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Abstract 

Multi-site MRI studies collect large amounts of data in a short time frame. Large sample 

sizes are desirable to address power and replicability issues that have been problematic 

for scientists in the past. Although multi-site MRI solves the sample size problem, it 

brings with it a new set of challenges. Scanning the same person at different sites might 

result in differences in MRI derived measurements. In this thesis we compared three 

approaches to facilitate the analysis of multi-site MRI data: quantitative R1 mapping, 

adding site as a covariate in a linear model, and using the ComBat method. We also 

investigated the relationship between two common MRI measurements: signal and 

volume. We collected data from 64 healthy participants across 3 GE scanners and 1 

Siemens scanner at 3T. We found that signal intensity was different between vendors 

whereas volume was not. Our R1 method resulted in values that were different across 

vendor and significantly lower than those reported in the literature. B1+ maps used to 

calculate R1 were different across sites. Using a scale factor, we were able to 

compensate for mistakes in R1 mapping. We also found that adding site as a covariate 

corrected mean differences in signal intensity across sites, but not differences in 

variance. The ComBat method gave best similarity between sites. However, since 

different people were scanned at each site, we couldn’t evaluate the effectiveness of 

each method as variation in the data could have been due to site effects or 

heterogeneity in participants. White matter volume and signal intensity in the white 

matter were correlated in males but not in females. We found that this low correlation 

was caused by outliers in our female sample. The correlation between white matter 

volume and signal in males suggests that both metrics are measuring myelin and can 

be used as converging evidence to detect changes in brain myelination. 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

 

Acknowledgements 

The person I want to thank the most is my thesis supervisor, Dr. Nicholas Bock. For 

taking me on as a student, and paving the way for my career, I will be forever grateful. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

Table of Contents 

Abstract                    iii 

Acknowledgements                  iv 

 

1. Magnetic Resonance Imaging for Myelin 

2. MRI Signal and Bias 

3. Multi-Site MRI  

4. Methods: Imaging Sequences, Image Processing, Statistical Analysis 

4.1 MRI Acquisition Protocol 

4.2 Creating a Ratio Image for Myelin Mapping 

4.3 Reverse Lookup Table method for R1 calculation 

4.4 HCP Surface Mapping  

4.5 Statistical Correction Methods 

5. Multi-Site Myelin Mapping Results 

5.1 Ratio Image Intensity 

5.2 B1+ Mapping and Mean Centering B1+ 

5.3 R1 with and without Gain Factor 

5.4 Covariate in a Linear Model 

5.5 ComBat Method  

6. Multi-Site Intensity and Volume 

7. Discussion/Future Work 

7.1 R1 Calculation and Ccaling  

7.2 Site as a Covariate in a Linear Model 

7.3 ComBat Method 

7.4 Sampling Issues 

7.5 Signal Intensity and Volume 

 



MSc. Thesis – L. Yoganathan; McMaster University – Psychology, Neuroscience & Behaviour 
 

1 
 

1. Magnetic Resonance Imaging for Myelin 

 The brain is highly complex yet highly organized. Modelling this organization 

could improve our understanding of structure-function relationships in the brain. There is 

a lot of interest in understanding the information processing capabilities of the brain, and 

the region where most information processing takes place is the cerebral cortex. It is the 

2-4mm thick outer layer of the brain which contains billions of neurons and even more 

synapses and axons (Sporns, Tononi, & Kötter, 2005). It is responsible for several 

functions including speech, movement, visual perception, attention and working 

memory. Many tools are used to study cortical structure and organization including 

magnetic resonance imaging (MRI), histology, and electrophysiology. 

 The organization of neuronal cell bodies in the cortex is called cytoarchitecture. 

In general, the cortex is organized into 6 layers, although in some regions it is difficult to 

see distinctions between layers. Layer I has few cells and mostly consists of dendrites 

and axons. Layer II and IV are mostly made up of granule cells. Layer III and V are 

mostly made up of pyramidal neurons. Layer VI is made up of a variety of neurons. The 

composition of each layer varies regionally. For example, primary motor cortex has a 

smaller layer IV and a larger layer V because of large pyramidal cells in layer V of the 

motor cortex. The 52 Broadmann areas were delineated based on this difference in 

cytoarchitecture. 

Another aspect of cortical architecture is myeloarchitecutre, the distribution of 

myelinated axons in the cortex which also has a layered pattern. Layers I-III mostly 

consist of intracortical connections. Layer IV neurons receive input from thalamus. 

Layer V neurons connect down to the brainstem and spinal cord while Layer VI sends 

connections to the thalamus. Myeloarchitecutre also varies regionally. For example, the 

visual cortex has a large, heavily myelinated layer IV (input layer) which forms the Stria 

of Gennari.  
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Figure 1: Taken from Nieuwenhuys, 2013. Figure 3 in their paper. This shows how both cytoarchitecture and myeloarchitecture 
have a layered pattern in the cortex. Permission obtained from Springer. 

The fine details of cytoarchitecture and myeloarchitecutre are studied using 

histology stains. Although histology can be used to study the brain at micrometer 

resolution, with MRI it is possible to study certain properties of the brain in 3D and in 

vivo, whereas histology is usually performed on 2D slices of post-mortem tissue. 

Structural MRI can be used to quantify properties of the cortex such as cortical 

thickness, gyrification, surface area & myeloarchitecture. Several MRI methods have 

been developed to investigate myeloarchitecture across the entire cortex. Although 

studies have shown the possibility of investigating layer specific myelin fibers of the 

cortex using ex-vivo diffusion MRI (Leuze et al., 2012), more common imaging 

techniques used in clinical studies are not able to produce images at such fine 

resolution. In most structural MRI studies, myelin is summarized using a spatially 

averaged MRI metric (such as longitudinal relaxation rate (𝑅1 =
1

𝑇1
), T1-weighted/proton 

density-weighted ratio, T1-weighted/T2-weighted ratio) across the depths of the cortex. A 

“myelin map” of the cortex using MRI shows that primary sensory cortical areas are 

more heavily myelinated than association areas like frontal and parietal cortices. 
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Figure 2: Taken from Fukutomi et. al, 2018. Part of figure 1 from their paper. This shows average cortical myelin and average 
cortical thickness in a sample of 1000 subjects from the Human Connectome Project. Myelin in the figure refers to intensity in a 

T1-weighted/T2-weighted ratio image. Open access CC-BY licence on Elsevier. 

