
METHODOLOGIES FOR FPGA

IMPLEMENTATION OF FCS-MPC FOR

ELECTRIC MOTOR DRIVES

METHODOLOGIES FOR FPGA IMPLEMENTATION OF FINITE

CONTROL SET MODEL PREDICTIVE CONTROL FOR

ELECTRIC MOTOR DRIVES

BY

ALEX LAO, B.Eng.

a thesis

submitted to the department of electrical & computer engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Alex Lao, September 2019

All Rights Reserved

Master of Applied Science (2019) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Methodologies for FPGA Implementation of Finite Con-

trol Set Model Predictive Control for Electric Motor

Drives

AUTHOR: Alex Lao

B.Eng., (Computer Engineering)

McMaster University, Hamilton, Ontario, Canada

SUPERVISORS: Dr. Nicola Nicolici

Ph.D. (University of Southampton)

Dr. Ali Emadi

Ph.D. (Texas A&M University)

NUMBER OF PAGES: xviii, 120

ii

Dedicated to those pushing the boundaries of knowledge, design, and manufacturing

to conquer humanity’s greatest challenges and to the family and friends that make

it all possible.

Abstract

Model predictive control is a popular research focus in electric motor control as it

allows designers to specify optimization goals and exhibits fast transient response.

Availability of faster and more affordable computers makes it possible to imple-

ment these algorithms in real-time. Real-time implementation is not without chal-

lenges however as these algorithms exhibit high computational complexity. Field-

programmable gate arrays are a potential solution to the high computational require-

ments. However, they can be time-consuming to develop for. In this thesis, we present

a methodology that reduces the size and development time of field-programmable gate

array based fixed-point model predictive motor controllers using automated numeri-

cal analysis, optimization and code generation. The methods can be applied to other

domains where model predictive control is used. Here, we demonstrate the benefits

of our methodology by using it to build a motor controller at various sampling rates

for an interior permanent magnet synchronous motor, tested in simulation at up to

125 kHz. Performance is then evaluated on a physical test bench with sampling rates

up to 35 kHz, limited by the inverter. Our results show that the low latency achiev-

able in our design allows for the exclusion of delay compensation common in other

implementations and that automated reduction of numerical precision can allow the

controller design to be compacted.

iv

Acknowledgements

I would like to thank my co-supervisors Dr. Nicola Nicolici and Dr. Ali Emadi not

just for their mentorship throughout my graduate studies but during my time as an

undergraduate student as well. Dr. Nicolici introduced me to digital logic design,

pushed me to solve challenging problems, and helped find me an opportunity to learn

more and travel as part of an internship at Altera in San Jose, California. I cannot

thank Dr. Emadi enough for being a faculty advisor of the McMaster Formula Hybrid

and McMaster Engineering EcoCAR3 teams that I have had the opportunity to be a

part of throughout my undergraduate studies. Being able to solidify the knowledge I

gained in courses within a practical setting has been invaluable.

This work would not have been possible without the help of Dr. Shamsuddeen

Nalakath who’s doctoral work on control algorithms served as a basis for this work.

Dr. Nalakath always found time to answer my questions, no matter how busy he was.

The amount that I have learned from him and his work cannot be overstated, and I

am grateful for his dedication.

v

Thank you to all the researchers and students in the labs I have been a part of

and surrounding labs for sharing their projects, asking for help and helping me out

over the years. Discussing ideas in our vastly different, yet similar projects have been

great. An extra thank you to Aaron Pitcher for taking the time to review my electrical

designs and Jing Zhao for her help during testing while we shared the test setup.

Many of the skills I have gained over the years is thanks to my colleagues at

previous internships positions I have held at Design and Integration, Canada’s Won-

derland, Altera, Intel, Clearpath Robotics, and Kepler Communications. Together,

we have worked on so many different things. From industrial machines, roller coast-

ers, memory interfaces, robots, to satellite payloads. Each person I have run into has

taken the time and patience to share their craft and teach me how to design, build

or care for another one of humanity’s inventions. They have given me the confidence

to make anything no matter how complex and daunting it may seem at first.

I must thank our undergraduate capstone mentor Dr. Hubert deBruin and the

members of my project team, Christina Riczu, Emilie Corcoran and Thomas Phan

for their dedication during that project. It was a lot of fun and I learned a lot from

everyone involved.

Thank you to the undergraduates I have had the pleasure of teaching and men-

toring. Their patience, hard work, curiosity, and inquisitive questions have made

teaching not only great fun but an excellent learning experience as well.

vi

We would like to acknowledge CMC Microsystems for the provision of products

and services that facilitated this research, including workstations and CAD tools.

This research would not have been possible without the support of the Ontario

Graduate Scholarship Program and the Canadian Graduate Scholarship-Master’s Pro-

gram.

We acknowledge the support of the Natural Sciences and Engineering Research

Council of Canada (NSERC).

vii

Notation and Abbreviations

Notation - Electrical and Mechanical

abc Three-phase stationary frame of reference

dq Two axis rotating frame of reference

Ia, Ib, Ic Current components in the abc frame of reference

Iabc Current vector in the abc frame of reference

Id, Iq Current components in the dq frame of reference

Idq Current vector in the dq frame of reference

Ld, Lq Inductance components in the dq frame of reference

λ Permanent magnet flux linkage

ω Angular Velocity

Rs Series Resistance

Ts Sampling Time

θ Angular Position

Vabc Voltage vector in the abc frame of reference

Vd, Vq Voltage components in the dq frame of reference

Vdq Voltage vector in the dq frame of reference

viii

Notation - Optimization and Code Generation

crate Cooling rate in the simulated annealing process

F Fixed-point format of a node in Q format

FV Fixed value

IU Input uncertainty interval

OP Operator

PMV Post-multiply value

PSU Pre-shift uncertainty interval

PSV Post-shift value

QFa.Fb
Fixed-point format with an integer and fractional word-

length of Fa and Fb respectively

R Range interval

RV Real value

T Temperature in the simulated annealing process

U Uncertainty interval

UR Uncertainty requirement interval

ẋ, ẍ Node property x of the first and second operand referenced

from the operator node

[X,X] Interval X with lower bound X and upper bound X

xinteger Integer variable named x

xreal Real variable named x

ix

Abbreviations

AA Affine Arithmetic

AC Alternating Current

ADC Analog to Digital Converter

BFM Bus Functional Model

DC Direct Current

DFG Data Flow Graph

DSP Digital Signal Processors or Digital Signal Processing

DTC Direct Torque Control

FCS-MPC Finite Control Set Model Predictive Control

FIFO First in First out

FOC Field-Oriented Control

FPGA Field-Programmable Gate Array

FSM Finite State Machine

FWL Fractional Word-Length

GA Genetic Algorithm

HDL Hardware Description Language

HIL Hardware in Loop

HLS High-Level Synthesis

IA Interval Arithmetic

IPMSM Interior Permanent Magnet Synchronous Motor

IWL Integer Word-Length

LSB Least Significant Bit

LUT Lookup Table

x

MCU Microcontroller Unit

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MPC Model Predictive Control

MSB Most Significant Bit

PC Personal Computer

PI Proportional Integral

PMSM Permanent Magnet Synchronous Motor

RMSE Root Mean Square Error

RPM Revolutions Per Minute

RTL Register Transfer Level

SA Simulated Annealing

SMT Satisfiability Modulo Theories

TS Tabu Search

USB Universal Serial Bus

WL Word-Length

xi

Contents

Abstract iv

Acknowledgements v

Notation and Abbreviations viii

1 Introduction 1

1.1 Electric Motors, Control, and Implementation 2

1.2 Thesis Objectives . 4

1.3 Thesis Organization . 5

2 Background and Literature Review 6

2.1 Electric Motors . 7

2.1.1 Interior Permanent Magnet Synchronous Motor 7

2.2 Power Electronics . 8

2.2.1 Motor Inverters . 9

2.3 Electric Motor and Inverter Control Methods 9

2.3.1 Coordinate Transformations 10

2.3.2 Control Methods . 10

xii

2.4 Digital Computers . 13

2.4.1 Microcontrollers and Digital Signal Processors 13

2.4.2 Field-Programmable Gate Arrays 14

2.5 Numerical Formats in Digital Computing 16

2.5.1 Floating-Point Representation 16

2.5.2 Fixed-Point Representation 16

2.6 Fixed-Point Word-Length Optimization 18

2.6.1 Meta-Heuristic Algorithms . 18

2.6.2 Range and Precision Analysis 19

2.7 Model-Based Design . 23

2.8 High-Level Synthesis . 24

2.9 System Simulation . 25

2.10 Related Works and Inspiration . 26

2.11 Chapter Summary . 29

3 Tools and Methodologies 30

3.1 FPGA Fixed-Point Arithmetic Model 32

3.2 Equation Representation . 35

3.2.1 Source Node Properties . 36

3.2.2 Arithmetic Node Properties 37

3.2.3 Output Node Properties . 37

3.3 Range and Precision Analysis . 38

3.3.1 Interval Arithmetic . 38

3.3.2 SMT Analysis . 42

3.4 Implementation Cost Estimation . 47

xiii

3.5 WL Optimization and Code Generation 49

3.5.1 Code Generation . 52

3.6 Chapter Summary . 55

4 Controller Design and Test Setup 56

4.1 Physical Test Setup . 57

4.2 Control Algorithm . 60

4.3 Circuit Board Design . 63

4.4 FPGA Design . 66

4.4.1 Traditionally Designed Modules 67

4.4.2 Generated Motor Model . 71

4.5 Model in Loop FPGA Simulation Environment 78

4.6 Data Acquisition and Control Software 80

4.7 Hardware in Loop Test Environment 81

4.8 Chapter Summary . 82

5 Test and Evaluation 83

5.1 Controller Variants . 84

5.2 Reference Model Testing . 86

5.3 FPGA WL Optimizer . 89

5.4 Performance Evaluation in Simulations 94

5.5 Performance Evaluation with Physical Tests 98

5.6 FPGA Area Savings Evaluation . 102

5.7 Chapter Summary . 104

6 Conclusion and Future Work 105

xiv

List of Tables

3.1 Source Node Properties . 36

3.2 Arithmetic Node Properties . 37

3.3 Output Node Properties . 37

3.4 Example DFG Configuration . 52

4.1 IPMSM Nominal Parameters and Specifications 58

4.2 Current Transform Input Properties 73

4.3 Voltage Transform Input Properties 73

4.4 Current Transform Output Properties 75

4.5 Voltage Transform Output Properties 75

5.1 IPMSM Nominal Parameters and Specifications 85

5.2 FPGA Area Reduction . 103

xv

List of Figures

1.1 Components of an electric drive development process and product . . 5

2.1 A typical inverter fed drive . 9

2.2 A three-phase inverter . 9

2.3 FCS-MPC with two valid states and a prediction horizon of three . . 12

2.4 Simple FPGA architecture . 14

2.5 An illustration of a simple HLS flow 24

3.1 Integration of our tools into traditional FPGA tool flows 31

3.2 The internal structure of a Q3.6 addition or subtraction node 33

3.3 The internal structure of a Q3.6 multiplication node 34

3.4 Equation 3.1 as a DFG with processing order 35

3.5 Referencing R interval of operand nodes from the current node 39

3.6 Segmentation of an input with a WL of 5 before sign extension and

input with a WL of 6 . 48

3.7 WL optimization process . 49

4.1 Test system architecture . 56

4.2 Test setup . 57

4.3 IPMSM inverter . 59

4.4 Steps taking by the control algorithm every control cycle 62

xvi

4.5 High-level overview of the circuit board 63

4.6 Assembled custom controller circuit board 64

4.7 Architectural overview of the FPGA design 66

4.8 Incremental encoder signals with direction change around the index

position for a hypothetical sensor with 10 counts (40 edges) per rotation 67

4.9 DFG for analyzing the d axis Clarke and Park transform 74

4.10 DFG for analyzing the q axis Clarke and Park transform 74

4.11 d axis portion of the DFG for motor model generation 77

4.12 q axis portion of the DFG for motor model generation 77

4.13 High-level overview of the model in loop FPGA simulation environment 78

5.1 Average switching frequency of the reference controllers at 100 RPM 87

5.2 Average switching frequency of the reference controllers at 500 RPM 87

5.3 Reference controller Id regulation accuracy at 100 RPM 87

5.4 Reference controller Id regulation accuracy at 500 RPM 87

5.5 Reference controller Iq regulation accuracy 100 RPM 88

5.6 Reference controller Iq regulation accuracy at 500 RPM 88

5.7 Estimated cost of our FCS-MPC implementations 89

5.8 Estimated cost reduction as optimization is retried 90

5.9 Multiplier element usage of our FCS-MPC implementations 92

5.10 LUT usage of our FCS-MPC implementations 93

5.11 Average switching frequency for all our controller variants in simulation

at 100 RPM . 94

5.12 Average switching frequency for all our controller variants in simulation

at 500 RPM . 94

xvii

5.13 Id regulation accuracy for all our controller variants in simulation at

100 RPM . 95

5.14 Id regulation accuracy for all our controller variants in simulation at

500 RPM . 95

5.15 Iq regulation accuracy for all our controller variants in simulation at

100 RPM . 95

5.16 Iq regulation accuracy for all our controller variants in simulation at

500 RPM . 95

5.17 Unnecessary switching in controllers with too much uncertainty in sim-

ulation . 96

5.18 Transient behavior of our reference 10 kHz controller and one with a

lot of uncertainty in simulation . 97

5.19 Average switching frequency of our physically tested controller variants 98

5.20 Id regulation accuracy of our physically tested controller variants . . . 99

5.21 Iq regulation accuracy of our physically tested controller variants . . . 99

5.22 Unnecessary switching in controllers with too much uncertainty during

a physical test . 100

5.23 Transient behavior of our reference 10 kHz controller and one with a

lot of uncertainty during a physical test 101

xviii

Chapter 1

Introduction

Electric motors are widely used in our modern world and market growth is expected.

The amount of electricity used in the industrial sector by electric motors is over 50%

of the total electrical energy use in industry, this shows a high demand for motors

(Schwartz et al. (2017)). Between 2016 and 2017 sales of electric vehicles increased

by 54%, showing market growth and an increase in demand for electric motors (In-

ternational Energy Agency (2018)). The existing market and growth highlight the

importance of high-performance electric motor solutions in our world. These markets

demand advanced solutions catering to their specific needs, they require method-

ologies to reduce time to market, decrease cost and increase performance. In this

chapter, we introduce electric motors, inverters and the controllers required to build

high-performance electric motor drives. We also introduce some details involved in

the design process. After, we provide a summary of thesis objectives before providing

a chapter summary.

1

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

1.1 Electric Motors, Control, and Implementation

Many individual components are required to build an electric drive. Generally, we

require the motor, power electronics, control algorithm, computer, as well as, design

tools and methodologies. These components are used to build systems that take user

demands and convert them into control actions that satisfy the users’ requirements

in real-time.

Electric motors convert electrical to mechanical power. Motors often require a

controller that implements a control method that precisely regulates power, torque,

speed, and position. Different control methods influence how controlled variables

deviates away from the desired values. Better regulation may result in a system with

lower torque ripple, less noise or higher efficiency.

An inverter is a power electronic component that is sometimes required to provide

AC power to a motor from a DC source or AC power from an unsuitable AC source

with a different voltage and frequency. For synchronous motors, the frequency of the

input power must be synchronized to the rotation of the motor. A task an inverter

is well suited for with the help of sensors and a controller.

Controllers can be implemented using digital computers such as microprocessors

or microcontrollers. This implementation method is not new and has been used since

the 1980s (Gabriel et al. (1980)). A control algorithm, implemented on a computer,

manipulates numbers representing data sampled from sensors to make control deci-

sions. Numbers can be represented in many ways on a computer, resulting in different

amounts of rounding errors internally, as well as a difference in speed, size, and cost

of the resulting controller. While rounding reduces size and cost, too much rounding

2

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

error may change control decision and result in unacceptable performance degrada-

tion and instability (Shien-Ru Ko and Wen-Shyong Yu (2000)). Therefore, controller

designers might want to limit the amount of uncertainty within their controller im-

plementation. Methods and tools exist to analyze uncertainty in computers and can

be applied to controller development (Darulova and Kuncak (2013)).

Different types of computers exist, such as microcontrollers, digital signal proces-

sors, and programmable logic. The choice results in varying levels of computational

performance. Faster computers may be able to make more calculations or decisions

per second resulting in the designers’ goals being met more effectively. However, more

exotic computing platforms may cost more or take longer design for.

A designer might not want to be involved with all the details in designing ev-

ery aspect of the system. Tools can be developed to automate part of the design

process. Equations required in a controller can be represented inside of tools which

can manipulate the design to optimize for a user-configurable uncertainty limit with

optimized size and cost. Code can then be generated, ready to be integrated into a

larger design.

Predictive control is a hot topic in power electronics and motor control (Rodriguez

et al. (2013)). In predictive control, equations are used to predict the behavior of a

system. The predictions are used to influence control decisions while trying to meet

the behavior characteristics desired by the designer. Predictive control enables the

design of a controller that allows for arbitrary control goals to be set by the designer.

They can also respond quickly to changing demands. However, their computational

requirements often require designs to be implemented on fast digital computers to

meet real-time constraints (Kosan et al. (2018)).

3

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

1.2 Thesis Objectives

There are two major objectives in this thesis. The first objective is to develop and

demonstrate methods to partially automate the creation of a prediction based motor

controller using programmable logic that can make millions of predictions per second.

The second objective is a demonstration of how that workflow can be applied to the

development of a motor controller and then show cost savings associated with using

such a design process. Then we show the performance degradation and caveats that

come with these savings.

Along the way, we describe all the steps from design methodology to physical re-

alization. We also describe the simulation environments useful for development and

performance evaluation purposes. The behavior characteristics, performance metrics,

and figures of merit of multiple controller variants implemented using our method-

ologies will then be evaluated using these simulation environments and the physical

setup.

4

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

1.3 Thesis Organization

This chapter introduced the importance of electric motor drives and the high-level de-

tails involved with the implementation of such systems before introducing the concept

of predictive control. After, we summarized the objectives of this thesis.

In Figure 1.1 we show where the topics we introduced fit into the electric drive

development process or resulting system.

Development
Electric Drive

Controlled System

Electric Motors

Power Electronics

Controller

Digital
Computer

Numerical
Representation

Design
Automation

Control
Methods

Implementation
Optimization

Figure 1.1: Components of an electric drive development process and product

A summary of the literature in this field and a brief introduction to the major

topics of this thesis will be presented in Chapter 2.

Chapter 3 details our implementation tools and methodologies for creating digital

circuits for evaluation of equations such as those required for predictive control.

Chapter 4 demonstrates usage of our tools combined with traditional design tech-

niques through implementing a predictive control algorithm for an electric drive. The

associated required electronics and simulation environments will also be detailed.

Chapter 5 is where we present our results. Our findings may also interest those

developing motor controllers without the methods presented in Chapter 3.

We then conclude by summarizing our findings and present ideas for future work

in Chapter 6.

5

Chapter 2

Background and Literature Review

One of our goals is to develop tools and methodologies for predictive motor controller

design that uses programmable logic. When building a predictive motor controller,

the specific details of every part of the design can greatly influence system performance

and where effective optimizations can be made across the implementation, therefore

we must gain a deeper understanding of all the details involved. Furthermore, we

want to partially automate the design process, choices made when developing the

automated tools restrict the design space explored by the tool.

In this chapter, we provide a literature review and provide background on a wide

range of topics related to electric drive development. We cover topics including electric

motors, inverters, and control algorithms. Then we look at implementation platforms

for the control algorithms before covering analytical methods and methodologies for

design automation related to programmable logic. We then look at works in elec-

tric motor control and other fields that involve implementation details and analysis

methodologies related to ours.

