var={1:.3fF\n"+ \
"Anomaly: Mean={2:.3f}, Var={3:.3f}"
axl.set_title(title.format (np.mean(rn),np.var(rn),np.mean(ra) ,np.var(ra)))

axl.set_xticklabels([])
axl.set_xlabel("Anomaly")
axl.set_ylim(0,FO0.limit)

axl.axes.get_xaxis() .set_visible(False)
axl.axes.get_yaxis() .set_visible(False)
#axl.text (0,F0.1imit+0.4, "800 Trees, full depth")

ax2 = plt.subplot(122, projection='polar')
rn, thetan = getVals(F1l,np.array([10,0]),sorted=Sorted)
for j in range(len(rn)):
ax2.plot([thetan[j],thetan[jl], [1,rn[jl], color='b',alpha=1,lw=1)

ra, thetaa = getVals(F1,np.array([-5,-3]),sorted=Sorted)
for j in range(len(ra)):
ax2.plot([thetaal[j],thetaaljl], [1,raljl], color='r',alpha=0.9,lw=1.3)

title=("Forest visualization by EIF\nNominal: Mean={0:.3f}, Var={1:.3f}\n" +
"Anomaly: Mean={2:.3f}, Var={3:.3f}")
ax2.set_title(title.format (np.mean(rn) ,np.var(rn),np.mean(ra) ,np.var(ra)))

ax2.set_xticklabels([])
ax2.set_xlabel("Anomaly")

67

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

ax2.set_ylim(0,F0.1limit)

ax2.axes.get_xaxis() .set_visible(False)
ax2.axes.get_yaxis() .set_visible(False)

Forest visualization by IF Forest visualization by EIF
MNominal: Mean=6.440, Var=3.086 MNominal: Mean=6.900, Var=3.310
Anomaly: Mean=6.440, Var=3.086 Anomaly: Mean=6.900, Var=3.210

IF actually works better than Extended Isolation Forest on the test data.
Now, sklearn.ensemble.IsolationForest is used to detect anomalies in test data.

In [55]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest

Read data from csv file.
In [56]: df _temp = pd.read_csv("Temp.csv")
Change timestamp to epoch.

In [57]: df_temp['Timestamp'] = \
pd.to_datetime(df_temp['Timestamp']) .values.astype(np.int64)

Convert dataframe to array.
In [58]: temp_train= np.array(df_temp)

Make prediction of temperature data.

68

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [59]: %J%time
fit the model
clf = IsolationForest()
clf .fit(temp_train)
pred = clf.predict(temp_train)

CPU times: user 2.86 s, sys: 325 ms, total: 3.18 s
Wall time: 3.24 s

Merge predict result with test data.
In [60]: df_temp['anomaly']=pred
Get test result.

In [61]: outliers=df_temp.loc[df_temp['anomaly']==-1]
outlier_index=list(outliers.index)
#print (outlier_index)
#Find the number of anomalies and mormal points here points
#classified -1 are anomalous
print(df_temp['anomaly'].value_counts())

1 70504
-1 7835
Name: anomaly, dtype: int64

Change epoch back to time.

In [62]: df_temp['Timestamp'] = \
pd.to_datetime(df_temp['Timestamp']) .values.astype(np.datetime64)

Display result.
In [63]: df_temp

Out [63] : Timestamp Value anomaly
0 2017-11-01 14:20:00 18.144899 -1
1 2017-11-01 14:21:00 18.148600 -1
2 2017-11-01 14:22:00 18.145201 -1
3 2017-11-01 14:23:00 18.164000 -1
4 2017-11-01 14:24:00 18.167101 -1
5 2017-11-01 14:25:00 18.166000 -1
6 2017-11-01 14:26:00 18.171200 -1
7 2017-11-01 14:27:00 18.176701 -1
8 2017-11-01 14:28:00 18.184601 -1
9 2017-11-01 14:29:00 18.174200 -1
10 2017-11-01 14:30:00 18.167101 -1
11 2017-11-01 14:31:00 18.168800 -1
12 2017-11-01 14:32:00 18.181801 -1
13 2017-11-01 14:33:00 18.175900 -1

69

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

14 2017-11-01 14:34:00 18.176901 -1
15 2017-11-01 14:35:00 18.176701 -1
16 2017-11-01 14:36:00 18.178101 -1
17 2017-11-01 14:37:00 18.175301 -1
18 2017-11-01 14:38:00 18.176701 -1
19 2017-11-01 14:39:00 18.173599 -1
20 2017-11-01 14:40:00 18.198200 -1
21 2017-11-01 14:41:00 18.193100 -1
22 2017-11-01 14:42:00 18.185900 -1
23 2017-11-01 14:43:00 18.197800 -1
24 2017-11-01 14:44:00 18.179701 -1
25 2017-11-01 14:45:00 18.181101 -1
26 2017-11-01 14:46:00 18.182199 -1
27 2017-11-01 14:47:00 18.185499 -1
28 2017-11-01 14:48:00 18.184900 -1
29 2017-11-01 14:49:00 18.185900 -1
78309 2018-01-09 19:26:00 11.914600 -1
78310 2018-01-09 19:27:00 11.908800 -1
78311 2018-01-09 19:28:00 11.919100 -1
78312 2018-01-09 19:29:00 11.925000 -1
78313 2018-01-09 19:30:00 11.937900 -1
78314 2018-01-09 19:31:00 11.943800 -1
78315 2018-01-09 19:32:00 11.945400 -1
78316 2018-01-09 19:33:00 11.951000 -1
78317 2018-01-09 19:34:00 11.961400 -1
78318 2018-01-09 19:35:00 11.968400 -1
78319 2018-01-09 19:36:00 11.972800 -1
78320 2018-01-09 19:37:00 11.978900 -1
78321 2018-01-09 19:38:00 11.988800 -1
78322 2018-01-09 19:39:00 11.981600 -1
78323 2018-01-09 19:40:00 11.968700 -1
78324 2018-01-09 19:41:00 11.964000 -1
78325 2018-01-09 19:42:00 11.955300 -1
78326 2018-01-09 19:43:00 11.958300 -1
78327 2018-01-09 19:44:00 11.945200 -1
78328 2018-01-09 19:45:00 11.948100 -1
78329 2018-01-09 19:46:00 11.962700 -1
78330 2018-01-09 19:47:00 11.949700 -1
78331 2018-01-09 19:48:00 11.942300 -1
78332 2018-01-09 19:49:00 11.936400 -1
78333 2018-01-09 19:50:00 11.933400 -1
78334 2018-01-09 19:51:00 11.936600 -1
78335 2018-01-09 19:52:00 11.940700 -1
78336 2018-01-09 19:53:00 11.949600 -1
78337 2018-01-09 19:54:00 11.965600 -1

70

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

78338 2018-01-09 19:55:00 11.980300 -1

[78339 rows x 3 columns]
Read ammonia data from csv file.
In [64]: df _amm = pd.read_csv("Ammonia.csv")
Change timestamp to epoch.

In [65]: df_amm['Timestamp'] = \
pd.to_datetime(df_amm['Timestamp']) .values.astype(np.int64)

Convert dataframe to array.
In [66]: amm_train= np.array(df_amm)
Make prediction of ammonia data set.

In [67]: %Jtime
fit the model
clf = IsolationForest()
clf.fit(amm_train)
pred = clf.predict(amm_train)

CPU times: user 2.66 s, sys: 234 ms, total: 2.89 s
Wall time: 2.98 s

Merge prediction score with data set.
In [68]: df_amm['anomaly']=pred
Get result.

In [69]: outliers=df_amm.loc[df_amm['anomaly']==-1]
outlier_index=list(outliers.index)
#print (outlier_index)
#Find the number of anomalies and nmormal points here points
#classified -1 are anomalous
print(df_amm['anomaly'].value_counts())

1 64731
-1 7195
Name: anomaly, dtype: int64

Convert epoch back to timestamp.

In [70]: df_amm['Timestamp'] = \
pd.to_datetime(df_amm['Timestamp']) .values.astype(np.datetime64)

Display result.

In [71]: df_amm

71

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Out[71]: Timestamp Value anomaly
0 2017-12-05 19:00:00 16.245501 -1
1 2017-12-05 19:01:00 16.227800 -1
2 2017-12-05 19:02:00 16.292000 -1
3 2017-12-05 19:03:00 15.719300 -1
4 2017-12-05 19:04:00 15.761400 -1
5 2017-12-05 19:05:00 15.847900 -1
6 2017-12-05 19:06:00 15.800900 -1
7 2017-12-05 19:07:00 15.801100 -1
8 2017-12-05 19:08:00 15.973500 -1
9 2017-12-05 19:09:00 16.062700 -1
10 2017-12-05 19:10:00 16.108700 -1
11 2017-12-05 19:11:00 15.975700 -1
12 2017-12-05 19:12:00 16.643101 1
13 2017-12-05 19:13:00 16.648600

14 2017-12-05 19:14:00 16.607901

15 2017-12-05 19:15:00 16.652300

16 2017-12-05 19:16:00 16.562700 -1
17 2017-12-05 19:17:00 16.515800 -1
18 2017-12-05 19:18:00 16.475201 -1
19 2017-12-05 19:19:00 16.557100 -1
20 2017-12-05 19:38:00 16.495199 -1
21 2017-12-05 19:39:00 16.452200 -1
22 2017-12-05 19:40:00 16.494600 -1
23 2017-12-05 19:41:00 16.453400 -1
24 2017-12-05 19:42:00 39.700600 -1
25 2017-12-05 19:43:00 44.756802 -1
26 2017-12-05 19:44:00 69.996399 -1
27 2017-12-05 19:45:00 7.129600 -1
28 2017-12-05 19:46:00 11.029300 -1
29 2017-12-05 19:47:00 12.425300 -1
71896 2018-01-26 17:39:00 10.423400 -1
71897 2018-01-26 17:40:00 10.451100 -1
71898 2018-01-26 17:41:00 10.691800 -1
71899 2018-01-26 17:42:00 10.617000 -1
71900 2018-01-26 17:43:00 10.616700 -1
71901 2018-01-26 17:44:00 10.507100 -1
71902 2018-01-26 17:45:00 10.443300 -1
71903 2018-01-26 17:46:00 10.381100 -1
71904 2018-01-26 17:47:00 10.345200 -1
71905 2018-01-26 17:48:00 10.275300 -1
71906 2018-01-26 17:49:00 10.311600 -1
71907 2018-01-26 17:50:00 10.531100 -1
71908 2018-01-26 17:51:00 10.531300 -1
71909 2018-01-26 17:52:00 10.458400 -1

72

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

71910 2018-01-26 17:53:00 10.466800 -1
71911 2018-01-26 17:54:00 10.466800 -1
71912 2018-01-26 17:55:00 10.395200 -1
71913 2018-01-26 17:56:00 10.360300 -1
71914 2018-01-26 17:57:00 10.324500 -1
71915 2018-01-26 17:58:00 10.431200 -1
71916 2018-01-26 17:59:00 10.504600 -1
71917 2018-01-26 18:00:00 10.324700 -1
71918 2018-01-26 18:01:00 10.420600 -1
71919 2018-01-26 18:02:00 10.528200 -1
71920 2018-01-26 18:03:00 10.455500 -1
71921 2018-01-26 18:04:00 10.281000 -1
71922 2018-01-26 18:05:00 10.424000 -1
71923 2018-01-26 18:06:00 10.457700 -1
71924 2018-01-26 18:07:00 10.422400 -1
71925 2018-01-26 18:08:00 10.352900 -1

[71926 rows x 3 columns]

The outlier-ness of IF is based on the score. Over 7000 points for both temperature and
ammonia marked as anomalies above 0.6 as suggested by the author. In this case it is very
difficult to find a feasible threshold for improvement. For instance, most of the anomalies are
considered as inliers if 0.7 is set as threshold, but hundreds of normal points are still considered
as anomalies if 0.65 is set as threshold. However, this algorithm might be used for cross-
validation if the anomaly found by other algorithm get a higher score (like 0.65) using IF, then
this point can be safely classified as an anomaly.

