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Lay Abstract

As an essential part of the emerging Internet of Things, connected and autonomous vehicles have
the potential to reshape future transportation systems and change the commute style in people’s
everyday life. Unfortunately, they are typically faced with various threats and attacks that could
endanger the entire vehicle network. The recent development of cognitive dynamic systems has
provided a very powerful research tool to study complex systems operating in an open and possibly
adversarial environment. The key goal of this thesis is to apply cognitive dynamic systems to connected
and autonomous vehicles with emphasis on improved driving safety and system security. The function
of cognitive risk control is utilized in respective vehicular systems in order to achieve robust target-
tracking and anti-jamming vehicle-to-vehicle communication performance. For validation, extensive
simulation results have shown that the proposed methods have desirable performance in the face of
motion perturbation and/or jamming attacks under various scenarios.
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Abstract

As an essential part of the emerging people-centric Internet of Things, connected and autonomous
vehicles (CAVs) have the potential to reshape future transportation systems and impact the physical
and/or social environment. While CAVs are currently being developed all over the world, they are
unfortunately faced with various potential threats that could endanger the entire CAV network.
Among others, risk-related concerns such as motion perturbation and jamming attacks are extremely
critical to the survival of CAV networks and urgently need effective countermeasures.

This research addresses the aforementioned challenges by employing cognitive dynamic systems
(CDS). Inspired by certain features of the human brain, CDS is a very powerful research tool to study
complex systems operating in an open and possibly adversarial environment. As a special function of
CDS, cognitive risk control (CRC) actualizes the concept of predictive adaptation to bring risk under
control when encountered with unexpected uncertainty.

The primary research objective of this thesis is to apply CDS to CAV networks with emphasis on
improved driving safety and system security. The function of CRC is utilized in respective vehicular
systems in order to achieve robust target-tracking and anti-jamming vehicle-to-vehicle communication
performance. For validation, extensive simulation results have shown that the proposed methods
have desirable performance in the face of motion perturbation and/or jamming attacks under various
scenarios.

This thesis contributes to the body of knowledge by presenting the following four achievements:
the first theoretical work that integrates the research tool of CDS with the engineering application of
CAVs; the first experimental work of CRC being applied to a practical vehicular system; the first
experimental work on V2V communication that involves anti-jamming, power control, and channel
selection at the same time; and a brand-new design of coordinated vehicular radar and communication
systems that builds upon all the research efforts made previously.
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Chapter 1

Introduction

1.1 Background on Connected and Autonomous Vehicles
(CAVs)

1.1.1 Basic Concept

The topic of connected and autonomous vehicles (CAVs) is among the most heavily researched areas
in vehicular technologies and transportation systems [1, 2]. Its development is driven by innovations
in many fields, including artificial intelligence (AI), information and communication technology (ICT),
embedded systems, and mechanical engineering, just to name a few [3, 4]. As a representative example
for the pervasive connection between cyber world and physical world, CAVs occupy a distinctive place
in the emerging Internet of Things (IoT) and the ongoing fourth industrial revolution (i.e., Industry
4.0) [5, 6].

Although often studied together, connected vehicles and autonomous vehicles refer to two distinct
technologies that could potentially be complementary and work cooperatively [7]. Vehicles with some
levels of automation do not necessarily need to be connected, and vice versa. Technology convergence,
however, will definitely result in intelligent vehicles that are both connected and autonomous, hence
the concept of CAVs [8].

1.1.2 Connected Feature

In general, the term “connected” refers to vehicular features that allow vehicles to communicate
with each other and with other road users in their surrounding environment using built-in or add-on
devices that continuously share important safety and mobility information [9]. As a broad concept,
connected vehicle technology enables communications among vehicles, infrastructure, and personal
communication devices operated by passengers, pedestrians, bicyclists, or other road users [10]. Some
of the connected functionality of a vehicle include Internet access, satellite navigation, congestion
notification, remote diagnostics, infotainment, and emergency call services [11]. This technology can
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be used not only to improve vehicle safety, but also to improve transportation efficiency, accessibility,
etc.

Historically speaking, the first vehicle equipped with connected feature was produced by General
Motors (GM) in 1996 [12]. In the event of traffic accidents when an airbag was deployed, a voice
call would be made by the in-vehicle telematics system to a call center that contacted emergency
responders. It has gradually led to the development of a modern emergency call system named
“eCall”, which was made mandatory in all new vehicles sold within the European Union (EU) from
April 2018 onwards [13]. This is one of many practical and beneficial applications that rely on the
connectivity of vehicles.

The connected feature is typically supported by a number of different communication technologies,
which include [9, 14–16]:

(i) Vehicle-to-Vehicle (V2V): It refers to the wireless communications between vehicles via various
technologies, such as dedicated short-range communications (DSRC), cellular networks, Wi-Fi,
or satellite. Through exchanging real-time driving information regarding the position, velocity,
and/or acceleration, V2V enables many safety and non-safety applications with high reliability
and low latency. For example, V2V communication extends and enhances currently available
crash-avoidance systems to detect collision threats more effectively, and then warns the driver
about potentially dangerous situations if required. Additionally, V2V technology can also be
combined with existing radar and camera systems to provide even greater benefits than either
approach alone.

(ii) Vehicle-to-Infrastructure (V2I): V2I technologies capture vehicle-generated traffic data (which
can then be used to make informed decisions such as temporary traffic management or long-term
transportation planning by transportation agencies in a centralized manner), and wirelessly
provide information such as advisories from the infrastructure to the vehicle that inform the
driver of safety, mobility, or environment-related conditions.

(iii) Vehicle-to-Pedestrian (V2P): The V2P approach encompasses a broad set of road users including
people walking or using wheelchairs, passengers embarking and disembarking buses and trains,
and bicyclists. It will not only facilitate pedestrian detection and provide notifications to the
driver, but also enable vehicle detection and send collision alerts to the pedestrians’ personal
mobile devices.

(iv) Vehicle-to-Grid (V2G): The V2G is developed particularly for electric vehicles (EVs), which
use electric motor and battery energy for propulsion, and need to recharge frequently when the
battery is running low. V2G communication allows energy exchange between the vehicles and a
(smart) power grid, which will potentially bring revenues for the vehicle owners and increase
the service capacity a power grid can provide.

(v) Vehicle-to-Cloud (V2C): The V2C concept allows on-board computing resources of vehicles to
be integrated with the cloud computing environment, which is a virtual network that aims to
transparently and ubiquitously share a large number of computing resources. By making the
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cloud available to vehicular systems, V2C also helps vehicles to access information from other
cloud-connected entities, such as the power grid, a regulation center, or emergency services.

(vi) Vehicle-to-Everything (V2X): The V2X is an integrated technology that interconnects all
types of vehicles and infrastructure systems. This connectivity will help provide more precise
knowledge of the traffic situation across the entire road network, which may also be extended
to trains, airplanes, ships, etc.

Each of these connectivity mechanisms could be enhanced by one another. For example, the V2P
could be enhanced by V2V or V2I with more accurate interpretation and prediction of pedestrian
movement derived from various sources. Furthermore, connectivity contributes to subsequent au-
tomation, which gradually transforms the human driver’s role by reassigning driving tasks previously
performed by humans to autonomous systems [17].

1.1.3 Autonomous Feature

Although the primitive idea of the autonomous vehicle or driverless car originated almost a century
ago [18], it really started to blossom and bear fruit in the past few decades [19, 20]. According
to the U.S. Department of Transportation’s description, “autonomous” or self-driving vehicles are
“those in which operation of the vehicle occurs without direct driver input to control the steering,
acceleration, and braking and are designed so that the driver is not expected to constantly monitor
the roadway while operating in self-driving mode” [21]. When fully developed, autonomous vehicles
will be able to reduce the accidents caused by human errors to a great extent, provide a comfortable
travel experience, improve accessibility for disadvantaged groups, and so on. Additionally, vehicle
connectivity is very important to realizing the full potential benefits of autonomous vehicles.

For research and development purposes, there are multiple definitions for various levels of driving
automation proposed over the years. The most commonly adopted one is the Society of Automotive
Engineers (SAE) International’s definition, as prescribed by the SAE International Standard J3016
on Levels of Driving Automation (first issued in 2014, revised in 2016 and 2018) with the following
six levels [22]:

(i) Level 0—No Driving Automation: Human driver controls all aspects of driving during the entire
time, even when enhanced by some active safety systems. Example features include automatic
emergency braking, blind spot warning, and lane departure warning.

(ii) Level 1—Driver Assistance: Human driver is assisted with either steering or brake/acceleration
by driving automation system with the expectation that the human driver will perform all
remaining functions. Example features include lane centering or adaptive cruise control.

(iii) Level 2—Partial Driving Automation: Driving automation system provides steering and
brake/acceleration support to human driver with the expectation that the driver will per-
form all other driving tasks. Example features include lane centering and ACC at the same
time.
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(iv) Level 3—Conditional Driving Automation: Driving automation system undertakes all aspects of
the dynamic driving task with the expectation that the human driver will respond appropriately
to a request to intervene. One example feature is the traffic jam chauffeur.

(v) Level 4—High Driving Automation: Driving automation system undertakes all aspects of the
dynamic driving task and will not require a human driver to take over driving. Example features
include local driverless taxi, in which pedals/steering wheel may or may not be installed.

(vi) Level 5—Full Driving Automation: Driving automation system can drive the vehicle everywhere
under all conditions.

Generally speaking, for Levels 0-2, the human driver is considered to be driving even when the
driving support features are engaged. The driver must constantly supervise these support features,
and must steer, brake or accelerate as needed to maintain safety. On the other hand, for Levels 3-5,
the human driver is not considered to be driving when the automated driving features are engaged
even if he/she is seated in the driver’s seat.

It is not surprising that the world of CAVs is rapidly growing and evolving. The main contrib-
utors to this rapid evolution include technology companies, automotive manufacturers, research
institutions/universities, and regulatory agencies, etc. Putting legal and ethical issues related to the
development of CAVs aside, the next two subsections will briefly discuss recent industrial activities
and academic research trends within this area, respectively.

1.1.4 Recent Industrial Activities

Since the earliest work on car-following controllers undertaken by GM and Radio Corporation of
America in the late 1950s [23], tremendous research and development efforts were made worldwide
in the past few decades. A recent milestone is a series of Grand Challenge competitions that were
funded by the Defense Advanced Research Projects Agency (DARPA) between 2004 and 2007, which
have spurred the most recent wave of interest and innovations for this field [24].

Currently, there are about 50 large companies (and the number is still increasing) that are
working on the development of highly/fully autonomous vehicles [25, 26]. This fierce competition
involves a diverse group of players, ranging from automotive makers to leading technology brands
and telecommunications companies.

Since Google’s first public announcement in October 2010 [27], its “Self-Driving Car Project” has
been one of the leading banner-carrier autonomous vehicle programs. In May 2016, Google began
working with its first automotive partner Fiat Chrysler, which remains its main original equipment
manufacturer (OEM). In December 2016, this project formally became Waymo, which publicly
revealed its custom-designed, self-driving hardware in February 2017. In August 2018, Waymo
launched a program to provide residents of the Phoenix area with rides to bus stops and train stations
using the autonomous fleet. Until October 2018, Waymo’s autonomous vehicles have driven 10 million
miles on public roads in various areas, including Mountain View, California, Austin, Texas, Kirkland,
Washington, and Phoenix, Arizona. Most recently, Waymo partnered with ride-sharing company Lyft
to make autonomous vehicles available to Lyft riders in June 2019.
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Another high-profile company in this battleground is Tesla, which pushed its “Autopilot” software
update to properly equipped Model S vehicles in October 2015, enabling auto steering, lane changing,
and parking features. Since October 2016, all Tesla vehicles have been built with Autopilot Hardware
2, which allows Tesla vehicles on the road to receive self-driving capabilities through software updates.
The release of Autopilot Hardware 3 was schedule for 2019.

A number of the world’s largest automakers are following behind Waymo very closely in the race
of developing CAVs. Besides a partnership with Lyft formed in January 2016, GM Cruise has been
developing its own semi-autonomous technology in-house and launched Super Cruise in the 2018
Cadillac CT6. GM also filed a petition in January 2018 to run a commercial ride-sharing business
through autonomous Chevrolet Bolts. In early 2015, Ford announced its “Smart Mobility Plan”
to push the company forward in innovative areas including vehicle connectivity and autonomous
cars. In February 2017, Ford acquired AI startup Argo, whose technology has been tested out
with Ford’s third-generation Fusion model sedan since 2018. Bosch and Mercedes joined forces to
develop Levels 4-5 vehicles in April 2017, and they also partnered with GPS maker TomTom for
its high-resolution mapping data. Honda introduced semi-autonomous advanced-driver assistance
systems (ADAS) options on its entry-level Civic in 2016, offering lane-keeping, automatic braking,
and ACC functionality, which have become ubiquitous on luxury models offered by brands like Tesla
and Mercedes. In July 2017, Audi unveiled its A8 model, which had an autonomous driving feature
that let drivers fully take their hands off the wheel. It was the first vehicle in production that could
actually allow its users to “drive” hands-free at the time, and therefore can be counted as the world’s
first production car to offer Level 3 driving automation [28]. Volvo announced a self-driving joint
venture with Swedish supplier Autoliv in January 2017. Later in June 2018, Volvo announced another
partnership with LiDAR (Light Detection and Ranging) startup Luminar to work on vehicle-mounted
sensors and software design. BMW teamed up with Intel and Mobileye in July 2016 to create an
open standards-based platform for bringing Levels 3-5 autonomous vehicles to market. German auto
supplier Continental AG has been focusing on driver-assistance technologies instead of building a
physical vehicle. In April 2017, Continental opened a new lab to work on connected vehicles that
can communicate with one another and with roadway infrastructure. Then in February 2018, a
partnership with Nvidia was formed to integrate its software with Nvidia’s platform and to develop
top-to-bottom self-driving solutions.

Some world-leading technology companies with less auto manufacturing experiences are also
participating in this competition. With a shift in strategy for “Project Titan”, Apple registered
66 vehicles with the California Department of Motor Vehicles (DMV) in July 2018, making Apple
the owner of the third-largest autonomous test-vehicle fleet in the state, behind GM and Waymo.
In April 2014, Chinese tech company Baidu partnered with German automaker BMW to develop
a semi-autonomous prototype. In late 2017, Baidu began testing its open-source Apollo software
system, and then received permission to test Apollo on the open road in Beijing in March 2018.
Amazon is experimenting on autonomous package delivery, which is viewed to be the solution to
the last-mile delivery problem. Through a partnership with Toyota, Amazon started working on
multi-function autonomous and electric vehicles in January 2018. Focusing on providing automakers
with technological assistance, Microsoft collaborated with Volvo in November 2015 and with Toyota
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in April 2016. In July 2017, Microsoft announced to offer its Azure cloud services to companies
using Baidu’s Apollo self-driving platform for autonomous projects. In January 2016, GPU and
semiconductor company Nvidia unveiled its new processing platform Nvidia Drive PX2, which
supported deep learning, sensor fusion, and computer vision applications for autonomous vehicles.
Since then, Nvidia has partnered with Baidu, Tesla, Bosch, and Toyota. In May 2016, Uber revealed
its in-house autonomous prototypes for the first time. In March 2018, a developmental self-driving
Uber vehicle was involved in a fatal crash in Arizona, leading to a suspension of all of its road trials.
In February 2018, Chinese ride-hailing company Didi reported that it had built the software and
constructed the hardware for functioning self-driving cars in partnership with various automakers and
suppliers. Three months later, Didi received permission from California DMV to undertake further
public testings of its technology.

Among the technology companies, some specialized in telecommunications have paid extra interest
in improving the connectivity of autonomous vehicles. In October 2017, Cisco began working on
a project called “Cisco Connect Roadways” that aimed at connecting individual vehicles on the
road with the infrastructure around them. Through a partnership with Hyundai, Cisco announced
its intention to focus on bringing gigabit-speed connectivity to CAVs. Chinese telecommunication
company Huawei has also shifted resources toward the development of CAVs. In December 2016,
Huawei Wireless X Labs released a white paper detailing how mobile network operators could actively
participate in the connected vehicle and smart transportation area. Partnered with Vodafone, Huawei
demonstrated innovative cellular technology used to connect cars called cellular V2X in February
2017.

In addition, many other companies are also making huge research and development efforts, such
as Hyundai, Iveco, Jaguar Land Rover, Nissan, Toyota, Volkswagen, Yutong, and so on [25].

There are different views regarding how far these companies have gone and for how long they
need to continue before arriving at the end of this journey. In early 2019, Navigant Research released
a new leaderboard report that assessed the strategy and execution for 20 leading companies that were
developing CAVs [29]. Based on 10 criteria, vendors are profiled, rated, and ranked with the goal of
providing industry participants with an objective assessment of these companies’ relative strengths
and weaknesses in the global automated driving market. In their report, the top three players are
Waymo, GM, and Ford. Another ranking by Bloomberg stated that Waymo, GM, and Mercedes-Benz
are in the lead [30].

Navigant Research’s leaderboard also pointed out that, as of the end of 2018, there is one thing in
common: no company is providing commercial services without a human safety operator onboard the
vehicle when carrying passengers. It indicates that with all the progresses being made, there is still a
long way to go.

1.1.5 Advanced Driver-Assistance Systems (ADAS)

Regarding the academic research trends, there are two major research directions that have received
a great deal of attention in recent years. One of the directions takes a relatively more radical
approach, which mainly relies on machine learning or computer vision techniques and tries to solve the
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autonomous driving problem by inventing brand new methods and algorithms. The other direction
takes an incremental innovation path, which builds upon the currently available or under development
ADAS systems and moves towards the full realization of CAVs gradually. This subsection will briefly
describe the first approach and then discuss ADAS systems of the second approach in more detail,
for which the research work presented in this thesis can be of use.

For the first approach, a representative example using a supervised learning method is to train a
convolutional neural network (CNN) to map raw pixels from a single front-facing camera directly to
steering commands [31], which might be combined with a recurrent neural network (RNN) for the
sequence-to-sequence mapping [32–34]. Additionally, researchers have used reinforcement learning
methods, which can be viewed as the brute-force propagation of outcomes to knowledge about states
and actions. To deal with continuous action spaces as in the driving problem, one possible way is to
use the deep deterministic policy gradient (DDPG) method for the training process [35]. Additional
representative work in this direction can be found in the literature [36–42].

For the second approach, the philosophy is to enrich, improve, and integrate current ADAS
systems so that one day they will be elevated to meet the requirements for the realization of CAVs.
Emerging ADAS systems will also take advantage of externally supplied data through V2V (or V2X
in general) connections, which indicates that development of connected vehicles, autonomous vehicles,
and ADAS systems is starting to overlap.

Compared with passive safety systems, a common feature of ADAS systems is that they directly
intervene with the driving operations and aim at helping drivers to improve traffic safety. Over
the years, many off-the-shell systems of such kind have been developed and deployed in the market,
including [43–45]:

(i) Adaptive cruise control (ACC): The ACC is a sensor based technology that automatically
adjusts the vehicle’s velocity to maintain a safe distance from the vehicle ahead in the same lane.
It is expected to keep a short distance to improve the transportation efficiency while ensuring
that there is enough space if the vehicle ahead suddenly brakes. Visual feedback will also be
provided to the driver when ACC system is engaged. The new generation of ACC systems uses
multiple sensory inputs, which help to make more accurate judgments regarding which vehicles
are in-lane and relevant to be tracked.

(ii) Lane departure warning (LDW): The LDW system uses a front camera to recognize lane
markings and notifies the driver when he/she is about to leave the current lane without using
their blinker signal. In such cases, the driver will experience a combination of steering wheel
vibrations and a slight automatic correction to help the vehicle to stay in its lane.

(iii) Blind spot detection (BSD): Due to physical limitations, there are typically some areas that
are out of the sight for a human driver. These blind spots exist both on the side and behind
the vehicle. The BSD system provides the driver with information on whether there are any
vehicles, cyclists or pedestrians in the blind spots, which can be detected by using active radar
or passive infrared sensors.

(iv) Traffic jam chauffeur (TJC): As a complement function to the ACC, a TJC or traffic jam assist
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is particularly designed for traffic congestion, which is very common in urban areas during
rush hours. When TJC is engaged, the system finds a reference vehicle ahead and keeps their
distance by making the vehicle stop and go automatically without the driver’s intervention.

(v) Electronic brake assist (EBA): The EBA system takes a quick step on the brake pedal as the
sign for an emergency braking action and complements the applied braking power if the driver
has not stepped with enough pressure. The system is included in various anti-lock braking
systems (ABS) and optimizes the vehicle’s braking capacity in emergency braking situations
and thereby also possibly shortens the stopping distance.

This list is not exhaustive and has only included some of the most common ADAS systems.
Forward collision warning (FCW), parking assist, and automatic lighting are among well-developed
ADAS systems as well. New ADAS systems may provide automated traffic warnings via GPS signals,
detect drivers’ drowsiness level based on facial expression recognition, or allow hands-free voice
activated smartphone connections, etc. As mentioned in the list, these ADAS systems highly rely on a
number of vehicle-mounted sensors for primary tasks such as data gathering and scene understanding.
To be specific, the hardware components for supporting ADAS systems include [46–48]:

(i) Radar: Radar is an active detection system that uses radio waves to determine the range, angle,
or velocity of target objects. Radar sensors monitor the position of other vehicles or road users
nearby to improve environmental awareness. They are already widely used in many ADAS
systems such as the ACC and the BSD.

(ii) LiDAR: LiDAR sensors bounce pulses of light off the surrounding objects. The reflected pulses
are analyzed to form three dimensional point clouds for identifying lane markings and the edges
of roadways.

(iii) Video camera: Video camera detects traffic lights and signals, reads road signs, keeps track of
the position of other vehicles, and looks out for pedestrians, cyclists, and obstacles on the road.

(iv) GPS: A GPS system provides satellite-based geolocation information, which could be more
accurate when GPS signals are combined with the readings from gyroscopes, accelerometers,
tachometers, and altimeters, etc.

(v) Ultrasonic sensor: Compared with radar sensors, ultrasonic sensors can provide more accurate
positioning of the surroundings at a short range, for example the curbs or passing-by pedestrians
when the driver is parking.

(vi) Radio transceiver: A radio transceiver enables the vehicle to receive signals from other vehicles
as well as roadside infrastructures, so that additional information from external sources can be
utilized.

(vii) Central computer: The information gathered from all of the sensors is processed by a central
computer that manipulates the steering, accelerator and brakes. It must understand the driving
scene and then make proper decisions.
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Later in this thesis, radar and radio transceivers will be the main focus, and the design of vehicular
radar and communication systems will be studied thoroughly.

1.1.6 Benefits and Concerns

Safety is indisputably the single most important factor for modern transportation. According to the
World Health Organization (WHO), approximately 1.35 million people die each year worldwide as a
result of road traffic crashes [49]. Between 20 and 50 million more people suffer non-fatal injuries,
with many incurring a disability as a result of their injury.

In the United States, according to the National Highway Traffic Safety Administration (NHTSA)
of the U.S. Department of Transportation, there were 37,133 people killed in motor vehicle traffic
crashes on U.S. roadways during 2017 [50]. The injury rates were nearly 100-fold higher; the
estimated number of people injured in traffic accidents in the United States was 2.44 million in 2015
[51]. Astonishingly, the NHTSA revealed that about 94% of the traffic crashes were caused by human
errors, be it recognition errors, decision errors or performance errors [52]. In particular, the act
of impaired driving could lead to all kinds of human errors; it was reported by the NHTSA that
alcohol-involved impaired driving fatalities accounted for 29% of all motor vehicle traffic fatalities in
2017 [53, 54], and 18% of all fatally injured drivers were tested positive for drug involvement in 2009
in the United States [55].

In the EU, according to the European Commission’s reports, more than 25,000 people lose their
lives on EU roads every year (25,300 fatalities in 2017) [56]. In addition, about 135,000 people sustain
serious road traffic injuries on EU roads per year. Serious injuries are not only more common but
also often more costly to society because of long-time rehabilitation and healthcare needs. The
socio-economic consequences of this alone are estimated at 120 billion euros annually for the EU.
Reducing the number of fatalities and injuries has been identified as an important objective of
transport policy worldwide.

Over the past few decades, a number of safety programs/regulations leading to increased seat-belt
use and reduced impaired driving have significantly lowered the number of traffic fatalities. Moreover,
vehicle improvements such as air bags, anti-lock brakes, and electronic stability control have also
contributed greatly to the reduction of traffic deaths [50].

There is much more to be gained with CAVs. The development and adoption of CAVs could
impart significantly greater reductions in traffic injuries and fatalities. Based on an analysis report
released by the NHTSA, the full adoption of DSRC and V2V technology could prevent 439,000 to
615,000 crashes, and save 987 to 1,366 lives each year in the United States [57]. Another study
predicted that the widespread embrace of CAVs could ultimately cause vehicle crashes in the United
States to fall from second to ninth place in terms of their lethality ranking among accident types [58].
Needless to say, this would be an enormous benefit to individuals, families and society as a whole.

However, despite the great benefits that CAVs would deliver, the future deployment of CAVs has
also raised a number of risk-related concerns. With the connected and autonomous features being
made popular, the same hardware, software, and electronics that have enabled them also introduce
new risks to the driving safety. As vehicle cybersecurity threats have emerged, CAVs will face serious
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cyber attacks, unauthorized access, privacy invasions, damage, or disruptions that interfere with
system performance.

For example, dangerous situations would appear when other vehicles suddenly stop on the road
ahead, speed recklessly through intersections, or maneuver unexpectedly to get through a congestion.
Intentionally or not, these motion perturbations will raise the risk for driving safety and need to
be tracked as accurately as possible in a timely manner. Besides, some on-road vehicles may be
adversarial and equipped with radio jamming capabilities. They would specifically target V2V links
and disrupt regular information exchange. This kind of attack will disable the communication between
CAVs and all the critical applications that are supported by connectivity. Countermeasures should
be taken to mitigate jamming attacks and keep V2V communication as reliable as possible in an
efficient manner. This topic will be further discussed and elaborated in the next chapter.

1.2 Research Tool of Cognitive Dynamic Systems (CDS)

1.2.1 Basic Concept

As an emerging and fascinating research field, the study of cognitive dynamic systems (CDS) integrates
many fields that are rooted in neuroscience, cognitive science, computer science, mathematics, physics,
and engineering, just to name a few [59]. For justifying that a so-called CDS is indeed “cognitive”,
several key aspects of human cognition are adopted as the frame of reference, the principles of which
will be explained in the next subsection. Regarding the second key word of “dynamic”, it emphasizes
that the factor of time plays a key role in the system’s input-output behavior. The idea of CDS is
firstly presented in [60] and has evolved significantly over the course of time [61–64].

1.2.2 Five Principles

From the perspective of neuroscience and cognitive science, there are five distinctive principles of
human cognition as stated in Fuster’s paradigm: perception-action cycle (PAC), memory, attention,
intelligence, and language [65]. These distinctive properties of human cognition constitute the ideal
framework, against which a dynamic system should be assessed for it to be cognitive.

To implement the fundamental principles within Fuster’s paradigm, the formulation of CDS lives
up to the well-known engineering paradigm: “divide and conquer”. Step by step, CDS is built upon
these fundamental principles.

1.2.2.1 Perception-Action Cycle (PAC)

The name of PAC implies that a CDS has two primary functional parts: perceptor and actuator
(i.e., executive), as shown in Fig. 1.1. Deeply rooted in biology, PAC is the cybernetic information-
processing loop that adapts the system to its environment during goal-directed behavior [66]. As the
structural backbone of CDS, PAC begins with the perceptor perceiving the external environment by
processing the incoming stimuli, called observables or measurements. In response to the feedback
information from the perceptor about the environment, the executive makes decisions and acts
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Figure 1.1: CDS in its most simplified form.

accordingly. That particular action produces change in the environment that is again processed by
the perceptor for further action, and so the cyclic behavior goes on until the goal of interest is reached.
The outcome of each PAC is informative for subsequent cycles, and the benefit resulting from PAC is
that of improved information gained from the environment [59].

1.2.2.2 Memory

Typically, the environment that a CDS operates in is nonstationary and continually changes with
time. Given such an environment, it is a must for a CDS to have memory, desirably of a multiscale
variety. The PAC incorporates the acquisition and retrieval of memory. The component of memory
is necessary for learning from the environment and storing the knowledge so acquired, continually
updating the stored knowledge in light of environmental changes, and predicting the consequences
of actions taken and/or selections made by the system as a whole. Specifically, perceptual memory
(episodic, semantic, conceptual, etc.) is the memory acquired through the perception and includes
a large amount of individual experiences, from the simplest forms of sensory memory to the most
abstract knowledge. Executive memory is the representation of motor acts and behaviors; it plays an
important role in supporting the execution of both elementary motor acts and complex goal-directed
actions [67].

1.2.2.3 Attention

In general, attention can be added to both the perceptor part and the executive part of a PAC as
perceptual attention and executive attention, respectively. Attention prioritizes the allocation of
available resources in such a way that the information gathering and processing power is focused
on what is of critical strategic importance to the system. While perceptual attention deals with
the information overflow problem, executive attention tries to maintain the system operation with
minimum disturbance.
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1.2.2.4 Intelligence

Intelligence is an emergent property of a system that makes decisions based on the PAC, incorporating
memory and attention. While attention serves all other principles, intelligence is served by all. It is
safe to say that intelligence is the single most important function in a CDS. It should be noted that
the abundant presence of feedback at multiple levels, including both global and local feedback loops,
facilitates intelligence, which, in turn, makes it possible for the system to make intelligent decisions
in the face of inevitable uncertainties in the environment.

1.2.2.5 Language

Just as language plays a distinctive role in the human brain, so it does in a CDS where language
provides the means for connectivity among different parts/components of the system, for instance,
via effective and efficient machine-to-machine (M2M) communications. Challenging research issues
involved in enabling M2M communications include architecture, standardization, identification,
addressing, security, and so on [68]. However, detailed consideration of how one would incorporate
the language is outside the scope of this study.

1.2.3 Generic Structure

Four basic components that constitute a generic CDS are described in the following order: a perceptor,
an executive, a feedback channel linking the perceptor to the executive, and an embedded module
called task-switch control that regulates the inner pathways of a CDS, the entire structure of which is
embraced within an environment [63].

1.2.3.1 Perceptor

The perceptor is usually composed of Bayesian generative model, Bayesian filter, and entropic
information-processor.
(1) Bayesian Generative Model

As the underlying objective of a perceptor is perception of the environment, we typically find
the perceptor starts with modeling of the incoming observables. With Bayesian dynamics being the
framework of choice [69], we look to the generative model as the first processing stage.
(2) Bayesian Filter

The second part in the perceptor, namely filtering, requires a procedure for estimating the state
of the system model conditional on the generative posterior. In a generic sense, the Bayesian filter is
the optimal solution for the filter needed for the perceptor [70]. However, when the system can be
characterized by a linear model and a Gaussian distribution, the well-known Kalman filter can be
employed [71].

Additionally, in order to account for perceptual attention, the Bayesian generative model and
the Bayesian filter are reciprocally coupled, and therefore, a local feedback loop is formed. From a
neuroscience point-of-view, the Bayesian filter picking up relevant information from the generative
model represents the selective-focusing of the excitation component of attention, and the generative
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model putting aside irrelevant observables (due to the suppression of Bayesian filter) represents the
inhibition component [72].
(3) Entropic Information-Processor

Due to the presence of PAC, CDS is characterized by a directed flow of information from the
perceptor to the executive in a continuous cyclic manner [73, 74]. Part of that information is the
entropic state of the perceptor that progresses from one PAC to the next. With the outcome of the
Bayesian filter at our disposal, Shannon’s information theory is invoked to calculate the entropy we
need [75, 76].

1.2.3.2 Feedback Channel

As mentioned previously, the feedback channel occupies a distinctive place within the CDS in that it
links the executive to the perceptor, thereby closing the global feedback loop around the environment
and completing the PAC.

In addition, the feedback channel is fully occupied with internal rewards, which is based on the
entropic state of the perceptor and can be calculated in various ways depending on the application of
interest. Furthermore, the internal rewards play a critical role for both reinforcement learning in the
executive and the task-switch control at the same time, discussed next.

1.2.3.3 Executive

As a dominant part of the CDS, the executive consists of reinforcement learning, cognitive control
(that embodies a planner, action library, a policy, and working memory), and a subsystem composed
of executive memory and a classifier.
(1) Reinforcement Learning

The objective of reinforcement learning is to transform the incoming internal rewards computed
in the feedback channel into an output called the value-to-go function [77]. Recognizing that the
internal rewards are probabilistic, the function of reinforcement learning is therefore also defined in
probabilistic terms, which would be influenced by variations in the environment from one PAC to the
next.
(2) Planner and Action Library

Taking the value-to-go function as input, the planner extracts a set of prospective actions from
the action library and performs several planning updates in a predictive way.

In order to account for executive attention, the reinforcement learning module and the planner
are also reciprocally coupled, resulting in a local feedback loop again. From a neuroscience point-
of-view, the planner picking up relevant information from the reinforcement learning represents the
selective-focusing of the excitation component of attention, and reinforcement learning putting aside
irrelevant information (due to the suppression of planner) represents the inhibition component. It is
similar to the reciprocal coupling we have observed in the perceptor.

To be more precise, the shunt cycle accounts for top-down attention in the perceptor, followed by
bottom-up attention in the executive. There will be many shunt cycles performed in each PAC as the
shunt cycle is only performed within the interior of the CDS. As a result, relevant information in
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both the perceptor and the executive is enhanced, while at the same time irrelevant information is
diminished.
(3) Policy and Working Memory

Policy leads to decision-making, and therefore, a cognitive action. As for the working memory, it
is a temporary active retention of information to be used in the short term. It consists of a limited
set of past actions that is immediately relevant to the task at hand and is updated from one PAC
to the next. With the immediate past action from working memory on the one hand and a set of
prospective actions put forward by the planner on the other hand, the cognitive action is derived
from the set of prospective actions in a probabilistic manner.

The fundamental function performed by the planner (along with the action library) and the policy
(along with working memory) can be called “cognitive control”, the expression of which was first
used to describe cortical functions and mechanisms in cognitive neuroscience [78]. More importantly,
cognitive control is the over-arching function of the executive by acting on the environment on a
cycle-by-cycle basis.

However, the environment in a realistic world is prone to the unexpected occurrence of unpredicted
events. Whenever a system of interest experiences such uncertainty, it is a must that cognitive control
expands its functionality in order to deal with unexpected adverse events, which are collectively called
risk. As the solution for tackling uncertainties, we bring into play “cognitive risk control (CRC)”,
which is built upon the regular cognitive control with the addition of an executive memory and a
classifier [79].
(4) Executive Memory

In the human brain, the prefrontal cortex is at the highest level of the cortical executive hierarchy,
representing the rules and schemas of goal-directed action [67, 80]. According to Fuster’s notion of an
executive memory system, the physiological activity of the executive memory supports the prefrontal
cortex in establishing temporal organization of behavior, speech, and logical reasoning [81]. From an
engineering perspective, the executive memory provides valuable historical references for appropriate
goal-directed actions to be made in the current situation.

In a distinctive way, the executive memory for CRC is the dual of the working memory for regular
cognitive control. To expand on this duality, we highlight the contextual differences between executive
memory and working memory as follows: the action library of the executive memory has a large
time-frame and more options, whereas the action library of the working memory is limited to the
“here and now”. It is also noteworthy that the executive memory and the working memory are both
dynamic in their respective ways; it is therefore expected that both of them learn from their respective
past experiences. Here, the past experiences refer to a record of actions that were taken and stored in
the past.

As for inputs, the executive memory picks up past experiences to be used in the future irrespective
of what the environmental conditions are in reality. Nonetheless, all the past experiences stored in
the action library of executive memory are free from uncertainties: in the presence of uncertainty,
the regular cognitive action that is perturbed will be replaced with a risk-sensitive cognitive action,
which is generated by the classifier.
(5) Classifier
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In the presence of uncertainty, the regular cognitive control operates under a perturbed condition
and we would have a perturbed cognitive action as one of the inputs for the classifier. In a corresponding
way, the executive memory selects a set of prospective past experiences that serves as the second
input for the classifier. Therefore, the stage is set for the classifier to perform decision-making and
produce the risk-sensitive cognitive action, which is finally applied to the environment.

1.2.3.4 Task-Switch Control

In order to alternate between regular cognitive control and the CRC in a CDS, a network of switches
is formulated to prevent the perturbed cognitive action from affecting the environment as well as to
facilitate the generation of risk-sensitive cognitive action. These switches are the results of addressing
two completely different environmental conditions, one involving the absence of uncertainties and the
other one involving their presence.

To identify the presence of uncertainties and help bring risk under control given the observables,
a module called task-switch control is introduced. It manages the status of the network of switches,
and therefore, regulates the inner pathways of a CDS.

At this point, we should reemphasize that this generic structure of CDS merely serves as a guideline
for its use in practice. The exact composition of a specialized CDS varies from one system to another,
depending on the specific application of interest.

1.2.4 Regular PAC vs. Complex PAC

Looking back to the first fundamental principle of cognition, namely the PAC, we can now elaborate
on the simplistic CDS shown in Fig. 1.1 to some extent. Moreover, two types of PAC, a regular one
and a complex one, are depicted in Figs. 1.2 and 1.3, respectively.

Fig. 1.2 presents a regular PAC that follows and enriches the global cycle depicted in Fig. 1.1,
representing the operation of regular cognitive control in the absence of unexpected uncertainties. It
is noteworthy that past experiences regarding the cognitive actions are preserved in the executive
memory, and the classifier is currently non-functional.

