
Capacity Expansion of EV Charging Network:

Model, Algorithms and A Case Study

CAPACITY EXPANSION OF ELECTRIC VEHICLE CHARGING

NETWORK: MODEL, ALGORITHMS AND A CASE STUDY

BY

QIANQIAN CHEN

a thesis

submitted to the school of Computational Science and Engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Science

c© Copyright by Qianqian Chen, September 2019

All Rights Reserved

Master of Science (2019) McMaster University

(Computational Science and Engineering) Hamilton, Ontario, Canada

TITLE: Capacity Expansion of Electric Vehicle Charging Net-

work: Model, Algorithms and a Case Study

AUTHOR: Qianqian Chen

Ph.D. (Operations Research and Cybernetics),

Zhejiang University, Hangzhou, China

SUPERVISOR: Dr. Kai Huang

NUMBER OF PAGES: x, 82

ii

Abstract

Governments in many counties are taking measures to promote electric vehicles.

An important strategy is to build enough charging infrastructures so as to allevi-

ate drivers’ range anxieties. To help the governments make plans about the public

charging network, we propose a multi-stage stochastic integer programming model

to determine the locations and capacities of charging facilities over finite planning

horizons. We use the logit choice model to estimate drivers’ random choices towards

different charging stations nearby. The objective of the model is to minimize the

expected total cost of installing and operating the charging facilities. Two simple al-

gorithms are designed to solve this model, an approximation algorithm and a heuristic

algorithm. A branch-and-price algorithm is also designed for this model, and some

implementation details and improvement methods are explained. We do some nu-

merical experiments to test the efficiency of these algorithms. Each algorithm has

advantages over the CPLEX MIP solver in terms of solution time or solution qual-

ity. A case study of Oakville is presented to demonstrate the process of designing an

electric vehicle public charging network using this model in Canada.

Keywords: multi-stage stochastic integer programming, logit choice model, fa-

cility location, capacity expansion, electric vehicle charging network, algorithm.

iii

To my husband

iv

Acknowledgements

The two-year journey in McMaster University will be my invaluable memory. I have

learned a lot and I have experienced so many great things here.

I would like to express my gratitude to my supervisor Dr. Kai Huang. His

guidance and patience helped me in all the time of research and writing of this thesis.

His encouragement and trust are always my driving force to continue my work. I am

very lucky to meet him and have him as my supervisor.

I would also like to thank Dr. Mark Ferguson for his generous help on the de-

velopment of the model and the experiment data. He gave me so many constructive

suggestions throughout my research. His support helped me a lot especially when Dr.

Huang was absent.

I am grateful to the rest of my thesis committee: Dr. Yun Zhou and Dr. Antoine

Deza for taking the time to review my thesis and to attend my defense.

Besides, I also would like to thank Dr. John Miltenburg who taught me a lot of

good work habits when I was his teaching assistant. Thanks also go to my fellow

graduate students, especially Mohsen Zargoush, Shuai Zhang and Mingjie Jiang.

Last but not least, I would like to thank my husband, my parents, my parents-in-

law, my grandfather, my siblings and their families for their support and love.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Electric Vehicle Charging Network 1

1.2 Customer Choice Behaviours . 3

1.3 Mixed-Integer Linear Program . 5

2 Model Development 7

2.1 Framework . 7

2.2 Notations . 11

2.3 Optimization model . 13

2.4 Linearization . 15

3 Two Simple Algorithms 18

3.1 An Approximation Algorithm . 18

3.1.1 Integer Variables . 19

3.1.2 Approximation Algorithm . 21

vi

3.2 A Heuristic Algorithm . 23

3.3 Numerical Experiments . 27

4 Branch-and-Price Algorithm 32

4.1 An Overview of Algorithms for Mixed Integer Linear Program 32

4.1.1 Simplex Algorithm . 33

4.1.2 Column Generation . 35

4.1.3 Dantzig-Wolfe Decomposition 36

4.1.4 Branch-and-Bound . 39

4.1.5 Branch-and-Price . 40

4.2 Branch-and-Price Algorithm for EVCE 41

4.3 Implementation of the Basic Branch-and-Price Algorithm 47

4.3.1 Branching Rules . 47

4.3.2 Initialization . 49

4.3.3 Lower Bound of Subproblems 49

4.3.4 Feasible Solutions and Upper Bounds 51

4.4 Improvement of the Branch-and-Price Algorithm 52

4.4.1 Initialization . 52

4.4.2 Column Generation . 53

4.4.3 Column Management . 58

4.5 Numerical Experiments . 59

5 Case Study: Electric Vehicle Charging Network Design for Oakville,

Canada 64

6 Conclusion 69

vii

A Algorithms 71

B Proof of Theorem 3.1.2 76

viii

List of Figures

2.1 Scenario tree and predecessors . 8

3.1 The scenario tree in numerical experiments 28

4.1 Sparsity pattern of the coefficient matrix 42

4.2 Improvement of the branch-and-price algorithm with the heuristic so-

lution . 54

4.3 Improvement of the branch-and-price algorithm with the heuristic columns

and the approximation columns . 58

4.4 Improvement of the branch-and-price algorithm with column manage-

ment . 60

4.5 Solution procedure of Instance 11 by the branch-and-price algorithm

and the CPLEX MIP solver . 62

4.6 Solution procedure of Instance 12 by the branch-and-price algorithm

and the CPLEX MIP solver . 63

5.1 The scenario tree used in case study of Oakville 65

5.2 An example of the design of EV charging network for Oakville in 2023 68

ix

List of Tables

2.1 Model notations . 11

3.1 Scale of the instances . 29

3.2 Efficiency of the approximation algorithm (Algorithm 1) 30

3.3 Efficiency of the heuristic algorithm (Algorithm 3) 31

4.1 Efficiency of the branch-and-price algorithm 61

5.1 Results of EVCE model for Oakville with different coverage radiuses . 67

x

Chapter 1

Introduction

In this chapter, we introduce the backgrounds of the electric vehicle charging network

and tools we will use to develop our multi-stage electric charging network capacity

expansion (EVCE) model.

1.1 Electric Vehicle Charging Network

Electric Vehicles (EVs) are growing rapidly in the present decade due to techno-

logical developments, concerns about volatile oil prices and an increased focus on

environmentally friendly and renewable energy. Governments in many countries have

adopted measures to promote electric vehicles. An important action is to install more

public charging facilities to reduce drivers’ range anxiety, which describes the fear of

running out of battery power before getting to the destination or reaching a charging

station. The development of the charging network leads to a facility location and

capacity expansion problem.

In most traditional facility location models, the demand of an area is defined to be

1

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

covered by a facility if the area is close to the facility within a certain coverage radius

(Church and ReVelle, 1974). A number of models are proposed under this setting

to select the best locations that will maximize utility, minimize cost or achieve other

objectives. The p-Median and p-Center problem minimize the total travel cost and

the maximum travel cost when people using the facilities respectively (Hakimi, 1964).

The maximum coverage location problem maximizes the demand coverage while a

given number of facilities are installed (Church and ReVelle, 1974).

Similar models are proposed for designing the public EV charging network. Frade

et al. (2011) used the maximal covering model to maximize the demand covered by

the charging facilities for Lisbon, Portugal. He et al. (2016) compared three facility

location models for the public EV charging network in Beijing, China, including the

set covering model, the maximal covering location model and the p-median model.

Only the third model gives the necessary capacities of the charging stations by allo-

cating all the charging demand of an area to its closest charging station. Huang et al.

(2016) considered the partial covered area and they extended the polygon overlay

method to split these areas.

In this thesis, we present an optimization model to investigate the design of the

EV charging network for public charging. The considered area are divided into several

zones. The charging demands are estimated by the number of charging events taken

place in each zone. The objective is to minimize the total cost of installing charging

facilities and operating them during the time period we study.

Planning EV charging network is a long-term task, which means we make discrete

decisions over finite time periods. For example, we make a plan every two years. So,

2

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

there are some uncertain parameters, such as the charging demands and the charg-

ing facility expansion costs in the future. Earlier approaches use stochastic control

theory to deal with the uncertainties in the stochastic capacity expansion problems.

The demands were assumed to be stochastic processes (Manne, 1961). Then the

use of scenarios becomes popular in stochastic programming due to the increased

computational power. What is more, the scenarios should be relatively modest to

make sure that the model can be solved with reasonable computational effort in prac-

tice. In this thesis, we use a scenario tree to deal with the uncertain parameters and

study the capacity expansion problem by making a sequence of decisions over finite

planning horizons. Therefore, the model is a multi-stage stochastic mixed-integer

program. This multi-stage model can be transformed to a deterministic equivalent

mixed-integer program if a finite number of scenarios and their probabilities are given

(Ahmed and Sahinidis, 2003).

1.2 Customer Choice Behaviours

In the practice of designing the EV charging networks, every zone in the map is

usually covered by several electric charging facilities and drivers in the same zone

may choose different charging stations nearby. Therefore, it is not reasonable to

allocate the whole charging demand of a zone to its closest charging station. The

random choices of drivers make it difficult to estimate the number of charging events

that would take place in each charging station.

The behaviours of drivers choosing different charging stations are called customer

choice behaviours. Consumer behaviour analysis is widely used in marketing research

and economic psychology. It is also very useful in facility location planning problems.

3

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

Serra et al. (1999) assumed that customers patronize the facilities in proportion to

the customer-facility distances. In many literatures, researchers use multinomial logit

model to consider customer choice behaviour. The model is frequently used in trans-

portation and demographic research. When analyzing the choice of an individual

among a set of alternatives, multinomial logit model focuses on the choice set of each

individual and treats a choice as a function of the characteristics of the alternatives

in the choice set (Hoffman and Duncan, 1988). Benati and Hansen (2002) assumed

that the utility of a customer to patronize a facility can be divided in a measurable

part and a random part in their model to locate facilities in order to capture more

customer demand. Aros-Vera et al. (2013) used the cost of choosing a facility as this

facility’s characteristic when they use the logit choice model in their facility location

problem.

Since using the logit choice model usually results in a non-linear formulation,

computational difficulty becomes an important factor that hinders the widespread

use of the model in facility location problems. Haase and Müller (2014) compared the

solvability of three different reformulations for facility location models in which logit

choice probabilities are used in the objective functions. Moreover, researchers usually

use the logit formulation in the objective functions while keeping the constraints

linear. This creates a lot of limitations on the use of the logit choice model.

In this thesis, we use the multinomial logit choice model to predict drivers’ choices

towards different charging stations nearby and then estimate the charging events that

may take place at each charging station. In this way, we will get not only the locations

of charging stations, but also the required capacity of charging stations.

4

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

1.3 Mixed-Integer Linear Program

An integer linear programming problem is a linear programming problem in which

part or all of the variables are restricted to integers. The problem is known as a

mixed-integer programming (MIP) problem when some decision variables are not

discrete.

We use some techniques to make the objective function and constraints linear with

respect to the decision variables when multinomial logit choice model is used in our

EVCE model. Then a mixed-integer linear program (MILP) is obtained.

The linearization technique is quite useful since programs with non-linear con-

straints and objective function are hard to solve, especially when the nonlinear con-

straints and objectives are neither convex nor concave. Linear programming has been

shown solvable in polynomial-time (Khachiyan, 1979). Efficient algorithms such as

the simplex algorithm and algorithms based on interior point method are developed

and investigated with a lot of theoretical and practical breakthroughs (Murty, 1983;

Karmarkar, 1984; Vanderbei et al., 1986; Renegar, 1988; Kojima et al., 1989; Schrijver,

1998).

However, the linearization procedure largely increases the scale of the model since

a lot of new variables are added to the model. Thus the problem we are facing now

is to solve a large-scale mixed-integer linear program. We develop an approximation

algorithm and a heuristic algorithm based on specific properties of this model. The

approximation algorithm is able to get a relatively good solution and a lower bound

of the model in a reasonable time. The heuristic algorithm can obtain a solution

in seconds, but without a lower bound to estimate the quality of the solution. A

5

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

branch-and-price algorithm which is a hybrid of branch-and-bound and column gen-

eration methods to solve large-scale mixed-integer program (Barnhart et al., 1998) is

also designed and investigated in this thesis with some implementation details and

methods to improve its efficiency. In most instances, the branch-and-price algorithm

can get the optimal solution within a relatively short time compared to the solution

procedure by the CPLEX MIP solver. We do numerical experiments to show the

efficiency of these three algorithms and the effect of improvement methods for the

branch-and-price algorithm.

To test the EVCE model in practice, we study a case by designing the EV charging

network for Oakville, Canada. Details about how to collect data and how to interpret

the results are explained and demonstrated.

This thesis is organized as follows. Chapter 2 describes the framework and math-

ematical formulations used in the EVCE model for the EV charging station location

and capacity expansion problem. In Chapter 3, we present an approximation algo-

rithm and a heuristic algorithm, and their efficiency. The branch-and-price algorithm

is investigated in Chapter 4 to solve this large-scale mixed-integer linear program-

ming model. In Chapter 5, we use this model to design and analyze the EV charging

network of Oakville, Canada. Finally, we conclude the thesis with a summary in

Chapter 6.

6

Chapter 2

Model Development

In this chapter, details about the development of the EVCE model are presented.

2.1 Framework

Designing the charging network is a long-term issue. To handle the uncertainty of the

parameters and data in this problem, we use a rooted scenario tree T with T discrete

decision stages to build the multi-stage model. Every stage corresponds to a time

period during which we make locating and capacity expansion decisions. At every

stage, there are several nodes that represent all the potential states of the nature.

The root node is written as n = 1. Let N denote the set of all the nodes in the

scenario tree. The probability of node n ∈ N is denoted by φn. Clearly, the sum of

all the probabilities for nodes in the same stage is 1. For every node n ∈ N , its direct

predecessor is denoted by a(n). We denote the direct predecessor of the root node as

node 0 for notational simplicity. The set of node n and all its predecessors is denoted

by Pn. All the nodes in Pn can form a path from node n to the root node and a(n)

7

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

is the node next to n on the path. The set of node n and all its successors is denoted

by Tn and all the nodes in Tn can form a sub-tree whose root is the node n. Figure

2.1 gives a scenario tree and shows a(n) and Pn for a node n ∈ N .

