
Computing Lyndon Arrays

Michael Adam Liut

Doctoral Thesis

Computing Lyndon Arrays

author

Michael Adam Liut

last edit

September 26, 2019

institution

Department of Computing and Software
Faculty of Engineering
McMaster University

Acknowledgements

This journey would not have been possible without the support of my
family, supervising professors and mentors, and friends.

To my family: thank you for inspiring me to perform and achieve my
best. To my parents and brother: your unwavering support and constant
encouragement were my backbone and will never be forgotten.

To my Ph.D. supervisors Dr. Antoine Deza and Dr. Franya Franek:
thank you for your wisdom and guidance. You have both been a pillar
throughout my university experience and two mentors who I look up to
and aspire to be. Without you both, this would have not been possible.

To my Ph.D. supervisory committee: thank you for keeping me on
track and continuously in pursuit of academic excellence.

To my friends, labmates, and colleagues: thank you for being my main-
stay and allowing me to continually perform at my peak.

I would also like to thank:
- the Advanced Optimization Laboratory (AdvOL);

- the Department of Computing and Software, the Faculty of En-
gineering, and McMaster University;

- the National Sciences and Engineering Research Council of Canada;
and

- Dr. Paul Vrbik for the use of his LATEX template.

iii

Contents

Acknowledgements iii

Abstract vi

Problem Statement vii

Overview viii

1 Introduction 1

2 Notation and Basic Facts 3
2.1 Basic Properties of Lyndon Strings 7

2.2 Basic Properties of Lyndon Substrings 9

3 Background of the Problem 11
3.1 Brute Force . 11

3.2 Iterative Duval Algorithm – IDLA 12

3.3 Recursive Duval Algorithm - RDLA 12

3.4 Algorithmic Scheme Based on Suffix Sorting - SSLA 14

3.5 Algorithmic Scheme Based on Burrows-Wheeler Transform
– BWLA . 14

3.6 An Algorithm Based on Ranges – RGLA 15

4 Iterated Duval Algorithm (IDLA) 16
4.1 Implementation Notes . 19

5 Baier’s Sort Inspired Algorithm (BSLA) 20
5.1 Notation and Notions for Analysis of BSLA 22

5.2 The Refinement . 25

5.3 Intuition Behind the Refinement Process 32

5.4 Implementation Notes . 34

iv

CONTENTS v

6 τ-Reduction Algorithm for Lyndon Array (TRLA) 38
6.1 τ-pairing . 39

6.2 τ-reduction . 41

6.3 Properties Preserved by τ-reduction 42

6.4 Computing L′x from L′τ(x). 48

6.5 The Complexity of TRLA . 51

6.6 Implementation Notes . 53

7 Empirical Testing and Results 55

8 Conclusion 67
8.1 Future Work . 68

Abstract

There are at least two reasons to have an efficient algorithm for identify-
ing all maximal Lyndon substrings in a string: first, in 2015, Bannai et al.
introduced a linear algorithm to compute all runs in a string that relies on
knowing all maximal Lyndon substrings of the input string, and second,
in 2017, Franek et al. showed a linear co-equivalence of sorting suffixes
and sorting maximal Lyndon substrings of a string (inspired by a novel
suffix sorting algorithm of Baier).

In 2016, Franek et al. presented a brief overview of algorithms for com-
puting the Lyndon array that encodes the knowledge of maximal Lyndon
substrings of the input string. It discussed four different algorithms. Two
known algorithms for computing the Lyndon array: a quadratic in-place
algorithm based on iterated Duval’s algorithm for Lyndon factorization
and a linear algorithmic scheme based on linear suffix sorting, comput-
ing the inverse suffix array, and applying the NSV (Next Smaller Value)
algorithm. The overview also discusses a recursive version of Duval’s al-
gorithm with a quadratic complexity and an algorithm emulating the NSV
approach with a possible O(n log(n)) complexity. The authors at that time
did not know of Baier’s algorithm. In 2017, Paracha proposed in her Ph.D.
thesis an algorithm for the Lyndon array. The proposed algorithm was in-
teresting as it emulated Farach’s recursive approach for computing suffix
trees in linear time and introduced τ-reduction; which might be of inde-
pendent interest.

This was the starting point of this Ph.D. thesis. The primary aim is: (a)
developing, analyzing, proving correct, and implementing in C++ a linear
algorithm for computing the Lyndon array based on Baier’s suffix sorting;
(b) analyzing, proving correct, and implementing in C++ the algorithm
proposed by Paracha; and (c) empirically comparing the performance of
these two algorithms with the iterative version of Duval’s algorithm.

vi

Problem Statement

Design, analyze, implement, and test algorithms to com-
pute maximal Lyndon substrings of a string in linear or sub-
quadratic time without the involvement of two-stage compu-
tationa.

ai.e. when a data structure not directly related to maximal Lyndon substrings
is computed in the first stage, then the maximal Lyndon substrings are computed
from it in the second stage

vii

Overview

The following is a high-level overview of what novel work has been com-
pleted in the research effort for this thesis and represents new contribu-
tions to the field of stringology:

1. Baier’s Sort inspired Lyndon Array algorithm (BSLA)

BSLA, chapter 5, discuses the creation, development, and imple-
mentation of a new algorithm that is elementary in the sense of
not needing any previous computation of some global structure
such as a suffix array. Further, the algorithm is formally proven
correct, implemented in C++, rigorously tested, and its execution
measured.

A preliminary version of the research for this thesis was re-
ported in [15] of which the author of this thesis was the principal
co-author. This thesis contains a significantly improved and sim-
plified analysis of the correctness. The implementation for this
thesis is also significantly improved from the preliminary imple-
mentation for [15] which focused on just the proof of the concept.

2. τ−Reduction Lyndon Array algorithm (TRLA)

TRLA, chapter 6, is improved from its initial design by Paracha.
A significantly refined and corrected analysis is presented in this
thesis, including the complexity analysis. A deep analysis of the
τ−reduction is presented as it may be of independent research
interest. The implementation of TRLA in C++ is completely new
and never before reported. The algorithm was rigorously tested,
and its execution measured.

viii

ix

3. Results and empirical analysis

Both BSLA and TRLA have been implemented in C++, along-
side one of the standard algorithms IDLA (see chapter 4). All
three algorithms have been empirically tested against one another
and analyzed in-depth. Results were provided on a variety of
datasets. The results are reported both in the form of graphs for
a quick visualization, also in terms of tables containing the raw
data. The methodology of the experiments and a description of
the experimental setup are presented.

Moreover, not described in this thesis is the software testbed
for the measurements as well as the software for production of
the test datasets. All the experiments were also used as valida-
tion tests for the correctness of the implementations of BSLA and
TRLA as the results as computed by these two programs were
compared to the result computed independently by IDLA.

4. A survey of all algorithms for computing maximal Lyndon sub-
strings

The impetus for the initial research for this thesis was paper [17]
and is described in Chapter 3. This lead to a paper [14] of which
the author of this thesis was a principal co-author and represents
an up-to-date survey of Lyndon array algorithms.

1 Introduction

There are two paths which one can take when computing all the runs of
a string in linear time: the first is relying on Lempel-Ziv factorization [20]
and the second is computing all maximal Lyndon substrings [4]. There are
several efficient linear algorithms for Lempel-Ziv factorization for strings
over constant and integer alphabets; for example [8, 10] and the references
therein. In 2015, Bannai et al. introduced a linear algorithm to compute
all the runs in a string [4]. This algorithm, published in 2017 [5], relies on
knowing all maximal Lyndon substrings of the string with respect to an
order of the alphabet and all maximal Lyndon substrings with respect to
the inverse of that order. Thus, computing runs became another applica-
tion of Lyndon words.

These two approaches raise the question, which approach may be more
efficient: to compute the Lempel-Ziv factorization or to compute all max-
imal Lyndon substrings? Interestingly enough, Dmitry Kosolobov argues
that computing Lempel-Ziv factorization may be harder than computing
all the runs [21] for general alphabets, however, there was no substantial
followup to this research and the paper was never published; it was only
uploaded to arXiv.

The work of Bannai et al. awoke an interest in efficient computing
of maximal Lyndon substrings of a string. In 2016, Franek et al., [17],
presented an overview of then-known algorithms for computing maximal
Lyndon substrings and introduced the notion of the Lyndon array. Un-
known to the authors at that time was the work of Baier, [2, 3].

In 2017, Franek et al. demonstrated linear co-equivalence of sorting
suffixes and sorting maximal Lyndon substrings [16], based on a novel
suffix sorting algorithm introduced by Baier [2] in 2015, and published

1

2

in 2016 [3]. Though Lyndon strings were not discussed by Baier at all,
it was noticed by Cristoph Diegelmann in a personal communication [11]
that Phase I of Baier’s suffix sort identifies and sorts all maximal Lyndon
substrings. The fact that the “sorting of suffixes” is, in a sense, equivalent
to the “sorting of maximal Lyndon substrings” increased the interest in
efficient computing of maximal Lyndon substrings.

This was the starting point of the research for this thesis. The result
of which is two algorithms for computing the Lyndon array: a linear al-
gorithm BSLA based on Baier’s method and a recursive O(n log(n)) al-
gorithm TRLA emulating Farach’s method. The algorithms are formally
described, analyzed, and the executions of their C++ implementations are
compared.

This thesis is structured as follows: in chapter 2 basic notion, termi-
nology, and facts are presented; in chapter 3 the background of the prob-
lem is given; in chapter 4 the Iterated Duval algorithm for Lyndon Ar-
ray (IDLA) is described and discussed; in chapter 5 Baier’s Sort (Phase
I) inspired Lyndon Array algorithm (BSLA) is described and analyzed in
depth; in chapter 6 a detailed description and analysis of the recursive
τ-Reduction algorithm for Lyndon Array (TRLA) is conducted; in chap-
ter 7 the empirical measurements and results of the performance of IDLA,
BSLA, and TRLA are presented on various datasets with random strings
of various lengths and over various alphabets; and finally in chapter 8 the
conclusion of the research is presented and the future work described.

2 Notation and Basic Facts

Some fundamental notions, definitions, facts, and string algorithms can
be found in the following references [22, 23, 28]. For ease of access, this
chapter includes those that are directly related to the work herein.

For two integers i ≤ j, the range i..j = {k integer : i ≤ k ≤ j}. An
alphabet is a finite or infinite set of symbols (equivalently called letters).
We assume that a sentinel symbol $ is not in the alphabet and is always
assumed to be smaller than all symbols in the alphabet. A string over an
alphabet A is a finite sequence of symbols from A. A $-terminated string
over A is a string over A terminated by $, where $ /∈ A. We utilize array
notation, commencing at 1, for indexing strings. Therefore, x[1..n] indi-
cates a string of length n, the first symbol is the symbol with index 1, x[1],
the second symbol is the symbol with index 2, x[2], etc. The strings is a
concatenation of the one-symbol strings, i.e. x[1..n] = x[1]x[2]...x[n], and
for a $-terminated string x of length n, x[n+1] = $.

The alphabet of string x, denoted as Ax, is the set of all distinct al-
phabet symbols occurring in x. By a constant alphabet we mean a fixed
finite alphabet. A string x is over an integer alphabet if Ax ⊆ {0, 1, ..., |x|}.
Thus, the class of strings over integer alphabets = {x | x is a string over {0,
1, ..., |x|}}. A string x over an integer alphabet is tight if Ax = {0, 1, ..., k}
for some k ≤ |x|. For instance x = 010 is tight as Ax = {0, 1} while
y = 020 is not tight because Ay = {0, 2}; 1 is missing from Ay.

We use a bold font to denote strings, thus x denotes a string, while x
denotes some other mathematical entity such as an integer. The empty
string is denoted by ε and has length 0. The length or size of string
x = x[1..n] is n. The length of a string x is denoted by |x|. For two strings
x = x[1..n] and y = y[1..m], the concatenation xy is a string u where

3

4

u[i] =

x[i] f or i ≤ n,

y[i− n] f or n < i ≤ n+m.

If x = uvw, then u is a prefix, v a substring, and w a suffix of x. If u (re-
spective v, w) is empty, then it is called a trivial prefix (respective trivial
substring, trivial suffix), if |u| < |x| (respective |v| < |x|, |w| < |x|) then
it is called a proper prefix (respective proper substring, proper suffix). If
x = uv, then vu is called a rotation or a conjugate of x; if either u = ε or
v = ε, then the rotation is called trivial. A non-empty string x is primitive
if there are no string y and no integer k ≥ 2 so that x = yk = yy · · · y︸ ︷︷ ︸

k times

.

A non-empty string x has a non-trivial border u if u is both a non-
trivial proper prefix and a non-trivial proper suffix of x. Thus, both ε and
x are trivial borders of x. A string without a non-trivial border is called
unbordered.

A period of a string x[1 . . n] is an integer p so that x[i] = x[i+p] for any
1 ≤ i, i+p ≤ n.

For example, x[1 . . 7] = abababa has a period 2, as x[1] = x[3] =

x[5] = x[7] = a and x[2] = x[4] = x[6] = b. It also has a period 4, as
x[1] = x[5] = a, x[2] = x[6] = b, and x[3] = x[7] = a.

A substring x[i . . j] is a repetition if there is a period p of x[i . . j] such
that j−i+1 = kp for some integer k ≥ 2. The substring x[i . . i+p−1] is
properly called generator of the repetition, but is often referred to as the
period as well. Therefore, period frequently means both the generator and
the length of the generator, but it is usually quite clear from the context
which meaning is correct.

For example, if x[1 . . 12] = aabcabcabcab, then x[2 . . 7] = abcabc is a
repetition of period 3 with the generator abc, x[2 . . 10] = abcabcabc is a
repetition of period 3 with the generator abc, while x[7 . . 12] = cabcab
is a repetition of period 3 with the generator cab. Another example is
x[1 . . 2] = aa, a repetition of period 1 and the generator a. It should be
noted that there are several other repetitions in x.