In contrast, Fig. 1.3 illustrates a complex PAC that is much more informative in the presence of
uncertainties on two accounts. First, the executive memory is now activated to provide prospective
past experiences that were accumulated before. Second, the classifier will now take the role to
compute a risk-sensitive cognitive action with both perturbed cognitive action and prospective past
experiences at hand. In addition, the end result of risk-sensitive cognitive action will also be stored
in the executive memory for future use.

Simply put, for every gain made, there is a price to pay. Compared with the regular PAC, the
complex PAC is relatively more complicated, and by the same token, much more powerful in the
context of information processing.

As is increasingly recognized in the modern neuroscience literature, the prefrontal cortex makes
the brain a pre-adaptive system [82]. From the same viewpoint, it is not surprising to see that
an engineering framework of CDS manifests the predictive-adaptation feature of the human brain.
Specifically, the planner accounts for the outcome of CRC to be consistently ahead of the observables
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Figure 1.2: The regular PAC of a CDS.
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Figure 1.3: The complex PAC of a CDS.

by one PAC due to its predictive property. Besides, the working memory provides the immediate
historical references, according to which cognitive action is derived, and the executive memory
bypasses the influence of uncertainty and brings risk under control in an adaptive way.

1.2.5 Engineering Applications

Among other engineering systems enabled with cognition, two distinctive applications of CDS stand out
over the years: cognitive radio [83] and cognitive radar [84]. In short, cognitive radio aims at facilitating
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dynamic spectrum management and solving the problem of an underutilized electromagnetic spectrum,
while cognitive radar aims at improved performance in both accuracy and reliability for remote-sensing
applications.

1.2.5.1 Cognitive Radio

The term “cognitive radio” was coined by Joseph Mitola and Gerald Q. Maguire in 1999 [85]. From
a computer science perspective, cognitive radio was envisioned to enhance the flexibility of personal
wireless services through a new language called the radio knowledge representation language (RKRL),
the idea of which was further studied and expanded in 2000 [86]. In 2005, a seminal paper on
cognitive radio was published by Simon Haykin [83]. Viewing cognitive radio as a novel approach
for improving the utilization of the radio electromagnetic spectrum from an engineering perspective,
detailed expositions of signal processing and adaptive procedures that lay at the heart of cognitive
radio were presented for the first time. Since then, the topic of cognitive radio has been extensively
studied [87–92].

In realistic wireless communication networks, we typically find that only a small fraction of the
radio spectrum assigned to legacy operators by government agencies is actually employed by primary
(i.e., licensed) users [93, 94]. Indeed, if we were to scan portions of the radio spectrum including the
revenue-rich urban areas, we would find that: 1) some frequency bands in the spectrum are largely
unoccupied most of the time; 2) some other frequency bands are only partially occupied; and 3)
the remaining frequency bands are heavily used. The underutilized subbands of the spectrum are
commonly referred to as spectrum holes [95, 96].

The function of a cognitive radio may then be summarized as follows [59]:

(i) The radio receiver is equipped with a radio scene analyzer, the purpose of which is to identify
where the spectrum holes are located at a particular point in time and space.

(ii) Through an external feedback link from the receiver to the transmitter, the information on
spectrum holes is then passed to the radio transmitter, which is equipped with a dynamic
spectrum manager and transmit-power controller. The function of the transmitter is to allocate
the spectrum holes among multiple secondary (i.e., cognitive radio) users in accordance with
prioritized needs.

Therefore, cognitive radio offers a new way of thinking on how to promote efficient use of the
radio spectrum by exploiting the existence of spectrum holes. From a different angle, it can be seen
that CDS is well suited for the engine of complex wireless communication networks. The perceptor of
CDS can be responsible for modeling spectrum environment and building the dynamic-interference
map, based on which the executive will perform decision-making and generate cognitive actions to
address the resource-allocation issues [97].

1.2.5.2 Cognitive Radar

The term “cognitive radar” was described for the first time by Simon Haykin in 2006 [84]. Generally,
radar is a remote-sensing system with numerous well-established applications in surveillance, tracking,
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and imaging of targets, just to name a few [98]. Cognitive radars are systems based on the PAC for
cognition that senses the environment, learns relevant information from it about the target and the
background, and then adapts the radar sensor to optimally satisfy the needs of the mission according
to a desired goal [99, 100]. The feature of cognition provides the basis for enabling a new generation
of radar systems with reliable and accurate tracking capability that is beyond the reach of traditional
radar systems [101, 102].

Specifically, the function of the receiver in a radar system is to produce an estimate of the state
of an unknown target located somewhere in the environment by processing a sequence of observables
dependent on the target state. In effect, perception of the environment takes the form of state
estimation. As for the transmitter in the system, its function is to adaptively select a transmitted
waveform that illuminates the environment in the best manner possible. In target detection, the issue
of interest is to decide as reliably as possible whether a target is present or not in the observables.
In target tracking, on the other hand, the issue of interest is to estimate the target parameters (e.g.
range and velocity) as accurately as possible [59, 103].

Three ingredients are basic to the constitution of cognitive radar [84]:

(i) Intelligent signal processing, which builds on learning through interactions (i.e., experiences) of
the radar with the surrounding environment.

(ii) Feedback from the receiver to the transmitter, which is a facilitator of intelligence.

(iii) Preservation of the information content of radar returns and adjustment of the transmitted
signals in an intelligent manner.

All three of these ingredients feature in the echo-location system of a bat [104, 105], which may
be viewed as a physical realization (albeit in neurobiological terms) of cognitive radar. The bat is
endowed with the ability to build up its own rules of behavior over the course of time, through what
we usually call “experience”. To be more precise, experience, gained through the bat’s interactions
with the environment, is built up over time with the development continuing well beyond birth.
Simply put, the “developing” nervous system of a bat, or for that matter a human, is synonymous
with a plastic brain: plasticity permits the developing nervous system to adapt to its surrounding
environment [71]. The importance and usefulness of experience will be further discussed in this thesis
later on.

For a more detailed discussion on the engineering applications of cognitive radio and cognitive
radar, the interested reader is referred to [59] and the references therein.

1.3 Research Motivation and Objectives

The introduction on CAVs has revealed that there are a number of risk-related concerns to be
addressed before CAVs’ large-scale manufacturing and full commercialization are possible. Among
others, the potential threats of motion perturbation and jamming attacks are extremely critical to the
survival of CAV networks and urgently need effective countermeasures, which is the main motivation
for conducting this research.
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Fortunately, the recent development of CDS has provided a very powerful research tool to
study complex systems operating in an open and possibly adversarial environment. To address the
aforementioned problems, the primary research objective of this thesis is to apply CDS to CAV
networks with emphasis on improved driving safety and system security. A number of secondary
objectives which will aid in achieving the primary objective include answering the following questions:

(i) What kind of potential threats would prevail in a CAV network and what difference will CDS
make?

(ii) How can CDS and CRC be of help for vehicular radar systems in the face of motion perturbation?

(iii) How can CDS and CRC be of help for vehicular communication systems in the face of jamming
attacks?

(iv) Can we make further improvements when radar and communication systems are jointly consid-
ered?

1.4 Research Outline

Fig. 1.4 shows the research outline of the thesis. The main body of this thesis can be briefly described
as a theoretical overview followed by three technical works (on different applications).
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Motivation and Objectives:

Tracking motion perturbations and defending jamming attacks;
In order to achieve driving safety, system security, and risk control.

Theoretical Overview:
CDS for RACE Vehicles (Chapter 2)

1) Various risk-related issues are identified in CAV networks
2) CDS is employed as the supervisor for RACE vehicles
3) CRC is activated in the presence of uncertain threats

First Application:
CRC for Vehicular Radar System (Chapter 3)

1) CRC is used for transmit-waveform selection
2) Aims at improving target-tracking performance

3) Algorithm 1 is proposed and simulation is conducted

Second Application:
CRC for Vehicular Communication System (Chapter 4)

1) CRC is used for power control and channel selection
2) Aims at improving anti-jamming V2V performance
3) Algorithm 2 is proposed and simulation is conducted

Integrated Application:
C-CRC for Coordinated Radar and Communication Systems (Chapter 5)

1) C-CRC establishes a mutual-assistance relationship between two systems
2) Aims at improving both target-tracking and anti-jamming V2V performances

3) Algorithm 3 is proposed and simulation is conducted

Contributions, Limitations, and Future Directions:

CDS for CAVs is a promising research field;
We have just touched the tip of the iceberg;

More research effort is needed from both academic and industrial communities.

Figure 1.4: Research outline of the thesis.

1.5 Thesis Organization

This thesis is composed of the following chapters:
Chapter 1 provides an introduction about the important concepts of CAV and CDS, discusses the

research motivation and associated objectives, presents the research outline, and describes the overall
organization of this thesis.

Chapter 2 provides a theoretical overview mainly about how the CDS can be of use for CAVs.
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This chapter is more of a high-level tutorial style, which presents a general picture of this research
area and lays down the foundation for subsequent studies. To the best of the author’s knowledge, this
is the first theoretical work that integrates the research tool of CDS with the engineering application
of CAVs.

Chapter 3 proposes to employ the CRC for transmit-waveform selection in vehicular radar systems.
Focusing on the improvement of robust target-tracking performance, this chapter studies a vehicular
radar system, which is the first application for CRC investigated in this thesis. To the best of the
author’s knowledge, the scholarly work presented herein is the first experimental work of CRC being
applied to a practical vehicular system.

Chapter 4 proposes to employ the CRC for power control and channel selection in CAV networks.
Focusing on the improvement of anti-jamming V2V performance, this chapter studies a vehicular
communication system, which is the second application for CRC investigated in this thesis. To the
best of the author’s knowledge, the scholarly work presented herein is the first experimental work on
V2V communication that involves anti-jamming, power control, and channel selection at the same
time.

Chapter 5 introduces a new notion called coordinated cognitive risk control (C-CRC), which serves
as a cognitive mediator and establishes a mutual-assistance relationship between vehicular radar and
communication systems. This chapter builds upon all the research efforts made in previous chapters
and takes them one step further.

Chapter 6 concludes the thesis by summarizing the work presented, its main contributions,
limitations and prospective areas for future work.
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Chapter 2

Cognitive Dynamic System for
Future RACE Vehicles in Smart
Cities: A Risk Control Perspective

2.1 Preceding Introduction

As part of the emerging people-centric Internet of Things, CAVs have the potential to reshape future
transportation systems and impact the physical and/or social environment. Along with the rapid
developments of CAVs also arise numerous potential threats, which would severely endanger the
safety and security of CAV networks. Being a powerful research tool inspired by certain features of
the human brain, in this chapter, CDS will take the role of a supervisor or system orchestrator in
order to deal with risk-related issues and to provide possible countermeasures.

To the best of the author’s knowledge, this is the first theoretical work that integrates the research
tool of CDS with the engineering application of CAVs.

The publication included in this chapter is:
S. Feng, and S. Haykin, “Cognitive Dynamic System for Future RACE Vehicles in Smart Cities:

A Risk Control Perspective,” IEEE Internet of Things Magazine, accepted, June 2019.
The co-author’s contributions to the above work include:

• Technical supervision and financial support of the study presented in this work.

• Manuscript revising and editing.
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Abstract

As one of the largest applications for Internet of Things (IoT) in smart cities, Internet of Vehicles
(IoV) has attracted increasing attention over the years due to its great potential for reshaping both
transportation systems and human society. While connected and autonomous vehicles (CAVs) are
currently being developed all over the world, they are unfortunately under various potential threats
that could endanger the entire CAV network. In this article, we envision a new class of future
vehicles, namely the risk-sensitive, autonomous, connected and electric (RACE) vehicles, to cope
with uncertain attacks and potential threats. The safety, security and privacy issues in CAV networks
are identified first. Next, the cognitive dynamic system (CDS) is introduced as the supervisor of
RACE vehicles for improving and coordinating multiple vehicle-mounted systems. A special function
of CDS, namely cognitive risk control (CRC), is described then in the presence of uncertain threats.
Last but not least, we present the future directions and research challenges ahead.
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2.2 Introduction

Internet of Things (IoT), being one of the most critical pillars of the fourth industrial revolution, has
dramatically reshaped the physical-cyber-social environment that surrounds each and every one of us
[106]. Under the umbrella of pervasive IoT, a lot of attention has been paid to a specific category
pertaining to the Internet of Vehicles (IoV) in recent years [107]. The upgrading and modernization of
transportation system in smart cities will offer a great potential to prevent traffic collisions, increase
transport capacity, reduce commute costs, etc.

To fulfill the goals of IoV in smart cities, connected and autonomous vehicles (CAVs) are viewed as
a promising way of the future [108, 109]. Ranging from middle-level to high-level automation, CAVs are
capable of taking a course of actions in terms of adjusting steering angles and accelerating/decelerating
based on the perceived environmental information with minimal (if any) human interventions. Aimed
at bringing this life-changing innovation into reality, the research and development of CAVs is now
one of the fiercest battlegrounds in both academic and industrial communities. Some early-stage
products are already being tested and deployed worldwide in small-scale applications, while more
matured and reliable technologies are urgently needed before the full commercialization is considered
possible.

Another field that overlaps with CAVs is the electric vehicles (EVs), which differ from the fuel-
powered vehicles in that the electricity they consume can be generated from a wide variety of renewable
energy sources, and therefore, are more environment-friendly [110]. In addition, the personalized and
shared features are also regarded as key factors for future intelligent vehicles. The integration of
these characteristics has led to many insightful concepts: autonomous, connected and electric (ACE)
vehicles, personalized ACE (PACE) vehicles, shared ACE (ACES) vehicles, to just name a few [111].
With safety-related issues being the undisputable priority of modern transportation systems, we are
emboldened to envision a new class of future vehicles, namely the risk-sensitive ACE (RACE) vehicles.
Here, the term risk-sensitive refers to the intrinsic attribute of being sensitive to uncertain threats in
the vehicular environment and having the built-in capability to bring risk under control.

To realize this vision, it is instructive to learn lessons from the recent advances in cognitive
dynamic systems (CDS) and utilize cognitive risk control (CRC) for addressing the uncertain attacks
and potential threats [63], which have already begun to endanger the safety of CAV networks and
will only get severer for there are more RACE vehicles yet to come. Inspired by certain features of
the human brain, from the perspectives of both neuroscience and engineering, CDS is a theoretical
construct designed to explain and explore the mechanisms of adaptation of a complex system to its
environment. As a special function of CDS, CRC takes over and actualizes the notion of predictive
adaptation learned from the prefrontal cortex when encountered with uncertain threats [82]. Acting
as the supervisor or system orchestrator, CDS provides a desirable unified framework for bringing
multiple vehicle-mounted systems together, which would remarkably improve the intelligence and
security level of future RACE vehicles.

This article is organized as follows. After this introductory section, an analysis is presented on
the safety, security and privacy issues in the CAV networks, where potential threats and possible
countermeasures are discussed. Next, the CDS acting as the supervisor of RACE vehicles is described
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along with several example applications, after which the functionality of CRC in the presence of
uncertain threats is discussed. Then, future directions and research challenges are identified, followed
by a brief summary that concludes the article.

2.3 Safety, Security, and Privacy in CAV Networks

While the connected feature of CAVs and the large-scale open nature of public roads are generally
beneficial for the transportation system, they leave the system itself quite vulnerable to malicious
activities, unfortunately [17]. CAV networks can easily be chosen as the attacking target by different
adversaries, who may have their respective purposes, such as causing traffic accidents, stealing critical
information, hijacking, etc. Moreover, with CAV networks essentially being one kind of newly rising
cyber-physical systems, the threats posed on CAV networks include not only traditional types of
attack in vehicular networks such as eavesdropping, but also new forms of attack like jamming signal
or compromised instructions from unmanned aerial vehicles (UAVs) [112]. Fig. 2.1 has illustrated a
number of potential threats that deserve our attention. It is accompanied by Tab. 2.1, which also
presents the affected aspects of interest and possible countermeasures correspondingly. It should be
pointed out that the list therein is not intended to be exhaustive, but rather to give an idea of the
scope of possible malicious activities that could appear in CAV networks.

As a major threat in many other engineering applications, jamming is still viewed as a serious
attack in CAV networks. Generally speaking, any type of vehicle-to-everything (V2X) communications
can be the victim of jamming attacks, which emits high-power electromagnetic interference to make
the legitimate signal unrecognizable [113]. Here, V2X refers to vehicle-to-vehicle (V2V), vehicle-
to-infrastructure (V2I), vehicle-to-pedestrian (V2P), vehicle-to-device (V2D), and vehicle-to-grid
(V2G), as illustrated in Fig. 2.1 (for detailed descriptions, the readers are referred to [114] and the
references therein). Targeting at a CAV or regular vehicle, jamming attacks can be launched from
various sources such as other vehicles, malicious devices, unauthorized UAVs or adversary personnel
on the roadside. In such circumstances, the CAVs will no longer be connected and the automation
level would inevitably be degraded due to insufficient information. Moreover, the missing of critical
messages (for example, road-closure announcement, overtaking signal) may even lead to fatal traffic
accidents. Therefore, effective anti-jamming communication mechanisms (such as spread spectrum or
cognitive radio techniques) should be designed and employed to deal with this kind of attack.

A similar yet different type of attack is blinding, which mainly targets at new equipments such as
LiDAR (light detection and ranging) or video cameras by shedding obtrusive light or feeding them
with strong noise. Since many computer vision based technologies highly rely on these data-gathering
equipments, their disruption would result in a serious failure of environmental awareness. To tackle
blinding attacks, some mitigation methods can be adopted, such as signal filtering, noise reduction,
or adaptive adjustment of sensing directions. As both jamming and blinding are basically one-way
denial-of-service (DoS) attack, there is no information leakage from the target vehicle to the attackers.
Therefore, the privacy of involved individuals (i.e., drivers, passengers, pedestrians) will not be violated
directly, while the safety of individuals and the security of assets (i.e., vehicles, infrastructures, devices)
would be in grave danger. From a defense point of view, these kinds of attack have emphasized the
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Figure 2.1: An illustration of the CAV network under various potential threats.

necessity of ensuring data availability in CAV networks.
With a huge potential of profits to be gained from the offense point of view, more sophisticated

attacks will soon become common, such as compromised instructions, falsified data, masquerad-
ing/impersonation [115]. Specifically, compromised instructions are controlling signals tampered
by adversaries for the purpose of gaining partial or complete control of the vehicle. Falsified data
attacks are initiated at a lower level in that they do not instruct the CAV directly; rather, they
exploit the internal vulnerabilities of vehicle-mounted systems and inject falsified/altered data in
order to mislead the CAV into making wrong decisions by itself. Masquerading or impersonation
attack takes place when an attacker pretends to be a legitimate entity to gain privileges or cause
damages, for example, requesting the travel profile or exploiting vehicle repair-record. Due to the
destructive capability of these sophisticated attacks, the aspects of safety, security, and privacy will
all be endangered. Effective countermeasures for these attacks include digital authentication, data
cleansing, digital watermarking, identification, etc., the overall objective of which is ensuring data
integrity in CAV networks.
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Table 2.1: Potential threats and corresponding countermeasures for safety, security, and privacy in
CAV networks

Potential Threats Aspects of Interest Possible Countermeasures
Safety
of indi-
viduals
(Drivers/
passen-
gers/
pedestri-
ans)

Security
of assets
(Vehicles/
infras-
tructures/
devices)

Privacy
of indi-
viduals
(Activ-
ities/
prefer-
ences/
trajecto-
ries)

Active

Jamming X X Anti-
jamming
communica-
tion

Ensuring
availability

Blinding X X Signal filter-
ing, noise
reduction

Compromised
instructions

X X X Digital au-
thentication Ensuring

integrityFalsified data X X X Data cleans-
ing, digital
watermarking

Masquerading/
Imperson-
ation

X X X Identification

Passive
Eavesdropping X X Data encryp-

tion
Ensuring
confidentiality

Stalking X Anonymization
Misbehaving/
Malfunction-
ing

X X Emergency re-
sponse

Ensuring
reaction
capability

Unlike the active attacks as discussed above, passive attacks without explicit aggressive behavior
are stealthier since they are usually more difficult to be detected. One representative example is
eavesdropping, which tries to intercept and record the messages being exchanged by others without
the consent of involved parties. For instance, an attack vehicle may eavesdrop a private conversation,
or an electricity-consumption report in V2G communication; the information illegally gathered by
the attacker can then be utilized to request energy transmission from power grid using the victim
vehicle’s ID, which is again one form of the masquerading attack. Although eavesdropping does no
physical harm to the affected individuals, it greatly violates the security of assets (such as an ACE
vehicle with low battery) and privacy of the individuals, putting emphasis on the necessity of applying
data encryption techniques to establish secure communications. Another example of passive attacks
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is stalking, which targets valuable CAVs and gathers their detailed travel information by following
them intentionally. It should be noted that the data obtained by adversaries can be used to analyze
and derive behavior pattern, social activities and personal habits of involved individuals. Therefore,
the potential threat of stalking makes anonymization methods useful for protecting privacy through
ensuring confidentiality. Furthermore, the misbehaving or malfunctioning of a vehicle could be a
result of successful attack, or just an unexpected failure in software and/or hardware. Either way, it
will pose a threat on the road to other CAVs, which should be able to detect the threat immediately
and make emergency responses accordingly. Ensuring reaction capability is also of great importance
to enhance the safety and security for CAVs.

2.4 The Cognitive Dynamic System as the Supervisor of
RACE Vehicles

In face of various potential threats in CAV networks, it is imperative to put safety and security as
the first priority and accelerate the development of future RACE vehicles. To achieve that, many of
the current vehicle-mounted systems should be upgraded to cope with the complex, dynamic, and
adversarial vehicular environment. The CDS, being a structured engineering model and research tool
inspired by certain features of the human brain, is a competent candidate for dealing with such an
environment [59]. In its most simplified form, CDS consists of two major components, the perceptor
on one side and the executive on the other side, with a feedback channel linking them together to form
a perception-action cycle (PAC). It is the presence of feedback channel that facilitates intelligence and
makes it possible for multiple vehicular systems to make intelligent decisions in the face of inevitable
uncertainties in the environment. Acting as the supervisor or system orchestrator, CDS provides a
desirable unified framework for bringing these vehicular systems together in an interoperable manner
and having them interact with the environment jointly on a cyclic basis, as illustrated in Fig. 2.2.

Specifically, the perceptor side of a RACE vehicle takes observables and measurements from
the adversarial vehicular environment through diverse input devices, such as radio receiver, radar
receiver, LiDAR receiver, video cameras, photoelectric sensors, etc. Based on the incoming signals
and gathered data, the environmental context (such as the communication-link quality, distance to
obstacles, weather condition) is extracted and analyzed by the RACE vehicle. The results of this
information processing are not only utilized by the algorithms specifically designed for controlling
steering angle and vehicle velocity (which is omitted in Fig. 2.2 for simplicity), but also passed on
to the executive side of a RACE vehicle through feedback channel. The executive side consists of
multiple actuators, such as radio transmit-power and channel controller, radar transmit-waveform
controller, LiDAR transmit-wavelength controller, camera-orientation controller, lighting controller,
etc., which are reciprocally coupled with their counterparts on the perceptor side of RACE vehicles.
As a result, cognitive actions (be it risk-sensitive or not) are applied to the environment and the next
PAC begins.

For example, cognitive radio technology can be used in V2X communications for better utilization
of spectrum resources in either DSRC (dedicated short-range communication) bands or LTE (long-term
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Figure 2.2: The cognitive dynamic system as the supervisor of RACE vehicles.

evolution) bands. If the received signal strength in the radio receiver is lower than the requirement
for correct demodulation, it would raise the transmit power or switch to another channel on executive
side accordingly without causing too much interference for other communication links. For a cognitive
vehicular radar system, it is able to adjust the transmit waveform (and transmit power as well) in
accordance with the distance to a target as perceived by the radar receiver, in such an adaptive
way that is very much like what an echo-locating bat would do. Similarly, the LiDAR system is
anticipated to have better performance in constructing three-dimensional point clouds by tuning its
transmit parameters such as wavelength based on the feedback from its receiver. Due to the mobility
of RACE vehicles, the environment that surrounds them is always changing. It would be beneficial if
extra attention can be paid to those environmental changes that are of importance to the safety and
security concerns. Therefore, the video cameras on RACE vehicles should be capable of adjusting
their orientations to focus on the entities or incidents of interest, based on the feedback information
extracted from the images or video clips captured by the cameras. The lighting system can also be
upgraded to turn the lights on and off automatically as well as switch between main and dipped
beam, which can already be found in some of the advanced driver-assistance systems (ADAS). It is
noteworthy that the lighting control will depend not only on the feedback from photoelectric sensors,
but also on the information regarding the quality of images or clips from video cameras. Furthermore,
it should be pointed out that many other vehicular systems can also be improved and coordinated
under the supervision of CDS (such as side window control, multi-speed wiper, air conditioner) for
more advanced RACE vehicles.
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With cognition capability being introduced to RACE vehicles by the unified framework of CDS,
the uncertainties in the environment can be handled and mitigated to some extent. However, since
CAV network is frequently under various potential threats with different attacking patterns, it is
not sufficient for the regular cognitive control as described herein to operate on its own. Therefore,
CRC is undoubtedly required to be brought into play for addressing those threats. More detailed
discussions on this point are given in the next section.

2.5 Cognitive Risk Control in the Presence of Uncertain
Threats

When encountered with attacks and threats in CAV networks, the perceptor of a RACE vehicle
will be perturbed inevitably. The feedback channel will be occupied with abnormal values for some
metrics, and therefore, the executive as discussed previously will also be perturbed. Under such
circumstances, the regular cognitive control must expand its functionality to deal with the risk raised
by the occurrence of uncertain threats, which naturally results in the formulation of CRC. By
incorporating a new subsystem composed of executive memory and classifier into the executive, CRC
serves as a special yet critical function of CDS and actualizes the concept of predictive adaptation,
which is learned from the prefrontal cortex of the human brain. In order to switch between two
operational modes, a mechanism called task-switch control is introduced into the CDS, which enables
the provision of CRC whenever it is needed for combating uncertain threats and bringing risk under
control.

The compositional architecture of CDS for RACE vehicles is illustrated in Fig. 2.3 (modified
from [63]). It should be pointed out that this figure serves as a generic guideline for the practice;
the exact architecture varies from one system to another, depending on the specific application of
interest. In accordance with Fig. 2.3, Tab. 2.2 has listed the objective of each component in CDS
and the corresponding functionalities that are improved in RACE vehicles.

Specifically, the perceptor of CDS is composed of Bayesian generative model, Bayesian filter, and
entropic-information processor: Bayesian generative model characterizes the measurements originated
from the adversarial vehicular environment, Bayesian filter makes estimation and prediction based
on the generative posterior, while entropic-information processing is responsible for calculating the
entropic state of the perceptor. Assisted by the perceptor side of RACE vehicles, the functionalities
that relate to driving-scene understanding and context awareness will be significantly improved.

The feedback channel, bridging the perceptor on its right-hand side and the executive on its
left-hand side, is filled with internal rewards/costs for evaluations such as the quality of service
(QoS) of corresponding vehicular systems. Occupied a distinctive place within the CDS, task-switch
control is mainly responsible for assessing the risk level that indicates whether the uncertain threats
is present or not, and therefore, switching between two operational modes. To achieve that, two pairs
of switches are formulated as shown in Fig. 2.3. When the risk level is relatively low, the first pair
of switches (S1, S2) is closed and the second pair (S3, S4) is opened so that the regular cognitive
control is solely functional; on the contrary, if the risk level is escalated to high due to the presence of
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Figure 2.3: The compositional architecture of CDS for RACE vehicles.

uncertain threats, those two pairs of switches will be reversed so that CRC is now in function as the
countermeasure.

As the dominant part of the CDS, the executive is composed of reinforcement learning, planner,
action library, policy, working memory, executive memory, and classifier. Reinforcement learning
gains knowledge of previous actions based on the feedback information, while planner extracts a
set of prospective actions from the action library and initiates several shunt cycles for improved
information capacity in a predictive way. When the regular cognitive control is solely functional, the
policy and working memory are responsible for selecting cognitive action, which is then applied to
the environment in a straightforward way. However, in the presence of uncertain threats, CRC will
activate the subsystem consisting of executive memory and classifier to address the problem. As a
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long-term memory stored with abundant past experiences, executive memory can provide a set of
prospective past experiences for the use of current PAC. With perturbed cognitive action (provided by
the policy) on one hand and the set of prospective past experiences (provided by executive memory)
on the other, the classifier will then be able to pick out the risk-sensitive cognitive action, which
is finally applied to the environment. It is noteworthy that the risk-sensitive cognitive action thus
obtained has two distinctive features: first, it is always ahead of the perturbed observables by one PAC
due to the predictive nature of planner; and second, it neutralizes the negative influence of uncertain
threats due to the adaptive nature of executive memory. The theoretical originality and importance
of this framework rests mainly on the application to risk control of the predictive adaptation feature
of the prefrontal cortex. As a result, the functionalities that relate to vehicular system reconfiguration
and mechanical actuation will be remarkably improved on the executive side. More descriptions can
be found in Tab. 2.2.

For better comparison, Tab. 2.3 has listed the main differences between two operational modes
for CDS acting as the supervisor of RACE vehicles. For brevity, we only need to point out that
the cognitive control can be viewed as the principal function of CDS and is functional all the time,
while CRC performs as a special function of CDS since it only comes into play when large part of
the system is unfortunately perturbed in the presence of uncertain threats. Due to the page limit of
this article, the interested readers are referred to [116] for a detailed experimental demonstration in
cognitive vehicular radar systems.

33



Ph.D. Thesis - Shuo Feng McMaster University - Computational Science and Engineering

Table 2.2: Objective of each component in CDS and improved functionalities in RACE vehicles

Components in CDS Objective of each compo-
nent in CDS

Improved functionalities in
RACE vehicles

Adversarial vehicular
environment

Multi-domain environment per-
taining to vehicles, attack-
ers, infrastructures, pedestri-
ans, etc.

N/A

Observables/
Measurements

Measurements from various
sources about the adversarial
vehicular environment in multi-
domains, i.e., time, space, spec-
trum, power, etc.

Overall observability and avail-
ability

Perceptor
Bayesian
gener-
ative
model

Bayesian formulation of the
measurements

Cooperative spectrum sensing
(CSS), dynamic interference-map
generation, target tracking, 3-D
data-points construction, simul-
taneous localization and mapping
(SLAM), intruder recognition,
traffic-signal detection, ambient
illumination, traffic analysis,
service-demand data collection,
etc.

Bayesian
filtering

Bayesian estimation and predic-
tion

Entropic-
information
process-
ing

Information-theoretic evalua-
tion of the perceptual posterior

Feedback channel Internal feedback (rewards or
costs) for the entropic state of
the perceptor

Channel-occupation state, in-
terference metrics, attacking
strength evaluation, quality of ser-
vice (QoS) of corresponding vehic-
ular systems

Task-switch control Risk assessment and opera-
tional modes switching

System rescheduling and coordi-
nation for multiple vehicular sys-
tems

Executive

Reinforcement
learning

Learning from trial-and-error
experience

Opportunistic spectrum access
(OSA), interference cancella-
tion, target/crash avoidance,
trajectory and movement plan-
ning, path updating, intruder
isolation, resource realloca-
tion, radio transmit-power
and channel selection, radar
transmit-waveform selection,
LiDAR transmit-wavelength
selection, camera-orientation
control, lighting control, etc.

Planner
and
action
library

Predicting and learning from
predictive trial-and-error expe-
rience

Policy
and
working
memory

Decision-making for selecting
cognitive action

Executive
mem-
ory and
classifier

Risk-sensitive decision-making
for selecting risk-sensitive cog-
nitive action

(Risk-sensitive)
Cognitive actions

System reconfiguration: trans-
mit power/channel/waveform/
wavelength, camera orientation,
lighting strength, etc.

Overall operation and reaction ca-
pability
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Table 2.3: Two operational modes of CDS acting as the supervisor of RACE vehicles

Topics in CDS Mode I: In the Ab-
sence of Uncertain
Threats

Mode II: In the Pres-
ence of Uncertain
Threats

Environmental observables Regular observables Perturbed observables
Perception-action cycle Regular PAC Complex PAC
Perceptor Regular perceptor Perturbed perceptor
Feedback channel Regular metric values Abnormal values for some

metrics
Task-switch control Two pairs of switches:

(S1, S2) closed;
(S3, S4) opened

Reversed pairs of switches:
(S1, S2) opened;
(S3, S4) closed

Cognitive control Regular functionality Perturbed and expanded
functionality

Planner and action library A number of shunt cycles
for prediction

Same number of shunt cy-
cles with timing expansion

Policy and working mem-
ory

Active Active and perturbed

Cognitive risk control Non-functional Functional
Executive memory Passive Active
Classifier Non-functional Functional
Predictive adaptation Planner for prediction and

working memory for adap-
tation

Planner for prediction
and executive memory for
adaptation

Decision-maker Policy for decision-making Classifier for risk-sensitive
decision-making

End result Cognitive action Risk-sensitive cognitive ac-
tion
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2.6 Future Directions and Research Challenges

Although the development of CAVs or ACE vehicles has made tremendous progresses recently, it is
still in its nascent stage right now. Taking it one step further, the concept of RACE vehicles shows a
bright prospect in the application of intelligent and secure transportation systems, which also urgently
requires more research work to be done. Among many interesting topics that should draw further
attention, some of the future directions and research challenges are discussed below.

(i) A universal standardization for secure V2X communications within the whole vehicular network
needs to be established. While the framework of CDS is adequate for coordinating multiple
vehicle-mounted systems for one RACE vehicle, the continuous interactions among RACE
vehicles and many other entities require a universal standardization, which also guarantees the
interoperability and extendibility for large-scale vehicular networks.

(ii) The mechanisms for harmonious coexistence of RACE vehicles and regular vehicles should
be well designed. There are no stand-alones in a connected world. With different types of
autonomous vehicles being deployed on the road at different stages, it will be a heterogeneous,
complex, and dense network for many years to come. How to share the road with other vehicles
that are enabled with different levels of automation or intelligence remains to be an open issue.

(iii) The capability of joint defense should be enhanced in order to counter with more sophisticated
and possibly colluded attacks. With RACE vehicles being intelligent and collaborative in general,
the potential attackers can also plot new schemes or collude with each other for causing greater
damage. Therefore, building on the universal standardization and coexistence mechanisms, the
CDS of a RACE vehicle will be anticipated to cooperate with other defense systems/software
of another vehicle through standard interfaces, which is another research challenge yet to be
solved.

(iv) More research effort could and should be made to seek new inspirations from the human brain.
For example, it would be extremely instructive to exploit the lateral connections within each layer
of human brain at the neuronal level, and therefore, construct a non-restricted multilayered CDS
for improved information capacity. Mathematical formulations and experimental validations
are also needed. There is a great opportunity to advance this promising field by learning
from neuroscience, cognitive science, data science, general artificial intelligence, cybernetics,
engineering practices, etc.

2.7 Conclusion

This article envisions the future RACE vehicles for intelligent transportation systems in smart cities
from a risk control perspective. We first identify the safety, security and privacy issues in CAV
networks. Acting as the supervisor of RACE vehicles, the CDS is then brought into play for improving
and coordinating multiple vehicle-mounted systems. Next, the function of CRC is described in
the presence of uncertain threats, which is followed by a brief discussion on future directions and
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research challenges. The theoretical originality and importance of this framework rests mainly on the
application to risk control of the predictive adaptation feature of the prefrontal cortex. We firmly
believe that this article has discovered a fruitful research field, and we have just touched the tip of
the iceberg. We sincerely hope that this article, with interdisciplinary perspectives, will stimulate
more interests in brain-inspired CDS or RACE vehicles in both academic and industrial communities.
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Chapter 3

Cognitive Risk Control for
Transmit-Waveform Selection in
Vehicular Radar Systems

3.1 Preceding Introduction

Among many vehicle-mounted systems, vehicular radar is an essential component for CAVs. The
main responsibility of a vehicular radar system is to detect and estimate the movements of possible
on-road targets, such as vehicles, pedestrians, bicyclists, etc. Aiming at the improvement of robust
target-tracking performance, in this chapter, CDS and its special function of CRC are adopted to
develop transmit-waveform selection method for vehicular radar systems.

To the best of the author’s knowledge, the scholarly work presented herein is the first experimental
work of CRC being applied to a practical vehicular system.

The publication included in this chapter is:
S. Feng, and S. Haykin, “Cognitive Risk Control for Transmit-Waveform Selection in Vehicular

Radar Systems,” IEEE Transactions on Vehicular Technology, vol. 67, no. 10, pp. 9542-9556, Oct.
2018.

The co-author’s contributions to the above work include:

• Technical supervision and financial support of the study presented in this work.

• Manuscript revising and editing.
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Abstract

A cognitive dynamic system (CDS) is a structured engineering model and research tool inspired
by certain features of the human brain. As a special function of CDS, cognitive risk control (CRC)
actualizes the concept of predictive adaptation to bring risk under control when encountered with
unexpected uncertainty. In this paper, the first experimental demonstration of CRC is presented
in the practical application of vehicular radar systems, and an algorithm for transmit-waveform
selection in cognitive vehicular radar (CVR) based on CRC is proposed. During each perception-action
cycle (PAC), the perceptor of CVR processes new environmental inputs and provides the processed
information to the executive through feedback channel for the selection of cognitive action. With
the mechanism of task-switch control being functional all the time, the CVR will switch to a more
capable operation mode in the face of unexpected disturbances or adverse events. In such cases,
a new subsystem of executive is brought into play, in which the risk-sensitive cognitive action is
finally selected and applied to the environment. Simulation results have shown the robustness and
effectiveness of the proposed CVR system, which can make the next-generation vehicular radars more
intelligent and play an important role in future self-driving cars.
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3.2 Introduction

3.2.1 Cognitive Dynamic System and Cognitive Risk Control

Cognitive risk control (CRC) is firstly introduced and described in [63] as a special function within
a general framework called the cognitive dynamic system (CDS). CDS, firstly presented in [60], is
constructed as an engineering system that simulates certain features of the human brain, which is the
ultimate adaptive system in biology. Ever since the early applications such as cognitive radio [83]
and cognitive radar [84], CDS has evolved significantly over the course of time. In its most simplified
form, CDS consists of two major components, the perceptor on one side and the executive on the
other, with a feedback channel linking them together. From the perspective of neuroscience, there
are five principles of cognition as stated in Fuster’s paradigm [65]: perception-action cycle (PAC),
attention, memory, intelligence, and language (which is often put aside), upon which CDS is built
step-by-step [59].

