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Lay Abstract 

Exposomics is an emerging multidisciplinary science aimed at deciphering the 

complex interactions that impact human health and gene expression, such as 

lifestyle choices (i.e., habitual diet) and lifelong environmental exposures. There is 

growing interest in identifying biomarkers that can be readily measured for chronic 

disease prevention given an alarming global prevalence of obesity and 

cardiometabolic disorders, including heart disease, type 2 diabetes and cancer. The 

research in this thesis focuses on developing new analytical methods for identifying 

and quantifying metabolites that may allow for better assessments of human health, 

and has contributed to the development of novel biosensors for the targeted analysis 

of N-acetylneuraminic (sialic) acid and related acidic sugars, as well as high 

resolution methods for broad spectrum analysis of biotransformed organic 

contaminants from smoke exposure by GC-MS, and plasma and urinary metabolites 

that differentiate contrasting Prudent and Western diets and correlate well with self-

reported diet records. 
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Abstract 

Exposomics applies metabolomics methods and technologies to the comprehensive 

analysis of all low molecular weight molecules (< 1.5 kDa) in complex biological 

samples to characterize the interaction between cellular metabolism and exogenous 

lifestyle exposures that determine health and quality of life. To fully access the 

diverse classes of biological molecules related to an individual’s metabolic profile, 

metabolomics frequently requires the use of complementary analytical platforms, 

and employs targeted and untargeted molecular profiling strategies to identify 

biomarkers that are clinically relevant to an individual’s health status. Chapter 2 

describes a quinoline-based boronic acid biosensor for N-acetylneuraminic acid that 

undergoes a striking binding enhancement under strongly acidic conditions. For the 

first time, this work allows for direct analysis of acidic sugars with high selectivity 

when using UV absorbance or fluorescence detection based on formation of a 

highly stable boronate ester complex with metabolites containing an -

hydroxycarboxylate moiety. Chapter 3 describes a targeted analysis of 24 different 

organic contaminants using GC-MS that can serve as biomarkers of recent smoke 

exposure following search-and-rescue training exercises by firefighters located at 

three different sites across the province of Ontario. Importantly, skin and possible 

respiratory uptake of various polycyclic aromatic hydrocarbons, methoxyphenols, 

and resin acids was confirmed by peak excretion of several wood smoke biomarkers 

in urine within 6 h following acute exposure. Chapter 4 applied a cross-platform 

metabolomics strategy based on CE-MS and GC-MS in order to identify and 

validate dietary biomarkers in matching plasma and urine samples collected from 

healthy participants in the pilot Diet and Gene Interaction Study (DIGEST). For the 

first time, we demonstrate that a panel of metabolites can serve as reliable 

biomarkers following contrasting Prudent and Western diets over 2 weeks of food 

provisions, which correlated well with self-reported diet records. This work paves 
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the way for the development of objective biomarkers for accurate assessment of 

wood smoke exposures, as well as complex dietary patterns as required for new 

advances in occupational health and nutritional epidemiology.
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Chapter 1: Introduction 

1.1 The Evolution of Risk Assessment in Human Health 

Humanity has triumphed over myriad existential challenges by predicting risk 

through empirical observation, and the dissemination and adaptation of 

knowledge.1 Early cultures sought advantages by interpreting seemingly 

interconnected natural phenomena: Roman augurs observed avian behaviour for 

predictions of imminent events,2 while Aboriginal Australian cultures read 

constellations to forecast meteorological changes influencing agricultural yields.3 

Precognition of pending crises has been earnestly pursued throughout human 

history to protect individual health and community longevity;4 metabolomics is a 

modern exemplar of this pursuit for deeper understanding of complex natural 

systems. 

1.1.1 Biomarkers in Ancient History  

Initially the purview of seers and religious healers, medical prognostication 

transitioned from metaphysical to empirical by approximately 5th century BCE.4,5 

From then until the late 19th century, health assessments were based on subjective 

patient reports, palpation, and rudimentary auscultation.6,7 Through uroscopy (early 

urinalysis) Classical Greek physicians found the colour, smell, turbidity, viscosity 

and even taste of urine replete with pathological information.8 Amid many incorrect 

diagnoses and ineffective treatments, systematic analysis provided insights into 

signs associated with kidney disease (e.g., proteinuric foam and redness due to 

heme),9 jaundice (e.g., dark-pigmented bilirubin),10 and diabetes (e.g., sweetness 

due to glycosuria), the earliest diagnoses of chronic disease as a result of aberrant 

metabolism.11 An ancient Egyptian (~1500 BCE) diagnostic test detected elevated 

glucose in urine by observing its ability to attract insects,6 yet understanding of 

diabetes pathogenesis did not occur until much later, spurred by a 1775 paper from 

Matthew Dobson identifying elevated blood sugar as a key feature of diabetes 

pathology.11,12 Today, direct measurements of fasting glucose and glycated 

hemoglobin (i.e., HgbA1C) remain the clinical gold standards for the diagnosis and 
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risk assessment of type 2 diabetes worldwide. Individuals at risk of diabetes (i.e., 

prediabetics) have fasting plasma glucose and %HbA1C of 5.5-7.0 mM and 5.7-

6.4%, respectively, where a diagnosis of diabetes occurs beyond these ranges.13 

Jaundice (i.e., “yellowness”), believed to be a primary illness for over 4000 years, 

arises from the accretion of bilirubin, a dark-yellow bile pigment produced by 

hepatic (i.e., liver) metabolism of hemoglobin.14 Normally, catabolites urobilin and 

stercobilin are eliminated in the urine and feces, respectively, imparting 

characteristic yellow and brown colours to these specimens.10 When this process is 

impaired, as first described by Hippocratic physicians ca. 400 BCE, a person’s 

blood turns dark with concentrated bilirubin, the stool becomes clay-coloured, and 

a distinct yellow colour emerges in their skin and sclera.15 Intense efforts were 

subsequently required to isolate bilirubin from a complex mixture of liver bile acids 

before its structure was determined by Hans Fischer in 1942.10 Bilirubin is now a 

standard biomarker of liver function to assess the risk of hepatic damage, where the 

normal clinical reference range for total serum bilirubin is approximately 1-21 

µM.16  

1.1.2 Creatinine and its Ubiquity in Clinical Assessment 

Separation and analytical chemistry techniques (e.g., distillation, precipitation, 

titration) of the late 19th century were applied extensively to biofluid analysis to 

gain further insight into healthy and diseased human physiology.17 Creatinine (Crn), 

a highly abundant metabolite of creatine phosphate (CP), was discovered by 

microscopy of crystallized beef extract in 1838;18 Max Jaffé later reported a 

colorimetric alkaline reaction between creatinine and picric acid that produced a 

brick-red salt in 1886.19,20 CP is concentrated in skeletal muscle, donating a high-

energy phosphate for ADP regeneration to ATP, a critical reaction for intracellular 

energy generation.21 As Crn is eliminated in urine by renal filtration at moderately-

controlled, individually distinct rates regulated by musculature, physical activity, 

health, and hydration status, it became an important clinical biomarker for 

assessment of renal function.22 The “Jaffé test” was readily adapted for clinical 
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assays of Crn,23 and despite poor specificity and major advancements in clinical 

chemistry, it endures in modern medicine due to rapid turnaround time and low 

cost.24 Today, urine and serum creatinine, in conjunction with albumin and urea, are 

measured in clinics to assess the risk of kidney disease and/or failure. Clinical 

reference ranges for normal creatinine vary, but are generally fall within 5-23 mM 

in urine and 44-115 µM in the serum of adults.16,25 Excess serum Crn triggers 

downstream testing to investigate possible kidney injury or failure, both of which 

have severe consequences. Several variations on Jaffé’s original reaction have been 

made to improve the specificity and accuracy of creatinine determinations, however 

significant positive bias still exists between the Jaffé test and more accurate 

enzymatic and separation methods coupled with mass spectrometry (MS).26–28 

 Urine creatinine is a widely used normalization factor in biological 

surveillance studies to correct for hydration status and is frequently quantified using 

the Jaffé test. To standardize the amount of other urine solutes within a sample 

population, the concentration of each metabolite is calculated as a ratio to the 

amount of Crn in the sample (i.e., µmol per mmol Crn).25,29 However, a number of 

exogenous and endogenous factors affect Crn excretion (e.g., age, sex, exercise, 

diet) possibly propagating significant inaccuracies among scientific investigations, 

and convoluting useful information within studies, particularly those with diverse 

study cohorts.29,30 Barr et. al.25 reported significantly elevated urine Crn in the spot 

urine samples of males and individuals under 50 years of age, that were also 

affected by the time of collection. Given discrepancies in Crn measurements 

reported in interlaboratory studies,31 more accurate methods for quantifying 

creatinine are needed. Recent alternatives to Crn normalization attempt to remove 

unwanted interindividual sample variation by correcting to total solute content as 

measured by specific gravity,32,33 osmolality,34,35 and total signal of detectable urine 

compounds in nuclear magnetic resonance (NMR).36–38 Additionally, there are 

approaches to study design and statistical analysis to reduce unwanted variance in 

biological studies that will be discussed in Chapter 1.3.4. 
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1.1.3 Metabolism, Molecules, and the Evolution of Omics and Precision 
Medicine 

By the early 20th century scientific studies had identified many discrete molecular 

components present in human bodily fluids, yet their origin and function were 

largely unknown. Sir Archibald Garrod, a pioneer of biochemical genetics and 

precision medicine, identified four metabolic disorders with distinct urine 

phenotypes and familial recurrence, namely alkaptonuria, cystinuria, pentosuria, 

and albinism.39 He proposed an inherited “structure” affecting individual 

metabolism acquired through a unique molecular heritability.40 The subsequent 

discoveries of DNA and genes as agents of phenotype initiated exploration for 

discrete biochemical components that collectively contribute to the phenotype of 

an organism, and also function as objective biomarkers to predict, prevent, and/or 

treat human diseases.41–43 In 1983, this was first achieved when a mutation in the 

HTT (huntingtin) gene was linked to Huntington disease,44 followed by 

identification of the cystic fibrosis transmembrane conductance regulator (CFTR) 

gene in 1989, in which certain disease-causing mutations lead to cystic fibrosis.45 

Subsequently, the field of genomics,46 the structural and functional characterization 

of genes advanced rapidly: the Human Genome Project, which was completed in 

2003, mapped over 25 000 human genes and introduced genetic profiling as a 

fundamental part of studying disease etiology, such as gene variants associated with 

both inherited and chronic disease.47 Genome-wide association studies (GWAS) are 

widely used to identify gene loci statistically associated with disease risk in 

populations;48 however, single nucleotide polymorphisms (SNPs), including 

mutations of unknown or variable consequences often show weak correlations to 

phenotype. Gene expression is modified by several extrinsic factors, including diet, 

lifestyle, gut microbiota, and the exposome, elements collectively referred to as “the 

missing heritability.”49 For instance, tumorigenic gene mutations in BRCA1 and 

BRCA2 have a low incidence in the general population (< 10%), but show 

penetrance of 65-80% (BRCA1) and 45-82% (BRCA2) in female breast cancer.50,51 
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However, both environment and diet are known to modulate risk, and not all carriers 

will develop a related cancer in their lifetime.52,53  

The advent of MS-based proteomics provided an unprecedented opportunity 

to widely probe functional gene expression.54,55 As the natural complement to 

genomics, proteomics heralded the potential to link protein biomarkers to specific 

alleles related to disease risk, providing novel therapeutic targets and invaluable 

insight into the complex gene-environment interactions that determine clinical 

phenotype.56 However, MS-based proteomics based on non-targeted protein 

profiling has faced major technical challenges in translating findings into validated 

biomarkers that have clinical utility.57 Protein biomarkers currently used in clinical 

assessment rely primarily on classical immunoassay and enzymatic methods, such 

as serum high sensitivity C-reactive protein (hsCRP) and cardiac troponin T for 

screening of high risk patients for acute coronary syndrome.58 Humans are 

estimated to have > 104 proteins, with additional complexity imparted by post-

translational modifications (e.g., glycosylation and phosphorylation) that dictate 

function and activity.59 Furthermore, these modifications vary by individual 

physiology and pathology, generating millions of potential protein targets affecting 

numerous metabolic pathways.60,61 The magnitude of the proteome compounded by 

analytical hurdles to adequate resolution of low-abundance proteins in complex 

biological samples make the proteome a much more challenging system to 

interrogate.62 

Metabolites represent the end-products of gene expression and protein 

activity, that comprise all small molecules (< 1.5 kDa) utilized in cellular 

metabolism, exogenous compounds, and biotransformed xenobiotics from 

environmental exposures. Comprehensive metabolite profiling of complex 

biological samples (i.e., metabolomics) using new advances in separation science, 

MS and NMR technologies represents the “apogee of the omics trilogy” in 

molecular biology,63,64 which promises new insight into underlying mechanisms of 

disease (Figure 1.1).65,66 Since human health is inextricably linked with 
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environment, metabolomics is a powerful approach to study complex physiological 

interactions with exogenous determinants of clinical outcomes like habitual dietary 

intakes and toxicant exposures.67–69 Exposomics, a discipline of metabolomics 

applied to identifying and understanding the impacts of lifelong exposures on 

human health offers a more objective appraisal of environmental risk factors that 

contribute to disparities in population health than can be provided by DNA 

(genomics), RNA (transcriptomics) or proteins (proteomics).70,71 Genes are often 

poorly correlated to phenotype as they are a near-static assessment of biology that 

excludes the impact of environmental exposures. For example, a genetic mutation 

carrier may remain asymptomatic and never express disease.72,73 Mutated proteins 

may confirm a greater risk of developing disease, though many have insufficient 

specificity and provide too little information regarding the rate of disease 

progression, or the eventual severity of illness. As the dynamic chemical expression 

of an individual’s unique biochemical interactions with their lifestyle and 

environment, the exposome is also key to new advances in precision medicine. 

Wherein all aspects of clinical treatment would be informed by an individual’s 

unique metabolic fingerprint, rather than one-size-fits-most series of clinical 

guidelines.74 Realization of this goal faces significant challenges due to the current 

dearth of experimental standardization regarding study design, sample preparation, 

instrumental platforms, and data processing. A large number of dynamic variables 

that differ widely in polarity and structure define a metabotype (or exposotype),75 

thus chemical diversity is significantly greater and more difficult to parse than in 

the human genome, comprised of 2 sets of base pairs, and proteome, built on 21 

amino acid building blocks.76 Consequently, omics initiatives have struggled with 

false discoveries due to inadequate study power, poor method validation and/or lack 

of replication in independent cohorts or laboratories.60,61,77,78 Such errors often lead 

to putative associations to heritable and/or chronic illnesses, that subsequently fail 

upon replication or validation,57,79–81 fundamental to the translation of robust  
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Figure 1.1: The omics cascade and the biological processes that influence end 
point metabolites 

 

biomarkers that have clinical utility to improve patient outcomes, such as screening 

tools for early detection of high-risk individuals prone to future disease 

development. 

 

1.2 Individual and Epidemiological Assessments of Risk 

1.2.1 Traditional Patient Assessment Standards and Protocols  

The most important clinical aspects of assessing an individual’s health are a detailed 

personal and family history, physical examination, and diagnostic tests, if 

necessary.82 Of these, history taking is the most fundamental, and informs results 

of the latter two.83 Families not only share hereditary disease factors, but also 

environmental, socioeconomic, and lifestyle factors that contribute to disease risk. 

Detailed histories probe past and present symptoms, use of prescribed medication, 
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supplements, tobacco, alcohol, physical activity, and any history of family illness.82 

Certain circumstances may require more comprehensive patient histories, for 

instance, occupational risk factors are important to identify for workers routinely 

exposed to airborne particulate, hazardous chemicals, and repeated physical stress, 

like firefighters.84,85 When diet is a key determinant of health outcomes, detailed 

nutritional assessments are required to elucidate the effect of diet on phenotype 

(e.g., heart disease), predict the effect of food intake on medical outcomes (e.g., 

ulcerative colitis), and monitor dietary adherence (e.g., pancreatic enzymes, fat-

soluble vitamins etc.) to ensure normal growth and development in conditions such 

as cystic fibrosis.86 However, the utility of patient history can be challenged by 

forgetfulness, inaccurate recall, and deceit.87 Objective assessment of health status 

is achieved by the physical exam, employing both qualitative and quantitative 

methods. Anthropometric measurements (e.g., height, weight, waist circumference) 

and blood pressure provide insight into cardiovascular disease risk. Distinctive 

colouring of the skin, eyes, and nails, or odours in breath, can indicate a number of 

metabolic disorders from chronic liver disease to anemia and alcoholism.88  

 Diagnostic testing generally relies on chemical tests, bioassays or imaging 

methods (e.g., ultrasound, x-ray, MRI) at a point-of-care facility for diagnosis, 

treatment monitoring, or as a risk-assessment initiative.89 The requisition of 

diagnostic testing is hypothesis-driven, where a physician may suspect some 

pathology after completing the patient history and physical exam, and used to 

determine downstream interventions.88 These tests are predominantly performed on 

serum, plasma and urine, though a number of specialized tests for non-standard 

excretions have been developed for clinical use, such as pilocarpine-stimulated 

sweat for confirmatory testing of cystic fibrosis.90,91 An extensive panel of 4000 

unique laboratory tests are available to clinicians and > 60 billion are performed 

annually in Canada;92 however, routine clinical chemistry testing of validated 

biomarkers examines only a small fraction of the human metabolome. It is this area 

of patient care that MS-based clinical care is continuing to revolutionize. 
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 MS-based methods offer a robust and multiplexed instrumental platform for 

clinical assessments, often having improved throughput, sensitivity and specificity 

as compared to conventional immunoassay, spectrophotometric, and 

electrochemical assays performed by automated analyzers. MS also offers the 

ability to simultaneously quantify a panel of biomarkers, which improves screening 

accuracy while avoiding the need for a repeat or confirmatory testing.73,93,94 Indeed, 

the advent of MS in newborn screening initiatives enabled rapid multiplexed testing 

for dozens of rare genetic diseases at incremental costs via analysis of a panel of 

amino and fatty acids in a heel prick (i.e., single drop) blood spot.95 For reasons that 

will be discussed later, widespread adoption of clinical MS methods has been slow; 

nevertheless, MS represents a major tool used in metabolomics for biomarker 

discovery that can also improve the analytical performance of existing clinical tests 

with better accuracy and fewer interferences. 

1.2.2 Biological Surveillance and the Challenges of Precision Medicine 

Novel applications of MS-based exposomics simultaneously detect multiple 

metabolites to identify patterns (i.e., combinations of variables) indicative of 

specific disease states and their unique subtypes as required for new advances in 

personalized or precision medicine.74 Metabolomics offers cost-effective methods 

amenable to clinical adaptation, with higher throughput and greater sensitivity to 

investigate complex human pathology (especially in combination with 

bioinformatics) than currently offered by the traditional “single” biomarker testing 

used in contemporary clinical medicine. Correlations found between metabolite 

patterns and disease in metabolome-wide association studies (MWAS) can be 

studied on an epidemiological scale to further understand how age, ethnicity, sex, 

geography, occupation, exposures and myriad other risk factors interact with the 

metabolome to influence clinical phenotype.96,97  

Among the most sought-after goals in exposomics is determining the 

developmental origins of health and disease;98 environmental exposures affect 

approximately 50 – 60% of the urine and plasma metabolomes,99 thus playing a 
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major role on the initiation and evolution of these processes (Figure 1.2). By 

understanding the processes that induce disease, practical strategies for disease 

prevention via lifestyle modifications can become the focus of health maintenance, 

rather than invasive reactionary treatments. Increasingly powerful tools of disease 

prediction will also allow for presymptomatic detection of diseases (e.g., newborn 

screening), increasing the probability of better outcomes with safer yet more 

effective therapeutic interventions. In the past decade a number of collaborative 

governmental and academic MWAS have begun the complex work of decoding the 

exposome in large-scale population studies, including EXPOsOMICS (Europe, 

device-aided personal exposure monitoring), HELIX (Europe, follow-up studies on 

established birth cohorts), and HERCULES (USA, computational applications 

applied to the exposome).100–102 Early MWAS have identified plasma 

concentrations of fatty acids, and acylcarnitines as significant predictors of 

mortality (hazard ratio = 1.11-1.18) in patients with suspected coronary artery 

disease.103 Similarly, Chajès et. al.104 reported a 24-39% increase in breast cancer 

risk in women with elevated serum concentrations of two monounsaturated fatty 

acids (i.e., oleic and palmitoleic acids), and with significantly higher odds (45-

124%) related to circulating trans fatty acids, that is largely derived from intake of 

hydrogenated oils from processed foods. Preliminary association studies are the 

first step to identifying putative molecular biomarkers, and related metabolites, that 

could be adapted for subsequent clinical testing. 

Cohort studies, case control studies, and cross-sectional studies use similar 

approaches to determining putative biomarkers, using tools (e.g., case reports, 

interviews, literature reviews) for the elucidation of cause-and-effect, without  
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Figure 1.2: The exogenous and endogenous determinants of phenotype relevant to 
human health. 

controlling any aspects of the intervention.105 Experimentally-controlled studies are 

typically smaller-scale (i.e., < 300 participants) pilot studies limited to much shorter 

time periods (i.e., days to months) that contrast two or more groups that receive 

distinct treatments, or groups where one receives no treatment (i.e., a control) in 

order to identify biochemical changes in the parallel treatment arms. Randomized 

controlled trials (RCT) have been the gold standard of clinical inventions for 

decades as they are ideal for reducing intentional or inadvertent bias by researchers 

in the selection of study groups, while making a direct comparison between two or 

more applied treatments, which aids in the interpretation of clinical outcomes.106,107 

However, due to limitations of funding, ethics, and statistical power findings from 

RCT are not necessarily directly translatable to real-world scenarios as these studies 

are generally conducted under well-controlled clinical supervision, reducing the 

confounding environmental variability found in free-living living populations. 

Thus, while a rigorous RCT may show efficacy within the study sample, it is not 
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possible to conclusively determine effectiveness within the general population, 

without further validation studies in diverse populations.108  

 Metabolic differences among minority groups typically poorly represented in 

experimental trials can lead to a medical interventions causing increased morbidity 

in those for whom the treatment is less effective, ineffective, or worse, adversely 

effective within the prescribed therapeutic window.109 More than 30 medications 

have been reported to have differential pharmacokinetics affected by factors 

including genetics and biological sex.109–111 For instance, polymorphisms of a 

xenobiotic-metabolizing liver enzyme (CYP2D6) confer varied abilities to 

metabolize codeine to morphine, for the treatment of pain. A significant proportion 

of Africans (1.8 - 18.8%) and Europeans (3.2 – 10.4%) are “poor metabolizers” of 

codeine (low CYP2D6 activity), that has much lower occurrence in Asian (0 – 

2.1%) and Middle Eastern (1.4 – 1.5%) populations.109 As a consequence, indicated 

therapeutic dosages are less effective for the two former groups when normalized 

to body mass alone. To address this, metabolomics is striving towards the study of 

increasingly stratified populations that reflect the complexity of biochemical 

pathways in real populations. 

1.3 The Workflow and Statistical Methodologies of Molecular Biomarker 
Discovery 

1.3.1 What Exactly is a Molecular Biomarker? 

A molecular biomarker may be a small molecule, protein, lipid, carbohydrate, gene, 

hormone or other molecule of endogenous or exogenous origin that can be 

objectively measured and associated with a pathological condition or biological 

change.81,112 In exposomics, biomarkers are generally sought to understand 

functional changes that occur within an individual in response to their 

environmental exposures, and more specifically to understand how these impacts 

relate to pathology.70 An ideal clinical biomarker must satisfy several analytical and 

clinical validation criteria, including:113  
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1) acceptable sensitivity, specificity, accuracy, reproducibility and 

robustness and other relevant metrics that establish technical 

performance; and 

2) an ability to classify or predict the concept of interest with acceptable 

clinical performance and cost-effectiveness. 

Biomarker discovery often begins with an untargeted association study (e.g., 

metabolomic fingerprinting or profiling), where 10-103 molecules from distinct 

sample populations are contrasted post hoc to identify a small number putative 

biomarkers that may explain biological differences between each group; however 

they may also be identified without a preliminary association study based on 

established scientific knowledge.114 A biomarker may be one or more molecules 

combined and may be used to make one or more clinical assessments. Some are 

used as binary determinants of illness (i.e., healthy vs. disease), while others offer 

more clinical utility in staging the progression of disease or differentiating subtypes 

of related diseases that is critical for treatment decisions. A review of the available 

clinical roles for molecular biomarkers is shown in Table 1.1.115 The targeted 

metabolite panel is usually determined by a priori knowledge or by an association 

study that showed significant discrimination between randomized analytical 

samples.64 
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Table 1.1: Clinical types and uses of risk-related biomarkers 
(adapted from Burke, 2016115) 

 

1.3.2 Human Biological Matrices Used in Biomarker Discovery 

For biomarker research, blood and urine remain the most commonly examined 

biological specimens analyzed in clinical metabolomics studies due to their easy 

accessibility to adequate sample volumes using well-established clinical sampling 

procedures and standardized analytical protocols. However, there are several 

alternative biospecimens which may offer unique specificity for studying aberrant 

metabolism relevant to specific human diseases, while avoiding the confounding of 

circulatory metabolites in blood or excretory metabolites in urine. Table 1.2 lists a 

selection of biological matrices analyzed in bioanalytical studies of the last decade 

and an estimation of recent publications. 

 

  

Type Role Relevant Risk 

Exposure Qualitative and/or quantitative 
measurement of specific 

chemical exposure 

Absorption of hazardous 
substances, production of 

hazardous metabolites 

Diagnostic To confirm/rule out the 
presence of abnormal pathology 

Malignant (and possibly 
benign) disease diminish 

quality of life and lifespan 

Therapeutic Identify pathological subtype 
and relevant treatment; monitor 
effect of treatment on disease 

(risk) 

Inappropriate treatment 
may be ineffective or 

harmful 

Prognostic Identify probability of future 
disease in the absence of 

intervention 

Untreated disease may lead 
to diminished quality of 

life and/or lifespan 
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Table 1.2: Metabolomics publications during 2008-2018 by biological 
matrix as defined by sample type analyzed 

Matrix Access Invasivenessa 
No. Recent 

Publicationsb 
Blood  

(Serum, Plasma) 
Venipuncture, 

skin prick 
M 4699 

Other tissue  
(skin, organ, muscle, bone) 

Biopsy H 4316 

Urine Excretion N 2159 

Feces or Stool Excretion N 299 

Cerebrospinal Fluid Lumbar 
puncture 

H 288 

Blood Tissue Venipuncture, 
skin prick 

M 252 

Breath Exhalate Excretion N 236 

Saliva Excretion N 142 

Dried Blood Spot Skin prick M 77 

Sweat Excretion N 69 

Amniotic Fluid Amniocentesis H 65 

Hair Cutting N 40 

Breast milk Excretion N 32 
a(H) High, (M) Moderate, (N) None; b2008-2018; searched as “[matrix] 

and metabolomics” 

1.3.3 Major Instrumental Platforms in Metabolomics 

The advent of instrumental analysis methods in the latter half of the 20th century 

greatly expanded the capability to resolve, detect, and identify low molecular 

weight molecules in human biological specimens. NMR and MS platforms are most 

commonly used in metabolomic profiling and metabolite identification as they are 

capable of sensitive, high-throughput and reproducible determination of a wide 

array of metabolites with excellent selectivity.116 Due to the high chemical diversity 

and wide dynamic range of largely unknown molecules in the human metabolome, 

complementary analytical strategies for achieving adequate metabolite coverage are 

required. NMR allows for non-destructive biological sample analysis, particularly 

structural determination, with well-known applications to liquid samples and more 
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recently, solids (e.g., tissue).117 While not commonly coupled to on-line 

chromatographic instruments for component separation, cryoprobes, unique pulse 

sequences, two-dimensional (2D) experiments, and sensitivity to multiple nuclei 

(e.g., 1H, 13C, and 11B) with little sample preparation make NMR a robust platform 

for identifying complex sample components, particularly those incompatible with 

common soft ionization methods in mass spectrometry.118,119 In NMR, targeted 

nuclei resonate in an applied magnetic field between binary energy states defined 

by the strength of an applied external magnetic field. Small differences (i.e., 

chemical shifts) in the resonance energies between identical nuclei are caused by 

unique magnetic effects from nearby atoms, which is translated into structural 

information based on well-established reference ranges for chemical shifts.120 1H-

NMR is most commonly used in structural elucidation of unknow compounds as it 

is a significant component of organic molecules and 99.98% of natural hydrogen 

isotopes. Commonly, 13C-NMR is also performed to effectively parse complex 

structural problems of structural elucidation but suffers from much higher detection 

limits due to a low natural isotope abundance.121 

 In practice, the dynamic range of NMR is limited by poor resolution when 

analyzing complex biological samples that often require large sample volumes  

(> 0.5 mL). These concerns also limit detectable features and quantification is 

challenged by overlapping signals, low sensitivity, and the wide range of 

concentrations in biological samples.122,123 Two-dimensional NMR yields more 

information by resolving overlapping signals on the linear axis into two-

dimensional space with powerful electronic (i.e., "through-bond") or geometric 

(i.e., "through-space") homonuclear (e.g., 1H vs 1H) interactions (e.g. correlation 

spectroscopy (COSY) or heteronuclear (e.g., 1H vs 11B) interactions (e.g., 

heteronuclear single quantum correlation (HSQC));124 though these 2D 

experiments are time-consuming (i.e., low throughput).116,125 Additionally, 

acquisition of an NMR instrument can be cost-prohibitive as high-field modern 
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instruments range exceed well over a million dollars while requiring high 

maintenance costs, including cryogens.126 

 MS has become the most widely used instrument metabolomics because of 

its lower infrastructure and operating costs, high sensitivity and direct coupling to 

various ion sources and separation technologies as compared to NMR.64 Mass 

spectrometers employ electric fields to sort ionized gas-phase sample components 

by their mass-to-charge ratio (m/z) with resolving power of > 106 (i.e., high mass 

accuracy) in modern instruments, therefore it is necessary that all compounds be 

ionized or ionizable to enter the instrument.137 Analytes with polar functional 

groups yield optimal relative response ratios with ESI-MS techniques, whereas 

nonpolar compounds are better suited for analysis with atmospheric pressure 

chemical ionization (APCI) or atmospheric pressure photoionization (APPI).127 MS 

is compatible with several high-efficiency separation methods for resolving 

complex sample mixtures, including high-pressure liquid chromatography (HPLC), 

gas chromatography (GC), and capillary electrophoresis (CE). techniques are 

important for expanding resolution and metabolome coverage while also providing 

complementary information to support unknown identification when using tandem 

mass spectrometry (MS/MS) via collision-induced dissociation experiments.128 The 

accurate mass of the intact molecular ion (e.g., [M+H]+), together with its charge 

state and isotopic pattern (e.g., 13C, 15N, 34S and 37Cl) allow for determination of 

the most likely molecular formulae for unknown compounds with structural 

information dependent on MS/MS spectral matching at different collision energies 

relative to known standards.129,130 

 Polar/ionic molecules in MS are ionized to largely intact gas-phase ions under 

positive and negative ion mode, yielding a spectrum where signal intensity is 

plotted against m/z, to depict the relative abundance of sample components.131 High 

efficiency separations of complex sample mixtures prior to ionization facilitates 

isomeric resolution and isobaric interferences while minimizing matrix-induced ion 

suppression or enhancement effects that contributes to bias in ESI-MS (Figure 
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1.3).132 Further, a perpendicular angle between the ion source and MS inlet reduces 

background noise and increases sensitivity to low abundance compounds by 

preventing sampling of nonionized material that could foul the instrument and 

reduce sensitivity (Figure 1.4). Detection limits in MS can reach picogram levels 

depending on ion source and sample injection volume, however, MS sensitivity is 

still challenged by sample matrix effects that can contribute to ion suppression or 

enhancement effects, which is a major challenge for quantitative measurements in 

metabolomics without use of stable-isotope internal standards.133 Nevertheless, the 

high versatility, selectivity, and sensitivity of MS are the reason for its widespread 

application in cutting-edge metabolomics research.  

 Gas chromatography (GC) is favoured for resolution or volatile, low 

molecular weight, thermally stable metabolites due to excellent reproducibility, 

high peak capacity, and sensitivity allows for the resolution of thousands of unique 

peaks.134 Furthermore, extensive electron impact (EI-MS) ionization spectral 

libraries are available for rapid, unambiguous structural identification of 

metabolites in biological samples.135,136 As it relies on the gas-phase partitioning of 

compounds, extensive sample workup and pre-column chemical derivatization are 

often needed to analyze polar/ionic metabolites as their trimethylsilyl derivatives. 

This prevents the study of several thermally labile metabolites and limits the 

usefulness of GC to lipidomic and low-polarity molecular analysis in human 

biomonitoring studies.137,138  

High-performance liquid chromatography (HPLC) is a widely-used 

separation technique capable of simultaneously resolving low- and high-polarity 

compounds, offering broader metabolome coverage than GC, which is limited to 

volatile, nonpolar, low molecular weight and thermally stable metabolites.140 

Specificity is achieved by modifying analytical conditions like pH, ionic strength, 

mobile phase composition, column dimensions, stationary phase particle size, and 
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Figure 1.3: Projection of the 3 dimensions of information provided when 
chromatographic/electrophoretic methods (CE, LC, GC) are used in tandem with 
MS. The sample is resolved into a chromatogram in the first dimension that is 
plotted by mass-to-charge (m/z) ratios in the second-dimension mass spectra. 
Relative response is shown in the third dimension. 