The substring x[i . . j] is a run with period p and exponent e if it is a maxi-
mal repetition – i.e. neither x[i−1 . . j] nor x[i . . j+1] are repetitions, its pe-
riod p is the least of all periods of x[i . . j] (and so the generator x[i . . i+p−1]

5

is primitive), and e = (j−i+1)/p ≥ 2.

For example, x[1 . . 10] = abcdbcdbca has a run x[2 . . 9] = bcdbcdbc with
a period 3 as x[1 . . 9] = abcdbcdbc is not a repetition with a period 3,
and x[2 . . 10] = bcdbcdbca is not a repetition with a period 3.

A binary relation ≺ is a total order on an alphabet A if it is antire-
flexive: a 6≺ a for any a ∈ A, and antisymetric: if a ≺ b, then b 6≺ a for
any a, b ∈ A, and transitive: if a ≺ b and b ≺ c, then a ≺ c, for any
a, b, c ∈ A. This relationship can thus be considered an order of strings
of length 1. The order is extended to all finite strings over the alphabet
A: for x = x[1..n] and y = y[1..n], x ≺ y if either x is a proper prefix of
y, or there is a j ≤ min{n, m} so that x[1] = y[1], ..., x[j−1] = y[j−1]
and x[j] ≺ y[j]. This total order induced by the order of the alphabet is
called the lexicographic order of all non-empty strings over A. Typically,
the same symbol is used to denote the lexicographic order as the order of
the alphabet that induces it. Thus, ≺ may denote the order of the alpha-
bet A as well as the lexicographic order of strings over A. It is usually
clear from the context: x ≺ y is the alphabet order if x and y are alpha-
bet symbols, or the lexicographic order if x and y are strings. We denote
by x � y if either x ≺ y or x = y. For a $-terminated string, we always
assume that $ is lexicographically smaller than all symbols in the alphabet.

From the definition of ≺, the notation x ≺ y can mean two things,
either x is a proper non-trivial prefix of y, or there is j,
1 ≤ j ≤ min(|x|, |y|) so that x[j] ≺ y[j] while x[i] = y[i] for any 1 ≤ i < j.
Sometimes we need just to consider the second possibility and thus we oc-
casionally utilize a technical notation ≺• defined by: x≺• y iff x ≺ y and
x is not a prefix of y. Thus, x≺• y iff there is 1 ≤ j ≤ min(|x|, |y|) so that
x[j] ≺ x[j] while x[i] = y[i] for any 1 ≤ i < j. In simple terms, x≺• y means
that we can find a position j in x and y where they differ for the first time
and x[j] ≺ y[j]. The great advantage of ≺• is the following property not
true in general for ≺ :

Observation 2.1. If x≺• y, then xz≺• yt for any string z and any string t.

For example, ab ≺ abac and ab 6≺• abac, while aba ≺ abbc
and aba≺• abbc . Note, that abaz≺• abbct for any string z and any string t.

An ordered alphabet is an alphabet with a total order so that compar-

6

isons of any two alphabet symbols can be computed in constant time. A
sorted alphabet is an ordered alphabet with the additional requirement
that for each alphabet symbol, the immediately preceding symbol and the
immediately succeeding symbol can be computed in constant time – in
practical terms it means that the alphabet is given as an ordered doubly-
linked list or as an ordered array. Note that a constant alphabet can be
sorted in constant time and an integer alphabet 1 . . n can be sorted in
O(n) time. To sort a general alphabet A takes O(|A| log(|A|)) time.

In this thesis, the sorting of suffixes of a string is mentioned many
times. Typically, this is performed in the form of computing the suffix
array of the input string. Formally, an integer array s[1 . . n] is a suf-
fix array of x if it is a permutation of 1 . . n and for any i, j ∈ 1 . . n,
x
[
s[i] . . n

]
≺ x

[
s[j] . . n

]
⇔ i < j. Therefore, x

[
s[1] . . n

]
, x
[
s[2] . . n

]
, ...,

x
[
s[n] . . n

]
is a complete list of all suffixes of x in an ascending lexico-

graphic order. The inverse suffix array s−1[1 . . n] is an integer array so
that s−1[i] = j⇔ s[j] = i.

For example, consider a string x[1 . . 7] = abbcaad. The suffixes are:
x[1 . . 7] = abbcaad, x[2 . . 7] = bbcaad, x[3 . . 7] = bcaad, x[4 . . 7] = caad,
x[5 . . 7] = aad, x[6 . . 7] = ad, x[7 . . 7] = d. Now, let us list them in an as-
cending lexicographic order: x[5 . . 7] = aad, x[1 . . 7] = abbcaad, x[6 . . 7] =
ad, x[2 . . 7] = bbcaad, x[3 . . 7] = bcaad, x[4 . . 7] = caad, x[7 . . 7] = d.

Thus, the suffix array of x is s = [5, 1, 6, 2, 3, 4, 7]. Since s[1] = 5, s−1[5] = 1;
since s[2] = 1, s−1[1] = 2; since s[3] = 6, s−1[6] = 3; since s[4] = 2,
s−1[2] = 4; since s[5] = 3, s−1[3] = 5; since s[6] = 4, s−1[4] = 6; and since
s[7] = 7, s−1[7] = 7. Thus, the inverse suffix array is s−1 = [2, 4, 5, 6, 1, 3, 7].

A string x over A is Lyndon with respect to the order ≺ of A if x is
strictly lexicographically smaller than any non-trivial rotation of x. Note,
that if the order of the alphabet is changed, strings that were Lyndon with
respect to the old order do not have to be Lyndon with respect to the new
order, and vice versa. Typically, the order is clear from the context, so we
do not need to specify with respect to the order ≺. A string of length 1 is
Lyndon with respect to any order; we refer to it as a trivial Lyndon string.

2.1 Basic Properties of Lyndon Strings 7

2.1 Basic Properties of Lyndon Strings

Proposition 2.2. Let x be a string over A. Then
x is Lyndon⇒ x is unbordered⇒ x is primitive

PROOF. A string of length 1 is Lyndon, unbordered, and primitive. Thus,
we assume that x of length ≥ 2 is Lyndon with respect to ≺.

• x is Lyndon⇒ x is unbordered.
Assume that x has a border. For the smallest border u for x, there is
a non-empty v so that x = uvu. Let r, k ≥ 1 be the largest integers
so that there is a non-empty v with x = urvuk. Since x is Lyndon,
urvuk ≺ ur+1vuk−1. Thus, vuk ≺ uvuk−1, and so vu ≺ uv. On the other
hand, since x is Lyndon, urvuk ≺ ur−1vuk+1. Thus, uvuk ≺ vuk+1, and
so uv ≺ uv. Therefore, vu ≺ uv and uv ≺ uv, a contradiction. It
follows that x must be unbordered.

• x is unbordered⇒ x is primitive
Assume that string x is not primitive. It follows that for some u,
x = uk for some integer k ≤ 2. Then u is a border of x, a contradic-
tion.

Note that the reverse implications do not hold: aba is primitive but
neither unbordered, nor Lyndon, while acaab is unbordered, but not Lyn-
don. There are several conditions that are equivalent with being Lyndon
described in the following propositions.

Proposition 2.3. Let x be a string over A of length ≥ 2. Then
x is Lyndon⇔ for any non-trivial proper suffix v of x, x ≺ v.

PROOF.

• x is Lyndon⇒ for any non-trivial proper suffix v of x, x ≺ v
Let x = uv where u, v 6= ε. Assume that x 6≺ v. Then either v is a
prefix of x, or v≺• x. In the former case, u would be a border of x, a
contradiction. In the latter case, vu ≺ x, a contradiction.

2.1 Basic Properties of Lyndon Strings 8

• for any non-trivial proper suffix v of x, x ≺ v ⇒ x is Lyndon
Let x = uv. Then x ≺ v and so x ≺ vu. Thus, x is Lyndon.

Proposition 2.4. Let x be a string over A of length ≥ 2. Then
x is Lyndon⇔ for any non-empty u, v so that x = uv, u ≺ v.

PROOF.

• x is Lyndon⇒ for any non-empty u, v so that x = uv, u ≺ v
Let us assume that u 6≺ v. Then either v is a prefix of u or v≺• u. In
the former case, if v is a prefix of u, then it gives x a border; which
is inherently not possible. In the latter, v≺• u gives vu ≺ uv, contra-
dicting the Lyndoness of x. Thus, u ≺ v.

• for any non-empty u, v so that x = uv, u ≺ v ⇒ x is Lyndon
Let x = uv. Let r ≥ 0 be maximal such that v = urw for some
w, and so x = ur+1w. Then ur+1 ≺ w. It follows that either ur+1 is
a prefix of w, which contradicts the maximality of r, or ur+1≺• w.
Therefore, ur+1≺• w ⇒ u≺• w ⇒ ur+1≺• urw ⇒ ur+1w≺• urw ⇒
ur+1w≺• urwu⇒ uv ≺ vu. Thus, x is Lyndon.

The previous propositions indicate that a Lyndon string can be factor-
ized in many ways. So-called standard factorization of a Lyndon string
x is a factorization x = uv where both u and v are also Lyndon and v
is as long as possible. The next lemma asserts that standard factorization
always exists:

Lemma 2.5. For any non-trivial Lyndon string x, there are non-empty Lyn-
don strings u and v so that x=uv.

PROOF. There are many sources with a proof of the lemma, for
instance [6].

2.2 Basic Properties of Lyndon Substrings 9

2.2 Basic Properties of Lyndon Substrings

It is natural to ask whether a substring x[i . . j] of a string x[1 . . n] is Lyndon
or not. But we can also investigate the context in which they occur. The
first property we define is maximality. A substring x[i . . j] is a maximal
Lyndon substring if it is Lyndon and for any j < k ≤ n, x[i . . k] is not
Lyndon.

If a Lyndon substring is a suffix of x[1 . . n], then it is trivially maximal.
But a Lyndon substring can be maximal and not be a suffix. For instance,
x[1 . . 6] = acbaab, the substring x[1 . . 3] = acb is Lyndon and it cannot
be extended: acba is not Lyndon (it has a border a), acbaa is not Lyndon
(it has a border a), and acbaab is not Lyndon (as acb 6≺ aab contradicts
Proposition 2.4). Note that acb will be the maximal Lyndon substring of
xy for any y, i.e. in a certain sense it is non-extensible, while aab is a
maximal Lyndon substring of x, but not a maximal Lyndon substring of
xy if, for instance, y = b.

The information of all maximal Lyndon substrings is succinctly cap-
tured by the notion of Lyndon array introduced in [17]. The Lyndon array
of a string x = x[1..n] is an integer array L[1..n] so that L[i] = j where
j ≤ n−i is a maximal integer such that x[i..i+ j−1] is Lyndon. Alterna-
tively, we can define it as an integer array L′[1..n] so that L′[i] = j when
x[i..j] is a maximal Lyndon substring. The relationship between those two
definitions is straightforward: L′[i] = L[i]+i−1, or L[i] = L′[i]−i+1.

Consider x[1 . . 6] = aababb. Since aababb is Lyndon, it is maximal,
and so L[1] = 6, or L′[1] = 6. The maximal Lyndon substring starting
at position 2 is ababb, so L[2] = 5 and L′[2] = 6. The maximal Lyn-
don substring starting at position 3 is b, so L[3] = 1 and L′[3] = 3. The
maximal Lyndon substring starting at position 4 is abb, so L[4] = 3 and
L′[4] = 6. The maximal Lyndon substring starting at position 5 b, so
L[5] = 1 and L′[5] = 5. The maximal Lyndon substring starting at posi-
tion 6 b, so L[6] = 1 and L′[6] = 6. Therefore, L = [6, 5, 1, 3, 1, 1] while
L′ = [6, 6, 3, 6, 5, 6].

From the work of Hohlweg and Reutenauer, [18] follows the next
lemma describing a very important relationship between Lyndon, maxi-
mal Lyndon substrings of a string, and the order of the suffixes of that
string.

2.2 Basic Properties of Lyndon Substrings 10

Lemma 2.6. Consider a string x = x[1 . . n]. Then for any 1 ≤ i ≤ j ≤ n

(1) x[i . . j] is Lyndon⇔ for any i < k ≤ j, x[i . . n] ≺ x[k . . n]

(2) x[i . . j] is maximal Lyndon ⇔ for any i < k ≤ j, x[i . . n] ≺ x[k . . n]
and either j = n or x[j+1 . . n] ≺ x[i . . n].

PROOF. See Lemma 15 and its proof in Appendix 2 of [17].

3 Background of the Problem

In Chapter 1, it was explained that the interest in maximal Lyndon sub-
strings of a string initially piqued after the debut of Bannai et al.’s al-
gorithm, [4, 5], on computing all the runs in a string over the period of
2015-2017. The algorithm relies on the knowledge of all maximal Lyndon
substrings of the input string with respect to a given order of the alphabet
and the inverse of the given order. To compute all such maximal Lyn-
don substrings, the authors presented what in this thesis is called SSLA
and which is described below. This inspired one of McMaster University’s
research groups to present a brief but comprehensive overview of all al-
gorithms known for computing the Lyndon array, [17]. The layout of this
chapter follows the layout of this paper and includes additional algorithms
not known at that time.

3.1 Brute Force

A naive brute force approach LynArr is given in Fig. 3.1. For each position
i ∈ 1 . . n, the procedure MaxLyn returns the length of the maximal Lyn-
don substring starting at the position i. The procedure MaxLyn tries all
possible end points j and uses the IsLyndon procedure to check whether
x[i . . j] is Lyndon. The variable max stores the so far attained maximal
length. The procedure IsLyndon tries and compares all possible rotations
of x[i . . j] to see if x[i . . j] is Lyndon. The comparison of x[i . . j] and its ro-
tation is performed by the procedure Lex. The complexity of Lex is O(n),
Thus, the complexity of the procedure IsLyndon is O(n2), the complexity
of the procedure MaxLyndon is O(n3), and the complexity of the proce-
dure LynArr is O(n4).