Robust Random Cut Forest

Use robust random cut forest to detect anomalies in test data.

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import rrcf
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Read data from csv file.

In [2]: df _temp = pd.read_csv("Temp.csv")
Convert dataframe to array.

In [3]: temp_train= np.array(df_temp['Value'])

Make prediction of test data.

73

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [4]: # Set tree parameters

num_trees = 40
shingle_size = 1
tree_size = 256

Merge prediction result with test data.

In [5]: # Create a forest of empty trees

In [6]:

In [7]:

=[]

_ in range(num_trees):
tree = rrcf.RCTree()
forest.append(tree)

Use the "shingle" generator to create rolling window

= rrcf.shingle(temp_train, size=shingle_size)

Create a dict to store anomaly score of each point
avg_codisp = {}

Display prediction result.

In [8]: %/time
for index, point in enumerate(points):
For each tree in the forest...

for tree in forest:

If tree is above permitted size, drop the oldest point
(FIFO)
if len(tree.leaves) > tree_size:

tree.forget_point(index - tree_size)
Insert the new point into the tree
tree.insert_point(point, index=index)
Compute codisp on the new point and take the average among
all trees
if not index in avg_codisp:

avg_codisplindex] = 0
avg_codisplindex] += tree.codisp(index) / num_trees

CPU times: user 1lmin 31s, sys: 185 ms, total: 1ilmin 31s

Wall time:

11min 40s

This method takes almost 12 minutes for detection which is too long compared to other algo-
rithms like LOF which only takes hundreds of milliseconds.

Convert score dictionary to data frame.

In [9]: temp_result = pd.DataFrame.from_dict(avg_codisp,'index')

Merge score with data.

In [10]: df_temp['Score'] = temp_result

Try different values of threshold to get anomalies.

74

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [11]: anomalies = df_temp.loc[df_temp['Score']>120]
In [12]: len(anomalies)

Out[12]: 30

In [13]: anomalies

Out [13]: Timestamp Value Score
6326 2017/11/7 12:38 16.982100 240.775000
6327 2017/11/7 12:39 16.974199 129.912500
8081 2017/11/10 14:37 14.233200 225.926667
8082 2017/11/10 14:38 10.074700 224.762500
8139 2017/11/10 15:40 15.121400 148.690104
8140 2017/11/10 15:41 12.731000 127.029167
8144 2017/11/10 15:45 0.000000 152.769673
17989 2017/11/17 12:08 0.000000 252.975000
17990 2017/11/17 12:09 0.000000 126.012500
17991 2017/11/17 12:10 15.785600 150.755547
23756 2017/11/21 12:26 0.000000 252.225000
23757 2017/11/21 12:27 0.000000 125.637500
23761 2017/11/21 12:31 15.368100 121.414583
24112 2017/11/24 14:19 0.000000 245.115179
24113 2017/11/24 14:20 0.000000 123.090179
24118 2017/11/24 14:25 15.363900 165.154968
28686 2017/11/30 13:13 0.000000 250.500000
30309 2017/12/5 12:54 14.546800 171.106964
30594 2017/12/5 17:39 0.000000 243.250000
30602 2017/12/5 17:47 0.000000 120.887500
30654 2017/12/5 19:42 13.076000 204.052083
30655 2017/12/5 19:43 12.322200 145.385417
33778 2017/12/7 23:46 14.668300 162.724122
40360 2017/12/12 13:50 13.636600 124.976042
44997 2017/12/15 19:22 13.527400 132.051732
48515 2017/12/20 1:33 14.009000 132.680690
48516 2017/12/20 1:34 14.024500 135.863333
77245 2018/1/9 1:37 11.976000 125.731692
77947 2018/1/9 13:19 9.805300 208.825000
77948 2018/1/9 13:20 9.549650 122.287500

The top 30 records with highest scores were listed above as it is not easy to find a feasible
threshold to split the anomalies. The 6 point anomalies (value=0) detected by other algorithms
are missing from this list. This list also contains some point which may be considered as noise.
For example, for record [2017/11/7 12:38, 16.982100], its value only is less than 0.7 different
from its closest point but the score is 240; and for record [2018/1/9 1:37 11.976000], its value
only is less than 0.08 different from its closest point but the score is 125.

Scale scores for plotting.

75

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [14]: for

index in range(len(avg_codisp)):

avg_codisp[index]=avg_codisp[index] /50

In [15]: fig, axl = plt.subplots(figsize=(10, 5))

color = 'tab:red'

ax1.

set_ylabel('Data', color=color, size=14)

axl.plot(temp_train, color=color)

axl.tick_params(axis='y', labelcolor=color, labelsize=12)
axl.set_ylim(0,30)

ax2 = axl.twinx()

color = 'tab:blue'

ax2.set_ylabel('CoDisp', color=color, size=14)
ax2.plot(pd.Series(avg_codisp) .sort_index(), color=color)
ax2.tick_params(axis='y', labelcolor=color, labelsize=12)
ax2.grid('off"')

ax2.set_ylim(0, 30)

plt.title('Temperature data (red) and anomaly score (blue)'

, size=14)

Out[15]: Text(0.5,1, 'Temperature data (red) and anomaly score (blue)')

Temperature data (red) and anomaly score (blue)

30 30
25 F 25
20 4 F20
@ MW«-\
=15 4 Y L 15
O
10 A F 10
51 F5
0- -0
] 10000 20000 30000 A0000 50000 60000 70000 BOOO0D
Test on ammonia data.
Read data from csv file.
In [16]: df _amm = pd.read_csv("Ammonia.csv")

Convert dataframe to array.

In [17]: amm_train= np.array(df_amm['Value'])

76

CoDisp

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Make prediction of test data.

In [18]: # Set tree parameters
num_trees = 40
shingle_size = 1
tree_size = 256

Merge prediction result with test data.

In [19]: # Create a forest of empty trees
forest = []
for _ in range(num_trees):
tree = rrcf.RCTree()
forest.append(tree)

Get test result.

In [20]: # Use the "shingle" generator to create rolling window
points = rrcf.shingle(amm_train, size=shingle_size)

There 7841 anomalies with score -1.
Change epoch back to time.

In [21]: # Create a dict to store anomaly score of each point
avg_codisp = {}

Display result.

In [22]: 7%time
for index, point in enumerate(points):
For each tree in the forest...
for tree in forest:
If tree is above permitted size, drop the oldest point
(FIFO)
if len(tree.leaves) > tree_size:
tree.forget_point(index - tree_size)
Insert the new point into the tree
tree.insert_point(point, index=index)
Compute codisp on the new point and take the average among
all trees
if not index in avg_codisp:
avg_codisplindex] = 0
avg_codisplindex] += tree.codisp(index) / num_trees

CPU times: user 15min 3s, sys: 127 ms, total: 15min 4s
Wall time: 15min 19s

This method takes over 15 minutes for detection which is too long compared to other algorithms
like LOF which only takes hundreds of milliseconds. Convert score dictionary to data frame.

In [23]: amm_result = pd.DataFrame.from_dict(avg_codisp, 'index')

77

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Merge score with data.
In [24]: df _amm['Score'] = amm_result
Try different values of threshold to get anomalies.
In [25]: anomalies = df_amm.loc[df_amm['Score']>130]
In [26]: len(anomalies)
Out[26]: 17
In [27]: anomalies

Out [27] : Timestamp Value Score
9729 2017-12-12 13:49:00 15.552900 206.675000
11190 2017-12-13 14:10:00 18.264601 152.091667
11191 2017-12-13 14:11:00 18.697500 138.970833
12510 2017-12-14 12:16:00 16.183201 164.291667
14123 2017-12-15 15:18:00 14.998800 197.975000
21245 2017-12-22 9:41:00 16.111099 151.334077
21260 2017-12-22 9:56:00 15.994200 136.693408
41609 2018-01-05 14:11:00 10.544300 227.675000
47319 2018-01-09 13:26:00 .701480 143.184509
57386 2018-01-16 13:36:00 .052440 163.979924
57389 2018-01-16 13:39:00 .159490 146.819097
61591 2018-01-19 12:17:00 .649060 217.175000
61592 2018-01-19 12:18:00 .840480 148.241667
67407 2018-01-23 14:30:00 45.311798 224.180952
69564 2018-01-25 2:27:00 .579580 133.757652
70192 2018-01-25 12:55:00 .522930 138.131250
71245 2018-01-26 6:28:00 .218790 134.025000

g1 w o1 00 O ©

© B~

The top 10 records with highest scores were listed above as it is not easy to find a feasible
threshold to split the anomalies. The 3 point anomalies detected by other algorithms are
missing from this list. This list also contains some point which may be considered as noise. For
example, for record [2017-12-15 15:18:00 14.998800], its value only is less than 0.1 different from
its closest point but the score is 197; and for record [2017-12-14 12:16:00 16.183201 |, its value
only is less than 0.05 different from its closest points but the score is 164.

Scale scores for plotting.

In [28]: for index in range(len(avg_codisp)):
avg_codisplindex]=avg_codisp[index] /50

In [29]: fig, axl = plt.subplots(figsize=(10, 5))

color = 'tab:red'

axl.set_ylabel('Data', color=color, size=14)
axl.plot(amm_train, color=color)
axl.tick_params(axis='y', labelcolor=color, labelsize=12)
axl.set_ylim(0,30)

78

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

ax2 = axl.twinx()

color = 'tab:blue'

ax2.set_ylabel('CoDisp', color=color, size=14)
ax2.plot(pd.Series(avg_codisp) .sort_index(), color=color)
ax2.tick_params(axis='y', labelcolor=color, labelsize=12)
ax2.grid('off"')

ax2.set_ylim(0, 30)

plt.title('Ammonia data (red) and anomaly score (blue)', size=14)

Out[29]: Text(0.5,1,'Ammonia data (red) and anomaly score (blue)')

Ammonia data (red) and anomaly score (blue)

25 1

20 1 Ll

Data
o

F25
I 20
| |

o
i
F15 O
[=]
1 W]

| F 10

F5

10000 20000 30000 40000 50000 G0000 70000

In summary, the execution time is too long which is expected as it takes time to construct
trees and compute the depth and length. Some outliers are marked with low anomaly scores
(like the zeros) whereas some normal points are marked with high anomaly scores which makes
it difficult to find a good threshold to filter out anomalies.

3.4 Evaluation using Jupyter Notebook II

3.4.1 Test Data Sets

To evaluate the performance of each algorithm, four data sets from the RSM30 water monitoring
system are used in this experiment. These data sets were provided by Primodal System and
were retrieved from the Dundas wastewater treatment plant.

Table 3.3 summarizes the information of these four data sets.

79

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Parameters | Number of Records Date Time range

Temperature 395,715 2018/2/1 0:00:00 - 2018/11/8 14:58:00
Ammonia 395,715 2018/2/1 0:00:00 - 2018/11/8 14:58:00
Chloride 395,715 2018/2/1 0:00:00 - 2018/11/8 14:58:00
Potassium 395,715 2018/2/1 0:00:00 - 2018/11/8 14:58:00

TABLE 3.3: Water Quality Data

Figure 3.3 shows the test data set for water temperature from February 1, 2018 to November
8, 2018.

‘Water Temperature

k-1

10

wn

o 50000 100000 150000 200000 250000 300000 350000 400000
Timestamp

FIGURE 3.3: Temperature Data Set 2018

Figure 3.4 shows the test data set for ammonia data from February 1, 2018 to November 8,
2018.

80

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Ammonia Data

100

Value

0 50000 100000 150000 200000 250000 300000 350000 400000
Timestamp

FIGURE 3.4: Ammonia Data Set 2018

Figure 3.5 shows the test data set for chloride data from February 1, 2018 to November 8,
2018.

Chloride Data

800

600

Value

400

200

0 50000 100000 150000 200000 250000 300000 350000 200000
Timestamp

FIGURE 3.5: Chloride Data Set 2018

Figure 3.6 shows the test data set for potassium data from February 1, 2018 to November
8, 2018.