 

Figure 1.4: Orthogonal coupling between an ambient pressure ESI spray needle 
(containing coaxial CE capillary) and MS source that reduces ionization 
suppression by nonionized species by sampling charged species via an applied 
electric field. Used with permission from the American Chemical Society.139 

porosity. Instrumental settings like temperature and internal column pressure are 

also used to influence analyte resolution by differential partition equilibria into the 

stationary solid phase from the mobile liquid eluent. 141 Recent technologies have 
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greatly enhanced the separation efficiency achievable in LC, particularly the advent 

of ultra-performance LC (i.e., UPLC) which uses high internal column pressures 

(approximately twice that of HPLC) and small particles sizes (< 2 µm) to 

significantly increase peak capacity. Smaller particles allow faster mass transfer of 

analytes between mobile and stationary phases, producing narrower peak widths 

with greater resolution achieved in much shorter run times when compared to 

conventional LC.142 Similar optimizations can be achieved using traditional LC 

infrastructure with the use of core-shell particle stationary phase, where analyte 

diffusion are limited to a porous outer layer by a solid core, resulting in rapid mass 

transfer, faster runs, and efficient resolution comparable to UPLC while avoiding 

the excessive back pressures of UPLC that may cause leaks.143 

Reversed-phase (RP) HPLC is the most widely used separation mode in 

metabolomics as it is possible to separate a wide range of molecular classes while 

yielding highly reproducible retention times.144 The selectivity of non-polar (e.g., 

C8, C18) RP columns is modifiable by the use of derivatized stationary phases to 

improve retention of compounds based on physicochemical properties like charge, 

size, or polarity.145 C18 columns best separate non-polar or weakly polar sample 

constituents like oils and pesticides, as high polarity molecules are not effectively 

retained by the stationary phase and co-elute in the void volume. In metabolomics 

analysis, LC faces technical challenges resolving strongly polar and ionic species 

prevalent in certain biological samples such as urine and sweat.146 These are poorly 

retained by low polarity RP columns which limits the number of detectable features 

in important molecular classes associated with protein (i.e., amino acids) and fat 

(i.e., ketones and organic acids) metabolism.147,148 Hydrophilic interaction 

chromatography (HILIC) provides a complementary separation mechanism for the 

analysis of polar and ionic metabolites as compared to RP-HPLC, which uses 

volatile acetonitrile-rich eluent solvents more amenable to ESI- MS. Here, analytes 

partition between a stationary liquid phase adsorbed onto porous (un)modified 

silica, achieving separations with a combination of hydrophilic, hydrogen-bonding 



Nadine L. Wellington - Ph.D. Thesis - Chemistry and Chemical Biology, McMaster University 

 

21 
 

and electrostatic interactions depending on column type and mobile phase 

conditions (e.g., pH and ionic strength).149,150 A HILIC-UPLC method found over 

1100 highly polar compounds in murine urine samples in an approximately 10 min. 

method with excellent reproducibility.151 However, HILIC has not yet exhibited the 

ease-of-use and reproducibility necessary for large-scale metabolomics and 

currently remains an orthogonal technique in small-scale studies.152  

 Capillary electrophoresis (CE) is an electrokinetic separation technique with 

resolving power that can surpass that offered by HPLC and GC separations in 

untargeted metabolomics. Uncharged and low polarity compounds can be analyzed 

using micellar electrokinetic chromatography (MEKC) or a more recently 

developed technique, non-aqueous capillary electrophoresis (NACE),153,154 but it is 

more widely used for resolving ionic and weakly ionic polar compounds that have 

a discrete electrophoretic mobility under an external applied voltage.147,155 For 

broad coverage of the metabolome and detection of low-abundance metabolites, CE 

and HPLC are complementary techniques.156A significant portion of the 

metabolome is ionized at physiological pH and best resolved by CE, however, a 

low on-column sample volume (~10 nL) limits the detection of low-abundance 

sample components when compared to conventional LC. This can be problematic 

for detecting low abundance exposome-related compounds which can be orders of 

magnitude lower in concentration than endogenous metabolites in human biofluids, 

that may also co-migrate with signal-suppressing high abundance metabolites (e.g., 

creatinine). However, low sample volumes are advantageous in studies where 

samples are inherently volume-limited, such as in forensics applications or 

biological surveillance studies using non-traditional biofluids.73,157,158 

  Separations are performed in narrow fused-silica capillaries allowing low 

consumption of sample and analytical solvents, and comparably lower 

infrastructure costs. Furthermore, in the absence of a solid phase, sample 

preparation is rapid and uncomplicated without concerns of column ‘fouling’.159 

CE has also faced challenges in large-scale implementation due to analytical 
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challenges presented by pH and ionic strength instability, injection volume 

variation and technically inexperienced users, which can cause significant 

variability in absolute migration times.160 This is addressed by relying on distinct 

intrinsic electrophoretic mobilities of analytes during the isocratic separation that 

maintain reliable relative migration times to other analytes and internal standards, 

which are used to standardize the migration times of all detectable compounds.161 

The recent development of a multiplexed CE method by our lab greatly increased 

sample throughput (i.e., up to 13 injections per run) and made CE a significantly 

better option for analysis of polar/ionic species compared to single-injection 

methods like HILIC.161,162  

1.3.4 Data Workflows and Statistical Methodologies in Molecular Biomarker 
Discovery 

There are two methodological approaches to the measurement and characterization 

of biological samples in metabolomics: targeted and untargeted analysis. Targeted 

investigations rely on a priori knowledge of the identity and properties of 1 or more 

(usually < 50) molecules or molecular classes of interest, which are measured 

exclusively in samples to address a specific hypothesis relating metabolism and the 

molecules of interest. Since properties of the compounds of interest are known, 

selective methods of isolation (e.g., extraction) and analysis are optimized for their 

detection (i.e., more robust and reproducible results) while calibration curves may 

also be prepared for facile absolute quantification if chemical standards are 

available.163 Using targeted protocols are beneficial for the low computational 

demands of data processing and the ability to use less resource-intensive analytical 

platforms if adequate analysis can be achieved by simpler technologies like thin-

layer chromatography (TLC), ultraviolet/visible spectroscopy (UV/Vis), and 

fluorescence. The overall intention of targeted analysis is sample profiling, not 

discovery, to associate an experimental classification (e.g., disease state) with 

known metabolite concentrations.164 
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Untargeted analysis is also used to analyze stratified samples to address a 

specific hypothesis but seeks to identify molecules related to the sample 

classifications and analytical question. As the specific molecular targets are not 

known before analysis, sample preparation techniques and analytical platforms are 

selected to maximize the number of detectable signals, which can be maximized 

using sensitive, high-resolution analytical instruments like NMR and MS.163 As a 

number of these signals are unknown, labour-intensive efforts are required to 

validate and annotate each signal as a unique feature of interest (i.e., with a unique 

analytical identifier like migration time and mass-to-charge ratio, m/z:RMT) and 

not a contaminant, adduct, fragment, or other artifact. Untargeted analysis often 

yields thousands of raw signals, that are filtered to only hundreds after cleanup. 

Patterns in the abundance of annotated metabolites impart a molecular fingerprint 

to each sample, which may be contrasted to determine molecule features related to 

the sample classification, even when their identities are unknown. However, 

compromises in analytical sensitivity for global metabolome coverage can mean 

poorer precision of analytical measurements, and greater difficulty elucidating class 

membership using untargeted metabolomics data.163 Systematic data processing 

workflows are used to reduced extensive feature lists to set of reproducibly-detected 

metabolites for subsequent statistical analysis, a typical workflow in untargeted CE-

MS analysis is shown in Figure 1.5. 
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Figure 1.5: Untargeted metabolomics workflow for the acquisition, cleanup, and 
processing of data in biomarker studies.  

 

Increasing analytical sensitivity and throughput has vastly increased the number of 

detectable features (and confounding noise) when using high resolution MS 

methods produced from a medley of experimental designs, data processing, and 

statistical analyses.165 The range of available statistical packages for data analysis, 

combined with increased use of these tools by novice users means that two analysts 

can generate different outcomes from the exact same data set.166–168 For 

metabolomics to facilitate the transition from discovery to clinical application 

interdisciplinary collaboration on study design, sample collection, sample analysis, 

and metabolite identification is essential to produce meaningful, robust, and 

reproducible data that avoids false discoveries when using untargeted methods for 

molecular biomarker discovery. As a result, a number of automated, user-interactive 

online software pipelines for the processing of large datasets have been developed 

to aid in structural ID (e.g., HMDB,169 Metlin170), statistical analysis (e.g., 
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XCMS,171 Metaboanalyst172), and biochemical interpretation (e.g., HMDB, 

Metaboanalyst).173 Further recommendations have been made to abide by 

transparent reporting standards in metabolomics for improved replication and 

translation of studies, and for the public provision of raw data for parallel 

analysis.174,175 

The greatest bottleneck in modern omics analysis involves the storage, 

processing, cleaning, and analysis of large amounts of data. There are several 

transformations that may be necessary dependent on the nature of the recorded data, 

but generally recorded signals are converted into useable data matrices by iterative 

steps involving:176 

1) Cleaning, noise reduction and baseline verification; 

2) Peak detection and deconvolution; 

3) Feature alignment among runs and batches (including batch correction); 

and 

4) Application of normalization algorithms (i.e., to correct for hydration 

status and large dynamic ranges). 

As discussed above, even with the most judicious applications of these steps two 

analysts may yield significantly different results for the same samples. It is therefore 

of the utmost importance that all data handling methods be clearly reported with 

the data, including the software used to perform them.177 

  Quality control samples (QCs) are ideally technical replicates of a pooled 

analytical sample, or otherwise standard mixture of representative metabolites, run 

at pre-defined regular intervals between analytical samples.178 When a pooled 

sample is all or a portion of analytical batches, QCs are indispensable in data 

cleanup by confirming the veracity and reproducibility of low-abundance features 

that may be easily be mistaken for spurious noise.179 However, unwanted features 

including fragments and adducts will also appear reproducibly in QCs, and are 

easily mistaken for unique features. In-source fragmentation of compounds is an 

unavoidable consequence of energy transferred to molecules in the ionization 
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process, though the incidence of fragmentation can be reduced by employing 

gentler parameters in the MS source.180 Because the thermodynamics of ionization 

may differ between labs, the inclusion of fragments and adducts may exacerbate 

interlaboratory data reproduction issues. Further, inclusion of these features can 

easily inflate data matrices with highly collinear data that inappropriately increase 

the classification power of one or more metabolites.181 This problem can be 

mitigated by comparing the alignment, peak shape, and statistical correlation 

between compounds with suspected additive or dissociative relationships. 

Additionally, comparison to collaborative databases of known fragments and 

adducts, as well as maintenance of similar in-house databases, can make the 

elimination of these features quick and accurate.182 Further, consolidation of 

information is challenged by differing, and sometimes inappropriate, uses of 

analytical methodology, statistical analysis and data reporting in a relatively young 

field.177,178,183,184 As QCs are identical aliquots with theoretically identical 

performance characteristics, gradual instrumental changes can be reflected in 

changing retention times, lowered sensitivity (broadening), and deteriorating peak 

shape. They also provide guidance on the appropriateness of data extraction and 

processing steps.167 Data processing steps that increase variance among QCs, 

particularly in excess of the general standard of 30% CV, must be examined with 

prejudice.185 QCs are also fundamental to identifying low-quality samples and 

batches to be re-run or discarded and this is most easily achieved when QCs are 

regularly inserted among analytical samples.186  

 When sample acquisition, instrumental analysis, and data extraction are 

properly implemented, the result is a representative multidimensional spectrum for 

each sample (i.e., retention time x intensity x m/z). An important task before 

analysis is then to ensure as much appropriate homogeneity between QCs and 

unchanged features as possible, to more easily identify the true differences between 

analytical samples during statistical analysis. This will involve data transformations 

that include batch (intensity) correction, data normalization, and in urine 
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metabolomics, correcting for inherent interindividual differences in hydration 

status. There are numerous data pretreatments available (i.e., log transformation, 

centering, and scaling) and it is the prerogative of the analyst to adjudicate which 

functions are necessary for accurate analytical performance from their data.167 

Though, it is worth repeating that the selection of an analytical strategy at this stage 

may lead to significantly different outcomes upon analysis, highlighting the 

importance of making informed selections.187 Batch correction has been 

increasingly automated with the provision of publicly accessible tools for data 

alignment, however, the user’s skillset is still fundamental to attaining proper 

output.188–190  

Inadequate study power is a funding-correlated problem rampant in 

untargeted studies. Improperly balanced study designs (variables > samples) 

comprising highly correlated and highly dynamic variables produced in 

metabolomics often leads to data overfitting and bias when using multivariate 

statistical methods.191 It is within this framework that Ioannidis wrote that “Most 

published research findings are false,” leading to what Forstmeier et. al. describe as 

a “crisis of confidence.”77,165 Systematic error and bias can be introduced at every 

step in the metabolomics pipeline, and important tools to counter unwanted 

variation are quality control (QC) and quality assurance (QA) practices, such as 

following a standard operating procedure (SOP) on rigorously validated 

methodologies.192 Inconsistencies in sample handling, such as prolonged exposure 

to room temperature, may cause significant differences in metabolite profiles due 

to ongoing biochemical reactions and bacterial metabolism.193 Furthermore, delays 

in collecting biological samples can introduce bias from diurnal variations (Chapter 

1.1.2) that may be misinterpreted as a class-specific differences in metabolism and 

promote false discoveries.192  

 Methods to reduce variation differ by sample type and study design. 

Generally, if urine is not flash frozen soon after collection, filtration, cooling, or 

preservation (e.g., sodium azide) may be used to reduce bias from biotic (e.g., 
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bacterial) or abiotic (e.g., oxidation) processes to better stabilize metabolites in the 

sample.194 Blood is a versatile fluid that may be collected whole, or partitioned to 

contain only a portion of blood materials in the form of serum (cells and clotting 

proteins removed) or plasma (cells removed). Hemolysis, red blood cell rupture 

caused by high-vacuum collection or rough handling, perturbs metabolite profiles, 

causing significant changes to lipids and amino acids such as tryptophan and 

glutathione.195 While plasma is collected into prepared tubes to prevent clotting 

(e.g., containing heparin, citrate or EDTA anticoagulants), serum samples are 

exposed to ambient temperatures for periods of 30 minutes to under 2 hours to allow 

clotting processes to remove red blood cells and fibrinogen clotting factors.193 It is 

imperative collection processes are standardized, so that temperature and time 

effects are consistent among samples as it represent a common source of pre-

analytical bias.196 When preparing samples for storage, it is then prudent to portion 

samples into separate aliquots to permit repeated analysis while avoid repeated 

exposure of a single sample to room temperatures and multiple free-thaw cycles, 

which degrade less stable metabolites.192 

 In metabolomics, especially in untargeted studies, it is common that the 

identity of features will consist of a simple class designation or retention time, and 

elemental composition (accurate mass) in place of a chemical name.197 In the 

absence a molecular identity and very often an analytical standard, it is not possible 

to quantify features of interest. Here, internal standards (distinct, non-interfering 

reference molecules added to every sample in identical concentration) serve as 

references for the ionization response, permitting the use of relative peak areas 

(RPAs) as stand-ins for absolute concentrations.155 Internal standards also provide 

more robust quantification than offered by external QCs as they are identically 

affected by intrasample variations in injection volume, applied pressures, ambient 

temperature, and electrospray integrity.198 

 While solute concentrations in blood are homeostatically controlled, 

normalization of urine metabolite data is particularly important to compare highly 
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variable solute concentrations that fluctuate due to water consumption and 

biological eliminations.35 In this work, 4- to 20-fold differences in urinary output 

amongst participants were observed. As described in Chapter 1.1.2, 

spectrophotometric measurements of creatinine are a common normalization factor 

in urine data, but with the advent of high-resolution instrumental methods it has 

become clear this is no longer appropriate.24,25 Accordingly, the inclusion of urine 

Crn concentration as an independent variable in regression models, rather than a 

pretreatment correction factor, was proposed to remove the dependence of 

statistical significance on Crn abundance.25 

 Once the highest data integrity has been achieved, the work to identify 

classifying features (i.e., putative biomarkers of the biological challenge in 

question) is pursued via statistical analysis. In small-dataset targeted studies, 

particularly those where the identities and biological relationship between variables 

is already known, univariate testing (i.e., Student’s t-test, Kruskal-Wallis, ANOVA) 

is suitable and even desirable, provided a method is applied to correct p-values for 

multiple hypothesis testing.199–201 However, in practice, metabolomics datasets 

initially contain hundreds to thousands of metabolites containing many unknowns, 

which are unsuitable for univariate statistics. Multivariate classification methods, 

including principal component analysis (PCA), partial least squares discriminant 

analysis (PLS-DA), and random forest analysis, are then used for (un)supervised 

identification of putative biomarkers.202–204 Despite the ability of these instruments 

to handle (and output) large numbers of metabolites significant to the challenge, the 

ultimate goal is reduction of data dimensionality and identification of the smallest 

number of features that can provide acceptable discriminatory power.114 This is 

imperative for the development of low-cost, high-throughput testing amenable to 

clinical implementation. Of critical importance as technological capabilities and our 

knowledge base rapidly increase within the era of “big data” is the need for 

transparent, rigorously validated protocols and data workflows, applied to well-

designed studies that are replicated independently across different laboratories, as 
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well as open-access resources for collaboration and the dissemination of 

information within the broader research community.175,205 

A candidate feature must achieve validation, via replication, to be classified 

as a viable biomarker once its clinical utility is evaluated, but this is practiced too 

infrequently.177 Novelty is held in higher regard than accuracy, suppressing the 

capability and incentive for research labs to participate in cross-laboratory 

validation studies for independent testing of the significance of major 

findings.154,206 To address this in-house, improved standards of testing and reporting 

have been urged from investigators including redundant sampling, maintaining 

training and test cohorts, crossover studies, and reporting the discrimination 

performance of a feature (i.e., sensitivity/specificity, ROC curves, effect size, and 

performance on class label permutation).114 Additionally, producers and consumers 

of scientific information we must also learn to appreciate the value of confirming 

the null hypothesis (p > 0.05) and place greater value on reaching the correct 

conclusion, rather than a novel conclusion.169,212 In spite of these challenges, to 

fully characterize the causes of human illness and develop risk assessment 

strategies would be an exceptional achievement in human health and preventative 

medicine, and it is this motivation that drives the bulk of the work in this thesis. 

1.4 Multi-segment Injection Capillary Electrophoresis (MSI-CE-MS)  

For maximum metabolome coverage, LC and GC (and related chromatographic 

methods) employ gradient elution (i.e., low to high organic content in RP) or 

temperature programming (i.e., low to high temperature), while CE analysis is 

performed isothermally and isocratically in an aqueous buffer system to ensure a 

homogenous environment for all solutes to maintain consistent electromigration 

(i.e., EOF + analyte migration) and ionization properties.208 Multi-segment 

injection mass spectrometry (MSI-CE-MS) is amenable to the sequential injection  
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Figure 1.6: (A) Schematic showing 7 injections of MSI-CE-ESI method for high-
throughput sample analysis. Six randomized analytical samples are run with a 
pooled QC in a randomized position. (B) All 7 injections resolve in parallel and 4 
metabolites are separated by distinct native electrophoretic mobilities. (C) Total ion 
electropherogram of analytical run in ESI+ mode. Small, charge-dense cations 
migrate rapidly, followed by larger, less densely charged ions (e.g., creatinine). 
Neutral compounds elute with the bulk electroosmotic flow (EOF).(D) Extracted 
ion electropherograms of 4 urine metabolites resolved by mass-to-charge ratio 
(m/z) in QTOF-MS with 7 distinct peaks corresponding to 6 analytical samples and 
a randomized QC. 

of up to 13 samples (inclusive of QC) with simultaneous resolution, thereby 

increasing the throughput of a standard CE analysis up to 10-fold while improving 

data fidelity through shorter analysis times.93,161 The migration of metabolites 

within an MSI run is equivalent to a singular injection, resulting in similar 

resolution of all sample components (Figure 1.6).  

1.4.1 Advantages and Applications of MSI  

For quantification of metabolites, calibration curves are necessary to identify the 

linear response range of a compound, including the limit of detection (LOD), and 

limit of quantification (LOQ).209 With triplicate analysis for the development of 
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performance metrics (SD, %CV), this would involve 12 - 15 runs (4 - 5 data points), 

with a cumulative run time in excess of 12 hrs. (30 min. run time and 25 min. 

conditioning). Triplicate multiplexed runs offer more accuracy with 6 - 7 data points 

per regression line, resolved under near-identical analytical conditions (with near-

uniform variance) for improved data fidelity in less than 3 hours. Reduced technical 

and instrumental variability provides greater precision around data points for 

smaller confidence intervals in the R2 (coefficient of determination), slope, LOD 

(S/N ≈ 3) and LOQ (S/N ≈ 10).210 MSI has been used in several novel high-

throughput applications: determining novel markers of enhanced stamina in skeletal 

muscle of subjects who had supplemented with bicarbonate prior to high-demand 

aerobic and anerobic exercise;211 rapid screening of urine samples for metabolites 

of controlled common drugs of abuse with online secondary confirmation of ID 

using tandem MS;93 identifying a suite of lysine analogs related to symptomatic 

inflammatory bowel syndrome (IBS); and discovering an impaired pathway in the 

catabolism of two xenobiotic compounds (i.e., pilocarpic acid and mono(2-

ethylhexyl)phthalic acid) in juveniles with cystic fibrosis (CF) that differentiated 

them from children designated CF-positive with greater sensitivity than the current 

clinical test.73 

To expedite peak picking a rapid feature verification method, a dilution trend 

filter, uses multiplexed serial dilutions of a single analytical sample.161 

Simultaneous recording of all mass channels when analyzing 7 serially diluted 

samples provides a rapid method of feature reduction during pre-processing 

(Figure 1.7). Dilution trend filters produce regression lines for each feature, which 

are evaluated for linearity and variance to determine their acceptability. Features 

with inconsistent behavior (i.e., constant or increasing peak area, or sporadic 

appearance) can be eliminated or labeled for secondary inspection before inclusion 

in the analytical dataset.161 In the event of missing signals. DiBattista et. al. applied 

dilution patterning in 7-injection MSI to a trio of paired samples for facile 
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Figure 1.7: (A) 6 injections of a serially-diluted (1, 2, 5 and 10 times) pooled sweat 
QC sample plus a blank produces (B) an electropherogram that identifies the 
metabolite citrulline (m/z 176.1030) as an authentic feature with no background 
(blank) signal and (inset) excellent linearity (R2= 0.989) and reproducibility (RSD 
= 4.2%) among triplicate experiments. A dilution trend filter is employed in MSI-
CE-MS untargeted metabolomics studies as a rapid first-pass exclusion filter of (C) 
spurious peaks from chemical and technical noise that do not show effects of sample 
dilution. Adapted from Nori de Macedo et al.73 

 

recognition of individual samples during data extraction, where each duplicate also 

functioned as a within-run replicate.68 

 Another novel application is the ability to encode sample ID information into 

a series of multiplexed samples to reduce ambiguity in sample identification. With 

each of 3 individuals assigned a distinct dilution pattern (i.e., 1:2, 1:1: or 2:1), 5 

previously unidentified features were elevated in a 1:2 pattern in an individual with 

elevated citrulline in galactose 1-phosphate uridylyl-transferase deficiency. The use 

of dilution patterning permitted faster visual recognition of aberrant metabolite 

concentrations for accelerated identification of possibly classifying MS-based 
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biomarkers in diseases already part of a clinical laboratory-based screening 

protocol.  

 While the improvements in data reproducibility, analysis time statistical 

performance are evident, significant increases in ionic strength when analyzing 

biological fluids within a single run substantially increases the amount (and length 

of the migration window) of fast-moving salts and non-ionizable neutral 

compounds. Suppression effects from highly abundant metabolites (i.e., urine 

creatinine in positive mode, uric acid in negative mode) may also increase. 

Increased suppression of small, rapidly migrating cationic organic features that 

overlap with the suppression band of ions that open the analytical window may 

reduce the reproducibility of leading peaks, preventing inclusion of these features. 

Additionally, the low sensitivity of CE for low-abundance metabolites by virtue of 

the small injection volumes is further reduced by a lower effective capillary length 

(i.e., less resolution time) and increased solute concentration. Thus, while MSI is 

an excellent method for high-throughput analysis (targeted and untargeted) of 

features with easily detectable signals, it presents challenges for the detection and 

identification of novel low-abundance metabolites characteristic of exogenous 

exposures pursued in exposomics studies. This is partly addressed by moderately 

lengthening the CE capillary and run time for improved resolution, while using 

narrow diameter capillaries to mitigate broadening due to thermal or dispersion 

effects. By using 10 to 20-fold dilute samples large increases in ionic strength are 

avoided which maintains electrophoretic mobilities and reduces competitive 

suppression effects in ESI, without significantly compromising sensitivity due to 

the low on-column volumes used in CE. 

1.5 Thesis Contributions to Targeted and Untargeted Metabolite Profiling 
for Disease Risk Assessment 

Metabolites represent molecular endpoints of functional biology and offer critical 

insights into the phenotype of an organism relevant to new advances in precision 

medicine and population health. When applied to the exposome, a vast amount of 
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information on the identity, absorption, and metabolism of myriad chemicals in our 

environment is available. However, the effects of these exposures on human health 

remain poorly understood due to complex interactions with genes, microbiome, diet 

and lifestyle. However, well-controlled studies are needed to discover viable 

biomarkers that are both analytically and clinically validated that would directly 

benefit patient care while reducing healthcare costs. 

 Respecting the scope and complexity of the human metabolome, work in this 

thesis first details the development of a novel arylboronic acid biosensor for direct 

quantification by absorbance or native fluorescence for micromolar levels of N-

acetylneuraminic acid (sialic acid, Neu5Ac), a ubiquitous cell-surface sugar linked 

to severe inborn errors of metabolism, chronic and acute illness (Chapter 2). An 

expanded targeted analysis of a panel of smoke biomarkers, including a series of 

polycyclic aromatic hydrocarbons when using GC-MS was next analyzed from a 

cohort of firefighters following search-and-rescue training exercises in order to 

identify chemical exposures for improved risk assessment as outlined in Chapter 3. 

A targeted and nontargeted cross-platform metabolomics study was then explored 

for identification of dietary biomarkers that reflect two contrasting eating patterns 

(e.g., Western and Prudent diet) in healthy participants following two weeks of 

assigned food provisions in Chapter 4; this work was also used to verify self-

reported diet records in a significant step towards objective biomarkers of habitual 

diet for new advances in nutritional epidemiology. These studies are contributions 

to efforts to develop rapid, minimally invasive, and specific assays of the human 

exposome (i.e., chemical and diet exposures) applicable to population health for 

more accurate risk assessment of future illness. 
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1.5.1 Developing Chemical Sensors for Rapid Assessment of Health Status 

Neu5Ac is a ubiquitous acidic (pKa = 2.6) sugar essential to mediating aggregation 

and recognition interactions between red blood cells, proteins and lipid 

glycoconjugates. Widely distributed in the body, Neu5Ac is primarily found as a 

terminal sugar conjugated to a diversity of glycan chains, though a homeostatic 

equilibrium maintains a low concentration of the monomer at sub-micromolar 

levels in biological fluids and tissues. Already well-characterized clinically, inborn 

errors of sialic acid metabolism are known to cause severe congenital defects in 

infants which may not be properly identified until the most severe symptoms are 

apparent. Furthermore, the extent of glycoprotein sialylation in the absence of 

genetic causes is associated with both chronic and acute illnesses, including cancer, 

autoimmune diseases, and the common cold, and is an important biomarker for 

therapeutic monitoring. Chapter 2 describes the unusually strong binding affinity 

between a zwitterionic arylboronic acid, 4-isoquinoline boronic acid (IQBA) and 

Neu5Ac, which may be exploited for the development of a rapid and inexpensive 

optical assay analysis of biological samples. IQBA and Neu5Ac binding is greatly 

enhanced under acidic buffer conditions mediated via a specific covalent interaction 

involving an α-hydroxycarboxylate moiety lacking in abundant competitive neutral 

sugars/polyols, such as D-glucose. Many methods used to quantify Neu5Ac lack 

the sensitivity to independently measure the free monomer, necessitating enzymatic 

pre-treatment to deconjugate the sugar. Current methods to quantify micromolar 

concentrations of Neu5Ac rely on a multi-step colorimetric derivation reaction 

involving thiobarbituric acid and acidic digestion that lacks precision and 

specificity. The results discussed here are exciting preliminary steps towards the 

development of optical biosensor for rapid determination of Neu5Ac in biological 

samples. 
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1.5.2 Revealing Metabolic Impacts from Wood Smoke Components in 
Firefighting 

The exposome of the occupational firefighter is more complex than the general 

public, by virtue the number synthetic chemicals contained in household products 

and myriad toxic and mutagenic combustion byproducts produced during the 

burning of structural materials. Undetected exposures to these chemicals (e.g., 

polyaromatic hydrocarbons, hydrogen cyanide, and halogenated organic 

compounds) and poor adherence to mitigation practices are suspected in 

anomalously high incidences of cancer, cardiovascular disease, and cardiac arrest 

in comparison to the general public. Approximately 50% of career firefighters are 

expected to develop a chronic disease or die before 70 years of age. The hazardous 

mixture of ambient aerosols, particulate, and gases at the fireground have been well-

characterized, fewer have endeavoured to characterize the metabolism of these 

toxins, and to our best knowledge none have made efforts to identify chemically-

permeable weak spots in the fire-protection gear or identify novel markers related 

to the exposure using a targeted metabolomics method. The diversity of burn sites 

(e.g., rural or urban) and structures (e.g., residences, industry, and transport) imparts 

extensive variability of exposure among members of the same station. Chapter 3 

describes a rigorous controlled study to characterize the exposome of occupational 

firefighters exposed to wood smoke during a controlled burn in a training structure. 

Analysis of chemical distribution on the skin showed a generalized permeability of 

the protective clothing and mask that lead to deposition on the skin of the arm and 

cheek, with unintentional inhalation of ambient chemicals as a likely consequence. 

Accordingly, urine from male participants from the municipalities of Burlington (n 

= 5), Ottawa (n = 8), Hamilton (n = 5) was collected in 4 chronological pooled 

portions over a 48-hour period, where each individual served as their own control 

by collecting a 24-hour pooled baseline sample for comparison. Exposure and 

metabolism of ambient toxins was confirmed by several-fold urinary excretion of 

several methoxyphenols (e.g., guaiacols, syringols) as well as several metabolites 
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of polyaromatic hydrocarbons that are associated with carcinogenicity due to the 

formation of reactive oxygen species that can modify cellular DNA.  

1.5.3 Identifying Nutrimetabolomic Markers of Food Intake and Diet 
Quality 

Dietary intake is a major determinant of health status, life expectancy, and is 

integral to obesity and chronic disease risk. Epidemiological studies have shown 

diets rich in fruits and vegetables, lean meats and unsaturated fats and low in 

processed foods, red meat and saturated fat (i.e., Prudent, Mediterranean) offer 

optimal nutritional quality with anti-inflammatory effects that support 

cardiometabolic health. Thus, an ability to accurately assess the habitual diet of 

individuals is fundamental to provide evidence-based nutritional policies for 

chronic disease prevention, which is critical in an era of unproven fashionable diets. 

Current methods of diet assessment in free-living populations rely heavily on self-

reporting based on diet records or food frequency questionnaires (FFQ), which are 

prone to bias and selective reporting. In this context, Chapter 4 details a multi-

platform metabolomics study for assessment of dietary exposure was designed to 

identify robust dietary biomarkers from healthy participants (n = 42) who were 

assigned either a Prudent or Western diet over a 2-week period. Use of 

metabolomics platforms permitted the simultaneous measurement and comparison 

of hundreds of metabolites in matching plasma and urine samples at baseline and 

following assigned provisional diets, which were then correlated with major 

nutrient categories from self-reported diet records. For the first time, we revealed 

that a panel of dietary biomarkers were identified as robust biomarkers reflecting 

contrasting diets (i.e., metabolic trajectories) when using GC-MS, CE-MS and CE-

UV platforms. As expected, many saturated and unsaturated fatty acids were 

elevated in plasma following a Western diet. Importantly, both plasma and urinary 

concentrations of proline betaine and 3-methylhistidine dietary biomarkers were 

positively correlated in participants following a Prudent diet and associated with 

increases in average fruit and protein intake, respectively. Several organic acids and 
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amino acids were also elevated in fasting plasma samples when following a Prudent 

diet, including biotransformed plant-derived metabolites co-metabolized by gut 

microbiota.   
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Chapter 2:  The Anomalous Stability of Isoquinoline Boronate Ester 
Complexes Under Acidic Conditions: A Biosensor for 
Sialic Acid Determination 

2.1 Abstract 

4-isoquinolineboronic acid (IQBA) exhibits the highest reported binding affinity 

for sialic acid (Neu5Ac, K = 5390 ± 190 M-1) via formation of a stable boronate 

ester complex under acidic conditions. This anomalous pH-dependent binding 

enhancement enables the selective analysis of sialic acid with low micromolar 

detection limits when using UV absorbance or native fluorescence. 

2.2 Introduction 

Boronic acids (BA) are used in a diverse range of devices and biomimetic materials 

for molecular sensing applications due to their strong affinity for binding to 

biomolecules containing vicinal diols, including saccharides, nucleosides and 

glycoprotein.1-3 BA form reversible covalent complexes primarily with syn-

periplanar (cis) 1,2-diols to generate 5- membered cyclic esters (4-6 in Scheme 

2.1). Ligand affinity and specificity can be tuned by functionalizing BA4 under 

optimal buffer pH conditions in conjunction with colorimetric arrays,5 as well as 

their incorporation within nanoscale materials, such as molecular imprinted 

polymers6 or via surface-oriented imprinting.7 BA exist as electron-deficient 

trigonal planar sp2-hybridized Lewis acids (2) and tetrahedral sp3-hybridized 

boronate anions (3), when pH > pKa of the boron centre (pKa,B). Complexation to 

high affinity ligands lowers the boron pKa,B, yielding a cyclic tetrahedral anionic 

boronate ester (5 or 6) with improved thermodynamic stability as compared to 

acidic conditions (4), where the complex suffers from angle strain and is prone to 

hydrolysis.8 As a result, neutral and alkaline pH conditions generally favor binding 

of BA with saccharides having suitable vicinal diols.1  
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Scheme 2.1: (A) Equilibrium species present for zwitterionic IQBA in aqueous 
solution as a function of buffer pH and ligand concentration. The thermodynamic 
stability of the boronate ester complex is dependent on the charge state of IQBA 
based on reversible complexation with vicinal diols and/or α-hydroxycarboxylates, 
such as Neu5Ac (14). (B) Model BA and ligands used to assess the unique binding 
affinity enhancement of IQBA-Neu5Ac under acidic conditions. 

 

Diol functional groups exist in a myriad of biologically important molecules, 

however BA may also bind strongly to ligands containing other functional groups, 

such as α-hydroxycarboxylates (Scheme 2.1).10 Nevertheless, BA-based biosensors 

have been largely focused on glucose biosensing applications as it allows for 

treatment monitoring of diabetic patients.11-13 However, apparent binding constants 

at neutral pH are weak for phenylboronic acid (PBA (7), K ≈ 5 M-1),14 but can be 
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greatly improved with the design of a bisboronic acid scaffold for selective trapping 

of glucopyranose, the major (> 99.5%) species in aqueous solution.15  

Despite their useful optical or electrochemical properties, low toxicity and 

versatile chemical functionalization, BA probes often suffer from inadequate 

sensitivity and/or selectivity as compared to enzyme-based electrochemical 

detectors widely used globally in personal glucose meters.16 Also, there is urgent 

need for the design of new BA probes that can target other low abundance sugar 

metabolites of biological significance beyond glucose. Recently, various 

heterocyclic BA have been reported to show higher affinity towards neutral 

monosaccharides at physiological pH relative to traditional PBA analogues.17-19 In 

this work, we characterized the pH-dependent binding interactions of 4-

isoquinolineboronic acid (IQBA, 1 or 2) for biorecognition of sialic acid or N-

acetylneuraminic acid (Neu5Ac, 8), which serves as the terminal sugar moiety in 

most glycoproteins mediating critical roles related to cell recognition, virulence and 

immunological response.20 Neu5Ac proliferation in glycoprotein isoforms also 

varies in the progression of cardiovascular disease, cancer, and alcoholism, thus 

represents an important molecular target for routine screening.21-23 

2.3 Results and Discussion 

IQBA is a zwitterionic arylboronic acid probe that undergoes a hyperchromic shift 

(lmax = 335 nm) and fluorescence enhancement (lem = 377 nm) upon binding to 

increasing Neu5Ac concentrations (Figure 2.1A). Importantly, there is a 65-fold 

greater binding affinity under acidic conditions (pH 3.0) with a K = (5390 ± 190) 

M-1 as compared to neutral (pH 7.0) conditions (Figure 2.1B). In contrast, other 

commonly measured neutral saccharides at pH 7.0 (Table 2.1) had far weaker 

stabilities under acidic conditions, such as sorbitol (9), fructose (10), catechol (11) 

and glucose (12). In fact, the formation constant of IQBA with Neu5Ac (K = 84 ± 

23 M-1) is about 10-fold greater than glucose at neutral pH, and 2-fold stronger than 

reported for 3-(propionamido)-PBA.24 As expected, the binding affinity of 

naphthalene boronic acid (NBA, 7) to Neu5Ac revealed far weaker interactions  
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(K = 6.8 ± 0.1 M-1) that was independent of buffer pH as it lacks a weakly basic 

quinolinium ion (pKa ≈ 5.0). Additionally, a comparison of the binding of Neu5Ac 

with a positional isomer of IQBA, namely 3-quinoline boronic acid (QBA, 13) 

revealed similar enhancement of binding affinity under acidic conditions albeit with 

lower overall complex stability (K = 2600 ± 150 M-1). Further studies were next 

aimed to elucidate the exact mechanism of the unusually high binding affinity of 

IQBA for Neu5Ac under acidic conditions, which is more than 5-fold greater than 

recently reported pyridine-based boronic acid derivatives (K ≈ 700-1100 M-1 at pH 

5).25 A 13C-NMR spectral overlay confirms that binding of Neu5Ac to IQBA results 

in a pronounced upfield chemical shifts notably of the carboxylate ( ≈ 2.5 ppm) 

followed by its adjacent α-hydroxy moiety ( ≈ 0.8 ppm) (Figure 2.1C). This is 

consistent with previous multinuclear NMR studies of PBA interactions with 

Neu5Ac, which demonstrated involvement of the α-hydroxycarboxylate pendant in 

boronate ester formation (pH < 9.0) in contrast to binding of the terminal glycerol 

moiety (C8, C9) that predominates under higher pH conditions.26 Computer 

molecular modeling confirmed the greater relative stability (≈ -29 kcal/mol) of 

Neu5Ac complexation to IQBA when binding via its -hydroxcarboxylate (C1, C2) 

as compared to vicinal diol (C8, C9) conformer (Figure 2S.1 of Supplemental). 

Additionally, 11B-NMR studies indicated a ternary IQBA-Neu5Ac-phsophate 

complex occurs in solution that exists in equilibrium primarily as its sp3-hydridized 

tetrahedral boronate anion under acidic conditions (Figure 2S.2 of Supplemental). 

