
Randomized Computation Offloading Algorithms

for Mobile Cloud Computing

RANDOMIZED COMPUTATION OFFLOADING ALGORITHMS

FOR MOBILE CLOUD COMPUTING

BY

HALEH SHAHZAD, MSc.

a thesis

submitted to the department of electrical & computer engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

c© Copyright by Haleh Shahzad, September 2019

All Rights Reserved

Doctor of Philosophy (2019) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Randomized Computation Offloading Algorithms for Mo-

bile Cloud Computing

AUTHOR: Haleh Shahzad

MSc., (Electrical Engineering)

AmirKabir University of Technology, Tehran, Iran

SUPERVISOR: Dr. T. H. Szymanski

NUMBER OF PAGES: xv, 133

ii

To my love, Majid;

and To my loving parents, Ahmad Reza and Mah Monir

Lay Abstract

Many applications envisioned for mobile devices require intensive computing power

for application execution. Executing these computation intensive tasks on the mobile

device leads to large delays and requires substantial energy from the limited battery

storage on the device. Mobile Cloud Computing provides data processing and storage

in powerful and centralized computing platforms located in the cloud. Having access

to these cloud resources helps the mobile devices to run the application faster and

with less battery usage. Computation offloading is a technique by which some of the

tasks in a mobile application can be offloaded for execution on a remote server, so

that mobile energy use can be reduced. There are different parameters that can affect

the procedure of offloading and it is the responsibility of the mobile device to decide

which tasks from the application should be executed locally and which ones should be

executed remotely in order to reduce the energy consumption on the mobile device

and reduce the time delay of the computation. The algorithms that are designed

to make these decisions regarding the task execution location are called offloading

algorithms. The goal of this thesis is to design efficient offloading algorithms for

mobile cloud computing.

iv

Abstract

Computation offloading occurs when a mobile application arranges for tasks to be

executed remotely, rather than running them locally on the device itself. This mech-

anism can be used to reduce mobile device energy consumption, resulting in improved

battery lifetime. In this thesis, new algorithms that generate offloading decisions for

mobile device applications are presented. Randomization is the main technique that

is explored, where the algorithms iteratively improve an offloading decision vector by

generating random bit strings that represent the task offload decisions. If fragments

of these bit strings improve the performance, they are incorporated into the decision

vector in a process similar to genetic optimization. In the experiments reported in

this thesis, the proposed algorithm typically find good to excellent quality solutions,

with low computational overhead compared to existing algorithms. Furthermore, the

algorithms scale gracefully as the problem size grows, maintaining high computational

efficiency and good solution quality.

v

Acknowledgements

I would like to express my gratitude to my primary supervisor, Dr. Ted H. Szymanski,

for his support of my PhD research. I would also like to thank the members of my

supervisory committee, Dr. Dongmei Zhao and Dr. Terence D. Todd, for providing

constructive feedback and assistance throughout my research and the writing of my

thesis. I am especially grateful to Dr. Todd for being such a supportive advisor and

a wonderful mentor, and for giving me the confidence and encouragement to finish

my PhD. Your ethics, professionalism, kindness and your passion for your work have

greatly influenced me, and I hope that I can use them as my inspiration in my next

steps in life. Special thanks are also due to Dr. Timothy Davidson who has taken

over as my supervisor due to the illness of my primary supervisor. I’m very grateful

of your insight, critiques and support. Your vision, feedback and encouragement have

pushed this thesis far and are greatly appreciated.

I would also like to express my appreciation to Cheryl Gies, the graduate admin-

istrative assistant in the Department of Electrical and Computer Engineering, for her

continuous support.

I would, of course, like to thank my lovely parents, Ahmad Reza and Mah Monir,

for their unwavering belief in my abilities, their endless support and encouragement

through the highs and the lows of these years. Thank you for always believing in me

vi

and pushing me to try harder. To my wonderful brother, Hamed, who has always

been there for me with his continuous support and love.

Last, but certainly not least, my very special thanks to my loving husband, Majid,

who has been always a constant source of support and encouragement during the

challenges of my PhD journey. My dearest Majid, you were always there with me

through the toughest moments, giving advice, support and love. Thanks for putting

up with me through the hard times. Your sacrifices, your soothing words and your

big heart helped me face all the obstacles and continue with my work. Having you

by my side made me a stronger person and has propelled me forward.

vii

viii

Notation and Abbreviations

IoT Internet of Things

MEC Mobile Edge Computing

MCC Mobile Cloud Computing

AR Augmented Reality

ML Machine Learning

SDP Semidefinite Programming

SDR Semidefinite Relaxation

LC Local-Cloud

QCQP Quadratically Constrained Quadratic Program

CAP Computing Access Point

VM Virtual Machine

BFS Brute-Force Search

DVFS Dynamic Voltage and Frequency Scaling

DVS Dynamic Voltage Scaling

BPSO Binary Particle Swarm Optimization

DP Dynamic Programming

NE Nash Equilibrium

BS Base Station

GA Genetic Algorithm
ix

Contents

Lay Abstract iv

Abstract v

Acknowledgements vi

Notation and Abbreviations ix

1 Introduction 1

1.1 Computation Offloading . 1

1.2 Mobile Edge/Fog Computing . 2

1.3 Offloading for Mobile Applications 4

1.4 Thesis Outline . 6

1.5 Original Contributions . 7

2 Prior Work 9

2.1 Single-User Case . 9

2.2 Multi-User Case . 17

2.3 Summary . 21

x

3 Application Models 22

3.1 Different Types of Application Models 22

3.1.1 Parallel Model . 23

3.1.2 General Model . 24

3.2 Examples of Task Graphs . 28

3.2.1 Generation of Pseudo-random Graphs 33

3.3 Summary . 36

4 The DPH and DPR Algorithms 37

4.1 Problem Formulations for the Parallel Model 39

4.2 The DPH Algorithm . 43

4.2.1 Detailed Description of the DPH Algorithm 44

4.2.2 A Comparator Algorithm . 48

4.2.3 Simulation Results . 49

4.3 The DPR Algorithm . 55

4.3.1 Detailed Description of the DPR Algorithm 56

4.3.2 Simulation Results . 58

4.4 Summary . 64

5 Randomized Offloading Algorithms (ROA-V1 and ROA-V2) 65

5.1 Problem Formulations for the Parallel Model 67

5.1.1 Parallel Model with Energy and Time as the Objective 67

5.1.2 Parallel Model with an Energy Objective 68

5.2 Problem Formulations for the General Model 69

5.3 Motivation Based on Genetic Optimization 71

xi

5.4 The ROA-V1 Algorithm . 74

5.5 Time Complexity of ROA-V1 . 78

5.6 ROA-V1 Simulation Results for the Parallel Model 79

5.6.1 Algorithm Comparison . 80

5.6.2 Variable Work per Task . 82

5.6.3 Faster Cloud Servers . 83

5.7 ROA-V1 Simulation Results for the General Model 88

5.8 The ROA-V2 Algorithm . 88

5.8.1 ROA-V2 Simulation Results for the General Model 92

5.8.2 Time Complexity of ROA-V2 99

5.8.3 Preliminary Version of ROA-V2: ROA-V2.1 Algorithm 100

5.8.4 Preliminary Version of ROA-V2: ROA-V2.2 Algorithm 104

5.9 Summary . 105

6 Context-Aware Randomized Offloading Algorithm (CA-ROA) 106

6.1 Problem Formulations for General Model 106

6.2 The CA-ROA Algorithm . 108

6.3 Simulation Results for CA-ROA . 115

6.3.1 Simulation Results of CA-ROA for Model 1 117

6.3.2 Simulation Results of CA-ROA for Model 2 118

6.3.3 Simulation Results of CA-ROA for Model 3 118

6.4 Summary . 119

7 Conclusions 121

xii

List of Figures

1.1 Principal Architecture with the Presence of Fog, Edge and Cloud Servers 3

1.2 Main Tasks in a Face Recognition Application. Original Figure by Mao

et al. (2017a), Copyright c© 2017, IEEE 4

1.3 Main Tasks in an Augmented Reality Application. Original Figure by

Mao et al. (2017a), Copyright c© 2017, IEEE 5

3.1 Application Model for Parallel Tasks, Original Figure by Mao et al.

(2017a), Copyright c© 2017, IEEE . 24

3.2 Two Different Types of Task Graphs 26

3.3 Typical Topologies of Task Graphs, Original Figure by Mao et al.

(2017a), Copyright c© 2017, IEEE . 27

3.4 An Example of a Parallel Task Graph Based on the Parameters of

Chen et al. (2015) with S ′ = 10. Workload of Offloadable Tasks 1 to

10 = [39.75, 39.23, 44.56, 48.57, 19.70, 23.97, 47.07, 28.07, 53.57, 47.95]

Gcycles. Transfer Data Sizes in Mbytes. 29

3.5 QR Application Task Graph by Yang et al. (2013), Workload of Tasks

2 to 8 = [42.24, 68.64, 58.08, 26.4, 21.12, 15.84, 147.84] Mcycles, Copy-

right c© 2013, IEEE . 30

xiii

3.6 Application Task Graph by Deng et al. (2016). Workload (a) = [30,

25, 16, 32, 15, 37, 18, 3, 10] Mcycles, Workload (b)= [30, 25, 16, 32,

15, 37, 18, 20, 10] Mcycles, Workload (c)= [30, 25, 16, 32, 15, 37, 18,

3, 10] Mcycles and Transfer Data in Kbits, , Copyright c© 2016, IEEE 31

3.7 Task Graph with S = 23 by Zhang et al. (2012), Task CPU Cycles =

[0, 13.22, 51.02, 0.97, 0.53, 141.5, 0.09, 4.94, 0.01, 11.64, 0.46, 3.01,

2.48, 8.9, 0, 0, 6.65, 21.83, 10.23,3.06, 3.91, 0.82, 0] Mega Cycles and

Transfer Data in Kbytes, Copyright c© 2012, IEEE 32

3.8 Task Graph with S = 15 from Reference (Kao et al., 2017), Task CPU

Cycles = [10.5, 3, 1.2, 3, 2,10 , 5.5 , 5.5, 10, 3.3, 5, 3, 5, 10, 1] Mega

cycles and Transfer Data in Kbytes, Copyright c© 2017, IEEE 33

3.9 Task Graph with S = 8 by Tian et al. (2005), Transfer Data in Bits,

Task CPU Cycles = [278, 295, 325, 318, 328,310, 316, 280] Kilo Cycles,

Copyright c© 2005, IEEE . 34

3.10 Task Graph with S = 20 by Tang et al. (2018), Task CPU Cycles =

[4.09, 3.29, 8.54, 0.82, 4.94, 5.43 , 1.85, 3.72, 0.09, 4.05, 0.19, 2.11,

6.94, 4.81, 1.43, 2.5, 7.18, 1.55, 2.42, 4.95] Mega Cycles and , Transfer

Data in Kbytes, Copyright c© 2018, IEEE 34

4.1 Our System Model . 39

4.2 Table Filling Examples . 43

4.3 Comparison of Our Model and the Model of Chen et al. (2015) 49

4.4 The Total Cost of Different Methods versus Transmission Rate R

(Mbps). The results for the LC and Brute-Force methods overlap at

the scale of this plot . 52

xiv

4.5 The Total Cost of Different Methods versus β (J/bit) 53

4.6 The Total Cost of Different Methods versus ζ (J/s) 53

4.7 Total Cost vs Transmission Rate R (Mbps) for Different Methods when

POFF = 0.8 . 60

4.8 Total Cost vs Transmission Rate R (Mbps) for Different Methods when

POFF = R/θ . 61

4.9 Total Cost vs β (J/bit) for Different Methods. 61

4.10 Total Cost vs ζ (J/s) for Different Methods. 62

5.1 Comparison of Total Energy Consumption of the Application in the

All-Remote, All-Local, Brute-Force and ROA-V1 Methods for a Cloud

Server . 86

xv

Chapter 1

Introduction

1.1 Computation Offloading

The vision of Mobile Cloud/Edge Computing is to provide real time access to the

computation resources and storage that is available in the Internet cloud (Mao et al.,

2017b). Computation offloading is a technique by which some of the tasks in a mobile

application can be offloaded for execution on a remote server, so that mobile energy

use can be reduced (Li et al., 2001; Rong and Pedram, 2003). In order to do this,

Offloading Algorithms are needed to determine the place of execution for each task.

The main goals of the offloading algorithm are to: (a) minimize the overall energy

consumption of a mobile application, and (b) meet the execution time constraints

of the application’s computational tasks. As predicted by Meskar et al. (2017), in

the near future, over 50 percent of mobile data traffic will be used for cloud based

application support. For this reason, offloading algorithms are needed to efficiently

access this functionality. Unfortunately, the problem of partitioning a set of tasks

into two sets of locally-executed and remotely-executed tasks is, in general, NP-hard

1

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

(Gu et al., 2004).

The ability to offload a task from a mobile device to a remote server will depend

upon several external conditions including the instantaneous bandwidth and latency

in both the wireless access and cloud networks. As a result, there is an emphasis

in the literature on algorithms that typically produce good solutions in a reasonable

time frame (see Section 2.1).

1.2 Mobile Edge/Fog Computing

One of the main issues in mobile cloud computing is the delay associated with ac-

cessing cloud resources. The dual goals of minimizing energy use and execution time

therefore favour offloading tasks to nearby Edge or Fog servers, rather than to more

distant Cloud servers. This has led to the emerging concepts of Mobile Edge Com-

puting (MEC) and Fog Computing. Figure 1.1 shows the basic network architecture

with fog, edge and cloud servers. Edge/Fog computing will provide powerful compu-

tation and storage resources at the edge of future networks. These edge/fog servers

are beneficial for delay sensitive and real-time interactive applications, since they

are physically close to the user, typically within the same city and within tens of

kilometers, and sometimes significantly closer.

There are many applications where MEC can be utilized to enhance performance,

such as augmented reality, video acceleration, dynamic content delivery and connected

vehicles (Tang and He, 2018). The presence of edge-servers allows a mobile device

to avoid the traffic congestion of accessing remote cloud-servers through the Internet

(Al-Fuqaha et al., 2015). Considering Augmented Reality applications as an example,

it combines a person’s view of a real world object and the augmented content display.

2

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Figure 1.1: Principal Architecture with the Presence of Fog, Edge and Cloud Servers

Consider a visitor in an art gallery using an augmented reality application to display

the supplementary content of paintings when those paintings are recognized based on

images provided by the camera of the mobile device. By utilizing the MEC servers, the

latency of the recognition process and the synthesis of the display of the supplemental

content may be dramatically reduced. That will significantly improve the visitor’s

experience (Tang and He, 2018).

MEC typically refers to the base stations (BSs) as hosting the available offload

servers, while fog computing is a generalized form of mobile edge computing. In fog

computing, the type of servers is more broad, ranging from smart phones to set-top

boxes (Mao et al., 2017b). Tong et al. (2016) viewed the fog servers as geo-distributed

desktops or workstations that directly receive workload from mobile devices via wire-

less links. These fog servers are connected to the edge and cloud servers through the

Internet backbone, and work cooperatively in a hierarchical manner. If the workloads

3

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

that are received in any layer exceed its computational capacity, the excess can be

offloaded to the next layer (Tong et al., 2016).

1.3 Offloading for Mobile Applications

Several different classes of applications can benefit from computational offloading,

such as complex computer games, navigation systems, video surveillance systems,

and so on. Face recognition and augmented reality (AR) applications are two other

popular examples. Face recognition, as shown in Figure 1.2, typically consists of

five main tasks including image acquisition, face detection, pre-processing, feature

extraction, and classification. The image acquisition task needs to be executed at

the mobile device for supporting the user interface, while the other tasks could be

offloaded for cloud processing. These often require complex computations such as

signal processing and machine learning (ML) algorithms.

Figure 1.2: Main Tasks in a Face Recognition Application. Original Figure by Mao
et al. (2017a), Copyright c© 2017, IEEE

AR applications are able to combine data with physical reality and typically in-

clude five critical components as shown in Figure 1.3. These are called, the video

source (which obtains raw video frames from the mobile camera), a tracker (which

4

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

tracks the position of the user), a mapper (which builds a model of the environment),

an object recognizer (which identifies known objects in the environment), and a ren-

derer (which prepares the processed frame for display)(Mao et al., 2017b). Among

these components, the video source and renderer should be executed locally, while

the most computation-intensive components, i.e., the tracker, mapper and object

recognizer, can be offloaded for remote execution (Mao et al., 2017b).

Figure 1.3: Main Tasks in an Augmented Reality Application. Original Figure by
Mao et al. (2017a), Copyright c© 2017, IEEE

Computer chess is one of the most popular games in the world. A chessboard has

8× 8 = 64 positions, and each player controls 16 pieces at the beginning of the game.

According to Kumar and Lu (2010), chess is Markovian. Each piece may be in one

of the 64 possible locations, and needs 6 bits to represent the location. (Some pieces

have restrictions on their moves, e.g., a bishop can move to only half of the board,

and has only 32 possible locations). To represent the current state of a chess game,

6 bits/piece × 32 pieces = 192 bits, i.e., 24 bytes are sufficient. The state of a chess

5

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

game can therefore be summarized in 24 bytes, which is smaller than the payload of

a typical wireless packet. Since the amount of computation in a chess game can be

extremely large and the amount of data that must be exchanged between the mobile

device and the remote server is very small, chess is an example where computational

offloading is beneficial for most wireless networks.

It is clear that applications have a wide variety of offloadable tasks with various

workloads and data input sizes. The optimal offloading decisions will vary depending

on the mentioned factors combined with 1) the availability of the network fog, edge

and cloud servers, and 2) the associated network bandwidth. The goal of this thesis

is to quickly find good approximate solutions to this type of problem.

1.4 Thesis Outline

Chapter 2 reviews the literature in the area of computation offloading algorithms

and Chapter 3 provides details of the application models. The DPH (Dynamic Pro-

gramming with Hamming Distance Termination) and DPR (Dynamic Programming

with Randomization) algorithms are the primary instances of the proposed family

of randomized algorithms for offloading decision making and are given in Chapter

4. Two somewhat different algorithms, ROA-V1 (Randomized Offloading Algorithm)

and ROA-V2 algorithms are introduced in Chapter 5. The Context Aware ROA

algorithm is then presented in Chapter 6. The thesis is concluded in Chapter 7.

6

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

1.5 Original Contributions

Various Randomized Offloading Algorithms are proposed, which can quickly find

good quality solutions for the computational offloading problems considered herein.

Simulation results are presented and used to characterize their performance. The

proposed algorithms are compared with other approaches, including the optimal so-

lution of the offloading optimization problem, which can be found using a Brute-Force

Search (BFS).

An algorithm called “Dynamic Programming with a Hamming Distance termina-

tion criterion” (DPH) is presented in Chapter 4. The principles of this algorithm were

presented at the IEEE Canadian Conference on ECE in 2016 (Shahzad and Szyman-

ski, 2016a). An algorithm called “Dynamic Programming with biased Randomized”

(DPR) is also presented in Chapter 4. The principles of this algorithm were presented

at the IEEE International Conference on Cloud Computing in 2016 (Shahzad and

Szymanski, 2016b). The ROA-V1 algorithm considered in Sections 5.4-5.7 was first

described in an internal manuscript entitled “Randomized Offloading Algorithms for

Green Mobile Cloud and Mobile Edge Computing” (Shahzad and Szymanski, 2017),

and was later incorporated into a larger manuscript (Shahzad and Szymanski, 2018).

The ROA-V2 algorithm considered in Section 5.8 was first described in an inter-

nal manuscript entitled “An Improved Randomized Offloading Algorithm (v2) for

evaluating mobile cloud, fog and edge computing systems”(Szymanski and Shahzad,

2018) and was later incorporated into Shahzad and Szymanski (2018). These papers

represent joint work with my supervisor Prof. T.H. Szymanski.

Chapter 6 explores an algorithm that incorporates task graph information into

7

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

the process of generating biased random vectors and determining the number of sub-

strings the candidate vector will be partitioned into. This chapter will be published

in a future work.

It is observed that the use of randomization is a relatively simple, and yet pow-

erful, technique that typically yields better solutions than prior methods, including

dynamic programming, randomized rounding, and genetic optimization. As an of-

floading algorithm that will be embedded in the mobile device, the computational

complexity of the algorithm is critical, since adding too much overhead leads to ex-

cessive battery consumption. Moreover, in terms of the user experience, the offloading

algorithm itself should not be time consuming. Therefore, it is important to have fast

and efficient offloading algorithms to help improve the mobile user experience. The

proposed offloading algorithms directly address these criteria.

8

Chapter 2

Prior Work

This chapter presents an overview of previous work related to computation offloading

solutions. First, we start with a discussion of offloading solutions for single user

systems, which will be the focus of this thesis. Then, for context, we review multiple

user systems. In both cases we discuss the objective and complexity of the proposed

solutions. The goal of the majority of offloading algorithms is to minimize energy

consumption at the mobile device (E) while satisfying an application execution time

constraint (T), or, to find a trade-off between E and T .

2.1 Single-User Case

In the single-user case, there is one mobile user with an application that contains

a number of tasks that are candidates for offloading. The following review of the

literature for the single-user case is a refined and significantly expanded version of

that in Shahzad and Szymanski (2018).

The MAUI system (Cuervo et al., 2010) enables energy-aware offloading of mobile

9

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

tasks to the cloud within the Microsoft .NET programming framework. MAUI first

inspects the application, then it formulates a binary integer linear program to deter-

mine the actions to be taken during computation offloading. The objective of MAUI

is to maximize the difference between energy savings and the energy cost of data

transfer to execute a task remotely. The savings are essentially the energy cost if the

task had been executed locally. Computation offloading systems called CloneCloud

(Chun et al., 2011) and ThinkAir (Kosta et al., 2012) provided further improvements

and included automatic partitioning, migration, and remote execution. ThinkAir fo-

cuses on the elasticity and scalability of the cloud and enhances the power of mobile

cloud computing by parallelizing task execution using multiple virtual machine (VM)

images.

Many computation offloading studies have chosen to focus on the static channel

case, i.e., where the data rates of the network are taken to be fixed. Niu et al.

(2013) proposed a method to partition tasks into local and remote execution sets in a

dynamic fashion that adapts to changes in bandwidth. For example, more tasks tend

to be selected for local execution when the network bandwidth temporarily decreases.

The problem formulations used in many of these prior systems are based on finding

approximate solutions to NP-Hard binary integer programming problems, i.e., the

binary partitioning of tasks into local and remotely executed sets.

Huang et al. (2012) presented a dynamic offloading algorithm based on Lyapunov

optimization. Their approach creates a relationship between the optimal solution

to the offloading problem and an approximate solution. The objective is to find

a good approximate solution. This scheme has a large execution time, as it needs

many iterations to find a final solution. Yang et al. (2013) proposed an adaptive

10

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

partitioning scheme using a genetic algorithm to find good solutions to the NP-hard

partition problem.

Toma and Chen (2013) introduced an approach to determine offloading decisions

that uses dynamic programming to build a three-dimensional table. Their proposed

algorithm executes with pseudo-polynomial time complexity. A pseudo-polynomial

time algorithm is where the algorithm running time is polynomial in the numeric

value of the input, but is exponential in the encoded input length. Their work did

not consider mobile device energy use, which is an important consideration for battery

powered devices.

Muñoz et al. (2013) provided a general framework that allows the joint allocation

of radio and computational resources resulting in an optimized trade-off between

energy consumption and latency.