From an engineering point-of-view, cognitive control and CRC—both of which are inspired by the
prefrontal cortex of human brain—aim at dealing with different situations of the environment. To
be specific, cognitive control conforms well to a statistically stationary cyber-physical system; when
encountered with unexpected uncertainty, cognitive control must expand its functionality to deal with
the occurrence of adverse events, which naturally results in the formulation of CRC. By incorporating
a new subsystem that consists of executive memory and classifier, CRC serves as a special function of
CDS and actualizes the concept of predictive adaptation in order to bring risk under control.

Following on the model of CRC provided in [63], this paper is our latest effort to test it in a
practical application where the first experimental demonstration is conducted.

3.2.2 Self-Driving Cars and Vehicular Radar Systems

The fourth industrial revolution has witnessed remarkable breakthroughs in a number of fields,
including next-generation wireless communications [89, 117, 118], Internet of Things [112, 119],
robotics, unmanned aerial vehicles [120, 121], self-driving cars [108, 122, 123], etc. Being part of
this ongoing revolution, enormous efforts made on the development of self-driving cars by companies
like General Motors, Ford, Hyundai, Waymo, and Tesla have started to blossom and bear fruit [124].
Specifically, the rise of self-driving cars is mainly attributed to the recent development of enabling
technologies such as machine learning and accelerated computing, which are gradually pushing and
elevating the advanced driver-assistance system (ADAS) to meet the requirement for the realization
of fully autonomous vehicles [19, 109]. They are viewed as a promising solution to reduce or even
eliminate vehicle accidents caused by human error, for which millions of lives can be saved every year
[125]. Moreover, the benefits of self-driving cars include giving people back countless hours of time,
empowering the disabled and the elderly, and cutting down on CO2 emissions for a green world, etc.

In most of the current designs for self-driving cars, multiple sensory equipments with different
merits and limitations—LiDAR (i.e., light detection and ranging), radar, radio, camera, GPS, just to
name a few—are required on the vehicle to provide multi-domain information, which is then utilized by
a central computer to make informed decisions about steering angles and accelerations/decelerations
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[126]. For instance, LiDAR can be used for obstacle detection and representation using rotating laser
beams, while radio can be used to establish vehicle-to-vehicle (V2V) communications. As one of the
most important vehicle-mounted systems, vehicular radar is involved in many ADAS systems and
responsible for determining the distance, velocity, and/or angle of targets [127, 128]. Therefore, a
sophisticated and well-designed vehicular radar is indispensable for the development of self-driving
cars.

Currently, for each individual service provided by the in-market ADAS, a different set of sensor
specifications is needed. As the new services provided by ADAS are ever growing, it would lead
to an intractable number of technical specifications designated to various services eventually. To
address this issue, we argue that cognitive radar is a good candidate to make the vehicular radars
more intelligent [103]. By actively adapting its operational parameters—such as transmit power
or waveform type—according to the dynamic changes in the surrounding environment, cognitive
radar is able to have continued interactions with the environment and operate in various settings of
specifications, and therefore, reduce the number and types of radar sensors required on board.

Unfortunately, the driving environment is full of uncertainty and may change suddenly [17, 114].
For example, the safety can be endangered by sudden moves made by careless pedestrians, mental
condition of tired drivers, imperfection of vehicle mechanicals, failure of electronic systems, severe
weather condition, or uneven pavement on the road, and so on. Any of this can raise the risk
dramatically and cause serious accidents, which should be dealt with in a timely and effective manner.
The first and most direct approach is to improve the radar performance in the face of such disturbances.
To this end, this paper focuses on the problem of transmit-waveform selection under the influence of
unexpected uncertainty and proposes a new design of cognitive vehicular radar (CVR) system based
on CRC.

3.2.3 Contribution and Organization

The main contributions of this paper can be summarized as follows:

(i) The architectural structure of CRC within CDS is investigated and tailored for CVR systems.
Our model is based on what we know about the mechanisms that the nervous system uses to
guide the organism in behavior. The theoretical originality and importance of this model rests
mainly on the application to risk control of the predictive adaptation feature of the prefrontal
cortex.

(ii) An algorithm for transmit-waveform selection in CVR systems is proposed based on CRC. In
these systems, the transmit waveforms employed by the executive side of the CVR are regarded
as the cognitive actions, which are continuously updated and improved under the influence of
PACs. In addition, a smooth transition of the transmit waveform from one PAC to the next
is guaranteed by taking localized attention mechanism into account, which will prolong the
lifespan of radar hardware as well.

(iii) The first experimental demonstration of CRC is presented in the application of CVR systems.
It is demonstrated that this new design will be able to achieve a performance comparable to
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other existing designs in the absence of uncertainty, and more importantly, to make a significant
improvement in the performance even when faced with unexpected disturbances or adverse
events.

The rest of this paper is organized as follows: after this introductory Section I which outlines the
basics of CRC, CDS, and CVR, Section II briefly describes a simple vehicle-following scenario that
is of interest in this paper. Section III presents the architectural structure of CRC tailored for the
application of CVR. Section IV is devoted to the proposed algorithm for transmit-waveform selection
in CVR system. Section V discusses the simulation results of different algorithms. Finally, Section
VI concludes this paper.

3.3 A Simple Vehicle-Following Scenario

In this section, we briefly describe a simple scenario on the road with one host vehicle following
another target vehicle, which is typically used for studying the vehicle longitudinal motions in ACC
[129, 130]. As shown in Fig. 3.1, the host vehicle is moving forward with velocity v0

x and acceleration
a0
x , while the target vehicle is moving in the same direction with velocity v1

x and acceleration a1
x .

The longitudinal distance and lateral distance between these two vehicles are denoted by d1
x and d1

y ,
respectively. In addition, the host vehicle is mounted with radar sensor for keeping track of motion
dynamics. Specifically, the longitudinal dynamics can be expressed as

xk+1 = Fk+1,k xk + Γk+1,kuk + wk, (3.1)

with

Fk+1,k =



1 δ 0 0 0
0 1 0 0 0
−δ −δ2/2 1 δ δ2/2
0 0 0 1 δ

0 0 0 0 1


,Γk+1,k =



δ

0
−δ2/2

0
0


.

Here, wk = Ψk+1,k ŵk , with

Ψk+1,k =



0 δ2/2 0 0 0
0 δ 0 0 0
0 −δ3/6 0 0 δ3/6
0 0 0 0 δ2/2
0 0 0 0 δ


.

Vector xk represents the underlying state that can be written as

xk =
[
v0
x,k,a

0
x,k, d

1
x,k, v

1
x,k,a

1
x,k

]T
.

The state for the next time step is denoted by xk+1. Scalar uk represents a known acceleration or
deceleration that can be derived from engine maps and brake characteristics of the host vehicle. wk
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Figure 3.1: Geometry of a simple vehicle-following scenario.

denotes the additive process noise in the system with ŵk being Gaussian ŵk ∼ N

(
0, Q̂w,k

)
. The

predictive transition matrix from one time step to the next is denoted by Fk+1,k . Matrix Γk+1,k

describes how constant uk will affect the evolution of state vector, while matrix Ψk+1,k describes how
the stochastic changes in accelerations for both vehicles will affect the system. The symbol k denotes
discrete time and δ is the time step used for discretization.

Since ŵk is assumed to be zero-mean Gaussian, we can write the covariance matrix of process
noise wk as follows:

Qw,k = Ψk+1,kQ̂w,kΨT
k+1,k

=



δ4/4 δ3/2 −δ5/12 0 0
δ3/2 δ2 −δ4/6 0 0
−δ5/12 −δ4/6 δ6/18 δ5/12 δ4/6

0 0 δ5/12 δ4/4 δ3/2
0 0 δ4/6 δ3/2 δ2


Q̂w,k .

The diagonal of Qw,k represents the variance of each state variable, while each of the off-diagonal
entries represents the covariance between the associated two state variables. This simple model will
serve as the starting point for the design of CVR, which is discussed in the next section.

3.4 Architectural Structure of Cognitive Risk Control
Tailored for Cognitive Vehicular Radar

As introduced earlier, the CDS is mainly composed of two parts—the perceptor and the executive—
with a feedback channel linking them together. Through interacting with the environment constantly,
a PAC is formulated in the form of a global feedback loop, which functions as the backbone of the
entire CDS. In this section, the perceptor is described first, followed by the feedback channel and
another key element in CRC called the task-switch control. Then, the executive is discussed, for
which much of the attention is given to a subsystem designated to bring risk under control.
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3.4.1 Perceptor

In a generic sense, the perceptor of CDS should start with the Bayesian generative model, which
characterizes the observables originated from the environment. However, in the case of vehicular
radars, the Bayesian generative model can be omitted since the observables are usually taken in a
way that is ready to be processed by Bayesian filter. Therefore, Bayesian filter is positioned at the
bottom of the perceptor, as shown in Fig. 3.2.

3.4.1.1 Bayesian filter

In this paper, the well-known Kalman filter is opted for modeling the vehicle-following scenario
described in the previous section, due to its features of linear state and additive Gaussian noise.
With the system equation of Kalman filter presented as eq. (3.1), the measurement equation can be
expressed as

zk = Lk xk + vk, (3.2)

where zk is the observables taken at time k (i.e., in the kth cycle of PACs), Lk is the measurement
matrix, and vk is the measurement noise whose covariance matrix is denoted by Qv,k .

It has been shown in [131] that, for the transmit waveform obtained by combining linear frequency
modulation (LFM) with Gaussian amplitude modulation, the measurement noise covariance matrix
is defined by

Qv,k = Qv,k (θk−1) =


c2λ2

2η − c2bλ2

2π fcη

− c2bλ2

2π fcη
c2

(2π fc )2η

(
1

2λ2 + 2b2λ2
) , (3.3)

where θk−1 denotes the parameter vector for the transmit waveform generated at cycle k − 1, fc and
η denote the carrier frequency and the received signal-to-noise ratio (SNR), respectively. Constant c

denotes the speed of light. Vector
θk−1 = [λk−1, bk−1]

T ,

where λ and b denote the duration of the Gaussian envelope for the LFM chirp transmit signal and
the chirp rate of the LFM pulse, respectively. In a way, the transmitter (executive) controls accuracy
of the state estimation in the receiver (perceptor) since measurement noise is dependent on the vector
θk−1, which is one of the fundamental principles for designing a CVR system.

Assuming that the transmitter and the receiver of a CVR are co-located, the received signal energy
depends inversely on the fourth power of the distance between two vehicles. For this reason, the
received SNR η in eq. (3.3) for the target vehicle observed at distance r =

√(
d1
x

)2
+

(
d1
y

)2 is modeled
according to

η =
( r0

r

)4
, (3.4)

where r0 is the range at which 0 dB SNR is obtained.
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Figure 3.2: Architectural structure of cognitive risk control tailored for cognitive vehicular radar.

The process noise wk and measurement noise vk are both additive and assumed to be statistically
independent zero-mean Gaussian processes. Assuming the velocity of the host vehicle v0

x,k
and the

longitudinal distance between two vehicles d1
x,k

are available, measurement matrix Lk can then be
expressed as

Lk =

[
1 0 0 0 0
0 0 1 0 0

]
.

With eqs. (3.1) and (3.2), a set of computational steps well formulated for the classic Kalman
filter can be performed as described in [71]. In essence, the Kalman gain at time k is formulated as

Gk = Pk |k−1LT
k

[
LkPk |k−1LT

k +Qv,k

]−1
. (3.5)
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The filtered estimate of the state at time k is written as

x̂k |k = x̂k |k−1 +Gk

(
zk − Lk x̂k |k−1

)
, (3.6)

given the current measurement zk , and the predicted estimate of the state at time k can be written as

x̂k+1 |k = Fk+1,k x̂k |k + Γk+1,kuk . (3.7)

For the next iteration, we need to calculate the filtering-error covariance matrix as

Pk |k = Pk |k−1 −GkLkPk |k−1, (3.8)

and the predicting-error covariance matrix as

Pk+1 |k = Fk+1,kPk |kFT
k+1,k +Qw,k . (3.9)

The net result of Kalman filter is an output referred to as the filtering posterior of the system,
which is optimally updated from one iteration to the next.

3.4.1.2 Entropic-information processor

The Kalman filter is to be followed by the entropic-information processor, which takes the filtering
posterior as input and calculates the entropic state of the perceptor in a continuous cyclic manner.

Invoking Shannon’s information theory [76], the entropic state at time k can be expressed as

hk =
∫
R

p (xk |zk) log 1
p (xk |zk)

dxk, (3.10)

where p (xk |zk) is the conditional probability distribution of xk given zk . R denotes the entire space
where the state xk resides.

Note that the measurement zk is the reason for the so-called innovation process embedded in
Kalman filter, which leads to the calculation of the filtered estimate x̂k |k as shown in eq. (3.6). Under
such circumstances that p (xk |zk) has a multivariate normal distribution, the entropic state can be
written as [76, 132, 133]

hk =
1
2 log

[
(2πe)n

��Pk |k

��] ,
where |·| takes the determinant of a matrix. In a more general sense, the p (xk |zk) essentially describes
the distribution of xk given the information on x̂k |k , whose characteristics are also captured by the
filtering-error covariance matrix Pk |k . Recalling that the filtering-error covariance matrix is defined
as [71]

Pk |k = E
[
εk |kε

T
k |k

]
,
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with the state-filtering-error vector as

εk |k = xk − x̂k |k,

we therefore avoid to calculate hk in eq. (3.10) directly and opt to use a simplified expression, denoted
as Hk , for the entropic state in this paper as follows:

Hk =
��Pk |k

�� . (3.11)

As it goes on from one PAC to the next, the entropic state of the perceptor will decrease gradually
due to the information gain, but never assume the value zero as there will always be imperfections
within the perceptor.

3.4.2 Feedback Channel and Task-Switch Control

The feedback channel bridges the perceptor on its right-hand side and the executive on its left-hand
side. It is occupied by the internal rewards, which are then used in both task-switch control and the
reinforcement learning.

3.4.2.1 Feedback channel

To formulate the internal rewards, we first calculate the incremental deviation in the entropic state
at time k as follows [133]:

∆
H
k = Hk−1 −Hk, (3.12)

where Hk−1 and Hk are the entropic states computed at the (k − 1)th and kth PAC, respectively. The
internal reward, denoted by the symbol rk , can now be defined as an arbitrary function of Hk and ∆H

k

as shown by
rk = gk

(
Hk,∆

H
k

)
, (3.13)

where gk (·) is a single-valued operator. In this paper, the internal reward takes on a simple form:

rk =
∆H
k

Hk
. (3.14)

Subject to the variations in the environmental condition, internal reward evaluates how good the
action taken in the previous PAC is, and therefore, is always monitored by the task-switch control.

3.4.2.2 Task-switch control

Task-switch control occupies a distinctive place within the CDS and mainly deals with the raising of
risk, which is imposed by the unexpected occurrence of uncertainty.

In general, uncertainty can manifest itself in many forms in mathematical models or experiments,
such as parameter uncertainty, structural uncertainty, measurement uncertainty, experimental un-
certainty, etc [134]. All kinds of uncertainty can result in erroneous control and undesired system
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behavior. There are ways to mitigate the negative effect of uncertainty—such as incorporating more
prior knowledge, or taking the average of repeated experiment results—but it will never be eliminated
entirely. Taking the vehicle-following scenario described in Section II as an example, factors like the
imperfection of vehicle mechanicals, the severe weather condition, or the uneven pavement on the road
can all affect the evolution of the original system. Denote the influence of these disrupting factors by
a new vector mk , the new system equation that is actually functioning during this disturbed period
can be formulated as

xk+1 = Fk+1,k xk + Γk+1,kuk + mk + wk, (3.15)

where mk appears in the form of structural uncertainty. The whole CVR system is unaware of this
new system equation when it comes into play, which can deteriorate the radar performance and
raise the risk dramatically. Here, risk is regarded as a property of actions that affects choices among
them [135]. The actions we select in the decision-making stage will have different outcomes, and
therefore, determine the overall performance of the vehicular radar. By choosing those actions that
are associated with lower risks, we can maintain the robustness and effectiveness of the radar system
on a cyclic basis. In short, the uncertainty is inevitable and breeds risk, which fortunately can be
brought under control with care.

To achieve this, the task-switch control—serving as a watchdog—aims at indentifying the presence
of uncertainty and switching between two operation modes of CVR as needed. Two pairs of switches
are formulated as shown in Fig. 3.2. When the structural uncertainty is absent, the first pair of
switches (S1, S2) is closed and the second pair (S3, S4) is opened so that the CVR will operate in
Mode I, which can be called with impunity the regular cognitive control. On the contrary, when
the structural uncertainty is present, those two pairs of switches are reversed so that the CVR will
operate in Mode II, which is the CRC instead.

For detecting the occurrence of unexpected uncertainty, the condition in the following formulation
is checked:

ρk =


0, if

k∑
i=max(1,k−L+1)

��min [0, sgn (ri)]
�� < β

1, otherwise

, (3.16)

where ρk represents the result of detection, sgn (·) is the sign function, rk represents the internal
reward at time k, L is the length of a window set for counting, and β denotes a predefined threshold.
Eq. (3.16) shows one of many ways to count the number of negative internal rewards in the immediate
past L cycles (or in all cycles if the total number is less than L). The reason for performing this check
is the following: under normal circumstances, the internal rewards will not be negative continuously;
when that happens, it indicates that the actions taken in the past few cycles have been severely
affected by the presence of uncertainty, which imposes the necessity for switching to a more capable
operation mode.

If ρk = 0—meaning the number of negative internal rewards in the immediate past L cycles is less
than β—then the CVR will keep operating in Mode I. Otherwise, the CVR will switch to Mode II to
invoke a subsystem for dealing with uncertainty and bringing risk under control. More discussions on
this point will be given in the next subsection.
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3.4.3 Executive

Computationally speaking, the executive as a whole is the dominant part of the CVR system. It
consists of reinforcement learning, planner (and its action library), policy (and its working memory),
executive memory, and classifier.

3.4.3.1 Reinforcement learning

With input being internal rewards from feedback channel, the desired output of reinforcement learning
is the value-to-go function, which is formulated as follows [77]:

Jk−1 (c) = Eπ
[
∞∑
i=0

γirk+i |ck−1

]
= Eπ

[
rk + γrk+1 + γ

2rk+2 + · · · |ck−1
]
,

(3.17)

where γ ∈ [0,1) represents a discount factor that decreases the effect of future actions exponentially,
E denotes the expectation operator for which the expected value is calculated using the policy
distribution π. Here, the superscript π is a simplified version of the policy π (ck−1, ck), where ck−1 is
the immediate past action at (k − 1)th PAC and ck is the action to be selected at kth PAC.

From a computational viewpoint to be consistent with the CDS, it is instructive to reformulate
the value-to-go function, J (c), so that it can be updated algorithmically from one PAC to the next.
With this point in mind, eq. (3.17) is reformulated as follows [133]:

Jk−1 (c) ← Jk−1 (c) + α

[
Rk−1 (c) + γ

∑
ck

πk (ck−1, ck) Jk (c) − Jk−1 (c)

]
, (3.18)

where α > 0 is the learning-rate parameter, Rk−1 (c) = Eπ [rk |ck−1] denotes the expected internal
reward at cycle k as a result of the immediate past action ck−1 at cycle k − 1, that is, Rk−1 (c) = rk .
The left-pointing arrow indicates the updating of the algorithmic recursion from one PAC to the next.

3.4.3.2 Planner and policy

The function of planner is to extract a set of prospective actions from the action library on its left, and
initiates several internal cycles (i.e., shunt cycles) for improved information capacity in a predictive
way. While reinforcement learning is processed only once in each global PAC due to the fact that
it involves one specific past action and the associated internal reward, planning is performed for a
number of times to go through all the prospective actions that are selected as candidates for the
current cycle.

With CVR being the practical issue of interest in this paper, we need to ensure that the action to
be selected at the current cycle is a neighbor to the preceding selected action. In other words, the
parameters used for two successive transmissions should not be much of a difference. The practical
importance of a smooth transition of the transmit waveform from one PAC to the next is that it
prolongs the life of the microwave devices (i.e., magnetron, klystron, or traveling-wave tube) in the
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radar transmitter [103]. This localization can be viewed as one form of the attention mechanism,
which is one of the basic principles of cognition and is widely distributed in the CVR system. The
effect of localized attention mechanism will be further discussed along with the simulation results. In
addition, for the sake of saving computing and energy resources, it is usually enough to formulate the
set of prospective actions as a proportion of all the neighbors.

The planning can be performed in a similar way of reinforcement learning with the set of prospective
actions at hand. However, one distinct difference is that there is no interaction with environment in
the planning. Specifically, each prospective action c j

k
—representing a parameter vector θ j

k
for the

transmit waveform—is only virtually applied to the environment. It means that the measurement
noise covariance matrix Qj

v,k+1

(
θ
j
k

)
is calculated according to eq. (3.3) to reflect the hypothesized

situation resulting from action c j
k
without this action actually being applied. Mathematically speaking,

we then have the hypothesized Kalman gain

Gj
k+1 = Pk+1 |kLT

k+1

[
Lk+1Pk+1 |kLT

k+1 +Qj
v,k+1

]−1
, (3.19)

and the hypothesized filtering-error covariance matrix

Pj

k+1 |k+1 = Pk+1 |k −Gj
k+1Lk+1Pk+1 |k, (3.20)

which directly follow eqs. (3.5) and (3.8) for each prospective action. Here, j = 1,2, · · · ,N, and N is
the total number of prospective actions. The hypothesized entropic state of the perceptor can be
expressed as

Hj
k+1 =

���Pj

k+1 |k+1

��� . (3.21)

Then, the hypothesized internal reward for prospective action c j
k
is written as

r j
k+1 =

∆H
k+1

j

H j
k+1

. (3.22)

where ∆H
k+1

j
= Hk −H j

k+1. Note that the entities without superscript j still represent the actual entities
rather hypothesized ones. Based on the hypothesized internal rewards, the value-to-go function can
be updated for the whole set of prospective actions as follows:

Jk (c) ← Jk (c) + α

[
R j
k
(c) + γ

∑
ck+1

πk (ck, ck+1) Jk+1 (c) − Jk (c)

]
, (3.23)

where R j
k
(c) = Eπ

[
r j
k+1 |c

j
k

]
= r j

k+1.
The calculations through eq. (3.19) to eq. (3.23) are conducted within multiple shunt cycles,

which start at the planner and involve the Bayesian filter, the entropic information-processor, and
the reinforcement learning, as shown in the red bidirectional arrows in the Fig. 3.2. Just as it is in
the human brain, shunt cycles get involved in both the perceptor and the executive and therefore
account for all prospective actions within each PAC.
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In a related matter, it is customary practice to balance the exploitation and exploration in the
policy [77]. To that end, we adopt a ε-greedy strategy in the policy for selecting actions. For most of
the time, with probability (1 − ε), the policy exploits current knowledge to select the particular action
that maximizes the value-to-go function; with a small probability ε , the policy selects randomly from
all the actions (with equal probability), independently of the value-to-go function.

The end result of the derived policy is indeed cognitive action, which is readily to be applied to
the environment and thus initiates the next PAC if there is no risk involved. However, in the presence
of unexpected uncertainty, it is a must to bring the subsystem consisting of executive memory and
classifier into play for implementing the CRC.

3.4.3.3 Executive memory and classifier

As discussed in Section III.B, eq. (3.16) can be used to evaluate whether the structural uncertainty is
present or not. If ρk = 0 is what we obtained in the stage of task-switch control, it indicates that
the CVR system is currently free of uncertainty and functioning normally. Therefore, the cognitive
action put forward by the policy can be applied to environment directly (with switch S1 being closed)
and the next PAC begins. In addition, this cognitive action will also be recorded (with switch S2
being closed) in the executive memory, which picks up all the past experiences for future use.

However, if ρk = 1, it means that the CVR system is currently under the affection of structural
uncertainty and requires further measures to be taken. In such cases, the first pair of switches (S1,
S2) is opened and the second pair (S3, S4) is closed, so that CVR system will operate in Mode II for
the CRC. Since the perceptor, the executive (expect for this subsystem), and therefore, the cognitive
action are unfortunately perturbed, we look for a new way to bypass the uncertainty and generate
the so-called risk-sensitive cognitive action.

Essentially, executive memory is a long-term memory occupied by abundant past experiences. It
can provide a limited set of prospective past experiences for the current cycle k based on some prior
knowledge, such as the historical behavior of the CVR or a prior probability distribution aligned with
the policy. With perturbed cognitive action on one hand and the set of prospective past experiences
on the other, we introduce a new component called classifier that is responsible for risk-sensitive
decision-making to act on the environment [136]. In this paper, the nearest neighbor classifier is
adopted to pick out the particular past experience that is the closest to the perturbed cognitive action.
As a result, we write

c∗k = arg min
c∈B̂

dis
(
cp
k
, c

)
, (3.24)

where cp
k
denotes the (pending and probably perturbed) cognitive action, B̂ is the set of prospective

past experiences provided by the executive memory, and c∗
k
represents the risk-sensitive cognitive

action. Operator dis (·) denotes one of the distance metrics such as Euclidean distance. Finally, the
risk-sensitive cognitive action c∗

k
—as the best option we can find from the past experiences gained by

the PAC as a result of its continued interactions with the environment—is applied to the environment
itself.

Fig. 3.3 sketches out how cognitive action and risk-sensitive cognitive action are selected in
conceptual terms. Each circle in the grid represents one possible action stored in the static action
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(a) Cognitive action (b) Risk-sensitive cognitive action

Figure 3.3: An illustration of the selection processes of cognitive action and risk-sensitive cognitive
action.

library. The black disk represents the action applied to the environment at the preceding cycle, while
the eight circles along the red dotted square represent the set of prospective actions at the current
cycle. Those circles with crosses represent the set of prospective past experiences put forward by the
executive memory. The red triangle represents the cognitive action selected by the policy from the
ones lying on the red square. In the case of uncertainty being absent, it is already the final action
for the current cycle. However, in the presence of uncertainty, one further step is needed to pick
out the risk-sensitive cognitive action—represented by the green diamond that only appears in Fig.
3.3b—from the prospective past experiences that are uncertainty-free. The green arrow denotes the
selecting process performed by the classifier. In this second case, the green diamond would be the
final action applied to environment and the following PAC goes on.

It is noteworthy the action c∗
k
will have two distinctive features after all this effort: i) consistently

ahead of the observables under uncertainty by one cycle due to the predictive nature of planner, and
ii) bypassing the influence of uncertainty and bringing risk under control due to the adaptive nature
of executive memory. Hence, we speak of the important notion of predictive adaptation, which is
inspired by the prefrontal cortex of human brain [82].

One last comment is in order: once the next PAC starts, there is another auxiliary approach can
be taken to help counter with the uncertainty if it exists. Although both the observables and the
predicted estimate of the state are perturbed, the observables taken at cycle k + 1 are still one PAC
ahead. Considering this, we may put more faith in the measurement of the state for cycle k + 1 and
introduce a confidence factor h for the following adjustment:

x̂k+1 |k ← x̂k+1 |k + LT
k

[
(1 − h)Lk x̂k+1 |k + hzk+1

]
, (3.25)
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where zk+1 denotes the measurement at cycle k + 1. The value of confidence factor h is naturally
application dependent. Then, the Bayesian filtering comes into play and the rest procedure of
processing follows. Although this adjustment has no impact on the current cycle k, it will help reduce
the time for recovering from unexpected disturbances in future PACs.

3.5 Proposed Algorithm for Transmit-Waveform Selection
in Cognitive Vehicular Radar

With the detailed discussions presented in previous sections, the stage is now set for an overall descrip-
tion of the proposed algorithm for CVR system. Algorithm 1 has outlined the complete procedure for
implementing the transmit-waveform selection in one PAC, which follows the architectural structure
of CRC for CVR system, as illustrated in Fig. 3.2. During the processing of each PAC, no action is
required to be taken until when the final decision regarding the selected transmit-waveform—denoted
as ck—is reached at the end of that PAC. For convenience, Table 3.1 lists all the used notations in
this algorithm.

Algorithm 1 Proposed Algorithm for Transmit-waveform Selection in CVR System
Input: the observables zk , k = 1,2, · · · ,M
Output: the final actions ck

Initialization:
x0, x̂1 |0, P1 |0, w0 = 0, A0 = �, Â0 = �, B0 = �, B̂0 = �

c0 ← an action randomly selected from C
Apply c0 to the environment

1: for k = 1 to M do
2: Take observable zk

Updating:
3: Calculate x̂k |k and Pk |k

Predicting:
4: Calculate x̂k+1 |k and Pk+1 |k

Entropic-information processing:
5: Calculate Hk

Internal rewards calculating:
6: Calculate rk

Task-switch control:
7: Calculate ρk
8: if ρk = 0 then
9: Close (S1, S2) and open (S3, S4), i.e., Mode I
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10: else
11: Close (S3, S4) and open (S1, S2), i.e., Mode II
12: end if

Learning:
13: Update Jk−1 (c)

Planning:
14: Localize Ak according to ck−1

15: Generate Âk randomly from Ak ,
���Âk

��� = N

16: for j = 1 to N do
17: Apply c j

k
virtually (c j

k
∈ Âk)

18: Calculate Pj

k+1 |k+1
19: Calculate Hj

k+1
20: Calculate r j

k+1
21: Update Jk (c)

22: end for
Policy:

23: Update π by J (c)

24: Select the cognitive action cp
k
based on π

Risk control:
25: if ρk = 0 then
26: Bk ← Bk ∪ {c

p
k
}

27: else
28: Generate B̂k from Bk

29: Select the risk-sensitive cognitive action c∗
k

30: Adjust x̂k+1 |k

31: end if
Final action:

32: ck = (1 − ρk) · cpk + ρk · c
∗
k

33: Apply ck to the environment
34: end for
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Table 3.1: Summation of Used Notations

Notation Explanation
M the total number of PACs
k the time step for PACs
N the total number of shunt cycles within one PAC
j the time step for shunt cycles within one PAC
C the set of all possible actions stored in the static action library
Ak the set of all neighbors of the preceding action
Âk the set of prospective actions for planning at the current PACk

Bk the set of all past experiences stored in the executive memory
B̂k the set of prospective past experiences at the current PACk

xk the true state at time k

zk the observables taken at time k

x̂k |k the filtered estimate of the state at time k

Pk |k the filtering-error covariance matrix
x̂k+1 |k the predicted estimate of the state at time k

Pk+1 |k the predicting-error covariance matrix
Hk the entropic state of the perceptor at time k

rk the internal reward at time k

L the length of window for counting
β the predefined threshold
ρk the result of detection
J (c) the value-to-go function
π the policy distribution

Pj

k+1 |k+1 the hypothesized filtering-error covariance matrix
Hj

k+1 the hypothesized entropic state
r j
k+1 the hypothesized internal reward
c j
k

the jth prospective action
cp
k

the (pending and probably perturbed) cognitive action
c∗
k

the risk-sensitive cognitive action
ck the final action

It should be pointed out that in computational terms insofar as the transmit-waveform selection
is concerned, the implementation of CRC would bring additional overhead. The increased complexity
can be easily seen in a simplified format of what the structure could be, as depicted in Fig. 3.4 [63].

(i) In the absence of unexpected uncertainty, Fig. 3.4a shows a regular PAC that follows the
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(a) Regular PAC

Environment

Executive Perceptor

Classifier
Executive 
Memory

(b) Complex PAC

Figure 3.4: Regular PAC in the absence of unexpected uncertainty, compared with complex PAC in
the presence of unexpected uncertainty.

ordinary global cycle. In such cases, cognitive control is functional on its own.

(ii) In direct contrast with respect to Fig. 3.4a, Fig. 3.4b illustrates a complex PAC that is much
more informative in the presence of unexpected uncertainty on two accounts. First, the executive
memory is now active in order to provide prospective past experiences that are accumulated
before. Second, the classifier will now take the role to compute the risk-sensitive cognitive
action with both perturbed cognitive action and prospective past experiences at hand.

Simply put, for every gain made, there is a price to pay. Compared with the methods that are not
involved with CRC, the proposed algorithm is relatively more complicated, and for the same token,
much more powerful in the context of information processing.

3.6 Simulation Results

In this section, simulation results are presented to compare the performance of proposed algorithm
for CVR system with other algorithms, as shown from Fig. 3.5 to Fig. 3.12.

Specifically, the curve of “Q” shows the vehicular radar based on traditional Q-learning algorithm
described in [77], “CC” shows the vehicular radar based on regular cognitive control algorithm
presented in [133], and “CRC” shows the CVR based on the proposed CRC algorithm. Accordingly,
the curves of “Q-ATT”, “CC-ATT”, and “CRC-ATT” represent each of these three designs with the
attention mechanism (as discussed in Section III.C) being taken into account, respectively. The curve
of “FTW” shows the vehicular radar with fixed transmit-waveform as a reference. MATLAB is used
for the simulations.
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3.6.1 Radar Configurations and Parameter Settings

For the vehicle-following scenario described in Section II, the simulations are performed with two
vehicles moving in adjacent lanes. The width of lane is set to be d1

y = 3 m and vehicles are assumed
to be positioned in the middle of each lane. A millimeter-wave radar is mounted on the host vehicle.
The carrier frequency of the transmitted radar signal is fc = 77 GHz. Linear frequency modulation is
adopted with both up-sweep and down-sweep chirps, which compose the (waveform) action library
with

Θ = {λ ∈ [10e-6,300e-6] , b ∈ [−300e8,300e8]},

and grid step-size ∆λ = 10e-6 and ∆b = 20e8. For generality, the parameter vector θ f for the radar
with fixed transmit-waveform is randomly selected at the beginning of each running time and kept
fixed thereafter. The bandwidth of transmitted signal is set to be 5 MHz. The range is set to be
r0 = 2 km, at which 0 dB SNR is received. The number of prospective actions considered in the
planning stage is set to be N = 10 for all learning algorithms. The speed of light is c = 2.998×108 m/s.
The known acceleration derived from vehicle mechanics is set to be uk = 0 for simplicity. The learning
rate is α = 0.1, and the discount factor is γ = 0.5. The greedy factor is set to be ε = 0.05. The
confidence factor is h = 0.5. For those algorithms that are equipped with attention mechanism, the
neighborhood range for planning is set to be nr = 3. The length of window for counting is L = 5 and
the associated threshold is β = 3.

Without loss of generality, the true initial state of the vehicle-following problem is set to be

x0 =
[
80 km/h,3 m/s2,400 m,70 km/h,2.5 m/s2

]
,

the estimation of initial state and its covariance matrix are assumed to be

x̂1 |0 =
[
75 km/h,0 m/s2,500 m,65 km/h,0 m/s2

]
,

P1 |0 = diag
( [

103,1,103,103,1
] )
.

In this paper, the source of risk is considered to be the unexpected occurrence of structural
uncertainty. The unknown vector mk denoting the imposed disturbance is mk ∼ N

(
0,Qm,k

)
in the

perturbed system equation with Qm,k = diag
( [

1,1,102,1,1
] )
. It starts at 2.1s and ends at 3s, with

the entire period for the experiment being set to 10s. The sampling rate is set to be Ts = 100 ms and
the simulations are conducted for S = 50 Monte Carlo runs.

3.6.2 Evaluation Metric and Performance Comparison

For the performance comparison, the metric of root mean-square error (RMSE) is used to evaluate
the performance of different algorithms [71]. In spite of its simplicity, RMSE is effective to capture
the deviations in the achieved results. Also, it is rather efficient in that its complexity follows a linear
law with respect to the number of parameters of interest. Specifically, the RMSE for velocity v0

x is
defined as
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RMSE
(
v0
x

)
=

√√√
1
S

S∑
n=1

(
v0
x,k
− v̂0

x,k

)2
, (3.26)

where v0
x,k

and v̂0
x,k

represent the true and filtered velocity for the host vehicle at cycle k, respectively.
In a similar manner, the RMSE for other variables can also be defined and evaluated.

3.6.2.1 In the absence of unexpected uncertainty

As described earlier in Section III. B, there will be no risk involved when the CVR system operates
normally, following the ordinary vehicle-dynamics model. Figs. 3.5-3.8 have shown the performance
of different tracking algorithms in the absence of unexpected structural uncertainty.

In the five subfigures of Fig. 3.5, the RMSE for each element in the state vector is given,
respectively. It is obvious that all algorithms can achieve a relatively low level of error for each
element, except for the “FTW” design with the fixed transmit-waveform. This demonstrates that the
learning algorithms—be it Q learning, cognitive control, or CRC—embedded in the executive will
result in better choices of actions. With the parameter vector θ of transmit waveform being selected
and adjusted according to the varying situation of surrounding environment, the measurement noise
is reduced effectively, and therefore, the overall RMSE decreases.

It is noteworthy that in Fig. 3.5, the curves of “Q”, “CC”, and “CRC” almost coincide with one
another and reach a steady state within 2s. Meanwhile, the curves of “Q-ATT”, “CC-ATT”, and
“CRC-ATT” have similar performance, which will also reach the same steady state but in a slower
fashion. The reason is that the algorithms of “Q-ATT”, “CC-ATT”, and “CRC-ATT” have been
equipped with the attention mechanism. That is, they focus on a localized neighborhood instead of a
global grid for selecting the cognitive actions, which will require more time (about 5s) to converge.
By purposely confining the prospective actions for the current PAC to be the neighbors of the action
selected in the preceding PAC, the physical life of the vehicle-mounted radar would last longer at the
cost of slower convergence rate.