Another advantage of MRI is that it can be used to study lifespan trajectories of 

brain development. With MRI, it is possible to collect data from many living people 

allowing for large scale cross sectional studies and the ability to track brain changes in 

individuals longitudinally. Lifespan trajectories can be used to study healthy 

development, disease progression and the effect of interventions on the brain. Disease 

studies tend to look at mean group differences in MRI metrics, but differences in 

developmental trajectories can provide complimentary insight into disease 

pathophysiology. For example a study investigating symptom progression in individuals 

with Alzheimer’s was able to group individuals based on trajectory of clinical decline as 

well as predict individual trajectories using clinical scores and MRI metrics (Bhagwat et 

al., 2018). Another study investigating the relationship between cortical thickness and 

IQ in children found that there were modest non-significant correlations between IQ and 

thickness which varied with age. Splitting children into different groups based on IQ, 

they found that differences in developmental trajectory of cortical thickness separated 

children with different levels of intelligence (Shaw et al., 2006).  

In terms of healthy brain aging, grey matter development peaks early and 

declines throughout life, whereas white matter peaks later in life. Histological myelin 

staining and MRI derived measures of myelin both increase until middle adulthood and 

then decline. A large scale MRI study of adulthood trajectory of intracortical myelin 

showed it plateaus in the late 30s before beginning to decline in in the 50s (Grydeland 

et al., 2013). This trajectory seems to be affected in mental health disorders such as 

bipolar disorder (Sehmbi et al., 2019) and schizophrenia (Tishler et al., 2018). One of 

the drawbacks of aging research is the larger sample size required to detect effects. 

Larger sample sizes are needed for detecting differences in trends between groups in 

cross-sectional data and even larger samples are required when covariates are 

considered (Naiji et al., 2013).  
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Figure 3: Taken from Narvacan et. al, 2018. Figure 2 from their paper. This shows lifespan trajectories for some metrics 
obtainable from MRI in a cross sectional healthy population. Blue lines represent males and red lines represent females, while 

black is the entire data. Permission obtained from Wiley. 

 

Figure 4: Taken from Grydeland et al., 2013. Figure 6 from their paper. This shows intracortical myelin follows an inverted U 
trajectory in healthy aging. Open access CC-BY licence from Journal of Neuroscience.. 
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Figure 5: Taken from Bartzokis 2005. Figure 1 in their paper. This shows the relationship between myelin stains and white matter 
volume. NIH/HHS public access 

 

Figure 6: Taken from Sehmbi et al., 2019. This shows the age trajectory of intracortical myelin is less quadratic in BD type-I 
compared to healthy controls. NIH public access 

2. MRI Signal and Bias: 

Histological studies quantify myelin content by staining the lipids and proteins in 

myelin while MRI creates contrast using differences in tissue composition. The signal 
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intensity from an MRI image is dependent on properties of the tissue inside the scanner 

such as spin density, longitudinal relaxation time (T1), transverse relaxation time (T2) 

and chemical shift. Various types of contrast can be achieved by suppressing or 

enhancing the effects of these properties. By using specific imaging sequences, we can 

sensitize an image to a tissue property such as T1 which would produce a T1-weighted 

image (T1w). The most common T1w imaging sequence is magnetization prepared 

rapid gradient echo (MPRAGE), which generates strong grey matter/white matter 

contrast arising from differences in T1 between grey matter and white matter. White 

matter has more myelin and thus more lipid molecules that shorten T1 (faster relaxation) 

of nearby water. T1 of grey matter is 1400ms and T1 of white matter is 900 ms at 3T, 

although this estimate varies depending on the measurement method used (Stanisz et 

al., 2005; Stikov et al., 2015). The signal intensity in a T1w image is correlated with 

myelin observed with histology. It has been shown that the T1 signal follows 

myeloarchitecture more closely then cytoarchitecture, although a combination of both fit 

the signal best (Eichkoff et al. 2005). Thus T1 and the associated longitudinal relaxation 

rate R1 (1/T1) are widely used as a surrogate marker of myelin.  

One of the caveats of MRI is that it is an indirect marker of the biological 

properties we are interested in studying. Both white matter volume and T1w MRI signal 

have been shown to be related to myelin, however, both are also affected by factors 

other than myelin. Although MRI signal intensity originates from the object itself, it can 

also be affected by radiofrequency (B1) or static (B0) field inhomogeneity. These 

changes in signal intensity are unrelated to the underlying tissue, and can bias 

interpretation and processing of MRI images. Many techniques have been developed to 

remove sources of bias from MRI images. For example, the N3 algorithm is a common 

preprocessing step to remove image intensity nonuniformity before MRI segmentation 

(Sled et al., 1998). N3 estimates a smoothly varying multiplicative model of the bias field 

and removes it. Images can also be corrected by collecting a separate map of the bias 

field. (Wang et al., 2005).  

Another method that has been used to correct receive (B1-) and transmit (B1+) 

bias is by collecting a map of the bias field using a proton density weighted (PDw) 

FLASH image (Wang et al., 2005; Helms et al., 2008). This method has been used to 

generate bias free T1w images by dividing a T1w image by a PDw image (Van de 

Moortele et al., 2009; Marques et al., 2010). For a low flip angle FLASH image, the 

signal is almost proportional to B1+ X B1- (Helms et al., 2008). Dividing a T1w MPRAGE 

image by a PDw FLASH image has also been used to increase contrast in the cortex 

(Bock et al., 2013).  
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Figure 7: From left to right: T1w MPRAGE, PDw FLASH and T1w/PDw ratio images in a single subject. Signal intensity 
nonuniformity is visible in both the T1w and PDw images with the back of the brain being brighter due to B1+ and B1-. This is 
easily noticeable on the surface. The ratio image is much more uniform and on the surface we can see features of 
myeloarchitecture (myelinated motor and visual cortices). 

3. Quantitative MRI for Multi-Site 

Multi-site MRI is becoming the standard for clinical neuroimaging research in an 

effort to address replication and power issues which have been problematic for studies 

in the past. However, different sites often have different scanner vendors with a different 

set of pulse sequences and optimizations. Some problems of using different scanners 

or vendors include having different bias fields, coil geometry, or image scaling which 

can lead to differences in measures of cortical thickness, brain volume, white matter, & 

signal intensity (Chenevert et al., 2014, Haast et al., 2018). The effect of having different 

scanners and different protocols is a concern for the reproducibility of findings and for 

meta-analysis, as site and vendor specific differences can lead to systematic 

differences in MRI metrics. 

To address this issue, rather than attempting to correct for biases and control all 

the variables that could affect the image at each site, we can create quantitative maps 

of tissue parameters that are sequence and scanner independent. Changing sequence 

parameters, bias fields or scanner hardware should not affect the imaged object. 

