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Abstract

In the last few years, telemetric data arising from embedded vehicle sensors brung an

overwhelming abundance of information to companies. There is no indication that

this will be abated in future. This information concerning driving behaviour brings

an opportunity to carry out analysis. The merging of telemetric data and informatics

gives rise to a sub-field of data science known as telematics. This work encompasses

matrix variate and kernel density methods for the purposes of analysing telemetric

data. These methods expand the current literature by alleviating the issues that arise

with high-dimensional data.
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Chapter 1

Introduction

Consider one of the most fundamental definitions of data science in literature. Quot-

ing Hayashi (1998): Data science is not only a synthetic concept to unify statistics,

data analysis and their related methods but also comprises its results. Data Science

intends to analyze and understand actual phenomena with“data”.

Naturally, the science begins with the foundation that all analysis stems from data.

McNicholas (2019) further elaborates

...if one may wish to define data science, the key must always be data. For a piece of

work to be considered data science, we require only that data are at its heart.

That being said, in this work, telemetric data is the “heart” of all statistical method-

ology. Using this methodology, insights into intrinsic patterns and unique phenomena

are revealed that would otherwise be hidden in the data. In literature, the science

of telemetric data is referred to as telematics (Zhao, 2002). A blending of telecom-

munications and informatics, telematics is defined as “any analysis on devices that

send and receive data across distances”. By this definition, telematics is regarded as

a sub-field of data science encompassing all statistical methods specifically targeted
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at telemetric data. Due to the nature of telemetric data, problems arise because of its

enormous quantity, and high-dimensional characteristics. As a result, methods devel-

oped for telematics must take into account these characteristics and deal with them

accordingly. This work focuses on using powerful statistical tools in the domain of

kernel density estimation and matrix variate distributions for the purposes of dealing

with both the quantity and dimensionality of data.

Fundamentally, this work provides three extensions to the current literature in

telematics. First, a non-parametric extension to the current construction of what

is referred to as a velocity-acceleration (VA) heat map in the actuarial literature.

Second, a method is proposed for detecting outliers in telemetric data based on the

driver’s personal driving behaviour. Finally, a matrix variate mixture model approach

for clustering VA heat maps into one of several groups is introduced. All methods are

focused on handling both the dimension, and size of telemetric data for applicability

in industry settings.
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Chapter 2

Background

The following sections outline the historical literature on telemetry, the introduction of

statistical methodology, and applications pertaining to telemetric data. Clustering is

discussed and elaborated with natural extensions to mixture models and matrix vari-

ate distributions. Finally, data arising from telemetric systems is elucidated through

a series of applications in both insurance and logistics.

2.1 Density Estimation

In general terms, density estimation (DE) is the problem of estimating a probability

density function p, using a set of given data points. Given very few assumptions on

p, a non-parametric paradigm is adopted. By definition, non-parametric density esti-

mation (NDE) seeks to estimate p with as few assumptions as possible (Wasserman,

2006). The choice of NDE stems from the nature of the data itself. For applications

discussed in further sections, NDE is used as tool for dealing with the uncertainty

of driving data. The choice of NDE is a result of this uncertainty for the underlying

4
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distribution of driving data.

2.1.1 One-Dimensional NDE

The simplest method of NDE is the histogram. Although the origin of histograms is

unclear, Ioannidis (2003) provides an abridged history of the use, and speculates on

its origins. Suppose one observes realizations of some random variable X as x1, . . . xn.

To reconstruct the underlying probability density that characterizes X, suppose that

X ∈ R ⊆ R. The probability density function p(x) is said to be positive on its support

R. In addition, assume that p(x) is smooth and

∣∣∣∣ ddxp(x)

∣∣∣∣ ≤ L,∀x ∈ R,

where L is a finite positive constant (establishing an upper bound). The histogram

partitions the set R into M equal bins where

R =
M⋃
m=1

Rm, |Rm| = |Rm′ |, Rm ∩Rm′ = ∅, ∀(m 6= m
′
) ∈ 1, . . . ,M.

To clarify, | · | denotes the cardinality operator constituting the length of the line

segment for each subset. By this construction, for any given point x ∈ Rm, the

density estimator of the histogram p̂ for p is given by

p̂(x) =
M

n|R|

n∑
i=1

1(xi ∈ Rm), ∀Rm ∈ R.

Here, 1(xi ∈ Rm) is the indicator function counting the number of observations

within Rm. Intuitively, this estimator assigns equal weight to every point within the

5
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bin Rm (Wasserman, 2006). However, this approach has several limitations which

are discussed in later sections. Consider a superior method known as kernel density

estimation (KDE). The KDE approach uses a smooth function to approximate the

true density. In theory, the KDE method converges faster to the true density and

therefore, is a natural extension to the previously introduced histograms (Wasserman,

2006). Given a non-negative kernel function K, a positive number h (bandwidth),

the kernel density estimator p̂h is written as

p̂h(x) =
1

n

n∑
i=1

1

h
K

(
x− xi
h

)
, x ∈ R.

KDE is widely discussed in literature where importance is placed on the bandwidth h

as it plays a major role in determining the shape of p̂h (Gramacki, 2019). Specifically,

the problem of estimating the density p using KDE is reduced down to a balance

between bias and variance (Wasserman, 2006). The bandwidth is sometimes referred

as a smoothness parameter; this terminology is adopted going forward.

2.1.2 Two-Dimensional NDE

A natural extension to the preceding methods is to consider a two-dimensional DE

problem. Observe several observations of a bivariate random variable X as x =

{x1 := (x11, x12), ...,xn}. Using these observations, reconstruct the underlying bivari-

ate probability density that characterizes X as follows. Suppose that X ∈ R ⊆ R2,

then the probability density function p(x) is non-zero only within R. Assume that

p(x) is smooth and bounded ∀x ∈ R. By analogy with the univariate case, a bivariate

6
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histogram is said to partition the set R into M equal rectangular bins where

R =
M⋃
m=1

Rm, |Rm| = |Rm′ |, Rm ∩Rm′ = ∅, ∀(m 6= m
′
) ∈ 1, . . . ,M.

For the purposes of definition, | · | denotes the cardinality operator constituting the

area of the rectangle for each subset. By this construction, for any given point x ∈ Rm,

the density estimator of the histogram for p is given by

p̂(x) =
M

n|R|

n∑
i=1

1(xi ∈ Rm), ∀Rm ∈ R

To clarify, 1(xi ∈ Rm) is the indicator function that counts the number of observations

within Rm. Replicating the KDE approach for the two-dimensional case, let K be

a bivariate function, and H be a symmetric, positive definite, non-random, 2 × 2

matrix. The bi-variate kernel density estimator p̂H(x) is formulated as

p̂H(x) =
1

n

n∑
i=1

det(H)−
1
2K
(
H−

1
2 (x− xi)

)
, x ∈ R.