For better demonstration, Fig. 3.6 shows the sets of neighbors considered in the planning stage for
“Q-ATT”, “CC-ATT”, and “CRC-ATT” algorithms. In the grid, each of the blue squares represents
an action, i.e., a specific value for the parameter vector of transmit-waveform. Take “CRC-ATT”
algorithm as an example, the red star marker represents the action selected at the preceding PAC.
The red rectangular covers all the neighbors of the preceding action within a range of nr = 3. For that
particular single run showed in Fig. 3.6, the length of envelop λ∗ ∈ [160e-6,220e-6] and the chirp rate
b∗ ∈ [120e8,240e8]. However, not all the neighbors are viewed as prospective actions. Only a subset of
N = 10 neighbors, as depicted in green circles within the red rectangular area, are randomly selected
to go through the planning stage. It is foreseeable that the cognitive action for the current PAC will
be one of those green circles, which will then serve as the new red star marker and it continues on.

Fig. 3.7 shows how the entropic state for each algorithm changes with PACs going on. A common
phenomenon for all the radar designs is that the entropic state drops rapidly at the beginning and
then slows down gradually. Besides, we can see that the entropic states of “Q-ATT”, “CC-ATT”,
and “CRC-ATT” algorithms are higher than that of their counterparts without attention, while the
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Figure 3.5: The RMSE for each element in the state vector (in the absence of unexpected uncertainty).
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Figure 3.6: The sets of neighbors and prospective actions (in the absence of unexpected uncertainty).
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Figure 3.7: The entropic state of the perceptor (in the absence of unexpected uncertainty).
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Figure 3.8: The true and estimated longitudinal distances between two vehicles (in the absence of
unexpected uncertainty).

entropic state of “FTW” algorithm is the highest. The reason is as follows: with a suboptimal set of
prospective actions (in terms of the performance in RMSE) for PACk , the final selected action ck will
lead to less accurate observations at PACk+1, the posterior x̂k+1 |k+1 will be more dispersed and the
covariance matrix, Pk+1 |k+1, will have larger determinants. As a result, the entropic state Hk+1 would
be relatively higher.

Out of five elements in the state vector, Fig. 3.8 takes the longitudinal distance d1
x between two

vehicles as an example. It shows how the true distance as well as the estimated distance obtained by
each algorithm evolves during the simulation. Obviously, all the algorithms are capable of capturing
the distance information right after the initialization and keeping track of that information thereafter,
which would have been completely different if there is risk involved, as discussed in the next subsection.

3.6.2.2 In the presence of unexpected uncertainty

If the system model for vehicle-following problem experiences structural uncertainty (due to the
unexpected occurrence of disturbance) during some period, the performance for all kinds of radar
systems will be affected inevitably. When the unknown vector mk is first imposed, the host vehicle
will not have any information about this change in the beginning; however, it can become aware of
the existence of this change soon, thanks to the information gain obtained through each PAC. The
level of risk for the vehicle-following scenario depends on how well that uncertainty can be detected
and handled. Figs. 3.9-3.12 have shown the performance of different algorithms in the presence of
unexpected structural uncertainty.
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Figure 3.9: The RMSE for each element in the state vector (in the presence of unexpected uncertainty).
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Like Fig. 3.5, Fig. 3.9 also shows the RMSE for each element in the state vector. It can be seen
that the occurrence of unexpected uncertainty will have a negative effect on all algorithms to some
extent. Specifically, the systems relying on “Q-ATT” or “CC-ATT” would experience the most severe
deterioration in performance. When the unknown vector is suddenly imposed on the state evolution,
these two algorithms still follow the original system model, which would result in inaccurate predicted
values in both filtering and planning processes. Moreover, the practical constraint that the current
cognitive action can only be selected from the neighbors of the preceding action makes the final
decision to be a local optimum at best.

Different from “Q-ATT” and “CC-ATT”, the algorithms of “Q” and “CC” do not take into
consideration the hardware limitation on shifting operational parameters, and therefore, they will not
suffer from that constraint and are able to search the entire action library to find the best cognitive
action available. Consequently, “Q” and “CC” have better performance compared with “Q-ATT” and
“CC-ATT” due to the freedom in making decisions. However, they are still confronted with inaccurate
observations and predictions, and the final decisions they made are still perturbed by the uncertainty.

It is encouraging to see that “CRC” and “CRC-ATT” have the best overall performance compared
with the rest. The reason is twofold. First, by putting more confidence in next cycle’s observations,
the filtered estimations and predictions will be more accurate in a statistical sense. Second, the
subsystem composed of executive memory and classifier will come into play immediately to bring the
risk under control when the unexpected uncertainty is detected. To elaborate on the latter point, we
point out that the occurrence of structural uncertainty will cause the increasing of entropic state.
While other learning algorithms ignore it, “CRC” and “CRC-ATT” empowered with task-switch
control treat this increasing as a warning signal and will switch to a different operational mode. The
cognitive action obtained by the policy will no longer be applied to the environment directly; rather,
it is compared with the prospective past experiences put forward by the executive memory, from
which a risk-sensitive cognitive action is finally selected and used to adjust the transmit waveform, as
described in Section III. Although the RMSE performance of “CRC” is slightly better than that of
“CRC-ATT”, the latter one would still be a favorable choice in practice, considering the merits of
attention mechanism (factors like the physical life time, maintenance cost, etc).

In addition, the curve of “FTW” displays an ordinary performance due to the fact that it can
neither change for the better nor for the worse in terms of the transmit-waveform parameter.

Similar to Fig. 3.6, Fig. 3.10 also shows different sets of neighbors considered in the planning
stage for “Q-ATT”, “CC-ATT”, and “CRC-ATT” algorithms. Note that for every PACk , the set of
neighbors for each algorithm will be different, but it will always surround the preceding action ck−1

and fall within the range of nr for the neighborhood.
Fig. 3.11 shows how the entropic state for each algorithm changes with PACs going on in the

presence of structural uncertainty. At first, the entropic state drops for all algorithms with “Q”,
“CC”, and “CRC” having the rapidest rate. After the unexpected disturbance occurs at 2.1s, it takes
a short while before the entropic state starts to go up. Moreover, after the disturbance finishes and
the evolution of system state returns to normal, the entropic states of “Q-ATT”, “CC-ATT”, and
“CRC-ATT” will gradually decrease until they reach the same level with those of “Q”, “CC”, and
“CRC”. It is noteworthy that “CRC-ATT” has lower entropic state compared with the other two
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Figure 3.10: The sets of neighbors and prospective actions (in the presence of unexpected uncertainty).
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Figure 3.11: The entropic state of the perceptor (in the presence of unexpected uncertainty).

algorithms with attention features.
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Figure 3.12: The true and estimated longitudinal distances between two vehicles (in the presence of
unexpected uncertainty).

In direct contrast to Fig. 3.8, Fig. 3.12 reveals how each of the algorithms keeps track of the
longitudinal distance between two vehicles during the simulation. It can be seen that “Q-ATT” and
“CC-ATT” are almost incapable of tracking the distance during the presence of uncertainty, while
“CRC-ATT” and “CRC” manage to stay relatively close to the true distance. This observation is
in consistence with Fig. 3.9c. By improving the accuracy of predictions, and more importantly,
by utilizing the subsystem composed of executive memory and classifier to benefit from the gained
knowledge, the concept of predictive adaptation is brought into reality and the risk is finally brought
under control in the CVR system.

3.7 Conclusion

In this paper, we have investigated and tailored the architectural structure of cognitive risk control
(CRC), proposed an algorithm for transmit-waveform selection in cognitive vehicular radar (CVR)
systems, and provided the first experimental demonstration of CRC in such an application. Simulation
results have shown that this new design will be able to achieve a performance comparable to other
classic designs in the absence of uncertainty, and more importantly, to make a significant improvement
in the performance even when faced with unexpected disturbances or adverse events. The robustness
and effectiveness of the proposed CVR system is in fact much needed for the self-driving cars, with
safety-related issues being the undisputable priority. In addition to radar systems, assuming the role
of a supervisor, the cognitive dynamic system (CDS) would substantially improve the performance of
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many other vehicle-mounted systems. It envisions a remarkable contribution to the radical self-driving
car revolution and one solid step toward the smart city in future. The theoretical originality and
importance of this model rests mainly on the application to risk control of the predictive adaptation
feature of the prefrontal cortex. Simply put, it is unique in the world of engineering as we know
it today. In future work, we will improve the current approach with powerful tools like cubature
Kalman filter, further investigate the possible marriage of brain-inspired CDS and self-driving cars in
other aspects such as anti-jamming V2V communications, and bring out the full capacity of CRC in
this promising research field.
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Chapter 4

Cognitive Risk Control for
Anti-Jamming V2V
Communications in Autonomous
Vehicle Networks

4.1 Preceding Introduction

In addition to vehicular radar, vehicular communication system is also an essential component for
CAVs. The main responsibility of a vehicular communication system is to help stay connected and
share information with other vehicles within a network. Aiming at the improvement of anti-jamming
V2V performance, in this chapter, CDS and its special function of CRC are adopted to develop robust
power control and channel selection method for vehicular communication system.

To the best of the author’s knowledge, the scholarly work presented herein is the first experimental
work on V2V communication that involves anti-jamming, power control, and channel selection at the
same time.

The publication included in this chapter is:
S. Feng, and S. Haykin, “Cognitive Risk Control for Anti-Jamming V2V Communication in

Autonomous Vehicle Networks,” IEEE Transactions on Vehicular Technology, accepted, Aug. 2019.
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Abstract

The future of intelligent transportation system (ITS) is expected to be composed of connected
and autonomous vehicles (CAVs), the development of which will have great impact on people’s
everyday life. Unfortunately, this progress will be accompanied by all kinds of potential threats
and attacks rising in CAV network. As a legacy from traditional wireless networks, jamming attack
is still one of the major and serious threats to vehicle-to-vehicle (V2V) communications. In this
paper, we investigate the anti-jamming V2V communication in CAV networks through power control
in conjunction with channel selection. Bringing into play a brain-inspired research tool called the
cognitive dynamic system (CDS), the general structure of cognitive risk control (CRC) is well-tailored
to analyze and address the jamming problem. Specifically, power control is carried out first using
reinforcement learning, the result of which is then examined by a module called task-switch control.
Based on the risk assessment, a multi-armed bandit (MAB) problem is formulated to perform the
channel-selection process when necessary. Through continuous perception-action cycles (PACs), the
feature of predictive adaptation is realized for the legitimate vehicle in its behavioral interactions
with the jammer. Simulation results have shown that the proposed method has desirable performance
in terms of several evaluation metrics.
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4.2 Introduction

4.2.1 Connected and Autonomous Vehicles

As one of the most vigorous and active fields in the fourth industrial revolution, autonomous vehicles
will play an important role in future intelligent transportation systems (ITS) and have great potential
to change the landscape of our society [19, 137]. The benefits of autonomous vehicles include
reducing the traffic accidents, cutting down the average commute time, reducing carbon dioxide
emissions, improving travel experience, etc. [138]. According to Society of Automotive Engineers
(SAE) International’s standard J3016, there are six levels of driving automation [139]. Currently,
enormous research efforts are being made to reach the “Level 4: High Automation”, which will liberate
human drivers from resuming fallback performance of the dynamic driving tasks, making it very close
to the expectation of fully autonomous vehicles.

Despite the promising automation features, how do we coordinate independent autonomous
vehicles in a vehicular ad hoc network (VANET) remains a challenging issue [140]. One possible
answer rests on the bright prospect pertaining to connected and autonomous vehicles (CAVs). On the
one hand, the autonomous driving performance can be improved by exploiting the information shared
through vehicle-to-vehicle (V2V) communications; on the other hand, V2V communications will
also benefit from driving automation, such as the provision of line-of-sight (LOS) path or estimated
location from simultaneous localization and mapping (SLAM) [122]. Therefore, the two key features
of CAVs will complement and enhance each other effectively.

To support V2V communication, different spectrum bands have been allocated for ITS applications
worldwide. In the Unite States and Canada, the spectrum of 5.850-5.925 GHz is allocated for dedicated
short-range communications (DSRC), which relies on IEEE 802.11p standard for wireless access in
vehicular environments (WAVE) [141]. The total 75 MHz bandwidth is divided into one control
channel (CCH) and six service channels (SCHs), each with 10 MHz bandwidth and 5 MHz guard
band. Among these seven channels, safety applications are given priority over non-safety applications
[142]. In order to extend vehicle-to-everything (V2X) communications to cellular spectrum bands,
3GPP has studied V2X specifications based on long-term evolution (LTE) technology [143]. More
work is currently in progress to further pave the way for 5G-based V2X communications [144].

4.2.2 Jamming Attack and Its Countermeasures

Unfortunately, while the enabling technologies for CAVs gradually mature, all kinds of potential threats
or attacks will also rise and endanger the CAV network [112, 145]. These adversarial behaviors can
be driven by various motivations, such as causing traffic accidents, stealing critical cargo/information,
hijacking, etc. [17]. One serious threat to CAV networks is the jamming attack, for which a jammer
emits high-power electromagnetic signals to make the legitimate signals unrecognizable for on-board
units (OBUs) and/or roadside units (RSUs) [146]. By reconfiguring the frequency band and signal
strength, a smart jammer is able to modify the attack pattern according to the transmission specifics
of targeted V2V communication links. Due to its easy implementation and disruptive impact, jamming
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attack has received a lot of attention and the countermeasures have been extensively studied in the
literature.

In [147], the presence of a smart jammer was considered in a traditional wireless network, and the
power-control problem for the legitimate user was studied from a Stackelberg game perspective. In
[148], a joint power-control and user-scheduling problem was formulated, and dynamic programming
techniques were exploited to decompose and solve the problem. By utilizing the representation of
spectrum waterfall, an anti-jamming scheme based on deep reinforcement learning (DRL) method was
proposed in [149] to facilitate the channel-selection process. A multi-armed bandit (MAB) framework
was formulated in [150] to obtain efficient channel-selection strategies, which were demonstrated to be
able to defend various kinds of jamming attacks. In [151], a multi-domain anti-jamming scheme that
tackles both power control and channel selection was proposed in heterogeneous wireless networks. In
[152], a reputation-based anti-jamming method was proposed for large-scale wireless networks. This
method is robust against collusion attacks and can significantly reduce the attacker population for a
wide range of attacks. In [153], two reputation-based algorithms were proposed to deal with both naïve
attackers and smart attackers, who could learn from historic information and adapt their attacking
strategies accordingly to avoid being detected/punished. Due to different network characteristics,
these methods are not directly applicable to the CAV networks.

Focusing on the safety-messages exchange in ITS applications, [154] investigated the real-time
detection method for securing beacons against jamming attack in vehicular networks. The issue of
attack detection was also studied in [155], in which unmanned aerial vehicles (UAVs) are deployed
to help protect a safety-oriented vehicular network. A hideaway strategy was proposed in [156] as
a countermeasure, for which an OBU or RSU will stop sending signals and keep silent upon the
detection of jamming attack. In [157], a cooperative anti-jamming relaying method was proposed.
When a vehicle is under attack, the neighboring vehicles will serve as relay nodes to forward received
signals to the victim vehicle through other channels. The scenario of UAV-aided VANET was studied
in [158], in which the UAV chooses whether to relay data while the jammer chooses its jamming
power. Following on this work, [159] further investigated the stochastic game for relaying with random
channel gains. In [160], the power control for anti-jamming problem in a pure UAV communication
network was investigated from a game theoretic perspective. However, the jamming attack specifically
targeting at V2V links remains a critical issue, and more effective anti-jamming methods are still
urgently needed.

4.2.3 Cognitive Dynamic System and Cognitive Risk Control

In this paper, we study the anti-jamming V2V communication by introducing a different set of tools.
We look to the recent progresses on cognitive dynamic systems (CDS) and make use of the newly
developed cognitive risk control (CRC) [63, 116]. Generally speaking, CDS is a unique engineering
system that is inspired by certain features of the human brain [59]. Built upon the five principles
of human cognition as identified in Fuster’s paradigm [65], which embodies perception-action cycle
(PAC), memory, attention, intelligence, and language, CDS models the functionality of prefrontal
cortex and thus exhibits the feature of predictive adaptation [62].
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As established in the cognitive neuroscience and neurophysiology literature, the anatomical
substrate of human brain confirms that there are two tiers of nervous structures hierarchically
organized along the nerve axis: a posterior tier for sensation and perception, and an anterior tier
for executive action [66]. The summit of the human PAC is occupied by the posterior association
cortex and the frontal association cortex, the highest level of which is the prefrontal cortex of the
PAC. That prefrontal cortex is essentially the structural and functional support of the functions we
postulate and computationally formulate in the CDS.

Being a particular function of CDS, CRC aims at regulating the goal-directed behavior and
averting the risk caused by internal or external disturbances. It is especially important when the
surrounding environment is full of complexities or uncertainties. Accordingly, CRC can serve as a good
candidate for addressing the jamming problem in CAV networks. Through the behavioral interactions
with a smart jammer, the legitimate vehicle empowered by CRC adjusts its transmission power and
channel, which are viewed as (risk-sensitive) cognitive actions and are continuously updated to adapt
to the dynamic environment. To the best of our knowledge, this is the first paper that investigates
the anti-jamming V2V communication in CAV networks through power control in conjunction with
channel selection.

4.2.4 Contribution and Organization

The main contributions of this paper are summarized as follows:

(i) The brain-inspired CDS is applied to study V2V communications, and CRC is tailored for
addressing the jamming problem in CAV networks. The novelty of this design rests mainly on
the application to risk control of the predictive-adaptation property of human brain, which
modern neuroscience attributes to the prefrontal cortex.

(ii) A new method based on CRC is designed for anti-jamming V2V communication in CAV
networks. The power control is carried out first using reinforcement learning methods, the result
of which is then examined by a module called task-switch control. Based on the risk assessment,
an MAB problem is called upon to perform the channel-selection process when it is needed.

(iii) Performance of the proposed method is validated using a number of evaluation metrics. It is
demonstrated that a network of switches will be able to coordinate the operations of power
control and channel selection, in such a way that unnecessary operations are avoided while
maintaining a desirable throughput.

The rest of this paper is organized as follows: after this introductory Section I that outlines
the basics of CAV, V2V, and CRC, Section II briefly describes the system model that is of special
interest in this paper. Sections III and IV present the detailed design of CRC for anti-jamming V2V
communications from the perceptor side and the executive side, respectively. Section V gives an
overall description of the proposed algorithm and its implementation process. Section VI discusses
the simulation results. Finally, Section VII concludes this paper.
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Figure 4.1: The jamming attack on V2V communication in autonomous vehicle networks.

4.3 Underlying System Model

4.3.1 Network Scenario

As illustrated in Fig. 4.1, the two CAVs, namely V1 and V2, are engaged in the V2V communication
on a public road. An adversarial vehicle, referred to as the jammer, is trying to sabotage that
communication link; it disturbs the vehicle on the receiving end by sending jamming signals, the act
of which may also be assisted by potential eavesdropping from the transmitting vehicle. The vehicles
V1, V2, and the jammer are driving in the same direction.

The set of communication channels between V1 andV2 can be denoted asΘ = {θ1, · · · , θc, · · · , θC} ,1 ≤
c ≤ C, where |Θ| = C is the total number of available channels. The transmission-power set of vehicle
V1 can be denoted as P = {P1, · · · ,Pm, · · · ,PM } ,1 ≤ m ≤ M, where |P| = M is the total number of
discrete transmission power. Similarly, the transmission-power set of the jammer can be denoted as
Q = {Q1, · · · ,Qn, · · · ,QN } ,1 ≤ n ≤ N, where |Q| = N.

4.3.2 Perception-Action Cycle

In its most simplified form, the CDS is mainly composed of two parts—the perceptor and the
executive—with a feedback channel linking them together. Through interacting with the external
environment constantly, a PAC is formulated in the form of a global feedback loop, which functions
as the backbone of the entire CDS. Facing the potential threat of jamming attack, the PAC enables
CAVs to monitor the dynamic changes in the environment, analyze the current quality of service and
risk level, and therefore, make corresponding adjustments in transmission power and/or channel to
maintain reliable V2V communications.

In hostile CAV networks, a smart jammer will also have the ability to adapt its transmission
parameters over the course of time. The actions taken by CAVs will affect its counterpart, and vice
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versa, which makes it more complicated. Moreover, due to the non-cooperative relationship between
legitimate vehicles and the jammer, they will always take their actions in an asynchronous manner.
Effective and timely PACs are therefore essential to detect and cope with the jamming attacks.

4.4 Cognitive Risk Control for Anti-Jamming V2V
Communications: The Perceptor

The structure of CRC tailored for anti-jamming V2V communications is illustrated in Fig. 4.2.
To some extent, it follows the basic framework of the CDS, which consists of the perceptor, the
feedback channel, and the executive [59]. Specifically, the perceptor is composed of environmental
sensing/modeling and interference formulation, which will result in utility metrics for feedback channel.
The utilities are then viewed as internal rewards and sent to the executive. As a dominant part
in CDS, the executive is composed of reinforcement learning, planner, policy, task-switch control,
multi-armed bandit (MAB), executive memory, and classifier. The first half of executive focuses
on power control, while the second half mainly deals with channel selection. Besides, a network of
switches is introduced to facilitate the mechanism of task-switch control.

Each cyclic behavior starts with observables acquired from the external environment and ends with
(risk-sensitive) cognitive actions being applied to it, accompanied by frequent behavioral interactions
with the smart jammer. Generally speaking, the purpose of perceptor in CDS is to perceive the
dynamic and uncertain environment, so that informed decisions can be made later on in the executive
on a cyclic basis. Inspired by the human brain, the feature of predictive adaptation is incorporated
in the design and exploited for engineering practice. This section mainly focuses on the perceptor of
CDS, while the next section will be devoted to the executive.

4.4.1 Environmental Sensing and Modeling

In order to deal with a jamming attack effectively, vehicle V1 needs to be aware of the status of both
vehicle V2 and the jammer, such as their relative distances or transmission-power levels. There are
several possible ways that the distance between legitimate vehicles can be obtained. For example,
vehicle-mounted GPS devices typically have the accuracy from a few meters to tens of meters [161,
162], which is deemed to be usable for on-road longitudinal positioning. Another way of obtaining the
distance is to rely on V2V messages sent from the other legitimate vehicle in a cooperative fashion.
Besides, radar-ranging methods are also desirable for the real-time distance estimation. Ideally, all
these possible inputs from different sources should be analyzed to form a well-informed distance
estimation.

However, the accuracy of GPS depends on factors like satellite geometry, atmospheric conditions,
signal blockage, etc. It usually worsens near buildings or trees, which are very common in an urban
scenario [163]. Consequently, the usefulness of GPS signals is limited. Moreover, under severe jamming
situations, no meaningful information can be extracted from the received V2V messages. In such
cases, neither GPS nor V2V will fulfill the requirement, which makes radar-ranging method necessary
for distance estimation due to its robustness.
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Figure 4.2: Architectural structure of cognitive risk control tailored for anti-jamming V2V communi-
cations.

Unlike the cooperative nature of legitimate vehicles, the non-cooperative and adversarial nature
of jammer makes it impossible for a legitimate vehicle to benefit from either GPS readings or V2V
messages. As a result, radar-ranging method would be the only feasible option for estimating the
distance between a legitimate vehicle and the jammer.

As mentioned before, the transmission power of the opponent is yet another key factor for
organizing attack/defense. In future CAV networks, both legitimate vehicles and adversarial jammers
are considered to be of a certain level of intelligence. By equipping a simple low-cost sensor for
physical carrier-sensing (PCS) [164], vehicles will be able to perform energy detection in specific
wireless channels. They may also utilize the technique of preamble detection or a combination of
both (if prior knowledge is available). With the value of estimated distance between vehicles at hand,
transmission specifics like power level can be calculated [165]. This procedure can be carried out by
each vehicle independently, including the jammer. Another possible way for the jammer to obtain
the transmission power of vehicle V1 is to conduct eavesdropping [166]. As the transmission specifics
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are shared between legitimate vehicles V1 and V2 over an open channel, eavesdropping from vehicle V1

will potentially provide the jammer with all the information needed for launching a jamming attack.
However, due to environmental uncertainties and hardware limitations, the observations are

typically imperfect. For example, the power of the jamming signal Q may be perceived inaccurately
by vehicle V1. To that end, let A denote the error matrix of perceived jamming power from the
perspective of vehicle V1, we have

A =
(
ai j

)
N×N , (4.1)

with

ai j =


h, if i = j
1−h
N−1 , otherwise

,

where ai j represents the probability that the jamming power perceived by vehicle V1 is Q j while the
actual jamming power is Qi, 1 ≤ i, j ≤ N. The accuracy factor of vehicle V1 is denoted as h ∈ [0,1].
Similarly, assuming that the jammer also has imperfections in its sensing capability, the error matrix
of perceived legitimate transmission power from the perspective of jammer can be denoted as

B =
(
bi j

)
M×M , (4.2)

with

bi j =


l, if i = j
1−l
M−1 , otherwise

,

where bi j represents the probability that the legitimate transmission power perceived by the jammer
is Pj while the actual transmission power is Pi, 1 ≤ i, j ≤ M. The accuracy factor of the jammer is
denoted by l ∈ [0,1].

4.4.2 Interference Formulation

Compared with the well-explored cellular channels, V2V channels have their own time-frequency
selective fading natures [167]. Typically, the vehicular environments are classified into four scenarios,
which are highway, urban, suburban, and rural [168]. Various path-loss models have been proposed to
characterize each of those four common scenarios in the literature [169, 170]. In this paper, we consider
the traffic environment for an urban scenario, where the road is shared by vehicles, pedestrians, and
bicycles with scattering objects (such as street lamps or trees) on the roadside. Following the power
law, the path-loss model for such is expressed as [171]

PL (d) = PL0 + 10wlog10

(
d
d0

)
+ Xσ, d ≥ d0 (4.3)

where PL0 is the path loss at a reference distance d0, w is the path-loss exponent, and Xσ is a
normally distributed random variable with mean zero and standard deviation σ that characterizes
the instantaneous fading component. For a reference distance d0 = 10 m, the validity range is limited
to d ≥ 10 m.

77



Ph.D. Thesis - Shuo Feng McMaster University - Computational Science and Engineering

Since the path loss is calculated by taking the difference of the transmission power and the received
power in logarithmic scale, we write:

PL (d) |dB = PTx |dBm − PRx |dBm. (4.4)

The channel gain of the transmission link between vehicle V1 and V2 is formulated as

gV = 10−PL(dV )/10. (4.5)

Likewise, the channel gain of the jamming link between the jammer and vehicle V2 can be formulated
as

gJ = 10−PL(dJ )/10. (4.6)

As a result, the received signal-to-interference-plus-noise ratio (SINR) at vehicle V2 will be

β =
gV P

BN0 + gJQ
, (4.7)

where P and Q represent the transmission power of vehicle V1 and the jammer, respectively. B is the
channel bandwidth and N0 is the noise power spectral density (PSD). Ideally, the SINR should be
maintained at a relatively high level, so that the allocated bandwidth can be fully taken advantage
of to improve the overall throughput. Although raising the transmission power of vehicle V1 will
probably increase the received SINR, it will also incur more expenses on the energy budget. Therefore,
the utility metric of vehicle V1 is defined as

µV (Pm,Qn) =
gV Pm

BN0 + gJQn
− cV Pm, (4.8)

where cV is the transmission cost per unit power of vehicle V1. Since the purpose of a jammer is to
deliberately interfere with the legitimate V2V communication, the utility metric of the jammer can
be defined as

µJ (Pm,Qn) = −
gV Pm

BN0 + gJQn
− cJQn, (4.9)

where cJ is the transmission cost per unit power of the jammer. Taking the error matrices in eqs.
(4.1) and (4.2) into consideration, and substituting the channel gains presented in eqs. (4.5) and
(4.6), the practical utility functions of vehicle V1 and the jammer can then be written as

µ̂V (Pm,Qn) =
10−PL(dV )/10Pm

BN0 + 10−PL(dJ )/10 ∑N
j=1 anjQ j

− cV Pm, (4.10)

and

µ̂J (Pm,Qn) = −
10−PL(dV )/10 ∑M

j=1 bmjPj

BN0 + 10−PL(dJ )/10Qn

− cJQn, (4.11)

respectively. The optimization goals of vehicle V1 and the jammer over the course of time can therefore
be defined as
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max
Pk

∞∑
k=0

γk1 µ̂V
(
Pk,Qk

)
,

s.t. Pk ∈ P,
(4.12)

and

max
Qk

∞∑
k=0

γk2 µ̂J
(
Pk,Qk

)
,

s.t. Qk ∈ Q,
(4.13)

where Pk and Qk represent the legitimate transmission power and jamming power in cycle k, γ1 and
γ2 denote the discounting factors that diminish future utilities with γ1 ∈ [0,1), γ2 ∈ [0,1), respectively.

Due to the fact that current strategies taken by vehicle V1 and the jammer will affect each other’s
future move, those two optimization problems are coupled and hard to solve directly. Furthermore, if
more vehicles join the network, eqs. (4.10) and (4.11) and associated formulations need to be revised
to account for the influence of additional nodes. In that case, the jamming impact and interference
relationship will become much more complicated. Therefore, we resort to the reinforcement learning
and view the utilities as internal rewards, which are sent to the executive side via a feedback channel.

4.5 Cognitive Risk Control for Anti-Jamming V2V
Communications: The Executive

The executive has a more complex structure and occupies a large portion of the CDS. It is composed
of reinforcement learning, planner, policy, task-switch control, MAB, executive memory, and classifier,
as shown in Fig. 4.2. The main purpose of executive is to make intelligent decisions, which involves
power control and possibly channel selection as well, depending on the specific situation as the decision
is being made.

4.5.1 Reinforcement Learning

Based on the internal rewards received from the feedback channel, the value-to-go function of vehicle
V1 at cycle k can be calculated in accordance with [77, 102] and expressed as

Jk

(
Pk−1

)
= Jk−1

(
Pk−1

)
+ α

[
rk−1

(
Pk−1

)
+ γ1 max

P∗
Jk (P∗) − Jk−1

(
Pk−1

)]
, (4.14)

where α is the learning rate, rk−1
(
Pk−1) = µ̂k−1

V (Pm,Qn) = µ̂V
(
Pk−1,Qk−1) represents the internal

reward as a result of the selected power Pk−1 at the preceding cycle k − 1. Here, the power P∗

represents the greedy action that maximizes the value-to-go function.

79



Ph.D. Thesis - Shuo Feng McMaster University - Computational Science and Engineering

4.5.2 Planner and Policy

To find the best possible transmission strategy in the power domain, vehicle V1 needs to be predictive
and therefore look into the future. To that end, the planner along with the policy will generate a set
of prospective actions, estimate the hypothesized outcome (i.e., internal rewards) of those prospective
actions, update the corresponding value-to-go functions, and also update the policy for generating
those actions repeatedly. To be specific, while the planning can be performed in a similar way of
reinforcement learning, the main difference is that there is no interaction with environment in the
planning stage [116].

Specifically, with the value-to-go function being updated through reinforcement learning, the
policy can be updated using the softmax function as follows [172]:

πkm =
exp [Jk (Pm) /T]∑M

m=1 exp [Jk (Pm) /T]
, (4.15)

where T represents the temperature parameter. Based on the updated policy, the next prospective
action Pk ,ω can be selected in a probabilistic manner. By substituting this prospective action into eq.
(4.10), the hypothesized internal reward rk

(
Pk ,ω

)
= µ̂kV (Pm,Qn) = µ̂V

(
Pk ,ω,Qk−1) can be calculated.

Here, 1 ≤ ω ≤ Ω, and Ω represents the total number of prospective actions that are selected in the
planning process. For prospective action Pk ,ω, the value-to-go function is updated in the planning
process as follows:

Jk+1
(
Pk ,ω

)
= Jk

(
Pk ,ω

)
+ α

[
rk

(
Pk ,ω

)
+ γ1 max

P∗
Jk+1 (P∗) − Jk

(
Pk ,ω

)]
. (4.16)

After updating eqs. (4.15) and (4.16) alternately for Ω iterations, we now select the transmission
power Pk , also referred to as cognitive action, for the current kth PAC with the following probability:

P
{
Pk = Pm

}
=

exp [Jk+1 (Pm) /T]∑M
m=1 exp [Jk+1 (Pm) /T]

. (4.17)

However, as mentioned previously, an open and hostile vehicular environment is full of uncertainties.
The attack launched by a smart jammer may sometimes be too severe for the victim CAVs to handle.
Even through Pk is currently the best transmission power can be found on the present channel, it
may still result in a failed V2V communication due to unbearable interference. Therefore, it is a must
to introduce task-switch control to assess the risk for the next cycle and make necessary adjustments
accordingly, which is discussed in the next subsection.

4.5.3 Task-Switch Control

The task-switch control is responsible for deciding whether channel selection is still needed after the
power control has been carried out. It controls the status of a network of switches. Specifically, the
usefulness of temporarily selected transmission power Pk is determined by assessing the future risk
level it may result in. If Pk is applied to the environment by vehicle V1 at the end of this PAC, the
received SINR at vehicle V2 would be
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βkpre =
10−PL(dV )/10Pk

BN0 + 10−PL(dJ )/10 ∑N
j=1 anjQk

j

. (4.18)

To ensure that the received signals can be decoded correctly, the received SINR should be above a
certain threshold. This threshold puts a constraint on the interference strength for maintaining V2V
communications. If we denote the threshold at cycle k as TSCk , then the binary risk level can be
evaluated by

ρk =


0, if βkpre ≥ TSCk

1, otherwise
. (4.19)

In practice, the value of this threshold can be designed by leveraging some prior knowledge or
experiences on different V2V types. To be specific, different types of V2V communication will impose
different interference requirements. For example, the messages related to cooperative adaptive cruise
control (CACC) will have much stricter requirements compared to the data of multimedia streaming
or infotainment systems. To accommodate both critical transmissions and personalized services in
anti-jamming V2V communications, the threshold that indicates the interference requirement should
be adjusted flexibly in accordance with the change of V2V types. Therefore in practice, the exact
value of this threshold depends on the specific application of interest.

If ρk is 0, it means that the received SINR will meet the requirement and the selected power Pk

will reach a good result. In this case, the pair of switches (S1, S2) is closed while that of (S3, S4) is
opened, so that the cognitive action can be directly applied to the environment. The action profile
can thus be described as

{
Pk, θk−1}, where θk−1 means the same channel will be used as it is for the

previous (k − 1)th PAC.
However, if ρk turns out to be 1, it implies that the jamming signal is too strong and Pk will not

lead to a successful transmission for the current cycle. Since there is no better choice available on the
present channel, we have to look for and switch to a better channel for this transmission, which is
done by solving an MAB problem, discussed next.

4.5.4 Multi-Armed Bandit

Generally speaking, MAB is a problem where choices are made (that is, “arms” are selected)
to maximize the expected long-term payoff [173]. In this paper, the channels available for V2V
communication are viewed as the arms. For each selection, a fundamental trade-off has to be made
between exploitation and exploration, which means either taking advantage of the option with the
highest expected payoff that we currently know of, or trying other options to gain new knowledge for
future benefits. Due to its effectiveness and elegant properties, the upper confidence bound (UCB1)
algorithm of MAB is adopted for the channel selection in this design [174]. Note that channel selection
is performed only if a switching is necessary.

The previous analysis on power control mainly focused on the immediate preceding cycle k − 1
and the current cycle k, while the analysis on channel selection should take all preceding cycles into
consideration. If the binary risk level was ρt = 1 in cycle t with 0 ≤ t ≤ k−1, then the channel selection
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would have been performed during that cycle. Let indicator function It (θc) represent whether channel
θc was selected in cycle t, and let θt denote the channel that was actually selected; we may then have:

It (θc) =


1, if θt = θc

0, otherwise
. (4.20)

If channel selection was not needed in that cycle, then θt is set to be 0. Accordingly, the total number
of channel θc being selected in all preceding cycles can be written as

Lk (θc) =

k−1∑
t=0

It (θc) , (4.21)

For each cycle t > 0, the MAB-related reward for channel θc is defined as

rt (θc) =


Blog2

(
1 + βtpre

)
, if θt−1 = θc and ρt = 0

0, otherwise
, (4.22)

where B is the channel bandwidth as introduced previously, and βtpre denotes the received SINR at
cycle t that is calculated in the same way as in eq. (4.18). We may therefore suggest that one channel
can only be rewarded if, only if, it is used in a successful transmission. For normalization, we write:

r̂t (θc) =
rt (θc)

rmax (θc)
, (4.23)

where rmax (θc) represents the maximum reward that has been achieved. The total normalized reward
of using channel θc for transmission in all preceding cycles can therefore be expressed as

Hk (θc) =

k−1∑
t=0

r̂t (θc) . (4.24)

As a result, the average reward of channel θc is

rk (θc) =
Hk (θc)

Lk (θc)
. (4.25)

Besides, the total number of channel switching that occurred in the past can be counted with the
assistance of task-switch control as follows:

sk =
k−1∑
t=0

ρt . (4.26)

The stage is now set for calculating the total expected regret [175], which is a common performance
metric for MAB problems, as follows:

Rk =
∑

c:µc<µ∗
(µ∗ − µc)E [Lk (θc)] + cs

C∑
c=1
E [Lk (θc)] , (4.27)
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where µ∗ represents the highest expected reward associated with the optimal channel, µ∗ = max
1≤c≤C

µc,
with µc being the unknown expected reward for any channel θc. E denotes the expectation operator,
and cs is the unit cost for each channel switching occurred. Therefore, the expected regret is defined
as the primary loss due to the fact that the optimal channel is not always selected, plus the additional
loss caused by the switching behavior.