Quantitative MRI aims to measure properties of the underlying tissue and thus should 

be robust to site effects. Tissue parameters can be calculated from the signal intensity 

of an MRI image. The MRI signal can be described mathematically as a function of 

sequence parameters (such as repetition time (TR), echo time (TE), echo spacing (ES)) 

and tissue parameters (such as T1, T2*, PD). We can mathematically model signal 

intensity of a pulse sequence and we can calculate the value of tissue parameters given 

pulse sequence parameters. Using quantitative measures of tissue parameters such as 

R1 might improve comparability of MRI derived metrics across sites. Recently, studies 

have investigated if quantitative MRI increases reliability between sites and have found 
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good agreement between sites, although there is still room for improvement. Lee et al., 

(2019) used the variable flip angle method to map T1 and observed an intra-scanner 

test-retest variability of <3.8% and inter-scanner test-retest reliability that varied from 

3.8% to 13.2%.  

 

Figure 8: Taken from Edwards, Kirilina, Mohammadi & Weiskopf, (2018). Figure 3 in their paper. Different quantitative metrics 
can be used to investigate different aspects of cortical microstructure. Open Access CC-BY licence on Elsvier 

Although other quantitative metrics exist, such as magnetization transfer which 

may be more specific to myelin, this thesis focuses on using R1 for myelin mapping. 

The main advantage of R1 is that methods for mapping R1 are generally faster than 

other methods, making it suitable for clinical studies. The disadvantages of R1 are that 

estimates vary widely in the literature and R1 is not specific to myelin. Several methods 

exist for quantitative R1 mapping such as variable flip angle, MP2RAGE and inversion 

recovery. Tsialios et al., (2017) compared several methods and showed that R1 values 

differ depending on the method used. This has led to a wide range of estimates for R1 in 

grey matter and white matter. Although R1 is a quantitative metric that is more specific 

than a weighted image, it is also correlated with iron. Stueber et al., (2014) collected 

quantitative R1 maps and also measured iron and myelin concentration (by measuring 

phosphorus and sulfur) in the cortex and neighbouring white matter. They showed that 

64 percent of the variation in R1 in cortical grey matter could be attributed to myelin 

while 36 percent is accounted for by iron. In the white matter, 90 percent of the variation 

in R1 is accounted for by myelin while 10 percent is accounted for by iron. This is 

because iron and myelin are co-localized in cortical grey matter (Fukunaga et al., 2010).  

R1 also depends on axon diameter (Harkins et al., 2016).  
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To estimate R1 in the cortex we use a technique with T1w MPRAGE and PDw 

FLASH images (Bock et al., 2013). Using signal equations, we can create a lookup 

table and solve for R1 while also taking into account local deviations in flip angle caused 

by B1+ inhomogeneity in a method similar to MP2RAGE (Marques et al., 2010). 

 

Figure 9: Our custom R1 method. A lookup table is generated from signal equations. T1w/PDw images and B1+ maps are passed 
and the value of R1 is interpolated from the table. 

This thesis explores techniques to facilitate multi-site MRI data analysis. We show that 

correction for multi-site data is necessary, and correction can either be performed using 

an imaging protocol that is reliable across multiple sites or correction can be applied 

after images are acquired using statistical approaches. We collect data from four sites 

and calculate R1 incorporating a scale factor for each vendor. We also test two 

statistical approaches: including site as a covariate in a linear model and the ComBat 

method (Fortin et al., 2017, Johnson, Li, & Rabinovic, 2007). We also tested the 

relationship between two common MRI metrics: volume and signal.  

4. Methods 

All data analysis was performed on Compute Canada’s high performance 

computing cluster named Graham. Below is an outline of the MRI processing steps: 
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4.1 MRI Acquisition Protocols 

 We collected MRI data from four sites. Three had a General Electric (GE) 

scanners (McMaster University, Dalhousie University, and University of Calgary) and 

one had a Siemens scanner (Queens University). All GE sites had a 3T MR750w 

Discovery scanner. The Siemens site had a 3T MAGNETOM TrioTim syngo MR B19 

scanner.  

 We collected a T1w, PDw, high contrast T1w (T1wHC) and B1+ map at each 

site. The T1w image is used with Freesurfer for surface generation while the T1wHC is 

used to create a ratio image and R1 map. Sequence parameters for each site are listed 

below. TI is inversion time, TD is delay time, TE is echo time, ES is echo spacing, θ is 

flip angle, TR is repetition time, PE is phase encoding direction, FOV is field-of-view and 

TA is total acquisition time. Some parameters are calculated based on inputs into the 

scanner. For GE, TR is not set, but calculated via TR = TI + N*ES + TD. Similarly, for 

Siemens TD is not set but calculated as TD=TR-TI-N*ES. 

Image Sequence TI(s) TD (s) TE (ms) ES (ms) θ(°) TR (s) PE FOV(mm) TA (min) 

HC T1w BRAVO 1 1.1 3.06 7.93 12 2.89 Centric 240x240x100 6:19 x 2 

T1w BRAVO 0.45 0 3.06 7.92 12 1.87 Centric 240x240x180 5:32 

PDw SPGR - - 3.06 7.91 4 1.42 Linear 240x240x180 4:59 

B1+ 2d b1map - - 12.3 16 15  - 64x64x35 1:29 

Table 1 Sequence parameters at the 3 GE sites. TI is the time until centre of k-space is acquired. When phase encoding is centric, 
TI is time until the beginning of the acquisition block. The TI and TD parameters are calculated based on information input to the 

scanner. If opti is set to 2.1, and pos_start_ir is 1.1, then TI will be 1. For the low contrast, opti is 0.45 and pos_start_ir is 0. 

 

Freesurfer recon-all 
on T1w image

Create ratio image, 
mean center B1+, 

create R1 maps - all 
in volume space

Use ciftify to 
transform Freesurfer 

surfaces to HCP 
surface space

Project volume data 
to surface space (R1 
maps, ratio images)

Multi-Site correctionGroup level Statistics
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Image Sequence TI(s) TD(s) TE (ms) ES (ms) θ(°) TR(s) PE FOV(mm) TA (min) 

HC T1w tfl 1 1.1 2.01 7.93 12 3.65 Linear 256x240x176 8:14 

T1w tfl 0.0 0.8 2.96 7.10 9 2.3 Linear 256x256x176 5:30 

PDw tfl - - 2.01 7.91 4 1.09 Linear 256x240x176 2:29 

B1+ ep_seg_se - - 46 4.18 60 5 - 256x256x144 1:25 

B1+ ep_seg_se - - 46 4.18 120 5 - 256x256x144 1:25 

Table 2 Sequence parameters for the Siemens site. The TI in the acquisition protocol is to the beginning of the acquisition block. 
Since phase encoding is linear, k-space center is acquired in the middle of the acquisition. You need to find the time from 

beginning of inversion pulse to the k-space center. Prescribed TI for HC was 2100 and 900 for LC. 