Here H , is defined as a smoothing matrix. The entries of H denote the bandwidth in

each direction. This matrix constitutes how smooth the estimated density estimate

would be for a given direction. Figure 2.1 displays a visualization of both methods.

Both methods seek to estimate the same density. However, the KDE method is more

robust and is shown to outperform the histogram in later sections.

7
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Figure 2.1: Visualization of DE methods applied to data generated from a standard
bivariate Gaussian. Bivariate histogram (left) and bivariate KDE with Gaussian
kernel (right) example showcasing the difference in approaches.

2.1.3 Performance

The measure of performance for DE requires a specification of error. Provided a

distance measure of p̂ to its target density p, one can assess performance. According

to standard text on NDE (Gramacki, 2019), the most commonly used local error

criteria is the mean squared error (MSE) . For the purposes of simplicity, consider

only the univariate case. The MSE for a density estimator is given as

MSE (p̂(x)) = E
[
(p̂(x)− p(x))2

]
= Var (p̂(x)) + (E [p̂(x)]− p(x))2

= Var (p̂(x)) + Bias2(p̂(x)).

8
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The above formula is decomposed into an estimator’s variance and its squared bias.

This criterion is a measure of local error at a fixed point x. However, it is desirable

to consider the global error of an estimator. The mean integrated squared error is

the integral of the MSE over the domain defined as

MISE(p̂(x)) =

∫
R
Var (p̂(x)) dx+

∫
R

Bias2(p̂(x))dx.

Often an estimator is parametrized by a bin width (in the case of histograms), or

a bandwidth (for KDE). As a consequence, the best estimator in each respective

approach is one that minimizes the MISE. In general, given some parameter γ ∈ R+

for an estimator p̂γ(x), the MISE is minimized as

γopt = argmin
γ∈R+

(MISE(p̂γ(x))) .

As a comparison, the optimal parameters of both the histogram and KDE approach

are provided for the MSE. Subsequently, the optimal parameter for MISE of a kernel

density estimator is established. Finally, given an optimal MISE of a multidimensional

KDE, performance is discussed.

2.1.4 Minimizing MSE

The KDE method can be shown to converge to the true density via MSE faster than

using a histogram. This proof is left as an exercise in many books and is provided in

Section A.1 (Chen, 2017). As the KDE is shown to be superior locally, the following

section discusses its performance in higher dimensions.

9
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2.1.5 Performance in Higher Dimensions

For the purposes of measuring performance for NDE in higher dimensions, the exten-

sion to multivariate KDE is generalized with the following expression. The MSE of a

KDE is given by Gramacki (2019) as

MSE(p̂h(x)) = O(h4) +O
(

1

nhd

)
,

where d is the dimension. Within this equation, the two terms correspond to the

bias and variance, respectively. Note that the bias remains constant in order 4 for all

higher dimensions. However, the variance is of order h−d for h < 1. As a consequence,

this prohibits reliable estimation in higher dimensions. However, if n increases suffi-

ciently quickly this issue is reduced. KDE suffers from what is known as the “curse

of dimensionality” (Bellman, 1966). The issue in higher dimensions concerns the

vanishing of gradients. This is a long studied phenomenon where techniques have

been developed to improve KDE (Di Marzio and Lafratta, 1999). It is noted that the

optimal bandwidth selection in higher dimensions has convergence in O
(
n−

1
4+d

)
. As

a consequence, the KDE method is only efficient for d ≤ 2.

2.2 Clustering

2.2.1 Brief Historical Context

McNicholas (2016) provides the earliest mention of mixture model-based clustering

which can be traced back to Tiedeman (1955). Formally, a cluster is described in

the context of a type (Tiedeman, 1955). Let G be the number of groups within a

10
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population. Each observation belonging to the gth group is generated by a density

function; the function being a Gaussian distribution as a speical case (Tiedeman,

1955). Upon removing the identity of the group to which each observation belongs,

the result is a mixture of an unknown density. The problem of reconstructing the

original G densities of their types is what is known as clustering (Tiedeman, 1955).

Following Tiedeman’s work, Wolfe (1965) defined a cluster using two different defin-

tions. One where a cluster is a mode of a distribution, and the second definition

where similarity between observations is of focus. However, similarity is often arbi-

trary to define (McNicholas, 2016). McNicholas (2016) specifies the definition of a

cluster in the context of a mixture model and specifies: Suppose that a cluster is a

uni-modal component within an appropriate finite mixture model. Here, appropriate

is defined in the sense that the finite mixture model is one which has the flexibility

and parametrization that is necessary to fit the data.

2.2.2 Finite Mixture Models

The framework of model-based clustering considers the underlying assumption that

a finite mixture model embodies a representation of heterogeneous data. Consider

a random variable X , from a G-component finite mixture model with probability

density function of the form

f(x|ϑ) =
G∑
g=1

πgfg(x|θg), (2.1)

where ϑ = {π1, . . . , πG,θ1, . . . ,θG}, x is a realization of X , πg is a mixing proportion

where πg > 0,
∑G

g=1 πg = 1, and fg is a probability density function parametrized by

θg. The distribution within each cluster is usually taken to be identical, as a result

11
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the density in (2.1) is simplified as fg(x|θg) = f(x|θg) ∀g.

2.2.3 Factor Analyzers

For the purposes of clustering high dimensional data, issues arise due to the curse

of dimensionality (Di Marzio and Lafratta, 1999). A standard approach is to reduce

the number of dimensions by considering a series of underlying factors of a lower

dimension (Spearman et al., 1950). Let X i represent an r dimensional random vector,

with xi as a realization. The factor analyzers model for X 1, . . . , XN , is given by

X i = µ+ ΛUi + εi,

where µ is a mean location vector, Λ is a r × s matrix of factor loadings, with

s < r, Ui ∼ Nr(0, I) denoting the latent factors, and εi ∼ Nr(0,Ψ) where Ψ =

diag(ψ1, ψ2, ..., ψr). Here, Nr denotes the r-dimensional multivariate normal distribu-

tion. Furthermore, the latent factors Ui and noise εi are independent of each other. It

is noted that the probabilistic principal component analysis (PPCA) is a special case

of the factor analysis model with a specific isotropic constraint on Ψ (Tipping and

Bishop, 1999). The PPCA approach has been recently used in actuarial literature for

the purposes of modelling frequency of claims (Gao et al., 2019). The factor analyzers

model is a flexible extension of PPCA. The factor analyzers model is considered to

be the best choice for dealing with telemetric data as it is highly efficient in reducing

dimensionality (Inui et al., 2009).

12
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2.2.4 Matrix Variate Normal Distribution

Suppose a matrix is considered to be an observation sampled from a distribution.

