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Abstract 

Long-term care facility network in Ontario, and in Canada as a whole, encounters 

critical issues regarding balancing demand with capacity. Even worse, it is faced with rising 

demand in the coming years. Moreover, there is an urgent need to provide long-term care 

for patients in their own language (particularly French). This study proposes a dynamic 

Mixed-Integer Linear Programming model based on the current standing of the long-term 

care system in Ontario, which simultaneously optimizes the time and location of 

constructing new long-term care facilities, adjusting the capacity (namely, human resources 

and beds) of each facility dynamically, and the assignment of patients to the facilities based 

on their demand region, gender, language, and age group over a finite time horizon. We 

apply the diversity-support constraints, based on patients’ gender and language, to save 

patients from loneliness and to comply with the Canadian values of providing care. Finally, 

we validate the model by performing a case study in Hamilton, Ontario. An extensive set 

of numerical analyses are explored to provide deeper insights into the whole issue. One set 

of such analysis is an extensive simulation study to examine the effect of distributional 

uncertainty in some of the input parameters on the optimal results, hence providing a much 

more realistic understanding of the optimization model.  
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1 Introduction 

 

Long-term care (LTC) refers to various medical and non-medical services for 

people, particularly older adults, with disabilities or chronic diseases (Zhang & Puterman, 

2013). It helps people with their daily routine, including walking, taking a shower, getting 

dressed, toileting, and other activities like housework, making meals, and shopping (Li, 

Zhang, Kong, & Lawley, 2016). Because of the increase in the senior population, chronic 

illness spread, and injury incidence, the need for LTC is increasing sharply across the world 

(Li et al., 2016). 

According to the white paper on the capacity planning and development by Ontario 

Association of Non-Profit Homes and Services for Seniors (OANHSS), Ontario has 

different types of care for the elderly containing seniors’ housing, long-term care, home 

care, and community services (Ontario Association of Non-Profit Homes and Services for 

Seniors, 2016).  

Seniors’ housing choices deliver dwelling and assistance to applicants. For 

example, seniors who are not eligible to enter an LTC home but are at high-risk can receive 



M.Sc. – M. Zargoush;  McMaster University – Computational Science and Engineering 
 

2 
 

in-home support by supportive housing. Also, retirement homes are suitable for those who 

can pay for their care and still are active and independent but need some aid for their daily 

activities such as housekeeping and making meals.  

Long-term care home (sometimes called nursing home or LTC facility), which is 

the focus of this study, provides housing, nursing care, and support with daily activities to 

people who need 24-hour care and are not able to live independently in the community.  

Home care services, which can be short-term or long-term, propose healthcare-

related supports to individuals in their own home. These supports include a different range 

of assistance, such as personal and home support and nursing. Home care can be a suitable 

alternative to long-term care home and retirement home, as it is cost-efficient, and patients 

have the opportunity to stay in a favorable environment with their family and friends. 

Community services are an addendum to home care services. These services consist of 

various ranges of supports, such as transportation, meal delivery, social services, and 

mental care. 

In Ontario, the Local Health Integration Networks (LHINs), which are government 

associations, specify whether applicants are eligible to enter an LTC home. Generally, 

people can be qualified to enter LTC home when they have serious physical or mental 

problems, and they cannot live in their own home or retirement home (Ontario Long Term 

Care Association, 2016). Since 2010, decision-makers have changed the criteria for new 

patient admission, which require people to be in need for high or very high physical or 

mental support to be admitted into LTC home (Ontario Long Term Care Association, 
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2016). This may lead patients to stay in LTC home until the end of their life. Here is an 

overview of LTC home residents’ characteristics in 2016 in Ontario (Ontario Long Term 

Care Association, 2016):  

• Ninety-seven percent need aid with their routines such as leaving the bed, 

• Fifty-eight percent employ a wheelchair, 

• More than thirty percent are extremely dependant on staff, 

• Ninety percent have a cognitive disability (more than 30 percent are in intensive 

condition), 

• Ninety-seven percent have more than one chronic illness such as heart disease, 

• Forty percent suffer from a mood disease like depression, 

• Thirty-eight percent require supervision for a severe medical status. 

LTC facility network in Ontario faces some critical issues which motivate us to 

conduct this study. There is a high demand for LTC such that in 2017, almost 34,000 people 

were waiting to receive a bed (Ontario Long Term Care Association, 2018). On the other 

hand, statistics show that over the next two decades, Ontario will encounter a surge in 

demand for LTC beds as a result of growth in older adults population (Ontario Association 

of Non-Profit Homes and Services for Seniors, 2016). This growth results in doubling the 

population of seniors who are 65 years of old or older, quadrupling those who are 85 years 

or older, and tripling seniors with the age of 100 or older (Ontario Association of Non-

Profit Homes and Services for Seniors, 2016). Improvements in medical care can also be a 

reason for the increase in the population of older adults. Another study by Munro et al. 



M.Sc. – M. Zargoush;  McMaster University – Computational Science and Engineering 
 

4 
 

(2011) indicates that by 2035, the number of people who require LTC bed in Ontario will 

be almost 238,000 compared to their number in 2019, which is about 128,000. 

Lack of efficient planning in hospitals and LTC network prevents them from 

optimal efficiencies in the operations. Hospitals, most of the time, are encountered with 

excessive demand beyond their capacity (Jonathan Patrick, 2011). Around 15 to 20 percent 

of this excessive demand is because of the so-called alternate level of care (ALC) patients 

who do not need to remain in acute care services but are waiting to be discharged to a more 

proper environment such as LTC home (Jonathan Patrick, 2011). According to the 

president of the Ontario Hospital Association, managing ALC patients is the most pressing 

problem in hospitals (Jonathan Patrick, 2011). Shortage of capacity in LTC homes is the 

principal reason in the backlog of ALC patients in hospitals (Zhang & Puterman, 2013). 

Therefore, an efficient capacity planning in LTC network not only can solve the capacity 

problem in LTC home but also has a considerable impact on solving the congestion crisis 

in acute care settings. 

Ontario is known as a multicultural land with residents from 200 countries of 130 

different languages (Government of Canada, 2019). Although the official language is 

English, there are various French-speaking communities athwart the province, and the 

government services in many places are provided in English and French (Government of 

Ontario, 2019). However, there is a shortage of French-language human resources in LTC 

facilities, as well as a lack of optimal distribution of patients based on their language across 

facilities. Therefore, depression is one expected disorder for patients in a healthcare 
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environment such as LTC home where there are no human resource and/or patients whom 

they can interact with. 

Moreover, according to a recent report in The Globe and Mail (2018), there is an 

urgent need to provide long-term care for patients in their own language (particularly 

French). This is essential for patients’ safety, health, and quality of life. Also, as patients 

particularly those with chronic diseases, such as asthma and diabetes should have good 

communication with their health team, language problems may complicate the 

management of chronic conditions. This report mentions that the lack of language services 

may lead to some hidden costs to the healthcare system. For example, when human 

resources cannot communicate efficiently with patients, they perform more diagnostic tests 

leading to an increased length of stay in health services. Also, when patients are not 

completely understood to have an accurate diagnosis, they tend to have more medical 

appointments for the same issue. 

Unlike other parts of the healthcare system, in LTC, there are very few quantitative 

studies that focus on optimizing the capacity planning and its ramifications. More 

specifically, there is a lack of analytical studies to provide insights on the optimal capacity 

planning in Ontario’s LTC that consider the need of local communities as an urgent matter. 

To fill the above gaps, this study presents a dynamic Mixed-Integer Linear 

Programming (MILP) model based on the current LTC system in Ontario to determine the 

time and location of constructing new LTC facilities, the capacity (namely, human 

resources and beds) of each facility at each time, and how to assign patients based on their 

demand region, gender, language, and age group to facilities over the time horizon. The 
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principal objectives of the optimization model are to minimize expected total costs of 

planning, while diversity-support criteria (here, gender and language diversity) are 

explicitly considered as constraints. 

The remainder of the thesis is organized as follows. Chapter 2 presents a brief 

literature review relevant to this research. We define the problem and its formulations as a 

MILP model in chapter 3. Computational results and numerical analysis are presented in 

chapter 4. Finally, in chapter 5, we conclude the study and discuss some future works.  
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2 Literature Review 

 

Over the last decades, Mathematical Programming has been the primary technique 

for dealing with the delivery of healthcare services (Teresa Cardoso, Oliveira, Barbosa-

Póvoa, & Nickel, 2016). In this chapter, we present a brief literature review on the location-

allocation and capacity planning problems in healthcare with a focus on the LTC sector. To 

classify the studies, we examine articles which focus on facility location, allocation, 

capacity planning, facility location and capacity planning, location-allocation and capacity 

planning problems, in healthcare, as well as some related works to the LTC sector. 

Healthcare facility location problems aim to optimize the location of healthcare 

facilities when there is a certain number of those facilities, and a set of constraints must be 

met. Allocation problems, on the other hand, deal with the optimal assignments of patient 

and resources to various healthcare services. Mitropoulos et al. (2006) present a 

mathematical programming model with two objectives to determine the location of 

hospitals and primary healthcare centers. The first objective is to minimize the distance 

between patients and facilities, while the second objective distributes the facilities among 
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people in an equitable way. In another study, Shroff et al. (1998) use the Data Envelopment 

Analysis (DEA) tool to determine the optimal potential spots for constructing a long-term 

care facility in Northern Virginia by considering criteria pertaining the characteristics of 

their healthcare services.  