Chen et al. (2015) considered a system that finds computation offloading decisions

using Semidefinite Relaxation (SDR) followed by randomized rounding. They con-

sidered a single mobile device with multiple independent tasks that can access either:

1) a nearby Computing Access Point (CAP) that has limited computation power, or,

2) a remote cloud server with significant computational power. The algorithm starts

by solving a semidefinite relaxation of the binary integer program. A customized

Gaussian randomized rounding technique is then used to convert the floating point

values to binary offloading decisions. The best of these solutions is then used as the

final decision. Their results were compared with those from a Brute-Force Search,

i.e., where all decision vectors are enumerated to find the true optimum. Their re-

sults indicate that the SDR algorithm can find solutions within 1% of the optimal

energy and delay results, but the time complexity of the algorithm was not discussed.

11

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Solving the underlying semidefinite programming (SDP) problem and implementing

relaxation steps is computationally expensive, in general.

Kamoun et al. (2015) considered mobile edge computing and proposed an online

and pre-calculated offline strategy in order to minimize the power consumption of

the device while satisfying a predefined delay constraint. The online strategy used a

Lagrangian relaxation approach while the offline strategy used pre-calculated param-

eters such as the arrival rate and the channel condition. The offline strategy is able

to minimize the signaling overhead that leads to performance improvement of up to

50% for low and medium loads. The authors then investigated more offline solutions

(Labidi et al., 2015a), by using dynamic programming tools leading to deterministic

and randomized offline strategies.

Cao et al. (2015) proposed an algorithm based on combinatorial optimization

for an application with N offloadable components. The basic idea in this approach

is to divide the problem into several subproblems, and solve the subproblems first.

Then the solution of the original problem is determined from the solutions of these

subproblems.

A partial offloading scheme with a trade-off between the energy consumption and

latency is considered by Munoz et al. (2015). An algorithm is presented by Lin et al.

(2015), which starts from a minimum application completion time scheduling solution

and subsequently performs energy reduction by migrating tasks (N tasks) among the

local cores (k heterogeneous cores) and the cloud and by applying the DVFS (dynamic

voltage and frequency scaling) technique.

A heuristic algorithm using Binary Particle Swarm Optimization (BPSO) is pro-

posed by Deng et al. (2016).

12

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Liu et al. (2016) provided a one dimensional search algorithm where the computa-

tion tasks are scheduled based on the queuing state of the task buffer, the execution

state of the local processing unit, as well as the state of the transmission unit.

A low-complexity Lyapunov Optimization based Dynamic Computation Offload-

ing (LODCO) algorithm is proposed by Mao et al. (2016a), which jointly decides the

offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit

power for computation offloading.

Wang et al. (2016b) used the dynamic voltage scaling (DVS) technique to min-

imize energy consumption while satisfying a time constraint. Using this technique,

the mobile device can adaptively adjust its computational speed to reduce energy

consumption or shorten the computing time.

Kao et al. (2017) used a dynamic programming algorithm to minimize delay.

They identified a subset of problem instances where the application task graphs can

be described as serial trees.

The ROA algorithms proposed in Chapters 5 and 6 of this thesis are built upon

some preliminary results reported by Shahzad and Szymanski (2016a) and Shahzad

and Szymanski (2016b). An offloading algorithm called Dynamic Programming with

Hamming Distance Termination (DPH) was presented by Shahzad and Szymanski

(2016a). This algorithm exploits the fact that the dynamic programming technique

splits a complex optimization problem into many smaller problems. These smaller

problems can be solved once and their solutions can be stored in a lookup table. The

DPH algorithm combines a 2-dimensional DP lookup table with randomization and

13

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

a Hamming distance termination criterion to find good offloading solutions. An ex-

tended version of the DPH algorithm called Dynamic Programming with Randomiza-

tion (DPR) was presented by Shahzad and Szymanski (2016b). The DPR algorithm

incorporates Dynamic Programming with “biased randomization”. It generates ran-

dom bit strings with a biased probability of generating 0s, which represent decisions

to offload tasks, and uses these biased bit strings to update the 2-dimensional DP

table. The proposed ROA algorithms presented in Chapter 5 are simpler and more

powerful than DPH and DPR. They remove the 2-dimensional DP lookup table, sim-

plify the rules for improving the decision vector, and more closely resemble Genetic

Optimization.

The prior work for the single user case that is discussed in this section is summa-

rized in Table 2.1.

Table 2.1: Comparison of Offloading Methods for a Single User

Reference Objective Proposed Solution

E/T reduc-
tion w.r.t.
All-Local
execution

Complexity

MAUI
(Cuervo
et al., 2010)

Maximize E
Satisfy T

Algorithm based on
0-1 integer linear pro-
gramming

Up to 45%
reduction in
E

Not Stated

CloneCloud
(Chun
et al., 2011)

Minimize E
Satisfy T

Algorithm based on
0-1 integer linear pro-
gramming

Up to 95%
reduction in
E

Not Stated

ThinkAir
(Kosta
et al., 2012)

Minimize E
and T

Algorithm based on
parallelizing task ex-
ecution using multi-
ple virtual machines
(VM)

Not Stated Not Stated

(Huang
et al., 2012)

Minimize E
Satisfy T

Algorithm based on
Lyapunov optimiza-
tion

About 50%
reduction in
E

Not Stated

14

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

CLOUDNET
(Zhang
et al., 2012)

Minimize E
Satisfy T

Linear time searching
algorithm with V re-
moteable tasks and R
invoking relations

About 50%
reduction in
E

O(V +R)

(Yang et al.,
2013)

Minimize T
Genetic algorithm us-
ing crossover and mu-
tations

Not Stated Not Stated

(Toma and
Chen, 2013)

Minimize E
Satisfy T

Algorithm based on
dynamic program-
ming with a 3D table
for n tasks

Not Stated
O(n log n +
nT 2)

(Muñoz
et al., 2013)

Tradeoff
between E
and T

joint allocation
of communication
and computational
resources

Not Stated Not Stated

LC/LAC
(Chen et al.,
2015)

Minimize a
function of
(E, T)

Algorithm Based on
semidifinite program-
ming with integer re-
laxation

Not Stated Not Stated

(Kamoun
et al., 2015)

Minimize E
Satisfy T

Online learning based
strategy, Offline pre-
calculated strategy

Up to 78%
reduction of
E

Not Stated

(Labidi
et al.,
2015a)

Minimize E
Satisfy T

Deterministic and
randomized Offline
strategies

Up to 78%
reduction of
E

Not Stated

(Cao et al.,
2015)

Minimize E
Satisfy T

Algorithm based on
the combinatorial op-
timization method for
N tasks

Up to 47%
reduction of
E

O(N)

(Munoz
et al., 2015)

Tradeoff
between E
and T

Iterative algorithm
finding the optimal
value of the number
of bits sent on the
uplink

Up to 97%
reduction of
E

Not Stated

(Lin et al.,
2015)

Minimize E
Satisfy T

Algorithm based on
dynamic voltage and
frequency scaling
with N tasks and k
cores

Up to 19.6%
reduction of
E

O(N3.k)

15

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

(Deng et al.,
2016)

Minimize E
Satisfy T

Binary particle
swarm optimization
with G iterations,
K particles of N
dimension

Up to 25%
reduction in
E

O(G.K.N2)

DPH
(Shahzad
and Szy-
manski,
2016a)

Minimize E
Satisfy T

Heuristic algorithm
based on dynamic
programming and
randomization

Up to 40%
reduction in
E

Not Stated

DPR
(Shahzad
and Szy-
manski,
2016b)

Minimize E
Satisfy T

Heuristic algorithm
based on dynamic
programming and
biased randomization

Up to 50%
reduction in
E

Not Stated

(Liu et al.,
2016)

Minimize T

One dimentional
search algorithm
finding the optimal
offloading policy

Up to 80%
reduction of
T

Not Stated

LODCO
(Mao et al.,
2016a)

Minimize T

Lyapunov
optimization-based
dynamic computation
offloading

Up to 64%
reduction of
T

Not Stated

EPCO
(Wang
et al.,
2016b)

Minimize E
Satisfy T

Using dynamic volt-
age scaling to achieve
maximum allowed la-
tency

Not Stated Not Stated

(Kao et al.,
2017)

Minimize
T , Satisfy
resource
Constraints

Using dynamic pro-
gramming with din
maximum graph task
indegree, N tasks,
M devices, L is the
length of the longest
path, R is the dy-
namic range

Not Stated O

(
dinNM

2L

ε log2R

)

16

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

2.2 Multi-User Case

We have previously considered existing methods that deal with offloading for a single

user. In this section we review the case where multiple users wish to access the remote

cloud servers.

Barbarossa et al. (2013) considered a single cloud and proposed a method to jointly

optimize the communication and computation resources to minimize the power con-

sumption at the mobile, while satisfying an average application latency constraint.

Sardellitti et al. (2014b) proposed a distributed iterative algorithm based on Succes-

sive Convex Approximation (SCA) techniques converging to a local optimal solution

of the original non-convex problem. A local optimal solution is also called a local min-

imum solution, i.e., the best solution within a small region of possible solutions. The

work of Sardellitti et al. (2014b) was extended by Sardellitti et al. (2014a) to multiple

clouds. The goal is the optimal assignment of each mobile user to a cloud server while

satisfying time constraints. The results show that with increasing numbers of clouds,

the energy consumption of the user can be decreased.

A trade-off between the energy consumption and the execution delay for multiple

users is considered by Muñoz et al. (2014). They adjust the data rate for the mobile

user to achieve a target energy savings while minimizing delay.

Zhao et al. (2015) considered the joint optimization of radio and computational

resources and the problem is formulated as a nonlinear constraint problem. The users

are assumed to be able to determine whether to partition the application and how

many parts should be offloaded to the MEC. The proposed algorithm is based on the

delay constraint and the application type of each mobile user.

Offline and online dynamic programming approaches are investigated by Labidi

17

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

et al. (2015b). Deterministic algorithms to find the optimal scheduling offloading

policy were proposed.

A trade-off between the energy consumption at the mobile device and the execu-

tion delay in a multi-channel environment is proposed by Chen et al. (2016b). The

authors proposed a distributed computation offloading algorithm based on game the-

ory achieving a Nash equilibrium. Up to 40% reduction of energy is reported for 50

users.

Chen et al. (2016a) consider multiple users, one computing access point (CAP)

and one cloud server. The goal is to minimize the overall cost of energy, computation

and maximum delay. They proposed an algorithm based on semidefinite relaxation

and randomization. System cost is decreased by up to 45% and the overall complexity

of the proposed algorithm is O(N6) per iteration, where N is the number of users.

This complexity may be too high for a large number of users.

You and Huang (2016) proposed a TDMA based system with a threshold based

structure where time is divided into time slots. During each slot, the users may offload

a part of their data to the MEC according to their priorities. The priority of each user

is defined based on its channel gain and local computing energy consumption. As a

result, higher priorities are given to users that are not able to meet the application

latency constraints.

A trade-off between the energy consumption and the execution delay is consid-

ered by Mao et al. (2016b). An online algorithm based on Lyapunov optimization

is proposed. At each time slot, the optimal frequencies of the local CPUs are ob-

tained in closed form, while the optimal transmit power and bandwidth allocation for

computation offloading are determined with the Gauss-Seidel method. The proposed

18

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

algorithm is able to control the power consumption and the execution delay depend-

ing on the selected priority. A 90% reduction in the energy consumption is shown in

the paper.

You et al. (2017) investigated resource allocation based on time-division multi-

ple access (TDMA) and orthogonal frequency-division multiple access (OFDMA) for

multiple users.

A search-adjust algorithm based on genetic optimization with limited cloud re-

sources is proposed by Liu et al. (2017). The offloading requests submitted by all

users over a specific period of time are considered and the best possible offloading

solution is obtained based on the computing power and bandwidth of each user, as

well as available cloud resources.

Prior work for the multi-user case that is reviewed in this section is summarized

in Table 2.2.

Table 2.2: Comparison of existing offloading methods for multiple users

Reference Objective Proposed Solution

E/T re-
duction vs.
All-Local
execution

Complexity

(Barbarossa
et al., 2013)

Minimize E
Satisfy T

Joint allocation
of communication
and computation
resources

Not Stated Not Stated

(Sardellitti
et al.,
2014b)

Minimize E
Satisfy T

Iterative algorithm
based on succes-
sive approximation
techniques (SCA)

Not Stated Not Stated

(Sardellitti
et al.,
2014a)

Minimize E
Satisfy T

Iterative algorithm
based on succes-
sive approximation
techniques (SCA)

Not Stated Not Stated

19

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

(Muñoz
et al., 2014)

Tradeoff
between E
and T

Joint allocation
of communication
and computational
resources

Up to 90%
reduction of
E

Not Stated

(Zhao et al.,
2015)

Minimize E
Satisfy T

Application type and
delay based resource
allocation scheme
with N users

Up to 40%
reduction of
E

O(N)

(Labidi
et al.,
2015b)

Maximize E
Satisfy T

Deterministic offline
and online strategies
based on dynamic
programming

Not Stated Not Stated

(Yang et al.,
2015)

Maximize T
SearchAdjust algo-
rithm with limited
cloud resources

Not Stated Not Stated

(Zhang
et al., 2016)

Minimize E
Satisfy T

A three stage scheme
based on TYPE clas-
sification and prior-
ity assignment with
N users, I iterations
and K channels

Up to 18%
reduction in
E

O(max(I2 +
N, IK +N))

(Chen et al.,
2016b)

Tradeoff
between E
and T

A game theoretic
approach as a dis-
tributed offloading
algorithm

Up to 40%
reduction in
E

Not Stated

(Chen et al.,
2016a)

Minimize E
Satisfy T

Algorithm based on
the semidefinite re-
laxation and random-
ization

Up to 45%
reduction of
total cost

O(N6)

(You and
Huang,
2016)

Minimize E
Satisfy T

Optimal resource
allocation policy
with threshold based
structure for TDMA

Not Stated Not Stated

(Mao et al.,
2016b)

Tradeoff
between E
and T

Lyapunov optimiza-
tion based dynamic
computation offload-
ing

Up to 90%
reduction of
E

Not Stated

(You et al.,
2017)

Minimize E
Satisfy T

Optimal resource
allocation policy
with threshold based
structure for TDMA
and FDMA

Not Stated O(K +N)

20

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

(Liu et al.,
2017)

Joint opti-
mization of
E and T

A search and adjust
based algorithm using
genetic optimization

Up to 50 %
reduction of
E

Not Stated

(Meskar
et al., 2017)

Minimize E
Satisfy T

modeled as a compet-
itive game and each of
N users minimizes its
own energy consump-
tion

about 50%
reduction of
E

O(N2)

2.3 Summary

This chapter has provided a review of research related to computational offloading,

with emphasis on the objective, complexity and the efficiency of the solutions in

terms of reduction in energy consumption and execution time. Various approaches

that have been proposed in recent years for both single and multiple user systems were

investigated and summarized. The focus of the majority of the offloading algorithms

is to minimize the energy consumption at the mobile device (E) while satisfying an

application execution time constraint (T) or to find a trade-off between these two

objectives.

21

Chapter 3

Application Models

In this chapter, different types of mobile device application models are first discussed.

The chapter concludes by considering the types of task graphs that are used in our

performance results.

3.1 Different Types of Application Models

There are a number of issues that are critical in modeling computation tasks, including

latency, bandwidth utilization, context awareness, generality, and scalability. The

computation-task models that are most often used in the computational offloading

literature are: 1) Binary Offloading, and, 2) Partial Offloading (Mao et al., 2017a).

In binary offloading, the task (application) cannot be partitioned into smaller parts

and has to be executed as a whole, either locally at the mobile device or offloaded

to the remote server. However, many mobile applications are composed of multiple

components (tasks) and each task can be executed either on the mobile device or

remote server, making it possible to implement partial computation offloading (Mao

22

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

et al., 2017a). In this thesis, the partial model is considered.

There are two types of applications in terms of offloadable tasks. In the first, the

application can be divided into S ′ offloadable tasks. Since each task may differ in the

amount of data and required computation, it is essential to decide which tasks should

be offloaded to the remote server. There is the possibility that this type of application

is fully offloaded if no parts are processed locally. The second type of application is

always composed of some non-offloadable part(s) that cannot be offloaded and some

that can (Mach and Becvar, 2017).

The simplest task model for partial offloading is the parallel model, where the

task inputs are independent so the tasks can be executed by different entities, e.g.,

parallel execution at the mobile device and remote servers. However, the dependency

between different tasks in many applications cannot be ignored as it significantly

affects execution and computation offloading (Mao et al., 2017a). In this case, the

outputs of some tasks are the inputs to others. In addition, because of software

or hardware constraints, some tasks can only be executed locally. This model is

more complicated than the parallel model, and considers the inter-dependency among

different computation tasks. This model is called the task graph model (Mao et al.,

2017a) and we use the term general model to reference it. Both these models are

explained in more detail in this chapter.

3.1.1 Parallel Model

This model is considered in many references such as (Toma and Chen, 2013; Zhang

et al., 2017; Wang et al., 2016a, 2017; Chen et al., 2015). In the parallel model, there

are total of S tasks with one entry and one exit task that must be executed locally.

23

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

The other S ′ tasks can be executed in parallel either in the mobile device or remote

server since there is no dependency between these tasks as shown in Figure 3.1. The

D(i,j) parameters on the edges of the task graph in Figure 3.1 denote the transfer

data size between tasks i and j. This model can be considered as a special case of

the general model.

Figure 3.1: Application Model for Parallel Tasks, Original Figure by Mao et al.
(2017a), Copyright c© 2017, IEEE

3.1.2 General Model

This model is widely used in many papers to model application execution (Zhang

et al., 2012; Deng et al., 2016; Tian et al., 2005; Kao et al., 2017; Yang et al., 2013).

An application is represented by a directed task graph G = (V,EM), where V and

EM are the sets of vertices and edges that give the inter-dependency among different

application computation functions and routines. The graph is typically a directed

24

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

acyclic graph (DAG), which is a finite directed graph with no directed cycles (Mao

et al., 2017a).

Each node i ∈ V represents a task (different procedure) and a directed edge

e = (i, j) ∈ EM represents the calling relationship, such that task (node) i must

complete its execution before task (node) j starts. The weight of each edge shows the

amount of data that needs to be transferred between the caller and the callee. There

are a total of S tasks (nodes) in the task graph (application). Normally, S is smaller

than 100, e.g., in computer vision applications, S is in the range of 10 ∼ 30 (Ra et al.,

2011). Given a task graph, the task without any parent is called the entry task, and

the task without any child is called the exit task. In the task graph of an application,

there may exist multiple entry tasks and multiple exit tasks (Lin et al., 2015). The

transmission cost (here we consider energy consumption as the cost) is dependent on

the amount of data that needs to be transmitted and the network conditions.

There are two kinds of task graphs: 1) unidirectional, and 2) bidirectional. In the

unidirectional task graph as shown in Figure 3.2.a, computation starts at the entry

task 1 and terminates at the exit task 5. When a task i finishes execution it will

forward its data over its outgoing edges (if any) and terminates. In the bidirectional

graph shown in Figure 3.2.b, computation starts and terminates at the entry task

1. Each outgoing edge (i, j) of a task i leads to a dependent task j which must be

called, which will return control and data back to task i. A task i may perform

some execution, it will then call all its dependent tasks (i.e., functions) by forwarding

data over its outgoing edges. It will then wait for each dependent function to return

control and its data. Task i then returns control and its data to its parent task and

terminates (Shahzad and Szymanski, 2018).

25

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Figure 3.2: Two Different Types of Task Graphs

There are three typical task dependency models (i.e., task components such as

functions or routines): a) sequential, b) parallel, and c) general dependency (Mao

et al., 2017a), as shown in Figure 3.3. As mentioned earlier, normally, tasks that

directly handle user interaction, access local I/O devices or access specific information

on the mobile device, e.g., collecting the I/O data and displaying the computation

results on the screen, camera, or acquiring position, must be locally processed by

the mobile user. For mobile initiated applications, the first and the last tasks are

normally required to be executed locally. Thus, node 1 and node S in Figure 3.3

are components that must be executed locally. The D(i,j) parameters on the edges of

the task graph in Figure 3.3 denote the transfer data size between tasks i and j. As

explained earlier, parallel dependency is a special case of the general model that we

call the parallel model since tasks 2 to S − 1 are independent of each other and can

be executed locally or offloaded to the remote server.

When a task is offloaded, the task’s input data is sent to the remote server if this

task and the preceding task are not executed in the same place. If a task is offloaded

and the preceding task is executed locally, specific data necessary for executing the

task on the server will be transferred. The time taken to transfer a data input of the

task between a mobile device and the cloud or edge server through a wireless network

26

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Figure 3.3: Typical Topologies of Task Graphs, Original Figure by Mao et al. (2017a),
Copyright c© 2017, IEEE

27

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

is an important consideration, since each application may have a time constraint by

which all its tasks must be completed.

3.2 Examples of Task Graphs

In this section, some of the application task graphs from different references are con-

sidered. Some of these task graphs will be used in the simulations in the thesis. Chen

et al. (2015) provided the range of their task graph parameters and this information

was used to generate inputs for some of our experiments, as shown in Figure 3.4.

There is a total of S = 12 tasks where S ′ = 10 of them are offloadable. The tasks

shown in blue are entry and exit tasks that are not offloadable. The yellow nodes

show the offloadable tasks. The edge weights in the task graph show the transfer

data in Megabytes. The computation workload of each offloadable task in Giga CPU

cycles is also provided.

Yang et al. (2013) provides the flow graph of a real world application, called QR-

code recognition. This application is modeled as a set of functional components and

a set of streaming data from one component to another. The QR-code recognition

consists of three phases: image capturing, image pre-processing and QR code decod-

ing. The three phases include 9 functional components and 10 edges as shown in

Figure 3.5. Considering a 640 × 480 (300 KBytes) input image, the size of data that

is transferred between the components are labeled on the edges in Figure 3.5 (Yang

et al., 2013).

Another application task graph is derived from (Deng et al., 2016) and is shown in

Figure 3.6. There are three examples of this task graph with different computational

workload and exchange data sizes that are shown in Figures 3.6, parts a,b and c.

28

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Figure 3.4: An Example of a Parallel Task Graph Based on the Parameters of Chen
et al. (2015) with S ′ = 10.
Workload of Offloadable Tasks 1 to 10 = [39.75, 39.23, 44.56, 48.57, 19.70, 23.97,
47.07, 28.07, 53.57, 47.95] Gcycles. Transfer Data Sizes in Mbytes.

29

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Figure 3.5: QR Application Task Graph by Yang et al. (2013), Workload of Tasks 2
to 8 = [42.24, 68.64, 58.08, 26.4, 21.12, 15.84, 147.84] Mcycles, Copyright c© 2013,
IEEE

30

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Transfer data sizes in Kbits are labeled on the edges of the task graphs.

Figure 3.6: Application Task Graph by Deng et al. (2016). Workload (a) = [30, 25,
16, 32, 15, 37, 18, 3, 10] Mcycles, Workload (b)= [30, 25, 16, 32, 15, 37, 18, 20, 10]
Mcycles, Workload (c)= [30, 25, 16, 32, 15, 37, 18, 3, 10] Mcycles and Transfer Data
in Kbits, , Copyright c© 2016, IEEE

Figure 3.7 shows the task graph of the face recognition application considered

by Zhang et al. (2012). The input object to be recognized is a 42 KB (398 × 545)

JPEG image, and the searching space is a set of 32 images with the same size. The

graph has 23 tasks in total, 19 offloadable tasks, and 36 edges. The blue nodes are

the unoffloadable tasks that must be executed locally and the yellow nodes are the

offloadable tasks. The weights of the edges show the amount of data in kilobytes that

needs to be transfered if the place of execution of the caller and callee tasks is not the

same (the blue number is the input data size to the next task in the direction of the

31

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

arrow on the edge and the red number is the size of the returned information, which

moves in the opposite direction on the edge).