Naturally, an appropriately sized matrix variate distribution should be considered

to model randomness. Consider the matrix variate normal distribution (Gupta and

Nagar, 1999). The domain of the matrix variate normal is the space of all real

valued matrices. This assumption is less restrictive compared to other matrix variate

distributions of the same type such as the Wishart (Gupta and Nagar, 1999). Let X

be a random variable with an r×c matrix X as a realization. As a consequence, X is

distributed according to a matrix variate distribution. The random matrix X(r× c)

is said to have a matrix variate normal distribution with mean matrix M (r× c) and

covariance matrix Ψ⊗Σ. Each matrix is appropriately sized as Σ(r × r), Ψ(c× c),

where vec(X ) ∼ Nrc(vec(M ′),Ψ ⊗ Σ). Here, ⊗ denotes to the Kronecker product

and vec denotes the vectorization of a matrix. Given this specification, the density is

formulated as

ϕr,c(X;M ,Ψ⊗Σ) =

exp

{
− 1

2
tr
(
Ψ−1(X −M )

′
Σ−1(X −M )

)}
(2π)

rc
2 det (Ψ)

r
2 det (Σ)

c
2

.

The matrix variate normal distribution is equivalent to a vectorization of a multivari-

ate normal. Note that the covariance matrices of row and column are non-unique as

they are defined through a Kronecker product (Dutilleul, 1999). As a result, both

densities are parametrized by the product and not individual co-variance matrices

(Gupta and Nagar, 1999). The main benefits for using a matrix variate represen-

tation are two-fold. The first is the reduction in the number of parameters used.

Gallaugher and McNicholas (2018a) shows that for both matrices collectively there is

13
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a reduction of 1
2

[(r − s)2 − (r + s) + (c− v)2 − (c+ v)] for s < r, v < c. As a result,

this adds a second benefit as there is an increase in the speed for estimating model

parameters in high dimensional settings.

2.2.5 Mixture of Bilinear Factor Analyzers

Due to the issues of high dimensionality, an analogous extension of the factor ana-

lyzers model for matrix variate data is introduced. The mixtures of matrix variate

bilinear factor analyzers model (MBI) is a powerful approach for dealing with both

high-dimensional data and the presence of a mixture of populations (Gallaugher and

McNicholas, 2018a). Suppose latent factors of size s < r, v < c, for a matrix variate

random variable constitute the data with probability πg of occurring as

Xi = Mg +AgWigB
′
g +AgEBig + EAigB′g + Eig,

where Mg(r, c) is the mean matrix, Wig(s, v) ∼ Ns×v(0, Is, Iv) is a matrix random

variate of latent factors, Ag(r× s) are column factor loadings, and Bg(c× v) are row

factor loadings, respectively. Finally, the noise is distributed according to

EAig ∼ Nr,v(0,Ug, Iv),

EBig ∼ Ns,c(0, Is,Vg),

Eig ∼ Nr,c(0,Ug,Vg).

For applications in telematics, the MBI model is used to cluster matrix variate

objects pertaining to the heterogeneous population of drivers.

14
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2.3 Telemetric Data

Telemetry is defined as an automated communications process in which measurements

are collected at remote, usually inaccessible areas. These measurements are then

transmitted to receiving devices. All measurements are referred synonymously as

telemetries, or telemetric data. Henceforth, any analysis based on telemetric data

is referred to as telematics. The applications in this work focus specifically on car

telematics.

2.3.1 Historical Background

Mayo-Wells (1963) provides a complete historical background of the use of telemetry.

In summary, the first industrial use of telemetric data originates from a patent in a cir-

cuit design that enabled sending of synchronized rotation information over a distance

(Michalke, 1901). A decade later, the design was further expanded by Commonwealth

Edison in 1912 for monitoring electrical loads of power grids (De Dutta and Prasad,

2019). Years later, due to the completion of the Panama Canal, telemetry systems

were utilized extensively for the monitoring of locks and water levels. Progression

of military technology throughout the 1930’s utilized radio based wireless telemetry.

As a consequence, this created a need for statistical analysis of telemetric data. For

example, the analysis of V2-rockets required the processing of telemetric data from a

variety of on-board devices monitoring temperature, pressure, and kinematics. These

methods were later refined during the decade of space exploration in the sixties. Space

exploration initiated the use of telemetric systems for monitoring satellite trajectories

as well on-board safety systems. Near the end of the 20th century, embedded devices

15
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provided the platform for user-facing applications of telematics. Non-military appli-

cations in motor sports like Formula 1 require telemetry systems in next generation

vehicles. The Advanced Telemetry Linked Acquisition System (ATLAS) developed

by McLaren Applied Technologies allows for the storage and collection of telemetry

from many on-board sensors (Azzoni et al., 1998). The type of data collected includes

speed, g-forces, steering angles, and engine temperatures. As an example for everyday

use, Tong and Hung (2010) analyzed telemetric data for the purposes of providing a

speed time profile of driving cycles. The objective of a driving cycle is to measure

vehicle performance and driving characteristics.

2.3.2 Telemetric Data in Insurance

For insurance purposes these driving cycles provide key insights into behaviour of

drivers under a policy. Recent literature describes covariate selection expanding this

methodology. Specifically, the literature introduced a matrix variate object for an-

alyzing a driver’s telemetric data. This object is referred to as a VA heat map in

the actuarial literature (Wüthrich, 2017). From the perspective of insurance, the VA

heat map conveys several key pieces of information. The risk of the driver can be cat-

egorized by their respective heat maps as interperation is fairly straightforward. As a

result, clustering these heat maps provides a classification of risk for each driver into

one of several groups. Velocity and speed are used interchangeably throughout the

literature; this habit is adopted going forward. Recently, Wüthrich (2017) develops a

K-means approach for clustering the VA heat maps for thousands of drivers. Within

this framework, GPS data is gathered over a series of individual trips for a specific

driver. Let (δxt, δyt)t denote locational data at time t in meters. Velocity in m/s is

16
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calculated on the time interval (t− 1, t] for t ≥ 1, given by

vt =

√
(δxt − δx(t−1))2 + (δyt − δy(t−1))2

(t− (t− 1))
, at =

vt − vt−1
t− (t− 1)

.

Wüthrich (2017) elaborates that this calculation for at is determined by the “av-

erage” speed over the time interval and not reflective of the true instantaneous ac-

celeration. Proceeding on, at is considered the average acceleration for all intents

and purposes. The author constructs a matrix variate object refereed to as a VA

heat-map. Construct a rectangle R where vt and at are considered to be values of a

two-dimensional coordinate system. Next, consider a partitioning of R into M equally

sized rectangles as

R =
M⋃
m=1

Rm, Rm ∩Rm′ = ∅, ∀m 6= m′.

Finally, consider some probability distribution of F ∈ P(R) having probability weight

xm =

∫
Rm

dF ≥ 0, m = 1, . . . ,M, satisfying
M∑
m=1

xm = 1.