1

a(n)

n

t = 1

t = ta(n)

t = tn

t = T

P(n)...

...

Figure 2.1: Scenario tree and predecessors

In the multi-stage model, a specific scenario tree is given with finite nodes and

their probabilities. Let I denote the set of zones we are investigating. It is assumed

that there is a set of candidate locations for the charging stations which is denoted by

J . At each node n ∈ N , we need to decide whether or not a charging station is located

at a candidate location j ∈ J by using the binary decision variable xn,j. The integer

decision variable yn,j denotes the number of chargers in the charging station located

in j at node n for all n ∈ N and j ∈ J . Each node in the scenario tree is associated

with parameters or data such as the charging demands, the cost of installing new

charging stations and chargers, and the cost of operating these facilities. Obviously,

the decisions at node n is directly influenced by the decisions at nodes in Pn, since

the installed charging stations and chargers should not disappear over time.

We follow the point demand location approach and assume that demand of a zone

8

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

is located at a distinct place in the zone (Tong and Murray, 2009; Tu et al., 2016).

In our EVCE model, the distinct place can be the geometric centre of the zone, or

the point with densest EVs in the zone. To make the model more accurate, the area

under study should be divided as fine as possible. But too many zones will make

the model too difficult to solve, so tradeoff should be made between accuracy and

computational difficulty. The charging demand of each zone is the predicted number

of charging events in a zone. The objective is to minimize the expected total cost

of installing and operating the charging facilities while the charging demands are

satisfied at a certain level.

In order to make sure the charging facilities are adequate for every zone, the

drivers’ random choices to different charging stations nearby should be taken into

consideration. A widely used model called logit choice model assumes that the char-

acteristics of the alternatives will impact the choices most. In the paper by Hoffman

and Duncan (1988), each individual has a set of candidate choices (i.e., alternatives).

The probability of an individual i choosing alternative j is given by:

αi,j =
eadi,j∑
k∈Ji e

adi,k
,

where di,j is the characteristic of the jth alternative for individual i, Ji is individual

i’s choice set and a is a corresponding parameter.

We use the logit choice model in the charging network problem to predict the

choices of EV drivers. Let di,j denote the distance between a zone i and a candidate

location j for any i ∈ I and j ∈ J . Let Rn,i denote the maximum distance that

drivers of zone i are willing to go to a charging station at node n ∈ N . Thus, only

charging stations within Rn,i, called coverage radius, are considered by the EV drivers

9

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

of zone i at node n. We denote In,j as the set of zones near candidate location j within

the coverage radius Rn,i. Clearly, In,j = {i ∈ I | di,j ≤ Rn,i} for all n ∈ N and j ∈ J .

Similarly, Jn,i = {j ∈ J | di,j ≤ Rn,i} is the set of candidate charging locations near

zone i within the coverage radius Rn,i for all n ∈ N and i ∈ I.

An EV driver of zone i is an individual in the logit choice model and his or

her choice set is Jn,i which is defined above. We use −di,j as the characteristic of

candidate location j, i.e., alternative j, in the choice set Jn,i, since the closer the

charging station is, the more likely it is selected by the driver.

In practice, distance is definitely not the only factor that will affect drivers’ choices.

For example, some drivers may avoid a charging station if it is always overcrowded.

The overcrowding may happen when a charging station has a limitation on the number

of chargers it can accommodate but the maximum number of chargers can not satisfy

the predicted charging demands. Since this factor is hard to quantify or it can make

our model too complicated, we remove the upper limit on the number of chargers in

each charging station. In this way, the model can freely determine the number of

chargers in each charging station based on the predicted charging demands, so the

overcrowding will be less likely to happen and thus will be less likely to affect drivers’

choices.

In the EVCE model, a decision variable αn,i,j is used to denote the estimated

probability that an EV driver of zone i will go to charging station j to charge the

vehicle at scenario node n. Let ei,j = e−aidi,j ,∀i ∈ I,∀j ∈ J for some constants

ai(ai > 0). Then for any zone i ∈ I, j ∈ Jn,i at node n ∈ N ,

αn,i,j =
xn,j · ei,j∑

k∈Jn,i

xn,k · ei,k
, (2.1.1)

10

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

where xn,j is binary and xn,j = 1 if and only if there is a station built in location j at

node n. Note that αn,i,j is not well defined when all the candidate locations in Jn,i do

not have a charging station (i.e., xn,k = 0 for all k ∈ Jn,i). Therefore, we introduce

a constraint
∑

k∈Jn,i
xn,k ≥ 1 to make sure that drivers of zone i have at least one

choice.

2.2 Notations

The notations of parameters and decision variables in this thesis are listed and are

explained in Table 2.1.

Table 2.1: Model notations

Sets Descriptions

I Set of zones

J Set of all candidate locations for charging stations

N Set of nodes in the scenario tree

In,j Set of zones near candidate location j within the coverage radius Rn,i for

all n ∈ N and j ∈ J

Jn,i Set of candidate locations near zone i within the coverage radius Rn,i for

all n ∈ N and i ∈ I

Parameters Descriptions

φn Probability of node n for all n ∈ N

a(n) Direct predecessor (a.k.a., father) of node n for all n ∈ N

s(n) Set of direct successors (a.k.a., children) of node n for all n ∈ N

Pn Set of predecessors of node n (including n) for all n ∈ N

11

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

Tn Set of successors of node n (including n) for all n ∈ N

csn,j Cost of building a new charging station located in j at node n for all

n ∈ N and j ∈ J

cpn,j Cost of adding a charger to the charging station located in j at node n

for all n ∈ N and j ∈ J

c̄sn,j Cost of operating a charging station located in j at node n during its

time period for all n ∈ N and j ∈ J

c̄pn,j Cost of operating a charger in the charging station located in j at node

n during its time period for all n ∈ N and j ∈ J

x0,j Binary parameter, initial charging station status, i.e., x0,j = 1 if and only

if there is initially a charging station located in j for all j ∈ J

y0,j Initial number of chargers in the charging station located in j for all

j ∈ J

Mj A sufficiently large positive integer number that the number of chargers

in charging station located in j would never exceed in any case for all

j ∈ J

Wn,i Charging demand of zone i during the busiest K hours at node n for all

n ∈ N and i ∈ I

wn,i Basic charging demand of zone i during the busiest K hours without the

influence of the number of charging facilities nearby at node n for all

n ∈ N and i ∈ I

bn,i Influence coefficient of the number of charging facilities on the charging

demand of zone i during the busiest K hours at node n for all n ∈ N

and i ∈ I

12

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

θn,i Coverage target for zone i at node n for all n ∈ N and i ∈ I

ei,j ei,j = e−aidi,j for a constant ai > 0 and the distance di,j between zone i

and the candidate location j for all i ∈ I and j ∈ J

Cj Maximum units of charging demand a charger at candidate location j

can serve during the busiest K hours for all j ∈ J

Variables Descriptions

xn,j Binary variable, xn,j = 1 if and only if there exists a charging station in

location j at node n for all n ∈ N and j ∈ J

yn,j Integer variable, the number of chargers in the charging station located

in j at node n for all n ∈ N and j ∈ J

αn,i,j Probability of drivers in zone i going to charging station located in j to

charge their EVs at node n for all n ∈ N , i ∈ I and j ∈ J

2.3 Optimization model

The formulations of the EVCE model are as follows.

min
∑
n∈N

φn
∑
j∈J

[
csn,j(xn,j − xa(n),j) + cpn,j(yn,j − ya(n),j) + c̄sn,jxn,j + c̄pn,jyn,j

]
(2.3.1a)

s.t.
∑
i∈In,j

θn,iWn,iαn,i,j ≤ Cjyn,j ∀n ∈ N ∀j ∈ J (2.3.1b)

∑
j∈Jn,i

xn,j ≥ 1 ∀n ∈ N ∀i ∈ I (2.3.1c)

13

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

αn,i,j
∑
k∈Jn,i

ei,kxn,k = ei,jxn,j ∀n ∈ N ∀i ∈ I ∀j ∈ Jn,i

(2.3.1d)

yn,j ≤Mjxn,j ∀n ∈ N ∀j ∈ J (2.3.1e)

xa(n),j ≤ xn,j ∀n ∈ N ∀j ∈ J (2.3.1f)

ya(n),j ≤ yn,j ∀n ∈ N ∀j ∈ J (2.3.1g)

xn,j ∈ {0, 1} ∀n ∈ N ∀j ∈ J (2.3.1h)

yn,j ∈ Z+ ∀n ∈ N ∀j ∈ J (2.3.1i)

The objective of this model is to minimize the expected total cost of building and

operating the charging facilities. The constraint (2.3.1b) ensures that the capacities

of charging stations are enough to satisfy the coverage targets for each zone. Since the

customer volume of a charging station is not average during a whole day, we choose

the busiest K hours as the studied period. We suppose that the charging facilities are

enough if the charging demands during the busiest K hours are satisfied. The con-

straint (2.3.1c) guarantees all the zones are covered by at least one charging station.

The constraint (2.3.1d) is about drivers’ estimated choice probabilities. In constraints

(2.3.1e) , (2.3.1f), and (2.3.1g), we make sure there is no charger at any candidate

location without a charging station and the charging stations and the chargers at any

candidate locations do not disappear over time. This results in a MIP.

We know that the charging facilities in our charging network design are directly

affected by the predicted charging demands of each zone. The number of charging

facilities would also affect the charging demands. Since the difficulty to find a public

14

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

charging station is an important factor that people will consider while making pur-

chases of EVs, the existence of charging facilities could directly stimulate people’s

willingness to buy EVs. On the other hand, a higher degree of market penetration

of EVs will definitely increase the charging demands. We assume that the charging

demand of a zone i is affected by the total number of charging stations near this zone

within a distance Rn,i. The charging demands can be expressed as

Wn,i = wn,i + bn,i
∑
j∈Jn,i

xn,j, ∀n ∈ N ,∀i ∈ I, (2.3.2)

where wn,i is the basic charging demand of zone i without the influence of the number

of charging facilities at node n and bn,i is the influence coefficient of charging facilities

on the charging demand of zone i at node n. Then the constraint (2.3.1b) becomes

∑
i∈In,j

θn,iαn,i,j

wn,i + bn,i
∑
k∈Jn,i

xn,k

 ≤ Cjyn,j ∀n ∈ N ,∀j ∈ J . (2.3.3)

2.4 Linearization

There are two non-linear constraints in the mixed-integer program presented before.

In constraint (2.3.1d) and (2.3.3), both of their left-hand sides include the sum of

several non-linear elements αn,i,j · xn,k for n ∈ N , i ∈ I, j ∈ Jn,i and k ∈ Jn,i. We

can linearize the two constraints by introducing variables zn,i,j,k = αn,i,j · xn,k for all

n ∈ N , i ∈ I, j ∈ Jn,i and k ∈ Jn,i. Then the constraints become linear and four

additional constraints are added to make sure that zn,i,j,k = αn,i,j ·xn,k holds for both

xn,k = 0 and xn,k = 1. For all n ∈ N , i ∈ I, j ∈ Jn,i and k ∈ Jn,i, the additional

15

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

constraints are

zn,i,j,k ≤ xn,k (2.4.1a)

zn,i,j,k ≤ αn,i,j (2.4.1b)

zn,i,j,k ≥ αn,i,j + xn,k − 1 (2.4.1c)

zn,i,j,k ≥ 0. (2.4.1d)

When xn,k = 1, the constraints (2.4.1b) and (2.4.1c) can make sure that zn,i,j,k =

αn,i,j = αn,i,j · xn,k. When xn,k = 0, the constraints (2.4.1a) and (2.4.1d) guarantee

that zn,i,j,k = 0 = αn,i,j · xn,k.

After linearization, the model becomes

min
∑
n∈N

φn
∑
j∈J

[csn,j(xn,j − xa(n),j) + cpn,j(yn,j − ya(n),j) + c̄sn,jxn,j + c̄pn,jyn,j]

(2.4.2a)

s.t.
∑
i∈In,j

θn,i(wn,iαn,i,j + bn,i
∑
k∈Jn,i

zn,i,j,k) ≤ Cyn,j ∀n ∈ N ∀j ∈ J (2.4.2b)

∑
k∈Jn,i

xn,k ≥ 1 ∀n ∈ N ∀i ∈ I (2.4.2c)

∑
k∈Jn,i

ei,kzn,i,j,k = ei,jxn,j ∀n ∈ N ∀i ∈ I ∀j ∈ Jn,i

(2.4.2d)

zn,i,j,k ≤ xn,k ∀n ∈ N ∀i ∈ I ∀j ∈ Jn,i ∀k ∈ Jn,i
(2.4.2e)

(EVCE) zn,i,j,k ≤ αn,i,j ∀n ∈ N ∀i ∈ I ∀j ∈ Jn,i ∀k ∈ Jn,i
(2.4.2f)

16

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

zn,i,j,k ≥ αn,i,j + xn,k − 1 ∀n ∈ N ∀i ∈ I ∀j ∈ Jn,i ∀k ∈ Jn,i
(2.4.2g)

yn,j ≤Mjxn,j ∀n ∈ N ∀j ∈ J (2.4.2h)

xa(n),j ≤ xn,j ∀n ∈ N ∀j ∈ J (2.4.2i)

ya(n),j ≤ yn,j ∀n ∈ N ∀j ∈ J (2.4.2j)

xn,j ∈ {0, 1} ∀n ∈ N ∀j ∈ J (2.4.2k)

yn,j ∈ Z+ ∀n ∈ N ∀j ∈ J (2.4.2l)

zn,i,j,k ≥ 0 ∀n ∈ N ∀i ∈ I ∀j ∈ Jn,i ∀k ∈ Jn,i
(2.4.2m)

where constraints (2.4.2e), (2.4.2f), (2.4.2g) and (2.4.2m) are linearization constraints.

Then, we get a mixed-integer linear program.

Since both the number of variables αn,i,j and zn,i,j,k for n ∈ N , i ∈ I, j ∈ Jn,i and

k ∈ Jn,i and the number of constraints are quite large for any reasonable |N |, |I| and

|J |, it will cost much time to solve this EVCE model directly by a MILP solver, such

as CPLEX MIP solver. Therefore, algorithms are designed to solve this program.