Invoking the UCB1 algorithm [151, 174], the upper confidence index for channel θc at cycle k can
be calculated as

δk (θc) = rk (θc) +

√
2 ln (sk)
Lk (θc)

, (4.28)

Then, the channel with the maximum index value will be selected as the desired transmission channel
at cycle k, which can be expressed as

θ̂k = arg max
θc ∈Θ

δk (θc) , (4.29)

For initialization, each channel will be selected once in order to establish the initial reward values
before UCB1 algorithm comes into play.

According to [174], the expected number of times for which channel θc is selected during all sk
switches is bounded by

E [Lk (θc)] ≤
8 ln (sk)
(µ∗ − µc)

2 + 1 + π
2

3 , (4.30)

we then have:

Rk ≤
∑

c:µc<µ∗

8 ln (sk)
µ∗ − µc

+

(
1 + π

2

3

) C∑
c=1
(µ∗ − µc)

+ cs

[ ∑
c:µc<µ∗

8 ln (sk)
(µ∗ − µc)

2 +

(
1 + π

2

3

)
(C − 1)

]
=

∑
c:µc<µ∗

8 (µ∗ − µc + cs)

(µ∗ − µc)
2 ln (sk)

+

(
1 + π

2

3

) [
C∑
c=1
(µ∗ − µc) + cs (C − 1)

]
≤

∑
c:µc<µ∗

8 (µ∗ − µc + cs)

(µ∗ − µc)
2 ln (k)

+

(
1 + π

2

3

) [
C∑
c=1
(µ∗ − µc) + cs (C − 1)

]
.

(4.31)

It demonstrates the fact that the total expected regret Rk has logarithmic growth. That is, Rk ∼

O (logk). Therefore, adopting this method for channel selection will achieve the optimal regret up to
a multiplicative constant, and offers channel θ̂k as a replacement for channel θk−1 when encountered
with severe jamming attack in the kth PAC.
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4.5.5 Executive Memory and Classifier

As discussed previously, whenever the risk level turns out to be ρk = 0 in the stage of task-switch
control, channel selection is not further needed after the power control. In such cases, the action
profile

{
Pk, θk−1} about the selected power and associated channel will be stored in the executive

memory. Through collecting and accumulating all the past experiences we had, the executive memory
will be occupied with enormous historical action profiles, which can be characterized by f (P, θ) and
therefore are of great value for future use.

In the event of a severe attack on the legitimate V2V transmission, the risk level would have
become ρk = 1. In order to response more quickly and effectively, we propose to rely on executive
memory as the entity for reselecting transmission power after the channel being switched to θ̂k . Using
the method of maximum a posteriori (MAP) estimation [71], we have

P̂k = arg max
P∈P

f
(
P |θ̂k

)
, (4.32)

which can be calculated as follows:

P̂k = arg max
P∈P

f
(
θ̂k |P

)
f (P)

f
(
θ̂k

)
= arg max

P∈P
f
(
θ̂k |P

)
f (P) .

(4.33)

Under such circumstances, the action profile at the current cycle k can be denoted as
{
P̂k, θ̂k

}
. It is

said to be risk-sensitive cognitive action as it will bring the foreseeable risk under control by escaping
the attack effectively.

After this countermeasure is applied to the environment, meaning that vehicle V1 carries out its
transmission on the new channel with reselected power, the current PAC is completed and the next
one begins, which continues on hereafter in a cyclic manner.

4.6 Proposed Algorithm and Implementation Process

Based on previous discussions, the proposed method of CRC for anti-jamming V2V communications
is described in Algorithm 2. Besides, the implementation process of the proposed algorithm is
illustrated in Fig. 4.3. Due to the non-cooperative relationship, vehicle V1 and the jammer will update
their behavior asynchronously, while every move ever made is still under the influence of its opponent.

As illustrated in Fig. 4.3, for each (perception-action) cycle of vehicle V1, it starts with sens-
ing/modeling and ends with acting on the environment. Most importantly, there are many iterations
performed internally within the stage of “multiple planning” in one PAC. In other words, both sensing
and acting (i.e., transmission activities) are only required once for each PAC. Since the entire process
of multiple planning is done internally, all those iterations (within the same PAC) can be performed
with no intermediate sensing or transmission activities required. In fact, the attribute of efficiency
and timeliness was one of the reasons that motivated us to introduce multiple planning in the first
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Algorithm 2 Proposed Algorithm for Anti-Jamming V2V Communication in Autonomous Vehicle
Networks
Input: legitimate transmission power Pm and jamming power Qn for each PAC, 1 ≤ m ≤ M, 1 ≤ n ≤ N
Output: final action profile ck for each PAC

Initialization:
Value-to-go function J0 and J0,J , policy π0 and π0

J , risk level ρ0 = 0, executive memory B0 = �
Vehicle V1 selects each transmission channel once to establish the initial values of MAB-related
reward
Vehicle V1 takes an initial action profile

{
P0, θ0} randomly selected from P and Θ

1: for k = 1 to Z (number of PACs) do
2: The jammer:
3: Generate and apply action profile

{
Qk, θk

}
Vehicle V1:
Interference formulating:

4: Calculate utility µ̂V
(
Pk−1,Qk

)
Learning:

5: Update value-to-go function Jk
(
Pk−1)

Multiple planning:
6: for ω = 1 to Ω (number of prospective actions) do
7: Update policy πk
8: Select prospective action Pk ,ω

9: Calculate hypothesized internal reward µ̂V
(
Pk ,ω,Qk

)
10: Update value-to-go function Jk+1

(
Pk ,ω

)
11: end for
12: Generate pending action profile

{
Pk, θk−1}

Risk assessing:
13: Calculate SINR βkpre
14: Calculate risk level ρk
15: if ρk = 0 then
16: Store

{
Pk, θk−1} into executive memory Bk

17: Calculate average reward rk (θc)
18: else
19: Calculate each upper confidence index δk (θc)

Channel selection:
20: Select θ̂k
21: Update counter Lk (θc) and sk

Power reselecting:
22: Calculate P̂k

23: end if
24: Generate final action profile

ck = (1 − ρk) ·
{
Pk, θk−1} + ρk · {P̂k, θ̂k

}
25: Apply ck to the environment

The jammer:
26: Calculate utility µ̂J

(
Pk,Qk

)
27: Update value-to-go function Jk ,J

(
Qk

)
28: Update policy πkJ
29: end for
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Figure 4.3: Implementation process of the anti-jamming V2V communication on a cyclic basis.

place [63].
Therefore, for each perceived change in the environment, there will be one PAC dedicated to

capture, and more importantly, to adapt to the network dynamics in a timely manner. To some
extent, it can be viewed that the network is treated as quasi-static within any given PAC, but is
continuously adapted to from one PAC to the next.

It should be noted that it is unlikely, and not necessarily, that vehicle V1 and the jammer make
their updates one following the other all the time. Either vehicle V1 or the jammer could have more
accurate sensing or faster response abilities, depending on practical factors like processing resources,
battery capacity, hardware limitations, etc. It means that one cycle of vehicle V1 could be followed by
several epochs of the jammer, or the other way around. Nevertheless, either of them can still learn
the opponent’s behavior at its own pace, on its own, without requiring any prior knowledge about its
opponent’s strategies or abilities.

4.7 Simulation Results

In this section, simulation results are presented to compare the performance of proposed algorithm
for anti-jamming V2V communication with other anti-jamming methods, as shown from Fig. 4.4 to
Fig. 4.12.

Specifically, the method of “power control only (with fixed channel)” shows one type of counter-
measure, for which power control is adopted in the design while channel switching is not considered.
This type of countermeasure has been extensively studied in the literature, such as the algorithms
presented in [147, 148, 160]. Another kind of anti-jamming method is to focus on dodging the
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attack by frequent channel switching with a constant transmission power, the idea of which has been
implemented by the algorithms presented in [149, 150], as shown by the curve of “channel selection
only (with fixed power)”.

For references of practical interest, the curve of “fixed power, fixed channel” shows the performance
of traditional non-secure V2V communication without adaptive features. The curve of “random
power, random channel” shows an intuitive countermeasure, in which a legitimate vehicle changes its
operation parameters constantly regardless of circumstances. The “proposed method” is compared
with all those methods using a number of evaluation metrics. In order to directly show the performance
degradation in the case of inaccurate distance estimation, “proposed method (with distance error)” is
also presented. In addition, the curve of “no jamming scenario” serves as a benchmark, which shows
the performance of proposed method in an ideal scenario where there is no jamming signal at all.

4.7.1 Parameter Settings

According to IEEE 802.11p standard and WAVE specifications [141], the channel bandwidth is set to
be 10 MHz in the 5.9 GHz frequency band. The total number of available channels is set to be C = 4,
being a portion of all 6 service channels allocated for DSRC-based communications. The maximum
transmission power is 23 dBm, and the PSD of thermal noise is -174 dBm/Hz with a noise figure
of 9 dB [176, 177]. The total number of discrete transmission power for both vehicle V1 and the
jammer is M = N = 6. The accuracy factors of vehicle V1 and the jammer are h = 0.8 and l = 0.9,
respectively. The transmission costs per unit power are cV = cJ = 0.2 [151], and the discounting
factors are γ1 = γ2 = 0.5. The unit cost for each channel switching is cs = 0.3. The threshold for
task-switch control is set to be 3 dB. Without loss of generality, the fourth channel and a transmission
power of 19 dBm are used as the fixed settings in related methods.

For the wireless propagation, the path loss at a reference distance d0 = 10 m is PL0 = 62 dB,
the path-loss exponent is w = 1.68, and the variable Xσ ∼ N

(
0,1.72) according to [171]. In the

simulation, vehicles V1 and V2 are assumed to move at 40 km/h, while the jammer is assumed to
move at 42 km/h. Initially, the distance between vehicle V1 and V2 is dV = 25 m, and the distance
between the jammer and vehicle V2 is dJ = 30 m. When inaccurate distance estimation is considered,
the inaccurate distances estimated by vehicles V1 are denoted by d∗V = dV + αV and d∗J = dJ + βV ,
with estimation errors αV and βV being assumed to be Gaussian random variables, αV ∼ N

(
0,22)

and βV ∼ N
(
0,42), respectively. The jammer is still assumed to have perfect distance estimation as

the worst-case scenario.
Besides, the jammer is assumed to be able to intentionally withhold its attack for energy preserva-

tion, and the probability for initiating attack is set to be 0.5. The total number of PACs is chosen
as 200, while the number of internal iterations within one PAC is 50. The simulation results are
averaged over 300 runs.

4.7.2 Performance Comparison

To demonstrate the effectiveness of the proposed method, Figs. 4.4-4.6 have recorded the result for
one random simulation run. Specifically, Fig. 4.4 shows the power strategy of vehicle V1 in the first

87



Ph.D. Thesis - Shuo Feng McMaster University - Computational Science and Engineering

0 5 10 15 20 25 30 35 40 45 50

The number of internal iterations in one PAC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
ow

er
 s

tr
at

eg
y 

of
 v

eh
ic

le
 V

1 P=0 W
P=0.04 W
P=0.08 W
P=0.12 W
P=0.16 W
P=0.2 W

Figure 4.4: The power strategy of vehicle V1 in one PAC.
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Figure 4.5: The power strategy of jammer over all the PACs.
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Figure 4.6: The channels used by vehicle V1 over all the PACs.

PAC, while Fig. 4.5 shows the power strategy of the jammer over all the PACs. It can be seen that the
power strategies for both of them will gradually reach a steady state. In the simulated environment,
it takes about 40 and 80 iterations for vehicle V1 and the jammer to converge, respectively. It should
be pointed out that there is a significant difference between the iterations for vehicle V1 and the
iterations for the jammer. Although 80 iterations (i.e., epochs for the jammer in Fig. 4.3) seem to be
a long period for achieving convergence, it is actually done on the jammer’s end, which is not one of
our primary concerns; on vehicle V1’s end, each one of those 80 iterations/epochs (for the jammer)
corresponds to one PAC (for vehicle V1), which contains one sensing step, one acting step, and one
multiple-planning step that involves 40 internal iterations. Even though 40 is still a large number, it
can be processed very fast internally since no interaction with the external environment is needed.
Fig. 4.6 shows all the channels used by vehicle V1 in face of the jamming attack, for which reason
multiple channel switching have been performed to maintain reliable V2V communications.

Fig. 4.7 and Fig. 4.8 have shown the utility of vehicle V1 and the jammer for power control,
respectively. It is evident that, in an ideal scenario where there is no attack being launched, vehicle
V1 will have the highest utility while the jammer has its lowest utility. When faced with attacks, the
received SINR at vehicle V2 will decrease, resulting in a deteriorate performance no matter which
method is adopted. Under such circumstances, it can be seen that the method of “power control only
(with fixed channel)” has similar utility values compared with the proposed method. The reason is that
they both can take advantage of power-control procedure, which is empowered by the reinforcement
learning and multiple planning processes as described in Section IV. By evaluating and predicting
the possible outcomes of different prospective actions, the transmission power will be adjusted in a
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Figure 4.7: The utility of vehicle V1 for power control.
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Figure 4.8: The utility of jammer for power control.
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Figure 4.9: The switching cost of vehicle V1 for channel selection.

cost-effective manner in response to the jammer’s actions. From the curve of “proposed method (with
distance error)”, it can be seen that the performance will degrade slightly in the case of inaccurate
distance estimation. Meanwhile, the methods of “channel selection only (with fixed power)” and
“fixed power, fixed channel” would result in poor utility for vehicle V1, due to the lack of adaptive
capability in transmission power. The “random power, random channel” method has a moderate
performance, as it may accidentally make some good choices in the power domain.

The switching cost of vehicle V1 for channel selection is depicted in Fig. 4.9. Since the methods of
“power control only (with fixed channel)” and “fixed power, fixed channel” always stay on a certain
channel, there is no switching cost incurred during the whole time. As for the “no jamming scenario”,
the risk level would typically be assessed as 0, which means almost no channel switching is ever
needed. Therefore, these three curves coincide at the bottom of Fig. 4.9. The method of “random
power, random channel” has the highest switching cost, simply because it keeps changing all the time.
It can also be seen that the switching cost of “channel selection only (with fixed power)” method is
higher than that of the proposed method: for the former method, the only available countermeasure
to defend an attack is to switch channels, which means it has no choice but to leave for a new
channel whenever the predefined transmission power is deemed not satisfactory; however, for the
proposed method, the wrestling between vehicle V1 and the jammer happens in both power domain
and frequency domain, which means that channel selection will only come into play as a backup
plan (i.e., a fail-safe) when power control cannot handle the situation. Consequently, the proposed
method will reduce unnecessary channel switching, which is particularly important for maintaining a
seamless and stable connection in CAV networks. However, this advantage would be neutralized by
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Figure 4.10: The normalized MAB-related reward of vehicle V1 for channel selection.

the inaccurate estimation of distance, which is shown in “proposed method (with distance error)”.
As the evaluation for SINR level and channel quality will be negatively affected by an inaccurate
distance, more channel switching will incur and the cost will increase.

Fig. 4.10 shows the normalized MAB-related reward of vehicle V1 for channel selection. Again,
being confined to only one channel, the methods of “power control only (with fixed channel)” and
“fixed power, fixed channel” will have no such reward. As for the “no jamming scenario”, it has
the highest normalized reward thanks to the desirable received SINR: while channel switching is
rarely needed, the channel in service keeps contributing to successful transmissions. The normalized
reward of the proposed method is higher than that of “channel selection only (with fixed power)”
method, which is mainly attributed to the difference in the number of switching times. To be specific,
for those times when channel switching can be avoided by adjusting the transmission power, the
previous channel will be retained for transmission and then rewarded in the proposed method, but
not in the “channel selection only (with fixed power)” method as that particular channel would have
been abandoned. Same explanation also applies to the “random power, random channel” method.
The negative effect of inaccurate distance estimation can again be seen from the curve of “proposed
method (with distance error)”.

To evaluate different solutions to the channel-selection MAB problem, the overall regret of vehicle
V1 is depicted in Fig. 4.11. Not surprisingly, those two methods that cannot make use of multiple
channels will result in “full” regret in terms of channel selection. The “random power, random channel”
method has slightly higher regret than “channel selection only (with fixed power)” method due to its
randomness, and the “proposed method (with distance error)” has slightly higher regret than the
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Figure 4.11: The regret of vehicle V1 for channel selection.

“proposed method” due to inaccurate estimation. Similar to the observations made on Fig. 4.10, the
“proposed anti-jamming method” is inferior to the “no jamming scenario” as a direct consequence of
incoming attacks, and is superior to the method of “channel selection only (with fixed power)” due to
higher normalized MAB-related reward as well as lower switching costs.

Finally, Fig. 4.12 makes a comparison in terms of the maximum achievable throughput, which
characterizes the theoretical upper bound for throughput as a result of dynamic behavioral interactions
between vehicle V1 and the jammer, considering a certain bandwidth and thermal noise level. The “no
jamming scenario” remains to serve as a benchmark free from any attack damage. It is noteworthy
that the maximum achievable throughput of the proposed method is higher than that of other methods.
Specifically, the estimation error in distance will cause a performance degradation for the proposed
method. The method of “channel selection only (with fixed power)” has a decent throughput, which is
maintained at the price of frequent switching and more costs. The method of “random power, random
channel” reaches a regular performance as a result of unpredictable behavior. For the remaining two
methods, the performance loss is mainly caused at such times when jamming signals appear on the
same channel as used by legitimate V2V communications, which again stresses the great importance
of adaptive capability in the frequency domain.
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Figure 4.12: The maximum achievable throughput.

4.8 Conclusion

In this paper, we have investigated the anti-jamming V2V communication in CAV networks through
power control in conjunction with channel selection. The brain-inspired CDS is applied to study V2V
communications, and the general structure of CRC is tailored to analyze and address the jamming
problem in CAV networks. For each PAC, the power control is carried out first using reinforcement
learning method, the result of which is then examined by the task-switch control. Based on the risk
assessment, an MAB problem is formulated to perform the channel-selection process when necessary.
Through continuous PACs, the feature of predictive adaptation is realized for the legitimate vehicle in
its behavioral interactions with the jammer. Simulation results have shown that the proposed method
has desirable performance in terms of several evaluation metrics. In addition to V2V communication
systems, assuming the role of a supervisor, CDS would substantially improve the performance of
many other vehicle-mounted systems (e.g., vehicular radar system). In future work, we will further
investigate the possible marriage of CDS and CAV network in other aspects, and bring out the full
capacity of CRC in this promising research field. Some of the future research directions are given as
follows:

(i) The impact of inaccurate distance estimation should be further investigated. As the distance
variable between on-road vehicles plays an important role in the interference formulation
and keeps changing in a dynamic vehicular environment, the real-time accuracy of distance
estimation would affect the connectivity and quality of V2V communications in practice, which
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deserves more attention.

(ii) As an extension of the previous point, it will be very interesting to study the mutual effect
between radar tracking and vehicular communication, both of which can be empowered by
cognitive risk control. On one hand, when V2V link is available, the exchanged information will
be combined and utilized to improve on-road tracking; on the other hand, tracking accuracy
has been demonstrated to have a direct impact on V2V communication performance. This
intertwined relationship should be mathematically formulated and analyzed.

(iii) The performance of proposed approach in a large-scale network should be studied. Currently,
this approach mainly focuses on a localized area and is only validated for a simple network
scenario. With more vehicles joining the network, the jamming/interference condition will
become much more complicated, and each individually made decision will impact all other
vehicles in the neighborhood. This kind of network extension is inevitable for future ITS systems,
and thus, requires dedicated research effort.

(iv) More research activities could be taken to seek new inspirations from the human brain. Relying
on the most powerful biological entity that is ever known, there is a great opportunity to advance
and upgrade the current design of cognitive anti-jamming V2V communications, among many
other engineering applications that is in urgent need for cognitive or intelligent capabilities.
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Chapter 5

Coordinated Cognitive Risk
Control for Bridging Vehicular
Radar and Communication
Systems

5.1 Preceding Introduction

Viewing the CAV as a whole, CRC can be utilized across different vehicle-mounted systems for overall
improved performance. Though either vehicular radar or the communication system is able to operate
independently and CRC can be of service to both of them separately, much more can be gained
through developing a bridge that helps the radar system and V2V system benefit from each other. In
this chapter, the brand-new notion of C-CRC is introduced. It serves as a cognitive mediator and
establishes a mutual-assistance relationship between those two systems.

The scholarly work presented herein builds upon all the research efforts made in previous chapters
and takes them one step further.

The publication included in this chapter is:
S. Feng, and S. Haykin, “Coordinated Cognitive Risk Control for Bridging Vehicular Radar and

Communication Systems,” IEEE Transactions on Intelligent Transportation Systems, under review,
2019.

The co-author’s contributions to the above work include:

• Technical supervision and financial support of the study presented in this work.

• Manuscript revising and editing.
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Abstract

As an essential part of the emerging Internet of Things, connected and autonomous vehicles (CAVs)
have the potential to reshape future transportation systems and change the commute style in people’s
everyday lives. Among many vehicular on-board devices, radar system and vehicle-to-vehicle (V2V)
communication system are two important pillars for the realization of CAVs. Focusing on the safety
and security aspects of a CAV network, the cognitive dynamic system (CDS) and its special function
of cognitive risk control (CRC) have been employed to tackle risk-related issues in previous studies. In
this paper, the concept of coordinated CRC (C-CRC) is proposed to serve as a cognitive mediator for
bridging vehicular radar and communication systems. By establishing a mutual-assistance relationship,
C-CRC provides a new safety mechanism that allows one system to learn from and react to the risks
that the other system has encountered. Through continuous perception-action cycles (PACs), the
feature of predictive adaptation is realized within each system as well as distributed across both
systems. Simulation results have shown that the proposed method has desirable performance in face
of motion perturbation and/or jamming attack under various scenarios.
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5.2 Introduction

5.2.1 Vehicular Radar and Communication

With the rapid advances in vehicular hardware, machine learning, and data processing techniques, the
next generation intelligent transportation system (ITS) is expected to be composed of connected and
autonomous vehicles (CAVs) [112, 178]. In addition to a comfortable driving experience, CAVs can
provide many other benefits over a wide range, such as improving driving safety, alleviating traffic
congestion, increasing usage efficiency of parking spaces, reducing fuel consumption and air pollution,
etc. [179].

For CAVs to approach the level of high automation (Level 4) or full automation (Level 5) as
stated in SAE standard [139], there are several functional requirements to be fulfilled. The first one
is environmental awareness, which relies on vehicle/pedestrian/bicyclist detection as well as accurate
distance/velocity estimation for all the targets involved [119, 180]. Second, network connectivity is
necessary for CAVs to share their individual information and make intelligent decisions collaboratively,
which can be supported by reliable vehicle-to-vehicle (V2V) communications [181]. With well-
developed autonomous driving algorithms and sensory inputs from different sources, steering commands
such as accelerating/decelerating and lane changing/keeping can finally be made by CAVs in real
time.

As a fundamental component of advanced driver-assistance systems (ADAS) [182], vehicular radar
is indispensable for tracking on-road targets and achieving environmental awareness. In [183], an
autonomous emergency braking (AEB) system based on both radar and camera sensors is developed
to protect pedestrians. It helps to avoid accidents by sending out alerts and controlling the automatic
brake actuator. A multiple-target tracking design is proposed in [184], where both low-cost radars
and advanced radars are considered for detecting obstacles. A collaborative fusion approach that
integrates the inputs from mmWave radar and a monocular camera is proposed in [185], which aims
at achieving the optimal balance between detection accuracy and computational efficiency.

For CAVs to stay connected, V2V communication is a very straightforward yet challenging
approach. Compared with cellular networks, V2V communication has its own characteristics due to
high mobility of vehicles and dynamic changes in the surrounding environment [186]. In [187], the
benefits of V2V communication on improving time headway in a cooperative adaptive cruise control
(CACC) system is studied. In [188], an integrated framework of V2V communication and long-range
radar (LRR) is formulated, and a joint vehicular communication-radar system is developed in mmWave
band. To solve the problem of radio-resource allocation and platooning control in an LTE-V2V
network, a joint optimization problem is formulated in [189], which minimizes the tracking error
while guaranteeing the reliability of V2V communication and string stability of vehicle platooning.
However, these studies have not paid enough attention to the issue of safety and security, which is a
critical issue in CAV networks.
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5.2.2 Cognitive Dynamic System and Cognitive Risk Control

While the connected feature of CAVs and the open nature of public roads are generally beneficial for
ITS system, they leave the system itself quite vulnerable to malicious activities or malfunctioning
units [17]. Both vehicular radar systems and V2V communication systems can be affected by such
uncertainties, which will bring serious risk to the CAV network. The security issue has become a hot
research topic recently. In [190], an automotive multi-input multi-output (MIMO) radar is designed
to detect and handle sensor spoofing attacks in adaptive cruise control (ACC). To combat false data
injection (FDI) attacks against a networked radar system, a data fusion algorithm that leverages on
the confidence factor of injected data is proposed in [191]. In [192], the effects of security attacks (such
as sensor tampering) on V2V channels is investigated, and different countermeasures are discussed
for a CACC vehicle stream. Focusing on the safety-messages exchange in ITS applications, [154]
investigated the real-time detection method for securing beacons against jamming attacks in vehicular
networks. However, the radar and communication systems are studied separately in these works.

Inspired by certain features of the human brain, the cognitive dynamic system (CDS) is a powerful
research tool for studying complex engineering applications [59]. For a CAV network, CDS can
be employed to improve and coordinate the operation of multiple vehicle-mounted systems. As a
special function of CDS, cognitive risk control (CRC) aims at handling the specific situations where a
system of interest is operating in the presence of unexpected uncertainty [63]. By taking advantage
of accumulated past experiences that are informative to the current situation, CRC actualizes the
predictive adaptation feature, which is learned from prefrontal cortex of the human brain [82]. In our
previous work, CRC was utilized for transmit-waveform selection in vehicular radar systems [116];
also, it was demonstrated to be effective for anti-jamming V2V communications [193]. This early
research laid the foundation for the current work.

Viewing the vehicle as a whole, it is instructive to notice that CRC can be utilized across different
vehicle-mounted systems for overall improved performance. Though either the radar or communication
system is able to operate independently and CRC can be of service to both of them separately, much
more can be gained through developing a bridge that helps radar system and V2V system benefit
from each other. However, how to build such a bridge is a brand new and very challenging problem,
which is the primary focus of this paper.

5.2.3 Contribution and Organization

The main contributions of this paper are summarized as follows:

(i) The brain-inspired CDS is applied to study CAV networks, and coordinated cognitive risk
control (C-CRC) is proposed for bridging vehicular radar and communication systems. By
exploiting the information originating from one system that is insightful for its dual system,
the possibility of mutual assistance is studied, and a coordinated design on the inter-system
level is conceived.

(ii) Compared with existing methods, multiple improvements are made to both radar and communi-
cation systems. For vehicular radar, a nonlinear target-tracking model that can take both basic
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and expanded forms is adopted, and the cubature Kalman filter (CKF) [194] is employed in the
analysis; for V2V communication, the interference formulation is based on tracking results, and
practical factors such as vehicle mobility and channel availability are further considered.

(iii) Performance of the proposed method is validated in different scenarios. It is demonstrated that
by having C-CRC as a mediator, the tracking accuracy of vehicular radar can be improved with
the assistance of available V2V messages, and the efficiency and reliability of V2V communication
will be increased with more accurate distance estimations.

Note that part of this work was presented in [195] and [196], and some preliminary results were
reported therein. The main differences and new challenges of this work are: 1) For radar systems, a
nonlinear model is adopted and CKF is employed for solving the target-tracking problem, which is
more practical compared with the linear model and classic Kalman filter presented in [195]. 2) For
communication systems, the mobility of involved vehicles is derived from the outcome of the radar
system, and the factor of channel availability is considered in the decision-making, both of which were
not taken into account in [196]. 3) Most importantly, the brand new notion of C-CRC is introduced
and serves as a cognitive mediator for those two systems to work together and benefit from each
other, the study of which builds upon all the previous efforts and takes them one step further.

The rest of this paper is organized as follows: Section II briefly describes the system model,
Sections III and IV present the design of CRC for cognitive vehicular radar and cognitive vehicular
communication, respectively. The functionality of C-CRC is discussed in Section V. Section VI gives
an overall description of the proposed design and its implementation process. Section VII discusses
the simulation results. Finally, Section VIII concludes this paper.

5.3 System Model

5.3.1 Network Scenario

As illustrated in Fig. 5.1, legitimate vehicles V1 and V2 are trying to track the longitudinal motion of
an adversarial vehicle, i.e., the jammer. Meanwhile, vehicles V1 and V2 are engaged in a link for V2V
communication. The jammer is trying to sabotage that communication link; it disturbs vehicle V2 by
sending out jamming signals, the act of which may also be assisted by potential eavesdropping from
vehicle V1.

Specifically, vehicle V1 is moving forward with velocity v1
x and acceleration a1

x , vehicle V2 with v2
x

and a2
x , and the jammer with v0

x and a0
x , respectively. The longitudinal and lateral distances between

vehicle V1 and the jammer are denoted by d1
x and d1

y , while those between vehicle V2 and the jammer
are denoted by d2

x and d2
y , respectively.

The set of communication channels is denoted as Θ = {θ1, · · · , θc, · · · , θC} ,1 ≤ c ≤ C, where
|Θ| = C is the total number of V2V channels. Due to the dynamic nature of vehicular networks,
some of the channels may be unavailable or occupied from time to time. The statistical channel
availability is denoted as Υ = [Υ1, · · · ,Υc, · · · ,ΥC]

T , where variable Υc represents the probability of
channel θc being available. Let parameter υc ∈ {0,1} denote the actual status of channel θc with
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Figure 5.1: Target tracking and anti-jamming communication in a CAV network.

value 0 representing unavailable [151]. It is assumed that vehicle V1 only selects one channel for
transmission at each time step, and only one channel can be targeted by the jammer for the same
time step [173].

The transmission-power set of vehicle V1 can be denoted as P = {P1, · · · ,Pm, · · · ,PM } ,1 ≤ m ≤ M,
where |P| = M is the total number of discrete power. Similarly, the transmission-power set of the
jammer can be denoted as Q = {Q1, · · · ,Qn, · · · ,QN } ,1 ≤ n ≤ N, where |Q| = N.

5.3.2 Coordinated Design

Fig. 5.2 has sketched out the basic design of a coordinated vehicular radar and communication system.
For each individual system on the bottom, the perception-action cycle (PAC) is performed within the
system itself for generating and updating actions [59]. Built upon the two pillars, a new building
block called the cognitive mediator is developed in this design.

Generally speaking, the cognitive mediator aims at facilitating the interaction between those two
pillar systems and guiding them to find their respective solutions in a collaborative way. With the
support of a cognitive mediator, the partition between radar and communication systems is broken,
which is of great importance when the vehicle is facing perturbations or under attack. In such cases,
the risks that could damage one system are not only detected and taken care of within that particular
system, they will also raise an alarm for the other system and certain measures will be taken in this
second system to maintain its performance. In other words, the cognitive mediator will provide a
new safety mechanism, which allows one system to learn from and react to the risks that the other
system has encountered.
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Cognitive Vehicular 
Radar

Cognitive Vehicular 
Communication

Cognitive 
Mediator

Figure 5.2: The basic design of a coordinated vehicular radar and communication system.

In this paper, the newly developed C-CRC will take the role of a cognitive mediator. More detailed
discussions will be provided after regular CRC for cognitive vehicular radar and cognitive vehicular
communication are presented in the next two sections, respectively.

5.4 System I: Cognitive Vehicular Radar

5.4.1 Perceptor with Nonlinear and Expandable Formulation

Different from previous work on cognitive vehicular radar [116, 195], the model formulated for target
tracking in this paper is a nonlinear (and more practical) model, which cannot be solved by a classic
Kalman filter. Therefore, as a good candidate for applications that require the use of nonlinear
filtering under Gaussian assumption, CKF is adopted in the analysis [194]. Besides, depending on how
much information is available, the filtering is formulated to alternate between basic and expanded
forms.

5.4.1.1 Basic Nonlinear Formulation

If vehicle V1 is tracking the jammer independently, the underlying state vector at time step k (i.e., in
the kth PAC) can be expressed as

xk =
[
v1
x,k,a

1
x,k, d

1
x,k, v

0
x,k,a

0
x,k

]T
.

In such cases, the basic form of state equation that describes system evolvement is formulated as
follows:

xk+1 = Fk+1,k xk + Γk+1,kuk + wk, (5.1)

with

Fk+1,k =



1 δ 0 0 0
0 1 0 0 0
δ δ2/2 1 −δ −δ2/2
0 0 0 1 δ

0 0 0 0 1


,Γk+1,k =



δ

0
δ2/2

0
0


.
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Here, wk = Ψk+1,k ŵk , and

Ψk+1,k =



0 δ2/2 0 0 0
0 δ 0 0 0
0 δ3/6 0 0 −δ3/6
0 0 0 0 δ2/2
0 0 0 0 δ


.

In the state equation, the transition matrix is denoted as Fk+1,k . Variable uk represents the accelera-
tion/deceleration due to known forces acting on vehicle V1, and matrix Γk+1,k describes how uk will
affect the evolvement of state dynamics. Moreover, wk denotes the additive process noise with ŵk

being Gaussian ŵk ∼ N

(
0, Q̂w,k

)
, and matrix Ψk+1,k describes how stochastic changes will affect the

system. The symbol δ denotes a small time period used for discretization.
Since ŵk is assumed to be zero-mean Gaussian, the covariance matrix of process noise wk is

expressed as

Qw,k = Ψk+1,kQ̂w,kΨT
k+1,k

=



δ4/4 δ3/2 δ5/12 0 0
δ3/2 δ2 δ4/6 0 0
δ5/12 δ4/6 δ6/18 −δ5/12 −δ4/6

0 0 −δ5/12 δ4/4 δ3/2
0 0 −δ4/6 δ3/2 δ2


Q̂w,k .

The first matrix on the right-hand side can be denoted as R for future use.
With data collected from on-board sensors, the range and range rate of the jammer can be

measured by vehicle V1. Hence, the measurement vector is expressed as

z = [r1, Ûr1]
T ,

where the range is r1 =
√(

d1
x

)2
+

(
d1
y

)2, and range rate Ûr1 is the first-order derivative of r1. Conse-
quently, the measurement equation can be expressed as

zk = b (xk) + vk =


√
(xk [3])2 +

(
d1
y

)2
,
xk [1] + δxk [2] − xk [4] − δxk [5] + δuk√

(xk [3])2 +
(
d1
y

)2


T

+ vk, (5.2)

where vk is the measurement noise whose covariance matrix is denoted as Qv,k .
For a linear frequency modulated (LFM) waveform with Guassian amplitude modulation, the

measurement noise covariance matrix can be expressed as [131]

Qv,k (ζk−1) =


c2λ2

2η − c2bλ2

2π fcη

− c2bλ2

2π fcη
c2

(2π fc )2η

(
1

2λ2 + 2b2λ2
) , (5.3)

where vector ζk−1 = [λk−1, bk−1]
T denotes the transmit waveform generated at time step k − 1, with λ
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and b denote pulse length and frequency sweep rate, respectively. Moreover, constant c is the speed
of light, fc is the carrier frequency, and η denotes the received signal-to-noise ratio (SNR), which is
calculated as

η =

(
r0
r1

)4
, (5.4)

where r0 represents the range at which 0dB SNR is obtained.

5.4.1.2 Expanded Nonlinear Formulation

Whenever the V2V link between vehicles V1 and V2 is connected, tracking information (about the
jammer) obtained by vehicle V2 can be shared with and exploited by vehicle V1. In such cases, the
state vector can be expanded and expressed as

x∗k =
[
xTk , v

2
x,k,a

2
x,k, d

2
x,k

]T
=

[
v1
x,k,a

1
x,k, d

1
x,k, v

0
x,k,a

0
x,k, v

2
x,k,a

2
x,k, d

2
x,k

]T
,

the expanded form of state equation will be rewritten as

x∗k+1 = F∗k+1,k x
∗
k + Γ

∗
k+1,ku

∗
k + w∗k, (5.5)

with

F∗k+1,k =

(
Fk+1,k O

A B

)
,Γ∗k+1,k =

(
Γk+1,k O

O C

)
,

Ψ∗k+1,k =

(
Ψk+1,k O

D E

)
,

where

A =


0 0 0 0 0
0 0 0 0 0
0 0 0 −δ −δ2/2

 ,B =

1 δ 0
0 1 0
δ δ2/2 0

 ,
C =


δ

0
δ2/2

 ,D =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 −δ3/6

 ,E =

0 δ2/2 0
0 δ 0
0 δ3/6 0

 ,
and O represents null matrices with corresponding dimensions. In addition, vector u∗

k
= [uk, ūk]T ,

with ūk being a known variable to vehicle V2. Since the process noise is now w∗
k
= Ψ∗k+1,k ŵk , its

covariance matrix can be expressed as

Q∗w,k = Ψ∗k+1,kQ̂w,k

(
Ψ∗k+1,k

)T
=

(
R F
G H

)
Q̂w,k,
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where

F =



0 0 0
0 0 0
0 0 δ6/36
0 0 −δ5/12
0 0 −δ4/6


,G =


0 0 0 0 0
0 0 0 0 0
0 0 δ6/36 −δ5/12 −δ4/6

 ,

H =


δ4/4 δ3/2 δ5/12
δ3/2 δ2 δ4/6
δ5/12 δ4/6 δ6/18

 ,
and matrix R has been introduced earlier.