The resulting object is a matrix of probability weights spanning xm,∀m. This object

is referred by the author as a VA heat map, where the column and row denotes

the probability weight of velocity and acceleration for entry xm, respectively. This

construction is similar to that of a histogram or a KDE with a uniform kernel selection

with the exception of having fixed bandwidth parameters.
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Chapter 3

Methodology

3.1 Telemetric Data

Expanding the work of Wüthrich (2017), construction of the VA heat map is per-

formed as follows. Begin with a series of telemetric data indexed by time t, and

collected from driver i. Let δit be composed of a two-dimensional vector containing

locational GPS coordinates defined as

δit = (δxit, δyit), ∆i = {δit}Tit=1.

Here, Ti is the last time index received from driver i, and ∆i is considered to be the

collection of positions sorted by time t. Given ∆i, calculate the average velocity and
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acceleration over a specified time interval as follows

vit =

√
(δxit − δxi(t−l))2 + (δyit − δyi(t−l))2

t− (t− l)
=

√
(δxit − δxi(t−l))2 + (δyit − δyi(t−l))2

l
,

ait =
vit − vi(t−1)
t− (t− l)

=
vit − vi(t−1)

l
, vi = {vit}Ti−1t=1 , & ai = {ait}Ti−2t=1 .

Here, l is considered to be the latency or time delay of the GPS device. Latency in

this context is defined as the incremental delay between GPS readings for a specific

time index. Wüthrich (2017) considers the latency of devices to be l = 1. However,

in practice, the latency can be less than or greater than 1. Naturally, latency has

an effect on smoothness of velocity (v) and acceleration (a) with respect to time.

If the latency is fairly small, the v and a graphs are fairly smooth. On the other

hand if latency is large, smoothness is reduced as calculated v and a will resemble

more coarse behaviour. Coarseness is inconsistent with the true behaviour of v and a

over time. In real environments, a driver’s v and a is smooth and continuous so the

calculated v and a should approximate true behaviour as accurately as possible. The

collection of vi and ai are considered vectors of size Ti − 1 and Ti − 2 respectively.

In practice, telemetric data is gathered in segments known as driving cycles (Tong

and Hung, 2010). As a result, the calculation of vit from one segment to another

should be omitted. Furthermore, the last entry vi(Ti−1) should be omitted as well to

allow vi and ai to have the same length defined as T ?i . This process is refereed to

as “standardization”. From actuarial literature it is known that driving behaviour

can interpreted through a matrix variate object known as a VA heat map. The VA

heat map is considered to be a joint probability density for v and a on a sample
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space. Consider this object to be an approximation of the density function p(wi) for

a bivariate random variable Wi := (Vi, Ai), where wi := (vi, ai) is a realization for

Wi. Note that telemetric data are also considered to be realizations of Wi. However,

these events are also indexed with time t as wit. The notation for wit includes t

as a subscript to denote that it is indeed a discrete measurement collected from a

device. In contrast, wi omits t as a subscript denoting that it is not measurement in

a telemetric sense. In summary, the random variable Wi signifies the true continuous

random behaviour on the sample space of possible speed and accelerations.

3.2 Velocity-Acceleration Heat Map

Consider the use of KDE for the problem of estimating an unknown joint probability

density p(wi) on the space R ⊆ R2 for driver i. Let K be a bivariate function defined

on the space R2. Furthermore, let H be a constant, positive definite, symmetric

matrix defined as the smoothness parameter. The KDE of p(wi) is written as

p̂H(wi) =
1

T ?i

T ?
i∑

t=1

det(H)−
1
2K
(
H−

1
2 (wi −wit)

)
, x ∈ R.

Due to popularity and radial symmetry, the standard bivariate Gaussian distribution

is selected as the kernel function K. As a result, K is formulated as

K
(
H−

1
2 (wi −wit)

)
= (2π)−1 exp

{
−1

2
(wi −wit)

TH−1(wi −wit)

}
.

This selection of K allows the kernel estimator to be the weighted sum of normal

densities centered at telemetry points wit. In summary, the true density p(wi) is
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approximated using the kernel estimator

p̂H(wi) =
1

T ?i

T ?
i∑

t=1

ϕ2(wi,wit,H).

The selection of the smoothness matrix H affects both the shape and orientation of

the kernels on the two-dimensional space. The smoothing matrix as a consequence

induces an orientation. Here, orientation is regarded as a basic difference between a

bivariate and univariate KDE since orientation is not defined for the univariate case.

As mentioned before, the bandwidth is a key parameter for optimizing performance

of KDE. For the purposes of simplicity, the normal scale selector (Chacón et al., 2011)

is selected as

HNS =

(
1

T ?i

) 1
3

Σ̂?,

where Σ̂? is the sample covariance matrix. The use of this method for estimating the

probability density function is superior than that of a histogram or an uniform kernel.

Unlike in the actuarial literature, the use of a multivariate histogram is avoided as it

requires to specify the size of bins, the origin, and the orientation (Silverman, 1998).

Furthermore, the discontinuous nature of uniform based estimators contradict driving

behaviour as previously discussed. The current use of these estimators by Wüthrich

(2017) has a large number of bins (size 40000) and is purposely avoided in this work.

Problems arise when telemetric data are poor or the latency is too large. The use

of a uniform kernel or histograms fail to capture the density in settings such as this.

In contrast, the KDE method with a Gaussian kernel converges faster to the true

density. Furthermore, the KDE method captures the continuous nature of data even

when latency is large. For implementation see the MASS package regarding the use of
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two-dimensional KDE (Venables and Ripley, 2002).

With all methods introduced, the construction of a VA heat map is conceived as

follows. Consider a partitioning of R into M equally sized rectangles as

R =
M⋃
m=1

Rm, Rm ∩Rm′ = ∅, ∀m 6= m′.

Secondly, construct the matrix variate object Xi pertaining to the collection of prob-

ability weights as

xim =

∫
Rm

pHNS
(wi)dwi > 0, m = 1, . . . ,M,

satisfying
M∑
m=1

xim = 1, Xi = {xim}Mm=1.

This matrix variate object is defined as the VA heat map for driver i. Note that

this extension differs from the original construction by Wüthrich (2017) in one key

distinction; the use of KDE to estimate the joint density on R. This imposes a

continuous non-zero probability on R such that it covers the entire space of possible

driving situations that may occur. In addition, the choice of a smooth kernel allows

the matrix Xi to have non-zero entries which more accurately resemble a driver’s

behaviour. Lastly, the use of a smooth kernel allows for the construction of the

matrix variate object to be viable even when l > 1.

3.3 Detection of Deviant Events

Consider the problem of detecting which events fall outside of the normal behaviour of

driving. The introduction of a new method for the detection of deviant events defined

22
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as the α-level deviation test is formulated as follows. Let α be the significance level

of the test. Given this level, the test will capture the 100α% of events that deviate

most from the original style. Driving style is a term used in actuarial literature for

the driver’s behaviour exhibited on the vehicle over time. Let ωi = (vi,ai) be a

collection of standardized telemetries (size T ?i ) from which a VA heat map Xi is

estimated. Next, let M be a function which maps a telemetry event wit ∈ ωi to its

corresponding probability weight within the map defined as

M(wit;Xi) =


xim wit ∈ Rm

0 otherwise.