4.2 Subject demographics 

Participants were recruited as part of an ongoing longitudinal imaging project on 

Type-I Bipolar Disorder. In this thesis, the focus is on the cross sectional healthy 

controls of this cohort (N=64). 

 McMaster Dalhousie Calgary Queens Total 

M(F) 14(13) 7(10) 7(1) 2(10) 30(34) 

Mean Age 27.6 26.6 21.5 24.5 - 
Table 3: Subject demographics for the baseline healthy controls for a longitudinal imaging project on bipolar disorder 

4.3 Freesurfer for Surface Generation 

 We run Freesurfer v6.0 (https://surfer.nmr.mgh.harvard.edu/) recon-all pipeline 

on the T1w image. The T1w image has less blurring than the T1wHC image and we 

believe this might allow Freesurfers automatic segmentation to better identify the grey 

matter/white matter boundary and the grey matter/cerebrospinal fluid boundary, 

although this has not been formally tested. 

4.4 Creating Ratio Image for Myelin Mapping 

 We use dcm2niix (https://www.nitrc.org/frs/?group_id=889) that is distributed with 

MRIcroGL to convert DICOMS to NiFTI. We used the latest version at the time of writing 

(release data June 23 2018). 

 Next, we perform image registration and create a ratio image using FSL v 5.0.11 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). We register all images to the T1w image with linear 

affine registration using FLIRT and 6 degrees of freedom (DOF). We transform the 

Freesurfer skull-stripped brain back into native space using mri_vol2vol. We register this 

skull-stripped brain to the MNI152 T1 1mm brain atlas included with FSL using FLIRT 

and 12 DOF (atlas located in $FSLDIR/data/standard/MNI152_T1_1mm_brain.nii.gz, 

which corresponds to the ICBM152 Nonlinear asymmetric template 6th generation). We 

apply this transform to all the images – T1w, T1wHC, B1+, and PDW - which are 

registered to the T1w image. For GE’s T1wHC, two halves were acquired separately. 

We register both halves to the T1w, then transform them to the MNI space using the 12 

DOF FLIRT matrix that was used to register the skull stripped brain to MNI152 space. 

https://surfer.nmr.mgh.harvard.edu/
https://www.nitrc.org/frs/?group_id=889
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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Then we add them taking the largest value at each voxel. The end result is a whole 

brain high contrast image. This procedure is described in more detail elsewhere 

(Rowley et al., 2017). For the Siemens site, we collect a single whole brain T1wHC 

image and divide that by the PDw image. 

4.5 B1+ Mapping and Smoothing Procedure 

GE’s 2db1map sequence uses Bloch-Seigert shift B1+ mapping (Sacolick et al. 

2010) and produces a B1+ map as well as an anatomical volume. We register the B1+ 

anatomical image to the T1w image using FLIRT 6 DOF. We then apply this transform 

to the B1+ image. The GE B1+ map has units of 10*flip angle. This is because the 

scanner cannot store decimal numbers. The prescribed flip angle was 15 degrees, so 

we divide the B1+ volume values by 150 (10*15). A value of 1 would indicate the 

prescribed flip angle was achieved (signal intensity is a function of flip angle, so 

incorrect flip angle will lead to differences in signal intensity due B1+ rather than due to 

differences in the underlying tissue).  

On the Siemen’s, we use the double angle method (Sled & Pike 2000; Wang, Qiu 

& Constable 2005; Wang et al. 2009). We register the 120° flip angle spin echo image 

to the T1w skull stripped brain from Freesurfer using FLIRT with 6 DOF. Then we 

register the 60° flip angle spin echo image to the 120° flip angle image. Then we use the 

equations for the double angle method to create a B1+ map. 

For smoothing, we multiply the B1+ map with the brainmask generated from 

Freesurfer to mask out non brain areas. Then we apply a 5mm Gaussian smoothing 

kernel (this corresponds to mean filtering with 5mm) to the masked B1+ map. The 

smoothed B1+ map is used in R1 calculations.  

4.6 R1 Method (Reverse Lookup Table / Dictionary method) 

 See here for an excellent explanation of dictionary based methods: 

https://qmrlab.org/2019/04/08/T1-mapping-mp2rage.html. The author of the blog also 

provides intuitive explanations to other quantitative MRI methods such as inversion 

recovery and variable flip angle. 

For our method, we model the signal intensity of the ratio image (T1w/PDw) as a 

function of T1 using the signal equations for MPRAGE and FLASH sequences. We 

compute values of T1 for several possible values of the ratio image. Then, given a value 

at the ratio image we can get a value for T1. Since the sequence parameters are 

different for Siemens and GE, we compute separate lookup tables for each site. At first, 

the calculated R1 values were off, and we believe this is due to differences in scaling 

between the T1w and PDw images. This can occur if each scan gets its own auto 

prescan or prescan normalize, or if receiver gains are different between scans. So, we 

also incorporate a scaling factor to account for not performing pre scan normalize 

properly. A single multiplicative factor was determined for each vendor by trial and error. 

We tried different scale values until our R1 values were in the range of those reported in 

https://qmrlab.org/2019/04/08/T1-mapping-mp2rage.html
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the literature. The equations used for modelling MPRAGE signal and FLASH signal are 

described below: 

MPRAGE: Signal intensity at the iith readout pulse: 

𝑠𝑖 ∝ 𝑀𝑖 ∙ sin 𝜃 = 𝑀0 ∙ sin 𝜃 ∙ [
(1 − 𝛿) ∙ (1 − 𝜇𝑖−1)

1 − 𝜇
] + 𝜇𝑖−1 ∙ (1 − 𝛾) − 𝛾 ∙ 𝜇𝑖−1 ∙

𝑀𝑒𝑞

𝑀0
 (1) 

And Meq is 

𝑀𝑒𝑞 =
1 − 𝜑 +

𝜑 ∙ cos 𝜃 ∙ (1 − 𝛿) ∙ (1 − 𝜇𝑁−1)
1 − 𝜇

+ 𝜑 ∙ cos 𝜃 ∙ 𝜇𝑁−1 + 𝜌 ∙ cos 𝛼 ∙ cos𝑁 𝜃

1 − 𝜌 ∙ cos 𝛼 ∙ cos𝑁 𝜃
∙ 𝑀0 (2) 

𝛾 = 𝑒−𝑇𝐼
𝑇1⁄  

𝛿 = 𝑒−𝜏
𝑇1⁄  

𝜑 = 𝑒−𝑇𝐷
𝑇1⁄  

𝜌 = 𝑒−𝑇𝑅
𝑇1⁄  

θ is flip angle, α is inversion angle, TR is repetition time (TR = TI + N*ES + TD). N is 

total number of readout RF pulses. This equation is from Wang et al., (2014) and also 

appears in Protti et al., (2018). The MPRAGE sequence can be expressed equivalently 

in different ways (see Diechmann et al., 2000 or Bock et al., 2013). 