6

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

2.1 Electric Motors

Electric motors convert electrical to mechanical power by creating torque using mag-

netic field interactions (Krishnan (2001)). Many types of electric motors exist, com-

mon types include brushless DC, induction, and permanent magnet synchronous mo-

tors (PMSM). Due to availability of a physical test setup, we will focus on the control

of an interior permanent magnet synchronous motor (IPMSM) to evaluate our con-

troller implementation methodology with the understanding that similarities in design

requirements will make the methodology reusable with adaptation.

2.1.1 Interior Permanent Magnet Synchronous Motor

An IPMSM is a variant of PMSMs with the magnets embedded inside the rotor. As

this is a synchronous motor, the frequency of the power must be synchronized to the

rotation of the motor. This means a controller in conjunction with power electronics to

generate the variable frequency voltage waveform is often required (Krishnan (2001)).

PMSMs are often smaller, more efficient and have less rotating mass which allows for

faster response when compared to induction motors which may encourage some to

select this motor type (Pillay and Krishnan (1991)). Discrete models suitable for use

in a predictive controller can be commonly found (J. Rezaie (2007)).

7

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

2.2 Power Electronics

Power electronics are used to perform electric power conversion between the voltage

and current from the supply to what is required by the load (Ned Mohan (1995)). As

Mohan explains, AC power from the electric utility grid often needs to be converted

into DC power for use by our electronic devices, this conversion is known as rectifi-

cation. In electric vehicles, power for the motor might come from a DC source such

as a battery. Therefore, an inverter is used to drive the AC motor commonly used in

these vehicles.

Many more types of power electronic converters exist but most use electronic

switches such as metal oxide field-effect transistors (MOSFETs) or insulated gate

bipolar transistors in conjunction with switch control signals known as gating signals

from a controller to perform their task (Ned Mohan (1995)). The higher switching fre-

quency can result in better power electronics or motor performance but will result in

more switching losses (Shirabe et al. (2014)). The higher switching frequencies with-

out excessive switching loss can be made possible by using new transistor materials

such as gallium nitride (Shirabe et al. (2014)). However, controllers generating the

gate signals also need to perform better to make all the control decision in real-time.

8

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

2.2.1 Motor Inverters

Motor inverters are used to power an electric motor from a DC source, they generate

the voltages and currents required to drive the AC motor and allow for torque and

speed control. A typical inverter fed motor drive is shown in Figure 2.1. It includes an

inverter, controlled by a controller with position and current feedback. The inverter,

shown in Figure 2.2, generates the three-phase AC power required by the motor from

a DC source.

Inverter Motor

Controller

Position
Sensor

Current
Sensor

Gating
Signals

Figure 2.1: A typical inverter fed drive

Vdc
Vabc

Figure 2.2: A three-phase inverter

2.3 Electric Motor and Inverter Control Methods

An electric drive that exhibits high-performance in a system often requires advanced

control techniques implemented in real-time. Many control techniques exist for PMSMs

such as field-oriented control (FOC), direct torque control (DTC), and model predic-

tive control (MPC) (Wang et al. (2011)). Each of these control methods exhibits

different characteristics that may be desired by the designer and must be chosen for

their specific application. These control methods are used to generate the gating

signals for the inverter. Each set of valid gating signals constitutes an inverter switch

state. Methods for gate signal generation will be covered in this section.

9

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

2.3.1 Coordinate Transformations

Three-phase power is generated by a rotating magnetic field. Therefore, three-phase

power can be seen as rotating. By rotating our frame of reference with the rotation of

the motor we can generate two DC components (dq) from three AC components (abc).

Using these DC equivalent values in our models can simplify them. In a PMSM, the

stator current can be split into d and q axis components using this method (Wang

et al. (2011)). The d axis current (Id) represents the magnitude of the magnetic field

in the air gap between the stator and rotor and the q axis current (Iq) produces useful

torque (Wang et al. (2011)). This transformation is performed using a Clarke and

Park transform (Krishnan (2001)).

2.3.2 Control Methods

The control method selected to regulate the torque output of a motor result in dif-

ferent transient response times, steady-state ripple, inverter switching frequency, and

computational load. All control methods require low latency as delayed control re-

sponse adversely affects performance (Shien-Ru Ko and Wen-Shyong Yu (2000)).

Field-oriented control (FOC), also known as vector control, utilizes regulators such

as linear PI controllers to regulate the Id and Iq currents (Wang et al. (2011)). These

linear controllers produce a continuously variable output voltage request that is met

using a pulse width modulator which results in a fixed switching frequency.

Direct torque control (DTC) is a method that controls the motor torque by esti-

mating the rotor torque and stator flux before selecting an inverter switch state based

on this estimate using a hysteresis controller (Wang et al. (2011)). A modulator is

10

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

not used and switching frequency can vary but it can be regulated by changing the

hysteresis thresholds.

A model predictive controller (MPC) uses predictions to select a state that results

in the best response as evaluated by a cost function (Rodriguez et al. (2013)). Finite

control set model predictive control (FCS-MPC), a variant of MPC presents some

benefits over FOC and DTC for motor control such as fast transient response and

the ability to optimize for any output variable using a cost function. If such a cost

function involves Idq currents, then the behavior can be like FOC but without the need

for linear controllers that require tuning. Consequently, if the cost function is based

on torque and stator flux then the behavior can be like DTC. For a PMSM, FCS-

MPC has been demonstrated to exhibit less flux and torque ripple then FOC or DTC

(Wang et al. (2011)). Unlike with FOC or DTC however, the switching frequency is

not controlled which may become a problem as we will see our test results.

FCS-MPC is well suited for motor control because an inverter has a finite set

of legal switch states. FCS-MPC evaluates the prediction equations for every valid

switch state over a prediction horizon. It then evaluates the trajectory using a cost

function to select the best switch state to use. At the next time step, all the pre-

dictions will be repeated with new sensor data as model inaccuracies and external

disturbances will result in a different response then the one predicted. More switching

states, longer prediction horizons, and higher sampling frequencies may be required

to meet performance targets, however (Rodriguez et al. (2013)). This increases the

computational complexity, posing a challenge for real-time implementations.

In many implementations of FCS-MPC where computational latency is high enough

to be close to the sample time, a compensation step can be applied to make up for the

11

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

delay (Yang et al. (2017)). The previously selected state is applied to the system at

the start of the next time step and the outcome is predicted before performing all the

predictions within the horizon. Once the predictions are complete and the next state

is selected the controller waits until the start of the next time step before applying it.

An illustration of the internal operation of an FCS-MPC algorithm without delay

compensation is shown in Figure 2.3. With delay compensation, the predictions are

shifted forward from K to K+1 and extend to K+4 instead of K+3. The state used

at K would have been decided in the previous time step.

Prediction Horizon

Desired Response

KK-1 K+1 K+2 K+3

Predicted Responses
Actual Response

Figure 2.3: FCS-MPC with two valid states and a prediction horizon of three

12

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

2.4 Digital Computers

Digital computers are often used to implement controllers due to their low cost and

re-programmability. All control methods must be implemented in real-time, which

means processing must be performed within time limits or system performance degra-

dation or failure will occur. Options available to designers building a controller include

microcontrollers (MCUs), digital signal processors (DSPs) and field-programmable

gate arrays (FPGAs).

2.4.1 Microcontrollers and Digital Signal Processors

MCUs and DSPs are devices that execute software instructions to carry out process-

ing and control tasks. MCUs are often seen as general-purpose controllers and DSPs

are seen as specialized controllers for tasks that require processing that would over-

burden an MCU. However, the line between these two device types has blurred over

time as MCU architectures have gained more digital signal processing abilities and

DSP architectures have become better at more general tasks. Therefore, we can lump

them into a single category, software processors that execute instructions. Software

processors have the benefit that they can be very low-cost and easy to develop for.

Unfortunately, they can usually only do one operation at a time. Multi-core devices

exist where multiple instructions can be executed at the same time to increase par-

allelism, but their parallelism is still very limited. This can be a problem when you

require high-throughput and low latency. This is an underlying reason why many

implementations of FCS-MPC require a delay compensation step.

13

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

2.4.2 Field-Programmable Gate Arrays

FPGAs are a type of programmable logic device that contains at a minimum, inputs

and outputs, lookup tables (LUTs), registers and a routing network (Brown et al.

(1996)). LUTs are used to implement combinational logic circuits, registers are used

to create sequential logic when used to segment the combinational logic, and the

routing network is used to connect all the logic, inputs and outputs. FPGAs may

also have multipliers integrated on the chip so less of the more generic logic resources

are used when implementing multiplication. An m×m hard multiplier can work with

two, m bit inputs. Figure 2.4 shows a simple FPGA architecture that includes LUTs,

registers and multipliers.

×

Lookup
Table
(LUT)

R

R

×

Lookup
Table
(LUT)

R

R

Figure 2.4: Simple FPGA architecture

FPGAs are an option that enables either high throughput, low latency or a com-

bination of both for digital designs. From networking (Lockwood et al. (2007)), to

compute acceleration (Che et al. (2008)) and computer vision (Jin et al. (2010)),

FPGAs provide the computational power for demanding tasks.

14

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

In the context of control systems for power electronics and drive application, par-

allelism in FPGAs enable high-performance designs that can allow for high switching

frequencies exceeding one MHz (Monmasson et al. (2011)). Quasi-instantaneous exe-

cution is highlighted as a benefit of FPGA based controllers when compared to MCU

or DSP implementations of control algorithms by Monmasson et al. (Monmasson and

Cirstea (2007)).

Parallel processing on an FPGA means algorithms can potentially be accelerated

greatly when implemented on FPGAs instead of a software processor. Designs can

be built in such a way as to have extremely predictable and low latency which can

enable us to build an FCS-MPC without delay compensation.

Designs for FPGAs are often written in a hardware description language (HDL)

such as Verilog (IEEE Computers Society (2006)), SystemVerilog (IEEE Computers

Society (2018)) or VHDL (IEEE Computers Society (2009)). Using these HDLs,

logical expressions and data transfer between registers are described, this is known as a

register transfer level (RTL) description. Controller implementation on FPGAs often

requires more time and effort than on software processors which must be addressed

before FPGAs can be used in more designs.

FPGA area utilization is a critical cost metric as larger FPGAs cost more, require

more power, and may take up more circuit board area. Techniques to estimate FPGA

area include lookup tables, equations, and curve fits (Deng et al. (2008)).

15

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

2.5 Numerical Formats in Digital Computing

Numerical algorithms can generally be implemented in two ways, with floating-point

or fixed-point arithmetic. Both are examples of finite precision arithmetic. Floating-

point units are more complex to implement in digital systems while fixed-point units

are simpler. All methods of storing decimal numbers digitally result in different range,

precision limitations, as well as, uncertainty characteristics.

2.5.1 Floating-Point Representation

Floating-point arithmetic is often used within the science and engineering community

as it allows the representation of large and small numbers in binary. Floating-point

representation of real values is like scientific notation where a normalized value is

scaled by an exponent. In scientific notation, the base of the exponent is typically

ten while in floating-point representation it is two. This method of storing values

on a computational platform results in large values being stored with low precision

and small values being stored with high precision. Typically, the IEEE-754 stan-

dard is implemented to support floating-point arithmetic on digital computers (IEEE

Computers Society (2008)).

2.5.2 Fixed-Point Representation

Fixed-point arithmetic may be preferred over floating-point because the digital circuit

required to operate on them is much simpler. However, because the radix point does

not move on its own, the range of representation is limited by the integer word-length

(IWL), and the precision limited by the fractional word-length (FWL). Appropriate

16

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

word-length (WL) must be allocated appropriately to prevent integer overflow or

excessive precision loss. Shorter WLs require less logic to implement, a benefit for all

implementations of computers.

Focusing on signed values using twos complement, the WLs of a fixed-point format

can be expressed in Qa.b format where a and b is the IWL and FWL respectively

(Erick L. Oberstar (2007)). To convert a value from real to fixed-point it must be

scaled and then truncated to zero decimal places as shown in Equation 2.1. Truncation

causes quantization error which results in some precision loss. Therefore, the result

of the conversion is an integer value that represents the real value with some error.

xinteger = Truncate(xreal × 2b) (2.1)

Conversion of real values to fixed-point requires that the resulting integer resides in

the interval shown in Equation 2.2 or overflow will occur.

xinteger =
[
− 2a+b, 2a+b − 1

]
(2.2)

Also discussed by Oberstar, addition, and subtraction of fixed-point values require

that both operands have the same FWL. If the operands have different FWLs then

the radix point must be aligned before the operation can be performed. The result

of the operation will have an IWL one higher than the IWL of the operand with

the largest IWL. Multiplication does not require that the radix point be aligned.

The product will have an IWL and FWL that is the sum of the two operands IWL

and FWL respectively. This WL growth often means the results or operands in the

implementation may have to be truncated or logic utilization will increase too much.

17

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

2.6 Fixed-Point Word-Length Optimization

Optimization of fixed-point WLs in implementations can be done automatically using

searching and optimization methods in conjunction with uncertainty, range, complex-

ity, and cost calculators and estimators (Han et al. (2006), Dong-U Lee et al. (2005)).

Automatic data type conversion and optimization of word-length is available in

MATLAB (The MathWorks, Inc. (2019a)), however their use of a simulation method

for determining if range and precision bounds are met means their results cannot be

guaranteed (Osborne et al. (2007)).

In this section, we review the available methods for searching, range estimation,

precision analysis and cost evaluation that are often used for WL optimization. Many

combinations of any of these methods can be used for WL optimization.

2.6.1 Meta-Heuristic Algorithms

Meta-heuristic algorithms are designed to generate potential solutions within an enor-

mous design space to find good solutions, possibly even ones that are close to optimal.

They do so by using rule sets that guide it towards better solutions. Popular meta-

heuristics include genetic algorithms (Holland (1992)), simulated annealing (Kirk-

patrick et al. (1983)), and tabu search (Glover (1986)).

Genetic Algorithms

Genetic algorithms (GAs) are inspired by the process of adaptation and evolution in

the natural world (Holland (1992)). Evolution of the solution is achieved through

genetic operators, crossover, inversion, and mutation. Solutions are then evaluated

using a fitness function.

18

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Simulated Annealing

Simulated annealing (SA) mimics the process of metallurgical annealing (Kirkpatrick

et al. (1983)). Small random changes are made to the solution to generate neighbour-

ing ones. Probability of accepting a worse solution is governed by the temperature of

the system which decreases over time. A slowly decreasing probability of accepting

worse solutions gives the meta-heuristic a chance at finding better local minima in

the global search space.

Tabu Search

Tabu search (TS) performs local search and accepts a worse solution if a better one

does not exist (Glover (1986)). It lowers the probability of revisiting a solution by

using memory. TS, when compared to SA and GA searches the entire neighbouring

space for the best solution before accepting a worse one. This can have a significant

impact on run time, preventing good coverage of the global search space if solutions

have a lot of variables.

2.6.2 Range and Precision Analysis

Simulation and analytical approaches exist to estimate the maximum and minimum

range of values and their uncertainty if the input range and uncertainty is known for

algebraic expressions (Han et al. (2006)). We need to analyze the range and uncer-

tainty to efficiently implement the equations necessary for coordinate transformations

and predictions in a controller. Range and uncertainty can be analyzed using interval

arithmetic, affine arithmetic or satisfiability modulo theory analysis.

19

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Interval and Affine Arithmetic

Interval arithmetic (IA) and affine arithmetic (AA) can be used to reliably calculate

the range and uncertainty bounds of finite precision arithmetic (Stolfi and Henrique

De Figueiredo (1998)). These methods are used in Gappa (Melquiond (2019)), among

others (Linderman et al. (2010), Dong-U Lee et al. (2005), Osborne et al. (2007)).

One issue with IA is that it does not capture the relationships between variables

where range or uncertainty is reduced due to variables partially or fully canceling out

(Fang et al. (2003)). AA is a similar method where relationships between variables

are tracked, therefore AA produces tighter bounds then IA but is more complex to

implement, but still provides a pessimistic result (Stolfi and Henrique De Figueiredo

(1998)). Both of these methods are analytical methods that produce bounds that will

hold with certainty under the assumption that the initial input bounds hold.

A detailed explanation of how IA can be used to store and compute these bounds

on finite precision arithmetic operations is provided by Stolfi and Henrique de Figueiredo

which we will summarize here. IA consists of interval extension operations that corre-

spond with arithmetic operations including truncation. We begin by representing the

range and uncertainty of our input variables as intervals as shown in Equations 2.3.

x =
[
x, x
]

(2.3a)

δx =
[
δx, δx

]
(2.3b)

20

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Addition of intervals to compute range or uncertainty is simply performed using

Equations 2.4.

x+ y =
[
x+ y, x+ y

]
(2.4a)

δ(x+ y) =
[
δx+ δy, δx+ δy

]
(2.4b)

Similarly, for subtraction we use Equations 2.5.

x− y =
[
x− y, x− y

]
(2.5a)

δ(x− y) =
[
δx− δy, δx− δy

]
(2.5b)

Equations 2.6 are used to compute bounds on multiplication. They are more compli-

cated as uncertainty is affected by range.

a =
{
xy, xy, xy, xy

}
(2.6a)

b =
{

(x+ δx)(y + δy), (x+ δx)(y + δy), (x+ δx)(y + δy), (x+ δx)(y + δy)
}

(2.6b)

x× y =
[
min(a),max(a)

]
(2.6c)

δ(x× y) =
[
min(b)−min(a),max(b)−max(a)

]
(2.6d)

21

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

When working with intervals that represent uncertainty, errors incurred through

conversion from real to fixed-point or from one fixed-point format to another can

be achieved by expanding the uncertainty interval as shown in Equation 2.7 when

converting real to fixed, or Equation 2.8 when converting from a fixed-point format

with a larger FWL to a smaller one. No error increase is incurred when the FWL is

expanded.

δ(x) =
[
− 2−b, 2−b

]
(2.7)

δ(x) =
[
x− 2−bnew + 2−bold , x+ 2−bnew − 2−bold

]
(2.8)

As we do not use AA in our work, we will not discuss it farther. However, it

should be noted that AA can be used in substitution of IA.

Satisfiability Modulo Theories

Satisfiability modulo theory (SMT) solvers are constraint solvers that can work with

equations that contain reals and integers making them suitable for analyzing differ-

ences between real and fixed-point implementations of algorithms. With a suitable

constraint set, they can prove even tighter range and uncertainty bounds then AA but

due to the long run-times associated with SMT solvers, they may not be suitable for

analyzing large equations without an incremental approach (Eldib and Wang (2014)).

Many SMT solvers are available such as Z3 (Microsoft Research (2019)), Yices (SRI

International (2018)), and CVC4 (Barrett et al. (2011))), among many others.

In this thesis, integer and real SMT variables are denoted with subscript integer

and real respectively.

22

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

SMT solvers prove if a set of constraints is satisfiable or not. For example, the

constraint set shown in Equation 2.9 is satisfiable.

(0 ≤ xreal ≤ 5) ∧ (yreal = 2× xreal) ∧ (yreal ≡ 7.2) (2.9)

However, the one shown in Equation 2.10 is not because an integer multiple of an

integer cannot be a decimal.

(0 ≤ xinteger ≤ 5) ∧ (yreal = 2× xinteger) ∧ (yreal ≡ 7.2) (2.10)

2.7 Model-Based Design

Model-based design is a design entry technique often used to build simulations (The

MathWorks, Inc. (2019b)). The technique involves connecting blocks to build math-

ematical and logical expressions. It can also be used to implement controllers on

MCUs, DSPs, and FPGAs through code generation.

For simulation, the model can be executed in the design environment where the

user can plot and collect data or code generation can be used to generate modular

blocks that can be integrated into other simulation tools.

For implementation, code can be generated to target software processors or FP-

GAs. The code generation process, when targeting FPGAs is also known as high-level

synthesis.