Furthermore, let p̂it = M(wit;Xi) which corresponds to the estimated probability

over the region Rm that the telemetric event wit belongs to. The rationale is that

the rarest telemetry events belong to the regions with the smallest probability. The

problem is then reduced down to using DE to estimate a density function of proba-

bility weights g(p). Few assumptions are imposed, and the non-parametric method

of a one-dimensional KDE is utilized. Let the kernel density estimator for g(p) be

ĝh(p) =
1

T ?i

T ?
i∑

t=1

1

h
K

(
p− p̂it
h

)
,

where p ∈ R, and p̂it are the estimated probabilities of each telemetric event. K is

once again chosen as the Gaussian kernel, and the bandwidth h > 0 is selected via

Silverman’s rule of thumb (Gramacki, 2019). The goal is to identify the 100α% of
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rarest events with the given density ĝh(p). By integrating ĝh(p) as

∫ p?

0

ĝh(p)dp = α,

and numerically solving for p?. The 100α% of rarest events are captured as

wα
it :=


wit, p̂it < p?

∅, otherwise,

ωαi =

T ?
i⋃

t=1

{wα
it}.

The greatest advantage of this method for detecting deviant events ωαi is in its flex-

ibility. Each driver has their own particular style which is encapsulated in the VA

heat map. Using the heat maps in such a way results in detecting when each driver is

deviating from their own dominantly established behaviour. This method can also be

expanded to compare two different drivers. For example, events from one driver could

be considered normal with respect to their own driving style. However, said events

may be considered deviant with respect to another driver’s style. For industry use,

these types of analysis are important when comparing drivers for training purposes.

3.4 Estimation and Performance for MBI

The estimation procedure for MBI is based on local maximum likelihood estimation.

A common approach for estimating finite mixture models is with the expectation

maximization (EM) algorithm (Dempster et al., 1977). Many extensions to the EM

algorithm have been proposed (McLachlan and Krishnan, 2008). For the purposes of
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dealing with latent factor models, McNicholas and Murphy (2008) uses the alternat-

ing expectation–conditional maximization algorithm (AECM; Meng and Van Dyk,

1997). Estimation of parameters pertaining to the MBI model is performed as fol-

lows. Consider a latent variable Zig denoting membership of observation i belonging

to group g as,

Zig =


1, Xi belongs to group g

0, otherwise.

For example, the component membership for observation 1 is given as z1 := (z11, . . . , z1G).

Suppose observation i is in group g. The formulation of factor analysers in the matrix

variate case has the density

Xi|zig = 1 ∼ Nr,c(Xi;Mg,Ug +AgA
′

g,Vg +BgB
′

g).

When written in this formulation, the complete data-likelihood is taken to be

L(X;θ) =
N∏
i=1

G∏
g=1

[πgϕr,c(Xi;Mg,Ug +AgA
′

g,V
′

g +BgB
′

g)]
zig ,

where θ = (θ1 := (π1, z1,M1,U1,V1,A1,B1), . . . ,θG). Estimation based on the

AECM algorithm is complicated, having multiple intermediate steps and algebraic

expressions. To maintain clarity, the following is a summarized version where several

intermediate steps ŜAg and ŜBg are omited. For specifics, see Gallaugher and Mc-

Nicholas (2018a). The AECM algorithm consists of three stages. Within the first

stage the complete-data is taken to be the observed matrices X1, ...,XN , and the
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M.Sc. Thesis - Nikola Počuča McMaster - Mathematics and Statistics

component memberships z = (z1, ...,zN). The E-step for this stage is given by

ẑ
(t)
ig =

πgϕr,c(Xi;θg)∑G
h=1 πhϕr,c(Xi;θh)

.

In the conditional maximization step, the updates for πg and Mg, at some iteration

t is given by

M̂ (t)
g =

∑N
i=1 ẑ

(t)
ig Xi,∑N

i=1 ẑ
(t)
ig

and π̂(t)
g =

∑N
i=1 ẑ

(t)
ig

N
.

In the second stage, the complete-data is taken to be the observed X1, ...,XN , the

component memberships z, and the r × s latent matrices for column factors. In

addition, N
(t)
g =

∑N
i=1 ẑ

(t)
ig . The expectation step for this stage is given in (Gallaugher

and McNicholas, 2018a, 3.2) yields some intermediate terms for ŜBg . In the conditional

maximization step the parameter update for U is taken to be

Û (t)
g =

1

N
(t)
g c

diag{ŜBg }.

In the third stage, the complete-data is taken to be the observed X1, ...,XN , the

component memberships z, and the c× v latent matrices for row factors. The expec-

tation step for this stage is given in (Gallaugher and McNicholas, 2018a, 3.2) yields

some intermediate terms for ŜAg . In the conditional maximization step the parameter

update for V is given as

V̂ (t)
g =

1

N
(t)
g r

diag{ŜAg }.

Convergence of the AECM algorithm is based on the Aitken acceleration criterion

(Aitken, 1926) defined as

a?(t) =
l(t+1) − l(t)

l(t) − l(t−1)
,

26
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where l(t) is the observed log likelihood at iteration t. Let

l(t+1)
∞ = l(t) +

l(t+1) − l(t)

1− a?(t)

be the observed estimate after many iterations at t+ 1. Termination of the algorithm

occurs when l
(t+1)
∞ − l(t)∞ ∈ (0, ε) for some pre-specified ε (McNicholas, 2010). Model

selection is based on the Bayesian information criterion (BIC; Schwarz et al., 1978).

The BIC is a criterion to assess the performance of the model fit, while penalizing

for the number of parameters used. For interpretability, the BIC is used for assessing

model performance (larger is better). Let ρ be the number of parameters used. The

BIC is then formulated as BIC = 2l(θ)− ρ logN. With all methods relating to MBI

introduced, the clustering problem is formulated as follows. Assuming there exists a

heterogeneous population of drivers of up to G types. Let Xi be a VA heat map of

driver i. Formally, X ∼ NG
r,c(θ) with probability density function

f(Xi;θ) =
G∑
g=1

πgϕr,c(Xi;Mg,Ug +AgA
′

g,V
′

g +BgB
′

g),

where θ = (θ1 = (π1,M1,U1,V1,A1,B1), . . . ,θG). Estimation of the model is per-

formed by using the AECM algorithm as mentioned previously. Once the model has

been estimated, classification of drivers into one of G types is done in accordance with

selecting the maximum a posteriori of component memberships. The classification Ci

for driver i is given by

Ci =


g, ẑig = max

∀g
{ẑi1, . . . ẑiG},

0, otherwise.
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Chapter 4

Analyses

This chapter is an amalgamation of analyses on a series of telemetric datasets. Each

section contains an in-depth discussion of results for each type of analysis. All

methods were implemented using the Julia language within the TeleMap.jl package

(Počuča, 2019). The first section is devoted to the Cartage Canada dataset which

utilizes the VA heat map and α-level deviation test to identify outlying events. The

second section contains class agreement (CA) comparisons between the MBI and K-

means model for the ETH Zurich synthetic dataset (Wüthrich, 2017). The third

section is a cluster analysis of VA heat maps from the National Renewable Energy

Laboratory, and is a practical application of clustering real data.