81

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Potassium Data

1000

800

600

Value

400

200

WM . -

0 50000 100000 150000 200000 250000 300000 350000 400000
Timestamp

FIGURE 3.6: Potassium Data Set 2018

3.4.2 Notebook
Machine Learning
First of all, the unsupervised outlier detection class ‘LocalOutlierFactor’ in scikit-learn is used
to to detect anomalies in temperature, ammonia, chloride and potassium data.
Run Python file for the auxiliary functions.
In [1]: %run anomaly_detection.py

At the beginning, functions are defined to get data from csv files, process and then display
them.

Following methods are used to read test data from csv file.

In [2]: def get_temp_data():
return pd.read_csv("2018temp.csv")

In [3]: def get_ammonia_data():
return pd.read_csv("2018amm.csv")

In [4]: def get_chloride_data():
return pd.read_csv("2018chloride.csv")

In [5]: def get_potassium_data(Q):
return pd.read_csv("2018potassium.csv")

Read temperature data from “2018temp.csv” file and save to temp. “2018temp.csv” contains
two columns: “Timestamp” and “Value”

82

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [6]: temp = get_temp_data()
Display the general information of the test temperature data:

In [7]: print ("Data Range")
print ("Start Date %s"/%(temp.head(1l)['Timestamp']))
print ("End Date %s"Y (temp.tail(1) ['Timestamp']))

Data Range

Start Date O 2/1/2018 0:00
Name: Timestamp, dtype: object

End Date 395713 11/8/2018 14:58
Name: Timestamp, dtype: object

Get the total number of records in data set
In [8]: print ("Number of records: Y%s"/(temp.shapel[0]))

Number of records: 395714

Now plot temperature test data.

In [9]: plot_original_data(temp, "Water Temperature'")

‘Water Temperature

35

10

T T T T T T T T T
o 50000 100000 150000 200000 250000 300000 350000 400000
Timestamp

The above output diagram clearly shows that there are several instances which are far from
others.

Call method to retrieve ammonia test data from "2018amm.csv" file.

83

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [10]: ammonia = get_ammonia_data()
Display general information of ammonia test data.
In [11]: display_info(ammonia)

Data Range

Start Date 0 2/1/2018 0:00
Name: Timestamp, dtype: object

End Date 395713 11/8/2018 14:58
Name: Timestamp, dtype: object
num_values: 395714

There are 395714 records in the ammonia data.

In [12]: print ("Number of records: %s" (ammonia.shape[0]))

Number of records: 395714

Plot ammonia test data.

In [13]: plot_original_data(ammonia, "Ammonia Data")

Ammonia Data

100

Value

o 50000 100000 150000 200000 250000
Timestamp

Read chloride data from "2018chloride.csv" file.
In [14]: chloride = get_chloride_data()
Display the general data information.

In [15]: display_info(chloride)

84

300000 350000 400000

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Data Range

Start Date O 2/1/2018 0:00
Name: Timestamp, dtype: object

End Date 395713 11/8/2018 14:58
Name: Timestamp, dtype: object
num_values: 395714

In [16]: print ("Number of records: %s"’%(chloride.shape[0]))

Number of records: 395714

Plot chloride data.

In [17]: plot_original_data(chloride, "Chloride Data")

Chloride Data

800

600

Value

400

200

T T T T T T T T T
0 50000 100000 150000 200000 250000 300000 350000 400000
Timestamp

Read potassium data from "2018potassium.csv" file.
In [18]: potassium = get_potassium_data()
Display general data information.
In [19]: display_info(potassium)

Data Range

Start Date 0 2/1/2018 0:00
Name: Timestamp, dtype: object

End Date 395713 11/8/2018 14:58
Name: Timestamp, dtype: object

85

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

num_values: 395714

In [20]: print ("Number of records: %s"/(potassium.shape[0]))

Number of records: 395714

Plot potassium data.

In [21]: plot_original_data(potassium, "Potassium Data")

Potassium Data

1000

800

600

Value

400

200

|, h .

0 50000 100000 150000 200000 250000 300000 350000 400000
Timestamp

Detect outlier using Local Outlier Factor which is from scikit-learn library.

Fist of all, detect anomalies in temperature data.

Function “process_data” creates index on “Timestamp” column for temperature data.
In [22]: i_temp = process_data(temp)

Get data of “Value” column which is used to fit LOF class later.
In [23]: temp_data = reshape_training dataset(i_temp)

Initialize an instance of LocalOutlierFactor.
In [24]: clf = LocalOutlierFactor(metric='euclidean')

Get the prediction result.

In [25]: %Jtime
temp_anomalies = lof_prediction(clf,temp_data, i_temp)

86

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

CPU times: user 5.16 s, sys: 396 ms, total: 5.55 s
Wall time: 5.81 s

In [26]: print ("Number of Anomalies:’%s"’(temp_anomalies.shapel[0]))

Number of Anomalies:156

Display all the anomaly instances with their score.
In [27]: print (temp_anomalies)

Value isinlier
Timestamp
2018-04-16 09:59:00
2018-04-16 10:00:00
2018-04-16 10:01:00
2018-04-16 10:13:00
2018-04-16 10:14:00
2018-04-16 10:15:00
2018-04-16 10:16:00
2018-04-16 10:17:00
2018-04-16 10:18:00
2018-04-16 10:19:00
2018-04-16 11:03:00
2018-04-16 11:10:00
2018-04-16 11:11:00
2018-04-16 11:12:00
2018-04-16 11:13:00
2018-04-16 11:14:00
2018-04-16 11:15:00
2018-04-16 11:16:00
2018-04-16 11:18:00
2018-04-16 11:19:00
2018-04-16 11:20:00
2018-04-16 11:23:00
2018-04-16 11:24:00
2018-04-16 11:25:00
2018-04-16 11:42:00
2018-04-16 11:43:00
2018-04-16 11:44:00
2018-04-16 11:45:00
2018-04-16 11:46:00
2018-04-16 11:47:00

.997010 -1.500000e+07
.995570 -1.500000e+07
.998840 -1.500000e+07
.974030 -3.000000e+07
.972470 -3.000000e+07
.970760 -3.000000e+07
.972470 -3.000000e+07
.972600 -3.000000e+07
.971010 -3.000000e+07
.972600 -3.000000e+07
.944670 -3.000000e+07
.944760 -3.000000e+07
.943240 -3.000000e+07
.942960 -3.000000e+07
.944580 -3.000000e+07
.944760 -3.000000e+07
.944580 -3.000000e+07
.944760 -3.000000e+07
.943050 -3.000000e+07
.943240 -3.000000e+07
.943050 -3.000000e+07
.943150 -3.000000e+07
.942960 -3.000000e+07
.944670 -3.000000e+07
.966220 -3.000000e+07
.967860 -3.000000e+07
.971010 -3.000000e+07
.970950 -3.000000e+07
.972470 -3.000000e+07
.972470 -3.000000e+07

NN NN ANNANANNANNANANANANNANANNANNNNNANNNN AN A

2018-06-06 10:21:00 15.141100 -2.000000e+07
2018-06-06 10:22:00 15.141100 -2.000000e+07
2018-06-06 10:23:00 15.136400 -2.000000e+07

87

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

2018-06-06 10:28:00 15.138100 -2.000000e+07
2018-06-06 10:29:00 15.136900 -2.000000e+07
2018-06-06 10:30:00 15.136600 -2.000000e+07
2018-06-06 10:50:00 15.083500 -3.000000e+07
2018-06-06 10:51:00 15.083500 -3.000000e+07
2018-06-06 10:52:00 15.081700 -3.000000e+07
2018-06-06 10:53:00 15.079300 -3.000000e+07
2018-06-06 10:54:00 15.080500 -3.000000e+07
2018-06-06 10:55:00 15.077900 -3.000000e+07
2018-06-06 11:00:00 15.075100 -3.000000e+07
2018-06-06 12:33:00 15.078900 -3.000000e+07
2018-06-06 12:55:00 15.083300 -3.000000e+07
2018-06-06 13:11:00 15.140700 -2.000000e+07
2018-06-06 13:30:00 15.249100 -1.500000e+07
2018-06-07 10:43:00 15.277100 -1.000000e+07
2018-06-07 10:45:00 15.276700 -1.000000e+07
2018-06-07 12:25:00 15.247700 -1.500000e+07
2018-06-07 12:26:00 15.246200 -1.500000e+07
2018-06-07 12:28:00 15.254000 -1.500000e+07
2018-06-07 12:43:00 15.275300 -1.000000e+07
2018-07-04 16:28:00 21.471300 -5.000000e+07
2018-09-18 02:02:00 21.465401 -5.000000e+07
2018-09-18 02:04:00 21.470800 -5.000000e+07
2018-09-18 02:05:00 21.469999 -5.000000e+07
2018-09-18 02:06:00 21.468100 -5.000000e+07
2018-09-18 02:07:00 21.470800 -5.000000e+07
2018-09-18 02:08:00 21.466700 -5.000000e+07

[156 rows x 2 columns]
Export the result to csv file for further analysis.
In [28]: temp_anomalies.to_csv('anomalies_temp.csv')

Plot the result for temperature test data to deliver the whole picture.

In [29]: plot_lof_result(i_temp,temp_anomalies, 'Anomalies in Temperature Data')

88

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Anomalies in Temperature Data

3B

r
2
E}
£

10

v

2018-02 2018-03 2018-04 2018-05 2018-06 2018-07 2018-08 2018-09 2018-10 2018-11
Timestamp

The red stars in the above output diagram are the instances detected as anomalies. It shows
that all of these anomalies are far from other instances in the temperature test data set.

Detect anomalies on the ammonia test data as on temperature test data.
Get values of ammonia test data from dataframe:
In [30]: i_ammonia = process_data(ammonia)
In [31]: amm_data = reshape_training dataset(i_ammonia)
Initialize an instance of LocalOutlierFactor class.
In [32]: clf = LocalOutlierFactor(metric='euclidean')
Make prediction of test data.

In [33]: %J%time
amm_anomalies = lof_prediction(clf,amm_data, i_ammonia)

CPU times: user 4.52 s, sys: 449 ms, total: 4.97 s
Wall time: 5.38 s

In [34]: print ("Number of anomalies:’s"Y (amm_anomalies.shape[0]))

Number of anomalies:951

Export result to csv file

In [35]: amm_anomalies.to_csv('anomalies_amm.csv')

89

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Plot the prediction result for ammonia test data.

In [36]: plot_lof_result(i_ammonia,amm_anomalies,'Anomalies in Ammonia Data')

Anomalies in Ammonia Data

¥

Value

.ﬂ |-|\ " l;n i

2018-02 2018-03 2018-04 2018-05 2018-06 2018-07 2018-08 2018-09 2018-10 201811
Timestamp

The red stars in the above output diagram are the instances detected as anomalies. It shows
that all of these anomalies are far from other instances in the ammonia test data set.

Next, detect anomalies on Chloride data set following the above steps:
In [37]: i_chl = process_data(chloride)
In [38]: chl_data = reshape_traning dataset(i_chl)

In [39]: clf = LocalOutlierFactor(n_neighbors=20, metric='euclidean',
contamination=0.001)

In [40]: %%time
clf_anomalies = lof_prediction(clf,chl_data, i_chl)

CPU times: user 4.49 s, sys: 481 ms, total: 4.97 s
Wall time: 5.15 s

In [41]: print ("Number of Anomalies:%s"%(clf_anomalies.shape[0]))

Number of Anomalies:22407

Save result to csv file for further analysis.

In [42]: clf_anomalies.to_csv('anomalies_chl.csv')

90

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [43]: plot_lof_result(i_chl,clf_anomalies,'Anomalies in Chloride Data')

Anomalies in Chloride Data

800

600

Value

400

200

2018-02 2018-03 2018-04 2018-05 2018-06 2018-07 2018-08 2018-09 2018-10 2018-11
Timestamp

Next, detect anomalies on potassium data set following the above steps:
In [44]: i_pota = process_data(potassium)
In [45]: pota_data = reshape_traning_dataset(i_pota)

In [46]: clf = LocalOutlierFactor(n_neighbors=20, metric='euclidean',
contamination=0.001)

In [47]: 7%time
pota_anomalies = lof_prediction(clf,pota_data, i_pota)

CPU times: user 30.7 s, sys: 437 ms, total: 31.1 s
Wall time: 32.4 s

In [48]: print ("Number of Anomalies:’%s"’(pota_anomalies.shapel[0]))

Number of Anomalies:9316

In [49]: pota_anomalies.to_csv('anomalies_pota.csv')

In [50]: plot_lof_result(i_pota,pota_anomalies, 'Anomalies in Potassium Data')

91

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Anomalies in Potassium Data

1000

800

600

Value

400

200

4
h
0 n o’ l\ el - - .