Also, we confirmed that optimal binding of IQBA to Neu5Ac occurs at pH ≈ 3 as 

further acidification (K ≈ 567 M-1, pH = 2) results in protonation of the Neu5Ac 

carboxylate thereby lowering its nucleophilicity (pKa = 2.6). The binding affinity  
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Figure 2.1: A 65-fold enhancement in binding affinity of IQBA to Neu5Ac is 
achieved under strongly acidic as compared to neutral pH conditions as shown in 
(A) UV absorbance spectra overlay and (B) binding isotherms based on a 1:1 
dynamic complexation model. All studies were performed in triplicate with 40 µM 
IQBA in 40 mM phosphate buffer with absorbance changes monitored at 335 nm. 
These conditions are also optimal for IQBA native fluorescence properties (inset of 
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A) with an enhancement at 377 nm (Δ = 42 nm) upon Neu5Ac binding. (C) 13C-
NMR spectra of free Neu5Ac (red) and Neu:IQBA complex confirms the importance 
of the α-hydroxycarboxylate moiety in stable boronate ester formation based on a  
-2.5 ppm chemical shift of the C1 carbonyl carbon (175.8 ppm), and a -0.80 ppm 
shift in the C2 resonance (96.1 ppm). 

 

and selectivity of IQBA to different Neu5Ac analogs, as well as other acidic sugar 

metabolites (Scheme 2.1) were also measured in this study (Table 2.1). For 

example, the mammalian sialic acid derivative that has recently been shown to be 

expressed in humans during malignant transformation, namely N- 

glycolylneuraminic acid (Neu5Gc, 14)27 was found to share a similar binding 

enhancement (K = 2450 ± 140 M-1) under acidic conditions, whereas 2-O-

methylation of Neu5Ac (2-OMe-Neu5Ac, 15) completely abolished binding 

affinity (K < 0.1 M-1) highlighting the key role of both the -hydroxy moiety and 

carboxylate anion in stable cyclic boronate ester formation. As expected, N-

acetylmannosamine (NAM, 16), a precursor for biosynthesis of Neu5Ac lacking an 

-hydroxycarboxylate functionality, has negligible interactions with IQBA at pH 3 

(K ≈ 0.29 M-1) similar to other neutral monosaccharides, such as glucose.  

 In order to better characterize the selectivity of IQBA for biorecognition of 

targeted analytes in complex biological samples, formation constants were also 

measured to other classes of acidic sugars and organic acids. For example, lactic 

acid (17) and gluconic acid (18), which both contain an α-hydroxycarboxylate 

moiety were found to have strong binding affinity to IQBA under acidic conditions, 

whereas glucuronic acid (19) had much weaker interactions (K ≈ 70 M-1) given its 

less flexible pyranose conformation in aqueous solution. Also, the 500-fold 

enhancement of binding of IQBA to gluconic acid (18) as compared to sorbitol (9) 

highlights the critical role of the α-hydroxycarboxylate in greatly enhancing the 

stability of IQBA complex formation that is resistant to hydrolysis even under 

strongly acidic conditions. The apparent binding affinity of IQBA to acidic 

metabolites having α-hydroxycarboxylate moieties are likely dependent on their 
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Ternary Complex (pH 3) 
IQBA-Neu5Ac-Phosphate 

Table 2.1: A comparison of the binding affinity and selectivity of IQBA 
highlighting the anomalous binding enhancement under acidic conditions for 
Neu5Ac as compared to various other sugars, polyols and sialic acid analogs. 

Ligand pH 3 pH 7 

 K (M-1)a KNeu5Ac/Ksugar K (M-1)a KNeu5Ac/KSugar 

Neu5Ac 5387 ± 192  83 ± 23  

Sorbitol 32 ± 2 168 2576 ± 78 0.03 

Fructose NDb > 103 1372 ± 64 0.06 

Glucose 0.13 ± 0.03 > 104 8.9 ± 1.4 9.3 

Catechol 40.8 ± 1.8 132 3434 ± 183 0.02 

     

2-O-Me Neu5Ac NDb > 107   

Neu5Gc 2450 ± 140 2.2   

NAM 0.29 ± 0.04 > 104   

Lactic Acid 2170 ± 605 2.5   

Gluconic Acid 3434 ± 180 1.5   

Glucuronic Acid 70 ± 4 77   

Ribose-5-phosphate 4940 ± 340 1.1   

aBinding isotherms conducted at ambient temperature with 5 minutes equilibration. Binding constant K 

determined by fitting the curve f(c) e/(), where c is concentration of the boronic acid probe. Phosphate buffer 
concentration held constant at 40 mM and ionic strength at 100 mM. 
bND = Not determined due to very low binding affinity over concentration range studies. 

 

relative acidities, with lower stability measured for the series, lactic acid (pKa = 

3.86) < gluconic acid (pKa = 3.40) < Neu5Ac (pKa = 2.60). Moreover, other types 

of acidic metabolites may also strongly interact with IQBA as reflected by the 

unexpected high binding affinity measured for ribose-5-phosphate (20, K = 4940 ± 

340 M-1), which was comparable to Neu5Ac under acidic conditions. In this case, 

coordination of the strongly acidic phosphate moiety likely occurs in concert with 

the 1-hydroxy group to form a putative 7-membered cyclic boronate ester complex. 

This reflects the growing interest in exploiting boron and nucleoside chemistry in 

medicinal and analytical applications given the structural homology of borate and 

phosphate anions.28 For instance, formation of a ternary complex between 3-

nitrophenylboronic acid, phosphate and a polyol was demonstrated to enhance 

absorbance responses as a function of phosphate concentration when resolving and 

detecting UV-transparent, neutral polyol stereoisomers in free solution by capillary 
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electrophoresis.29,30 As a result, BA equilibria processes depicted in Scheme 2.1 

neglect the role of phosphate in solution that takes part in BA complexation besides 

its function as a buffer for pH control as highlighted in 11B-NMR spectra (Figure 

2S.2 of Supplemental). 

 A comparison of the analytical performance of IQBA for direct analysis of 

micromolar concentrations of Neu5Ac was next performed in this study when using 

UV absorbance and native fluorescence detection under strongly acidic conditions 

(pH 3) since Neu5Ac binding affinity, as well as IQBA molar absorptivity and 

fluorescence quantum efficiency (Figure 2.1A) is superior than neutral pH 

conditions. Overall, both methods provided acceptable technical precision (mean 

CV < 12%, n = 18) for Neu5Ac quantification over a 10-fold linear dynamic range 

(R2 > 0.995). However, sensitivity (i.e., slope, m) was more than 10-fold greater 

when using native fluorescence as compared to UV absorbance with a 

corresponding 70% decrease in method detection limit for Neu5Ac from 2.2 µM to 

0.63 µM, respectively (Figure 2.2). Native fluorescence also likely offers better 

selectivity in Neu5Ac biosensing applications when analyzing non-invasive human 

biofluids (e.g., saliva) or biologic samples (e.g., glycoprotein) with fewer spectral 

or chemical interferences with the exception of certain acidic metabolites identified 

in this work. 

In summary, we report the strongest binding interaction of Neu5Ac with a BA 

that is greatly enhanced under strongly acidic conditions unlike most saccharides 

that optimally bind under neutral or alkaline conditions. Previous applications of  
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Figure 2.2:  A comparison of linear calibration curves for Neu5Ac quantification 
when using IQBA with UV absorbance (max = 335 nm) and native fluorescence 
detection (em = 377 nm) in 40 mM phosphate, pH 3.0. Both detection methods 
offered excellent linearity and acceptable technical precision (CV ≈ 12%, n = 18), 
but fluorescence provided greater sensitivity and lower detection limits as compared 
to UV absorbance. 

 

water-soluble quinoline-based boronic acids have largely focused on glucose 

biosensing under physiological conditions.17,18 However, binding enhancement for 

Neu5Ac occurs at pH 3 since it is needed to ensure protonation of nitrogen 

heterocycle in IQBA while maintaining adequate ionization of acidic 

sugars/organic acids having -hydroxycarboxylate (e.g., lactic acid, gluconic acid) 

or hydroxyphosphate (e.g., ribose-5-phosphate) bidentate functional groups. 

Additionally, Neu5Ac complexation to IQBA lowers the effective pKa of the 

boronate ester resulting in a stable ion pair between the boronate anion and 

quinolinium heterocycle via a ternary IQBA-Neu5Ac-phosphate complex (insert of 
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Table 2.1) that is supported by experimental binding studies, computer modeling 

and 11B-NMR spectra. This anomalous binding mechanism forms a stable 

zwitterionic boronate ester complex resistant to hydrolysis even under acidic 

conditions unlike the sp2-hybridized neutral boronate ester (4) depicted in Scheme 

2.1. Either direct UV absorbance or native fluorescence measurements can be 

applied to quantify Neu5Ac with good technical precision (CV = 12%) with low 

micromolar detection limits. Future work will explore the potential of IQBA to 

expand biorecognition to other molecular targets beyond conventional neutral 

saccharides with vicinal diols, including better understanding of synergistic 

interactions involving ternary complex formation in solution. Additionally, direct 

characterization of glycoproteins expressing different sialic acid residues will also 

be examined given their key roles in controlling protein stability and biological 

activity when using IQBA fluorescence-based biosensors.   
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2.5 Supplemental Information 

Experimental 

Chemicals and Reagents. All chemicals were purchased from Sigma Aldrich (St. 

Louis, MO, USA) with the exception of the following reagents, N-acetylneuraminic 

acid, Neu5Ac, N-glycolylneuraminic acid, Neu5Gc (Toronto Research Chemicals 

Toronto, ON, Canada) and catechol (Avocado Research Chemicals, Heysham, 

Lancashire, UK). All chemicals were used as received without further purification. 

Buffer solutions were prepared using a monosodium dihydrogen phosphate 

dihydrate salt (NaH2PO4•2H2O) that was prepared in deionized water from a 

Barnstead EasyPure II LF Ultrapure system. Stock solutions for 3-quinolineboronic 

acid (QBA) and 2-naphthylboronic acid (NBA) were prepared in 1:1 DMSO:H2O, 

while 4-isoquinolineboronic acid (IQBA) were prepared in DMSO. Also, 1.0 M 

NaOH or HCl was used for pH adjustment for 40 mM phosphate buffers (pH 3 or 

7), where ionic strength was corrected using 1 M NaCl to maintaining a constant 

total ionic strength (100 mM) unless otherwise stated. 

 

UV absorbance spectrophotometry. All ligand binding studies to IQBA, QBA and 

NBA were performed using UV/Vis absorbance spectrophotometry in 40 mM 

phosphate buffer (adjusted to 100 mM ionic strength) at pH 3 or pH 7.0 unless 

otherwise stated. A Cary 50 UV-Vis spectrophotometer (Agilent Technologies Inc., 

Santa Clara, USA) at ambient temperature (~ 25 °C) was used for the collection of 

absorbance spectra, and all experiments were performed in triplicate (n = 3) using 

a fixed concentration of IQBA (40 M) as a function of ligand concentration (0.01 

to 20 mM). Scanning was performed in high resolution mode from 200 to 400 nm, 

and absorbance measurements were taken at the peak absorbance for IQBA upon 

ligand complexation (λmax = 335 nm) after a blank correction of a buffer solution 

devoid of IQBA. A hyperchromic effect was evident with IQBA as a function of 

ligand concentration at λmax = 335 nm, which was used for determination of 

apparent binding constants from binding isotherms using non-linear least squares 
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regression analysis, or calibration curves with linear least-squares regression based 

on changes in absorbance responses as a function of ligand concentration.  

 

Fluorescence spectrophotometry. All native fluorescence measurements were 

performed at ambient temperature on a Cary Eclipse Fluorescence 

Spectrophotometer (Agilent Technologies Inc., Santa Clara, USA) with excitation 

(ex) at 335 nm for IQBA under acidic buffer conditions (40 mM phosphate, pH 

3.0). Emission spectra for IQBA as a function of ligand concentration were scanned 

from 340 to 450 nm, where a fluorescence enhancement was evident for IQBA upon 

ligand complex formation with a peak emission (em) monitored at 377 nm. Data 

collection was performed in the same manner as with UV-vis absorbance with 

measurements performed in triplicate (n = 3), including calibration curves for 

Neu5Ac determination by native fluorescence when using 5.0 M IQBA in 40 mM 

phosphate at pH 3.0. 

 

Binding Isotherms and Neu5Ac Calibration Curves. Binding isotherms and 

calibration curves performed using Igor Pro 5.0 software (Wavemetrics Inc., Lake 

Oswego, OR, USA) when using non-linear and linear least squares regression 

analyses, respectively. Binding isotherms for various ligands (Scheme 2.1) with 40 

M IQBA (also QBA or NBA as controls) were measured by changes in UV 

absorbance response at 335 nm under constant ionic strength (100 mM) in aqueous 

40 mM phosphate buffers at pH 3.0 or pH 7.0. A 1:1 dynamic complexation model 

was used to plot changes in molar absorptivity (e at 335 nm) for IQBA as a 

function of ligand concentration based on the following equation (1): 

 
Δε = K*Δεsat*C /(1 + K*c)  (1) 
 
where, K (M-1) is the apparent formation constant of the boronate ester complex 

involving IQBA and a specific ligand (refer to Scheme 2.1), c is the molar 

concentration of IQBA (M), and Δεsat (M-1cm-1) is the asymptotic limit upon binding 
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saturation where the fraction of complex ≈ 1. This equation was solved 

simultaneously using non-linear least squares regression with initial parameters 

estimated for K and Δεsat. Calibration curves for Neu5Ac were performed 

independently within the linear range (from 3 to 30 M) of binding isotherms in 

triplicate (n = 3) when using UV absorbance (40 M IQBA with max = 335 nm) 

and native fluorescence (5.0 M IQBA with ex = 355 nm and em = 377 nm) in 40 

mM phosphate pH 3.0 when using linear least-squares regression analysis. Method 

sensitivity for Neu5Ac determination using UV absorbance or native fluorescence 

was determined from the slope (m) of the calibration curve, whereas limits of 

detection (LOD, S/N = 3, M) were calculated by the slope and y-intercept from 

the line of best fit using the following equation (2): 

 
LOD = (3*y-intercept)/m  (2) 
 
Computer Molecular Modeling of Complex Stability. Chem 3D Professional 

software, version 12, (CambridgeSoft Inc., Cambridge, MA, USA) was used to 

estimate the relative thermodynamic stability of different binding modes involving 

Neu5Ac (i.e., via -hydroxycarboxylate, C1, C2 vs. terminal vicinal diol, C8, C9) 

to IQBA after energy minimization using molecular mechanisms 2 (MM2) 

algorithm with molecular dynamics with 10,000 iterations. IQBA-Neu5Ac 

complexes with and without phosphate interactions from buffer at different pH 

conditions (pH 3.0 and 7.0) that impact the ionization state of quinolinium ion (pKa 

= 5) were compared in terms of their total energy based on non-covalent interactions 

(i.e., ion pair, ion-dipole etc.) and steric factors (e.g., ring strain of cyclic boronate 

ester). 

 

Nuclear Magnetic Resonance (NMR). 11B-NMR and 13C-NMR spectra were 

acquired using a Bruker (Bruker, Billerica, USA) AVANCE 600 MHz NMR 

spectrometer equipped with a B-ACS 60 autosampler at ambient temperature. 

IconNMR software operated autotune and autoshim features for optimal peak 
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resolution. Samples were run in 5 mm diameter NMR tubes of borosilicate glass. 

D2O and DMSO-d6 were used as solvents to ensure adequate solubilization of IQBA 

(18 mM) that was prepared in 40 mM phosphate as buffer (pH 3.0 or pH 7.0) with 

or without addition of excess NeuAc in a 3:1 (Neu5Ac:IQBA) concentration ratio. 

NMR spectral annotation of carbon resonances for Neu5Ac by 13C-NMR [Chem. 

Eur. J., 2005, 11, 4010] and boron resonances for IQBA by 11B-NMR [Chem. Eur. 

J. 2010, 16, 13528] were consistent with literature reports. 
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Figure 2S.1: 2D structures and 3D conformations comparing the thermodynamic 
stability for two different ternary boronate ester complexes involving IQBA-
Neu5Ac-phosphate after energy minimization (MM2) with computer molecular 
modeling. Each structure compares the predominate ligand binding mode for 
Neu5Ac involving (A) the α-hydroxycarboxylate anion or (B) the terminal vicinal 
diol (C8, C9) of glycerol moiety at pH 3. In both cases, the quinolinium ion is fully 
charged and forms a stable ion pair/zwitterion with the tetrahedral (sp3-hybridized) 
boronate anion, where conformer (A) is significantly more stable than conformer 
(B) by -29.1 kcal/mol. Additionally, each complex is not stable (total energy > +20 
kcal/mol) if forming a ring-strained sp2-hybridized (trigonal planar) boronic ester 
under acidic conditions, as well as being far less stable when complexation occurs 
under neutral or alkaline conditions where the quinoline nitrogen is deprotonated 
(i.e., neutral). 

 (A) 

Total energy =  -41.8 kcal/mol 

 (B) 

  Total energy =  -12.7 kcal/mol 
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Figure 2S.2: 11B-NMR spectra overlay comparing the relative distribution of 
major boron species at equilibrium for IQBA in 40 mM phosphate prepared in D2O 
as a function of buffer pH and Neu5Ac. There are three distinct boron chemical 
environments for IQBA in phosphate buffer under acidic conditions (pH 3.0, red 
trace), including a predominantly sp2 hybridized boron (i.e., trigonal planar; 
electron deficient/neutral boronic ester) corresponding to a low-field resonance 
peak (I, δ = 28.7 ppm), and a less abundant sp3-hybridized boron corresponding to 
a low-field resonance peak (II, δ = -5.5 ppm) indicative of the tetrahedral boronate 
anion. Additionally, there exists a third boron resonance near δ = 19.8 ppm (III) 
that likely corresponds to a phosphoboronate ester complex formed between IQBA 
and excess phosphate in solution. As expected, when acquiring the 11B-NMR spectra 
for IQBA under neutral pH conditions (pH 7.0), there is a noticeable increase in the 
relative abundance of sp3-hybridized boron (II, δ = 9.6 ppm) as compared to sp2-
hybridized boron (I, δ = 26.0 ppm) in solution with a low field shift in both boron 
resonances. However, the inset depicts the emergence of a fourth peak upon 
addition of excess Neu5Ac to IQBA in phosphate at pH 3.0 (IV, δ = 6.2 ppm) likely 
corresponding to the ternary IQBA-Neu5Ac-phosphate complex. Importantly, 
Neu5Ac complexation results in a pronounced increase in the relative abundance 
of the tetrahedral boronate anion (II) and a corresponding decrease in trigonal 
planar boronate ester species (I) even under acidic conditions that is comparable 
to IQBA under neutral conditions. This process reflects the increase in the apparent 
acidity (shift to lower pKa) of the cyclic boronate ester complex upon Neu5Ac 
binding as compared to free IQBA. 
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Chapter 3: Elucidating the Mechanisms of Smoke Exposures in 
Municipal Firefighters: A Multi-Centre Training Exercise 
Study  

 

3.1 Abstract 

Occupational firefighting is linked with a higher risk for cardiovascular disease and 

various cancers due to chronic exposure to a complex mixture of toxic chemicals 

in smoke formed by the combustion of natural and synthetic materials, such as 

wood. Despite protective equipment to mitigate burns and smoke inhalation, 

firefighters are still prone to whole body skin absorption that complicates risk 

assessment and mitigation efforts. Herein, air samples, skin wipes, and urine 

samples collected at four time intervals (T-24 h, 0-6 h, 6-12 h, and 12-24 h) were 

used to determine the impact of acute wood smoke exposure on 18 career 

firefighters who conducted 30 min. search-and-rescue training exercises within 

burn houses located at three different sites in Ontario. Gas chromatography-mass 

spectrometry (GC-MS) was used to analyze 25 chemicals as tracers of wood smoke 

absorption including various methoxyphenol (MP) derivatives, polycyclic aromatic 

hydrocarbons (PAH), and resin acids (RA), as well as their corresponding 

metabolites excreted in urine following enzyme deconjugation. Substantial 

contamination was found to penetrate the protective clothing (“turnout gear”) and, 

to our knowledge, for the first time also the mask of each firefighter, introducing 

the likelihood of inadvertent respiratory exposures. After burn trials, each inner 

self-contained breathing apparatus (SCBA) lens showed chemical contamination 

with 89% of samples having a least 1 contaminant detected with > 100% 

penetration, where a greater amount was recovered from inside the protective mask 

than outside. An optimal sampling window of up to 6 h post-exposure is identified 

by time-dependent urine sampling after smoke exposure where three high 

abundance guaiacol analogs, as well as hydroxynaphthalene and hydroxyfluorene 

isomers were significantly elevated in creatinine-normalized urine. Baseline cheek 

and arm soiling measured prior to the exercise was equivalent to amounts found 
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after smoke exposure, likely a result of poor hygienic practices and workplace 

contamination. Findings in this study provide an empirical basis for revising the 

standards of hygiene and protective garments for firefighters to reduce incidences 

of chronic illness. 

3.2 Introduction  

Structural firefighters endure chronic exposure to smoke formed by combustion of 

numerous home construction materials including synthetic polymers, tar, and wood. 

Aerosolized wood smoke including toxic particulate (e.g. PM2.5) and vapours (e.g.  

benzene, formaldehyde), contain a plethora of toxic inorganic and organic 

chemicals, such as polyaromatic hydrocarbons (PAHs) some of which are classified 

as known carcinogens.1 Chronic smoke exposure in firefighters is associated with 

long-term respiratory illnesses, cardiovascular disease risk, various cancers, and 

reduced average life spans as compared to the general population due to cytotoxic 

and mutagenic chemicals and/or their downstream metabolites.2,3 As a result, 

firefighting is widely considered an occupational health hazard, and was deemed 

carcinogenic by the International Agency on Cancer Research in 2010.4 

Accordingly, the province of Ontario recently expanded presumptive legislation 

benefits to firefighters in 2018 to recognize 17 different cancers and heart failure as 

occupation-related chronic diseases eligible for workers’ compensation.5  

Wood smoke is most abundant in polyaromatic hydrocarbons (PAH), 

methoxyphenols (MP), and resin acids (RA) produced by combustion of celluloses 

and lignin, structural biopolymers of sugars and phenol that constitute > 80% of 

wood mass.6 Several PAH are characterized as known (Group 1) and 

probable/possible (Group 2 A/B) human carcinogens following bioactivation by 

specific cytochrome P450 isoforms in the liver that result in formation of cytotoxic 

reactive oxygen species (e.g. epoxides, diols) that damage DNA.7 Chronic 

exposures are also strongly linked to cardiovascular disease related to arterial 

stiffening and heart attack.8 Although MPs and RAs exhibit less toxic effects than 

PAHs despite their higher concentrations in wood smoke, several studies have 
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shown that they can activate immunosuppressive and inflammatory pathways in 

respiratory epithelial and fibroblast cells.9–11 Also, synergistic effects between 

compounds in smoke mixtures may enhance the toxicity of certain carcinogenic 

PAHs (e.g. benzo[a]pyrene) whose exact mechanisms remain poorly understood.12 

Field monitoring of firefighter exposures is challenging due to unpredictable 

and highly variable sampling times, and inconsistent sample types (i.e., 

structural/urban, wildland, industrial, automotive, etc.). Urine PAH metabolites, 

such as 1-hydroxypyrene (1-OH Pyr), are commonly used as indices of recent 

smoke exposure human biomonitoring applications,13,14 however accurate risk 

assessment is difficult due to between-subject variability in xenobiotic metabolism 

that is dependent on several confounding factors including genes, diet, lifestyle and 

lifelong exposures.5,15  Firefighter personal protective equipment (“turnout gear”) 

protects against heat injury and physical impacts while reducing chemical 

exposures from smoke inhalation via a self-contained breathing apparatus (SCBA), 

if properly used and maintained. Nevertheless, several recent studies have 

demonstrated extensive “whole body” smoke exposure to firefighters by identifying 

chemicals adsorbed on the skin,16–18 exhaled on the breath,19 and biomarker of 

recent smoke exposure excreted in urine.14,16,20 Firefighters use SCBAs to avoid 

inhaling acutely hazardous smoke during fire suppression, but face substantial risk 

from PPE permeability and inadequate non-standardized hygiene protocols that 

leave chronic percutaneous absorption an important route of exposure to 

firefighters.16,21 Specifically, Keir et al. report that skin absorption is likely of 

greater risk than inhalation, a problematic finding in light of the extensive skin 

contamination of firefighters reported by Fernando and coworkers, the large surface 

area of the dermis, and relatively fast rates of transdermal absorption by low 

polarity lipophilic contaminants (e.g. PAH).16,22,23 Accordingly, it is also necessary 

to understand how the kinetic excretion of smoke markers in urine can be used to 

determine the extent and proximity of smoke adsorption to the time of sampling.  
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Herein, wood smoke exposure to 18 firefighters wearing full turnout gear 

during live-burn training exercises conducted at 3 municipal fire stations in the 

province of Ontario are described. This work is an independent follow-up study to 

Fernando et. al. 16 that first reported extensive skin contamination with urine 

excretion of several wood-smoke biomarkers in firefighters wearing full protective 

gear.16 In our study, urine samples were pooled over four time intervals (T-24 h, 0-

6 h, 6-12 h, and 12-24 h) in order to better ascertain the delay between peak 

excretion of wood-smoke biomarkers and time of exposure. Two devices were used 

for personal exposure monitoring, an active sampling apparatus with a filter, XAD-

2 tube, and personal air pump connected in series to collect volatiles and solid 

particulate, and a sorbent Twister for passive sampling of gases. SCBA facepieces 

were equipped with Twisters to assess the mask as a point of weakness in regulatory 

PPE that may lead to inhalation or dermal absorption of chemicals. Results confirm 

deficiencies in the standard PPE used by volunteers in this study and highlights the 

urgent need for new, scientifically informed performance and hygiene standards in 

all aspects of firefighting to improve the health and safety of individuals in this 

profession. 

3.3 Results and Discussion 

Personal Exposure to Wood Smoke. A total of 18 firefighters from 3 municipal 

fire houses in Burlington (Site B), Hamilton (Site H), and Ottawa (Site O) in the 

province of Ontario underwent acute exposure to wood smoke for 30 min within an 

on-site training facility (“burn house”) during which time they were tasked with fire 

control or conducting a search-and-rescue training exercise.  The non-polar PDMS 

coating of the Twister sampler retained approximately 5-80 times greater amounts 

of MP smoke markers compared to PAH and RA due to the high abundance of the 

lignin precursor found in wood and plant tissue. As large semivolatile compounds 

partition preferentially to particulate,6,16 Twister sampling of PAH and RA was 

limited; however the pump assembly was able to more effectively retain compounds 

with MW > 202 g/mol. Good correlation (r = 0.71, p = 0.042) was found between 
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the amount of MP, PAH, and RA recovered from the caged outer Twister and active 

pump apparatus of 6 firefighters who completed the exercise with both devices 

operational, indicating comparable sampling between apparatus, particularly for 

volatile low-molecular-weight (LMW) compounds (Figure 3.1A; Table 3S.1; 

Table 3S.2). Naphthalene was well-adsorbed by the Twister, however large 

differences in boiling points between naphthalene and heavy PAH resulted in poor 

correlations (r < 0.35) challenging its use as an indicator of exposure to heavier 

carcinogens such as benzo[b]fluoranthene (BbF) and benzo[a]pyrene (BaP). 

Concentrations of PAH in the burn houses determined by the personal air 

pumps did not exceed established regulatory occupational exposure limits;24,25 

however, carcinogens BbF, BaP, and benz[a]anthracene (BaA) have no safe 

exposure limits due to their significant toxicity and were present in all 3 burn houses 

(Table 3S.2). Ambient concentrations of BaP determined by personal air pumps 

exceeded the highest concentrations encountered by coke oven workers in recent 

studies (median 880 ng/m3, range: 70 - 13 450 ng/m3), and 12/18 firefighters 

exceeded ambient levels at which chronic exposure has been linked to 

neurodegenerative processes and an approximately 60% increased risk of heart 

disease.26–28 

The internal volume of the burn houses varied between municipalities, where 

Site B used a large 4-storey brick building with 2-storey additions, while Site H and 

Site O used smaller 2- and 1-storey concrete buildings, respectively (Supplemental, 

Appendix 3.1). The exercise was initiated when smoke saturated the structure, 

however fire intensity and apparent smoke concentration was not controlled for. 

Different wood smoke exposures were observed between the 3 sites (Figure 3.1B; 

Table 3S.1; Table 3S.2), likely due to variable wood types.  Gaseous MPs syringol 

and isoeugenol were high in all burn houses, while propylsyringol (PropS) was 

relatively higher at Sites B and O. Site H had greater concentrations of guaiacols 

and aerosolized RAs abietic acid and dehydroabietic acid, characteristic of  
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Figure 3.1: (A) Triple-stacked bar plot of total ambient volatile and semivolatile 
MP, RA, and PAH (with carcinogen class indicated) wood smoke markers retained 
by the caged outer Twister (blue) and the personal pump assembly (purple) with a 
Teflon filter and sorbent XAD-2 resin connected in series (2 L/min) for Site B, H 
and O. Red circles indicate carcinogenic  PAH. 1: guaiacol; 2: methylguaiacol; 3: 
ethylguaiacol; 4: syringol; 5: propylguaiacol; 6: eugenol; 7: methylsyringol; 8: 
isoeugenol; 9: ethylsyringol; 10: propylsyringol; 11: naphthalene (Group 2B); 12: 

(A) 

(B) 
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acenaphthylene; 13: acenaphthene; 14: fluorene; 15: phenanthrene/anthracene; 
16: fluoranthene; 17: pyrene; 18: benz[a]anthracene (Group 2B); 19: chrysene; 
20: benzo[b]fluoranthene (Group 2B); 21: benzo[k]fluoranthene (Group 2B); 22: 
benzo[a]pyrene (Group 1); 23: indeno[1,2,3-cd]pyrene (Group 2B); 24: 
dibenz[a,h]anthracene (Group 2A); 25: benzo[ghi]perylene; 26: pimaric acid; 27: 
sandaracopimaric acid; 28: isopimaric acid; 29: abietic acid; 30: dehydroabietic 
acid; and 31: 7-oxodehydroabietic acid. (B) 2D PCA scores plot showing 
heterogeneous intercity and interindividual exposures based on active sampling 
pumps (n = 16). Site B showed relatively low exposures to MP, PAH and RA 
presumably related to the large volume multi-storey burn house used. Site H was 
exposed to smoke high in syringols, while Site O recorded higher amounts of 
guaiacols and RA.

coniferous wood (e.g. pine).29 Site B (red) demonstrated significantly lower 

exposures to 26 of 33 (79%, p < 0.05) smoke compounds measured compared to 

Sites H and O whose exercises were conducted in smaller structures where smoke 

concentrations were expected to be higher. The classification of 1 individual from 

Site H and 2 from Site O with Site B (n = 3) reflects similarly low overall exposures 

when compared to their original cohorts which may reflect larger average 

displacements from the fire.30  

Firefighting self-contained breathing apparatus (SCBA) are positive-

pressure devices meant to prevent intrusion by ambient chemicals in the event of a 

leak.31 Sample wipes of the outer and inner side of each facepiece lens (n = 15) 

revealed significantly lower amounts of all smoke markers inside the mask; 

however, EthS (p = 6.0 E-4) and syringol (p = 1.2 E-4) showed significant increases 

on the inner lens when compared to baseline. Methylguaiacol (MeG), 

dehydroabietic acid (DA), 7-oxodehydroabietic acid (7ODA) and fluorene did not 

significantly increase, but were recovered in statistically equivalent amounts from 

both sides of the SCBA lens. The SCBA consistently reduced all exposures for only 

2/18 individuals, and fluorene was reduced by a median 10.1% median between the 

two sides (Table 3.1). Fluorene was recovered in greater amounts on the inner lens 

of 8/15 firefighters, where one individual had a 330-fold higher inner lens 

concentration.  Relatively high amounts on were also found on the cheek (18.4 ± 

25.2 ng/cm2), primarily at Sites H and O, though there were no significant  
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Table 3.1: (Mean ± SD) concentrations (ng/cm2) of MP, PAH, and RA recovered from the outer and inner SCBA lens of 
firefighters (n = 15) 

 Site B 
(n = 5) 

Site H 
(n = 5) 

Site O 
(n = 8) 

Site B 
(n = 5) 

Site H 
(n = 5) 

Site O 
(n = 8) 

Site B 
(n = 5) 

Site H 
(n = 5) 

Site O 
(n = 8) 

Site B 
(n = 5) 

Site H 
(n = 5) 

Site O 
(n = 8) 

 SCBAO - Pre SCBAO – Post SCBAI – Pre SCBAI – Post 

MP             

Guaiacol 0.51 ± 0.51 1.14 ± 1.72 4.94 ± 4.22 18.3 ± 19.6 2.0 ± 1.1 26.3 ± 7.7 0.59 ± 0.74 0.75 ± 1.04 8.22 ± 7.37 6.59 ± 8.87 0.77 ± 1.24 3.81 ± 4.82 

MeG 55.6 ± 68.5 24.7 ± 11.2 3.58 ± 3.66 20.7 ± 21.1 10.5 ± 15.2 251 ± 97 21.1 ± 11.7 32.3 ± 7.6 3.92 ± 2.04 9.6 ± 11.2 12.9 ± 16.5 3.67 ± 3.24 

EthG 0.62 ± 0.40 2.23 ± 3.54 4.13 ± 5.15 175 ± 194 7.44 ± 8.02 314 ± 124 1.55 ± 1.88 0.91 ± 0.45 3.88 ± 2.56 7.9 ± 13.3 3.36 ± 4.84 4.42 ± 4.58 

PropG 1.36 ± 2.43 0.16 ± 0.24 1.28 ± 2.09 34.3 ± 62.8 1.17 ± 0.81 118 ± 47 1.05 ± 2.16 0.11 ± 0.09 1.14 ± 0.77 0.63 ± 0.69 0.25 ± 0.35 2.08 ± 1.95 

Syringol 0.48 ± 0.44 24.1 ± 52.7 73 ± 123 203 ± 216 3.4 ± 1.9 1056 ± 661 0.57 ± 0.6 4.25 ± 8.51 71.4 ± 78.1 4.99 ± 4.97 0.85 ± 0.84 130 ± 130 

MeS 0.58 ± 0.57 9.8 ± 21.6 41.9 ± 83.9 279 ± 303 1.68 ± 1.43 1188 ± 576 0.19 ± 0.3 0.19 ± 0.15 50.3 ± 65 2.07 ± 1.56 0.9 ± 1.33 87.5 ± 88.9 

EthS 0.86 ± 0.51 7.6 ± 16.3 35.5 ± 76.3 363 ± 419 4.17 ± 3.19 1117 ± 528 3.2 ± 6.29 0.51 ± 0.52 44.4 ± 53.3 2.91 ± 2.39 0.63 ± 0.48 83.1 ± 85.5 

Eugenol 0.42 ± 0.26 0.95 ± 2.02 1.04 ± 1.81 2.55 ± 2.14 0.97 ± 1.05 17 ± 9 0.21 ± 0.16 0.06 ± 0.05 1.31 ± 1.52 1.74 ± 2.17 0.62 ± 1.01 1.8 ± 2.3 

PAH             

Naphthalene 10.7 ± 8.4 11.9 ± 14.3 5.6 ± 14.8 39.7 ± 40.5 18.3 ± 16 6.48 ± 3.99 6.04 ± 2.94 21.1 ± 18.8 3.89 ± 7.02 16.6 ± 5.8 22.9 ± 19.9 3.7 ± 4.95 

Fluorene 0.23 ± 0.19 0.88 ± 1.25 8.12 ± 7.39 1.17 ± 1.51 0.91 ± 0.45 1.28 ± 1.66 0.21 ± 0.17 0.89 ± 1.09 4.23 ± 4.67 3.57 ± 6.09 2.53 ± 4.12 9.3 ± 17.8 

Phenanthrene 0.83 ± 0.80 1.45 ± 0.91 2.75 ± 5.45 19.0 ± 24.4 1.55 ± 0.73 7.95 ± 4.75 0.86 ± 0.85 1.46 ± 0.86 2.17 ± 0.92 3.83 ± 5.09 1.7 ± 0.51 3.39 ± 3.26 
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Fluoranthene 0.66 ± 0.64 0.38 ± 0.20 1.39 ± 3.34 53.6 ± 64.2 3.28 ± 1.04 17.9 ± 14.2 0.49 ± 0.42 0.62 ± 0.3 1.32 ± 1.23 2.92 ± 3.2 2.3 ± 2.45 2.25 ± 2.41 

Pyrene 0.77 ± 0.81 0.38 ± 0.21 1.05 ± 2.52 65.2 ± 78.2 4.15 ± 1.67 18.8 ± 13.7 1.09 ± 1.07 0.56 ± 0.44 1.15 ± 1.02 7.24 ± 8.16 1.76 ± 1.34 1.78 ± 1.91 

RA             

7ODA 0.41 ± 0.26 1.16 ± 1.37 0.33 ± 0.31 14.2 ± 16.5 1.91 ± 1.87 0.74 ± 0.39 0.31 ± 0.28 1.22 ± 0.85 0.79 ± 0.86 2.4 ± 3.87 1.5 ± 1.57 0.36 ± 0.4 

AA 0.75 ± 1.31 0.17 ± 0.15 0.03 ± 0.04 19.0 ± 28.0 3.51 ± 2.8 1.21 ± 0.57 0.25 ± 0.29 0.24 ± 0.22 0.11 ± 0.05 0.84 ± 0.67 3.53 ± 6.43 0.15 ± 0.15 

DA 13.7 ± 12.6 18.3 ± 13.0 3.19 ± 2.56 317 ± 423 94.4 ± 65.7 28.5 ± 14.1 9.63 ± 6.01 21.5 ± 15.4 7.46 ± 4.34 52.1 ± 30.4 64 ± 78.4 7.09 ± 7.68 

IPA 0.44 ± 0.31 0.81 ± 0.65 0.36 ± 0.50 14.3 ± 16.1 2.4 ± 2.04 1.02 ± 0.64 10.4 ± 13.9 1.23 ± 0.31 0.76 ± 0.49 28.3 ± 18.6 10.3 ± 17.6 0.86 ± 0.56 

PA 0.78 ± 0.75 0.33 ± 0.31 0.19 ± 0.35 5.53 ± 6.43 2.72 ± 1.95 1.38 ± 0.85 0.32 ± 0.26 0.58 ± 1.06 0.62 ± 0.83 0.32 ± 0.2 1.44 ± 1.35 0.53 ± 0.56 

SPA 0.22 ± 0.23 0.10 ± 0.06 0.05 ± 0.08 5.40 ± 6.51 0.98 ± 1.18 0.81 ± 0.93 0.16 ± 0.15 0.26 ± 0.21 0.34 ± 0.46 0.32 ± 0.2 0.42 ± 0.24 0.31 ± 0.61 
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correlations to fluorene recovered from the pump or the dorsal forearm (Table 

3S.3).  