17

Chapter 3

Two Simple Algorithms

In this chapter, two simple algorithms are presented to solve the model of EVCE, an

approximation algorithm and a heuristic algorithm. The approximation algorithm

can give a feasible solution and a lower bound of the model within a relatively short

time compared to solving the model directly by the CPLEX MIP solver. The heuristic

algorithm will generate a feasible solution in seconds, but there is no lower bound

obtained to estimate the gap between the heuristic solution and the optimal solution.

It is noted that not only the two algorithms can give a feasible solution to the model,

but the properties they present will also play an important role in the branch-and-

price algorithm design which is studied in the subsequent chapter.

3.1 An Approximation Algorithm

For EVCE model, it is fair to say that the difficulty of solving this problem is mainly

caused by xn,j which is a binary variable and yn,j which is an integer variable for

n ∈ N and j ∈ J . The idea of the approximation algorithm is to solve the linear

18

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

relaxation of the model to get a solution and then modify the solution in some way

to make it feasible to the original EVCE model.

3.1.1 Integer Variables

Let (x,y) = {(xn,yn) | ∀n ∈ N} and xn = {xn,j | ∀j ∈ J }, yn = {yn,j | ∀j ∈ J }

for all n ∈ N . The MILP is rewritten in a simpler form to show the special structure

and useful properties of the EVCE model.

min f(x,y) =
∑
n∈N

∑
j∈J

(
c

(1)
n,jxn,j + c

(2)
n,jyn,j

)
−Ψ (3.1.1a)

s.t. yn,j ≥ gn,j(xn) ∀n ∈ N ∀j ∈ J (3.1.1b)

yn,j ≤Mjxn,j ∀n ∈ N ∀j ∈ J (3.1.1c)

(EVCE)
∑
j∈Jn,i

xn,j ≥ 1 ∀n ∈ N ∀i ∈ I (3.1.1d)

xa(n),j ≤ xn,j ∀n ∈ N ∀j ∈ J (3.1.1e)

ya(n),j ≤ yn,j ∀n ∈ N ∀j ∈ J (3.1.1f)

xn,j ∈ {0, 1}, yn,j ∈ Z+ ∀n ∈ N ∀j ∈ J (3.1.1g)

where in the objective function c
(1)
n,j = φn(csn,j+ c̄

s
n,j)−

∑
n′∈s(n) φn′csn′,j, c

(2)
n,j = φn(cpn,j+

c̄pn,j)−
∑

n′∈s(n) φn′cpn′,j and Ψ = φ1

∑
j∈J (cs1,jx0,j + cp1,jy0,j) and in the first constraint

gn,j(xn) =
1

Cj

∑
i∈In,j

θn,i

(
wn,iαn,i,j + bn,i

∑
k∈Jn,i

zn,i,j,k

)
with αn,i,j =

ei,jxn,j∑
k∈Jn,i

ei,kxn,k
and zn,i,j,k = αn,i,jxn,k,∀i ∈ I, j ∈ J .

Let REVCE denote the relaxation of EVCE model by changing (3.1.1g) from

19

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

yn,j ∈ Z+ to yn,j ≥ 0.

Theorem 3.1.1 If (x,yL) = {(xn,j, yLn,j) | ∀n ∈ N ,∀j ∈ J } is a feasible solution

of REVCE, then (x,yI) = {(xn,j, yIn,j) | yIn,j = dyLn,je,∀n ∈ N , ∀j ∈ J } is a feasible

solution of EVCE.

Proof. For REVCE, the constraints (3.1.1d), (3.1.1e), (3.1.1g) are automatically

satisfied. Other constraints are also obviously satisfied by (x,yI) since

yIn,j = dyLn,je ≥ yLn,j ≥ gn,j(xn),

yIn,j = dyLn,je ≤ dMjxn,je = Mjxn,j

and

yIa(n),j = dyLa(n),je ≤ dyLn,je = yIn,j.

�

Let EVCE(x̄) and REVCE(x̄) denote the programs where xn,j is given and fixed

to x̄n,j for all n ∈ N and j ∈ J in EVCE and REVCE, respectively. These two

programs are further simplified as

min fx̄(y) =
∑
n∈N

∑
j∈J

cx̄n,jyn,j + Ψx̄ (3.1.2a)

s.t. Lx̄n,j ≤ yn,j ≤ U x̄
n,j ∀n ∈ N ∀j ∈ J (3.1.2b)

(EVCE(x̄)) ya(n),j ≤ yn,j ∀n ∈ N ∀j ∈ J (3.1.2c)

yn,j ∈ Z+ ∀n ∈ N ∀j ∈ J (3.1.2d)

20

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

and

min fx̄(y) =
∑
n∈N

∑
j∈J

cx̄n,jyn,j + Ψx̄ (3.1.3a)

s.t. Lx̄n,j ≤ yn,j ≤ U x̄
n,j ∀n ∈ N ∀j ∈ J (3.1.3b)

(REVCE(x̄)) ya(n),j ≤ yn,j ∀n ∈ N ∀j ∈ J (3.1.3c)

yn,j ≥ 0 ∀n ∈ N ∀j ∈ J (3.1.3d)

by setting

Lx̄n,j = gn,j(x̄n) ≥ 0

U x̄
n,j = Mjx̄n,j ∈ Z+

and denoting the coefficient of yn,j in the objective function as cx̄n,j.

Theorem 3.1.2 If y∗L = {y∗n,j | ∀n ∈ N ,∀j ∈ J } is the optimal solution of

REVCE(x̄), then y∗I = {dy∗n,je | ∀n ∈ N ,∀j ∈ J } is an optimal solution of EVCE(x̄).

The proof is omitted here and can be found in Appendix B.

3.1.2 Approximation Algorithm

Inspired by the special properties shown in Theorem 3.1.1 and Theorem 3.1.2, we

designed a simple approximation algorithm (Algorithm 1). Let pEV CE and pREV CE

denote an instance of the EVCE and the REVCE, respectively.

Algorithm 1 Approximation algorithm for EVCE

21

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

Input: pEV CE

Output: Approximation solution (xI ,yI)

1: pREV CE ← pEV CE . Remove the integrality limitation of variable y

2: (xI ,yL) = solve(pREV CE)

3: yI = {dyn,je | ∀n ∈ N ,∀j ∈ J } ← yL = {yn,j | ∀n ∈ N ,∀j ∈ J }

4: return (xI ,yI)

This approximation algorithm is very easy to implement and can save a lot of

time. During the implementation of the algorithm, the optimal solution of REVCE

is obtained as (xI ,yL). We can get a lower bound of EVCE from this solution.

Theorem 3.1.3 If (xI ,yL) = {(xIn,j, yLn,j) | ∀n ∈ N ,∀j ∈ J } is the optimal solution

of REVCE, (xI ,yI) = {(xIn,j, yIn,j) | yIn,j = dyLn,je, ∀n ∈ N ,∀j ∈ J } is a feasible

solution of EVCE and (x∗,y∗) is the optimal solution of EVCE, then

f(xI ,yL) ≤ f(x∗,y∗) ≤ f(xI ,yI).

Proof. It is obvious that f(x∗,y∗) ≤ f(xI ,yI) since EVCE is a minimization

problem. Because REVCE is the relaxation form of EVCE which is obtained by

removing the integer constraints for the decision variables yn,j,∀n ∈ N ,∀j ∈ J , the

optimal objective value of REVCE is less than or equal to the optimal objective value

of EVCE. Thus f(xI ,yL) ≤ f(x∗,y∗). �

Therefore, we can get not only an approximation solution (xI ,yI) but also a lower

bound f(xI ,yL) for EVCE by Algorithm 1.

22

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

3.2 A Heuristic Algorithm

This heuristic algorithm is based on the special structure of the EVCE model. The

constraints of the linear program (3.1.1) will be divided into n+ 1 groups, including

n subproblem groups and a coupling constraint group. For each n ∈ N , the subprob-

lem group SP(n) has constraints yn,j ≥ gn,j(xn), yn,j ≤ Mjxn,j and
∑

j∈Jn,i
xn,j ≥ 1,

∀j ∈ J . A solution (xn,yn) which satisfies all constraints in SP(n) will be guaranteed

that every zone is covered by at least one charging station and the capacity of any

charging station is enough for the charging demand at scenario node n. The remain-

ing constraints are coupling constraints which make sure that charging stations and

chargers will not disappear over time.

The main idea of the heuristic algorithm is to generate a feasible solutions (xn,yn)

for each SP(n) and make sure that these solutions do not go against the principle that

stations and chargers won’t disappear over time. Then (x,y) = {(xn,yn) | ∀n ∈ N}

will make a heuristic solution of EVCE.

In fact, it is quite easy to generate a feasible xn for SP(n). Since the capacity

of any charging station is unlimited, the only limitation we shall consider about xn

is to cover all the zones by charging stations at scenario node n. For example, we

can randomly select a candidate location j which can cover at least one uncovered

zone and set xj to 1, and then repeat this procedure until all the zones are covered.

Of course, we can try to get a better solution by applying a specific rule instead of

picking it randomly when choosing a candidate location.

Let J fix0
n and J fix1

n denote two disjoint subsets of J , ∀n ∈ N . It is not hard to

generate a solution xn for SP(n) greedily under the condition that for any j ∈ J fix0
n ,

xn,j is fixed to 0 and for any j ∈ J fix1
n , xn,j is fixed to 1. The GREEDY function is

23

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

explained in Algorithm 2.

Algorithm 2 Generate a feasible xn for SP(n) greedily

Input: SP(n), J fix0
n , J fix1

n

Output: xn

1: function Greedy(SP(n), J fix0
n , J fix1

n)

2: xn,j := 1,∀j ∈ J fix1
n

3: xn,j := 0,∀j ∈ J \ J fix1
n

4: J now
n := J \ (J fix0

n

⋃J fix1
n) . Set of available candidate locations

5: Icoveredn := {i ∈ I | ∃j s.t. xn,j = 1 and di,j ≤ Rn,i}

6: Inown := I \ Icoveredn . Set of temporarily uncovered zones

7: while Inown is not empty do

8: J now
n ← J now

n \ {j | di,j > Rn,i,∀i ∈ Inown } . Delete useless locations

9: if J now
n is empty then

10: return No feasible solution exists!

11: end if

12: Choose a j0 in J now
n . Choose randomly or under a specific rule

13: xn,j0 := 1

14: J now
n ← J now

n \ {j0}

15: Inown ← Inown \ {i | di,j0 ≤ Rn,i} . Delete covered zones

16: end while

17: return xn = {xn,j | j ∈ J }

18: end function

At step 12 in the GREEDY function, the candidate location j0 is selected randomly

24

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

or under a specific rule. A recommended rule is to choose the candidate location with

lowest
1

nz

(
csn,j + c̄sn,j + ỹ(csn,j + cpn,j)

)
, where nz is the number of zones that j0 covers

in Inow and ȳ is a parameter set to be as close as possible to the average number of

chargers a charging station holds.

For any SP(n), once a feasible xn is given, it is not difficult to get a feasible yn

for this xn. The generation of yn = ḡ(xn) can be expressed as

yn,j = ḡn,j(xn) = dgn,j(xn)e ,∀j ∈ J .

It is obvious that yn,j = 0 when xn,j = 0 and (xn,yn) is feasible to SP(n).

To make sure the final solution for EVCE, which is an MILP, is not against

the principle that stations and chargers can not disappear over time, the heuristic

algorithm constructs (xn,yn) based on the assignment at its father node (xa(n),ya(n)).

Specifically, xn,j is fixed to 1 manually if xa(n),j is 1 and yn,j will take the maximum

value from ḡn,j(xn) and ya(n),j. For any given feasible solution of SP(1) at the root

node of the scenario tree, a feasible solution of SP(n) is generated based on the

assignment of SP(a(n)) by the GREEDY function in Algorithm 2 node by node from

top of the scenario tree to the end. Then, a final feasible solution for EVCE is

generated by combining (xn,yn) for all n ∈ N .

The detailed heuristic algorithm is as follows.

Algorithm 3 Heuristic Algorithm

Input: p, an instance of EVCE

Output: (xheur,yheur) = {(xn,yn) | ∀n ∈ N}

1: J fix0
n (p) := {j ∈ J | xn,j is fixed to 0 in p at node n },∀n ∈ N \ {1}

25

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

2: J fix1
n (p) := {j ∈ J | xn,j is fixed to 1 in p at node n },∀n ∈ N \ {1}

3: Generate several solutions {xq1 | 1 ≤ q ≤ Q} for SP(1) of p

4: for every q from 1 to Q do

5: yq1 ← ḡ(xq1)

6: for every n ∈ N \ {1} do . In a order that n is not earlier than a(n)

7: J q,fix0
n := J fix0

n (p)

8: J q,fix1
n := J fix1

n (p)
⋃{j | xqa(n),j = 1}

9: xqn := GREEDY (SP (n),J q,fix0
n ,J q,fix1

n)

10: yqn,j := max{yqa(n),j, ḡn,j(x
q
n)}, ∀j ∈ J

11: end for

12: Calculate the objective value f(xq,yq) where (xq,yq) = {(xqn,yqn) | ∀n ∈ N}

13: end for

14: Choose the solution (xq∗,yq∗) with lowest objective value among all Q feasible

solutions

15: return (xheur,yheur) = (xq∗,yq∗)

At step 3 in the heuristic algorithm (Algorithm 3), the method to generate Q

feasible solutions {xq1 | 1 ≤ q ≤ Q} for SP(1) is not mentioned. In fact, this step

is very important to the whole algorithm, which directly affects the quality of the

solution and the running time of the algorithm. Clearly, the more solutions given in

this step for SP(1), the more likely the final solution to the problem is close to the

optimal solution, but it also means that the running time will be longer and more

computer memory is occupied.

A method we use to make a compromise between the number of solutions explored

and the running time of the algorithm is explained in Algorithm 4 in Appendix A.

26

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

It combines the ideas of “greedy” and “enumeration” and was implemented by the

recursive method. It chooses a candidate location greedily, but explores both the

cases where a charging station is or is not built at this location. In each step, some

“useless” candidate locations will be removed and will no longer be selected in the

future. Here, a candidate location is useless if it covers none of currently uncovered

zones. The removal largely reduces the number of the potential solutions.

