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ABSTRACT 
10-15% of women take antidepressants during pregnancy. Selective serotonin reuptake inhibitors 

(SSRIs) are most commonly used for perinatal depression. Perinatal exposure to SSRIs has been 

shown to disrupt the development of serotonergic signaling pathways in the central nervous system 

(CNS); however, the effects on the developing enteric nervous system (ENS) remain relatively 

unexplored. We hypothesized that early life exposure to SSRIs would influence the structural 

development of the gastrointestinal (GI) tract.  We further hypothesized that these structural 

changes could lead to clinically relevant functional outcomes, such as modifications in 

susceptibility to inflammation and altered GI motility. 

Female Wistar rats were given the SSRI, fluoxetine, or vehicle from 2 weeks prior to mating 

through gestation until weaning. At postnatal day 1 (P1), postnatal day 21 (P21; weaning) and 6 

months of age (P6 months) intestines were harvested to assess for structural changes. At P6M, 

intestines were collected to assess motility in vitro and subsets of the offspring were treated with 

dextran sulfate sodium (DSS) to assess susceptibility to colitis.  

At P1, there was a significant decrease in serotonergic neurons in the female colon. At P21, there 

was a significant increase in serotonergic neurons of both sexes in the colon. At P6M, there was a 

significant increase in the frequency and velocity of long-distance contractions in the colon when 

both sexes were combined and an increase in ZO-1 in male colon.  

In conclusion, SSRI exposure in utero appears to have structural and functional consequences on 

the developing ENS in the SSRI exposed offspring. The structural consequences are seen in both 

sexes at P21 and although the structural changes to the ENS resolve by 6 months, motility in the 

colon continues to be significantly altered. There were no significant differences in chemical 

colitis, however, we did see difference of quantitative mRNA cytokines, chemokines and 
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extracellular matrix components which may suggest differences in mucosal immune response. The 

mechanisms by which these changes occur remain to be explored.  
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CHAPTER 1: INTRODUCTION 

1.1 Maternal Depression 

 

Untreated maternal depression can have devastating effects on the health and well-

being of children and their mothers [1]. The American Psychiatric Association's 

Diagnostic and Statistical Manual, Fifth Edition (DSM-5) classifies maternal 

depression as Major Depressive Disorder, with the onset of depression that can 

occur during the perinatal period (antenatal) or following parturition (postnatal) [2].  

Antenatal depression has been associated with risk of preterm (<37 week) delivery 

and low birth weight [3]. Postpartum depression has been associated with risk to 

the offspring including: impaired maternal fetal bonding [3-4], abnormal 

development [4-6], cognitive impairment [4-7], emotional and behavioural issues 

[3, 8-13].  

Estimates of depression in women vary among different studies. The prevalence of 

postpartum depression was 9% in a prospective study done in the United States 

(n=994) which was similar to the depression rate in non-postpartum women 8% 

(n>13,000) [5]. In 2004, antepartum depression rates were 26% in women living in 

poor urban communities [14]. Other estimates of the rate of postpartum depression 

range from 10-16% [15] and according to the American College of Obstetrics and 

Gynecology, 9% of women in the antenatal period will screen positive for major 

depressive disorder [16]. Amongst women with postpartum depression, the 
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majority (58%) have onset of symptoms prior to delivery, either pre-pregnancy 

(20%) or antepartum (38%) [15,17-19]. The incidence of severe post-partum 

depression among 2.6 million women and 3.2 million births, was determined with 

the overall rate of 36.7/10,000 in 2010, which was a 34% increase from 2006 

(27.4/10,000) [20].  

Selective Serotonin Reuptake Inhibitors (SSRIs) are considered first line 

pharmacologic therapy and are the most commonly used antidepressants during 

pregnancy and lactation [21-22]. Approximately 7% of women in North America 

require an SSRI in the perinatal period [23]. SSRIs cross the placenta and are also 

present in detectable concentrations within the breastmilk [24]. The developing 

fetus and breastfed infants are, thus, exposed to SSRIs [24]. In breastfeeding 

women on fluoxetine (n=2), one infant had detectable serum levels of  fluoxetine 

(approximately 15 ng/mL) [25] which is generally lower than maternal serum levels 

(ranging from 5-577 ng/mL during pregnancy and 21-506 ng/mL during lactation 

[26]).  

 

1.2 Serotonin, Serotonin Receptors and Serotonin Metabolism  

 

Serotonin is a neurotransmitter centrally and acts as a hormone peripherally [27]. It 

is found mainly in the GI tract but also in immune cells, platelets and the CNS [28]. 

Serotonin is synthesized from the amino acid L-tryptophan which is consumed in 
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our diet [28]. There are 2 rate limiting enzymes involved in the synthesis of 

serotonin, Tryptophan Hydroxylase 1 (TPH1) and Tryptophan Hydroxylase 2 

(TPH2) [28]. Monoamine oxidase deaminates or breaks down serotonin to 5- 

hydroxyindoleacetaldehyde (5-HIAA) [28]. There are seven serotonin (5-HT) 

receptors with 14 different subtypes of 5-HT receptors [29]. Serotonin cannot easily 

pass intracellularly and therefore depends on a sodium dependent serotonin 

transporter (SERT). SERT is found in the brain, on intestinal epithelial cells, 

platelets, B cells, mast cells and monocytes [30]. Serotonin not taken up by the 

intestinal epithelial cell enters circulation via the capillary bed of the lamina propria 

where it enters circulation via SERT receptors on platelets [31]. Serotonin 

facilitates procoagulant activity [32] and therefore SSRI use has been associated 

with increased risk of upper GI bleeding [33].  

 

1.3  Selective Serotonin Reuptake Inhibitors (SSRIs) 

 

SSRIs are frequently used pharmacotherapy as first-line medication when clinically 

indicated for moderate to severe depression during pregnancy, postpartum and 

lactation because of their efficacy, tolerability, and general safety profile [34]. In 

1972, fluoxetine was synthesized [34]. In 1987, fluoxetine was the first SSRI 

approved by the United States Food and Drug Administration (FDA) for treatment 

of major depression and continues to be the most commonly prescribed SSRI 
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during pregnancy and lactation [23, 34]. The FDA has pharmaceutical pregnancy 

categories for safety.  Fluoxetine is considered pregnancy category C for both 

pregnancy and lactation [35]. Pregnancy category C is defined as “animal studies 

have shown risk to the fetus but there are no controlled studies in women, or studies 

in women and animals are not available” [36] and therefore, “risk cannot be ruled 

out” [35]. Given the risks associated with untreated maternal depression including: 

risk of suicide, prematurity, low birth weight, intrauterine growth restriction, higher 

impulsivity, maladaptive social interactions, and cognitive, behavioural, and 

emotional difficulties [37,38,39,40,41] along with the potential risks of the 

medication to the fetus and newborn baby, there has been controversy regarding the 

benefit of treatment with SSRIs during the perinatal period. Despite this 

controversy, many healthcare providers will initiate pharmacologic treatment with 

SSRIs as first line treatment for moderate to severe depression [35,42]. Literature 

regarding the safety of antidepressant medication during pregnancy and 

breastfeeding remains controversial with mixed results [43]. Both perinatal 

depression and SSRI exposure have been associated with fetal growth changes and 

shorter gestation [43]. These mixed results are due to challenges in clinical studies 

heterogeneity in methodology, for example, discrepancy related to small sample 

size, failure to control for the effects of ongoing maternal depression, and other 

potential confounders (smoking, substance use, socioeconomic statues, support, 

etc.) [43]. Healthcare providers must discuss both pharmacologic and non-
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pharmacologic therapy including cognitive behavioural therapy, interpersonal 

psychotherapy and group therapy in order to obtain informed consent regarding the 

treatment of depression [43]. In 2007, nearly 13% of all pregnant women are taking 

antidepressant medication during pregnancy with SSRI’s or Selective 

Norepinephrine Reuptake Inhibitors (SNRI’s) being the most frequently prescribed 

[44,45]. The SSRIs vary considerably in their chemical structure and treat 

depression by increasing serotonergic activity in the brain [46].  

 

In the central nervous system (CNS), serotonin (5-hydroxytryptamine or 5-HT) is 

a neurotransmitter released in the brain [35,46]. The majority of our body’s 

serotonin is found in our GI tract [47]. Serotonin is involved in mood, social 

behavior, appetite, digestion, sleep, memory, sexual desire and function. 

Serotonergic neurotransmission in the brain involves a variety of different types of 

serotonin receptors [35,46,48]. Serotonin receptors in the brain are G-coupled 

receptors and can be classified as excitatory or inhibitory [49]. The excitatory class 

of receptors include 5-HT2 subclasses A-C, 5-HT4, 5-HT6 and 5-HT7 [49]. The 

inhibitory receptors in the CNS include 5-HT1 subclasses A-F, and 5-HT5 

subclasses A-B [49]. In the peripheral nervous system, serotonin receptors include 

excitatory G-coupled receptor 5-HT2 subclasses A-C and the sodium-potassium ion 

channel receptor 5-HT3. In the GI tract, excitatory G-coupled receptors 5-HT2, 5-
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HT4, 5-HT7 and the sodium-potassium ion channel 5-HT3, as well as the inhibitory 

5-HT1 receptors are present [49].  

In the CNS, SSRIs decrease the presynaptic serotonin reuptake by 60 to 80 percent 

[35,48]. As a result, there is an increase in the length of time that serotonin is 

available in the synapse [35, 46,48]. The increased availability of serotonin in the 

synapse is believed to be the mechanism by which SSRI’s work to treat depression, 

which is associated with low CNS serotonin and norepinephrine levels [50]. SSRIs 

are absorbed in the gastrointestinal tract [35, 46,48]. SSRIs are metabolised and 

eliminated by the liver [48]. The half-life for fluoxetine ranges from 1 to 3 days 

[46,48,51,52]. Fluoxetine’s metabolite norfluoxetine, has a half-life of 4 to 16 days 

[46,48,51,52]. The half-life of platelet serotonin is at least 3 days, on average 

approximately 5-6 days which corresponds to the half-life of the platelet [53-54].  

Given that fluoxetine is the most commonly prescribed SSRI during the perinatal 

period and it also has the most available pharmacokinetic data during pregnancy, it 

was selected for this experiment [55-58].  

 

1.4  SSRI’s Influence the Outcome of the Fetus  

 

SSRI exposure during pregnancy has been associated with an increase in congenital 

defects and long-term effects in language, behavior and gastrointestinal (GI) 

dysmotility [59]. Specifically, exposure to SSRIs in utero is associated with 
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congenital heart defects, omphalocele, clubfoot, anencephaly, and anal atresia [60-

62]. Maternal SSRI exposure in third trimester has also been associated with 

neurodevelopmental abnormalities such as developmental delays, pervasive 

developmental problems and autism [62].  

In a cohort of more than 30,000 women in the Netherlands on SSRI’s during the 

second or third trimester, there was a 10-fold increase in the use of laxatives in their 

offspring [63,64]. SSRI exposure in utero has also been associated with the 

development of Hirschsprung’s disease in the newborn period. Hirschsprung’s 

disease occurs when a segment of the colon is lacking ganglia in the ENS and 

commonly presents with significant constipation [65].  

 

1.5  Central Nervous System (CNS) Effects of SSRI’s in Utero 

 

Evidence from animal studies demonstrates that prenatal exposure to SSRI’s can 

alter serotonergic biosynthesis and signaling pathways in the CNS of the offspring 

[66]. Furthermore, gestational exposure to SSRI’s results in alterations to brain 5-

HT content, elevation in peripheral 5-HT levels, and SERT expression, indicating 

decreased 5-HT function in animal studies [67-70]. 