Meanwhile, the measurement equation should also be expanded to account for additional infor-
mation received from vehicle V2 through V2V communications. Moreover, the longitudinal distance
between vehicles V1 and V2 can be retrieved from GPS or odometer readings due to their cooperative
attribute [197]. As a result, the new measurement vector will be

z∗ =
[
zT ,r2, Ûr2,r3

]T
= [r1, Ûr1,r2, Ûr2,r3]

T ,

where r2 =
√(

d2
x

)2
+

(
d2
y

)2 is the range between vehicle V2 and the jammer, range rate Ûr2 is the
first-order derivative of r2, and r3 is the range between vehicles V1 and V2.

Therefore, the expanded measurement equation can be expressed as

z∗k = b∗
(
x∗k

)
+ v∗k =


√(

x∗
k
[3]

)2
+

(
d1
y

)2
,
x∗
k
[1] + δx∗

k
[2] − x∗

k
[4] − δx∗

k
[5] + δuk√(

x∗
k
[3]

)2
+

(
d1
y

)2
,

√(
x∗
k
[8]

)2
+

(
d2
y

)2
,
−x∗

k
[4] − δx∗

k
[5] + x∗

k
[6] + δx∗

k
[7] + δu∗

k√(
x∗
k
[8]

)2
+

(
d2
y

)2
,

√(
x∗
k
[8] − x∗

k
[3]

)2
+

(
d1
y − d2

y

)2


T

+v∗k,

(5.6)

where v∗
k
is the measurement noise, whose covariance matrix can be expressed as

Q∗v,k (ζk−1) = diag
[
Qv,k (ζk−1) , Q̄v,k (ζk−1) , ι

]
, (5.7)

where the new block matrix Q̄v,k (ζk−1) is based on the SNR level η̄ experienced by vehicle V2, and
parameter ι accounts for the imperfection in distance readings.

5.4.1.3 Cubature Kalman Filtering

No matter which kind of state-measurement formulation is taken, a set of computational steps well
developed for CKF can now be carried out recursively, as described in [71, 194]. Recognizing that
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the state equation is linear and the measurement equation is nonlinear, the Kalman gain can be
computed as

Gk = Pxz,n |n−1P−1
zz,n |n−1, (5.8)

where Pxz,n |n−1 is the cross-covariance matrix of state xk and measurement zk , expressed as

Pxz,n |n−1 =

∫
R
xkbT (xk)N

(
xk ; x̂k |k−1,Pk |k−1

)
dxk − x̂k |k−1 ẑ

T
k |k−1, (5.9)

and Pzz,n |n−1 is the innovations covariance matrix:

Pzz,n |n−1 =

∫
R

b (xk)bT (xk)N
(
xk ; x̂k |k−1,Pk |k−1

)
dxk − ẑk |k−1 ẑ

T
k |k−1 +Qv,k . (5.10)

Here, R denotes the entire space where state xk resides, and ẑk |k−1 is the predicted estimate of
measurement zk given the sequence of previous measurements:

ẑk |k−1 =

∫
R

b (xk)N
(
xk ; x̂k |k−1,Pk |k−1

)
dxk . (5.11)

Upon receipt of the new measurement zk , the filtered estimate of the state is calculated as

x̂k |k = x̂k |k−1 +Gk

(
zk − ẑk |k−1

)
, (5.12)

and the covariance matrix of the filtered state-estimation error is calculated as

Pk |k = Pk |k−1 −GkPzz,n |n−1GT
k . (5.13)

Then, we may express the predicted estimate of the state as

x̂k+1 |k = Fk+1,k x̂k |k + Γk+1,kuk, (5.14)

and the prediction-error covariance matrix as

Pk+1 |k = Fk+1,kPk |kFT
k+1,k +Qw,k . (5.15)

The recursive computation of CKF can move forward systematically and be repeated through all
the PACs as required1.

Relying on CKF, the entropic state of the perceptor at time step k can be computed as follows:

Ho/∗
k
=

���Po/∗

k |k

��� , (5.16)

where |·| takes the determinant of a matrix.
1For brevity, superscript (∗) is omitted in CKF from eq. (5.8) through eq. (5.15) for the case of expanded formulation,

bearing in mind that the same procedure can be applied to both basic and expanded formulations. Hereafter, superscript
(o/∗) will be used if a notation applies to both forms of nonlinear filtering formulation.
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5.4.2 Feedback Channel and Task-Switch Control-A (TSC-A)

Being a key component of CDS, the feedback channel connects the perceptor to the executive.
Generally speaking, the entropic state of the perceptor reflects to which extent the filtered estimate
is dispersed. Therefore, the internal reward is designed to reveal whether the previously selected
transmit-waveform is making tracking performance better. To be exact, the internal reward can be
expressed as

ro/∗
k
=

Ho/∗
k−1 −H

o/∗
k

Ho/∗
k

. (5.17)

Unfortunately, vehicular networks in practice are full of uncertainties, which will lead to undesired
system behavior if no proper control is implemented. For instance, an abrupt move of the jammer
(whether intentional or not), severe weather conditions, or a poorly maintained road will inevitably
affect the dynamics of the original system evolvement.

To study the impact of such perturbations, a distraction vector, denoted as mk or m∗
k
(depending

on the current filtering formulation), is introduced. The system evolvement then follows the equation
below:

xo/∗
k+1 = Fo/∗

k+1,k x
o/∗
k
+ Γ

o/∗
k+1,ku

o/∗
k
+ mo/∗

k
+ wo/∗

k
. (5.18)

Naturally, the occurrence of mo/∗
k

makes the state estimation obtained in the original model less
accurate. With no prior knowledge about when the perturbations will occur or disappear, cognitive
vehicular radar should have built-in capabilities to evaluate and handle the risk involved. To this end,
a mechanism called task-switch control (denoted as TSC-A in this paper) is developed to implement
CRC, which relies on the following formula:

ρ
o/∗
k
=


0, if

k∑
i=max(1,k−L+1)

��min
[
0, sgn

(
ro/∗i

)] �� < β

1, otherwise

, (5.19)

where ρo/∗
k

represents the switching indicator, sgn (·) is the sign function, ro/∗
k

is the internal reward,
L is the length of a counting window, and β denotes a predefined threshold.

When the original system equation is working smoothly (be it basic or expanded), the switching
indicator ρo/∗

k
would take value 0; however, if ρo/∗

k
= 1, it indicates that the transmit-waveforms

selected in the past few cycles are inadequate for overcoming the perturbations. Based on the specific
value that ρo/∗

k
takes, the executive is restructured and will choose different transmit-waveform

parameters accordingly.
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5.4.3 Executive for Waveform Selection and Possible Reselection

5.4.3.1 Waveform Selection

As the first building block in the executive, reinforcement learning updates the value-to-go function
recursively with internal rewards:

Jk−1 (c) ← Jk−1 (c) + α

[
ro/∗
k
+ γ

∑
ck

πk (ck−1, ck) Jk (c) − Jk−1 (c)

]
, (5.20)

where α is the learning-rate parameter, γ ∈ [0,1) is the discount factor, and π (ck−1, ck) represents the
policy. Besides, ck−1 is the immediate past action (i.e., ζk−1), and ck is the action to be selected at
the current time step.

Next, the procedure of planning is performed for multiple times at each time step. Specifically,
the jth prospective action ζ

j
k
=

[
λ
j
k
, bj

k

]T
would result in a measurement noise covariance matrix

Qo/∗, j
v,k+1

(
ζ
j
k

)
, based on which the hypothesized innovations covariance matrix can be calculated as

Pj

zz,n+1 |n =

∫
R

b (xk+1)bT (xk+1)N
(
xk+1; x̂k+1 |k,Pk+1 |k

)
dxk+1 − ẑk+1 |k ẑ

T
k+1 |k +Qj

v,k+1, (5.21)

the hypothesized Kalman gain can be expressed as

Gj
k+1 = Pxz,n+1 |n

(
Pj

zz,n+1 |n

)−1
, (5.22)

and the hypothesized filtering-error covariance matrix as

Pj

k+1 |k+1 = Pk+1 |k −Gj
k+1Pzz,n+1 |n

(
Gj

k+1

)T
. (5.23)

Invoking eqs. (5.16) and (5.17), the hypothesized internal reward can be computed, which is then
used to update the value-to-go function Jk (c). After all prospective actions are examined, the one
that maximizes the value-to-go function will be selected as the cognitive action:

ck = arg max
c

Jk (c) , (5.24)

which is a potential choice for the transmit-waveform parameter to be used in vehicular radar.

5.4.3.2 Possible Reselection

The cognitive action just obtained does not necessarily represent the end of transmit-waveform
selection, rather, a reselection process will be activated if the indicator ρo/∗

k
of TSC-A takes value 1.

If ρo/∗
k
= 0, the cognitive action ck already obtained can be directly used to reconfigure the radar

transmitter; otherwise, a new module consisting of an executive memory and a classifier is further
needed to bring the risk under control [63].

The executive memory is an adaptive library occupied by abundant and informative past experi-
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ences. Each time a cognitive action is selected and applied in the perturbation-free situation, it is also
stored in the executive memory for future reference. When the reselection of a transmit-waveform is
needed, the executive memory will put forth a set of prospective past experiences, which are utilized
by the classifier as follows:

c∗k = arg min
c∈B̂

dis (ck, c) , (5.25)

where B̂ is the set of prospective past experiences provided by the executive memory, and c∗
k
represents

the risk-sensitive cognitive action as the final choice for transmit-waveform. Operator dis (·) denotes
the calculation of Euclidean distance in a grid reflecting transmit-waveform vector ζ . Action c∗

k
is

then applied to the environment for target tracking instead of ck at the current time step, which is
followed by the next PAC of cognitive vehicular radar system.

5.5 System II: Cognitive Vehicular Communication

To tackle potential attacks launched by the jammer and stay connected to other vehicles within a
CAV network, vehicle V1 should be able to make adjustments in its V2V transmission specifics when
necessary. Since the accuracy of distance estimation will significantly affect the decision-making in
V2V communication, tracking information gathered from vehicular radar is well exploited by the
communication counterpart in this paper, which is different from previous work on cognitive vehicular
communication [193, 196]. In addition to the practical consideration of vehicle mobility, the factor of
wireless channel availability is also taken into account and analyzed.

5.5.1 Environmental Sensing and Interference Formulation

By equipping a low-cost sensor for physical carrier-sensing (PCS) [164], CAVs will be able to perform
energy detection and learn the transmission power of their opponents. However, due to hardware
limitations, the observations are typically imperfect. The power of the jamming signal Q may be
perceived inaccurately by vehicle V1. Let Ā denote the error matrix of perceived jamming power from
the perspective of vehicle V1, we have

Ā =
(
ai j

)
N×N , (5.26)

with

ai j =


h, if i = j
1−h
N−1 , otherwise

,

where ai j represents the probability that the jamming power perceived by vehicle V1 is Q j while the
actual jamming power is Qi, 1 ≤ i, j ≤ N. The accuracy factor of vehicle V1 is denoted as h ∈ [0,1].
Similarly, the error matrix of perceived legitimate transmission power for the jammer can be denoted
as

B̄ =
(
bi j

)
M×M , (5.27)
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with

bi j =


l, if i = j
1−l
M−1 , otherwise

,

where bi j represents the probability that the legitimate transmission power perceived by the jammer
is Pj while the actual transmission power is Pi, 1 ≤ i, j ≤ M. The accuracy factor of the jammer is
denoted as l ∈ [0,1].

To characterize the wireless channels between vehicles, a well-developed path-loss model for an
urban V2V scenario is adopted in this paper [171]:

PL (r3) = PL0 + 10wlog10

(
d
d0

)
+ Xσ, r3 ≥ d0 (5.28)

where PL0 is the path loss at a reference distance d0, d is the range between two involved vehicles, w
is the path-loss exponent, and Xσ is a normally distributed random variable with mean zero and
standard deviation σ.

Therefore, the channel gain of the transmission link between vehicles V1 and V2 can be expressed
as

gV = 10−PL(dV )/10, (5.29)

and the channel gain of the jamming link between the jammer and vehicle V2 can be expressed as

gJ = 10−PL(dJ )/10, (5.30)

where dV denotes the range between vehicles V1 and V2, and dJ denotes the range between the jammer
and vehicle V2, both from vehicle V1’s perspective. Under different circumstances, the values of dV
and dJ are computed in different ways, which will be explained in detail later on.

Assuming that the legitimate vehicle V1 is transmitting on channel θc, the received signal-to-
interference-plus-noise ratio (SINR) at vehicle V2 will be

β =
gV P

BN0 + gJQ
, (5.31)

where P and Q represent the transmission power of vehicle V1 and the jammer, respectively. B is the
channel bandwidth and N0 is the noise power spectral density (PSD). Taking account of the error
matrices and substituting the channel gains, the utility metric of vehicle V1 can be expressed as

µ̂V (Pm,Qn) =
υc10−PL(dV )/10Pm

BN0 + 10−PL(dJ )/10 ∑N
j=1 anjQ j

− cV Pm, (5.32)

where υc is the availability status of channel θc, and cV is the transmission cost per unit power
for vehicle V1. Since the purpose of a jammer is to deliberately interfere with the legitimate V2V
communication, the utility metric of the jammer can be expressed as

µ̂J (Pm,Qn) = −
υc10−PL(dV )/10 ∑M

j=1 bmjPj

BN0 + 10−PL(dJ )/10Qn

− cJQn, (5.33)
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where cJ is the transmission cost per unit power for the jammer.

5.5.2 Power Selection and Task-Switch Control-B (TSC-B)

For each PAC, the utility metrics are viewed as internal rewards and used to select the next transmission
power, which would alleviate the negative impact of jamming attacks. To this end, reinforcement
learning and multiple planning are carried out for power selection as the first line of defense.

In the kth PAC, the value-to-go function of reinforcement learning can be calculated as

Jk

(
Pk−1

)
= Jk−1

(
Pk−1

)
+ α

[
rk−1

(
Pk−1

)
+ γ1 max

P∗
Jk (P∗) − Jk−1

(
Pk−1

)]
, (5.34)

where Pk−1 is the transmission power used in the preceding cycle, α is the learning rate, rk−1
(
Pk−1) =

µ̂V
(
Pk−1,Qk−1) represents the internal reward as a result of using power Pk−1. The power P∗ represents

the greedy action that maximizes the value-to-go function.
The policy can then be updated using the softmax function:

πkm =
exp [Jk (Pm) /T]∑M

m=1 exp [Jk (Pm) /T]
, (5.35)

where T represents the temperature parameter.
Next, the planning will be performed for multiple times in a predictive fashion. Different from the

reinforcement learning that is based on actual internal reward and only performed once in each PAC,
the planning is based on hypothesized internal reward and can be performed repeatedly to improve
the prediction accuracy.

The procedure of each planning step is as follows: first, a prospective action Pk ,ω can be selected
probabilistically according to the policy πk , its hypothesized internal reward rk

(
Pk ,ω

)
is then calculated

using eq. (5.32), the value-to-go function is updated using eq. (5.34), and the policy is updated using
eq. (5.35).

After both reinforcement learning and multiple planning are completed, a new transmission power
Pk will be selected, which is called the cognitive action in the vehicular communication system and is
subject to approval by task-switch control (denoted as TSC-B in this paper). The reason for seeking
approval is that the effort made in finding an updated transmission power does not guarantee the
selected power will be satisfactory. The legitimate transmissions can still be severely distorted or
even buried in jamming signals coming from the opponent.

Under such circumstances, the battlefield must be expanded from the power domain to the
spectrum domain and bring in channel selection as the second line of defense. This treatment is
inspired by the biophysical switching mechanism of the human brain, in which certain pathways
necessary to generate appropriate responses (in face of sensory stimuli) are activated selectively [198].

If the selected power Pk were to be applied by vehicle V1 to the environment, the received SINR
at vehicle V2 would be

βkpre =
υc10−PL(dV )/10Pk

BN0 + 10−PL(dJ )/10 ∑N
j=1 anjQk

j

. (5.36)

Note that any transmission on a preoccupied or unavailable channel (i.e., υc = 0) would be of no use.
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The TSC-B is performed by comparing the predicted SINR βkpre with a predefined threshold,
which ensures that the received signals can be decoded correctly. Denote the threshold at cycle k as
TSCk , a binary risk level can be evaluated by

ρk =


0, if βkpre ≥ TSCk

1, otherwise
. (5.37)

In practice, the value of this threshold can be designed by leveraging some prior knowledge or
experiences on different V2V types.

If the risk level ρk is evaluated as 0, then the selected power Pk is deemed to be satisfactory and
can be applied to the environment directly on the same channel; however, if ρk turns out to be 1,
meaning a high risk, then it indicates that the process of power selection has not eliminated potential
risk caused by the jammer or the availability of previous transmission channel has expired, either of
which calls for the additional process of channel selection (and power reselection) to be implemented.

5.5.3 Possible Channel Selection and Power Reselection

In this paper, the channel selection is formulated as a multi-armed bandit (MAB) problem and solved
by the upper confidence bound (UCB1) algorithm [174]. Each V2V communication channel for vehicle
V1 is viewed as an arm. For every PAC that involves channel selection, the channel with the highest
index as defined in the UCB1 algorithm will be selected and switched to.

Let indicator function It (θc) represent whether channel θc was selected in a previous cycle t with
0 ≤ t ≤ k − 1, and let θt denote the channel that was actually selected in that cycle (θt = 0 if selection
was not needed). We have:

It (θc) =


1, if θt = θc

0, otherwise
. (5.38)

Then, the total number of channels θc being selected in all preceding cycles can be written as

Lk (θc) =

k−1∑
t=0

It (θc) . (5.39)

For each cycle t > 0, the MAB-related reward for channel θc is defined as

rt (θc) =


Blog2

(
1 + βtpre

)
, if θt−1 = θc and ρt = 0

0, otherwise
, (5.40)

where βtpre denotes the received SINR at cycle t. After normalization, the total reward of using
channel θc for transmission can be written as

Hk (θc) =

k−1∑
t=0

r̂t (θc) . (5.41)
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As a result, the average reward of channel θc will be

rk (θc) =
Hk (θc)

Lk (θc)
. (5.42)

Besides, the total number of channel switches that occurred in the past can be counted as follows:

sk =
k−1∑
t=0

ρt . (5.43)

As a common performance metric for MAB problems, the total expected regret can be calculated
as follows [175]:

Rk =
∑

c:µc<µ∗
(µ∗ − µc)E [Lk (θc)] + cs

C∑
c=1
E [Lk (θc)] , (5.44)

where µ∗ represents the highest expected reward associated with the optimal channel, µ∗ = max
1≤c≤C

µc,
with µc being the unknown expected reward for any channel θc. E denotes the expectation operator,
and cs is the unit cost for each channel switching that occurred.

Invoking the UCB1 algorithm, the upper confidence index for channel θc at cycle k can now be
calculated as

δk (θc) = rk (θc) +

√
2 ln (sk)
Lk (θc)

, (5.45)

which is the sum of average reward and the so-called confidence width. Based on this index, the
desired transmission channel can be selected as follows:

θ̂k = arg max
θc ∈Θ

δk (θc) . (5.46)

While channel switching offers a great opportunity in the spectrum domain to escape attacks, it
consumes time and computational resources to be accomplished. In order to respond more quickly
and efficiently, we propose to use an executive memory in the communication system for reselecting
transmission power after the channel being switched to θ̂k rather than starting power selection all
over again.

Essentially, the executive memory is a storage filled with all the historical actions about selected
power and its associated channel whenever ρt = 0. Through collecting and accumulating past
experiences, the executive memory can be characterized by f (P, θ) and will be utilized if ρk = 1 for
the current PAC. In this case, using the method of maximum a posteriori (MAP) estimation [71], we
have

P̂k = arg max
P∈P

f
(
P |θ̂k

)
, (5.47)

where P̂k represents the reselected transmission power after the channel has been switched. It can be
calculated as
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P̂k = arg max
P∈P

f
(
θ̂k |P

)
f (P)

f
(
θ̂k

) = arg max
P∈P

f
(
θ̂k |P

)
f (P) , (5.48)

where f (θ |P) and f (P) can be obtained from the constructed executive memory.
Consequently, the action profile consisting of a new power and a new channel at the current PAC

can be denoted as
{
P̂k, θ̂k

}
. It is called a risk-sensitive cognitive action in vehicular communication

systems as it will bring the foreseeable risk under control by avoiding the jamming attack effectively.

5.6 The Mediator: Coordinated Cognitive Risk Control
(C-CRC)

The previous two sections have discussed vehicular tracking and V2V communication systems
implemented with regular CRC. It is noteworthy that the risk-sensitive cognitive action (in both radar
and communication systems) will have two distinctive features after all this effort: 1) consistently
ahead of the measurement updates by one cycle due to the predictive nature of multiple planning,
and 2) bypassing the influence of uncertainty and bringing risk under control due to the adaptive
nature of executive memory. Hence, we speak of the important feature of predictive adaptation, as
inspired by the prefrontal cortex of human brain [82].

Obviously, the mechanism of task-switch control plays a key role in both vehicular radar and
communication systems. In this section, a cognitive mediator in the form of C-CRC is discussed. It
helps to establish a mutual-assistance relationship, which is beyond a simple connection and brings
those two pillar systems much closer.

5.6.1 The Effect of TSC-B on Cognitive Vehicular Radar

As discussed in Section IV.B, if the anticipated SINR is higher than the threshold used in TSC-B,
then the pending transmission power would lead to a successful transmission and will be put into use;
otherwise, an extra means of channel switching has to be taken and a new transmission power will be
found on the new channel. That is, TSC-B will decide whether the anti-jamming defense only takes
place in the power domain or it is extended to the frequency domain as well.

On a related matter, it should be pointed out that TSC-B in the communication system is also a
very useful indicator for guiding the operation of vehicular radar systems. In addition to the specific
content of V2V messages that a vehicular communication system shares with the radar system, the
operational mode of a vehicular radar can actually be adjusted according to the status of TSC-B.

As explained earlier, whenever the evaluation result of risk level ρk in TSC-B turns out to be zero,
it means that no channel switching is further needed and the transmission will be carried out on the
same channel. In this case, assuming that the vehicular channel characteristic is symmetric within a
certain range [199], the tracking data gathered by vehicles V2 can be shared through V2V links and
utilized by vehicle V1. Specifically, additional variables for the motion dynamics of vehicle V2 and the
jammer will be incorporated in the perceptor of the vehicular radar system, which now takes the
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expanded nonlinear formulation of filtering with state x∗
k
and measurement z∗

k
at time step k. That is,

the updating and predicting procedures in CKF will now be based on the two-vehicle model, meaning
that vehicle V2 is also participating in the target tracking. With more real-time information about
the jammer coming from different sources, the tracking results will be more accurate. For example,
after the tracking is done, the range between vehicle V2 and the jammer will be estimated as

r2est,k =

√(
x∗
k
[8]

)2
+

(
d2
y

)2
, (5.49)

which is of particular interest when it comes to the communication system.
On the other hand, if the risk level ρk in TSC-B is positive for some cycles, it indicates that the

transmission channel would have to be changed in the V2V communication. In this case, the wireless
connection will be interrupted for a short while and additional tracking data from vehicle V2 will be
inaccessible temporarily. Therefore, the updating and predicting procedures in CKF will degenerate
to rely on the one-vehicle model. It means that state x∗

k
and measurement z∗

k
are reduced to xk and

zk , respectively, and vehicle V1 is currently on its own for tracking the jammer. This time around,
the estimated range between vehicle V2 and the jammer will have to be based on previous estimations
and be calculated as

r2est,K =

√(
x∗
k
[8] + sV2,est − sJ ,est

)2
+

(
d2
y

)2
, (5.50)

where k represents a past cycle in which V2V was disconnected, K is the current cycle,

sV2,est = (K − k) x∗k [6] δ +
1
2 (K − k)2 x∗k [7] δ

2

is the estimated distance traveled by vehicle V2 during the disconnection period,

sJ ,est =
K∑
i=k

xi [4] δ

is the estimated distance traveled by the jammer, and (K − k) δ represents the time period since V2V
was disconnected. Similarly, since the measurement r3 is also unavailable during V2V disconnection,
the estimated range between vehicles V1 and V2 can be expressed as

r3est,K =

√(
x∗
k
[8] − x∗

k
[3] + sV2,est − sV1,est

)2
+

(
d1
y − d2

y

)2
, (5.51)

where

sV1,est =
K∑
i=k

xi [1] δ

is the distance traveled by vehicle V1 during this period. Without external assistance, vehicle V1

will perform tracking independently until the V2V links are reestablished on a new channel in the
following cycles.

To sum up, the CKF in vehicular radar will either take the two-vehicle model or one-vehicle
model in its nonlinear formulation, depending on the result of TSC-B and current availability of
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V2V connections. In so doing, the tracking accuracy of the radar system can be improved whenever
additional information becomes available.

5.6.2 The Effect of TSC-A on Cognitive Vehicular Communication

Just like the way that TSC-B is responsible for determining whether channel selection and power
reselection are needed after a pending transmission power is picked out in the communication system,
TSC-A decides whether a reselection of the transmit-waveform is needed after a pending one is picked
out in the radar system. As discussed in Section III.B, TSC-A is designed to detect whether the
selected transmit-waveform parameter of vehicular radar is working properly in the current situation.
If the answer is positive, then the cognitive action already generated will suffice; otherwise, that
action will be suspended and extra means are taken to come up with a risk-sensitive cognitive action.
In such a way, TSC-A regulates the selection process of the transmit-waveform parameters in the
vehicular radar system.

In addition to that, the evaluation of TSC-A also has important implications and impacts on
vehicular communication. The reason behind this is that the distance variables, which have been
filtered in the radar system on a cyclic basis, also serve as key inputs for the communication system.
As different operating circumstances of a vehicular radar will result in different degrees of accuracy,
the intermediate values of distance in a CKF should be carefully chosen for evaluating the signal
strength of wireless transmissions.

To be specific, if the evaluation result of switching indicator ρo/∗
k

in TSC-A is zero, it indicates
that the vehicular radar is now working in a desirable condition, and therefore, the tracking outputs
will be trustworthy. In this case, the radar system will be guided to pass on the predicted distance
between vehicles to the communication system, so that the decisions made on the transmission power
and/or channel will be suitable for the new distances as anticipated. That is, the distance variable(s)
from the predicted estimate of the state x̂k+1 |k or x̂∗

k+1 |k , as expressed in eq. (5.14), will be used to
calculate the ranges discussed in the previous subsection. Here, the feature of predictive adaptation
has shown its practical value once again, which is now distributed across both systems.

On the other hand, if the switching indicator of TSC-A is evaluated to be positive, it implies
that the radar system is currently going through a perturbed phase. During this phase, the tracking
outcome would be less accurate, so that more conservative treatment should be considered. In
this case, the radar system will be guided to pass on the updated distance between vehicles to the
communication system. That is, the distance variable(s) from a filtered estimate of the state x̂k |k or
x̂∗
k |k

, as expressed in eq. (5.12), will be used instead. Since the updated distance has already taken
both measurements and preceding predictions into consideration, but not yet gone though the current
prediction, it is more reliable than a predicted distance in the presence of perturbations.

Going back to the aforementioned distances of dJ and dV between the vehicles, it is now clear
that they will be best estimated when the status of both vehicular radar and communication systems
are taken into consideration. Specifically, TSC-A determines whether predicted distance or updated
distance should be used; TSC-B decides whether eq. (5.49) or eq. (5.50) should be used for distance
dJ , and whether measurement r3 or eq. (5.51) should be used for distance dV .
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Figure 5.3: Implementation process of the proposed design for bridging vehicular radar and communi-
cation systems.

In short, when the evaluation result in TSC-A of the radar system is desirable, the interference
formulation of vehicular communication should take the predicted distance between vehicles as input;
otherwise, the updated distance is taken as input instead. In so doing, the communication system will
further improve its performance over what it would have achieved by just implementing CRC locally.

5.7 Proposed Design and Implementation Process

Based on previous discussions, the proposed design for bridging vehicular radar and communication
systems is described in Algorithm 32. Besides, the implementation process of the proposed design is
illustrated in Fig. 5.3. The left-hand side of Fig. 5.3 depicts the flowchart for cognitive vehicular radar,
while the right-hand side of Fig. 5.3 is meant for cognitive vehicular communication. The mediator,
C-CRC, sits in the middle and facilitates the mutual assistance, which helps make adjustments to
one system according to the other. The effect of TSC-A on the communication system is illustrated
by the upper-right pointing arrow, and the effect of TSC-B on the radar system is illustrated by the
upper-left pointing arrow.

For simplicity, the procedure described in Algorithm 3 shows how this coordinated design would
work if one PAC in the radar system is followed by one PAC in the communication system. It should
be pointed out that the operating pace of vehicular radar is not necessarily the same as that of
vehicular communication for any given vehicle. The PACs in a radar system could go faster and result
in more frequent filtering estimations, or, the PACs in a communication system may be more efficient
and lead to extra information exchanges. In either case, the implementation process within each
system will remain the same; each individual system passes on the result of its own task-switch control
the second it has been evaluated, but only checks the evaluation result from the other system when it

2For clarity, superscript/subscript R and C are added in some notations to differentiate the radar system and
communication system, respectively.
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is needed. That is, both systems will still be operating at their own paces without the requirement of
inter-system synchrony. In terms of the implementation steps in Algorithm 3, it means that Line 3
through Line 16 might be repeated for several times before it moves on to Line 36 through Line 49,
or the other way around, depending on which system is updated more frequently in practice.

Algorithm 3 Proposed Algorithm for Bridging Vehicular Radar and Communication Systems

Input: Radar observables zo/∗
k

, k = 1,2, · · · , Z , legitimate transmission power Pm and jamming power
Qn for each PAC, 1 ≤ m ≤ M, 1 ≤ n ≤ N

Output: Radar action-profile [λk, bk]T , and communication action-profile
{
Pk, θk

}
Initialization:
x∗0, x̂

∗
1 |0, P∗1 |0, ρ

o/∗
0,R = 0, JR

0 , π0
R, B̂0,R = �

An initial transmit-waveform action [λ0, b0]
T in vehicular radar is randomly selected and applied

JC
0 , JC

0,J , π
0
C and π0

J ,C, ρ0,C = 0, B0,C = �

An initial power/channel action
{
P0, θ0} in V2V communication is randomly selected and applied

1: for k = 1 to Z (number of PACs) do
2: System I: Cognitive Vehicular Radar
3: Take observable zo/∗

k

4: if ρk−1,C = 0 then
5: Perform CKF with x∗

k
and z∗

k

6: else
7: Perform CKF with xk and zk

8: end if
9: Calculate Ho/∗

k
, ro/∗

k
, ρo/∗

k ,R
10: Update JR

k
, πkR

11: Select cp
k ,R

12: if ρo/∗
k ,R = 1 then

13: Select c∗
k ,R

14: end if
15: Generate radar action-profile

ck ,R =
(
1 − ρo/∗

k ,R

)
· cp

k ,R + ρ
o/∗
k ,R · c

∗
k ,R

16: Apply ck ,R , [λk, bk]T to the environment

17: The Mediator: Coordinated Cognitive Risk Control
18: if ρo/∗

k ,R = 0 then
19: if ρk−1,C = 0 then
20: Calculate r2est with x̂∗

k+1 |k
21: Take r3 as r3est

22: else
23: Calculate r2est with x̂k+1 |k
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24: Calculate r3est with x̂k+1 |k

25: end if
26: else
27: if ρk−1,C = 0 then
28: Calculate r2est with x̂∗

k |k

29: Take r3 as r3est

30: else
31: Calculate r2est with x̂k |k

32: Calculate r3est with x̂k |k

33: end if
34: end if

35: System II: Cognitive Vehicular Communication
36: Action profile

{
Qk, θk

}
is generated and applied by the jammer

37: Calculate µ̂V
(
Pk−1,Qk

)
38: Update JC

k
, πkC

39: Generate pending action profile
{
P̄k, θk−1}

40: Calculate βkpre, ρk ,C
41: if ρk ,C = 1 then
42: Calculate δk (θc)
43: Select θ̂k

44: Update Lk (θc), sk
45: Calculate P̂k

46: end if
47: Generate communication action-profile

ck ,C =
(
1 − ρk ,C

)
·
{
P̄k, θk−1} + ρk ,C · {P̂k, θ̂k

}
48: Apply ck ,C ,

{
Pk, θk

}
to the environment

49: µ̂J
(
Pk,Qk

)
is calculated, JC

k ,J
and πk

J ,C are updated
50: end for

5.8 Simulation Results

In this section, simulation results are presented and discussed to demonstrate the performance of the
proposed design, shown as “C-CRC”. The performance of several existing algorithms is also provided
for comparison. For transmit-waveform selection in radar tracking, the curve of “FTW” shows a
vehicular radar with fixed transmit-waveform, “Q” represents the algorithm based on traditional
Q-learning as described in [77], and “Tpye 1 CRC only” shows the existing CRC-based tracking
algorithm proposed in [116]. For anti-jamming vehicular communications, the curve of “Fixed”
strategy shows the result for vehicle V1 staying on a fixed channel and transmitting with a constant
power, “Random” strategy represents that vehicle V1 will keep changing both channel and power
randomly as an intuitive countermeasure, and “Tpye 2 CRC only” shows the existing CRC-based
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anti-jamming algorithm proposed in [193].
In the simulations, we consider four different cases, each of which represents a scenario that CAVs

may encounter in a practical environment. Case 1 stands for the most ideal scenario, where there is
no motion perturbation or jamming attack at all. Case 2 represents that the jammer is changing its
movement abruptly without launching a jamming attack, while Case 3 represents that the jammer
is moving normally but starts to attack the legitimate V2V link. Case 4 shows the worst scenario,
where the jammer is misbehaving in motion and attacking the V2V system at the same time.

5.8.1 Parameter Settings

As depicted in Fig. 5.1, the vehicles are assumed to be moving in adjacent lanes with d1
y = 6m and

d2
y = 3m. The carrier frequency of vehicular radar is fc = 77GHz. Linear frequency modulation is

adopted with both up-sweep and down-sweep chirps, with

{λ ∈ [10e-6,300e-6] , b ∈ [−300e8,300e8]},

and grid step-size ∆λ = 10e-6 and ∆b = 20e8. The reference range is set to be r0 = 1km. The learning
rate is α = 0.1, discount factor is γ = 0.5, and the threshold for TSC-A is β = 3.

The true value of the initial state in the expanded nonlinear formulation of CKF is set to be

x∗0 =
[
xT0 ,65km/h,2m/s2,300m

]T
,

with the estimation of initial state and covariance matrix as

x̂∗1 |0 =
[
x̂T1 |0,60km/h,0m/s2,400m

]T
,

P∗1 |0 = diag
( [

103,1,103,103,1,103,1,103] ) .
Here,

x0 =
[
70km/h,2.5m/s2,200m,80km/h,3m/s2

]T
,

x̂1 |0 =
[
65km/h,0m/s2,250m,75km/h,0 m/s2

]T
,

are the true value and estimation of initial state in the basic nonlinear formulation, respectively, with
the initial covariance matrix as

P1 |0 = diag
( [

103,1,103,103,1
] )
.

Moreover, the distraction vector is expressed as mk ∼ N
(
0,Qm,k

)
with Qm,k = diag

( [
1,1,102,1,1

] )
,

or m∗
k
∼ N

(
0,Q∗m,k

)
with Q∗m,k = diag

( [
1,1,102,1,1,1,1,102] ), depending on the current filtering

formulation. The motion perturbation starts at 2.1s and ends at 3s. The total number of PACs in
the vehicular radar is chosen as 100.

According to the IEEE 802.11p standard, the channel bandwidth is set to be B = 10 MHz in the
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5.9 GHz frequency band. The total number of V2V channels is set to be C = 4, being a portion of all
6 service channels allocated for DSRC-based communications [142]. The transmission-power set is
the same for both vehicle V1 and the jammer, with M = N = 6 and the maximum transmission power
being 23 dBm [176]. The PSD of thermal noise is -174 dBm/Hz with a noise figure of 9 dB. The
transmission cost per unit power is cV = cJ = 0.2 [151], and the discounting factor is γ1 = γ2 = 0.5.
The threshold for TSC-B is set to be 3 dB. The statistical channel availability is assumed to be
Υ = [0.8,0.8,0.8,0.8]T unless stated otherwise.

For wireless propagation, the path loss at a reference distance d0 = 10 m is PL0 = 62 dB, the path-
loss exponent is w = 1.68, and the variable Xσ ∼ N

(
0,1.72) according to [171]. Besides, the jammer

is assumed to be able to intentionally withhold its attack for energy preservation, and the probability
of initiating an attack is set to be 0.5. The total number of PACs in vehicular communication is also
chosen as 100, while the number of planning steps (i.e., internal iterations) within each PAC is 50.

5.8.2 Results and Discussions

5.8.2.1 Cognitive Vehicular Radar

For tracking performance, the metric of root mean-square error (RMSE) is used to evaluate different
algorithms [71]. For example, the RMSE for velocity v0

x is defined as

RMSE
(
v0
x

)
=

√√√
1
S

S∑
n=1

(
v0
x,k
− v̂0

x,k

)2
, (5.52)

where v0
x,k

and v̂0
x,k

represent the true and filtered velocity for the jammer, respectively.
Fig. 5.4 and Fig. 5.5 have shown the RMSE of longitudinal distance d1

x and the jammer’s velocity
v0
x , respectively, in Case 4. It is obvious that the accuracy of all algorithms will be affected after the
perturbation occurs. Specifically, the fixed setting “FTW” and Q-learning based algorithm “Q” will
have a severe performance decrease, since there is no built-in mechanism to deal with unexpected
events. The “Tpye 1 CRC only” method is relatively more robust due to the possible reselection of
transmit-waveform parameter when faced with perturbations. It is noteworthy that the proposed
“C-CRC” method outperforms the other three algorithms in tracking accuracy. The performance
gain is mainly achieved through utilizing the additional information obtained from V2V links. With
the assistance of V2V communication (whenever it is available), the underlying state of the tracking
problem can be formulated more thoroughly in a nonlinear fashion, and the measurements from
another source will offer new insights on the jammer’s dynamics. Compared with the “Tpye 1 CRC
only” method, the proposed method will be less affected by the perturbation in terms of having lower
RMSE at peak point as well as faster recovery from the deviation.