Optimizing patients and resource assignment to hospitals during the influenza 

outbreak is examined in Sun et al. (2014). In the objective function, they minimize costs 

related to patients access to the healthcare facilities. Also, their model can estimate the 

shortage of medical resources in a specific time and for a particular hospital during the 

increase in demand. In another study, Kim and Kim (2010) use a branch-and-bound 

algorithm to specify the location of LTC facilities to optimize the number of patients in 

each facility. To do so, they consider many assumptions such as no facility at the beginning, 

and that the patients’ need should be met in the nearest facility to the patient groups. In 

another work related to allocation problem in the healthcare area, Hertz and Lahrichi (2009) 

present a mixed-integer non-linear model for assigning different types of patients to nurses 

in home care services while their goal is to have equivalent workloads for nurses and 

prevent long distance to meet a patient. In their study, they use a Tabu Search algorithm for 

solving the problem. They solve a simplified version (linear mixed-integer program) of 

their model using CPLEX. 

According to Li et al. (2016), in general, the capacity planning problem deals with 

balancing supply and demand for an organization, where the capacity planning may be used 

to determine the number of human resources at a home-health agency, the number of beds, 

diagnostic devices and operating rooms in a hospital or the number of hospitals in a zone. 
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Santibáñez et al. (2009) propose a multi-period mathematical programming model to 

determine the location of hospitals and their bed capacity in British Columbia by using 

certain weighting methods. As the first study on capacity planning in LTC networks, Li et 

al. (2016) model transfers among nursing homes and Home and Community-based Services 

(HCBS) using an open migration network. To specify the optimal capacity of LTC service 

networks, they use a newsvendor-type model. As a result of their study, they conclude that 

when there is a financial restriction, decreasing the capacity of nursing homes instead of 

HCBS has a better outcome in total network profit. Moreover, in limited population size, 

HCBS need less capacity than nursing homes. Besides, since strong capacity resilience (i.e., 

the ability to increase capacity in case of sudden demand surge) results in requiring less 

capacity, decision-makers should increase the capacity resilience in LTC facilities. Finally, 

they mention that adjusting the quality of care in HCBS can have a substantial effect on 

reducing costs.  

To mention another study relevant to capacity planning in LTC network, Lin et al. 

(2012) present an optimization problem to determine the infrastructure capacity of HCBS 

with the goal of minimizing the cost of LTC services through giving services to patients in 

HCBS instead of LTC facilities which is much more expensive than HCBS. They also use 

a compartmental model to simulate the transition among different sections of LTC. 

There is a list of papers which use simulation techniques for capacity planning in 

the long-term care network including Patrick (2011), Patrick et al. (2015), Zhang and 

Puterman (2013), and Zhang et al. (2012). In a seminal work, Patrick (2011) presents a 

Markov decision process (MDP) to determine the capacity of long-term care that is needed 
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to have a lower limit of the alternative level of care (ALC) patients in hospitals (as 

mentioned earlier, ALC patients are those who no longer need to stay in an acute care 

hospital, but remain there because of  capacity shortage in an appropriate ALC setting such 

as a long-term care facility). He also uses simulation to estimate how considering the 

decisions from the MDP model can affect the community demand wait times for LTC and 

help decision-makers for planning the LTC capacity in the future. Zhang and Puterman 

(2013) determine the capacity of LTC in each year over time planning horizon by using 

simulation optimization techniques. As the demand and Length of Stay (LOS) in long-term 

care may be different for individuals with various ages and genders, they categorize clients 

based on these two criteria to have more accurate results.  

In order to meet the demand from community and hospitals in a timely manner, 

Patrick et al. (2015) use simulation technique to determine appropriate capacity for both 

LTC and supportive housing which is used as decision support to reduce the congestion in 

LTC for patients who do not need 24-hour supervision. Instead of providing guidelines for 

managing the demand from all hospitals and community simultaneously, their work 

provides a policy only for one hospital. Zhang et al. (2012) combine discrete event 

simulation, optimization, and demographic and survival analysis to satisfy patients’ wait 

time limitations, by guaranteeing the minimum LTC capacity levels over a multi-year 

planning horizon. One of their significant conclusions is that age, gender, and geographic 

region noticeably affect the patients LOS.  

Researchers have also examined the LTC network for the better estimations of 

demand. Cardoso et al. (2012) develop a multi-service simulation model based on Markov 
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cycle tree structure to estimate the demand for LTC services at the small-area level. In 

addition to using Monte Carlo simulation to model demand uncertainty, they consider 

different types of health and socioeconomic characteristics to approximate demand. An 

interesting part of their study, which is highly relevant to our research is that they show 

how LTC demand can be affected by age and gender. Finally, for the validation purposes, 

they run their model in Excel for the county of Lisbon, Portugal. Hare et al. (2008) present 

a deterministic multi-state Markov model to predict home cares and accommodation 

environments (such as residential care) for both publicly and non-publicly funded services 

in British Columbia, Canada. While some essential features like gender, geographic 

location, and race can affect the demand, they do not consider such features in their model 

explicitly.  

There are also studies in the literature which investigate facility location, allocation, 

and capacity planning problems at the same time containing Cardoso et al. (2015a), 

Cardoso et al. (2015b), Cardoso et al. (2016), Intrevado et al. (2019), Mestre et al. (2015), 

and Stummer et al. (2004). Mestre et al. (2015) present two stochastic location-allocation 

models about hospital network planning. Stummer et al. (2004) apply a multi-objective 

mathematical model to specify the place and size of different medical departments for a 

given set of hospitals. In the objective function, they minimize travel costs related to 

patients, location-allocation costs, the number of rejected patients, and the number of units 

moves to have a new hospital plan. They use a two-phase solution approach to solve their 

model and perform a numerical case-study based on the data from the hospitals in Germany. 
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Although there are many studies about facility location problem in healthcare (Kim 

& Kim, 2010), the number of papers on location-allocation and capacity planning in LTC, 

especially surveys which use optimization techniques, is not considerable. To the best of 

our knowledge, Intrevado et al. (2019), Cardoso et al. (2015b), Cardoso et al. (2016), and 

Cardoso et al. (2015a) are the only studies that determine the optimal location-allocation 

and capacity of LTC services simultaneously. In none of these articles, important factors 

such as gender, language, age, patients diversity-support, patients’ aging and consequently 

changing in their LOS or death rate, the need for human resources based on their language, 

and simulation study are considered explicitly, which, as we will see later, are taken into 

account in this study. 

In this domain, Cardoso et al. (2015b) develop a two-stage stochastic MILP model 

to schedule delivery of LTC services in a nationalized healthcare system (such as Portugal). 

They minimize expected costs in the objective function while considering equity criteria 

(namely geographical equity, socioeconomic equity, equity of access, and equity of 

utilization) as constraints. Their multi-period and multi-service two-stage model considers 

demand and LOS as the uncertainty and in the first stage, determines a finite number of 

facility and capacity decisions while assignment decisions are made in the second stage. In 

another study, Cardoso et al. (2015a) consider maximizing health gains in the objective 

function as well as minimizing expected costs. Similar to Cardoso et al. (2015b) and 

Cardoso et al. (2015a), in the study conducted by Cardoso et al. (2016), the authors develop 

a multi-objective and multi-period mathematical programming model in order to determine 

the location and capacity of LTC services for the medium term in a nationalized healthcare 
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system. Unlike their other studies, they treat budget limitation as a constraint, while 

considering different types of equity-related policies in the objective function. Most 

recently, Intrevado et al. (2019) develop a new model to design long-term care networks, 

which considers the patient-centric as a core. They introduce two deterministic dynamic 

mixed-integer linear programming models to help decision-makers how optimally 

determine the location of facilities, the capacity of LTC services and patient allocation 

while considering the so-called patients’ quality of life concept which we also use in our 

optimization model. Treating facility location variables as positive integer variables is 

another new feature of their model. As one conclusion, they mention that using home cares 

as possible replacements to long-term care facilities can decrease LTC costs under special 

status. 

Some papers in the literature, instead of location-allocation and capacity planning, 

focus on other aspects of long-term care. For instance, Xie et al. (2006) analyze the template 

of LOS in LTC facilities by considering patients features. Also, Robison et al. (2012) 

discuss the problems that clients have in LTC homes after transferring from home and 

community-based settings. Finally, the effect of home care on older people from financial 

perspectives is examined in Greene et al. (1998).  

In this thesis, we present an optimization model that varies from the reviewed 

studies in several ways. As mentioned in the literature review, very few papers have 

addressed location-allocation and capacity planning in long-term care simultaneously. The 

significant contributions of this study, which are novel in the literature, are as follows: 
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• We introduce a mathematical programming model to simultaneously optimize 

location-allocation and capacity planning in the LTC facility network in the 

Province of Ontario in Canada, which has its own featuring characteristics.  

• We consider diversity-support constraints for each facility. This is to save patients 

from loneliness (based on patients’ gender and language), which is essential for the 

long-term care system in Ontario, as a Canadian value. 

• We specify the need for different types of human resources, particularly based on 

their language to help decision-makers predict human resources capacity (e.g., 

English and French language human resources) required in Ontario. 

• We characterize patients based on different and new demographic features, such as 

gender, language, and age. 

• We associate the death rate with the patients’ age in order to have a more accurate 

formulation. 

• We consider the transition between patients’ age groups over time to have more 

accurate results. 

• We apply an extensive set of numerical analyses which provide deeper insights into 

the whole problem. 

• We conduct an extensive simulation study to examine the effect of distributional 

uncertainty (which is richer than single point uncertainty considered in the 

Sensitivity Analyses) in the optimal results, hence a much more accurate 

understanding of the optimization model. 