Figure 3.7: Task Graph with S = 23 by Zhang et al. (2012), Task CPU Cycles = [0,
13.22, 51.02, 0.97, 0.53, 141.5, 0.09, 4.94, 0.01, 11.64, 0.46, 3.01, 2.48, 8.9, 0, 0, 6.65,
21.83, 10.23,3.06, 3.91, 0.82, 0] Mega Cycles and Transfer Data in Kbytes, Copyright
c© 2012, IEEE

Another example of the task graph that is used in this thesis is that of Kao et al.

(2017) with a total of 15 tasks and 18 edges. This task graph is shown in Figure 3.8

and transfer data sizes are shown on the edges.

Another graph by Tian et al. (2005) is shown in Figure 3.9. The computation

32

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Figure 3.8: Task Graph with S = 15 from Reference (Kao et al., 2017), Task CPU
Cycles = [10.5, 3, 1.2, 3, 2,10 , 5.5 , 5.5, 10, 3.3, 5, 3, 5, 10, 1] Mega cycles and
Transfer Data in Kbytes, Copyright c© 2017, IEEE

load and data input of the tasks (weights of edges) are uniformly distributed over

[300 Kcycles ± 10 %] and [800 bits ± 10 %], respectively.

The task graph of Tang et al. (2018) which they stated is based on a real world

application with a total of S = 20 tasks and 30 edges is shown in Figure 3.10. The

workload of each task and the amount of data transmission between pairs of tasks

are generated randomly. Edges of the task graph are labeled with the transmission

data in Kbytes.

3.2.1 Generation of Pseudo-random Graphs

Szymanski (2018) described 300 pseudo-random task graphs for evaluating mobile

cloud and edge computing systems. It also introduced a method for generating

pseudo-random task graphs from a given seed graph. In this section, the method

33

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Figure 3.9: Task Graph with S = 8 by Tian et al. (2005), Transfer
Data in Bits, Task CPU Cycles = [278, 295, 325, 318, 328,310, 316, 280] Kilo Cycles,
Copyright c© 2005, IEEE

Figure 3.10: Task Graph with S = 20 by Tang et al. (2018), Task CPU Cycles =
[4.09, 3.29, 8.54, 0.82, 4.94, 5.43 , 1.85, 3.72, 0.09, 4.05, 0.19, 2.11, 6.94, 4.81, 1.43,
2.5, 7.18, 1.55, 2.42, 4.95] Mega Cycles and , Transfer Data in Kbytes, Copyright
c© 2018, IEEE

34

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

of generating pseudo-random task graphs is summarized.1

“In the seed graph, as in [Figure 3.6], each of the S = 9 tasks has a computational

workload expressed in Megacycles, and each of the 10 edges (i, j) has an amount of

data to be transferred expressed in bits. Each pseudo-random task graph is specified

with 19 numbers, which includes the S = 9 task complexities and 10 edge weights,

plus a binary vector of length S which specifies which tasks must execute locally. To

generate each pseudo-random task graph, each task complexity and edge weight of

the seed graph shown in [Figure 3.6 a] was multiplied by a [uniformly distributed]

random coefficient C ∈ [0.1, · · · , 10.0], thereby providing a range of variability of 2

decades. In addition, nodes 1 and 9 must execute locally, and one other node was

selected randomly from the remaining nodes to execute locally”.

“The same method of generating task graphs as described for the task graph in

[Figure 3.6] was used for the task graph in [Figure 3.7]. Each pseudo-random task

graph can be specified with 59 numbers, comprising 23 task complexities and 36 edge

weights. The set of 100 task graphs used is available at the IEEE DataPort website.

The task graph in [Figure 3.7] did not specify 4 task complexities (for tasks 1, 15,

16, 23) and 6 edge weights for 3 bidirectional edges (2,15), (1,16), and (17,23). To

generate 99 pseudo-random task graphs, these 4 task complexities and 6 edge weights

in the seed graph were assigned values as follows. The 23 task complexities are [10,

13.22, 51.02, 0.97, 0.53, 141.5, 0.09,4.94, 0.01, 11.64, 0.46, 3.01, 2.48, 8.9, 5, 10, 6.65,

21.83, 10.23, 3.06, 3.91, 0.82, 5] Megacycles per task respectively. The 6 missing

edge weights for edges (1,16), (2,15) and (17,23) are [(250,300), (100,20), (100,40)]

Kilobytes per edge respectively”. Executable MATLAB code for the task graphs

explained in this section is available at IEEE DataPort (Szymanski, 2018).

1The quoted text in this section is taken from Szymanski (2018)

35

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

3.3 Summary

In this chapter, background information related to the application models was in-

troduced and reviewed. Different types of models and their characteristics from an

application viewpoint were presented and discussed. Examples of task graphs were

shown that are used to represent various applications. These include the examples

that are used in our simulation experiments and referenced later in the thesis.

36

Chapter 4

The DPH and DPR Algorithms

In this chapter, two dynamic programming algorithms called DPH, “Dynamic Pro-

gramming with Hamming Distance Termination,” and DPR, “Dynamic Programming

with Randomization,” are described. (See also Shahzad and Szymanski, 2016a,b,

respectively.) Dynamic programming is an optimization approach that transforms a

complex problem into a sequence of simpler problems that are solved in an interactive

iterative manner. The proposed DPH and DPR algorithms introduce randomization.

In particular, we periodically generate random bit strings of 0s and 1s and utilize

their sub-strings when they improve the solution, in a process similar to genetic opti-

mization. We also fill a dynamic programming table in a creative way so as to avoid

the extra computation for common sub-strings. It is shown that the algorithms can

find good solutions after a reasonable number of iterations.

DPH uses a Hamming distance termination criterion that is used to obtain a final

decision quickly. This criterion is met when a given fraction of tasks are designated

for offloading. The final solution depends on the wireless network transmission rate

and the computational power of the cloud servers. The DPR algorithm also uses a

37

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Hamming distance search criterion with a preference to offload tasks. DPR will offload

as many tasks as possible to the cloud server when the network transmission rate is

high, thereby reducing the total task execution time and mobile energy consumption.

Our numerical results will show that the DPH and DPR algorithms can find

good quality solutions with low computational overhead for parallel task graphs. In

particular, our comparisons between the results for the DPH and DPR algorithms,

the optimal results from Brute-Force search, and the results from the semidefinite

relaxation method of Chen et al. (2015) will show that our proposed algorithms can

find good solutions for parallel task graphs, and that those solutions can be obtained

in short computation times.

A single user with a parallel task model, as explained in Section 3.1.1, is used

to evaluate the two proposed algorithms. In this case, we assume that there is one

mobile user with an application that contains S ′ tasks, one cloud server, and a wireless

network that is used for offloading, as illustrated in Figure 4.1. It is assumed that the

channel transmission capacity is variable since wireless channel quality and network

congestion will affect the network transmission capacity. The mobile device needs

to decide whether each task should be processed locally or offloaded, according to

the current wireless network conditions. The time taken to transfer a task between

a mobile device and the remote server through a wireless link is an important issue

since there may be a total execution time constraint for all tasks of an application.

More details of the problem formulation used in this chapter are described in the

following section.

38

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Figure 4.1: Our System Model

4.1 Problem Formulations for the Parallel Model

The parallel computing model has been employed by many authors, including Chen

et al. (2015) and Zhang et al. (2017). Consider an application consisting of some

unoffloadable (i.e., local) tasks and S ′ offloadable tasks. Normally, unoffloadable

tasks include those that directly handle user interaction, access local I/O devices, or

access specific information on the mobile device. These local tasks must be processed

by the mobile device.

For each task i, let Mi ∈ {0, 1} be an execution indicator variable, with Mi = 1 if

task i is executed at the mobile device and 0 otherwise. If it is executed locally, the

energy consumption is Eli. The term Eti denotes the mobile device energy needed

to transmit the input of task i to the remote server and to transmit the task output

from the remote server to the mobile device. The associated input and output data

sizes are defined as DIi and DOi, respectively. Tci is the time needed to execute

task i at the remote server, during which the mobile device waits in an idle mode and

Tti is the required upload and download transmission time of the input and output

data for task i between the mobile device and the cloud. The Variable T li is the

local execution time to process task i. Cci denotes the cloud processing cost of task

i and ECi is defined as the cost to offload task i to the cloud. These parameters are

summarized in Table 4.1.

39

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Table 4.1: Description of the Model Parameters

Symbols Meaning

Mi Decision variable for task i

Ci Computation load of task i (CPU cycles)

R Transmission rate (bps)

Eli/T li Energy / Time to execute task i locally

Eti/T ti Energy / Time to transfer input and output data for task i to or
from the cloud server

ECi/TCi Processing cost/delay for task i offloaded to the cloud

Tci Cloud processing time for task i

Cci Cost for having the cloud process task i

DIi/DOi Size of task i input / output data to be transferred if task i is
executed remotely

40

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

It is clear that the transmission energy used to upload each task will depend on the

channel transmission quality. Therefore, changes in wireless path loss should affect

the offloading decisions. For example, if the transmission time of the input for each

task is equal to the size of the task input divided by the channel transmission rate,

then any transmission rate variation should affect the final offload decisions. Similar

to Chen et al. (2015), we assume the same upload and download mobile energy cost

for a given transmission data size.

We denote M = [M1,M2, ...,MS′] as the vector of binary offloading decisions for

our set of tasks. ECi, TL and TC are defined as the weighted processing costs

of offloading task i to the cloud servers, processing delay at the mobile user and

worst case processing delay at the cloud server (in the sense of Cuervo et al., 2010),

respectively. The optimization problem that we want to solve is defined as follows.

min
{Mi}

S′∑
i=1

EliMi + ECi(1−Mi) + ζ max{TL({Mi}), TC({1−Mi})}

s.t. : Mi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , S ′}
(4.1)

In Eq. (4.1), we compute the total cost to the mobile user in the way that was

proposed by Chen et al. (2015), i.e., the weighted sum of the local computation

energy consumption, the energy to offload the tasks to the remote server, and to

process them and the corresponding worst case transmission and processing delays.

The factor ζ is a weighting factor that can be adjusted to change the emphasis on

execution delay and energy consumption. The terms ECi, TL and TC are defined as

41

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

follows with β being the relative weight of the cloud energy cost, Cci.

ECi = Eti + βCci (4.2)

TL({Mi}) =
S′∑
i=1

Mi T li (4.3)

TC({1−Mi}) =
S′∑
i=1

(1−Mi)(Tti + Tci) (4.4)

In our architecture we assume that the mobile device can offload a task only to

the single remote server (a cloud or edge server); as illustrated in Figure 4.1. The

transmission time, Tti of each task between the mobile device and cloud is equal

to the size of each task divided by the transmission rate (R) which is measured in

megabits per second. The transmission energy consumption of the mobile device for

both upload and download is set to the 1.42 × 10−7 J/bit, as in Chen et al. (2015).

With DIi and DOi representing the input and output data sizes of task i (expressed in

megabits), the transmission time per task (in seconds), and the transmission energy

per task (in micro Jules) are calculated as follows.

Tti = DIi/R +DOi/R

Eti = 0.142 DIi + 0.142 DOi

The number of combinations of binary values Mi to search for the optimal solution

grows exponentially with the number of tasks. Our goal is to determine which tasks

should be offloaded to the remote server so that the total cost is minimized.

42

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Figure 4.2: Table Filling Examples

4.2 The DPH Algorithm

This section describes the “Dynamic Programming with Hamming Distance Termina-

tion” (DPH) algorithm (see also Shahzad and Szymanski, 2016a). In this scheme, we

use an S ′×S ′ table to store the bit strings that show which tasks should be offloaded,

where S ′ is the number of offloadable tasks in the parallel task graph of interest. For

the first step, a random bit string of length S ′ is generated that determines an initial

solution. This string is assigned to the table such that 1s are assigned to the next

horizontal cell, and 0s are assigned to the next vertical cell. If the first bit of the

stream is 1, the starting cell for task 1 is (1, 2) otherwise the starting cell for task 1

is (2, 1). This approach will avoid extra computations for common bit strings.

A 2D 8×8 table is shown in Figure 4.2. To clarify, assume that S ′ = 8 and the

first random strings are 11100110 (black numbers) or 00110110 (red numbers), i.e.,

2 examples are given. Assume that the second random bit stream in each case is

11000111. The starting cell of the second stream is (1, 2) since the first bit is 1. By

following the aforementioned rules to fill the table, the resulting green stream is shown

in Figure 4.2. The FillTable function that is used in the DPH algorithm represents

the rules of table filling as explained above.

43

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

4.2.1 Detailed Description of the DPH Algorithm

In the DPH algorithm, random bit strings of 0s and 1s are periodically generated and

their sub-strings are utilized when they improve the solution. The focus of the DPH

algorithm is to convert the offloading problem to a set of sub-problems using a table.

The table will also help to determine the location of sub-strings. The pseudocode of

the DPH algorithm is shown in Algorithm 4.1.

In line 1, a random binary vector of size S ′ is generated as the initial best solution,

Vbest. The TableFill function is called in line 2 with Vbest as its input and it returns

the indices of cells that are filled with Vbest as the initial best path, i.e., Pbest(i) gives

the cell coordinates for task i. In the first step of the TableFill in Algorithm 4.2,

the first bit of the solution, M , is checked to define the starting cell to fill the table.

Then, each bit in M is assigned to the correct position in the table. We keep track

of the filled cells of the table and store the indices in the CellIndex matrix.

In line 3, the energy consumption of each cell in the initial best path, Pbest, is

calculated. In line 4, the main algorithm loop, with a total number of iterations, Itr,

is initialized. In total, Itr random bit strings will be generated so that the initial

solution can be improved.

In the first step of the main loop in line 5, a random binary vector of length S ′ is

generated, which determines the new solution, Vnew. This stream is assigned to the

table as explained previously. The TableFill function in Algorithm 4.2 is called in line

6 with Vnew as its input and it returns the new path, Pnew, which contains the indices

of the filled cells in the table using Vnew. Variable LCT in line 7 keeps track of the

last common task between the new and best paths. This common task is associated

with a cell in the table which is the intersection of the best path and the new path.

44

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Algorithm 4.1: DPH Algorithm Pseudocode

1 Vbest = random binary vector of size S ′ // get initial (best) binary vector
2 Pbest = TableFill(Vbest) // get associated (best) table path

// set energy along best path
3 ES(Pbest(t)) = El(t)Vbest(t) + EC(t)(1− Vbest(t)) ∀t ∈ {1, 2, . . . , S ′}
4 for k = 1 to Itr do
5 Vnew = random binary vector of size S ′ // get new binary vector
6 Pnew = TableFill(Vnew) // get associated new path
7 LCT = 1 // set last common task between best/new paths
8 for T = 1 to S ′ do
9 if Pbest(T) == Pnew(T) then

10 CTP = (LCT,LCT + 1, · · · , T) // set common task path
// find the best CTP segment

11 if∑
t∈CTP El(t)Vnew(t) +EC(t)(1− Vnew(t)) <

∑
t∈CTP ES(Pbest(t))

then
// update the best path

12 Pbest(t) = Pnew(t), Vbest(t) = Vnew(t),
13 ES(Pbest(t)) = El(t)Vnew(t) + EC(t)(1− Vnew(t)) ∀t ∈ CTP
14 else

// update the new path
15 Pnew(t) = Pbest(t), Vnew(t) = Vbest(t) ∀t ∈ CTP
16 end
17 LCT = T // record the current common task, for future use

18 else
19 ES(Pnew(T)) = El(T)Vnew(T) + EC(T)(1− Vnew(T))
20 end

21 end
22 Ebest =

∑
c∈Pbest

ES(c)

23 Etotal = Ebest

24 calculate TL and TC using M = Vbest and Eq. (4.3) and Eq. (4.4)
25 calculate objective function in Eq. (4.1) as total cost using Etotal, TL and

TC

26 No = S ′ −
∑S′

t=1M(t) // number of task offloads in solution M
27 if No ≥ HDC then
28 return Etotal, Vbest
29 end

30 end

45

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Algorithm 4.2: TableFill Function Pseudocode in Algorithm 4.1

1 Function TableFill(M):
// M is a binary task vector
// CellIndex is a vector that maps tasks to table cell coordinates

2 if M(1) == 1 then
3 CellIndex(1) = (1, 2)
4 else
5 CellIndex(1) = (2, 1)
6 for i = 2 to S ′ do
7 if M(i) == 1 then
8 CellIndex(i) = CellIndex(i− 1) + (1, 0)
9 else

10 CellIndex(i) = CellIndex(i− 1) + (0, 1)

11 end

12 return CellIndex

In line 8, an inner loop is initiated which iterates through all the tasks from 1 to

S ′. If the path of the new solution has some common cells with the path of the best

solution in the table in line 9, the common task path, CTP , is set to the tasks between

the last common task, LCT , and the current common task T in line 10. This common

path with the corresponding sub-strings of Vbest and Vnew will be investigated.

In line 11, if the total energy of the selected sub-string in the new solution is less

than the total energy of the selected sub-string in the best solution, we update the

best path, i.e., the best solution so far and the energies with the new ones for this

sub-string in lines 12-13. Otherwise, in line 15, we do the opposite. Line 17 will record

the current common task for setting the common task path in subsequent iterations.

For the cells that are not common between the new and best path, the energy con-

sumption of that cell will be calculated in line 19. Once the inner loop is finished, we

compute the best total energy consumption, Ebest, using the best path we have so far,

Pbest, and the energy consumption of the cells in the best path. Total local execution

46

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

time, TL, and total time when tasks are executed remotely, TC, are calculated in line

24 using Eq. (4.3), Eq. (4.4) and the best solution, Vbest. In line 25, we calculate the

objective function based on Eq. (4.1). Then the number of tasks that are offloaded is

found in line 26. In line 27, we terminate and accept a solution that has a Hamming

distance larger than a given threshold, referred to as the Hamming Distance Criterion

(HDC), compared to an all 1’s stream. The all 1’s stream denotes the case where all

tasks are executed locally. This heuristic termination criterion encourages offloading

and yields good results in our experiments.

The computation complexity of the DPH algorithm is determined by the evalua-

tion of the combination of the energy and time of the sub-strings based on equation

(4.1), the population size of the random bit strings, number of tasks and the number

of iterations in the evaluation process.

Lines 1-3: Initializing step and generating the first random binary vector have

time complexity of O(S ′). In line 2, TableFill function also has a complexity of O(S ′)

to assign the initial binary vector to the table.

Lines 4-30: Loop k has a complexity of O(Itr) and it contains the TableFill

function, which leads to a complexity of O(S ′ · Itr). Evaluation of the objective

equation over the loops (k and T) has time complexity of O(Itr ·S ′2) where Itr is the

total iterations of the outer loop, S ′ is the total iterations of the inner loop and S ′2

is the time complexity of the inner loop with calculations in lines 10-16 to evaluate

the energy equation and sub-string incorporation in the current solution vector.

The time complexity of the DPH algorithm is the worst time complexity among

all the steps that are explained. Therefore, the time complexity of DPH algorithm is

O(Itr · S ′2).

47

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

4.2.2 A Comparator Algorithm

The system that we have considered (see Figure 4.1 and Figure 4.3.a) is a limiting case

of the system considered by Chen et al. (2015), which is illustrated in Figure 4.3.b.

The system model presented by Chen et al. (2015) consists of one mobile user, one

computing access point (CAP), and one remote cloud server, as shown in Figure 4.3.b.

The CAP can either process the tasks or offload (some of) them to the cloud server.

The decision of the mobile user to whether to process its task locally or remotely

is denoted by xi. When task i is offloaded to the CAP, the decision whether the

task should be processed by the CAP or further offloaded to the cloud is denoted

by yi. The goal of Chen et al. (2015) is to optimize the offloading decision of the

user to minimize the overall cost of energy, computation, and delay. It is shown that

the problem can be formulated as a non-convex quadratically constrained quadratic

program (QCQP), which is NP-hard in general. Chen et al. (2015) used semidefinite

relaxation (SDR) and a randomization mapping method to generate good solutions

to the QCQP problem.

The relative weights of the processing cost for task i being offloaded to the CAP

or cloud are denoted by α and β, respectively; see Figure 4.3.b. If α, which is the

weight of processing at the CAP, becomes large, no task will be processed there and

the system considered by Chen et al. (2015) implicitly reduces to our model that

considers a single cloud server, and is illustrated in Figure 4.3.a. In that case, the

models in Figure 4.3 can be made equivalent by equating the transmission times and

transmission energies in the natural way.

A reason for choosing this comparator is that Chen et al. (2015) developed a

sophisticated SDR scheme for providing high quality offloading decisions. Hence

48

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Figure 4.3: Comparison of Our Model and the Model of Chen et al. (2015)

their algorithm chosen as a comparator.

4.2.3 Simulation Results

The DPH algorithm was programmed using MATLAB. We adopt the mobile device

characteristics from Chen et al. (2015), which are based on the Nokia N900, and set

the number of offloadable tasks to S ′ = 10. The task graph model used has the

topology illustrated in Figure 3.4. This parallel model can also be considered as a set

of parallel applications that are executed in the mobile device (note that in this case

there is no entry or exit task).

As explained in Section 4.2.2, Chen et al. (2015) proposed a semidefinite relaxation

approach with randomization mapping to solve the optimization problem in Eq. (4.1)

but with both CAP and cloud. Optimizing the offloading decision for independent

tasks with one CAP and one remote cloud server, so as to minimize a weighted sum of

49

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

the costs of energy, computation, and delay, is the focus of that work. This algorithm

was programmed in MATLAB, using the CVX tool. The SDP problem is solved by

using the SeDuMi software. In our implementation, the relative cost of computation

at the CAP, denoted by α is made so large so that computation at the CAP is avoided.

The local computation time is 4.75 × 10−7 s/bit and the local processing energy

consumption is 3.25× 10−7 J/bit, when the x264 CBR encode application (with 1900

cycles/byte used by Miettinen and Nurminen, 2010) is considered as task i, as used

by Chen et al. (2015). The energy consumption for transmitting and receiving mobile

user data are both 1.42 × 10−7 J/bit. The input and output data sizes of each task

are chosen randomly from uniformly distributions on 10 Mbyte to 30 Mbyte and on

1 Mbyte to 3 Mbyte, respectively, as they were by Chen et al. (2015). Based on these

parameters, the local energy consumption for each task, Eli, and the local execution

time for each task, T li, are computed using the following equations, where DIi is the

input data size of task i (expressed in megabits).

Eli = 0.325 DIi

T li = 0.475 DIi

When tasks are offloaded to the cloud, Chen et al. (2015) used a peak transmission

rate of 15 Mbps. The time that is taken to execute a task in the cloud depends on the

CPU rate of the cloud server and is therefore given by Eq. (4.5), where 1010 cycles/s

is the CPU rate of the cloud server:

Tci =
Ci

1010
(4.5)

50

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Chen et al. (2015) also defined a single metric to evaluate the performance, called the

“total cost”. The total cost of the mobile user was defined as the weighted sum of

the total energy consumption (measured in joules) and the corresponding worst case

time to offload and process all tasks (measured in seconds) as in Eq. (4.1).

As outlined in Section 4.2.2, the transmission time (TC) in Eq. (4.4) is set equal

to (i) the time taken to transfer the task to the intermediate device at a given rate

specified by Chen et al. (2015), plus, (ii) the time to transfer the task to the cloud at

the network transmission rate. To be compatible with Chen et al. (2015), we assume

that all tasks are executed in the cloud. Specifically, we set β = 5× 10−7 J/bit, α is

large (α = 1 × 10−6 J/bit) and we set the value of the costs Cci and Cai to be the

same as that of the input data size DIi, as in Chen et al. (2015).