Mice lacking serotonin transporter SERT, which is the target protein for SSRI 

medications, have demonstrated increased anxiety and depressive behaviours [71-

72]. SERT knock out results in increased extracellular serotonin concentrations and 
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decreased tissue serotonin concentrations [73-75]. SERT KO mice have 

demonstrated changes in sensory patterning, compensatory increase in receptor 5-

HT expression, alterations of sleep, and long-term behaviour deficits [76-77]. Mice 

who had pharmacologic manipulation of SERT with SSRI’s have similar phenotype 

to SERT KO mice [77].  Both SERT KO mice and Fluoxetine exposure during the 

perinatal period have demonstrated similar effects on the offspring in mice 

including a hyperplastic ENS, increased serotonergic neurons, decreased total 

intestinal transit time, decreased small intestinal transit, decreased colonic transit, 

increased long distance contraction (LDC) frequency, increased LDC velocity, 

increased LDC propagation length, increased villus height and increased crypt 

depth [78]. Mice who received fluoxetine in the early post-natal period also 

demonstrated changes in SERT expression in the cortex and permanent reduction 

in TPH2 in the basal ganglia in the brain [77]. 

In human studies, prenatal SSRI exposure has been associated with decrease 

APGAR scores, slight delays in psychomotor and motor development [79-82], 

however, not all studies on SSRI exposure during the perinatal periods have poor 

developmental outcomes [83-89]. The conflicting literature in clinical studies has 

been attributed to small sample size and underlying maternal depression, not the 

effects of the medication [90]. 
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1.6  Enteric Nervous System (ENS) Effects of SSRI’s in utero 

 

The majority of the neurotransmitters expressed in the CNS are represented in the 

ENS. Some consider the ENS is part of the PNS [91]. The ENS exhibits 

independence from the CNS [91]. The ENS is involved in GI motility, secretion 

and vascular tone [91].  

Exposure to SSRI’s in utero on the development of the ENS has yet to be fully 

explored. The vast majority of basic science/animal studies have been on mice. Our 

study utilizes a rat model as rats are thought to be more similar to humans [92]. 

SSRI exposure during the perinatal period in clinical studies has been associated 

with increased laxative use [63,64], Hirschsprung’s disease [81] and infantile 

hypertrophic pyloric stenosis [93]. The mechanisms by which this occurs remains 

poorly understood and is thought to be related to inhibition of SERT leading to 

disturbed migration, differentiation and neural crest cell survival which will 

contribute to the formation of the enteric nervous system [91]. An alternative 

proposed mechanism is that 5-HT may act as a growth factor for the developing 

primitive ENS [91].  
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1.7 The Role of Serotonin in the Gastrointestinal (GI) Tract 

 

Serotonin and its receptors appear early, embryonic day 10 in mice,  during prenatal 

development [94, 97-99]; however, serotonin biosynthesis does not appear in the 

embryo nor in the extra-embryotic structures suggesting maternal serotonin plays a 

role during development and maturation of the developing prenatal brain [100]. As 

mentioned above, Tryptophan hydroxylase (TPH) is the rate-limiting enzyme for 

5-HT synthesis [101]. There are 2 isoforms of the TPH enzyme regulating serotonin 

biosynthesis. TPH 2 is the rate limiting step for serotonin in the CNS, and for 

biosynthesis in the enteric nervous system. TPH 1 is the rate limiting enzyme in the 

synthesis of mucosal serotonin. Mice that lack TPH1 (TPH1-/-) are deficient in 

mucosal 5-HT (TPH1 is found in enterochromaffin cells (EC cells) and mast cells) 

[102,103], while mice lacking TPH2 (TPH2-/-) have a 5-HT deficiency in enteric 

neurons [104] and brain tissue [105]. Moreover, mice lacking TPH1 (tph1−/−) have 

shown that maternal serotonin is imperative for normal embryonic development, 

including that of the GI tract [100]. In human fetal brain, SERT antibodies revealed 

SERT-positive fibers in the raphe nucleus, and cortical regions of the brain at 

gestational week 8-13 [106]. Human fetal gut development begins around the same 

time at gestational week 8 with the myenteric plexus at gestational week 8-9, 

submucosal plexus development at gestational week 10-11 and completion of the 

ENS by gestational week 12-14 [94]. 



M.Sc. Thesis- K. Prowse- McMaster University- Medical Sciences 

 11 

Serotonin signaling in the intestine is critical for intestinal function, and 

dysregulation of this pathway is associated with intestinal disease [107]. The GI 

tract contains 95% of the body’s endogenous stores of 5-HT [108]. The vast 

majority (~90%) of intestinal 5-HT is synthesized and stored in EC cells, with the 

remainder being synthesized and released in the enteric nervous system (ENS) 

[108]. Normal 5-HT metabolism is crucial for maintenance of physiological 

intestinal functions such as motility and sensation [108,109]. Both EC cells and 

enteric neurons not only synthesize 5-HT, but also express 5-HT receptors and 

respond to 5-HT activation [108]. An essential part of this pathway includes SERT 

which inactivates 5-HT after it has stimulated its receptors and is expressed by both 

enterocytes and enteric neurons [108]. Serotonin is also important for mucosal 

homeostasis [110]. Mice lacking SERT (SERT KO) demonstrated enhancement of 

villus height, crypt depth and enterocyte proliferation thought to be related to the 

excess serotonin availability [111]. Fluoxetine exposure in utero has also 

demonstrated an increase in villus height and crypt depth in mice studies suggesting 

that disruption of serotonin homeostasis during the perinatal periods can cause 

structural abnormalities in the developing offspring [112].  

The ENS is believed to contribute to GI disorders in adults, including Irritable 

Bowel Syndrome (IBS) and Inflammatory Bowel Disease (IBD) however, the 

pathophysiology of both these entities remains unknown [31,113].  
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IBD is a chronic disease which is divided into two subtypes, ulcerative colitis and 

Crohn’s disease [114]. It results in mucosal and/or transmural inflammation, bloody 

diarrhea, weight loss, and increases the risk for colonic adenocarcinoma [114]. 5-

HT produced by the ENS activates the immune cells to produce pro-inflammatory 

mediators [115].  Serotonergic receptors have been found on B and T lymphocytes, 

monocytes, macrophage, and dendritic cell [116]. Animal studies have 

demonstrated an increase in 5-HT in chemically induced colitis, such as dextran 

sodium sulfate (DSS) [117]. In addition, TPH1 knockout mice had reduced colitis 

scores compared to wild type animals [118]. Alterations in EC cell number and 5-

HT amount have been described in clinical studies of patients with IBD [119-122]. 

Moreover, villus blunting or decrease villus ratio in the small intestine has been 

demonstrated in humans with Crohn’s disease [123] and, as mentioned above, 

serotonin has been implicated in intestinal epithelial cell homeostasis.  

IBS is a functional GI disorder characterized by abdominal pain and alterations in 

bowel habits [95]. In adults, IBS is characterized as being either diarrheal 

predominant, constipation predominant or mixed [117]. In a subset of patients with 

IBS-D, clinical studies demonstrated decreased SERT mRNA in platelets [124]. 

The quantity of EC cells, 5-HT, mRNA levels of TPH, and the expression of SERT 

in mucosal biopsies have been associated with IBS in both animal and human 

studies [125-129]. 
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1.8 Sex Dependent Differences in Serotonin Signaling 

 

Reproductive endocrinology and the central serotonergic system have been linked 

given their relationship to mood and behaviour [130]. Observations and presumed 

interactions include increased levels of central serotonin and serotonin receptors 

with varying changes in reproductive steroids [131,132]. Effects of gonadal steroids 

are also regulated by serotonin and linked to behaviours such as aggression and 

reproduction which are modulated by both central serotonin and gonadal steroids 

[133-136]. Animal studies have shown that serotonin changes as a function of sex, 

phase in the estrus cycle and as a consequence of hormonal manipulation 

(ovariectomy and hormone replacement) [130]. 

Animal and human models suggest sex variances in 5-HT in the CNS [137].  In 

animal studies, central 5-HT levels, as well as cerebrospinal fluid concentrations of 

the 5-HT metabolite 5-hydroxyindole-3-acetic acid (5-HIAA), are significantly 

higher in female compared to male rats [138]. In human studies using positron-

emission tomography (PET) scanning, females had significantly higher 5-HT1A 

receptor and lower 5-HT binding potentials in a wide array of cortical and 

subcortical brain regions compared to males [137]. 

There is emerging evidence to support the concept of sex-dependent differences in 

the serotonergic system of the ENS, as well as the CNS.  Colonic extracellular 5-

HT visceral hypersensitivity and hyperexcitability of colon projecting sensory 
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neurons have been shown to be increased in female compared to male rats [139].  

Identification of a sex specific role for the microbiota in the regulation of CNS 

serotonergic neurotransmission has been described, thereby linking the sex specific 

effects of 5-HT on the gut with the CNS [140].  
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CHAPTER 2: OBJECTIVES AND HYPOTHESIS 

 

2.1 Rational and Hypothesis 

 

Perinatal exposure to SSRI’s has been shown to alter the developing CNS. Given 

that the majority of the body’s endogenous serotonin exists in the EC cell, it is 

important to assess the consequences of early life exposure to SSRI’s on the 

development of the ENS. The neurons and glia that comprise the ENS are derived 

from vagal and sacral regions of the neural crest cells [141]. Neurotrophic factors 

are polypeptides which are involved in the migration, differentiation and survival 

of neural crest cells [142]. Brain‐derived neurotrophic factor (BDNF) bind to the 

tropomyosin receptor kinase (Trk) receptors for cell survival and has a role in both 

development of the central and peripheral nervous system [142]. BDNF has 

recently been shown to have an important role in abdominal pain associated with 

bowel obstruction [143]. The stimulatory effects of BDNF on gut motility are 

poorly understood with conflicting results [142], however, gut motility has been 

demonstrated to be regulated by the ENS but not directly by BDNF, instead 

serotonin mediates motility in the ENS by TrkB mediated transient calcium ion 

increase [144]. This mechanism might help better understand and provide insight 

into the pathogenesis of IBS which consists mainly of symptoms of abdominal pain 

and altered GI motility. Serotonin also has a regulatory role in mucosal homeostasis 
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and adaptation [145] and this is of clinical relevance because it may provide insight 

into the pathogenesis of  IBD where mucosal homeostasis is altered.  

 

We tested the hypothesis that perinatal exposure to SSRI’s can influence the 

structure and function of the gastrointestinal tract of the offspring. 

 

2.2 Objectives 

 

1. To determine whether perinatal SSRI exposure can influence the structural 

development of the gastrointestinal tract of the offspring. 

 

2. To determine whether perinatal SSRI exposure can influence clinically 

relevant functions of the gastrointestinal tract of the offspring. 
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CHAPTER 3: AIM 1- STRUCTURE 

 

3.1 Background 

 

Human studies have demonstrated that SSRI exposure in utero leads to altered brain 

development and maladaptive behaviors [146]. Moreover, SSRI’s in utero have 

been shown to alter serotonergic signaling in the CNS [147, 148]. There is a 

growing body of literature that links SSRI exposure to alterations in the peripheral 

serotonergic system in the gastrointestinal tract. 