 



M.Sc. – M. Zargoush;  McMaster University – Computational Science and Engineering 
 

15 
 

 

 

 

3 Modeling Framework 

 

 In this chapter, we define the problem by discussing the planning timeline, location 

selection for new facilities and capacity planning, patient assignments, and other policies. 

Then we develop the MILP model to formulate the problem. 

 

3.1 Problem Definition 

 We consider LTC system that is operating in Ontario to build our model. In Ontario, 

long-term care facilities prepare nursing and support for individuals unable to live without 

outside help and need 24-hour care for daily living (Munro et al., 2011). Government 

agencies, i.e., LHINs, specify who is eligible to receive service in the facilities (Ontario 

Long Term Care Association, 2018). There are different types of long-term care facilities 

in Ontario, including for-profit, not-for-profit/charitable, municipal-run homes, and others, 

which are owned by individuals, companies, not-for-profit organizations, and 
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municipalities and receive funds from the provincial government except for patients’ 

accommodation fees (Ontario Long Term Care Association, 2016, 2018). According to 

Tanuseputro et al. (2015), the owners of the for-profit facilities can take some parts of funds 

as profit for the business advantage while not-for-profit facilities should spend all funds 

and profit only for issues related to the facility. This study focuses on not-for-profit long-

term care facilities. 

We develop a dynamic mixed-integer linear programming model based on the 

following characteristics. 

Planning Timeline. Our model is dynamic, which means we consider a discrete set of 

periods in which new events (such as demand, adding facilities and capacity, assigning new 

patients to facilities, leaving the facility by patients, and transition between age groups that 

we explain in the coming sections) can happen and change the features of LTC facilities 

network over time. More specifically, the decisions and events at each period influence the 

next period. 

Location Selection and Capacity Planning. Building LTC facilities, operating beds, and 

adding the capacity of each facility are all costly. In our optimization model, we are looking 

for optimal strategies to determine the location and timing of building new facilities among 

the defined discrete set of periods and sites, where each site can have none or one not-for-

profit facility. We also designate the optimal policy for adding the number of beds in each 

facility over time and investigate how the number/workhours of each type of human 

resources should change in each facility and period. 
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Patient Assignments. The model assigns patients to the facilities in each period based on 

the location, gender, language, and age group of patients. As well as causing the patients’ 

demand to be different in accordance to the demand point, gender, age group, and language, 

there are other critical factors to consider these patient classifications in the model. We will 

discuss these factors in the following paragraphs. 

 First of all, our model aims to allocate patients to the same service points as their 

demand points; and if it is not possible, to allocate them to the closest service points in 

which facilities are located. This type of allocation also helps the families and friends of 

the patients use a shorter journey for visiting patients.  Therefore, if we give service to 

patients in a service point different from their demand point, there will be a penalty called 

mis-assignment penalty (also can be defined as geographic undesirable patient assignment 

penalty) based on the distance (a function of travel time) between demand and service 

points. 

 Secondly, by considering gender, the model can guarantee a minimum proportion 

of each gender at each facility. Moreover, since the rate of leaving LTC facilities can 

change by patients’ age and in order to have a more accurate formulation, we categorize 

patients by their age groups. 

 Finally, considering language for planning the LTC facilities system in Ontario is 

critical. First, as an important contribution of this thesis, by defining the minimum number 

of patients, based on their language, at each facility, the model can address the patients' 

loneliness problem (due to language restrictions), which, based on interviews with several 
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healthcare managers, is a serious issue in Ontario. This problem is mainly caused by the 

shortage of people speaking the same language. Second, we specify the need for various 

kinds of human resources who can speak in a specific language to help decision-makers fix 

the problem of lacking particular types of human resources (especially French language 

human resources in Ontario). 

Other Criteria. In our model, if we do not assign a patient to any not-for-profit LTC 

facility, there will be a penalty called un-assignment penalty. We assume that unassigned 

patients will remain in acute care hospitals or will be allocated to other types of LTC 

facilities such as for-profit and municipal facilities. It should be mentioned that to open 

new facilities and to assign patients to a facility, the cost of un-assignment penalty should 

be higher than other costs (Li et al., 2016). 

 As seniors are entering LTC facilities in Ontario when they are older, and in high 

need of personal care than ever before, it is expected that they stay in LTC homes until the 

end of their lives. At the end of each period, some patients will leave the facilities because 

of death. Therefore, there is a death rate based on the patient's age which is used to calculate 

the number of empty beds (note that one can assume the death rate as departure rate to 

consider any other types of departure). 

Also, since patients who remain in the facilities get older over time, they may 

transfer to another age group by the end of each period. Figure 3.1 illustrates what happens 

to residents in a facility over time (assuming three age groups). Accordingly, at the end of 

each period, some patients leave the facility from every age group (purple arrows), and the 
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remaining patients may stay in their previous age group (blue arrows) or transit to the older 

age group (brown arrows). Also, at the beginning of each period, there are patient 

assignments from different classifications to all age groups (black arrows).  

  

Figure 3.1: Overview of residents transitions in each facility per period 

 

3.2 Problem Formulation 

3.2.1 Notations 

 Our model includes seven indices as follows. We use 𝑖 to indicate demand region 

and 𝑗 to illustrate long-term care service region. ℎ is the index for the human resource type. 

Indices 𝑔, 𝑙, and 𝑎 represent patients’ gender, language, and age group, respectively. 

Finally, we use 𝑡 to demonstrate each time period. The summary of all notations that we 

apply in the mathematical model is as follows. 
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Indices 

𝑖  index for the demand regions. 

𝑗  index for the long-term care (LTC) service regions. 

ℎ   index for the human resource types.  

𝑔   index for the patients genders.  

𝑙   index for the patients languages.  

𝑎   index for the patients age groups.  

𝑡   index for the time periods (discrete).  

We use the following sets for the various elements of our model. 

Sets 

𝐼  set of demand regions. 

𝐽 = 𝐽𝑎 ∪ 𝐽𝑏 set of LTC service regions; divided into subsets 𝐽𝑎(a subset of regions which 

already have LTC facility), and 𝐽𝑏(a subset of regions which do not have 

LTC facility at the beginning of time period 1). 

𝐻   set of human resource types. 

𝐺   set of genders. 

𝐿   set of languages. 

𝐴   set of age groups. 
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𝑇   set of time periods. 

The key parameters in our model are stated as follows. 

Parameters 

𝐹𝑗𝑡   fixed cost of opening an LTC facility in location 𝑗 at period 𝑡. 

𝑈𝑃𝑡   single period patient un-assignment penalty at period t.  

𝑀𝑃𝑖𝑗 mis-assignment penalty from demand region 𝑖 to location 𝑗 (as a function of 

the geometric distance between demand region 𝑖 and location 𝑗, which 

reflects the undesirability of a patient (who lives in region 𝑖 but get admitted 

into a facility in location 𝑗)). 

𝑁𝐵𝑗   number of beds in LTC facility located in 𝑗 at 𝑡 = 0.  

𝑀𝐼𝑁𝐵𝐶𝑗  minimum bed capacity allowed in LTC facility located in 𝑗 (to control for 

the fixed cost). 

𝑀𝐴𝑋𝐵𝐶𝑗 maximum bed capacity allowed in LTC facility located in 𝑗. 

𝑁𝑖𝑔𝑙𝑎𝑡 number of individuals from demand region 𝑖, gender 𝑔, language 𝑙, and age 

group 𝑎 requiring LTC facility at time 𝑡. 

𝑁𝐸𝑡  total number of individuals requiring LTC at time 𝑡, for all 𝑡:  

 𝑁𝐸𝑡 =∑∑∑∑𝑁𝑖𝑔𝑙𝑎𝑡
𝑎∈𝐴𝑙∈𝐿𝑔∈𝐺𝑖∈𝐼

 (1) 

𝐴𝐶𝑡   cost of adding one bed to any LTC facility at time 𝑡. 
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𝑂𝐶𝑡  cost of operating one bed in LTC facility at time 𝑡.  

𝑄ℎ hours of care that should be provided by human resource type ℎ for each 

patient in one period. 

𝐷𝑎𝑡  expected rate of death (departure) for patients from age group 𝑎 at time 𝑡. 

𝐵𝑎𝑡 proportion (i.e., expected rate) of patients in the age group 𝑎 who transit to 

age group 𝑎 + 1 at time 𝑡. 

𝑀𝐺𝑔𝑗 minimum proportion of patients from gender 𝑔 who should be in the facility 

located in 𝑗. 

𝑀𝐿𝐴𝑙𝑗 minimum proportion (or number) of patients from language 𝑙 who should 

be in the facility located in 𝑗. 

𝑀 upper bound on the number of patient assignments for each language in the 

LTC facility located in 𝑗 at time 𝑡. 

Φ   auxiliary coefficient (a large number).  

𝛾  correction factor.  

The decision and auxiliary variables in our model are listed below. 

Variables 

𝑋𝑗𝑡  binary variable; 𝑋𝑗𝑡 = 1 if and only if LTC facility is located in service 

region 𝑗 at time 𝑡, 0 otherwise. 
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𝑌𝑖𝑔𝑙𝑎𝑗𝑡 number of beds to be made available to the patients from demand region 𝑖, 

gender 𝑔, language 𝑙, and age group 𝑎, requiring LTC, in the facility located 

in 𝑗, at 𝑡. 

𝐴𝐵𝑗𝑡   number of additional beds in the facility located in 𝑗, at time 𝑡. 

𝑃𝑖𝑔𝑙𝑎𝑗𝑡  proportion of new patients from demand region 𝑖, gender 𝑔, language 𝑙, and 

age group 𝑎, receiving LTC in location 𝑗, at time 𝑡. 

𝑃𝐸𝑡   total number of new patients receiving LTC at time 𝑡. 