2018-02 2018-03 2018-04 2018-05 2018-06 2018-07 2018-08 2018-09 2018-10 2018-11
Timestamp

Statistic Approach
A Python library which rewrites Twitter’s Anomaly Detection algorithms is used for testing
purposes.

Try to use it to detect temperature data.

Read data from csv file.

In [51]: data = pd.read_csv('2018temp.csv', index_col='Timestamp',
parse_dates=True, squeeze=True,
date_parser=pd_parser3)

Function anomaly_detect_ ts is to detect anomalies in seasonal univariate time series.

In [52]: %J%time
results = detts.anomaly_detect_ts(data, max_anoms=0.005,
direction='both', plot=False)

CPU times: user 1min 50s, sys: 311 ms, total: 1min 50s
Wall time: 2min 9s

Display the result.
In [53]: print (results)

{'anoms': Series([], dtype: float64), 'plot': None}

92

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

No anomalies has been found.
In [54]: results['anoms'].to_csv('anomalies_temp_twitter.csv')
Detect on ammonia data.

In [55]: data = pd.read_csv('2018amm.csv', index_col='Timestamp',
parse_dates=True, squeeze=True,
date_parser=pd_parser3)

In [56]: %Jtime
results = detts.anomaly_detect_ts(data, max_anoms=0.005,
direction='both', plot=False)

CPU times: user 1min 47s, sys: 70.4 ms, total: 1min 47s
Wall time: 1min 55s

Display the test result.
In [57]: print (results)

{'anoms': 2018-05-31 08:44:00 103.430000

2018-05-31 08:45:00 87.863701
2018-05-31 08:43:00 82.142303
2018-05-31 08:46:00 82.013199
2018-05-31 08:47:00 79.185097
2018-05-31 08:49:00 74.860603
2018-05-31 08:48:00 74.736000
2018-05-31 08:50:00 73.415001
2018-05-31 08:53:00 72.498100
2018-05-31 08:51:00 72.380302
2018-05-31 08:52:00 72.250198
2018-05-31 08:54:00 70.913803
2018-05-31 08:55:00 70.380699
2018-05-31 08:56:00 70.213600
2018-05-31 08:57:00 69.128601
2018-05-30 19:53:00 70.544800
2018-05-30 20:06:00 70.062897
2018-05-31 08:59:00 68.431503
2018-05-30 19:58:00 70.000198
2018-05-30 20:01:00 69.846802
2018-05-31 08:58:00 68.060097
2018-05-30 20:11:00 69.505501
2018-05-30 20:03:00 69.335602
2018-05-31 09:01:00 67.537102
2018-05-31 09:00:00 67.301804
2018-05-30 19:50:00 69.007004
2018-05-30 20:13:00 68.806702
2018-05-30 19:46:00 68.917900

93

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

2018-05-31 09:07:00 67.241600
2018-05-31 09:12:00 67.260101
2018-05-30 22:02:00 44 .820301
2018-05-30 21:58:00 44 .739201
2018-05-30 21:53:00 44 .745899
2018-05-30 21:46:00 44.616901
2018-05-30 21:57:00 44 .523102
2018-05-31 07:40:00 43.741901
2018-05-30 22:03:00 44 .528000
2018-05-30 22:00:00 44.411201
2018-05-30 21:49:00 44 .489201
2018-05-30 22:07:00 44 .329399
2018-05-30 21:50:00 44 .282902
2018-05-30 21:55:00 44 .254398
2018-05-30 21:52:00 44.217999
2018-05-31 07:39:00 43.372398
2018-05-30 21:48:00 44.182098
2018-05-30 21:54:00 44 .143200
2018-05-30 21:44:00 44 .167599
2018-05-30 22:04:00 44 .054501
2018-05-30 21:47:00 44.129902
2018-05-31 04:50:00 43.393799
2018-05-30 22:11:00 43.815300
2018-05-31 04:51:00 43.254398
2018-05-31 07:38:00 43.012600
2018-05-30 21:51:00 43.792301
2018-05-30 22:06:00 43.726002
2018-05-31 04:44:00 43.231800
2018-05-31 04:49:00 43.122898
2018-05-31 07:37:00 42.979301
2018-05-30 22:13:00 43.591900
2018-05-30 21:59:00 43.655499

Length: 482, dtype: float64, 'expected': None, 'plot': None}

In [58]: results['anoms'].to csv('anomalies amm twitter.csv')
Plot the result.

In [59]: plot = plt.figure(figsize=(20,10))
plt.plot(data, color='green')
plt.plot(results['anoms'],"r*", markersize=10)
plt.xlabel("Timestamp")
plt.ylabel("Value")
plt.title("Anomalies in Ammonia Data')
plt.show()

94

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Anomalies in Ammonia Data

100

Value

2018-02 2018-03 2016-04 201805 2018-06 2018-07 2018-08 2018-09 2018-10 2018-11
Timestamp

Detect on chloride data.
Read chloride data from “2018chloride.csv” file.

In [60]: data = pd.read_csv('2018chloride.csv', index_col='Timestamp',
parse_dates=True, squeeze=True,
date_parser=pd_parser3)

In [61]: %Jtime
results = detts.anomaly_detect_ts(data, max_anoms=0.005,
direction='both', plot=False)

CPU times: user 1min 34s, sys: 24.3 ms, total: 1min 34s
Wall time: 1min 39s

Print the detection result for chloride data.
In [62]: print (results)

{'anoms': 2018-07-09 18:15:00 998.767029
2018-07-09 18:04:00 998.797974
2018-07-09 18:31:00 996.416016
2018-07-09 18:34:00 996.458008
2018-07-09 18:32:00 996.500977
2018-07-09 02:27:00 998.132019
2018-07-09 02:29:00 998.101990
2018-07-09 02:36:00 998.036011
2018-07-09 18:16:00 996.278992
2018-07-09 17:59:00 998.849976

95

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

2018-07-09 18:05:00 996.174011
2018-07-09 18:03:00 996.520996
2018-07-09 02:28:00 995.614014
2018-07-09 18:02:00 996.815002
2018-07-09 18:29:00 993.869995
2018-07-09 17:55:00 996.080017
2018-07-09 17:56:00 996.067993
2018-07-09 02:21:00 993.031982
2018-07-09 02:35:00 992.926025
2018-07-09 02:34:00 992.991028
2018-07-09 02:47:00 992.487000
2018-07-09 17:54:00 993.609009
2018-07-09 02:20:00 990.486023
2018-07-09 17:57:00 993.526001
2018-07-09 18:35:00 989.020996
2018-07-10 12:38:00 999.182007
2018-07-10 12:40:00 999.466980
2018-07-09 02:33:00 990.494995
2018-07-09 12:56:00 998.926025
2018-07-09 18:25:00 988.770020

2018-07-07 12:13:00 925.591980
2018-07-09 19:24:00 916.510010
2018-07-09 19:01:00 916.567017
2018-07-08 20:10:00 911.124023
2018-07-08 18:13:00 914.552002
2018-07-10 03:57:00 921.575012
2018-07-10 06:18:00 923.935974
2018-07-10 09:32:00 927 .885986
2018-07-08 05:13:00 923.950989
2018-07-08 23:13:00 908.854980
2018-07-09 19:42:00 911.982971
2018-07-08 04:40:00 922.499023
2018-07-08 05:20:00 923.408997
2018-07-09 18:58:00 914.237976
2018-07-08 05:09:00 923.963013
2018-07-09 19:41:00 911.943970
2018-07-09 18:59:00 914.198975
2018-07-10 10:44:00 927.122986
2018-07-08 08:01:00 924.393982
2018-07-09 19:00:00 914.132019
2018-07-10 06:23:00 926.200989
2018-07-08 18:14:00 912.078003
2018-07-09 19:45:00 909.583984
2018-07-08 18:38:00 912.987000
2018-07-08 05:14:00 921.460999

96

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

2018-07-09 12:25:00 921.395020
2018-07-09 19:44:00 909.546021
2018-07-10 06:20:00 921.431030
2018-07-08 23:51:00 905.762024
2018-07-10 10:43:00 924.794006
Length: 351, dtype: float64, 'expected': None, 'plot': None}

Save result to csv file for further analysis.
In [63]: results['anoms'].to _csv('anomalies chl twitter.csv')
Plot the result for chloride data.

In [64]: plot = plt.figure(figsize=(20,10))
plt.plot(data, color='green')
plt.plot(results['anoms'],"r*", markersize=10)
plt.xlabel("Timestamp")
plt.ylabel("Value")
plt.title("Anomalies in Chloride Data")
plt.show()

Anomalies in Chloride Data

¥
k 4

800

600

Value

400 ! |
[i

200

2018-02 201803 2018-04 2018-05 2018-06 2018-07 2018-08 2018-09 2018-10 2018-11
Timestamp

Detect on potassium data.
Read data from “2018potassium.csv” file.

In [65]: data = pd.read_csv('2018potassium.csv', index_col='Timestamp',
parse_dates=True, squeeze=True,
date_parser=pd_parser3)

97

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [66]: %%time
results = detts.anomaly_detect_ts(data, max_anoms=0.005,
direction='both', plot=False)

CPU times: user 1min 33s, sys: 60 ms, total: 1min 33s
Wall time: 1min 38s

Display detection result.
In [67]: print (results)

{'anoms': 2018-05-30 19:41:00 999.198975
2018-05-30 19:40:00 998.916992
2018-05-30 22:35:00 999.010010
2018-05-30 20:54:00 998.758972
2018-05-30 21:39:00 997.414978
2018-05-30 22:44:00 996.447998
2018-05-30 22:36:00 995.041016
2018-05-30 21:03:00 994.781006
2018-05-30 22:40:00 992.598022
2018-05-30 20:58:00 992.005981
2018-05-30 19:37:00 989.947021
2018-05-30 22:49:00 990.427979
2018-05-30 20:57:00 989.318970
2018-05-30 19:38:00 987.835022
2018-05-30 21:35:00 986.504028
2018-05-30 22:45:00 983.914978
2018-05-30 21:37:00 983.843018
2018-05-30 22:41:00 982.567017
2018-05-30 22:50:00 978.273987
2018-05-30 21:36:00 972.122009
2018-05-30 22:48:00 971.518005
2018-05-30 19:33:00 970.072021
2018-05-30 22:46:00 965.681030
2018-05-30 19:34:00 957.940002
2018-05-30 19:36:00 953.828003
2018-05-30 22:47:00 953.541016
2018-05-30 23:00:00 951.937988
2018-05-30 19:32:00 950.396973
2018-05-30 19:35:00 941.718018
2018-05-30 22:51:00 938.174011

2018-05-31 12:08:00 204.895004
2018-05-31 12:00:00 204.848999
2018-05-31 12:52:00 204.149002
2018-05-31 12:53:00 203.886002
2018-05-31 12:56:00 203.848999

98

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

2018-05-31 12:54:00 203.541000
2018-05-31 12:55:00 203.115005
2018-05-31 12:57:00 202.755005
2018-05-31 12:58:00 202.673996
2018-05-31 12:59:00 202.035004
2018-05-31 13:00:00 201.106995
2018-05-31 13:01:00 199.494995
2018-05-31 13:02:00 198.410004
2018-05-31 13:12:00 197.403000
2018-05-31 13:11:00 197.078003
2018-05-31 13:10:00 196.960999
2018-05-31 13:08:00 196.438004
2018-05-31 13:14:00 196.171997
2018-05-31 13:05:00 196.160995
2018-05-31 13:09:00 196.138000
2018-05-31 13:15:00 196.026993
2018-05-31 13:04:00 195.925995
2018-05-31 13:13:00 195.602997
2018-05-31 13:07:00 195.382996
2018-05-31 13:06:00 195.248993
2018-05-31 13:03:00 195.214005
2018-05-30 16:13:00 177.501999
2018-05-30 16:12:00 158.983994
2018-05-30 16:11:00 156.643005
2018-05-30 16:10:00 137.828995
Length: 1090, dtype: float64, 'expected': None, 'plot': None}

Save result to csv file for further analysis.
In [68]: results['anoms'].to_csv('anomalies_pota_twitter.csv')
Plot test result for potassium data.