23

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

2.8 High-Level Synthesis

High-level synthesis (HLS), is one method of reducing the effort required when devel-

oping for FPGAs through automatic code generation from higher-level descriptions

of algorithms. HLS is the process of taking a data flow or algorithm and generating

HDL code for logic synthesis (Borriello and Detjens (1988)). HLS can include lexical

analysis, data flow analysis, scheduling and resource allocation (Meredith (2004)).

An example HLS flow that works with algebraic equations is shown in Figure 2.5.

In the example, an input file is parsed and a data flow graph (DFG) is built. Then,

a scheduling algorithm is used to choose the timestep to execute operations. The

resource binder then counts the maximum number of each resource needed each time

step before allocating reusable units to perform the required operations.

A B

×

E

+

C D

×M1 = A×B
M2 = C×D
A1 = M1+M2
E = A1

Input Format

Lexical
Analysis

Data Flow Graph

A B

×

E

+

C D

×

Execution Schedule
Scheduling

1

2

3

HDL Code
Resource
Binding

Resource Allocation

Required Resources
1 Multiplier
1 Adder
Time Step 1
Reg1 = Mult1(A, B)
Time Step 2
Reg2 = Mult1(C,D)
Time Step 3
E = Add1(Reg1, Reg2)

Code
Generation

Figure 2.5: An illustration of a simple HLS flow

24

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Extensive research on each step involved in HLS including static schedulers (Paulin

and Knight (1989)), dynamic schedulers (Lapotre et al. (2013)), FPGA area aware

resource sharing (Casseau and Le Gal (2009)) and WL optimization (Ye and Kapre

(2014)).

Today, many commercial products are available including Vivado HLS (Xilinx

Inc. (2019)), High-level Synthesis Compiler (Intel Corporation (2019a)), Synphony

(Synopsys, Inc. (2009)), Catapult (Mentor, a Siemens Business (2019a)), and Stratus

(Cadence Design Systems, Inc. (2019b)), among others. Also, tools within science

and engineering suits such as LabView FPGA (National Instruments (2019b)) and

HDL Coder for MATLAB and Simulink (MathWorks Inc. (2019a)) exists to combine

model-based design with HLS.

2.9 System Simulation

Simulation of physical systems is often performed using general-purpose simulation

packages such as Simulink (The MathWorks, Inc. (2019c)), LabVIEW (National In-

struments (2019c)) or MapleSim (Maplesoft (2019)), among many others. Often these

tools are configured using a scripting language or using blocks in a model-based design

environment. Control algorithms can be modeled within these environments allowing

for algorithm development.

FPGA simulation environments allow designers to work on designs without the

hardware and provide greater design visibility by allowing all signals to be available

for analysis. Commercial tools for FPGA simulation include ModelSim (Mentor, a

Siemens Business (2019b)), Incisive (Cadence Design Systems, Inc. (2019a)), and

25

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

VCS (Synopsys, Inc. (2019)), among others. Modeling of components outside of the

FPGA must be provided using bus functional models (BFMs).

Co-simulation between general-purpose simulation packages and FPGA simulators

is provided by tools such as HDL Verifier for Simulink (MathWorks Inc. (2019b)) and

LabVIEW FPGA (National Instruments (2019b)). This can be used to validate the

behavior of an FPGA based controller. As an alternative, using the code generation

facilities in some simulation packages we can generate BFMs to be integrated into

our FPGA simulation testbench if a co-simulation environment is not desired. This

type of functionality can also be found in the same co-simulation tools.

Hardware in loop (HIL) simulation is the process of testing a controller imple-

mented on the real hardware with an emulator instead of the physical test setup. In

the context of FPGA design, this testing exposes problems associated with inaccurate

BFMs since the actual hardware is used. HIL support can often be found within the

same simulation packages as we mentioned previously. Platforms for HIL simulation

is available from dSpace (dSPACE GmbH (2019b)), National Instruments (National

Instruments (2019a)), and others.

2.10 Related Works and Inspiration

Many pieces of related work exist that combine different combinations of topics we

discussed in this chapter. We draw inspiration from these works to create a method-

ology useful for integration into an FCS-MPC controller design process.

We discussed that analytical methods and SMT solvers can be used to prove bound

on range and uncertainty. The Z3 SMT solver was used previously to refine IA or

AA results (Duralová (2014)). Similar techniques can be found in Rosa which is a

26

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

tool that compiles software programs with reals into finite precision implementations

using IA, AA and SMT solvers (Darulova and Kuncak (2013)). A similar project uses

the LLVM compiler framework (Lattner and Adve (2004)) and the Yices SMT solver

to reduce errors and prevent overflow in fixed-point software programs (Eldib and

Wang (2014)). Eldib and Wang’s work also demonstrates segmentation to address

SMT issues with scalability. All these works exploit the speed of IA or AA with the

smaller bounds that SMT solving can provide. The authors of these works target

software implementations.

Targeting FPGA implementations, MixFX-Score (Ye and Kapre (2014)) is an HLS

tool that combines inspiration from the FX-Score (Martorell and Kapre (2012)) frame-

work. It applies WL optimization by using Gappa++ (Linderman et al. (2010)) which

performs AA. SA is used to generate candidate designs that implement SPICE circuit

models. FX-Score produces homogeneous fixed-point designs where the fixed-point

format is the same throughout while MixFX-Score produces heterogeneous fixed-point

designs. Other custom HLS processes targeting Xilinx FPGAs with DSP48E1 that

utilizes Gappa (Melquiond (2019)) to perform IA for error minimization has been

demonstrated (Bajaj (2016)). While all these processes that target FPGAs have dif-

ferent input languages and are intended for different processing needs, they internally

use similar methods.

In power electronic control, we have works where manual WL optimizations were

applied to an FPGA based active front end FCS-MPC showing minor controller per-

formance degradation but significant area utilization reduction (Hamidi et al. (2017)).

Manually developed FPGA based FCS-MPC for induction motors exist that can make

8 predictions in 1.6 uS, potentially achieving a 625 kHz sample rate with a prediction

27

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

horizon of 1 (Kosan et al. (2018)). Others have gone for model-based approaches by

using HLS tools within MATLAB and Simulink (MathWorks Inc. (2019a)) to pro-

duce FPGA implementations of FCS-MPC for motor control (Wendel et al. (2017a)),

highlighting a user that can benefit from having additional optimization features in

their HLS tools.

We draw inspiration from the overview of works in this section. Specifically, we

draw on the analytical techniques’ others have applied to software program design

analysis and optimization and how others have already applied these techniques to

FPGA design automation through HLS. We identify others that have applied WL

optimization for FCS-MPC on FPGAs to save area, a process that others have al-

ready automated in other fields. Then we look at performance achieved in manually

developed FCS-MPC implementations on FPGA for motor control highlighting that

others are already looking at FPGAs to alleviate computational complexity problems

when applying FCS-MPC to motor control. We then identified users of HLS for FCS-

MPC development that would benefit from our methods as an additional feature in

the tools they already use. We see there is an existing set of techniques that can

apply to the problems being solved by researchers of FCS-MPC implementations on

FPGA for motor control and from this, we developed our objectives highlighted in

Section 1.2.

28

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

2.11 Chapter Summary

In this chapter, we summarized the basics and state of the art of major works related

to ours. We identified where processes in other research fields can be applied to the

work others are doing on FCS-MPC for motor control using FPGAs.

In Chapter 3, we will discuss the internal details of our high-level design tools for

FPGA modules implementing equation evaluation. It applies WL optimizations to

reduce the size of the FPGA required using a combination of SA, IA and SMT solvers

so uncertainty bounds can be guaranteed. We chose to build a custom tool instead

of depending on a set of existing tools because it allows better control over what is

happening during the automated design process. In the future, our techniques can

be incorporated into other HLS tools, increasing the efficiency of designs produced

by automated design processes. We then apply these tools to the development of a

predictive controller in Chapter 4.

In Chapter 4 we only target motor control using the tools and techniques we

describe in Chapter 3. However, they may apply to other applications where equations

must be evaluated in an FPGA such as in power electronic control.

Those implementing FPGA based controllers for power electronics or motor con-

trol without HLS or our optimization methods may still find details of our implemen-

tation in Chapter 4 and results in Chapter 5 applicable to their work.

29

Chapter 3

Tools and Methodologies

Our optimization tools automate word-length (WL) optimization of circuits that eval-

uate algebraic equations which are commonly found in FCS-MPC models. This chap-

ter focuses on the internal operation of our tools while Chapter 4 utilizes these tools

within a controller design. This chapter can be skipped for readers interested in either

using, rather than developing, tools for equation modeling or those looking to avoid

these types of high-level optimization tools. Techniques in Chapter 4 can still apply

to those who intend to use traditional FPGA development techniques alone to design

an FCS-MPC for power electronics or motor control.

Our tools target fixed-point implementation on small FPGAs with hard multipli-

ers. WL optimization reduces the logic utilization of the circuits so smaller FPGAs

can be used, reducing cost.

We first introduce how we can perform arithmetic operations in fixed-point on an

FPGA. We will then discuss how we represent equations within our tools. After, we

detail the analytical methods used to ensure that the fixed-point WLs are allocated

30

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

such that integer overflow does not occur and precision of the output meet require-

ments so long as input restrictions are respected. After, we discuss how we estimate

and optimize the FPGA area utilization of the circuit generated by combining these

techniques into a WL optimization and code generation tool.

While we integrate our tools into a traditional FPGA development flow as shown

in Figure 3.1 the techniques we present can be integrated into more sophisticated

high-level synthesis (HLS) environments or combined with their techniques in the

future. Combining previous work could allow for resource sharing and pipelining,

potentially resulting in even better performance with less area.

Traditional FPGA Tool Flow

Hardware
Description

Design Specification

FPGA
Compilation

FPGA Bitstream

Our Tools

Equation
Representation

Optimize

Analyze

Code
Generation

Equations RTL

Figure 3.1: Integration of our tools into traditional FPGA tool flows

31

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

3.1 FPGA Fixed-Point Arithmetic Model

FPGA logic can be synthesized to shift, add, subtract, multiply or divide values ex-

pressed in fixed-point format. In this chapter, we show WLs in Q format as explained

in Section 2.5.2. Values with longer WLs require more logic on an FPGA to store or

operate on.

Additions and subtractions are often implemented using lookup tables (LUTs).

The larger the WL of the operands, the more LUTs are needed.

Multiplication is often implemented using dedicated multiplier elements available

in almost all FPGAs to save logic resources. Division by a constant can be replaced

with multiplication by a reciprocal to save logic resources as well. Often, a division

can be substituted in this manner. Therefore, we can exclude division to simplify our

tool flow yet still support many modeling equations required in FCS-MPCs.

Shifting is often used in FPGA designs. Shifting by a constant is simply imple-

mented with a change in routing on an FPGA so there is essentially no logic overhead.

Multiplication or division by powers of two can be replaced with left and right arith-

metic shift respectively, saving resources. Shift operations can also be used to move

the radix point or to truncate or add LSBs. Right shifting or truncation of LSBs re-

sults in rounding towards zero to the new, larger quantization step while left shifting

or addition of LSBs decreases the size of the quantization step.

32

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Addition and subtraction operations on an FPGA can be broken down into three

stages, the pre-shift stage to align the radix point of the operands, the arithmetic

operation itself, and a truncation step if our result has an IWL longer then what we

need. Figure 3.2 shows an example of an addition or subtraction operation between

operands with FWLs above and below the output FWL and IWLs that result in a

WL above the output IWL. In our work, we collectively call this a Q3.6 addition or

subtraction node.

Operand 1 Operand 2

Pre-Shift 1 (<<<1) Pre-Shift 2 (>>>1)

Operation
(+/-)

Truncate MSBs

Result

Q2.5 Q3.7

Q3.6Q2.6

Q4.6

Q3.6

Figure 3.2: The internal structure of a Q3.6 addition or subtraction node

33

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

When multiplying, even though the alignment of the radix point is not required,

we decided to apply a shift operation on the operands to limit the size of the multi-

plier required. The output of the multiplier has a WL that is the sum of the input

operands. An MSB and LSB truncation operation can be applied to reduce the out-

put WLs which reduces storage requirements. The choice to apply either pre-shift,

post-truncation or both is up to the designer. If desired all three options can be

explored by the tool. We choose to perform pre-shifting if the FWL of the operand

exceeds the output FWL of the node before performing post-truncation of both MSB

and LSB. Limiting the options available to the optimizer reduces the complexity of

the tool and we found it to be effective still. An example of a multiplication node

requiring pre-shifting on one input is shown in Figure 3.3.

Operand 1 Operand 2

Pre-Shift 2 (>>>1)

Operation
(×)

Truncate

Result

Q2.5
Q3.7

Q3.6

Q5.11

Q3.6

Figure 3.3: The internal structure of a Q3.6 multiplication node

34

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

3.2 Equation Representation

The equations we are trying to implement in a circuit is converted into nodes and

connected into a data flow graph (DFG) as discussed in Section 2.8. In our tool,

the user is required to construct this DFG manually for the rest of the stages. An

example of a DFG that represents Equation 3.1 is shown in Figure 3.4 along with the

traversal order.

D(A,C) = (A×B) + C (3.1)

Input
A
1

Constant
B
2

×
3

Output
D
6

+
5

Input
C
4

Figure 3.4: Equation 3.1 as a DFG with processing order

The traversal order of the DFG is the same for all processing steps in this chapter.

Before we can work with a node, we must work with its inputs first, propagating node

properties forward during analysis or generating dependencies during code generation.

The DFG allows us to store nodes and the connectivity between them. The nodes

contain information related to the analysis stages or final implementation. Once the

35

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

equation is stored in a DFG it can be analyzed and manipulated by traversing the

graph and changing properties stored at each node. Source nodes are used to represent

constants or inputs, intermediate nodes are used to represent arithmetic operations

such as addition, subtraction or multiplication, and finally sink nodes are used to

represent the outputs of the circuit. Each node contains constraints configured by

the user, and variables explored by our tool.

3.2.1 Source Node Properties

For the source nodes that represent an input, the input fixed-point format (F) is

required from the user as it defines the input connectivity of the generated module.

Table 3.1 shows the constraints the user must supply. The range (R) and input

uncertainty (IU) must be supplied by the user since any inputs might contain errors.

To simplify the tool, the interval IU must include 0.

Table 3.1: Source Node Properties

Node
Property

User-Provided
Constraint

Tool Controlled
Variable

Input Uncertainty (IU)
[
IU, IU

]
, IU ≤ 0, IU ≥ 0

Range (R)
[
R,R

]
Uncertainty (U)

[
U,U

]
Format (F) QFa.Fb

Source nodes that represent a constant have an input range such that R and R

are the same. Input uncertainty can be defined for constants if the constant varies,

for example with environmental factors.

36

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

3.2.2 Arithmetic Node Properties

The operation (OP) must be supplied by the user for an intermediate node repre-

senting an arithmetic operation as shown in Table 3.2. The tool will derive all the

other variables using information from connected operand nodes.

Table 3.2: Arithmetic Node Properties

Node
Property

User-Provided
Constraint

Tool Controlled
Variable

Operator (OP) OP ∈ {+,−,×}

Range (R)
[
R,R

]
Uncertainty (U)

[
U,U

]
Format (F) QFa.Fb

3.2.3 Output Node Properties

For sink nodes that represent outputs, Table 3.3 make up the required properties.

The output format is required from the user as it defines the output connectivity of

the generated module. The output uncertainty requirement (UR) is the uncertainty

the WL optimizer must stay below. The rest of the variables are propagated from

the output nodes’ input.

Table 3.3: Output Node Properties

Node
Property

User-Provided
Constraint

Tool Controlled
Variable

Range (R)
[
R,R

]
Uncertainty (U)

[
U,U

]
Format (F) QFa.Fb

Output Uncertainty Requirement (UR)
[
UR,UR

]
37

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

3.3 Range and Precision Analysis

During the WL optimization process, we first apply IA until result show constraints

might not be met before applying SMT analysis to determine if the solution meets

constraints. SMT analysis is used with a configurable timeout as it may take a long

time, if the process times out, we assume the IA results correctly identified that

constraints are not met and move forward.

3.3.1 Interval Arithmetic

We use the IA techniques we summarized in Section 2.6.2 to propagate range and

uncertainty bounds through the DFG. We keep the range and uncertainty computa-

tions separate when propagating bounds to facilitate optimization of IWL and FWL

separately. The range (R) and uncertainty (U) intervals we discussed in Section 3.2

are calculated during IA analysis.

During IA we create a temporary interval, pre-shift uncertainty (PSU) to repre-

sent precision loss due to the pre-shift operations discussed in Section 3.1.

Source Node Bounds

For source nodes, we refer to Table 3.1 and see that uncertainty (U) must be com-

puted. The uncertainty includes the input uncertainty and additional error caused

by conversion from real to fixed-point. This means we can use Equation 2.8 discussed

previously to compute the uncertainty as shown in Equation 3.2.

U =
[
IU − 2−Fb , IU + 2−Fb

]
(3.2)

38

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Arithmetic Node Bound Propagation

Recall that the arithmetic nodes contain the tool controlled variable, format (F),

range (R), and uncertainty (U) as shown in Table 3.2. The fixed-point format (F)

will be set in a different step in the optimization process. R and U will be computed

using IA operations. Properties associated with operand nodes of the arithmetic

node will be referred to using one dot (left operand) or two dots (right operand)

above property names, an example of this is shown in Figure 3.5.

Operand
1

Operand
2

Current
Node

R

Ṙ R̈

Figure 3.5: Referencing R interval of operand nodes from the current node

Uncertainty bound propagation for addition, subtraction and multiplication is

initially the same. Addition and subtraction operations require that we include any

precision loss from truncation of LSBs when aligning the radix point. According to

our arithmetic model discussed in Section 3.1, we perform pre-shifting on each of the

operands of a multiplier if the operands FWL is larger then the nodes FWL. Since

for addition and subtraction, increasing the FWL does not cause any precision loss,

it turns out that for all three operations the uncertainty expansion is the same.

39

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Modeling of precision loss due to radix alignment operations and efforts to reduce

the WL of a multiplier is achieved using Equations 3.3 which is based on Equation 2.8.

The uncertainty bounds after pre-shifting are stored in a temporary PSU interval.

(Ḟb > Fb) =⇒ ˙PSU =
[
U̇ − 2−Fb + 2−Ḟb , U̇ + 2−Fb − 2−Ḟb

]
(3.3a)

(Ḟb ≤ Fb) =⇒ ˙PSU =
[
U̇ , U̇

]
(3.3b)

(F̈b > Fb) =⇒ ¨PSU =
[
Ü − 2−Fb + 2−F̈b , Ü + 2−Fb − 2−F̈b

]
(3.3c)

(F̈b ≤ Fb) =⇒ ¨PSU =
[
Ü , Ü

]
(3.3d)

For addition and subtraction, uncertainty bounds can then be calculated using

one of Equations 3.4 depending on the operation.

(OP ≡ +) =⇒ U = ˙PSU + ¨PSU (3.4a)

(OP ≡ −) =⇒ U = ˙PSU − ¨PSU (3.4b)

Subsequently, range bounds for these operations can be computed using one of Equa-

tions 3.5 depending on the operation.