𝐻𝐶ℎ𝑙𝑎𝑗𝑡  number of hours of care that should be provided by human resource ℎ, for 

patients from language 𝑙, and age group 𝑎, receiving LTC in the facility 

located in 𝑗, at time 𝑡. 

𝑇𝐴𝐶𝑡   total cost of adding beds at time 𝑡. 

𝑇𝑂𝐶𝑡   total cost of operating beds at time 𝑡. 

𝑇𝑂𝐹𝐶𝑡  total cost of opening facilities at time 𝑡. 

𝑍𝑙𝑗𝑡  binary variable; 𝑍𝑙𝑗𝑡 = 1 if and only if there is at least one patient from 

language 𝑙 in LTC facility located in 𝑗 at time 𝑡, 0 otherwise. 

𝑊𝑙𝑗𝑡  minimum patients from language 𝑙 who can be assigned to LTC facility 

located in 𝑗 at time 𝑡. 

𝛿𝑙𝑗𝑡  binary variable; 𝛿𝑙𝑗𝑡 = 1 if and only if ∑ ∑ ∑ 𝑁𝑖𝑔𝑙𝑎𝑡𝑎∈𝐴𝑔∈𝐺𝑖∈𝐼 ≤

𝑀𝐿𝐴𝑙𝑗 × 𝑍𝑙𝑗𝑡, 0 otherwise. This is an indicator variable which identifies 



M.Sc. – M. Zargoush;  McMaster University – Computational Science and Engineering 
 

24 
 

the situation where the demand from a specific language is less than the 

minimum threshold.   

3.2.2 Mathematical Formulation  

Considering all the criteria, objectives, parameters and decision and auxiliary 

variables mentioned above, we propose a mixed-integer linear programming model to 

determine the time and location of building new facilities, patients assignments from each 

demand region, gender, language, and age group to each LTC facility at any time, number 

of beds for patients from any demand region, gender, language, and age group in each LTC 

facility over time (both for new and previous patients), and how to increase the capacity in 

every facility over time. The objective function and constraints are defined and formulated 

as follows. 

Objective Function. The objective function (2) minimizes the sum of the following cost 

items over 𝑇 years: 

1) Total costs of adding beds and operational costs (first term). Equation (3) formulates 

the costs of adding beds at each time by multiplying the number of increasing beds 

in each facility to the cost of adding every single bed. Equation (4) quantifies the 

costs of operating beds at each period through multiplying the number of all beds 

in all facilities to the cost of operating each bed. 

2) The total costs of opening LTC facilities (second term) which are computed in 

equation (5). 
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3) The un-assignment penalties (third term). Un-assignment penalties are costs related 

to the patients who do not receive service in not-for-profit LTC facilities which can 

be calculated via multiplying patient un-assignment penalty by the difference 

between new patients receiving assistance and the total number of new demands. 

Using equation (6), we ascertain the total number of new patients assigned to a 

facility. Also, to minimize the total costs, in some conditions (mostly when un-

assignment penalty is almost the same for all periods), the model may prefer to 

assign a higher percentage of patients in the last periods because of end-of-horizon 

effect for finite time problems (Puterman, 2005). To prevent this effect, we multiply 

the un-assignment penalty by a correction factor (𝛾), which is usually between one 

and ten percent, such that the un-assignment penalty decreases over time. 

4) Mis-assignment penalties (last term), which is calculated by multiplying the total 

number of mis-assigned patients to the corresponding mis-assignment penalty. 

 

 

                     𝑀𝑖𝑛 [(∑(𝑇𝐴𝐶𝑡 + 𝑇𝑂𝐶𝑡)

𝑡∈𝑇

)+ (∑𝑇𝑂𝐹𝐶𝑡
𝑡∈𝑇

)

+ (∑(𝑁𝐸𝑡 − 𝑃𝐸𝑡) × 𝑈𝑃𝑡
𝑡∈𝑇

× (1 − 𝛾)𝑡−1) 

+ (∑∑∑∑∑∑(𝑌𝑖𝑔𝑙𝑎𝑗𝑡)

𝑗∈𝐽𝑎∈𝐴𝑙∈𝐿

×𝑀𝑃𝑖𝑗
𝑔∈𝐺𝑖∈𝐼𝑡∈𝑇

)] 

(2) 

Where 
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 𝑇𝐴𝐶𝑡 =∑𝐴𝐵𝑗𝑡 × 𝐴𝐶𝑡           ∀ 𝑡 ∈ 𝑇

𝑗∈𝐽

 (3) 

 𝑇𝑂𝐶𝑡 =∑∑∑∑∑(𝑌𝑖𝑔𝑙𝑎𝑗𝑡)

𝑗∈𝐽𝑎∈𝐴

× 𝑂𝐶𝑡          ∀ 𝑡 ∈ 𝑇

𝑙∈𝐿𝑔∈𝐺𝑖∈𝐼

 (4) 

 𝑇𝑂𝐹𝐶𝑡 = 

{
 
 

 
 ∑ 𝑋𝑗𝑡 × 𝐹𝑗𝑡                                        ∀  𝑡 = 1 

𝑗 ∈𝐽𝑏

 

∑ (𝑋𝑗𝑡 − 𝑋𝑗(𝑡−1)) × 𝐹𝑗𝑡           ∀ 𝑡 ∈ 𝑇, 𝑡 > 1

𝑗 ∈𝐽𝑏

 (5) 

 𝑃𝐸𝑡 =∑∑∑∑∑𝑃𝑖𝑔𝑙𝑎𝑗𝑡
𝑗∈𝐽𝑎∈𝐴

× 𝑁𝑖𝑔𝑙𝑎𝑡          ∀ 𝑡 ∈ 𝑇

𝑙∈𝐿𝑔∈𝐺𝑖∈𝐼

 (6) 

Constraints. Next, we can explain and present the set of constraints in our model. 

• The constraint in (7) ensures that the number of patients from demand region 𝑖, 

gender 𝑔, language 𝑙, age group 𝑎 who are assigned to an LTC facility at 𝑡 cannot 

exceed the number of patients from demand region 𝑖, gender 𝑔, language 𝑙, age 

group 𝑎, who need service at 𝑡.  

 ∑𝑃𝑖𝑔𝑙𝑎𝑗𝑡
𝑗∈𝐽

≤ 1          ∀ 𝑖 ∈ 𝐼, 𝑔 ∈ 𝐺, 𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 (7) 

• The set of constraint (8) states that patients can receive service only in locations 

where an LTC facility exists. 

 𝑃𝑖𝑔𝑙𝑎𝑗𝑡 ≤ 𝑋𝑗𝑡          ∀ 𝑖 ∈ 𝐼, 𝑔 ∈ 𝐺, 𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇   (8) 

• Constraints (9) quantify the number of total beds required at 𝑡 in LTC facility 

located in 𝑗, for individuals from demand region 𝑖, gender 𝑔, language 𝑙, and age 
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group 𝑎 (which can also be considered as the number of  total patient assignments 

from demand region 𝑖, gender 𝑔, language 𝑙, and age group 𝑎, to LTC facility 

located in 𝑗 at 𝑡). In the first period (𝑡 = 1, the first inequality) there are only new 

assignments (𝑃𝑖𝑔𝑙𝑎𝑗𝑡 × 𝑁𝑖𝑔𝑙𝑎𝑡), while in other periods and for age group 1 (𝑡 >

1, 𝑎 = 1, the second inequality) number of total beds for patients from demand 

region 𝑖, gender 𝑔, and language 𝑙 who receive LTC in location 𝑗 is computed by 

summing new patient assignments with the remaining patients from the previous 

period (i.e., (1 − 𝐷𝑎(𝑡−1)) × 𝑌𝑖𝑔𝑙𝑎𝑗(𝑡−1)) and subtracting patients transitioning to the 

next age group by the end of the former period (𝐵𝑎(𝑡−1) × 𝑌𝑖𝑔𝑙𝑎𝑗(𝑡−1)). Eventually, 

for calculating the total beds for other age groups (𝑡 > 1, 𝑎 > 1, third inequality), 

we add the patients who transfer from one age group to the next age group 

(𝐵(𝑎−1)(𝑡−1) × 𝑌𝑖𝑔𝑙(𝑎−1)𝑗(𝑡−1)) to the second inequality.  