3.3 Numerical Experiments

In this section, we generate some instances of different sizes with randomized data

and test the efficiency of the approximation algorithm (Algorithm 1) and the heuristic

algorithm (Algorithm 3). When generating the instances with randomized data, we

limit the costs of building and operating stations and chargers in a reasonable range

and guarantee the charging demand in each zone increases as time goes by. The

scenario tree in Figure 3.1 is used in all instances. Table 3.1 shows the number

of variables, constraints and non-zero elements for all instances we will use. Every

instance has |N | · |J | binary variables (xn,j) and the same number of integer variables

(yn,j). It is also shown in the table.

For the approximation algorithm (Algorithm 1), we show the solution time tappr,

the objective value of the approximation solution zappr = f(xI ,yI), the lower bound

LBappr = f(xI ,yL) and the solution gap GAPLB =
zappr − LBappr

zappr
. For the heuristic

algorithm (Algorithm 3), we show the solution time theur and the objective value of the

heuristic solution zheur = f(xheur,yheur). They are all compared with CPLEX MIP

solver’s solution time t∗ and optimal objective value z∗. The time saving percentages

27

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

1

2 3

4 5 6 7 8

60% 40%

30%
10%

20%
20%

20%

Figure 3.1: The scenario tree in numerical experiments

TSappr =
t∗ − tappr

t∗
, TSheur =

t∗ − theur
t∗

and objective gaps GAPappr =
zappr − z∗
zappr

,

GAPheur =
zheur − z∗
zheur

are also reported.

In Table 3.2 and Table 3.3, the maximal solution time is set to 7200 seconds.

The CPLEX MIP solver or the algorithms are stopped when the time is out. The

currently best solution is reported together with the current objective value gap for the

CPLEX MIP solver. For the approximation algorithm (Algorithm 1), the currently

best solution is reported. The current lower bound of REVCE is reported as the lower

bound of EVCE. Let us take Instance 5 in Table 3.2 for an example. When solving

Instance 5, the CPLEX MIP solver can not solve to optimality in 7200 seconds. It

obtains a feasible solution with an objective value of 16,611 and a gap of 5.6%. The

approximation algorithm gets the same feasible solution, but it also obtains a better

lower bound 15,728 with a gap of 5.3% within 3,205 seconds. The approximation

algorithm saves more than 55.5% of the time compared to the CPLEX MIP solver.

We are not able to get the gap of the objective values between the approximation

solution and the optimal solution since the latter is not found by the CPLEX MIP

solver, but we can estimate the gap from the current lower bound and claim that the

28

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

Table 3.1: Scale of the instances

Instance Instance Size
of Var. # of Con. # of Non-Zeros # of xn,j(yn,j)Number |I| |J | |N |

1 10 10 8 1,579 4,293 11,330 80
2 10 10 8 1,843 5,217 13,478 80
3 10 15 8 3,753 10,179 29,550 120
4 10 15 8 4,256 11,600 33,775 120
5 10 20 8 5,090 13,896 40,554 160
6 10 20 8 6,770 18,758 55,141 160
7 15 15 8 2,774 7,562 20,438 120
8 15 15 8 2,643 6,955 19,463 120
9 15 20 8 5,070 13,674 39,731 160
10 15 20 8 4,568 12,264 35,380 160
11 15 30 8 10,000 27,672 81,336 240
12 15 30 8 9,506 26,246 77,058 240

gap can not exceed 5.3%.

From Table 3.2, we can see the the approximation algorithm (Algorithm 1) will

give an approximation solution which is very close to the optimal solution. The gap

between the lower bound and the objective value of the approximation solution is no

more than 10% in the tested instances, but this is not guaranteed since the results

vary greatly for different instances. For the last two instances where both the CPLEX

MIP solver and the approximation algorithm can not get the optimal solution in 7200

seconds, the approximation algorithm obtain better solutions than the CPLEX MIP

solver.

In Table 3.3, the heuristic algorithm (Algorithm 3) gets feasible and relatively good

solutions in seconds. But since it does not offer any lower bound for the problem, the

gap between the heuristic solution and the optimal solution is not obtained during

the algorithm process. So it is best to use the heuristic solution as an initial feasible

29

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

solution for some other optimization algorithms, for example, the branch-and-price

which we will investigate in the next chapter.

Table 3.2: Efficiency of the approximation algorithm (Algorithm 1)

Inst. Inst. Size CPLEX MIP solver Algorithm 1 Comparison
|I| |J | t∗(s) z∗ tappr(s) zappr LBappr GAPLB TSappr GAPappr
1 10 10 15 18,648 2 18,648 17,452 6.4% 86.7% 0%
2 10 10 42 19,765 7 19,797 18,695 5.6% 83.3% 0.2%

3 10 15 2,579 16,683 214 16,683 16,005 4.1% 91.7% 0%
4 10 15 468 16,376 200 16,376 15,586 4.8% 57.2% 0%

5 10 20 > 7,200 16,611(5.6%) 3,205 16,611 15,728 5.3% > 55.5% ≤ 5.3%
6 10 20 > 7,200 17,546(6.6%) 4,650 17,771 16,456 7.4% > 35.4% ≤ 7.4%

7 15 15 192 27,177 10 27,177 25,596 5.8% 94.8% 0%
8 15 15 530 26,335 54 26,335 24,945 5.3% 89.8% 0%

9 15 20 3,924 26,186 929 26,186 24,662 5.8% 76.3% 0%
10 15 20 > 7,200 27,048(6.7%) 2,196 27,254 25,327 7.1% > 69.5% ≤ 7.1%

11 15 30 > 7, 200 27,332(35.2%) > 7, 200 25,909 17,179 33.7% - ≤ 31.7%
12 15 30 > 7, 200 26,125(26.2%) > 7, 200 26,032 19,096 26.6% - ≤ 25.9%

30

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

Table 3.3: Efficiency of the heuristic algorithm (Algorithm 3)

Inst. Inst. Size CPLEX MIP solver Algorithm 3 Comparison
|I| |J | t∗(s) z∗ theur(s) zheur TSheur GAPheur
1 10 10 15 18,648 0.010 18,957 99.9% 1.6%
2 10 10 42 19,765 0.001 19,765 100% 0%

3 10 15 2,579 16,683 0.026 17,051 100% 2.2%
4 10 15 468 16,376 0.041 16,430 100% 0.3%

5 10 20 > 7, 200 16,611(5.6%) 0.110 16,914 100% ≤ 7.3%
6 10 20 > 7, 200 17,546(6.6%) 0.085 17,546 100% ≤ 6.6%

7 15 15 192 27,177 0.045 27,177 100% 0%
8 15 15 530 26,335 0.011 26,979 100% 2.4%

9 15 20 3,924 26,186 0.443 26,186 100% 0%
10 15 20 > 7, 200 27,048(6.7%) 0.111 27,307 100% ≤ 7.3%

11 15 30 > 7, 200 27,332(35.2%) 8.175 26,009 > 99.9% ≤ 31.9%
12 15 30 > 7, 200 26,125(26.2%) 7.438 26,032 > 99.9% ≤ 25.9%

31

Chapter 4

Branch-and-Price Algorithm

In this chapter, a branch-and-price algorithm is designed for EVCE. This algorithm

is based on the branch-and-bound algorithm and uses column generation method

to solve the linear program at each node in the branch-and-bound tree. We also

performed the Dantzig-Wolfe decomposition procedure. All these lead to a branch-

and-price algorithm, which transforms the original EVCE model into several smaller

subproblems in order to reduce the solution time.

4.1 An Overview of Algorithms for Mixed Integer

Linear Program

Linear programming is a technique for the optimization of a linear objective function,

subject to linear constrains. Linear programs can be transformed in some ways and

then expressed as

min cTx (4.1.1a)

32

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

s.t. Ax = b (4.1.1b)

x ≥ 0 (4.1.1c)

The most important algorithms to solve linear programming are Simplex algorithm

and Interior point methods. A brief introduction about Simplex is presented below

since it provides the basic theory of the algorithms we will use later. We talk only

about the bounded liner programs here.

4.1.1 Simplex Algorithm

The Simplex algorithm is a basis exchange algorithm. It solves linear programs by

constructing a series of basic feasible solutions which are corners (extreme points)

of the polyhedron composed of all feasible solutions. Since an optimal basic feasible

solution always exists for the linear program which has an optimal solution, it is

sufficient to consider the basic feasible solutions only. The Simplex algorithm travels

along a path on the edges of the polytope to the corners with non-decreasing objective

values until an optimal basic feasible solution is found.

For any basic feasible solution, all non-basic variables are set to 0. Let us suppose

that xB are basic variables and xN are non-basic variables of a basic feasible solution.

Then cB and cN are their coefficients in the objective function, respectively. The

coefficient matrix is divided into two matrices B and N according to the basic and

non-basic variables, where B is always non-singular. The linear program is also

expressed as

min cTBxB + cTNxN (4.1.2a)

33

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

s.t. BxB +NxN = b (4.1.2b)

x ≥ 0. (4.1.2c)

Let π = cTBB
−1, the linear program will be expressed even further as

min 0TxB + (cTN − πN)xN − πb (4.1.3a)

s.t. xB +B−1NxN = B−1b (4.1.3b)

x ≥ 0. (4.1.3c)

The basic feasible solution is xB = B−1b ≥ 0 and xN = 0. The constrains are ob-

viously satisfied and the objective value of this basic feasible solution is −πb. If there

is at least one element of cTN−πN with a negative value, increasing the corresponding

non-basic variable from 0 to a positive number will decrease the objective function

value. The values of basic variables can be adjusted at the same time to make sure

the constraints are satisfied if the amount of growth of the non-basic variable is within

a certain range. A better solution is then obtained for this linear program. There-

fore, it is important to check the value of cTN − πN . The multiplier π is called the

dual solution of the program and cTN − πN are called the reduced costs of non-basic

variables (Bradley et al., 1977). A basic feasible solution is optimal if and only if the

reduced costs are all non-negative.

The set of all basic variables is called the basis of a linear program. The final goal

of the Simplex algorithm is to find out the basis for which all the reduced costs are

non-negative. This idea is used in the column generation method, which is a popular

method for solving large-scale linear programs.

34

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

There are always applied problems which have too many variables and constraints

and they greatly exceed the computational limit at current time no matter how fast

the computer capabilities grow. Two methods are presented to help solve large-scale

linear programs, column generation and decomposition.

4.1.2 Column Generation

The column generation method is based on the theory of the basis and a representation

property.

Theorem 4.1.1 (Representation Property) Let x1, x2, . . . , xK be the extreme

points of the feasible region of the linear program (4.1.1) and assume that the points

in this feasible region are bounded. Then any feasible solution x can be expressed as

a convex combination of the extreme points as

x = λ1x
1 + λ2x

2 + · · ·+ λKx
K

with

λ1 + λ2 + · · ·+ λK = 1, λk ≥ 0 (k = 1, 2, . . . , K)

Suppose that we have got all the extreme points of linear program (4.1.1) as

{xq, q = 1, 2, · · · , Q}. The program is reformulated as

min

Q∑
q=1

(cTxq)λq (4.1.4a)

s.t.

Q∑
q=1

(Axq)λq = b (4.1.4b)

35

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

Q∑
q=1

λq = 1 (4.1.4c)

λq ≥ 0, q = 1, 2, · · · , Q (4.1.4d)

This program is totally equivalent to the original linear program, but the variables

are λq, 1 ≤ q ≤ Q. In this program, all extreme points are called columns. Each

column is a feasible solution of the original program and has a corresponding variable

λq for some q. Usually, the number of columns are very large and thus there are too

many variables in this program. Most of the variables are non-basic, which will take

the value 0 in an optimal basic feasible solution.

The main idea of the column generation method is to generate a column pool with

limited number of columns and consider only these columns in the program. Other

variables are set to 0 automatically if their columns are not included in the column

pool. An optimal solution is found when all variables whose columns are not in the

column pool have non-negative reduced costs. Before reaching the optimal solution,

columns with negative reduced costs are continuously added to the column pool until

no such column is found. The details are omitted here since we will explain it later

in the context of the Dantzig-Wolfe decomposition.

4.1.3 Dantzig-Wolfe Decomposition

The Dantzig-Wolfe decomposition is used when the coefficient matrix of the linear

program is large, sparse and has special block structures. The blocks help divide

the decision variables and constraints into several disjoint sets. Each block forms a

subproblem where only a set of variables and a set of constraints are involved.

36

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

A typical linear program for the Dantzig-Wolfe decomposition is expressed as

min (c1)Tx1 + (c2)Tx2 + · · ·+ (cK)TxK (4.1.5a)

s.t. D1x1 ≤ d1 (4.1.5b)

D2x2 ≤ d2 (4.1.5c)

· · · ≤ · · · (4.1.5d)

DKxK≤ dK (4.1.5e)

A1x1 + A2x2 + · · · + AKxK = b (4.1.5f)

xk ∈ Rnk
+ , k = 1, 2, · · · , K. (4.1.5g)

Then a feasible solution x = (x1,x2, · · · ,xK) is generated by the solutions of the

subproblems {xk | Dkxk ≤ dk} which satisfy the coupling constraint (4.1.5f).

The column generation method is well used based on the Dantzig-Wolfe decom-

position. First let us reformulate the program which includes only the coupling con-

straints. It is also called the Master Problem (MP).

min

Q1∑
q=1

(cT1 x
q
1)λq1 +

Q2∑
q=1

(cT2 x
q
2)λq1 + · · ·+

QK∑
q=1

(cTKx
q
K)λqK (4.1.6a)

s.t.