11

3.2 Iterative Duval Algorithm – IDLA 12

This is a typical problem in the field of algorithms on strings. The brute
force approach is simple and its complexity is polynomial with a small
degree. It is only for large strings, like those used in DNA processing
or web searches, where even a small degree of the polynomial complexity
matters; typically, it should be better than quadratic complexity. Thus, this
research focused on sub-quadratic algorithms, i.e. linear algorithms and
O(n log(n)) algorithms, where n is the length of the input string.

3.2 Iterative Duval Algorithm – IDLA

The simplest and the most elegant algorithm for computing maximal Lyn-
don substrings is based on Duval’s algorithm for Lyndon factorization,
[12]. Since the algorithm referred to as IDLA was so essential to this re-
search, an entire chapter has been devoted to it (see chapter 4).

3.3 Recursive Duval Algorithm - RDLA

RDLA is also based on Duval’s algorithm for Lyndon factorization which,
is applied recursively rather than iteratively:

if x[1..i1] x[i1+1..i2] ... x[ik+1..n] is a Lyndon factorization of x, the al-
gorithm is recursively applied to x[2..i1], to x[i1+2..i2], ..., to x[ik+2..n].

The correctness of the algorithm is consequent from the correctness of
Duval’s original algorithm. The alphabet of the input string need not be
sorted, but must be ordered. RDLA has a worst-case complexity ofO(|x|2),
and in the special case of the binary alphabet of x it is O(|x| log(|x|)); see
[17]. Storage requirements are the same as for IDLA, plus the additional
storage for the stack controlling the recursion.

3.3 Recursive Duval Algorithm - RDLA 13

procedure Lex(x[1 . . n], y[1 . . m], Σ,≺) boolean
i← 1
while i ≤ n and i ≤ m and x[i] ≺ y[i] do

i← i + 1
if i ≤ n then return FALSE
return TRUE

procedure IsLyndon(x[1 . . n], i, j, Σ,≺) : boolean
i← 1
while i ≤ n do

y[i]← x[i]
i← i + 1

y[1 . . n]← y[2 . . n]y[1]
i← 2
while i ≤ n and lex(x[1 . . n], y[1 . . n], Σ,≺) do

i← i + 1
y[1 . . n]← y[2 . . n]y[1]

if i > n then
return TRUE

else
return FALSE

procedure MaxLyn(x[1 . . n], i, Σ,≺) : integer
max ← 1
j← i + 1
while j ≤ n do

if IsLyndon(x, i, j, Σ,≺) then
max ← j− i + 1

j← j + 1
return max

procedure LynArr(x[1 . . n], Σ,≺) : integerarray[1 . . n]
i← 1
while i ≤ n do

L[i]← MaxLyn(x, i, Σ,≺)
i← i + 1

return L[1 . . n]

Figure 3.1: Brute force algorithm

3.4 Algorithmic Scheme Based on Suffix Sorting - SSLA 14

3.4 Algorithmic Scheme Based on Suffix Sorting - SSLA

The suffix sorting algorithmic scheme is based on Lemma 2.6 which char-
acterizes maximal Lyndon substrings in terms of the relationships of the
suffixes. Therefore, the Lyndon array of x is the NSV (Next Smaller Value)
array of the inverse suffix array. The scheme is as follows:

(1) sort the suffixes, i.e. compute the suffix array;

(2) from the suffix array compute the inverse suffix array; and

(3) apply NSV to the inverse suffix array.

Computing the inverse suffix array and applying NSV are “naturally” lin-
ear and computing the suffix array can be implemented to be linear, see
[17, 26] and the references therein. The time and space characteristics of
the whole scheme are dominated by the time and space characteristics of
step (1) – the computation of the suffix array. For linear suffix sorting, the
input strings must be over constant or integer alphabets.

3.5 Algorithmic Scheme Based on Burrows-Wheeler Trans-

form – BWLA

The algorithmic scheme based on Burrows-Wheeler transform was not
presented in [17] as it was introduced in 2018, see [24]. The algorithm
is linear and computes the Lyndon array from a given Burrows-Wheeler
transform of the input string. In some sense, it is a “byproduct” of the
computation of the inverse of the Burrows-Wheeler transform. Since the
only known linear computation of Burrows-Wheeler transform is from the
suffix array, it is yet another scheme of how to obtain the Lyndon array via
suffix sorting:

(1) compute the suffix array;

(2) from the suffix array compute the Burrows-Wheeler transform; and

(3) compute the Lyndon array during the inversion of the Burrows-
Wheeler transform.

As for SSLA, the execution and space characteristics of the whole scheme
are dominated by the computation of the suffix array.

3.6 An Algorithm Based on Ranges – RGLA 15

3.6 An Algorithm Based on Ranges – RGLA

This algorithm was discussed in [17] where it was referred to as NSV*. The
algorithm is emulating the stack-based implementation of NSV working
with ranges. In case of a constant alphabet, ranges can be compared in
constant time if the Parikh vector for each range is pre-computed. An
increasing range is a maximal substring x[i..j] so that x[�«�] � x[`] for every
i ≤ �«� < ` ≤ j, while a decreasing range is a maximal substring x[i..j] so
that x[�«�] � x[`] for every i ≤ �«� < ` ≤ j. A more efficient version based on
pre-computation of Parikh vectors for ranges is also presented. The time
and space complexity of the algorithms was not given in [17], but based
on the algorithms construction, the time complexity should be at worst
O(n2). In [17] it was indicated that the time complexity could possibly be
O(n log(n)), where n is the length of the input string, however, no formal
analysis or proof were included and there has been no followup research
concerning these two algorithms.

4 Iterated Duval Algorithm (IDLA)

The Iterated Duval algorithm for Lyndon Array, hereinafter referred to as
IDLA, is based on the work of Jean-Pierre Duval [12]. His linear algo-
rithm was designed for Lyndon factorization of a string. The fundamental
procedure we refer to as MaxLyn identifies the maximal Lyndon prefix of
a string, which can easily be adopted for computing Lyndon array [17].
With respect to Lyndon factorization, Duval iteratively applied MaxLyn to
the suffix starting at the position immediately following the end of the
maximal Lyndon prefix identified. In IDLA, MaxLyn is applied to every
suffix of the input string.

The algorithm IDLA, see Fig. 4.1, is a simple and in-place algorithm.
This means that aside from the original string and the Lyndon array, no
additional storage is required. The algorithm IDLA is completely inde-
pendent of the alphabet of the string and does not require the alphabet to
be sorted, just to be ordered; i.e. a pairwise constant-time comparison of
alphabet symbols must be provided.

One caveat with this algorithm is that IDLA has an O(|x|2) worst-case
complexity, where x is the input string, which may be problematic for
longer strings. However, note that a brute force approach to determining
if a prefix is Lyndon is quadratic; it must be checked against all its rota-
tions. The elegance of Duval’s design is that it can perform this operation
in linear time, bringing the overall complexity of IDLA to quadratic. The
fact that MaxLyn truly computes the length of the maximal Lyndon prefix
is not obvious and follows from a deep understanding of the aperiodic
nature of Lyndon words.

Since IDLA is so essential for this work as it was used both as a yard-
stick for performance comparisons and a result verifier of TRLA and BSLA,

16

17

procedure MaxLyn(x[1 . . n], j, Σ,≺) : integer
; max = length of the maximal Lyndon prefix of x[j . . n]

i← j + 1
max ← 1
while i ≤ n do

k← 0
while x[j + k] = x[i + k] do

k← k + 1
if x[j + k] ≺ x[i + k] then

i← i + k + 1
max ← i− 1

else
return max

procedure IDLA(x[1 . . n], Σ,≺) : integer array
; x string over alphabet Σ ordered by ≺

i← 1
while i < n do

L[i] = MaxLyn(x[1 . . n], i, Σ,≺)
i← i + 1

L[n]← 1
return L

Figure 4.1: Algorithm IDLA

it is important to describe IDLA to some degree even though it had been
covered in both [17] and [27].

As mentioned in Chapter 2, there are several string conditions equiva-
lent with the string being Lyndon. In Lemma 4.2, we present another one,
but first a definition of the prefix table of a string.

Definition 4.1. For a string x = x[1 . . n], prefix table π[1 . . n] is an integer
array in which for every i ∈ 1 . . n, π[i] is the length of the longest substring
beginning at position i of x that matches a prefix of x.

The recent results on the prefix table [7, 9] confirm its relevance for
string algorithms. The following lemma is simple as 1+π[i] and i+π[i]
are the first positions at which x[1 . . n] and x[i . . n] differ.

18

Lemma 4.2. x is a Lyndon string if and only if for every i such that
2 ≤ i ≤ n and i+π[i] ≤ n, it follows that x[1+π[i]] ≺ x[i+π[i]].

PROOF. x[1 . . n] is Lyndon ⇔ for any i such that 2 ≤ i ≤ n, x[1 . . n] ≺
x[i . . n]. Since x[1 . . π[i]] = x[i . . i+π[i]−1], it follows that x[1+π[i]] ≺
x[i+π[i]].

Lemma 4.3. Suppose that for some position i in a Lyndon string x[1 . . n],
π[i] ≥ 2. Then for every j such that i < j < i+π[i], π[j] ≤ i+π[i]− j.

PROOF. If i+π[i] = n+1, then x would have a border, and hence could not
be Lyndon. Thus, i+π[i] ≤ n. Arguing by contradiction, assume that for
some j, π[j] > i+π[i]− j. It follows that:

x[1 . . i+π[i]− j+1] = x[j . . i+π[i]], (1)

while x[j− i+1 . . π[i]] = x[j . . i+π[i]−1]. Since x is Lyndon, therefore,
x[1+π[i]] ≺ x[i+π[i]] by Lemma 4.2, and so:

x[j−i+1 . . 1+π[i]] ≺ x[j . . i+π[i]]. (2)

From (1) and (2) we see that x[1 . . π[i]+1] has suffix x[j−i+1 . . π[i]+1]
satisfying x[j−i+1 . . π[i]+1] ≺ x[1 . . i+π[i]−j+1], x[1 . . π[i]+1] has suffix
x[j − i + 1 . . π[i] + 1] that is lexicographically smaller than prefix
x[1 . . i+π[i]− j+1], contradicting the assumption that x is Lyndon.

The result of Lemma 4.3 forms the basis of the procedure MaxLyn in
Figure 4.1 that computes the maximum length of the longest Lyndon pre-
fix. The efficiency of MaxLyn is a consequence of the instruction i← i+k+1
that skips over positions in the range i+1 . . i+k−1, effectively assuming
that for every position j in that range, j + π[j] ≤ i + k.

4.1 Implementation Notes 19

4.1 Implementation Notes

The implementation of IDLA is straightforward, simple, and in-place (no
space is required except the storage of the string and the Lyndon array).
The algorithm is implemented in C++ and for strings whose alphabet sym-
bols can be non-negative 64-bit signed integers; including 0.More precisely,
the C++ data type of the alphabet symbols is long, but only non-negative
values are permitted. To that end, the class Lstring implements such
a string as a long array with an additional attribute len that stores the
length of the string. For additional details, the code has been made pub-
licly available [1]. The C++ source file containing the procedure idla and
some other related procedures is named lynarr.hpp.

Note that the possible alphabet is finite in the theoretical sense, as there
are only 263+1 possible alphabet symbols. However, since the lengths of
the test strings by far do not exceed the length 263+1, we can pretend that
we are working with integer alphabets.

5 Baier’s Sort Inspired Algorithm (BSLA)

This Lyndon array algorithm, hereinafter referred to as BSLA, is inspired
by the technique Baier designed for phase I of his suffix sorting algo-
rithm [2, 3]. In that phase, all suffixes with the same maximal Lyndon
prefix are identified and grouped together. The input strings for BSLA are
tight strings over integer alphabets. It is important to note that the require-
ment of the tightness of the input string does not significantly detract from
the applicability of the algorithm as any string x over an integer alphabet
can easily be transformed in O(|x|) time to a tight string; see procedure
Tight at Fig. 5.1. The original string x and the transformed string have the
same Lyndon array since they are isomorphic (see definition 5.1), thus, the
Lyndon array computed by BSLA for the transformed tight string is the
Lyndon array of the original string x as well.

Definition 5.1. For strings x and y, let A(x) = {a1, . . , an} and A(y) = {b1,
. . , bn}. Let f : A(x) =⇒ A(y) be a bijection such that ai ≺ aj iff
f (ai) ≺ f (aj). If f (x) = f (x[1]) . . f (x[n]) = y, then x and y are isomor-
phic.

It is quite clear, a straightforward observation, that the procedure Tight
is linear in the length of the input string x; as it consists of a series of
traversals of an array of length |x| or traversals of the string x. The only
exception is the one loop containing a nested loop, its inner loop is to set
a new value for f ree, and it traverses from the old f ree to the new f ree.
Therefore, the loop is performed in 2|x| steps. Further, the procedure re-
quires a working space in the form of an array of size |x|. The storage for
the Lyndon array to be computed by BSLA can be used for this step, so
Tight does not require any additional space, if used.

20

21

procedure Tight(x[1 . . n], f rq[1 . . n])
i← 1 ; initialize f rq[]
while i ≤ n do

f rq[i]← 0
i← i + 1

i← 1 ; traverse x and set occurrences of symbols
while i ≤ n do

f rq[x[i]]← 1
i← i + 1

f ree← −1 ; find first unused symbol
i← 1
while i ≤ n do

if f rq[x[i]] = 0 then
f ree← i
break

if f ree = −1 then return ; x already tight
i← 1
while i ≤ n do

if f rq[i] = 0 then continue
if i < f ree then continue
f rq[i]← f ree− i
j← f ree + 1 ; update f ree
while j ≤ i do

if f rq[j] ≤ 0 then
f ree← j
break

i← 1 ; traverse x and modify it
while i ≤ n do

if f rq[x[i]] = 1 continue
x[i]← x[i] + f rq[x[i]]

return

Figure 5.1: Algorithm Tight

BSLA is based on a refinement of a list of groups of indices of the input
string x. The initial list of groups consists of the groups of indices with the
same alphabet symbol. The refinement is driven by a group that is already
complete (see Definition 5.5) and completes the immediately preceding
group. In turn, this newly completed group is used as the driver of the
next round of the refinement. Hence, the refinement proceeds from right-
to-left until all of the groups in the list are complete. For the intuition
behind the refinement process, please see section 5.3 below.