 𝑌𝑖𝑔𝑙𝑎𝑗𝑡 =

{
 
 
 
 

 
 
 
 
        𝑃𝑖𝑔𝑙𝑎𝑗𝑡 × 𝑁𝑖𝑔𝑙𝑎𝑡                   ∀ 𝑖 ∈ 𝐼, 𝑔 ∈ 𝐺, 𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽, 𝑡 = 1

((1 − 𝐷𝑎(𝑡−1) − 𝐵𝑎(𝑡−1)) × 𝑌𝑖𝑔𝑙𝑎𝑗(𝑡−1)) + (𝑃𝑖𝑔𝑙𝑎𝑗𝑡 × 𝑁𝑖𝑔𝑙𝑎𝑡)   

  ∀ 𝑖 ∈ 𝐼, 𝑔 ∈ 𝐺, 𝑙 ∈ 𝐿, 𝑎 = 1, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑡 > 1

((1 − 𝐷𝑎(𝑡−1) − 𝐵𝑎(𝑡−1)) × 𝑌𝑖𝑔𝑙𝑎𝑗(𝑡−1)) + (𝑃𝑖𝑔𝑙𝑎𝑗𝑡 × 𝑁𝑖𝑔𝑙𝑎𝑡) +

(𝐵(𝑎−1)(𝑡−1) × 𝑌𝑖𝑔𝑙(𝑎−1)𝑗(𝑡−1)) 

 ∀ 𝑖 ∈ 𝐼, 𝑔 ∈ 𝐺, 𝑙 ∈ 𝐿, 𝑎 > 1, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑡 > 1

 (9) 

 

• The number of additional beds per each facility and time (𝐴𝐵𝑗𝑡) is calculated in 

equation (10), which is the difference between the required capacity in each facility 

and its previous capacity. 
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 ∑∑∑∑𝑌𝑖𝑔𝑙𝑎𝑗𝑡
𝑎∈𝐴𝑙∈𝐿𝑔∈𝐺𝑖∈𝐼

=

{
 
 

 
 

𝑁𝐵𝑗 + 𝐴𝐵𝑗𝑡            ∀ 𝑗 ∈ 𝐽, 𝑡 = 1

∑∑∑∑𝑌𝑖𝑔𝑙𝑎𝑗(𝑡−1)
𝑎∈𝐴𝑙∈𝐿𝑔∈𝐺𝑖∈𝐼

 + 𝐴𝐵𝑗𝑡            ∀ 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑡 > 1
 (10) 

• The number of hours of care that should be provided by human resource type ℎ, for 

patients from language 𝑙, and age group 𝑎, receiving LTC in the facility located in 

𝑗, at 𝑡 is calculated in equation (11). It multiplies the number of existing patients in 

long-term care by the number of hours of care that should be provided by each 

human resource for each patient as follows: 

 𝐻𝐶ℎ𝑙𝑎𝑗𝑡 =∑∑𝑌𝑖𝑔𝑙𝑎𝑗𝑡
𝑔∈𝐺𝑖∈𝐼 

× 𝑞ℎ          ∀ ℎ ∈ 𝐻, 𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (11) 

• Constraints (12) and (13) guarantee that, firstly, we consider facilities which already 

exist in the LTC network (constraint (12)), secondly, when we open a facility, it 

cannot be closed (constraint (13)). 

 𝑋𝑗𝑡 ≥ 1          ∀ 𝑗 ∈ 𝐽𝑎, 𝑡 ∈ 𝑇 (12) 

 𝑋𝑗(𝑡−1) ≤ 𝑋𝑗𝑡         ∀ 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇, 𝑡 > 1 (13) 

• The minimum and maximum bed capacity limitation per location are ensured in 

constraints (14) and (15). 

 𝑀𝐼𝑁𝐵𝐶𝑗 × 𝑋𝑗𝑡 ≤∑∑∑∑𝑌𝑖𝑔𝑙𝑎𝑗𝑡          ∀ 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇

𝑎∈𝐴𝑙∈𝐿𝑔∈𝐺𝑖∈𝐼

 (14) 

 𝑀𝐴𝑋𝐵𝐶𝑗 × 𝑋𝑗𝑡 ≥∑∑∑∑𝑌𝑖𝑔𝑙𝑎𝑗𝑡           ∀ 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇

𝑎∈𝐴𝑙∈𝐿𝑔∈𝐺𝑖∈𝐼

 (15) 

• We formulate the diversity-support constraints as follows. 
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▪ The gender diversity constraint in (16) ensures there is a minimum 

proportion of patients from each gender in every facility over time.  

 ∑∑∑𝑌𝑖𝑔𝑙𝑎𝑗𝑡
𝑎∈𝐴𝑙∈𝐿

≥ 𝑀𝐺𝑔𝑗 ×∑∑∑∑𝑌𝑖𝑔𝑙𝑎𝑗𝑡 

𝑎∈𝐴𝑙∈𝐿𝑔∈𝐺𝑖∈𝐼𝑖∈𝐼

  ∀ 𝑔 ∈ 𝐺, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (16) 

▪ The language diversity constraint in (17) guarantees a minimum number of 

patients from each language in every facility over time. In case that we 

prefer to use minimum proportion instead of a minimum number of patients, 

we can use constraint (18). To generalize constraint (17), one can use 

constraints (19) - (26). Based on these constraints, it is not mandatory to 

assign patients of all languages to every facility over time. Constraints (19) 

and (20) consider the binary variable 𝑍𝑙𝑗𝑡  to verify whether there is at least 

one patient allocation of language 𝑙 to the facility located in 𝑗 at 𝑡.  Also, 

according to the constraint (21), if we assign patients of language 𝑙 to a 

facility at time 𝑡, the number of those specific patients in that facility at 

period 𝑡 onwards should be greater than or equal to a minimum limit (if we 

have not assigned any patient of language 𝑙 to the facility located in 𝑗 at 

period 𝑡 and previous periods, the minimum limit equals 0). This minimum 

restriction is determined via constraint (22). It states that the minimum 

restriction is equal to the minimum of the threshold that the decision-makers 

specify as the least number of patients from each language in every facility 

and the number of demands. Since (22) is non-linear, we replace it by 

constraints (23) - (26) to maintain the linearity of our model. 
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 ∑∑∑𝑌𝑖𝑔𝑙𝑎𝑗𝑡
𝑎∈𝐴𝑔∈𝐺

≥ 𝑀𝐿𝐴𝑙𝑗
𝑖∈𝐼

× 𝑋𝑗𝑡          ∀ 𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (17) 

 ∑∑∑𝑌𝑖𝑔𝑙𝑎𝑗𝑡
𝑎∈𝐴𝑔∈𝐺

≥ 𝑀𝐿𝐴𝑙𝑗
𝑖∈𝐼

×∑∑∑∑𝑌𝑖𝑔𝑙𝑎𝑗𝑡
𝑎∈𝐴

   

𝑙∈𝐿𝑔∈𝐺𝑖∈𝐼

∀ 𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (18) 

 ∑∑∑𝑌𝑖𝑔𝑙𝑎𝑗𝑡
𝑎∈𝐴𝑔∈𝐺

≤ 𝑀 × 𝑍𝑙𝑗𝑡
𝑖∈𝐼

          ∀ 𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (19) 

 ∑∑∑𝑌𝑖𝑔𝑙𝑎𝑗𝑡
𝑎∈𝐴𝑔∈𝐺

≥ 𝑍𝑙𝑗𝑡
𝑖∈𝐼

         ∀ 𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (20) 

 ∑∑∑𝑌𝑖𝑔𝑙𝑎𝑗𝑡
𝑎∈𝐴𝑔∈𝐺

≥ 𝑊𝑙𝑗𝑡

𝑖∈𝐼

          ∀ 𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (21) 

 𝑊𝑙𝑗𝑡 = min  (𝑀𝐿𝐴𝑙𝑗 × 𝑍𝑙𝑗𝑡  ,∑∑∑𝑁𝑖𝑔𝑙𝑎𝑡
𝑎∈𝐴𝑔∈𝐺𝑖∈𝐼

)        ∀ 𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (22) 

 𝑊𝑙𝑗𝑡 ≤ 𝑀𝐿𝐴𝑙𝑗 × 𝑍𝑙𝑗𝑡          ∀ 𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (23) 

 𝑊𝑙𝑗𝑡 ≤∑∑∑𝑁𝑖𝑔𝑙𝑎𝑡
𝑎∈𝐴𝑔∈𝐺𝑖∈𝐼

          ∀ 𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (24) 

 𝑊𝑙𝑗𝑡 ≥ (𝑀𝐿𝐴𝑙𝑗 × 𝑍𝑙𝑗𝑡) − (Φ × 𝛿𝑙𝑗𝑡)          ∀ 𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (25) 

 𝑊𝑙𝑗𝑡 ≥ ∑∑∑𝑁𝑖𝑔𝑙𝑎𝑡
𝑎∈𝐴𝑔∈𝐺𝑖∈𝐼

− (Φ × (1 − 𝛿𝑙𝑗𝑡))          ∀ 𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (26) 

• Constraints (27) - (35) determine the variables domain. We use ℤ+ and ℝ+ to 

represent the set of nonnegative integer and real variables. 

 𝑋𝑗𝑡 ∈ {0,1}          ∀ 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (27) 
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 𝑍𝑙𝑗𝑡 , 𝛿𝑙𝑗𝑡 ∈ {0,1}          ∀ 𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (28) 

 𝑌𝑖𝑔𝑙𝑎𝑗𝑡 ∈ ℤ+          ∀ 𝑖 ∈ 𝐼, 𝑔 ∈ 𝐺, 𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (29) 

 𝐴𝐵𝑗𝑡 ∈ ℤ+          ∀ 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (30) 

 𝑃𝐸𝑡 ∈ ℝ+          ∀ 𝑡 ∈ 𝑇 (31) 

 𝑊𝑙𝑗𝑡 ∈ ℤ+          ∀ 𝑙 ∈ 𝐿, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (32) 

 𝑃𝑖𝑔𝑙𝑎𝑗𝑡 ∈ ℝ+          ∀ 𝑖 ∈ 𝐼, 𝑔 ∈ 𝐺, 𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (33) 

 𝐻𝐶ℎ𝑙𝑎𝑗𝑡 ∈ ℝ+          ∀ ℎ ∈ 𝐻, 𝑖 ∈ 𝐼, 𝑔 ∈ 𝐺, 𝑙 ∈ 𝐿, 𝑎 ∈ 𝐴, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (34) 

 𝑇𝐴𝐶𝑡, 𝑇𝑂𝐶𝑡, 𝑇𝑂𝐹𝐶𝑡 ∈ ℝ+          ∀ 𝑡 ∈ 𝑇 (35) 
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4 Computational Results  

 

4.1 A Case Study in Hamilton, Ontario  

4.1.1 Background 

 In this section, we apply our MILP model to solve the problem based on the 

specifications in Hamilton, Ontario. Ontario is the most populous province of Canada, with 

more than fourteen million residents. In this province, the Local Health Integration 

Networks (LHINs), run as the government of Ontario agencies, and are responsible for 

planning, funding, and integrating public healthcare services such as long-term care homes 

and hospitals at a regional level. There are fourteen LHINs in Ontario, and Hamilton is 

located in region four, namely the Hamilton Niagara Haldimand Brant (HNHB) LHIN (see 

Figure 4.1).  
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Figure 4.1: LHIN regions in Ontario (Ontario’s LHINs, 2019) 

 Each of these fourteen regions has some smaller geographical areas known as sub-

regions. Every sub-region helps its LHIN to have a higher satisfaction of patients’ needs at 

a local level to respond to their distinct requirements in their place and time of need. HNHB 

LHIN consists of six sub-regions, namely Brant, Burlington, Haldimand Norfolk, Hamilton 

(the focus of this case study), Niagara, and Niagara North West (see Figure 4.2). 
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Figure 4.2: HNHB LHIN sub-regions (Health Services for HNHB, 2019a) 

4.1.2 Assumptions and Parameters Estimation 

 Before stating our assumptions and describing our parameter estimations, we 

specify all the sets in our case study.  