 

3.2 Methods 

 

3.2.1 Animal Experiments 

 

All animal experiments were approved by the Animal Research Ethics Board at 

McMaster University, in accordance with the guidelines of the Canadian Council 

for Animal Care. Nulliparous Wistar rats (Harlan, Indianapolis, IN, USA) were 

maintained under controlled lighting (12:12 L:D) and temperature (22 °C) with ad 

libitum access to food and water. Dams were randomly assigned to receive cookie 

dough or 10 mg/kg/day fluoxetine hydrochloride (Toronto Research Chemicals, 

Toronto, ON) orally in cookie dough from 14 days prior to mating and through the 
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weaning period (postnatal day 21; P21). Rats were housed until adulthood 

(postnatal 6 months; P6M). This method of drug administration has been shown to 

be a reliable method for drug administration to rats [149,55]. The dose of fluoxetine 

was chosen based on previous studies in Sprague Dawley rats [55-58] which have 

shown that this dose is expected to achieve serum fluoxetine levels in the rat which 

are representative of the median serum concentration of fluoxetine (i.e., 450 

nmol/L) reported in humans [55, 150-153]. The same dose has been used and 

previously described in Wistar rats [154,155]. At birth (postnatal day 1; P1), pups 

were weighed and sexed and litters were culled to 10 pups per litter, preferentially 

selecting 5 male and 5 female offspring, to ensure uniformity of litter size between 

treated and control litters. Animals were sacrificed at P1, P21 and P6M to assess 

the effects of SSRI exposure in utero, at weaning (maximum amount of SSRI 

exposure) and adulthood to asses if effects lasted despite withdrawal of SSRI at 

weaning (Figure 1). Sex differences in serotonin signaling have been described in 

animals and humans [137-140], and therefore our analysis includes both male and 

female offspring.  
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3.2.2 Immunohistochemistry 

 

3.2.2.1 Enteric Nervous System 

 

Enteric neurons in the myenteric plexus were visualized in whole mount 

preparations of jejunum, ileum and colon at P1, P21 and P6M. Intestines were 

collected, fixed in 4% formaldehyde and stored in phosphate buffer saline (PBS) at 

4°C. For whole mount preparations, tissues were collected and fixed immediately 

following sacrifice, cut open longitudinally and pinned serosal side down in 

individual Petri dishes. For cross-sections preparations, tissues were cryoprotected 

by overnight incubation in 30% sucrose solution in PBS prior to embedding in 

Optimal Cutting Temperature (OCT) compound (Tissue-Tek, Miles Laboratories, 

Elkhart, IN, USA). For immunohistochemistry of whole mount preparations, 

tissues were permeabilized and blocked by incubation in PBS containing 0.4% 

Triton X-100 and 4% normal goat serum. Primary antibodies were applied 

overnight by incubation in 48 well plates at room temperature. Primary antibodies 

included biotinylated mouse monoclonal antibodies to anti-human neuronal protein 

HuC/HuD (anti-HuC/D; dilution 1:50; Molecular Probes, Invitrogen Canada Inc., 

Burlington, ON, Canada), and polyclonal rabbit anti-5HT (dilution 1:2000; 

ImmunoStar, Cedarlane Burlington, ON, Canada). Sites of antibody binding were 

detected by incubation for 2 hours at room temperature with donkey anti-rabbit 
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antibodies labeled with Alexa 594 (1:200; Molecular Probes), with streptavidin 

labeled with Alexa 488 (1:200; Molecular Probes) or with goat anti-rabbit 

antibodies labeled with Alexa 594 (1:200; Molecular Probes). In negative control 

preparations, no immunostaining was seen when primary antibodies were omitted 

(Figure 6). Labeled tissue sections were mounted in Vectashield medium (Vector 

Laboratories Canada Inc., Burlington, ON, Canada) to minimize fading (Figure 5 

& Figure 6). 

 

3.2.2.2 Enterochromaffin cells 

 

Cryostat sections were cut at 10 μm and thaw mounted onto Superfrost plus 

microscope slides (Thermo Scientific, Waltham, MA, USA) which were stored at 

-20°C until processed. Slides were air dried at room temperature and washed in 

PBS to remove OTC. Sections were circled in Gnome Ped hydrophobic marker 

(Frogga Bio, Toronto ON, Canada) and blocked with PBS containing 4% normal 

goat serum and 0.4% Triton-X-100 to prevent nonspecific binding. Polyclonal 

rabbit anti-5HT primary antibody was applied followed by goat anti-rabbit IgG 

conjugated Alexa Fluoro 488 for visualization of EC cells. Nuclei were labeled with 

fluorescent DNA stain bisbenzimide (Sigma-Aldrich, Oakville ON, Canada) and 

mounted with Vectashield mounting medium (Figure 8).  
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3.2.3 Image Analysis 

 

All slides were coded prior to analysis such that the investigator was blinded to the 

experimental condition. Immunostained tissue was photographed with Retina 

QImaging digital camera mounted on Leica DMRXA2 microscope (Nussloch, 

Germany) operated by a Macintosh computer (Apple Computers, Markham ON, 

Canada). Images were viewed and analyzed using Volocity Imaging software 

(Improvision Inc., Montreal QC, Canada).  Immunostained tissue was 

photographed at 40x objective in five selected fields and manually counted to assess 

relative density of myenteric neurons. The number of 5-HT positive cells were 

quantified by counting the number of 5-HT positive cells per 10 villus-crypt units 

(ileum) and 10 crypts (colon). The number of 5-HT positive cells were also 

quantified by number of 5-HT positive cells per surface area (um2) [156]. A total 

of 3 samples per slide was analyzed and the average number of EC cells calculated.  

 

3.2.4 Crypt/Villus Ratio 

 

At P1, P21 and P6M, tissue was fixed, cryoprotected as described above and 

mounted on slides as cross sections. Using computer imaging software Volocity 

(Improvision Inc., Montreal QC, Canada), photographs were taken, and the ruler 
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feature was used to measure the depth of the crypts in the colons and the height of 

the villi in the small intestine. The small intestine contains both crypt depth and 

villi height, therefore a ratio of crypt depth to villi height was calculated per 10 

complete villi as previously described [157]. As previously mentioned, crypt depth, 

villus height and the crypt ratio might provide further insight into the effects of 

SSRI exposure during the perinatal period and mucosal homeostasis.  

 

3.2.5 Statistical Analysis 

 

Data are presented as mean +/- standard deviation (SD). Statistical analysis was 

performed using unpaired non parametric T-test using Prism 7 (GraphPad 

Software, San Diego, CA) of SSRI exposed vs control for each sex. A p<0.05 was 

considered to be statistically significant.  

 

3.3 Results 

 

3.3.1 Enteric Nervous System 

 

To assess for the potential influence of perinatal SSRI exposure on the development 

of the ENS, whole mount preparations were examined at P1, P21 and P6M. At P1, 

a significant decrease percentage of serotonergic neurons was found in the SSRI-
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exposed female offspring colon (13.6% vs 9.3%; p=0.04, n=6-10) (Figure 2). 

However, no significant differences were found in the total number of enteric 

neurons nor in serotonergic neurons between SSRI-exposed and control offspring 

in the jejunum, ileum and male colon. At P21, significant differences were found 

in the percentage of serotonergic neurons in both SSRI-exposed female (1.4% vs 

7.6%; p=0.009) and male colons (1.7% vs 6.9%; p=0.002) (n=6-8) (Figure 3). No 

significant differences were found in the total number of enteric neurons nor 

serotonergic neurons in the ileum. At P6M, there was no significant difference in 

the percentage of total number of enteric neurons nor in serotonergic neurons 

between SSRI-exposed and control offspring (n=6-10) (Figure 4). 

 

3.3.2 Enterochromaffin cells 

 

Numbers of EC cells were assessed by immunohistochemistry with antibodies to 

5-HT in cross-sections of small and large intestine at P21 and P6M. P1 was 

excluded given that the tissue was technically changing to cut/examine given the 

relatively small tissue size. The quantification of EC cells was done per 10 crypt 

villi and by surface area for 3 samples per animal [137]. At P21, no significant 

differences were found in the SSRI-exposed female offspring colon (20.5 vs 16; p= 

0.6380 using the 10 crypt villi method and 2.937e-005 vs 2.148e-005; p= 0.2319 

using surface area), nor the SSRI- exposed male offspring colon (17.5 vs 16.5; p= 
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0.3934 and 2.882e-005 vs 2.123e-005; p= 0.2767). At P21, no significant 

differences were found in the SSRI-exposed female offspring ileum (31.5 vs 25; p= 

0.6373 and 1.674e-005 vs 1.223e-005; p= 0.8571) nor SSRI-exposed male 

offspring ileum (31 vs 36; p= 0.6373 and 1.559e-005 vs 1.807e-005; p= 0.1667). 

No significant difference was found in the number of EC cells in the SSRI-exposed 

offspring’s colon in either female (5 vs 8; p>0.9999) or male (6.5 vs 8; p= 0.3571) 

at P6M. There was also no significant difference in the SSRI-exposed offspring’s 

ileum in the female (8 vs 11; p= 0.4603) and male (15 vs 10; p= 0.1032) at P6M. 

At P21 (n=10-14 colon and n=3-6 ileum) and adult P6M, ECC number was not 

statistically significant using either method (Figure 7, Figure 9, and Figure 10).  

 

3.3.3 Crypt/Villus Ratio 

 

Crypt depth in the colon and villi height/crypt depth in the small intestine were 

measured using Volocity (Improvision Inc., Montreal QC, Canada). A villus to 

crypt ratio was also calculated in the small intestine in order to assess structural 

consequence related to serotonin signaling. At P1 and P6M there was no significant 

difference in crypt depth of the colon of SSRI-exposed vs control offspring (Figure 

11 & Figure 13). At P21, the crypt depth was significantly reduced in the SSRI-

exposed female offspring when compared to control (p= 0.03, n=3-7) (Figure 12).  
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At P1, P21 and P6M there was no significant different in the height of the villi, nor 

in the ratio of the villus to crypt in the small intestine of the SSRI- exposed vs 

control male offspring (n= 3-7).  
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CHAPTER 4: AIM 2- FUNCTION 

 

4.1 Background 

 

The results from Aim 1 of this study suggested that the structure of the ENS was 

altered, however, it remained to be determined whether there would be clinically 

relevant functional consequences related to intestinal motility. As described above, 

intestinal serotonin modulates the ENS development, motility, secretion and 

inflammation [158]. Another clinically relevant target for patients with delayed 

motility is the use of serotonin agonist and antagonist as pharmacologic therapy 

[158].   

Moreover, mucosal serotonin increases in intestinal inflammation (i.e. colitis) [118] 

and our results suggested altered numbers of serotonergic neurons in the ENS 

which could alter the mucosal immune response in colitis. Our results also showed 

changes in the crypt villus ratio in female SSRI-exposed offspring for which 

serotonin plays an important role in mucosal homeostasis [145].  

 

4.1.1 Serotonin and Inflammation 

 

5-HT influences activity of the effector cells of the adaptive and innate immune 

response [159]. For instance, T cells and macrophages have been shown to produce 
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5-HT, while murine and rat mast cells synthesize, store, secrete and uptake 

serotonin [160]. 5-HT has also been shown to affect chemotaxis, proliferation, 

leukocyte activation, anergy, cytokine secretion and apoptosis in immune cells 

[160,161]. 5-HT participates in cell-mediated immunity by facilitating lymphocyte 

trafficking through post-capillary venules, as is it vasoactive [162]. Serotonin also 

accumulates in sympathetic nerve terminals and after traveling through the axon 

and entering the synaptic vesicles and is co-released with norepinephrine [163]. 

Therefore, sympathetic innervation in gut-associated lymphoid tissue could be 

another source of 5-HT that regulates intestinal immunity. 

Recent animal studies of SSRI exposed offspring have demonstrated increased liver 

inflammation with sex variances [154]. SSRI-exposed male rat offspring had 

significantly higher mRNA expression of TNFα, IL6 and monocyte 

chemoattractant protein 1 [154]. The female SSRI-exposed offspring had higher 

levels of mRNA expression of  TNFα and increased macrophage infiltration [125].  