5.1 Notation and Notions for Analysis of BSLA 22

Each group is assigned a specific substring of the input string, this is
referred to as the context of the group. There is a tight relationship be-
tween the context and the indices in the group: for every index i of the
group, there is an occurrence of the context at the position i; for a precise
definition see Section 5.1. Throughout the process the list of groups is
maintained in an increasing lexicographic order by their contexts. More-
over, at every stage, the contexts of all the groups are Lyndon substrings
of x with an additional property that the contexts of complete groups are
maximal Lyndon substrings. Therefore, when the refinement is complete,
the contexts of all the groups in the list represent all maximal Lyndon sub-
strings of x.

In order to verify the process, prove that it is correct, and to describe
the refinement in technical detail, several properties must be introduced
and notions formally defined.

5.1 Notation and Notions for Analysis of BSLA

For simplicity’s sake, we fix a tight string x = x[1 . . n] over an integer al-
phabet for Section 5.1 in its entirety; all the definitions and observations
refer to this x.

A group G is a non-empty set of indices of x. The group G is assigned
a context, i.e. a substring con(G) of x with the property that for any i ∈ G,
x[i . . i+|con(G)|−1] = con(G). If i ∈ G, then C(i) denotes the occurrence
of the context of G at the position i, i.e. C(i) = x[i . . i+|con(G)|−1]. We
say that a group G′ is smaller than or precedes a group G′′ if con(G′) ≺
con(G′′).

Definition 5.2. An ordered list of groups 〈Gk, Gk−1, ..., G2, G1〉 is a group
configuration, if all four conditions (C1), (C2), (C3), and (C4) hold, where:

(C1) Gk ∪ Gk−1 ∪ ...∪ G2 ∪ G1 = 1 . . n = {i | 1 ≤ i ≤ n};

(C2) Gj ∩ G` = ∅ for any j 6= `;

(C3) con(Gk) ≺ con(Gk−1) ≺ ... ≺ con(G2) ≺ con(G1); and

(C4) for any j ∈ 1 . . k, con(Gj) is a Lyndon substring of x.

5.1 Notation and Notions for Analysis of BSLA 23

Note that (C1) and (C2) guarantee that 〈Gk, Gk−1, ..., G2, G1〉 is a disjoint par-
titioning of the range 1 . . n.

For a given group configuration 〈Gk, Gk−1, ..., G2, G1〉, we introduce two
functions, gr and prev. The conditions (C1) and (C2) guarantee that for
every i ∈ 1 . . n, there is a unique Gt in the configuration so that i ∈ Gt.
Let gr(i) denote this unique group, i.e. gr(i) = Gt. Using the notion
of gr, C(i) = x[i . . i+ |con(gr(i))|−1]. The mapping prev is defined by
prev(i) = max{j < i : con(gr(j)) ≺ con(gr(i))} if such j exists, otherwise
prev(i) = nil.

For each group G from a group configuration 〈Gk, Gk−1, ..., G2, G1〉, we
define equivalence ∼ on G as follows: i ∼ j iff gr(prev(i)) = gr(prev(j))
or prev(i) = prev(j) = nil. The symbol [i]∼ denotes the equivalence class
of ∼ that contains i, i.e. [i]∼ = {j ∈ G | j ∼ i}. If prev(i) = nil, then
the class [i]∼ is called trivial. An interesting observation states that if G is
viewed as an ordered set of indices, then a non-trivial [i]∼ is an interval:

Proposition 5.3. Let G be a group from a group configuration
〈Gk, Gk−1, ..., G2, G1〉. Consider an i ∈ G such that prev(i) 6= nil. Let
j1 = min[i]∼ and j2 = max[i]∼ . Then [i]∼ = {j ∈ G | j1 ≤ j ≤ j2}.

PROOF. Since prev(j1) is a candidate to be prev(j), prev(j) 6= nil and
prev(j1) ≤ prev(j) ≤ prev(j2) = prev(j1), so prev(j) = prev(j1) = prev(j2).

On each non-trivial class of ∼, we define a relation ≈ as follows: i ≈ j
iff |j− i| = |con(G)|; in simple terms it means that the occurrence C(i) of
con(G) is immediately followed by the occurrence C(j) of con(G). The tran-
sitive closure of ≈ is an equivalence relation, which we also denote by
≈. The symbol [i]≈ denotes the equivalence class of ≈ containing i, i.e.
[i]≈ = {j ∈ [i]∼ | j ≈ i}.

For each j from a non-trivial [i]∼ , we define the valence by val(j) =

|[i]≈ |. In simple terms, val(j) is the number of elements from [j]∼ that are ≈ j.
Thus, 1 ≤ val(j) ≤ |G|. Interestingly, if G is viewed as an ordered set of
indices, then [i]≈ is a subinterval of the interval [i]∼ :

5.1 Notation and Notions for Analysis of BSLA 24

Proposition 5.4. Let G be a group from a group configuration for x. Con-
sider an i ∈ G such that prev(i) 6= nil. Let j1 = min[i]≈ and j2 = max[i]≈ .
Then [i]≈ = {j ∈ [i]∼ | j1 ≤ j ≤ j2}.

PROOF. Argue by contradiction. Assume that there is an j ∈ [i]∼ so that
j1 < j < j2 so that j /∈ [i]≈ . Take the minimal such j. Consider j′ =
j− |con(G)|. Then j′ ∈ [i]∼ and since j′ < j, j′ ∈ [i]≈ due to the minimality
of j. So i ≈ j′ ≈ j and so j ≈ i, a contradiction.

Definition 5.5. A group G is complete if for any i ∈ G, the occurrence C(i)
of con(G) is a maximal Lyndon substring of x.

A group configuration 〈Gk, Gk−1, ..., G2, G1〉 is t-complete, 1 ≤ t ≤ k, if:

(C5) the groups Gt, ..., G1 are complete;

(C6) the mapping prev is proper on Gt, i.e. it holds that for any
i ∈ Gt, if prev(i) 6= nil and v = val(i), then there are i1, ..., iv ∈ Gt,
i ∈ {i1, ..., iv}, prev(i) = prev(i1) = ... = prev(iv), and so that
C(prev(i))C(i1)...C(iv) is a prefix of x[j . . n];

(C7) the family {C(i) | i ∈ 1 . . n} is proper, i.e. it satisfies both condi-
tions (a) and (b) below; and

(a) if C(j) is proper substring of C(i), then con(Gt) ≺ con(gr(j));

(b) if C(i) is followed immediately by C(j), i.e. when i+|con(gr(i))| =
j, and C(i) ≺ C(j), then con(gr(j)) � con(Gt).

(C8) the family {C(i) | i ∈ 1 . . n} has the Monge property, i.e. it holds
that whenever C(i) ∩ C(j) 6= ∅, then C(i) ⊆ C(j) or C(j) ⊆ C(i).

The condition (C6) is all-important for carrying out the refinement pro-
cess (see (R3) below). The conditions (C7) and (C8) are necessary for as-
serting that the condition (C6) is preserved during the refinement process.

5.2 The Refinement 25

5.2 The Refinement

For simplicity’s sake, we fix a tight string x = x[1 . . n] over an integer
alphabet for Section 5.2 in its entirety; all the definitions, lemmas, and the-
orems refer to this x.

Lemma 5.6. Let Ax = {a1, ..., ak} and a1 ≺ a2 ≺ ... ≺ ak. For 1 ≤ ` ≤ k,
define G` = {i ∈ 1 . . n : x[i] = ak+1−̀ } with context ak+1−̀ . Then 〈Gk, ..., G1〉
is a 1-complete group configuration.

PROOF. (C1), (C2), (C3), and (C4) are straightforward to verify. To verify
(C5), we need to show that G1 is complete. Any occurrence of ak in x is a
maximal Lyndon substring, so G1 is complete.

To verify (C6), consider j = prev(i) and val(i) = v for i ∈ G1. Consider
any j < ` < i. If x[`] 6= ak, then prev(i) < ` which contradicts the defini-
tion of prev. Hence x[`] = ak and so x[j+1] = ... = x[i] = ... x[j+v+1] = ak

while x[j] = a` for some ` < k. It follows that x[j . . n] has a`(ak)
v as a

prefix.

The condition (C7(a)) is trivially satisfied as no C(i) can have a proper
substring. If C(i) is immediately followed by C(j) and C(i) ≺ C(j),
then C(i) = x[i], j = i+1, C(j) = x[i+1] and x[i] ≺ x[i+1]. Then
con(C(j)) = x[i+1] � ak = con(G1), so (C7(b)) is also satisfied.

To verify (C8), consider C(i) ∩ C(j) 6= ∅. Then C(i) = x[i] = x[j] =
C(j).

Let 〈Gk, ..., Gt, ..., G1〉 by a t-complete group configuration. The refinement
is driven by the group Gt and it might only partition the groups that pre-
cede it; i.e. the groups Gk, ..., Gt+1, while the groups Gt, ..., G1 remain un-
changed. The refinement by Gt consists of three steps (R1), (R2), and (R3)

described below.

(R1) The group Gt is partitioned into equivalence classes of ∼:
Thus, Gt = [i1]∼ ∪ [i2]∼ ∪ ...∪ [ip]∼ ∪X, where X = {i ∈ Gt : prev(i) =
nil}, which may be empty, and i1 < i2 < ... < ip.

5.2 The Refinement 26

(R2) Every class [i`]∼ , 1 ≤ ` ≤ p, is then partitioned into equivalence
classes of ≈:
Thus, [i`]∼ = [j`,1]≈ ∪ [j`,2]≈ ∪ ...∪ [j`,m`

]≈ , where val(j`,1) < val(j`,2) <

... < val(j`,m`
).

(R3) So we have a list of classes in this order: [j1,1]≈ , [j1,2]≈ , ... [j1,m1]≈ ,
[j2,1]≈ , [j2,2]≈ , ... [j2,m2]≈ , ..., [jp,1]≈ , [jp,2]≈ , ... [jp,mp]≈ . This list is pro-
cessed from left to right. Note that for each i ∈ [j`,�«�]≈ ,
prev(i) ∈ gr(j`,�«�) and val(i) = val(j`,�«�).

For each j`,�«�, move all elements {prev(i) : i ∈ [j`,�«�]≈} from the target
group gr(prev(j`,�«�)) into a new group H and place H in the list of
groups right after the target group gr(prev(j`,�«�)) and set its context
to con(gr(prev(j`,�«�)))con(gr(j`,�«�))

val(j`,�«�).
(
Note, that this “doubling of

the contexts” is possible due to (C6)
)
. Then update prev:

all values of prev are correct except possibly the values of
prev for indices from H. It may be the case that for i ∈ H,
there is i′ ∈ gr(j`,�«�) so that prev(i) < i′, so prev(i) must be
reset to maximal such i′. (Note that before the removal of H from
gr(j`,�«�), the index i′ was not eligible to be considered for prev(i) as
i and i′ were both from the same group.)

Theorem 5.7 shows that having a t-complete group configuration
〈Gk, ..., Gt+1, Gt, ..., G1〉 and refining it by Gt, then the resulting system of
groups is a (t+1)-complete group configuration. This allows to carry on
the refinement in an iterative fashion.

Theorem 5.7. Let Conf = 〈Gk, ..., Gt+1, Gt, ..., G1〉 be a t-complete group con-
figuration, 1 ≤ t. After performing the refinement of Conf by group Gt,
the resulting system of groups denoted as Conf ′ is a (t+1)-complete group
configuration.

PROOF. We carry the proof in a series of claims. The symbols gr(), con(),
C(), prev(), and val() denote the functions for Conf, while gr′(), con′(),
C′(), prev′(), and val′() denote the functions for Conf ′.

5.2 The Refinement 27

Claim 1. Conf ′ is a group configuration, i.e. (C1), (C2), (C3) and (C4) for
Conf ′ hold.

Proof of Claim 1.
(C1) and (C2) follow from the fact that the process is a refinement, i.e. a
group is either preserved as is, or is partitioned into two or more groups.
The doubling of the contexts in step (R3) guarantees that the increasing
order of the contexts is preserved, i.e. (C3) holds. For any j ∈ Gt so that
j = prev(i) 6= nil, con(gr(prev(j))) is Lyndon and con(gr(j)) is also Lyn-
don, and con(gr(prev(j))) ≺ con(gr(j)), so con(gr(prev(j)))con(gr(j))val(j)

is Lyndon as well and thus (C4) holds.

∴ concluding the proof of Claim 1.

Claim 2. {C′(i) | i ∈ 1 . . n} is proper and has the Monge property, i.e.
(C7) and (C8) for Conf ′ hold.

Proof of Claim 2.
Consider C′(i) for some i ∈ 1 . . n. There are two possibilities:

• C′(i) = C(i); or

• C′(i) = C(i)C(i1)...C(iv), for some i1, i2, ..., iv ∈ Gt, so that for any
1 ≤ ` ≤ v, i = prev(i`), and C(i`) = con(Gt), v = val(i`), and for any
1 ≤ ` < k, and i +̀1 = i`+|con(Gt)|. Note that con(gr(i)) ≺ con(Gt).

Consider C′(i) and C′(j) for some 1 ≤ i < j ≤ n.

• Case C′(i) = C(i) and C′(j) = C(j).