(OP ≡ +) =⇒ R = Ṙ + R̈ (3.5a)

(OP ≡ −) =⇒ R = Ṙ− R̈ (3.5b)

40

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Propagation of range or uncertainty for multiplication operations is more compli-

cated as the two are linked. Recall that we have already computed uncertainty due to

pre-shifting using Equations 3.3. We then compute bounds using the uncertainty after

pre-shifting by using Equations 2.6 which were previously discussed. Equations 3.6

perform the IA operations required for multiplication nodes.

a =
{

(Ṙ)(R̈), (Ṙ)(R̈), (Ṙ)(R̈), (Ṙ)(R̈)
}

(3.6a)

b =

(Ṙ + ˙PSU)(R̈ + ¨PSU), (Ṙ + ˙PSU)(R̈ + ¨PSU),

(Ṙ + ˙PSU)(R̈ + ¨PSU), (Ṙ + ˙PSU)(R̈ + ¨PSU)

 (3.6b)

R =
[
min(a),max(a)

]
(3.6c)

U =
[
min(b)−min(a),max(b)−max(a)

]
(3.6d)

41

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

3.3.2 SMT Analysis

To check if a tighter bound on range and uncertainty exists when IA suggests that our

design might not satisfy our requirements, we need a suitable constraint set for our

SMT solver. We must represent the operations as a sequence of constraints on reals

and integers. If all the constraints can be satisfied, then the bounds are violated.

Source Node Constraints

For source nodes, we build the constraint from the properties introduced previously

in Table 3.1. The constraint on real SMT variable RVreal in Equation 3.7 represents

all possible real values with input uncertainty (IU) included.

(R + IU) ≤ RVreal ≤ (R + IU) (3.7)

Equations 3.8 shows the constraints on the integer SMT variable FVinteger that models

real to fixed-point conversion with rounding towards zero. Input uncertainty (IU) is

included here by expanding the real values represented by each integer value.

(RVreal ≥ 0) =⇒

(RVreal < (((FV integer + 1)× 2−Fb)− IU))

∧

(RVreal ≥ ((FV integer × 2−Fb)− IU))

(3.8a)

(RVreal < 0) =⇒

(RVreal ≤ ((FV integer × 2−Fb)− IU))

∧

(RVreal > (((FV integer − 1)× 2−Fb)− IU)

(3.8b)

42

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Arithmetic Node Constraints

The arithmetic models in Section 3.1 require unique constraints depending on the

operation due to the different rules regarding radix point alignment for addition and

subtraction or size reduction for the multiplier.

In this section, we again refer to the node properties associated with the operand

nodes using a dot (left operand) or two dots (right operand) above property names

of SMT variables as shown previously in Figure 3.5.

For arithmetic nodes representing an addition or subtraction, the first constraint

is chosen from Equations 3.9 depending on the operation. It represents the exact

result.

(OP ≡ +) =⇒ RVreal = ˙RVreal + ¨RVreal (3.9a)

(OP ≡ −) =⇒ RVreal = ˙RVreal − ¨RVreal (3.9b)

The constraints in Equations 3.10 scale each fixed-point operand to represent pre-

shifting for radix alignment and stores the result in the PSVinteger SMT variable.

˙PSVinteger = ˙FVinteger × 2Fb−Ḟb (3.10a)

¨PSVinteger = ¨FVinteger × 2Fb−F̈b (3.10b)

43

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Next, we operate on the radix aligned fixed-point values depending on the operation

as shown in Equations 3.11.

(OP ≡ +) =⇒ FVinteger = ˙PSVinteger + ¨PSVinteger (3.11a)

(OP ≡ −) =⇒ FVinteger = ˙PSVinteger − ¨PSVinteger (3.11b)

The first constraint for multiplication nodes is like the addition and subtraction

nodes as it just produces the product of the real values as shown in Equation 3.12.

RVreal = ˙RVreal × ¨RVreal (3.12)

Pre-shifting for multiplication nodes is a little different as we only pre-shift values if

the operands’ FWL exceeds our output FWL since alignment of the radix point is

not required and reducing the FWL just serves to reduce the area of a multiplier.

This pre-shift operation is represented in Equation 3.13.

(Ḟb > Fb) =⇒ ˙PSVinteger = ˙FVinteger × 2Fb−Ḟb (3.13a)

(Ḟb ≤ Fb) =⇒ ˙PSVinteger = ˙FVinteger (3.13b)

(F̈b > Fb) =⇒ ¨PSVinteger = ¨FVinteger × 2Fb−F̈b (3.13c)

(F̈b ≤ Fb) =⇒ ¨PSVinteger = ¨FVinteger (3.13d)

Then multiplication of the pre-shifted fixed-point values is performed in Equations 3.14

and stored in temporary variable PMVinteger.

PMVinteger = ˙PSVinteger × ¨PSVinteger (3.14)

44

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Finally, Equations 3.15 show how truncation of the LSBs of the result is modeled.

((Ḟb ≤ Fb) ∧ (F̈b ≤ Fb)) =⇒ FVinteger = PMVinteger × 2Fb−Ḟb−F̈b (3.15a)

((Ḟb ≤ Fb) ∧ (F̈b > Fb)) =⇒ FVinteger = PMVinteger × 2Fb−Ḟb (3.15b)

((Ḟb > Fb) ∧ (F̈b ≤ Fb)) =⇒ FVinteger = PMVinteger × 2Fb−F̈b (3.15c)

((Ḟb > Fb) ∧ (F̈b > Fb)) =⇒ FVinteger = PMVinteger × 2−Fb (3.15d)

Output Node Range Constraints

Output nodes contain the uncertainty requirement. To check if this requirement is

met we need a constraint that detects if the fixed-point value converted back into

a real deviates away from the real value by too much. In this section, we refer to

the output nodes’ input node properties with a dot above property names or SMT

variables.

First, we need to perform a scaling operation on the input fixed-point value if the

input of the output node does not have the same FWL. This scaling is modeled by

Equation 3.16.

FVinteger = ˙FVinteger × 2Fb−Ḟb (3.16)

Next, we need to convert our fixed-point value back into a real using Equation 3.17.

FVreal = FVinteger × 2−Fb (3.17)

Then, detecting if the bounds are violated is done with Equation 3.18.

(FVreal ≥ ˙RVreal + UR) ∨ (FVreal ≤ ˙RVreal − UR) (3.18)

45

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

If multiple output nodes exist in the DFG then the constraint set in Equation 3.18 can

be combined with the same constraint set for the other output nodes using a logical

OR between all of them. Therefore, if any of the output nodes fail to meet their

constraints, the SMT solver will tell us that the entire constraint set is satisfiable.

Overflow Constraints

Alternatively, we can choose to exclude the uncertainty bound violation checks in

Equation 3.18 and instead check for integer overflow on any or all of the nodes in the

DFG. This can be accomplished for any or all of the nodes using Equation 3.19. Sim-

ilarily to uncertainty checks, all the constraints for overflow checks must be combined

using logical ORs.

(FVinteger ≥ 2Fa+Fb) ∨ (FVinteger < −2Fa+Fb) (3.19)

46

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

3.4 Implementation Cost Estimation

We use an equation-based method for estimating the number of m × m multiplier

elements required to implement our multiplication nodes as they are scarce in small

FPGAs. We ignore the number of LUTs required to implement our equations since

a reduction of the size of our multipliers will indirectly reduce the number of LUTs

required for other operations in the equation.

FPGAs combine smaller hard multipliers into larger ones by shifting and adding

up partial products (Intel Corporation (2004)). The FPGAs our tool targets have

2m × 2m hard multipliers that can be fractured into m × m multiplier elements.

Multipliers larger than 2m× 2m requires cascading which significantly increases the

number of multiplier elements required. Cascading of multiplier elements involves

shifting and adding partial products. When multiplying a 2m wide input by an m

wide input a full 2m× 2m multiplier is needed.

To determine the size of the multipliers required we first determine if we need a

multiplier at all. If either of the inputs is a constant one or zero then the multipli-

cation can either be implemented with a shift operation or the result is always zero

respectively, the cost, in these cases, is calculated using Equation 3.20. A and B refer

to the two operands of the multiplication operation.

(((A ≡ 0) ∨ (A ≡ 1)) ∨ ((B ≡ 0) ∨ (B ≡ 1))) =⇒ (Cost(A×B) = 0) (3.20)

If Equation 3.20 does not apply, we round the total WL including a sign bit, of

each input up to the nearest multiple of m. The operands are then segmented into as

47

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

many blocks 2m wide as possible before segmenting any remaining bits into m wide

blocks if needed. An illustration of this process is shown in Figure 3.6.

A[4:4] A[4:4] A[3:0]︸ ︷︷ ︸
2bits

︸ ︷︷ ︸
4bits

B[5:4] B[3:0]︸ ︷︷ ︸
2bits

︸ ︷︷ ︸
4bits

Figure 3.6: Segmentation of an input with a WL of 5 before sign extension and
input with a WL of 6

Computing the number of multiplier elements required now requires that we count

all the unique pairs of segments and adding up the number of multiplier elements

needed as shown in Equation 3.21. Note that we need two elements if either of the

operands is 2m in width.

Cost(A×B) = 2(nA2m×B2m + nA2m×Bm + nAm×B2m) + nAm×Bm (3.21)

48

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

3.5 WL Optimization and Code Generation

We allow the fixed-point format to be different throughout the FPGA design, by

doing so we open up a vast design space that is difficult to work with manually, so

we developed a tool that automatically explores this space. The tool optimizes WLs

stored in the format (F) properties described in Section 3.2 which denote IWL and

FWL of a node with Fa and Fb respectively. The tool we will be detailing in this

section is summarized in Figure 3.7.

Initial Integer WL Allocation

Range Analysis
(IA)

Allocate IWL

Fractional WL Optimization (SA)

Solution Generator

Cost Estimation

Precision Analysis
(IA, SMT)

Range Analysis
(IA, SMT)

Global Fractional WL Allocation

Allocate FWL

Precision Analysis
(IA)

A B

×

E

+

C D

×

Data Flow Graph

Accept
or

Reject

Figure 3.7: WL optimization process

During initial IWL allocation we compute the minimum required IWL for each

node in the DFG using the range (R) calculated using the IA techniques we described

in Section 3.3.1. This initial IWL allocation does not including uncertainty effects

which can increase the range to the point where overflow can occur, but this result

is required for cost estimation. For each node, we select the lowest IWL such that

Equation 3.22 is satisfied.

(2Fa − 1 ≥ R) ∧ (−2Fa ≤ R) (3.22)

49

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Since we do not include the range increase that the fractional bits contribute, we

decrease the chance that the second range check later in the optimization process

will discover that overflow is possible. This allows us to avoid a second round of cost

estimations without a significant loss in cost estimation accuracy.

Our optimizer follows the same type of process as MiniBit+ (Osborne et al. (2007))

where a coarse FWL optimization step is used to find the minimum global FWL. After,

each nodes’ FWL is refined individually using simulated annealing (SA).

Initially, every node with a configurable FWL has it set to zero. All the config-

urable FWLs are then increased by one until the uncertainty (U) on all the output

nodes obtained through IA shrinks enough to meet the output uncertainty require-

ment (UR) set on the output nodes. In other words, once Equation 3.23 is satisfied

for all output nodes in the DFG, we stop increasing the global FWL. We set this as

the initial base solution used in the next stage.

(UR ≤ U) ∧ (UR ≥ U) (3.23)

After, we begin the fine-grained FWL optimization. We use SA for solution explo-

ration, but many other meta-heuristic algorithms would work as we discussed in Sec-

tion 2.6.1. SA was chosen for its simplicity and popularity in other WL optimization

tools. Our SA based algorithm generates neighboring solutions by randomly selecting

an arithmetic node and randomly increasing or decreasing the FWL by one. The cost

of the generated solution will then be evaluated. If the cost is better then the best so

far, we immediately go onto the next step. If the cost is worse, we randomly generate

a number between 0 and 1. If the value is below the hypothetical temperature (T)

of the system, also between 0 and 1 we accept it, else we reject it and go back to

50

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

solution generation. Every time we generate a solution, we use a cooling function to

decrease the temperature of the system, thereby decreasing the chance of accepting

worse solutions the more solutions we try. Equation 3.24 is the cooling function we

used, crate being a user-configurable cooling rate, another value between 0 and 1.

Tnew = crate × Told (3.24)

Every solution that makes it to the next step is checked to see if uncertainty bounds

are met using our IA techniques. If our IA techniques tell us that uncertainty bounds

might be exceeded, we try using an SMT solver to see if tighter bounds can be found

that pass our requirements. We then need to perform an IA range check again with

the range and uncertainty bounds combined since uncertainty can cause the range

to increase. If our IA techniques tell us that range bounds are exceeded, we switch

to SMT analysis to check if the solution is acceptable. If the solution is validated

through IA then it is accepted by the SA algorithm as the next base solution, if it

was validated by SMT then it is just reported as a good solution to avoid trapping

the optimizer in a state where IA always fails. If the cost of this solution is a new

minimum, we save that as the current best score. We repeat this process until the

temperature of the system drops below a user-configurable value. After, we can choose

to repeat the SA process with the same base solution given to us through global FWL

optimization to find more solutions.

Once we have a solution we are satisfied with from the SA step, we move onto

code generation. Since the cost estimation might not be perfectly accurate due to

optimizations that might be performed by the FPGA tools, it might be worth taking

a few of the best solutions generated and trying them.

51

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

3.5.1 Code Generation

Our tool generates SystemVerilog code but targeting a different HDL is a trivial task

since all the language features we use have analogues in Verilog and VHDL. The

code generation step in our tool is very simple since we do not perform any form of

resource sharing, pipelining or scheduling. However, it should be noted that there

is no reason why those stages cannot be included between the WL optimization and

code generation stage. In the next chapter, we will calculate the overall computational

latency reduction and increase in throughput that could be gained with the addition

of an automated pipelining step. This step is left out since the demonstration of

automatic pipelining is not a goal of this work and adds additional complexity to the

code generation step. To prevent the generated module from decreasing the achievable

clock rates in the rest of the design we add one register after each arithmetic node

being generated.

As an example, we will use Equation 3.1 and the associated DFG in Figure 3.4 with

values generated by the WL optimization stage shown in Table 3.4 to demonstrate

our code generator.

Table 3.4: Example DFG Configuration

Node Format (F) Constant

Input A Q3.8

Constant B Q2.6 3.14159

Input C Q4.6

Multiply Q6.7

Add Q6.6

Output D Q6.6

52

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Our code generator first generates all the input and output nodes to build the

generated modules input and output ports. The total WL of each node includes a

sign bit, the FWL and the IWL. We also include the clock for the module at this

point for internal registers.

module equat ion (

input c lk ,

input s igned [1 1 : 0] input A ,

input s igned [1 0 : 0] input C ,

output l o g i c s igned [1 2 : 0] output D reg

) ;

We then generate all the internal wires and registers that we will assign values to

throughout the design. Note that we converted 3.14159 into an integer by scaling the

real value to create a fixed-point value with an FWL of 8.

l o g i c s igned [1 2 : 0] output D ;

parameter s igned [8 : 0] constant B = 804 ;

l o g i c s igned [1 3 : 0] mu l t ip ly 0 ;

l o g i c s igned [1 3 : 0] m u l t i p l y 0 r e g ;

l o g i c s igned [1 2 : 0] add 0 ;

l o g i c s igned [1 2 : 0] add 0 reg ;

53

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Next, we generate the computation logic in the traversal order shown in Figure 3.4,

this is to ensure that dependencies are calculated before they are used. Note that

inputs and constants are skipped since they already have their value. Here we follow

the shifting rules defined in Section 3.1.

always comb begin

mul t ip ly 0 = ((input A>>>1) ∗ (constant B))>>>6;

add 0 = ((mult ip ly 0 >>>1) + (input c)) ;

output D = add 0 ;

end

After, we generate the register logic and end the module.

a l w a y s f f @ (posedge c l k) begin

m u l t i p l y 0 r e g <= mul t ip ly 0 ;

add 0 reg <= add 0 ;

output D reg = output D ;

end

endmodule

The resulting circuit modeled by this generated SystemVerilog module does not

have a balanced pipeline since there are varying numbers of registers on each path all

input nodes to all output nodes. In the results, we calculate the benefits that can be

expected with the addition of an automated pipelining algorithm.

54

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

3.6 Chapter Summary

In this chapter, we discussed a process for automated WL optimization of equations

destined to be implemented on a small FPGA with hard multiplier elements. The

process analyzes a DFG given by the user using IA and SMT based techniques to

allocate integer and fractional bits for fixed-point implementation of equation eval-

uating circuits on FPGAs. This is useful for implementing equations required in a

predictive motor controller.

In the next chapter, we will be using our tools and methods in conjunction with

traditional design techniques to create part of an FPGA based FCS-MPC for control-

ling an IPMSMs. In Chapter 5, the design will be used to evaluate the FPGA area

savings made with our method and demonstrate the control performance degradation

we are trading off by using it.

55

Chapter 4

Controller Design and Test Setup

To evaluate our tools from Chapter 3, we use them to generate part of a design

that implements finite control set model predictive control (FCS-MPC) for an inte-

rior permanent magnet synchronous motor (IPMSM). Our design consists mostly of

hand-written hardware description language (HDL) code with the addition of a tool

generated module. We will use this design to evaluate both the FPGA area utiliza-

tion improvements and detrimental effects on control performance when our tools are

utilized. A controller will be built and integrated with an inverter, motor and test

setup as shown in Figure 4.1. Our simulation environment will also be discussed.

Inverter

Controller
Under Test

Position
Sensor

Current
Sensors

Gating
Signals

PC

Dynamometer
Motor

Test
Motor

Dynamometer
Inverter

Test
Controller

Figure 4.1: Test system architecture

56

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

4.1 Physical Test Setup

We use a modified version of the experimental test setup described in Appendix B of

Nalakath dissertation (Nalakath (2018)). The same dynamometer which consists of a

Yaskawa A-1000 drive unit and a 5 kW induction motor is utilized. The dynamometer

is controlled by a dSPACE MicroAutobox II (dSPACE GmbH (2019a)) and is used to

spin the motor under test at a constant speed. In Nalakath’s experiments, the motor

control algorithms are also implemented on the dSPACE, but for our purposes, we

will implement the control algorithms on a custom circuit board which contains our

FPGA based controller instead. For safety purposes, the dSPACE is connected to

our controller so it can disable it under fault conditions. The test setup is shown in

Figure 4.2.

Figure 4.2: Test setup

57

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Since the IPMSM under test is the same, we use the values measured by Nalakath

to fill in the constants that will be required by the IPMSM model. The specifications

of the motor under test are shown in Table 4.1

Table 4.1: IPMSM Nominal Parameters and Specifications

Constant Value

Pole count 10

Rated Current 9.4 A

Rated Speed 700 RPM

Nominal d axis inductance (Ld) 11 mH

Nominal q axis inductance (Lq) 14.3 mH

Nominal permanent magnet flux linkage (λ) 333.3 mWb

Nominal stator resistance (Rs) 400 mΩ

Connected to the shaft of the IPMSM is a BEI Sensors DHO5S-14-P-G5-9-800000-

G3-R020 (BEI Sensors SAS (2019)) incremental quadrature encoder for rotational

position feedback. This sensor produces two signals which when combined, transitions

320 000 times every rotation.

58

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

The inverter connected to the IPMSM is powered from a 300 V DC supply and

consists of six CREE C2M0025120D (Cree, Inc. (2015)) silicon carbide power MOS-

FETs. Gating signals for these MOSFETs come from our FPGA board. For current

sampling, the inverter has a CKSR 25-NP (LEM International SA (2009)) current

sensor on each phase. Figure 4.3 shows an overview of the inverter.

Ga+ Gb+ Gc+

Ga- Gb- Gc-
Iabc

MotorVdc

Figure 4.3: IPMSM inverter

All combinations of switch states where the state of the lower switch on each

branch is an inversion of the upper switch state are valid. If the upper switch in a

specific leg of the inverter is on, then 300 V will be applied to that motor phase, else,

0 V is applied. The result is 8 valid switch states. When any switch changes state,

deadtime is required. Deadtime is the time period when both switches in one leg of

the inverter are turned off. This is required because switches cannot change states

instantaneously. There is a time period while transitioning between states where the

switch is partially conductive. If both switches in the same leg of the inverter are

partially conductive at the same time, a current will flow through them. Wasting

power or potentially damaging the inverter.