 

4.2 Methods 

 

4.2.1 Animal Experiments 

 

The same rats as described above in Aim 1were used to assess motility and response 

to experimental colitis using DSS.  
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4.2.2 Motility 

 

18 Wistar rats aged 6 months were used to measure motility patterns, as previously 

described [164]. 9 (5M, 4F) rats were offspring of mothers treated with SSRI as 

described above and 9 (4M, 5F) rat controls. Rats were euthanized by CO2 

asphyxiation. The small intestine and colon were dissected and placed in chilled 

Krebs solution (composed of (in mM) 120.35 NaCl, 5.9 KCl, 15.5 NaHCO3, 1.2 

NaH2PO4, 0.1 Citric acid ⋅H2O, 0.1 Aspartic acid, 2.5 CaCl2 ⋅2H2O, 1.2MgCl2 

⋅6H2O, 6 glucose) for preparation. The entire mesentery was cut away and luminal 

contents were gently flushed with saline solution (137 NaCl and 5.9 KCl). The 

small intestine was cut to 25-30 cm in length and the entire colon was used. The 

oral and anal ends of the tissues were cannulated with 3mm polyethylene tubing 

and secured with cotton string. The small intestine and colon were placed in 

individual organ baths containing 1L of oxygenated (95% oxygen, 5% CO2), 

warmed Krebs solution (pH 7.35, 36°C) which was continuously pumped to avoid 

precipitation of NaHCO3. The oral cannulas of the tissues were connected to a 

peristaltic pump (World Precision Instruments, Inc.) which pumped either Krebs 

solution into the small intestine or PBS ((in mmol/L) 117 NaCl, 10 Na2HPO4, 3.9 

KCl, 2 KH2PO4) into the colon. PBS was used in the colon as glucose has been 

shown to induce 5-HT release from enterochromaffin cells [165]. The anal cannulas 
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were placed on top of an adjustable stand, which was used to maintain an 

intraluminal pressure of 3cm H2O, from which the fluid freely dripped into a 

reservoir. After a 30-minute baseline period, the tissues were video recorded (1/3’ 

SONY Super HAD CCD, 700 TVL, and SONY Effio-E DSP) for 15 minutes twice 

under slow (0.14 mL/min), then fast (1.4 mL/min) perfusion speeds. Creation of 

spatiotemporal maps and all other analysis were carried out with custom plugins 

written for ImageJ (National Institutes of Health, Bethesda, MD), as described 

previously [163]. Propulsive contractions in the colon were expressed at Long 

Distance Contractions (LDCs) in the colon. This is synonymous with complex 

migrating motor complexes (CMMC) or colonic motor complexes (CMC) which 

are also frequently used as a description for colonic motility [166]. Pharmacology 

challenge with ondansetron (5-HT3 receptor antagonist) x 10 minutes and lidocaine 

(blockade of neural action potentials) x 10 minutes was done with the small 

intestine (Figure 15).  

 

4.2.3 Experimental colitis 

 

At P6M, a subset of the offspring was treated with dextran sulfate sodium (DSS) to 

assess susceptibility to colitis (n=5/sex/group for each DSS and control conditions). 

DSS was added to drinking water for a final concentration of 4% (w/v) for a total 

of 5 days, as previously described [124], using 20g of DSS (Sigma-Aldrich, Cat. 
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no 42867, molecular weight Mr 40,000, Oakville ON, Canada) added to 500 mL of 

autoclaved water. In the biosafety hood, 50 mL of 4% DSS was poured into Falcon 

tubes (Thermo Scientific, Waltham, MA, USA) one per cage. Drinking water was 

replaced with 4% DSS solution. Rats did not have any access to any other drinking 

water. Control rats received autoclaved drinking water alone. Rats weights and 

amount of 4% DSS solution consumed were recorded. Rats were monitored for 

dehydration and disease activity in accordance with Animal Utilization Protocol 

(AUP). At the end of the 5th day, colons were collected from DSS-treated and 

control offspring and scored for histological damage and MPO using the below 

validated protocols. 

Severity of experimental models of colitis can be made at the tissue level, through 

analysis of MPO [124] and cytokine production [124].  At the tissue level, 

previously published and validated protocols use histology into a standardized 

scoring system assessing the histopathological state of the intestine using 

hematoxylin & eosin stained colonic tissue sections. Colonic tissue fragments can 

be used to determine MPO activity. MPO is an enzyme released by granulocytes 

such as neutrophils and is used as a surrogate marker of inflammation. 
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4.2.4 Histologic Inflammation Score 

 

Colons were collected from male and female SSRI-exposed and control offspring 

at P21 and P6M receiving regular drinking water. Colons were also collected from 

the P6M subset of SSRI-exposed and control rats that received DSS. Sections were 

mounted in OTC (Tissue-Tek, Miles Laboratories, Elkhart, IN, USA) and frozen 

and stored in at -20°C. Cryostat sections were cut at 5 μm and thaw mounted onto 

Superfrost plus microscope slides (Thermo Scientific, Waltham, MA, USA) which 

were stored at -20°C until processed. Slides were air dried at room temperature and 

washed in PBS to remove OTC. They were subsequently stained with hematoxylin 

and eosin (H&E) (Figure 16) and scored using a previously established validated 

histology score to assess damage and inflammation (Table 1) [167]. Slides were 

placed in hematoxylin for 1 minute, then rinsed under running tap water for 5 

minutes. Slides were then placed in eosin for 30 seconds, then rinsed under running 

tap water for 5 minutes. Slides were subsequently dehydrated with one change of 5 

minutes in 95% alcohol, followed by 2 changes in 100% alcohol for 5 minutes. 

Slides were left in the fume hood to dry. Once dry, coverslips were mounted. The 

histological score considers changes in crypt architecture, cellular infiltration, 

goblet cell depletion, and crypt abscesses. Using a light microscope in the Dr. 

Waliul Khan Lab (Olympus CX31, Markham ON, Canada), sections were score 
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blinded to the various treatment groups. For consistency, all scoring was done by 

one person (KLP).  

 

4.2.5 Colonic Myeloperoxidase 

 

Colons collected from the above P6M subset of offspring treated with either 4% 

DSS or drinking water were collected for colonic myeloperoxidase assay (MPO). 

MPO activity was measured following a published protocol [168] in colonic tissue 

samples from SSRI-treated and control offspring. Weight of each sample after 

removing any feces and/or fat, using a pair of bent forceps/tweezers, were place 

into a 2 mL Eppendorf microcentrifuge tube with one homogenizer bead.  

Hexadecyltrimethylammonium bromide (HTAB) (Sigma-Aldrich, Cat. no. H5882-

100G, Oakville ON, Canada) buffer was added based on the weight of the tissue 

sample. Tissue was then homogenized with tissue homogenizer (Retsch® Mixer 

Mill MM 301, Retsch USA Verder Scientific, Inc., Newtown, PA) for 4 min at 30 

Hz. The homogenizer bead was removed using forceps. Once tissue had been 

homogenized, samples were centrifuged (6 min, 13400 x g, 4°C). The supernatant 

was collected, and the resulting pellet discarded. Supernatant samples were stored 

at -80°C until use. Subsequently at the time of analysis, O-dianisidine solution was 

prepared fresh for every assay. Tissue homogenates in triplicate was added into a 

96-well plate. Absorbance at 450 nm was measured using a spectrophotometer. 
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Three readings at 30 second intervals were recorded. MPO activity was calculated 

as follows: MPO activity was measured in units (U) of MPO/mg tissue, where one 

unit of MPO is defined as the amount needed to degrade 1 μmoL of  H2O2 per 

minute at room temperature. Considering that one unit (U) of MPO = 1 μmoL of 

H2O2 split and that 1 μmoL of H2O2 gives a change of absorbance of 1.13 x 10-2 

nm/min, units of MPO in each sample was determined as change in absorbance 

[ΔA(t2-t1)]/Δmin x (1.13 x 10-2). MPO activity is expressed in units per milligram 

of wet tissue, where 1 U is the quantity of enzyme able to convert 1 mmol hydrogen 

peroxide to water in 1 min at room temperature. 

 

4.2.6 Assessment of Tight Junction Proteins by Immunohistochemistry 

 

Immunofluorescence was performed in accordance with the established protocol as 

previously described.  When quantifying apical tight junction proteins, the primary 

antibodies used were rabbit anti-occludin polyclonal antibody (Life Technologies 

Inc, Cat. no PA520755, Burlington ON, Canada) and rabbit anti-zonula occludens-

1 (ZO-1) polyclonal antibody (Life Technologies Inc, cat. no 617300, Burlington 

ON, Canada). The secondary antibody was goat anti-rabbit Alexa Flour 488 

(Thermo Scientific, Cat. no A-11008 Waltham, MA, USA).  

Sections of the SSRI-exposed and control offspring at P6M were placed in Optimal 

Tissue Compound (OTC) (Tissue Tek, VWR International, Cat no. 4583, 
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Mississauga, ON Canada) and frozen at 20°C. Cryostat sections were cut at 5 μm 

and thaw mounted onto Superfrost plus microscope slides (Thermo Scientific, 

Waltham, MA, USA) which were stored at -20°C until processed. Slides were air 

dried at room temperature and washed in PBS to remove OTC (Tissue Tek, VWR 

International, Cat no. 4583, Mississauga, ON Canada). Once dried, circles where 

drawn around the tissue samples using Hydrophobic pen (Cederlane, Cat. no. 

Vector H-4000, Burlington ON, Canada). A blocking/diluent buffer was prepared 

using normal goat serum (Life Technologies Inc, cat. no. 16210064, Burlington 

ON, Canada), 0.4% Triton x-100 (Sigma Aldrich, cat. no 11332481001, Oakville 

ON, Canada) and PBS. Once hydrophobic pen (Cederlane, Cat. no. Vector H-4000, 

Burlington ON, Canada) had dried, blocking buffer was applied to the tissue 

samples for 1 hour at room temperature. Blocking buffer was then removed prior 

to placement of primary antibody (either zonulin-1 or occludins) in a 1:2000 

dilution with the blocking buffer and was incubated overnight (12-18 hours) at 

room temperature. Primary antibodies where then removed in 3 washes of 5 

minutes of PBS in Coplin jars (Thermo Scientific, Cat. no 22-038-489 Waltham, 

MA) on an orbital shaker (Barnstead Lab-Line 2309 Multi-Purpose Rotator, USA). 

Secondary antibody goat anti-rabbit Alexa Fluoro 488 (Thermo Scientific, Cat. no 

A-11008, Waltham, MA) was applied in a 1:200 dilution with the blocking buffer 

and incubated for 2-3 hours at room temperature. Secondary antibodies where then 

removed in 3 washes of 5 minutes of PBS in Coplin jars (Thermo Scientific, Cat. 
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no 22-038-489 Waltham, MA) on an orbital shaker (Barnstead Lab-Line 2309 

Multi-Purpose Rotator, USA). The intestinal epithelial nuclei of the mucosa were 

labelled with bisbenzimide (Sigma Aldrich, cat. no. H33258, Oakville ON, Canada) 

as a counterstain for visualizing architecture. 1ug/ml Bisbenzimide (Sigma Aldrich, 

cat. no H33258, Oakville ON, Canada) was incubated on the slide for 4 min at room 

temperature and then washed for 5 minutes in water followed by 2 exchanges in 

PBS for 5 minutes. Slides were drained and mounted with a coverslip using 

mounting medium Vectashield (MJS BioLynx, Vector H-1000, Brockville ON, 

Canada) (Figure 18 & Figure 19).  

 

4.2.7 Image Analysis 

 

The difference in the quantity of tight junctions at P6M was visualized with 

immunofluorescence staining to occludin and ZO-1 antibodies and measured as 

fluorescence intensity using Volocity (Improvision Inc., Montreal QC, Canada). 