• Show that (C7(a)) holds.
If C′(j) (C′(i), then C(j) (C(i), and so by (C7(a)) for Conf,
con(Gt) ≺ con(gr(j)), and thus con′(Ht+1) ≺ con(Gt) ≺ con(gr(j)) =
con′(gr′(j)). Therefore, (C7(a)) for Conf ′ holds.

• Show that (C8) holds.
If C′(i) ∩ C′(j) 6= ∅, then C(i) ∩ C(j) 6= ∅, so C(j) ⊆ C(i), and
so C′(j) ⊆ C′(i), so (C8) for Conf ′ holds.

• Case C′(i) = C(i) and C′(j) = C(j)C(j1)...C(jw),
where w = val(j1), C(j1) = ... = C(jw) = con(Gt), and j1 ≈ ... ≈ jw.

5.2 The Refinement 28

• Show that (C7(a)) holds.
If C′(j) (C′(i), then C(j)C(j1)...C(jw) (C(i), hence C(j) (
C(i), and so by (C7(a)) for Conf, con(Gt) ≺ con(gr(j)). By t-
completeness of Conf, C(j) is a maximal Lyndon substring, a
contradiction with C(j)C(j1)...C(jw) being Lyndon. This is an
impossible case.

• Show that (C8) holds.
If C′(i) ∩ C′(j) 6= ∅, then C(j) ⊆ C(i) by (C8) for Conf. By
(C7(a)) for Conf, C(j) cannot be a suffix of C(i) as con(gr(j)) ≺
con(Gt). Hence C(i) ∩ C(j1) 6= ∅, and so C(j)C(j1) ⊆ C(i) and
since C(j1) cannot be a suffix of C(i) as gr(j1) = Gt, it follows
that C(i) ∩ C(j2) 6= ∅, ..., ultimately giving C(j)C(j1)...C(jw) ⊆
C(i). So (C8) for Conf ′ holds.

• Case C′(i) = C(i)C(i1)...C(iv) and C′(j) = C(j),
where v = val(i1), C(i1) = ... = C(iv) = con(Gt), and i1 ≈ ... ≈ iv.

• Show that (C7(a)) holds.
If C′(j) (C′(i), then either C(j) (C(i), which implies by
(C7(a)) for Conf that con(Gt) ≺ con(gr(j)), giving con′(Ht+1) ≺
con′(Gt) = con(Gt) ≺ con(gr(j)) = con′(gr′(j)), or C(j) ⊆ C(i`)
for some 1 ≤ ` ≤ v. If C(j) = C(i`), then gr(j) = gr(i`) = Gt,
giving con′(Ht+1) ≺ con(Gt) = con(gr(j)). So (C7(a)) for Conf ′

holds.

• Show that (C8) holds.
Let C′(i) ∩ C′(j) 6= ∅. Consider D = {i` | 1 ≤ ` ≤ v & C(j) ∩
C(i`) 6= ∅}.
Assume that D 6= ∅:

By (C8) for Conf, either C(j) ⊆ ⋃
i`∈D C(i`) ⊆ C′(i) and we

are done, or
⋃

i`∈D C(i`) ⊆ C(j). Let i�«� be the smallest ele-
ment of D. Since C(i�«�) cannot be prefix of C(j), it means that
i�«� = i1. Since C(i1) cannot be a prefix of C(j), it means that
C(i) ∩ C(j) 6= ∅, and so C(j) ⊆ C(i), which contradicts the
fact that C(j) ⊆ ⋃i`∈D C(i`) ⊆ C′(i).

Assume that D = ∅:
Then C(i)∩C(j) 6= ∅, and so by (C8) for Conf, C(j) ⊆ C(i) ⊆
C′(i) as i < j.

5.2 The Refinement 29

• Case C′(i) = C(i)C(i1)...C(iv) and C′(j) = C(j)C(j1)...C(jw),
where v = val(i1), C(i1) = ... = C(iv) = con(Gt), and i1 ≈ ... ≈ iv,
and where v = val(j1), C(j1) = ... = C(jw) = con(Gt), and j1 ≈ ... ≈
jw.

• Show that (C7(a)) holds.
Let C′(j) (C′(i). Then either C(j) ⊆ C(i) and so con(Gt) ≺
con(gr(j)), implying that C(j) is maximal contradicting C(j)C(j1)...C(jw)
being Lyndon. Thus, C(j) (C(i`) for some 1 ≤ ` ≤ v. But then
con(Gt) ≺ con(gr(j)), implying that C(j) is maximal, again a
contradiction. This is an impossible case.

• Show that (C8) holds.
Let C′(i) ∩ C′(j) 6= ∅. Let us first assume that C(i) ∩ C(j) 6= ∅.
Then, C(j) ⊆ C(i). Since C(j) cannot be a suffix of C(i), it
follows that C(i) ∩ C(j1) 6= ∅. Therefore, C(j)C(j1) ⊆ C(i). Re-
peating this argument leads to C(j)C(j1)...C(jw) ⊆ C(i) and are
done.
Let us assume that C(i) ∩ C(j) = ∅. Let 1 ≤ ` ≤ v be the small-
est such that C(i`) ∩ C(j) 6= ∅. Such ` must exists. Then, i` ≤ j.
If i` = j, then either C(i`) is a prefix of C(j) or vice versa, both
impossibilities, hence i` < j. Repeating the same arguments as
for i, we get that C(j)C(j1)...C(jw) ⊆ C(i`) and so we are done.

It remains to show that (C7(b)) for Conf ′ holds.
Consider C′(i) immediately followed by C′(j) with C′(i) ≺ C′(j).

• Assume that gr′(j) ∈ {Gt−1, ..., G1}.
Then con(Gt) = con′(Gt), gr(j) = gr′(j) and con(gr(j)) = con′(gr′(j)).
If C′(i) = C(i), then C(i) ≺ C(j) and C(i) is immediately followed
by C(j), so by (C7(b)) for Conf, we have a contradiction. Thus,
C′(i) = C(i)C(i1)...C(iv) for v = val(i) and con(gr(iv)) = con(Gt) ≺
con(gr(j)) and C(iv) is immediately followed by C(j), a contradiction
by (C7(b)) for Conf.

• Assume that gr′(j) = Gt.
Then the group gr(i) were partitioned when refining by Gt, and so
C′(i) = con′(gr′(i)) = con(gr(i))C(j)v for v = val(j). Since C′(i) is
immediately followed by C′(j) = con(Gt), we have again a contra-
diction as it implies that val(j) = v+1.

∴ concluding the proof of Claim 2.

5.2 The Refinement 30

Claim 3. The function prev′ is proper on Ht+1, i.e. (C6) for Conf ′ holds.

Proof of Claim 3.
Let j = prev′(i) and i ∈ Ht+1 with val′(i) = v. Then, |[i]≈ | = v and so
[i]≈ = {i1, ..., iv}, where i1 < i2 < ... < iv. Hence, i1, ..., iv ∈ Ht+1 and
C′(i1) = ... = C′(iv) = con′(Ht+1) and j = prev′(i) = prev′(i1) = ... =

prev′(iv) and so j < i1. It remains to show that C′(j)C′(i1)...C′(iv) is a
prefix of x[j . . n]. It suffices to show that C′(j) is immediately followed by
C′(i1).

If C′(j) ∩ C′(i1) 6= ∅, then by the Monge property (C8), C′(i1) ⊆ C′(j) as
j < i1, and so by (C7(a)), con′(Ht+1) ≺ con′(gr′(i1)) = con′(Ht+1), a contra-
diction.

Thus, C′(j) ∩ C′(i1) = ∅. Set j1 = j+|con′(gr′(j))|. It follows that j1 ≤ i1.
Assume that j1 < i1. Since j = prev′(i1) and j < i1, con′(gr′(j1)) �
con′(gr′(i1)) = con′(Ht+1). Since j1 /∈ Ht+1, con′(gr′(j1)) � con′(Ht+1). Con-
sider C′(j1). If C′(j1) ∩ C′(i1) 6= ∅, then by (C8), C′(i1) ⊆ C′(j1), and so
by (C7(a)), con′(Ht+1) ≺ con′(gr′(i1)) = con′(Ht+1), a contradiction. Thus,
C′(j1) ∩ C′(i1) = ∅. Since C′(j1) immediately follows C′(j), by (C7(b)),
con′(gr′(j1)) � con′(Ht+1), a contradiction. Therefore j1 = i1, and so prev′

is proper on Ht+1.

∴ concluding the proof of Claim 3.

Claim 4. Ht+1 is a complete group, i.e. (C5) for Conf ′ holds.

Proof of Claim 4.
Assume that there is i ∈ Ht+1 so that C′(i) is not maximal, i.e. for some
k ≥ i+|con′(Ht+1)|, x[i . . k] is a maximal Lyndon substring of x.

Either k = n and so con′(gr′(k)) = x[k] and so C′(k) is a suffix of x[i . . k],
or k < n and then x[k+1] ≺ x[k] since x[k+1] � x[k] implies that x[i . . k+1]
is Lyndon, a contradiction with the maximality of x[i . . k]. Consider C′(k),
then C′(k) ⊆ x[i . . k] and so C′(k) = x[k].
Therefore, there is j1 so that i+|con′(Ht+1)| ≤ j1 ≤ k and C′(j1) is a suffix of
x[i . . k].Take the smallest j1 such. If j1 = i+|con′(Ht+1)|, then C′(i) ≺ C′(j1)
as x[i . . k] = C′(i)C′(j1) is Lyndon. By (C7(b)), C′(j1) � con′(Ht+1), so we
have con′(Ht+1) = C′(i) ≺ C′(j1) � con′(Ht+1), a contradiction.

5.2 The Refinement 31

Therefore, j1 > i+ |con′(Ht+1)|. Consider x[j1−1]. If x[j1−1] � x[j1],
x[j1−1 . . k] is Lyndon, and since x[j1 . . k] = C′(j1), x[j1−1 . . k] would be
a context of gr′(j1−1), and this contradicts the fact the j1 was chosen to
be the smallest such. Therefore, x[j1−1] � x[j1] and so con′(gr′(j1−1)) =
x[j1−1]. Thus, there is j2, i+|con′(Ht+1)| ≤ j2 < j1 ≤ k and C′(j2) is a
suffix of x[i . . j1−1]. Take the smallest such j2. If C′(j2) ≺ C′(j1), then by
(C7(b)), C′(j1) � con′(Ht+1), a contradiction. Hence, C′(j2) � C′(j1). If
j2 = i + i+|con′(Ht+1)|, then x[i . . k] = C′(i)C′(j2)C′(j1) and so by (C7(b)),
C′(j2) � con′(Ht+1), a contradiction. Hence, i+|con′(Ht+1)| < j2.

The same argument made for j2 can now be made for j3. This results in i+
|con′(Ht+1)| ≤ j3 < j2 < j1 ≤ k and C′(j3) � C′(j2) � C′(j1) � con′(Ht+1).
If i+|con′(Ht+1)| = j3, then it is a contradiction, so i+|con′(Ht+1)| < j3.
These arguments can be repeated only finitely many times, and we ob-
tain i+ |con′(Ht+1)| = j` < j −̀1 < ... < j2 < j1 ≤ k so that x[i . . k] =

C′(i)C′(j`)C′(j −̀1...C′(j2)C′(j1), which is a contradiction.

Thus, the initial assumption that C′(i) is not maximal always leads to a
contradiction.

∴ concluding the proof of Claim 4.

The four claims show that all the conditions (C1) ... (C8) are satisfied for
Conf ′, and that proves Theorem 5.7.

As the last step, we show that when the process of refinement is com-
pleted, all maximal Lyndon substrings of x are identified and sorted via
the contexts of the groups of the final configuration.

Theorem 5.8.
Let Conf1 = 〈G1

k1
, G1

k1−1, ..., G1
2 , G1

1〉 with gr1(), con1(), C1(), prev1(), and
val1() be the initial 1/̄complete group configuration from Lemma 5.6.

Let Conf2 = 〈G2
k2

, G2
k2−1, ..., G2

2 , G2
1〉 with gr2(), con2(), C2(), prev2(), and

val2() be the 2/̄complete group configuration obtained from Conf1 through
the refinement by the group G1

1 .

5.3 Intuition Behind the Refinement Process 32

Let Conf3 = 〈G3
k3

, G3
k3−1, ..., G3

2 , G3
1〉 with gr3(), con3(), C3(), prev3(), and

val3() be the 3/̄complete group configuration obtained from Conf2 through
the refinement by the group G2

2 .

...

Let Confr = 〈Gr
kr

, Gr
kr−1, ..., Gr

2, Gr
1〉 with grr(), conr(), Cr(), prevr(), and

valr() be the r/̄complete group configuration obtained from Confr−1 through
the refinement by the group Gr−1

r−1 . Let Confr be the final configuration after
the refinement runs out.

Then x[i . . k] is a maximal Lyndon substring of x iff x[i . . k] = Cr(i) =

conr(grr(i)).

PROOF. That all the groups of Confr are complete follows from Theorem 5.7
and, hence, every Cr(i) is a maximal Lyndon string. Let x[i . . k] be a maxi-
mal Lyndon substring of x. Consider Cr(i), since it is maximal, it must be
equal to x[i . . k].

5.3 Intuition Behind the Refinement Process

The process of refinement is in fact a process of gradual revealing of the
Lyndon substrings which we call the water draining method:

(a) lower the water level by one

(b) extend the existing Lyndon substrings
the revealed letters are used to extend the existing Lyndon substrings
where possible, or became Lyndon substrings of length 1 otherwise;

(c) consolidate the new Lyndon substrings
processed from the right, if several Lyndon substrings are adjacent and
can be joined to a longer Lyndon substring, they are joined.

The diagram in Fig. 5.2 and the description that follows it illustrate the
method for a string 011023122. The input string is visualized as a curve
and the height at each point is the value of the letter at that position.

5.3 Intuition Behind the Refinement Process 33

In Fig. 5.2, we illustrate the process:

(1) We start with the string 011023122 and a full tank of water.