Demand and LTC Service Region sets. Hamilton City Council has divided the city into 

fifteen wards; the first eight wards which are parts of Hamilton city plus seven smaller 

towns and rural areas (see Figure 4.3). In our case study, we use the map (Figure 4.3) that 

was used in the 2016 census (City of Hamilton, 2016). We consider these fifteen regions 

as demand and LTC service regions, namely, in our case-study: 

𝑖 ∈ 𝐼 = {1,2, … ,15} , 𝑗 ∈ 𝐽 = {1,2, … ,15} 
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Based on the existing not-for-profit LTC facilities in Hamilton (Health Services for HNHB, 

2019b) we divide service regions into areas which already have a not-for-profit LTC facility  

and areas which do not have a not-for-profit LTC facility, therefore: 

𝐽𝑎 = {1,2,8,9,13} 

𝐽𝑏 = {3,4,5,6,7,10,11,12,14,15} 

 (𝐽 = {1,2,8,9,13} ∪ {3,4,5,6,7,10,11,12,14,15}). 

 

Figure 4.3: Hamilton city wards (City of Hamilton, 2018) 

Other sets. Since we could find data just for male and female patients (there could 

be other gender specifications), we consider these two genders in the case study (𝑔 ∈ 𝐺 =

{1,2}, where 𝑔 = 1 indicates male patients, and 𝑔 = 2 shows female patients). Also, we 
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divide patients’ languages into English and French, as the official languages in Canada (𝑙 ∈

𝐿 = {1,2}, where 𝑙 = 1 denotes English and 𝑙 = 2 denotes French).  

We also classify patients into three age groups (𝑎 ∈ 𝐴 = {1,2,3}, where 𝑎 =

1, 2, and 3 represent the age-groups of 60-70 (excluding 70), 70-80 (excluding 80), and 

greater than or equal to 80, respectively. To determine the need for human resources, among 

various types of staff, we take into account Health Care Aids (also called Personal Support 

Workers) and Registered Nurses. Therefore, ℎ ∈ 𝐻 = {1,2}, where 1 refers to Health Care 

Aids, and 2 refers to Registered Nurses. Health Care Aids help residents in many ways 

including showering, brushing teeth, and dressing while Registered Nurses have different 

roles containing nurses leading, delivering direct nursing care to residents and responding 

patients need through coordinating the delivery of the care plan. Finally, each period 

accounts for one year, and we analyze the model for five years from 2020 (𝑡 = 1) to 2024 

(𝑡 = 5), therefore in our case study, 𝑡 ∈ 𝑇 = {1,2,3,4,5}.  

Now, we are ready to state our assumptions and describe the parameter estimations 

for our case study. 

Fixed Cost of Opening an LTC Facility. This cost accounts for expenses 

regarding constructions, including purchasing land and other infrastructure. To the best of 

our knowledge, there are no documents that present this value in Hamilton, so we use the 

equation in Intrevado et al. (2019) which calculates the fixed cost of opening an LTC 

facility in Montreal, Quebec, assuming no considerable difference between the two cities, 

as follows: 
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𝐹𝑗𝑡 = $2,500,000 + $135,000 ∗ 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑗          ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 

Where the first term is the fixed cost of purchasing the land and infrastructure and the 

second term is the variable cost based on the maximum beds that can be placed in the 

facility in region 𝑗.  

 Single Period Patient Un-assignment Penalty. There is no data or formulation to 

specify this value, and it depends on the jurisdictions and their policy regarding the 

distribution of patients among different kinds of LTC homes such as for-profit, not-for-

profit, and municipal facilities and what percentage of clients they can support in LTC 

homes based on the available budget and other policies. We assume that if a patient cannot 

receive service from an LTC home, they receive support from acute care hospitals which 

is almost 6.5 times more expensive for the government to take care of ALC patients in 

hospitals instead of LTC home. According to Gibbard (2017), in Ontario, it costs hospitals 

$949 to operate a bed per ALC patient per day ($346,000 per ALC patient per year), and 

we consider that as an un-assignment penalty. Note that in the numerical analysis section, 

we analyze the sensitivity of our results to this parameter. 

 Mis-assignment Penalty. Similar to un-assignment penalty, there is no specific 

method to determine this value, and it depends on how the decision-makers prefer to 

distribute patients among LTC homes, as well as patients’ priority. However, we assume 

that providing service to patients as close as possible to their home is a very reasonable 

policy. So, we consider the following equation to estimate the mis-assignment penalty: 
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𝑇𝐵𝑖𝑗 + 𝑇𝐶𝑖𝑗

2
× 𝐷𝑃         ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (36) 

In equation (36), the first term is the average time distance (in minutes) between the demand 

region 𝑖 and service region 𝑗 by public transportation (𝑇𝐵𝑖𝑗) (we consider bus in the 

computational results because bus as the public transportation is the primary public vehicle 

in Hamilton) and private car (𝑇𝐶𝑖𝑗), and second term (i.e., 𝐷𝑃) is the penalty per each 

minute distance. Although 𝐷𝑃 is a subjective parameter, we define its value such that it just 

affects the patient distribution among facilities, not on the assignment/un-assignment 

decision (𝐷𝑃 = $800). Because providing service to a patient far from their home is better 

than depriving a patient of nursing care in a facility. Note that we presume a higher penalty 

for demand and service regions in which there is no public transportation service compared 

to other areas. 

 The Number of Available Beds in LTC Facility Located in 𝒋 at 𝒕 = 𝟎. The 

capacity of not-for-profit LTC facilities in Hamilton at 𝑡 = 0 is listed in Table 4.1, which 

are derived from (Ontario’s LHINs, 2019) 

Table 4.1: Number of beds in each LTC facility at the beginning of time horizon 

Region Bed Capacity 

1 127 

2 128 

8 210 

9 167 

13 378 
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Minimum and Maximum Bed Capacity Allowed in Each LTC Facility. To 

determine these numbers, we consider the smallest and biggest LTC facility in Hamilton 

(Ontario’s LHINs, 2019) as the minimum and maximum bed capacity that each facility can 

have. Therefore, the minimum and maximum bed capacity assumed to be 41 and 378. 

 Expected New Demand from Every Region, Gender, Language, and Age 

Group at Each Time. We use the prediction made by Munro et al. (2011) for the demand 

for LTC homes in Ontario until 2035. We apply their detailed prediction to estimate new 

demand of various patients groups for five years (2020-2024) in Hamilton based on the 

following equation: 

               𝑁𝑖𝑔𝑙𝑎𝑡 = (𝑇𝑜𝑡𝑎𝑙 𝑛𝑒𝑤 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑂𝑛𝑡𝑎𝑟𝑖𝑜 𝑎𝑡 𝑡)  

× (𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑂𝑛𝑡𝑎𝑟𝑖𝑜 𝑎𝑡 𝑡)  

× (𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛 𝑖’𝑠 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛)  

× (𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝐿𝑇𝐶 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑔𝑒𝑛𝑑𝑒𝑟 𝑔 𝑖𝑛 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛)  

× (𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑒𝑜𝑝𝑙𝑒 𝑤𝑖𝑡ℎ 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑙 𝑖𝑛 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛)  

× (𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝐿𝑇𝐶 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑖𝑛 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑎𝑔𝑒 𝑔𝑟𝑜𝑢𝑝 𝑎) 

Where: 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑒𝑤 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑂𝑛𝑡𝑎𝑟𝑖𝑜 𝑎𝑡 𝑡 =  𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑂𝑛𝑡𝑎𝑟𝑖𝑜 𝑎𝑡 𝑡 −  

((𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝑂𝑛𝑡𝑎𝑟𝑖𝑜 𝑎𝑡 𝑡 − 1)  × (1 −  𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠’ 𝑑𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒))  

For the first year (2020), we consider the total demand as the new demand. Note that we 

take the total LTC demand in Ontario for every year and the percentage of LTC patients 
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with each gender in Hamilton from Munro et al. (2011). The patients' death rate and the 

ratio of LTC patients in each age group in Hamilton are captured from Tanuseputro et al. 

(2015). Also, the Ministry of Finance (2018) provides the proportion of the Hamilton 

population in Ontario over 2017-2041. The ratio of each demand region population in 

Hamilton is collected from (City of Hamilton, 2016). Finally, we obtain the proportion of 

languages spoken by people in Hamilton from Statistics Canada (2017). It is noteworthy 

that we use Ontario data to predict the percentage of LTC patients belong to each gender 

and age group in the city of Hamilton, as there is no specific data for Hamilton.  