In [69]: plot = plt.figure(figsize=(20,10))
plt.plot(data, color='green')
plt.plot(results['anoms'],"r*", markersize=10)
plt.xlabel("Timestamp")
plt.ylabel("Value")
plt.title("Anomalies in Potassium Data')
plt.show()

99

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Anomalies in Potassium Data

1000

800

600

Value

400

200

|,

f

2018-02

201803 2018-04 2018-05 2018-06

2018-07 2018-08 2018-09

Timestamp

Next, try LinkedIn Python library for time series data analysis.

First detect anomalies in temperature data.

2018-10 2018-11

Initialize the detector instance using test data and choose EMA algorithm.

In [70]: %%time

detector = AnomalyDetector('2018temp-linkedin.csv',

algorithm_name='exp_avg_detector')

CPU times: user 1min 256s, sys: 1.02 s, total: 1min 26s
Wall time:

Imin 30s

Get the anomalies of test data set.

In [71]: 1_temp_anomalies = detector.get_

anomalies()

Convert timestamp to UTC date time string as timestamp in the result is epoch.

In [72]: 1_temp_anomalies = format_luminol_result(l_temp_anomalies, False)

In [73]: 1_temp_anomalies

Out[73]:

0
1
2

Number Start On
1 2018-07-23 15:02:00
2 2018-09-19 17:04:00
3 2018-09-24 17:31:00

End On
2018-07-23 15:02:00
2018-09-19 17:04:00
2018-09-24 17:31:00

Exactly Happen On
2018-07-23 15:02:00
2018-09-19 17:04:00
2018-09-24 17:31:00

The result of Luminol actually gives the start time of anomaly and end time of anomaly as

well.

100

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [74]: temp_anomalies.to_csv('anomalies_temp_linkedin.csv')
Test Luminol on ammonia data following the above steps.

In [75]: J%time
detector = AnomalyDetector('2018amm-linkedin.csv',
algorithm_name='exp_avg_detector')

CPU times: user 1min 27s, sys: 1.13 s, total: 1min 28s
Wall time: 1min 32s

In [76]: 1_amm_anomalies = detector.get_anomalies()
Timestamp in the result is epoch, now convert it to UTC date time string.
In [77]: 1_amm_anomalies = format_luminol_result(l_amm_anomalies, False)

In [78]: 1_amm_anomalies

Out [78] : Number Start On End On Exactly Happen

© 0 N O O W N+~ O
©O© 0 NO O W N+~

e e el
S W N -, O

e e e
a P> W NN = O

In [79]: 1 amm_anomalies.to_csv('anomalies amm_ linkedin.csv')
Test Luminol on chloride data following the above steps.

In [80]: %/time
detector = AnomalyDetector('2018chloride-linkedin.csv',
algorithm_name='exp_avg_detector')

CPU times: user 1lmin 27s, sys: 1.1 s, total: 1min 28s
Wall time: 1min 32s

In [81]: 1_chl_anomalies = detector.get_anomalies()

Timestamp in the result is epoch, now convert it to UTC date time string.

101

2018-05-30 20:39:00 2018-05-30 20:39:00 2018-05-30 20:
2018-05-30 20:42:00 2018-05-30 20:44:00 2018-05-30 20:
2018-05-30 21:44:00 2018-05-30 21:44:00 2018-05-30 21:
2018-05-30 21:54:00 2018-05-30 21:54:00 2018-05-30 21:
2018-05-30 21:57:00 2018-05-30 22:00:00 2018-05-30 22:
2018-05-30 22:03:00 2018-05-30 22:03:00 2018-05-30 22:
2018-05-30 22:35:00 2018-05-30 22:37:00 2018-05-30 22:
2018-05-30 22:39:00 2018-05-30 22:39:00 2018-05-30 22:
2018-05-30 23:36:00 2018-05-30 23:36:00 2018-05-30 23:
2018-05-30 23:40:00 2018-05-30 23:41:00 2018-05-30 23:
2018-05-30 23:44:00 2018-05-30 23:44:00 2018-05-30 23:
2018-05-31 01:43:00 2018-05-31 01:43:00 2018-05-31 01:
2018-05-31 09:43:00 2018-05-31 09:44:00 2018-05-31 09:
2018-05-31 14:16:00 2018-05-31 14:17:00 2018-05-31 14:
2018-05-31 14:36:00 2018-05-31 14:38:00 2018-05-31 14:
15 16 2018-07-23 15:02:00 2018-07-23 15:02:00 2018-07-23 15:

39:
44
44 :
54:
00:
03:
37:
39:
36:
41:
44
43:
44
17:
37:
02:

On
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

In [82]: 1 chl anomalies = format_ luminol result(l_chl anomalies, False)

Display the test result.

In [83]: 1_chl_anomalies

Out [83] :

© 0 N O O b W NN+~ O

N NN, P P P2 PR
NP~ O O 0W~NO U d WN - O

23

=
c
8
8
© 00 NO Ok WNH+-H

N NNNRE R B B BB R s s
W NEFE, O OO NO” O P> WwNNE=- O

24

2018-05-30
2018-05-31
2018-07-07
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-10
2018-07-10
2018-07-10
2018-07-10
2018-07-10
2018-07-10
2018-07-10

Save result to csv file.

Start

15:
14:
13:
03:
03:
03:
03:
07:
07:
13:
18:
18:
19:
19:
19:
19:
19:
12:
12:
13:
13:
13:
13:
13:

13:
21:
17:
24 :
37:
47 :
55:
22:
29:
B57:
54:
58:
00:
02:
06:
15:
27 :
10:
57:
38:
40:
43:
46:
59:

On
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

2018-05-30
2018-05-31
2018-07-07
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-10
2018-07-10
2018-07-10
2018-07-10
2018-07-10
2018-07-10
2018-07-10

15:
14:
13:
03:
03:
03:
03:
07:
07:
13:
18:
18:
19:
19:
19:
19:
19:
12:
12:
13:
13:
13:
13:
13:

End

14:
22:
18:
26:
39:
48:
56:
24 :
29:
59:
56:
58:
00:
02:
07:
16:
28:
12:
59:
38:
40:
44 :
46:
59:

On
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

Exactly Happen On

2018-05-30
2018-05-31
2018-07-07
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-09
2018-07-10
2018-07-10
2018-07-10
2018-07-10
2018-07-10
2018-07-10
2018-07-10

In [84]: 1_chl_anomalies.to_csv('anomalies chloride_linkedin.csv')

Test Luminol on potassium data following the same steps.

In [85]: %%time
detector =

AnomalyDetector('2018potassium-linkedin.csv',
algorithm_name='exp_avg_detector')

CPU times: user 1min 25s, sys: 973 ms, total: 1min 26s

Wall time:

Imin 31s

In [86]: 1_pot_anomalies = detector.get_anomalies()

Timestamp in the result is epoch, now convert it to UTC datatime string.

In [87]: 1_pot_anomalies = format_luminol_result(l_pot_anomalies, False)

102

15:
14:
13:
03:
03:
03:
03:
07:
07:
13:
18:
18:
19:
19:
19:
19:
19:
12:
12:
13:
13:
13:
13:
13:

14:
22:
18:
26:
39:
48:
56:
24 :
29:
59:
56:
58:
00:
02:
07:
16:
28:
12:
59:
38:
40:
44
46:
59:

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Display the test result.

In [88]: 1_pot_anomalies

Out [88]: Number

S W NN R O
g wWwN -

2018-05-30
2018-05-30
2018-05-30
2018-05-30
2018-05-31

Start

20:39:
21:54:
22:35:
23:35:
14:16:

On
00
00
00
00
00

Save result to csv file for further analysis.

In [89]: 1_pot_anomalies.to_csv('anomalies_pota_linkedin.csv')

103

End

2018-05-30 20:50:
2018-05-30 22:08:
2018-05-30 22:46:
2018-05-30 23:50:
2018-05-31 14:17:

On
00
00
00
00
00

Exactly Happen

2018-05-30 20:40:
2018-05-30 21:55:
2018-05-30 22:38:
2018-05-30 23:37:
2018-05-31 14:17:

On
00
00
00
00
00

Chapter 4

Analysis and Discussion

The test results have been extracted from the previous chapter. The data set for the primary
experiment was manually analyzed to identify all the anomalies and then each anomaly is
checked to decide if they are contextual anomalies.

4.1 Evaluation I

4.1.1 Temperature Data

Techniques Anomalies False Positives | False Negatives
Local Outlier Factor 26 0 0
S-H-ESD 1 0 25
EMA 10 time ranges 2 12

TABLE 4.1: Experiment Result for Temperature

Note: For EMA, 8 time ranges cover 14 outliers.

Machine Learning

Local Outlier Factor has been used in the experiment to detect anomaly for temperature data.

Figure 4.1 shows the position of all the anomaly instances in the test data set. The same 26
anomaly instances listed in Table 4.2 were found under all the test scenarios. The results are
consistent and reproducible.

104

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Anomalies in Temperature Data

Value
b e s

75

0.0 L4 g g o * * g

2017-11-05 2017-11-19 2017-12-03 2017-12-17 2017-12-31
Timestamp

FIGURE 4.1: Chart of LOF Result for Temperature

Timestamp Value LOF
2017-11-10 14:38:00 | 10.0747 | 114.0423
2017-11-10 15:43:00 | 10.6043 | 31.1438
2017-11-10 15:44:00 | 9.2604 | 205.5421
2017-11-10 15:45:00 | 0.0000 | 440.1642
2017-11-10 15:46:00 | 9.7064 | 152.8599
2017-11-10 15:47:00 | 9.1378 | 220.3304
2017-11-10 15:48:00 | 9.5711 | 168.7108
2017-11-17 12:08:00 | 0.0000 | 440.1642
2017-11-17 12:09:00 | 0.0000 | 440.1642
2017-11-21 12:26:00 | 0.0000 | 440.1642
2017-11-21 12:27:00 | 0.0000 | 440.1642
2017-11-21 12:28:00 | 0.0000 | 440.1642
2017-11-21 12:29:00 | 0.0000 | 440.1642
2017-11-21 12:30:00 | 0.0000 | 440.1642
2017-11-24 14:19:00 | 0.0000 | 440.1642
2017-11-24 14:20:00 | 0.0000 | 440.1642
2017-11-24 14:21:00 | 0.0000 | 440.1642
2017-11-24 14:22:00 | 0.0000 | 440.1642
2017-11-24 14:23:00 | 0.0000 | 440.1642
2017-11-24 14:24:00 | 0.0000 | 440.1642
2017-11-27 12:52:00 | 0.0000 | 440.1642
2017-11-30 13:13:00 | 0.0000 | 440.1642
2017-12-05 17:39:00 | 0.0000 | 440.1642
2017-12-05 17:47:00 | 0.0000 | 440.1642
2018-01-09 13:19:00 | 9.8053 | 141.2707
2018-01-09 13:20:00 | 9.5497 | 171.2252

TABLE 4.2: LOF Result for Temperature

105

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Now "zoom in" to the time period when an individual anomaly occurs using Microsoft Excel
to verify each outlier. The red dots in the figures denote the anomalies detected by LOF.

Figure 4.2 shows the exact position of the first anomaly instance. The figure indicates that
this single instance with value equals 10.0747 is far from its closest neighbors whose values are
approximately 16.5. Thus, it is an anomaly.