Colonic samples were measured in duplicate; 3 images per sample were taken at 

20X magnification for a total of 6 images per animal. A protocol provided by the 

Verdu lab using ImageJ for measuring intensity was adapted to Volocity 

(Improvision Inc., Montreal QC, Canada) with the help of technical support from 

Volocity. This protocol included measuring standard deviation intensity per 

specified region (surface area) of interest. The region of interest in each image was 
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identified based on the following criteria: apical portion (1/3) of the intestinal crypt 

of approximately 100,000 micrometers in surface area. Once the area of interest 

was identified and selected, a series of objects with a unique intensity was 

computed by Volocity. The fluorescence intensity for each image was measured as 

weighted average in each object within the selected region of interest (ROI). The 

intensity was reported as average of intensities per object. The fluorescence 

intensity for each slide was calculated as the average of 6 images in SSRI-exposed 

and control groups as demonstrated below. 

Sample Calculations  

 

Fluorescence Intensity Average Per Slide (3 Samples) =  
"#$%	'%(#%)*(+	,-	.$/01#	1	 + 	"#$%	'%(#)%*(+	,-	.$/01#	2 + ⋯	

6	,-	.$/01#  

Fluorescence Intensity Per Sample = 
'%(#%)*(+	,-	'/$7#	1	 + 	'%(#%)*(+	,-	'/$7#	2 + ⋯	

6	,-	'/$7#)  

 

 

4.2.8 Serotonin and Inflammation: Quantitative Gene Expression by Nanostring  

 

After reviewing immunology of DSS colitis in rats [169-172], we developed an 83 

gene code set with Dr. Carl Richards Lab for Nanostring genomic analysis (RatE 

code set).  
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mRNA was extracted from colonic tissue of DSS treated and water treated rats 

using commercially available Qiagen RNA Easy kits (Qiagen, Cat no. 74104, 

Toronto ON, Canada). 20-30 mg of colonic tissue was placed directly in a 

DNAse/RNAse free 1.5 mL microcentrifuge tube (Fisher Scientific Company, Cat. 

no 05-408-130, Ottawa ON, Canada) containing a metal bead with RLT buffer 

containing 2-Mercaptoethanol (2-ME) (Life Technologies Inc., Cat no. 21985023, 

Burlington ON, Canada). The tissue was homogenized using Retsch® Mixer Mill 

MM 301 (Retsch USA Verder Scientific, Inc., Newtown, PA) in Dr. Waliul Khan’s 

Lab for 2 min at 30 Hz in pre-cooled -200C tube holder. The homogenizer bead was 

removed using forceps. Once tissue had been homogenized, samples were 

centrifuged (3 min, 13400 x g, 4°C). The supernatant was collected, and the 

resulting pellet discarded. 70% ethanol was added to the cleared supernatant and 

mix immediately by pipetting. Up to 700 μl of the sample was transferred to a 

RNeasy spin column placed in a 2 ml collection tube and centrifuge for 15 s at 

10,000 rpm. The flow-through was discarded. 700 μl Buffer RW1 was then added 

to the RNeasy spin column and centrifuge for 15 s at 10,000 rpm. The flow-through 

was discarded. 500 μl Buffer RPE was added to the RNeasy spin column and 

centrifuge for 15 s at 10,000 rpm. The flow-through was discarded. 500 μl Buffer 

RPE was added to the RNeasy spin column and centrifuge 2 min at 10,000 rpm. 

The RNeasy spin column was placed in a new 2 ml collection tube and centrifuge 

at full speed for 1 min. The RNeasy spin column in a new 1.5 ml collection tube, 
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45 μl of RNase-free water was added directly to the middle of spin column 

membrane and centrifuge for 1 min at 10,000 rpm to elute the RNA. The mRNA 

concentration and quality were assessed using Nanodrop 2000 (Thermo Scientific, 

Cat. no ND 2000, Waltham, MA) in Dr. Deborah Sloboda Lab and normalized to a 

concentration of 100 ng/μL. Samples were stored in -80°C freezer until processing 

in the Farncombe Metagenomics Facility by Nanostring (Figure 21). Prior to 

samples being run, they were analyzed once more by the Farncombe Metagenomics 

Facility Bioanalyzer to ensure adequate sample integrity and consistent results with 

Nanodrop 2000. Bioanalyzer results confirmed concentration and sample quality 

prior to analysis. Results were normalized in computer program nSolver 4.0 

Analysis Software (NanoString Technologies, Inc. Seattle, Washington USA) prior 

to statistical analysis using housekeeping genes Beta Actin, YWHAZ and PGK1.  

 

4.3 Results 

 

4.3.1 Motility 

 

Small intestinal motility did not appear altered while colonic motility was 

significantly altered at P6M. The nomenclature for propulsive contractions is 

diverse including complex migrating motor patterns (CMMC), colonic motor 

complexes and long-distance contractions (LDCs) [173]. Our results are expressed 
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using LDC’s as the description for propulsive contractions in the colon. There was 

an increased frequency of long-distance contractions (LDCs) in the SSRI-exposed 

vs control offspring (p = 0.04; n=9) colon at P6M which suggest that colonic 

contents move significantly faster through the colon of our SSRI exposed offspring. 

The velocity of LDCs was also increased in the SSRI-exposed offspring (p = 0.03; 

n=9) in the colon at P6M. There was no significant difference between the SSRI 

exposed and control offspring in terms of propagation distance of LDCs (p = 0.39; 

n=9). It was noted that using lower pressure vs higher pressure did not result in 

statistically significant difference in LCDs between SSRI-exposed and control 

offspring (p = 0.06; n=9).  

The pattern of small bowel motility did not show statistically significant changes 

in magnitude nor frequency of contractions on SSRI-exposed offspring at P6M. 

There was also no significant different in frequency of contractions at P6M in the 

small intestine with pharmacologic challenge of Ondansetron or Lidocaine (Figure 

14).  

 

4.3.2 Histologic Inflammation Score 

 

Fetal and neonatal exposure to SSRI did not significantly affect intestinal 

microscopic disease at P21 or P6M. Moreover, there was no difference in severity 

of DSS colitis between control and SSRI-exposed offspring at P6M, although the 



M.Sc. Thesis- K. Prowse- McMaster University- Medical Sciences 

 40 

female offspring born to SSRI-treated mothers tended to have a higher microscopic 

colitis score (p = 0.056; n = 9-11) (Figure 17).  

 

4.3.3 Colonic Myeloperoxidase 

 

At P6M, MPO increased significantly in the DSS treated vs water treated animals 

(female water vs female DSS, p= 0.0079; male water vs male DSS, p= 0.0079; n 

=5 per group). MPO was also significantly increased in the SSRI exposed-offspring 

at P6M (female SSRI-exposed water vs female SSRI-exposed DSS, p=0.02; male 

SSRI-exposed water vs male SSRI-exposed DSS, p=0.004; n=5-6 per group). 

Although MPO activity was increased as expected in the DSS treated animals, there 

was no significant effect of SSRI exposure in utero (Figure 17). 

 

4.3.4 Assessment of Tight Junction Proteins by Immunohistochemistry 

 

An unpaired t-test was performed to analyze whether there was a significant 

difference in TJ quantity at P6M, calculated as difference in fluorescence intensity, 

between SSRI-exposed (n = 3-5) and control offspring in the colon. The difference 

in fluorescence intensity, measured as weighted average of object intensities, 

between the SSRI-exposed (n = 3-5) and control (n = 3-5) in colon cross sections 

stained for occludin was not statistically significant (female SSRI-exposed 
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offspring vs female control, p= 0.86; male SSRI-exposed offspring vs male control, 

p= 0.35). The difference in fluorescence intensity, measured as weighted average 

of object intensities, between the SSRI-exposed and control in colon cross sections 

stained for ZO-1 was statistically significantly increased in SSRI-exposed male 

offspring (male SSRI exposed vs male control, p = 0.04; n = 3-5), but not in females 

(female SSRI-exposed offspring vs female control, p= 0.40; n = 3-5) (Figure 20).  

 

4.3.5 Serotonin and Inflammation: Gene Expression by Nanostring 

 

Colonic mRNA gene expression by Nanostring was significantly different 

depending on sex and SSRI-exposure in chemically induced DSS colitis.  Although 

some of our top gene targets, consistent with existing DSS colitis literature in rat 

[169-172] were statistically significantly altered which included IL-1β, CCL2, IL-

6 and IL-4; TNF-α was not significantly different. We were also interested in the 

additional pathways currently being explored as therapeutic targets superficially for 

IBD [174] such as the JAK-STAT pathways which we did not come across in our 

literature review. Moreover, despite our model of DSS being an acute model we 

wondered if some of the markers for wound healing and fibrosis might be involved 

as early as the initial acute inflammatory insult, which might suggest a more 

aggressive inflammatory response in the SSRI exposed compare to control 

offspring. Finally, IL-31 has been described as a mediator of pro-inflammatory 
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subepithelial myofibroblasts in the human colon and therefore was also of interest 

[175]. 

The statistical analysis was done for significant p-value using unpaired t-tests with 

the two SSRI-exposed offspring groups (male and female separately) and the 

control group (male and female separately).  

The following housekeeping genes were selected beta (β)-actin (ACTB), 

Phosphoglycerate kinase 1(PGK1) and Tyrosine 3-Monooxygenase/Tryptophan 5-

Monooxygenase Activation Protein Zeta (YWHAZ) which are required for basic 

cell function and were not statistically significantly different between groups.  

At P6M, in the SSRI-exposed offspring treated with DSS compared to the SSRI-

exposed given normal drinking water, mRNA levels in the colon were significantly 

elevated for the following targets (n = 6 SSRI-exposed control males, n = 5 SSRI-

exposed DSS male): gene encoding cytokines; Interleukin 1 alpha (IL1A; p = 

0.009), Interleukin 31 Receptor A (IL31RA; p = 0.02), and Resistin-like molecule 

beta/FIZZ2 (Retnlb; p = 0.02), enzymes; Matrix Metallopeptidase 7 (MMP7; p = 

0.03), and gene encoding proteins; Mannose Receptor C- Type 1 (MRC1; p = 0.03) 

and TIMP1 (p = 0.004) (Figure 28). 

Colonic levels of tissue mRNA were significantly elevated in SSRI-exposed DSS 

female compared to SSRI-exposed female water controls in the following targets 

(n = 4 SSRI-exposed control female, n = 5 SSRI-exposed DSS female): gene encoding 

cytokines; Interleukin 11 receptor, alpha chain 1 (IL11RA1; p = 0.02), Interleukin 
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31 Receptor A (IL31RA; p = 0.03), and Interleukin 6 Signal Transducer (IL6ST; p 

= 0.03), gene encoding proteins; Chemokine Ligand 2 (CCL-2 p = 0.02), Ciliary 

neurotrophic factor (CNTF; p = 0.03), High mobility group box 1 (HMGB1; p = 

0.02), MRC1 (p = 0.03), Secreted Frizzled Related Protein 1 (SFRP1; p = 0.02), and 

STAT3 (p = 0.03) (Figure 28).  