 The Cost of Adding and Operating Each Bed. Based on the Ontario Long Term 

Care Association (2019), the cost of adding every single bed in an LTC facility in Ontario 

in 2019 is $70,000. Gibbard  (2017) shows that operating each bed in Ontario costs nearly 

$52,000 per year, which includes expenses related to medical personnel, support services, 

food supplies, and so on. 

 Hours of Care from Each Type of Human Resources to Any Patient in One 

Period. The average amount of care provided to patients by Registered Nurses equals 0.44 

hours per resident per day (160.6 hours per resident per year), while this value is 1.70 hours 

per resident per day (620.5 hours per resident per year) for Health Care Aids. These data 

are collected from Hsu et al. (2016). 

 Other Parameters. The expected rate of death for not-for-profit LTC patients who 

belong to age group 1, 2, and 3 is 0.108, 0.132, and 0.209, respectively (Tanuseputro et al., 

2015). To the best of our knowledge, the transition rates between age groups in Ontario’s 
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LTC facilities are not examined in a study. So, since the division of age group 1 and 2 are 

based on ten years classification, we presume that ten percent of patients who remain in the 

LTC home transfer to the next age group at the end of each period (based on uniform 

distribution). Thus, the patients’ transition rate from age group 1 to 2 is 0.089, and from 

age group 2 to 3 is 0.086 (these rates are not 0.1, because some patients leave the facility 

at the end of each period). Since there is no data available for the trends in the transition 

and death rates, we assume that death and transition rates do not change over time. 

The decision-makers should define the satisficing levels for the minimum 

percentage or number of patients in each facility based on the gender (𝑀𝐺𝑔𝑗) and language 

(𝑀𝐿𝐴𝑙𝑗) specifications. Lacking this data makes us deem that at least twenty percent of 

patients in each facility should be from each gender. Also, since we are trying to avoid 

patient loneliness (due to language restrictions), we assume that 2 is the minimum number 

of patients of the same language in the same LTC home (further, there are usually two beds 

in a room of an LTC home that makes this value more reasonable), a simple yet practical 

definition of loneliness. 

Finally, for the base scenario, we consider the correction factor equal to one percent 

as the base case and conduct a separate sensitivity analysis to examine the effect of 

changing this parameter on the optimal solution in the numerical analysis section. 

4.1.3 Numerical Results for the Base Scenario 

The model is coded in IBM ILOG CPLEX Optimization Studio 12.8.0, on a PC 

with 3 GHz Intel Core i5 processor and 8GB of RAM.  
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For the base scenario, we consider the first eight demand and service regions (i.e., 

without considering rural areas and towns) and do the numerical analysis based on this 

scenario. This scenario consists of 8,987 constraints and 8,260 variables (3,920 integer 

variables and 4,340 continuous variables), and all results are obtained while the optimality 

gap and computation time are less than 0.09% and 20 minutes, respectively. Also, in the 

Appendix (A.1), we show the summary of results for all 15 demand and service regions.  

Table 4.2 shows the total bed capacity for LTC facilities in each service region and 

period and indicates how this capacity should increase over time. As the demand in the first 

period is more than other periods (because this demand consists of demand from its 

previous years as well as new demand) and at the end of each period, there are some empty 

beds that we can use for upcoming years, the number of additional beds in period 1 is much 

more than other periods. 
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Table 4.2: Number of total and additional beds in each service region and time (base 

scenario) 

Service Region Time (year) 
Additional 

Beds 
Total Beds 

1 1 135 262 

1 2 5 267 

1 3 7 274 

1 4 12 286 

1 5 92 378 

2 1 196 324 

2 2 5 329 

2 3 6 335 

2 4 17 352 

2 5 26 378 

3 1 328 328 

3 2 4 332 

3 3 11 343 

3 4 16 359 

3 5 19 378 

4 1 301 301 

4 2 7 308 

4 3 13 321 

4 4 16 337 

4 5 41 378 

5 1 328 328 

5 2 5 333 

5 3 11 344 

5 4 16 360 

5 5 18 378 

6 1 332 332 

6 2 8 340 

6 3 8 348 

6 4 11 359 

6 5 19 378 

7 1 378 378 

7 2 0 378 

7 3 0 378 

7 4 0 378 



M.Sc. – M. Zargoush;  McMaster University – Computational Science and Engineering 
 

44 
 

7 5 0 378 

8 1 155 365 

8 2 3 368 

8 3 4 372 

8 4 6 378 

8 5 0 378 

 

Figure 4.4 demonstrates the percentage of satisfied demand in each period. It shows 

that in each year, we give service to more than 80% of patients who need an LTC facility. 

By changing the un-assignment penalty, we can observe changes in the results (we show 

this in the numerical analysis section). Also, as a result of considering the correction factor 

a small value (equal to 0.01), it is evident that the proportion of people who receive service 

in the last period is more than other periods. In the numerical analysis section, we discuss 

how this proportion can change to provide more reasonable results.  

 

Figure 4.4: Satisfied demand in each year (base scenario) 
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Table 4.3 provides information about the human resources capacity required based 

on their language in each year. It is clear that as a majority of the population of patients in 

Hamilton speaks English, we need more human resources for this type of patients. Figure 

4.5 illustrates the value of each portion of the objective function. We observe that, in this 

scenario, the most costly part of our LTC network is related to operating beds (47% of total 

cost), while the mis-assignment expenses represent the lowest portion (0.4% of total cost), 

mostly because we have a small number of mis-assigned patients. Eventually, Figure 4.6 

shows the percentage of each source of the total cost (values are rounded to their nearest 

integer).  
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Table 4.3: Human resources capacity (base scenario) 

Human Resource 

Type 
Language 

Time 

(year) 
Hours of Care 

1 1 1 1,500,369.0 

1 1 2 1,526,430.0 

1 1 3 1,564,280.5 

1 1 4 1,623,228.0 

1 1 5 1,747,328.0 

1 2 1 124,100.0 

1 2 2 120,997.5 

1 2 3 120,377.0 

1 2 4 119,756.5 

1 2 5 129,064.0 

2 1 1 388,330.8 

2 1 2 395,076.0 

2 1 3 404,872.6 

2 1 4 420,129.6 

2 1 5 452,249.6 

2 2 1 32,120.0 

2 2 2 31,317.0 

2 2 3 31,156.4 

2 2 4 30,995.8 

2 2 5 33,404.8 

 



M.Sc. – M. Zargoush;  McMaster University – Computational Science and Engineering 
 

47 
 

 

Figure 4.5: The share ($) of each source of cost in the objective function (base scenario) 

 

 

Figure 4.6: The share (in %) of each source of cost in the objective function (base 

scenario) 

 

6,432

179,130

718,692

267,650

365,898.637

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

Mis-assignments Adding beds Operating beds Opening

facilities

Un-assignments

T
o

ta
l 

co
st

 (
×

$
1
0
0
0
)

Source of costs

Mis-assignments

0%
Adding beds

12%

Operating beds

47%

Opening facilities

17%

Un-assignments

24%



M.Sc. – M. Zargoush;  McMaster University – Computational Science and Engineering 
 

48 
 

4.2 Numerical Analysis 

 In this section, we conduct an extensive set of numerical analysis to investigate the 

sensitivity of our results to: 

a) un-assignment penalty 

b) correction factor  

c) mis-assignment penalty  

4.2.1 Sensitivity to the Un-Assignment Penalty 

 Figure 4.7 shows how changing the un-assignment penalty can affect the percentage 

of patients receiving service in LTC facilities at each time. As expected, by increasing the 

un-assignment penalty, more patients receive service in LTC homes. When 𝑈𝑃 =

$100,000, we assign patients only to beds and facilities which already exist in the LTC 

network. Also, by increasing the un-assignment penalty from $300,000 to $500,000, the 

model prefers to take more proportion of patients in the first periods, which in total results 

in assigning more patients, as the demand in the first period is more than other periods. One 

noticeable trend that can be seen, especially when 𝑈𝑃 = $200,000, is that model tends to 

assign more patients in the last periods (because of considering a small correction factor in 

the base scenario).  

The effect of changing the un-assignment penalty on different types of expenses is 

provided in Figure 4.8. As one can see, only when 𝑈𝑃 = $100,000, the mis-assignments 

cost equals zero. The model, also, does not allow for opening any new facility when the 

un-assignment penalty is equal to $100,000 and $200,000. There is no cost associated with 
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adding beds when considering the un-assignment penalty of $100,000, while this cost is 

similar and higher when the un-assignment penalty is $300,000, $400,000, and $500,000 

compared to the $200,000. Eventually, by raising this penalty and as a result of assigning 

more patients to facilities, the operating beds' cost grows. Note that we have already 

discussed 𝑈𝑃 = $346,000 (i.e., the base scenario) in Figure 8 and 9 in the previous section. 

 

Figure 4.7: The effect of UP value on satisfied demand 
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Figure 4.8: The effect of UP value on Costs 

4.2.2 Sensitivity to the Correction Factor (𝜸) 
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period. While a more moderate value for correction factor (e.g., 5%) makes the model 

assigns almost the same percentage of patients in first and last period, putting 10% as 

correction factor leads in allocating a higher proportion of patients to 𝑡 = 1.  
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Figure 4.9: The effect of the correction factor (γ) value on the satisfied demand 
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 ∑∑∑∑∑∑(𝑌𝑖𝑔𝑙𝑎𝑗𝑡)

𝑗∈𝐽𝑎∈𝐴𝑙∈𝐿

×𝑀𝑃𝑖𝑗
𝑔∈𝐺𝑖∈𝐼

× (1 + 𝛽)𝑡−1

𝑡∈𝑇

 (37) 

The correction factors for un-assignment (𝛾) and mis-assignment (𝛽) penalties are 

different because 𝛾 and 𝛽 can take different values at the same time. Also, we use distinct 

formulation compared to one that we use for un-assignment penalty ((1 − 𝛾)𝑡−1) because 

we should decrease the un-assignment penalty and increase the mis-assignment penalty to 

avoid or reduce the end-of-horizon effect. 