4.1 Cartage Canada Data

The Cartage Canada dataset is a collection of telemetries for N = 26 truck drivers.

Canada Cartage (CC) is a logistics company that provided the data as part of a

research agreement with McMaster. Beginning with the construction of the VA heat
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maps for each driver, consider the splitting up of the driving styles into parking,

city, and highway driving. The splitting is performed in accordance with Wüthrich

(2017), and is considered the standard approach. Highway driving is classified as

speeds [90, Vmax) km/h. Here, Vmax is some upper limit of velocity that a vehicle can

endure. The visualization of the VA heat map for highway driving is shown in Figure

4.1. Only highway driving will be the focus for deviation analysis. Deviation analysis

refers to the method for identifying α−level deviation events for a particular driver

and is adopted moving forward. An example of this analysis is visualized in Figure

4.2. Given an α, telemetric events are identified as being deviant if they exceed a

certain threshold that is determined via KDE. In Figure 4.2a, α = 0.05. Those events

considered deviant of this level are superimposed on the VA heat map. There are a

total of 67 events considered to be deviant for this particular driver. Furthermore,

Figure 4.2b refers to those events considered deviant with level α = 0.01. An inter-

pretation of these events show that all of them exhibit hard breaking, speeding, or

high acceleration in combination with high speeds. In addition, these events are time

stamped which can then be investigated further to analyse when these events occur.

This allows time of day to be a possible factor in when deviant events occur. Due to

the anonymity of the dataset, GPS coordinates are not recorded with the telemetric

events. However, in practice, GPS is included and can be taken into account where

exactly these deviant events occur. In summary, deviation analysis provides a tool

for safety investigators to analyse where and when deviation events occur. For the

shareholders of CC, this allows decision makers to plan for the necessary changes in

their routes and training to mitigate risk.
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Figure 4.1: A visual representation of the construction of the highway VA for driver
id 89675 (speeds are in km/h).

4.2 ETH Synthetic Dataset

The publically available ETH Synthetic dataset is generated from a simulation ma-

chine provided by Dr. Mario Wüthrich at ETH Zurich. The machine is a neural

network that has been trained on a real VA heat map dataset for parking speeds.

The machine has the ability to generate heat maps from up to four labelled groups

for parking speeds only. Figure 4.3 shows the average VA heat map from all four

groups generated from 1000 observations in each group. It is noted that these la-

bels are the result of the analysis done in Wüthrich (2017) and, therefore, do not

necessarily correspond to true labels. This section is split into two types of analysis.

The first is a type of simulation study where the labels provided by the machine are

used to assess CA between the MBI model and K-means. In the second analysis, the

labels provided by the machine are disregarded, and the analysis is performed in a

clustering setting.
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(b) α = 0.01
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Figure 4.2: α-level deviation events overlayed on a VA heat map for driver 89675
(speeds are in km/h).

4.2.1 Class Agreement Comparison

This section outlines analysis comparing CAs between the ETH dataset and the

MBI model. Machine labels are taken into account to assess comparison between

MBI and K-means. Within this setting, 1000 observations were generated for groups

G = 1, . . . , 4 for a total of N = 4000. All possible combinations of groups were

considered to compare the MBI and the standard K-means approach. The settings

for possible combinations of 2, . . . , 4 groups are outlined in column one of Tables

4.1 and 4.2. For example, setting (1,2,3) is a dataset with a combination of groups

1, 2, 3 containing 1000 observations sampled from each group (total N = 3000). Due

to the numerical instability for estimating the MBI model, the standardization of

matrix variate data is necessary (Gallaugher and McNicholas, 2018a). The traditional

approach to standardize data is to simply scale the data (each entry is subtracted by

the sample mean and divided by the sample standard deviation within each matrix)

and multiply by a constant number. However, consider an additional method for
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M.Sc. Thesis - Nikola Počuča McMaster - Mathematics and Statistics

0 5 10 15 20- 2

- 1

0

1

2

Speed

Ac
ce
le
ra
tio
n

0.001

0.002

0.003

0.004

0.005

(km/h)

(k
m
/h
²)

0 5 10 15 20- 2

- 1

0

1

2

Speed

Ac
ce
le
ra
tio
n

0.001

0.002

0.003

0.004

0.005

(km/h)

(k
m
/h
²)

0 5 10 15 20- 2

- 1

0

1

2

Speed

Ac
ce
le
ra
tio
n

0.001

0.002

0.003

0.004

0.005

0.006

0.007

(km/h)

(k
m
/h
²)

0 5 10 15 20- 2

- 1

0

1

2

Speed

Ac
ce
le
ra
tio
n

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

(km/h)

(k
m
/h
²)

Figure 4.3: Average parking VA heat maps from machine labelled groups 1, . . . 4
(speed in km/h).

standardization. Since each heat map contains matrix entries within [0, 1); the logit

function which maps from [0, 1) → (−∞,∞) =: R is appropriate (Ashton, 1972).

This allows each entry of the observation to be in the domain of the matrix variate

normal distribution. Neither of the transformations have much impact on the data

itself as they are one-to-one functions. These standardizations are used to stabilize the

estimation procedure of the model. The logit method applied to this data has better

model BIC values compared to the scaled method. The values are compared in Tables

4.1 and 4.2, respectively. The number of iterations it takes to estimate parameters

within the EM algorithm is less for the logit method when compared to the scaling
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method. It is noted once again, that the labels are not necessarily reflective of true

labels and are more used as a guide. These labels are provided by the maintainer of

the dataset from his own analysis (Wüthrich, 2017). The best results are shown in

bold for each setting. The MBI model has greater CA than K-means for several of the

settings. Table 4.1 shows greater CA of the MBI under most of the mixture settings

for scaled data but not under the logit standardized data as reported in Table 4.2.

The best MBI for each setting is selected via BIC, which is reported in the second

column of Tables 4.1 and 4.2.

Table 4.1: Model summary for scaled data between MBI and K-Means on CA and
ARI.