11/10/2017 14:28 - 11/10/2017 14:48
21

17

15

11410/ 2017 14:28
11/10/2017 14:29
1141042017 14:30
1141042017 14:31
11410/ 2017 14:32
1171042017 14:33
11710/ 2017 14:34
1141042017 14:35
11410/ 2017 14:35
11410/ 2017 14:37
11410/ 2017 14:38
1171042017 14:44
1141042017 14:45
11410/ 2017 14:46
1171042017 14:47
11410/ 2017 14:48

FIGURE 4.2: Temperature on Nov 10

Figure 4.3 shows the exact positions of the second to the seventh anomaly instances. The fig-
ure indicates that these six instances with value less than 11 are far from their closest neighbors
whose values are approximately 16.5. Thus, they are anomalies.

11/10/2017 15:35 - 11/10/2017 15:55
20

16

12

11/10/2017 15:3
11/10/2017 15:3%
11/10/2017 15:37
11/10/2017 15:38
11/10/2017 15:3
11410/ 2017 15:40
11/10/2017 15:41
11/10/2017 15:42
11/10/2017 15:43
11/10/2017 15:44
11/10/2017 15:45
1110/ 2017 15:46
11/10/2017 15:47
11/10/2017 15:48
11410/ 2017 15:49
11410/ 2017 1550
11/10/2017 1551
11/10/2017 1552
11/10/2017 1553
11/10/2017 1554
11/10/2017 1555

FIGURE 4.3: Temperature on Nov 10 afternoon

106

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Figure 4.4 shows the exact positions of the eighth to the ninth anomaly instances. The figure
indicates that these two instances with values of zero are far from their closest neighbors whose
values are approximately 16. Thus, they are anomalies.

11/17/2017 11:50 - 11/17/2017 12:15
20

16

12

11/17/2017 1150
11/17/2017 1151
11/17/2017 1152
11/17/2017 1153
11/17/2017 1154
11/17/2017 1155
11/17/2017 1156
11/17/2017 1157
11/17/2017 1208
11/17/2017 12:09
11/17/2017 12:10
1f17/2017 1211
11/17/2017 1212
11/17/2017 1213
11/17/2017 12:14
11/17/2017 12.15

FIGURE 4.4: Temperature on Nov 17
Figure 4.5 shows the exact positions of the tenth to the fourteenth anomaly instances. The

figure indicates that these five instances with values of zero are far from their closest neighbors
whose values are approximately 15.5. Thus, they are anomalies.

11/21/2017 12:05-11/21/2017 12:40
20

16

12

g8 o 88 ddao B aRAREmEARBRRRMAS
S A R I T s s B B s s s s s s I L s
R T R R T T T T R s T T T R s R R R
R ESSSEEEEEEREEEREERERBERRBERES
B e L e = T = = SR e g Jpes g S g SR e S = S e S
[T e I e I e . I o I o I ot B T o BN e B e N o I e N A e S o BN e SO e N e B e B i I e B
O S 3 30 30 3333333333333 33333
— -4 -4 -4 -4 4 -4 -4 -4 -4 <4 -~ -4 -~ 4 —4 =~ —~ -~ —~ A —~ -~ =~

FIGURE 4.5: Temperature on Nov 21

107

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Figure 4.6 shows the exact positions of the fifteenth to the twentieth anomaly instances. The
figure indicates that these six instances with values of zero are far from their closest neighbors
whose values are approximately 15.5. Thus, they are anomalies.

11/24/2017 14:19-11/24/2017 14:35

20
16
12
B
4
0

9 82 A B B & H #B 5 8 8 F =5 B @m & H

= = = = = = = = = = = =t = = =t = =

— — — — — — — —i — — — — — — — — —

- - - - - - - - - - - - . - - - -

— —i —i — —i —i — —i —i — —i —i —i — —i —i —

H O BH R B R B R B B B B B B B B B =

= = = = = = = = = = = = = = = = =

- o ™~ - o ™ - I ™ - - N ™ - N ™~ -

¥ J 9O 9 9 9 9 939 339 9 939 9 339 39 3 39 49

— — — — — — — — — — — — — — — — —

FIGURE 4.6: Temperature on Nov 24

Figure 4.7 shows the exact position of the twenty-first anomaly instance. The figure indicates
that this single instance with value of zero is far from its closest neighbors whose values are
approximately 15. Thus, it is an anomaly.

11/27/2017 12:46 - 11/27/2017 12:56
20

16

12

11/27/2017 12:46
11/27{ 2017 12:47
1127/ 2017 1248
11/27/2017 12:49
11/27/2017 1250
11/27/2017 1251
1127/ 2017 1252
11/27/2017 1253
11/27{2017 1254
11/27/2017 1255
11/27/2017 1256

FIGURE 4.7: Temperature on Nov 27

108

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Figure 4.8 shows the exact position of the twenty-second anomaly instance. The figure
indicates that this single instance with value of zero is far from its closest neighbors whose
values are approximately 15. Thus, it is an anomaly.

11/30/2017 13:05 - 11/30/2017 13:20

16
12
8
4
a
8 2 2 8 &8 2 4 o o 5 A 38 o5 0" A H
I G R T I I T T I B
=R = T - T = T - T = = T T~ = T
S 8 B BEE g E 8 g2 ER E 8 8 8B
F F R R R F F R R B E & & R B B
e e e T e e e e e e e e e e 1
— — — — — — — — — — — — — — — —

FIGURE 4.8: Temperature on Nov 30
Figure 4.9 shows the exact positions of the twenty-third to the twenty-fourth anomaly in-

stances. The figure indicates that these two instances with values of zero are far from their
closest neighbors whose values are approximately 15. Thus, they are anomalies.

12/5/2017 15:30 - 12/5/2017 18:00
16

B

4

0
AR m R RARE 2 38 B2 R0 innfdnB®il s
F-irnr‘-ir‘-éF-JF-JF-JF-JHﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁhﬁ
¥ 4 4 4 44 d 4 A4 44 44 A4 A4 d-d-AdAA-dA-d-AdA-d-A-A-A-dd
L T T T T T e O O T L T T T oS S S S O S 0
4 4 4 4 4 d4d d 4 444 44444 dddd 44 ddd-d4-d-dd-dd
HEHRARAERRERAEREAREREREREERERREREEREERR
T, e e T T Tmel Tme Tl e e Tl Tl The T Thel Tme Thel Tmel Thel e Tl Thel Thel Teel Tmel Thel TRel Tl TRel Teel Tee
W W W W W W W W WL W W W LW W W W W W W W W W W W W WL W
e B o O o v v e g S g A Ao A o A o v g o v g St o s o o o o o g e g
4 4 4 4 44 dd A4 44 44444 dddA4 A4 A4 A4 ddA4-A-A-d-dd

FIGURE 4.9: Temperature on Dec 05

109

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Figure 4.10 shows the exact positions of the twenty-fifth to the twenty-sixth anomaly in-
stances. The figure indicates that these two instances with values of 9.8053 and 9.5497 respec-
tively are far from their closest neighbors whose values are approximately 15. Thus, they are
anomalies.

1/9/2018 13:10 - 1/9/2018 13:30
115

11

10.5

1/9/2018 1310
192018 1311
1920181312
/92018 1313
/920181314
1/9/2018 1316
192018 1317
1/9/2018 1318
/92018 1319
1/9/2018 1320
1920181326
1/9/2018 1327
1/9/2018 1328
/92018 1329
1/9/2018 1330

17972018 1315

FIGURE 4.10: Temperature on Jan 09

Isolation Forest (Section 2.3.7) is applied to detect anomalies in the temperature data in
Experiment 3.3.2. Over 7000 points were marked as anomalies using 0.6 suggested by the
author, and it is very difficult to find a feasible threshold for improvement. For instance, most
of the anomalies are considered as normal data if 0.7 is set as threshold, but hundreds of normal
points are considered as anomalies if 0.65 is set as threshold.

Robust Random Cut Forest (Section 2.3.8) is used to detect anomalies on temperature in
Experiment 3.3.2. It took almost 12 minutes for the detection which is longer than the other
algorithms like LOF which only took hundreds of milliseconds. Some outliers are marked with
low anomaly scores (like the zeros) whereas some normal points are marked with high anomaly
scores which makes it difficult to find a good threshold to filter out anomalies.

Statistic Approach

S-H-ESD only gets one anomaly point as show on Table 4.3. Figure 4.6 shows the detail of
the relationship between this single anomaly with its close neighbors. One of the potentially
reasons why S-H-ESD could not find other outliers is because those outliers seem periodic in
the test data set and thus S-H-ESD considers those outliers are normal data.

110

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Timestamp Value
2017-11-24 14:20:00 0

TABLE 4.3: S-H-ESD Result for Temperature

As shown in Figure 4.4, even though EMA found ten time ranges for anomalies, eight of
them covered 14 abnormal points. The data in the other two ranges are normal data. This
is because they are after consecutive anomaly points, and EMA considers them as abnormal

based on the way EMA is calculated (Section 2.4.3).

Anomaly Number

Start On

End On

Exactly Happen on

1

2017-11-10 15:45:00

2017-11-10 15:45:00

2017-11-10 15:45:00

2017-11-17 12:08:00

2017-11-17 12:09:00

2017-11-17 12:09:00

2017-11-21 12:26:00

2017-11-21 12:29:00

2017-11-21 12:29:00

2017-11-21 12:31:00

2017-11-21 12:32:00

2017-11-21 12:32:00

2017-11-24 14:19:00

2017-11-24 14:22:00

2017-11-24 14:22:00

2017-11-24 14:25:00

2017-11-24 14:26:00

2017-11-24 14:26:00

2017-11-27 12:52:00

2017-11-27 12:52:00

2017-11-27 12:52:00

2017-11-30 13:13:00

2017-11-30 13:13:00

2017-11-30 13:13:00

OO || U | W N

2017-12-05 17:39:00

2017-12-05 17:39:00

2017-12-05 17:39:00

—
)

2017-12-05 17:47:00

2017-12-05 17:47:00

2017-12-05 17:47:00

TABLE 4.4: EMA Result for Temperature

4.1.2 Ammonia Data

All three approaches successfully detected the same four anomalies in the ammonia data. Figure

4.11 and Figure 4.12 illustrate the exact positions for those four anomaly instances.

111

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

12/5/2017 19:38 - 12/5/2017 19:55

80

70

6
50

30
20
10

SS6aL LT0E/S/ET
FSal LTOE/S/ET
ESEL LTOE/S/ET
96l LTO0E/S/ET
TS6L LTOE/S/ET
0561 ATOE/S/ET
BFi6T ATOE/S/ET
gfial LT0E/S/ET
LFEL LTOE/S/ET
a6l LTOE/S/ET
Stial AT0E/S/ET
bl LTOE/S/ET
Et6l LTOE/S/ET
ZtEl LTOE/S/ET
THEL LTOE/S/ET
OF: 6T ATOE/S/ET
BERT ATOE/S/ET
SR ATOE/S/ET

FIGURE 4.11: Ammonia on Dec 05

1/23/2018 14:15 -1/23/2018 14:40

50

30

20

10

O T BLOE/EZ/T
BEFT BTOE/ET/T
BT BTOE/ET/T
LEWT BIOE/EE/T
ST BTOE/ET/T
SEFT BTOR/ET/T
FEWFT BTOE/ET/T
EEWT BTOE/ET/T
ZEFT BIOE/EZ/T
TEWT BTOE/ET/T
0EFT BTOE/ET/T
62T BLOE/EZ/T
LTHT BTOE/ET/T
ST BLOE/EZ/T

STFT 8TE/EC/T

FIGURE 4.12: Ammonia on Jan 23

112

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Machine Learning

In the experiment using Local Outlier Factor, the same four anomaly instances listed in Table
4.5 were found using all the test scenarios. The result is consistent and reproducible.

Valug

10

Figure 4.13 illustrates the positions of all the anomaly instances in the test data set.