(2) We drain one level, only 3 is revealed, nothing to extend, nothing
to consolidate.

(3) We drain one more level and three 2’s are revealed, the first 2
extends 3 to 23 and the remaining two 2’s form Lyndon substrings
2 of length 1, nothing to consolidate.

(4) We drain one more level and three 1’s are revealed, the first two
1’s form Lyndon substrings 1 of length 1, the third 1 extends 22 to
122, nothing to consolidate.

(5) We drain one more level and two 0’s are revealed, the first 0 ex-
tends 11 to 011, the second 0 extends 23 to 023. In the consolidation
phase, 023 is joined with 122 to form a Lyndon substring 023122,
and then 011 is joined with 023122 to form a Lyndon substring
011023122.

(1) (2) (3)

(6)(4) (5)

0 0
1 1 1

2 2
3

2

1 2 3 4 5 6 7 8 9

0 0
1 1 1

2 2
3

2

1 2 3 4 5 6 7 8 9

0 0
1 1 1

2 2
3

2

1 2 3 4 5 6 7 8 9

0 0
1 1 1

2 2
3

2

1 2 3 4 5 6 7 8 9

0 0
1 1 1

2 2
3

2

1 2 3 4 5 6 7 8 9

0 0
1 1 1

2 2
3

2

1 2 3 4 5 6 7 8 9

Figure 5.2: Water draining process for 011023122

So, during the process, the following maximal Lyndon substrings were
identified: 3 at position 6, 23 at position 5, 2 at positions 8, 9, 1 at positions
2, 3, 122 at position 7, 023 at position 4, and finally 011023122 at position 1.
Note that all positions are accounted for, we really got all maximal Lyndon
substrings of the string 011023122.

5.4 Implementation Notes 34

In Figure 5.3, below, an illustrative example for the string 011023122
is presented, where the arrows represent the prev mapping shown only
on the group used for the refinement which is indicated by the bold font.
The group contexts are shown as indices of the groups, thus, G0 is a group
with context 0, or G011023122 is a group with context 011023122.

0 1 1 0 2 3 1 2 2

1 2 3 4 5 6 7 8 9

G0 = {1, 4} G1 = {2, 3, 7} G2 = {5, 8, 9} G3 = {6}

G0 = {1, 4} G1 = {2, 3, 7} G2 = {8, 9} G23 = {5} G3 = {6}

G0 = {1} G023 = {4} G1 = {2, 3, 7} G2 = {8, 9} G23 = {5} G3 = {6}

G0 = {1} G023 = {4} G1 = {2, 3} G122 = {7} G2 = {8, 9} G23 = {5} G3 = {6}

G0 = {1} G023122 = {4} G1 = {2, 3} G122 = {7} G2 = {8, 9} G23 = {5} G3 = {6}

G011 = {1} G023122 = {4} G1 = {2, 3} G122 = {7} G2 = {8, 9} G23 = {5} G3 = {6}

G011023122 = {1} G023122 = {4} G1 = {2, 3} G122 = {7} G2 = {8, 9} G23 = {5} G3 = {6}

Figure 5.3: Illustration of the refinement process

5.4 Implementation Notes

The BSLA algorithm was implemented in C++ and made publicly available
[1]. First it is important to note that this implementation only works on
tight strings (see procedure Tight, Fig. 5.1, for explanation of how to con-
vert a non-tight string to an isomorphic tight format).

The most important aspect of the implementation is the design of the
data structures representing the group configuration. During one step of
the refinement process, some groups remain unchanged, but some groups
are partitioned. The data structures selected for the representation of the
group configuration must be highly dynamic.

5.4 Implementation Notes 35

We decided to represent a group as a doubly-linked list and similarly,
a group configuration as a doubly-linked list. To prevent costly dynamic
memory allocation and deallocation during the programs execution, the
groups and the group configuration are represented by static integer ar-
rays. This is possible because the group configuration is always partition-
ing the index set 1 . . n for an input string x[1 . . n], thus, the space require-
ment does not change. At the onset of the program’s execution, these
arrays are allocated together once, as a single block, and they are never
deallocated. There are 8 arrays of length n, with the following variable
names: Gstart, Gprev, Gnext, Gcntxt, Gval, Cprev, Cnext, and Gmemb.

The groups are indexed by values from 1 . . n which is adequate since
there are never more than n groups.

• Gstart emulates the pointer to the first element of the group (i.e. the
group’s start), thus, Gstart[i]=j means that j is the first element of
the group with index i.

• Gprev emulates the link to the previous element of the group, thus,
Gprev[i]=j means that the previous element in the group to which
i belongs is j.

• Gnext[i]=j means that the next element in the group to which i

belongs is j.

• Gcntxt contains the length of the context for the group, thus,
Gcntxt[i]=j means that the context of the group with index i has
length j. To find the value of the context is straightforward – take
any element of that group, say k, then x[k. .j] is the context.

• Gval represent the valence of elements, thus, Gval[i]=j means that
the valence of the element i is j.

• Cprev emulates the pointer to the previous group in the configura-
tion, thus, Cprev[i]=j means that the group with index i is preceded
in the configuration by the group with index j.

• Cnext emulates the pointer to the next group in the configuration,
thus, Cnext[i]=j means that the group with index i is succeeded in
the configuration by the group with index j.

• Gmem stores the membership of elements, thus, Gmem[i]=j means that
the element i belongs to the group with index j.

5.4 Implementation Notes 36

The data structure allows the creation of an empty group, deletion of an
empty group, and the movement of an element from one group to another to
all be constant time operations. Additionally, three auxiliary arrays (auxA,
auxB, and auxC) are needed for operations such as sorting. Finally, an array
prev holds the values of the prev function.

The computation of the initial configuration is straightforward. Since
the input string is tight, a simple traversal of the input string determines
the alphabet of the string, so the groups can be created empty, and then
filled with another traversal of the input string. During the refinement
of a single target group, updating prev is easily computed in time pro-
portional to the size of the group driving the refinement, and so for one
step of the refinement, the update of prev is linear. However, it is impor-
tant to compute the values of the initial prev in linear time. Though the
computation of the initial prev in linear time is not complicated, it is not
straightforward either. This process uses a stack approach similar to the
stack implementation of NSV made possible by the tightness of the input
strings.

Fig. 5.4 provides the code for the stack implementation of the compu-
tation of prev’s initial value. Note that the program does not require the
additional structure prev_stack as the auxiliary array auxA is not needed
yet, and so its storage is used to house the stack prev_stack.

5.4 Implementation Notes 37

prev[0]← nil
empty prev_stack
push 0 onto prev_stack
i← 1
while i < n do

if x[i1] < x[i] then
prev[i]← i1
push i onto prev_stack

elseif x[i1] = x[i] then
prev[i]← prev[i1]
pop prev_stack
push i onto prev_stack

elseif x[i1] > x[i] then
while TRUE do

j← top o f prev_stack
if j = nil then

push i onto prev_stack
prev[i]← nil
break

elseif x[j] > x[i] then
pop prev_stack

elseif x[j] = x[i] then
pop prev_stack
push i onto prev_stack
prev[i]← prev[j]
break

else
prev[i]← j
push i onto prev_stack
break

Figure 5.4: Initial setting of prev

6 τ-Reduction Algorithm for Lyndon Array

(TRLA)

This algorithm was initially presented, conceptually, as part of Asma Paracha’s
2017 Ph.D. thesis [27]. It follows Martin Farach-Colton’s approach used in
his remarkable linear algorithm for suffix tree construction [13], and re-
produced very successfully in all linear algorithms for suffix sorting, for
instance see [25, 26] and the references therein. The scheme for computing
the Lyndon array works as follows:

1. reduce the input string x to its τ-reduction y;

2. by recursion compute the Lyndon array of y; and

3. from the Lyndon array of y compute the Lyndon array of x.

The input strings are $-terminated strings over integer alphabets. The
reduction computed in (1) is important. All linear algorithms for suffix ar-
ray computations use the proximity property of suffixes: comparing x[i..n]
and x[j..n] can be done by comparing x[i] and x[j], and if they are the same,
comparing the suffix x[i+1..n] with the suffix x[j+1..n]. For instance, in
the first linear algorithm for suffix array by Kärkkäinen and Sanders, [19],
obtaining the sorted suffixes for positions i ≡ 0 (mod 3) and i ≡ 1 (mod 3)
via the recursive call is sufficient to determine the order of suffixes for
i ≡ 2 (mod 3) positions, and then to merge both lists together. However,
there is no such proximity property for maximal Lyndon substrings, so
the reduction itself must have a property that helps determine some of
the values of the Lyndon array of x from the Lyndon array of y and com-
pute the rest. We present such a reduction that we call τ-reduction, and it
may be of some general interest as it preserves order of some suffixes and
hence, by Lemma 2.6, some maximal Lyndon substrings.

38

6.1 τ-pairing 39

The algorithm computes y as a τ-reduction of x in step (1) in linear
time and in step (3) it expands the Lyndon array of the reduced string
computed by step (2) to an incomplete Lyndon array of the original string
also in linear time. However, it computes the missing values of the incom-
plete Lyndon array in Θ(n log(n)) time resulting in the overall worst-case
complexity of Θ(n log(n)). If the missing values of the incomplete Lyn-
don array of x were computed in linear time, the overall algorithm would
be linear as well. Since for τ-reduction, the size of τ(x) is at most 2

3 |x|,
we eventually obtain, through the recursion of step (2) applied to τ(x), a
partially filled Lyndon array of the input string; the array is about 1

2 to 2
3

full and for every position i with an unknown value, the values at posi-
tions i−1 and i+1 are known and x[i− 1] � x[i]. In particular, the value
at position 1 and position n are both known. So, a lot of information is
provided by the recursive step. For instance, given the string 00011001,
via the recursive call we would identify the maximal Lyndon substrings
that are underlined in 00011 001 and would need to compute the miss-
ing maximal Lyndon substrings that are underlined in 00011001 . It is
possible that in the future we may come up with a linear procedure to
compute the missing values making the whole algorithm linear. We de-
scribe the τ-reduction in several steps: first the τ-pairing, then choosing
the τ-alphabet, and finally the computation of the τ-reduction of x.

6.1 τ-pairing

Consider a $-terminated string x = x[1..n] whose alphabet Ax is ordered
by ≺ with x[n+1] = $ and $ ≺ a for any a ∈ Ax. A τ-pair consists of a
pair of adjacent positions from the range 1..n+1. The τ-pairs are computed
by induction:

• the initial τ-pair is (1, 2);
• let (i−1, i) be the last τ-pair computed:

if i = n−1 then
the next τ-pair is set to (n, n+1)

elseif i ≥ n then
stop

elseif x[i−1] � x[i] and x[i] � x[i+1] then
the next τ-pair is set to (i, i+1)

else
the next τ-pair is set to (i+1, i+2)

6.1 τ-pairing 40

Every position of the input string that occurs in some τ-pair as the first
element is labeled black, all others are labeled white. Note that most of the
τ-pairs do not overlap; if two τ-pairs overlap, they overlap in a position
i such that 1 < i < n and x[i−1] � x[i] and x[i] � x[i+1]. Moreover, a
τ-pair can be involved in at most one overlap; for illustration see Fig. 6.1,
for the formal proof see Lemma 6.1.

1 2 3 4 5 6 7 8 9 10

Figure 6.1: τ-reduction of string 011023122
The rounded rectangles indicate symbol τ-pairs, the ovals indicate the τ-pairs
below are the colour labels of positions, at the bottom is the τ-reduction

Lemma 6.1. Let (i1, i1+1)...(ik, ik+1) be the τ-pairs of a strings x = x[1..n].
Then for any j, ` ∈ 1..k:

(1) i f |(ij, ij+1) ∩ (i`, i`+1)| = 1, then f or any m 6= j, `,
|(ij, ij+1) ∩ (im, im+1)| = 0; and

(2) |(ij, ij+1) ∩ (i`, i`+1)| ≤ 1.

PROOF. By induction. Trivially true for |x| = 1 as (1, 2) is the only τ-pair.
Further, let’s assume that it is true for |x| ≤ n−1.

• Case (ik, ik+1) = (n, n+1)
Then (ik−1, ik−1+1) = (n−2, n−1), and so (i1, i1+1)...(ik−1, ik−1+1) are
τ-pairs of x[1..n−1], and thus they satisfy (1) and (2) by the induction
hypothesis. However, (n, n+1) ∩ (i`, i +̀1) = ∅ for 1 ≤ ` < k, so (1)
and (2) hold for (i1, i1+1)...(ik, ik+1).

• Case (ik, ik+1) = (n−1, n) and (ik−1, ik−1+1) = (n−2, n−1).
Therefore, (i1, i1+1)...(ik−1, ik−1+1) are τ-pairs of x[1..n−1], and thus
they satisfy (1) and (2) by the induction hypothesis. However,
(ik, ik+1) ∩ (i`, i`+1) = ∅ for 1 ≤ ` < k−1, and
(ik, ik+1) ∩ (ik−1, ik−1+1) = {ik−1} = n−1, so

6.2 τ-reduction 41

|(ik, ik+1) ∩ (ik−1, ik−1+1)| ≤ 1 and so (1) and (2) hold for
(i1, i1+1)...(ik, ik+1).

• Case (ik, ik+1) = (n−1, n) and (ik−1, ik−1+1) = (n−3, n−2).
Then (i1, i1+1)...(ik−1, ik−1+1) are τ-pairs of x[1..n−2], so satisfy (1)
and (2) by the induction hypothesis. However,
(ik, ik+1) ∩ (i`, i`+1) = ∅ for 1 ≤ ` < k, so (1) and (2) hold for
(i1, i1+1)...(ik, ik+1).