All RA were recovered at higher concentrations within the SCBA mask (mean 

28.0% increase) when wiping the inner lens (Table 3.1).  SCBA-contained Twisters 

(n = 7) showed significantly lower smoke concentrations when compared to 

smoke-exposed caged samplers (suit) for all except 1 firefighter (p < 5.7 E-3; 

Figure 3.2; Table 3S.1); however, abietic acid (AA), dehydroabietic acid (DA), 

pimaric acid (PA), and sandaracopimaric acid (SPA) were found at concentrations 

6-to-84 times higher on the inner Twister when compared to the exposed outer 

sampler (Table 3S.1). Highly abundant smoke compounds propylguaiacol (PropG, 

52.5 ± 40.6) ng and ethylsyringol (EthS, 47.0 ± 44.4) ng were recovered from the 

Twisters in the greatest amounts overall, and found at higher concentrations within 

the SCBA for 3-4 individuals.  

Industry standards require an assigned protection factor (PF) of > 10 000 

([xi]out/[xi]in) for fit-tested SCBA, however when comparing amounts captured by 

the SCBA Twister the median PF calculated was 0.19 (maximum 5404).32 Notably, 

rapid, intermittent episodes of negative-pressure within the SCBA due to 

accelerated respiration during physical exertion has been reported to induce leaks 

of possibly contaminated air,33 while moderate to intense sweating can also impair 

the seal of the SCBA, promoting mask slippage and leaks.34 Furthermore, in a work 

history survey of 16 participants, 5 respondents reported regularly finding soot on 

their skin and in expelled mucous after fire suppression activities. Overall, the 

SCBA appears to provide substandard protection to these firefighters which 

suggests the urgent need for more frequent fit testing, equipment inspection, and 

standards of care. 

Post-exposure cheek wipes were evaluated as a method for assessing 

undetected respiratory exposures after fire suppression (Table 3S.3), and were 

collected with paired arm wipe samples after exposure. Gaseous compounds MeG  
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Figure 3.2: (A) 2D PCA scores plot showing significantly lower overall amounts 
of 22 targeted smoke markers recovered from the passive samplers inside the SCBA 
when compared the caged external Twister (suit). (B) Propylguaiacol (PropG) and 
ethylsyringol (EthG) showed the highest penetration of the SCBA mask, consistent 
with high concentrations measured in smoke by passive and active sampling devices 
(Figure 3.1). 

(mean 19.9 ± 13.6 ng/cm2) and naphthalene (9.8 ± 14.4 ng/cm2) were retained in 

the greatest amounts on the cheek and showed moderate penetration of the SCBA 

(Table 3S.1). Recovery of MeG from the cheek was not well-correlated to 

deposition on the inner SCBA lens but was strongly correlated (Spearman) to 

amounts found in soot on the arm (r = 0.579, p = 0.024) but naphthalene did not 

exhibit these associations. Naphthalene amounts deposited on SCBA-covered 

cheeks of exposed firefighters was approximately 10-fold greater than mean 

concentrations found on the gloved hands of structural firefighters tasked with 

search-and-rescue in a similar exercise,21 suggesting unusually high exposures via 

the SCBA. Both compounds were also significantly elevated on the dorsal forearm 

(p < 1.0 E-5) protected by gloves, wrist covers and the bunker coat, confirming 

(B) 

(A) 
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another weak point in firefighter PPE that likely contributes to the “whole body 

exposure” described previously.16,18,22 Furthermore, we observed that one fire 

station used fire hoods made from highly porous heat-resistant knit material, that 

was also used for protective wrist cuffs of the turnout coat. Indeed, for 75% of 

participating firefighters surveyed the neck and wrists are the areas of greatest 

concern and most-cited as under-protected from contamination during regular 

knockdown duties. Predictably, Site O firefighters who conducted their exercise in 

the smallest building (Supplemental, Appendix 3.1) and were exposed to the 

highest concentrations of vapour and particulate (Table 3.1; Table 3S.1; Table 

3S.2), had the highest accumulation of soot on the cheek. Soot composition was 

strongly correlated (Spearman) to the smoke profile in the burn house (r >  0.60, p 

< 0.007),  but similar comparisons were weak for Site B and Site H (r < 0.3).  

 Most firefighters are limited to 1 set of PPE subject to regular inspection and 

cleaning,  yet no standardized protocols exist for the removal and cleaning of 

turnout gear after smoke exposure and the efficacy of some modern cleaning 

methods have only recently been found to be substandard.21,35 There are numerous 

recommendations for hygiene optimization between the fireground and fire house, 

including on-site gear removal and decontamination, promptly bathing and 

laundering of gear after an exposure, and regular decontamination of vehicles and 

workspaces.17,36,37 Pre-burn baseline wipes of the inner and outer SCBA lens (n = 

18) revealed soiling on SCBA masks  with statistically equivalent amounts of soot 

found outside and inside the mask (Table 3.1). Site O masks were significantly 

contaminated with all MP (except MeG) and fluorene (p < 0.010) when compared 

to Sites B and H. The latter two groups had higher concentrations of MeG (q < 

0.060), dehydroabietic acid (DA), naphthalene, and isopimaric acid (IPA, Site H 

only) that were not significant after FDR correction. In several cases, the soot 

deposited on the outer SCBA lens after 30 minutes of exposure was a moderate 

fraction of the amounts recovered at baseline, where MeG (median FC = +34.9%) 
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and fluorene (median FC = +18.6%) were found at higher amounts prior to wood 

smoke exposure,  suggesting ineffective cleaning procedures may allow long-term 

accumulation of soot. Concerningly, baseline chemical contamination found on the 

SCBA was statistically equivalent to amounts recovered at baseline on the skin for 

14 of 19 compounds targeted in the sample wipes. Of the 5 significantly 

differentiated compounds, 4 were found in greater amounts on the cheek when 

compared to the SCBA and arm (ANOVA, p < 0.022, SPA, PA, pyrene, and 

fluorene). These results further suggest accumulation of chemical exposures within 

work and living spaces due to substandard hygiene protocols leading to chronic 

exposures to all personnel and increases the likelihood of exposure by unintentional 

ingestion. 

 The excretion of 25 targeted unaltered or deconjugated metabolites 

(creatinine normalized) was examined across 4 distinct time periods as shown in 

Figure 3.3A. Baseline urine was high in guaiacols and dehydroabietic acid (Table 

3S.4) consistent with the most abundant chemicals in wood burn house smoke. In 

particular, baseline urine samples were high in eugenol (118-343 µg/g creatinine); 

however, levels of more abundant smoke MPs were comparably low and urine 

eugenol is affected by common dietary exposures,38  thus it is unlikely to be related 

to soot contamination. Urine PAH alcohols of naphthalene (1-OH-Nap, 2-OH-

Nap), fluorene (2-, 3-, and 9-OH-Flu), and phenanthrene (2-, 3-, and 4-OH-Phen),  

were low and consistent with concentration ranges reported in the urine of non-

exposed controls and pre-shift firefighters in previous studies.39–41 After 30 minutes 

of exposure to wood smoke the highest rate of chemical excretion occurred between 

0-6 hours for all 3 groups and returned to median baseline concentrations or lower  
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Figure 3.3: (A) Schematic detailing urine collection at 4 distinct time intervals to 
monitor the kinetics of biomarker excretion and identify compounds elevated due to 
the smoke exposure. (B) Time-sequenced 2D/HCA heat map of creatinine-
normalized urinary wood smoke markers detected by GC-MS. Methylguaiacol 
(MeG, p < 4.0 E-4), ethylguaiacol (EthG, p < 4.0 E-3), syringol (p < 5 E-3), and 
1-hydroxynaphthalene (1-OH-Nap, p < 0.010) were highly responsive urine 
markers of smoke exposure in the 24-hour period after the fire however, elevated 
concentration of all markers was observed during the immediate 6-hour period post 
burn, showing significant uptake of ambient chemicals at the fireground despite 
protective gear. (C) Boxplots (ANOVA) of top discriminating smoke marker MeG 
showing significant increase in excretion in the 0-6 h period post exposure. 

 

by 12-24 hours post-burn (Figure 3.3B). MeG, naphthalene, fluorene, guaiacol and 

EthG were highly responsive (p < 0.041) urine markers of smoke exposure in the 

24-hour period after the fire consistent with compounds found in the greatest 

(A) 

(B) 

(C) 
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concentration on the SCBA lens and cheek, where MeG and naphthalene remained 

significant (p < 0.02) after a stricter Bonferroni correction (Table 3.2). Though diet 

can confound measurements related to urine methoxyphenol concentrations,42,43 

based on our findings they remain strong candidates as potentially quantitative 

markers to assess recent exposures due to their short half-lives and rapid clearance 

and could be effective when included in a multivariate stratification model to 

improve specificity.44 Notably, significant changes in the top 7 urine metabolites 

are due to decreases in concentration in the 18 h period after the wood smoke 

exposure. Increases from baseline to 6 h after the exercise (T1-T2) were only 

significant for MeG and 1-OH-Nap due to small differences between high baseline 

concentrations and peak elimination in the 0-6 h pooled samples, again reflecting 

the possibility of chronic inadvertent contamination.  Interestingly, all 4 RAs 

reliably detected (IPA, AA, DA, and 7ODA) reached peak excretion later than MPs 

in the 6-12 h period, though none were significantly higher in concentration when 

compared to baseline. IPA, which exhibited high penetration of the SCBA mask, 

had the greatest increase in urine concentration relative to baseline in Site H (mean 

FC = 553) and Site O (mean FC = 111), but was not reliably detected in urine 

samples from the less-exposed group at Site B. It also showed a moderate 

correlation (Spearman) to the amount of isopimaric acid deposited on the cheek (r 

= -0.486, p = 0.078), which may be due to an inverse relationship between 

respiratory uptake and material remaining to deposit. To our best knowledge this is 

the first study to examine the feasibility of RAs as urine markers of exposure to 

firefighters, and it is possible that RAs may be specific longer-term indicators of 

wood smoke exposures that could permit qualitative assessment of wood smoke 

exposure when sampling within a 6 h window is not feasible. 

The greatest proportion of PAHs (> 75%) was recovered as 1- and 2-OH-Nap 

in the 0-6 h collections of pooled urine (Figure 3.3; Table 3S.4) which were found 

at a lower median concentration of 10.7 ng/mL (0.53 - 64.00 ng/mL) than found in 
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post-shift urine samples of coke oven workers 81.1 ng/mL (21.1 - 1225.7 ng/mL).45 

Similar to MPs, median OH-PAH concentrations were highest for site O which 

peaked at 6 h (9339.8 ng/g Crn) but remained elevated in the 12-24 h pooled 

samples when compared to baseline (FC = 2.2), an effect that was also observed in 

the 12-24 h samples of site B firefighters  (FC = 1.9). Conversely, the less 

experienced firefighters at Site H showed rapid clearance of all PAH in the 6 h 

period post-exposure, where 2-OH-Nap reached levels equivalent to baseline by the 

12-24 h collection. This observation could reflect a metabolic effect due to 

significantly (p < 0.039) lower cumulative years of firefighter experience at Site H 

(1.9 ± 1.6 years) when compared to Site B (13 ± 9 years) and Site O (18 ± 5 years), 

related to the high lipophilicity of these smoke markers and a reduced rate of 

excretion with increasing bioaccumulation.46 A similar effect is observed in Table 

3.2 when comparing the rapid excretion of more polar MPs to the slower kinetic 

excretion of naphthalene (as 1-OH-Nap) which partitions favourably into adipose 

tissue and undergoes biotransformation before urinary excretion.47 

  Pearson correlation analysis revealed cheek deposits of the PAH fluorene 

(3-OH metabolite, r = 0.56, p = 0.036) and EthG (r = 0.55, p = 0.041) recovered 

after intrusion into the SCBA were consistent with concentrations found in urine in 

the first 6 h period when controlling for baseline levels of each metabolite. 

Interestingly, despite the substantial partitioning of ambient MeG to both the cheek 

and arm, there was no correlation between either deposit and amounts excreted in 

urine, which could be a result of exposure by direct inhalation due loss of vacuum 

integrity in the SCBA. Method detection limits were not sufficiently low (≳ 10 ng/g 

creatinine) to detect some RA and PAH metabolites, notably 1-hydroxypyrene, the 

standard urine marker of PAH exposure.14,48,49 Heavy multi-ring PAH primarily 

undergo biliary (i.e. liver) metabolism and are excreted with bile in the feces, 

making metabolites of procarcinogens like benzo[a]pyrene difficult to measure in 

free-living subjects.50 Poor suppression of ambient phenanthrene by the SCBA 
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(median 16.2% reduction, Table 3.1) resulted in only trace amounts on the cheek 

(Table 3S.3), however concentrations were strongly correlated to those found on 

the inner SCBA lens (r = 0.72, p = 0.028) and moderately correlated (Spearman) to 

concentrations of related metabolites among 0-6 h pooled samples (2-OH-Phen, r 

= 0.524, p = 0.045; 4-OH-Phen, r = 0.521, p = 0.045). Distribution of fluorene 

metabolites in the 0-6 h period after the fire showed strong correlations to amounts 

recovered from the cheeks  (3-OH-Flu, r = 0.536, p = 0.036) and arms (9-OH-Flu, 

r = 0.585, p = 0.028) of all firefighters. Urine concentrations of 2-OH-Phen and 9-

OH-Flu have been positively associated with pro-inflammatory effects that are 

linked to  the etiology of heart disease and diabetes. In a review of NHANES (2003-

2004) data, Everett et. al. found a moderate positive relationship (OR = 1.09; CI = 

1.06-3.42) between amounts of 2-OH-Phen in excess of 49 g/g Crn and 

concentrations of inflammation marker high-sensitivity C-reactive protein (hsCRP) 

≥ 3 mg/L, which reached an OR of 3.17 if urine excretion exceeded 148 ng/g 

creatinine.51 Similar but weaker effects were calculated for 9-OH-Flu (OR = 2.28, 

> 749 ng/g Crn); however, several low-level persistent environmental PAH are 

implicated.48 HsCRP is a modern marker of systemic health that is a more robust 

predictor of cardiovascular disease and metabolic syndrome than traditional 

anthropometric measurements (e.g. waist-to-hip ratio and blood 

lipids/cholesterol).52 The physiological stress of chronic inflammation has been 

conclusively linked to arterial calcification (i.e. atherosclerosis), obesity, and 

cancer, which are notable concerns among long-term career firefighters. Within 

each time interval, 4 firefighters had urinary 2-OH-Phen exceeding the reported 

upper limit of 148 ng/g Crn, while 72.2% of pooled urine samples contained 9-OH-

Flu in concentrations exceeding 161 ng/g Crn, a concentration associated with 1.89-

times increased odds of elevated hsCRP. In fact, during the 24-hr collection window 

metabolites of fluorene persistently exceeded urine concentrations correlated to  
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Table 3.2: Top discriminating urine markers of smoke exposure in 24-hr baseline 
and 24-hr post-exposure urine samples (0-6 h, 6-12 h, 12-24 h) collected from 
firefighters (n = 15) 
 

Marker 

    Pairwise Comparisons 

F pa qa Effect 
Sizeb 

T1-T2 T2-T3 T3-T4 T1-T4 T2-T4 

Guaiacol 2.83 0.046 0.040 0.132  *   * 

MeG 10.15 1.9 E-5 4.1 E-4 0.352 * *   * 

EthG 7.13 3.9 E-4 4.1 E-3 0.276  *   * 

Syringol 6.62 0.001 0.005 0.262  * * * * 

MeS 4.19 0.010 0.040 0.183   * * * 

PropS 3.01 0.038 0.040 0.139     * 

1-OH-Nap 5.38 0.003 0.013 0.224 * *  *  

a p-adjusted value (q-value) based on False Discovery Rate (FDR) using Benjamini-Hochberg procedure;  
b Effect size measured using Partial Eta Square. 

 

inflammation risk in ≥ 47% of samples. Urine samples were also surveyed for 

cyanide, another smoke component of concern, however no increase in cyanide 

excretion due to smoke exposure was found in this study.A recent acceleration of 

research into the occupational exposures to firefighters have sought to confirm a 

causal link between the complex hazardous aerosolized mixtures of chemicals at 

the fireground, surreptitious exposures and high rates of cancer and cardiovascular 

disease among firefighters. In this study we observed that heterogeneity in the 

chemical profile and magnitude of wood smoke exposures to firefighters varied, in 

part due to the type of structure containing the fire, in addition to known effects 

determined by the proximity to wood smoke. Personal air pumps were more 

effective at capturing information regarding the carcinogenic and mutagenic 

potential of these exposures than passive Twister sorbents, as heavier semivolatiles 

partition favourably to particulate, which was not efficiently sampled using the 

sorbent device. Protective clothing was confirmed to mitigate, but not prevent, the 
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deposition of soot under clothing, where the SCBA was particularly deficient in 

achieving the indicated protection factor (PF = 10 000). In addition, this led to 

fluorene, several MPs, and all RAs depositing on the cheek under the SCBA mask. 

Urine MPs (MeG, guaiacol, EthG, syringol, MeS, and PropS) and 1-OH-Nap 

increased significantly within 6 h following acute smoke exposure due to a high 

concentration in the wood smoke, which establishes an optimal time window for 

future urine sample collection for firefighters in the field. However, identifying the 

immediate effect of an acute smoke exposure was challenged due to a moderate 

background at baseline that mitigated significant increases in urine concentration. 

We suggest this is due to the cumulative effects of cross-contamination from 

handling turnout gear and inadequate hygienic practices, which represents a non-

negligible risk of chronic exposure, including by ingestion, to firefighters and 

coworkers.  There were some challenges in this study regarding sample collection, 

including the lack of chemical tracers to confirm whether all urine voids within the 

48 h were reliably captured, which is a source of potential bias. Furthermore, no 

wipes were taken after baseline sampling to confirm complete removal of 

contaminants before the fire exercise, thus it is possible that some remaining 

sediment was captured in the post-exposure wipes. However, as several post-

exposure samples yielded higher concentrations on the skin after the fire, the 

determination of deficiencies in the turnout gear remains unchanged. Lastly, this 

cross-sectional study included both experienced firefighters and new recruits that 

was a source of variation between training sites, including fire intensity and 

dimensions of burn houses impacting  local concentrations of contaminants 

measured in air samples and absorbed onto skin. Moreover, our study design cannot 

directly correlate the smoke exposure with chronic disease risk assessment as other 

serum biomarkers of inflammation were not measured, which optimally requires a 

longitudinal study. As an acute exposure study, the extrapolation of these findings 

to the characterization of all smoke exposures to firefighters is challenged by the 
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high variability in the frequency and type of exposures firefighters regularly endure. 

Nonetheless, the findings discussed here are reproduced among all firefighters 

across multiple sites and supported by similar observations in the literature. 

Additionally, the exposure determined here occurred in a controlled environment, 

with PPE used under ideal circumstances, which is not likely to be the case during 

a major structural, urban or industrial fire. In conclusion, there is urgent need for 

the design of improved equipment that mitigates smoke exposure from skin 

absorption, as well as better training/maintenance of SCBA usage, and the 

implementation of more effective hygiene/cleaning practices of turnout gear (e.g., 

access to secondary bunker gear) in order to improve the occupational health of 

structural firefighters and trainees. 
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3.2. Urine Collection Protocol for Study Participants  
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1. Photos of Burn Houses at Site B, Site H, and Site O 
Site B 

 
 
Site H 

 
 
Site O 
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2. Urine Collection Protocol for Study Participants  
 
General Guidelines (48 hr) 

 
It is strongly recommended that you follow these instructions over a 48-hour 
time period. Sudden changes in behaviour may introduce interferences that 
will bias this study: 
 

 Avoid barbecued and charred foods 
 Avoid strenuous exercise 
 Avoid alcohol or increases in alcohol consumption 
 Maintain your usual diet and exercise routine 
 Ensure the correct name is on all of your sample collection 

containers 
 Store all sealed/labeled containers in a cooler that is provided 

 
 
Urine Collection Instructions 

I. Pre-Exposure Urine Collection (24 hr) 
 

Please use the provided sample container(s) (3-4) to collect all urine over the 
24-hr pre-exposure period. Depending on hydration, total urine volume for 24 
hrs is on average over 2 L, but can vary significantly between individuals. 
You will be provided several 1L wide-mouth plastic containers for collection 
and storage of urine. 
 

 Discard your first morning urine at the start of Day 1. Record this 

as the start date and time of your 24-hour collection on your 

sample bottle. 

 For every following urination during the 24-hour period, please 

collect the sample in the provided containers. Please use 

additional containers as needed depending on total volume of 

urine.  

 Ensure that the lid is secure on the sample container when not in 

use and placed in a sealed cooler during storage. 

 At 24 hours please attempt a final urination. Record this as the 

stop date and time on your container and secure the lid tightly. If 

another urination is not possible, record the stop date and time at 
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the end of the 24-hour period and secure the lid tightly. 

 

II. Post-Exposure Urine Collection (24 hr) 

 

Use the provided sample containers (3-4) to collect all urine over the 3 stages 

of the 24-hour post-exposure period. Please ensure that you are using the 

appropriately labelled sample container at each urination. 

 

 Confirm that you have been provided 3 sample containers labeled 

“0-6 hr”, “6-12 hr”, and “12-24 hr”. 

 At the first urination following fire exposure, please urinate into 

the container labelled “0-6 hr” and record this as the start date and 

time on your container. 

 
 For every following urination, please collect the sample in the “0-

6 hours” sample container. 

 At 6 hours following fire exposure, record the stop date and time 

on your container and secure the lid tightly. Record the same date 

and time as the start date and time on your “6-12 hr” sample 

container and follow the same procedure as before. 

 At 12-hours following fire exposure, label the stop date and time 

on the container. Begin using the “12-24 hr” sample container and 

label the start date and time as previously instructed. Collect all 

urine. 

 At 24 hours following fire exposure, attempt a final urination. 

Record this as the stop date and time on your container and secure 

the lid tightly. If another urination is not possible, record the stop 

date and time at the end of the 24-hour period and secure the lid 

tightly. 

 
Please note any deviations from the above procedure or any concerns, if any. 
Submit this sheet with your samples. (If none, then you may keep this sheet.) 
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Supplemental Information 

Experimental 

Materials 

Ultra HPLC grade LC-MS solvents were used to make all buffers and sheath 

liquids, unless otherwise stated. Ultra HPLC grade LC-MS solvents water, 

methanol (MeOH), acetonitrile (ACN), isopropanol, and dichloromethane (DCM) 

were obtained from Caledon Laboratories Ltd. (Georgetown, ON, Canada). HPLC 

grade solvents (DCM, water, methanol, ACN, and toluene) were used for GC-MS 

sample preparation and purchased from Caledon Laboratories Ltd. N-methyl-N-

(trimethylsilyl)trifluoroacetamide (MSTFA) >98.5%, ß-glucuronidase (from Helix 

Pomatia, Type Hp-2, aqueous solution, >1.0 x 105 units/mL) and sodium acetate 

(NaAc, reagent plus 99%), and 3-chloro-L-tyrosine (Cl-Tyr) were purchased from 

Sigma-Aldrich Inc. (Canada & USA). PAH standards were purchased from Chiron 

AS (Norway). Phenanthrene-d10 (98%), pyrene-d10 (98%), and chrysene-d12 (98%) 

were purchased from Cambridge Isotope Laboratories (USA). Guaiacol, 

methylguaiacol, ethylguaiacol, propylguaiacol, syringol, methylsyringol, eugenol, 

isoeugenol, and the hydroxyl-PAHs were purchased from MRI (USA). 

Ethylsyringol, propylsyringol, guaiacol-d4 (98%), syringol-d6 (98%), and 

acetosyringone-d6 (98%) were generously provided by Christopher D. Simpson. 

 
Study Design 

Eighteen full-time occupational firefighters from the municipalities of Burlington 

(Site B), Hamilton (Site H), and Ottawa (Site O) in the province of Ontario 

volunteered to participate in a controlled burn exercise where they conducted a 

mock search-and-rescue in an on-site training structure (“burn house”) while a 

localized active fire burned within the structure (pictures of each burn house are 

provided for reference on Supplemental Appendix 3.1). This study was approved 

by the McMaster Research Ethics Manager (MREB #2070). All volunteers were 
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healthy males with a median age of 40 years and median BMI of 27.0 (22.5-32.3). 

All participants identified as Caucasian except 1, and all identified as non-smokers 

except 1. Site B and site O had a mean 13 ± 9 and 18 ± 5 years of firefighting 

experience, respectively, while Group H firefighters were relatively recent recruits 

with 1.9 ± 1.6 years of experience.  None had attended a fire within the past 3 days 

and remained off duty for the duration of the study while refraining from smoke 

exposures (e.g. smoking, barbecuing, fires), alcohol, and changes to their regular 

daily routines (Appendix 3.2). Each consented to collect four batches of pooled 

urine samples over a 48-h period, including baseline (T-24 h prior to burn trial), and 

0-6 h, 6-12 h and 12-24 h following smoke exposure. Urine samples from each 

firefighter were collected in four pre-rinsed (with methanol) 1 L polyethylene 

containers, and personal coolers containing ice packs were used for sample storage, 

which were returned the following day for pickup. Baseline samples were taken 

from 24-hr pooled urine the day before the burn. Pre- and post-burn sample wipes 

were taken of the inner and outer SCBA lens, 1 forearm, and both cheeks using pre-

extracted (in DCM) 7-cm diameter Whatman filter papers soaked in isopropanol. 

Forearm samples were standardized at 3 wipes of 10 strokes each over a foil 

template with an approximately 30 cm2 circular cut-out. Wipes were folded inward 

and sealed in plastic bags to prevent transfer or contamination. Each participant was 

also equipped with a personal gas and particulate sampling apparatus with a Teflon 

filter connected in series to an XAD-2 sorbent tube and air pump calibrated to 2 

L/min. Sorbent Gerstel Twisters (Maryland, USA) with 0.5 mm thick 

polydimethylsiloxane (PDMS) coatings were affixed to the turnout coat in stainless 

steel mesh for passive ambient air sampling and inside the SCBA to monitor for 

potential chemical penetration of the mask. Pallets of untreated wood and straw 

were used for fuel and time was given for smoke to fill the burn house after ignition. 

Each group entered together in full regulatory turnout gear and SCBA.  One to two 

firefighters controlled the fire while the remainder conducted a search and rescue 
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exercise for 30 min before extinguishing the fire and exiting the structure as a 

group. Due to additional activities after the burn exercise that increased their 

handling of soiled bunker gear, 3 firefighters at Site O were removed from all post-

exposure analyses to avoid bias in the study. 

 
Air Sample Extraction  

After the exercise 16/18 pumps remained functional and 8/18 caged passive 

sampling Twisters were recovered. Filters were extracted in 3 mL of DCM with 

sonication for 20 min. XAD-2 resin was extracted by agitating the contents in ACN 

for 30 minutes and filtered using a 0.45 μm syringe filter. 1 mL of filtrate was 

solvent exchanged into 1 mL of ACN by N2 blow down. A 50 μL aliquot of the 

combined extract was derivatized with 40 µL MSTFA at 60°C for 30 min. to form 

trimethylsilyl derivatives of MP. Pyrene-d10 (10 μL, 10 ng/μL) was added as an 

internal standard prior to analysis. 

 
Wipe Extraction 

Each wipe was spiked with 10 μL of recovery standard prior to accelerated solvent 

extraction (ASE 300, Dionex, Sunnyvale, CA). The recovery standard consisted of 

guaiacol-d4, syringol-d6, acetosyringone-d6, phenanthrene-d10, and chrysene-d12 

each at a concentration of 10 ng/μL in ACN. DCM at 110 °C at 10.3 MPa was 

heated for 5 min then underwent static extraction for 5 min for three extraction 

cycles. The ASE extract was mixed with 1 mL of toluene then blown to 1 mL using 

a Rotovap. A 50 μL aliquot of the extract was derivatized with 40 μL MSTFA at 60 

°C for 30 min. Pyrene-d10 (10 μL, 10 ng/μL) was added as an internal standard 

prior to analysis.  

 
GC-MS Urine Workup 

Urine samples were pre-filtered with a 0.45 μm syringe filter. A 3 mL aliquot was 

then mixed with 5 mL of 0.100 M NaAc buffer (pH 5.5), then 20 μL of a recovery 
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standard mix consisting of guaiacol-d4, syringol-d6, acetosyringone-d6, and 

[13C6]-1-hydroxypyrene each at 1 ng/μL. Ten microlitres of β-

glucoronidase/sulfatase was added to the sample and allowed to incubate at 37 °C 

for 17-18 h to fully deconjugate hydroxy-PAH metabolites.14 Varian Focus SPE 

cartridges (50 mg, 6 mL) were used for sample cleanup and conditioned with 1 mL 

of MeOH followed by 1 mL of water at a flow rate of 10 mL/min. The sample was 

then loaded at a flow rate of 1 mL/min. The cartridge was rinsed with 1 mL of water 

followed by 20% MeOH in 0.100 M NaAc buffer (pH 5.5). The sorbent of the 

cartridge was dried by aspirating air through it for 5 min. followed by nitrogen blow 

down for 5 min. to ensure complete removal of water. The cartridge was eluted with 

5 mL of DCM at a rate of 0.5 mL/min. The 5 mL DCM extract was run through a 

sodium sulfate-packed Pasteur pipet to remove residual water then blown down to 

50 μL and derivatized with of 40 μL of MSTFA at 60 °C for 30 min. Pyrene-d10 

(10 μL, 10 ng/μL) was added as an internal standard prior to analysis. Pooled urine 

samples were run intermittently between sample batches to calculate technical 

precision. 

 
GC-MS and GC-MS/MS Analysis 

Air and wipe samples were analyzed on an Agilent 6890N gas chromatograph (GC) 

coupled to an Agilent 5973N mass selective detector (MSD) in selected ion 

monitoring (SIM) mode. A suite of 31 PAH, MP, and RA were targeted in both air 

and skin samples (see Supplemental Information for target compounds) using a 

method described previously.16  Skin wipe data is normalized to the total area of all 

wipes used per sample. Urine samples were analyzed on a Varian CP-3800 GC 

coupled to a Varian 1200L triple-quadrupole mass spectrometer, operated in 

multiple-reaction monitoring (MRM) mode. Twenty-five hydroxy-PAH, MP, and 

RA were targeted in urine samples (Supplemental Information). Complementary 

univariate and multivariate analysis methods were used to identify key metabolites 
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associated with the smoke exposure. All quantities reported are relative to the 

pyrene-d10 internal standard and all urine data is normalized to creatinine reduce 

bias from hydration status. Individual creatinine was determined using the CE-MS 

method described below. Non-detects were replaced by LOD/2. Modelled data was 

log-transformed and autoscaled, unless otherwise stated. 

 
CE-MS Urine Workup 

For the determination of urine creatinine samples were thawed on ice and 

centrifuged for 10 minutes at 14 000 g. Supernatant was diluted 20-fold with pH 

4.9 75 mM ammonium acetate (NH4Ac) buffer and spiked to contain 10 µM of 3-

chloro-L-tyrosine as an internal standard. Analysis was performed on an Agilent 

G7100A CE coupled to an Agilent 6550 quadrupole time-of-flight (QTOF) mass 

spectrometer using an MSI-CE-MS method.53 Samples were analyzed in positive 

mode using a 1 M formic acid (pH 1.8) with 15% v/v acetonitrile background 

electrolyte. 