 

Figure 4.10: the effect of MP value on the number of mis-assignments 
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traditional sensitivity analysis where the impact of the change in a parameter is investigated 

through changing the parameter over a limited range of values of that parameter without 

explicit consideration of the probability distributions of the uncertainty of the parameter.  

 Turning a deterministic model into a stochastic one makes the problem more 

complex. Also, solving a stochastic problem can be more difficult and may need to develop 

new solution methods for stochastic problems. One important purpose of this simulation 

study is to inform how sensitive is our whole model to the various sources of parameter 

uncertainties. This analysis highly informs the choice between deterministic and stochastic 

optimization models. 

To mimic the real-world LTC system and figure out how changes in uncertain 

parameters affect the system and optimal results, we simulate our LTC network by applying 

ARENA software version 15.00.00001.  

The Normal distribution is one of the most important and common probability 

distributions, as it illustrates many uncertain events. Every Normal distribution has the 

following three features. First, it is most likely that the uncertain variable takes some special 

value called mean. Second, the probability that uncertain variable be above or below than 

mean is equal. Third, it is more likely that the uncertain variable takes value around the 

mean (Mun, 2008). There are some uncertain events, such as patients’ demand, death rate, 

and transition rate between age groups, that we considered as constant numbers in the 

mathematical model. In the simulation model, we assign a Normal distribution to each of 

these parameters to capture the influence of their uncertainties in the model. All of these 



M.Sc. – M. Zargoush;  McMaster University – Computational Science and Engineering 
 

54 
 

parameters posses the three mentioned features of the Normal distribution. To specify 

Normal distribution parameters, the value of uncertain parameters in the optimization 

model are considered as mean, and we assume that the standard deviation equals 10% of 

the mean. 

Figure 4.11 illustrates the screenshot of the simulation model in ARENA for the 

first two years of the planning horizon (note that we simulate the model for all five years). 

In part 1 of the simulation model, we generate the total demand. Parts 2 and 3 divide the 

demand based on patients’ region, and age group, respectively. In part 4, a patient is 

assigned to an LTC facility or leave the system (indicating un-assignment). Part 5 occurs 

at the end of each period when an assigned patient may stay in the same age group, transfer 

to the next age group, or die (i.e., leaving the system). This process repeats for all periods. 

The patients’ assignments and the time and location of opening facilities are 

obtained from the optimization model. Also, as we consider a probability distribution for 

uncertain parameters (instead of constant values), each time we run a simulation model, we 

get different results. Therefore, we run the simulation model with 200 replications (a 

sufficiently large number for simulating the process which can also be implemented in the 

computer used for conducting the simulation experiment) and consider the average results 

of these replications. 
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Figure 4.11: Simulation for the first two years 
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 Figure 4.12 shows how the percentage of satisfied demand in each period can 

change in a real-world LTC system (simulation results), and Figure 4.13 compares the total 

cost of adding and operating beds and un-assignment penalty in simulation results with the 

deterministic optimization results. The decision-maker can decide whether these changes 

are significant or not. 

 

Figure 4.12: Comparison between satisfied demand in the deterministic optimization 

model (base scenario) and simulation results 
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Figure 4.13: Comparison between costs in the deterministic optimization model (base 

scenario) and simulation results 
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5 Conclusion and Future Work 

 

This study presents a mathematical programming model to simultaneously optimize 

location-allocation and capacity planning for the LTC facility network in the province of 

Ontario in Canada, which has its own featuring characteristics. Accordingly, the proposed 

dynamic mixed-integer linear programming model optimizes the timing and locations of 

building new LTC facilities, in addition to the capacity (human resources and beds) of each 

facility at each time, and the assignments of patients, based on their demand region, gender, 

language, and age group to the LTC facilities over a finite time horizon.  

Our model helps authorities in Canada, in general, and in Ontario, in particular, 

tackle the crucial issues in the LTC network which are characterized by the excessive 

demand, the surge in demand in the coming years, language considerations, and the lack of 

efficient capacity planning. It also provides guidance to help patients have a better life in 

LTC facilities, by assigning them to the nearest facilities and rescue them from gender/ 

language loneliness by ensuring the minimum number of patients from each gender and 

language in every facility and period. 
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Our computational results show that increasing the un-assignment and mis-

assignment penalties result in fewer patient un-assignments and mis-assignments, 

respectively. Plus, depending on the values of these penalties and other parameters, the 

proportion of each source of costs (mis-assignments, adding beds, operating beds, opening 

facilities, un-assignments) can change. Accordingly, in the base scenario, the cost of 

operating beds has the highest proportion, while the mis-assignment cost has the least 

proportion of the total cost. Moreover, we demonstrate that correction factor (𝛾) can avoid 

model from end-of-horizon effect for finite time problems. Finally, we illustrate the impact 

of uncertainty in the optimal results through simulating the LTC facility network. It is up 

to the policymakers (here healthcare authorities in Ontario) to decide whether the changes 

in satisfied demand and expenses are significant. 

Although the model is developed based on the LTC network specifications in the 

province of Ontario, it can be generalized and adapted to the LTC network in other 

provinces in Canada and even other countries with similar characteristics and criteria. 

Several ways can be taken to extend the current work. First, the model can 

incorporate all types of care for the elderly containing seniors’ housing, long-term care, 

home care, and community services. Second, the uncertain feature of patients demands, 

mortality, and transition between age groups make the problem suitable to extend into the 

stochastic model. Lastly, as a result of a stochastic model and/or bigger problem (in terms 

of variables and constraints), it may be desirable to develop exact or even approximate 

solution algorithms. 
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A  Appendix 

 

A.1 Summary of computational results for all Hamilton city regions 

(including the first eight regions as well as rural areas and towns) 

with 15 demand and service regions 

 This scenario includes 29,430 constraints and 28,070 variables (13,650 integer 

variables and 14,420 continuous variables), and results are obtained while the optimality 

gap is 2.95%, and the processing time is 85 minutes. 

Table A.1 presents the total bed capacity for LTC facilities in each service region 

and time and shows how this capacity changes over time. The percentage of satisfied 

demand in each period is provided in Figure A.1. In Table A.2, we show the human resource 

capacity required in each year, based on their language. Finally, Figure A.2 indicates the 

cost for each part of the objective function, and Figure A.3 shows the percentage of each 

source of the total cost.  
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Table A.1: Number of total and additional beds in each service region and time (by 

considering rural areas and towns) 

Service Region Time (year) 
Additional 

Beds 
Total Beds 

1 1 59 186 

1 2 10 196 

1 3 17 213 

1 4 22 235 

1 5 143 378 

2 1 152 280 

2 2 14 294 

2 3 5 299 

2 4 34 333 

2 5 45 378 

3 1 347 347 

3 2 9 356 

3 3 4 360 

3 4 11 371 

3 5 7 378 

4 1 322 322 

4 2 0 322 

4 3 17 339 

4 4 27 366 

4 5 12 378 

5 1 0 0 

5 2 0 0 

5 3 0 0 

5 4 0 0 

5 5 0 0 

6 1 348 348 

6 2 6 354 

6 3 8 362 

6 4 16 378 

6 5 0 378 

7 1 363 363 

7 2 0 363 

7 3 0 363 
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7 4 15 378 

7 5 0 378 

8 1 154 364 

8 2 1 365 

8 3 8 373 

8 4 5 378 

8 5 0 378 

9 1 96 263 

9 2 5 268 

9 3 19 287 

9 4 31 318 

9 5 60 378 

10 1 378 378 

10 2 0 378 

10 3 0 378 

10 4 0 378 

10 5 0 378 

11 1 338 338 

11 2 0 338 

11 3 2 340 

11 4 3 343 

11 5 35 378 

12 1 293 293 

12 2 2 295 

12 3 23 318 

12 4 25 343 

12 5 34 377 

13 1 0 378 

13 2 0 378 

13 3 0 378 

13 4 0 378 

13 5 0 378 

14 1 0 0 

14 2 0 0 

14 3 0 0 

14 4 0 0 

14 5 0 0 
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15 1 0 0 

15 2 0 0 

15 3 0 0 

15 4 0 0 

15 5 0 0 

 

 

Figure A.1: Satisfied demand in each year (by considering rural areas and towns) 
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Table A.2: Human resources capacity (by considering rural areas and towns) 

Human 

Resource Type 
Language 

Time 

(year) 
Hours of Care 

1 1 1 2,211,462.0 

1 1 2 2,244,348.5 

1 1 3 2,308,260.0 

1 1 4 2,424,914.0 

1 1 5 2,619,130.5 

1 2 1 183,668.0 

1 2 2 179,945.0 

1 2 3 179,945.0 

1 2 4 180,565.5 

1 2 5 194,837.0 

2 1 1 572,378.4 

2 1 2 580,890.2 

2 1 3 597,432.0 

2 1 4 627,624.8 

2 1 5 677,892.6 

2 2 1 47,537.6 

2 2 2 46,574.0 

2 2 3 46,574.0 

2 2 4 46,734.6 

2 2 5 50,428.4 
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Figure A.2: The share ($) of each source of cost in the objective function (by considering 

rural areas and towns) 

 

 

Figure A.3: The share (in %) of each source of cost in the objective function (by 

considering rural areas and towns) 
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