FLASH: Signal intensity is given by 

𝑠𝑖 ∝ 𝑀𝑖 ∙ sin 𝜃 =  𝑀0 ∙ sin 𝜃 ∙
1 − 𝑒−𝑇𝑅

𝑇1⁄

(1 − cos 𝜃) ∙ 𝑒−𝑇𝑅
𝑇1⁄

 (3) 

This is taken from Helms et al., (2008) and also described in detail in Wang et al., 

(2005). To see the effect of creating a ratio image, we can express the equations like 

Bock et al., (2013): 

𝑠𝑀𝑃𝑅𝐴𝐺𝐸 ∝ 𝑀𝑀𝑃𝑅𝐴𝐺𝐸|𝐵1
−| ∙ sin(𝜃1|𝐵1

+|) 

𝑠𝐹𝐿𝐴𝑆𝐻 ∝ 𝑀𝐹𝐿𝐴𝑆𝐻|𝐵1
−| ∙ sin(𝜃2|𝐵1

+|) 

𝑆𝑅 ∝
𝑆𝑀𝑃𝑅𝐴𝐺𝐸

𝑆𝐹𝐿𝐴𝑆𝐻

∝
𝑀𝑀𝑃𝑅𝐴𝐺𝐸 ∙ sin(𝜃1|𝐵1

+|)

𝑀𝐹𝐿𝐴𝑆𝐻 ∙ sin(𝜃2|𝐵1
+|)

 (4) 

As mentioned in Bock et al., (2013), creating a ratio removes effects of B1- but some 

B1+ remains. We represent the scale factor here as g to account for differences in 

receiver/transmit gain and differences in prescan normalize. 

𝑔
𝑆𝑀𝑃𝑅𝐴𝐺𝐸

𝑆𝐹𝐿𝐴𝑆𝐻
(5) 
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This was coded in python and is available online 

(www.github.com/lyoganathan/MPRAGE_FLASH_LUT). We pass our ratio image and 

B1+ into the lookup table and get a value of T1 at each voxel using linear interpolation as 

implemented in scipy’s griddata function. 

4.7 To the Surface: HCP minimal processing pipeline using ciftify 

We closely follow the HCP minimal preprocessing pipeline for surface creation 

and registration using ciftify (https://github.com/edickie/ciftify) (Dickie et al., 2019) and 

custom scripts for myelin mapping adapted from the HCP scripts 

(https://github.com/Washington-University/HCPpipelines) (Glasser et al., 2013). We use 

ciftify’s recon-all pipeline which takes a Freesurfer output and transforms it into the 

CIFTI format used by the HCP. For myelin mapping, we use custom scripts that work 

with the output of ciftify_recon_all to generate myelin maps from our image data. We 

bring surface data into MATLAB using the gifti toolbox 

(https://www.artefact.tk/software/matlab/gifti/) and view our results with SurfStat 

(http://www.math.mcgill.ca/keith/surfstat/). 

4.8 Statistical Correction for Multi-Site Data 

 We were also interested in comparing our quantitative MRI approach to statistical 

approaches common in multi-site studies, such as including site as a covariate in a 

general linear model. We fit a linear model to ratio image signal intensity at each vertex 

as a function of participant age, sex, site and B1+: 

𝑆𝑖𝑔𝑛𝑎𝑙𝑣𝑝 = 𝑎𝑣 + 𝛽1𝑣𝐴𝑔𝑒𝑝 + 𝛽2𝑣𝐴𝑔𝑒𝑝
2 + 𝛽3𝑣𝑆𝑒𝑥𝑝 + 𝛽4𝑣𝑆𝑖𝑡𝑒𝑝 + 𝛽5𝑣𝛥𝐵1

+
𝑣𝑝

+ ɛ𝑣𝑝 (6) 

Signal at a vertex v is the value of the ratio image projected on to the surface for each 

participant p. α is the intercept and β’s are coefficient for each term in the model. α and 

the β’s are estimated using ordinary least squares (OLS). ɛ is the residuals, which is the 

observed signal minus the predicted signal from the model. To remove the linear effect 

of site and B1+ from the signal, one can add the estimated coefficients multiplied by the 

variables of interest to the residuals and intercept. At a single vertex for each participant 

p: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙𝑣𝑝 = �̂�𝑣 + ɛ𝑣𝑝 + �̂�1𝑣𝐴𝑔𝑒𝑝 + �̂�2𝑣𝐴𝑔𝑒𝑝
2 + �̂�3𝑣𝑆𝑒𝑥𝑝 (7) 

Alternatively, you can subtract the estimated coefficients multiplied by site and B1+ from 

the original data: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙𝑣𝑝 = 𝑆𝑖𝑔𝑛𝑎𝑙𝑣𝑝 − �̂�4𝑣𝑆𝑖𝑡𝑒𝑝 − �̂�5𝑣𝛥𝐵1
+

𝑣𝑝
 

We plot the average signal on an average surface as well as boxplots of average values 

across the cortex for each participant by site. 

We apply another model called ComBat to our data, which originated as a 

method to correct batch effects in microarray genome sequencing, but has also been 

http://www.github.com/lyoganathan/MPRAGE_FLASH_LUT
https://github.com/edickie/ciftify
https://github.com/Washington-University/HCPpipelines
https://www.artefact.tk/software/matlab/gifti/
http://www.math.mcgill.ca/keith/surfstat/


MSc. Thesis – L. Yoganathan; McMaster University – Psychology, Neuroscience & Behaviour 
 

15 
 

used to correct multi-site DTI and cortical thickness data. You can further correct the 

ComBat adjusted data for B1+ using a linear model as above, but this analysis is not 

presented here. ComBat is an extension of location scale models, and uses empirical 

bayes to improve parameter estimates by calculating a prior for the location and scale 

parameters from the data. This is the model: 

𝑦𝑖𝑗𝑣 = 𝛼𝑣 + 𝑋𝑖𝑗𝛽𝑣 + 𝛾𝑖𝑣 + 𝛿𝑖𝑣𝜀𝑖𝑗𝑣 (8) 

where y is signal at site i scan j and voxel v. α is the intercept, X is the matrix of 

variables of interest, and β is a vector of estimates of coefficients for each variable. γ is 

the location parameter and δ is the scale parameter. 