Table 4.2 shows a comparison of the total cost comparison between the optimal

results from Brute-Force search (BFS), DPH, the LC (Local-Cloud) algorithm of

Chen et al. (2015), and the All-Local and All-Remote methods. The weight ζ in

Eq. (4.1) is assigned units of J/s and hence the total cost is expressed in Joules.

BFS is obtained by generating all possible solutions and finding the optimum (i.e.,

that which achieves the minimum cost). For the chosen graph, results of the DPH

algorithm are about 9% larger than the optimal results, but they require much less

computation compared to the algorithm of Chen et al. (2015). The latter algorithm

uses semidefinite programming followed by 100 randomization/relaxation trials. It

is clear that using the All-Remote method, where all the tasks are executed in the

remote server, yields a larger total cost due to the high cost of transferring data and

processing at the cloud servers.

51

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Table 4.2: Comparison of the Total Cost Based on Eq. (4.1) for Different Algorithms

All-Local Energy All-Remote Energy Optimal Energy LC DPH

Total Cost (Joules) 1322.1 1265.2 1128.1 1133.4 1236.4

Figure 4.4 presents the total cost for 6 cases: (1) All-Local execution, (2) All-

Remote, (3) DPH, (4) the LC algorithm, (5) Brute Force Search and (6) a lower

bound on minimum cost that is obtained from the SDR (semidefinite relaxation)

objective, as the wireless transmission rate changes from 4 to 20 Mbps. The total

cost of the DPH solution is computed using Eq. (4.1), using the same weights β and

ζ as in Chen et al. (2015). Figure 4.4 shows that for the chosen graph, the total cost

for DPH is better than the All-Remote case, for this choice of parameters. For low

transmission rates, All-Local execution consumes less energy than all-offloaded, since

the cost of transmitting tasks to the cloud is relatively high.

4 6 8 10 12 14 16 18 20
Transmission Rate (Mbps)

600

800

1000

1200

1400

1600

1800

T
o

ta
l

C
o

st
 (

Jo
u

le
s)

All-Local
All-Remote
LC
Lower Bound
Brute-Force
DPH

Figure 4.4: The Total Cost of Different Methods versus Transmission Rate R (Mbps).
The results for the LC and Brute-Force methods overlap at the scale of this plot

Figure 4.5 plots the total cost versus the weight β of the cloud processing cost.

As β increases, the benefits of offloading decrease, and the tasks are more likely to

52

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
β (J/bit)

0

500

1000

1500

2000

2500

T
o

ta
l

C
o

st
 (

Jo
u

le
s)

All-Local
All-Remote
LC
Lower Bound
Brute-Force
DPH

Figure 4.5: The Total Cost of Different Methods versus β (J/bit)

be executed at the mobile device. For that reason, DPH, LC and Brute-force results

will converge to the All-Local method for large β.

Figure 4.6 compares the performance of different methods versus the weight ζ of

the processing delays. By increasing the effect of the delay (increasing the weight

ζ), the total delay becomes more dominant, i.e., we place more emphasis on delay

rather than energy consumption. As a result, the total cost will also increase in all

algorithms.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
ζ (J/s)

0

500

1000

1500

2000

2500

T
o

ta
l

C
o

st
 (

Jo
u

le
s)

All-Local
All-Remote
LC
Lower Bound
Brute-Force
DPH

Figure 4.6: The Total Cost of Different Methods versus ζ (J/s)

Table 4.3 shows the execution time of the DPH algorithm and LC algorithm (Chen

53

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

et al., 2015) in seconds as well as the total cost of these methods when the number of

offloadable tasks ranges from 10 to 30. In terms of the user experience, the execution

time of the offloading algorithm itself should not be long, as it is a component of

the overall delay. For the chosen graphs, the execution time of LC algorithm that is

implemented in MATLAB ranges from 25 to 14 times that of DPH. However, there

is a trade off between the execution time of the algorithms and the total cost of the

obtained solution, with the total cost of DPH being between 6 and 16 percent larger

than that of LC.

Table 4.3: Execution Time and Total Cost of DPH and LC for Different Numbers of
Tasks

S′ 10 12 15 18 20 25 30

Execution Time of DPH (s) 0.1183 0.1256 0.1321 0.1424 0.1512 0.1913 0.2537

Execution Time of LC (s) 3.022 3.082 3.261 3.065 3.327 3.371 3.701

Percentage of Time Decrease 96.08 95.9 95.9 95.35 95.45 94.3 93.14

Total Cost of LC (Joules) 1128.1 1507.5 1510.9 2142 2214.8 2795.8 2897.4

Total Cost of DPH (Joules) 1236.4 1630.6 1760.8 2280.3 2410.4 2998.1 3356.3

Percentage of Cost Increase 9.6 8.16 16.5 6.45 8.83 7.2 15.8

As explained previously, Chen et al. (2015) formulated the offloading problem

with both CAP and cloud as a non-convex quadratically constrained quadratic pro-

gram (QCQP), which is NP-hard in general. To solve this problem, they proposed

an efficient algorithm based on semidefinite relaxation (SDR). The problem is first

relaxed into a semidefinite programming (SDP) problem, then randomization is used

to generate candidate binary solutions. The method then selects the candidate with

54

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

the lowest cost. The SDP problem can be solved in polynomial time using the convex

optimization toolbox, CVX tool in MATLAB and standard SDP software, such as

SeDuMi. Given a solution accuracy ε > 0, the SDR problem can be solved with a

worst case complexity of O(max{m,n}4n1/2log(1/ε)), where n = 2S ′ + 2, m = 2S ′

and S ′ is the number of offloadable tasks (Luo et al., 2010).

4.3 The DPR Algorithm

In this section, we extend DPH and describe an algorithm called “Dynamic Program-

ming with Randomization” (DPR); (see also Shahzad and Szymanski, 2016b). Unlike

DPH, the DPR algorithm iteratively improves an offloading decision vector by gener-

ating random bit strings with a biased probability of generating 0s, which represents

a decision to offload a task. If fragments of these bit strings improve the decision

vector, they are incorporated into the decision vector, in a process that is similar to

genetic optimization. We also fill the DP table in a creative way to avoid duplicating

the computations for the common bits in the random bit strings (as in the DPH al-

gorithm). Our results show that the DPR algorithm finds good solutions quickly. It

uses a Hamming distance termination criterion, with a preference to offload as many

tasks as possible to the cloud server when network conditions are good. The DPR

algorithm favors the most likely and beneficial outcomes first, by exploiting biased

randomization.

We experimented with several different biases when generating the random bit

strings. In the first experiment, the 0s and 1s in the random bit strings have an equal

probability of 0.5. In a second experiment, the probability of generating 0s is greater

than generating 1s, regardless of the network conditions. In the last experiment, the

55

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

offloading probability (i.e., the probability of generating a 0 in random bit strings)

was set to be proportional to the network transmission rate. This approach introduces

an offloading preference or bias according to the network conditions, which improves

the convergence time of the DPR algorithm.

Our simulation results and, and comparisons with the optimal results from Brute-

Force search and the results of the LC algorithm (Chen et al., 2015), show that

the DPR algorithm can find good solutions to minimize energy use for the parallel

model with lower computation time than the LC algorithm. The DPR algorithm is

computationally efficient and can scale to larger problems for parallel task graphs

with a lower complexity compared to other Dynamic Programming algorithms.

4.3.1 Detailed Description of the DPR Algorithm

The main distinction between DPH and DPR is that DPR exploits the use of biased

randomization instead of pure randomization when solutions are generated. The

pseudocode of the DPR algorithm is shown in Algorithm 4.3. DPR is similar to the

pseudocode of DPH in Algorithm 4.1 except for lines 1 and 5. In lines 1 and 5, biased

binary random vectors are generated, i.e., Vbest and Vnew, that determine which task

should be offloaded. This bias reflects a preference to offload tasks. Let POFF be the

probability of generating a zero in a random bit string, indicating that the task will be

executed in the cloud. This probability can be adjusted to reflect the current wireless

network conditions, which will result in a quicker convergence to a good solution.

56

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Algorithm 4.3: DPR Algorithm Pseudocode

1 Vbest = biased random binary vector of size S ′ with probability of POFF

// get initial (best) binary vector
2 Pbest = TableFill(Vbest) // get associated (best) table path

// set energy along best path
3 ES(Pbest(t)) = El(t)Vbest(t) + EC(t)(1− Vbest(t)) ∀t ∈ {1, 2, . . . , S ′}
4 for k = 1 to Itr do
5 Vnew = biased random binary vector of size S ′ with probability of

POFF// get new binary vector
6 Pnew = TableFill(Vnew) // get associated new path
7 LCT = 1 // set last common task between best/new paths
8 for T = 1 to S ′ do
9 if Pbest(T) == Pnew(T) then

10 CTP = (LCT,LCT + 1, · · · , T) // set common task path
// find the best CTP segment

11 if∑
t∈CTP El(t)Vnew(t) +EC(t)(1− Vnew(t)) <

∑
t∈CTP ES(Pbest(t))

then
// update the best path

12 Pbest(t) = Pnew(t), Vbest(t) = Vnew(t),
13 ES(Pbest(t)) = El(t)Vnew(t) + EC(t)(1− Vnew(t)) ∀t ∈ CTP
14 else

// update the new path
15 Pnew(t) = Pbest(t), Vnew(t) = Vbest(t) ∀t ∈ CTP
16 end
17 LCT = T // record the current common task, for future use

18 else
19 ES(Pnew(T)) = El(T)Vnew(T) + EC(T)(1− Vnew(T))
20 end

21 end
22 Ebest =

∑
c∈Pbest

ES(c)

23 Etotal = Ebest

24 calculate TL and TC using M = Vbest and Eq. (4.3) and Eq. (4.4)
25 calculate objective function in Eq. (4.1) as total cost using Etotal, TL and

TC

26 No = S ′ −
∑S′

t=1M(t) // number of task offloads in solution M
27 if No ≥ HDC then
28 return Etotal, Vbest
29 end

30 end

57

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

4.3.2 Simulation Results

The DPR algorithm was programmed using MATLAB. As in Section 4.2.3, we adopt

the mobile device characteristics used by Chen et al. (2015), which are based on the

Nokia N900 smart phone, and set the number of tasks to S ′ = 10 offloadable tasks.

The topology of the task graph model that is used is shown in Figure 3.4. The

local computation time is set to 4.75 × 10−7 s/bit and the local processing energy

consumption is set to 3.25 × 10−7 J/bit. The x264 CBR encode application (1900

cycles/byte) is considered as task i in our simulations, as in Chen et al. (2015).

The energy consumption for transmitting and receiving data for the mobile device

are both set to 1.42 × 10−7 J/bit. As in Section 4.2.3, the input (DI) and output

(DO) data sizes of each task are chosen randomly, from uniformly distributions on

10 Mbyte to 30 Mbyte and on 1 Mbyte to 3 Mbyte, respectively, as in Chen et al.

(2015). When tasks are offloaded to the cloud, the peak transmission rate is 15 Mbps

and the transmission time of each task is equal to the size of each task divided by the

current transmission rate. The CPU execution rate in the cloud is set to 1010 cycle/s.

We tried three different configurations for determining the bias probability POFF

when generating random bit streams. First, we set POFF = 0.5. In this case, the

DPR algorithm reduces to the DPH algorithm in Section 4.2 (see also Shahzad and

Szymanski, 2016a). Second, we used a fixed bias probability of POFF = 0.8, regardless

of the network transmission rates and present several simulation results. In the last

configuration, we allow the bias probability POFF to be proportional to the network

transmission rate as follows,

POFF = R/θ (4.6)

58

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

where (1/θ) is a proportionality constant (θ was set to 21 in the following experi-

ments). This formula is one example of how POFF can be related to the network

transmission rate (R).

As mentioned in Section 4.2.3, the total cost of the mobile user is defined as the

weighted sum of the total energy consumption, the costs to offload and process all

tasks, and the corresponding worst-case transmission and processing delays. The

formulation is presented in Eq. (4.1).

Similar to Section 4.2.3, we assume α = 1 × 10−6 J/bit, β = 5 × 10−7 J/bit

and we set the value of the cost Cci to be the same as that of the input data size

DIi. Table 4.4 shows a comparison of total cost for All-Local execution, All-Remote

execution, the LC (Local-Cloud) algorithm (Chen et al., 2015), the optimal results

from Brute-Force search, and the results from our DPR algorithm. Table 4.4 shows

that for the chosen task graph the DPR algorithm finds good solutions as compared

to the optimal results (about 1% higher than the optimal result).

Table 4.4: Comparison of the Total Cost of Based on Eq. (4.1) for Different Algorithms

All-Local All-Remote Optimal LC DPR

Total Cost (Joules) 1322.1 1265.2 1128.1 1133.4 1145.3

Figure 4.7 presents the total cost of the DPR algorithm compared to All-Remote

and All-Local, the LC algorithm (Chen et al., 2015), the lower bound on minimum

cost, which is the result of solving the SDR problem, and the optimal result of Brute-

Force search, as the transmission rate is varied between 4 and 20 Mbps. The total cost

is computed using Eq. (4.1). Figure 4.7 illustrates that the cost of the All-Remote

59

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

execution model decreases when the transmission rate increases. The LC algorithm

(Chen et al., 2015) is able to find a near optimal result for the selected range of

transmission rates. For this experiment, we used a fixed bias probability without

considering the transmission rate. When the network conditions are poor, the DPR

result is not as good, since it tries to offload as many tasks as possible and therefore

the final decision for low network transmission rates will be affected by the large cost

of offloading, as shown in Figure 4.7. As the network transmission rate increases,

DPR will be able to find a better result since offloading becomes more favorable.

Indeed, for the chosen task graph the result of the highest transmission rate is within

1% of the optimal value from Brute-Force search.

4 6 8 10 12 14 16 18 20
Transmission Rate (Mbps)

400

600

800

1000

1200

1400

1600

1800

T
o

ta
l

C
o

st
 (

Jo
u

le
s)

All-Local
All-Remote
LC
Lower Bound
Brute-Force
DPR

Figure 4.7: Total Cost vs Transmission Rate R (Mbps) for Different Methods when
POFF = 0.8

Figure 4.8 presents the total cost of the different algorithms versus the network

transmission rate, similar to Figure 4.7, but with a bias probability, POFF , that is

proportional to the transmission rate. Figure 4.8 shows that with this new strategy,

in poor network conditions, DPR is able to find a better result compared to the

fixed bias probability, since the bias towards the offloading is smaller. As a result,

the initial solution has more degrees of freedom and less tendency toward offloading,

60

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

which leads to a better final solution.

4 6 8 10 12 14 16 18 20
Transmission Rate (Mbps)

600

800

1000

1200

1400

1600

1800

T
o

ta
l

C
o

st
 (

Jo
u

le
s)

All-Local
All-Remote
LC
Lower Bound
Brute-Force
DPR

Figure 4.8: Total Cost vs Transmission Rate R (Mbps) for Different Methods when
POFF = R/θ

Figure 4.9 shows a comparison of total cost between different methods when the

weight of cloud processing cost, β, is changed between 0.2 × 10−6 and 1 × 10−6.

Figure 4.9 illustrates that as β increases, the best solution will converge to the All-

Local solution due to the increased cost of offloading. This cost may include the

service provider cost, price or any other related cost of using cloud services.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
β (J/bit)

0

500

1000

1500

2000

2500

T
o

ta
l

C
o

st
 (

Jo
u

le
s)

All-Local
All-Remote
LC
Lower Bound
Brute-Force
DPR

Figure 4.9: Total Cost vs β (J/bit) for Different Methods.

Figure 4.10 shows the comparison of different methods when the weighting of

processing delay (ζ) ia varied between 0.2 and 2 J/s. This changes the emphasis on

61

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

delay rather than energy consumption. As a result, the total cost will also increase

in all methods.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
ζ (J/s)

0

500

1000

1500

2000

2500
T

o
ta

l
C

o
st

 (
Jo

u
le

s)
All-Local
All-Remote
LC
Lower Bound
Brute-Force
DPR

Figure 4.10: Total Cost vs ζ (J/s) for Different Methods.

Table 4.5 shows the execution time of the DPR algorithm with POFF = 0.5 and 0.8

when the number of tasks in the parallel task graph in Figure 3.4 ranges from 12 to

25. The input and output data sizes are chosen randomly from the same distributions

used in the earlier experiments. The download and upload transmission rates are 8

Mbps and 6 Mbps, respectively. As can be seen in Table 4.3, the LC algorithm has

an execution time that is more than 3 seconds for the case of 12 tasks, which is about

40 times the execution time of the DPR algorithm. The results in Table 4.5 are

consistent with the fact that the execution time of the DPR algorithm is polynomial

in the number of tasks (rather than growing exponentially as many other algorithms

exhibit). Doubling the number of tasks from 12 to 24 only increases the execution

time by 20%. Also, by adjusting the bias probability to 0.8 when generating random

bit streams, the algorithm converges more quickly. It is clear that for the chosen

transmission rates, having a higher probability to offload improves the execution

time since with these network rates, offloading is beneficial.

62

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Table 4.5: Execution Time of DPR for Different Numbers of Tasks

S′ 12 14 18 20 25

Execution Time of DPR (ms) for POFF = 0.5 72.9 74.2 78.3 80 81.3

Execution Time of DPR (ms) for POFF = 0.8 66.3 71.9 72.5 74.5 77.8

Table 4.6 shows the execution time of the DPR algorithm for upload transmission

rates of 2, 4, 6, 10 and 15 Mbps, download transmission rate of 4 Mbps, for the three

different bias probabilities, when the number of offloadable tasks is S ′ = 12. It is clear

that for higher transmission rates, offloading to the cloud is beneficial, so that increas-

ing the bias probability POFF to 0.8 results in improved performance. Conversely,

when the transmission rate is low, the bias probability POFF should be decreased to

reflect the lower benefits of offloading. A single value for the bias probability is not

effective for all possible network transmission rates. When Eq. (4.6) is used to adjust

the bias probability POFF to be proportional to the network transmission rate, the

DPR algorithm can find a good quality solution quickly over a wide range of network

conditions. In this experiment we chose θ = 21, so with transmission rates of 2, 4, 6,

10, 15 Mbps, the adapted values of POFF are approximately 0.1, 0.2, 0.28, 0.48, 0.7,

respectively. In particular, when R = 2 Mbps, Eq. (4.6) generates POFF= 0.1 and

this leads to much faster convergence than the pre-set value POFF= 0.8. When R

= 15 Mbps, Eq. (4.6) generates POFF= 0.7 and this results in a similar convergence

time to the case of the pre-set value POFF= 0.8.

63

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Table 4.6: Execution Time of DPR versus Upload Transmission Rate, for Three
Different Bias Probabilities POFF in the DPR Algorithm

R = 2 R = 4 R = 6 R = 10 R = 15

Execution Time of DPR (ms) for POFF = 0.5 75.1 73.5 72.9 71.6 70.1

Execution Time of DPR (ms) for POFF = 0.8 85 84 83.2 67.7 68.7

Execution Time of DPR (ms) for POFF using Eq. (4.6) 73.8 73 71 69.7 68.7

4.4 Summary

In this chapter, two dynamic programming algorithms called DPH, “Dynamic Pro-

gramming with Hamming Distance Termination” and DPR, “Dynamic Programming

with Randomization” were introduced. Random bit strings of 0s and 1s are period-

ically generated and sub-strings that improve the solution are incorporated into the

solution, in a method similar to genetic optimization. When random binary vectors

are generated, DPH uses pure randomization while DPR exploits biased random-

ization. Our numerical results show that for the chosen (parallel) task graphs, this

approach can find good solutions with low computation times.

64

Chapter 5

Randomized Offloading Algorithms

(ROA-V1 and ROA-V2)

In this chapter, different versions of a computation offloading algorithm called the

Randomized Offloading Algorithm (ROA) are described (see also Shahzad and Szy-

manski, 2017; Szymanski and Shahzad, 2018; Shahzad and Szymanski, 2018). As in

Chapter 4, we are given S computational tasks. In the case of parallel task graphs,

we will explicitly formulate the offloading problems in terms of the S ′ tasks that are

offloadable. For the case of general task graphs, we will simplify the notation by

considering a generic decision vector of length S. The decision vector is improved

iteratively, and randomization is used to generate a candidate vector bit-string in

each iteration. If fragments of the candidate vector improve the decision vector, they

are incorporated into the decision vector, in a process similar to genetic optimization.

Our ROA algorithms also use user-controlled parameters to determine how many it-

erations are used, and how much computational effort is used when incorporating

candidate vectors into the current decision vector.

65

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

The proposed ROA algorithms presented in this chapter are simpler and more

powerful than DPH and DPR that were presented in Chapter 4. They remove the

2-dimensional DP lookup table, simplify the rules for improving the decision vector,

and more closely resemble Genetic Optimization. For convenience, the parameters

used to formulate these models are provided in Table 5.1. Note that as in Chen et al.

(2015), we assume that the per bit energy for both uploading and downloading is the

same.

Table 5.1: Description of the Model Parameters

Symbols Meaning

Both Parallel and General Model

Eli/T li Energy / Time taken to execute task i locally

EIi/TIi Energy / Time consumed in mobile device when task i is executing re-
motely

Parallel Model

Eti/T ti Energy / Time taken to transfer input data of task i to the remote server
and back

TNET 2-way delay to access the remote server

General Model

Etij/T tij Energy / Time taken to transfer input data of task j from task i from/to
the remote server

TNET 1-way delay to access the remote server

66

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

5.1 Problem Formulations for the Parallel Model

Two different problem formulations are considered in this section. The first is similar

to that in Chapter 4 (and that in Chen et al., 2015), in which the objective is a

linear combination of the energy consumption and the time delay, and the constraints

are simply the binary constraints on the decisions. The second formulation uses

the energy consumption as the objective function and includes constraints on the

execution time.

In both formulations, we are given S computational tasks with S ′ independent

offloadable tasks that can be executed either locally or remotely.

5.1.1 Parallel Model with Energy and Time as the Objective

As in Chapter 4, we define M = [M1,M2, . . . ,MS′] as the vector of binary offloading

decisions, where Mi ∈ {0, 1} ∀i and Mi = 0 indicates that the task is to be offloaded.

The optimization problem that we want to solve is given as follows.

min
{Mi}

S′∑
i=1

EliMi + ECi(1−Mi) + ζ max{TL({Mi}), TC({1−Mi})}

s.t. : Mi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , S ′}
(5.1)

The objective in Eq. (5.1) gives the total mobile user cost, as in Chapter 4 (and

Chen et al., 2015). It is the weighted sum of the total energy consumption, the costs

to offload and process tasks in the remote server and the corresponding worst case

transmission and processing delays. The parameter ζ is the weighting of the total

delay, and can be adjusted to change the emphasis on delay and energy consumption

67

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

(Chen et al., 2015). Similarly, ECi, TL and TC, which are defined below, are,

respectively, the weighted processing cost of offloading to the cloud servers with β

being the relative weight, the processing delay at mobile user, and the worst case

processing delay at cloud servers. The terms are defined as follows,

ECi = Eti + βCci (5.2)

TL({Mi}) =
S′∑
i=1

Mi T li (5.3)

TC({1−Mi}) =
S′∑
i=1

(1−Mi)(Tti + Tci) (5.4)

Here, as in Chapter 4, Tci denotes cloud processing time for task i, Cci is the cost

for letting the cloud process task i, and Tti gives the transmission time for task i

between the mobile device and cloud.