Mixture MBI K-Means
Setting BIC Max CA (%) ARI CA (%) ARI

(1,2) -8,321,290 91.15 0.677 90.25 0.649
(1,3) -8,109,690 99.65 0.986 98.30 0.933
(1,4) -8,040,320 98.10 0.925 94.95 0.808
(2,3) -8,158,130 84.75 0.482 86.45 0.531
(2,4) -8,140,840 90.60 0.659 89.75 0.631
(3,4) -7,866,430 91.00 0.672 89.40 0.620

(1,2,3) -12,279,600 80.00 0.517 84.53 0.591
(1,2,4) -12,359,300 87.23 0.654 85.40 0.607
(1,3,4) -12,038,600 92.40 0.790 85.43 0.615
(2,3,4) -12,112,400 80.70 0.505 80.60 0.503

(1,2,3,4) -16,080,100 78.67 0.525 79.15 0.522

In summary, all tables show how analyses differ under both methods for various

standardizations. Logit standardization has an impact in the CA ARI, and BIC

for the MBI model. In addition, the K-means approach suffers greatly under this

standardization. The original analysis by Wüthrich (2017) are labels resultant from

using K-means. As this simulation study suggests, the CA is difficult to regain K-

means labels for matrix variate data even when using K-means. This leads to the
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Table 4.2: Model summary for logit standardized data between MBI and K-Means
on CA and ARI.

Mixture MBI K-Means
Setting BIC Max CA (%) ARI CA (%) ARI

(1,2) -304,192 94.10 0.777 89.10 0.611
(1,3) -524,070 97.95 0.919 84.72 0.481
(1,4) -412,970 97.22 0.891 87.15 0.552
(2,3) -616,595 82.95 0.434 84.93 0.487
(2,4) -691,203 84.80 0.484 88.42 0.600
(3,4) -640,034 84.80 0.484 88.45 0.590

(1,2,3) -348,144 81.71 0.561 82.93 0.550
(1,2,4) -721,927 79.52 0.531 84.17 0.575
(1,3,4) -748,776 90.63 0.748 57.27 0.307
(2,3,4) -724,082 78.57 0.460 75.81 0.415

(1,2,3,4) -648,698 60.82 0.376 58.13 0.330

conclusion that the class membership according to Wüthrich (2017) is not stable. In

some cases, the MBI model diverges from the original approach. However, despite

the ambiguity of the labels, the analysis shows the MBI model can reliably recover

some of the original analysis done by Wüthrich (2017).

4.2.2 Clustering Setting

Within the clustering setting, machine labels are disregarded and the entire dataset is

taken to have an unknown number of groups. The MBI models are estimated with a

combination of the following schemes: G = 1, . . . , 7, q = 1, . . . , 12, r = 1, . . . , 12. The

best model was selected according to BIC with a value of −632, 509, and q = 9, r =

11 as the number of row and column factors, respectively. The estimated mixing

proportions are reported to be π = (0.314, 0.686). Table 4.3 shows that the majority

of groups E-G2, E-G3 and E-G4 are placed within group M-G2 by the MBI model.

Furthermore, group M-G1 of the MBI model places the majority of observations in
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E-G1 from the ETH analysis, and very few observations in other groups. This result

is further confirmed when viewing the average heat maps of each group. Figure 4.4

shows the average heat maps from the estimated groups. Group M-G1’s heat map

appears to be similar to E-G1 from the given labels in Figure 4.3. The remaining

group M-G2 in Figure 4.4 has a heatmap which resembles a combination of all other

E-G2, E-G3 and E-G4 from Figure 4.3. This analysis implies that the labels given

by the original author may not be four separate groups. The model selection via

the BIC criterion implies that under MBI, G = 2 gives the best result. Both the

MBI and the K-means approach do not validate with absolute certainty the presence

of underlying populations. All this considered, this analysis should not be taken as

absolute evidence that there only exists exactly two groups.
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Figure 4.4: Average parking VA heat maps for groups 1 and 2 (speed in km/h).

Table 4.3: Classification agreement between ETH labels (E-G#) and the best MBI
model (M-G#).

E-G1 E-G2 E-G3 E-G4
M-G1 968 276 4 8
M-G2 32 724 996 992
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4.3 ARC Study Dataset

The ARC study open source dataset contains a series of vehicle performance measure-

ments over a period of 24 hours on 1, 651 vehicles in the United States (Transportation

Secure Data Center, 2015). The study records a large variety of information pertain-

ing to vehicle efficiency in driving cycles at every second. However, only the speed and

acceleration records for every driver are taken into account. Due to computational

limitations, only highway driving will be considered for the analysis as the dataset

is extremely large. Highway driving, according to the authors of the dataset, are

vehicle speeds consisting of anywhere between [55, Vmax) mph. After taking this into

account, only 1, 523 drivers exhibited highway driving over the 24 hour period. Each

driver’s speed and acceleration data was processed and reduced down to their respec-

tive VA heatmaps. Each VA heatmap is a 24 × 24 matrix to which has been logit

standardized for numerical stability as previously aforementioned. The MBI model is

estimated according to G = 1, . . . , 4 groups, and q = r = 1, . . . , 12 latent factors for

row and column respectively. According to the BIC, the best MBI model consists of

G = 3, q = 10, r = 11, π = (0.18, 0.23, 0.59), with a BIC of −3, 023, 861.
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Figure 4.5: Average VA heat maps for Groups 1, 2, and 3 respectively.

Figure 4.5 shows the mean VA heat map for each group. The first group shows

the widest heat map along acceleration indicating that observations in this group
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have aggressive highway driving habits. In addition, the first group has asymmetric

accelerations, indicating that these drivers have a preference for higher acceleration.

The second group shows a smoother VA heat map average which resembles several

of the known heat maps in actuarial literature (Wüthrich, 2017). These drivers have

a preference for lower speeds but still contain the same variability with acceleration

as the last group. The third group shows the safest average VA heat map with

the smallest variability of acceleration. In summary, the ARC study dataset has been

classified into three distinct groups with meaningful interpretations pertaining to risk.

From an insurer’s point of view, a premium discount model can be created around

classifying drivers into one of the three groups.
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Chapter 5

Conclusions and Future Work

This work expands on the current literature of telematics by using models and meth-

ods adapted to the problem at hand. The first extension is the use of KDE. The KDE

method was proven to converge faster to the true density, and deal with the discrete-

ness of telemetry by using smooth kernels. The second extension to telematics allowed

for the detection of deviant events. CC was searching for a way to detect when their

drivers were deviating from normal behaviour. The third extension to telematics is

the clustering of driving types. Previous work on clustering VA heat maps involved

the use of ambiguous dissimilarity functions (Wüthrich, 2017). The MBI approach

uses BIC to select for both the model and the number of groups. Section 4.3 shows

the segmentation of drivers into one of three types of driving behaviour using the

MBI approach. All methods utilized in this work embody two characteristics. The

first is the ease in the interpretation of results. Methods such as MBI, and deviation

detection have natural explainations pertaining to driving behaviour. The second

characteristic is the reduction of dimensionality. The VA heat map allows for the

comparison of any sized collection of telemetries. For example, if two drivers have
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telemetries collected over two different lengths of time, then both of them can be com-

pared via VA heat maps (provided that the sample of telemetric data is sufficiently

large).