In the DSS control offspring, colonic levels of tissue mRNA were significantly 

elevated in DSS male control offspring compared to male water control offspring 

in the following gene targets (n = 5 male control, male DSS, female control, and 

female DSS): gene encoding cytokines: Interleukin 1 beta (IL-1B; p = 0.008), 

interleukin 4 receptor (IL-4R; p = 0.008), gene encoding proteins; C-C Motif 

Chemokine Ligand 2 (CCL2; p = 0.03), Mannose Receptor C- Type 1 (MRC1; p = 

0.02), Oncostatin M Receptor (OSMR; p = 0.02), Transforming Growth Factor 

Beta 1 (TGFB1; p = 0.03), Signal transducer and activator of transcription 3 

(STAT3; p = 0.02), and tissue inhibitor of metalloproteinases (TIMP1; p = 0.03) 

(Figure 22). Colonic levels of tissue mRNA were statistically significantly elevated 

in DSS female compared to water controls in the Collagen Type III Alpha 1 Chain 

(COL3A1; p = 0.008) gene encoding protein. Colonic levels of tissue mRNA were 

statistically significantly decreased in DSS male and female compared to water 

control offspring for Interleukin-17A (IL17; p = 0.008) gene encoding cytokine 

(Figure 23).  Figure 32 represents Venn diagram of overlapping significant 

quantitative mRNA in each group. 
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CHAPTER 5: DISCUSSION 

 

Increasing evidence suggests that early life events may have an impact on adult 

health and disease [176]. The incidence and prevalence of antepartum depression 

treated with pharmacologic therapy is increasing [43]. There is also increasing 

prevalence of gastrointestinal disease such as IBS and IBD [177]. Previous studies 

have demonstrated an effect of SSRI exposure in utero on the developing CNS but 

the ENS and response to inflammation has been less well characterized. Given, that 

a large and increasing number of women are prescribed SSRI’s during the perinatal 

period it is important to assess any possible effect on the developing offspring’s 

gastrointestinal tract.  

 

Our findings suggest that SSRI-exposure affects the development of the ENS but 

that these changes do not persist over time. There was no significant difference on 

the EC cell numbers. However, despite the fact that the ENS appeared structurally 

normal at P6M, colonic motility was affected. The crypt depth was decreased at 

P21 in the SSRI-exposed female offspring which correlated with maximal exposure 

to SSRI, but architecture was otherwise preserved, and these changes also did not 

persist into adulthood. The severity of chemically induced colitis was not 

significantly different nor was the amount of colonic myeloperoxidase in the SSRI-

exposed offspring. Given that we are seeing an increase in inflammatory bowel 
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disease in the under 10-year-old age group in Canada [178], perhaps repeating the 

DSS experiment at an earlier timepoint would yield different results. P6M was 

selected as the timepoint for DSS colitis based on preliminary data of microbiota 

profiling which demonstrated a decrease in Bifidobacterium in SSRI-treated 

offspring. Human studies have demonstrated the clinical benefits of 

Bifidobacterium in the management of IBD and animal studies have demonstrated 

that Bifidobacterium species can have direct effects on the intestinal mucosa 

[179,180] and the ENS including inhibition after-hyperpolarizing neuronal 

excitability and vagal nerve stimulation [181, 182]. There were significant 

differences in the quantity of colonic mRNA tissue expression. Moreover, we found 

sex related differences in each variable assessed.  

 

5.1 Influence on Intestinal Microanatomy  

 

Assessment of mucosal epithelial maintenance and integrity can be quantified by 

analysis of the relative height of the villus to the depth of the crypt in the small 

intestine and by the depth of the crypt in the colon [157]. Literature has 

demonstrated altered crypt villus ratio in an SSRI exposed mouse model [183]. We 

found a statistically significant decrease in colon crypt depth at P21 in SSRI-

exposed females which correlates to maximal exposure to SSRI. We did not 

demonstrate changes in crypt/villus ratio in the small intestine. This suggests that 
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the mucosal microanatomy is preserved in SSRI-exposed rat offspring with the 

exception of the female colon at P21. It is possible that the mucosal anatomic 

disturbance resolves once exposure to the SSRI is discontinued given that the 

mucosal epithelial cells are constantly being regenerated. It is also plausible that 

the sex related differences may be due to having differences in serotonin signaling 

or sensitivity to serotonin perturbations in the female offspring similar to  previous 

animal and human studies mentioned above [137,138]. Finally, there may be 

hormonal differences, however, this would require further investigation.  

The decrease in colonic crypt depth may help explain why we did not see a 

difference in the total number of EC cells as we had expected. Since the absolute 

number of EC cells was unchanged but the surface area was less, this may suggest 

that there are more EC cells in a smaller surface area. However, when we quantified 

the number of EC cells by surface area (SA) there was still no significant difference.  

 

5.2 Influence of SSRI’s on the Developing Enteric Nervous System and 

Serotonergic System 

 

The percentage of serotonergic neurons were significantly reduced in the female 

colon at P1. At P21, there was a significant increase in the percentage of 

serotonergic neurons. One theory is that the pregnant dam may have higher 

circulating levels of SSRI’s which increase extracellular serotonin and may down-
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regulate the expression of serotonergic neurons in utero. After delivery, the 

offspring may have a rebound increase in enteric neurons given that the SSRI 

appears to be less bioavailable in breastmilk than maternal circulating blood. At 

P6M, there were no statistically significant differences in the percentage of 

serotonergic neurons between SSRI exposed and control offspring which may be 

secondary to the plasticity of the enteric nervous system once SSRI exposure is no 

longer present. 

We did not find structural differences in the number of EC cells in the colon at 

P6M, however our colonic motility data had a significant increase in the LDC 

frequency and velocity. LDC’s are migrating propulsive contractions that travel 

long distances from the proximal end toward the anal end of the colon [184]. These 

contractions are usually larger and longer, originating in the small intestine. 

Increased frequency and velocity of these LDC’s would suggest that they travel 

faster through the colon which we might expect to present clinically with diarrhea. 

It is plausible that this increase in the frequency and velocity of LDC’s is associated 

with abnormal serotonin signaling which may be lasting consequences of 

structurally abnormal ENS and warrants further investigation. This may also be a 

consequence of abnormal 5-HT3 or 5-HT4 receptors which play a role in motility 

[104].  Serotonin is involved in motility; increased serotonin increases motility 

[104]. We observed an increase in serotonergic neurons at P21 in the colon which 

correlates to the point of maximal exposure to SSRI, suggesting the effect of SSRI 
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exposure may have lasting functional effects despite resolution of the structural 

changes.  It is also possible that the effects on motility are related to the release of 

serotonin from the EC cells or serotonergic neurons, or quantitative amounts of 

serotonin in tissue which may be altered in our animal model. This also  warrants 

further investigation.  

 

5.3 Functional Consequences of SSRI Treatment on Motility 

 

We observed the frequency and velocity of LDCs in the colon of SSRI-exposed 

offspring were significantly increased at P6M which may suggest that despite the 

structurally normal colon, the effects of SSRI exposure may have long term 

functional consequences.  

This is clinically relevant as it may be similar to patients with IBS in which the 

colon is structurally normal but clinically, they have increased motility, decreased 

motility or a mix of alternating increased and decreased motility manifested as 

diarrhea or constipation. The pathophysiology of IBS remains unclear but 

treatments for this gastrointestinal entity often include medications that work on 5-

HT3 and 5-HT4 which are involved in GI motility. Clinically studies have also 

demonstrated alterations in 5-HT in intestinal mucosa of IBS patients in comparison 

to healthy controls [185]. Other symptoms include bloating, abdominal pain or 
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visceral hypersensitivity which were not assessed in this model and remain an area 

for future exploration.  

 

5.4 Increased Susceptibility to Chemically Induced Colitis 

 

There was no increased susceptibility to colitis in the SSRI-exposed vs control 

offspring at P6M. P6M was chosen as the timepoint to assess the effects of DSS 

colitis in order to test the hypothesis about developmental origins of disease [186]. 

In other words, assessing whether early exposure to SSRI could influence 

susceptibility to colitis in adults. DSS is toxic to the mucosal epithelial due to its 

highly negative charged sulfate group which results in erosions and increased 

intestinal permeability [169-172]. This inciting factor contributes to the burden of 

reactive oxygen species (ROS) which are also by products of normal cellular 

metabolism and can be beneficial at low levels (helps with host defense against 

invading pathogens, wound healing, tissue repair, etc.) [187]. When ROS are 

disproportionately high homeostasis is disrupted and results in oxidative tissue 

damage. It appears that immune response in DSS colitis is maintained in this rat 

model which suggests that the mechanism of oxidative stress (ROS) on mucosal 

epithelial cells is not influenced by SSRI-exposure. DSS has been used in both 

acute and chronic models of colitis [124]. Our group chose an acute model of colitis 

to assess for increased susceptibility. Given that recent literature assessing 
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pathways in IBD involved some of the cytokines involved in fibrosis (like OSM) 

[174] and wound healing (COL3A1) we assessed markers of fibrosis in our acute 

DSS model which is novel. Typically, these genes would be assessed in a chronic 

colitis model. Interestingly, we did find changes in COL3A1 and OSMR as 

described above.  

Although colonic MPO was significantly increased in the DSS induced colitis rats, 

there was no difference between the SSRI-exposed and control offspring which 

supports that chemical induced colitis at P6M does not appear to be influenced by 

early life exposure to SSRIs.  

We know that in the mammalian bowel, neuroendocrine signaling is important in 

aiding innate and adaptive immune response [177], specifically macrophages and 

lymphocytes [188]. Mice lacking SERT (SERT KO) had worsening response to 

another chemically induced colitis 2,4,6-trinitrobenzene sulfonic acid (TNBS), 

which suggests that 5-HT has a pro-inflammatory effect [177]. Given our animals 

did not have a significant difference in the structural component of the ENS nor EC 

cells which comprise the serotonergic signaling at the P6M, this could explain why 

we did not find an increased inflammatory response. Perhaps had we done the DSS 

experiment at P21, where there were structural changes in the ENS, we might have 

seen this effect.   
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5.5 Increased Intestinal Permeability and Inflammatory Bowel Disease  

 

Increased intestinal permeability is seen in IBD but also in healthy first-degree 

relatives [186] and although the pathophysiology of IBD remains unknown, 

increased intestinal permeability is thought to be an important factor [188]. We also 

know that the prevalence of IBD is increasing, and in the pediatric population, the 

less than 10 age group has the most rapidly increasing rate, which could suggest 

early life factors such as an in-utero exposure may contribute to the burden of 

intestinal inflammatory bowel disease [189]. Literature has demonstrated SERT 

KO mice and SSRI-exposed mice offspring have increased intestinal permeability 

[183]. We had therefore expected our SSRI-exposed rat offspring to show increased 

intestinal permeability and potentially increased susceptibility to chemically 

induced colitis. We observed a significant increase in ZO-1 in the SSRI exposed 

male at P6M. It is unclear at this time whether this is a compensatory mechanism 

or whether at a different timepoint (i.e. P21, point of maximal exposure) we might 

have observed a different phenotype more consistent with the published literature, 

in light of the ongoing exposure to SSRI at P21.  
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5.6 Altered Immune Response in Perturbed Serotonin Signaling 

 

The release of norepinephrine from vagal control has been shown to target a 

specific memory T cell population producing acetylcholine (ChAT) [190]. ChAT 

positive fibers originating mainly in the enteric nervous system (and peyer patches, 

however no neuronal contact) are in close proximity to intestinal macrophages in 

the muscularis [191]. Vasoactive intestinal peptide (VIP) is another neuropeptide 

in the ENS which has been shown to modulate dendritic cell (DC) activity [192] 

and is thought to potentially interfere with both innate and adaptive immunity [193].  

DCs in the intestine express the 5-HT7 receptor, however controversy remains 

whether the effects are pro or anti-inflammatory [177] which remains to be 

explored. 5-HT has also been shown to increase cAMP in DCs [194]. These 

findings demonstrate an association between our ENS and inflammatory pathways 

which are less well understood.  