 
Statistical Data Analysis  

Univariate and multivariate statistical analyses, including Mann-Whitney U test, 

one- and two-factor analysis of variance (repeat measures ANOVA, Kruskal-

Wallis), and Pearson correlation were performed using Microsoft Excel and 

Statistical Package for the Social Sciences (SPSS 23.0). Hierarchical cluster 

analysis (HCA)/2D heat maps and principal component analysis (PCA) were 

performed using MetaboAnalyst 4.0.54 Creatinine normalization was used to 

correct for hydration status and non-detects were replaced by a minimal value 

(LOD/2). Modelled data was log-transformed and autoscaled, unless otherwise 

stated.
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Table 3S.1: (Mean ± SD) recovery (ng) of methoxyphenols (MP), polycyclic 
aromatic hydrocarbons (PAH), and resin acids (RA) recovered from outer caged 
Twisters (n = 8) attached to the turnout coat compared to within the SCBA (n = 7) 
of firefighters 
 

 Site B  
(n = 5) 

Site H  
(n = 2) 

Site O 
(n = 1) 

Site B  
(n = 5) 

Site H  
(n = 2) 

 Caged Twister SCBA Twister 
MP 

     

Guaiacol 73.9 ± 28.4 254 ± 225 400 0.67 ± 0.54 0.39 ± 0.31 
EthG 94.0 ± 26.1 392 ± 161 615 1.05 ± 0.69 0.68 ± 0.16 
PropG 46.0 ± 26.9 110 ± 25 159 72.9 ± 25.6 1.50 ± 1.00 
Syringol 171 ± 24 319 ± 45 1706 2.04 ± 2.23 0.55 ± 0.09 
MeS 69.9 ± 25.7 96 ± 11 881 1.04 ± 1.08 0.78 ± 0.68 
EthS 79.3 ± 36.5 139 ± 38 1044 65.0 ± 39.1 1.82 ± 1.77 
PropS 109 ± 75 18.5 ± 8.9 1821 2.00 ± 4.19 6.06 ± 7.2 
Eugenol 24 ± 6.4 101 ± 23 156 1.21 ± 0.33 0.3 ± 0.08 
Isoeugenol 112 ± 43 373 ± 79 944 21.3 ± 12.7 0.136 ± 0.001 
PAH 

     

Naphthalene 58.8 ± 12.3 390 ± 286 557 15.4 ± 6 7.6 ± 10.1 
Fluorene 9.7 ± 3.3 28.7 ± 3.3 72.7 0.23 ± 0.22 0.18 ± 0.14 
Phenanthrene 27.5 ± 9.1 72 ± 66 233 0.49 ± 0.97 0.1 ± 0.08 
Fluoranthene 13.4 ± 5.8 4.7 ± 1.6 23.5 0.96 ± 0.96 0.14 ± 0.14 
Pyrene 18.8 ± 4.8 8.4 ± 8.7 24.9 4.93 ± 6.12 2.07 ± 0.32 
Acenaphthylene 28.9 ± 7.5 138 ± 22 231 3.27 ± 3.31 0.12 ± 0.05 
Acenaphthene 2.95 ± 0.72 5.4 ± 6.7 1.6 0.97 ± 0.8 0.26 ± 0.06 
RA 

     

7ODA 0.15 ± 0.05 0.200 ± 0.004 0.21 0.18 ± 0.1 0.12 ± 0.05 
AA 0.16 ± 0.24 0.14 ± 0.05 0.06 0.17 ± 0.16 0.1 ± 0.05 
DA 20.3 ± 4.46 71.4 ± 4.0 2.7 20 ± 4.9 37.8 ± 10.4 
IPA 0.67 ± 0.25 0.84 ± 1.03 0.06 0.49 ± 0.14 0.29 ± 0.17 
PA 0.22 ± 0.17 0.14 ± 0.08 0.21 0.23 ± 0.16 0.204 ± 0.001 
SPA 0.33 ± 0.24 0.534 ± 0.004 0.12 0.3 ± 0.17 0.22 ± 0.13 
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Table 3S.2: (Mean ± SD) ambient concentrations (µg/m3) of methoxyphenols 
(MP), polycyclic aromatic hydrocarbons (PAH), and resin acids (RA) captured by 
the personal air pumps (n = 16) of firefighters 

 Site B Site H Site O 
 (n = 3) (n = 5) (n = 8) 

MP     
Guaiacol 31.7 ± 9.6 9.6 ± 234 234 ± 194 
MeG 12.4 ± 14.9 14.9 ± 330 330 ± 306 
EthG 13.8 ± 7.1 7.1 ± 228 228 ± 207 
PropG 2.6 ± 2.7 2.7 ± 59.3 59.3 ± 54.8 
Syringol 30.4 ± 12.2 12.2 ± 222 222 ± 195 
MeS 10.5 ± 6.2 6.2 ± 79.3 79.3 ± 61.2 
EthS 13.3 ± 9.3 9.3 ± 112 112 ± 83.4 
PropS 3 ± 2.3 2.3 ± 17 17 ± 11.7 
Eugenol 4.5 ± 2.1 2.1 ± 35.2 35.2 ± 49.8 
Isoeugenol 10.4 ± 7.4 7.4 ± 63.5 63.5 ± 63.8 
PAH    
Naphthalene 0.11 ± 0.07 0.07 ± 0.52 0.52 ± 0.36 
Fluorene 0.03 ± 0.02 0.02 ± 20.7 20.7 ± 16.8 
Phenanthrene/ 
Anthracene 

3.09 ± 1.49 1.49 ± 35.2 35.2 ± 8.4 

Fluoranthene 2.74 ± 0.91 0.91 ± 1.76 1.76 ± 14.27 
Pyrene 2.16 ± 4.69 4.69 ± 48.2 48.2 ± 3.6 
Acenaphthylene 0.15 ± 0.09 0.09 ± 5.01 5.01 ± 9.28 
Acenaphthene 0.22 ± 0.23 0.23 ± 0.65 0.65 ± 0.37 
Chrysene 1.41 ± 0.86 0.86 ± 0.77 0.77 ± 7.87 
BaA 1.52 ± 3.7 3.7 ± 12.8 12.8 ± 29 
BbF 0.55 ± 1.22 1.22 ± 3.83 3.83 ± 1.43 
BkF 0.59 ± 0.27 0.27 ± 4.4 4.4 ± 2.3 
BaP 0.89 ± 0.3 0.3 ± 5.78 5.78 ± 2.33 
IcdP 0.02 ± 0.45 0.45 ± 0.9 0.9 ± 5.44 
DahA 0.003 ± 0.004 0.03 ± 0.15 0.15 ± 1.63 
BghiP 0.08 ± 0.12 0.52 ± 1.49 0.03 ± 0.02 
RA    
7ODA 0.96 ± 6.31 6.31 ± 8.1 8.1 ± 351.4 
AA 1.56 ± 0.3 0.3 ± 38.7 38.7 ± 8.6 
DA 3.7 ± 1.71 1.71 ± 244 244 ± 29 
IPA 0.28 ± 0.2 0.2 ± 12.7 12.7 ± 9.2 
PA 0.23 ± 0.12 0.12 ± 10.8 10.8 ± 0.02 
SPA 0.22 ± 0.24 0.24 ± 7.3 7.3 ± 7.1 
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Table 3S.3: (Mean ± SD) ambient concentrations (ng/cm2) of methoxyphenols (MP), polycyclic aromatic hydrocarbons 
(PAH), and resin acids (RA) on the cheeks and arms of firefighters (n = 15) 
 

 Site B 
(n = 5) 

Site H 
(n = 5) 

Site O 
(n = 8) 

Site B 
(n = 5) 

Site H 
(n = 5) 

Site O 
(n = 8) 

Site B 
(n = 5) 

Site H 
(n = 5) 

Site O 
(n = 8) 

Site B 
(n = 5) 

Site H 
(n = 5) 

Site O 
(n = 8) 

  Cheek - Pre   Cheek - Post   Arm - Pre  Arm - Post  

MP             

Guaiacol 
0.51 ± 
0.48 

2.04 ± 
3.99 

2.73 ± 
2.08 

0.98 ± 
0.79 

1.33 ± 
2.32 

4.29 ± 
2.54 

0.81 ± 
0.71 

1.94 ± 
3.29 

6.65 ± 
4.67 

0.81 ± 
0.71 

0.38 ± 
0.38 

3.46 ± 
2.52 

MeG 27.6 ± 
3.4 

30.5 ± 
7.5 

2.18 ± 
1.89 

26.4 ± 
1.3 

31.09 ± 
5.71 

2.23 ± 
1.1 

25.4 ± 
1.5 

26.18 ± 
10.4 

3.1 ± 
1.84 

25.4 ± 
1.5 

35 ± 8.4 9.05 ± 
17.92 

EthG 
0.62 ± 
0.97 

0.44 ± 
0.28 

2.61 ± 
2.39 

0.23 ± 
0.12 

0.58 ± 
0.32 

1.74 ± 
1.28 

0.23 ± 
0.17 

1.59 ± 
2.77 

3.11 ± 
2.22 

0.23 ± 
0.17 

0.37 ± 
0.22 

0.57 ± 
0.66 

PropG 
2.17 ± 
2.85 

0.05 ± 
0.07 

0.69 ± 
0.97 

3 ± 2.7 0.12 ± 
0.06 

0.54 ± 
0.24 

1.97 ± 
2.69 

0.14 ± 
0.23 

0.7 ±  

0.6 

1.97 ± 
2.69 

0.15 ± 
0.16 

0.21 ± 
0.26 

Syringol 
0.21 ± 
0.19 

0.44 ± 
0.33 

36.5 ± 
59.2 

0.48 ± 
0.41 

0.86 ± 
0.68 

31.8 ± 
30.1 

0.39 ± 
0.3 

1.02 ± 
1.39 

50.4 ± 
37.8 

0.39 ± 
0.3 

0.51 ± 
0.19 

12.6 ± 
13.4 

MeS 1.31 ± 
1.67 

0.14 ± 
0.07 

19.2 ± 
32.3 

0.23 ± 
0.1 

0.34 ± 
0.25 

14.5 ± 
15.5 

0.12 ± 
0.1 

1.13 ± 
0.96 

22.5 ± 
17.4 

0.12 ± 
0.1 

0.13 ± 
0.05 

4.54 ± 
6.57 

EthS 
3.65 ± 
7.08 

0.39 ± 
0.3 

16.01 ± 
25.6 

4.94 ± 
9.79 

0.63 ± 
0.51 

11.1 ± 
12.1 

0.33 ± 
0.3 

1.19 ± 
1.59 

15.8 ± 12 0.33 ± 
0.3 

0.43 ± 
0.44 

3.77 ± 
5.45 

Eugenol 0.34 ± 
0.26 

0.09 ± 
0.07 

0.52 ± 
0.6 

0.31 ± 
0.29 

0.12 ± 
0.15 

0.59 ± 
0.62 

0.33 ± 
0.26 

0.14 ± 
0.08 

1.41 ± 
1.05 

0.33 ± 
0.26 

0.3 ± 
0.33 

0.21 ± 
0.25 
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PAH             

Naphthalene 5.79 ± 
4.21 

0.98 ± 
0.74 

2.57 ± 
2.53 

8.43 ± 
5.28 

8.8 ± 
11.4 

7.7 ± 
18.9 

10.4 ± 
3.6 

13 ± 17.6 1.69 ± 
1.77 

10.4 ± 
3.6 

16.1 ± 
20.3 

0.95 ± 
1.79 

Fluorene 
2.62 ± 
4.9 

28.8 ± 
37.3 

38.3 ± 
28.2 

0.46 ± 
0.25 

27.9 ± 
33.1 

17.2 ±  

22 

0.25 ± 
0.1 

0.37 ± 
0.15 

5.06 ± 
5.52 

0.25 ± 
0.1 

0.37 ± 
0.13 

2.26 ± 
3.21 

Phenanthrene 1.05 ± 
0.88 

0.84 ± 
0.63 

2.77 ± 
3.44 

1.37 ± 
0.55 

0.69 ± 
0.51 

1.44 ± 
0.83 

1.3 ± 
0.55 

1.1 ± 
0.68 

1.29 ± 
0.71 

1.3 ± 
0.55 

1.26 ± 
0.38 

0.82 ± 
0.72 

Fluoranthene 
0.94 ± 
1.55 

0.74 ± 
0.53 

0.86 ± 
0.78 

0.52 ± 
0.36 

1.09 ± 
0.95 

0.69 ± 
0.4 

0.26 ± 
0.14 

0.69 ± 
1.03 

0.31 ± 
0.36 

0.26 ± 
0.14 

0.3 ±  

0.1 

0.25 ± 
0.26 

Pyrene 1.69 ± 
3.37 

3.02 ± 
2.71 

1.93 ± 
2.14 

0.58 ± 
0.37 

6.11 ± 
7.48 

1.64 ± 
1.67 

0.15 ± 
0.05 

0.61 ± 
1.24 

0.24 ± 
0.27 

0.15 ± 
0.05 

0.23 ± 
0.2 

0.2 ± 
0.26 

RA             

7ODA 
0.24 ± 
0.42 

0.4 ± 
0.32 

0.28 ± 
0.19 

0.19 ± 
0.14 

0.18 ± 
0.2 

0.33 ± 
0.32 

0.18 ± 
0.16 

0.23 ± 
0.27 

0.6 ± 
0.73 

0.18 ± 
0.16 

0.42 ± 
0.34 

0.44 ± 
0.12 

AA 0.17 ± 
0.1 

0.19 ± 
0.27 

0.09 ± 
0.09 

0.18 ± 
0.07 

0.05 ± 
0.01 

0.05 ± 
0.04 

0.17 ± 
0.09 

0.23 ± 
0.37 

0.06 ± 
0.04 

0.17 ± 
0.09 

0.04 ± 
0.02 

0.06 ± 
0.07 

DA 
8.4 ± 
14.9 

1.37 ± 
0.55 

2.56 ± 
1.18 

2.86 ± 
0.9 

3.46 ± 
1.93 

3.45 ± 
2.04 

2.12 ± 
0.36 

7.07 ± 
12.53 

2.61 ± 
1.97 

2.12 ± 
0.36 

2.26 ± 
1.31 

1.55 ± 
0.77 

IPA 0.37 ± 
0.37 

1.72 ± 
1.45 

1.19 ± 
0.89 

0.34 ± 
0.11 

1.66 ± 
0.9 

0.62 ± 
0.94 

0.23 ± 
0.09 

0.94 ± 
0.24 

0.55 ± 
0.29 

0.23 ± 
0.09 

1.15 ± 
0.32 

0.17 ± 
0.2 

PA 
2.41 ± 
2.87 

1.21 ± 
1.43 

1.34 ± 
1.33 

1.46 ± 
2.93 

0.97 ± 
0.6 

0.67 ± 
0.57 

0.09 ± 
0.09 

0.75 ± 
0.6 

0.28 ± 
0.3 

0.09 ± 
0.09 

0.03 ± 
0.03 

0.03 ± 
0.02 

SPA 1.57 ± 
3.13 

1.44 ± 
1.46 

1.52 ± 
1.44 

1.46 ± 
2.93 

1.84 ± 
2.61 

0.55 ± 
0.57 

0.08 ± 
0.09 

0.11 ± 
0.12 

0.11 ± 
0.07 

0.08 ± 
0.09 

0.02 ± 
0.01 

0.03 ± 
0.01 
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Table 3S.4: (Mean ± SD) urine concentrations (ng/g Crn) of methoxyphenols (MP), polycyclic aromatic hydrocarbons 
(PAH), and resin acids (RA) in 24-hr baseline and 24-hr post-exposure urine samples (0-6 h, 6-12 h, 12-24 h) excreted by 
firefighters (n = 15) after wood smoke exposure. 

 Group B Group H Group O Group B Group H Group O Group B Group H Group O Group B Group H Group O 

 (n = 5) (n = 5) (n = 5) (n = 5) (n = 5) (n = 5) (n = 5) (n = 5) (n = 5) (n = 5) (n = 5) (n = 5) 

  Baseline 0-6 h 6-12 h 12-24 h 

MP             

Guaiacol 
17384 ± 
10762 

40395 ± 
24949 

16108 ± 
7513 

36553 ± 
29853 

36201 ± 
13546 

31007 ± 
13479 

18131 ± 
24720 

13991 ± 
8000 

31288 ± 
23065 

16489 ± 
18909 

16095 ± 
12590 

24915 ± 
12849.2 

MeG 
9795 ± 
5354 

17320 ± 
12690 

9429 ± 
9096 

27782 ± 
15866 

58273 ± 
31130 

49855 ± 
28105 

10819 ± 
8993 

11179 ± 
3861 

23612 ± 
21538 

10793 ± 
13005 

14424 ± 
12969 

12505 ± 
6954.2 

EthG 
19121 ± 
14810 

28449 ± 
20130 

18622 ± 
19306 

27555 ± 
16010 

24355 ± 
13888 

56070 ± 
38089 

10529 ± 
12040 

7415 ± 
2620 

22485 ± 
11424 

18524 ± 
36437 

4497 ± 
2651 

9994 ± 
10971.7 

PropG 
727 ± 994 1166 ± 

1308 
1358 ± 
2044 

554 ± 757 2843 ± 
2605 

6525 ± 
5572 

625 ± 
1373 

4798 ± 
8032 

4464 ± 
1835 

LOD 55600 ± 
123340 

2806 ± 
3790 

Syringol 
3371 ± 
3398 

1755 ± 
3371 

3443 ± 
6420 

1499 ± 
1259 

1883 ± 
2402 

3484 ± 
2737 

1078 ± 
1588 

575 ± 772 1741 ± 
1634 

247 ± 528  LOD 122 ± 249 

MeS 
2982 ± 
4745 

1312 ± 
2079 

3785 ± 
7051 

1669 ± 
1290 

1906 ± 
2844 

4927 ± 
2611 

574 ± 994 901 ± 925 2614 ± 
2110 

205 ± 392 271 ± 221 778 ± 
944.5 

EthS 
39057 ± 
80624 

26046 ± 
42226 

5786 ± 
11148 

41686 ± 
80922 

14248 ± 
12469 

5942 ± 
2433 

22830 ± 
47489 

27668 ± 
39156 

6369 ± 
7094 

99392 ± 
216110 

6929 ± 
6124 

6965 ± 
13180.7 

PropS 
713 ± 
1449 

137 ± 282 1604 ± 
3562 

886 ± 
1788 

329 ± 711 1026 ± 
605 

73 ± 138 LOD 510 ± 645 LOD 121 ± 247 LOD 

Eugenol 
159561 ± 
97466 

1052402± 
1581291 

288086 ± 
477704 

269026 ± 
270822 

432757 ± 
595436 

322073 ± 
261184 

307789 ± 
411099 

703291 ± 
1087857 

504524 ± 
245863 

163773 ± 
241113 

111511 ± 
108937 

381247 ± 
331561.9 

PAH             

1-OH-Nap 
564 ± 518 107 ± 215 405 ± 648 1194 ± 

878 
2179 ± 
2432 

6673 ± 
5041 

380 ± 515 1023 ± 
606 

2050 ± 
854 

595 ± 253 461 ± 265 1922 ± 
1595 

2-OH-Nap 
7363 ± 
9513 

1586 ± 
556 

2922 ± 
2528 

9430 ± 
9464 

3692 ± 
1608 

10228 ± 
7765 

8381 ± 
11930 

1756 ± 
564 

4674 ± 
2831 

7310 ± 
8242 

1252 ± 
373 

5119 ± 
3519 

2-OH-Flu 
210 ± 130 115 ± 100 266 ± 296 379 ± 170 280 ± 181 531 ± 390 241 ± 151 194 ± 203 296 ± 264 255 ± 124 192 ± 213 470 ± 

499.5 
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3-OH-Flu 
63 ± 55 40 ± 66 151 ± 265 92 ± 66 85 ± 69 216 ± 148 83 ± 54 88 ± 72 154 ± 142 90 ± 54 83 ± 59 243 ± 

247.6 

9-OH-Flu 
285 ± 139 281 ± 273 378 ± 424 454 ± 198 763 ± 605 878 ± 532 253 ± 148 195 ± 174 597 ± 233 266 ± 134 207 ± 243 654 ± 

496.8 

2-OH-Phen 
126 ± 258 LOD 89 ± 114 85 ± 71 LOD 183 ± 171 124 ± 254 55 ± 99 96 ± 121 121 ± 102 78 ± 107 LOD 

3-OH-Phen 
141 ± 114 53 ± 95 111 ± 224 82 ± 69 50 ± 88 193 ± 128 121 ± 103 140 ± 178 102 ± 130 96 ± 119 202 ± 148 422 ± 

470.2 

4-OH-Phen 
38 ± 38 46 ± 78 70 ± 94 84 ± 142 LOD 85 ± 101 53 ± 96 66 ± 87 49 ± 53 49 ± 86 140 ± 183 LOD 

RA             

7ODA 
2395 ± 
1549 

6714 ± 
8535 

2121 ± 
1577 

1985 ± 
1045 

7496 ± 
7971 

2939 ± 
1786 

4306 ± 
2990 

4299 ± 
4516 

2742 ± 
2236 

3053 ± 
2177 

3630 ± 
4836 

3369 ± 
1761 

AA 
LOD 1610 ± 

2748 
1026 ± 
1397 

2167 ± 
4363 

3634 ± 
5277 

949 ± 
1333 

908 ± 
1177 

1358 ± 
2094 

973 ± 
1165 

80 ± 154 609 ± 566 639 ± 
687.2 

DA 
5447 ± 
2049 

12320 ± 
8434 

5067 ± 
3308 

4370 ± 
2089 

16018 ± 
11086 

11201 ± 
13305 

9304 ± 
5125 

13617 ± 
3291 

12719 ± 
7657 

6968 ± 
5454 

11018 ± 
6693 

14959 ± 
8741.9 

IPA 
615 ± 
1104 

775 ± 
1709 

4121 ± 
4514 

459 ± 
1003 

2935 ± 
3237 

6802 ± 
6703 

2910 ± 
5388 

4622 ± 
3423 

12597 ± 
11647 

LOD  2011 ± 
2128 

3860 ± 
8606.2 
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Chapter 4:  Metabolic Trajectories Following Contrasting Western and 
Prudent Diets from Food Provisions: Robust Biomarkers of 
Short-term Changes in Habitual Diet 

4.1 Abstract 

A large body of evidence has linked unhealthy eating with an alarming increase in 

obesity and chronic disease worldwide. However, existing methods of assessing 

dietary intake rely on food frequency questionnaires or dietary records that are 

prone to bias and selective reporting. Herein, metabolic phenotyping was 

performed on 42 healthy participants from the Diet and Gene Intervention 

(DIGEST) pilot study, a parallel two-arm randomized clinical trial that provided 

complete diets to all participants. Matching urine and plasma specimens were 

collected at baseline and following 2 weeks of either an assigned Prudent or 

Western diet. Targeted and nontargeted metabolite profiling was conducted using 

three analytical platforms, where 80 serum metabolites and 84 creatinine-

normalized urinary metabolites were reliably measured (CV < 30%) in the majority 

of participants (> 75%) after implementing a rigorous data workflow for metabolite 

authentication with quality control. We classified a panel of metabolites with 

distinctive trajectories following 2 weeks of food provisions when using 

complementary univariate and multivariate statistical models. Unknown 

metabolites associated with contrasting dietary patterns were identified (level 1 or 

2) with high resolution MS/MS after spiking with authentic standards. Overall, 3-

methylhistidine and proline betaine concentrations increased consistently when 

participants were assigned a Prudent diet (q < 0.05) in both plasma and urine 

samples with a decrease in the Western diet group. Similarly, creatinine-normalized 

urinary imidazole propionate, hydroxypipecolic acid, dihydroxybenzoic acid, and 

enterolactone glucuronide, as well as plasma ketoleucine and ketovaline increased 

with a Prudent diet (p < 0.05) after adjustments for age, sex and BMI. In contrast, 

plasma myristic acid, linoelaidic acid, linoleic acid, -linoleic acid, pentadecanoic 
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acid, alanine, proline, carnitine and deoxycarnitine, as well as urinary acesulfame 

K increased among participants following a Western diet. Most metabolites were 

also correlated (r > ± 0.30, p < 0.05) to changes in average intake of specific 

nutrients from self-reported diet records reflecting good adherence to food 

provisions. This study revealed robust biomarkers sensitive to short-term changes 

in habitual diet for monitoring healthy eating patterns that is needed for new 

advances in nutritional epidemiology and the design of evidence-based public 

health policies for chronic disease prevention. 

4.2 Introduction 

A global epidemic of obesity and chronic non-communicable diseases threaten to 

reduce life expectancy and impose a severe burden on public health.1,2 Diet and 

lifestyle are two key modifiable determinants of human health of particular 

importance for risk of cardiovascular disease (CVD), type 2 diabetes and some 

cancers.3 CVD remains the leading cause of death globally4 which has been 

associated with a Western diet. Contemporary Western diets rich in trans fats, 

processed foods and red meat, including regular consumption of sweetened 

beverages and high glycemic index foods lacking adequate fibre, have been 

strongly linked to chronic inflammation and metabolic syndrome5 that increasingly 

impacts the metabolic health across the lifespan.6 In contrast, a Prudent eating 

pattern (e.g., DASH, Mediterranean, Nordic diets etc.) that includes greater intake 

of fruits & vegetables, lean meats and whole grains reduces blood lipids, improves 

blood sugar homeostasis and lowers blood pressure.7,8 However, there is urgent 

need for more accurate dietary assessment tools for the design of evidence-based 

nutritional policies that are effective for chronic disease prevention on a population 

level.9  

 Nutritional epidemiologists face unique challenges in light of the highly 

complex chemical composition of foods, whose physiological effects are often 

confounded by interactions of diet with genes, lifestyle, microbiome and other 
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environmental exposures.10 To date, observational studies in nutrition mainly rely 

on self-reported measures of dietary intake, including methods of recall (e.g., food 

frequency questionnaires, 24 h dietary recall) or real-time recording (e.g., food 

diaries), which are prone to bias and selective reporting.11 Alternatively, targeted 

assays exist for measuring energy expenditure (e.g., doubly-labeled water), as well 

as specific macronutrients (e.g., protein), electrolytes (e.g., sodium) and 

micronutrients (e.g., vitamin D) with established reference ranges associated with 

nutritional status and/or chronic disease risk. However, these methods are not 

routinely applied in large-scale human studies due to cost barriers while 

representing only a small fraction of total food exposures.12,13 In this context, new 

advances in high throughput metabolomics offer a holistic approach to measure 

complex dietary patterns in lieu of specific nutrients based on comprehensive 

analysis of metabolites in human biofluids, such as urine and plasma.14 Recent 

metabolomic studies have identified dietary biomarkers15,16 to monitor for dietary 

adherence, as well as validate or correct standard dietary assessment tools used in 

nutritional epidemiology.17-21 However, few dietary biomarkers are specific to 

certain foods nor adequately validated as quantitative measures of recent intake or 

habitual food consumption in well-controlled randomized clinical trials.22-24  

 Herein, metabolic phenotyping of matching blood and urine specimens were 

analyzed from healthy participants from the Diet and Gene Intervention (DIGEST) 

pilot study, which was a randomized controlled trial to explore the short-term 

effects of a Prudent diet on CVD risk factors where individuals were provided all 

foods to prepare at home.25 A modest reduction in systolic and diastolic blood 

pressure and total cholesterol was reported for participants following a Prudent diet 

for two weeks as compared to a Western diet; however, dietary adherence relied on 

participant self-reporting, and food preparation methods were not standardized 

likely contributing to variability in treatment responses.25 In this work, we sought 

to identify specific metabolic trajectories in plasma and urine that function as 
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responsive biomarkers reflecting short-term changes in habitual diet, that were 

measured in free-living individuals outside of a dedicated metabolic ward or 

hospital stay. These dietary biomarkers not only confirmed good adherence to food 

provisions but were also associated with healthy eating patterns indicative of a 

Prudent diet,26 unlike a Western diet that increases overall risk for CVD.27 

4.3 Results 

Study Design, Baseline Habitual Diet and Metabolomics Workflow. The 

DIGEST study was a two-arm parallel dietary intervention involving healthy/non-

smoking participants recruited from the local community as described elsewhere.25 

A CONSORT diagram summarizes eligibility criteria (Figure 4S.1), where all 

participants completed a 7-day prospectively collected diet record and then were 

randomly allocated to eat a weight-maintaining Prudent or Western diet over 2 

weeks. Participants (n = 42) with contrasting habitual diets were selected in this 

unblinded metabolomics study based on availability of matching plasma and urine 

samples with complete diet records as depicted in Figure 4.1A. There were more 

women (64%) recruited than men, however there were no differences in age (mean 

age of 47 years ranging from 20 to 69 years), body composition (mean BMI of 27 

kg/m2 with 26% defined as obese) and average caloric intake (mean of 1940 

kcal/day) between assigned diet groups (Table 4S.1). Also, no differences in 

baseline blood lipids, fasting glucose, inflammatory biomarkers and blood pressure 

were measured between the two treatment arms. In this study, 18 participants were 

classified as having a Prudent-like diet at baseline (i.e., low Western diet score) who 

were randomized to a Western diet (referred to as P-W), and 24 participants with a 

predominate Western diet at baseline were randomized to a Prudent diet (referred 
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Figure 4.1: (A) Overview of study design in this parallel two-arm dietary 
intervention study involving participants from DIGEST (n = 42) who were assigned 
a Prudent or Western diet over a 2-week period with matching urine and plasma 
samples collected at baseline and post-intervention. (B) A 2D heat map with 
hierarchical cluster analysis (HCA) of the plasma metabolome that were 
consistently measured in the majority of participants, including non-targeted 
analysis of polar/ionic metabolites by MSI-CE-MS and total fatty acids by GC-MS. 
(C) A 2D heat map with hierarchical cluster analysis of the urine metabolome that 
were consistently measured in majority of participants, including non-targeted 
analysis of polar/ionic metabolites and targeted electrolytes by CE with indirect UV 
absorbance. A generalized log transformation and autoscaling was performed on 
metabolomic datasets together with creatinine normalization for single-spot urine 
specimens. Participants classified as having a predominate Western diet at baseline 
who were then assigned a Prudent diet are designated as “W-P” (n = 24), whereas 
“P-W” (n = 18) refers to participants had lower Western diet score at baseline, but 
were assigned a Western diet. 
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to as W-P). Overall, participants reported excellent adherence to all provided food 

items.25 Figure 4.1B and C depict 2D heat maps for matching plasma and urine 

metabolomes from DIGEST participants (n = 42) collected at baseline and 

following 2 weeks of assigned food provisions. A total of 80 serum metabolites and 

84 urinary metabolites were reliably measured (CV < 30%) in the majority of 

participants (> 75%) when using a validated data workflow for nontargeted 

metabolite profiling with stringent quality control (QC).28-30 A rigorous approach to 

metabolite authentication was implemented to reject spurious, redundant and 

background ions that comprise the majority of molecular features detected in ESI-

MS31 in order to reduce false discoveries in metabolomics.32 Overall, three 

orthogonal platforms were used to characterize polar/ionic metabolites in plasma 

and urine samples using multisegment injection-capillary electrophoresis-mass 

spectrometry (MSI-CE-MS), as well as total (hydrolyzed) plasma fatty acids as 

their methylester derivatives (FAMEs) by GC-MS, and inorganic urinary 

electrolytes by CE with indirect UV detection (Figure 4S.2). Also, 2D scores plots 

from principal component analysis (PCA) of plasma and creatinine-normalized 

urine metabolome demonstrated good technical precision from pooled samples 

used as QCs (median CV = 4-12%) as compared to the biological variance 

measured in random/single-spot urine (median CV = 65-78%) and fasting plasma 

(median CV = 32-53%) metabolomes (Figure 4S.3). A batch-correction algorithm 

was also applied to urine metabolome data to minimize signal drift when using 

MSI-CE-MS,29 where each run comprised a serial injection of six randomized 

samples together with a pooled QC. Also, control charts for recovery standards 

provide further evidence of acceptable intermediate precision (mean CV < 9%) with 

few outliers (Figure 4S.3). 

 A complete list of authenticated metabolites reliably measured in this study 

(Table 4S.2) is annotated by their accurate mass and relative migration time 

(m/z:RMT) under positive (+) or negative (-) ion detection mode, as well as their 



Nadine L. Wellington - Ph.D. Thesis - Chemistry and Chemical Biology, McMaster University 

113 
 

most likely molecular formula and mass error, level of identification, and 

compound name. Unambiguous identification of metabolites associated with 

contrasting diets was performed by spiking with authentic standards (if available) 

in conjunction with high resolution MS/MS, which were compared to reference 

spectra available in public databases (HMDB, Metlin); otherwise, spectral 

annotation was guided by in silico fragmentation33 using recommended reporting 

standards for metabolite identification.34 An overview of this metabolomics 

workflow is outlined in Figure 4.2, which shows the detection of an unknown 

protonated molecule ([M-H]+) in plasma by MSI-CE-MS, followed by its 

annotation by high resolution MS and subsequent identification (level 1) as proline 

betaine (ProBet) using MS/MS after comparison to an authentic standard at an 

optimal collision energy. Reliable quantification of ProBet using an external 

calibration curve is also demonstrated with good technical precision (CV < 15%, n 

= 20) as shown in a control chart based on repeated analysis of a QC in every run 

over the duration of the study.  

 

Changes in Dietary Intake from Food Provisions and Biomarker 

Classification. Major changes in self-reported dietary patterns among DIGEST 

participants were evident after 2 weeks as summarized in Table 4.1. Although there 

were no significant changes in BMI or average caloric intake between the two 

treatment arms, greater palatability and satiety was previously reported for 

participants assigned to a Prudent diet.25 As expected, the Prudent diet group (W-

P) had higher intake of dietary fibre (total, insoluble, soluble), major electrolytes 

(K, Mg) fruit and/or vegetable, vitamins, poly:sat, protein, and sugar or total 

carbohydrates, whereas the P-W group had higher intake of fat (total, saturated, and 

trans), sodium and cholesterol. Figure 4S.4 illustrates the relationship among 20 

of the most significant nutrient categories reflecting contrasting diets when using 

PCA along with a hierarchical cluster analysis (HCA) and 2D heat map. There was  



Nadine L. Wellington - Ph.D. Thesis - Chemistry and Chemical Biology, McMaster University 

114 
 

 

Figure 4.2:  (A) Metabolomics data workflow for the identification and 
quantification of biomarkers of a provisional Prudent diet (e.g., proline betaine 
annotated based on its m/z:RMT) when using full-scan data acquisition. (B) 
Multiplexed separations by MSI-CE-MS based on serial injection of seven plasma 
filtrate (or diluted urine) samples within a single run, including paired samples 
from each DIGEST participant (i.e., baseline/post-treatment) together with a 
pooled sample as QC for assessing technical precision and long-term signal drift. 
High resolution MS under positive ion mode detection allows for determination of 
most likely molecular formula for unknown cation (i.e., protonated molecular ion), 
whereas (C) MS/MS spectra is used for its structural elucidation when compared 
with an authentic standard. (D) Quantification for metabolites is then performed by 
external calibration when using an internal standard (Cl-Tyr) for data 
normalization by MSI-CE-MS. (E) A control chart for ProBet from pooled urine 
samples as QC analyzed in random positions in every run demonstrates acceptable 
technical precision over 3 days. 
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Table 4.1: Major changes in dietary patterns after a 2-week assigned Prudent 
and Western diet relative to baseline habitual diet of DIGEST participants (n = 42) 
based on self-reported diet records. 

a Mean differences () in self-reported dietary patterns were evaluated from food records collected twice over a 2-week period 
at clinical visits as compared to the baseline habitual diet of each participant.  
b There were no significant changes in measured total, LDL and HDL cholesterol based on standard clinical blood 
measurements when using a two-tailed student’s t-test with equal variance. 

Diet Categorya W-P, n = 24 P-W, n = 18 p for comparison/outcome 
 Insoluble fibre intake  

(g/2000 kcal/day) 
(14.0 ± 5.3) (-5.0 ± 3.5) p = 1.4 E-15; Greater insol. fibre intake 

in Prudent arm  
 Mg intake 

(mg/2000 kcal/day) 
 (189 ± 89) (-134 ± 70) p = 3.5 E-15; Greater Mg intake in 

Prudent arm 
 Fruit & veggie intake 
(servings/2000 kcal/day) 

(3.6 ± 1.4) 
 

(-1.8 ± 1.3) 
 

p = 7.3 E-15; Greater intake in 
fruit/veggie in Prudent arm 

 Total fibre intake 
(g/2000 kcal/day) 

(16.6 ± 8.4) (-13.4 ± 8.1) p = 5.2 E-14; Greater total fibre intake 
in Prudent arm  

 Energy from sat. fat  
(%) 

-(5.4 ± 3.2)  (4.6 ± 2.4) p = 1.8. E-13; Greater intake of sat. fat 
in Western arm 

 Vegetable intake 
(cup eq./2000 kcal/day) 

 (1.8 ± 0.80) 
 

(-0.91 ± 0.92) 
 

p = 2.4 E-12; Greater veggie intake in 
Prudent arm 

 K intake  
(mg/2000 kcal/day) 

(1338 ± 617) (-854 ± 667) p = 2.5 E-13; Greater K intake in 
Prudent arm  

 Vitamin E 

(mg/2000 kcal/day) 
(7.7 ± 5.3)  (-7.0 ± 4.0) p = 5.1 E-12; Higher intake of vit. E in 

Prudent arm 
 Poly:sat fatty acid  

(ratio) 
(0.47 ± 0.21)  (-0.14 ± 0.18)  p = 8.2 E-12; Greater intake of poly:sat 

in Prudent arm 
 Vitamin C 

(mg/2000 kcal/day) 
(149 ± 69)  (-40 ± 54) p = 1.2 E-11; Higher intake of vit. C in 

Prudent arm 
 Soluble fibre intake  

(g/2000 kcal/day) 
(3.9 ± 2.1) (-1.5 ± 1.5) p = 2.3 E-11; Greater total fibre intake 

in Prudent arm  
 Fruit intake  

(cup eq./2000 kcal/day) 
(1.79 ± 0.93) 

 
(-0.92 ± 0.99) p = 5.9 E-11; Greater fruit intake in 

Prudent arm 
 Energy from fat  

(%) 
-(7.5 ± 5.6)  (5.6 ± 5.6) p = 9.0 E-10; Greater intake of total fat 

in western arm 
 Na intake 

(mg/2000 kcal/day) 
-(694 ± 590) (754 ± 658) p = 6.4 E-9; Greater Na intake in 

western arm 
 Vitamin A 

(g/2000 kcal/day) 
(12973 ± 56344)  (-7847 ± 14060) p = 1.4 E-7; Higher intake of vit. E in 

Prudent arm 
 Energy from sugar  

(%) 
(8.9 ± 5.4)  (-1.5 ± 5.8)  p = 7.3 E-7; Higher sugar intake in 

Prudent arm 
 Energy from protein  

(%) 
(1.9 ± 3.6)  (-3.2 ± 2.7) p = 1.5 E-5; Greater intake of protein in 

Prudent arm 
 Energy from carbohydrates 

 (%) 
(8.5 ± 7.8)  (-0.35 ± 5.7) p = 2.9 E-4; Greater intake of total 

carbs in Prudent arm 
 Cholesterolb  

(mg/2000 kcal/day) 
-(101 ± 140)  (54 ± 110) p = 4.8 E-4; Greater intake of 

cholesterol in Western arm 
 Energy from trans fat  

(%) 
-(0.26 ± 0.55)  (0.27 ± 0.23) p = 6.4 E-4; Greater intake of trans fats 

in Western arm 
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strong co-linearity (r > ± 0.70) among most nutrient categories with two distinctive 

clusters reflecting opposing Prudent and Western eating patterns assigned to 

DIGEST participants. 