Future work entails three possible avenues. The first is to reliably capture the

same behaviour of VA heat maps but with increased lag. Interpolation of vi can

be used to estimate speeds at various time points with a reduced size sample size

of telemetries. The second is to model frequency and severity of auto-mobile claims

using these VA heat maps. VA heat maps can be used as covariates in a generalized

linear model for modelling the frequency and severity of claims. Current literature

uses the PPCA approach which can be expanded upon (Gao et al., 2019). Finally, the

assumption of normality is fairly strong for classifying matrix variate data. Skewed

distributions may lead to better classification performance with matrix variate data

and should be considered in the future (e.g. Gallaugher and McNicholas, 2018b).
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Appendix A

Comparison of Estimators

A.1 Comparing KDE and Histogram

Lemma A.1 The kernel density estimator converges faster to the true density than

a histogram.

Proof. Let p̂M(x) be a histogram density estimator parametrized by bin length M .

The expectation of this estimator is written as

E [p̂M(x)] = MP (xi ∈ Rm)

= M

∫ m
M

m−1
M

p(u)du = M

(
F
(m
M

)
− F

(
m− 1

M

))

=

(
F
(m
M

)
− F

(
m− 1

M

))
1/M

=

(
F
(m
M

)
− F

(
m− 1

M

))
m

M
− m− 1

M

= p(x∗), x ∈ Rm.
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By the mean value theorem,

p(x∗)− p(x+ δ)

x∗ − x
= p

′
(x∗∗) for some x∗∗ ∈

[
m− 1

M
,
m

M

]
.

Therefore, the bias of p̂M(x) is calculated as

Bias (p̂M(x)) = E [p̂M(x)]− p(x)

= p(x∗)− p(x)

= p
′
(x∗∗)(x∗ − x)

≤ |p′(x∗∗)||x∗ − x|

≤ L

M
.

The last line is derived from the fact that each line segment is bounded by 1
M

. By

definition, the density is also bounded by L and thus the bias is bounded by L
M

. M is

defined to be the number of bins used. Therefore, as M increases, the bias decreases.

The variance of the histogram density estimator is calculated as

Var (p̂M(x)) = M2Var

(
1

n

n∑
i=1

1(xi ∈ Rm)

)

= M2P (xi ∈ Rm)(1− P (xi ∈ Rm))

n

= M2

p(x∗)

M

(
1− p(x∗)

M

)
n

= M
p(x∗)

n
+
p2(x∗)

n
.
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Therefore, the upper bound of the MSE is established as

MSE (p̂M(x)) ≤ L2

M2
+M

p(x∗)

n
+
p2(x∗)

n

The minimization of MSE is straight forward yielding

Mopt =

(
nL2

p(x∗)

) 1
3

.

Now, consider a kernel density estimator p̂h(x0) for some fixed point x0 and bandwidth

h. The bias is calculated as

E [p̂h(x0)]− p(x0) =E

[
1

n

n∑
i=1

1

h
K

(
xi − x0
h

)]
− p(x0)

=
1

h
E
[
K

(
xi − x0
h

)]
− p(x0)

=
1

h

∫
R

K

(
x− x0
h

)
p(x)dx− p(x0).

Performing a change of variable y = x−xo
h

, dy = dx/h,

1

h

∫
R

K

(
x− x0
h

)
p(x)dx− p(x0) =

∫
R

K(y)p(xo + hy)dy − p(xo).

Now, consider the Taylor expansion of p(xo + hy) as

p(xo + hy) = p(xo)− hyp
′
(xo) +

1

2
h2y2p

′′
(xo) +O(h2).
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Substituting the form of the Taylor expansion into the expectation yields,

E [p̂h(x0)]− p(xo) =

∫
R

K(y)p(xo + hy)dy − p(xo)

=

∫
R

K(y)

[
p(xo)− hyp

′
(xo) +

1

2
h2y2p

′′
(xo) +O(h2)

]
dy − p(xo)

= p(xo)

(∫
R

K(y)dy

)
− hp′(xo)

(∫
R

K(y)ydy

)
+

1

2
h2p

′′
(xo)

(∫
R

K(y)y2dy

)
+O(h2)− p(xo)

= p(xo)− 0 +
1

2
h2p

′′
(xo)

(∫
R

K(y)y2dy

)
+O(h2)− p(xo)

=
1

2
h2p

′′
(xo)

(∫
R

K(y)y2dy

)
+O(h2)

=
1

2
h2p

′′
(xo)µK +O(h2).

Therefore, the bias of a kernel density estimator is given by

Bias (p̂h(x)) =
1

2
h2p

′′
(xo)µK +O(h2), µK =

∫
R

K(y)y2dy.

Now, consider the variance of a kernel density estimator,

Var(p̂h(x)) = Var

(
1

nh

n∑
i=1

K

(
xi − xo
h

))

=
1

nh2
Var

(
K

(
xi − xo
h

))
≤ 1

nh2
E
(
K2

(
xi − xo
h

))
=

1

nh2

∫
R

K2

(
x− xo
h

)
p(x)dx.

Performing a change of variable y = x−xo
h
, dy = dx/h, and using the same Taylor

43
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series expansion as before we have

=
1

nh2

∫
R

K2(y)p(xo + hy)dy

=
1

nh2

∫
R

K2(y)
[
p(xo) + hyp

′
(xo) +O(h)

]
dy

=
1

nh2
p(xo)

∫
R

K2(y)dy + 0 +O
(

1

nh

)
.

Therefore, the variance of a kernel density estimator is

Var(p̂h(x)) =
1

nh2
p(xo)σK +O

(
1

nh

)
, σK =

∫
R

K2(y)dy

Using the preceding results above, the MSE of KDE is given by

MSE(p̂h(x)) = Bias2(p̂h(x)) + Var(p̂h(x))

= h4|p′′(xo)|2µ2
K +

1

nh2
p(xo)σK +O

(
1

nh

)

Supposing that h→ 0 and n→∞, the terms of interest are

h4|p′′(xo)|2µ2
K +

1

nh2
p(xo)σK .

Under these asymptotic conditions, the optimal smoothing bandwidth is

hopt(xo) =

(
4

n

p(xo)

|p′′(xo)|2
σ2
K

µ2
K

) 1
5

Comparing the optimal parameters Mopt and hopt for the two NDE methods the

convergence for MSE
(
p̂Mopt(x)

)
is O

(
n−

2
3

)
while the convergence for MSE

(
p̂hopt(x)

)
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is O
(
n−

4
5

)
. Therefore, the KDE method converges faster to the true probability

density function p(x).
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