Timestamp Value Is Inlier
2017-12-05 19:42:00 | 39.7006 | -61.4179
2017-12-05 19:43:00 | 44.7568 | -81.6157
2017-12-05 19:44:00 | 69.9964 | -177.8467
2018-01-23 14:30:00 | 45.3118 | -83.8327

TABLE 4.5: LOF Result for Ammonia

Anomalies in Ammonia Data

N

2017-12-10

2017-12-17 2017-12-24 2017-12-31 2018-01-07 2018-01-14 2018-01-21 2018-01-28
Timestamp

FIGURE 4.13: Chart of LOF Result for Ammonia

Isolation Forest (Section 2.3.7) is applied to detect anomalies in the ammonia data in Ex-
periment 3.3.2. Over 7000 points for ammonia data marked as anomalies using 0.6 suggested
by the author, and it is very difficult to find a feasible threshold for improvement. For instance,
most of the anomalies are considered as normal data if 0.7 is set as threshold, but hundreds of
normal points are still considered as anomalies if 0.65 is set as threshold.

Robust Random Cut Forest (Section 2.3.8) is used to detect anomalies on ammonia in
Experiment 3.3.2. It took over 15 minutes for detection whereas LOF only took hundreds of
milliseconds. It is difficult to find a good threshold to filter out anomalies as some outliers are
marked with low anomaly scores whereas some normal points are marked with high anomaly

scores.

113

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Statistic Approach

Figure 4.6 shows the four anomalies detected by S-H-ESD which are the same with as those
detected using LOF detection.

Timestamp Value
2017-12-05 19:44:00 | 69.9964
2018-01-23 14:30:00 | 45.3118
2017-12-05 19:43:00 | 44.7568
2017-12-05 19:42:00 | 39.7006

TABLE 4.6: S-H-ESD Result for Ammonia

As shown on Figure 4.7, EMA could not clearly identify each abnormal point if they are
consecutive points. The results only give a range for when the anomaly happened. However,
those ranges cover the same anomalies detected by LOF and S-H-ESD.

Anomaly Number Start On End On Exactly Happen on
1 2017-12-05 19:42:00 | 2017-12-05 19:45:00 | 2017-12-05 19:44:00
2 2018-01-23 14:30:00 | 2018-01-23 14:30:00 | 2018-01-23 14:30:00

TABLE 4.7: EMA Result for Ammonia

4.1.3 Execution Time

Table 4.8 shows the execution time to detect anomalies in the water temperature data set. For a
data set with 78,338 records, LOF took 890 milliseconds to detect anomalies. S-H-ESD needed
3.79 seconds for detection. And, EMA took 19.4 seconds.

Number of Records LOF S-H-ESD | EMA
78,338 890 ms 3.79 s 20s

TABLE 4.8: Execution Time for Temperature

Table 4.9 shows the execution time to detect anomalies in the ammonia data set. For a data
set with 71,926 records, LOF took 785 milliseconds to detect anomalies. S-H-ESD needed 3.25
seconds for detection and EMA took 16.7 seconds.

Sensors LOF S-H-ESD | EMA
Ammonia | 785 ms 3.25 s 174 s

TABLE 4.9: Execution Time for Ammonia

The result of the experiment confirms that LOF is much faster and more efficient than S-H-
ESD and EMA when they are used to detect anomalies in this water temperature and ammonia
data.

114

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

4.2 Evaluation II

There are over 70,000 records in each data set in previous experiment section. The machine
learning and statistic learning approaches have been evaluated with large volume data following
the same steps as well.

In the evaluation, another four large data sets were used, each having 395,715 records.

4.2.1 Results

Table 4.10 shows the result of the experiment on the four large data sets.

Parameters | LOF | S-H-ESD | EMA
Temperature | 156 0 3
Ammonia 951 422 28
Chloride 22407 359 47
Potassium 9317 1090 27

TABLE 4.10: Number of Anomalies Detected by Each Technique

Figure 4.14 illustrates the positions of all the anomaly instances detected by LOF in the test
temperature data set.

Anomalies in Temperature Data

35

r
k)|
E}
]

10

v

2018-02 2018-03 2018-04 2018-05 2018-06 2018-07 2018-08 2018-0% 2018-10 2018-11
Timestamp

FIGURE 4.14: Chart of LOF Result for Water Temperature 2018

Figure 4.15 illustrates the positions of all the anomaly instances detected by LOF in the
ammonia test data set.

115

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Anomalies in Ammonia Data

¥
100

Value

LR TN L 1

20 I \

3

T

2018-02 2018-03 2016-04 201805 2018-06 2018-07 2018-08 2018-09 2018-10 2018-11
Timestamp

FIGURE 4.15: Chart of LOF Result for Ammonia Data 2018

Figure 4.16 illustrates the positions of all the anomaly instances detected by LOF in the
chloride test data set.

Anomalies in Chloride Data

800

600

Value

400

200

2018-02 2016-03 2018-04 2018-05 2018-06 2018-07 2018-08 2018-09 2018-10 2018-11
Timestamp

FIGURE 4.16: Chart of LOF Result for Chloride Data 2018

Figure 4.17 illustrates the positions of all the anomaly instances detected by LOF in the
potassium test data set.

116

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

Anomalies in Potassium Data

1000

800

600

Value

400

200

4
h
0 n o’ l\ el - - .

2018-02 2018-03 2018-04 2018-05 2018-06 2018-07 2018-08 2018-09 2018-10 2018-11
Timestamp

FIGURE 4.17: Chart of LOF Result for Potassium Data 2018

The result in Table 4.10 and the above figures indicate that LOF has found many anomalies
whereas S-H-ESD and EMA only have detected a few of them. As discussed in Section 2.4.1,
S-H-ESD is designed to detect seasonal time series, as well as underlying trends. But Figure 3.3,
Figure 3.4, Figure 3.5 and Figure 3.6 indicate that none of the four data sets is either seasonal
nor presents any trend. All three approaches do not work well if there are too many consecutive
anomalies.

4.2.2 Execution Time

Table 4.11 shows the execution time for each data set. For a large data set with 395,715
records, LOF takes a few seconds to detect anomalies. Whereas, S-H-ESD needs two minutes
for detection and EMA takes around one and half minutes for each data set.

Sensors LOF | S-H-ESD EMA
Temperature | 5.81s | 2min 9s | 1 min 30 s
Ammonia 5.38s | 1min 55 s | 1 min 32 s
Chloride 5.15s | 1min 39 s | 1 min 32 s
potassium 324s | 1min 38 s | 1 min 31 s

TABLE 4.11: Execution Time for Data of 2018

The result of second experiment confirms that LOF is much faster than S-H-ESD and EMA.
Overall, all three methods are fast enough for real-time anomaly detection.

117

Chapter 5

Conclusions and Future Work

A comprehensive evaluation of five different anomaly detection algorithms on two data sets
from a water sensor was performed in the primary experiment. In the second experiment, an
additional four very large data sets with nearly 300,000 records were tested.

Local Outlier Factor successfully detects all 26 anomalies in the time series data in the
primary experiment. The k-nearest neighbor local density based algorithms are not only simple
to understand but easy to implement. More importantly, the non-parametric nature of algorithm
makes it a genius algorithm for unsupervised learning. With zero to little training time, it could
be a very powerful tool for anomaly detection of water quality data.

By taking seasonality and trend into accounts, S-H-ESD can detect both point as well as
contextual anomalies in temporal data. Only some of outliers were detected mainly because
there are missing values and noise data in the test data set. However, it is still a powerful and
robust way to detect anomalies on seasonal time series data.

EMA can be useful if the start time and end time of the anomaly occurs are the concern.

The outlier-ness of IF is based on the threshold which is very difficult to tune to differentiate
abnormal data from normal data. However, it can be used for validation. For example, the
instance which is detected as anomaly by other algorithms can be safely classified as anomaly
if it is also rated a high score (like 0.65) by IF.

RRCF marks some outliers with low anomaly scores (like the zeros) while marks some normal
points with very high anomaly scores, which makes it impossible to filter anomalies out based
on scores. This is because RRCF is very sensitive and even a slight deviation will result in high
score. This problem might be reduced if the raw data is smoothed. The execution times was
too long which is expected as it takes time to construct trees and compute depths and lengths.
A powerful server would be required for real-time detection using RRCF.

LOF is much faster than S-H-ESD, EMA, IF and RRCF on detecting anomalies.

In the experiments, water temperature and ammonia data from the RSM30 system were
used. Other sensor detected content will be verified once enough test data is collected.

Only short periods of test data were used for experiments in which all tests run against
offline raw data. A procedure should be established to pre-process raw data in order to reduce
noise by smoothing the test data set. For example, fill missing data by be mean of surrounding
values and remove invalid values. Shortening the time interval of sensor data is another option

118

Master of Science Thesis - Yan YAN; McMaster University - Computing and Software

to smooth data and increase quality. A validation mechanism can be built to combine those
algorithms together to generate more accurate results.

119

Bibliography

Aleskerov, E., Freisleben, B., and Rao, B. (1997). CARDWATCH: a neural network based
database mining system for credit card fraud detection. In: Proceedings of the IEEE/IAFE
1997 Computational Intelligence for Financial Engineering (CIFEr). IEEE, 220-226. DOIL:
10.1109/CIFER. 1997 .618940.

Altman, N. S. (1992). An Introduction to Kernel and Nearest-Neighbor Nonparametric Regres-
sion. The American Statistician 46(3), 175-185. DOI: 10.1080/00031305.1992.10475879.
eprint: https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879.
URL: https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879.

Amer, M. and Goldstein, M. (2012). Nearest-Neighbor and Clustering based Anomaly Detection
Algorithms for RapidMiner. In: DOI: 10.5455/1ijavms. 141.

Angiulli, F. (2005). Fast Condensed Nearest Neighbor Rule. In: Proceedings of the 22Nd Inter-
national Conference on Machine Learning. ICML ’05. Bonn, Germany: ACM, 25-32. 1SBN:
1-59593-180-5. po1: 10.1145/1102351.1102355. URL: http://doi.acm.org/10.1145/
1102351.1102355.

Arindam Banerjee, V. C. and Kumar, V. (2009). Anomaly detection : A survey. ACM Computing
Surveys 41(3), 1-58.

Atkeson, C. G., Moore, A. W., and Schaal, S. (1997). Locally Weighted Learning. Artif. Intell.
Rev. 11(1-5), 11-73. 18sN: 0269-2821. DOI: 10.1023/A:1006559212014. URL: https://doi.
org/10.1023/A:1006559212014.

Auskalnis, J., Paulauskas, N., and Baskys, A. (2018). Application of Local Outlier Factor Al-
gorithm to Detect Anomalies in Computer Network. Elektronika ir Elektrotechnika 24. DOTI:
10.5755/j01.eie.24.3.20972.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). LOF: Identifying Density-
based Local Outliers. SIGMOD Rec. 29(2), 93-104. 1ssN: 0163-5808. DO1: 10.1145/335191.
335388. URL: http://doi.acm.org/10.1145/335191.335388.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly Detection: A Survey. ACM Com-
put. Surv. 41(3), 15:1-15:58. 1ssN: 0360-0300. DOI: 10.1145/1541880.1541882. URL: http:
//doi.acm.org/10.1145/1541880.1541882.

Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I. (1990). STL: A Seasonal-
Trend Decomposition Procedure Based on Loess (with Discussion). Journal of Official Statis-
tics 6, 3—73.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning 20(3), 273-297.
ISsN: 1573-0565. DOI: 10.1007/BF00994018. URL: https://doi.org/10.1007/BF00994018.

Ding, Z. and Fei, M. (2013). An Anomaly Detection Approach Based on Isolation Forest Al-
gorithm for Streaming Data using Sliding Window. IFAC' Proceedings Volumes 46(20). 3rd
IFAC Conference on Intelligent Control and Automation Science ICONS 2013, 12-17. 1SSN:
1474-6670. DOIL: https://doi.org/10.3182/20130902-3-CN-3020.00044. URL: http:
//www.sciencedirect.com/science/article/pii/S1474667016314999.