6.2 τ-reduction

For each τ-pair (i, i+1), we consider the pair of alphabet symbols (x[i],
x[i+1]). We call them symbol τ-pairs. They are in a total order � induced
by ≺ : (x[ij], x[ij+1])� (x[i`], x[i`+1]) if either x[ij] ≺ x[i`], or x[ij] = x[i`]
and x[ij+1] ≺ x[i`+1]. They are sorted by a radix sort with keys of size
2, and assigned letters from a chosen τ-alphabet that is a subset of {0, 1,
..., |τ(x)|} so that the assignment preserves the order. Because the input
string was over an integer alphabet, the radix sort is linear.

In the example, Fig. 6.1, the τ-pairs are (1, 2)(3, 4)(4, 5)(6, 7)(7, 8)(9,
10) and so the symbol τ-pairs are (0, 1)(1, 0)(0, 2)(3, 1)(1, 2)(2, $). The
sorted symbol τ-pairs are (0, 1)(0, 2)(1, 0)(1, 2)(2, $)(3, 2). Thus, we chose
as our τ-alphabet {0, 1, 2, 3, 4, 5} and so the symbol τ-pairs are assigned
these letters: (0, 1) → 0, (0, 2) → 1, (1, 0) → 2, (1, 2) → 3, (2, $) → 4 and
(3, 1) → 5. Note that the assignments respect the order � of the symbol’s
τ-pairs and the natural order < of {0, 1, 2, 3, 4, 5}.

The τ-letters are substituted for the symbol τ-pairs and the resulting
string is terminated with $. This string is called the τ-reduction of x and
denoted τ(x), and it is a $-terminated string over an integer alphabet. For
our running example from Fig. 6.1, τ(x) = 021534. The next lemma justi-
fies calling the above transformation a reduction.

6.3 Properties Preserved by τ-reduction 42

Lemma 6.2. For any string x of size at least 2, 1
2 |x| ≤ |τ(x)| ≤ 2

3 |x|.

PROOF. One extreme case is when all the τ-pairs do not overlap at all,
then |τ(x)| = 1

2 |x|. The other extreme case is when all the τ-pairs overlap,
then |τ(x)| = 2

3 |x|. Any other case must be in between.

Let B(x) denote the set of all black positions of x. For any i ∈ 1..|τ(x)|,
b(i) = j where j is a black position in x of the τ-pair corresponding to the
new symbol in τ(x) at position i, while t(j) assigns each black position
of x the position in τ(x) where the corresponding new symbol is, i.e.,
b(t(j)) = j and t(b(i)) = i. Thus,

1..|τ(x)|
b
�

t
B(x)

Additionally, p is defined as the mapping symbol of the τ-pairs to the τ-
alphabet.

In the running example from Fig. 6.1: t(1) = 1, t(3) = 2, t(4) = 3,
t(6) = 4, t(7) = 5, and t(9) = 6, while b(1) = 1, b(2) = 3, b(3) = 4,
b(4) = 6, b(5) = 7, and b(6) = 9. Further, the letter mapping yields p(1,
2) = 0, p(3, 4) = 2, p(4, 5) = 1, p(6, 7) = 5, p(7, 8) = 3, and p(9, 10) = 4.

6.3 Properties Preserved by τ-reduction

The most important property of τ-reduction is a preservation of maximal
Lyndon substrings of x that start at black positions. There is a closed
formula that gives, for every maximal Lyndon substring of τ(x), a corre-
sponding maximal Lyndon substring of x. Moreover, the formula for any
black position can be computed in constant time. It is simpler to present
the following results using L′, the alternative form of Lyndon array, the
one where the end positions of maximal Lyndon substrings are stored
rather than their lengths. More formally:

Theorem 6.3. Let x = x[1..n], let L′τ(x)[1..m] be the Lyndon array of τ(x),
and let L′x[1..n] be the Lyndon array of x. Then for any black i ∈ 1..n,

L′x[i] =

b
(
L′τ(x)[t(i)]

)
if x[b

(
L′τ(x)[t(i)]

)
+1] � x[i]

b
(
L′τ(x)[t(i)]

)
+1 otherwise.

6.3 Properties Preserved by τ-reduction 43

The proof of the theorem requires a series of lemmas that are presented
below. First we show that τ-reduction preserves relationships of certain
suffixes of x.

Lemma 6.4. Let x = x[1..n] and let τ(x) = τ(x)[1..m]. Let 1 ≤ i, j ≤ n. If i
and j are both black positions, then x[i..n] ≺ x[j..n] implies
τ(x)[t(i)..m] ≺ τ(x)[t(j)..m].

PROOF. Since i and j are both black positions, both t(i) and t(j) are de-
fined. Let us assume that x[i..n] ≺ x[j..n].

• Case x[i..n] is a proper prefix of x[j..n].
Then j < i and so x[j..j+n−i] = x[i..n] and thus x[i..n] is a border of
x[j..n].

• Case j+n−i is black.
Since n may be black or white, we need to discuss both cases.

· Case that n is white.

j j+n-i i n

Then the last τ-pair overlapping j..j + n− i must be
(j+n−i−1, j+n−i) followed by a τ-pair
(j+n− i, j+n− i+1), and the last τ-pair overlapping i..n
must be the last τ-pair (n−1, n). Thus, τ(x)[t(i)..m] =

τ(x)[t(i)..t(n−1)] = τ(x)[t(j)..t(j+n−i−1)], and
τ(x)[t(j)..m] = τ(x)[t(j)..t(n−1)], and so τ(x)[t(i)..m] is a
proper prefix of τ(x)[t(j)..m].

· Case that n is black.

j j+n-i i n

Then the last two τ-pairs overlapping j..j+n− i must be
(j+n−i−1, j+n−i) and (j+n−i, j+n−i+1), and the last
two τ-pairs overlapping i..n must be (n−1, n) and (n, n+1).
Thus, τ(x)[t(i)..m] = τ(x)[t(i)..t(n)] ≺ τ(x)[t(j)..t(j+n−i)],
which is a prefix of τ(x)[t(j)..m].

6.3 Properties Preserved by τ-reduction 44

• Case j+n−i is white.

j j+n-i i n

Then n must also be white as the τ-pair overlapping j..j+n−i
must be (j+n−i−1, j+n−i) followed by
(j+n− i+1, j+n− i+2), and the last τ-pair overlapping i..n
must be the very last τ-pair (n−1, n). Then τ(x)[t(i)..m] =

τ(x)[t(i)..t(n−1)] = τ(x)[t(j)..t(j+n−i−1)] which is a proper
prefix of τ(x)[t(j)..m].

• Case when x[i] ≺ x[j].

Then τ(x)[t(i)] = p(i, i+1) and τ(x)[t(j)] = p(j, j+1). Since
x[i] ≺ x[j], we have (x[i], x[i + 1]) ≺ (x[j], x[j+ 1]) and so
p(i, i+1) ≺ p(j, j+1), giving τ(x)[t(i)] ≺ τ(x)[t(j)] and so
τ(x)[t(i)..m] ≺ τ(x)[t(j)..m].

• Case when for some `, x[i..i+`−1] = x[j..j+`−1] while x[i+`] ≺
x[j+`].

• Case both i+` and j+` are black.

j j l+

i i + l

Consider i+`−1 and j+`−1. Either they are both black or they
are both white.

(α) Case both i+`−1 and j+`−1 are black,
then τ(x)[t(i)..t(i+`−1)] = τ(x)[t(j)..t(j+`−1)] and so
τ(x)[t(i)..t(i + `)] = τ(x)[t(i)..t(i + `− 1)]τ(x)[i + `] =

τ(x)[t(j)..t(j+`−1)]τ(x)[t(i+`)] ≺
τ(x)[t(j)..t(j+`−1)]τ(x)[t(j+`)] = τ(x)[t(j)..t(j+`)] and so
τ(x)[t(i)..m] ≺ τ(x)[t(j)..m].

6.3 Properties Preserved by τ-reduction 45

(β) Case both i+ `− 1 and j+ `− 1 are white, then both
i+`−2 and j+`−2 are black. So, τ(x)[t(i)..t(i+`−2)] =
τ(x)[t(j)..t(j+`−2)] and so τ(x)[t(i)..t(i+`)] =

τ(x)[t(i)..t(i+`−2)]τ(x)[i+`] =

τ(x)[t(j)..t(j+`−2)]τ(x)[i+`] ≺
τ(x)[t(j)..t(j+`−2)]τ(x)[j+`] = τ(x)[t(j)..t(j+`)] and so
τ(x)[t(i)..m] ≺ τ(x)[t(j)..m].

• Case j+` is black and i+` is white.

j j l+

i i + l

Then both i+`−1 and j+`−1 are black, so proceed as in (α).

• Case j+` is white and i+` is black.

j j l+

i i + l

Then both i+`−1 and j+`−1 are black, so proceed as in (α).

• Case both j+` and i+` are white.

j j l+

i i + l

Then both i+`−1 and j+`−1 are black, so proceed as in (α).

6.3 Properties Preserved by τ-reduction 46

• Case j+` is white and i+` is black.

j j l+

i i + l

Then both i+`−1 and j+`−1 are black, so proceed as in (α).

Lemma 6.5 shows that τ-reduction preserves the Lyndon property of
certain Lyndon substrings.

Lemma 6.5. Let x = x[1..n] and let τ(x) = τ(x)[1..m]. Let 1 ≤ i < j ≤ n.
Let x[i..j] be a Lyndon susbtsring of x, and let i be a black position.

Then

τ(x)[t(i)..t(j)] is Lyndon if j is black

τ(x)[t(i)..t(j−1)] is Lyndon if j is white.

PROOF.
Let us first assume that j is black.

Let i1 = t(i), j1 = t(j) and consider k1 so that i1 < k1 ≤ j1. Let
k = b(k1). Then i < k ≤ j and so x[i..n] ≺ x[k..n] by Lemma 2.6. Hence,
τ(x)[t(i)..m] ≺ τ(x)[t(k)..m] by Lemma 6.4. Therefore, τ(x)[t(i)..t(j)] is
Lyndon by Lemma 2.6.

Now, let us assume that j is white.

Then j−1 is black and x[i..j−1] is Lyndon, so as in the previous case,
τ(x)[t(i)..t(j−1)] is Lyndon.

Now we can show that τ-reduction preserves some maximal Lyndon
substrings.

6.3 Properties Preserved by τ-reduction 47

Lemma 6.6. Let x = x[1..n] and let τ(x) = τ(x)[1..m]. Let 1 ≤ i < j ≤ n.
Let x[i..j] be a maximal Lyndon substring, and let i be a black position.

Then

τ(x)[t(i)..t(j)] is a maximal Lyndon substring if j is black

τ(x)[t(i)..t(j−1)] is a maximal Lyndon substring if j is white.

PROOF. Since x[i..j] is maximal Lyndon, x[j+1..n] ≺ x[i..n] by Lemma 2.6,
giving x[j+1] � x[i]. Since x[i..j] is Lyndon, x[i] ≺ x[j]. Thus,
x[j+1] � x[i] ≺ x[j].

We will proceed by discussing two possible cases, one that j is black,
and the other that j is white.

• Assume that j is black.

Since j is black, (j, j+1) is a τ-pair and t(j) is defined, and by
Lemma 6.5, τ(x)[t(i)..t(j)] is Lyndon, and hence by Lemma 2.6,
τ(x)[t(i)..m] ≺ τ(x)[k..m] for any t(i) < k ≤ t(j). Thus, we must
show the maximality, i.e. τ(x)[t(j)+1..m] ≺ τ(x)[t(i)..m].

· Case when x[j+1] � x[j+2].

Then x[j] � x[æ+1] � x[j+2] and so j+1 is black. It follows that
t(j)+1 = t(j+1). By Lemma 6.4, τ(x)[t(j+1)..m] ≺ τ(x)[t(i)..m]

because x[j+1..n] ≺ x[i..n], thus τ(x)[t(j)+1..m] ≺ τ(x)[t(i)..m].

· Case when x[j+1] � x[j].

Then x[j] � x[i] � x[j+1] � x[j+2], then τ(x)[t(i)] = p(i, i+1),
and τ(x)[t(j)] = p(j, j+1), and τ(x)[t(j)+1] = p(j+2, j+3). It
follows that τ(x)[t(j)] = p(j, j+1) � τ(x)[t(i)] = p(i, i+1) �
τ(x)[t(j)+1] = p(j+2, i+3). Thus, τ(x)[t(j)+1] ≺ τ(x)[t(i)],
and so τ(x)[t(j)+1..m] ≺ τ(x)[t(i)..m].

• Assume that j is white.

By Lemma 6.5, τ(x)[t(i)..t(j−1)] is Lyndon. Since j is white, it fol-
lows that j−1 and j+1 are black and t(j−1)+1 = t(j+1). Since

6.4 Computing L′x from L′τ(x). 48

x[i..n] � x[j + 1..n], by Lemma 6.5 we get τ(x)[t(i)..m] �
τ(x)[t(j+1)..m] = τ(x)[t(j−1)+1..m].

At this point, presentation of the proof Theorem 6.3 is possible.

Proof of Theorem 6.3. Let L′x[i] = j where i is black. Then t(i) is defined
and x[i..j] is a maximal Lyndon substring of x.

• Case when j is black.

Then by Lemma 6.6, τ(x)[t(i)..t(j)] is a maximal Lyndon substring of
τ(x), hence L′τ(x)[t(i)] = t(j). Therefore, b

(
L′τ(x)[t(i)]

)
= b(t(j)) =

j = L′x[i]. Since x[i..j] is maximal, x[j+1] � x[i], i.e.
x[b
(
L′τ(x)[t(i)]

)
+1] = x[j+1] � x[i].

• Case when j is white.

Then j−1 is black and the τ(x)[t(j−1)] = p(j−1, j). By Lemma 6.6,
τ(x)[t(i)..t(j−1)] is a maximal Lyndon substring of τ(x), hence
L′τ(x)[t(i)] = t(j−1), so b

(
L′τ(x)[t(i)]

)
= b(t(j−1)) = j−1, giv-

ing b
(
L′τ(x)[t(i)]+1

)
= j. Since x[i..j] is maximal, x[i] ≺ x[j], i.e.

x[b
(
L′τ(x)[t(i)]+1

)
] = x[j] � x[i].