Volcano plots (Figure 4S.5) were initially used to evaluate changes in the 

metabolic phenotype of participants using minimum cut-off thresholds (i.e., mean 

fold-change or FC > 1.3; p < 0.05). Overall, contrasting diets generated pronounced 

changes in a wide range of plasma and urinary metabolites that was largely absent 

for the same participants given modest differences in their baseline habitual diets 

(Table 4S.1). For instance, 10 plasma and 16 urinary metabolites were differentially 

expressed in W-P as compared to P-W diet groups, including four metabolites 

satisfying a Benjamini-Hochberg/FDR adjustment (q < 0.05), including ProBet, 3-

methylhistidine (Me-His) and two unknown urinary metabolites subsequently 

identified (level 2) as hydroxypipecolic acid (OH-PCA) and imidazole propionic 

acid (ImPA). The identification and quantification of Me-His was confirmed in both 

plasma and urine (Figure 4S.6), whereas several unknown urinary metabolites 

were putatively identified (level 1 or 2) based on their characteristic MS/MS 

spectra, such as OH-PCA (Figure 4S.7) and acesulfame K (ASK; Figure 4S.8). 

Similarly, targeted analysis of FAMEs from hydrolyzed plasma extracts using GC-

MS (Figure 4S.9) allows for resolution of low abundance trans isomers (linoelaidic 

acid, C18:2n-6trans) and saturated fatty acids (myristic acid, C14:0) from abundant 

dietary fatty acids (linoleic acid, C18:2n-6cis). As expected, several circulating 

fatty acids (Figure 4S.5) were consistently elevated following a Western diet due 

to higher average consumption of total fats as compared to a Prudent diet.  

 

Biomarkers of Contrasting Diets and Their Correlation to Diet Records. 

Complementary statistical methods that take advantage of the repeated-measures 

study design were used to classify metabolites responses to contrasting dietary 

patterns. A paired orthogonal partial least-squares–discriminant analysis (OPLS-
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DA) model was used to rank metabolites in plasma (Figure 4.3A) and urine (Figure 

4.3B) that were modulated by assigned diets relative to each participant’s baseline 

habitual diet (i.e., ion response ratio). Both OPLS-DA models demonstrated good 

accuracy (R2 > 0.840) with adequate robustness (Q2 > 0.200) after permutation 

testing (p < 0.05, n = 1000). S-plots confirmed that ProBet and Me-His were 

consistently elevated following a Prudent diet (W-P) in both plasma and urine 

samples, whereas total plasma C14:0 and C18:2n-6cis had the most significant 

increase following an assigned Western diet (P-W). Additionally, top-ranked 

creatinine-normalized urinary metabolites excreted at higher levels following a 

Prudent diet included ImPA, OH-PCA, dihydroxybenzoic acid (DHBA), 

enterolactone glucuronide (Ent-G), nitrate and an unknown cation (m/z 217.156, 

[M-H]+) tentatively identified as a dipeptide, valinyl-valine (Val-Val), whereas 

ASK was only modestly increased (p = 0.0686) following a Western diet. 

Additionally, excellent discrimination among DIGEST participants following a 

Prudent or Western diet was achieved when using top-ranked single or ratiometric 

biomarkers from a receiver operating characteristic (ROC) curve (AUC > 0.820; p 

< 1.0 E-5) for plasma and creatinine-normalized urine samples (Figure 4S.10). For 

instance, plasma ProBet and the ratio of Me-His/C18:3n-6trans demonstrated good 

sensitivity and specificity (≈ 80-90%) for differentiating DIGEST participants 

based on their assigned diets similar to urinary OH-PCA and the ratio of OH-

PCA/Na. A multivariate empirical Bayes analysis of variance (MEBA)35 was also 

used to characterize time-dependent metabolite profiles related to assigned diets 

after two weeks of food provisions. In this case, metabolic trajectories with 

distinctive time-course profiles following a Prudent or Western diet were ranked 

based on their Hotelling’s T2 distribution as shown for plasma (Figure 4S.11) and 

urine (Figure 4S.12), which were consistent with metabolites identified as dietary 

biomarkers from volcano plots, ROC curves and OPLS-DA models.
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Figure 4.3: Paired supervised multivariate data analysis of (A) plasma and (B) creatinine-normalized urine 
metabolomic data based on orthogonal partial least-squares-discriminant analysis (OPLS-DA) using the ratio of ion 
responses or concentrations for metabolites following 2 weeks of food provisions to their baseline habitual diet values. 
2D scores plot highlight differences in the overall metabolic phenotype from matching biofluids collected from DIGEST 
participants assigned to a Prudent (W-P) as compared to a Western (P-W) diet based on a sub-set of metabolites identified 
from S-plots, as well as univariate statistical analysis as shown in box-whisker plots for top-ranked metabolites 
significantly different between the treatment arms (p < 0.05).
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A mixed ANOVA model, and a partial Pearson correlation analysis to self-

reported diet records after adjustment for sex, age and BMI were next applied to 

further validate the relevance of dietary biomarkers identified from multivariate 

statistical models. Table 4.2 highlights that ProBet and Me-His were the most 

robust plasma metabolites associated with a Prudent diet that satisfied several 

statistical parameters (T2, F-value, r, adjusted p-value). For instance, ProBet was 

positively associated (r ≈ 0.520, p = 0.001) with self-reported intake of fruit (cup 

eq./2000 kcal), vitamin C (mg/2000 kcal) and fruit & vegetable servings 

(servings/2000 kcal), as well as negatively associated with total fat intake (r <  

-0.530, p < 0.001), including trans and saturated fat (% energy). Me-His had strong 

positive correlations (r = 0.530-0.570, p < 0.001) with protein (%energy), insoluble 

fibre (g/2000 kcal), electrolytes (Mg, K; mg/2000 kcal), as well as fruit, and fruit 

& vegetable intake reflecting a Prudent diet. Other plasma metabolites classified as 

dietary biomarkers of contrasting diets in this study included two carnitines (e.g., 

carnitine, C0; deoxycarnitine, dC0), two amino acids (e.g., proline, Pro; alanine, 

Ala), three ketone bodies/intermediates (e.g., ketoleucine; kLeu; ketovaline, kVal; 

3-hydroxybutyric acid, OH-BA), and several long-chain fatty acids (e.g., C14:0, 

C15:0, C18:2n-6trans, C18:3n-6cis, C18:2n-6cis). Overall, all total hydrolyzed 

fatty acids were positively correlated to a Western diet with a higher average intake 

of fats (trans fats, saturated fats) and a corresponding lower intake of fruit & 

vegetable, poly:sat and micronutrients (vitamins A, C and E). Similar outcomes 

were also measured for plasma carnitines and amino acids, which were positively 

correlated to a Western diet. In contrast, metabolic intermediates of branched-chain 

amino acids and energy metabolism, namely plasma kLeu, kVal and OH-BA, were 

positively associated with a Prudent diet, including higher average intake of protein, 

fibre, fruit & veggie, poly:sat, and vitamins. Table 4.2 summarizes 14 plasma 

metabolites that function as robust biomarkers of contrasting diets since they 

satisfied at least two of the three statistical models (p < 0.05) following adjustment 
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Table 4.2: Top-ranked plasma metabolites associated with a 2 week Prudent or Western provisional diet on healthy 
participants (n = 42) when using time series MEBA, mixed ANOVA and a partial correlation analysis. 

Metabolite/ID Identifier/MSI T2a F-valueb p-valueb rc p-valuec Food recordd 

Proline betaine  
(ProBet) 

HMDB04827 
 

144.102:0.984 (+) 
MSI-CE-MS 

C7H13NO2 

Level 1 

24.6 8.7 0.007 -0.601 
-0.544 
-0.528 
0.528 
0.518  

< 0.001  
< 0.001 
 0.001 
0.001 
0.001  

Change %fat 
trans fat %energy 
Sat fat %energy 
Fruit/Vitamin C 
Fruit & Veggie 

 
3-Methylhistidine 

(MeHis) 
HMDB00479 

 

170.092:0.664 (+) 
MSI-CE-MS 
C7H11N2O3 

Level 1  

24.9 14.0 0.001 0.573 
0.561 
0.553 
0.546 
0.534  

< 0.001  
< 0.001 
< 0.001 
< 0.001 
0.001  

Magnesium 
Protein %energy 
Insoluble Fibre 

Potassium 
Fibre/Fruit & Veggie 

 
Proline 
(Pro) 

HMDB00162 
 

116.070:0.927 (+) 
MSI-CE-MS 

C5H9NO2 

Level 1 

 

14.6 5.9 0.020 0.495 
-0.412 
-0.378 
-0.373 
-0.362 

 

0.002 
0.010 
0.019 
0.021 
0.026 

trans fat %energy 
Fruit & Veggie (serv) 

Veggie 
Fruit & Veggie 

Fruit 
 

Carnitine 
(C0) 

HMDB00062 
 

162.112:0.735 (+) 
MSI-CE-MS 

C7H15NO3 

Level 1 

 

12.2 8.9 0.005 -0.464 
0.426 
-0.404 
-0.386 
-0.368 

0.003 
0.008 
0.012 
0.017 
0.023 

Poly:Sat  
trans fat %energy 

Fruit & Veggie 
Vitamin E 
Vitamin C 

 
Deoxycarnitine or 
-Butyrobetaine 

(dC0) 
HMDB01161 

 
146.128:0.700 (+) 

MSI-CE-MS 
C7H16NO2 

Level 2  

 
11.9 

 
7.9 

 
0.008 

 
0.367 
0.366 
-0.352 
0.340 
-0.336 

 
0.024 
0.024 
0.030 
0.037 
0.039 

 
Change %fat 
Cholesterol 
Magnesium 

Sodium 
Poly:Sat  
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Linoelaidic acid  
(C18:2n-6 trans) 

HMDB06270 

294/67.1:15.289  
GC-MS 

C18H32O2  
Level 2 

 

10.3 21.5 < 0.001 -0.579 
-0.555 
-0.486 
0.485 
0.464 

< 0.001 
< 0.001 
0.002 
0.002 
0.003 

Poly:Sat  
Fruit & Veggie/Vit. E  

Vitamin C 
Sat fat %energy 

trans fat %energy 
 

Pentadecanoic acid 
(C15:0) 

HMDB000673 

 
294/67.1:14.171  

GC-MS 
C18H32O2  
Level 2 

 
9.9 

 
16.8 

 
< 0.001 

 
-0.471 
0.408 
-0.403 
-0.379 
0.379 

 
0.003 
0.011 
0.012 
0.019 
0.019 

 
Poly:Sat  

Change %fat 
Fruit & Veggie 

Vitamin A 
Change %sat fat 

 
Alanine 

(Ala) 
HMDB00161 

90.056:0.783 (+) 
MSI-CE-MS 

C3H7NO2 

Level 1 

9.6 6.2 0.018 0.452 
0.439 
0.428 
-0.395 
0.386  

0.004 
0.006 
0.007 
0.014 
0.017 

Change %sat fat 
Change %fat 

trans fat %energy 
Protein %energy 
Sat fat %energy 

  
Ketoleucine or 

4-Methyl-2-
oxopentanoic acid  

(kLeu) 
HMDB00695 

129.056:1.209 (-) 
MSI-CE-MS 

C6H10O3 

Level 2  

7.7 4.4 0.043 0.493 
-0.459 
0.456 
0.453 
0.452 

0.002 
0.004 
0.004 
0.004 
0.004 

Fruit & Veggie  
Sat fat %energy 

Fruit 
Poly:Sat 

Protein %energy/ 
Vitamin C/E 

 
3-Hydroxybutyric 

acid 
(OH-BA) 

HMDB00357 

103.040:1.043 (-) 
MSI-CE-MS 

C4H8O3 

Level 1  

7.6 2.9 0.097 0.437 
-0.429 
0.425 
0.419 
0.415 

0.006 
0.007 
0.008 
0.009 
0.01 

Fruit  
Sat/trans fat %energy 

Poly:Sat 
Vit A 

Fruit & Veggie  
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-Linoleic acid  
(C18:3n-6 cis) 
HMDB001388 

292/79.1:15.096  
GC-MS 

C18H30O2  
Level 2 

 

7.0 11.6 0.002 -0.441 
-0.397 
-0.391 
0.391 
-0.387 

0.006 
0.013 
0.015 
0.015 
0.016 

Poly:Sat  
Vitamin A 

Fruit & Veggie 
trans fat %energy 

Vitamin E 
 

Ketovaline or 
-Isovaleric acid 

(kVal) 
HMDB00019 

 
115.040:1.079 (-) 

MSI-CE-MS 
C5H8O3 

Level 2  

 
6.3 

 
2.4 

 
0.125 

 
0.489 
0.472 
0.466 
0.458 
0.451 

 
0.002 
0.003 
0.003 
0.004 
0.004 

 
Protein %energy 

Fibre (kcal) 
Fruit & Veggie  

Vitamin E 
Poly:Sat  

 
Myristic acid 

(14:0) 
HMDB00826 

 
 

242/74.1:10.336  
GC-MS 

C15H30O2 

Level 1  

5.0 15.2 < 0.001 -0.535 
-0.512 
0.503 
0.465 
-0.463 

0.001 
0.001 
0.001 
0.003 
0.009 

Poly:Sat  
Fruit & Veggie 
Change %fat 

Change %sat. fat 
Vitamin A 

 
Linoleic acid  

(C18:2n-6 cis) 
HMDB000673 

294/67.1:14.171  
GC-MS 

C18H32O2  
Level 2 

 
 

2.6 16.4 < 0.001 -0.438 
0.420 
0.412 
-0.382 
-0.370 

0.006 
0.009 
0.005 
0.018 
0.022 

Poly:Sat  
Change %fat  

Change %sat. fat 
Fruit & Veggie 

Vitamin A 

a Hotelling’s T-squared distribution using MEBA on glog-transformed metabolomic time series data. 

b Mixed ANOVA model derived from within-subject (diet x time interaction, p < 0.05) contrasts when adjusted for sex, age and BMI.  

c Partial Pearson correlation of urinary metabolites to food records with listwise deletion adjusted for sex, age and BMI, where r > ± 0.30 and p < 0.05.  

d Top-five categories from food records significantly correlated to urinary metabolites following provisional diets. 



Nadine L. Wellington - Ph.D. Thesis - Chemistry and Chemical Biology, McMaster University 

123 
 

for covariates between groups while also having a correlation (r > ± 0.3, p < 0.05) 

with at least two nutrient categories from self-reported diet records. An analogous 

strategy was also used to identify 8 creatinine-normalized urinary metabolites 

significantly associated with contrasting diets (Table 4.3). Urinary Me-His and 

ProBet were among the top-ranked metabolites sensitive to short-term changes in 

habitual diet with strong positive associations with healthful eating patterns 

indicative of a Prudent diet. Additionally, several other urinary metabolites were 

also associated with a Prudent eating pattern, including OH-PCA and ImPA. 

Furthermore, two plant-derived phenolic metabolites in urine, namely Ent-G and 

DHBA were also correlated to healthy eating patterns with a greater intake of fruit 

and/or vegetable and micronutrients, and a lower intake of total fat. However, 

creatinine-normalized Val-Val and DMG in urine were weakly correlated with only 

2 nutrient categories (p ≈ 0.05) from self-reported diet records. Interestingly, 

urinary ASK, nitrate and an unidentified cation (m/z:RMT, 276.144:0.858, [M-H]+) 

were not correlated to any major nutrient category despite showing treatment 

responses to contrasting diets. 

 

Metabolic Trajectories from Food Provisions and Metabolite Correlation 

Analysis. Representative metabolic trajectories are depicted for top-ranked 

biomarkers of contrasting diets that were measured in plasma (Figure 4S.11) and 

urine specimens (Figure 4S.12). In all cases, metabolic phenotype changes were 

evident following 2 weeks of food provisions with the exception of urinary DHBA, 

which was the only compound different between assigned diet groups at baseline 

(p = 8.03 E-3). The majority of dietary biomarkers underwent an increase in 

response for participants following a Prudent diet except for several circulating 

fatty acids, two amino acids (Pro, Ala) and two carnitines (C0, dC0) in plasma, 

which increased following a Western diet. Metabolic trajectory plots also highlight 

considerable between-subject variances to assigned diets while also identifying 



Nadine L. Wellington - Ph.D. Thesis - Chemistry and Chemical Biology, McMaster University 

124 
 

Table 4.3: Top-ranked creatinine-normalized metabolites associated with a 2 week Prudent or Western provisional diet 
on healthy participants (n = 42) when using time series MEBA, mixed ANOVA and a partial correlation analysis. 

Metabolite/ID Identifier/MSI T2a F-testb p-valueb rc p-valuec Food recordc 

3-Methylhistidine 
(MeHis) 

HMDB00479 

170.092:0.664 (+) 
MSI-CE-MS 
C7H11N2O3 

Level 1 
 
 

17.9 7.8 
 

0.008 
 

0.524  
0.517  
0.457 
-0.432  
0.431 

0.001  
0.001  
0.004  
0.007  
0.007  

Fibre (kcal) 
Fruit & Veggie  

Vitamin E 
 trans fat %energy 

Protein %energy  
 

5-Hydroxypipecolic 
acid (OH-PCA)* 
HMDB0029246 

 
 

146.081:1.180 (+) 
MSI-CE-MS 

C6H11NO3 

Level 2  

16.3 1.1 0.293 -0.468 
0.397 
0.390 
0.381 
0.374 

0.003 
0.013 
0.016 
0.018 
0.021 

Change fat 
Fibre (kcal) 

Fruit & Veggie 
Vitamin E 
Poly:Sat  

 
Imidazole propionic 

acid (ImPA) 
HMDB02271 

 

141.066:0.690 (+) 
MSI-CE-MS 

C6H8N2O2 

Level 2 

16.1 10.8 0.002 0.515 
0.511  
0.471  
0.463  
0.444  

 0.001 
0.001  
0.003  
0.003  
0.005  

Fibre (kcal) 
Fruit & Veggie 

Protein %energy 
Vitamin E 
Poly:Sat  

 
Proline betaine  

(ProBet) 
HMDB04827 

 

 

144.099:0.984 (+) 
MSI-CE-MS 

C7H13NO2 

Level 1 

15.5 10.8 
 

0.002  0.487  
-0.487 
0.482 
0.480 
0.469  

0.002 
0.002 
0.002 
0.002 
0.003  

Poly:Sat  
 trans fat %energy 

Fibre (kcal) 
Fruit &Veggie/Vit. E 

Fibre (insoluble) 
 

Valinyl-valine  
(Val-Val) 

HMDB0029140 
 

217.156:0.847 (+) 
MSI-CE-MS 
C10H20N2O3 

Level 3 

10.9 3.8 0.060 0.320 
0.320 

 
 

0.050 
0.050 

Poly:Sat  
Vitamin E 
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Enterolactone 
glucuronide (Ent-G) 

HMDB --- 
 

473.145:0.934 (-) 
MSI-CE-MS 

C24H25O10 

Level 2 

 

8.0 7.3 0.010 -0.434 
0.387 
0.340 
0.332 
0.316 

 

0.006 
0.016 
0.037 
0.042 
0.054 

Fat (kcal) 
Vitamin C 

Fruit (cup eq.) 
Fruit & Veggie 

Veggie (cup eq.) 
 

Dihydroxybenzoic 
acid (DHBA) or 

protocatachuic acid* 
HMDB0001856 

 

153.019:1.576 (-) 
MSI-CE-MS 

C7H6O4 

Level 2 

 

7.9 10.3 0.003 -0.403 
0.383 
0.355 
0.324 
0.310 

0.012 
0.018 
0.029 
0.047 
0.058 

 

Fat (kcal) 
Sugar %energy  

Vitamin C 
Veggie (cup eq.) 
Fruit & Veggie 

 
Dimethylglycine 

(DMG) 
HMDB0000092 

 

104.108:0.569 (+) 
MSI-CE-MS 

C4H9NO2 

Level 1 

2.9 3.6 0.065 0.356 
0.322 

 

0.028 
0.049 

 
 

Fruit & Veggie (serv.) 
Fibre (kcal) 

 
 

a Hotelling’s T-squared distribution using MEBA on glog-transformed metabolomic time series data. 

b Mixed ANOVA model derived from within-subject (diet x time interaction, p < 0.05) contrasts when adjusted for sex, age and BMI.  

c Partial Pearson correlation of urinary metabolites to food records with listwise deletion adjusted for sex, age and BMI, where r > ± 0.30 and p < 0.05.  

d Top five categories from food records significantly correlated to urinary metabolites following provisional diet. 
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outliers due to potential dietary non-adherence and/or inaccurate self-reporting. 

Figure 4.4 illustrates four metabolic trajectory plots for ProBet and Me-His as they 

were among the most sensitive biomarkers responsive to contrasting diets measured 

consistently in both plasma and urine samples. Also, scatter plots show the 

quantitative relationship between Me-His and ProBet concentrations in plasma as 

compared to their excreted concentrations in urine with self-reported average intake 

of protein (% energy) and fruit servings (servings/2000 kcal) over 2 weeks, 

respectively. For example, there was a 2.4-fold increase in mean plasma Me-His 

concentration following 2 weeks of food provisions that corresponded to a 28% 

greater intake of dietary protein when comparing Prudent (W-P, n = 24) and 

Western (P-W, n = 18) diet groups. Similar results were also evident when 

comparing creatinine-normalized concentrations of Me-His in urine, which 

generated a 4.8-fold higher mean concentration in Prudent relative to Western diet 

treatment arm. Overall, there was excellent correlation between Me-His 

concentrations and self-reported dietary protein intake (r = 0.430 to 0.560) with few 

exceptions, such as one participant (W-P, #19) who had consistently low Me-His 

concentrations in both biofluids consistent with self-reported protein intake that 

was characteristic of the Western diet group (P-W) indicative of dietary non-

adherence. In contrast, a second participant (P-W, #28) had higher than average 

Me-His concentrations in both plasma and urine samples despite their low self-

reported protein intake from diet records suggestive of diet record bias.  

 Figure 4.4 also depicts metabolic trajectories for plasma and urinary ProBet 

concentrations after 2 weeks of food provisions to DIGEST participants as 

compared to their baseline habitual diet along with scatter plots depicting their 

correlation (r = 0.430 to 0.530) to daily fruit servings. Similar to Me-His, the same 

participant (W-P, #19) had lower ProBet concentrations in both plasma and urine 

with diet records reflecting a Western diet low in fresh fruit intake despite being 

assigned a Prudent diet. Additionally, 3 participants had higher than expected 
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ProBet concentrations in circulation (P-W, #28, 35, 36) inconsistent with self-

reported diet records; interestingly, ProBet concentrations for these same 

participants were far less elevated in urine likely caused by differences in the 

detection time window when analyzing these two biofluids for exogenous dietary 

biomarkers of recent food intake, such as ProBet. Overall, there was a strong linear 

correlation between Me-His (r = 0.638) and ProBet (r = 0.547) concentrations 

measured from matching plasma and urine samples (Figure 4S.13) collected at 

baseline and following assigned diets (n = 84). Additionally, 2D heat maps and 

correlation matrices for top-ranked plasma (14) and urinary (11) metabolites 

provide insights into their underlying biochemical relationships (Figure 4S.14). As 

expected, urinary imidazole metabolites derived from histidine, Me-His and ImPA 

(r = 0.956), plasma saturated fatty acids, C14:0 and C15:0 (r = 0.873), plasma 

branched-chain amino acid intermediates, kLeu and kVal (r = 0.705), as well as 

plant-derived phenol metabolites in urine, DHBA and Ent-G (r = 0.662) were 

among a group of highly co-linear metabolites correlated to similar nutrient 

categories from diet records (Table 4.2; Table 4.3). 
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Figure 4.4: Metabolic trajectories for two distinctive biomarkers measured 
consistently in both plasma and urine specimens that increase significantly 
following a provisional Prudent diet (W-P) as compared to an assigned Western 
diet (P-W), namely Me-His and ProBet. Both metabolites were not different at 
baseline but undergo notable changes after two weeks of food provisions (q < 0.05, 
FDR) with concentrations moderately correlated (r > 0.400) to self-reported diet 
involving health-promoting foods from a Prudent diet. Overall, good dietary 
adherence was demonstrated for the majority of DIGEST participants with few 
exceptions (labeled on plots) who had metabolite phenotypes inconsistent with their 
assigned diet group. 

 

4.4 Discussion 

Accurate assessment tools of complex dietary patterns are needed to promote 

human health since sub-optimal diet is responsible for about 20% of preventable 

deaths from non-communicable diseases worldwide.36 However, few validated 

biomarkers exist for routine monitoring of habitual diet,37 such as omega-3 fatty 

acids38 and water insoluble fibre.39 In this work, a panel of metabolites from plasma 

and urine was demonstrated to respond to short-term dietary changes when 

applying a cross-platform metabolomics approach with stringent QC (Figure 4.1; 

Figure 4.2) and a rigorous data workflow for metabolite authentication (Figure 

4S.2; Figure 4S.3).28-30 Since all DIGEST participants had poor Prudent diet eating 

habits at baseline (Table 4.1), we hypothesized that assigning a Prudent diet (W-P) 

from food provisions would likely induce a more pronounced metabolic phenotype 

change than a Western diet (P-W); indeed, several top-ranked metabolites (q < 0.05, 

FDR) measured in plasma and urine were largely positively associated with a 

Prudent diet as shown in volcano plots (Figure 4S.5). Unlike controlled feeding 

studies within a laboratory setting, DIGEST participants were provided cooking 

suggestions with meal plans by a dietician that still allowed for flexibility in food 

preparations.25 In this study, short-term dietary changes were found to impact the 

intake of 20 specific nutrient categories from self-reported diet records (Table 4.2; 
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Table 4S.1; Figure 4S.4). For instance, a Prudent diet was consistent with a higher 

consumption of dietary fibre, fruit and/or vegetables, electrolytes and vitamins, but 

with lower intake of dietary fat, sodium and cholesterol in contrast to a Western 

diet. To the best of our knowledge, this is the first metabolomics study to investigate 

the impact of contrasting diets using food provisions. As dietary adherence, 

potential misreporting and variations in food preparations represent uncontrolled 

variables, we aimed to identify metabolites from plasma and urine that can serve as 

robust biomarkers of habitual diet applicable to a free-living population. 

 ProBet (Figure 4.2) and Me-His (Figure 4S.6) were among the most 

significant metabolites (q < 0.05, FDR) associated with a Prudent diet, an eating 

pattern that promotes good health while contributing to chronic disease 

prevention.40,41 In this case, ProBet and Me-His displayed opposing metabolic 

trajectories in both plasma and urine after 2 weeks of an assigned Prudent or 

Western diet with no differences measured at baseline (Figure 4.4). This was a 

consistent outcome from univariate and multivariate (Figure 4.3; Figure 4S.5) 

statistical methods after adjustments for covariates (sex, age, BMI), including 

mixed ANOVA and correlation models (Table 4.2; Table 4.3). Indeed, plasma 

ProBet or the ratio of Me-His/C18:3n-6cis provided good discrimination (AUC ≈ 

0.82 to 0.87, p < 3.0 E-5) of contrasting diets (Figure 4S.10). Additionally, ProBet 

and Me-His concentrations in plasma and urine were positively associated (r ≈ 

0.40-0.60, p < 0.001) with eating patterns reflecting a Prudent diet, including a 

higher intake of fibre, fruit, fruit & vegetable, protein and vitamins/electrolytes, 

with a lower consumption of trans or saturated fats as compared to a Western diet. 

In fact, ProBet is an exogenous biomarker specific to citrus fruit that has been 

validated in well-controlled feeding studies42 since it is not prevalent in most other 

foods.43 In fact, ProBet has been replicated in large-scale observational studies as a 

robust dietary biomarker (r ≈ 0.40) of recent citrus fruit/juice intake when compared 

to standardized FFQs, which can be measured in either blood or urine specimens.18   
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 Me-His has long been reported as an index of myofibrillar muscle protein 

turn-over under fasting conditions,44 whereas it also can serve as a biomarker of 

recent meat consumption (e.g., chicken) with lower plasma concentrations 

measured in vegetarians as compared to omnivores.45 Consequently, fasting plasma 

and creatinine-normalized urinary concentrations of ProBet and Me-His were 

associated with average fruit (servings/2000 kcal) and protein (%energy) as the 

most likely primary food sources (Figure 4.4), which also confirmed excellent 

dietary adherence with few exceptions. For instance, one participant following a 

Prudent diet (#19, W-P) had consistently lower than expected concentrations of 

ProBet and Me-His in both plasma and urine samples, which correctly 

corresponded to their self-reported diet records. In contrast, three participants 

following a Western diet (#25, 36, 38, P-W) were found to have higher than 

expected plasma ProBet when compared to their diet record, but this trend was less 

apparent in their matching urine samples. These observations are likely due to 

incidental intake of fruit juice or citrus beverages not included with food provisions 

that also highlights the different detection windows for dietary biomarkers when 

relying on “single-spot” plasma or random urine samples.16 For instance, ingestion 

of ProBet or orange juice results in a peak concentration in circulation (< 1-2 h) 

that reflects more recent intake as compared to its later excretion in urine (< 2-24 

h).46 Nevertheless, there was a strong linear correlation between circulating and 

excretory concentrations of ProBet (r = 0.638) and Me-His (r = 0.547) measured in 

matching plasma and urine samples collected in this study (Figure 4S.13).  

 Two urinary metabolites were also identified by MS/MS (level 2, Figure 

4S.7) as sensitive dietary biomarkers (q < 0.05, FDR) reflecting a Prudent diet, 

namely OH-PCA and ImPA (Table 4.3). Other potential isomeric/isobaric 

candidates for these metabolites were ruled out by comparing their MS/MS spectra 

with those predicted in silico using CFM-ID33 in the absence of authentic standards 

for more confident identification (level 1). Their metabolic trajectories (Figure 
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4S.12) displayed a notable increase (FC ≈ 4 to 6, p < 0.001) in excretion following 

a Prudent diet with no differences measured at baseline similar to trends observed 

for urinary ProBet and Me-His excretion. ImPA is a normal constituent of human 

urine derived from the metabolism of histidine47 which has recently been identified 

as a product of gut microbiota activity that also regulates insulin sensitivity.48 This 

highlights the fact that many dietary biomarkers are not only dependent on habitual 

dietary intake and host (liver) metabolism, but are also co-metabolized by gut 

microbiota with poorly understood effects on human health. Urinary excretion of 

ImPA was significantly correlated with fibre, fruit & vegetable and protein intake 

(r ≈ 0.50, p ≈ 0.001), which comprise eating patterns consistent with a Prudent 

diet.40 Similarly, urinary OH-PCA was found to have a moderate correlation with 

fibre and fruit & vegetable intake, and inversely related to total fat. This data 

indicates that higher excretion of OH-PCA in urine is likely derived from intake of 

leguminous plants49 and citrus fruits50 when following a Prudent diet, but represents 

an endogenous lysine metabolite51 also produced by gut microbiota.52 Indeed, 

urinary OH-PCA or its ratio to sodium (OH-PCA/Na) discriminated between 

DIGEST participants from two diet treatment arms (Figure 4S.10) with good 

accuracy (AUC ≈ 0.83 to 0.88, p < 3.0 E-4), as well as sensitivity and specificity (≈ 

90%).  

Two other metabolites derived from edible plant sources were also identified 

by MS/MS (Figure 4S.8) since they were elevated in urine (FC ≈ 2.5 to 3.8) when 

following a Prudent diet as shown by their urinary metabolic trajectory plots 

(Figure 4S.12), namely Ent-G and DHBA. In the case for Ent-G, a MS/MS spectral 

match based on three characteristic product ions, including a neutral loss of a 

glucuronide is in close agreement with published data.53 These urinary metabolites 

were consistently associated (r ≈ 0.30-0.40, p < 0.05) with fruit, vegetable, vitamin 

C, and/or total sugar intake, and inversely correlated to total fat (Table 4.3). Ent-G 

is a major phytoestrogen from dietary plant lignins, and is excreted in urine as its 
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monoglucuronide conjugate following biotransformation by human intestinal 

bacteria.54 Even in controlled feeding studies, there is considerable between-subject 

variation in urinary excretion of enterolignin metabolites due to complex 

interactions with liver and colonic environments,55 which has been reported to 

possess putative anticancer, antioxidant and/or estrogenic activity.56 DHBA is a 

major phenolic acid constituent from most cereals (e.g., wheat, rye),57 which can 

serve as a biomarker of dietary fibre intake allowing for differentiation of 

contrasting low and high (> 48 g/day) fibre diets.58 In fact, urinary DHBA was the 

only biomarker differentially excreted at baseline that reflected modest differences 

in fibre intake between assigned DIGEST participant groups (Figure 4S.5). Urinary 

Val-Val and DMG were also biomarkers related to a Prudent diet, but had weak 

correlations with only two nutrients (Table 4.3), whereas the artificial/low calorie 

sweetener ASK, and inorganic nitrate were not associated with any nutrient 

categories from self-reported diet records. ASK was elevated in urine following a 

Western diet (Figure 4.3B), but was rather sporadic with frequent missing data (i.e., 

below detection limit) since it reflects recent intake of certain sugar-sweetened 

beverages.59 In contrast, nitrate exposure has been reported to be mainly from 

vegetable consumption due to agricultural fertilizer usage60 that is consistent with 

its increase in urine following a Prudent diet. 

 The major circulating ketone body, OH-BA and two branched-chain amino 

acid intermediates, kVal and kLeu also increased in plasma following a Prudent diet 

as compared to a Western diet (Table 4.2). Increases in OH-BA from the liver 

during ketosis occurs during prolonged fasting or following strenuous exercise,30 

as well as abrupt changes in habitual diet, such as adopting a low glycemic index 

or very low carbohydrate diet.19 In our work, plasma OH-BA was moderately 

correlated (r ≈ 0.42, p < 0.01) to increases in fruit, fruit & vegetable and poly:sat 

consumption and inversely associated with saturated and trans fat intake. Since a 

Prudent diet is characterized by greater consumption of fibre-rich foods with a 
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lower glycemic index, this may contribute to a mild ketogenic physiological state 

unlike a Western diet that includes regular consumption of processed foods high in 

salt and added refined sugar, while low in dietary fibre.40,41 Indeed, a Prudent diet 

composed of whole foods elicits fewer adverse health effects with better adherence 

than highly restrictive ketogenic diets, which is effective in regulating insulin 

sensitivity in type 2 diabetes and pre-diabetic patients.61 Plasma kVal and kLeu 

were also positively correlated (r ≈ 0.45-0.50, p < 0.004) with key nutrient 

categories associated with a Prudent diet, including higher intake of protein, fruit 

and/or vegetable, poly:sat and vitamins. Both plasma metabolites are generated by 

extra-hepatic branched-chain amino acid transferases prior to oxidative 

decarboxylation and subsequent utilization as energy substrates within muscle 

tissue.62 The metabolism of branched-chain amino acids plays other critical roles in 

human health, including ammonia detoxification, protein biosynthesis and insulin 

sensitivity63 while serving as predictive biomarkers of type 2 diabetes.64 A 

correlation matrix/heat map (Figure 4S.14) confirms that plasma kLeu and kVal 

were strongly co-linear (r ≈ 0.70, p = 6.8 E-14) while also being closely associated 

with OH-BA (r ≈ 0.48, p = 3.7 E-6) reflecting common dietary patterns that 

influence their circulating concentrations. Also, urinary Me-His and ImPA (r ≈ 0.96, 

p < 1.0 E-15), as well as plasma C14:0 and C15:0 (r ≈ 0.87, p = 8.4 E-15) were 

among the most strongly correlated metabolites that originate from consumption of 

foods rich in dietary histidine and saturated fats, respectively.  