5.1.2 Parallel Model with an Energy Objective

The energy consumption and its corresponding worst-case execution time (in the sense

of Cuervo et al., 2010) are defined as follows:

E =
S′∑
i=1

MiEli + (1−Mi)(EIi + Eti) (5.5)

T = max
(S′∑
i=1

MiT li ,

S′∑
i=1

(1−Mi)(TIi + Tti + TNET)
)

(5.6)

The term T denotes the total execution time of the application (which consists of all

the tasks). This must satisfy the following condition, where TC is the execution time

68

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

requirement of the application,

T 6 TC (5.7)

The optimization problem that we want to solve with respect to Eq. (5.5) and Eq. (5.6)

is as follows,

min
{Mi}

E

s.t. : T 6 TC

Mi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , S ′}

(5.8)

The number of combinations of binary values Mi to search for the optimal solution

grows exponentially with the number of offloadable tasks. Our goal is to determine

which tasks should be offloaded to the remote server so that energy is minimized.

Determining an optimal decision vector M , that minimizes energy use and meets the

execution time constraint is NP-Hard.

5.2 Problem Formulations for the General Model

In this section, a single mobile user with a general application model is considered.

This model was discussed in Section 3.1.2 and the model parameters in this section

are provided in Table 5.1. In the general case, we are given S computational tasks.

The set of offloadable tasks varies depending on the application task graph so they

are not considered as a separate set of tasks, as before. Instead, the optimization

problem is formulated considering the total number of tasks S.

The formulation used in this section is provided by many authors, including

69

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Cuervo et al. (2010) and Deng et al. (2016). The total energy used in an offload-

ing solution is defined as follows.

E =
S∑

i=1

MiEli + (1−Mi)EIi +
∑

(i,j)∈EM

|Mi −Mj|Etij (5.9)

The total elapsed time to execute all the tasks that constitute the application is, in

the worst-case (Cuervo et al., 2010),

T =
S∑

i=1

MiT li + (1−Mi)TIi +
∑
(i,j)
∈EM

|Mi −Mj|(Ttij + TNET) (5.10)

As in Cuervo et al. (2010), the worst-case time consumption is considered in order

to reduce the complexity of the the solution algorithm and its implementation. The

total execution time T must satisfy the following, where TC is the execution time

constraint.

T ≤ TC (5.11)

The final problem to solve is as follows,

min
{Mi}

E

s.t. : T 6 TC

Mi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , S}

(5.12)

Determining an optimal decision vector M that minimizes the energy consumption

and meets the execution time constraint is NP-Hard.

70

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

5.3 Motivation Based on Genetic Optimization

A Genetic Algorithm (GA) is a population based optimization method consisting of

a random initial population of “chromosomes”. Pseudocode of the steps in a GA is

presented in Algorithm 5.1 (see Kalra and Singh, 2015). Each chromosome denotes

a possible solution. In our application, that is a candidate decision vector. An initial

population of the chromosomes is generated in line 1. A fitness function is defined

to check the quality of the solutions (chromosomes). In our case, the fitness function

is simply the objective of the optimization problem. Based on the fitness function

evaluation (line 2), chromosomes are selected (line 3) for the crossover (line 4) and

mutation (line 5) operations. As a result, offspring for the new population will be

generated. The quality of offspring is further evaluated by the fitness function (line 6)

and the population is updated with better offspring (line 7). This process is repeated

to obtain a sufficient number of offspring (lines 8-10).

In the literature, different variations of each step in the GA are explored, i.e.,

they define their own methods to do the initialization, selection, crossover, mutation,

fitness and replacement steps. A summary of some of these papers is provided in

this section. Our proposed algorithms are also inspired by GA but with different

procedures that are explained in Sections 5.4 and 5.8.

71

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Algorithm 5.1: Pseudocode of the Genetic Algorithm

Result: Best Chromosome

1 Initialization: Generate initial population of the chromosomes

2 Fitness: Evaluate each chromosome based on the fitness function

3 Selection: Select chromosomes to generate the new population

4 Crossover: Perform the crossover on the selected chromosomes from step 3

5 Mutation: Perform the mutation operation on the chromosomes

6 Fitness: Evaluate the new chromosomes (offspring) based on the fitness

function

7 Replacement: Update the population by substituting bad chromosomes

with better offsprings

8 while stopping condition is not met do

9 Repeat Steps 3-7

10 end

Tout et al. (2017) used a multi-objective genetic algorithm to find components

that should be offloaded and those to be executed locally for trading off computing

capacity, memory and battery usage. The algorithm starts with a population of

N randomly generated individuals, each with a size H. In the selection process,

the fittest b individuals in the population are selected using a tournament selection

method, which involves randomly chosen chromosomes from the population in several

rounds. The winner in each round, which has the best fitness, is then selected for

crossover. The crossover operator is based on the differential evolution of individuals

that optimizes offloading. Taking two parent individuals, genes that produce better

fitness when compared to their parents are used to form the offspring. Standard

bit flip mutation is used in the algorithm. The evaluation process continues until

any of the stopping criteria is met, where either the fitness of the best individual in

successive populations did not improve or the defined number of iterations is reached.

Cheng et al. (2015) also proposed an algorithm based on the principles of the

genetic algorithms. In the first step, a set of feasible solutions as an initial population,

72

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

is generated. Order crossover is used as the crossover operator where given any two

parent chromosomes, a crossover point is randomly chosen. Then the left segment

of the offspring is taken from the first parent and the right fragment of the offspring

is taken from the remaining parts of the first parent, but in the order of the other

parent. The mutation operation is implemented by swapping two randomly selected

tasks and to guarantee the feasibility, every chromosome is checked after mutation

to abandon infeasible ones. This process is repeated until the desired size of the

populations is obtained. The complexity of the algorithm is not reported by Cheng

et al. (2015). However it is claimed that this algorithm outperforms traditional GA

with a much lower execution time.

Qiu et al. (2015) used a genetic-based algorithm to assign tasks to cores in a chip

multiprocessor system. A randomly generated population is used in this algorithm. In

the selection process, fitness functions of all chromosomes are evaluated and chromo-

somes are sorted in descending order of fitness. A rank-based roulette wheel selection

method is used to select chromosomes. In the crossover procedure, R pairs of chro-

mosomes are selected randomly by using the rank-based roulette wheel method. A

crossover point is selected randomly, the upper part of a string and the lower part

of another string are kept unchanged while the remaining parts are re-ordered based

on the task order in the upper part of the first string and lower part of the other,

respectively. A bit is randomly selected for mutation and it is changed to another

randomly selected value. The algorithm iterates until the total generation reaches a

predefined number or an improvement is not available.

Tseng et al. (2018) proposed a multi-objective genetic algorithm (GA) to predict

73

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

the resource utilization and energy consumption in cloud data centers. Two chro-

mosomes are randomly selected and a two-point crossover approach with randomly

selected points is utilized. If the fitness value of the offspring is better than the par-

ents, the offspring goes back to the new population. Otherwise, the offspring goes

through the mutation process and will be checked afterwards. A chromosome is able

to mutate itself in the mutation operation, so that the likelihood of being trapped in

a local solution is reduced. A chromosome with the smallest fitness value is selected

as the final result.

Yang et al. (2013) used computation partitioning of a data stream application

between the mobile and cloud to achieve maximum speed/throughput. In order to

solve the partitioning problem, a genetic based algorithm is proposed. The initial

population is randomly generated with the roulette wheel selection method. Two

randomly selected chromosomes then go through the crossover process. At a randomly

chosen point, two selected chromosomes are divided into two parts. New offspring

take one part from the first chromosome and another part from the second. Mutation

takes an individual and randomly changes one or multiple values. The algorithm

terminates when the number of generations has reached a certain upper bound. It is

shown that this algorithm takes about 117 generations to reach 90% throughput for

a graph size of 30.

5.4 The ROA-V1 Algorithm

In this section, ROA-V1 is described. This description is a slightly modified version

of that in Shahzad and Szymanski (2017). This version of the algorithm uses a user-

defined parameter, ρ, which determines how many sub-strings the candidate vector

74

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

will be partitioned into and is evaluated for the parallel and general task models.

The pseudocode of the Randomized Offloading Algorithm (ROA-V1) is shown in

Algorithm 5.2. In the initialization steps (lines 1 and 2), the parameters TC , the

network transmission rate and ρ are defined. The value TC is the time constraint for

the total execution time of the application and ρ denotes a threshold that controls the

computational cost. The ROA-V1 algorithm first generates an initial decision vector

M , also called the current solution, by generating a random bit-string of 0s and 1s of

length S ′ (in line 3), where S ′ denotes the number of tasks in the application. This

random bit-string represents a first decision vector of binary values, where each task

may be offloaded (denoted with a 0) or may be executed locally (denoted with a 1). It

then attempts to improve this solution iteratively. In each iteration i > 1, it generates

another random bit-sting of length S ′ in line 5, called Vnew, similar to the “candidate

solutions” in genetic optimization. The string Vnew will be partitioned into several

sub-strings, using a user-defined parameter ρ defined below. ROA-V1 then evaluates

whether each sub-string of Vnew should be incorporated into the current solution M .

A sub-string in Vnew is incorporated into M by replacing the existing sub-string if it

improves the current solution. When generating the candidate vector Vnew, biased

randomization can also be used. For example, if the network conditions are good

then tasks are more likely to be offloaded, and the probability of generating 0s in the

random bit-stream can be increased accordingly (Shahzad and Szymanski, 2016b).

The parameter ρ is a user-supplied probability between 0 and 1, which determines

how many sub-strings the candidate vector will be partitioned into, and the expected

length of each sub-string. The ROA-V1 algorithm determines the bit positions where

the candidate vector Vnew and the current solution vector M differ, by xor-ing the two

75

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Algorithm 5.2: Randomized Offloading Algorithm (ROA-V1) Pseudocode

1 Initialize time constraint (TC) and Transmission Rate
2 Initialize ρ as the computation threshold
3 M = random binary vector of size S ′ // initial binary solution vector
4 for i = 1 to Itr do
5 Vnew = random binary vector of size S ′ // new binary solution vector
6 IM,V = (i |M(i) 6= Vnew(i) ∀i = 1, 2, . . . , S ′) // ordered indices where

M and Vnew do not agree
7 l = 1 // l is lower task fragment index
8 for u ∈ IM,V do

// u is upper task fragment index
9 if uniform(0, 1) ≤ ρ then

// test to incorporate this Vnew(l : u) fragment into M

10 Enew =
u∑
i=l

ES(i, Vnew(i)) // task fragment energy using Vnew

11 EM =
u∑
i=l

ES(i,M(i)) // task fragment energy using M

12 Ttotal=
l−1∑
i=1

TS(i,M(i)) +
u∑
i=l

TS(i, Vnew(i)) +
S′∑

i=u+1

TS(i,M(i))

13 if Enew < EM ∧ Ttotal < TC then
// substring l:u of Vnew incorporated into M

14 M(i) = Vnew(i) ∀i ∈ {l, l + 1, . . . , u}
15 end

16 end
17 l = u+ 1

18 end

19 end
20 Compute Etotal and Ttotal given M
21 Return Etotal, Ttotal and decision vector M

76

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

vectors and recording the ordered indices in IM,V in line 6. For every index in IM,V , a

random number between 0 and 1 is generated in line 9. If the random number is less

than or equal to the parameter ρ (in line 9), then this bit-position defines the end of

one sub-string in Vnew and the beginning of a new sub-string in Vnew. ROA-V1 then

performs computations (in lines 10 to 14) to determine whether or not to incorporate

the recently-terminated sub-string in Vnew into the current solution M . In line 6,

the expected number of different bits in M and Vnew is S ′/2, since the candidate

vector Vnew is randomly generated. The expected number of times a sub-string will

be terminated is therefore (S ′/2) · ρ. The expected length of a sub-string is therefore

S ′ divided by the expected number of sub-strings, which is ≈ 2/ρ.

If ρ = 1, the candidate vector is partitioned into ≈ S ′/2 sub-strings with an

expected length of 2 bits. Each sub-string in Vnew differs from the corresponding

sub-string in M by at least 1 bit. If ρ = 0.5, the candidate vector is partitioned into

≈ S ′/4 sub-strings with an expected length of 4 bits. Each sub-string in Vnew differs

from the corresponding sub-string in M by at least 2 bits on average. For smaller

ρ, the candidate vector Vnew will be partitioned into a smaller number of longer sub-

strings, which will minimize the amount of work the ROA-V1 algorithm performs

in each iteration. The inner loop from lines 8 to 18 will determine and process the

sub-strings in the candidate vector Vnew (Each sub-string starts and ends at indices l

and u). The expected energy and time of each sub-string, given the candidate vector

Vnew, are calculated in lines 10 and 12 (by using the energy consumption of each

task and summing over bits l to u). The algorithm then compares the total energy

of each sub-string, in both vectors Vnew and M , in line 13. The best sub-string is

incorporated into the current solution vector M , provided that the time-constraint is

77

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

not violated. The solution vector will be returned at the end of the algorithm.

5.5 Time Complexity of ROA-V1

The time complexity of the ROA-V1 algorithm is determined by evaluation of the

sub-strings based on either Eq. (5.1) or Eq. (5.5) and Eq. (5.6), the population size

of the random bit strings, number of tasks in the task graph and the number of

iterations in the evaluation process.

Lines 1-7: Initializing step, main loop (i) and generating the first random pop-

ulation have time complexity of O(S ′).

Lines 8-15: Loop u has a complexity of O(S ′). Lines 10, 11 and 12 have the

complexity of O(S ′) for the parallel task graph. Lines 13 and 14 have the complexity

of O(1). The time complexity of lines 8-15 is O(S ′2).

Evaluation of the Energy and Time equations over the loop (Itr) has time com-

plexity of O(Itr ·S ′2) where Itr is the total iterations of the outer loop and S ′2 is the

time complexity of the loop in lines 8-15 that evaluates the energy and time equations

and sub-string incorporation in the current solution vector.

The time complexity of the ROA-V1 algorithm is the worst time complexity among

all the steps that are explained. Therefore, the time complexity of ROA-V1 is O(Itr ·

S ′2).

78

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

5.6 ROA-V1 Simulation Results for the Parallel

Model

The topology of the task graph model that is used to test this version of the algorithm

is the parallel topology that was introduced in Section 5.1. We consider three different

sets of simulation parameters. The first set is used for comparisons with the work of

Chen et al. (2015). The second is used to explore the effects of tasks with variable

amounts of computational work. The third is used to explore the effects of nearby

edge servers versus remote cloud servers. These three sets are summarized in Table 5.2

(The material in this section is a refined version of that in Shahzad and Szymanski,

2017).

In our simulations, a mobile device is characterized by several parameters, namely,

fL, PL, PI , PT , C, DI, DO, where fL denotes the local computation rate expressed

in CPU clock cycles per second, and the mobile processor can issue a fixed number of

machine instructions per clock cycle, typically between 1 and 4. The term PL denotes

the local power consumption of the mobile device (in watts), PI is the idle mode power

consumption (also in watts), and PT is the power consumption during transmission

(also in watts). The variable Ci denotes the required CPU cycles to process each bit

(or megabit) of data in task i, and reflects the computation workload of the task.

DI denotes the size of the input data per task (in bytes), and DO, the size of the

output data per task. In the experiments, DI and DO are chosen randomly from

uniform distributions on the intervals given in Table 5.2. In all the simulation results,

the label “All-Local” shows the results when all the tasks are executed locally, and

the label “All-Remote” shows the results of executing all the tasks remotely on the

79

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

cloud or edge server. The cloud and edge servers are characterized by two parameters:

fC and fE, where fC denotes the cloud server computation rate in CPU cycles per

second and fE denotes the edge server computation rate. We assume the edge and

cloud servers have comparable computational power and set fC = fE.

Table 5.2: Simulation Parameters

Parameters Definition Model Com-
parison

Variable Work
Per Task

Faster Cloud
Servers

fL Local computation power 500 Mcycle/sec 500 Mcycle/sec 1 Gcycle/sec

fC Cloud server computation power 10 Gcycle/sec 10 Gcycle/sec 100 Gcycle/sec

PL Local power consumption 0.7 w 0.7 w 8mw

PI Idle mode power consumption 30mw 30mw 0.2mw

PT Transmission power consumption 1.1 w 1.1 w 0.5 w

C Computation workload of the task 1900 CPU cy-
cles/byte

70-2200 CPU cy-
cles/byte

2.5-25 Giga CPU
cycles

DI Input data size 10-30 Mbyte 10-30 Mbyte 0.5-10 Mbit

DO Output data size 1-3 Mbyte 1-3 Mbyte 0.5-2 Mbit

S′ Number of offloadable tasks in an
application

10 12 20

5.6.1 Algorithm Comparison

In this section, we use the same parameters as Chen et al. (2015) to evaluate the

ROA-V1 algorithm and compare its results with those obtained when the algorithm

of Chen et al. (2015) is applied to the case of an expensive CAP; see Sections 4.2.3,

4.3.2 and the discussion below. The problem formulation is the “total cost minimiza-

tion” formulation presented in Section 5.1.1. As discussed earlier in the thesis Chen

et al. (2015) used Semidefinite Relaxation followed by randomized rounding to find

80

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

offloading task decisions. For this study, their algorithm was implemented in MAT-

LAB. The results from the proposed algorithm were also compared with the optimum

solution, which is obtained through a Brute-Force Search (for small problems). BFS

is a technique which consists of testing all possible solutions, and recording the best

obtained (i.e., that which achieves the minimum cost). Chen et al. (2015) showed

that SDP followed by 100 relaxation iterations can yield solutions that are within 1%

of the optimal solution.

As in our earlier experiments, we use the mobile device parameters of Chen et al.

(2015), which are based on the Nokia N900/500MHz smartphone, and are shown in

Table 5.2. We set the number of tasks to S ′ = 10, as used by Chen et al. (2015). In

this subsection, we consider only cloud servers. Using the parameters of Chen et al.

(2015), which are shown in Table 5.2, the local computation time for a task can be

seen to be 0.475 seconds per megabit, and the local energy use for a task is equal to

0.325 watts per megabits per second.

As stated in Section 4.3, Chen et al. (2015) introduced a two stage offloading model

with a CAP and a cloud and a new parameter, α, to control the cost of processing

in the CAP and the cloud. When α is large, then no tasks will be processed at the

CAP, and all tasks will be sent to the cloud for processing; which results in a system

model analogous to ours. Chen et al. (2015) presented results for the LC case (Local-

Cloud), where all processing is performed in the cloud. To compare our results with

their results, we assume that all tasks are executed in the cloud (specifically, we set β

= 5× 10−7 J/bit, α to be large and we set the value of the cost Cci to be the same as

that of the input data size DIi). Table 5.3 presents the total cost of the LC case (Chen

et al., 2015) and the optimal results from the Brute-Force Search. The results for

81

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

the ROA-V1 algorithm are also shown as are the results for two other cases, when all

the tasks are executed either locally (All-Local) or remotely (All-Remote). Table 5.3

shows that the ROA-V1 algorithm finds nearly identical solutions when compared to

the method of Semidefinite Relaxation followed by 100 iterations of randomization

(Chen et al., 2015). For the chosen task graph, the ROA-V1 algorithm yields nearly-

optimal solutions that are significantly better than the All-Remote and All-Local

decision vectors, as shown in Table 5.3.

Table 5.3: Comparison of the Total Cost Based on Eq. (5.1) for Different Algorithms

All-Local All-Remote Optimal LC ROA-V1

Total Cost (Joules) 1322.1 1265.2 1128.1 1133.4 1138.24

5.6.2 Variable Work per Task

In this section, we explore the effects of varying the work required per task. The

problem formulation is the delay-constrained formulation presented in Section 5.1.2.

We compare the results of the ROA-V1 algorithm and the Brute-Force Search results.

Each algorithm was implemented in MATLAB. A parallel task graph similar to that

in Figure 3.4 is used, but with S ′ = 12 offloadable tasks. The workload of the task

graph is [18.3837, 7.0845, 21.3102, 20.3503, 61.3687, 8.1341, 52.5786, 10.6591, 61.6240,

42.8682, 25.1096, 36.0973] Giga CPU cycles. The input and output data sizes of the

tasks are [23.53, 27.51, 12.49, 16.57, 29.77, 27.62, 26.63, 19.68, 29.65, 28.11, 23.99,

19.42] Mbytes and [1.55, 1.77, 1.18, 1.01, 1.35, 1.54, 2.87, 1.72, 1.58, 2.87, 2.57, 2.62]

Mbytes, respectively.

82

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

The comparison between the total energy consumption of the mobile application

using these methods is summarized in Table 5.4. For the ROA-V1 algorithm, we

provide the results for several values of the parameter ρ. In this table, the column

“Itr” indicates the number of iterations. The column “Mean Energy” indicates the

average energy used, averaged over the results of 10 runs of the ROA-V1 algorithm.

The value “∆” equals the difference between the mean ROA-V1 energy result, and

the optimal energy result obtained from the Brute-Force Search method.

When ρ = 1 in ROA-V1, the algorithm will perform more work when evaluating

a candidate vector in each iteration. According to Table 5.4, setting ρ = 1 gives the

best performance for a fixed number of iterations (i.e., for one row of the table), but it

also uses the most computation since the ROA-V1 algorithm will perform more work

per iteration. We have observed that the execution times of the ROA-V1 algorithm

for K iterations with ρ = 1, and for 2K iterations when ρ = 0.5, are comparable.

The results in Table 5.4 indicate that for the chosen task graph using a smaller

ρ and more iterations is preferable. This case allows for more candidate sub-strings

to be generated and evaluated, which, in general, improves the ROA-V1 algorithm

performance. Hence, from the computational time perspective, it is beneficial to

select a smaller ρ and allow for more iterations. From the results in Table 5.4, it is

clear that ROA-V1 finds excellent results within 50 iterations for the chosen (parallel)

task graph.

5.6.3 Faster Cloud Servers

In this section, the simulation parameters are changed to consider more complex

applications, and to consider more powerful cloud servers. The parameters in this

83

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Table 5.4: Comparison of Total Energy Consumption (in Joules) for the variable work
per task parameters.

Itr ROA ROA ROA ROA Optimal

ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 1 Energy

10

Mean Energy 313.25 307.17 305.36 300.95

∆% 7.30 % 5.20 % 4.60 % 3.10 % 291.84

20

Mean Energy 297.04 292.81 292.18 291.84

∆% 1.70 % 0.33 % 0.115 0% 291.84

50

Mean Energy 291.84 291.84 291.84 291.84

∆% 0 % 0 % 0 % 0 % 291.84

100

Mean Energy 292.25 291.84 291.84 291.84

∆% 0 % 0 % 0 % 0 % 291.84

section are summarized in the last column of Table 5.2. In particular, the cloud

server become much more powerful than the mobile device, and the work per task also

becomes much larger. The problem formulation is the delay-constrained formulation

presented in Section 5.1.2.

The local computational performance in the mobile device is taken to be fL =

1 Gigacycles per second, typical of current devices (as in Song et al., 2014). The

corresponding remote server performance is fC = 100 Gcycles per second, reflecting

very powerful remote servers (as in Meskar et al., 2017). We assume that many cloud

servers are always available to execute the offloaded tasks, so the queuing delay that

the user’s tasks spend waiting for a cloud server is zero.

For the mobile device, the local power consumption, PL, the idle mode power

84

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

consumption, PI , and the transmission power consumption, PT , are set to 8 mW,

0.2 mW and 0.5 W, respectively (as in Song et al., 2014). With these parameters,

a mobile device uses significantly more power to execute a task locally, compared to

transmitting the task to the cloud and waiting in idle mode.