Step 1: α and β are estimated with OLS on the data with this constraint on γ: 

∑ 𝑛𝑖
𝑖

𝛾𝑖𝑣 = 0 

Where ni is number of subjects in each site i. Pooled variance is also calculated and 

used in step 2: 

�̂�𝑣
2 =

1

𝑁
∑ (𝑌𝑖𝑗𝑣 − �̂�𝑣 − 𝑋�̂�𝑣 − 𝛾𝑖𝑣)

2

𝑖𝑗
 

 

Step 2: Standardize data: 

𝑍𝑖𝑗𝑣 =
𝑦𝑖𝑗𝑣 − �̂�𝑣 − 𝑋𝑖𝑗�̂�𝑣

�̂�𝑣
 

This above equation is basically (data – mean) / pooled variance. 

Step 3: Calculating γ and δ  

We assume that 

𝑍𝑖𝑗𝑣  ~ 𝑁(𝛾𝑖𝑣, 𝛿𝑖𝑣
2 ) 

We can estimate the location parameter on standardized data with OLS. The 

standardized data is adjusted for covariates, and now site is the only independent 

variable: 

𝑍𝑖𝑗𝑣 = 𝛾𝑖𝑣 + 𝜀𝑖𝑗𝑣 

The location parameter is the mean of each group. The scale parameter is the standard 

deviation of each group. 

Step 4: Empirical Bayes 
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The estimate for location and scale can be improved by using prior distributions 

calculated from the data. See supplemental in Johnson, Li, & Rabinovic (2007) for full 

derivation and explanation.  

Step 5: Adjust Data 

𝑦𝑖𝑗𝑣
𝐶𝑜𝑚𝐵𝑎𝑡 =

𝑦𝑖𝑗𝑣 − �̂�𝑣 − 𝑋𝑖𝑗�̂�𝑣 − 𝛾𝑖𝑣
∗

𝛿𝑖𝑣
∗ + �̂�𝑣 + 𝑋𝑖𝑗�̂�𝑣 (9) 

After comparing the different methods in surface space, we also wanted to 

investigate some whole brain multi-site data that has been adjusted using ComBat. So 

we also run ComBat in volume space and look at correlations between volume and 

signal in the deep white matter. 

To run ComBat on the ratio image in volume space and also in surface space, 

implementations are available online in both MATLAB and R 

((https://github.com/Jfortin1/ComBatHarmonization).  

5. Multi-Site Results: 

The figures below show average surface maps for all the healthy controls at 

baseline for each site. The maps are created by projecting intensity values in the cortex 

onto the surface. We show the ratio image, B1+ maps, R1 maps & statistically corrected 

maps. The boxplots represent average intensity across the cortex for all participants at 

each site. 

5.1 Ratio Image Signal Intensity: 

First, we show the bias corrected ratio image created by dividing a high contrast 

T1w MPRAGE image by a PDw FLASH image. Different pulse sequences were used at 

the Siemens and GE scanners and so a difference between vendors is expected. 

Across the three GE sites, the ratio image signal intensity is comparable. At the 

Siemens site, the ratio image intensity is low enough that we cannot simply pool this 

data together, demonstrating the need for a correction for site effects. In the boxplot, we 

can also see that the within subject variance is lower in the Siemens site compared to 

the GE sites. 

 

 

https://github.com/Jfortin1/ComBatHarmonization
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Figure 10: Ratio (T1w/PDw) Signal intensity by site. Signal intensity is comparable between the three GE sites, but Siemens is 
lower than GE. This is expected because we used different pulse sequences for GE & Siemens. 
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5.2 B1+ Mapping 

For GE, the Bloch-Seigert shift B1+ mapping returns values of 10*flip angle. In 

this case, the prescribed flip angle was 15, so we divide the B1+ image by 150 for each 

GE site to get values of B1+. The double angle method calculates B1+ using two spin 

echo images. We can see that across GE sites there is difference in B1+ mapping. We 

also note differences between double angle and Bloch-Siegert shift methods. Since this 

difference in B1+ mapping will affect both R1 calculations and including B1+ as a 

covariate in a linear model, we decided to mean center the maps at each site to 1 for R1 

calculation, and to 0 for linear modelling. To center the B1+ maps at 1, we subtract each 

individuals B1+ map from the site mean (center at 0) then add 1. The reason for mean 

centering to 0 for linear modelling is so that we can subtract the effects of B1+ and the 

corrected signal will be on a similar scale to uncorrected ratio image signal intensity for 

comparison purposes. 
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Figure 11: B1+ maps by site. Even though the three GE sites used the exact same B1+ mapping protocol, there were significant 
differences across sites. There also seems to be a difference due to B1+ mapping method as the Siemens maps (double angle) 

are lower than the GE maps (Bloch-Siegert shift) 
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Figure 12 B1+ maps centered at 1 by site. This is for R1 mapping. Without centering B1+ maps, estimated R1 values will be 
different across sites. 
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5.3 R1 with B1+ correction: 

We estimate R1 with and without a vendor specific scale factor. We notice that 

without a scale factor, our R1 method does not address the difference between vendors. 

We also see that our R1 values are lower than those reported previously in the 

literature. By incorporating a scaling term for vendor, we can get the R1 values between 

vendors closer to each other, and closer to values reported in the literature. However, 

we notice that the within subject variance in the Siemens site now seems greater than 

the GE sites. This is also evident on the cortical surface plots as the Siemens site 

seems to show a greater range of values across the cortex. 
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Figure 13: R1 estimated without a vendor-specific scale factor. This is not much different from original ratio image signal 
intensity. This suggests that there is an error in our R1 method, which we suspect is coming from differences in receiver gain. 
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Figure 14: R1 estimated with a vendor specific scale factor. The scale factor was estimated by trial and error until the Siemens 
site was close to the other GE sites. We multiplied the GE ratio data by 1.35 and the Siemens data by 1.2  
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5.4 Adding Site as a covariate in a linear model: 

Here we use a vertex-wise linear model with ratio image signal as the dependent 

variable and age, sex, B1+ and site as independent variables. We remove the effects of 

site and B1+ at each vertex. Although the average myelin maps look comparable across 

site, a boxplot of the average intensity values for each participant across the cortex 

show that within subject variation is lower in the Siemens site. This approach corrects 

for mean differences across sites, but does not correct differences in variance. 