Q1∑
q=1

(A1x
q
1)λq1 +

Q2∑
q=1

(A2x
q
2)λq2 + · · ·+

QK∑
q=1

(AKx
q
K)λqK = b (4.1.6b)

(MP)

Qk∑
q=1

λqk = 1, k = 1, 2, · · · , K (4.1.6c)

λqk ≥ 0, ∀q = 1, · · · , Qk, k = 1, 2, · · · , K, . (4.1.6d)

where {xqk | q = 1, · · · , Qk} are all the extreme points of subproblem {xk | Dkxk ≤

37

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

dk} for all k = 1, · · · , K. A restricted version of MP is called the Restricted Master

Problem (RMP) which contains only limited number of columns in the column pools

{xqk | q ∈ Qk} for k = 1, 2, · · · , K.

min
∑
q∈Q1

(cT1 x
q
1)λq1 +

∑
q∈Q2

(cT2 x
q
2)λq1 + · · ·+

∑
q∈QK

(cTKx
q
K)λqK (4.1.7a)

s.t.
∑
q∈Q1

(A1x
q
1)λq1 +

∑
q∈Q2

(A2x
q
2)λq2 + · · ·+

∑
q∈QK

(AKx
q
K)λqK = b (4.1.7b)

(RMP)
∑
q∈Qk

λqk = 1, k = 1, 2, · · · , K (4.1.7c)

λqk ≥ 0, ∀q ∈ Qk, k = 1, 2, · · · , K, . (4.1.7d)

The subproblems are equipped with objective functions to get new columns with

negative reduced costs or to prove that all reduced costs of the columns outside the

column pools are non-negative. The subproblem k is

min (cTk − πkAk)xk − µk (4.1.8a)

SP(k) s.t. Dkxk ≤ dk (4.1.8b)

xk ∈ Rnk
+ (4.1.8c)

where πk and µk are dual solutions corresponding to the coupling constraints and

the convex constraint in the MP, respectively. The columns with negative reduced

costs got from the subproblems are gradually added to the column pool until the

optimal solution of the original problem is reached when all the objective values of

the subproblems are non-negative.

38

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

4.1.4 Branch-and-Bound

A very popular algorithm to solve the integer programming problems is the branch-

and-bound method. In the branch-and-bound algorithm, the total set of feasible

solutions are partitioned into smaller subsets of solutions by adding some constraints,

usually fixing the value or range of an integer variable. Then the smaller subsets are

searched systematically until the optimal solution is found. It is called branch-and-

price because the most important elements are the branch operation and the bound

operation.

The branch operation creates a rooted branch-and-bound tree. The root of the

tree is the original problem together with the total set of feasible solutions. When

fixing the value or range of an integer variable, several branches grow from its father

node and these branches are subproblems with disjoint sets of solutions.

The algorithm explores branches of this branch-and-price tree to find the optimal

solution. However, the algorithm would degenerate to a brute-force search without the

bound operation. Any branch is checked before further exploration against upper and

lower estimated bounds on the optimal solution and is “pruned” if it has no chance

to produce a better solution. For a minimizing problem, a global upper bound is

the objective value of the currently best feasible solution the algorithm has found

so far. Each branch has its own lower bound which is the optimal objective value

of the linear relaxation of the subproblem for this branch if it is feasible. Clearly,

any feasible solution of the subproblem of the branch must have an objective value

greater than or equal to the branch’s lower bound. In this way, a branch is “pruned”

if its lower bound is greater than the global upper bound since it is not promising to

produce a better solution. A branch is also necessary to be “pruned” if its subproblem

39

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

is infeasible, i.e., its set of solution is empty.

Using the branch operation and bound operation, the algorithm searches from top

to down of the branch-and-bound tree. Upon visiting a subproblem of a node in the

branch-and-bound tree, the linear relaxation of the subproblem is solved to get the

lower bound of this branch. The global upper bound and the currently best solution

are both updated if the optimal solution of the linear relaxation of the subproblem

is a better and feasible solution to the original problem. Only branches that are not

“pruned” will be further explored. The global lower bound of the optimal solution is

the smallest lower bound among all the existing branches. Clearly, the global upper

bound will stay the same or decrease as the process of exploration. Since the lower

bound of any node in the branch-and-bound tree will be greater than or equal to the

lower bound of its father node, the global lower bound will stay the same or increase

gradually as the process of the exploration. The algorithm can stop when the global

upper and lower bound are close enough to each other.

4.1.5 Branch-and-Price

The branch-and-price algorithm is a hybrid of branch-and-bound and column genera-

tion methods. It uses the column generation method to help solve the linear relaxation

of the program in each node of the branch-and-bound tree. In this thesis, we use the

branch-and-price algorithm in which the column generation method is based on the

Dantzig-Wolfe decomposition to solve our EVCE model.

Generally speaking, the Dantzig-Wolfe decomposition reformulates the original

problem into a master problem and several pricing problems. A column in the master

problem is a solution to one of the subproblem. The column generation method is

40

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

used to generate columns from the pricing problems and then add the columns to

the master problem to improve the overall objective of the linear relaxation of the

subproblem at the branch-and-bound tree.

Details about the branch-and-price algorithm is presented in the subsequent sec-

tion.

4.2 Branch-and-Price Algorithm for EVCE

As we have shown in Table 3.1 in Section 3.3, the EVCE model is a large-scale MILP.

Apart from the integrity of the variables, the large coefficient matrix also makes it

difficult to solve this optimization model directly. Although the coefficient matrix is

huge, it is sparse and has special structure, which make it possible for us to use the

Dantzig-Wolfe decomposition method to reduce the difficulty of solving this model.

Figure 4.1 shows the visualized sparsity pattern of the coefficient matrix for an

instance. The order of variables and constraints are reorganized to make the sparsity

pattern more clear.

The blocks of the coefficient matrix show a special structure of this linear program-

ming problem and this kind of structure is typical for Dantzig-Wolfe decomposition.

Decision variables can be divided into several disjoint sets. The blocks are coefficient

matrixes of pricing problems in which only variables in the same set are involved.

The submatrix in the bottom of the figure are very different from the blocks. It is

the coefficient matrix of coupling constraints, in which variables from different sets

are connected together.

The constraints (2.4.2b), (2.4.2c), (2.4.2d), (2.4.2e), (2.4.2f), (2.4.2g), (2.4.2h)

are specific to scenario-tree node n. The constraints (2.4.2i), (2.4.2j) are coupling

41

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

Figure 4.1: Sparsity pattern of the coefficient matrix

constraints in which variables from different scenario-tree nodes are involved. So we

do the decomposition based on the scenario-tree nodes and only constraints (2.4.2i),

(2.4.2j) are left in the master problem.

For each n ∈ N , we define Xn = {(xn,yn) | ∀n ∈ N} where xn = {xn,j | ∀j ∈ J }

with xn,j ∈ {0, 1} and yn = {yn,j | ∀j ∈ J } with yn,j ∈ Z+. All xn’s and yn’s satisfy

the constraints

∑
i∈In,j

θn,i(wn,iαn,i,j + bn,i
∑
k∈Jn,i

zn,i,j,k) ≤ Cyn,j ∀j ∈ J (4.2.1a)

∑
k∈Jn,i

xn,k ≥ 1 ∀i ∈ I (4.2.1b)

yn,j ≤Mjxn,j ∀j ∈ J (4.2.1c)

42

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

with αn,i,j =
ei,jxn,j∑

k∈Jn,i
ei,kxn,k

and zn,i,j,k = αn,i,jxn,k,∀i ∈ I, j ∈ J .

Since the variables are binary or integer, the set Xn has finite points. Thus we

could write it as Xn = {(xqn,yqn) | q = 1, ..., Qn}. Any point (xn,yn) in Xn can

be expressed as xn =
∑Qn

q=1 λ
q
nx

q
n and yn =

∑Qn

q=1 λ
q
ny

q
n for

∑Qn

q=1 λ
q
n = 1 and λqn ∈

{0, 1}, ∀q = 1, ..., Qn. Hence, the problem can be reformulated as

min
∑
n∈N

Qn∑
q=1

(∑
j∈J

(c
(1)
n,jx

q
n,j + c

(2)
n,jy

q
n,j)

)
λqn −Ψ (4.2.2a)

s.t.

Qa(n)∑
q=1

xqa(n),jλ
q
a(n) ≤

Qn∑
q=1

xqn,jλ
q
n ∀n ∈ N ∀j ∈ J (4.2.2b)

(MP)

Qa(n)∑
q=1

yqa(n),jλ
q
a(n) ≤

Qn∑
q=1

yqn,jλ
q
n ∀n ∈ N ∀j ∈ J (4.2.2c)

Qn∑
q=1

λqn = 1 ∀n ∈ N (4.2.2d)

λqn ∈ {0, 1} ∀n ∈ N ∀q = 1, ..., Qn (4.2.2e)

where c
(1)
n,j = φn(csn,j + c̄sn,j)−

∑
n′∈s(n) φn′csn′,j, c

(2)
n,j = φn(cpn,j + c̄pn,j)−

∑
n′∈s(n) φn′cpn′,j

and Ψ = φ1

∑
j∈J (cs1,jx0,j + cp1,jy0,j).

Replace λqn ∈ {0, 1} by λqn ≥ 0, we can get MP-LP, i.e., the linear relaxation of the

master problem. In the branch-and-bound algorithm, we need to solve the MP-LP

to get the optimal solution of the linear relaxation problem and hence lower bound

of the branch.

However, the cardinality of Xn will be huge for any n ∈ N . It is too time consum-

ing to get all the points (also called columns) for Xn. In fact, it is almost impossible

to do so according to its complexity. So we use the column generation method to

solve the linear relaxation of the master problem.

43

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

Similar to the column generation method, we use a subset of Xn instead of the

entire set. By doing so, we get a restricted version of the master problem. The

restricted master problem RMP is

min
∑
n∈N

∑
q∈Qn

(∑
j∈J

(c
(1)
n,jx

q
n,j + c

(2)
n,jy

q
n,j)

)
λqn −Ψ (4.2.3a)

s.t.
∑
q∈Qn

xqn,jλ
q
n −

∑
q∈Qa(n)

xqa(n),jλ
q
a(n) ≥ 0 ∀n ∈ N ∀j ∈ J (4.2.3b)

(RMP)
∑
q∈Qn

yqn,jλ
q
n −

∑
q∈Qa(n)

yqa(n),jλ
q
a(n) ≥ 0 ∀n ∈ N ∀j ∈ J (4.2.3c)

∑
q∈Qn

λqn = 1 ∀n ∈ N (4.2.3d)

λqn ≥ 0 ∀n ∈ N ∀q ∈ Qn (4.2.3e)

where Qn ⊆ {1, ..., Qn} for all n ∈ N .

Let π
(1)
n,j and π

(2)
n,j be the dual variables associated with constraints (4.2.3b) and

(4.2.3c) for each j ∈ J and n ∈ N , respectively. Dual variable associated with

constraint (4.2.3d) is µn for each n ∈ N .

44

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

For any scenario-tree node n ∈ N , the corresponding pricing problem SP (n) is

min
∑
j∈J

[(
c

(1)
n,j − π(1)

n,j +
∑

n′∈s(n)

π
(1)
n′,j

)
xn,j +

(
c

(2)
n,j − π(2)

n,j+
∑

n′∈s(n)

π
(2)
n′,j

)
yn,j

]
− µn

(4.2.4a)

s.t.
∑
i∈In,j

θn,i(wn,iαn,i,j + bn,i
∑
k∈Jn,i

zn,i,j,k) ≤ Cyn,j ∀j ∈ J (4.2.4b)

∑
k∈Jn,i

xn,k ≥ 1 ∀i ∈ I (4.2.4c)

∑
k∈Jn,i

ei,kzn,i,j,k = ei,jxn,j ∀i ∈ I ∀j ∈ Jn,i

(4.2.4d)

(SP(n)) zn,i,j,k ≤ xn,k ∀i ∈ I ∀j ∈ Jn,i ∀k ∈ Jn,i
(4.2.4e)

zn,i,j,k ≤ αn,i,j ∀i ∈ I ∀j ∈ Jn,i ∀k ∈ Jn,i
(4.2.4f)

zn,i,j,k ≥ αn,i,j + xn,k − 1 ∀i ∈ I ∀j ∈ Jn,i ∀k ∈ Jn,i
(4.2.4g)

yn,j ≤Mjxn,j ∀j ∈ J (4.2.4h)

xn,j ∈ {0, 1} ∀j ∈ J (4.2.4i)

yn,j ∈ Z+ ∀j ∈ J (4.2.4j)

It should be noted that we keep the integrity of decision variables xn,j and yn,j

in the SP(n) as seen in constraints (4.2.4i) and (4.2.4j). The integrity constraints in

the pricing problem lead to integer columns in which xn,j is binary and yn,j is integer.

45

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

This will slow down the procedure of solving the pricing problem, which in turn

slows down the procedure of solving the subproblem in the branch-and-bound tree.

However, it dramatically increases the lower bound of the subproblem. The effect

is so obvious that the algorithm can stop before the branch-and-bound tree grows

big. More precisely, we can get a lower bound which is very close to the optimal

objective value in most cases after solving the subproblem for the root node of the

branch-and-bound tree. In general, it reduces the total solution time.

Now the branch-and-price procedure is clear. First, we solve the RMP to get its

dual solution {(π(1)
n,j, π

(2)
n,j, µn) | ∀n ∈ N ,∀j ∈ J }. Then for each n ∈ N , using the

corresponding dual solution {(π(1)
n,j, π

(2)
n,j, µn) | ∀j ∈ J }, we construct the SP(n) whose

objective is to minimize the reduced cost of any columns associated with variables for

this specific n. After that, we solve all the SP(n)s and add all generated columns with

negative reduced costs to the RMP. Repeat this procedure until all optimal objective

values of the SP(n)s are non-negative. Now, we have included all basic columns in

the RMP. It means that the optimal objective value of the RMP is the lower bound

of this subproblem in the branch-and-bound tree. Since the most difficult part of

the branch-and-bound algorithm is to get the lower bound for a subproblem in the

branch-and-bound tree, we can then solve the EVCE model in the branch-and-bound

framework. Algorithm 5 in Appendix A describes the branch-and-price algorithm we

use.

46

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

4.3 Implementation of the Basic Branch-and-Price

Algorithm

In this section, some implementation details of the branch-and-price algorithm for

the EVCE model will be explained.

The CPLEX MIP solver is used in the branch-and-price algorithm implementation

to solve the RMP and the pricing problems. The whole branch-and-price framework

is built by combining C++ and CPLEX C++ API (application programming inter-

faces). In the numerical experiment part of this chapter, we will also solve the EVCE

model directly by the CPLEX MIP solver and compare the computational results and

the solution time with those of the branch-and-price algorithm.