120

https://doi.org/10.1109/CIFER.1997.618940
https://doi.org/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://doi.org/10.5455/ijavms.141
https://doi.org/10.1145/1102351.1102355
http://doi.acm.org/10.1145/1102351.1102355
http://doi.acm.org/10.1145/1102351.1102355
https://doi.org/10.1023/A:1006559212014
https://doi.org/10.1023/A:1006559212014
https://doi.org/10.1023/A:1006559212014
https://doi.org/10.5755/j01.eie.24.3.20972
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
http://doi.acm.org/10.1145/335191.335388
https://doi.org/10.1145/1541880.1541882
http://doi.acm.org/10.1145/1541880.1541882
http://doi.acm.org/10.1145/1541880.1541882
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/https://doi.org/10.3182/20130902-3-CN-3020.00044
http://www.sciencedirect.com/science/article/pii/S1474667016314999
http://www.sciencedirect.com/science/article/pii/S1474667016314999

BIBLIOGRAPHY

Ertoz, L., Lazarevic, A., E. Eilertson, L. A., Tan, P., Dokas, P., Kumar, V., and Srivastava, J.
(2003). Protecting Against Cyber Threats in Networked Information Systems. SPIE Annual
Symposium on AeroSense, Battlespace Digitization and Network Centric Systems I1I.

Fomel, S. and Claerbout, J. F. (2009). Guest Editors’ Introduction: Reproducible Research.
Computing in Science Engineering 11(1), 5-7. 1SsN: 1521-9615. po1: 10.1109/MCSE. 2009.
14.

Garcia, S., Derrac, J., Cano, J., and Herrera, F. (2012). Prototype Selection for Nearest Neighbor
Classification: Taxonomy and Empirical Study. IEEE Transactions on Pattern Analysis and
Machine Intelligence 34(3), 417-435. 1sSN: 0162-8828. DOT: 10.1109/TPAMI.2011.142.

Grubbs, F. E. (1969). Procedures for Detecting Outlying Observations in Samples. Techno-
metrics 11(1), 1-21. DOI: 10 . 1080 /00401706 . 1969 . 10490657. eprint: https : / /www .
tandfonline . com/doi/pdf/10.1080/00401706 . 1969 .10490657. URL: https://www.
tandfonline.com/doi/abs/10.1080/00401706.1969.10490657.

Guha, S., Mishra, N., Roy, G., and Schrijvers, O. (2016). Robust Random Cut Forest Based
Anomaly Detection on Streams. In: Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48. ICML’16. New York, NY, USA:
JMLR.org, 2712-2721. URL: http://dl.acm.org/citation.cfm?id=3045390.3045676.

Hamming, R. W. (1950). Error detecting and error correcting codes. The Bell System Technical
Journal 29(2), 147-160. 1ssN: 0005-8580. DOI: 10.1002/j.1538-7305.1950.tb00463. x.

Hariri, S., Carrasco Kind, M., and Brunner, R. J. (2018). Extended Isolation Forest. CoRR
abs/1811.02141.

He, Z., Xu, X., and Deng, S. (2003). Discovering cluster-based local outliers. Pattern Recognition
Letters 24(9-10), 1641-1650.

Ho, T. K. (1995). Random Decision Forests. In: Proceedings of the Third International Confer-
ence on Document Analysis and Recognition (Volume 1) - Volume 1. ICDAR ’95. Washing-
ton, DC, USA: IEEE Computer Society, 278—. 1SBN: 0-8186-7128-9. URL: http://dl.acm.
org/citation.cfm?id=844379.844681.

Hochenbaum, J., Vallis, O. S., and Kejariwal, A. (2017). Automatic Anomaly Detection in the
Cloud Via Statistical Learning. CoRR abs/1704.07706.

Jamie Bartram World Health Organization, U. N. E. P. and Ballance, R. (1996). Water quality
monitoring : a practical guide to the design and implementation of freshwater quality studies
and monitoring programs / edited by Jamie Bartram and Richard Ballance. Computing in
Science Engineering. URL: http://www.who.int/iris/handle/10665/41851.

Jie Wang Jia Liu, L. W. and Xu, Y. (2019). An Introduction to Kernel and Nearest-Neighbor
Nonparametric Regression. Artificial Intelligence, 1-12. 1S5SN: 0941-0643. DOT: https://doi.
org/10.1007/s00521-019-04066-3.

Jin, W., Tung, A. K. H., Han, J., and Wang, W. (2006). Ranking Outliers Using Symmetric
Neighborhood Relationship. In: Advances in Knowledge Discovery and Data Mining. Ed.
by W.-K. Ng, M. Kitsuregawa, J. Li, and K. Chang. Berlin, Heidelberg: Springer Berlin
Heidelberg, 577-593. 1SBN: 978-3-540-33207-7.

Jupyter (2019). Jupyter Notebook. https://jupyter.org. Jupyter Notebook. URL: https:
//jupyter.org/.

Kriegel, H.-P., Kroger, P., Schubert, E., and Zimek, A. (2009). LoOP: Local Outlier Proba-
bilities. In: Proceedings of the 18th ACM Conference on Information and Knowledge Man-
agement. CIKM ’09. Hong Kong, China: ACM, 1649-1652. 1SBN: 978-1-60558-512-3. DOI:
10.1145/1645953.1646195. URL: http://doi.acm.org/10.1145/1645953.1646195.

121

https://doi.org/10.1109/MCSE.2009.14
https://doi.org/10.1109/MCSE.2009.14
https://doi.org/10.1109/TPAMI.2011.142
https://doi.org/10.1080/00401706.1969.10490657
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1969.10490657
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1969.10490657
https://www.tandfonline.com/doi/abs/10.1080/00401706.1969.10490657
https://www.tandfonline.com/doi/abs/10.1080/00401706.1969.10490657
http://dl.acm.org/citation.cfm?id=3045390.3045676
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dl.acm.org/citation.cfm?id=844379.844681
http://dl.acm.org/citation.cfm?id=844379.844681
http://www.who.int/iris/handle/10665/41851
https://doi.org/https://doi.org/10.1007/s00521-019-04066-3
https://doi.org/https://doi.org/10.1007/s00521-019-04066-3
https://jupyter.org
https://jupyter.org/
https://jupyter.org/
https://doi.org/10.1145/1645953.1646195
http://doi.acm.org/10.1145/1645953.1646195

BIBLIOGRAPHY

LinkedIn (2015). Anomaly Detection and Correlation library. https://github.com/linkedin/
luminol. Luminol is a light weight python library for time series data analysis.The two major
functionalities it supports are anomaly detection and correlation.

Liou, C.-Y., Cheng, W.-C., Liou, J.-W., and Liou, D.-R. (2014). Autoencoder for Words. Neu-
rocomput. 139, 84-96. 1SSN: 0925-2312. DOI: 10.1016/j.neucom.2013.09.055. URL: http:
//dx.doi.org/10.1016/j.neucom.2013.09.055.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2012). Isolation-Based Anomaly Detection. TKDD 6,
3:1-3:39.

Marcnuth (2018). Twitter’s Anomaly Detection in Pure Python. https: //github . com/
Marcnuth/AnomalyDetection. This repository aims for rewriting twitter’s Anomaly De-
tection algorithms in Python, and providing same functions for user.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic Interference in Connectionist Networks:
The Sequential Learning Problem. In: ed. by G. H. Bower. Vol. 24. Psychology of Learning
and Motivation. Academic Press, 109-165. DOI: https://doi.org/10.1016/S0079 -
7421(08) 60536 -8. URL: http://www . sciencedirect . com/science/article/pii/
S0079742108605368.

Merigo, J. M. and Casanovas, M. (2012). A New Minkowski Distance Based on Induced Ag-
gregation Operators. International Journal of Computational Intelligence Systems April
2011, 123-133. pOI: 10.1080/18756891.2011.9727769.

Olivier Chapelle Bernhard Scholkopf, A. Z. (2006). Semi-Supervised Learning.

Pack Kaelbling, L., Littman, M., and P Moore, A. (1996). Reinforcement Learning: A Survey.
Journal of Artificial Intelligence Research 4, 237-285.

Primodal (2013). RSM30 Getting Started Guide. 23. Primodal System Inc., 8.

Ron Kohavi, F. P. (1998). Machine Learning. Kluwer Academic Publishers, 271-274.

Rosner, B. (1983). Percentage Points for a Generalized ESD Many-Outlier Procedure. Techno-
metrics 25(2), 165-172. 1sSN: 00401706. URL: http://www. jstor.org/stable/1268549.
Samuel, A. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal

of Research and Development 3, 210-229. DOI: 10.1147/rd.33.0210.

Song, X., Wu, M., Jermaine, C., and Ranka, S. (2007). Conditional Anomaly Detection. I[EEE
Transactions on Knowledge and Data Engineering 19(5), 631-645. 1sSN: 1041-4347. DOI:
10.1109/TKDE. 2007 .1009.

Spence, C., Parra, L., and Sajda, P. (2001). Detection, synthesis and compression in mammo-
graphic image analysis with a hierarchical image probability model. In: IEEE, 3-10. DOTI:
10.1109/MMBIA.2001.991693.

Stigler, S. M. (1986). The history of statistics - The measurement of uncertainty before 1900.

Stuart J. Russell, P. N. (2009). Artificial Intelligence: A Modern Approach. third. Prentice Hall.

Tang, J., Chen, Z., Fu, A. W.-c., and Cheung, D. W. (2002). Enhancing Effectiveness of Outlier
Detections for Low Density Patterns. In: Advances in Knowledge Discovery and Data Mining.
Ed. by M.-S. Chen, P. S. Yu, and B. Liu. Berlin, Heidelberg: Springer Berlin Heidelberg, 535—
548. 1SBN: 978-3-540-47887-4.

Twitter (2015). Anomaly Detection. https : //github . com/twitter /AnomalyDetection.
AnomalyDetection R package.

Wenzel, F., Galy-Fajou, T., Deutsch, M., and Kloft, M. (2017). Bayesian Nonlinear Support
Vector Machines for Big Data. In: Machine Learning and Knowledge Discovery in Databases.
Ed. by M. Ceci, J. Hollmén, L. Todorovski, C. Vens, and S. Dzeroski. Cham: Springer
International Publishing, 307-322. 1SBN: 978-3-319-71249-9.

122

https://github.com/linkedin/luminol
https://github.com/linkedin/luminol
https://doi.org/10.1016/j.neucom.2013.09.055
http://dx.doi.org/10.1016/j.neucom.2013.09.055
http://dx.doi.org/10.1016/j.neucom.2013.09.055
https://github.com/Marcnuth/AnomalyDetection
https://github.com/Marcnuth/AnomalyDetection
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60536-8
http://www.sciencedirect.com/science/article/pii/S0079742108605368
http://www.sciencedirect.com/science/article/pii/S0079742108605368
https://doi.org/10.1080/18756891.2011.9727769
http://www.jstor.org/stable/1268549
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1109/TKDE.2007.1009
https://doi.org/10.1109/MMBIA.2001.991693
https://github.com/twitter/AnomalyDetection

BIBLIOGRAPHY

Wilcox, C., Woon, W. L., and Aung, Z. (2013). Applications of machine learning in environ-
mental engineering. Tech. rep.

123

	Abstract
	Acknowledgements
	Declaration of Authorship
	Introduction
	Introduction
	Water Quality Monitoring
	RSM30 Water Monitoring System
	PrecisionNow Software

	Anomaly Detection in Water Quality Data
	Case Study
	Reproducible Research
	Jupyter Notebook
	Resources

	Anomaly Detection Techniques
	Related Work
	Techniques Comparison
	Anomaly Detection using Machine Learning
	Artificial Intelligence
	Machine Learning
	Machine Learning Methods
	Anomaly
	Local Outlier Factor
	Example for Anomaly Detection with LOF
	Isolation Forest
	Robust Random Cut Forest

	Statistical Techniques
	Seasonal Hybrid Extreme Studentized Deviate
	Example for S-H-ESD
	Exponential Moving Average
	Example for EMA

	Experiments
	Anomaly Detection Techniques
	Generic Python Code for Experiment
	Evaluation using Jupyter Notebook I
	Test Data Sets
	Notebook

	Evaluation using Jupyter Notebook II
	Test Data Sets
	Notebook

	Analysis and Discussion
	Evaluation I
	Temperature Data
	Ammonia Data
	Execution Time

	Evaluation II
	Results
	Execution Time

	Conclusions and Future Work
	Bibliography