The Ci parameter for each task i is now a large number chosen randomly between

2.5 to 25 Gcycles, to reflect complex tasks. The task graph that is used in this section

is similar to Figure 3.4 with S ′ = 20 and workload of [21.44, 21.24, 8.26, 16.30, 15.60,

14.66, 22.07, 8.45, 9.65, 5.18, 23.64, 17.02, 13.28, 16.88, 14.75, 17.06, 14.73, 18.72,

14.25, 24.85] Giga CPU cycles.

For example, as described in Section 1.3, a chess game task may have a very small

size, but it can express a very large amount of computational work. The input and

output data sizes are [6.25, 1.85, 4.5, 7.39, 8.49, 5.92, 9.6, 9.28, 4.05, 6.58, 0.928, 3.8,

4.15, 0.706, 8.11, 8.22, 6.36, 5.54, 2.86, 2.66] Mbits and [1.08, 0.538, 0.776, 1.06, 1.6,

0.765, 0.898, 0.836, 0.631, 0.771, 1.58, 1.49, 1.44, 1.87, 1.62, 1.07, 1.36, 0.913, 1.18,

1.71] Mbits, respectively. In our simulations, we calculate the energy consumption of

the offloading decisions made by each algorithm as the data rate when accessing the

network ranges from 15 to 60 Mbps. Based on the model of Kumar and Lu (2010),

the local energy consumption and local execution time are given by following:

Eli = PL Ci/fL (5.13)

T li = Ci/fL (5.14)

As explained in “www.cloudtestfiles.net”, one can ping and traceroute cloud servers

around the world to see the expected round trip access delays for specific servers. Al-

ternatively, the website “www.internettrafficreport.com” reports the average round

85

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

trip Internet delays in each continent, in real-time. In North America, the average

delay is 27 ms, in Europe the average delay is 67 ms, and in Asia the average delay

is 129 ms. We also assume a delay of 90 ms to access a distant cloud server, and a

delay of 10 milliseconds to access a nearby edge server located in the same city.

In order to consider the security issue when offloading tasks to remote servers,

we assume an extra energy consumption in the mobile device equal to 10% of the

offloading energy consumption, to encrypt a task before it is sent to the cloud. The

total transmission time includes the transmission time to offload task i (Tti) to the

remote server plus the network delay (TNET). The transmission energy used in the

mobile device to offload a task depends only on Tti, the time taken to transmit the

task.

When the tasks are offloaded to the cloud, the mobile device waits for the cloud

server to complete the execution of the task, and meanwhile the mobile device switches

to the idle mode. We assume that the cloud server starts executing a task without

any delay, so we have TIi = Ci/fC .

20 25 30 35 40 45 50 55 60
Transmission Rate (Mbps)

1.5

2

2.5

3

3.5

T
o

ta
l

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)

All-Remote
All-Local
Optimal Result from Brute-Force
ROA(Our Proposed Algorithm)

Figure 5.1: Comparison of Total Energy Consumption of the Application in the All-
Remote, All-Local, Brute-Force and ROA-V1 Methods for a Cloud Server

Figure 5.1 shows the total energy consumption of the mobile device based on

86

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Eq. (5.5) versus the network transmission rate, assuming a distant cloud server with

an access delay of 90 milliseconds. We plot the results for several different algorithms,

All-Remote, All-Local, the Brute-Force Search optimal result, and the results of the

ROA-V1 algorithm. In the ROA-V1 algorithm, we allow for 25 iterations with ρ =

0.5, and we report the average energy used, averaged over 20 trial runs. For each

trial run, the same parameters (i.e., input data size, output data size) are used,

but each run generates different candidate vectors and hence may yield a different

solution. The results of the ROA-V1 algorithm and the Brute-Force Search algorithm

overlap on Figure 5.1, and are indistinguishable. Hence, the ROA-V1 algorithm yields

excellent energy results for the chosen task graph, comparable to the Brute-Force

Search optimum. Table 5.5 shows the exact numbers for the total energy consumption

of the ROA-V1 algorithm, versus the optimal results. The average run time of the

ROA-V1 algorithm is about 39 ms.

The ROA-V1 algorithm executes very quickly, and can find good offloading deci-

sions with low computation effort for the chosen task graph. Considering that parallel

task graph, if we increase the number of iterations to 100, the ROA-V1 algorithm can

match the optimal result from Brute-Force-Search more than 99% of the time.

Table 5.5: Comparison of Total Energy Consumption (in Joules) in the Optimal and
ROA-V1 Methods.

Method / Rate (in Mbps) 20 30 40 50 60

Total Energy Consumption
from Brute-Force

2.1752 1.9181 1.6276 1.3532 1.1461

Total Energy Consumption
from ROA-V1

2.18431 1.9198 1.63277 1.3585 1.15296

87

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

5.7 ROA-V1 Simulation Results for the General

Model

In this section, we explore the performance of the ROA-V1 algorithm on a class

of general task graphs. The class of task graphs that is considered is that shown in

Figure 3.6 with S = 9 tasks. One hundred variations of that seed graph were generated

as explained in Section 3.2.1. Since we are exploring the general task graph in this

section, the total number of tasks, S, in an application is considered rather than the

set of offloadable tasks S ′. The system model and problem formulation were explained

in Section 5.2.

The results for ROA-V1 when the number of iterations, Itr, ranges from 20 to

100 with different selections of the ρ parameter are provided in Table 5.6. It is clear

from Table 5.6 that, although the task graph is not very large, ROA-V1 was only

able to find results within ∆ = 2.9% compared to the optimal Brute-Force search.

Due to the reduced effectiveness of ROA-V1 for the general model, we explored new

modifications to improve its performance. As a result, ROA-V2 is proposed in the

next section.

5.8 The ROA-V2 Algorithm

In this section, the ROA-V2 algorithm is described. ROA-V2 is designed to achieve

better performance on general task graphs and to be more computationally efficient

than ROA-V1. Some of the ideas that underlie ROA-V2, an early version of the

pseudocode and some related results were stated in Szymanski and Shahzad (2018)

and were included in Shahzad and Szymanski (2018). In this section we provide an

88

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Table 5.6: Total energy consumption for ROA-V1 (in Joules) for the general model
with the task graph in Figure 3.6

Itr ROA ROA Optimal

ρ = 0.5 ρ = 0.75 Energy

20

Mean Energy 0.1986 0.1978

∆% 6.8 % 6.4% 0.1859

50

Mean Energy 0.1972 0.1966

∆% 6 % 5.75 % 0.1859

100

Mean Energy 0.1944 0.1912

∆% 4.57 % 2.9 % 0.1859

enriched description of ROA-V2, a refined version of the pseudocode and the results

of other numerical experiments. Furthermore, in Sections 5.8.3 and 5.8.4 we describe

preliminary versions of ROA-V2 (denoted ROA-V2.1 and ROA-V2.2, respectively)

that provide insights into the rationale behind ROA-V2.

The basic ideas behind ROA-V2 are as follows: The algorithm increases the ben-

efits of randomization by using two nested loops so that the inner loop can restart

from a newly generated initial solution. In this case, instead of improving on one

initial solution throughout the iterations, in each execution of the outer loop, we ex-

plore a new random initial solution and therefore a higher number of random binary

solutions are investigated. The initial solutions will be improved through inner loop

iterations to find the best final result.

Algorithm 5.3 provides a pseudocode description for ROA-V2, that highlights the

outer and inner execution loops. The outer loop generates P initial decision vectors

(lines 3-29) and the inner loop tries to iteratively improve the initial decision vector

using a process based on the ROA-V1 algorithm (lines 5-26). An initial decision

vector, M , is randomly generated for each element p in P , which is a bit-string of

89

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

length S (in line 4). In each iteration of the inner loop, a new candidate vector, c,

of length S, is obtained (lines 8-13). Vector c is either a random binary vector, or is

obtained by a mutation step, as in conventional genetic optimization. In the mutation

case, a prior decision vector, v2, from p ∈ P , is used with a random vector v1, to create

the new c vector (lines 8-11). A random permutation of length S is generated in each

mutation step. Set I specifies the bit-locations where bits are copied from the random

vector v1 to c. For the rest of the bit-locations, bits are copied from the prior decision

vector v2 to c. This operation is performed in line 11 by the DoubleMerge function.

The inner loop in Algorithm 5.3 iteratively improves one initial decision vector

from the set P during each pass. For every bit location where M and c disagree

(recorded in CP), a sub-string will be made from the last uncommon bit (l) to the

next (u). The energy consumption of the sub-strings in c and M is calculated in lines

18-19. In line 20, if the total execution time using the new sub-string does not violate

the time constraint (TC) and the energy consumption of the new sub-string is better,

the sub-string will be incorporated into the final solution in line 22.

The matrix PD is used to store the P optimized decision vectors (line 27). Once all

the P decision vectors have been updated, the minimum energy vector M is selected

and returned (lines 30-31).

The mutation step, which is often used in conventional genetic optimization, is

included to see if using previously optimized decision vectors offer any practical im-

provements. In our experiments, we have found that for the task graphs that we have

tested, the mutation step gives no practical benefit. Based on these observations, this

step can be removed without affecting the quality of the final solution.

90

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Algorithm 5.3: ROA-V2 Algorithm Pseudocode

1 Initialize time constraint (TC) and Transmission Rate
2 Initialize γ as the incorporating threshold
3 for p = 1 to P do
4 M = random binary vector of length S
5 repeat R′ times
6 γr = uniform(0, 1) // random number between 0 and 1

// P1 controls number of iterations we want to complete before incorporating the
previous solutions

7 if p > P1 ∧ γr < γ then
8 v1 = random binary vector of length S

// PD is a matrix of binary vector solutions (initially empty)
// PD is a P × S matrix of prior solutions from inner loop

9 v2 = PD(uniformInt(1, p), :) // randomly selected (row) vector from PD
10 I = set of randomly selected indices of v1

// DoubleMerge takes |I| bits from v1 and remaining bits from v2
11 c = DoubleMerge(v1, v2, I)

12 else
13 c = random binary vector of length S
14 end
15 CP = (i | M(i) 6= c(i), ∀i = {1, 2, · · · , S}) // ordered set of indices where M and

c disagree
16 l = 1
17 for u ∈ CP do

// u is upper task fragment index

18 Ec =
u∑
i=l

ES(i, c(i)) // compute total task energy using c

19 EM =
u∑
i=l

ES(i,M(i)), // compute total task energy using M

// TSi is the time consumption of task i using the decision bit for task i

20 Ttotal=
l−1∑
i=1

TS(i,M(i)) +
S∑

i=u+1

TS(i,M(i)) +
u∑
i=l

TS(i, c(i))

21 if Ec < EM ∧ Ttotal < TC then
22 M(i) = c(i) ∀i ∈ {l, l + 1, . . . , u} // M adopts this fragment of c
23 end
24 l = u+ 1

25 end

26 end
27 PD(p, :) = M
28 Compute Etotal and Ttotal given M , using Eq. (5.9) and Eq. (5.10)

29 end
30 Find the vector M in the population(1 to P) that minimizes Etotal

31 Return Etotal, Ttotal and decision vector M

91

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

5.8.1 ROA-V2 Simulation Results for the General Model

This section considers ROA-V2 algorithm performance for the delay-constrained en-

ergy minimization problem, which was introduced in Section 5.2. MATLAB was used

to implement the algorithm, and its performance was assessed using three general

task graph classes, from Section 3.1.2. Table 5.7 summarizes the model parameters

that were used in the experiments. They specify various mobile device characteris-

tics such as processing, computation and idle mode power levels, and remote server

parameters such as computation power.

Table 5.7: Simulation Parameters

Parameters Definition Model 1 Model 2 Model 3

Topology Figure 3.6 Figure 3.7 Figure 3.7

S Number of tasks per application 9 23 23

fL Local computation power 500 Gcycle/sec 1 Gcycle/sec 1 Gcycle/sec

fC Cloud server computation power N/A 50 Gcycle/sec N/A

fE Edge server computation power 5 Gcycle/sec N/A 50 Gcycle/sec

PL Local power consumption 0.5W 1W 1W

PI Idle mode power consumption 1 mW 100 mW 100 mW

PTs Sending power consumption 50 mW 200 mW 200 mW

PTr Receiving power consumption 20 mW 200 mW 200 mW

Rs Wireless Sending bit rate 2 Mbps 5 Mbps 5 Mbps

PTr Wireless Receiving bit rate 2 Mbps 5 Mbps 5 Mbps

Ci Computation complexity of task i 0.3 - 370 Mcycle 0.009 - 1415
Mcycle

0.009 - 1415 Mcy-
cle

TNET Expected 1-way network delay 0 20 ms 5 ms

92

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Model 1 (S = 9)

This model evaluates the system performance using the three task graphs (shown

in Figure 3.6) that were used in Deng et al. (2016). Reference Deng et al. (2016)

considered a system where edge servers were placed in a femto-cellular network, of

the type proposed in the TROPIC EU project (http://www.ict-tropic.eu).

In this section, it is assumed that the edge servers can be accessed with zero latency

(i.e., TNET = 0). The task graphs in Figure 3.6 use the same topology, with S = 9

tasks, S ′ = 6 offloadable tasks, and 10 edges. However, the graphs have differing edge

weights that represent different input and output data sizes. The system parameters

for Model 1, which are listed in Table 5.7, are identical to those used by Deng et al.

(2016). A comparison of the results of the algorithm of Deng et al. (2016) and our

algorithm is presented in Table 5.8 for the 3 task graphs in Figure 3.6 and the results

are presented as “Graph 1”, “Graph 2” and “Graph 3” in the Table 5.8.

In order to conduct a richer experiment, 100 pseudo-random task graphs were used

for the Model 1 topology from Figure 3.6. The three task graphs shown in Figure 3.6,

which were presented in Deng et al. (2016), are part of this set. The method described

in Section 3.2.1 is used to generate the remaining pseudo-random task graphs from

the initial “seed graph” shown in Figure 3.6. The average energy performance over

the generated task graphs is included in Table 5.8 as the row labelled “100 Graphs”.

In Table 5.8, the total number of iterations in Algorithm 5.3, i.e., P × R′, is rep-

resented with the symbol Itr. In this experiment, we explored the effect of changing

Itr in the range between 100 and 400 (i.e., Itr = {100, 200, 300, 400}). The number

of iterations for the inner loop is, R′ = 10, so that the number of outer loop itera-

tions correspond to P = {10, 20, 30, 40}. The column labeled “Optimal BFS Energy”

93

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Table 5.8: Comparison of Total Energy Consumption (in millijoules) for ROA-V2 and
the algorithm of Deng et al. (2016) for Model 1

Optimal
BFS
Energy

Results of
Deng et al.
(2016)

ROA
Itr =
100

ROA
Itr =
200

ROA
Itr =
300

ROA
Itr =
400

Graph 1

118.3 118.3 Mean Energy 118.3 118.3 118.3 118.3

∆% 0 % 0 % 0 % 0 %

Graph 2

118.5 118.5 Mean Energy 118.5 118.5 118.5 118.5

∆% 0 % 0 % 0 % 0 %

Graph 3

176.2 176.2 Mean Energy 176.2 176.2 176.2 176.2

∆% 0 % 0 % 0 % 0 %

100 Graphs

185.9 N/A Mean Energy 185.9 185.9 185.9 185.9

∆% 0 % 0 % 0 % 0 %

shows the minimum BFS energy. The columns labeled “ROA” show the minimum

energy of the ROA-V2 algorithm for different numbers of iterations.

The symbol “∆” gives the difference between the mean ROA-V2 energy and the

optimal BFS energy, expressed as a percentage of the latter. For task graphs 1-3,

ROA-V2 finds the optimal BFS energy solution for total iterations of Itr = 100.

All the results of ROA-V2 in Table 5.8 are averaged over five runs of the algorithm.

It can be seen that ROA-V2 finds excellent quality solutions within one hundred

iterations. In order to investigate the energy result tends as Itr is increased, we

conducted another experiment when the total number of iterations changes between

10 and 100. The results of this experiment over the set of 100 pseudo-random task

graphs are presented in Table 5.9. ROA-V2 finds an energy value that is within 0.48%

of the optimal result from BFS search, when Itr = 50.

94

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Table 5.9: Comparison of Total Energy Consumption (in millijoules) for ROA-V2 and
the algorithm of Deng et al. (2016)

Optimal
BFS
Energy

Results of
Deng et al.
(2016)

ROA
Itr =
10

ROA
Itr =
20

ROA
Itr =
50

ROA
Itr =
100

100 Graphs

185.9 N/A Mean Energy 200 192 186.8 185.9

∆% 7.5 % 3.17 % 0.48 % 0 %

Model 2 - Distant Cloud Servers (S=23)

Model 2 is used to investigate the performance of ROA-V2 using the larger and more

complex task graph given in Zhang et al. (2012), as shown in Figure 3.7. The param-

eters were changed to consider more powerful distant cloud servers and newer mobile

devices. These are summarized in Table 5.7. In this case the cloud server is set to be

50 times more powerful than the mobile device. Also, the mobile device power con-

sumption is higher and the work per task is larger. The average 2-way delays (response

time) in each continent is reported in the web-site “www.internettrafficreport.com”.

For North America, Europe and Asia, the average 2-way delays are roughly 21 ms,

69 ms, and 51 ms, respectively. An expected 1-way network delay of 20 msec is used

for the cloud server in Model 2.

In Figure 3.7, non-offloadable tasks are shown as the blue nodes, and indicate

those that must be executed locally on the mobile device. Similarly, offloadable tasks

are shown as the yellow nodes. The edge weightings give the amount of data (in

kilobytes) that must be transferred.

The performance of the ROA-V2 algorithm was evaluated using 100 pseudo-

random task graphs that were generated from the Model 2 seed graph, which is

95

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

shown in Figure 3.7. This was done using the technique described in Section 3.2.1.

In Table 5.10, the rows labelled “Graph 1”, “Graph 2” and “Graph 3” correspond to

three randomly selected task graphs among the aforementioned 100 pseudo-randomly

generated task graphs.

The ROA-V2 and BFS energy results for Model 2 are shown in Table 5.10. This

table can be interpreted in a manner similar to that of Table 5.8 for Model 1. The

mean per task graph energy for All-local execution is 732.91 mJ, and is 483.06 mJ

for BFS, over the set of 100 task graphs. Therefore, when averaged over these 100

task graphs, computation offloading provides an energy savings of about 34% com-

pared to All-local execution. For these task graphs, columns Itr = {100, 200, 300}

show ROA-V2 energies of 547.5, 510.06, and 497.04 mJ, respectively. ROA-V2 gives

corresponding ∆ values of 13.3%, 5.5% and 2.8%. These results were obtained by

averaging over 5 runs.

Model 3 - Proximate Edge Servers (S = 23)

The effects of more powerful edge servers are considered in this section. It is assumed

that these servers are accessible with a 1-way delay of 5 milliseconds, rather than the

20 ms that was used in Model 2. The same set of 100 task graphs, including the same

three randomly selected task graphs as in Model 2, are used in the experiments. The

model parameters are given in Table 5.7.

Table 5.11 shows the average energy results for the 100 pseudo-randomly chosen

task graphs. Over the entire set, the mean per task graph energy for All-Local

execution is 732.91 mJ and the mean BFS energy is 477.1 mJ. The BFS values are

slightly lower than those in Model 2 since the edge servers are accessible with the

96

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Table 5.10: Comparison of Total Energy Consumption (in millijoules) for ROA-V2
under Model 2

All-Local Optimal BFS ROA ROA ROA

Energy Energy Itr = 100 Itr = 200 Itr = 300

R′ = 10

Graph 1

888.7 481.7 Mean Energy 537.16 516.37 484.02

∆% 11.5 % 7.1 % 0.48 %

Graph 2

449.4 244.7 Mean Energy 276.7 264.74 250.8

∆% 13 % 8.1 % 2.4 %

Graph 3

774.8 589.3 Mean Energy 624.5 613 590.65

∆% 5.9 % 4 % 0.2 %

10 Graphs

794.1 553.23 Mean Energy 608.6 576.7 567.49

∆% 10 % 4.24 % 2.5 %

100 Graphs

732.9 483.06 Mean Energy 547.5 510.06 497.04

∆% 13.3 % 5.5 % 2.8 %

97

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

lower (5 ms) delay.

The Table 5.11 columns given by Itr = {100, 200, 300} correspond to population

sizes of P = {10, 20, 30}, where R′ = 10 iterations per population member were used.

The ROA-V2 algorithm gives energy values of 522, 503.3 and 489.3mJ, respectively

and with corresponding ∆ values of 9.6%, 5.72% and 2.55%. These are based on 5

run averages. Table 5.11 shows that for the chosen set of task graphs ROA-V2 is able

to find good quality solutions that are within about 2.5% of the optimal BFS energy

solutions using only a few hundred iterations.

Table 5.11: Comparison of Total Energy Consumption (in millijoules) for ROA-V2
using Model 3

All-
Local
Energy

Optimal
BFS
Energy

ROA
Itr =
100

ROA
Itr =
200

ROA
Itr =
300

R′ = 10

Graph 1

888.7 475.75 Mean Energy 516.9 511.6 503.5

∆% 8.64 % 7.53 % 5.83 %

Graph 2

449.4 235.7 Mean Energy 235.7 235.7 235.7

∆% 0 % 0 % 0 %

Graph 3

774.8 583.3 Mean Energy 612.8 610.5 603.25

∆% 5.05 % 4.66 % 3.4 %

100 Graphs

732.9 477.1 Mean Energy 522 503.3 489.3

∆% 9.6 % 5.72 % 2.55 %

98

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

5.8.2 Time Complexity of ROA-V2

The time complexity of the ROA-V2 algorithm is determined by the energy and time

evaluation of the sub-strings using equations (5.9) and (5.10), the bit string population

size, the number of task graph tasks and the number of iterations used.

Lines 1-5: In the initializing step, there are two nested loops (p and R′) and

generating the first random population has a time complexity of O(S).

Lines 6-13 (Mutation Step): In this case w1 bits from vector v1 and w2 bits

from vector v2 are merged. Since these two vectors are being merged, the time

complexity is therefore O(w1 + w2), which is O(S).

Lines 17-25: Loop u has a time complexity of O(S) and lines 18, 19 and 20 are

O(S + E), where E is the number of task graph relations. Lines 21 and 22 have a

time complexity of O(1) and that for lines 13-22 is O(S2). The evaluation of energy

and time expressions for two nested loops, i.e., p and R′, has a time complexity of

O(P ·R′ ·S2) where P is the number of outer loop iterations, R′ is the total inner loop

iterations and S2 is the time complexity of the lines 17-25 loop to evaluate the energy

and time equations and sub-string incorporation for the current solution vector.

Lines 27-31: The time complexity of line 27 is O(1) needed to save the results

and in line 30, the minimum of P elements is selected. The latter time complexity is

therefore O(P). Returning the final results has a complexity of O(1).

The overall time complexity for the ROA-V2 algorithm is the worst time among all

of the above steps. Therefore, the time complexity of ROA-V2 is given by O(P ·R′·S2).

99

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Time Complexity Comparison with Genetic Algorithm

Based on the work of Tseng et al. (2018), the time complexity of GA is defined

by the selection process, fitness function evaluation, crossover and mutation op-

erations alongside generation number and population size, that is O(Iteration ×

Population Size×O(Fitness)× (O(Selection) +O(Crossover) +O(Mutation))).

The time complexity of the genetic-based offloading algorithm presented in Tout

et al. (2017) is O(λNH) for independent tasks where λ is the number of generations,

N is the population size and H is the individual size. For general task graphs, this

time complexity is O(λNH2). Comparing the result for ROA-V2 for a general task

graph, ROA-V2 has an O(N) factor lower time complexity.