Table 5.1 and Table 5.2 present the highest RMSE of longitudinal distance d1
x and the jammer’s

velocity v0
x , respectively, in all four cases. It can be seen that the results for Case 1 and Case 3 are

desirable and quite similar, since there is no malfunctioning or misbehaving in target motions. Also,
the results for Case 2 and Case 4 are similar yet much worse, due to the unexpected presence of
kinematic perturbations. In any case, the “C-CRC” method will have the most desirable performance.
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Figure 5.4: RMSE of the longitudinal distance d1
x (in Case 4).
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Figure 5.5: RMSE for the velocity of the jammer v0
x (in Case 4).
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Table 5.1: The highest RMSE of the longitudinal distance d1
x

Case #
Algorithm

FTW Q Type 1
CRC only C-CRC

Case 1 0.43 0.27 0.17 0.14
Case 2 102.31 78.91 24.45 13.65
Case 3 0.37 0.33 0.25 0.18
Case 4 105.52 77.19 26.74 18.41

Table 5.2: The highest RMSE of the velocity of the jammer v0
x

Case #
Algorithm

FTW Q Type 1
CRC only C-CRC

Case 1 0.91 0.92 0.72 0.53
Case 2 215.10 193.04 100.26 33.52
Case 3 1.02 0.90 0.71 0.69
Case 4 211.14 188.74 105.78 62.46

It is noticeable that the performance of “C-CRC” in Case 4 is slightly worse than that in Case 2,
since the V2V link that “C-CRC” usually takes additional information from is currently under the
negative impact of jamming attack.

5.8.2.2 Cognitive Vehicular Communication

In terms of the communication performance, Fig. 5.6 has shown the utility of vehicle V1 (i.e., user
utility) and that of the jammer (i.e., jammer utility) for power selection, while Fig. 5.7 has shown
the regret of vehicle V1 for channel selection, all in Case 4. The “Fixed” strategy will not perform
well in such an adversarial scenario since it has no adaptive ability in either the power domain or
spectrum domain. The “Random” strategy has an ordinary performance, since its randomness and
unpredictable behavior will be able to defend or avoid the jamming attack occasionally. The “Tpye 2
CRC only” method is more robust as it is able to perform both power selection and channel selection
for adaptation. Compared with these strategies, the “C-CRC” method will result in the highest user
utility, the lowest jammer utility, and the lowest regret. The reason is that “C-CRC” is capable of
modifying the distance inputs according to the current status of both tracking and communication
systems, thanks to cognitive mediator’s involvement and regulations.

Table 5.3 and Table 5.4 show user utility and jammer utility, respectively, for power selection in
all four cases. No matter which algorithm it is, the results for Case 2 are slightly worse than that for
Case 1, due to inaccurate distance estimations caused by motion perturbation. More importantly,
the results for Case 3 are much worse than that for Case 2. It verifies that the communication
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Figure 5.6: The utility of vehicle V1 and the jammer for power selection (in Case 4).
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Figure 5.7: The regret of vehicle V1 for channel selection (in Case 4).
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Table 5.3: The utility of vehicle V1 for power selection

Case #
Algorithm

Fixed Random Type 2
CRC only C-CRC

Case 1 231.05 243.52 277.15 293.39
Case 2 209.65 221.59 255.86 281.12
Case 3 112.62 145.66 188.56 235.46
Case 4 109.63 135.32 184.50 232.31

Table 5.4: The utility of the jammer for power selection

Case #
Algorithm

Fixed Random Type 2
CRC only C-CRC

Case 1 -187.49 -202.57 -245.18 -279.62
Case 2 -162.61 -188.22 -213.56 -254.26
Case 3 -100.09 -119.76 -156.47 -172.88
Case 4 -85.60 -94.14 -136.45 -162.61

Table 5.5: The total regret of vehicle V1 for channel selection

Case #
Algorithm

Fixed Random Type 2
CRC only C-CRC

Case 1 100 42.40 22.42 19.25
Case 2 100 42.74 27.55 25.33
Case 3 100 42.26 30.72 27.54
Case 4 100 43.59 36.63 32.94

performance will be affected to a greater extent by the occurrence of a jamming attack than the input
of inaccurate distance estimations. In addition, the results for Case 4 are slightly worse than that for
Case 3, which demonstrates that inaccurate distance estimations on top of a jamming attack will
make V2V communications even harder. In any case, the “C-CRC” method still maintains the most
desirable performance compared with the rest.

Table 5.5 shows the total regret of vehicle V1 for channel selection in all four cases. It is obvious
that the “Fixed” strategy will have “full” regret as no channel switching can be made, and the
“Random” strategy will have a steady regret as it has the same behavior pattern in each case. The
observations we can make for “Tpye 2 CRC only” and “C-CRC” methods echo with what we have
learned from Table 5.3 and Table 5.4.

126



McMaster University - Computational Science and Engineering Ph.D. Thesis - Shuo Feng

Table 5.6: The effect of channel availability on power selection (for the proposed “C-CRC” method in
Case 4)

Channel
Availability

Metrics
User Utility Jammer Utility

[1,1,1,1]T 302.76 -196.21

[0.8,0.8,0.8,0.8]T 232.31 -162.61

[0.6,0.6,0.6,0.6]T 171.30 -134.77

[0.8,0.7,0.6,0.5]T 192.37 -139.54

Table 5.7: The effect of channel availability on channel selection (for the proposed “C-CRC” method
in Case 4)

Channel
Availability

Metrics
Total
Regret

MAB
Reward

Switching
Cost

[1,1,1,1]T 24.95 63.43 4.98

[0.8,0.8,0.8,0.8]T 32.94 38.77 5.91

[0.6,0.6,0.6,0.6]T 37.67 21.29 9.96

[0.8,0.7,0.6,0.5]T 34.65 30.89 7.14

Furthermore, Table 5.6 and Table 5.7 show the effect of channel availability on power selection
and channel selection, respectively, for the proposed “C-CRC” method in Case 4. It can be seen that,
with less spectrum opportunity, user utility will decrease and jammer utility will increase in power
selection. Also, vehicle V1 will have higher regret, lower MAB-related reward, and more switching
costs in channel selection. It indicates that for a crowed vehicular network where many vehicles have
to share wireless resources, the V2V performance would deteriorate, which is another interesting and
practical problem that requires further attention and research effort.

5.9 Conclusion

In this paper, the brain-inspired CDS has been applied to study the radar tracking and anti-jamming
communication in a CAV network. Serving as a cognitive mediator, C-CRC is proposed for bridging
vehicular radar and communication systems. By establishing a mutual-assistance relationship that
is beyond simple connection, C-CRC provides a new safety mechanism that allows one system to
learn from and react to the risks that the other system has encountered. Through continuous PACs,
the feature of predictive adaptation is realized within each system as well as distributed across both
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systems. Simulation results have shown that the proposed method has desirable performance in the
face of motion perturbation and/or jamming attacks under various scenarios. In future work, we will
further investigate the security issues in a large-scale adversarial CAV network, and bring out the full
capacity of C-CRC in this promising research field.
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Chapter 6

Conclusion

6.1 Contributions

This thesis is the first of its kind in the sense that, for the first time two distinctive topics of CDS and
CAVs are studied together, the essence of which has brought a fantastic “chemical reaction” between
these two topics and led to new ways of thinking. To reiterate, the main contributions made in each
chapter of this thesis can be summarized below.

6.1.1 Contributions Made in Chapter 2

The main contributions of Chapter 2 can be summarized as follows:

(i) A new class of future vehicles, namely the RACE (risk-sensitive, autonomous, connected, and
electric) vehicles, is envisioned to cope with uncertain attacks and potential threats.

(ii) The safety, security and privacy issues in CAV networks are identified, and the CDS is introduced
as the supervisor of RACE vehicles for improving and coordinating multiple vehicle-mounted
systems.

(iii) A special function of CDS, namely CRC, is described in the presence of uncertain threats. The
future directions and research challenges ahead are also presented.

To the best of the author’s knowledge, this is the first theoretical work that integrates the research
tool of CDS with the engineering application of CAVs.

6.1.2 Contributions Made in Chapter 3

The main contributions of Chapter 3 can be summarized as follows:

(i) The architectural structure of CRC within CDS is investigated and tailored for CVR systems.
Our model is based on what we know about the mechanisms that the nervous system uses to
guide the organism in behavior. The theoretical originality and importance of this model rests
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mainly on the application to risk control of the predictive adaptation feature of the prefrontal
cortex.

(ii) An algorithm for transmit-waveform selection in CVR systems is proposed based on CRC. In
these systems, the transmit waveforms employed by the executive side of the CVR are regarded
as the cognitive actions, which are continuously updated and improved under the influence of
PACs. In addition, a smooth transition of the transmit waveform from one PAC to the next
is guaranteed by taking localized attention mechanism into account, which will prolong the
lifespan of radar hardware as well.

(iii) The first experimental demonstration of CRC is presented in the application of CVR systems.
It is demonstrated that this new design will be able to achieve a performance comparable to
other existing designs in the absence of uncertainty, and more importantly, to make a significant
improvement in the performance even when faced with unexpected disturbances or adverse
events.

To the best of the author’s knowledge, the scholarly work presented herein is the first experimental
work of CRC being applied to a practical vehicular system.

6.1.3 Contributions Made in Chapter 4

The main contributions of Chapter 4 can be summarized as follows:

(i) The brain-inspired CDS is applied to study V2V communications, and CRC is tailored for
addressing the jamming problem in CAV networks. The novelty of this design rests mainly on
the application to risk control of the predictive-adaptation property of human brain, which
modern neuroscience attributes to the prefrontal cortex.

(ii) A new method based on CRC is designed for anti-jamming V2V communication in CAV
networks. The power control is carried out first using reinforcement learning methods, the result
of which is then examined by a module called task-switch control. Based on the risk assessment,
an MAB problem is called upon to perform the channel-selection process when it is needed.

(iii) Performance of the proposed method is validated using a number of evaluation metrics. It is
demonstrated that a network of switches will be able to coordinate the operations of power
control and channel selection, in such a way that unnecessary operations are avoided while
maintaining a desirable throughput.

To the best of the author’s knowledge, the scholarly work presented herein is the first experimental
work on V2V communication that involves anti-jamming, power control, and channel selection at the
same time.

6.1.4 Contributions Made in Chapter 5

The main contributions of Chapter 5 can be summarized as follows:
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(i) The brain-inspired CDS is applied to study CAV networks, and C-CRC is proposed for bridging
vehicular radar and communication systems. By exploiting the information originating from
one system that is insightful for its dual system, the possibility of mutual assistance is studied,
and a coordinated design on the inter-system level is conceived.

(ii) Compared with existing methods, multiple improvements are made to both radar and com-
munication systems. For vehicular radar, a nonlinear target-tracking model that can take
both basic and expanded forms is adopted, and the CKF is employed in the analysis; for V2V
communication, the interference formulation is based on tracking results, and practical factors
such as vehicle mobility and channel availability are further considered.

(iii) Performance of the proposed method is validated in different scenarios. It is demonstrated that
by having C-CRC as a mediator, the tracking accuracy of vehicular radar can be improved with
the assistance of available V2V messages, and the efficiency and reliability of V2V communication
will be increased with more accurate distance estimations.

The scholarly work presented herein builds upon all the research efforts made in previous chapters
and takes them one step further.

6.2 Limitations

There are a number of limitations pertaining to the current research, especially when considering the
application of the methods developed in this research to practical transportation implementation.
Specifically, the following limitations may affect the applicable scenarios and deserve extra attention.

6.2.1 Network Scale is Small

As briefly mentioned in previous chapters, the scale of vehicular networks under this study is relatively
small. From Chapter 3 to Chapter 5, only a portion of the entire CAV network as illustrated in
Chapter 2 is considered, and only two or three vehicles are considered in each analysis. In practice, it
is very likely that multiple targets need to be tracked, and many vehicles may try to communicate
with each other at the same time. The detection/tracking formulation and interference topology
will be more complicated when there is a large number of vehicles and other road users coexisting
in the network. In such circumstances, the effect of a complex and large-scale network needs to be
accounted for, which is left out in the current work.

6.2.2 System Models are Simplified

The system models adopted in Chapters 3-5 are simplified from the vehicular environment in a realistic
world. Some of the practical factors are not considered in the study. For example, vehicles driving at
different velocities will result in Doppler shift, which has a negative effect on the connectivity and
reliability of V2V communications due to synchronization losses in the receivers. Also, the Doppler
shift can either degrade or enhance radar performance depending upon how it affects the detection
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and tracking processes. In addition, some special scenarios or extreme situations should be studied
independently, such as on-off ramps of a highway or tunnels, the unique characteristics of which will
impact both vehicular radar and communication systems. The implications of these practical factors
can be further investigated.

6.2.3 A Design Gap Remains

As identified in Chapter 2, CDS can be of use for designing a variety of vehicle-mounted systems,
including cognitive vehicular system, communication system, lighting system, etc., with the first
two being carefully studied in this thesis. However, there is still a gap between vehicle-mounted
systems and ADAS systems. The former mainly aims at obtaining accurate real-time information
from sensory inputs, while the latter emphasizes on higher-level services or functions they can provide
to the human driver to facilitate driving tasks. While some ADAS services can be directly built upon
the output of vehicle-mounted systems, such as blind spot detection, a majority of ADAS systems
require further processing and most likely involve multiple vehicle-mounted systems. How to offer
such ADAS services based on the obtained information is a non-trivial problem.

6.3 Future Directions

During this research, some directions of future work have already been discussed. Viewing from the
entire research project towards the end, we can identify the following topics as some of the most
challenging and promising directions.

6.3.1 Extending to Large-Scale and Heterogeneous Networks

One of the drawbacks and limitations of this thesis is that the network scale considered in most
sections is not large. Though it might be a sensible way to start working in a brand new area, it
certainly is not enough if we want to apply those proposed methods in future transportation systems.
Specifically, a large-scale and heterogeneous network should be considered, which preferably consists
of multiple ground CAVs (some of which might be malicious or misbehaving), intelligent drones,
satellites, pedestrians, infrastructures, and all kinds of other road users and roadside units. The
vehicular radar system will perform multi-target tracking using methods such as interacting multiple
model (IMM), and the vehicular communication system will take aggregated jamming signals and
mutual interference into account while considering the heterogeneous feature of different entities. The
effort put in this path will bring the current work closer to its application in a complex vehicular
environment.

6.3.2 Leveraging Recent Advances in Artificial Intelligence

It is truly amazing how much progress has been made in the area of artificial intelligence and machine
learning in the past few years. Among others, deep Boltzmann machine, CNN, RNN, long short-term
memory (LSTM), DRL, and autoencoder have been extensively used to develop various algorithms for
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CAVs. Generally, the intelligence required for CAVs can be viewed as a specialized subfield of artificial
intelligence, the proper use of which will undoubtedly accelerate the development pace of CAVs. For
example, recent advances in computer vision-based methods have been constantly increasing the level
of perception accuracy on an annual basis, and DRL-based methods are getting better and better on
the control side by finding the optimal decisions in various situations efficiently. There is much to be
gained from taking advantage of the achievements of artificial intelligence.

6.3.3 Upgrading to a Multi-Layered Hierarchical CDS

The CDS adopted in this thesis has a single-layered structure for every building block. Although
the structure so defined is powerful enough for some of the practical applications, there is a great
potential of going beyond the information capacity of a single-layered CDS. From a neuroscience
perspective, if we were to examine the neocortical structure of the mammalian brain, we would find
the existence of six-layered laminar structure within every region of the cortex (including both the
perceptor part and the executive part) [200]. Furthermore, there are 32 separate neocortical areas
that are implicated in visual processing, which can be organized into 10 hierarchical levels; for the
somatosensory-motor hierarchy, it has 9 levels of intertwined cortical processing with at least 13
areas involved [201]. It is within the deep hierarchical structure formed by many cortical regions
with six-layered laminar structure that the real computational power of the brain is harnessed. As
a brain-inspired model, it is therefore logical for the CDS to be structurally expanded in a manner
similar to the brain. It may be referred to as a multi-layered hierarchical CDS, or equally we speak of
deep learning rooted in the CDS framework. Through introducing a new generation of multi-layered
hierarchical CDS, the basic principles of cognition, namely PAC, memory, attention, and intelligence
will be enhanced enormously, which may open the gate leading to a higher level of cognitive capability
for many engineering applications including CAVs.

133





Bibliography

[1] Robert Hult, Gabriel R Campos, Erik Steinmetz, Lars Hammarstrand, Paolo Falcone, and
Henk Wymeersch. “Coordination of cooperative autonomous vehicles: Toward safer and more
efficient road transportation”. In: IEEE Signal Processing Magazine 33.6 (2016), pp. 74–84
(cit. on p. 1).

[2] Eshed Ohn-Bar and Mohan Manubhai Trivedi. “Looking at humans in the age of self-driving
and highly automated vehicles”. In: IEEE Transactions on Intelligent Vehicles 1.1 (2016),
pp. 90–104 (cit. on p. 1).

[3] Joshua E Siegel, Dylan C Erb, and Sanjay E Sarma. “A survey of the connected vehicle
landscape–Architectures, enabling technologies, applications, and development areas”. In:
IEEE Transactions on Intelligent Transportation Systems 19.8 (2017), pp. 2391–2406 (cit. on
p. 1).

[4] Philip Koopman and Michael Wagner. “Autonomous vehicle safety: An interdisciplinary
challenge”. In: IEEE Intelligent Transportation Systems Magazine 9.1 (2017-Spring), pp. 90–96
(cit. on p. 1).

[5] Marco Brilli Alessandra Pieroni Noemi Scarpato. “Industry 4.0 Revolution in Autonomous
and Connected Vehicle A Non-Conventional Approach to Manage Big Data”. In: Journal of
Theoretical and Applied Information Technology 96.1 (2018-01) (cit. on p. 1).

[6] Juan Antonio Guerrero-Ibanez, Sherali Zeadally, and Juan Contreras-Castillo. “Integration
challenges of intelligent transportation systems with connected vehicle, cloud computing, and
Internet of Things technologies”. In: IEEE Wireless Communications 22.6 (2015), pp. 122–128
(cit. on p. 1).

[7] Steven E Shladover. “Connected and automated vehicle systems: Introduction and overview”.
In: Journal of Intelligent Transportation Systems 22.3 (2018), pp. 190–200 (cit. on p. 1).

[8] Society of Motor Manufacturers and Traders. Connected and Autonomous Vehicles: SMMT
Position Paper. 2017-02, pp. 1–46 (cit. on p. 1).

[9] Federal Highway Administration. Environmental Justice Considerations for Connected and
Automated Vehicles. Washington, DC: U.S. Department of Transportation, 2016-12, pp. 1–5
(cit. on pp. 1, 2).

135



Ph.D. Thesis - Shuo Feng McMaster University - Computational Science and Engineering

[10] J. Siegel, D. Erb, and S. Sarma. “Algorithms and Architectures: A Case Study in When,
Where and How to Connect Vehicles”. In: IEEE Intelligent Transportation Systems Magazine
10.1 (2018-Spring), pp. 74–87. issn: 1939-1390 (cit. on p. 1).

[11] Hanif Ullah, Nithya Gopalakrishnan Nair, Adrian Moore, Chris Nugent, Paul Muschamp, and
Maria Cuevas. “5G Communication: An Overview of Vehicle-to-Everything, Drones, and
Healthcare Use-Cases”. In: IEEE Access 7 (2019), pp. 37251–37268 (cit. on p. 1).

[12] Sam Toglaw, Moayad Aloqaily, and Ala Abu Alkheir. “Connected, Autonomous and Electric
Vehicles: The Optimum Value for a Successful Business Model”. In: 2018 Fifth International
Conference on Internet of Things: Systems, Management and Security. IEEE. 2018, pp. 303–
308 (cit. on p. 2).

[13] R. Oorni and A. Goulart. “In-Vehicle Emergency Call Services: eCall and Beyond”. In: IEEE
Communications Magazine 55.1 (2017-01), pp. 159–165 (cit. on p. 2).

[14] Kang Miao Tan, Vigna K. Ramachandaramurthy, and Jia Ying Yong. “Integration of electric
vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques”.
In: Renewable and Sustainable Energy Reviews 53 (2016), pp. 720–732. issn: 1364-0321. doi:
https://doi.org/10.1016/j.rser.2015.09.012 (cit. on p. 2).

[15] S. Bitam, A. Mellouk, and S. Zeadally. “VANET-cloud: a generic cloud computing model for
vehicular Ad Hoc networks”. In: IEEE Wireless Communications 22.1 (2015-02), pp. 96–102
(cit. on p. 2).

[16] Elisabeth Uhlemann. “Initial steps toward a cellular vehicle-to-everything standard [connected
vehicles]”. In: IEEE Vehicular Technology Magazine 12.1 (2017-02), pp. 14–19 (cit. on p. 2).

[17] S. Parkinson, P. Ward, K. Wilson, and J. Miller. “Cyber Threats Facing Autonomous and
Connected Vehicles: Future Challenges”. In: IEEE Trans. Intell. Transp. Syst. 18.11
(2017-11), pp. 2898–2915 (cit. on pp. 3, 26, 42, 71, 100).

[18] Herndon Green. “Radio-Controlled Automobile”. In: Radio News 7.6 (1925-11), pp. 592–656
(cit. on p. 3).

[19] T. Luettel, M. Himmelsbach, and H. J. Wuensche. “Autonomous Ground Vehicles—Concepts
and a Path to the Future”. In: Proc. IEEE 100.Special Centennial Issue (2012-05), pp. 1831–
1839. issn: 0018-9219. doi: 10.1109/JPROC.2012.2189803 (cit. on pp. 3, 41, 71).

[20] Mohamed Elbanhawi, Milan Simic, and Reza Jazar. “In the passenger seat: Investigating
ride comfort measures in autonomous cars”. In: IEEE Intelligent Transportation Systems
Magazine 7.3 (2015), pp. 4–17 (cit. on p. 3).

[21] National Highway Traffic Safety Administration. Preliminary statement of policy concerning
automated vehicles. Washington, DC: U.S. Department of Transportation, 2013-05, pp. 1–14
(cit. on p. 3).

136

https://doi.org/https://doi.org/10.1016/j.rser.2015.09.012
https://doi.org/10.1109/JPROC.2012.2189803


McMaster University - Computational Science and Engineering Ph.D. Thesis - Shuo Feng

[22] SAE International. Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles. SAE Standard J3016, 2018-06, pp. 1–35. doi: https:

//doi.org/10.4271/J3016_201806. url: https://doi.org/10.4271/J3016_201806

(cit. on p. 3).

[23] Harold M Morrison, Albert F Welch, and Eugene A Hanysz. “Automatic highway and driver
aid developments”. In: SAE Transactions 69 (1961), pp. 31–53 (cit. on p. 4).

[24] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron, James
Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann, et al. “Stanley: The
robot that won the DARPA Grand Challenge”. In: Journal of field Robotics 23.9 (2006),
pp. 661–692 (cit. on p. 4).

[25] CB Insights. 46 Corporations Working On Autonomous Vehicles. Accessed: 2019-06-25. 2018-
09. url: https://www.cbinsights.com/research/autonomous-driverless-vehicles-

corporations-list/ (visited on 2018-09-04) (cit. on pp. 4, 6).

[26] Lyudmyla Novosilska. Top Technology Companies Driving the Connected Car Revolution.
Accessed: 2019-06-25. 2018-11. url: https://igniteoutsourcing.com/automotive/

connected-car-companies/ (visited on 2018-11-29) (cit. on p. 4).

[27] Sebastian Thrun. What we’re driving at. Accessed: 2019-06-25. 2010-10. url: https:

//googleblog.blogspot.com/2010/10/what-were-driving-at.html (visited on 2010-10-
09) (cit. on p. 4).

[28] Philip E Ross. “The Audi A8: The world’s first production car to achieve level 3 autonomy”.
In: IEEE Spectrum (2017) (cit. on p. 5).

[29] Navigant Research Leaderboard Report. Automated Driving Vehicles: Assessment of Strategy
and Execution for 20 Companies Developing Automated Driving Systems. Accessed: 2019-06-
25. 2019-01. url: https://www.navigantresearch.com/reports/navigant-research-

leaderboard-automated-driving-vehicles (visited on 2019-01-01) (cit. on p. 6).

[30] Elisabeth Behrmann David Welch. Who’s Winning the Self-Driving Car Race? Accessed: 2019-
06-25. 2018-10. url: https://www.bloomberg.com/news/features/2018-05-07/who-s-

winning-the-self-driving-car-race (visited on 2018-10-04) (cit. on p. 6).

[31] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. “End to
end learning for self-driving cars”. In: arXiv preprint arXiv:1604.07316 (2016) (cit. on p. 7).

[32] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars”. In: Proceedings of the 40th international
conference on software engineering. ACM. 2018, pp. 303–314 (cit. on p. 7).

[33] Weishan Dong, Jian Li, Renjie Yao, Changsheng Li, Ting Yuan, and Lanjun Wang. “Char-
acterizing driving styles with deep learning”. In: arXiv preprint arXiv:1607.03611 (2016)
(cit. on p. 7).

137

https://doi.org/https://doi.org/10.4271/J3016_201806
https://doi.org/https://doi.org/10.4271/J3016_201806
https://doi.org/10.4271/J3016_201806
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list/
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list/
https://igniteoutsourcing.com/automotive/connected-car-companies/
https://igniteoutsourcing.com/automotive/connected-car-companies/
https://googleblog.blogspot.com/2010/10/what-were-driving-at.html
https://googleblog.blogspot.com/2010/10/what-were-driving-at.html
https://www.navigantresearch.com/reports/navigant-research-leaderboard-automated-driving-vehicles
https://www.navigantresearch.com/reports/navigant-research-leaderboard-automated-driving-vehicles
https://www.bloomberg.com/news/features/2018-05-07/who-s-winning-the-self-driving-car-race
https://www.bloomberg.com/news/features/2018-05-07/who-s-winning-the-self-driving-car-race


Ph.D. Thesis - Shuo Feng McMaster University - Computational Science and Engineering

[34] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena. “Structural-RNN: Deep
learning on spatio-temporal graphs”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016, pp. 5308–5317 (cit. on p. 7).

[35] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. “Continuous control with deep reinforcement learning”.
In: arXiv preprint arXiv:1509.02971 (2015) (cit. on p. 7).

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
“Human-level control through deep reinforcement learning”. In: Nature 518.7540 (2015), p. 529
(cit. on p. 7).

[37] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. “Reinforcement learning with unsupervised auxiliary
tasks”. In: arXiv preprint arXiv:1611.05397 (2016) (cit. on p. 7).

[38] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. “Deepdriving: Learning affor-
dance for direct perception in autonomous driving”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2015, pp. 2722–2730 (cit. on p. 7).

[39] Ahmad El Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. “End-to-end
deep reinforcement learning for lane keeping assist”. In: arXiv preprint arXiv:1612.04340
(2016) (cit. on p. 7).

[40] Shai Shalev-Shwartz and Amnon Shashua. “On the sample complexity of end-to-end training
vs. semantic abstraction training”. In: arXiv preprint arXiv:1604.06915 (2016) (cit. on p. 7).

[41] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. “Deep reinforce-
ment learning framework for autonomous driving”. In: Electronic Imaging 2017.19 (2017),
pp. 70–76 (cit. on p. 7).

[42] Wade Genders and Saiedeh Razavi. “Using a deep reinforcement learning agent for traffic
signal control”. In: arXiv preprint arXiv:1611.01142 (2016) (cit. on p. 7).

[43] Anders Lindgren and Fang Chen. “State of the art analysis: An overview of advanced driver
assistance systems (ADAS) and possible human factors issues”. In: Human factors and
economics aspects on safety (2006), pp. 38–50 (cit. on p. 7).

[44] Klaus Bengler, Klaus Dietmayer, Berthold Farber, Markus Maurer, Christoph Stiller, and
HermannWinner. “Three decades of driver assistance systems: Review and future perspectives”.
In: IEEE Intelligent Transportation Systems Magazine 6.4 (2014), pp. 6–22 (cit. on p. 7).

[45] Clara Marina Martinez, Mira Heucke, Fei-Yue Wang, Bo Gao, and Dongpu Cao. “Driving
style recognition for intelligent vehicle control and advanced driver assistance: A survey”. In:
IEEE Transactions on Intelligent Transportation Systems 19.3 (2017), pp. 666–676 (cit. on
p. 7).

138



McMaster University - Computational Science and Engineering Ph.D. Thesis - Shuo Feng

[46] The Economist. Look, no hands. Accessed: 2019-06-25. 2012-08. url: https://www.

economist.com/technology-quarterly/2012/08/30/look-no-hands (visited on 2012-08-
30) (cit. on p. 8).

[47] Juan Guerrero-Ibanez, Sherali Zeadally, and Juan Contreras-Castillo. “Sensor technologies for
intelligent transportation systems”. In: Sensors 18.4 (2018), p. 1212 (cit. on p. 8).

[48] Muhammad Ayaz, Mohammad Ammad-uddin, Imran Baig, et al. “Wireless sensor’s civil
applications, prototypes, and future integration possibilities: A review”. In: IEEE Sensors
Journal 18.1 (2017), pp. 4–30 (cit. on p. 8).

[49] World Health Organization. Road traffic injuries. Accessed: 2019-06-25. 2018-12. url:
https://www.who.int/en/news-room/fact-sheets/detail/road-traffic-injuries

(visited on 2018-12-07) (cit. on p. 9).

[50] NHTSA’s National Center for Statistics and Analysis. 2017 Fatal Motor Vehicle Crashes:
Overview—Traffic Safety Facts Research Note (DOT HS 812 603). Washington, DC: U.S.
Department of Transportation, 2018-10, pp. 1–7 (cit. on p. 9).

[51] NHTSA’s National Center for Statistics and Analysis. 2015 Motor Vehicle Crashes: Overview—
Traffic Safety Facts Research Note (DOT HS 812 318). Washington, DC: U.S. Department of
Transportation, 2016-08, pp. 1–9 (cit. on p. 9).

[52] National Highway Traffic Safety Administration. Critical Reasons for Crashes Investigated in
the National Motor Vehicle Crash Causation Survey. Washington, DC: U.S. Department of
Transportation, 2015-02, pp. 1–2 (cit. on p. 9).

[53] NHTSA’s National Center for Statistics and Analysis. Alcohol-Impaired Driving—Traffic Safety
Facts 2017 Data (DOT HS 812 630). Washington, DC: U.S. Department of Transportation,
2018-11, pp. 1–8 (cit. on p. 9).

[54] Centers for Disease Control and Prevention. Impaired Driving: Get the Facts. Accessed: 2019-
06-25. 2019-03. url: https://www.cdc.gov/motorvehiclesafety/impaired_driving/

impaired-drv_factsheet.html (visited on 2019-03-22) (cit. on p. 9).

[55] NHTSA’s National Center for Statistics and Analysis. A Brief Statistical Summary: Drug
Involvement of Fatally Injured Drivers—Traffic Safety Facts: Crash and Stats (DOT HS 811
415). Washington, DC: U.S. Department of Transportation, 2010-11, pp. 1–3 (cit. on p. 9).

[56] European Commission, Directorate-General Mobility and Transport, Unit C2-Road Safety.
Road safety in the European Union—Trends, Statistics and Main Challenges. Luxembourg:
Publications Office of the European Union, 2018-04, pp. 1–28 (cit. on p. 9).

[57] Office of Regulatory Analysis and Evaluation, NHTSA’s National Center for Statistics and
Analysis. Preliminary Regulatory Impact Analysis: FMVSS No. 150, Vehicle-to-Vehicle
Communication Technology for Light Vehicles. Washington, DC: U.S. Department of Trans-
portation, 2016-11, pp. 1–375 (cit. on p. 9).

139

https://www.economist.com/technology-quarterly/2012/08/30/look-no-hands
https://www.economist.com/technology-quarterly/2012/08/30/look-no-hands
https://www.who.int/en/news-room/fact-sheets/detail/road-traffic-injuries
https://www.cdc.gov/motorvehiclesafety/impaired_driving/impaired-drv_factsheet.html
https://www.cdc.gov/motorvehiclesafety/impaired_driving/impaired-drv_factsheet.html


Ph.D. Thesis - Shuo Feng McMaster University - Computational Science and Engineering

[58] Dominik Wee Michele Bertoncello. Ten ways autonomous driving could redefine the automotive
world. Accessed: 2019-06-25. 2015-06. url: https://www.mckinsey.com/industries/

automotive - and - assembly / our - insights / ten - ways - autonomous - driving - could -

redefine-the-automotive-world (visited on 2015-06-01) (cit. on p. 9).

[59] S. Haykin. Cognitive Dynamic Systems: Perception-Action Cycle, Radar and Radio. Cambridge
University Press, 2012 (cit. on pp. 10, 11, 17, 18, 29, 41, 72, 75, 100, 102).

[60] S. Haykin. “Cognitive dynamic systems [Point of view]”. In: Proc. IEEE 94.11 (2006-11),
pp. 1910–1911 (cit. on pp. 10, 41).

[61] S. Haykin. “Cognitive dynamic systems: Radar, control, and radio [Point of view]”. In:
Proceedings of the IEEE 100.7 (2012), pp. 2095–2103 (cit. on p. 10).

[62] S. Haykin and J. M. Fuster. “On Cognitive Dynamic Systems: Cognitive Neuroscience and
Engineering Learning From Each Other”. In: Proc. IEEE 102.4 (2014-04), pp. 608–628 (cit. on
pp. 10, 72).

[63] S. Haykin, J. M. Fuster, D. Findlay, and S. Feng. “Cognitive Risk Control for Physical Systems”.
In: IEEE Access 5 (2017-07), pp. 14664–14679. doi: 10.1109/ACCESS.2017.2726439 (cit. on
pp. 10, 12, 25, 31, 41, 56, 72, 86, 100, 109).

[64] S. Haykin. “Artificial Intelligence Integrated with Cognitive Dynamic System for Cyber-
security”. In: IEEE Trans. Cogn. Commun. Netw. (in press, 2019), pp. 1–20 (cit. on
p. 10).

[65] J. M. Fuster. Cortex and Mind: Unifying Cognition. Oxford University Press, 2003 (cit. on
pp. 10, 41, 72).

[66] J. M. Fuster. “Prefrontal Cortex in Decision-Making: The Perception-Action Cycle”. In:
Decision Neuroscience. Academic Press, 2017, pp. 95–105 (cit. on pp. 10, 73).

[67] Joaquin M Fuster. Cortical Memory. Accessed: 2019-06-25. 2007-04. url: http://www.

scholarpedia.org/article/Cortical_memory#Executive_Memory (visited on 2007-04-16)
(cit. on pp. 11, 14).

[68] J. Kim, J. Lee, J. Kim, and J. Yun. “M2M Service Platforms: Survey, Issues, and Enabling
Technologies”. In: IEEE Commun. Surveys Tuts. 16.1 (2014-First), pp. 61–76 (cit. on p. 12).

[69] CP Robert. The Bayesian Choice. Springer-Verlag, New York, 2001 (cit. on p. 12).

[70] Y. C. Ho and R. C. K. Lee. “A Bayesian Approach to Problems in Stochastic Estimation and
Control”. In: IEEE Transactions on Automatic Control AC-9 (1964-10), pp. 333–339 (cit. on
p. 12).

[71] S. Haykin. Neural Networks and Learning Machines. 3rd edition. Prentice-Hall, 2009 (cit. on
pp. 12, 18, 46, 47, 58, 84, 106, 114, 122).

[72] Joaquin Fuster. The Prefrontal Cortex. Academic Press, 2015 (cit. on p. 13).

[73] Goren Gordon, David M Kaplan, Benjamin Lankow, et al. “Toward an integrated approach
to perception and action: Conference report and future directions”. In: Frontiers in Systems
Neuroscience 5 (2011-04), pp. 1–6 (cit. on p. 13).

140

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/ten-ways-autonomous-driving-could-redefine-the-automotive-world
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/ten-ways-autonomous-driving-could-redefine-the-automotive-world
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/ten-ways-autonomous-driving-could-redefine-the-automotive-world
https://doi.org/10.1109/ACCESS.2017.2726439
http://www.scholarpedia.org/article/Cortical_memory#Executive_Memory
http://www.scholarpedia.org/article/Cortical_memory#Executive_Memory


McMaster University - Computational Science and Engineering Ph.D. Thesis - Shuo Feng

[74] Daniel Y Little and Friedrich T Sommer. “Learning and exploration in action-perception
loops”. In: Frontiers in Neural Circuits (2013-03), pp. 1–19 (cit. on p. 13).

[75] Claude Elwood Shannon. “A mathematical theory of communication”. In: Bell System
Technical Journal 27.3 (1948), pp. 379–423 (cit. on p. 13).

[76] Thomas M Cover and Joy A Thomas. Elements of Information Theory. John Wiley & Sons,
2012 (cit. on pp. 13, 47).

[77] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. 2nd
edition. MIT Press Cambridge, 2018 (cit. on pp. 13, 50, 52, 57, 79, 120).

[78] Earl K Miller and Jonathan D Cohen. “An integrative theory of prefrontal cortex function”.
In: Annual Review of Neuroscience 24.1 (2001), pp. 167–202 (cit. on p. 14).

[79] S. Haykin. “The Cognitive Dynamic System for Risk Control [Point of View]”. In: Proceedings
of the IEEE 105.8 (2017-08), pp. 1470–1473 (cit. on p. 14).

[80] Joaquin M Fuster. “Network memory”. In: Trends in Neurosciences 20.10 (1997), pp. 451–459
(cit. on p. 14).