59

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

4.2 Control Algorithm

To control the IPMSM, we use an FCS-MPC algorithm adapted from Nalakaths’ work

(Nalakath (2018)). The variant we will implement is without parameter estimation

and has a prediction horizon of one. Our goal is to demonstrate higher sampling rates

on the same physical test setup but with a controller implemented in fixed-point on

small FPGAs. The algorithm selected controls Id and Iq currents due to its correlation

with torque production as described in Section 2.3.2.

FCS-MPC requires that we have a model for the behavior of the controlled system

in reaction to something we can influence. Regulating the Idq vector requires that

we can measure it first since we need to make our predictions of future Idq vectors

starting with measured ones. As the current sensors on the inverter measure Iabc, we

need to use the Clarke and Park transformation discussed in Section 2.3.1 to obtain

Idq. Equations 4.1 (Krishnan (2001)) are needed to perform this transformation.

d =
2

3
(a(cos (θ)) + b(cos (θ − 2π

3
)) + c(cos (θ +

2π

3
))) (4.1a)

q = −2

3
(a(sin (θ)) + b(sin (θ − 2π

3
)) + c(sin (θ +

2π

3
))) (4.1b)

The prediction equations required to build an FCS-MPC controlling Idq of an

IPMSM is given in Equations 4.2 (J. Rezaie (2007)).

Idn+1 = Idn −
TsRs

Ld

Idn +
TsLq

Ld

ωIqn +
Ts
Ld

Vd (4.2a)

Iqn+1 = Iqn −
TsRs

Lq

Iqn −
TsLd

Lq

ωIdn +
Ts
Lq

Vq −
Tsλ

Lq

ω (4.2b)

60

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Ts is the sampling time, while Ω is the rotational velocity of the motor which we can

get from the incremental encoder. Idn and Iqn are the values we get from measuring

Iabc and performing the Clarke and Park transformation on them. Vdq is the voltage

vector we are evaluating using our prediction model since we apply a voltage vector

Vabc using the inverter, we must also perform the Clarke and Park transformation on

all the voltage vectors the inverter can supply before using the model for predictions.

A cost function is then used to evaluate the outcome predicted by the model.

We use a simple cost function, shown in Equation 4.3. Idtarget and Iqtarget are our

desired values. Minimum cost is what the control algorithm will optimize for using

the available voltage vectors. Using this cost function, we optimize for minimum total

deviation away from our target values.

Cost = |Idtarget − Idn+1|+ |Iqtarget − Iqn+1| (4.3)

61

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

The algorithm must be executed for each control cycle timed Ts apart. As dis-

cussed in Section 2.4.2, FPGA designs that exhibit extremely low latency can be

built so we exclude delay compensation from our implementation. As we will see, de-

lay compensation is not strictly necessary. The algorithm summarized in Figure 4.4

shows how the equations we discussed in this section are used to find the best inverter

gating signals to apply during the next time step.

Figure 4.4: Steps taking by the control algorithm every control cycle

62

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

4.3 Circuit Board Design

The controller was implemented on a custom circuit board and contains the FPGA.

Along with the FPGA, it contains an analog to digital converter (ADC) for reading

the current sensors, a differential line receiver to interface with the incremental en-

coder, and a data interface that uses the universal serial bus (USB) standard (USB-IF

(2019)) which is widely supported by many PCs. A high-level overview of the con-

nectivity on the circuit board is provided in Figure 4.5.

FPGA

USB
Interface

Analog to Digital
Converter

Incremental
Encoder
Interface

Ia Ib Ic Qa+ Qb+ Qz+Qa- Qb- Qz-

A B Z

Ga+ Gb+ Gc+Ga- Gb- Gc-

To
Inverter

From
Current Sensors

From
Incremental Encoder

To
PC

Figure 4.5: High-level overview of the circuit board

63

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

The circuit board which measures 10 cm by 10 cm is shown in Figure 4.6.

Figure 4.6: Assembled custom controller circuit board

Gating signals produced by the FPGA as shown in Figure 4.5 go to the MOSFETs

shown in Figure 4.3 to inject the selected voltage vectors into the motor.

The magnitude and direction of current flow through the high voltage phase cables

feeding the motor windings in the IPMSM is converted to a voltage which is then

converted into a digital signal by an ADC. We use an ADC that has a minimum

sampling time much smaller than the control cycle time (Ts). Therefore, a new sample

of Iabc is available for each control cycle with negligible latency. The ADC we use

is also directly timed by the FPGA, therefore latency between current measurement

and updating the gate signals is at a minimum and does not vary, reducing timing

jitter in the control loop. Its inputs are also simultaneously sampled. Therefore,

all three current sensors are sampled at the same time, not doing so would produce

erroneous readings when currents change rapidly. The specific ADC used is a Maxim

Integrated MAX11047 with 4 inputs, 4 us sampling time and a 1 us conversion time

(Maxim Integrated (2019a)).

64

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Industrial incremental encoders often use higher voltages and differential signaling

to increase noise immunity, these signals are incompatible with the FPGA. Therefore,

a suitable differential line receiver is used between the sensor and the FPGA. The

differential receiver used is a MAX3094E (Maxim Integrated (2019b)), compatible

with incremental encoder outputs up to ±25 V making it suitable for sensors powered

using 24 V commonly found in industrial environments. It also supports a maximum

input frequency of 10 MHz which far exceeds the frequencies we should see on the

individual signals with the motor spinning at its top speed of 700 RPM.

The FPGA, an Intel MAX 10 10M16SCE144C8G with 15840 logic elements,

562176 bits of embedded memory and 90 9x9 multipliers is a member of Intel’s FPGA

family focusing on affordability and ease of integration (Intel (2019)). Its small size

and low cost make it suitable for use in motor controllers intended for cost-sensitive

markets where incorporation of fast FCS-MPC may not have been possible if more

advanced parts were needed to meet computational requirements.

Run-time configuration and data acquisition capability are provided using an

FTDI FT232H USB chip operating in synchronous first in first out (FIFO) mode

providing up to 40 MB/s of throughput between the FPGA and PC (FTDI Ltd.

(2019)).

For safety purposes, during development, signals from the current sensors are split

off and sent to a dSPACE MicroAutobox II (dSPACE GmbH (2019a)) for overcur-

rent protection. The dSPACE is given control of an inhibit pin on the gate drive

circuitry on our controller board allowing it to disable the FPGAs ability to drive the

MOSFETs. This will put the inverter in a safe state automatically in case of faults.

65

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

4.4 FPGA Design

FPGA designs process data in parallel and can be described as a bunch of modules

operating at the same time. Here, we present the high-level architecture of the design

in Figure 4.7 before diving into the function of each module. The module that inter-

faces to the USB controller is not shown, it is connected to every module so access to

any value can be added as required.

Sine
Lookup

Motor Model

Gate
Drive

FCS-MPC
FSM

abc→dq

ADC
Interface

Incremental
Decoder

A B Z

θω

sin/cos

Cost Function

Idq Vdq

Iabc Vabc

0

Idq
1

Conversion
Start

Ga+ Gb+ Gc+Ga- Gb- Gc-

Idqtarget

Figure 4.7: Architectural overview of the FPGA design

66

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

4.4.1 Traditionally Designed Modules

Finite State Machine

The operation of the controller is coordinated by the FCS-MPC finite state machine

(FSM). This module times the ADC sampling. It also controls when values such as θ

and Idq0 are sampled and held constant throughout the control cycle. It supplies all

the Vabc vectors that need to be evaluated and then takes the output of cost function

when it is ready. Finally, it ranks the result before using them to select the next gate

drive vector.

Incremental Decoder

Incremental quadrature encoders output a pulse once a rotation on its Z output to

report the zero position of the motor, subsequent pulses on the A and B outputs

which are 90 degrees out of phase with each other allow the FPGA to detect the

direction of rotation. Using the phase of the signals and counting the transitions in

them allows the FPGA to measure the angle (θ) if the number of pulses per rotation

for the sensor is known. An example of the signals output by an incremental encoder

is shown in Figure 4.8.

A

B

Z

Forward

Count 0 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 0 39 38

Figure 4.8: Incremental encoder signals with direction change around the index
position for a hypothetical sensor with 10 counts (40 edges) per rotation

67

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

The relative phase between signals A and B is used to infer the direction of rotation.

Two edges are required to detect the phase. With the direction known, incrementing

or decrementing a counter is performed to track the change in position relative to the

zero index which is signaled by the sensor with a rising edge of the Z signal. The

θ output is invalid until the FPGA sees the Z signal transitions high for the first

time. Every time the incremental decoder receives a pulse on any of its inputs it

will update its count. The incremental encoder used is an 80 000 count incremental

encoder which provides us with 320 000 edges per rotation on the A and B signals

combined.

The motor we use is a 10 pole motor. One mechanical rotation results in five

electrical rotations. Therefore, internally the quadrature decoder resets its count

every 64 000 edges to track the electrical angle. 64 000 edges per rotation is still a

very high resolution, therefore we keep an internal fast edge count and output a slower

edge count that wraps every 16 000 edges. Our resulting θ output is dimensionless

and is used directly by the sine lookup table.

Rotational speed can be measured by counting the number of edge transitions in

both the A and B signals combined within a certain time period. With our sensor,

speed can be accurately measured this way. If a lower resolution sensor is used instead,

the reader is directed to investigate techniques suitable for FPGA implementation

such as the MT method which can be used to improve velocity measurement by

predicting the arrival of the next edge (Hace and Čurkovič (2018)).

68

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Sine Lookup Table

The sine lookup table is used to obtain all 6 of the required scaled sine and cosine

values used in the Clarke and Park transform detailed in Equations 4.1. By scaling

the values in the lookup table by 2
3

we alleviate the need to perform this operation

at run-time in the Clarke and Park transformation module. Using a single dual-port

memory instance on the FPGA we can lookup all 6 values in 3 clock cycles.

Storing a full sine wave with a 15-bit FWL and a sign bit requires 256000 bits

if we have one sample for each of the 16 000 θ values from our incremental decoder.

256000 bits is about half of the memory resources available on the FPGA we chose. If

required, memory can be saved by only storing a quarter of the sine wave. However,

this will complicate the lookup process. Another alternative is to interpolate between

the stored samples using the higher position knowledge available from the incremental

encoder. We took the simpler approach without an attempt at saving memory as this

portion of the design is required but is not being evaluated in this work.

ADC Interface

The ADC interface is timed by the FCS-MPC FSM. The ADC we elected to use

gives us control over the sample and hold circuit. Opening of the switches on the

sample and hold circuit begins the analog to digital conversion which takes 1 uS.

By synchronizing the start of conversion with the control cycle we hold the latency

between current sampling and the updating of gate drive signals constant.

69

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Clarke and Park Transformation

The Clarke and Park transformation module (abc → dq), implements Equations 4.1.

This module is used for transformation of both voltage test vectors and the current

measurements. This module could be generated using the methods we described in

Chapter 3. However, to isolate most of the quantization effects to the motor model,

we build this module using 16-bit FWL and forego additional FWL optimizations.

Cost Function

The cost function module simply evaluates Equation 4.3 using a 16-bit FWL. This

operation can be performed in 1 clock cycle. The results are transferred to the FCS-

MPC finite state machine to be ranked.

Gate Drive

Finally, the gate drive module generates switch deadtime for each positive and nega-

tive switch pair if the selected switch state is different from the previous one. Dead-

time introduces a delay when changing the output switch state. In our controller, we

elect to have a 1 us deadtime.

Fault detection is also included in this block, disabling gate drive output in the

event of overcurrent faults. This protection is redundant with the protection provided

by the dSPACE but due to the low latency nature of the FPGA design, it can react

more quickly.

70

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

4.4.2 Generated Motor Model

The motor model produces predictions for the cost function to evaluate using sensor

data. It implements Equations 4.2 to do so. Those cost evaluations are directly used

by the FCS-MPC FSM to make control decision. Uncertainty in the predictions can

be detrimental to control performance. This module was selected to be generated

using our tools because of its role in control decision making. Also, it uses the most

multiplier elements in the design if developed with a fractional word-length FWL of

16-bits throughout. If desired, this module can be manually written instead.

The FPGA area impact and effects the optimizations have on control performance

will be evaluated using multiple implementation variants. All inputs and outputs of

this module have an FWL of 16-bits but internally the FWL will vary as they will be

tuned by our optimizer. The difference between implementation variants generated

by our tool is a different uncertainty limit imposed on the outputs Idn+1 and Iqn+1 .

Our tools allow us to include uncertainty values for all inputs so we can calculate

and include major sources of uncertainty. It should be noted that we do not include

every source of error. More can be included at the discretion of the designer, but

these are the sources included in the generated modules used for our results in the

next chapter.

Input Range and Uncertainty

The inputs of the motor model primarily consist of Idq or Vdq values and the rotational

velocity all derived from sensor readings. Therefore, we need to propagate range and

uncertainty from these sensors up to the motor models input so our tools can work

off of them.

71

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

The Clarke and Park transformation block use the sine values from the sine lookup

table. The lookup table utilizes the position readings from the incremental decoder

to get them. Therefore, we must compute the maximum error on the output of the

sine table with 16 000 entries. The highest rate of change in the sine function is at

0, so we calculate the maximum error around this point. The sine table can also

be programmed with an offset equal to half the distance between two entries, this

essentially means instead of rounding down the position from the incremental decoder

we round to the nearest. Unfortunately, 16 000 is not integer divisible by 3 and many

of the sine and cosine values required in Clarke and Park transformation requires a

1
3

rotational offset. This means many of the lookups are off by 1
3

of an entry. Since

we store the sine wave using 15-bits of FWL we need to include the error incurred by

the real to fixed-point conversion as well. With all of this in mind, the uncertainty

interval of the sine values coming from the sine lookup table is given by Equation 4.4.

SineError =
[
− sin

(4

3

−2π

16000

)
− 2−15, sin

(4

3

−2π

16000

)
+ 2−15

]
(4.4)

The range of values for the sine outputs is given by Equation 4.5. The range is

computed using the maximum value of the sine function and the scaling we applied

ahead of time, so we don’t need to perform the multiplication by 2
3

required in the

Clarke and Park transform.

SineRange =
[
− 2

3
,
2

3

]
(4.5)

For the three-phase current transformation. The CKSR 25-NP (LEM Interna-

tional SA (2009)) sensors produce 25 mV/A of current flow. Our ADC has an input

72

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

range of 0 to 5V and a resolution of 16-bits. Therefore, it has a resolution of approx-

imately 76.3 uV per least significant bit (LSB). Using those values, we can calculate

that our current measurement has a resolution of about 3.052 mA. The maximum

current we should ever expect to see is below the 9.4 A current rating listed in Ta-

ble 4.1, therefore a range of [−10, 10] is reasonable. Alternatively, for three-phase

voltage transformation we have a range of [0, 300] and for simplicity sake, no uncer-

tainty. However, uncertainty can be included if the voltage from the DC supplies

varies.

We use the interval arithmetic (IA) steps described in Section 3.3.1 to get the

range and uncertainty of the outputs of the transformation module. To do this we

use the range and uncertainty values shown in Table 4.2 and 4.3 to calculate bounds on

current and voltage transformation respectively. The values come from calculations

earlier in this section. Where applicable, the values are all rounded away from zero.

Table 4.2: Current Transform Input Properties

Inputs Range Uncertainty

Sine Values
[
− 2

3
, 2
3

] [
− 0.00056, 0.00056

]
a,b,c

[
− 10, 10

] [
− 0.004, 0.004

]
Table 4.3: Voltage Transform Input Properties

Inputs Range Uncertainty

Sine Values
[
− 2

3
, 2
3

] [
− 0.00056, 0.00056

]
a,b,c

[
0, 300

] [
0, 0
]

73

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

To apply IA to calculate range and uncertainty bound, we construct data flow

graphs (DFGs) shown in Figure 4.9 and 4.10, for Equations 4.1. All the nodes have

an FWL of 16-bits except the sine inputs which have an FWL of 15-bits.

2/3
cos(θ)

a

×

+

2/3
cos(θ +
2π/3)

b

×

2/3
cos(θ -
2π/3)

c

×

d

+

Figure 4.9: DFG for analyzing the d axis Clarke and Park transform

-2/3
sin(θ)

a

×

+

-2/3
sin(θ +
2π/3)

b

×

-2/3
sin(θ -
2π/3)

c

×

q

+

Figure 4.10: DFG for analyzing the q axis Clarke and Park transform

74

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Performing the IA steps from Section 3.3.1 yields the results in Table 4.4 and 4.5

for current and voltage transformation respectively.

Table 4.4: Current Transform Output Properties

Output Range Uncertainty

d, q
[
− 20, 20

] [
− 0.025, 0.025

]
Table 4.5: Voltage Transform Output Properties

Inputs Range Uncertainty

d, q
[
− 600, 600

] [
− 0.169, 0.169

]
Due to the correlation of the sine and cosine values we know that the output d

or q value can’t exceed 2
3

times the largest values a, b, c can have if they all have the

same range. IA is unable to capture such correlations. Therefore, we make a manual

optimization before moving on. We modify the d, q current range to be [−6.67, 6.67]

and the d, q voltage range to be [−200, 200].

Rotational velocity is obtained though frequency counting on the edges from the

rotary encoder. Due to the high resolution of the rotary encoder, we assume no

uncertainty in this value. The range of this value in rad/s is limited by the maximum

speed of the IPMSM listed in Table 4.1. 700 RPM is 73.4 rad/s, however since we

have a 10 pole motor, the maximum electrical speed is 367 rad/s. Therefore, the

range of values for ω is [0, 367].

75

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Module Generation and Usage

To create the motor model, we need to implement Equations 4.2. To reduce the

number of operations required to be performed at run-time, we solve for the numerical

values that are made up of multiple constants. By doing so we go from Equations 4.2

to Equations 4.6 using the constants in Table 4.1 and our selected sample time (Ts).

Idn+1 = Idn − C1Idn + C2ωIqn + C3Vd (4.6a)

Iqn+1 = Iqn − C4Iqn − C5ωIdn + C6Vq − C7ω (4.6b)

A DFG is built to evaluate Equations 4.6 and is shown in Figure 4.11 and 4.12.

The DFG is separated for clarity. Using the tools in Chapter 3 and the input range

and uncertainty intervals we calculated in the last section, SystemVerilog code imple-

menting the DFG is produced using different uncertainty requirements.

We see that the longest path in the DFG will have 5 register stages. Our imple-

mentation of the Clarke and Park transformation required for each prediction requires

3 register stages. The initial current transformation to get initial values for the predic-

tion models will also require the Clarke and Park transformation unit. An additional

clock cycle is required by the cost function. Therefore, to evaluate all 8 valid switch

states we require 68 clock cycles. At 100 MHz, this creates a computational latency

of 0.68 us. With automated pipelining, a feature we excluded from our tools, it would

be possible to feed the Clarke and Park transformation and motor model unit every

clock cycle after the initial current transformation is completed. We will get our first

result after an initial delay of 8 clock cycles. Therefore, only 20 clock cycles would

be required to perform all our predictions.

76

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

I

-

+

C1 I

×

C2 ω

×I

×

C3 V

×

+

I

dn

dn

qn d

dn+1

Figure 4.11: d axis portion of the DFG for motor model generation

I

-

-

C4 I

×

C5 ω

×I

×

C6 V

×

+

qn

qn

dn q

Iqn+1

C7 ω

×

-

Figure 4.12: q axis portion of the DFG for motor model generation

77

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

4.5 Model in Loop FPGA Simulation Environment

Software-based simulation is the primary way of testing FPGA designs as it allows

for the highest amount of design visibility. When an FPGA design is implemented on

a device, it is generally not possible to capture all the signals within a design. This

makes verification and debugging extremely difficult. Therefore, we build a simulation

environment as shown in Figure 4.13.