5.8.3 Preliminary Version of ROA-V2: ROA-V2.1 Algorithm

In this and the following section, preliminary versions of the ROA-V2 algorithm are

described. These were provided in Section 5.8. An algorithm called ROA-V2.1 is

described. In this algorithm, similar to ROA-V1, ρ is used to determine the number

of sub-string partitions of the candidate vector. Compared to ROA-V1, instead of

using one loop for generating the random vectors, two nested loops are used (lines

3, 5 in ROA-V2), which is the main idea behind ROA-V2 (Szymanski and Shahzad,

2018). This strategy helps to restart the initial random vectors rather than focusing

on improving one initial random vector using multiple iterations.

Simulation Results

The performance of the ROA-V2.1 algorithm is investigated for a class of general task

graphs using the delay-constrained energy minimization problem that was presented

100

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

in Section 5.2. MATLAB was used to program the ROA-V2.1 algorithm. Table 5.12

gives the set of parameters used to explore the effects of dependency between the

tasks.

Table 5.12: Simulation Parameters

Parameters Definition (Deng et al., 2016)

fL Local computation rate 500 Mcycle/sec

fC Cloud server computation rate 5 Gcycle/sec

PL Local power consumption 0.5 w

PI Idle mode power consumption 1 mw

PTs Sending power consumption 50 mw

PTr Receiving power consumption 20 mw

Ci Computation complexity of the task i 0.3-370 Mcycle

TNET 1-way network delay 0

S Number of tasks in an application 9

Results obtained from different offloading algorithms were compared, including

ROA-V2.1 and Brute-Force Search. As before, the algorithms were implemented in

MATLAB. In the first experiment, the task graph was that taken from Deng et al.

(2016) and is shown in Figure 3.6. Three examples with different computational

workload and exchange data sizes were provided in Deng et al. (2016), as shown in

Figure 3.6.

Table 5.13 summarizes the comparison of total energy consumption using these

methods. For ROA-V2.1, results are provided for several values of the ρ parameter.

As before, the parameter “Itr” gives the number of iterations and “Mean” indicates

101

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Table 5.13: Comparison of Total Energy Consumption (in Joules) for ρ = 0.5, 0.75,
1 based on the task graph topology in Figure 3.6

ρ = 0.5

Optimal
Energy

ROA-V2.1
Itr = 10

ROA-V2.1
Itr = 20

ROA-V2.1
Itr = 50

ROA-V2.1
Itr = 100

Graph 1
Mean(E) 0.1259 0.1183 0.1183 0.1183

∆% 0.1183 6.4 % 0 % 0 % 0 %

Graph 2
Mean(E) 0.1261 0.1185 0.1185 0.1185

∆% 0.1185 6.41% 0 % 0 0%

Graph 3
Mean(E) 0.1727 0.1726 0.1726 0.1726

∆% 0.1726 0.05 % 0 % 0 % 0 %

100
Mean(E) 0.2 0.1946 0.1878 0.1860

Graphs ∆% 0.1859 7.5 % 4.67 % 1.02 % 0.05 %

ρ = 0.75

Optimal
Energy

ROA-V2.1
Itr = 10

ROA-V2.1
Itr = 20

ROA-V2.1
Itr = 50

ROA-V2.1
Itr = 100

Graph 1
Mean(E) 0.1185 0.1183 0.1183 0.1183

∆% 0.1183 0.1 % 0 % 0 % 0 %

Graph 2
Mean(E) 0.1185 0.1185 0.1185 0.1185

∆% 0.1185 0 % 0 % 0 0%

Graph 3
Mean(E) 0.1726 0.1726 0.1726 0.1726

∆% 0.1726 0 % 0 % 0 % 0 %

100
Mean(E) 0.2 0.1927 0.1874 0.1860

Graphs ∆% 0.1859 7.5 % 3.6 % 0.8 % 0.05 %

ρ = 1

Optimal ROA-V1.2 ROA-V2.1 ROA-V2.1 ROA-V2.1

Energy Itr = 10 Itr = 20 Itr = 50 Itr = 100

100
Mean(E) 0.2 0.1920 0.1868 0.1859

Graphs ∆% 0.1859 7.5 % 3.17 % 0.48 % 0 %

102

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

the average energy used over 10 algorithm runs. The value “∆” gives the percentage

ratio between the Mean and the optimal result obtained from Brute-Force Search.

The simulation parameters that were used are identical to Deng et al. (2016), and

Graph 1, Graph 2 and Graph 3 are the same as those from the same reference.

The row marked 100 Graphs gives the results averaged over the 100 generated task

graphs using he same seed graph but with randomly selected data sizes, computation

workload and non-offloadable tasks. This is explained in detail in Section 3.2.1.

In ROA-V2.1 with ρ = 1, the algorithm will perform more work when evaluating

a candidate vector in each iteration. As can be seen in Table 5.13, setting ρ to this

value results in the best performance for a fixed number of iterations, but it also uses

the most computation.

The results shown in Table 5.13 suggest that using a smaller value of ρ and higher

numbers of iterations is preferable. This allows for more candidate solutions to be

evaluated, which in general improves the ROA-V2.1 algorithm performance. There-

fore, from a computational time perspective, it is better to use a smaller value of ρ

and allow for more iterations.

A larger task graph is considered in the second experiment. The task graph in

Figure 3.7 with S = 23 was considered in Model 2. Table 5.14 shows the results of 10

pseudo-random task graphs from the seed graph in Figure 3.7. It is clear that even

with 500 total iterations (Itr = 500), ∆ = 5.22% is the best result that is obtained.

For this reason, another preliminary version was investigated, which is presented as

the ROA-V2.2 algorithm.

103

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Table 5.14: Comparison of Total Energy Consumption (in Joules) for ρ = 0.75 based
on the task graph in Figure 3.7

ρ = 0.75

Optimal ROA-V2.1 ROA-V2.1 ROA-V2.1 ROA-V2.1 ROA-V2.1

Energy Itr = 100 Itr = 200 Itr = 300 Itr = 400 Itr = 500

10
Mean(E) 640.55 622.11 611.43 588.23 582.11

Graphs ∆% 553.23 15.7 % 12.4 % 10.5 % 6.3 % 5.22 %

5.8.4 Preliminary Version of ROA-V2: ROA-V2.2 Algorithm

The main difference between ROA-V2.2 and the two previous versions (ROA-V1 and

ROA-V2.1) is that the use of ρ as a threshold is eliminated. Instead, ROA-V2.2 selects

one of the results from the inner loop (line 9 in ROA-V2), which is the main idea

behind ROA-V2 (Szymanski and Shahzad, 2018). An XOR operation is performed on

this and the new candidate vector in order to determine the sub-string cut points, i.e.,

cut points are at the positions of having different bits between a previous result and

a newly generated vector. This method helps to reduce the algorithm randomness

and is better at incorporating information from previous iteration results.

Simulation Results

The performance of ROA-V2.2 is investigated using a class of general task graphs

for the delay-constrained energy minimization problem presented in Section 5.2. The

proposed algorithm was programmed using MATLAB. Table 5.12 shows the param-

eters used in this section to explore the effects of data exchange between tasks. The

results in Table 5.15 indicated that when Itr = 20, ROA-V2.2 finds the optimal re-

sults for the three graph versions of Figure 3.6. Using the 100 randomly generated

104

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

graphs from the seed graph in Figure 3.6, ROA-V2.2 provides better results compared

to ROA-V2.1 for ρ = 1 as shown in Table 5.13 in Itr = [10, 20, 50]. When Itr = 100,

both ROA-V2.1 and ROA-V2.2 find the optimal results.

Table 5.15: Comparison of Total Energy Consumption (in Joules) for ROA-V2.2
based on the task graph in Figure 3.6

R′ = 10

Optimal ROA-V2.2 ROA-V2.2 ROA-V2.2 ROA-V2.2

Energy Itr = 10 Itr = 20 Itr = 50 Itr = 100

Graph 1

Mean Energy 0.1185 0.1183 0.1183 0.1183

∆% 0.1183 0.1 % 0 % 0 % 0 %

Graph 2

Mean Energy 0.1185 0.1185 0.1185 0.1185

∆% 0.1185 0 % 0 % 0 0%

Graph 3

Mean Energy 0.1726 0.1726 0.1726 0.1726

∆% 0.1726 0 % 0 % 0 % 0 %

100 Graphs

Mean Energy 0.1918 0.1896 0.1866 0.1859

∆% 0.1859 3.17 % 1.99 % 0.37 % 0 %

5.9 Summary

In this chapter, different versions of an offloading algorithm called the Randomized

Offloading Algorithm were proposed to address the computational offloading opti-

mization problem. ROA finds a decision vector of length S, where each bit denotes

a decision to execute the task locally or remotely. The decision vector is improved

iteratively. The results of different versions of ROA for both parallel and general

models were presented and they show that ROA can find good quality solutions for

classes of both models.

105

Chapter 6

Context-Aware Randomized

Offloading Algorithm (CA-ROA)

In this chapter, a new version of the ROA algorithm is proposed, which is called

the Context-Aware Randomized Offloading Algorithm (CA-ROA). This algorithm

is also based on randomization and tries to incorporate better sub-strings from the

candidate vector into the decision vector. The distinction between this algorithm and

other versions of ROA (ROA-V1 and ROA-V2) is that it uses task graph information

to both generate biased random vectors and determine the number of sub-strings the

candidate vector will be partitioned into.

6.1 Problem Formulations for General Model

The model parameters that are used in the problem formulation are summarized in

Table 6.1. As before, for task i, let Mi ∈ {0, 1} be an execution indicator variable,

i.e., Mi = 1 if task i is executed at the mobile device and 0 otherwise. If it is executed

106

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

locally, the energy consumption is Eli and the execution time is T li. Similarly, if the

task is executed in the remote server and the mobile device is in an idle mode for TIi

seconds, the energy consumption of the device is EIi. Etij is the energy needed to

transmit the necessary data for task j from task i to the remote server or from the

remote server to the mobile device and Ttij is the corresponding time. Network delay

is given by TNET .

Table 6.1: Description of the Model Parameters

Symbols Meaning

Eli/T li Energy / Time taken to execute task i locally

EIi/TIi Energy / Time consumed in mobile device when task i is executing
remotely

Etij/T tij
Energy / Time taken to transfer input data of task j from task i
from/to the remote server

TNET 1-way delay to access the remote server

The optimization problem that we want to solve is to minimize the energy con-

sumption of the mobile device while constraining the total execution time. The

problem can be formulated as

min
{Mi}

E

s.t. : T 6 TC

Mi ∈ {0, 1}, ∀i ∈ {1, 2, . . . , S}

(6.1)

The total energy consumption of the mobile device that we want to minimize is defined

as follows, where EM is the edge matrix that contains all the interdependencies

107

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

between tasks in the application task graph.

E =
S∑

i=1

MiEli + (1−Mi)EIi +
∑

(i,j)∈EM

|Mi −Mj|Etij (6.2)

In the worst case, the total elapsed time to execute all the tasks in an offloading

solution is defined as follows (Cuervo et al., 2010).

T =
S∑

i=1

Mi T li + (1−Mi)TIi +
∑
(i,j)
∈EM

|Mi −Mj|(Ttij + TNET) (6.3)

As outlined by Cuervo et al. (2010), the worst case time is used to keep the complexity

of the problem down. In general, determining an optimal decision vector M , for

i = 1, 2, . . . , S which minimizes energy use and meets the execution time constraint

is NP-Hard.

6.2 The CA-ROA Algorithm

The main idea of the CA-ROA algorithm is to start from a good solution and then

improve it through iteration. Having a good starting point helps to achieve a better

final solution and a faster convergence. The pseudocode of the Context Aware Ran-

domized Offloading Algorithm (CA-ROA) is shown in Algorithm 6.1. In this version,

biased randomization is used to generate the initial random vectors (line 4). We con-

sider the ratio of computation load, C, to the input data size, DI, for each task (F

vector in line 1). In order to be a good candidate for offloading, more computation

load and less input data size for a task is desired, therefore a larger Fi will make

task i more favourable for offloading. Calculating the ratio of these two parameters

108

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

gives a good indication of the tasks that are more suitable for offloading. In line 2,

the elements of F are sorted in descending order to have the more suitable offloading

candidates at the top.

In line 3, the main loop of the algorithm with a total of P iterations is initiated. In

each iteration, a biased random binary vector is generated as the first solution vector,

M . Details of the BiasedRandomization function are provided in Algorithm 6.2.

Since there is a dependency between the tasks based on the application task graph,

the necessity of transferring the input data for each task depends on the execution

location of the intended task and its parent tasks. F does not consider this location

and although it provides useful information that can affect the offloading decision, it

is not sufficient.

In the inner loop (lines 5-28), in each iteration a new candidate vector Vnew is

generated. In line 6, γr, which is a random number between 0 and 1, is generated.

The candidate vector Vnew is either generated randomly as a vector of length S as in

line 14 or additional steps are used to determine the Vnew vector (lines 8-12) when γr

satisfies the threshold. In line 7, if the randomly generated γr is less than a threshold

that we define (γ is the probability of incorporating results of the prior iterations to

the next one), the steps in lines 8-11 will be performed. Two prior decision vectors

(v2, v3) from the results of previous iterations are randomly selected (lines 9-10), along

with a randomly generated vector v1 (line 8), to form a new vector Vnew (line 12). In

line 11, all the indices of identical bits between v2 and v3 are found and stored in I2,3.

Vnew is obtained by merging v1 and v2 with respect to I2,3 (line 13).

To the point that using F solely is insufficient, highly correlated tasks in terms

of input data size are considered, i.e., tasks that need a large amount of input data

109

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

from their precedents. As the function NeighbourUpdate (line 16) is explained in

Algorithm 6.3, we select the same execution location for these correlated tasks to

avoid the cost of transferring input data. Line 17 is related to determining the cut

points, CP , for making sub-strings. k indices from the lower γc of the sorted vF vector

are randomly selected. We have already considered large Fi as the desired tasks for

offloading (line 4 of the Algorithm 6.4). Now we are trying to select the cut points

from the rest of F which have not yet been considered. The energy consumption of

the sub-strings are obtained (lines 20-22) and compared in line 23. If the selected sub-

string improves the energy and it is not causing a violation of the time constraint, then

it is incorporated into the M vector (line 24). The P optimized decision vectors are

stored in a matrix PD. After all P decision vectors have been iteratively optimized,

the final vector M which minimizes energy use is selected from the population and

returned (lines 32-33)

Pseudocode for the BiasedRandomization function in line 4 of Algorithm 6.1 is

provided in Algorithm 6.2. In line 2, the top W indices of the vF vector are selected.

These are the tasks that are favorable for offloading, so in line 6, for the selected W

indices, 0 is generated with a probability of BF . In line 11, for the rest of the tasks, a

random bit with a probability of 0.5 is generated (pure randomization). The solution

vector M is returned as a result.

The NeighbourUpdate function is called in line 16 of Algorithm 6.1 and details

are provided in Algorithm 6.3. In line 3, the total input and output data that needs

to be transferred between tasks i and j are calculated in DataMatrix. Then in line

5, we select the top components of the DataMatrix that are greater than DF (DF

is the threshold) and we store the task numbers i and j corresponding to the selected

110

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Algorithm 6.1: CA-ROA Algorithm Pseudocode

// I = {1, 2, . . . , S}
// SL is the set of all tasks that must be executed locally
// Ci is the computation (execution) load for task i.
// DIi is the (wireless) upload/download input data transfer size of task i.
// PD is a matrix of binary vector solutions (initially empty)

1 Fi = Ci/DIi ∀i ∈ I // set the job offload priority for each task.
2 vF = sort({Fi}) // vector of job indices in decreasing order of Fi

3 for p = 1 to P do
4 M = BiasedRandomization(vF) // M is a 1× S biased solution vector
5 repeat R′ times
6 γr = uniform(0, 1) // random number between 0 and 1

// make sure we have completed at least 2 iterations
7 if p /∈ {1, 2} ∧ γr < γ then
8 v1 = random binary vector of length S

// PD is a P × S matrix of prior solutions from inner loop
9 v2 = PD(uniformInt(1, p), :) // randomly selected (row) vector from PD

10 v3 = PD(uniformInt(1, p), :) // another randomly selected vector from PD
11 I2,3 = { i | v2(i) == v3(i)} // set of all indices where v2 and v3 agree

// TripleMerge takes |I2,3| common bits from v2, v3 and remaining bits from
v1

12 Vnew = TripleMerge(v1, v2, I2,3)

13 else
14 Vnew = random binary vector of length S
15 end
16 c = NeighbourUpdate(Vnew, I2,3, SL)
17 CP = ordered set of k tasks randomly selected from lower γc of vF // randomly

select k cut points to compare energy over
18 l = 1 // l is lower task fragment index
19 for u ∈ CP do

// u is upper task fragment index

20 Ec =
u∑
i=l

ES(i, c(i)) // compute total task energy using c

21 EM =
u∑
i=l

ES(i,M(i)), // compute total task energy using M

// TSi is the time consumption of task i using the decision bit for task i

22 Ttotal=
l−1∑
i=1

TS(i,M(i)) +
S∑

i=u+1

TS(i,M(i)) +
u∑
i=l

TS(i, c(i))

23 if Ec < EM ∧ Ttotal < TC then
24 M(i) = c(i) ∀i ∈ {l, l + 1, . . . , u} // M adopts this fragment of c
25 end
26 l = u+ 1

27 end

28 end
29 PD(p, :) = M
30 Compute Etotal and Ttotal given M , using Eq. (6.2) and Eq. (6.3)

31 end
32 Find the vector M in the population(1 to P) that minimizes Etotal

33 Return Etotal, Ttotal and decision vector M

111

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Algorithm 6.2: BiasedRandomization Pseudocode of Algorithm 6.1

1 Function BiasedRandomization(vF):

// Given an offload task priority vector vF , return a biased binary

solution vector.

// BF is the Bias Factor (set to 0.9)

2 vW = vF (1 : W) // slice off the top W tasks in vF
3 M = 1 // binary offload solution vector (initially All-Local execution)

4 for t ∈ {1, 2, . . . , S} do

5 if t ∈ vW then

6 if uniform(0, 1) > BF then

7 M(t) = 0 // offload

8 else

9 M(t) = 1 // no offload

10 end

11 else if uniform(0, 1) > 0.5 then

12 M(t) = 0 // offload

13 else

14 M(t) = 1 // no offload

15 end

16 end

// M is a biased random bit stream of 0s and 1s of length S

17 return M

components in the Imax vector. Then in lines 7-15, for any pair of tasks in the Imax

vector, we will select the same decision variables. If the task must be executed locally,

the decision variable for both tasks in the pair of i and j will be 1 (local execution).

In lines 9-13, we check to see if one of the tasks is among the ones where its decision

bit came from the previous solutions and it is recorded in I2,3 in line 11 of Algorithm

6.1. In lines 9 and 11, if either task i or task j is in the set I2,3, we keep the decision

bit for that task and select the same decision bit for the other.

The time complexity of the CA-ROA algorithm is determined by the energy and

time evaluation of the sub-strings based on equations (6.2) and (6.3), the population

112

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Algorithm 6.3: NeighbourUpdate Pseudocode in line 16 of Algorithm 6.1

1 Function NeighbourUpdate(c, I2,3, SL):

// group offload decisions for tasks that intercommunicate

// EM is the edge matrix of the task graph that contains all the

inter-dependencies between tasks

2 for (i, j) ∈ EM do

// There is an edge between i and j in the task graph

// DI is the transfer input data between task i and task j

// DO is the transfer output data between task i and task j

3 DataMatrix(i, j) = DI(i, j) + DO(i, j)

4 end

5 Imax = { (i, j) | DataMatrix(i, j) ≥ DF} // set of indices where

DataMatrix(i, j) ≥ DF

6 for (i, j) ∈ Imax do

// select the same decision bit for tasks i and j to avoid the cost of

transferring data

7 if j or i ∈ SL then

8 c(i) = c(j) = 1 // tasks that must be executed locally

9 else if i ∈ I2,3 then

10 c(j) = c(i)

11 else if j ∈ I2,3 then

12 c(i) = c(j)

13 else

14 c(i) = c(j)

15 end

16 end

17 return c

113

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

size of the random bit strings, number of tasks in the task graph and the number of

iterations in the evaluation process.

Lines 1- 5: Initializing step, two nested loops (p and R′) and generating the first

random population have time complexity of O(S). The sorting instruction in line 2

has the complexity of O(S log(S)). The MATLAB sort function is a Quick Sort.

Lines 7-15 (Mutation Step): In this step, we are trying to merge w1 bits from

vector v1 and w2 bits from vector I2,3, therefore we are merging two vectors with size

of w1 and w2, respectively. The time complexity of this step is O(w1 + w2) which is

O(S).

Line 16 (NeighbourUpdate function): In this function, we first go through

the edge matrix (EM) which has the complexity of O(S + E) where E shows the

number of relations in the task graph. The for loop in lines 6-16 of this function has

the complexity of O(S) at worst.

Lines 19-28: Loop u has a complexity of O(S). Lines 18, 19 and 20 have the

complexity of O(S + E) where E denotes the number of relations in the task graph.

Lines 21 and 22 have the complexity of O(1). The time complexity of lines 13-22

is O(S2). Evaluation of the energy and time equations over the 2 nested loops (p

and R′) has time complexity of O(P · R′ · S2) where P is the total iterations of the

outer loop, R′ is the total iterations of the inner loop and S2 is the time complexity

of the loop in lines 17-25 to evaluate the energy and time equations and sub-string

incorporation in the current solution vector.

Lines 29-33: Complexity of line 29 is O(1) to store the results. In line 32, we

are trying to find the minimum of P elements so the complexity is O(P). Returning

the results has the order of O(1).

114

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

The time complexity of the CA-ROA algorithm is the worst time complexity

among all the steps that are explained. Therefore, the computation complexity of

CA-ROA is O(P ·R′ · S2).

6.3 Simulation Results for CA-ROA

In this section we examine the performance of the CA-ROA algorithm for the delay-

constrained energy minimization problem that was presented in Section 6.1. The

simulations are performed in MATLAB and we evaluated the CA-ROA algorithm

over three sets of parameters that are provided in Table 6.2 as Model 1, Model 2

and Model 3. The CA-ROA algorithm is tested with γc = 2
3

to select the cut points,

BF = 0.9 as the bias factor, and DF is selected in a way that Imax contains 15

indices.

The first set of parameters (Model 1) is similar to Model 1 in Table 5.7 in Chapter

5 when TNET = 0. The task graphs are from Deng et al. (2016), as shown in Figure

3.6. The second set of parameters in this section (Model 2) is similar to that in

Table 5.7, Model 2 in Chapter 5 with the task graph from Zhang et al. (2012) as

shown in Figure 3.7 with TNET = 20 ms. In Model 2, the CA-ROA algorithm is tested

with 10 and 100 pseudo-random task graphs, based upon the seed graph shown in

Figure 3.7. The process of generating pseudo-random task graphs from the seed graph

in Figure 3.7 is explained in Section 3.2.1. The third set of parameters (Model 3) is

based on the Samsung N9002 device (Liu et al., 2017). The task graph in Figure 3.10

is considered as the application task graph with S = 20.