However, it may also be the case that the difference in variance is coming from actual 

differences in participants as different people were imaged at each site. 
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Figure 15: Ratio image adjusted for site and B1+ using a vertex-wise GLM 
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5.5 Using ComBat method to adjust data: 

When we adjust the data using the ComBat method, the average myelin maps 

look comparable and distribution of values also look comparable across sites. However, 

since we have no ground truth, there is no way of determining which method is best. 

Variation in the data could be scanner artifacts or real variation in participants. It could 

be the case that ComBat is removing real subject to subject variation from the data. 
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Figure 16: Ratio image adjusted using the ComBat method 
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6. Relationship between Volume and Signal intensity in White Matter 

After comparing multi-site correction approaches, we also compare signal 

intensity and volume in the deep white matter (WM) across sites. Volumes were 

obtained from freesurfer’s aseg and wmparc segmentation. Signal intensity was 

corrected using the ComBat method. We see that volume does not have a site or 

vendor effect like signal.  

 

Figure 17: Deep WM volume across sites.  

Although both signal intensity and volume have been used to study myelin, few studies 

look at both metrics. We take correlations between WM Volume and WM signal 

(ComBat Harmonized) stratified by sex, because volume has a stronger sex effect than 

signal which might affect correlation values. WM signal is calculated by taking the 

average signal in the entire deep WM segmentation. Volume is number of voxels in the 

entire deep WM segmentation. 
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Figure 18: Correlation between deep WM signal and volume in males and females 

The correlation coefficient r in males is 0.4 and in females is 0.003. We can look at age 

trajectories of volume and signal to see where this difference is coming from. Below is a 

plot of WM signal harmonized with ComBat pooled across the 4 sites fit with a quadratic 

model. We see that relationship between age and females is obscured by some outliers 

with high signal in the young age range. 

 

Figure 19: Age trajectory of deep WM signal in males and females. Males seem to increase and begin to plateau whereas the 
trajectory in females seems to follow a U shaped curve 
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Figure 20: Age trajectory of deep WM volume in males and females. Both curves follow an inverted quadratic trajectory similar 
to that of signal and myelin 

However, looking at the age trajectory of deep white matter volume, we see that there 

are not really high values in the low age range females. This suggests that the high 

signal intensity seen in females may be some MRI artifact affecting signal rather than 

actually reflecting higher levels of myelin. Therefore, the low correlation in females 

might be due to an issue with MRI signal in young females of this sample. Both volume 

and signal might be reflecting changes in myelin, although both are indirect measures of 

myelin and might be sensitive to different sources of error or bias. 

7. Discussion/Limitations: 

We used structural MRI at four sites to investigate brain myelination and found 

significant intervendor differences in signal intensity of the scans, but no differences in 

the volume of brain structures across sites. Although our data show no significant 

differences in volume, multi-site differences in volume have been reported in other 

studies. In the ADNI study which was performed across 98 scanners with different 

vendors and field strengths, they found significant differences in volume measurements 

(Kruggel et al., 2010). In this thesis, we compared 3 approaches to correct for multi-site 

differences observed in signal. We tried to use quantitative MRI by calculating R1, 

adjusting our data by using site as a covariate in a linear model and also using the 

ComBat method.  

7.1 R1 Calculation and Scaling: 

Our R1 method did not work. Our calculated R1 values were lower those reported 

in the literature and also different across scanner vendors. We suspected this could be 

due to a mistake with image scaling differences between the T1w and PDw image, 
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which would throw off the R1 calculation. The equations presented in the methods 

section are simplified. We do not show some things like receiver gain or T2
* decay which 

also affect signal intensity. T2
* effects should be the same in both scans, and we 

assume that gain effects are also the same between scans. The ratio image division 

should remove these effects. In equations 4 and 5, our model of MRI signal expects 

specific values for MPRAGE and FLASH signal intensity based on our sequence 

parameters. However, if different sequences get scaled differently due to differences in 

gain (usually the default behaviour of the scanner), the R1 lookup table will not provide 

accurate mapping between ratio image values and R1. If not set up properly in the 

protocol beforehand, the scanner automatically sets receiver gain for each sequence as 

part of the auto-prescan or prescan normalize step. This can be avoided by applying 

auto-prescan to the first scan only (usually the one with highest intensity which is 

usually the T1w scan), then using manual prescan or turning prescan normalize off for 

subsequent scans. This should ensure that gains are consistent between scans. 

𝑆𝑅 ∝
𝑔

1
𝑆𝑀𝑃𝑅𝐴𝐺𝐸

𝑔
2

𝑆𝐹𝐿𝐴𝑆𝐻

= 𝑔
𝑆𝑀𝑃𝑅𝐴𝐺𝐸

𝑆𝐹𝐿𝐴𝑆𝐻

 

We represent the automatic scaling applied to each image as g1 and g2. Assuming g1 
and g2  are different, we evaluated whether we could correct this error in our R1 mapping 

using a single scale factor g to make R1 values at all sites match each other and the 

range of reported values in the literature. We tried several values of g until our R1 values 

were in a reasonable range. Another method to determine a value for g could be by 

measuring R1 using inversion recovery and comparing it to R1 values given by our 

method. Using a single scale factor assumes there is no non-linear scaling of intensity. If 

there was nonlinear scaling going on, we would have to figure out how scaling was 

applied to each image and we could not correct the differences in scaling with a single 

term. If a method such as histogram matching was used to scale the images (Nyúl & 

Udupa, 1999), then this single scale factor approach would not be valid. 

 Another problem is that we are not entirely sure if the difference in calculated R1 

is due to scaling. It could also be a problem with our R1 equations and modelling. One 

way to verify if our equations work as intended would be to test several flip angles and 

inversion times to make sure that our R1 estimates are accurate for a range of 

sequence parameters. This would also help in quantifying the error in our measurement 

method. Also, our R1 method has not been validated against inversion recovery 

measurements which is the gold standard for measuring R1. Typically, when testing a 

new R1 method an inversion recovery measurement is also performed in order to 

evaluate the accuracy and precision of the R1 method. For example, in the MP2RAGE 

paper, to demonstrate accuracy of their method, Marques et al. (2010) perform 

MP2RAGE with many different inversion times. They also perform single slice inversion 

recovery. They show agreement between both methods in a head phantom at 3T and 

7T. Standardized protocols have also been developed to deal with multi-site MRI 

problems such as the multi parametric mapping (MPM) approach that have been 
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validated at multiple sites (Weiskopf et al., 2013). MPM makes quantitative maps of R1, 

R2
*, PD* and MTR that are consistent across sites and vendors. More established 

methods which have been validated against inversion recovery measurements might 

have given more consistent results between sites. Lee et al., (2019) showed good 

agreement between vendors using the variable flip angle approach for T1 mapping. 