The immune system target genes via quantitative mRNA between the male DSS 

control and male SSRI-exposed DSS offspring are almost entirely different with 

the exception of MRC1 and TIMP (Figure 32) . The female control DSS group (not 

exposed to SSRI) had many more significantly elevated mRNA for selected gene 

targets in comparison to the SSRI-exposed DSS female counterparts. Given that 

pregnancy is a proinflammatory state, it is possible that there are hormonal 

differences that make the female rat more resistant to the number or quantity of 
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mRNA gene targets of interest in DSS induced colitis, although clinical phenotype 

is similar, the biochemical reactions may be different with SSRI-exposure which 

warrants further investigation.  

Finally, in terms of target gene grouping and associations, IL6ST has shared signal 

transduction and receptor system with CNTF and OSMR [195]. OSMR associated 

with IL31 and IL31RA to activate STAT3 [196]. IL31 has been associated with 

stimulation of colonic myofibroblast in humans [197]. IL11RA1 is similar in 

structure to CNTF [198]. IL6ST and IL31RA identified at loci for CD [199]. CNTF 

identified as gene loci for IBD in genome-wide association study (GWAS) and 

immunochip studies [199]. Increased TGFB1 leads to decreased IL17A  [200] 

which was consistent in our findings suggesting neutrophils attraction occurs by 

another mechanism. HMGB1 is thought to contribute to pathogenesis of IBD [201]. 

HMGB1 antagonist reduce inflammatory reaction and ameliorate colitis in rodent 

models [201]. 

 

5.7 Sex Dependent Differences in Serotonin Signaling 

Our results suggest sex dependent difference exist as we observed altered number 

of serotonergic neurons in the SSRI exposed offspring at P1 and P21 in the female 

colon, decreased crypt length at P21 in the SSRI exposed offspring female colon, 

increased ZO-1 in the SSRI exposed male colon, and a number of quantitative 

mRNA genes that were significantly elevated in the SSRI exposed male offspring. 
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Animal studies have demonstrated central 5-HT levels, as well as cerebrospinal 

fluid concentrations of the 5-HT metabolite 5-hydroxyindole-3-acetic acid (5-

HIAA), are significantly higher in female compared to male rats [138].  

There is also emerging evidence to support the concept of sex-dependent 

differences in the serotonergic system of the ENS, as well as the CNS.  Colonic 

extracellular 5-HT visceral hypersensitivity and hyperexcitability of colon 

projecting sensory neurons have been shown to be increased in female compared 

to male rats [139].  Identification of a sex specific role for the microbiota in the 

regulation of CNS serotonergic neurotransmission has been described, thereby 

linking the sex specific effects of 5-HT on the gut with the CNS [140].  

In rats, 5-HT has been shown to reduce the concentration of testosterone in testis 

and SSRI which increases circulating 5-HT in synapses has been shown to decrease 

circulating estrogen [202, 203, 204]. In human studies, 5-HT has been shown to 

increase secretion of aldosterone in the adrenal cortex [205].  

Clinically, IBS has female predominance and there is a body of literature looking 

at the effects of estrogen on the serotonergic pathways [ 206]. 5-HT3 is involved in 

motility and visceral pain which has been exploited in the treatment of IBS [207]. 

5-HT plasma concentration has been demonstrated to be influenced by sex and IBS 

subtype in human studies. IBS-D female patients had higher postprandial plasma 

5-HT concentrations than health controls. IBS-C female patients had lower 

postprandial [208, 209]. Human studies have also demonstrated that men with IBS 
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have higher platelet SERT levels than healthy controls [210]. These studies and our 

results suggest that there are sex related differences and in our study these 

mechanisms warrant further exploration.  

 

5.8 Limitations 

 

One of the limitations of this study with respect to the animal experiments were the 

challenges in controlling for stress from handling the rats. We ensured minimal and 

similar handling of the rats to the best of our ability. Another experimental study 

limitation was not assessing the functional consequences at each time point and 

most specially at P21-26 which correlates to the point of maximal exposure to the 

SSRI. Experiments with DSS colitis would not have been feasible at the P1 

timepoint as they require 5 days to complete and the rats are consuming breastmilk 

at this time.  

An alternate mechanism to assess intestinal permeability would have been useful, 

not only assessing ZO-1 and occludins but also assessing permeability using an 

Ussing chamber. The method of quantification used to determine ZO-1 and 

occludins using Volocity, although very similar to established protocols using 

ImageJ, needs to be validated. 

One of the challenges with the Nanostring data is that the Farncombe 

Metagenomics Facility changed their reagents between the two experiments 
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(experiment 1; control DSS vs control water, experiment 2; SSRI-exposed DSS vs 

SSRI-exposed water). Although we re-ran some samples and normalized the data 

in nSolver (NanoString Technologies, Inc. Seattle, Washington USA) to ensure no 

significant differences, it is possible that this is an area of potential error and for 

that reason the analysis does not compare directly SSRI exposed vs control 

offspring. In addition, we should confirm our Nanostring results by qPCR prior to 

determining protein level with ELISA. We also did not check MUC2 which is a 

gene involved in intestinal mucous secretion as an insoluble mucous barrier that 

protects the gut lumen which would be another important factor to assess.  

Finally, an opportunity and limitation to this study, is the lack of information on the 

hormonal fluctuations which might have helped explain mechanisms underlying 

the sex difference. Despite the fact that the differences were seen prior to gonadal 

steroid production, it would have been beneficial to look at sex hormones 

fluctuations prior to sexual maturity, as well as cortisol, as these hormones have 

previously been shown to influence serotonin concentration. In addition to 

hormonal fluctuations, it would have been useful to look at 5-HT and SERT 

concentration in plasma and tissue to see if this might have helped explain some of 

the sex differences as previously demonstrated in human studies of IBS.  
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5.9 Future Directions 

 

The observed sex differences prompt further exploration addressing the influence 

of sex and stress hormones. Physiologic fluctuations of estrogen during our 

lifespan, ovarian cycles and menopause have been shown to have predictable 

effects on serotonin by increasing TPH and inhibiting the expression of the gene 

for SERT [211] resulting in increased extracellular serotonin concentrations. 

Changes in estrogen occur in conjunction with progesterone making it another 

important hormone to look at when assessing changes in estrogen in relationship to 

serotonin levels, serotonin metabolites and receptors.  

Another clinically meaningful and important hormone is cortisol which increases 

during times of stress and is referred to as a stress hormone. Cortisol is known to 

reduce serotonin concentrations [212] and therefore would be another important 

hormone to consider measuring.  

The Nanostring results are interesting but they leave an opportunity for a future 

direction which would include confirmation of Nanostring results with quantitative 

PCR and targeted cytokine measurements at the protein level using enzyme-linked 

immunosorbent assay (ELISA). Moreover, given the interaction between the 

microbiota and the mucosal immune system, it would be important to assess for 

any significant differences between the  SSRI-exposed and control offspring in our 

study. SERT KO rats in combination with early life stress (maternal separation) 
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have demonstrated changes in microbial composition including increased 

abundance of Desulfovibrio, Mucispirillum, and Fusobacterium, all of which are 

reported to be associated with intestinal inflammation [213]. In assessing the 

microbiota, in addition to assess relative abundance of species between samples, 

looking at metabolic by-products such as short chain fatty acids could also help 

understand any differences in the mucosal immune response which one might 

anticipated based on differences observed in quantitative mRNA of selected target 

genes. Stool samples would be collected at each timepoint including a maternal 

stool sample and sent for sequencing for 16 sRNA. Once analyzed, utilizing a 

computer software program such as R or QIIME, we could determine the relative 

abundance of various organisms and assess for any significant differences.  

Additional limitations of this study design include only studying functional 

consequences in the adult rat at P6M. Perhaps repeating the DSS experiment at P21, 

which corresponds to the point of maximum exposure to SSRI and where we 

observed the most significant effects on the ENS would have yielded different 

results. For this same reason, assessing permeability at P21 would also be of interest 

given the increasing body of literature around neuroinflammatory pathways.  In 

addition, assessing motility at P21, where we see the most significant difference in 

the ENS and is the point of maximal exposure to SSRI would be of interest. It would 

also be of interest to compare the findings at P21 to the altered motility at P6M. 5-

HT3 receptor antagonist and 5-HT4 receptor agonist are currently being used as 
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pharmacologic therapies to treat decreased intestinal motility. Therefore, in 

addition to assess motility at P21 and P6M, we should also assess 5-HT3 and 5-HT4 

receptors by qualitative PCR as both have demonstrated to be important receptors 

in intestinal motility.  

Finally, given the controversy in human studies with respect to the effects of 

depression on the offspring, rather than the effect of the antidepressant medication, 

if one were to re-design this study, it would be ideal to have a group of rats with 

depression not on pharmacotherapy, as well as rats with depression being treated 

with pharmacotherapy.  
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CHAPTER 6: CONCLUSION 

 

In conclusion, SSRI exposure does alter the development of the gastrointestinal 

tract and there are differences between male and female offspring. The female rat 

reaches sexual maturity around P32-P34, whereas the male rat reaches sexual 

maternity around P45-48 [214] which is shortly after the timepoint we selected. The 

female colon at P21 appeared to be the most sensitive to SSRI exposure which 

correlates to the point of maximal exposure. Structural consequences appear to 

resolve by P6M, but functional consequences related to motility persist. It is unclear 

based on this data whether SSRI exposure in utero and during breastfeeding results 

in increased burden of gastrointestinal diseases. SSRI-exposure in utero and 

breastfeeding does not appear to increase intestinal permeability and may have a 

protective role for intestinal mucosal epithelial barrier in the male SSRI-exposed 

offspring. The SSRI exposure during the perinatal and postnatal periods does not 

increase susceptibility to DSS colitis. However, SSRI exposure does appear to alter 

colonic motility at P6M which might suggest a possible role in the pathogenesis of 

Irritable Bowel Syndrome although this warrants further dedicated investigation.  
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CHAPTER 7: APPENDICES 

 
Figure 1. Summary of the Experimental Plan: Dams were randomly assigned to 
receive vehicle or 10 mg/kg/day fluoxetine hydrochloride orally from 14 days prior 
to mating and through the weaning period (P21). Rats were housed until adulthood 
(P6M). At birth (P1), pups were weighed and sexed and litters were culled to 10 
pups per litter, preferentially selecting 5 male and 5 female offspring. Animals were 
sacrifices at P1, P21 and P6M to assess the effects of SSRI exposure in utero, at 
weaning and if effects lasted into adulthood.  
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Figure 2. Whole mount preparations of small intestine and colon from the P1 
offspring of fluoxetine-exposed and control rats were immunostained with 
antibodies to HuC/D (to visualize enteric neurons) and to 5-HT (to detect 
serotonergic neurons). A significant decrease in the total number of enteric neurons 
and serotonergic neurons were found in the fluoxetine-exposed female offspring 
colon (mean ± SD, 13.6% vs 9.3%; p=0.04). 
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Figure 3. Whole mount preparations of small intestine and colon from the P21 
offspring of fluoxetine-exposed and control rats were immunostained with 
antibodies to HuC/D (to visualize enteric neurons) and to 5-HT (to detect 
serotonergic neurons). Significant differences (mean ± SD) were found in the 
percentage of serotonergic neurons in both fluoxetine-exposed female (1.4% vs 
7.6%; p=0.009) and male colons (1.7% vs 6.9%; p=0.002). 
 