115

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Table 6.2: Simulation Parameters (Szymanski and Shahzad, 2018)

Parameters Definition Model 1 Model 2 Model 3

Topology Figure 3.6 Figure 3.7 Figure 3.10

S Number of tasks per application 9 23 20

fL Local computation power 500 Gcy-
cle/sec

1 Gcy-
cle/sec

1.5 Gcy-
cle/sec

fC Cloud server computation power 5 Gcy-
cle/sec

50 Gcy-
cle/sec

50 Gcy-
cle/sec

PL Local power consumption 0.5w 1w 1.3w

PI Idle mode power consumption 50 mw 50 mw 5.92 mw

PTs Sending power consumption 50 mw 50 mw 0.5 w

PTr Receiving power consumption 20 mw 50 mw 0.5 w

Rs Wireless Sending bit rate 2 Mbps 5 Mbps 5 Mbps

PTr Wireless Receiving bit rate 2Mbps 5 Mbps 5 Mbps

Ci Computation workload of the task i 0.3 - 370
Mcycle

0.009 - 1415
Mcycle

0.9 - 85.5
Mcycle

TNET Expected 1-way network delay 0 20 ms 10 ms

116

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

6.3.1 Simulation Results of CA-ROA for Model 1

Model 1 evaluates our algorithm using the three task graphs that were originally

presented by Deng et al. (2016), as shown in Figure 3.6. The task graph has S = 9

tasks, with S ′ = 6 offloadable tasks and 10 edges. The comparison of the results of

Deng et al. (2016) and our algorithm as well as results from Brute-Force search, with

system parameters identical to those of Deng et al. (2016), are presented in Table 6.3.

In Table 6.3, the symbol Itr denotes the total number of iterations in Algorithm 6.1,

which is P · R′. The rows labeled “Graph 1”, “Graph 2” and “Graph 3” present the

energy results for the three task graphs shown in Figure 3.6. The three CA-ROA

columns correspond to the total number of iterations Itr = {100, 200, 300}. The sub-

row “∆” displays the difference between the mean CA-ROA energy (Mean Energy),

and the optimal BFS energy, expressed as the percent of the optimal BFS energy. It

is clear from Table 6.3 that for the chosen task graphs and parameter settings, the

CA-ROA finds the optimal results in 100 iterations.

Table 6.3: Comparison between the Total Energy Consumption (in mJ) for ROA-V2
and the algorithm of Deng et al. (2016)

Optimal BFS Results from CA-ROA CA-ROA CA-ROA

Energy Deng et al. (2016) Itr = 100 Itr = 200 Itr = 300

Graph 1

118.3 118.3 Mean Energy 118.3 118.3 118.3

∆% 0 % 0 % 0 %

Graph 2

118.5 118.5 Mean Energy 118.5 118.5 118.5

∆% 0 % 0 % 0 %

Graph 3

176.2 176.2 Mean Energy 176.2 176.2 176.2

∆% 0 % 0 % 0 %

117

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

6.3.2 Simulation Results of CA-ROA for Model 2

The average results of the 10 and 100 variations of the task graph in Figure 3.7 for

the second set of parameters (Model 2) are shown in Table 6.4. Table 6.4 shows the

results for γ = 0.25, R′ = 10. The symbol “Mean Energy” presents the mean energy

results over the set of 10 and 100 pseudo-random task graphs that are averaged over 5

runs of the algorithm. “∆” shows the difference between the mean CA-ROA energy,

and the optimal BFS energy, expressed as a percent of the optimal BFS energy. The

Itr parameter in Table 6.4 denotes the total number of iterations in the CA-ROA

flowchart, i.e., P ·R′.

The row labeled “1 Graph” presents the energy results for the task graph shown in

Figure 3.7. The rows “10 Graphs” and “100 Graphs” denote the results of the 10 and

100 pseudo-random task graphs from the seed task graph in Figure 3.7. The column

labeled “Optimal Energy” shows the minimum BFS energy. The columns labeled

“CA-ROA” show the energy used for the CA-ROA algorithm for various numbers of

iterations, Itr. In Table 6.4, the 3 CA-ROA columns correspond to the total number

of iterations Itr = {100, 200, 300}. The number of iterations per population member

R′ = 10, so that the population sizes for these columns correspond to P = {10, 20, 30}.

It is clear from the last column of Table 6.4 that the CA-ROA algorithm can find

results that are within 1% of the optimal results by using Itr = 300 iterations in total

for the 10 and 100 variations of the seed task graph.

6.3.3 Simulation Results of CA-ROA for Model 3

The results of CA-ROA from the task graph provided in Figure 3.10 but with 10

times the computation complexity and edge data sizes of the original graph (as listed

118

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Table 6.4: Comparison of the Total Energy Consumption (in Joules) based on the
graph of Zhang et al. (2012) for γ = 0.25, R′ = 10

γ = 0.25, R′ = 10

Optimal CA-ROA CA-ROA CA-ROA

Energy Itr = 100 Itr = 200 Itr = 300

1 Graph
Mean Energy 240.73 244.4 244.4 243.7

∆% 1.5 % 1.5 % 1.2 %

10
Mean Energy 553.23 575.4 565.1 559.2

Graphs ∆% 4 % 2.14 % 1 %

100
Mean Energy 483.06 507.19 495.3 488.8

Graphs ∆% 4.9 % 2.5 % 1.1 %

in Table 6.2) are summarized in Table 6.5. The column labeled “All-Local Energy”

shows the energy use when all tasks execute locally (on the mobile device). Table 6.5

can be interpreted in the same manner as Table 6.4 for Model 2. For the task graph

in Figure 3.10, the mean energy for All-Local execution is 614.5 mJ. For the chosen

task graph and parameter setting, the CA-ROA results are within 1% of the optimal

result for Itr = 300 iterations which is about 227.1 mJ. CA-ROA provides about 63%

energy savings compare to the All-Local method.

6.4 Summary

In this chapter, Context-Aware Randomized Offloading, i.e., Algorithm CA-ROA was

presented. CA-ROA uses task graph information to both generate biased random vec-

tors and determine the number of sub-strings the candidate vector will be partitioned

119

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Table 6.5: Comparison between the Total Energy Consumption (in mJ) based on the
graph of Tang et al. (2018)

γ = 0.25, R′ = 10

All-Local Optimal CA-ROA CA-ROA CA-ROA

Energy Energy Itr = 100 Itr = 200 Itr = 300

1 Graph
Mean Energy 614.5 224.3 228.2 228.2 227.1

∆% 1.7 % 1.7 % 1.1 %

into. Performance results for the CA-ROA algorithm for the general model show that

for the considered task graphs it finds near optimal results within 1% of the optimal

results from Brute-Force search.

120

Chapter 7

Conclusions

In the future, many resource-constrained mobile devices will be able to reduce their

energy consumption by utilizing computation offloading. To exploit this, offloading

algorithms are needed that decide which tasks should be offloaded to an edge or cloud

server, so that energy consumption can be minimized while satisfying the application’s

execution time constraints. Since the offloading algorithms must be embedded in the

mobile devices, it is vital that they should not consume significant battery energy

themselves, while performing the computations needed.

In this thesis, a series of efficient Randomized Offloading Algorithms were pro-

posed to solve this optimization problem. The main feature of these algorithms is that

they exploit randomization techniques to iteratively improve an offloading decision

vector. In each iteration, a randomly-generated bit-string called the candidate vector

is generated. Sub-strings of the candidate vector are incorporated into a decision vec-

tor if they improve the solution quality, in a process similar to Genetic Optimization.

Other optimization techniques such as dynamic programming and some user-defined

parameters are used alongside the proposed randomization technique.

121

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Experimental results using parallel and general application task graphs show that

the proposed algorithms can find nearly-optimal solutions quickly and effectively.

The results of DPH and DPR in Chapter 4 and ROA-V1 in Chapter 5 for the parallel

model show the good performance of the these algorithms. The energy results of the

ROA-V2 and CA-ROA algorithms in Chapters 5 and 6 used more than 100 pseudo-

random task graphs (general model). The results obtained are typically within 3% of

the optimal energy results obtained through Brute-Force-Search and are often much

closer.

As discussed in Table 2.2, a system in which multiple users offload some of their

computation-intensive tasks to a remote server represents one possible generalization

of the work proposed in this thesis. That generalization could include considering the

case where each mobile user has multiple tasks to execute, with various levels of task

dependency. The mobile users may share communication resources while offloading

tasks to the cloud. The goal would be to jointly optimize the offloading decisions

of all users as well as the allocation of communication resources and computational

resources among the users to minimize the overall cost of energy consumption and

delay for all users. One would need to jointly consider both the offloading decisions

and the sharing of the communication and computation resources among the users as

they compete to access the cloud through the wireless links.

The models and algorithms that were introduced in Chapters 4 and 5 for parallel

task graphs can be extended to accommodate not only multiple users, but also the

possibility of having different numbers of tasks per user. Another important extension

would be to consider multiple remote server offloading, including both edge and cloud

servers. The decision problem would be extended to include server selection for each

122

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

task.

Future extensions to the algorithms for general task graphs proposed in Chapters

5 and 6 could take into account multiple users with shared communication channels,

shared computational resources, and task inter-dependencies. In traditional cloud

computing systems, a central scheduler is used to solve for the decision variables

for all the users, while in the distributed scheduling model, mobile users make their

own decisions to execute their tasks remotely or locally. This is referred to as selfish

decision making, where each user tries to minimize its own energy consumption.

This problem could be coupled to the manner in which communication resources

(such as channel time slots) are allocated during the computation offload process.

Various game-theoretic formulations of this problem may provide significant insight

into algorithm design and performance, and it appears that generalization of the

algorithms in Chapters 5 and 6 may provide a good tradeoff between performance

and computational cost. Another extension to this work would be to consider multiple

remote servers, multiple available channels and multiple tasks per user.

123

Bibliography

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and Ayyash, M. (2015).

Internet of things: A survey on enabling technologies, protocols, and applications.

IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.

Barbarossa, S., Sardellitti, S., and Di Lorenzo, P. (2013). Joint allocation of com-

putation and communication resources in multiuser mobile cloud computing. In

Proceedings of the 14th IEEE Workshop on Signal Processing Advances in Wireless

Communications (SPAWC), pages 26–30.

Cao, S., Tao, X., Hou, Y., and Cui, Q. (2015). An energy-optimal offloading algorithm

of mobile computing based on hetnets. In Proceedings of the IEEE International

Conference on Connected Vehicles and Expo (ICCVE), pages 254–258.

Chen, M.-H., Liang, B., and Dong, M. (2015). A semidefinite relaxation approach

to mobile cloud offloading with computing access point. In Proceedings of the 16th

IEEE International Workshop on Signal Processing Advances in Wireless Commu-

nications (SPAWC), pages 186–190.

Chen, M.-H., Liang, B., and Dong, M. (2016a). Joint offloading decision and resource

124

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

allocation for multi-user multi-task mobile cloud. In Proceedings of the IEEE In-

ternational Conference on Communications (ICC), pages 1–6.

Chen, X., Jiao, L., Li, W., and Fu, X. (2016b). Efficient multi-user computation

offloading for mobile-edge cloud computing. IEEE/ACM Transactions on Net-

working, 24(5), 2795–2808.

Cheng, Z., Li, P., Wang, J., and Guo, S. (2015). Just-in-time code offloading for

wearable computing. IEEE Transactions on Emerging Topics in Computing, 3(1),

74–83.

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A. (2011). Clonecloud: elastic

execution between mobile device and cloud. In Proceedings of the 6th Conference

on Computer Systems, pages 301–314.

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R.,

and Bahl, P. (2010). Maui: making smartphones last longer with code offload. In

Proceedings of the 8th International Conference on Mobile Systems, Applications,

and Services, pages 49–62.

Deng, M., Tian, H., and Fan, B. (2016). Fine-granularity based application offloading

policy in cloud-enhanced small cell networks. In Proceedings of the IEEE Interna-

tional Conference on Communications Workshops (ICC), pages 638–643.

Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., and Milojicic, D. (2004). Adaptive

offloading for pervasive computing. IEEE Pervasive Computing, 3(3), 66–73.

Huang, D., Wang, P., and Niyato, D. (2012). A dynamic offloading algorithm for

125

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

mobile computing. IEEE Transactions on Wireless Communications, 11(6), 1991–

1995.

Kalra, M. and Singh, S. (2015). A review of metaheuristic scheduling techniques in

cloud computing. Egyptian Informatics Journal, 16(3), 275–295.

Kamoun, M., Labidi, W., and Sarkiss, M. (2015). Joint resource allocation and

offloading strategies in cloud enabled cellular networks. In Proceedings of the IEEE

Intrnational Conference on Communications (ICC), pages 5529–5534.

Kao, Y.-H., Krishnamachari, B., Ra, M.-R., and Bai, F. (2017). Hermes: Latency

optimal task assignment for resource-constrained mobile computing. IEEE Trans-

actions on Mobile Computing, 16(11), 3056–3069.

Kosta, S., Aucinas, A., Hui, P., Mortier, R., and Zhang, X. (2012). Thinkair: Dynamic

resource allocation and parallel execution in the cloud for mobile code offloading.

In Proceedings of the IEEE INFOCOM, pages 945–953.

Kumar, K. and Lu, Y.-H. (2010). Cloud computing for mobile users: Can offload-

ing computation save energy?, volume 43. Institute of Electrical and Electronics

Engineers, Inc., 3 Park Avenue, 17 th Fl New York NY 10016-5997 United States.

Labidi, W., Sarkiss, M., and Kamoun, M. (2015a). Energy-optimal resource schedul-

ing and computation offloading in small cell networks. In Proceedings of the 22nd

International Conference on Telecommunications (ICT), pages 313–318.

Labidi, W., Sarkiss, M., and Kamoun, M. (2015b). Joint multi-user resource schedul-

ing and computation offloading in small cell networks. In Proceedings of the IEEE

126

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

11th International Conference on Wireless and Mobile Computing, Networking and

Communications (WiMob), pages 794–801.

Li, Z., Wang, C., and Xu, R. (2001). Computation offloading to save energy on hand-

held devices: a partition scheme. In Proceedings of the International Conference

on Compilers, Architecture, and Synthesis for Embedded Systems, pages 238–246.

Lin, X., Wang, Y., Xie, Q., and Pedram, M. (2015). Task scheduling with dynamic

voltage and frequency scaling for energy minimization in the mobile cloud comput-

ing environment. IEEE Transactions on Services Computing, 8(2), 175–186.

Liu, J., Mao, Y., Zhang, J., and Letaief, K. B. (2016). Delay-optimal computation task

scheduling for mobile-edge computing systems. In Proceedings of the International

Symposium on Information Theory (ISIT), pages 1451–1455.

Liu, W., Gong, W., Du, W., and Zou, C. (2017). Computation offloading strategy

for multi user mobile data streaming applications. In Proceedings of the IEEE

19th International Conference on Advanced Communication Technology (ICACT),

pages 111–120.

Luo, Z., Ma, W., So, A. M., Ye, Y., and Zhang, S. (2010). Semidefinite relaxation of

quadratic optimization problems. IEEE Signal Processing Magazine, 27(3), 20–34.

Mach, P. and Becvar, Z. (2017). Mobile edge computing: A survey on architecture

and computation offloading. IEEE Communications Surveys & Tutorials, 19(3),

1628–1656.

Mao, Y., Zhang, J., and Letaief, K. B. (2016a). Dynamic computation offloading for

127

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

mobile-edge computing with energy harvesting devices. IEEE Journal on Selected

Areas in Communications, 34(12), 3590–3605.

Mao, Y., Zhang, J., Song, S., and Letaief, K. B. (2016b). Power-delay tradeoff in

multi-user mobile-edge computing systems. In Proceedings of the IEEE Global

Communications Conference (GLOBECOM), pages 1–6.

Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B. (2017a). A survey on

mobile edge computing: The communication perspective. IEEE Communications

Surveys & Tutorials, 19(4), 2322–2358.

Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B. (2017b). A survey on

mobile edge computing: The communication perspective. IEEE Communications

Surveys & Tutorials, 19(4), 2322–2358.

Meskar, E., Todd, T. D., Zhao, D., and Karakostas, G. (2017). Energy aware offload-

ing for competing users on a shared communication channel. IEEE Transactions

on Mobile Computing, 16(1), 87–96.

Miettinen, A. P. and Nurminen, J. K. (2010). Energy efficiency of mobile clients in

cloud computing. HotCloud, 10, 4–4.

Muñoz, O., Pascual-Iserte, A., and Vidal, J. (2013). Joint allocation of radio and

computational resources in wireless application offloading. In Proceedings of the

IEEE Future Network and Mobile Summit (FutureNetworkSummit), pages 1–10.

Muñoz, O., Iserte, A. P., Vidal, J., and Molina, M. (2014). Energy-latency trade-off

for multiuser wireless computation offloading. In Proceedings of the IEEE Wireless

Communications and Networking Conference Workshops (WCNCW), pages 29–33.

128

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Munoz, O., Pascual-Iserte, A., and Vidal, J. (2015). Optimization of radio and

computational resources for energy efficiency in latency-constrained application

offloading. IEEE Transactions on Vehicular Technology, 64(10), 4738–4755.

Niu, J., Song, W., Shu, L., and Atiquzzaman, M. (2013). Bandwidth-adaptive appli-

cation partitioning for execution time and energy optimization. In Proceedings of

the IEEE International Conference on Communications (ICC), pages 3660–3665.

Qiu, M., Ming, Z., Li, J., Gai, K., and Zong, Z. (2015). Phase-change memory opti-

mization for green cloud with genetic algorithm. IEEE Transactions on Computers,

64(12), 3528–3540.

Ra, M.-R., Sheth, A., Mummert, L., Pillai, P., Wetherall, D., and Govindan, R.

(2011). Odessa: enabling interactive perception applications on mobile devices. In

Proceedings of the 9th International Conference on Mobile systems, Applications,

and Services, pages 43–56.

Rong, P. and Pedram, M. (2003). Extending the lifetime of a network of battery-

powered mobile devices by remote processing: a markovian decision-based ap-

proach. In Proceedings of the 40th annual Design Automation Conference, pages

906–911.

Sardellitti, S., Barbarossa, S., and Scutari, G. (2014a). Distributed mobile cloud com-

puting: Joint optimization of radio and computational resources. In Proceedings of

the IEEE Globecom Workshops (GC Wkshps), pages 1505–1510.

Sardellitti, S., Scutari, G., and Barbarossa, S. (2014b). Joint optimization of radio and

computational resources for multicell mobile cloud computing. In Proceedings of

129

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

the IEEE 15th International Workshop on Signal Processing Advances in Wireless

Communications (SPAWC), pages 354–358.

Shahzad, H. and Szymanski, T. (2017). Randomized computational offloading for

green mobile cloud and fog computing. Internal Memorandum.

Shahzad, H. and Szymanski, T. (2018). Randomized offloading algorithm for green

mobile cloud and mobile edge computing. Submitted to IEEE ACCESS.

Shahzad, H. and Szymanski, T. H. (2016a). A dynamic programming offloading algo-

rithm for mobile cloud computing. In Proceedings of the IEEE Canadian Conference

on Electrical and Computer Engineering (CCECE), pages 1–5.

Shahzad, H. and Szymanski, T. H. (2016b). A dynamic programming offloading

algorithm using biased randomization. In Proceedings of the 9th IEEE International

Conference on Cloud Computing (CLOUD), pages 960–965.

Song, J., Cui, Y., Li, M., Qiu, J., and Buyya, R. (2014). Energy-traffic tradeoff

cooperative offloading for mobile cloud computing. In Proceedings of the IEEE

22nd International Symposium of Quality of Service (IWQoS), pages 284–289.

Szymanski, T. and Shahzad, H. (2018). An improved randomized offloading algo-

rithm (v2) for evaluating mobile cloud, fog and edge computing systems. Internal

Memorandum.

Szymanski, T. H. (2018). 300 pseudo-random task graphs for evaluat-

ing mobile cloud, fog and edge computing systems. IEEE Dataport,

http://dx.doi.org/10.21227/kak5-8n96, doi:10.21227/kak5-8n96.

130

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Tang, C., Xiao, S., Wei, X., Hao, M., and Chen, W. (2018). Energy efficient and

deadline satisfied task scheduling in mobile cloud computing. In Proceedings of the

IEEE International Conference on Big Data and Smart Computing (BigComp),

pages 198–205.

Tang, L. and He, S. (2018). Multi-user computation offloading in mobile edge com-

puting: A behavioral perspective. IEEE Network, 32(1), 48–53.

Tian, Y., Ekici, E., and Ozguner, F. (2005). Energy-constrained task mapping and

scheduling in wireless sensor networks. In Proceedings of the IEEE International

Conference on Mobile Adhoc and Sensor Systems Conference, pages 8–pp.

Toma, A. and Chen, J.-J. (2013). Computation offloading for frame-based real-time

tasks with resource reservation servers. In Proceedings of the 25th Euromicro Con-

ference on Real-Time Systems, pages 103–112.

Tong, L., Li, Y., and Gao, W. (2016). A hierarchical edge cloud architecture for

mobile computing. In Proceedings of the 35th IEEE International Conference on

Computer Communications INFOCOM, pages 1–9.

Tout, H., Talhi, C., Kara, N., and Mourad, A. (2017). Smart mobile computation

offloading: Centralized selective and multi-objective approach. Expert Systems with

Applications, 80, 1–13.

Tseng, F.-H., Wang, X., Chou, L.-D., Chao, H.-C., and Leung, V. C. (2018). Dynamic

resource prediction and allocation for cloud data center using the multiobjective

genetic algorithm. IEEE Systems Journal, 12(2), 1688–1699.

131

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Wang, J., Peng, J., Wei, Y., Liu, D., and Fu, J. (2017). Adaptive application of-

floading decision and transmission scheduling for mobile cloud computing. China

Communications, 14(3), 169–181.

Wang, X., Chen, X., Wu, W., An, N., and Wang, L. (2016a). Cooperative applica-

tion execution in mobile cloud computing: A stackelberg game approach. IEEE

Communications Letters, 20(5), 946–949.

Wang, Y., Sheng, M., Wang, X., Wang, L., and Li, J. (2016b). Mobile-edge comput-

ing: Partial computation offloading using dynamic voltage scaling. IEEE Transac-

tions on Communications, 64(10), 4268–4282.

Yang, L., Cao, J., Yuan, Y., Li, T., Han, A., and Chan, A. (2013). A framework for

partitioning and execution of data stream applications in mobile cloud computing.

ACM SIGMETRICS Performance Evaluation Review, 40(4), 23–32.

Yang, L., Cao, J., Cheng, H., and Ji, Y. (2015). Multi-user computation partitioning

for latency sensitive mobile cloud applications. IEEE Transactions on Computers,

64(8), 2253–2266.

You, C. and Huang, K. (2016). Multiuser resource allocation for mobile-edge compu-

tation offloading. In Proceedings of the IEEE Global Communications Conference

(GLOBECOM), pages 1–6.

You, C., Huang, K., Chae, H., and Kim, B.-H. (2017). Energy-efficient resource

allocation for mobile-edge computation offloading. IEEE Transactions on Wireless

Communications, 16(3), 1397–1411.

132

Ph.D. Thesis - Haleh Shahzad McMaster - Electrical Engineering

Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., Pan, L., Maharjan, S.,

and Zhang, Y. (2016). Energy-efficient offloading for mobile edge computing in 5g

heterogeneous networks. IEEE Access, 4, 5896–5907.

Zhang, L., Fu, D., Liu, J., Ngai, E. C.-H., and Zhu, W. (2017). On energy-efficient

offloading in mobile cloud for real-time video applications. IEEE Transactions on

Circuits and Systems for Video Technology, 27(1), 170–181.

Zhang, Y., Liu, H., Jiao, L., and Fu, X. (2012). To offload or not to offload: an

efficient code partition algorithm for mobile cloud computing. In Proceedings of

the IEEE 1st International Conference on Cloud Networking (CLOUDNET), pages

80–86.

Zhao, Y., Zhou, S., Zhao, T., and Niu, Z. (2015). Energy-efficient task offloading for

multiuser mobile cloud computing. In Proceedings of the IEEE/CIC International

Conference on Communications in China (ICCC), pages 1–5.

133