4.3.1 Branching Rules

The decision variables of the MP are λqns for all n ∈ N and q = 1, · · · , Qn. A natural

idea about the branching rule is to fix λqn to 0 or 1 in two branches respectively for a

specific n and q. However, this branching rule is not efficient since there are too many

variables and only very few of them will take the value 1 in the optimal solution. A

better branching rule for a program based on the Dantzig-Wolfe decomposition is

to fix the original decision variables xn,j and yn,j for all n ∈ N and j ∈ J . This

branching rule will be applied in our branch-and-price algorithm.

The branching procedure can be performed to fix xn,j’s first and then to fix yn,j’s

when all the xn,j’s are assigned to certain values. Moreover, we have a much simpler

implementation. According to Theorem 3.1.2, when xn,j’s are fixed, we can easily

get the optimal integer solution for the original EVCE model by solving the linear

47

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

relaxation of EVCE and rounding up the resulted values for yn,j’s. In other words, it

is sufficient to branch only by fixing the values of xn,j’s. This will greatly reduce the

size of the branch-and-bound tree and also save the work when programming.

To fix the value of a specific xn,j during branching procedure under the Dantzig-

Wolfe decomposition framework, we can simply add a constraint
∑

q∈Qn
xqn,jλ

q
n = 0

(or 1) to the RMP. But we actually used another method when programming. We

add the constraint xn,j = 0 (or 1) to the pricing problem SP(n). In this way, any new

column (xqn,x
q
n) which is generated by solving the SP(n) will satisfy the constraint

xqn,j = 0 (or 1). We also make sure that any initial columns we put in the column pool

for this subproblem of the branch-and-bound tree will satisfy the constraint xqn,j = 0

(or 1). Then,
∑

q∈Qn
xqn,jλ

q
n = 0 (or 1) is automatically satisfied because xqn,j = 0 (or

1) for all q ∈ Qn. Therefore, we can keep the RMP unchanged during the branching

procedure. Thus the structure of the dual solution of the RMP will stay the same,

and so does the structure of the objective functions of the pricing problems. This will

make the code of the algorithm more concise and clear.

Due to the principle that stations and chargers can not disappear over time, an

implementation detail should be noted in the branching procedure. Once xn,j is fixed

to 0, it is reasonable to fix all xn′,j,∀n′ ∈ Pn to 0. Similarly, when xn,j is fixed to 1,

all the corresponding decision variables xn′,j at its successors nodes (n′ ∈ Tn) should

be fixed to 1. Although the algorithm still works without doing so, branching in this

way will make it convenient when we construct an initial solution for a subproblem,

because it saves the work of checking if the stations and chargers disappear in the

solution we construct.

48

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

4.3.2 Initialization

The initialization of the branch-and-price algorithm is trivial. It is all right to set the

lower bound of each subproblem to 0 and to set the global upper bound to infinity.

Since the column generation method is used to solve the linear relaxation of the

subproblems in the branch-and-bound tree, the column pools are necessary to be

initialized. An easy way to initialize the column pools Qn is to construct a solution

(x,y) = {(xn,yn) | n ∈ N} by assigning 1 to all unfixed xn,j and let yn,j = Mj · xn,j
for all n ∈ N and j ∈ J . This column (x,y) automatically satisfy the coupling

constraints due to the branching detail we mentioned in the previous subsection. If

for any n ∈ N , (xn,yn) is feasible to the pricing problem SP(n), the column pool Qn
is initialized by putting (xn,yn) in it. Otherwise, this subproblem is infeasible and it

should be “pruned” from the branch-and-bound tree.

4.3.3 Lower Bound of Subproblems

According to the theories of MILP we presented in Section 4.1, the solution of the

RMP is optimal to the MP only when all the optimal objective values of the pricing

problems are non-negative. Therefore, a lower bound of the subproblem we are solving

can only obtained when the column generation procedure is totally completed. In

practice, this is not good since for most of the instances of the EVCE model, the

branch-and-price algorithm needs to solve very few subproblems, sometimes only

the subproblem at the root node in the branch-and-bound tree, to get the optimal

solution. It implies that most of the time there is no lower bound for us to estimate

the progress of the work. Therefore, we need a new method to obtain a lower bound

during the column generation process when some of the optimal objective values of

49

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

the pricing problems are still negative. The new lower bound construction method is

also useful in the case where some optimal objective values of the pricing problems

remain negative because of computing precision. Since the number of bits used to

store a number will often cause some loss of accuracy, the optimal objective value

of a pricing problem may appear as a small negative number even when its exact

arithmetic value is 0 because of the rounding errors during the computation. The

new lower bound construction method can help us in this case to estimate if the

lower bound is good enough to stop the column generation process.

Theorem 4.3.1 Let zMP−LP denote the optimal objective value of the linear relax-

ation of the MP. In an iteration of the column generation, let zRMP and ξn (∀n ∈ N)

denote the optimal objective value of the RMP and the SP(n), respectively. Then

zMP−LP ≥ zRMP +
∑
ξn<0

ξn.

Proof. Suppose that in an iteration of the column generation, the dual solution of

the RMP is (π,µ). Let us use the dual solution as multipliers to reformulate the

objective function of the MP-LP. Let rn,q denote the reduced cost of λn,q under the

multipliers (π,µ) for all n ∈ N and q = 1, · · · , Qn. The objective function of the

MP-LP is reformulated by the multipliers as

∑
n∈N

Qn∑
q=1

rn,qλn,q +zRMP =
∑
ξn≥0

Qn∑
q=1

rn,qλn,q +
∑
ξn<0

(∑
q∈Qn

rn,qλn,q +
∑
q /∈Qn

rn,qλn,q

)
+zRMP

50

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

For any n ∈ N , it is clear that rn,q ≥ 0 for q ∈ Qn and rn,q ≥ ξn for q /∈ Qn. It is also

true that for q /∈ Qn,

rn,q ≥ 0, if ξn ≥ 0, and rn,q ≥ ξ−n , if ξn < 0.

Let zMP−LP denote the optimal objective value of the MP-LP. We can get a lower

bound of zMP−LP by setting λn,q = 0 if rn,q ≥ 0. Then

zMP−LP ≥ min
{∑
ξn<0

∑
q /∈Qn

rn,qλn,q + zRMP |
∑
q /∈Qn

λn,q = 1, λn,q ≥ 0,∀ξn < 0
}

≥ min
{∑
ξn<0

ξn ·
∑
q /∈Qn

λn,q |
∑
q /∈Qn

λn,q = 1, λn,q ≥ 0,∀ξn < 0
}

+ zRMP

= zRMP +
∑
ξn<0

ξn

�

Therefore, we can use zRMP +
∑

ξn<0 ξn as a lower bound during the column

generation iterations even when some of the reduced costs are negative. We can also

stop the column generation procedure when this lower bound is good enough.

4.3.4 Feasible Solutions and Upper Bounds

Normally, the branch-and-price algorithm tests the integrity of the variables when a

subproblem in the branch-and-bound tree is solved in its linear relaxation form and

the branch-and-price algorithm updates the currently best solution and the upper

bound if the current relaxed solution happens to be an integer and a better solu-

tion. But it is possible to capture feasible solutions in each iteration of the column

generation progress. A corollary of Theorem 3.1.1 is presented.

51

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

Corollary 4.3.1 In an iteration of the column generation, let {λqn | ∀n ∈ N ,∀q ∈

Qn} denote the optimal solution of the RMP and the column pool is {(xqn,yqn) | ∀n ∈

N ,∀q ∈ Qn}. Let xn,j =
∑

q∈Qn
λqn · xqn,j and yn,j =

∑
q∈Qn

λqn · yqn,j, ∀n ∈ N ,∀j ∈ J .

If all xn,j’s are binary, then {(xn,j, dyn,je) | ∀n ∈ N ,∀j ∈ J } is a feasible solution to

the EVCE.

During the iterations of the column generation, the currently best solution and

the upper bound of the problem can both be updated if a better solution is captured

as shown in Corollary 4.3.1.

4.4 Improvement of the Branch-and-Price Algo-

rithm

Although the basic branch-and-price algorithm performs better than the CPLEX

MIP solver, we have tried some ways to improve the algorithm by further reducing

the solution time in order to solve larger scale instances.

4.4.1 Initialization

It is not necessary to set initial feasible solutions for the branch-and-price algorithm,

since it will capture feasible solutions during the column generation process. But this

process is very inefficient because it can only get a feasible solution in rare cases when

all the integer variables accidentally obtain values without fractional components. If

no good solution is captured, it will lead to an extremely high upper bound. In this

case, the algorithm has to continue even if the lower bound is good enough. This is a

52

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

waste of time and this waste can be avoided if an initial feasible solution is assigned

to each subproblem in the branch-and-bound tree.

The heuristic algorithm in Chapter 3 suggests a better way to initialize the feasible

solution, the upper bound and the initial columns in the column pool. It is convenient

to take the heuristic solution directly as the initial feasible solution. Thus, the initial

upper bound can be the objective value of the heuristic solution. Moreover, several

columns are generated during the procedure of the heuristic algorithm (Algorithm

3), and some of these columns can be in the initial column pool. In practice, the

heuristic algorithm will consume very little time, and it offers a good initial solution

and several useful initial columns which greatly improve the efficiency of the branch-

and-price algorithm for some instances.

In Figure 4.2, the bold lines show the lower and upper bounds of the branch-and-

price with the initial heuristic solution and related initial columns while the slim lines

show the lower and upper bounds of the basic branch-and-price algorithm over time.

It is clear that the initial heuristic solution is very useful. The basic branch-and-price

does not stop when its lower bound is good enough because its upper bound is too

far away from the optimal objective value. Moreover, the initial columns also help

the algorithm by speeding up the convergence.

4.4.2 Column Generation

The most time consuming part of the branch-and-price algorithm is the column gen-

eration process. One of the reasons is that it takes time to get columns by solving

the pricing problems since they are mixed-integer programs.

53

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

0 1800 3600 5400 7200

14000

16000

18000

1e+06

1.5e+06

2e+06

UB of basic B&P

LB of basic B&P

UB of B&P with HS

LB of B&P with HS

Figure 4.2: Improvement of the branch-and-price algorithm with the heuristic
solution

Heuristic Columns

A heuristic method which is similar to Algorithm 4 is used to help create columns

with negative reduced costs during column generation procedure.

For the pricing problem SP(n) of a subproblem in the branch-and-bound tree,

∀n ∈ N , let coeXn,j and coeYn,j be the coefficient of xn,j and yn,j in the objec-

tive function of SP(n), respectively. Thus, coeXn,j = c
(1)
n,j − π(1)

n,j +
∑

n′∈s(n) π
(1)
n′,j and

coeYn,j = c
(2)
n,j − π(2)

n,j +
∑

n′∈s(n) π
(2)
n′,j. The objective function of SP(n) is expressed as∑

j∈J coeXn,jxn,j +
∑

j∈J coeYn,jyn,j − µn.

Then, Algorithm 4 can be used to help create columns for SP(n) with very few

54

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

changes. The input pricing problem is changed from SP(1) to SP(n). At step 14,

choose candidate location j0 with the lowest coeXn,j+ ȳ ·coeYn,j, where ȳ is a constant

which is better to be close to the average number of chargers a charging station will

have. After getting each xqn, let yqn = g(xqn). Lastly, calculate the objective value

of (xqn,y
q
n) as

∑
j∈J coeXn,jx

q
n,j +

∑
j∈J coeYn,jy

q
n,j − µn. If the objective value is

negative, a qualified column (xqn, yqn) is found. See Algorithm 6 in Appendix A for

more details.

Using this heuristic method instead of solving the pricing problem to generate

columns can save a lot of time in practice. But it is best to limit the number of the

heuristic columns in the column pools in case they take up too much memory and

slow down the algorithm.

Approximation Columns

In Section 3.1, an approximation algorithm (Algorithm 1) is presented for EVCE. The

idea is very simple. To decrease the difficulty of solving this mixed-integer program,

it removes the integer constraints for the variable yn,j and then round up the result

for yn,j for all n ∈ N and j ∈ J . This idea will be used in column generation when

solving the pricing problems.

Corollary 4.4.1 For any pricing problem SP(n), let SP-LP(n) denote its relaxation

form by removing the integer constraints of variable yn,j for all j ∈ J . If (x,y) is a

feasible solution of SP-LP(n), then (x, dye) is feasible to SP(n).

The proof is omitted here since it is almost the same with the proof of Theorem

3.1.1. Therefore, (x, dye) can be used as a column generated by our approximation

method. Calculate its objective value
∑

j∈J coeXn,jxn,j +
∑

j∈J coeYn,jdyn,je − µn.

55

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

If the objective value is negative, then this column is put into the column pool suc-

cessfully. Otherwise, we can only get a column or prove optimality by solving SP(n)

directly.

Solving Pricing Problems Periodically

The heuristic method can generate columns very quickly, so it is our first choice to

generate columns with negative reduced costs. However, if the columns generated at

the beginning of the heuristic method have non-negative costs, the heuristic method

should be terminated in case it spends too much time searching a qualified column in

vain. Therefore, we set a threshold which is 0 or a negative number for the reduced

costs of the heuristic columns. If the first column the heuristic method generates has

a reduced cost less than the threshold, the heuristic method will be the only method

we use to generate columns in this iteration. Otherwise, we skip the heuristic method

and use the approximation method instead which has a better chance to get a column

with the minimal reduced cost. If the approximation column is not qualified either,

the pricing problem has to be solved to optimality.

In the beginning of the column generation, the two methods may continue to work

without activating the optimization procedure, but we need to periodically evaluate

the lower bound. At the end of the column generation, the two methods have few

chances to get a qualified column, so it may be time wasting to try them in every

iteration before activating the optimization procedure. Therefore, we design a proce-

dure to control the frequency of using the heuristic method and the approximation

method in iterations.

Let niter denote the number of an iteration for the column generation process and

56

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

nperiod denote a constant integer which is set in advance as the number of iterations

in a period. The pricing gap δp is

δp = min

{
zRMP − LB

zRMP
, 1

}

where zRMP is the objective value of the RMP and LB is the lower bound of this

subproblem currently.