[81] Joaquin M Fuster. “Prefrontal neurons in networks of executive memory”. In: Brain Research
Bulletin 52.5 (2000), pp. 331–336 (cit. on p. 14).

[82] J. M. Fuster. “The Prefrontal Cortex Makes the Brain a Preadaptive System”. In: Proc.
IEEE 102.4 (2014-04), pp. 417–426. issn: 0018-9219. doi: 10.1109/JPROC.2014.2306250

(cit. on pp. 15, 25, 53, 100, 115).

[83] S. Haykin. “Cognitive radio: Brain-empowered wireless communications”. In: IEEE J. Sel.
Areas Commun. 23.2 (2005-02), pp. 201–220 (cit. on pp. 16, 17, 41).

[84] S. Haykin. “Cognitive radar: A way of the future”. In: IEEE Signal Process. Mag. 23.1
(2006-01), pp. 30–40 (cit. on pp. 16–18, 41).

[85] J. Mitola and G. Q. Maguire. “Cognitive radio: Making software radios more personal”. In:
IEEE Pers. Commun. 6.4 (1999-08), pp. 13–18 (cit. on p. 17).

[86] Joseph Mitola. “Cognitive Radio: An Integrated Agent Architecture for Software Defined
Radio”. In: Ph. D. Dissertation, Royal Institute of Technology (KTH) (2000) (cit. on p. 17).

[87] Ian F Akyildiz, Won-Yeol Lee, Mehmet C Vuran, and Shantidev Mohanty. “NeXt genera-
tion/dynamic spectrum access/cognitive radio wireless networks: A survey”. In: Computer
Networks 50.13 (2006-09), pp. 2127–2159 (cit. on p. 17).

[88] Y. Liang, K. Chen, G. Y. Li, and P. Mahonen. “Cognitive radio networking and commu-
nications: An overview”. In: IEEE Transactions on Vehicular Technology 60.7 (2011-09),
pp. 3386–3407 (cit. on p. 17).

[89] Q. Wu, G. Ding, J. Wang, and Y. D. Yao. “Spatial-Temporal Opportunity Detection for
Spectrum-Heterogeneous Cognitive Radio Networks: Two-Dimensional Sensing”. In: IEEE
Trans. Wireless Commun. 12.2 (2013-02), pp. 516–526 (cit. on pp. 17, 41).

141

https://doi.org/10.1109/JPROC.2014.2306250


Ph.D. Thesis - Shuo Feng McMaster University - Computational Science and Engineering

[90] Y. Xu, A. Anpalagan, Q. Wu, et al. “Decision-Theoretic Distributed Channel Selection for
Opportunistic Spectrum Access: Strategies, Challenges and Solutions”. In: IEEE Commun.
Surveys Tuts. 15.4 (2013-Fourth), pp. 1689–1713 (cit. on p. 17).

[91] A. Ali and W. Hamouda. “Advances on Spectrum Sensing for Cognitive Radio Networks:
Theory and Applications”. In: IEEE Communications Surveys Tutorials 19.2 (2017-Sec-
ondquarter), pp. 1277–1304 (cit. on p. 17).

[92] M. El Tanab and W. Hamouda. “Resource Allocation for Underlay Cognitive Radio Networks:
A Survey”. In: IEEE Communications Surveys Tutorials 19.2 (2017-Secondquarter), pp. 1249–
1276 (cit. on p. 17).

[93] S. Haykin, D. J. Thomson, and J. H. Reed. “Spectrum Sensing for Cognitive Radio”. In:
Proceedings of the IEEE 97.5 (2009-05), pp. 849–877 (cit. on p. 17).

[94] P. Setoodeh and S. Haykin. “Robust transmit power control for cognitive radio”. In: Proc.
IEEE 97.5 (2009-05), pp. 915–939 (cit. on p. 17).

[95] F. Khozeimeh and S. Haykin. “Brain-Inspired Dynamic Spectrum Management for Cognitive
Radio Ad Hoc Networks”. In: IEEE Transactions on Wireless Communications 11.10 (2012-10),
pp. 3509–3517 (cit. on p. 17).

[96] S. Haykin and P. Setoodeh. “Cognitive radio networks: The spectrum supply chain paradigm”.
In: IEEE Transactions on Cognitive Communications and Networking 1.1 (2015), pp. 3–28
(cit. on p. 17).

[97] S. Haykin, P. Setoodeh, S. Feng, and D. Findlay. “Cognitive Dynamic System as the Brain of
Complex Networks”. In: IEEE Journal on Selected Areas in Communications 34.10 (2016-10),
pp. 2791–2800 (cit. on p. 17).

[98] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan. Estimation with applications
to tracking and navigation: Theory algorithms and software. John Wiley & Sons, 2004 (cit. on
p. 18).

[99] M. S. Greco, F. Gini, P. Stinco, and K. Bell. “Cognitive Radars: On the Road to Reality:
Progress Thus Far and Possibilities for the Future”. In: IEEE Signal Processing Magazine
35.4 (2018-07), pp. 112–125 (cit. on p. 18).

[100] P. Stinco, M. S. Greco, F. Gini, and B. Himed. “ComRadE: Cognitive Passive Tracking
in Symbiotic IEEE 802.22 Systems”. In: IEEE Transactions on Aerospace and Electronic
Systems 53.2 (2017-04), pp. 1023–1034 (cit. on p. 18).

[101] S. Haykin, A. Zia, Y. Xue, and I. Arasaratnam. “Control theoretic approach to tracking
radar: First step towards cognition”. In: Digital Signal Processing 21.5 (2011-09), pp. 576–585
(cit. on p. 18).

[102] S. Haykin, M. Fatemi, P. Setoodeh, and Y. Xue. “Cognitive control”. In: Proc. IEEE 100.12
(2012-12), pp. 3156–3169 (cit. on pp. 18, 79).

142



McMaster University - Computational Science and Engineering Ph.D. Thesis - Shuo Feng

[103] S. Haykin, Y. Xue, and P. Setoodeh. “Cognitive Radar: Step Toward Bridging the Gap
Between Neuroscience and Engineering”. In: Proc. IEEE 100.11 (2012-11), pp. 3102–3130.
issn: 0018-9219. doi: 10.1109/JPROC.2012.2203089 (cit. on pp. 18, 42, 51).

[104] Nobuo Suga. “Cortical computational maps for auditory imaging”. In: Neural Networks 3.1
(1990), pp. 3–21 (cit. on p. 18).

[105] Jeanette A Thomas, Cynthia F Moss, and Marianne Vater. Echolocation in bats and dolphins.
University of Chicago Press, 2004 (cit. on p. 18).

[106] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista, andMichele Zorzi. “Internet
of things for smart cities”. In: IEEE Internet of Things Journal 1.1 (2014-02), pp. 22–32
(cit. on p. 25).

[107] J. Contreras-Castillo, S. Zeadally, and J. A. Guerrero-Ibañez. “Internet of Vehicles: Ar-
chitecture, Protocols, and Security”. In: IEEE Internet of Things Journal 5.5 (2018-10),
pp. 3701–3709 (cit. on p. 25).

[108] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli. “A Survey of Motion Planning
and Control Techniques for Self-Driving Urban Vehicles”. In: IEEE Trans. Intell. Veh. 1.1
(2016-03), pp. 33–55. issn: 2379-8858. doi: 10.1109/TIV.2016.2578706 (cit. on pp. 25,
41).

[109] C. Bila, F. Sivrikaya, M. A. Khan, and S. Albayrak. “Vehicles of the Future: A Survey of
Research on Safety Issues”. In: IEEE Trans. Intell. Transp. Syst. 18.5 (2017-05), pp. 1046–
1065. issn: 1524-9050. doi: 10.1109/TITS.2016.2600300 (cit. on pp. 25, 41).

[110] Boyang Li, Mithat C Kisacikoglu, Chen Liu, Navjot Singh, and Melike Erol-Kantarci. “Big
data analytics for electric vehicle integration in green smart cities”. In: IEEE Communications
Magazine 55.11 (2017-11), pp. 19–25 (cit. on p. 25).

[111] Canadian Automated Vehicles Centre of Excellence [CAVCOE]. “Preparing for Autonomous
Vehicles in Canada: A White Paper Prepared for the Government of Canada”. In: (2015-12)
(cit. on p. 25).

[112] G. Ding, Q. Wu, L. Zhang, Y. Lin, T. A. Tsiftsis, and Y. D. Yao. “An amateur drone
surveillance system based on the cognitive Internet of Things”. In: IEEE Commun. Mag. 56.1
(2018-01), pp. 29–35 (cit. on pp. 26, 41, 71, 99).

[113] Luliang Jia, Yuhua Xu, Youming Sun, Shuo Feng, and Alagan Anpalagan. “Stackelberg game
approaches for anti-jamming defence in wireless networks”. In: IEEE Wireless Communications
25.6 (2018-12), pp. 120–128 (cit. on p. 26).

[114] S. Karnouskos and F. Kerschbaum. “Privacy and Integrity Considerations in Hyperconnected
Autonomous Vehicles”. In: Proc. IEEE 106.1 (2018-01), pp. 160–170 (cit. on pp. 26, 42).

[115] Nikos Komninos, Eleni Philippou, and Andreas Pitsillides. “Survey in smart grid and smart
home security: Issues, challenges and countermeasures”. In: IEEE Communications Surveys
& Tutorials 16.4 (2014-04), pp. 1933–1954 (cit. on p. 27).

143

https://doi.org/10.1109/JPROC.2012.2203089
https://doi.org/10.1109/TIV.2016.2578706
https://doi.org/10.1109/TITS.2016.2600300


Ph.D. Thesis - Shuo Feng McMaster University - Computational Science and Engineering

[116] S. Feng and S. Haykin. “Cognitive Risk Control for Transmit-Waveform Selection in Vehicular
Radar Systems”. In: IEEE Transactions on Vehicular Technology 67.10 (2018-10), pp. 9542–
9556 (cit. on pp. 33, 72, 80, 100, 103, 120).

[117] T. J. O’Shea, K. Karra, and T. C. Clancy. “Learning to communicate: Channel auto-encoders,
domain specific regularizers, and attention”. In: Proc. IEEE ISSPIT (2016-12), pp. 223–228
(cit. on p. 41).

[118] Timothy J. O’Shea and T. Charles Clancy. “Deep reinforcement learning radio control
and signal detection with KeRLym, a Gym RL agent”. In: arXiv (2016). url: http:

//arxiv.org/abs/1605.09221 (cit. on p. 41).

[119] Q. Wu et al. “Cognitive Internet of Things: A new paradigm beyond connection”. In: IEEE
Internet Things J. 1.2 (2014-04), pp. 129–143 (cit. on pp. 41, 99).

[120] M. Chen, M. Mozaffari, W. Saad, C. Yin, M. Debbah, and C. S. Hong. “Caching in the Sky:
Proactive Deployment of Cache-Enabled Unmanned Aerial Vehicles for Optimized Quality-
of-Experience”. In: IEEE J. Sel. Areas Commun. 35.5 (2017-05), pp. 1046–1061 (cit. on
p. 41).

[121] Mingzhe Chen, Ursula Challita, Walid Saad, Changchuan Yin, and Merouane Debbah. “Ma-
chine Learning for Wireless Networks with Artificial Intelligence: A Tutorial on Neural
Networks”. In: arXiv (2017). url: http://arxiv.org/abs/1710.02913 (cit. on p. 41).

[122] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser. “Simultaneous Localization and Mapping:
A Survey of Current Trends in Autonomous Driving”. In: IEEE Trans. Intell. Veh. 2.3
(2017-09), pp. 194–220. issn: 2379-8858. doi: 10.1109/TIV.2017.2749181 (cit. on pp. 41,
71).

[123] M. Bojarski et al. “End to End Learning for Self-Driving Cars”. In: arXiv (2016). url:
http://arxiv.org/abs/1604.07316 (cit. on p. 41).

[124] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo. “Development of autonomous car—Part II:
A case study on the implementation of an autonomous driving system based on distributed
architecture”. In: IEEE Trans. Ind. Electron. 62.8 (2015-08), pp. 5119–5132 (cit. on p. 41).

[125] Simone Pettigrew. “Why public health should embrace the autonomous car”. In: Aust. N. Z.
J. Public Health 41.1 (2017-02), pp. 5–7 (cit. on p. 41).

[126] Daniel Watzenig and Martin Horn. Automated Driving: Safer and More Efficient Future
Driving. Springer, 2017 (cit. on p. 42).

[127] S. M. Patole, M. Torlak, D. Wang, and M. Ali. “Automotive radars: A review of signal
processing techniques”. In: IEEE Signal Process. Mag. 34.2 (2017-03), pp. 22–35. issn:
1053-5888. doi: 10.1109/MSP.2016.2628914 (cit. on p. 42).

[128] J. Hasch, E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt. “Millimeter-wave
technology for automotive radar sensors in the 77 GHz frequency band”. In: IEEE Trans.
Microw. Theory Techn. 60.3 (2012-03), pp. 845–860. issn: 0018-9480. doi: 10.1109/TMTT.

2011.2178427 (cit. on p. 42).

144

http://arxiv.org/abs/1605.09221
http://arxiv.org/abs/1605.09221
http://arxiv.org/abs/1710.02913
https://doi.org/10.1109/TIV.2017.2749181
http://arxiv.org/abs/1604.07316
https://doi.org/10.1109/MSP.2016.2628914
https://doi.org/10.1109/TMTT.2011.2178427
https://doi.org/10.1109/TMTT.2011.2178427


McMaster University - Computational Science and Engineering Ph.D. Thesis - Shuo Feng

[129] Paul J TH Venhovens and Karl Naab. “Vehicle dynamics estimation using Kalman filters”.
In: Vehicle Syst. Dyn. 32.2–3 (1999-02), pp. 171–184 (cit. on p. 43).

[130] Moustapha Doumiati, Ali Charara, Alessandro Victorino, and Daniel Lechner. Vehicle
Dynamics Estimation using Kalman Filtering: Experimental Validation. John Wiley & Sons,
2012 (cit. on p. 43).

[131] D. J. Kershaw and R. J. Evans. “Optimal waveform selection for tracking systems”. In: IEEE
Trans. Inf. Theory 40.5 (1994-09), pp. 1536–1550. issn: 0018-9448. doi: 10.1109/18.

333866 (cit. on pp. 45, 104).

[132] Chris Chatfield. Introduction to Multivariate Analysis. Routledge, 2018 (cit. on p. 47).

[133] M. Fatemi and S. Haykin. “Cognitive control: Theory and application”. In: IEEE Access 2
(2014-06), pp. 698–710 (cit. on pp. 47, 48, 50, 57).

[134] Marc C Kennedy and Anthony O’Hagan. “Bayesian calibration of computer models”. In: J.
Royal Stat. Soc. Series B Stat. Methodol. 63.3 (2001-01), pp. 425–464 (cit. on p. 48).

[135] Sundeep Samson, James A Reneke, and Margaret M Wiecek. “A review of different perspectives
on uncertainty and risk and an alternative modeling paradigm”. In: Reliab. Eng. Syst. Safety
94.2 (2009-02), pp. 558–567 (cit. on p. 49).

[136] S. Theodoridis and K. Koutroumbas. Pattern Recognition. 4th edition. Elsevier Science, 2008.
isbn: 9780080949123 (cit. on p. 52).

[137] H. Menouar, I. Guvenc, K. Akkaya, A. S. Uluagac, A. Kadri, and A. Tuncer. “UAV-Enabled
Intelligent Transportation Systems for the Smart City: Applications and Challenges”. In:
IEEE Commun. Mag. 55.3 (2017-03), pp. 22–28 (cit. on p. 71).

[138] N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. Zhuang, and X. Shen. “Software Defined
Space-Air-Ground Integrated Vehicular Networks: Challenges and Solutions”. In: IEEE
Commun. Mag. 55.7 (2017-07), pp. 101–109 (cit. on p. 71).

[139] SAE International. Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle
Automated Driving Systems. SAE Standard J3016, 2018, pp. 1–35. doi: DOI:10.4271/

J3016_201401 (cit. on pp. 71, 99).

[140] W. Shi, H. Zhou, J. Li, W. Xu, N. Zhang, and X. Shen. “Drone Assisted Vehicular Networks:
Architecture, Challenges and Opportunities”. In: IEEE Network 32.3 (2018-05), pp. 130–137
(cit. on p. 71).

[141] IEEE. “IEEE Standard for Local and Metropolitan Area Networks - Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6:
Wireless Access in Vehicular Environments”. In: IEEE Std 802.11p-2010 (2010-07), pp. 1–51
(cit. on pp. 71, 87).

[142] John B Kenney. “Dedicated short-range communications (DSRC) standards in the United
States”. In: Proc. IEEE 99.7 (2011-07), pp. 1162–1182 (cit. on pp. 71, 122).

145

https://doi.org/10.1109/18.333866
https://doi.org/10.1109/18.333866
https://doi.org/DOI: 10.4271/J3016_201401
https://doi.org/DOI: 10.4271/J3016_201401


Ph.D. Thesis - Shuo Feng McMaster University - Computational Science and Engineering

[143] 3GPP. “Technical Specification Group Radio Access Network: Study on LTE-based V2X
Services (Release 14)”. In: 3GPP Technical Report, TR 36.885 V14.0.0 (2010-07), pp. 1–217
(cit. on p. 71).

[144] 3GPP. “Technical Specification Group Services and System Aspects: Study on enhancement
of 3GPP Support for 5G V2X Services (Release 16)”. In: 3GPP Technical Report, TR 22.886
V16.0.0 (2018-06), pp. 1–67 (cit. on p. 71).

[145] C. Bila, F. Sivrikaya, M. A. Khan, and S. Albayrak. “Vehicles of the Future: A Survey of
Research on Safety Issues”. In: IEEE Trans. Intell. Transp. Syst. 18.5 (2017-05), pp. 1046–
1065 (cit. on p. 71).

[146] O. Puñal, C. Pereira, A. Aguiar, and J. Gross. “Experimental Characterization and Modeling
of RF Jamming Attacks on VANETs”. In: IEEE Trans. Veh. Technol. 64.2 (2015-02),
pp. 524–540 (cit. on p. 71).

[147] D. Yang, G. Xue, J. Zhang, A. Richa, and X. Fang. “Coping with a Smart Jammer in
Wireless Networks: A Stackelberg Game Approach”. In: IEEE Trans. Wireless Commun.
12.8 (2013-08), pp. 4038–4047 (cit. on pp. 72, 86).

[148] S. D’Oro, E. Ekici, and S. Palazzo. “Optimal Power Allocation and Scheduling Under Jamming
Attacks”. In: IEEE/ACM Trans. Netw. 25.3 (2017-06), pp. 1310–1323 (cit. on pp. 72, 86).

[149] X. Liu, Y. Xu, L. Jia, Q. Wu, and A. Anpalagan. “Anti-Jamming Communications Using
Spectrum Waterfall: A Deep Reinforcement Learning Approach”. In: IEEE Commun. Lett.
22.5 (2018-05), pp. 998–1001 (cit. on pp. 72, 87).

[150] P. Zhou and T. Jiang. “Toward Optimal Adaptive Wireless Communications in Unknown
Environments”. In: IEEE Trans. Wireless Commun. 15.5 (2016-05), pp. 3655–3667 (cit. on
pp. 72, 87).

[151] L. Jia, Y. Xu, Y. Sun, S. Feng, L. Yu, and A. Anpalagan. “A Multi-Domain Anti-Jamming
Defense Scheme in Heterogeneous Wireless Networks”. In: IEEE Access 6 (2018-06), pp. 40177–
40188 (cit. on pp. 72, 83, 87, 102, 122).

[152] Liang Xiao, Yan Chen, W Sabrina Lin, and KJ Ray Liu. “Indirect reciprocity security game
for large-scale wireless networks”. In: IEEE Trans. Inf. Forensics Security 7.4 (2012-08),
pp. 1368–1380 (cit. on p. 72).

[153] Nan Zhang, Wei Yu, Xinwen Fu, and Sajal K Das. “Maintaining defender’s reputation in
anomaly detection against insider attacks”. In: IEEE Trans. Syst. Man, Cybern. B, Cybern.
40.3 (2010-06), pp. 597–611 (cit. on p. 72).

[154] A. Benslimane and H. Nguyen-Minh. “Jamming Attack Model and Detection Method for
Beacons Under Multichannel Operation in Vehicular Networks”. In: IEEE Trans. Veh.
Technol. 66.7 (2017-07), pp. 6475–6488 (cit. on pp. 72, 100).

[155] H. Sedjelmaci, S. M. Senouci, and N. Ansari. “Intrusion Detection and Ejection Framework
Against Lethal Attacks in UAV-Aided Networks: A Bayesian Game-Theoretic Methodology”.
In: IEEE Trans. Intell. Transp. Syst. 18.5 (2017-05), pp. 1143–1153 (cit. on p. 72).

146



McMaster University - Computational Science and Engineering Ph.D. Thesis - Shuo Feng

[156] I. K. Azogu, M. T. Ferreira, J. A. Larcom, and H. Liu. “A new anti-jamming strategy for
VANET metrics-directed security defense”. In: IEEE GLOBECOM. 2013-12, pp. 1344–1349
(cit. on p. 72).

[157] P. Gu, C. Hua, R. Khatoun, Y. Wu, and A. Serhrouchni. “Cooperative Anti-Jamming Relaying
for Control Channel Jamming in Vehicular Networks”. In: IEEE GLOBECOM. 2017-12,
pp. 1–6 (cit. on p. 72).

[158] X. Lu, D. Xu, L. Xiao, L. Wang, and W. Zhuang. “Anti-Jamming Communication Game for
UAV-Aided VANETs”. In: IEEE GLOBECOM. 2017-12, pp. 1–6 (cit. on p. 72).

[159] L. Xiao, X. Lu, D. Xu, Y. Tang, L. Wang, and W. Zhuang. “UAV Relay in VANETs
Against Smart Jamming With Reinforcement Learning”. In: IEEE Trans. Veh. Technol. 67.5
(2018-05), pp. 4087–4097 (cit. on p. 72).

[160] Y. Xu et al. “A One-Leader Multi-Follower Bayesian-Stackelberg Game for Anti-Jamming
Transmission in UAV Communication Networks”. In: IEEE Access 6 (2018-04), pp. 21697–
21709 (cit. on pp. 72, 86).

[161] Hua Qin, Yang Peng, and Wensheng Zhang. “Vehicles on RFID: Error-cognitive vehicle
localization in GPS-less environments”. In: IEEE Trans. Veh. Technol. 66.11 (2017-11),
pp. 9943–9957 (cit. on p. 75).

[162] Nabil M Drawil, Haitham M Amar, and Otman A Basir. “GPS localization accuracy classifi-
cation: A context-based approach”. In: IEEE Trans. Intell. Transp. Syst. 14.1 (2013-03),
pp. 262–273 (cit. on p. 75).

[163] Quoc Duy Vo and Pradipta De. “A survey of fingerprint-based outdoor localization”. In:
IEEE Commun. Surveys Tuts. 18.1 (2016-01), pp. 491–506 (cit. on p. 75).

[164] Hui Ma, Rajiv Vijayakumar, Sumit Roy, and Jing Zhu. “Optimizing 802.11 wireless mesh
networks based on physical carrier sensing”. In: IEEE/ACM Trans. Netw 17.5 (2009-10),
pp. 1550–1563 (cit. on pp. 76, 110).

[165] Dejun Yang, Guoliang Xue, Jin Zhang, Andrea Richa, and Xi Fang. “Coping with a smart
jammer in wireless networks: A Stackelberg game approach”. In: IEEE Trans. Wireless
Commun. 12.8 (2013-08), pp. 4038–4047 (cit. on p. 76).

[166] Yulong Zou, Jia Zhu, Liuqing Yang, Ying-Chang Liang, and Yu-Dong Yao. “Securing physical-
layer communications for cognitive radio networks”. In: IEEE Commun. Mag. 53.9 (2015-09),
pp. 48–54 (cit. on p. 76).

[167] C. F. Mecklenbrauker et al. “Vehicular Channel Characterization and Its Implications for
Wireless System Design and Performance”. In: Proc. IEEE 99.7 (2011-07), pp. 1189–1212
(cit. on p. 77).

[168] Christoph F Mecklenbrauker, Andreas F Molisch, Johan Karedal, Fredrik Tufvesson, Alexander
Paier, Laura Bernado, Thomas Zemen, Oliver Klemp, and Nicolai Czink. “Vehicular channel
characterization and its implications for wireless system design and performance”. In: Proc.
IEEE 99.7 (2011-07), pp. 1189–1212 (cit. on p. 77).

147



Ph.D. Thesis - Shuo Feng McMaster University - Computational Science and Engineering

[169] Lin Cheng, Benjamin E Henty, Daniel D Stancil, Fan Bai, and Priyantha Mudalige. “Mobile
vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz
dedicated short range communication (DSRC) frequency band”. In: IEEE J. Sel. Areas
Commun. 25.8 (2007-10), pp. 1501–1516 (cit. on p. 77).

[170] J. Kunisch and J. Pamp. “Wideband car-to-car radio channel measurements and model at 5.9
GHz”. In: IEEE VTC-Fall. 2008-09, pp. 1–5 (cit. on p. 77).

[171] J. Karedal, N. Czink, A. Paier, F. Tufvesson, and A. F. Molisch. “Path Loss Modeling
for Vehicle-to-Vehicle Communications”. In: IEEE Trans. Veh. Technol. 60.1 (2011-01),
pp. 323–328 (cit. on pp. 77, 87, 111, 122).

[172] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep Learning. MIT
Press Cambridge, 2016 (cit. on p. 80).

[173] Y. Xu, A. Anpalagan, Q. Wu, L. Shen, Z. Gao, and J. Wang. “Decision-Theoretic Distributed
Channel Selection for Opportunistic Spectrum Access: Strategies, Challenges and Solutions”.
In: IEEE Commun. Surveys Tuts. 15.4 (2013-Fourth Quarter), pp. 1689–1713 (cit. on pp. 81,
102).

[174] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the multiarmed
bandit problem”. In: Machine learning 47.2-3 (2002-05), pp. 235–256 (cit. on pp. 81, 83, 113).

[175] Jean-Yves Audibert, Remi Munos, and Csaba Szepesvari. “Exploration-exploitation Tradeoff
Using Variance Estimates in Multi-armed Bandits”. In: Theor. Comput. Sci. 410.19 (2009-04),
pp. 1876–1902 (cit. on pp. 82, 114).

[176] A. Bazzi, C. Campolo, B. M. Masini, A. Molinaro, A. Zanella, and A. O. Berthet. “Enhancing
Cooperative Driving in IEEE 802.11 Vehicular Networks Through Full-Duplex Radios”. In:
IEEE Trans. Wireless Commun. 17.4 (2018-04), pp. 2402–2416 (cit. on pp. 87, 122).

[177] F. J. Martín-Vega, B. Soret, M. C. Aguayo-Torres, I. Z. Kovács, and G. Gómez. “Geolocation-
Based Access for Vehicular Communications: Analysis and Optimization via Stochastic
Geometry”. In: IEEE Trans. Veh. Technol. 67.4 (2018-04), pp. 3069–3084 (cit. on p. 87).

[178] R. W. L. Coutinho, A. Boukerche, and A. A. F. Loureiro. “Design Guidelines for Information-
Centric Connected and Autonomous Vehicles”. In: IEEE Commun. Mag. 56.10 (2018-10),
pp. 85–91 (cit. on p. 99).

[179] J. Liu and J. Liu. “Intelligent and Connected Vehicles: Current Situation, Future Directions,
and Challenges”. In: IEEE Commun. Standards Mag. 2.3 (2018-09), pp. 59–65 (cit. on p. 99).

[180] A. Bhat, S. Aoki, and R. Rajkumar. “Tools and Methodologies for Autonomous Driving
Systems”. In: Proc. IEEE 106.9 (2018-09), pp. 1700–1716 (cit. on p. 99).

[181] R. Molina-Masegosa and J. Gozalvez. “LTE-V for Sidelink 5G V2X Vehicular Communications:
A New 5G Technology for Short-Range Vehicle-to-Everything Communications”. In: IEEE
Veh. Technol. Mag. 12.4 (2017-12), pp. 30–39 (cit. on p. 99).

148



McMaster University - Computational Science and Engineering Ph.D. Thesis - Shuo Feng

[182] K. P. Divakarla, A. Emadi, and S. Razavi. “A Cognitive Advanced Driver Assistance Systems
Architecture for Autonomous-Capable Electrified Vehicles”. In: IEEE Trans. Transport.
Electrific. 5.1 (2019-03), pp. 48–58 (cit. on p. 99).

[183] M. Park, S. Lee, C. Kwon, and S. Kim. “Design of Pedestrian Target Selection With Funnel
Map for Pedestrian AEB System”. In: IEEE Trans. Veh. Technol. 66.5 (2017-05), pp. 3597–
3609 (cit. on p. 99).

[184] G. Zhong, S. Niar, A. Prakash, and T. Mitra. “Design of Multiple-Target Tracking System
on Heterogeneous System-on-Chip Devices”. In: IEEE Trans. Veh. Technol. 65.6 (2016-06),
pp. 4802–4812 (cit. on p. 99).

[185] X. Wang, L. Xu, H. Sun, J. Xin, and N. Zheng. “On-Road Vehicle Detection and Tracking
Using MMW Radar and Monovision Fusion”. In: IEEE Trans. Intell. Transp. Syst. 17.7
(2016-07), pp. 2075–2084 (cit. on p. 99).

[186] S. Schwarz, T. Philosof, and M. Rupp. “Signal Processing Challenges in Cellular-Assisted
Vehicular Communications: Efforts and developments within 3GPP LTE and beyond”. In:
IEEE Signal Process. Mag. 34.2 (2017-03), pp. 47–59 (cit. on p. 99).

[187] S. Darbha, S. Konduri, and P. R. Pagilla. “Benefits of V2V Communication for Autonomous
and Connected Vehicles”. In: IEEE Trans. Intell. Transp. Syst. 20.5 (2019-05), pp. 1954–1963
(cit. on p. 99).

[188] P. Kumari, J. Choi, N. González-Prelcic, and R. W. Heath. “IEEE 802.11ad-Based Radar: An
Approach to Joint Vehicular Communication-Radar System”. In: IEEE Trans. Veh. Technol.
67.4 (2018-04), pp. 3012–3027 (cit. on p. 99).

[189] J. Mei, K. Zheng, L. Zhao, L. Lei, and X. Wang. “Joint Radio Resource Allocation and
Control for Vehicle Platooning in LTE-V2V Network”. In: IEEE Trans. Veh. Technol. 67.12
(2018-12), pp. 12218–12230 (cit. on p. 99).

[190] P. Kapoor, A. Vora, and K. Kang. “Detecting and Mitigating Spoofing Attack Against an
Automotive Radar”. In: IEEE VTC-Fall. 2018-08, pp. 1–6 (cit. on p. 100).

[191] C. Yang, L. Feng, H. Zhang, S. He, and Z. Shi. “A Novel Data Fusion Algorithm to Combat
False Data Injection Attacks in Networked Radar Systems”. In: IEEE Trans. Signal Inf.
Process. Netw. 4.1 (2018-03), pp. 125–136 (cit. on p. 100).

[192] M. Amoozadeh, A. Raghuramu, C. Chuah, D. Ghosal, H. M. Zhang, J. Rowe, and K. Levitt.
“Security vulnerabilities of connected vehicle streams and their impact on cooperative driving”.
In: IEEE Commun. Mag. 53.6 (2015-06), pp. 126–132 (cit. on p. 100).

[193] S. Feng and S. Haykin. “Cognitive Risk Control for Anti-Jamming V2V Communication in
Autonomous Vehicle Networks”. In: IEEE Trans. Veh. Technol. (accepted, 2019), pp. 1–15
(cit. on pp. 100, 110, 121).

[194] I. Arasaratnam and S. Haykin. “Cubature Kalman Filters”. In: IEEE Trans. Autom. Control
54.6 (2009-06), pp. 1254–1269 (cit. on pp. 101, 103, 106).

149



Ph.D. Thesis - Shuo Feng McMaster University - Computational Science and Engineering

[195] S. Feng and S. Haykin. “V2V Communication-Assisted Transmit-Waveform Selection for
Cognitive Vehicular Radars”. In: IEEE CCECE. 2019-05, pp. 1–6 (cit. on pp. 101, 103).

[196] S. Feng and S. Haykin. “Anti-Jamming V2V Communication in an Integrated UAV-CAV
Network with Hybrid Attackers”. In: IEEE ICC. 2019-05, pp. 1–6 (cit. on pp. 101, 110).

[197] J. Georgy, A. Noureldin, M. J. Korenberg, and M. M. Bayoumi. “Modeling the Stochastic
Drift of a MEMS-Based Gyroscope in Gyro/Odometer/GPS Integrated Navigation”. In: IEEE
Trans. Intell. Transp. Syst. 11.4 (2010-12), pp. 856–872 (cit. on p. 106).

[198] J Leo Van Hemmen and Terrence J Sejnowski. 23 Problems in Systems Neuroscience. Oxford
University Press, 2005 (cit. on p. 112).

[199] E. Salahat, A. Kulaib, N. Ali, and R. Shubair. “Exploring symmetry in wireless propagation
channels”. In: IEEE EuCNC. 2017-06, pp. 1–6 (cit. on p. 115).

[200] Xuyu Qian, Ha Nam Nguyen, Mingxi M Song, Christopher Hadiono, Sarah C Ogden, Christy
Hammack, Bing Yao, Gregory R Hamersky, Fadi Jacob, Chun Zhong, et al. “Brain-region-
specific organoids using mini-bioreactors for modeling ZIKV exposure”. In: Cell 165.5
(2016-05), pp. 1238–1254 (cit. on p. 133).

[201] Daniel J Felleman and DC Essen Van. “Distributed hierarchical processing in the primate
cerebral cortex”. In: Cerebral Cortex (New York, NY: 1991) 1.1 (1991-01), pp. 1–47 (cit. on
p. 133).

150


	Introduction
	Background on Connected and Autonomous Vehicles (CAVs)
	Basic Concept
	Connected Feature
	Autonomous Feature
	Recent Industrial Activities
	Advanced Driver-Assistance Systems (ADAS)
	Benefits and Concerns

	Research Tool of Cognitive Dynamic Systems (CDS)
	Basic Concept
	Five Principles
	Generic Structure
	Regular PAC vs. Complex PAC
	Engineering Applications

	Research Motivation and Objectives
	Research Outline
	Thesis Organization

	Cognitive Dynamic System for Future RACE Vehicles in Smart Cities: A Risk Control Perspective
	Preceding Introduction
	Introduction
	Safety, Security, and Privacy in CAV Networks
	The Cognitive Dynamic System as the Supervisor of RACE Vehicles
	Cognitive Risk Control in the Presence of Uncertain Threats
	Future Directions and Research Challenges
	Conclusion

	Cognitive Risk Control for Transmit-Waveform Selection in Vehicular Radar Systems
	Preceding Introduction
	Introduction
	Cognitive Dynamic System and Cognitive Risk Control
	Self-Driving Cars and Vehicular Radar Systems
	Contribution and Organization

	A Simple Vehicle-Following Scenario
	Architectural Structure of Cognitive Risk Control Tailored for Cognitive Vehicular Radar
	Perceptor
	Feedback Channel and Task-Switch Control
	Executive

	Proposed Algorithm for Transmit-Waveform Selection in Cognitive Vehicular Radar
	Simulation Results
	Radar Configurations and Parameter Settings
	Evaluation Metric and Performance Comparison

	Conclusion

	Cognitive Risk Control for Anti-Jamming V2V Communications in Autonomous Vehicle Networks
	Preceding Introduction
	Introduction
	Connected and Autonomous Vehicles
	Jamming Attack and Its Countermeasures
	Cognitive Dynamic System and Cognitive Risk Control
	Contribution and Organization

	Underlying System Model
	Network Scenario
	Perception-Action Cycle

	Cognitive Risk Control for Anti-Jamming V2V Communications: The Perceptor
	Environmental Sensing and Modeling
	Interference Formulation

	Cognitive Risk Control for Anti-Jamming V2V Communications: The Executive
	Reinforcement Learning
	Planner and Policy
	Task-Switch Control
	Multi-Armed Bandit
	Executive Memory and Classifier

	Proposed Algorithm and Implementation Process
	Simulation Results
	Parameter Settings
	Performance Comparison

	Conclusion

	Coordinated Cognitive Risk Control for Bridging Vehicular Radar and Communication Systems
	Preceding Introduction
	Introduction
	Vehicular Radar and Communication
	Cognitive Dynamic System and Cognitive Risk Control
	Contribution and Organization

	System Model
	Network Scenario
	Coordinated Design

	System I: Cognitive Vehicular Radar
	Perceptor with Nonlinear and Expandable Formulation
	Feedback Channel and Task-Switch Control-A (TSC-A)
	Executive for Waveform Selection and Possible Reselection

	System II: Cognitive Vehicular Communication
	Environmental Sensing and Interference Formulation
	Power Selection and Task-Switch Control-B (TSC-B)
	Possible Channel Selection and Power Reselection

	The Mediator: Coordinated Cognitive Risk Control (C-CRC)
	The Effect of TSC-B on Cognitive Vehicular Radar
	The Effect of TSC-A on Cognitive Vehicular Communication

	Proposed Design and Implementation Process
	Simulation Results
	Parameter Settings
	Results and Discussions

	Conclusion

	Conclusion
	Contributions
	Contributions Made in Chapter 2
	Contributions Made in Chapter 3
	Contributions Made in Chapter 4
	Contributions Made in Chapter 5

	Limitations
	Network Scale is Small
	System Models are Simplified
	A Design Gap Remains

	Future Directions
	Extending to Large-Scale and Heterogeneous Networks
	Leveraging Recent Advances in Artificial Intelligence
	Upgrading to a Multi-Layered Hierarchical CDS