 Unlike branched-chain amino acid intermediates, two circulating amino 

acids, Ala and Pro were associated with greater intake of dietary fats (saturated, 

trans, total), and inversely correlated to a Prudent diet due to lower intake of fruit, 

vegetable or protein (Table 4.2). As a result, their plasma metabolic trajectories 

increased when DIGEST participants were assigned a Western diet for 2 weeks 

(Figure 4S.11). Fasting amino acid concentrations reflect long-term habitual diet 

rather than recent dietary intake, where Ala has been reported to be inversely 
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associated to plant-based protein diets.65 This is consistent with outcomes in our 

study, since plasma Ala was negatively correlated to average protein intake (r ≈ -

0.40, p = 0.014). Similar to Ala, plasma Pro was reported to be inversely associated 

with a Prudent diet as measured in a cross-sectional observational study that was 

adjusted for age, sex and BMI.66 This was consistent with our findings since plasma 

Pro was inversely related to healthy eating patterns, such as lower intake of fruits 

and/or vegetables and higher consumption of processed foods with trans fats (Table 

4.2). As expected, plasma Pro was correlated (r ≈ 0.46-0.49, p < 1.0 E-5) with 

circulating levels of Ala, as well as C0 indicative of a Western diet (Figure 4S.14). 

Similar outcomes were also measured for two carnitine metabolites (C0 and dC0) 

since they had metabolic trajectories that increased for DIGEST participants 

following a Western diet, which were correlated with greater intake of dietary fat, 

sodium or cholesterol (Table 4.2). Although de novo synthesis of C0 is derived 

from dC0 via lysine metabolism, red meat represents a major dietary source of C0 

that is also metabolized by gut microbiota with subsequent host hepatic conversion 

to generate the thrombosis-promoting metabolite, N-trimethylamine oxide 

(TMAO);67 however, plasma or urinary TMAO were not modulated by short-term, 

contrasting diets in our study. In fact, recent studies have shown that anaerobic gut 

microbiota species can also generate TMAO via its atherogenic intermediate, dC0 

due to chronic C0 exposure from the diet.68 Nevertheless, C0 is still widely 

promoted as a nutritional supplement and ergogenic aide to improve fatty acid 

energy metabolism, as well as alleviate muscle injury from strenuous exercise.69 

Lastly, a series of plasma total (hydrolyzed) fatty acids had metabolic trajectories 

that increased when following a Western diet, which were directly associated with 

greater intake of total, saturated and trans fats, but lower consumption of poly:sat, 

vitamins and fruits & vegetables (Table 4.2); these included a low abundance 

circulating trans fatty acid, C18:2n-6trans, as well as saturated fats (C14:0, C15:0), 

and omega-6 fatty acids, namely C18:3n-6cis and C18:2n-6cis. Indeed, high intake 
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of omega-670 and saturated71 fatty acids has long been associated with a Western 

diet that increases systemic inflammation and chronic disease risk. Nevertheless, 

there remains on-going controversy regarding the optimal dietary fat composition 

needed to promote cardiometabolic health.72 Recent clinical trials and observational 

studies have demonstrated that circulating C14:0, C17:0 and notably C15:0 

represent dietary biomarkers of dairy fat intake whose impact on cardiometabolic 

health may likely be beneficial.73 In contrast, greater consumption of processed 

foods containing vegetable oils rich in C18:2n-6cis and other omega-6 fatty acids 

is hypothesized to be a major dietary culprit for cardiovascular disease prevalence 

in developed countries.74 Public health policies have been far more effective in the 

past decade to reduce dietary trans fat intake to less than 1% energy based on WHO 

recommendations with animal meats/dairy now being more significant than 

industrial sources from partial hydrogenation of vegetable oils.75 These trends are 

consistent with data measured in this study, as fasting plasma concentrations of 

C18:2n-6trans were about 0.34% of its stereoisomer and most abundant fatty acid 

in circulation, C18:2n-6cis (Figure 4S.9). 

 In summary, a panel of dietary biomarkers that reflect contrasting Prudent 

and Western diets were identified based on their distinctive metabolic trajectories 

measured in matching plasma and urine samples using a cross-platform 

metabolomics strategy. All DIGEST participants were provided whole foods for 

consumption over a two-week period while maintaining normal lifestyle habits with 

no significant changes in their caloric intake, BMI, blood pressure, as well as 

standard lipid or inflammatory biomarkers as compared to baseline. Me-His and 

ProBet were the most significant dietary biomarkers associated with a Prudent diet 

consistently measured in both plasma and urine. Also, urinary ImPA, OH-PCA, 

Ent-G and DHBA, as well as fasting plasma OH-BA, kVal and kLeu were also 

positively associated with a Prudent diet. These dietary biomarkers reflect greater 

consumption of health-promoting foods containing insoluble fibre, protein, 
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essential nutrients and bioactive phytochemicals with a low glycemic index as 

compared to highly processed foods in contemporary Western diets. Also, a series 

of circulating saturated and polyunsaturated fatty acids, as well as plasma Ala, Pro, 

C0 and dC0 were classified as dietary biomarkers of a Western diet reflecting 

greater intake of fats, cholesterol and salt, but having lower overall nutrient and 

fibre quality. Other urinary biomarkers of contrasting diets including ASK, nitrate, 

DMG and Val-Val, did not have strong associations with any specific nutrient 

categories from self-reported food records. Strengths of this study include the use 

of complementary statistical methods with appropriate adjustments, access to 

matching biospecimens and food records from participants, and use a validated 

metabolomics data workflow for biomarker discovery and authentication with 

stringent QC. However, there were several study limitations, including the short 

duration of the dietary intervention, as well as modest sample size involving 

participants recruited from a single centre without strict dietary adherence 

monitoring. Future studies that include multiple time points for biomonitoring of 

long-term changes in habitual diet with greater study power are recommended. 

Also, the integration of metabolomics with fecal microbiome data is needed given 

the important roles of commensal microbiota in nutrient generation and metabolite 

biotransformation that varies considerably between participants. Also, certain 

dietary biomarkers tentatively identified in this study still require further structural 

elucidation to confirm their exact stereoisomer configuration. Overall, our work 

provides strong corroborating evidence of the utility of food exposure biomarkers 

to accurately differentiate complex dietary patterns that is generalizable to a free-

living, healthy population. This is urgently needed for new advances in nutritional 

epidemiology and chronic disease prevention, including assessing the impact of 

maternal nutrition on fetal development early in life and metabolic syndrome risk 

in childhood. 
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Experimental 

Chemicals and Reagents. Ultra HPLC grade LC-MS solvents (water, methanol, 

acetonitrile) obtained from Caledon Laboratories Ltd. (Georgetown, ON, Canada) 

were used to prepare all buffer and sheath liquid solutions, unless otherwise stated. 

Proline betaine was purchased from Toronto Research Chemicals (Toronto, 

Ontario, Canada). All other chemicals were obtained from Sigma-Aldrich Inc. (St. 

Louis, MO, USA).  

 

Study Design, Participant Eligibility and Dietary Self-reporting. The Diet and 

Gene Intervention Study (DIGEST) was a 2-arm, parallel unblinded study to 

compare the effects of two weeks of a Prudent diet compared with a Western diet 

on cardiovascular risk factors and gene expression in apparently healthy adults. 

Healthy participants were recruited using flyers, and self-referral methods from 

McMaster University and the surrounding areas. Exclusion criteria were an 

unwillingness to eat an assigned diet, or serious disease or illness. The full inclusion 

and exclusion criteria are described elsewhere,1 and participant eligibility for this 

work is also summarized in the CONSORT chart (Figure 4S.2). A subset of 42 

participants from the DIGEST study with paired urine and serum samples were 

selected for targeted and nontargeted metabolomics analysis using three 
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complementary instrumental platforms (Figure 4S.1), where subjects had 

completed self-reported dietary records at baseline and two weeks following food 

provisions. All participants from DIGEST picked up their food allotment each week 

at the grocery store, during clinic visits, or food provisions were delivered to their 

home by volunteers.1 Additionally, cooking suggestions with meal plans were 

provided by a dietician that still allowed for flexibility in food preparations while 

participants were requested to maintain their normal lifestyle habits (e.g., physical 

activity). In order to maximize treatment effects in this short-term dietary 

intervention pilot study, subjects were assigned into two parallel arms of contrasting 

diets, namely a Western diet reflecting a typical Canadian macronutrient profile 

with higher intake of processed foods (e.g., burgers, fried chicken, cereals, 

processed cheeses), and a Prudent diet based around minimally processed foods 

composed of lean protein (e.g., poultry, fish, legumes), whole grains and a high 

amount of fresh fruits and vegetables.1 An aggregate diet quality index score was 

used to classify participants as having a predominantly Prudent or Western habitual 

diet at baseline based on five categories assessed from self-reporting 

questionnaires, including polyunsaturated/saturated fatty acid ratio (poly/sat > 1.0), 

relative intake of saturated fatty acids (< 7%), total fibre (> 28 g/day), daily servings 

fruits and vegetables (> 5), and daily potassium intake (> 3500 mg/day). Briefly, 

habitual dietary patterns at baseline was evaluated by having participants attend a 

screening visit 1 week prior to beginning DIGEST where they were also provided 

a diary to record all their foods. Both diet groups were balanced with respect to age 

and adiposity (BMI), however most participants in this study were female (64%), 

and a majority were Caucasian (78%) with no self-identified tobacco smokers. Each 

participant was assigned a ‘Prudent score’ and ‘Western score’ from 1 (low) to 4 

(high) based on their quartile rankings.1 Habitual diet was classified as 

predominantly Western if the difference of [Western score - Prudent score] ≥ 2. 

Challenges in recruiting eligible participants who exclusively followed a Prudent 
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dietary pattern resulted in no significant differences (p > 0.05) in their habitual 

Prudent scores between the two assigned diet groups at baseline (Table 4S.1); thus 

minor differences in baseline dietary patterns among DIGEST participants were 

largely related to differences in consumption of foods associated with a Western 

diet (Table 4.1). Participants from DIGEST were informed to maintain their usual 

lifestyle and physical activity routine during the study period and were provided a 

7-day menu plan for each of the 2 weeks, which listed which foods they were to eat 

for specific meals. Servings of Prudent-type (e.g., fruit & vegetables, lean meats, 

high fiber) and Western-type (e.g., red meat, salty food, high saturated fats) diet 

was scored and ranked in quartiles.1 Dietary adherence was a measure of the % of 

the foods "prescribed" that they reported eating that was self-reported based on the 

foods they checked-off from menu list that they consumed, which was > 95% for 

both treatment arms.1 A total of 20 micro- and macronutrient categories (from over 

120) from self-reporting dietary records were determined to be significantly (q < 

0.05; Bonferroni adjustment) different between assigned Prudent and Western diets 

for DIGEST participants in this pilot study (Table 4.1; Figure 4S.4), which were 

subsequently correlated with top-ranked plasma and urinary metabolites when 

validating putative dietary biomarkers of contrasting diets (Table 4.2). 

 

Nontargeted Metabolite Profiling of Plasma and Urine by MSI-CE-MS. 

Fasting plasma (EDTA) samples together with matching single-spot urine samples 

were collected from all DIGEST participants during clinic visits on day 1 and day 

14, which were then stored at -80 °C.1 Multisegment injection-capillary 

electrophoresis-mass spectrometry (MSI-CE-MS) was the major platform used for 

nontargeted profiling of polar/ionic metabolites from both plasma and urine 

samples,2 which was performed on an Agilent G7100A CE (Agilent Technologies 

Inc., Mississauga, ON, Canada) equipped with a coaxial sheath liquid (Dual AJS) 

Jetstream electrospray ion source coupled to an Agilent 6230 TOF-MS system. All 
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separations were performed using uncoated fused-silica capillaries (Polymicro 

Technologies, AZ, USA) with a total length of 120 cm and inner diameter of 50 μm. 

About 7 mm of polyimide coating was removed from both distal ends to avoid 

sample carry-over and prevent polyimide swelling upon contact with organic 

solvent.3 The background electrolyte (BGE) consisted of 1 M formic acid with 15% 

v/v acetonitrile (pH 1.80) under positive ion mode, and 50 mM ammonium 

bicarbonate (pH 8.50) under negative ion mode for analysis of the ionic 

metabolome, including cationic and anionic metabolites from matching plasma and 

urine specimens, respectively. All CE separations were performed under normal 

polarity with an applied voltage of 30 kV at 25 °C. A pressure gradient of 2 

mbar/min from 0 to 40 min was used for MSI-CE-MS analyses under negative ion 

mode conditions to shorten analysis times for highly charged anionic metabolites 

(e.g., citrate). The TOF-MS system was operated with full-scan data acquisition 

over a mass range of m/z 50-1700 and an acquisition rate of 500 ms/spectrum. The 

sheath liquid was comprised of 60% v/v MeOH with 0.1% v/v formic acid for 

positive ion mode, and 50% v/v MeOH for negative ion mode. The ESI conditions 

were Vcap = 2000 V, nozzle voltage = 2000 V, nebulizer gas = 10 psi, sheath gas = 

3.5 L/min at 195 °C, drying gas = 8 L/min at 300 °C and the MS voltage settings 

were fragmentor = 120 V, skimmer = 65V and Oct1 RF = 750 V.  

 A seven sample serial injection format was used in MSI-CE-MS2-6 consisting 

of a serial injections of six discrete samples together with a pooled quality control 

(QC) within each experimental run; the latter sample was used to assess technical 

variance while also allowing for robust batch correction due to long-term signal 

drift in ESI-MS.5,7 Multiplexed separations in MSI-CE-MS was performed by 

programming a hydrodynamic injection sequence with each sample (5 s at 100 

mbar) interspaced with a BGE spacer (40 s at 100 mbar) prior to voltage application 

as described elsewhere.2-6 In this study, nontargeted metabolite profiling of plasma 

or urine specimens by MSI-CE-MS was performed by pairing together matching 
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baseline and post-treatment samples for three individual DIGEST participants 

together with a QC in a randomized injection position for each run (Figure 4.2). 

Different serial sample injection configurations in MSI-CE-MS were also applied 

for rigorous metabolite authentication using a dilution trend filter, as well as 

acquisition of calibration curves for reliable quantification of metabolites as 

described elsewhere.2-6 Briefly, authentic metabolites were defined by their unique 

accurate mass and relative migration time (m/z:RMT) under positive (+) or negative 

(-) ion mode detection after filtering out spurious signals, background ions, as well 

as redundant adducts/in-source fragments and isotopic features that comprise the 

majority of signals when performing MS-based metabolomics.8 Additionally, only 

frequently detected plasma or urinary metabolites measured in the majority of 

samples from DIGEST participants (> 75%) with acceptable technical precision 

based on repeated analysis of QCs (mean CV < 30%) were included in the final 

metabolomics data matrix (Table 4S.1) as a way to reduce false discoveries and 

data overfitting. Missing (i.e., zero) data below method detection limits were 

replaced with a minimum value corresponding to ½ of the lowest responses 

measured for a given metabolite in all samples analyzed.  

 
Unknown Metabolite Identification by MS/MS. In all cases, authenticated 

metabolites defined by their m/z:RMT under positive (+) or negative (-) ion mode 

detection were further characterized by their most likely molecular formula, mass 

error (< 10 ppm) and overall technical precision (%CV) from pooled plasma or 

urine samples. High resolution tandem mass spectrometry (MS/MS) was employed 

for structural elucidation of unknown metabolites of biological significance from 

pooled samples in this study. Targeted MS/MS experiments were performed on an 

Agilent G7100A CE system with a coaxial sheath liquid Jetstream electrospray ion 

source connected to an Agilent 6500 iFunnel QTOF instrument. Metabolite 

identification in this work adopted reporting standards recommended from the 
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Metabolomics Standards Initiative,9 including unambiguous identification (level 1) 

that is confirmed with matching MS/MS spectra and co-migration by authentic 

standard acquired on the same instrument, tentative/probable identification (level 

2) by comparison of MS/MS spectra from public databases or published literature, 

partial annotation of MS/MS spectra guided by in silico software tools with 

metabolite class (level 3), and compounds with unknown chemical structure (level 

4). The latter case typically occurred for low abundance metabolites that had 

inadequate responses for their precursor ion when acquiring MS/MS spectra via 

collision-induced dissociation (CID) experiments. In our case, the electromigration 

behavior of polar/ionic metabolites (i.e., electrophoretic mobility or RMT) 

provided additional information that complemented MS/MS when selecting among 

potential isobaric or isomeric candidate ions, in addition to their likely biochemical 

relevance in human plasma or urine. MS/MS spectra were acquired from pooled 

plasma or urine samples that were injected hydrodynamically using a conventional 

single sample injection plug at 50 mbar for 10 s followed by 5 s with BGE. 

Precursor ions were selected for CID experiments at 10, 20 and 40 V. Mirror plots 

comparing MS/MS spectra of unknown metabolites under an optimal collision 

energy were then compared to their respective authentic reference standard if 

available, which were generating using the “InterpretMSSpectrum” R Package. 

Otherwise, MS/MS spectra were annotated based on their characteristic product 

ions or neutral losses for de novo structural elucidation (level 2 or 3), which was 

guided by in silico MS/MS spectra generated by CFM-ID10 or comparison to 

MS/MS spectra deposited in open-access public repositories (HMDB, 

http://www.hmdb.ca) or published in literature (if available). The exact 

stereochemistry of certain metabolites identified in plasma or urine were uncertain 

if authentic standards were not available for confirmation. 
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Total Plasma Fatty Acid Determination by GC-MS. A GC-MS method was used 

for targeted analysis of total (hydrolyzed) fatty acids (FA) and their isomers from 

plasma extracts on an Agilent 6890 GC coupled to an Agilent 5973 single 

quadrupole mass spectrometer with electron impact ionization (EI) as described 

elsewhere with minor modifications.11 Total hydrolyzed plasma FA were analyzed 

by GC-MS as their methyl ester derivatives (FAME) using N-methyl-N-

(trimethylsilyl)trifluoroacetamide (MSTFA) (≥ 98.5%, GC from Sigma-Aldrich). 

Isotopically-labelled myristic acid-d27 (98%), stearic acid-d35 (98%) and pyrene-d10 

(98%) were obtained from Cambridge Isotope Laboratories (Tewksbury, MA, 

USA). HPLC grade chloroform (≥ 99.5%, GC), methanol (99.8%, GC), hexanes (≥ 

99.5%, GC) and Ultra LC-MS grade water were purchased from Caledon 

Laboratories Ltd. (Georgetown, ON, Canada). The antioxidant, butylated 

hydroxytoluene (BHT, 490 µL) was added to all fatty acids calibrant solutions 

prepared in methanol to prevent autooxidation. Briefly, a 10 µL aliquot of thawed 

plasma was mixed with 5 µL of a 1.0 mg/mL C18:0-d35 recovery standard. 

Concentrated sulfuric acid (10 µL) was added as a transesterification catalyst and 

vortexed for 2 min before incubation for 4 h at 80 ºC to produce FAMEs for 

improved volatility. Cooled samples were then mixed with 500 µL of 9 g/L NaCl 

and 200 µL hexanes and vortexed for 2 min prior to centrifugation at 14,000 g at 4 

ºC for 5 min. GC inserts were prepared with 45 µL of hexane supernatant with 5 

µL of internal standard pyrene-d10 and vortexed for 2 min before injection. Total 

plasma FAMEs were resolved on a Supleco SP-2380 column (30 m x 0.25 mm x 

0.20 µM) using an optimal temperature program within 30 min.6 Samples were 

injected in 1.0 µL volumes using a splitless injector held at 250 °C, the carrier gas 

was helium at 1.0 mL/min and the transfer line was held at 270 °C. Relative 

abundances were measured by the relative response of a quantifying ion (e.g., [M-

15]+) relative to the pyrene-d10 internal standard. Pooled plasma samples as QC and 

blank extracts were analyzed together with each batch of 8-10 randomized plasma 
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samples from DIGEST participants when using GC-MS in order to assess technical 

precision and monitor for background contamination. A temperature program used 

for resolution of major trimethylsiylated fatty acids from plasma hydrolysates 

comprised of a temperature gradient of 20 °C/min starting from 2 min at 80 °C until 

20 min at 160 °C, which was further increased to 190 °C for 3 min prior to elution 

at 300 °C for 5 min with a total run time of 28 min. In most cases, FAMEs were 

quantified in GC-MS based on integration of the relative response ratio of their [M-

15]+ fragment ion relative to pyrene-d10 as internal standard when using single ion 

monitoring (SIM) mode detection. Calibrations curves from a serial dilution of fatty 

acid standards were subsequently used for their quantification, as well as their 

identification when comparing their characteristic EI-MS spectra (70 eV) and 

elution times (i.e., co-elution with spiking). 

Targeted Urinary Electrolyte Analysis. Targeted analysis of inorganic/involatile 

electrolytes in urine was performed using two complementary CE-UV methods 

adapted from Nori de Macedo et al.12 and Saoi et al.5 for anionic (e.g., nitrate) and 

cationic (e.g., sodium) electrolytes, respectively. Analysis of major cationic 

electrolytes was performed on diluted urine samples that were thawed, vortexed for 

30 s and centrifuged at 14,000 g for 5 min. An aliquot of the supernatant was diluted 

with deionized water and spiked with 0.5 mM lithium as an internal standard. 

Samples were analyzed on an Agilent G7100A CE system with UV photodiode 

array detection with indirect absorbance detection at 214 nm. All samples were 

injected hydrodynamically for 10 s (at 35 mbar) and separation was performed 

under normal polarity at 30 kV at 25°C using a 50 µm inner diameter capillary with 

60 cm total length. The background electrolyte (BGE) was 5 mM formic acid 

containing 12.5 mM creatinine (Crn) and 4 mM 18-crown-6 ether at pH 4.0 

(adjusted with 1 M sulfuric acid. In this case, ammonium (NH4
+), sodium (Na+), 

potassium (K+), calcium (Ca2+) and magnesium (Mg2+) were analyzed in urine 
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samples.5 Additionally, all urine samples were analyzed using a complementary CE 

assay for UV-absorbing inorganic anions, including nitrate (NO3
-), iodide (I-) and 

thiocyanate (SCN-) as described elsewhere.12 In this case, the BGE was comprised 

of 180 mM lithium hydroxide, 180 mM phosphoric acid, and 10 mM α-cyclodextrin 

(α-CD) at pH 3.0 (adjusted with 1 M phosphoric acid), where 1,5-naphthalene 

disulfonate (NDS) was used as an internal standard. Samples were injected 

hydrodynamically for 80 s at 0.5 psi and analyzed at 25 °C under a reversed polarity 

at -18 kV with UV absorbance detection at 226 nm (288 nm for NDS). In both CE-

UV assays, a pooled urine sample serving as a QC was measured intermittently 

after every batch of 6 random urine samples. In all cases, creatinine concentrations 

were measured by MSI-CE-MS under positive ion mode conditions, which were 

used to reduce biological variance and correct for differences in hydration status 

for single-spot urine samples analyzed in this study. 

 

Data Preprocessing and Statistical Analysis. All MSI-CE-MS data were 

integrated and analyzed using Agilent MassHunter Qualitative Analysis B.07.00 

and Microsoft Excel and Igor (Wavemetrics Inc., OR, USA). In all cases, the 

integrated ion response (i.e., peak area) for each metabolite was normalized to an 

internal standard, 4-chlorotyrosine (Cl-Tyr) migrating from the same sample by 

MSI-CE-MS. Also, a QC-based batch correction algorithm was applied to 

creatinine-normalized urine metabolomic data to adjust for long-term signal drift 

in ESI-MS during data acquisition as outlined in a recent work.5 This algorithm is 

based on an empirical Bayesian frameworks7 that takes advantage of the QC 

samples included in each serial injection run when using MSI-CE-MS, as well as 

batch and injection sequence information. However, batch correction did not 

provide any significant improvement in the overall technical precision of plasma 

metabolome data and thus was not necessary to perform in this case. All non-batch 

(plasma) and batch-corrected (urine) metabolomic data was pre-processed using 
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generalized log-transformation and autoscaling prior to multivariate statistical 

analysis using MetaboAnalyst 4.0 (www.metaboanalyst.ca),13 including volcano 

plots, principle component analysis (PCA), hierarchical cluster analysis (HCA)/2D 

heat maps, receiver operating characteristic (ROC) curves, orthogonal partial least 

squares-discriminant analysis (OPLS-DA), as well as multivariate empirical Bayes 

analysis (MEBA) of variance; the latter method is optimal when analyzing time-

series data14 as related to metabolic trajectories. To validate each OPLS-DA model, 

cross-validation and permutation testing (n = 1000) on paired metabolome data sets 

(i.e., ratio of metabolite response based on assigned diet/baseline diet for each 

subject) following glog transformation and autoscaling, whereas Hotelling’s T-

squared distribution using MEBA was performed on glog-transformed 

metabolomic time series data from DIGEST participants at baseline and following 

two weeks of assigned food provisions. These complementary statistical 

approaches were initially used for unsupervised data exploration to identify overall 

trends, as well as supervised data analysis for ranking metabolite candidates 

modulated by contrasting assigned diets among DIGEST participants without 

adjustments for covariates. Additionally, normality tests, partial Pearson correlation 

analysis, and mixed model ANOVA were performed on top-ranked dietary 

biomarker candidates using the Statistical Package for the Social Sciences (SPSS, 

version 18.0). In this case, a partial listwise Pearson correlation analysis of lead 

plasma and creatinine-normalized metabolite responses to 20 major nutrient 

categories from self-reported food records from DIGEST participants (n = 42) were 

adjusted for age, sex, and post-intervention BMI. Only metabolites that had a 

correlation coefficient of r > ± 0.300 and p < 0.05 for more than two nutrient 

categories were considered significant in this work. A repeat measures general 

linear mixed ANOVA model was also performed with the number of levels set at 2 

for the repeat sampling (i.e., time; baseline habitual diet and assigned diet after 2 

weeks) while setting the intervention diet (i.e., treatment arm; P-W or W-P) as the 



Nadine L. Wellington - Ph.D. Thesis - Chemistry and Chemical Biology, McMaster University 

152 
 

between-subject factor with age, sex and post-intervention BMI as potential 

covariates. Overall, plasma and urine metabolites reflecting contrasting dietary 

patterns assigned to DIGEST participants that satisfied MEBA and/or mixed 

ANOVA, as well as partial correlation analysis to two or more nutrient categories 

from self-reported diet records were considered as robust dietary biomarkers (Table 

4.2, Table 4.3). 
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Table 4S.1: Baseline group characteristics of a cohort of healthy participants (n 
= 42) recruited in a two-arm parallel randomized clinical trial to compare the 
effects of a contrasting diet over 2 weeks (Western or Prudent) from food provisions 
reflecting changes in habitual dietary patterns. 

Variable 
Prudent assigned 

W-P, n = 24 
Western assigned 

P-W, n = 18 
Significanceb 

Sex (n; %) 
F 
M 

-- 
66%, n = 16 
33%, n = 8 

-- 
61%, n = 11 
39%, n = 7  

p > 0.05; More females 
than males recruited in 
each arm 

Age (mean) 
< 50 y 
> 50 y 

(50 ± 18) 
(29 ± 9 n = 9) 
 (62 ± 7, n = 15) 

(43 ± 20) 
(28 ± 10, n = 10) 
 (63 ± 8, n = 8)  

p > 0.05; Wide disparity 
in age with no 
differences between arms 

BMI (mean) 
Lean (19-24.9 kg/m2) 
Overweight/obese  
(25-44 kg/m2) 
 

(28 ± 6) 
(23 ± 2, n = 7) 
(30 ± 5, n = 17) 

(26 ± 6) 
(22 ± 2, n = 11) 
(31 ± 5, n = 7) 

p > 0.05; Wide disparity 
in body composition and 
no differences between 
arms 

Habitual baseline diet indexa 

Prudent diet score (< 0.5) 
Western diet score (> 1.0) 
 

-- 
(0.42 ± 0.93) 
(3.4 ± 0.9) 

-- 
(0.92 ± 0.68) 
(0.70 ± 1.31) 

p = 0.0037; Greater 
western habitual dietary 
patterns in prudent 
assigned arm 

Average caloric intake (kcal)  (1985 ± 560)  (1895 ± 640)  p > 0.05 

Average fiber intake 
(/2000 kcal)  

(21.3 ± 6.3); 24  (26.6 ± 8.5); 18 p = 0.018; Higher intake 
of fiber in western 
assigned arm  

Average poly:sat fatty acid 
(ratio) 
 

(0.44 ± 0.16); 24 
 

(0.58 ± 0.16); 18 
 

p = 0.0067; Higher 
poly:sat intake in western 
assigned arm 

Average energy from sat. fat  
(%)  

(11.9 ± 3.2); 24  (9.8 ± 2.0); 18  p = 0.015; Higher sat. fat 
intake in prudent 
assigned arm 

Urinary Na/K (ratio)  (1.31 ± 0.72); 24  (0.80 ± 0.55); 18  p = 0.016; Higher Na/K 
intake in prudent 
assigned arm 

Fasting glucose (mM) (5.1 ± 1.0) (4.9 ± 0.4) p > 0.05 

LDL cholesterol (mM) (3.1 ± 1.0) (2.8 ± 0.9) p > 0.05 

HDL cholesterol (mM) (1.55 ± 0.42) (1.46 ± 0.44) p > 0.05 

Total cholesterol (mM) (5.2 ± 1.3) (5.0 ± 1.0) p > 0.05 

Triglycerides (mM) (0.63 ± 0.18) (0.61 ± 0.18) p > 0.05 

ApoB/ApoA1 ratio (1.24 ± 0.77) (1.0 ± 0.18) p > 0.05 

CRP (mg/L) (2.4 ± 4.1) (2.2 ± 2.9) p > 0.05 

IL-8 (ng/L) (9.1 ± 6.5) (6.8 ± 2.1) p > 0.05 

Average systolic BP 
(mmHg) 

(121 ± 18) (114 ± 17) p > 0.05 



Nadine L. Wellington - Ph.D. Thesis - Chemistry and Chemical Biology, McMaster University 

154 
 

Average dystolic BP 
(mmHg) 

(78 ± 11) (74 ± 10) p > 0.05 

a Self-reported diet index score at baseline was used as a single aggregate index to categorize dietary patterns as 

predominantly Prudent or Western in terms of average daily intake of total fiber, fruit & vegetables, potassium, 

polyunsaturated/saturated fatty acid ratio and % saturated fatty acids.  

b There were no significant differences (p < 0.05) in classic serum/plasma biomarkers of CVD risk at baseline, as well as 

following 2-week dietary intervention between treatment arm among subjects in this study. 
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Table 4S.2: Summary of representative and reliably measured urinary and plasma metabolites detected in a majority 
of DIGEST participants patients that are annotated based on their accurate mass (m/z), relative migration time (RMT), 
ionization mode (p = ESI+, n = ESI-), most likely molecular formula, compound name, confidence level for identification, 
and technical precision from QC measurements. 