Note that nmod = (niter mod nperiod) and it is the remainder when we divide niter

by nperiod. So nmod will be an integer from 0 to nperiod − 1 with niter increasing. The

procedure is as follows,

1. if nmod < nperiod · δp − 1, try methods in the order of the heuristic method,

the approximation method and then solving the pricing problems to optimality

until a qualified column is obtained or the optimality is proved;

2. else, skip the heuristic and the approximation method and solve the pricing

problems directly to get a column or prove the optimality.

This procedure performs well in practice. Here is an example for how it works.

Set nperiod to 10, so there are 10 iterations in each period.

1. When the pricing gap δp > 90% at the beginning of the column generation, the

heuristic and approximation methods are applied when the remainder of niter

divided by 10 is from 0 to 8, and they are skipped when the remainder is 9.

2. When the pricing gap δp is around 50%, the two methods are applied when the

remainder is from 0 to 3 and are skipped when the remainder is from 4 to 9.

57

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

3. When the pricing gap δp < 10% at the end of the column generation, the two

methods are skipped in every iteration.

The difference of the solution procedure is presented in Figure 4.3 for the branch-

and-price algorithm with (the bold line) and without (the slim line) the heuristic

columns and the approximation columns.

0 200 400 600 800 1000 1200

24000

25000

26000

27000

7e+05

1e+06

1.3e+06

1.6e+06
UB of basic B&P

LB of basic B&P

UB of B&P with HC

LB of B&P with HC

Figure 4.3: Improvement of the branch-and-price algorithm with the heuristic
columns and the approximation columns

4.4.3 Column Management

Looking at the process of the branch-and-price algorithm, we find that the time of

each iteration is getting longer and longer during the column generation procedure.

58

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

The main reason is that there are more and more redundant columns in the column

pool and they are slowing down the column generation and convergence. Therefore,

column management is necessary and the whole algorithm will benefit from deleting

redundant columns periodically. But it is very important to decide which column is

most likely to be redundant, because it would be time wasting if a column is deleted

and generated repeatedly.

The main work of column generation is to find out all the columns corresponding

to the basic variables in the MP and to make sure that any column which is not in

the column pool has a non-negative reduced cost. So during the column generation

process, a column is very likely to be unnecessary to stay in the column pool if it

has not been in the basis of the RMP for many iterations. The idea of managing

the columns is to delete these columns periodically. Deleting the redundant columns

will help the algorithm to speed up, especially for the improved branch-and-price

algorithm with the heuristic columns and the approximation columns, since these

columns are very likely to be redundant.

We solve the same instance in the previous subsection and do column management

when using the heuristic columns and the approximation columns. The solution

process is presented in Figure 4.4. The bold line is for the solution process with

column management which is abbreviated as CM in the figure. The other two lines

are the same as the lines in Figure 4.3.

4.5 Numerical Experiments

We solve the same instances generated in Section 3.3. Table 4.1 shows the comparison

between the CPLEX MIP solver and the improved branch-and-price algorithm. For

59

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

0 200 400 600 800 1000 1200

24000

25000

26000

27000

7e+05

1e+06

1.3e+06

1.6e+06

UB of basic B&P

LB of basic B&P

UB of B&P with HC

LB of B&P with HC

UB of B&P with CM

LB of B&P with CM

Figure 4.4: Improvement of the branch-and-price algorithm with column
management

some instances, both of them will get the optimal solution within 7200 seconds, thus

their objective values are the same and the gaps are all 0%. For these instances, we

omit the objective values and gaps and put an asterisk in the table to make it easy

to read and compare.

For most instances, the branch-and-price algorithm will obtain the optimal solu-

tion in a relatively short time. Another property of the branch-and-price algorithm

which is not shown in the table is that it will give a good feasible solution and a

good lower bound at the very beginning. This is important for the instances that

do not need to solve to optimality. Figure 4.5 and Figure 4.6 show the upper and

lower bounds of the branch-and-price algorithm over time compared with those of the

60

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

CPLEX MIP solver for Instances 11 and 12, respectively. These two instances are

not solved to optimality in two hours for both the branch-and-price algorithm and

the CPLEX MIP solver, but we can see that the branch-and-price algorithm obtains

a feasible solution and a lower bound at the very beginning which are even better

than the final solution and lower bound of the CPLEX MIP solver after two hours of

work.

Table 4.1: Efficiency of the branch-and-price algorithm

Inst. Inst. Size CPLEX MIP solver B&P
|I| |J | t(s) z(GAP) t1(s) z1(GAP1)
1 10 10 15 * 7 *
2 10 10 42 * 81 *

3 10 15 2,579 * 15 *
4 10 15 468 * 31 *

5 10 20 > 7, 200 16,611(5.6%) 155 16,611(0.0%)
6 10 20 > 7, 200 17,546(6.6%) 2,003 17,546(0.0%)

7 15 15 192 * 16 *
8 15 15 530 * 27 *

9 15 20 3,924 * 285 *
10 15 20 > 7, 200 27,048(6.7%) 2,659 26,894(0.0%)

11 15 30 > 7, 200 27,332(35.2%) > 7, 200 25,683(13.3%)
12 15 30 > 7, 200 26,125(26.2%) > 7, 200 26,025(4.8%)

61

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

0 1800 3600 5400 7200

0

10000

20000

30000

40000

1e+05

2e+05

UB of CPLEX

LB of CPLEX

UB of B&P

LB of B&P

Figure 4.5: Solution procedure of Instance 11 by the branch-and-price algorithm
and the CPLEX MIP solver

62

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

0 1800 3600 5400 7200

0

10000

20000

30000

40000

1e+05

2e+05

UB of CPLEX

LB of CPLEX

UB of B&P

LB of B&P

Figure 4.6: Solution procedure of Instance 12 by the branch-and-price algorithm
and the CPLEX MIP solver

63

Chapter 5

Case Study: Electric Vehicle

Charging Network Design for

Oakville, Canada

We will demonstrate the model by applying it to the town of Oakville, which is located

in southern Ontario between Toronto and Hamilton, Canada. The study period is

explained by a scenario tree with three stages which represent the year of 2019, 2021

and 2023 respectively (each period lasts for two years). The scenario tree is shown in

Figure 5.1.

The area of study covers about 139 km2. It is divided into 57 zones in the Trans-

portation Tomorrow Survey (TTS) (Data Management Group, 2016a). The estimates

of charging demands for the TTS zones are based on the EV charging events of Greater

Toronto and Hamilton Area from a survey conducted by the McMaster Institute for

Transportation and Logistics (MITL) (MITL, 2018). The MITL’s survey collects

informations related to EV public charging, which means home charging and work

64

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

1

2 3

4 5 6 7 8

50% 50%

16.67%
16.67%

16.67%
25%

25%

Figure 5.1: The scenario tree used in case study of Oakville

charging events are excluded. The EV owners in the survey report the number of

public charging events they conduct during the resent week. These reported public

charging events are linked to the EV owners’ home where the survey is conducted. We

use the origin-destination matrix for the Greater Toronto and Hamilton Area from

the TTS in 2016 to allocate the charging events to all the TTS zones (Data Man-

agement Group, 2016b). Only discretionary trips 25 km and over during a typical

weekday were used in the origin-destination matrix to get the public charging events

linked to destinations, since EV owners are less likely to charge on a journey close

to home. The estimate of the basic charging demand for a TTS zone in Oakville

is obtained by multiplying a random number from a lognormal distribution to the

number of charging events lined to this zone as destination.

We use 70 sites for the charging stations including 57 candidate locations and 13

existed EV charging station sites. The candidate locations are chosen from points near

main intersections and parking lots. The informations about the existed EV charging

stations, including the locations and the number of charging ports, are collected from

the website of ChargeHub which is recommended by the Ministry of Transportation

Ontario Government in 2019 (Ministry of Transportation Ontario Government, 2019).

65

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

We assume that all the newly installed charging stations use AC level 2 chargers.

An estimate of the costs of installing the charging stations and the chargers is based

on the EV supply equipment unit cost and the installation cost which we get from the

report about costs associated with non-residential electric vehicle supply equipment

(Smith and Castellano, 2015), and an additional fee for rental of the location itself

which we get from the real estate website which is owned and operated by the Cana-

dian Real Estate Association (CREA, 2019). An estimate of the costs of operating

the charging stations and the chargers during the following two-year period is based

on the management costs and the electricity consumption charges (Cities, 2012).

The charging demands in 2021 and 2023 are estimated from the data in 2019 by

multiplying a random number from a lognormal distribution with standard deviation

0.5 and mean 1 and 1.5 respectively. The cost data is discounted at a random rate

between 0% to 20% for each stage of the scenario tree.

We change only the coverage radius Rn,i for every stage in the scenario tree to get

several instances. After solving all the instances, we summary the resulted different

EV charging networks for Oakville in Table 5.1. In the table, we report the expected

numbers of stations and chargers in each stage of the scenario tree and the total costs

under different coverage pattern. The gap is reported together with the total cost

when neither the CPLEX MIP solver nor the branch-and-price algorithm can solve the

instance to optimality in 48 hours. From the table, we can see that a smaller coverage

radius will results in a significant increase on the number of charging stations, but

the number of chargers is relatively less affected.

In Figure 5.2, we show the result when the coverage radius is set to 1.2 km for

node 7 in the scenario tree of Figure 5.1. The round symbols are the locations of the

66

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

Table 5.1: Results of EVCE model for Oakville with different coverage radiuses

Radius (km) Expected # of Stations Expected # of Chargers
Total Cost ($)

2019 2021 2023 2019 2021 2023 2019 2021 2023
1.2 1.2 1.2 40.0 40.0 40.6 84.0 123.0 159.7 1,262,104
1.5 1.5 1.5 31.0 31.5 32.7 80.0 115.5 152.0 1,177,066 (9%)
2.0 2.0 2.0 25.0 26.0 26.4 80.0 116.5 149.1 1,159,769 (20%)
2.0 1.5 1.2 23.0 36.0 41.3 76.0 122.0 164.3 1,258,796 (3%)

existed charging stations and the square symbols are the candidate locations which

are selected by the model for the scenario node 7. The number inside the round

or square symbol shows how many chargers the model suggests to install at each

charging station.

67

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

Figure 5.2: An example of the design of EV charging network for Oakville in 2023

68

Chapter 6

Conclusion

We proposed a facility location and capacity expansion model for the design of the

EV charging network. The model can help determine not only the locations of the

charging stations but also how many chargers are needed in the charging stations.

A scenario tree is used in the model to deal with the uncertainty of the data and

to make plans of designing the EV charging network over a discrete and finite time

horizon. We use the logit choice model to estimate the customer choice behaviours

and assume that distance is the only factor drivers will consider when choosing a

charging station.

To solve this multi-stage stochastic mixed-integer program, we designed an ap-

proximation algorithm and a heuristic algorithm. We also investigated the branch-

and-price algorithm based on the Dantzig-Wolfe decomposition and applied it to the

model. The numerical experiments show that all these three algorithms have great

advantages over the CPLEX MIP solver.

In future research, other heuristic algorithms could be designed or other methods

such as the parallel computing could be included in the existed algorithms to make

69

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

the larger scale instances solvable. At the model level, we may improve the model by

considering more factors when involving customer choice behaviours. For example, a

driver’s choice may also be affected by the probability that the charging station does

not have available chargers.

70

Appendix A

Algorithms

Algorithm 4 A recursion method to get solutions for SP(1)

Input: p, Q

Output: {xq1 | 1 ≤ q ≤ Q}

1: J fix0 := {j ∈ J | x1,j is fixed to 0 in p at node 1 }

2: J fix1 := {j ∈ J | x1,j is fixed to 1 in p at node 1 }⋃ {j ∈ J | x0,j = 1}

3: Icovered := {i ∈ I | ∃j s.t. j ∈ J fix1 and di,j ≤ Rn,i}

4: Inow := I \ Icovered

5: J now := J \ (J fix0
⋃J fix1)

6: q := 0

7: RECURSION(J fix1, Inow,J now, q)

8: return {xq1 | 1 ≤ q ≤ Q} . End of the main algorithm

9: procedure Recursion(J fix1, Inow,J now, q) . The recursion precedure

10: J now := J now \ {j | di,j > Rn,i,∀i ∈ Inow}

11: if J now is empty then

71

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

12: return

13: else

14: Choose a j0 in J now . Choose randomly or under a specific rule

15: J now := J now \ {j0}

16: J fix1
in := J fix1

⋃{j0} . Let j0 in

17: Inowin := Inowin \ {i | di,j0 ≤ Rn,i}

18: if Inowin is empty then . A feasible solution is found

19: q := q + 1

20: xq1 := {xq1,j = 1,∀j ∈ J fix1 and xq1,j = 0,∀j /∈ J fix1}

21: if q ¿= Q then return

22: end if

23: else

24: RECURSION(J fix1
in , Inowin ,J now), q

25: end if

26: RECURSION(J fix1, Inow,J now), q . Let j0 out

27: end if

28: end procedure

Algorithm 5 Branch-and-Price for EVCE

Input: pEV CE, tolerance ε

Output: Optimal solution (x∗,y∗)

1: pMP ← pEV CE . Reformulate the problem into the (MP)

2: (x∗,y∗)←initial feasible solution . Initialize best feasible solution

72

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

3: Bup ← obj(x∗,y∗) . Set initial upper bound

4: P ← {pMP} . Initialize subproblem set

5: while P 6= ∅ do

6: choose a p` from P , P ← P\{p`}

7: initialize column pool Q` =
⋃
n∈N Q`n

8: pRMP
` ← DW (p`) with Q` . Dantzig-Wolfe decompostion

9: if pRMP
` is infeasible then

10: goto 5

11: else

12: [(x̂, ŷ), (π,µ)]← solve(pRMP
`)

13: . optimal solution (x̂, ŷ), dual solution (π,µ)

14: if x̂ are binary then . A better feasible solution is found

15: (x∗,y∗)← (x̂, dŷe) . Update the best feasible solution

16: Bup ← obj(x∗,y∗) . Update the upper bound

17: end if

18: {pSP (n)
` | ∀n ∈ N} ← pricing problem at node n with (π,µ)

19: (x̃n, ỹn) = solve(p
SP (n)
`) for all n ∈ N

20: if ∃n ∈ N s.t. obj(x̃n, ỹn) < 0 then . New columns are found

21: Q`n = Q`n
⋃{(x̃n, ỹn)}

22: goto 8

23: else

24: Blow = obj(x̃n, ỹn)