FPGA Simulation Testbench

FPGA Design

Analog to Digital
Converter

BFM

Ia Ib Ic A B ZGa+ Gb+ Gc+Ga- Gb- Gc-

Simulink Generated SystemVerilog DPI Component

Inverter
Model

Current Sensor
Model

Incremental Encoder
Model

Motor
Model

IabcVabc
θ

ω

Figure 4.13: High-level overview of the model in loop FPGA simulation environment

78

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Within the simulation environment the components external to the FPGA design

such as circuit board components and sensors must be emulated using bus functional

models (BFMs). As discussed in Section 2.9, tools such as MATLAB and Simulink

can be used to generate BFMs that model physical behavior. Generally, BFMs that

model bus interactions between the FPGA and another device such as our ADC is

written in an HDL.

Models representing the motor, inverter, current sensors, and incremental encoder

are built in Simulink then generated to a SystemVerilog DPI component suitable for

use in our FPGA simulator. The Simulink model is executed at 10 MHz which is nec-

essary for the incremental encoder model to generate high fidelity waveforms. The

high execution rate is not required for accurate modeling of the other components. If

desired, a multi-rate model can be used. It should be noted though, this is not a per-

formance case since the simulation of the FPGA design largely dominates simulation

execution time.

The ADC BFM performs floating-point to fixed-point conversion on the values

coming out of the Simulink model. The BFMs digital interface to the FPGA is built

in accordance with the component datasheet and the model accurately depicts the

conversion latency incurred by the component by emulating the conversion time.

The controller board interface software and USB interface are not simulated in

the simulation environment. Instead, register values are forced at the start of the

simulation. The software and USB interface will be tested during hardware in loop

testing.

79

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

In a simulation, any variable in the design can be logged to a file for analysis later.

Data is captured synchronously to the ADC sampling in the same way it is done in

the physical implementation.

To provide a control performance baseline, we will be replacing the FPGA design

with a double-precision floating-point control model for some test. In these tests, the

latency will be matched with the FPGA design.

4.6 Data Acquisition and Control Software

The data acquisition and control software we developed allows us to configure the

FPGA based design over USB. Values can be written to the controller at run time to

change the target Idq values in real-time. Internal variables and fault conditions can

be logged and presented to the user in real-time.

Using the USB chip we chose, we can transfer up to 40 MB/s of data from the

controller to the PC. This allows 80 16-bit variables to be transferred to the PC for

logging at the 250 kHz maximum sample rate of the ADC. Plenty for our uses.

Working at these data rates when both plotting and logging data can be a chal-

lenge. Selection of the right tools to assemble the software system is critical in achiev-

ing 40 MB/s of throughput. We chose to construct the software in C++ (ISO (1998))

using the Qt application framework (The Qt Company (2019)) in conjunction with

the FTD2XX library (FTDI Ltd. (2012)) from the manufacturer of the USB chip.

Headers are transmitted by the FPGA with the data. These headers are verified

by the software to ensure samples are not lost.

80

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

4.7 Hardware in Loop Test Environment

Hardware in loop testing (HIL) is optional but highly recommended for systems where

the improper operation of components can present a safety hazard or cause physi-

cal damage to the test setup. In our case, it is used to verify that our BFMs of

circuit board components is accurate since we wrote those ourselves. A HIL test

validates that our interpretation of the component datasheets is accurate by utilizing

the actual components with the FPGA. It also provides an opportunity to test safety

features such as overcurrent protection by intentionally triggering faults and provides

an environment for testing our software.

Purpose-built HIL simulators exist that provide high fidelity stimulus for a con-

troller (dSPACE GmbH (2019b)). We did not use purpose-built hardware but instead

used the same dSPACE hardware that we use for dynamometer control. This results

in some caveats that we must keep in mind. The MicroAutobox II is designed for

real-time control applications and was only able to run the simulation model at 20

kHz, therefore, the incremental encoder signals cannot be generated if the virtual

motor is spinning at high speed. This limits the virtual motor speeds to about 2

RPM, an unrealistically low value. However, this test still validates our BFMs, safety

systems, and software functionality well. However, the results from these HIL test

cannot be used beyond that.

The HIL model deployed on the MicroAutobox II is a modified version of the

model used in the FPGA simulations depicted in Figure 4.13. Using the digital IO

pins, the inverter gating signals are sampled, and the incremental encoder signals are

generated. Then the current sensor signals are simulated using the digital to analog

converters available on the MicroAutobox II.

81

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

4.8 Chapter Summary

In this chapter, we discussed the physical system we are testing on and the custom

controller hardware we are using. After we describe the internal architecture of our

FPGA design and detail how the tools from Chapter 3 are used. After, we detailed our

simulation environments used for functional validation. The simulation environment

will also be used for testing of additional controller variants that are impractical to

implement for physical testing such as those where switching frequencies exceed the

capability of our inverter. Then, we describe the configuration and data acquisition

software necessary to configure our controller and collect data from it at run-time.

In the next chapter, we provide additional details on controller variants we will be

testing. Then we describe our individual simulation and physical tests and provide

our interpretation of the results.

82

Chapter 5

Test and Evaluation

So far, we discussed in Chapter 3, methodologies and tool development for auto-

mated fixed-point word-length (WL) optimization for field-programmable gate array

(FPGA) implementation of equations. In Chapter 4, we discussed a potential use

case, finite control set model predictive control (FCS-MPC) of an interior perma-

nent magnet synchronous motor (IPMSM). In this use case, we used our tools to

automatically generate an implementation of the motor modeling equations required

in FCS-MPC. After, we presented a complete, physically realized, controller design

that includes our automatically generated model implementation and other required

components. Then we detail our simulation environment that provides another test

platform for our controller. In Chapter 2, we discussed potential problems associated

with precision loss and latency in control loops. We also highlighted that large FPGA

designs cost more to fit into a real device.

In this chapter, we investigate achievable throughput, cost savings, and detrimen-

tal effects our optimizations can have on control performance.

83

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

5.1 Controller Variants

Using our tools, we generated motor model variants with different uncertainty require-

ments on the Id and Iq prediction outputs for controllers targeting different sample

rates.

Each modules’ uncertainty requirement was selected to demonstrate gradual per-

formance degradation after initial testing in simulation. We stop increasing the un-

certainty requirement on controllers with the same sampling rate when our WL op-

timization tool is able to reach a multiplier element utilization close to zero. Further

optimizations made past that point will not result in significant FPGA area savings.

An additional 16-bit fractional word-length (FWL) un-optimized variant is also

included to give baseline area and performance numbers. We will confirm later in

simulation that our 16-bit FWL variants exhibit performance that closely resembles

a floating-point implementation. The un-optimized modules were analyzed using the

same interval arithmetic (IA) techniques we discussed in Chapter 3 to get actual

uncertainty intervals.

Table 5.1 lists the properties of the generated modules we will be testing with

identifiers we use throughout this chapter. We list the actual uncertainty interval

achieved by the WL optimizer calculated using IA since the uncertainty requirement

is just a limit. Some of the uncertainty intervals calculated are higher than the

requirement, this occurs when the SMT techniques are able to find better uncertainty

bounds then IA alone. While we only tested sample rates achievable through integer

division of the maximum, 250 kHz sample rate of our analog to digital converter

(ADC) to ease data acquisition. Any sample rate up to 250 kHz is possible since the

ADC we chose is timed by the FPGA as discussed in Section 4.3.

84

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Table 5.1: IPMSM Nominal Parameters and Specifications

Identifier
Sample
Rate

Uncertainty
Requirement

Actual Id
Uncertainty

Actual Iq
Uncertainty

MPC-10k-16bit 10 kHz [-0.049, 0.049] [-0.030, 0.034]

MPC-10k-0.10 10 kHz [-0.10, 0.10] [-0.054, 0.054] [-0.076, 0.080]

MPC-10k-0.25 10 kHz [-0.25, 0.25] [-0.071, 0.071] [-0.076, 0.215]

MPC-10k-0.50 10 kHz [-0.50, 0.50] [-0.354, 0.354] [-0.296, 0.435]

MPC-10k-1.00 10 kHz [-1.0, 1.0] [-0.637, 0.637] [-0.501, 0.640]

MPC-10k-2.00 10 kHz [-2.0, 2.0] [-0.627, 0.627] [-0.890, 1.745]

MPC-25k-16bit 25 kHz [-0.044, 0.044] [-0.028, 0.029]

MPC-25k-0.10 25 kHz [-0.10, 0.10] [-0.087, 0.087] [-0.029, 0.029]

MPC-25k-0.25 25 kHz [-0.25, 0.25] [-0.173, 0.173] [-0.153, 0.154]

MPC-25k-0.50 25 kHz [-0.50, 0.50] [-0.451, 0.451] [-0.295, 0.295]

MPC-25k-1.00 25 kHz [-1.0, 1.0] [-0.513, 0.513] [-0.290, 0.633]

MPC-35k-16bit 35 kHz [-0.044, 0.044] [-0.046, 0.049]

MPC-35k-0.10 35 kHz [-0.10, 0.10] [-0.076, 0.076] [-0.060, 0.064]

MPC-35k-0.25 35 kHz [-0.25, 0.25] [-0.193, 0.193] [-0.096, 0.162]

MPC-35k-0.50 35 kHz [-0.50, 0.50] [-0.264, 0.264] [-0.106, 0.350]

MPC-50k-16bit 50 kHz [-0.054, 0.054] [-0.028, 0.031]

MPC-50k-0.10 50 kHz [-0.10, 0.10] [-0.095, 0.095] [-0.067, 0.067]

MPC-50k-0.25 50 kHz [-0.25, 0.25] [-0.166, 0.166] [-0.152, 0.234]

MPC-125k-16bit 125 kHz [-0.054, 0.054] [-0.043, 0.044]

MPC-125k-0.10 125 kHz [-0.05, 0.05] [-0.054, 0.054] [-0.043, 0.067]

MPC-125k-0.25 125 kHz [-0.10, 0.10] [-0.101, 0.101] [-0.056, 0.080]

85

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

5.2 Reference Model Testing

Before we evaluate the control performance of our controller variants, we must com-

pare our 16-bit FWL implementation to a double-precision floating-point implemen-

tation at all our selected FCS-MPC sample rates in simulation. We need to do this

because it is impractical for us to implement a floating-point controller with the same

latency as our fixed-point design for physical testing. After, our baseline performance

evaluation for the other tests will be obtained with the 16-bit FWL designs. As such,

we need to confirm in simulation that the 16-bit FWL designs perform similarly to

the double-precision floating-point reference design. This will also confirm that our

16-bit FWL designs are good baselines for our area evaluations.

To obtain our double-precision floating-point performance numbers we modify the

model in loop FPGA simulation environment described in Section 4.5. We replace

the analog to digital converter (ADC) bus functional model (BFM) and FPGA de-

sign with a floating-point implementation of the control loop. We also bypass the

incremental encoder model by using the position and velocity values from the physi-

cal simulation model directly. In the control model, we simulate the same sampling,

computation and gate deadtime latency that exists in the FPGA design. We will test

the controller implementations at 100 RPM and 500 RPM with a target Id and Iq cur-

rents set to 0 A and 5 A respectively. In these tests, MPC-ref refers to our reference

controller implemented in floating-point while MPC-16-bit refers to our fixed-point

controller with an FWL of 16-bits. We will use root mean squared error (RMSE) to

quantify deviation from the target current values during steady-state operation.

86

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

In Figures 5.1 and 5.2 we compare our resulting average switching frequency for

both controller types across our selected controller sampling rates at 100 and 500

RPM.

0 25 50 75 100 125
0

10

20

30

40

50

60

Controller Sampling Rate (kHz)

A
ve

ra
ge

S
w

it
ch

in
g

F
re

q
u
en

cy
(k

H
z)

MPC-ref

MPC-16-bit

Figure 5.1: Average switching frequency
of the reference controllers at 100 RPM

0 25 50 75 100 125
0

10

20

30

40

50

60

Controller Sampling Rate (kHz)

A
ve

ra
ge

S
w

it
ch

in
g

F
re

q
u
en

cy
(k

H
z)

MPC-ref

MPC-16-bit

Figure 5.2: Average switching frequency
of the reference controllers at 500 RPM

Next, we compare in Figures 5.3 and 5.4, the RMSE between Id and its target

value at 100 and 500 RPM respectively.

0 25 50 75 100 125
0

0.1

0.2

0.3

0.4

0.5

Controller Sampling Rate (kHz)

I d
R

M
S
E

(A
)

MPC-ref

MPC-16-bit

Figure 5.3: Reference controller Id
regulation accuracy at 100 RPM

0 25 50 75 100 125
0

0.1

0.2

0.3

0.4

0.5

Controller Sampling Rate (kHz)

I d
R

M
S
E

(A
)

MPC-ref

MPC-16-bit

Figure 5.4: Reference controller Id
regulation accuracy at 500 RPM

87

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

After, in Figures 5.5 and 5.6 we compare the RMSE between Iq and its target

value at 100 and 500 RPM respectively.

0 25 50 75 100 125
0

0.1

0.2

0.3

0.4

0.5

Controller Sampling Rate (kHz)

I q
R

M
S
E

(A
)

MPC-ref

MPC-16-bit

Figure 5.5: Reference controller Iq
regulation accuracy 100 RPM

0 25 50 75 100 125
0

0.1

0.2

0.3

0.4

0.5

Controller Sampling Rate (kHz)
I q

R
M

S
E

(A
)

MPC-ref

MPC-16-bit

Figure 5.6: Reference controller Iq
regulation accuracy at 500 RPM

We see that our fixed-point reference controller with an FWL of 16-bits provides

comparable performance when compared to our floating-point reference controller.

The fixed-point controller performs slightly better regarding current regulation but

slightly worse when we look at switching frequency. There is a larger increase in

switching frequency at 125 kHz for the fixed-point controller. The reasons for this

change in performance will become clear when we explore further in simulation, it is

due to the controller’s higher sensitivity to prediction uncertainty when sampling rates

are increased. While the performance of the two reference controllers is not identical,

the similarities give us confidence that our fixed-point reference implementation can

serve as a good baseline for FPGA area and controller performance evaluation.

88

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

5.3 FPGA WL Optimizer

In this section, look at how well our implementation cost estimation and WL opti-

mization tool performed in terms of FPGA area reduction.

In Section 3.4 we discussed a cost estimation technique. Using the estimations

from Equation 3.21, our optimizer can reduce the estimated costs as shown in Fig-

ure 5.7 when we allow a larger uncertainty interval. These variants were generated

using a cooling rate (crate) of 0.95 in Equation 3.24, 100 random changes within the

simulated annealing (SA) algorithm, and 100 repetitions of the optimization process

to find better solutions. The SMT solver was used with a timeout of 10 seconds.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

10

20

30

40

50

Uncertainty Requirement (A)

E
st

im
at

ed
C

os
t

MPC-10k

MPC-25k

MPC-35k

MPC-50k

MPC-125k

Figure 5.7: Estimated cost of our FCS-MPC implementations

We see an anomaly in the data with variant MPC-10k-0.25 where the best cost

estimation found is higher than a variant with less uncertainty. Outcomes like this

are possible because the SA algorithm used is guided by previous solutions it finds.

With a larger allowable uncertainty interval, a good solution may be found early so

less high-cost solutions are evaluated resulting in a search path through the solution

space that leads to a worse outcome overall. We could have run the SA algorithm a

89

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

few more times and the random searches could eventually find a solution that fits our

trend better, however, we elected to leave this anomalous data point to illustrate some

potential problems with SA. We suggested in Section 3.5 that it might be desirable

to repeat the optimization process multiple times, and this is why.

In Figure 5.8, we show the progress that is made in finding solutions with lower cost

as the optimization process for different 10 kHz sample rate controllers is repeated

100 times. Each time the optimization process is repeated, 100 random changes

are made to the base solution. Only points where a lower cost solution is found is

shown. Initially, new solutions are found quickly, but after a while, better solutions

are rarely, or not found at all. On an Intel Xeon E5-2620 v4 (Intel Corporation

(2019b)) processor using one thread this optimization process usually takes about 10

seconds.

0 10 20 30 40 50 60 70 80 90100
0

10

20

30

40

50

Repeated Attempts at Optimization

E
st

im
at

ed
C

os
t

MPC-10k-0.10

MPC-10k-0.25

MPC-10k-0.50

MPC-10k-1.00

MPC-10k-2.00

Figure 5.8: Estimated cost reduction as optimization is retried

90

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

In our testing, we found that the SMT techniques were only used rarely and

only sometimes finds a better solution when the IA techniques cannot. We see in

Table 5.1 only one variant has an uncertainty bound calculated by IA larger than

the uncertainty requirement. This means only one variant in our set of controllers

benefited from the SMT techniques.

We used a timeout of 10 seconds for the SMT solver. We found that increasing

this timeout to 1000 seconds did not return better results. Since our SA algorithm

only evaluates solutions where the cost is better than the best it has found so far,

the SMT solver is often invoked less than 5 times in the 10000 opportunities it could

be used with our settings. Therefore, even if the SMT solver does not return with a

conclusive result in 10 seconds every time, the worst run-time we saw was less then 60

seconds. These outcomes suggest that affine arithmetic or just using IA alone might

have been a better choice for the equations we are trying to optimize. However, more

advanced techniques exist that can be used to reduce the run-time of SMT which

could make it useful in our case (Eldib and Wang (2014)). Different outcomes as far

as run-times should be expected if the optimization methods are used on different

equations.

91

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Now we have an idea of how the WL optimizer can reduce estimated cost and

how long it takes to do so for our equations. We now must look at the actual FPGA

resource utilization for our design variants after implementation by the FPGA tools

since the optimizer just estimates cost.

In Figure 5.9 we show actual multiplier element usage. We see that our estimations

are not entirely accurate due to other optimizations the FPGA tools perform but the

optimization methods remain effective at reducing multiplier element utilization with

an increase in allowable uncertainty.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

10

20

30

40

50

Uncertainty Requirement (A)

M
u
lt

ip
li
er

U
sa

ge

MPC-10k

MPC-25k

MPC-35k

MPC-50k

MPC-125k

Figure 5.9: Multiplier element usage of our FCS-MPC implementations

92

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

We mentioned in Section 3.4 that we should expect LUT utilization to reduce with

a lower estimated cost since cascading elements to form larger multipliers requires

logic and smaller multipliers produce smaller results for our adders and subtractors

to work with elsewhere in the circuit. We confirm this trend with the actual LUT

utilization values shown in Figure 5.10.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

100

200

300

400

500

600

Uncertainty Requirement (A)

L
U

T
U

sa
ge

MPC-10k

MPC-25k

MPC-35k

MPC-50k

MPC-125k

Figure 5.10: LUT usage of our FCS-MPC implementations

Throughout our results we see that the faster controllers require less area, this

is because the constants in Equation 4.2 are shrinking as the sampling time (Ts)

shrinks. Smaller values are easier to work with so the FPGA tools can make more

optimizations.

We see that our tools and methods are capable of significantly reducing the re-

source utilization of implementations of the modeling equations required in our FCS-

MPC. However, FPGA area reduction is not useful if we end up with a controller

that behaves vastly worse then an un-optimized implementation. In the next section,

we will investigate controller performance in simulation.

93

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

5.4 Performance Evaluation in Simulations

We evaluate the performance of the controller variants with different uncertainty

requirements discussed in Section 5.1 against the reference fixed-point implementation

tested in the previous section. Our goal is to find control performance degradation

that might arise with increasing uncertainty in the prediction results within our FCS-

MPC. To do this we use the simulation environment discussed in Section 4.5 at 100

and 500 RPM with a target Id and Iq currents set to 0 A and 5 A respectively.

In Figure 5.11 and 5.12, we compare the resulting average switching frequency for

all our fixed-point controller variants across our selected controller sampling rates.