 
 

* 
* 
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Figure 4. Whole mount preparations of small intestine and colon from the P6M 
offspring of fluoxetine-exposed and control rats were immunostained with 
antibodies to HuC/D (to visualize enteric neurons) and to 5-HT (to detect 
serotonergic neurons). At 6 months, no significant difference (mean ± SD) in the 
percentage of total number of enteric neurons was found. 
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Figure 5: Immunofluorescent staining of enteric and serotonergic neuron. Neurons 
within the myenteric plexus of the ileum at P6M immunolabeled with antibodies 
to HuC/HuD (green), and serotonergic neurons visualized with antibodies to 5-HT 
(red), note the 5-HT myenteric neuron (arrow), 20x magnification. Scale bar =30 
µm. 
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Figure 6: Expression of Hu C/D (green) and 5-HT (red) at P6M in colon 
visualized by immunofluorescence; negative control with primary antibody 
omitted.  No staining visualized. Scale Bar = 60 µm 
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Figure 7. Cross sections were prepared of small intestine and colon from the P21 
and P6M offspring of fluoxetine-exposed and control rats. Enterochromaffin cells 
were visualized with antibodies to 5-HT, and intestinal epithelial cell nuclei 
stained with bisbenzimide. Expressed as total number of enterochromaffin cells 
per 10 villi in the small intestine and 10 crypts in the colon (mean ± SD). 
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Figure 8. Expression of epithelial enterochromaffin cells in ileum (A) and colon 
(B) visualized by immunofluorescence to 5-HT (Alexa 488-labeled 5-HT 
antibodies appear green; bisbenzimide-stained nuclei appear blue; 10X 
magnification). The arrow in images (A) and (B) is directed at a single EC cell. 
Scale Bar= 60 µm. 
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Figure 9. P21 total number of enterochromaffin cells in ileum (A) per 10 villi and 
(B) colon per surface area was not significant (mean ± SD) by either method. 
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Figure 10. P6M total number of enterochromaffin cells in ileum (A) and (B) colon 
per 10 villi was not significant by either method (mean ± SD). 
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Figure 11. P6M villi to crypt ratio of the ileum and crypt length in the colon with 
no significant difference (mean ± SD) between SSRI exposed vs control male and 
female offspring. n = 5 per group. 
 
 
 
 

 

 

 

  



M.Sc. Thesis- K. Prowse- McMaster University- Medical Sciences 

 72 

  
Figure 12: P21 villi to crypt ratio of the ileum with no significant difference (mean 
± SD) between SSRI exposed vs control male and female offspring (n=7-9). P21 
colon crypt length significantly reduced in the SSRI exposed female offspring (p= 
0.0311) (n=7-9 per group).  
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Figure 13. P1 villi length in the ileum and crypt length in the colon with no 
significant difference (mean ± SD) between SSRI exposed vs control male and 
female offspring. n = 3-4 per group. 
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Figure 14. Long distance contractions (LDCs) measured by spatiotemporal map 
was not significant when grouped by sex (mean ± SD). When combined to obtain 
a mean LDC frequency for the SSRI and the control rats (p = 0.046). Velocity of 
LDCs was calculated on ImageJ by measuring the slope of the contraction (p = 
0.0418). LDC percentage propagation was calculated by dividing the distance the 
LDC travelled by the total length of the colon. n = 9 per group. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



M.Sc. Thesis- K. Prowse- McMaster University- Medical Sciences 

 75 

 

 
Figure 15. Photos from video recorded spatiotemporal mapping of SSRI exposed 
and control offspring at P6M with 5-HT3 antagonist (Ondansetron) to increase 
contractility and lidocaine for decreased contractility.  
 
 
 
 
 
 

BF20ML Control M 3/3/16 #2

29 mins only

0.7 ml/min 0.38 ml/min

4 uM odansetron 0.5 mM lidocaine

1.4 ml/min

1.4 ml/min

BF15ML Fluoxetine M 26/2/16 #2
0.7 ml/min 0.38 ml/min

4 uM odansetron 0.5 mM lidocaine

1.4 ml/min

1.4 ml/min



M.Sc. Thesis- K. Prowse- McMaster University- Medical Sciences 

 76 

 
 
 
 
 
 
 
 
 
Figure 16. H&E stained cross section of DSS exposed rat colon with increased 
inflammatory cells, loss of crypts and goblet cell depletion.  
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Figure 17A. Validated Histology Score and Colonic Myeloperoxidase (MPO) at 
P6M for water vs DSS in SSRI exposed and control offspring. Colonic MPO 
showed statistically significant differences (mean ± SD) between water and DSS 
(female water vs female DSS, p= 0.008; male water vs males DSS, p= 0.008; n=5 
per group) (female SSRI-exposed water vs female SSRI-exposed DSS, p=0.02; 
male SSRI exposed water vs male SSRI-exposed DSS, p=0.004; n=5-6 per group).  
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Figure 17B. Summary of Colonic Myeloperoxidase (MPO) at P6M for water vs 
DSS in SSRI exposed and control offspring. Colonic MPO showed statistically 
significant differences (mean ± SD) between water and DSS (female water vs 
female DSS, p= 0.008; male water vs males DSS, p= 0.008; n=5 per group) (female 
SSRI-exposed water vs female SSRI-exposed DSS, p=0.02; male SSRI exposed 
water vs male SSRI-exposed DSS, p=0.004; n=5-6 per group). No significant 
difference in SSRI vs Control male and female water nor DSS.  
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Figure 18. Expression of tight junctions at P6M in colon visualized by 
immunofluorescence to occludin (A) and ZO-1 (B) labeled with Alexa 488 
fluorescent antibody; 10X magnification. The arrow in images (A) and (B) is 
directed at the location of tight junctions. Scale Bar = 10 µm 
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Figure 19. Expression of tight junctions at P6M in colon visualized by 
immunofluorescence to occluding; negative control with primary antibody 
omitted.  No staining visualized. Scale Bar= 30 µm  
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Figure 20. Fluorescence intensity measures at P6M, using weighted average, in 
colon visualized by immunofluorescence to occludin (A) and (ZO-1) (B); was 
significantly increased (mean ± SD) in the male SSRI offspring for ZO-1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



M.Sc. Thesis- K. Prowse- McMaster University- Medical Sciences 

 82 

 
Figure 21. Nanostring technology schematic showing molecular barcodes are 
tagged with capture probes and reporter probes placed that are specific to the target 
gene of interest, creating a unique target probe complex. After hybridization, excess 
probes are removed, leaving only purified target probe complexes. Complexes are 
immobilized and aligned on the imaging surface. The sample is then scanned using 
an automated fluorescent microscope. Labelled barcodes are directly counted, and 
the data analyzed through an intuitive analysis software.  
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Figure 22. Quantitative amounts of mRNA in the colon of male DSS colitis vs 
male water control P6M Wistar rats demonstrated significant increases (mean ± 
SD) in CCL2 (p = 0.0317), IL1B (p = 0.0079), MRC1 (p = 0.0159), IL-4R (p = 
0.0079), OSMR (p = 0.0159), TGFB (p = 0.0317), STAT3 (p = 0.0159), TIMP1 
(p = 0.0317) and IL6ST (p=0.03). n = 5 per group. 
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Figure 23. Quantitative amounts of mRNA in the colon of female DSS colitis vs 
female water control at P6M Wistar rats demonstrated a significant increase 
(mean ± SD) in COL3A1(p = 0.0079), and both male and female DSS colitis vs 
water control in IL17A (p = 0.0079). n=5 per group. 
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Figure 24. Quantitative amounts of mRNA in the colon of DSS colitis vs water 
control at P6M Wistar rats demonstrated no significant differences (mean ± SD) 
in ACTA2, AREG, ARG1, CHI3I1, CLEC7A, CNTF, COL1A1, FN1, HIF1A, 
HMGB1, IL31, and IL11. n=5 per group.  
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Figure 25. Quantitative amounts of mRNA in the colon of DSS colitis vs water 
control at P6M Wistar rats demonstrated no significant differences (mean ± SD) 
in IL11RA1, IL13, IL1A, IL1RAP, IL1RL1, IL31RA, IL33, IL4, IL6, IL6R, LIF, 
and LIFR. n=5 per group.  
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Figure 26. Quantitative amounts of mRNA in the colon of DSS colitis vs water 
control at P6M Wistar rats demonstrated no significant differences (mean ± SD) 
in MMP7, OSM, RETNLA, RETNLB, TGFBR1, TNF, VEGFA, YWHAZ, 
MUC5B, and ACTB. n=5 per group.  
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Figure 27. Quantitative amounts of mRNA in the colon of DSS colitis vs water 
control at P6M Wistar rats demonstrated no significant difference (mean ± SD) in 
PGK1. n=5 per group.  
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Figure 28. Quantitative amounts of mRNA in the colon of fluoxetine exposed 
DSS colitis vs fluoxetine exposed male water control P6M Wistar rats 
demonstrated a significant increase (mean ± SD) in CCL2 (p = 0.02), CNTF (p = 
0.03), HMGB1 (p= 0.02), IL11RA1 (p = 0.02), IL1A (p=0.01), IL31RA (p = 
0.02), IL6ST (p = 0.03), MMP7 (p = 0.0303), MRC1 (p = 0.03), RETNLB (p = 
0.02), SFRP1 (p = 0.02), STAT3 ( p = 0.03), TIMP (p = 0.004),  IL31 (p= 
0.05)and MUC5B (p= 0.05). n = 4 in female SSRI water group, n = 5 for female 
and male SSRI DSS group. n =6 in the male SSRI water group.  
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Figure 29. Quantitative amounts of mRNA in the colon of fluoxetine exposed 
DSS colitis vs fluoxetine exposed water control at P6M Wistar rats demonstrated 
no significant difference (mean ± SD) in ACTA2, AREG, ARG1, CHI3I1, 
CLEC7A, COL1A1, FN1, HIFA, IL11, IL31, IL17A  
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Figure 30. Quantitative amounts of mRNA in the colon of fluoxetine exposed 
DSS colitis vs fluoxetine exposed water control at P6M Wistar rats demonstrated 
no significant difference (mean ± SD) in IL1B, IL1RAP, IL1RL1, IL33, IL4, 
IL4R, IL6, IL6R, LIF, LIFR, OSM, and OSMR.  
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Figure 31. Quantitative amounts of mRNA in the colon of fluoxetine exposed 
DSS colitis vs fluoxetine exposed water control at P6M Wistar rats demonstrated 
no significant difference (mean ± SD) in RETNLA, STAT1, TGFB1, TGFBR1, 
TNF, VEGFA, YWHAZ, ACTB, and PGK1.  
 
 
 
 
 
 
 
 
 



M.Sc. Thesis- K. Prowse- McMaster University- Medical Sciences 

 93 

 
Figure 32. Venn diagram of significantly increased quantitative mRNA 
expression excepted where decreased shown in brackets of SSRI exposed DSS 
male/female and DSS male/female controls from colonic tissue samples 
demonstrating  IL-17 does not appear to be involved in the migration of 
neutrophils in DSS colitis ,SSRI exposure does not appear to alter the increase in 
gene encoding proteins for MRC1 nor TIMP1 for males irrespective of DSS 
induced acute colitis, and that SSRI exposure does not alter the increase in 
IL31RA nor MRC1 in DSS induced acute colitis in the male and female offspring. 
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Figure 33. Summary of Findings 
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TABLES 

Criteria Grade Description 

Crypt Architecture 0 
1 
2 
3 

Normal   
Shortening of crypt  
Focal thinning of epithelium   
Severe crypt distortion with loss of entire crypts  

Degree of Inflammatory 
Cell Infiltrate 

0 
1 
2 
3 

Normal    
Mild inflammatory infiltrate    
Prominent inflammatory infiltrate    
Dense inflammatory infiltrate(extends into muscularis) 

Muscle Thickening 0 
1 
2 
3 

Base of crypt sits on muscularis mucosa   
Loss of basal 1/3 of crypt   
Loss of basal 2/3 of crypt   
Marked muscle thickening    

Goblet Cell Depletion 0 
1 

Absent 
Present 

Crypt Abscess 0 
1 

Absent 
Present 

Table 1. Validated Inflammation Histology Score. (Adapted from Cooper Lab 
Invest 1993, Kim J Immunol 2013) 
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