25: if Blow > Bup − ε then . This branch is not promising

26: goto 5

73

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

27: else

28: {pk` | k = 1, ..., K`} ← branch(p`)

29: P ← P⋃{pk` | k = 1, ..., K`}

30: goto 5

31: end if

32: end if

33: end if

34: end while

35: return (x∗,y∗)

Algorithm 6 A recursion method to get columns for SP(n)

Input: p, SP(n),

Output: {(xqn,yqn) | 1 ≤ q ≤ Q}

1: J fix0 := {j ∈ J | x1,j is fixed to 0 in p at node 1 }

2: J fix1 := {j ∈ J | x1,j is fixed to 1 in p at node 1 }

3: Icovered := {i ∈ I | ∃j s.t. j ∈ J fix1 and di,j ≤ Rn,i}

4: Inow := I \ Icovered

5: J now := J \ (J fix0
⋃J fix1)

6: Q := 0

7: RECURSION(J fix1, Inow,J now, Q)

8: return {xq1 | 1 ≤ q ≤ Q} . End of the main algorithm

9: procedure Recursion(J fix1, Inow,J now, Q) . The recursion precedure

10: J now := J now \ {j | di,j > Rn,i,∀i ∈ Inow}

11: if J now is empty then

74

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

12: return

13: else

14: Choose a j0 in J now . Choose randomly or under a specific rule

15: J now := J now \ {j0}

16: J fix1
in := J fix1

⋃{j0} . Let j0 in

17: Inowin := Inowin \ {i | di,j0 ≤ Rn,i}

18: if Inowin is empty then . A feasible solution is found

19: Q := Q+ 1

20: xQ1 := {xQ1,j = 1,∀j ∈ J fix1 and xQ1,j = 0,∀j /∈ J fix1}

21: else

22: RECURSION(J fix1
in , Inowin ,J now)

23: end if

24: RECURSION(J fix1, Inow,J now) . Let j0 out

25: end if

26: end procedure

75

Appendix B

Proof of Theorem 3.1.2

Theorem 3.1.2 If y∗L = {y∗n,j | ∀n ∈ N ,∀j ∈ J } is the optimal solution of

REVCE(x̄), then y∗I = {dy∗n,je | ∀n ∈ N ,∀j ∈ J } is an optimal solution of EVCE(x̄).

Proof. The proposition will be proved by contradiction. It is obvious that y∗I

is feasible to EVCE(x̄) by Theorem 3.1.1. If y∗I is not optimal to EVCE(x̄), we

denote an optimal solution of program (3.1.2) as y′I = {y′n,j | ∀n ∈ N ,∀j ∈ J }. So

fx̄(y
′
I) < fx̄(y

∗
I). Then we can prove this theorem by creating a new solution y′L to

(3.1.3) with an objective value strictly smaller than the objective value of y∗L, which

contradicts to the fact that y∗L is optimal to REVCE(x̄).

The new solution is

y′L = {y∗n,j + ε(y′n,j − dy∗n,je) | ∀n ∈ N , ∀j ∈ J },

where ε is a small positive number in interval (0, 1) which satisfies

ε < min

{
y∗n,j − Lx̄n,j
dy∗n,je − y′n,j

∣∣∣ y∗n,j − Lx̄n,j
dy∗n,je − y′n,j

> 0,∀n ∈ N ,∀j ∈ J
}

76

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

and

ε < min

{
εn,j

∣∣∣ εn,j =
y∗n,j − y∗a(n),j

dy∗n,je − dy∗a(n),je − (y′n,j − y′a(n),j)
, εn,j > 0,∀n ∈ N , ∀j ∈ J

}

Obviously,

fx̄(y
′
L)− fx̄(y∗L) =

(∑
n∈N

∑
j∈J

cx̄n,j ·
[
y∗n,j + ε(y′n,j − dy∗n,je)

]
+ Ψx̄

)
−
(∑
n∈N

∑
j∈J

cx̄n,jy
∗
n,j + Ψx̄

)

= ε

[(∑
n∈N

∑
j∈J

cx̄n,jy
′
n,j + Ψx̄

)
−
(∑
n∈N

∑
j∈J

cx̄n,jdy∗n,je+ Ψx̄

)]
= ε

(
fx̄(y

′
I)− fx̄(y∗I)

)
< 0.

It remains to show that y′L is feasible to REVCE(x̄).

For any n ∈ N , j ∈ J , in the case of y′n,j − dy∗n,je ≥ 0, we have

y∗n,j + ε(y′n,j − dy∗n,je) ≤ y∗n,j + 1 · (y′n,j − dy∗n,je) = y′n,j + (y∗n,j − dy∗n,je) ≤ y′n,j ≤ U x̄
n,j,

and

y∗n,j + ε(y′n,j − dy∗n,je) ≥ y∗n,j ≥ Lx̄n,j.

In the other case of y′n,j−dy∗n,je < 0, y∗n,j+ε(y
′
n,j−dy∗n,je) ≤ y∗n,j ≤ U x̄

n,j. Since both y′n,j

and dy∗n,je are integers, from y′n,j − dy∗n,je < 0, we get y∗n,j > dy∗n,je − 1 ≥ y′n,j ≥ Lx̄n,j.

Therefore,
y∗n,j − Lx̄n,j
dy∗n,je − y′n,j

> 0 and thus ε <
y∗n,j − Lx̄n,j
dy∗n,je − y′n,j

. So

y∗n,j + ε(y′n,j − dy∗n,je) ≥ y∗n,j +
y∗n,j − Lx̄n,j
dy∗n,je − y′n,j

(y′n,j − dy∗n,je) = Lx̄n,j.

Now we can claim that the solution y′L satisfies constraint (3.1.3b).

77

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

For all n ∈ N and j ∈ J , since y∗L is feasible to (3.1.3), we know y∗n,j ≥ y∗a(n),j.

First let us consider the case in which y∗n,j = y∗a(n),j. Obviously, dy∗n,je = dy∗a(n),je and

(
y∗n,j + ε(y′n,j − dy∗n,je)

)
−
(
y∗a(n),j + ε(y′a(n),j − dy∗a(n),je)

)
= ε(y′n,j − y′a(n),j) ≥ 0.

Now look at the other case where y∗n,j > y∗a(n),j. If dy∗n,je−dy∗a(n),je−(y′n,j−y′a(n),j) ≤ 0,

(
y∗n,j + ε(y′n,j − dy∗n,je)

)
−
(
y∗a(n),j + ε(y′a(n),j − dy∗a(n),je)

)
=
(
y∗n,j − y∗a(n),j

)
− ε
(
dy∗n,je − dy∗a(n),je − (y′n,j − y′a(n),j)

)
> 0.

If dy∗n,je − dy∗a(n),je − (y′n,j − y′a(n),j) > 0, then
y∗n,j − y∗a(n),j

dy∗n,je − dy∗a(n),je − (y′n,j − y′a(n),j)
> 0

and therefore ε <
y∗n,j − y∗a(n),j

dy∗n,je − dy∗a(n),je − (y′n,j − y′a(n),j)
. Now we have

(
y∗n,j + ε(y′n,j − dy∗n,je)

)
−
(
y∗a(n),j + ε(y′a(n),j − dy∗a(n),je)

)
=
(
y∗n,j − y∗a(n),j

)
− ε
(
dy∗n,je − dy∗a(n),je − (y′n,j − y′a(n),j)

)
> 0,

which means the solution y′L satisfies constraint (3.1.3c).

It is proved that y′L is feasible to the linear program (3.1.3) and its objective value

is strictly smaller than the objective value of y∗L, which is a contradiction. �

78

Bibliography

Ahmed, S. and Sahinidis, N. V. (2003). An approximation scheme for stochastic

integer programs arising in capacity expansion. Operations Research, 51(3), 461–

471.

Aros-Vera, F., Marianov, V., and Mitchell, J. E. (2013). p-hub approach for the

optimal park-and-ride facility location problem. European Journal of Operational

Research, 226(2), 277–285.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., and Vance, P. H.

(1998). Branch-and-price: Column generation for solving huge integer programs.

Operations research, 46(3), 316–329.

Benati, S. and Hansen, P. (2002). The maximum capture problem with random

utilities: Problem formulation and algorithms. European Journal of Operational

Research, 143(3), 518–530.

Bradley, S. P., Hax, A. C., and Magnanti, T. L. (1977). Applied Mathematical Pro-

gramming. Addison-Wesley.

Church, R. and ReVelle, C. (1974). The maximal covering location problem. Papers

in regional science, 32(1), 101–118.

79

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

Cities, C. (2012). Plug-in electric vehicle handbook for public charging station hosts.

US Department of Energy Publication No. DOE/GO-102012-3275.

CREA (2019). The real estate website in canada. https://www.realtor.ca/.

Data Management Group (2016a). Transportation tomorrow survey, univer-

sity of toronto. http://dmg.utoronto.ca/transportation-tomorrow-survey/

tts-introduction.

Data Management Group (2016b). Transportation tomorrow survey, univer-

sity of toronto. http://dmg.utoronto.ca/transportation-tomorrow-survey/

origin-destination-matrices. (Accessed July 10, 2019).

Frade, I., Ribeiro, A., Gonçalves, G., and Antunes, A. P. (2011). Optimal location

of charging stations for electric vehicles in a neighborhood in lisbon, portugal.

Transportation Research Record, 2252(1), 91–98.

Haase, K. and Müller, S. (2014). A comparison of linear reformulations for multi-

nomial logit choice probabilities in facility location models. European Journal of

Operational Research, 232(3), 689–691.

Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers

and medians of a graph. Operations research, 12(3), 450–459.

He, S. Y., Kuo, Y.-H., and Wu, D. (2016). Incorporating institutional and spatial

factors in the selection of the optimal locations of public electric vehicle charging

facilities: A case study of beijing, china. Transportation Research Part C: Emerging

Technologies, 67, 131–148.

80

https://www.realtor.ca/
http://dmg.utoronto.ca/transportation-tomorrow-survey/tts-introduction
http://dmg.utoronto.ca/transportation-tomorrow-survey/tts-introduction
http://dmg.utoronto.ca/transportation-tomorrow-survey/origin-destination-matrices
http://dmg.utoronto.ca/transportation-tomorrow-survey/origin-destination-matrices

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

Hoffman, S. D. and Duncan, G. J. (1988). Multinomial and conditional logit discrete-

choice models in demography. Demography, 25(3), 415–427.

Huang, K., Kanaroglou, P., and Zhang, X. (2016). The design of electric vehicle

charging network. Transportation Research Part D: Transport and Environment,

49, 1–17.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming.

In Proceedings of the sixteenth annual ACM symposium on Theory of computing,

pages 302–311.

Khachiyan, L. G. (1979). A polynomial algorithm in linear programming. In Doklady

Academii Nauk SSSR, volume 244, pages 1093–1096.

Kojima, M., Mizuno, S., and Yoshise, A. (1989). A primal-dual interior point algo-

rithm for linear programming. In Progress in mathematical programming, pages

29–47. Springer.

Manne, A. S. (1961). Capacity expansion and probabilistic growth. Econometrica:

Journal of the Econometric Society, pages 632–649.

Ministry of Transportation Ontario Government (2019). Caa’s electric vehicle charg-

ing map. https://www.caa.ca/maintenance/ev-map.html.

MITL (2018). Electric mobility - national consumer stated preference sruvey. http:

//mitl.mcmaster.ca/portfolio. (Accessed July 20, 2019).

Murty, K. G. (1983). Linear Programming. Springer.

81

https://www.caa.ca/maintenance/ev-map.html
http://mitl.mcmaster.ca/portfolio
http://mitl.mcmaster.ca/portfolio

M.Sc. Thesis – Q. Chen McMaster University – Comput Sci & Engineering

Renegar, J. (1988). A polynomial-time algorithm, based on newton’s method, for

linear programming. Mathematical Programming, 40(1-3), 59–93.

Schrijver, A. (1998). Theory of Linear and Integer Programming. John Wiley & Sons.

Serra, D., Eiselt, H. A., Laporte, G., and ReVelle, C. S. (1999). Market capture models

under various customer-choice rules. Environment and Planning B: Planning and

Design, 26(5), 741–750.

Smith, M. and Castellano, J. (2015). Costs associated with non-residential electric

vehicle supply equipment: Factors to consider in the implementation of electric

vehicle charging stations. Technical report.

Tong, D. and Murray, A. T. (2009). Maximising coverage of spatial demand for

service. Papers in Regional Science, 88(1), 85–97.

Tu, W., Li, Q., Fang, Z., Shaw, S.-l., Zhou, B., and Chang, X. (2016). Optimizing the

locations of electric taxi charging stations: A spatial–temporal demand coverage

approach. Transportation Research Part C: Emerging Technologies, 65, 172–189.

Vanderbei, R. J., Meketon, M. S., and Freedman, B. A. (1986). A modification of

karmarkar’s linear programming algorithm. Algorithmica, 1(1-4), 395–407.

82

	Abstract
	Acknowledgements
	Introduction
	Electric Vehicle Charging Network
	Customer Choice Behaviours
	Mixed-Integer Linear Program

	Model Development
	Framework
	Notations
	Optimization model
	Linearization

	Two Simple Algorithms
	An Approximation Algorithm
	Integer Variables
	Approximation Algorithm

	A Heuristic Algorithm
	Numerical Experiments

	Branch-and-Price Algorithm
	An Overview of Algorithms for Mixed Integer Linear Program
	Simplex Algorithm
	Column Generation
	Dantzig-Wolfe Decomposition
	Branch-and-Bound
	Branch-and-Price

	Branch-and-Price Algorithm for EVCE
	Implementation of the Basic Branch-and-Price Algorithm
	Branching Rules
	Initialization
	Lower Bound of Subproblems
	Feasible Solutions and Upper Bounds

	Improvement of the Branch-and-Price Algorithm
	Initialization
	Column Generation
	Column Management

	Numerical Experiments

	Case Study: Electric Vehicle Charging Network Design for Oakville, Canada
	Conclusion
	Algorithms
	Proof of Theorem 3.1.2