We see that initially, with small amounts of uncertainty, our controllers have about

the same switching frequency as the reference fixed-point implementation. However,

at some point, the switching frequency increases. The increase is less at higher speed

since the controller is already switching quickly due to the more rapid changes in

angular position.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

10

20

30

40

50

60

70

Uncertainty Requirement (A)

A
ve

ra
ge

S
w

it
ch

in
g

F
re

q
u
en

cy
(k

H
z)

MPC-10k

MPC-25k

MPC-35k

MPC-50k

MPC-125k

Figure 5.11: Average switching frequency
for all our controller variants in

simulation at 100 RPM

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

10

20

30

40

50

60

70

Uncertainty Requirement (A)

A
ve

ra
ge

S
w

it
ch

in
g

F
re

q
u
en

cy
(k

H
z)

MPC-10k

MPC-25k

MPC-35k

MPC-50k

MPC-125k

Figure 5.12: Average switching frequency
for all our controller variants in

simulation at 500 RPM

94

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Next, we compare the RMSE between Id and its target value in Figures 5.13 and

5.14.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.1

0.2

0.3

0.4

0.5

0.6

Uncertainty Requirement (A)

I d
R

M
S
E

(A
)

MPC-10k

MPC-25k

MPC-35k

MPC-50k

MPC-125k

Figure 5.13: Id regulation accuracy for all
our controller variants in simulation at

100 RPM

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.1

0.2

0.3

0.4

0.5

0.6

Uncertainty Requirement (A)
I d

R
M

S
E

(A
)

MPC-10k

MPC-25k

MPC-35k

MPC-50k

MPC-125k

Figure 5.14: Id regulation accuracy for all
our controller variants in simulation at

500 RPM

After, we compare the RMSE between Iq and its target value in Figures 5.15 and

5.16.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.1

0.2

0.3

0.4

0.5

0.6

Uncertainty Requirement (A)

I q
R

M
S
E

(A
)

MPC-10k

MPC-25k

MPC-35k

MPC-50k

MPC-125k

Figure 5.15: Iq regulation accuracy for all
our controller variants in simulation at

100 RPM

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.1

0.2

0.3

0.4

0.5

0.6

Uncertainty Requirement (A)

I q
R

M
S
E

(A
)

MPC-10k

MPC-25k

MPC-35k

MPC-50k

MPC-125k

Figure 5.16: Iq regulation accuracy for all
our controller variants in simulation at

500 RPM

95

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

We see a bigger change in the ability of the controller to regulate Iq current accu-

rately with more uncertainty at high speed because the constants that are multiplied

with rotational velocity is rounded to zero after WL optimization. In Equations 4.2

we see that exclusion of the portion of the equation that models the effects of veloc-

ity would cause the prediction equation to overestimate Iq current significantly. The

result is that the controller ends up regulating Iq current with a negative bias. A

similar effect is seen in Id current regulation, but it is less severe since velocity has

less of an effect on Id.

We see switching frequency increase when uncertainty in the prediction results

used within the FCS-MPC is increased past a certain point. In Figure 5.17, we

compare the resulting Iq currents when using two different controller variants both

trying to maintain Iq currents of 5 A at 100 RPM. One is our reference fixed-point

controller and the other is one where we allowed the WL optimizer enough uncertainty

to cause the rise in switching frequency we previously observed.

0 2 4 6 8 10
4

5

6

7

Time (ms)

I q
C

u
rr

en
t

(A
)

MPC-10k-16bit

MPC-10k-1.00

Figure 5.17: Unnecessary switching in controllers with too much uncertainty in
simulation

96

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

We see that the controller exhibiting an increased switching frequency has a prob-

lem with what we will call erroneous ranking. This erroneous ranking phenomenon

occurs when the inputs to the Find Min Cost step in the FCS-MPC algorithm shown

previously in Figure 4.4 has enough errors to cause the inverter switch state that

results in the minimum cost switch places with another switch state.

Next, we look at the transient response of our controller when the target Iq value is

changed from 4 to 5A at 100 RPM. For all the controller variants, we did not see any

increase in rise-time from 10 to 90% of the new target value. This is not unexpected

since a change in the target values causes a dramatic increase in the cost function

being evaluated by the controller. This makes selection of the best switch state very

easy for the controller and even large amounts of uncertainty in the predictions will

not compromise decision making. Once the new target values are reached however,

we see the same behavior as we presented in steady state where erroneous ranking

will appear for controller variants with too much uncertainty. In Figure 5.18 we show

a comparison of the transient behaviour between two controller variants.

0 2 4 6 8 10

3

4

5

6

Time (ms)

I q
C

u
rr

en
t

(A
)

MPC-10k-16bit

MPC-10k-1.00

Iq Target

Figure 5.18: Transient behavior of our reference 10 kHz controller and one with a
lot of uncertainty in simulation

97

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

5.5 Performance Evaluation with Physical Tests

Now that we have found some characteristic behavior of controllers with too much

uncertainty in its predictions in simulation, we can proceed with physical testing.

We want to test the same controllers we tested in simulation on the physical test

setup described in Section 4.1 to confirm that we see the same characteristic trends.

Unfortunately, due to the limited switching frequency that can be provided by our

inverter, we limit testing to the controllers with a sampling frequency of 35 kHz and

below. Our controllers are tasked with maintaining an Id current of 0 A and an Iq

current of 5 A at 100 RPM.

We begin by looking at the average switching frequency again in Figure 5.19.

The last two variants of the 35 kHz sampling rate controllers with 0.25 and 0.5 A

uncertainty limits are left out because the inverter switching frequency increased past

our 30 kHz limit.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

10

20

30

Uncertainty Requirement (A)

A
ve

ra
ge

S
w

it
ch

in
g

F
re

q
u
en

cy
(k

H
z)

MPC-10k

MPC-25k

MPC-35k

Figure 5.19: Average switching frequency of our physically tested controller variants

We see that the switching frequency is higher during physical testing then the

results of our simulations in Figure 5.11 showed. This was primarily due to noise

98

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

being picked up by our current sensors from the dynamometer inverter. We were able

to reproduce this in simulation by introducing a 100 mA peak to peak error on the Id

and Iq inputs to our motor model. Ignoring this, we see that the average switching

frequency follows the same trend as we saw in simulations. Furthermore, not only is

the trend the same, the controller variant with the smallest uncertainty requirements

in each set of controllers exhibits the average switching frequency increase in both

simulation and physical testing.

Next, we look at the Id and Iq current regulation performance in Figures 5.20 and

5.21. Again, we quantify these performance numbers using RMSE.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.1

0.2

0.3

0.4

0.5

Uncertainty Requirement (A)

I d
R

M
S
E

(A
)

MPC-10k

MPC-25k

MPC-35k

Figure 5.20: Id regulation accuracy of our
physically tested controller variants

0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.1

0.2

0.3

0.4

0.5

Uncertainty Requirement (A)

I q
R

M
S
E

(A
)

MPC-10k

MPC-25k

MPC-35k

Figure 5.21: Iq regulation accuracy of our
physically tested controller variants

Our current regulation measurements from the physical tests confirm what we saw

in simulation. Current regulation ability is not significantly affected by uncertainty

in the predictions used by the controller if we stay below the uncertainty threshold

where we observe erroneous ranking and an increase in switching frequency. Once

99

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

we see switching frequency rise, we know that erroneous ranking is occurring and a

change in current RMSE can occur as we saw in the simulation results.

In Figure 5.22 we see the unnecessary switching due to erroneous ranking as we

saw in simulation. The reference fixed-point controller also exhibits some erroneous

switching due to the current sensor noise we mentioned previously but the effects

of the larger uncertainty bounds on the second controller are still visible. Unlike in

simulation, the waveforms do not match up exactly since the test conditions are not

as well-controlled, the position of the motor between simulations is exactly correlated

with time while in physical tests this level of control is not possible.

0 2 4 6 8 10
3

4

5

6

7

Time (ms)

I q
C

u
rr

en
t

(A
)

MPC-10k-16bit

MPC-10k-1.00

Figure 5.22: Unnecessary switching in controllers with too much uncertainty during
a physical test

100

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

We look at the transient behavior of two of our controller variants on the physical

test bench in Figure 5.23. We see that results agree with what we saw in simulation

once again. The behavior during the transient event is very similar between a reference

fixed-point controller and one with a lot of uncertainty in its predictions. Again, the

waveforms do not line up as well when compared to simulation results because, during

physical tests, the level of control over exact test conditions is much more difficult.

0 2 4 6 8 10

3

4

5

6

Time (ms)

I q
C

u
rr

en
t

(A
)

MPC-10k-16bit

MPC-10k-1.00

Iq Target

Figure 5.23: Transient behavior of our reference 10 kHz controller and one with a
lot of uncertainty during a physical test

101

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

5.6 FPGA Area Savings Evaluation

We can now look at our results so far and draw some conclusions on FPGA area sav-

ings with the performance of the controller in mind. The increase in average switching

frequency we observed as uncertainty increases too much is extremely undesirable in

a controller. Therefore, we will exclude those variants when discussing area savings

our tools were able to achieve.

Our physical testing and simulations validated that excessive switching begins

with the same variants in each set of controller implementations that share the same

sampling rate. Therefore, we will use our simulation results to select controller vari-

ants where control performance did not degrade significantly when compared to the

fixed-point reference controller.

In Table 5.2 we compare the smallest controller variant that exhibited minimal

performance degradation with the 16-bit FWL implementation. We see that we

were able to significantly reduce multiplier element and LUT usage. Recall that

our FPGA has a total of 90 multiplier elements so saving even a few can have a

significant impact on what can fit in a small FPGA. For instance, it might make it

possible to fit more than one motor modeling unit into the FPGA thereby multiplying

our prediction throughput, lowering our computational latency, or enabling longer

prediction horizons.

102

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Table 5.2: FPGA Area Reduction

Identifier
Multipliers

Used
LUTs
Used

Multiplier Usage
Decrease

LUT Usage
Decrease

MPC-10k-16bit 42 539

MPC-10k-0.50 30 293 12 (28.6%) 246 (45.64%)

MPC-25k-16bit 42 500

MPC-25k-0.25 26 219 16 (38.1%) 281 (56.2%)

MPC-35k-16bit 38 461

MPC-35k-0.10 25 384 13 (34.2%) 77 (16.7%)

MPC-50k-16bit 34 496

MPC-50k-0.10 29 352 5 (14.7%) 144 (29.0%)

MPC-125k-16bit 34 318

MPC-125k-0.10 30 236 4 (11.76%) 82 (25.8%)

103

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

5.7 Chapter Summary

In this chapter, we demonstrated in simulations that our tools, when used in conjunc-

tion with our FPGA controller design for an IPMSM can provide similar performance

when compared to a floating-point design. We then show that our tools can reduce

FPGA resource utilization using a cost estimator that estimates multiplier element

usage. After, we demonstrated that the FCS-MPC algorithm in our use case can per-

form similarly to our reference design with some uncertainty in the predictions used

within. This uncertainty allowance gives the potential for resource utilization reduc-

tion. Low resource utilization could allow the use of a smaller FPGA or duplication

of the module that makes predictions, allowing for a higher prediction throughput

or reduction in computational latency. It could also enable the use of FPGA based

FCS-MPC in cost-sensitive applications.

In the next chapter, we provide our concluding remarks and ideas for future work.

104

Chapter 6

Conclusion and Future Work

In our introduction, we set out two major objectives in this thesis.

Our first objective was to develop and demonstrate methods that can be used

to partially automate the creation of a prediction based motor controller capable of

making millions of predictions per second. In Chapter 3, we described tools and

methodologies that can be used to generate the FPGA designs that evaluated the

prediction equations needed in an FCS-MPC. In Chapter 4, we demonstrated that

our tools can be used to produce part of the logic required to apply FCS-MPC to

IPMSM control. In Section 4.4.2 we calculate that with our design we can perform

all 8 of the predictions required in one control cycle within 0.68 us. This means we

achieved a prediction throughput of just under 12 million predictions per second.

This performance is in line with what is achieved in an FCS-MPC implementation

on FPGA for an induction motor where they were able to perform their predictions

for 8 valid voltage vectors in 1.6 us (Kosan et al. (2018)). We should note that this

shows that throughput is within a reasonable range, but comparisons between our

implementations should not be too involved as the application, controller architecture,

105

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

and FPGA used are not identical. However, we can note that the design demonstrated

by Kosan et al. could benefit from our optimization methodologies due to the similar

requirements and constraints involved in our designs.

Our second objective was to apply our workflow to the development of a motor

controller and show the FPGA resource utilization reduction our tools and method-

ologies can achieve and identify potential control performance issues that can arise

if we push our design optimizations too far. Using the design, simulation, and test

environments described in Chapter 4, we demonstrated between 10-38% reduction in

multiplier element usage and 16-56% reduction in LUT usage for controller variants

that exhibited degradation of control performance in Chapter 5. This could enable

high-sample rate FCS-MPC implemented on FPGAs at lower price points. We also

demonstrated that if we push our optimizations too far, the controller begins to make

erroneous decisions which result in undesirable excessive state switching which would

increase losses in the system.

We demonstrated the high throughput and low latency achievable on an FPGA.

However, if software processors such as microcontrollers or digital signal processors are

fast enough for your application of FCS-MPC we advise against using an FPGA due

to challenges associated with FPGA development. With that said, when a real-time

workload exceeds the capabilities of software processors, we showed that FPGAs are

a compelling platform to use instead. They can be scaled up in performance easily

through duplication of components such as the prediction module to enable even

longer prediction horizons, more complex equations, and more switching states. The

implementation optimizations we demonstrated can help by allowing duplication with

less of an impact on the size of FPGA required.

106

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Throughout our work, we emphasized that our optimizations are performed within

guaranteed range and uncertainty bounds. Because of these guaranteed range bounds

during integer word-length allocation, we never observe any overflow in the predic-

tion model in any of our tests. We reiterate that it is important that overflow never

occurs since overflow would result in grossly incorrect predictions which can cause

catastrophic failure of the controller. The observant reader will notice that the un-

certainty bounds that we guarantee are not required for the fractional word-length

optimizations we make. The guarantees we make may even be invalidated because we

leave out some sources of uncertainty and noise. However, the reason it is important

we maintain this path instead of going for a simulation approach to error bounding is

because it builds a foundation for future work. If others can develop a way to guar-

antee that erroneous ranking within a fixed-point FCS-MPC does not occur, there is

a possibility that they require that we guarantee how far off the predictions within

the controller are.

At this point, we see multiple paths for future work with different focuses.

In our experience, we found IA very effective and the improvements that could

arise from using SMT techniques did not, pre-processing steps or more advanced

SMT methods may improve this situation (Eldib and Wang (2014)). With that in

mind, we encourage the reader to also investigate affine arithmetic (AA) techniques

instead of SMT if they require better bounds then IA in a use case similar to ours.

An additional step could also be investigated where IA, AA, or SMT methods could

be selected depending on the equation being analyzed.

Those well trained in the analysis of control algorithms can explore ways in which

to handle error in the predictions required in an FCS-MPC. They could also explore

107

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

ways in which to find upper limits on prediction uncertainty before detrimental effects

on control performance arise.

Those with experience developing high-level synthesis (HLS) tools can propagate

some of the methodologies we demonstrated to the code generation and HLS tools

already being used by control system designers. In the literature on FCS-MPC for

power electronics and motor control, there is often mention that higher computational

throughput may be desired (Rodriguez et al. (2013)). Our work and others (Kosan

et al. (2018), Wendel et al. (2017a), Hamidi et al. (2017), Wendel et al. (2017b)) have

shown that the answer may be implementation on FPGAs. Cost of large FPGAs

can be a problem for mass production. Therefore, we targeted methodologies to

reduce cost. Another problem we did not address fully, however, is the time and

effort required to design for FPGA implementation. As such, we need the methods

we discussed in our work propagated to the tools control systems designers already

use. The thousands of lines of HDL code required to build the design we presented

in Chapter 4 may not acceptable in the general sense. We cannot always expect a

control systems designer to also be an expert in FPGA design. For our work, and the

work that others have done on FPGA based power electronics or motor FCS-MPC to

have a big impact in this area, there needs to be more tool automation to lower the

barrier to entry.

108

References

Bajaj, R. (2016). Exploiting DSP Block Capabilities in FPGA High Level Design

Flows. Ph.D. thesis, Nanyang Technological University.

Barrett, C., Conway, C. L., Deters, M., Hadarean, L., Jovanovi’c, D., King, T.,

Reynolds, A., and Tinelli, C. (2011). CVC4. In G. Gopalakrishnan and S. Qadeer,

editors, Proceedings of the 23rd International Conference on Computer Aided Ver-

ification (CAV ’11), volume 6806 of Lecture Notes in Computer Science, pages

171–177. Springer. Snowbird, Utah.

BEI Sensors SAS (2019). ATEX Incremental Encoder for ATEX

Zone 2 and 22, DHO5S Range. http://www.beisensors.com/pdfs/

dho5-atex-optical-incremental-encoder.pdf. [Online; Accessed July-2019].

Borriello, G. and Detjens, E. (1988). High-level synthesis: current status and future

directions. In 25th ACM/IEEE, Design Automation Conference.Proceedings 1988.,

pages 477–482.

Brown, S., , Brown, S., and Rose, J. (1996). Architecture of fpgas and cplds: A

tutorial. IEEE Design and Test of Computers, 13, 42–57.

109

http://www.beisensors.com/pdfs/dho5-atex-optical-incremental-encoder.pdf
http://www.beisensors.com/pdfs/dho5-atex-optical-incremental-encoder.pdf

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Cadence Design Systems, Inc. (2019a). Incisive Enterprise

Simulator. http://www.cadence.com/content/cadence-www/

global/en_US/home/tools/system-design-and-verification/

simulation-and-testbench-verification/incisive-enterprise-simulator.

html. [Online; Accessed August-2019].

Cadence Design Systems, Inc. (2019b). Stratus High-Level Synthesis.

http://www.cadence.com/content/cadence-www/global/en_US/home/tools/

digital-design-and-signoff/synthesis/stratus-high-level-synthesis.

html. [Online; Accessed July-2019].

Casseau, E. and Le Gal, B. (2009). High-level synthesis for the design of fpga-

based signal processing systems. In 2009 International Symposium on Systems,

Architectures, Modeling, and Simulation, pages 25–32.

Che, S., Li, J., Sheaffer, J. W., Skadron, K., and Lach, J. (2008). Accelerating

compute-intensive applications with gpus and fpgas. In 2008 Symposium on Ap-

plication Specific Processors, pages 101–107.

Cree, Inc. (2015). C2M0025120D Silicon Carbide Power MOSFET. http:

//www.wolfspeed.com/media/downloads/161/C2M0025120D.pdf. [Online; Ac-

cessed August-2019].

Darulova, E. and Kuncak, V. (2013). On sound compilation of reals. CoRR,

abs/1309.2511.

110

http://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
http://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
http://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
http://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
http://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
http://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
http://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
http://www.wolfspeed.com/media/downloads/161/C2M0025120D.pdf
http://www.wolfspeed.com/media/downloads/161/C2M0025120D.pdf

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Deng, L., Sobti, K., and Chakrabarti, C. (2008). Accurate models for estimating area

and power of fpga implementations. In 2008 IEEE International Conference on

Acoustics, Speech and Signal Processing, pages 1417–1420.

Dong-U Lee, Gaffar, A. A., Mencer, O., and Luk, W. (2005). MiniBit: bit-width

optimization via affine arithmetic. In Proceedings. 42nd Design Automation Con-

ference, 2005., pages 837–840.

dSPACE GmbH (2019a). MicroAutoBox II. http://www.dspace.com/en/inc/home/

products/hw/micautob/microautobox2.cfm. [Online; Accessed August-2019].

dSPACE GmbH (2019b). SCALEXIO Rack Overview. http://www.dspace.com/

en/inc/home/products/system/scalexio/scalexio-rack-system.cfm. [On-

line; Accessed August-2019].