They also discuss the importance of establishing good intra and inter scanner/vendor 

reliability for quantitative metrics during the piloting phase of a study, which we also 

recommend. 

Another issue which affected R1 is the method used for B1+ mapping. The Bloch-

Seigert shift method seemed to vary considerably within GE sites, even though the 

prescribed protocol was the exact same. A study comparing the double angle method, 

actual flip angle and Bloch-Siegert shift showed that all methods performed similarly, 

(Boudreau et al., 2017), although this comparison was made on the same scanner. 

There are currently no guidelines on the best way to map B1+ across multiple sites. 

Future studies should also try to establish reliability between B1+ mapping methods 

during piloting. It also appears that the B1+ correction is “overcorrecting” in some areas. 

Our B1+ corrected R1 maps show relatively lower values in the posterior cingulate cortex 

(PCC) compared to other published R1 maps and compared to myelin maps made with 

other imaging modalities such as T1w/T2w ratio (Shams, Norris, & Marques, 2019, 

supplementary figure 2 & 3). 

7.2 Site as a Covariate in a Linear Model: 

We also tried to correct our data statistically using linear modelling with site as a 

covariate as this is a common technique in the literature along with variants such as 

using site as a random effect in a mixed effects model (Fennema-Notestine et al., 

2007). We found that this may not always be enough to correct for scanner differences. 

It corrected for mean differences across site but it did not correct for differences in 

variance between sites. Other studies have used site as a covariate when analysing 

large multi-site public data sets. Kwon et al. (2018) looked at myelin and developmental 

trajectories using site as a covariate in the NCANDA dataset. They looked across 

adolescence to adulthood. They did not indicate if site effects were present or plot their 

data by site, however they did use normalized myelin content using the T1w/T2w, which 

may be affected differently by multi-site scanner variation compared to R1. Similarly, 

Hibar et al., (2018) looked at cortical grey matter abnormalities in bipolar disorder and 

used site as a random effect in a mixed effects model. They also did not discuss effect 

of site or plot data by site. Although a convenient method, our results show it may not 

have been enough to fully correct for site differences. We believe a more sophisticated 

method such as ComBat is better suited to correct multi-site differences statistically. 

7.3 Combat Method: 

We found that the ComBat correction gave the best similarity between sites. It 

corrected for mean differences in intensity as well as differences in within subject 
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variance. Fortin et al., (2017) compared combat to 4 other methods and showed it 

performed the best in terms of preserving biological variability while removing unwanted 

scanner variability. It also increased power of subsequent statistical analyses. This was 

looking at fractional anisotropy, in DTI data. Combat has also been used to correct 

cortical thickness data with similar results (Fortin et al., 2018). It has also been used to 

correct site effects in connectivity and network metrics derived from fMRI data (Yu et al., 

2018). In order to test if ComBat performs better than quantitative metrics at correcting 

for site effects, we would need to image the same people at multiple sites. 

7.4 Sampling Issues: 

Sample size affects how well statistical correction methods work. Larger sample 

sizes ensure the model estimates site effects accurately. For example, to estimate the 

effect of B1+ B1+, estimating the relationship between each vertex in the ratio image and 

each vertex in the B1+ map, having a large sample makes the statistical correction 

better. This is an advantage of R1 and other quantitative MRI metrics over statistical 

methods. Since R1 is calculated at the imaging level, sample size and unbalanced 

groups have no effect on how well R1 works. 

In our dataset, there is a difference in the number of males and females at each 

site. At the Queens site, we have 2 males and 10 females, whereas at the Calgary site 

we have 7 males and 1 female. We did not thoroughly investigate any effects caused by 

the difference in sampling at each site. Other studies have looked at how the ratio of 

males and females in a sample affect multi-site results and how adding site as a 

covariate might interact with this difference in samples (Takao, Hayashi, & Ohtomo, 

2014). However, there is not much literature on the increase in signal intensity we see in 

young females. We believe that there are a few possibilities for the outliers seen in our 

female sample. Previous work has discussed the role of sex hormones on myelin 

content, even showing transient changes in myelin across the menstrual cycle (Barth et 

al., 2016) Another possibility is that the MRI signal is being increased by something 

other than myelin in young females such as medication like iron supplements. As 

opposed to WM signal, WM volume seems to follow an inverted quadratic age trajectory 

in females. A future study could use the same subjects across multiple sites and also 

ensure samples are balanced to better characterize the relationship between different 

MRI metrics. This design would also be useful to evaluate which correction method 

achieves greatest similarity between sites. 

7.5 Signal Intensity and Volume: 

Both white matter volume and signal intensity are used as proxies for myelin. 

Studies often refer to changes in white matter volume as changes in myelin, or changes 

in white matter signal as changes in myelin, but both are indirect measures of myelin. 

We found that signal intensity was different across vendors whereas volume was not, 

suggesting that these metrics may be measuring different things. The correlation in 
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males and the difference in females suggests that although both measures may be 

sensitive to myelin, they are also affected by different sources of noise.  

Studies on white matter volume generally look at deep white matter volume, 

although cortical white matter volume has also been studied (Bartzokis et al. 2009, 

Rowely 2015, Tishler 2019). Volume measurements are affected by the contrast in an 

MRI image. The boundaries for different tissue classes (CSF, GM, WM) are defined 

based on gradients of signal intensity. Volume measurements are normally acquired by 

segmenting a T1w image corrected for intensity nonuniformity by using a method such 

as N3. However, using different MRI contrasts could also give different estimates for 

volume of brain regions. Haast et al. (2018) showed that correcting MP2RAGE data for 

B1+ gave significantly different results for estimates of cortical thickness in some brain 

areas using Freesurfer. Helms et al., (2009) obtained better segmentations and volume 

estimates from magnetization transfer maps. Another possible future study could look at 

which image (T1w/PDW vs R1 vs T1w with N3 correction) gives better estimates for 

volumes across multiple sites. 

We have only discussed site differences in structural MRI and evaluated just 3 

potential correction methods. However, site effects have been demonstrated in other 

MRI modalities and several other methods exist to correct multi-site data. For future 

studies we recommend establishing reliability and repeatability during the piloting 

phase. This is especially important for quantitative imaging metrics as there are many 

variables that need to be taken to account. Also, we recommended building on previous 

research and using methods which have more support. For example, open source 

software such as qMRLab (https://qmrlab.org/) has code to calculate quantitative 

metrics for several popular quantitative MRI sequences, which would be much easier 

than programming custom calculations. Finally, we also recommend combining and 

comparing different metrics that can be obtained from the same MRI scan to gain a 

better understanding of changes in the brain. 
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