Biofluid m/z:RMT:polarity 
Molecular 
Formulaa 

Monoisotopic 
Mass 

Δm (ppm) Compound ID HMDB ID 
Level of 

Confidenceb 
%CVc 

Urine 76.0757 : 0.546:+ C3H9NO 76.0757 0.0 Trimethylamine N-oxide HMDB00925 2 9.86 

Urine 104.0706 : 0.667:+ C4H9NO2 104.0706 0.0 -Aminobutyic acid HMDB00112 2 39.69 

Urine 104.0706 : 0.928:+ C4H9NO2 104.0706 0.0 Dimethylglycine HMDB0000092 2 33.80 

Urine 104.1075 : 0.569:+ C5H14NO 104.1075 0.0 Choline HMDB0000097 2 12.54 

Urine 106.0499 : 0.844:+ C3H7NO3 106.0498 0.9 Serine HMDB0000187 2 11.45 

Urine 118.0863 : 0.958:+ C5H11NO2 118.0862 0.8 Betaine HMDB0000043 2 12.35 

Urine 133.0611 : 0.885:+ C4H8N2O3 133.0607 3.0 Asparagine HMDB0000168 2 12.87 

Urine 137.0460 : 1.067:+ C5H4N4O 137.0458 1.5 Hypoxanthine HMDB0000157 2 6.33 

Urine 137.0706 : 0.613:+ C7H8N2O 137.0709 2.2 Methylnicotinamide HMDB0003152 2 16.81 

Urine 138.0550 : 0.891:+ C7H7NO2 138.0549 0.7 p-Aminobenzoic acid HMDB0001392 2 13.31 

Urine 141.0660 : 0.690:+ C6H8N2O2 141.0658 1.4 Imidazole propionic acid HMDB0002820 2 8.23 

Urine 144.1020 : 0.967:+ C7H13NO2 144.1019 0.7 Proline betaine HMDB0004827 1 12.88 

Urine 146.0812 : 1.183:+ C6H11NO3 146.0811 0.7 Unknown HMDB0001263 4 9.13 

Urine 147.0764 : 0.911:+ C5H10N2O3 147.0764 0.0 Glutamine HMDB0000641 2 8.92 

Urine 147.1128 : 0.583:+ C6H14N2O2 147.1128 0.0 Lysine HMDB0000182 2 9.50 

Urine 148.0604 : 0.924:+ C5H9NO4 148.0604 0.0 Glutamic acid HMDB0003339 2 11.26 

Urine 150.0775 : 0.844:+ C6H7N5 150.0774 0.7 Unknown   4 25.74 

Urine 156.0768 : 0.620:+ C6H9N3O2 156.0767 0.6 Histidine HMDB0000177 2 6.84 

Urine 160.0970 : 1.089:+ C7H13NO3 160.0968 1.2 Unknown 
 

2 9.27 

Urine 162.1125 : 0.714:+ C7H15NO3 162.1124 0.6 Carnitine HMDB0000062 2 9.60 

Urine 166.0724 : 0.702:+ C6H7N5O 166.0723 0.6 Methylguanine HMDB0001566 2 8.66 

Urine 170.0924 : 0.634:+ C7H11N3O2 170.0924 0.0 3-Methylhistidine HMDB0000479 1 6.14 

Urine 175.1190 : 0.602:+ C6H14N4O2 175.1189 0.6 Arginine HMDB0000517 2 8.53 

Urine 176.0666 : 0.851:+ C5H9N3O4 176.0666 0.0 Guanidinosuccinic acid HMDB0003157 2 5.62 
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Urine 176.1030 : 0.772:+ C6H13N3O3 176.1029 0.6 Citrulline HMDB0000904 2 6.46 

Urine 182.0810 : 0.957:+ C9H11NO3 182.0811 0.5 Tyrosine HMDB0000158 2 9.86 

Urine 189.1598 : 0.603:+ C9H20N2O2 189.1597 0.5 Trimethyllysine HMDB0001325 2 14.16 

Urine 204.1230 : 0.758:+ C9H17NO4 204.123 0.0 Acetylcarnitine HMDB0000201 2 12.37 

Urine 205.0972 : 0.924:+ C11H12N2O2 205.0971 0.5 Tryptophan HMDB0000929 2 28.26 

Urine 217.1560 : 0.847:+ C10H21N2O3 217.1546 6.4 Valylvaline HMDB0029140 2 25.92 

Urine 232.1544 : 0.794:+ C11H21NO4 232.1543 0.4 Butyrylcarnitine HMDB0002013 2 10.77 

Urine 260.1495 : 0.817:+ C12H21NO5 260.1492 1.2 Unknown   4 16.33 

Urine 276.1441 : 0.858:+ C12H21NO6 276.1441 0.0 Glutarylcarnitine HMDB0013130 2 7.71 

Urine 286.2013 : 0.861:+ C15H27NO4 286.2013 0.0 Unknown   4 9.81 

Urine 367.1509 : 1.084:+ C17H22N2O7 367.15 2.5 Mannosyltryptophan   2 6.60 

Urine 487.2120 : 0.825:+ C18H34N2O13 487.2134 2.9 Glucosylgalactosyl 
hydroxylysine 

HMDB0000585 2 8.54 

Urine 89.0244 : 1.534:- C3H6O3 89.0243 1.1 Lactic acid HMDB0000190 2 27.69 

Urine 105.0193 : 1.488:- C3H6O4 105.0193 0.0 Glycerate HMDB0000139 2 21.65 

Urine 121.0295 : 1.142:- C7H6O2 121.0294 0.8 Benzoic acid HMDB0001870 2 11.25 

Urine 124.9914 : 1.663:- C2H6O4S 124.9913 0.8 Ethylsulfate HMDB0031233 2 14.32 

Urine 128.0353 : 1.345:- C5H7NO3 128.0352 0.8 Oxo-proline HMDB0000267 2 14.51 

Urine 135.0299 : 1.306:- C4H8O5 135.0298 0.7 Threonic acid HMDB62620 2 14.99 

Urine 144.0458 : 1.192:- C9H7NO 144.0454 2.8 Indole-3-carboxaldehyde HMDB0029737 2 19.91 

Urine 146.0460 : 1.972:- C5H9NO4 146.0458 1.4 Glutamic acid HMDB0000148 2 13.12 

Urine 153.0193 : 1.576:- C7H6O4 153.0193 0.0 Dihydroxybenzoic acid HMDB0013677 2 16.22 

Urine 161.9869 : 1.561:- C4H5NO4S 161.9866 1.9 Acesulfame K HMDB0033585 1 25.13 

Urine 167.0211 : 1.257:- C5H4N4O3 167.021 0.6 Uric acid HMDB0000289 2 12.41 

Urine 171.0068 : 1.755:- C3H9O6P 171.0063 2.9 Glycerol phosphate HMDB0002520 2 8.54 

Urine 177.0229 : 1.180:- C6H10O4S 177.0226 1.7 Unknown 
 

4 26.13 

Urine 178.0510 : 1.176:- C9H9NO3 178.0509 0.6 Hippuric acid HMDB0000714 2 22.57 

Urine 181.9917 : 1.463:- C7H5NO3S 181.9917 0.0 Saccharin HMDB0029723 1 8.38 

Urine 182.0459 : 1.221:- C8H9NO4 182.0458 0.5 Pyridoxic acid HMDB0000017 2 16.91 

Urine 185.0820 : 1.781:- C9H14O4 185.0819 0.5 Unknown   4 18.92 
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Urine 187.0071 : 1.416:- C7H8O4S 187.007 0.5 p-Cresol sulfate HMDB0011635 2 14.36 

Urine 188.9865 : 1.444:- C6H6O5S 188.9862 1.6 Pyrocatechnol sulfate HMDB0059724 2 32.92 

Urine 191.0552 : 1.142:- C7H12O6 191.056 4.2 Quinic acid HMDB0003072 2 13.44 

Urine 193.0373 : 1.122:- C7H6N4O3 193.0366 3.6 Unknown 
 

4 13.12 

Urine 212.0023 : 1.357:- C8H7NO4S 212.0022 0.5 Indoxyl sulfate HMDB0000682 2 12.04 

Urine 225.0631 : 1.089:- C8H10N4O4 225.0629 0.9 5-Acetylamino-6-
formylamino-3-
methyluracil 

HMDB0011105 2 21.23 

Urine 238.0780 : 1.505:- - - - Unknown [M-2H]2-   4 14.49 

Urine 263.1037 : 1.037:- C13H16N2O4 263.1037 0.0 Phenylacetylglutamine HMDB0006344 2 12.07 

Urine 283.0827 : 1.012:- C13H16O7 283.0823 1.4 p-Cresol glucuronide HMDB0011686 2 13.97 
Urine 287.0236 : 1.152:- C11H12O7S 287.023 2.1 Dihydroxyphenyl--

valerolactone sulfate 
HMDB0029191 2 26.79 

Urine 302.1138 : 1.016:- C15H17N3O4 302.1146 2.6 Indoleacetyl glutamine HMDB0013240 2 7.79 

Urine 308.0987 : 0.984:- C11H19NO9 308.0987 0.0 Unknown   4 12.74 

Urine 331.1760 : 0.964:- C17H24N4O3 331.1776 4.8 Unknown   4 10.67 

Urine 377.0170 : 1.040:- C17H6N4O7 377.0164 1.6 Unknown   4 20.45 

Urine 473.1453 : 0.934:- C24H25O10 473.1448 1.1 Enterolactone glucuronide -- 2 14.37 

Urine 632.2044 : 0.874:- C23H39NO19 632.2043 0.2 Sialyllactose HMDB0000825 2 9.78 

Urine 112.0515 : 0.710:- C4H7N3O 112.0516 0.9 Creatinine HMDB0000562 2 9.61 

Plasma 76.0402 : 0.732:+ C2H5NO2 76.0393 11.8 Glycine HMDB0000123 2 8.17 

Plasma 90.0557 : 0.783:+ C3H7NO2 90.0549 8.9 Alanine HMDB0000161 2 4.15 

Plasma 104.1075 : 0.592:+ C5H14NO 104.1075 0.0 Choline HMDB0000097 2 30.39 

Plasma 106.0500 : 0.864:+ C3H7NO3 106.0498 1.9 Serine HMDB0000187 2 3.23 

Plasma 114.0662 : 0.635:+ C4H7N3O 114.0653 7.9 Creatinine HMDB0000562 2 32.14 

Plasma 116.0705 : 0.927:+ C5H9NO2 116.0706 0.9 Proline HMDB0000162 2 3.55 

Plasma 118.0618 : 0.718:+ C3H7N3O2 118.0611 5.9 Guanidoacetic acid HMDB0000128 2 9.93 

Plasma 120.0654 : 0.900:+ C4H9NO3 120.0655 0.8 Threonine HMDB0000167 2 8.14 

Plasma 129.0656 :  0.75:+ C5H8N2O2 129.0658 1.5 Unknown   3 6.84 

Plasma 132.0766 : 0.765:+ C4H9N3O2 132.0767 0.8 Creatine HMDB0000064 2 4.80 

Plasma 132.1017 : 0.873:+ C6H13NO2 132.1019 1.5 Leucine/isoleucine HMDB0000687 2 5.20 
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Plasma 133.0573 : 0.901:+ C4H8N2O3 133.0607 25.6 Asparagine HMDB0000168 2 4.20 

Plasma 137.0459 : 1.066:+ C5H4N4O 137.0458 0.7 Hypoxanthine HMDB0000157 2 12.85 

Plasma 144.0988 : 0.984:+ C7H13NO2 144.1013 17.3 Proline betaine HMDB0004827 2 45.39 

Plasma 146.1182 : 0.699:+ C7H15NO2 146.1176 4.1 Deoxycarnitine HMDB0001161 3 26.48 

Plasma 147.0761 : 0.922:+ C5H10N2O3 147.0763 1.4 Glutamine HMDB0000641 2 3.81 

Plasma 148.0603 : 0.934:+ C5H9NO4 148.0603 0.0 Glutamic acid HMDB0003339 2 8.50 

Plasma 150.0583 : 0.910:+ C5H11NO2S 150.0583 0.0 Methionine HMDB0000696 2 4.65 

Plasma 152.0567 : 0.910:+ C5H5N5O 152.0563 2.6 Guanine HMDB0000132 2 34.61 

Plasma 156.0766 : 0.649:+ C6H9N3O2 156.0763 1.9 Histidine HMDB0000177 2 31.32 

Plasma 160.1332 : 0.725:+ C8H17NO2 160.1323 5.6 2-Aminooctanoic acid HMDB0000991 2 22.11 

Plasma 162.0761 : 0.933:+ C6H11NO4 162.0753 4.9 Aminoadipic acid HMDB0000510 2 14.34 

Plasma 162.1123 : 0.735:+ C7H15NO3 162.1123 0.0 Carnitine HMDB0000062 2 3.89 

Plasma 166.086 : 0.9355:+ C9H11NO2 166.0853 4.2 Phenylalanine HMDB0000159 2 12.34 

Plasma 170.0922 : 0.663:+ C7H11N3O2 170.0923 0.6 Methylhistidine HMDB0000479 2 15.47 

Plasma 175.1191 : 0.631:+ C6H14N4O2 175.1183 4.6 Arginine HMDB0000517 2 37.36 

Plasma 176.1025 : 0.943:+ C6H13N3O3 176.1023 1.1 Citrulline HMDB0000904 2 4.25 

Plasma 182.081 : 0.9616:+ C9H11NO3 182.0803 3.8 Tyrosine HMDB0000158 2 3.52 

Plasma 189.1337 : 0.635:+ C7H16N4O2 189.1343 3.2 Monomethylarginine HMDB0029416 2 44.31 

Plasma 202.1807 : 0.793:+ C11H23NO2 202.1802 2.5 Unknown   4 56.73 

Plasma 203.1499 : 0.680:+ C8H18N4O2 203.1493 3.0 
Dimethylarginine 

HMDB0003334/ 
HMDB0001539 

2 11.69 

Plasma 204.1233 : 0.776:+ C9H17NO4 204.1223 4.9 Acetylcarnitine HMDB0000201 2 4.50 

Plasma 205.0966 : 0.931:+ C11H12N2O2 205.0963 1.5 Tryptophan HMDB0000929 2 17.46 

Plasma 241.0289 : 0.950:+ C6H12N2O4S2 241.0303 5.8 Cystine (disulfide) HMDB0000192 2 5.04 

Plasma 247.1441 : 1.146:+ C14H18N2O2 247.1433 3.2 Tryptophan betaine HMDB0061115 2 14.53 

Plasma 298.0526 : 0.823:+ C8H15N3O5S2 298.0523 1.0 Cysteinylglycine disulfide HMDB0000709 2 7.87 

Plasma 87.0087 : 1.301:- C3H4O3 87.00874 0.5 Pyruvic acid HMDB0000243 2 14.14 

Plasma 89.0244 : 1.136:- C3H6O3 89.02439 0.1 Lactic acid HMDB0000190 2 8.13 

Plasma 103.0400 : 1.019:- C4H8O3 103.04 0.0 3-Hydroxybutyric acid HMDB0000357 2 6.91 

Plasma 103.0400 : 1.043:- C4H8O3 103.04 0.0 2-Hydroxybutyric acid HMDB0000008 2 11.53 
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Plasma 115.0400 : 1.078:- C5H8O3 115.04 0.0 Alpha-ketoisovaleric acid HMDB0000019 2 15.83 

Plasma 117.0193 : 1.766:- C4H6O4 117.0193 0.0 Succinic acid HMDB0000254 2 31.01 

Plasma 128.0353 : 1.018:- C5H7NO3 128.0352 0.8 Oxo-proline HMDB0000267 2 11.92 

Plasma 129.0557 : 1.029:- C6H10O3 129.0556 0.8 3-methyl-2-oxovaleric 
acid 

HMDB0000491 2 13.47 

Plasma 132.0302 : 1.073:- C4H7NO4 132.0302 0.0 Aspartic acid HMDB0006483 2 12.40 

Plasma 133.0142 : 1.783:- C4H6O5 133.0142 0.0 Malic acid HMDB0000744 2 32.51 

Plasma 167.021 : 0.969:- C5H4N4O3 167.021 0.0 Uric acid HMDB0000289 2 11.10 

Plasma 179.0561 : 0.999:- C6H12O6 179.056 0.6 Glucose HMDB0000122 2 11.73 

Plasma 191.0197 : 1.967:- C6H8O7 191.0197 0.0 Citric acid HMDB0000094 2 21.51 

Plasma 195.051 : 0.889:- C6H12O7 195.051 0.0 Gluconic acid HMDB0000625 2 13.37 

Plasma C14:0 : 10.15 C14H28O2 227.2017 - Myristic acid HMDB0000806 2 19.55 

Plasma C15:0 : 10.79 C15H30O2 241.2173 - Pentadecanoic acid HMDB0000826 2 13.63 

Plasma C16:0 : 11.43 C16H32O2 255.233 - Palmitic acid HMDB0000220 2 12.70 

Plasma C16:1 1 : 11.74 C16H30O2 253.2173 - Hexadecenoic acid HMDB0037647 2 13.16 

Plasma C16:1 2 : 11.82 C16H30O2 253.2173 - Palmitoleic acid HMDB0003229 2 14.46 

Plasma C17:0 : 12.06 C17H34O2 269.2486 - Margaric acid HMDB0002259 2 12.27 

Plasma C18:0 : 12.77 C18H36O2 283.2643 - Stearic acid HMDB0000827 2 13.24 

Plasma C18:1 1 : 13.20 C18H34O2 281.2486 - Elaidic acid HMDB0000573 2 11.85 

Plasma C18:1 2 : 13.26 C18H34O2 281.2486 - Oleic acid HMDB0000207 2 8.50 

Plasma C18:2 1 : 13.92 C18H32O2 279.233 - Linoleic acid HMDB0000673 2 13.94 

Plasma C18:2 2 : 15.02 C18H32O2 279.233 - Linoelaidic acid HMDB0006270 2 33.45 

Plasma C18:3 1 : 14.47 C18H30O2 277.2173 - γ-Linolenic acid HMDB0003073 2 17.16 

Plasma C18:3 2 : 14.82 C18H30O2 277.2173 -  α-Linolenic acid HMDB0001388 2 14.86 

Plasma C20:0 : 14.37 C20H40O2 311.2956 - Arachidic acid HMDB0002212 2 13.34 

Plasma C20:1 : 14.88 C20H38O2 309.2799 - Eicosenoic acid HMDB0002231 2 30.24 

Plasma C20:2 : 15.75 C20H36O2 307.2643 - Eicosadienoic acid HMDB0005060 2 19.19 

Plasma C20:3 1 : 16.41 C20H34O2 305.2486 - Eicosatrienoic acid HMDB0002925 2 11.94 

Plasma C20:3 2 : 17.44 C20H34O2 305.2486 - Unknown   4 18.70 

Plasma C20:4 : 16.94 C20H32O2 303.233 - Arachidonic acid HMDB0001043 2 13.71 
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Plasma C20:5 : 18.18 C20H30O2 301.2173 - Eicosapentaenoic acid  HMDB0001999 2 17.27 

Plasma C22:0 : 16.34 C22H44O2 339.3269 - Behenic acid HMDB0000944 2 13.57 

Plasma C22:5 1 : 19.43 C22H34O2 329.2486 - Unknown   4 13.76 

Plasma C22:5 2 : 20.8 C22H34O2 329.2486 - Docosapentaenoic HMDB0006528 2 14.12 

Plasma C22:6 : 21.34 C22H32O2 327.233 - Docosahexaenoic acid HMDB0062579 2 12.88 

Plasma C24:0 : 18.63 C24H48O2 367.3582 - Lignoceric acid HMDB0002003 2 12.15 

Plasma C24:1 :19.28 C24H46O2 365.3425 - Nervonic acid HMDB0002368 2 10.88 
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Figure 4S.1: A CONSORT flow diagram outlining selection criteria used in a parallel 
two-arm randomized clinical trial involving participants from the DIGEST study, where 
metabolomic analyses was performed unblinded on paired serum and urine samples 
collected at baseline and 2 weeks following a provisional Prudent or Western diet. Overall, 
73 of the 84 participants who completed DIGEST had available specimens and complete 
food records. However, in order to maximize the effect size of this short-term dietary 
intervention, metabolomic analyses was performed only on a subset of participants (n = 
42) who had contrasting habitual diets at baseline as evaluated based on an aggregate diet 
quality score.
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Figure 4S.2:  Overview of three major analytical platforms for nontargeted and targeted metabolite/electrolyte profiling of 
matching plasma and urine specimens from DIGEST participants at baseline and 2 weeks following an assigned Prudent or 
Western diet from food provisions. MSI-CE-MS was used as the major format for metabolomic analyses of a wide range of 
polar/ionic metabolites from both plasma filtrate and diluted urine samples when using a stringent data workflow for metabolite 
authentication with quality control. Also, CE with (indirect/direct) UV absorbance detection was used for targeted analysis of 
electrolytes in urine, including inorganic cations (e.g., sodium) and anions (e.g., nitrate), whereas GC-MS was applied for 
targeted analysis of total (hydrolyzed) fatty acids as their FAMEs from plasma extracts. 
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Figure 4S.3: 2D scores plots from PCA and control charts for recovery standards that highlight the good technical precision 
as compared to biological variance of metabolomic data from three instrumental platforms, including (A) 84 authenticated 
metabolites in urine after QC-based batch-correction, (B) 80 polar/ionic metabolites from plasma using MSI-CE-MS and (C) 18 
plasma (total) fatty acids using GC-MS. 
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Figure 4S.4: 2D scores plot from PCA and HCA/heat map summarizing changes in habitual diet (W-P and P-W) based on 20 
macro-/micronutrient categories self-reported food records from DIGEST participants following 2 weeks of contrasting food 
provisions as compared to their baseline diet. 
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Figure 4S.5: Series of volcano plots for plasma (A, B) and urine (C, D) metabolome data highlighting few differences in the 
metabolic phenotype among DIGEST participants (n = 42) at baseline as compared to major changes following two weeks of 
contrasting diets from food provisions based on a minimum threshold for significance (mean FC > 1.3, p < 0.05) between Prudent 
and Western assigned groups. Abbreviations refer to DHBA (dihydroxybenzoic acid), ProBet (proline betaine), Me-His (3-
methylhistidine), 3-OH-BA (3-hydroxybutyric acid), dC0 (deoxycarnitine), Pro (proline), OH-PCA (hydroxypipecolic acid), ImPA 
(imidazolepropionic acid), Ent-G (enterolactone glucuronide), DHBA (dihydroxybenzoic acid) and Me-G (methylguanine), 
whereas standard notation is used for plasma fatty acids and unknown ions are denoted by their accurate mass (m/z). 
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Figure 4S.6: (A) Metabolomics data workflow for the identification and quantification of 
biomarkers of a provisional Prudent diet (e.g., 3-methylhistidine annotated based on its 
m/z:RMT) when using full-scan data acquisition. (B) Multiplexed separations by MSI-CE-
MS based on serial injection of seven plasma filtrate (or diluted urine) samples within a 
single run, including paired samples from each DIGEST participant (i.e., baseline/post-
treatment) together with a pooled sample as QC for assessing technical precision and long-
term signal drift. High resolution MS under positive ion mode detection allows for 
determination of most likely molecular formula for unknown cation (i.e., protonated 
molecular ion), whereas (C) MS/MS spectra is used for its structural elucidation when 
compared with an authentic standard. (D) Quantification of metabolites is then performed 
by external calibration when using an internal standard (Cl-Tyr) for data normalization by 
MSI-CE-MS. (E) A control chart for Me-His from pooled urine samples as QC analyzed in 
random positions in every run demonstrates acceptable technical precision over 3 days. 
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Figure 4S.7: Putative identification (level 2) of three unknown cationic metabolites ([M-
H]+) detected in urine specimens from DIGEST participants that were significantly elevated 
in assigned Prudent urine samples (p < 0.05) as compared to Western diet following 2 
weeks of food provisions, namely (A) 5-hydroxypipecolic acid (OH-PCA, m/z 146.081), (B) 
imidazole propionic acid (ImPA, m/z 141.067) and (C) Valinyl-valine (Val-Val, m/z 217.155) 
based on their characteristic MS/MS spectra (optimal collision energy at 20 V) under 
positive ion mode conditions. 
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Figure 4S.8: Unambiguous (level 1) and putative identification (level 2) of three unknown 
anionic metabolites ([M-H]-) detected in urine specimens from DIGEST participants that 
were decreased (acesulfame K) or elevated (enterolactone glucuronide and 
dihydroxybenzoic acid) in assigned Prudent (p < 0.05) as compared to Western diet groups 
following 2 weeks of food provisions, namely (A) acesulfame K (ASK, m/z 161.987), (B) 
enterolactone glucuronide (Ent-G, m/z 473.145) and (C) dihydroxybenzoic acid (DHBA, 
m/z 153.020) based on their characteristic MS/MS spectra under negative ion mode 
conditions. Identification was derived from comparison of MS/MS spectra with a standard 
as shown in mirror plot for ASK together with spiking into urine sample to confirm co-
migration. The likely stereochemistry for DHBA was deduced from comparison of in silico 
MS/MS spectra when using HMDB, whereas Ent-G was tentatively identified based on 
comparison with published MS/MS spectra [Johnson et al. Metabolites 2013, 3: 658-672]. 
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Figure 4S.9: Unambiguous identification (level 1) of total (hydrolyzed) fatty acids as their 
FAME derivatives from plasma extracts when using GC-MS, including resolution of low 
abundance trans-isomer (linoelaidic acid, C18:2n-6trans) from major cis-isomer (linoleic 
acid, C18:2n-6cis), including detection of minor saturated fatty acids (myristic acid, 
C14:0). Mirror plots for EI-MS spectra show excellent matches when comparing FAMEs 
detected in plasma extracts as compared to their references in the NIST database, where 
the base peak ions correspond to the quantifier ions monitored for saturated and 
polyunsaturated fatty acids. Overall, plasma total C18:2n-6trans was only 0.34% of its 
major stereoisomer C18:2n-6cis which also represents the most abundant fatty acid 
measured in circulation. 
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Figure 4S.10: Top-ranked single and ratiometric metabolites for differentiation of DIGEST 
participants assigned a Prudent (W-P, n = 24) or Western (P-W, n = 18) diet following 2 
weeks of food provisions when using receiver operating characteristic (ROC) curves. All 
metabolites were glog-transformed, whereas urine metabolites were normalized to 
creatinine following a QC-based batch correction. Overall, there was good discrimination 
of contrasting dietary patterns (AUC > 0.820; p < 0.001) as shown for (A) plasma proline 
betaine (ProBet), (B) plasma 3-methylhistidine to-linoleic acid (MeHis/C18:3n-6) ratio, 
(C) urinary hydroxypipecolic acid (OH-PCA), and (D) urinary hydroxypipecolic acid to 
sodium ratio (OH-PCA/Na).  
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Figure 4S.11: Top-ranked plasma metabolites associated with contrasting Prudent (W-P) and Western (P-W) diets from food 
provisions when using glog-transformed ion responses measured at baseline (habitual diet, 0) and following food provisions (2 
weeks) for DIGEST participants (n = 42). Metabolic trajectories from time course studies were ranked based on Hotelling-T2 
values when using multivariate empirical Bayes analysis of variance (MEBA) together with student’s t-test to confirm statistical 
significance (p < 0.05). 

FC = 0.86 
p = 1.06 E-2 

  Top-ranked Plasma Metabolic Trajectories Associated with Prudent and/or Western Diet from Food Provisions in DIGEST 
Io

n
 r

es
p

o
n

se
  

Me-His (m/z 170.092);  T2 = 24.9 

Io
n 

re
sp

o
n

se
  

ProBet (m/z 144.102);  T2 = 24.7 

Io
n

 r
es

p
o

n
se

  

Io
n

 r
es

p
o

n
se

  

C14:0;  T2 = 17.5 Pro (m/z 116.070);  T2 = 14.7 

0                      Weeks                     +2 0                      Weeks                     +2 0                      Weeks                     +2 0                      Weeks                     +2 

0                      Weeks                     +2 

C0 (m/z 162.112);  T2 = 12.2 DeoxyC0  (m/z 146.128);  T2 = 11.9 

0                      Weeks                     +2 

Io
n

 r
e

sp
o

ns
e 

 

Io
n

 r
e

sp
o

n
se

  

Io
n 

re
sp

o
n

se
  

0                     Weeks                     +2 

C18:2n-6 trans;  T2 = 13.3 

Io
n 

re
sp

o
n

se
  

0                      Weeks                     +2 

FC = 2.4 
p = 7.74 E-5 

FC = 2.5 
p = 4.68 E-5 

FC = 0.65 
p = 6.52 E-3 

FC = 0.73 
p = 7.79 E-3 

FC = 0.71 
p = 8.26 E-3 

FC = 0.68 
p = 5.91 E-3 

FC = 0.84 
p = 2.29 E-2 

Ala (m/z 90.056);  T2 = 9.6 



Nadine L. Wellington - Ph.D. Thesis - Chemistry and Chemical Biology, McMaster University 

172 
 

 

Figure 4S.12: Top-ranked urinary metabolites associated with contrasting Prudent (W-P) and Western (P-W) diets from food 
provisions when using glog-transformed ion responses normalized to creatinine measured at baseline (habitual diet, 0) and 
following food provisions (2 weeks) for DIGEST participants (n = 42). Metabolic trajectories from time course studies were 
ranked based on Hotelling-T2 values when using multivariate empirical Bayes analysis of variance (MEBA) together with 
student’s t-test to confirm statistical significance (p < 0.05), with the exception for DHBA. 
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Figure 4S.13: Linear correlation plots highlighting the strong association between fasting plasma concentrations of (A) Me-His 
and (B) ProBet and their creatinine-normalized concentrations measured independently from matching single-spot urine samples 
for DIGEST participants collected at baseline and then following 2 weeks of food provisions.  
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Figure 4S.14: 2D heat maps and correlation matrices for top-ranked (A) plasma 
and (B) urinary metabolites associated with contrasting diets from food provisions 
when using a Pearson correlation analysis on glog-transformed data. Distinctive 
clusters of metabolite classes suggest common dietary sources and/or biochemical 
pathways for their regulation, such as circulating ketone bodies (kLeu, kVal, 3-OH-
BA), fatty acids (C14:0, C15:0, C18:2, C18:3) and amino acids/carnitines (C0, Pro, 
Ala) in plasma, as well as plant-derived biotransformed phenols (Ent-G, DHBA) 
and imidazole metabolites (Me-His, ImPA) in urine. In many cases, urinary 
metabolites reflective of recent dietary patterns were broadly co-linear with other 
compounds (e.g., OH-PCA, Me-His, ProBet and unknown ion, m/z 276) or had 
modest correlations to other compounds overall. 
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Chapter 5: Towards Accessing the Exposome for Precision 
Interventions 

Contributions of the Thesis and Future Work 
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Chapter 5: Revealing the Exposome for Evidence-based Public Health 

Policies 

5.1 Thesis Discoveries and Contributions 

Work in this thesis is primarily focused on 1) method development to identify 

molecular targets important to classifying the exposures of stratified populations, 

and 2) multi-platform molecular phenotyping to determine patterns of personal 

environmental exposures that can be used to clinically identify individuals with 

increased risk of chronic illness based on their exposome. Advancing towards these 

holistic multi-factor methods of clinical decision-making and away from traditional 

generalized approaches is fundamental to advancing a new paradigm of precision 

risk reduction. Molecular biomarkers are the key to gaining greater insight into 

these complex gene-environment interactions, thus sensitive, selective, and robust 

methods to identify these molecules are of fundamental importance. 

Chapter 1 of this thesis provides an abridged history of important 

biomolecular discoveries, subsequently employed in pre-clinical health 

assessments and their relation to modern analytical applications to the human 

metabolome to identify physiological changes related to the etiology of chronic 

disease. The analytical methods and instruments fundamental to metabolomics 

applications are detailed to provide a thorough background on instrumental 

technologies and methodologies used in this thesis. The work described in Chapter 

2 details the development of a highly sensitive self-reporting optical assay for the 

clinically relevant biomarker N-acetylneuraminic acid (Neu5Ac) and other acidic 

metabolites that attains sub-micromolar detection limits without relying on 

expensive analytical infrastructure or derivatization commonly used in 

metabolomics studies. A previously unexplored binding mode between an 

arylboronic acid probe, 4-isoquinoline boronic acid, and Neu5Ac in acidic media 

(pH 3) was found to involve the formation of a zwitterionic complex via a Lewis 
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acid coordination of an anionic carboxylate coupled with cyclization via 

condensation with a vicinal α-hydroxy group. This interaction has generally been 

overlooked due to the instability of boronic esters formed with neutral sugars at low 

pH. The additional electrostatic interaction stabilizes this complex toward 

hydrolysis at low pH which usually impairs the formation of these cyclic boronates 

with neutral sugar analogs, yielding an anomalously high affinity constant of K = 

5390 ± 190 M-1, approximately 40% larger than similar probes examined near 

physiological pH. Of immediate interest is the examination of the effect of Neu5Ac 

titration on the 276 nm peak observed to decrease linearly between 0-40 µm of 

sialic acid titrated to determine the linear dynamic range and linearity of this 

response. Furthermore, it is important to identify if other competing ligands, such 

as lactate or gluconic acid, elicit the same effect. By monitoring two wavelengths 

in a diagnostic array, greater selectivity for Neu5Ac may be possible and help to 

overcome the challenges of quantifying sialic acid in biological fluids. Biological 

specimens for Neu5Ac analysis is most commonly collected via skin, blood, or 

urine sampling, which are inherently invasive and potentially traumatic procedures, 

where sample handling requires trained personnel, specialized storage, and time-

consuming processing and workup steps. To avoid these pitfalls, an assay that 

targets free Neu5Ac in saliva would be minimally invasive and facile to prepare. 

These benefits could rapid turnaround times to a salivary Neu assay with greater 

compatibility for use with larger populations. Easy access to saliva is particularly 

beneficial for juvenile patients in whom early and rapid postnatal identification of 

aberrant sialic acid metabolism (e.g. sialic acid storage disease, Salla disease) is 

fundamental to the mitigation of deleterious physiological and cognitive effects. 

There are also promising oncological applications for the detection of 

hypersialylated tumor cells in low-pH environments of pH 3 to 4 caused by tumor 

acidosis using fluorescent the 4-iqba probe. Indeed, it has been shown that in vivo 

optical pattern recognition of over-sialylated cancer cells is possible.1  
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Binding between IQBA and Neu was only slightly reduced by a unit drop in 

pH, thus one approach to fine tuning the selectivity of this interaction for Neu5Ac 

could be to modulate pH to reduce ionization of potential competitive ligands, For 

instance, at the sub-optimal pH of 2.8 ionization of lactic acid is less than 10% 

which could allow for the calibration of Neu5Ac recovery in biological samples. 

Another approach would use strong ions and other chelating agents to reduce 

interferences: for instance, calcium pretreatment for the selective trapping of lactate 

would be an immediate first step towards enhancing the response of IQBA to 

Neu5Ac in biological samples.  

Chapter 3 used high resolution separation methods based on a GC-MS 

platform to target a suite of wood smoke markers, including resin acids as novel 

urinary markers of smoke exposure. Firefighters are a subset of the population who 

endure extreme personal risk to ensure the health and safety of others, and suffer 

from chronic exposures to hazardous toxicants that are strongly linked to cancer, 

heart disease and several other chronic illnesses. This study used a targeted 

analytical multi-platform method to analyze 10 samples per firefighter among 3 

cohorts (n = 18) to identify markers of wood smoke exposure in ambient air 

samples, skin wipes, and subsequently excreted in urine despite the use of bunker 

gear and a self-contained breathing apparatus (SCBA). Widespread contamination 

of the cheeks and arms was discovered in 3 groups of firefighters after short-term 

(30 min) exposure to wood smoke as part of their normal training exercises, 

indicating inadequate protection from regulatory protective gear against harmful 

chemical intrusions from pro-carcinogenic and proinflammatory chemicals, such 

as naphthalene and fluorene. Highly abundant smoke markers syringol, 

methylsyringol, propylsyringol, guaiacol, methylguaiacol, ethylguaiacol, and 

naphthalene (as 1-hydroxynaphthalene, a biotransformed metabolite of 

naphthalene) reached peak excretion within 6 h following acute smoke exposure. 

Concentrations of several chemicals in the urine had moderate to strong correlations 
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to amounts found in soot deposited under the bunker coat on the arm or under the 

SCBA on the cheek. In fact, current standards for equipment integrity testing were 

identified as areas of concern in this study as the SCBA collected significant 

amounts of soot inside the device during the exposure challenge, allowing some 

chemicals to deposit at levels up to 330-times amounts found on the smoke-exposed 

outer lens of the mask. Coincidentally, the inadequacy of current non-standardized 

cleaning protocols of fire stations and equipment was found through elevated 

concentrations of chemical contaminants found on the skin and bunker gear prior 

in baseline control samples. Overall, immediate intervention to mitigate direct and 

inadvertent chemical exposures to firefighters is necessary to reduce the long-term 

risk for chronic diseases that can be prevented by revised standards for SCBA fit 

testing, improved hygiene practices, and novel fire-resistant materials to mitigate 

chemical deposition onto skin surface.  

Applications of this work could have immediate benefits in a longitudinal 

health and safety surveillance initiative to measure MP, PAH, and RA in firefighter 

workspaces and residences to develop and monitor more effective hygiene 

protocols. For instance, guaiacols and syringols were among the relatively 

concentrated wood smoke markers associated with high background levels in this 

study that would help to track exposures to volatile low molecular weight 

compounds. Away from the fireground these chemicals may appear in the 

environment from soiled and/or off-gassing equipment and clothing, and residue 

adsorbed to the skin and hair.2 Ideally, a longitudinal surveillance program would 

monitor molecular targets alongside the implementation of new standards of 

turnout gear handling, fire station cleaning, and personal hygiene to quantitatively 

prove mitigation of local accumulation and personal risk. In tandem with local 

monitoring, a standardized definition of “clean” regarding firefighting equipment 

is badly needed to effectively reduce second- and thirdhand exposures to chemical 

toxicants that settle or embed within the material of the turnout coat and SCBA. 
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Currently, there are no regulatory protocols in place for proper cleaning to remove 

diverse classes of chemical contaminants firefighters encounter in the field. In fact, 

there exists no definition for the word “clean,” as NFPA and province of Ontario 

guidelines rely on each firefighter to make a judicious assessment about the 

integrity and cleanliness of their suit based on their recent exposures.3,4  

While not targeted in this study, of critical importance to firefighter safety is 

characterizing the toxic compounds present in the field due to burning structural 

materials such as plastics and solvents (e.g., dioxins and heavy PAH) that are likely 

to accumulate on gear and skin by similar mechanisms observed in this study. An 

large scale follow-up study would focus on sampling important areas of the turnout 

gear of firefighters after fire suppression activities like the jacket collar, hood, 

jacket cuff, waistline, neck, cheeks/lips, and hands, with efficient samplers that are 

easily handled and stored quickly without risk to sample integrity. For instance, the 

isopropanol-soaked sample wipes used in Chapter 3 were effective at recovering 

trace amounts of soot on the skin contaminants and could be applied in a large-scale 

occupational biomonitoring program. “Self-sampling” kits would allow 

participating firefighters to easily prepare and collect sample wipes from target 

areas, seal, and ship them for analysis. To elucidate the effects of these exposures, 

concurrent intermittent biofluid sampling would demonstrate how the firefighter 

exposome changes due to these exposures, including any metabolites related to 

metabolic dysfunction. Similar large-scale biomonitoring programs are already 

underway to determine the links between firefighting and the breast cancer in 

female firefighters to identify unique impacts to their health.5 While firefighting 

comes with inherent risk, the current degree of hazard firefighters experience is 

dangerous and can be remediated. The findings detailed in this these provide critical 

findings for important next steps by industry and governments to address it. 

The discovery of novel dietary biomarkers in plasma and urine in Chapter 4 

is an important contribution towards the development of more objective diet 
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classification tools for nutritional epidemiology, as suboptimal diet plays an 

important role in population chronic disease risk. The parallel structure of this study 

allowed for direct comparisons of metabolite trajectories, rather than single-spot 

measurements, to define two highly distinct eating patterns by metabolite profiles 

and the direction of flux after exposure. Proline-betaine and 3-methylhistidine were 

two biochemical markers strongly associated with Prudent eating during the dietary 

intervention, and 3-methylhistidine in particular may provide further insight into 

the upstream physiological processes linked to the beneficial exposures in this 

eating pattern as it is strongly linked to the regeneration of skeletal muscle in 

humans. Furthermore, a series of amino acids and other organic acids were highly 

correlated to self-reported classes of food intakes, such as alanine and proline 

revealing recent consumption of fats, while enterolactone glucuronide and 

dihydroxybenzoic acid associated with healthier foods containing insoluble fibre, 

protein, essential nutrients and bioactive phytochemicals. Importantly, our work 

was able to evaluate the urine metabolome of to identify individuals in each cohort 

whose dietary records indicated food consumption was inconsistent with their 

provided meal plan. This is an important step towards reducing reliance on error-

prone nutritional assessment tools (i.e., FFQ and food diaries) currently used in 

clinical contexts. The development of a ratiometric diet quality index showed good 

discrimination among samples in the study, however an exciting next step would 

involve a larger-scale longitudinal study to test the efficacy of this classification 

tool, while also seeking new metabolites for inclusion into a dietary index panel, as 

characterizing recent dietary exposures is fundamental to realizing precision 

healthcare due to the frequency and diversity of exposures that comprise the dietary 

exposome. Additionally, a large-scale, longitudinal study presents the opportunity 

to determine strong links between the dietary exposome and long-term clinical 

outcomes that will then be applied to medical decision making on an individual 

level. 
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