Duralová, E. (2014). Programming with Numerical Uncertainties. Ph.D. thesis, École

polytechnique fédérale de Lausanne.

Eldib, H. and Wang, C. (2014). An smt based method for optimizing arithmetic

computations in embedded software code. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 33(11), 1611–1622.

Erick L. Oberstar (2007). Fixed-point representation & fractional math.

http://www.superkits.net/whitepapers/Fixed%20Point%20Representation%

20&%20Fractional%20Math.pdf. [Online; Accessed June-2019].

Fang, C. F., Rutenbar, R. A., and Tsuhan Chen (2003). Fast, accurate static analysis

for fixed-point finite-precision effects in dsp designs. In ICCAD-2003. International

111

http://www.dspace.com/en/inc/home/products/hw/micautob/microautobox2.cfm
http://www.dspace.com/en/inc/home/products/hw/micautob/microautobox2.cfm
http://www.dspace.com/en/inc/home/products/system/scalexio/scalexio-rack-system.cfm
http://www.dspace.com/en/inc/home/products/system/scalexio/scalexio-rack-system.cfm
http://www.superkits.net/whitepapers/Fixed%20Point%20Representation%20&%20Fractional%20Math.pdf
http://www.superkits.net/whitepapers/Fixed%20Point%20Representation%20&%20Fractional%20Math.pdf

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Conference on Computer Aided Design (IEEE Cat. No.03CH37486), pages 275–

282.

FTDI Ltd. (2012). D2XX Programmer’s Guide. http://www.ftdichip.com/

Support/Documents/ProgramGuides/D2XX_Programmer’s_Guide(FT_000071)

.pdf. [Online; Accessed July-2019].

FTDI Ltd. (2019). FT232H - Hi-Speed Single Channel USB UART/FIFO IC. https:

//www.ftdichip.com/Products/ICs/FT232H.htm. [Online; Accessed May-2019].

Gabriel, R., Leonhard, W., and Nordby, C. J. (1980). Field-oriented control of a stan-

dard ac motor using microprocessors. IEEE Transactions on Industry Applications,

IA-16(2), 186–192.

Glover, F. (1986). Future paths for integer programming and links to artificial intel-

ligence. Comput. Oper. Res., 13(5), 533–549.

Hace, A. and Čurkovič, M. (2018). A novel divisionless mt-type velocity estimation

algorithm for efficient fpga implementation. IEEE Access, 6, 48074–48087.

Hamidi, A., Karimi, S., Ahmadi, A., and Ahmadi, M. (2017). Digital FCS-MP control

of an ac-dc power converter to improve dynamic response. In 2017 24th IEEE Inter-

national Conference on Electronics, Circuits and Systems (ICECS), pages 326–329.

Han, K., Olson, A. G., and Evans, B. L. (2006). Automatic Floating-Point to Fixed-

Point Transformations. In 2006 Fortieth Asilomar Conference on Signals, Systems

and Computers, pages 79–83.

112

http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_000071).pdf
http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_000071).pdf
http://www.ftdichip.com/Support/Documents/ProgramGuides/D2XX_Programmer's_Guide(FT_000071).pdf
https://www.ftdichip.com/Products/ICs/FT232H.htm
https://www.ftdichip.com/Products/ICs/FT232H.htm

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control and Artificial Intelligence. MIT

Press, Cambridge, MA, USA.

IEEE Computers Society (2006). IEEE Standard for Verilog Hardware Description

Language. IEEE Std 1364-2005 (Revision of IEEE Std 1364-2001), pages 1–590.

IEEE Computers Society (2008). IEEE Standard for Floating-Point Arithmetic. IEEE

Std 754-2008, pages 1–70.

IEEE Computers Society (2009). IEEE Standard VHDL Language Reference Manual.

IEEE Std 1076-2008 (Revision of IEEE Std 1076-2002), pages c1–626.

IEEE Computers Society (2018). IEEE Standard for SystemVerilog–Unified Hardware

Design, Specification, and Verification Language. IEEE Std 1800-2017 (Revision

of IEEE Std 1800-2012), pages 1–1315.

Intel (2019). Intel MAX 10 FPGA. https://www.intel.ca/content/www/ca/en/

products/programmable/fpga/max-10.html. [Online; Accessed May-2019].

Intel Corporation (2004). Implementing Multipliers in FPGA Devices.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/

literature/an/an306.pdf. [Online; Accessed July-2019].

Intel Corporation (2019a). Intel High Level Synthesis Compiler. http://www.

intel.com/content/www/us/en/software/programmable/quartus-prime/

hls-compiler.html. [Online; Accessed July-2019].

Intel Corporation (2019b). Intel Xeon Processor E5-2620 v4.

https://ark.intel.com/content/www/us/en/ark/products/92986/

113

https://www.intel.ca/content/www/ca/en/products/programmable/fpga/max-10.html
https://www.intel.ca/content/www/ca/en/products/programmable/fpga/max-10.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an306.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an306.pdf
http://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
http://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
http://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://ark.intel.com/content/www/us/en/ark/products/92986/intel-xeon-processor-e5-2620-v4-20m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/92986/intel-xeon-processor-e5-2620-v4-20m-cache-2-10-ghz.html

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

intel-xeon-processor-e5-2620-v4-20m-cache-2-10-ghz.html. [Online;

Accessed August-2019].

International Energy Agency (2018). Global EV Outlook 2018. http://webstore.

iea.org/global-ev-outlook-2018/. [Online; Accessed May-2018].

ISO (1998). ISO/IEC 14882:1998: Programming languages — C++. Available in

electronic form for online purchase at http://webstore.ansi.org/ and http:

//www.cssinfo.com/.

J. Rezaie, M. Gholami, R. F. T. A. K. S. (2007). Interior permanent magnet syn-

chronous motor (ipmsm) adaptive genetic parameter estimation.

Jin, S., Cho, J., Pham, X. D., Lee, K. M., Park, S., Kim, M., and Jeon, J. W.

(2010). Fpga design and implementation of a real-time stereo vision system. IEEE

Transactions on Circuits and Systems for Video Technology, 20(1), 15–26.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated

annealing. SCIENCE, 220(4598), 671–680.

Kosan, T., Talla, J., Janous, S., and Blahnik, V. (2018). Fpga-based accelerator

for model predictive control of induction motor drive. In 2018 18th International

Conference on Mechatronics - Mechatronika (ME), pages 1–6.

Krishnan, R. (2001). Electric Motor Drives. Prentice Hall.

Lapotre, V., Coussy, P., Chavet, C., Wouafo, H., and Danilo, R. (2013). Dynamic

branch prediction for high-level synthesis. In 2013 23rd International Conference

on Field programmable Logic and Applications, pages 1–6.

114

https://ark.intel.com/content/www/us/en/ark/products/92986/intel-xeon-processor-e5-2620-v4-20m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/92986/intel-xeon-processor-e5-2620-v4-20m-cache-2-10-ghz.html
http://webstore.iea.org/global-ev-outlook-2018/
http://webstore.iea.org/global-ev-outlook-2018/

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Lattner, C. and Adve, V. (2004). LLVM: A compilation framework for lifelong pro-

gram analysis and transformation. pages 75–88, San Jose, CA, USA.

LEM International SA (2009). CAS/CASR/CKSR series Current Transduc-

ers. http://www.lem.com/sites/default/files/marketing/lem%20leaflet%

20cas%20casr%20cksr.pdf. [Online; Accessed August-2019].

Linderman, M. D., Ho, M., Dill, D. L., Meng, T. H., and Nolan, G. P. (2010).

Towards program optimization through automated analysis of numerical precision.

In Proceedings of the 8th Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO ’10, pages 230–237, New York, NY, USA.

ACM.

Lockwood, J. W., McKeown, N., Watson, G., Gibb, G., Hartke, P., Naous, J., Raghu-

raman, R., and Luo, J. (2007). Netfpga–an open platform for gigabit-rate network

switching and routing. In 2007 IEEE International Conference on Microelectronic

Systems Education (MSE’07), pages 160–161.

Maplesoft (2019). MapleSim. http://www.maplesoft.com/products/maplesim/.

[Online; Accessed August-2019].

Martorell, H. and Kapre, N. (2012). Fx-score: A framework for fixed-point compi-

lation of spice device models using gappa++. In 2012 IEEE 20th International

Symposium on Field-Programmable Custom Computing Machines, pages 77–84.

MathWorks Inc. (2019a). HDL Coder. http://www.mathworks.com/products/

hdl-coder.html. [Online; Accessed July-2019].

115

http://www.lem.com/sites/default/files/marketing/lem%20leaflet%20cas%20casr%20cksr.pdf
http://www.lem.com/sites/default/files/marketing/lem%20leaflet%20cas%20casr%20cksr.pdf
http://www.maplesoft.com/products/maplesim/
http://www.mathworks.com/products/hdl-coder.html
http://www.mathworks.com/products/hdl-coder.html

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

MathWorks Inc. (2019b). HDL Verifier. http://www.mathworks.com/products/

hdl-verifier.html. [Online; Accessed July-2019].

Maxim Integrated (2019a). MAX11047 - 4-/6-/8-Channel, 16-/14-Bit, Simultaneous-

Sampling ADCs. https://www.maximintegrated.com/en/products/analog/

data-converters/analog-to-digital-converters/MAX11047.html. [Online;

Accessed May-2019].

Maxim Integrated (2019b). MAX3094E. http://www.maximintegrated.com/en/

products/interface/transceivers/MAX3094E.html. [Online; Accessed July-

2019].

Melquiond, G. (2019). Gappa. http://gappa.gforge.inria.fr/. [Online; Accessed

May-2019].

Mentor, a Siemens Business (2019a). Catapult High-Level Synthesis. http://

www.mentor.com/hls-lp/catapult-high-level-synthesis/. [Online; Accessed

July-2019].

Mentor, a Siemens Business (2019b). ModelSim. http://www.mentor.com/

products/fv/modelsim/. [Online; Accessed August-2019].

Meredith, M. (2004). A look inside behavioral synthesis. http://www.eetimes.com/

document.asp?doc_id=1217645. [Online; Accessed July-2019].

Microsoft Research (2019). Z3 Theorem Prover. https://github.com/Z3Prover/z3.

[Online; Accessed June-2019].

116

http://www.mathworks.com/products/hdl-verifier.html
http://www.mathworks.com/products/hdl-verifier.html
https://www.maximintegrated.com/en/products/analog/data-converters/analog-to-digital-converters/MAX11047.html
https://www.maximintegrated.com/en/products/analog/data-converters/analog-to-digital-converters/MAX11047.html
http://www.maximintegrated.com/en/products/interface/transceivers/MAX3094E.html
http://www.maximintegrated.com/en/products/interface/transceivers/MAX3094E.html
http://gappa.gforge.inria.fr/
http://www.mentor.com/hls-lp/catapult-high-level-synthesis/
http://www.mentor.com/hls-lp/catapult-high-level-synthesis/
http://www.mentor.com/products/fv/modelsim/
http://www.mentor.com/products/fv/modelsim/
http://www.eetimes.com/document.asp?doc_id=1217645
http://www.eetimes.com/document.asp?doc_id=1217645
https://github.com/Z3Prover/z3

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Monmasson, E. and Cirstea, M. N. (2007). Fpga design methodology for industrial

control systems—a review. IEEE Transactions on Industrial Electronics, 54(4),

1824–1842.

Monmasson, E., Idkhajine, L., Cirstea, M. N., Bahri, I., Tisan, A., and Naouar,

M. W. (2011). Fpgas in industrial control applications. IEEE Transactions on

Industrial Informatics, 7(2), 224–243.

Nalakath, S. (2018). Robust Position Sensorless Model Predictive Control for Interior

Permanent Magnet Synchronous Motor Drives. Ph.D. thesis, McMaster University.

National Instruments (2019a). Explore the Hardware-in-the-Loop Platform. http:

//www.ni.com/hil/platform/. [Online; Accessed August-2019].

National Instruments (2019b). NI FPGA. https://www.ni.com/fpga/. [Online;

Accessed July-2019].

National Instruments (2019c). What is LabVIEW? http://www.ni.com/en-ca/

shop/labview.html. [Online; Accessed August-2019].

Ned Mohan, Tore M. Undeland, W. P. R. (1995). Power Electronics. Wiley.

Osborne, W. G., Cheung, R. C. C., Coutinho, J. G. F., Luk, W., and Mencer,

O. (2007). Automatic accuracy-guaranteed bit-width optimization for fixed and

floating-point systems. In 2007 International Conference on Field Programmable

Logic and Applications, pages 617–620.

Paulin, P. G. and Knight, J. P. (1989). Force-directed scheduling for the behavioral

synthesis of asics. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 8(6), 661–679.

117

http://www.ni.com/hil/platform/
http://www.ni.com/hil/platform/
https://www.ni.com/fpga/
http://www.ni.com/en-ca/shop/labview.html
http://www.ni.com/en-ca/shop/labview.html

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Pillay, P. and Krishnan, R. (1991). Application characteristics of permanent mag-

net synchronous and brushless dc motors for servo drives. IEEE Transactions on

Industry Applications, 27(5), 986–996.

Rodriguez, J., Kazmierkowski, M. P., Espinoza, J. R., Zanchetta, P., Abu-Rub, H.,

Young, H. A., and Rojas, C. A. (2013). State of the art of finite control set

model predictive control in power electronics. IEEE Transactions on Industrial

Informatics, 9(2), 1003–1016.

Schwartz, L., Wei, M., Morrow, W., Deason, J., Schiller, S. R., Leventis, G., Smith,

S., Leow, W. L., Levin, T., Plotkin, S., Zhou, Y., and Teng”, J. (2017). Electricity

end uses, energy efficiency, and distributed energy resources baseline. http://

emp.lbl.gov/publications/electricity-end-uses-energy. [Online; Accessed

May-2018].

Shien-Ru Ko and Wen-Shyong Yu (2000). Stability analysis of state regulator sys-

tems with finite word length effects. In 2000 26th Annual Conference of the IEEE

Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference

on Industrial Electronics, Control and Instrumentation. 21st Century Technologies,

volume 2, pages 1422–1427 vol.2.

Shirabe, K., Swamy, M. M., Kang, J., Hisatsune, M., Wu, Y., Kebort, D., and Honea,

J. (2014). Efficiency comparison between si-igbt-based drive and gan-based drive.

IEEE Transactions on Industry Applications, 50(1), 566–572.

SRI International (2018). Yices SMT Solver. http://yices.csl.sri.com/. [Online;

Accessed June-2019].

118

http://emp.lbl.gov/publications/electricity-end-uses-energy
http://emp.lbl.gov/publications/electricity-end-uses-energy
http://yices.csl.sri.com/

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Stolfi, J. and Henrique De Figueiredo, L. (1998). Self-validated numerical methods

and applications.

Synopsys, Inc. (2009). Synopsys Introduces Synphony High Level Synthesis. http://

news.synopsys.com/index.php?s=20295&item=123096. [Online; Accessed July-

2019].

Synopsys, Inc. (2019). VCS. http://www.synopsys.com/verification/

simulation/vcs.html. [Online; Accessed August-2019].

The MathWorks, Inc. (2019a). fxpopt. https://www.mathworks.com/help/

fixedpoint/ref/fxpopt.html. [Online; Accessed June-2019].

The MathWorks, Inc. (2019b). Model-Based Design with Simulink. http://www.

mathworks.com/help/simulink/gs/_model-based-design.html. [Online; Ac-

cessed August-2019].

The MathWorks, Inc. (2019c). Simulink. http://www.mathworks.com/products/

simulink.html. [Online; Accessed August-2019].

The Qt Company (2019). Qt. http://www.qt.io/. [Online; Accessed August-2019].

USB-IF (2019). USB-IF. http://www.usb.org/. [Online; Accessed July-2019].

Wang, T. S., Guo, J. G. Z. Y. G., Lei, G., and Xu, W. (2011). Simulation and

experimental studies of permanent magnet synchronous motor control methods. In

2011 International Conference on Applied Superconductivity and Electromagnetic

Devices, pages 252–255.

119

http://news.synopsys.com/index.php?s=20295&item=123096
http://news.synopsys.com/index.php?s=20295&item=123096
http://www.synopsys.com/verification/simulation/vcs.html
http://www.synopsys.com/verification/simulation/vcs.html
https://www.mathworks.com/help/fixedpoint/ref/fxpopt.html
https://www.mathworks.com/help/fixedpoint/ref/fxpopt.html
http://www.mathworks.com/help/simulink/gs/_model-based-design.html
http://www.mathworks.com/help/simulink/gs/_model-based-design.html
http://www.mathworks.com/products/simulink.html
http://www.mathworks.com/products/simulink.html
http://www.qt.io/
http://www.usb.org/

M.A.Sc. Thesis - Alex Lao McMaster - Electrical Engineering

Wendel, S., Dietz, A., and Kennel, R. (2017a). Area-efficient fpga implementation of

finite control set model predictive current control. In 2017 IEEE Southern Power

Electronics Conference (SPEC), pages 1–6.

Wendel, S., Dietz, A., and Kennel, R. (2017b). Fpga based finite-set model pre-

dictive current control for small pmsm drives with efficient resource streaming. In

2017 IEEE International Symposium on Predictive Control of Electrical Drives and

Power Electronics (PRECEDE), pages 66–71.

Xilinx Inc. (2019). Vivado High-Level Synthesis. http://www.xilinx.com/

products/design-tools/vivado/integration/esl-design.html. [Online; Ac-

cessed July-2019].

Yang, Y., Wen, H., and Li, D. (2017). A fast and fixed switching frequency model

predictive control with delay compensation for three-phase inverters. IEEE Access,

5, 17904–17913.

Ye, D. and Kapre, N. (2014). Mixfx-score: Heterogeneous fixed-point compilation of

dataflow computations. In 2014 IEEE 22nd Annual International Symposium on

Field-Programmable Custom Computing Machines, pages 206–209.

120

http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

	Abstract
	Acknowledgements
	Notation and Abbreviations
	Introduction
	Electric Motors, Control, and Implementation
	Thesis Objectives
	Thesis Organization

	Background and Literature Review
	Electric Motors
	Interior Permanent Magnet Synchronous Motor

	Power Electronics
	Motor Inverters

	Electric Motor and Inverter Control Methods
	Coordinate Transformations
	Control Methods

	Digital Computers
	Microcontrollers and Digital Signal Processors
	Field-Programmable Gate Arrays

	Numerical Formats in Digital Computing
	Floating-Point Representation
	Fixed-Point Representation

	Fixed-Point Word-Length Optimization
	Meta-Heuristic Algorithms
	Range and Precision Analysis

	Model-Based Design
	High-Level Synthesis
	System Simulation
	Related Works and Inspiration
	Chapter Summary

	Tools and Methodologies
	FPGA Fixed-Point Arithmetic Model
	Equation Representation
	Source Node Properties
	Arithmetic Node Properties
	Output Node Properties

	Range and Precision Analysis
	Interval Arithmetic
	SMT Analysis

	Implementation Cost Estimation
	WL Optimization and Code Generation
	Code Generation

	Chapter Summary

	Controller Design and Test Setup
	Physical Test Setup
	Control Algorithm
	Circuit Board Design
	FPGA Design
	Traditionally Designed Modules
	Generated Motor Model

	Model in Loop FPGA Simulation Environment
	Data Acquisition and Control Software
	Hardware in Loop Test Environment
	Chapter Summary

	Test and Evaluation
	Controller Variants
	Reference Model Testing
	FPGA WL Optimizer
	Performance Evaluation in Simulations
	Performance Evaluation with Physical Tests
	FPGA Area Savings Evaluation
	Chapter Summary

	Conclusion and Future Work