6.4 Computing L′x from L′τ(x).

Theorem 6.3 indicates how to compute the partial L′x from L′τ(x). The
procedure is given in Fig. 6.2.

How to compute the missing values? The partial array is processed
from right to left. When a missing value at position i is encountered (note
that it is recognized by L′x[i] = nil), the Lyndon array L′x[i+1..n] is com-
pletely filled and also L′x[i−1] is known. Further, L′x[i+1] is the final

6.4 Computing L′x from L′τ(x). 49

for i← 1 to n
if i = 1 or

(
x[i1] � x[i] and x[i] � x[i+1]

)
then

if x
[
b
(
L′τ(x)[t(i)]

)
+1
]
� x[i] then

L′x[i]← b
(
L′τ(x)[t(i)]

)
else
L′x[i]← b

(
L′τ(x)[t(i)]

)
+1

else
L′x[i]← nil

Figure 6.2: Computing partial Lyndon array of the input string

position of the maximal Lyndon substring starting at the position i+1. If
x[i] � x[i+1], then the maximal Lyndon substring from position i+1 can-
not be extended to the left, hence the maximal Lyndon substring at the
position i has length 1 and so ends at position i. Otherwise, x

[
i..L′x[i+1]

]
is Lyndon, and we must test if we can extend the maximal Lyndon sub-
string right after, and so on. But of course, this is all happening inside the
maximal Lyndon substring starting at i−1 and ending at L′x[i−1] due to
Monge property1 of the maximal Lyndon substrings.

This is the while loop in the procedure given in Fig. 6.3 that gives it
the O(n log(n)) complexity as we will show later. At the first, it may seem
that it might actually give it O(n2) complexity, but the “doubling of size”
trims it effectively down to O(n log(n)), see section 6.5.

Consider the running example from Fig. 6.1. Since τ(x) = 021534, we
have L′τ(x)[1..6] = 6, 2, 6, 4, 6, 6 giving L′x[1..9] = 9, •, 3, 9, •, 6, 9, •, 9. Com-
puting L′x[8] is easy as x[8] = x[9] and so L′x[8] = 8. L′x[5] is more
complicated: we can extend the maximal Lyndon substring from L′x[6] to
the left to 23, but no more, so L′x[5] = 6. Computing L′x[2] is again easy
as x[2] = x[3] and so L′x[2] = 2. Thus, L′x[1..9] = 9, 2, 3, 9, 6, 6, 9, 8, 9.

1two maximal Lyndon susbtrings are either disjoint or one completely includes the
other

6.4 Computing L′x from L′τ(x). 50

L′x[n]← n
for i← n− 1 downto 2

if L′[i] = nil then
if x[i] � x[i+1] then
L′[i]← i

else
if L′[i1] = i1 then

stop← n
else

stop← L′[i1]
L′[i]← L′[i+1]
while L′[i] < stop do

if x[i..L′[i]] ≺ x[L′[i]+1..L′[L′[i]+1]] then
L′[i]← L′[L′[i]+1]

else
break

Figure 6.3: Computing missing values of the Lyndon array of the input
string

6.5 The Complexity of TRLA 51

6.5 The Complexity of TRLA

To determine the complexity of the algorithm, we attach to each position
i a counter red[i] initialized to 0. When computing a missing value L′x[j]
with a configuration shown below where

stop =

L′x[j−1] i f L′x[j−1] > j−1

n otherwise
,

we have to check if A1 can be extended by j to a Lyndon substring (i.e.
if x[j] � x[j+1]), if so, we have to compare jA1 with A2 and if jA1A2 is
Lyndon (i.e. if jA1 ≺ A2), we must check if jA1A2A3 is Lyndon (i.e. if
jA1A2 ≺ A3) ... checking if jA1..Ar is Lyndon (i.e. if jA1A2..Ar−1 ≺ Ar) ,
etc. ... When comparing the Lyndon substring jA1..Ar−1 with Ar, at every
position i of Ar, we increment the counter red[i]. When done, the value of
red[i] represents how many times the position i was used in comparisons.

i

A1 Ar
+

stopj

Consider a position i that was used k times for k ≥ 4, i.e. red[i] = k.
The next diagram indicates the configuration when the counter red[i] was
incremented for the 1st time in the comparison of j1A1... and B1 during
the computation of the missing value L′x[j1] where

stop1 =

L′x[j1−1] i f L′x[j1−1] > j1−1

n otherwise
.

i

A1

|A1| = n1

B1
+

C1

n1 ≥ 1

stop1j1

The next diagram indicates the configuration when the counter red[i]
was incremented for the second time in the comparison of j2A2... and B2

during the computation of the missing value L′x[j2] where

6.5 The Complexity of TRLA 52

stop2 =

L′x[j2−1] i f L′x[j2−1] > j2−1

n otherwise

i

A2

|A2| = n2

B2
+

C2

C1 ⊆ B2

n2 ≥ n1+1
n ≥ 2(n1+1)

≥ n1+1

stop2j2

The next diagram indicates the configuration when the counter red[i]
was incremented for the third time in the comparison of j3A3... and B3

during the computation of the missing value L′x[j3] where

stop3 =

L′x[j3−1] i f L′x[j3−1] > j3−1

n otherwise

i

A3

|A3| = n3

B3
+

C3

C2 ⊆ B3

n3 ≥ 2n2

n ≥ 2n3 ≥ 22n2 ≥ 22(n1+1)

≥ 2n2

stop3j3

The next diagram indicates the configuration when the counter red[i]
was incremented for the fourth time in the comparison of j4A4... and B4

during the computation of the missing value L′x[j4] where

stop4 =

L′x[j4−1] i f L′x[j4−1] > j4−1

n otherwise

i

A4

|A4| = n4

B4
+

C4

C3 ⊆ B4

n4 ≥ 2n3

n ≥ 2n4 ≥ 23(n1+1)

≥ 2n3

stop4j4

Thus, if red[i] = k, then n ≥ 2k−1(n1+1) ≥ 2k as n1+1 ≥ 2. Thus, n ≥ 2k

and so k ≤ log(n). Thus, either k < 4 or k ≤ log(n). Therefore, the overall
complexity is O(n log(n)).

6.6 Implementation Notes 53

To see that the overall complexity is Θ(n log(n)) just consider the fol-
lowing strings:

Set u0 = 011. By induction, set uk = 00uk−10uk−1. (F)

For any k ≥ 1, uk is Lyndon and so is 0uk. The second 0 in uk will be the
missing value. Since 0uk−1 is Lyndon, the algorithm will compare the first
occurrence of 0uk−1 with the second occurrence of 0uk−1 all the way through
before it concludes that 0uk−1 and 0uk−1 cannot be joined together. Thus,
for uk, the very last u0 will be involved in k comparisons. |u1| = 3+2|u0|,
|u2| = 3+2|u1| = 3+2 · 3+22|u0|, ..., |uk| = 3+2 · 3+...+2k−1 · 3+2k|u0|. Since
|u0| = 3, we get |uk| = 3+2 · 3+...+2k−1 · 3+2k · 3 = (1+2+22+2k) · 3 =

2k+1 · 3. Thus log(|uk|) = log(3)+log(k+1), i.e. log
(|uk |

6

)
= k as log(2) = 1.

For |uk| ≥ 36, k = log
(|uk |

6

)
≥ 1

2 log(|uk|). So, the algorithm TRLA is forced
to perform at least |uk| · 1

2 log(|uk|) steps. It follows that the complexity of
TRLA is Θ(n log(n)).

Note that we could start the scheme (F) with any binary Lyndon string
as u0. The scheme (F) was used to generate the strings in the datasets
extreme_trla to force the worst-case performance of TRLA.

6.6 Implementation Notes

The TRLA algorithm was implemented in C++ and made publicly avail-
able [1]. The C++ code for TRLA is in the source file trla.cpp, utilizing
Tau.hpp which contains the class Tau. The class provides the code for the
computation of the τ-reduction and three auxiliary arrays that after the
computation of the τ-reduction is completed store the representation of
the mappings b and t mapping black positions of the input string to the
positions of the τ-reduction and vice-versa. These mappings are required
for the computation of the partial Lyndon array of the input string.

The Tau method translate computes the τ-reduction. The code in C++

realizes the recursive call to TRLA with the τ-reduction, computation of
the partial Lyndon array of the input string, and the procedure FillGaps

computes the missing values.

6.6 Implementation Notes 54

The space complexity of this C++ implementation is bounded by 9n in-
tegers. This upper bound is derived from the fact that a Tau object (see
Tau.hpp, [1]) requires 3n integers of space for a string of length n. So
the first call to TRLA requires 3n, the next recursive call requires at most
3 2

3 n, the next recursive call requires at most 3(2
3)

2n, ... Thus, 3n + 3 2
3 n +

3(2
3)

2n + 3(2
3)

3n + ... = 3n(1 + 2
3 + (2

3)
2 + (2

3)
3 + (2

3)
4 + ...) = 3n 1

1− 2
3
= 9n.

However, it should be possible to bring it down to 6n integers.

7 Empirical Testing and Results

All the measurements were performed on moore server of McMaster Uni-
versity’s Department of Computing and Software; Memory: 32GB (DDR4

@ 2400 MHz), CPU: 8 of the Intel Xeon E5-2687W v4 @ 3.00GHz, OS: Linux
version 2.6.18-419.el5 (gcc version 4.1.2) (Red Hat 4.1.2-55), further, all the
programs were compiled without any additional level of optimization1.
This was strategically done as to not bias the programs in any way, as
the optimization may have favoured one program more than another. The
CPU time was measured for each of the programs in seconds. Since the
execution time was negligible for short strings, the processing of the same
string was repeated several times (the repeat factor varied from 106, for
strings of length 10, to 1, for strings of length 106), resulting in a higher
precision (of up to 7 decimal places). Thus, for graphing, the logarithmic
scale was used for both, the x-axis representing the length of the strings,
and the y-axis representing the time.

There were 4 categories of datasets: random tight binary strings over
the alphabet {0, 1}, random tight 4-ary strings (kind of random DNA) over
the alphabet {0, 1, 2, 3}, random tight 26-ary strings (kind of random En-
glish) over the alphabet {0, 1, ..., 25}, and random tight strings over integer
alphabets. Each of the dataset contained 500 randomly generated strings
of the same length. For each category, there were datasets for length 10,
50, 102, 5·102, ..., 105, 5·105, and 106. The average time for each dataset was
computed and used in the following graphs.

The data is randomly generated once and stored. It should be noted
that the data is checked for tightness as part of the generation process.
Further, this data is stored and used for the computation of all of the algo-
rithms. This is important as we do not want to use new random data each

1i.e. neither -O1, nor -O2, nor -O3 flag were specified for the compilation

55

56

time, rather the same random data on the different algorithms. Compar-
isons against random tight 4-ary strings versus random DNA sequence
generators, as well as, random tight 26-ary strings versus random bible
text or random novel text generators were next to indistinguishable.

Figure 10: Binary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 11: 4-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
on

d
s)

BSLA
IDLA
TRLA

Figure 12: 26-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 13: Integer Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
on

d
s)

BSLA
IDLA
TRLA

Figure 1. Average times of IDLA, BSLA, and TRLA on random
binary datasets.

Figure 10: Binary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 11: 4-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
on

d
s)

BSLA
IDLA
TRLA

Figure 12: 26-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 13: Integer Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
on

d
s)

BSLA
IDLA
TRLA

Figure 2. Average times of IDLA, BSLA, and TRLA on random 4-ary
datasets.

57

Figure 10: Binary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 11: 4-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
on

d
s)

BSLA
IDLA
TRLA

Figure 12: 26-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 13: Integer Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
on

d
s)

BSLA
IDLA
TRLA

Figure 3. Average times of IDLA, BSLA, and TRLA on random
26-ary datasets.

Figure 10: Binary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 11: 4-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 12: 26-ary Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 13: Integer Averages

101 102 103 104104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 4. Average times of IDLA, BSLA, and TRLA on random
integer datasets.

As the graphs clearly indicate, the performance of the three algorithms
is virtually indistinguishable. It was expected that IDLA and TRLA would
exhibit linear behaviour on random strings; as such strings tend to have
almost all maximal Lyndon substrings short with respect to the length of

58

the strings. However, from the empirical results, it was not expected to be
so close. Further, the following graphs were produced to identify potential
outliers or trends in the data/computation, but are clearly inconsequential.

Figure 5. IDLA minimum

Figure 6. IDLA maximum

59

Figure 7. IDLA average

Figure 8. BSLA minimum

60

Figure 9. BSLA maximum

Figure 10. BSLA average

61

Figure 11. TRLA minimum

Figure 12. TRLA maximum

62

Figure 13. TRLA average

Figs. 5, 8, 11, all illustrate the minimum time for each dataset for
BSLA, IDLA, and TRLA respectively. Whereas Figs. 6, 9, 12, depict the
maximum time for each datasets, while Figs. 7, 10, 13 depict the average
time for each dataset. It should be noted that performance was a mea-
surement of computational time and given that a single string could be a
potential outlier/single point of failure in the empirical analysis, the av-
erage of 500 strings were computed (see Figs. 7, 10, 13). However, it is
reassuring to see that there doesn’t appear to be any abnormal data points
(see Table 7.1, Table 7.2, Table 7.3, and Table 7.4 for easy comparison of the
averages).

Further, all three algorithms were tested on datasets containing a single
string 01234...n referred to as an extreme idla string, which, of course makes
IDLA exhibit its quadratic complexity, and indeed the results show it; see
Fig. 14. The extreme trla strings were generated according to the scheme
(F) in Section 6.5. These strings force the worst-case execution for TRLA.
However, even log(106) is too small to really highlight the difference, so
the results were again very close; see Fig. 15. Additionally, Table 7.5 and
Table 7.6 have been provided for easy readability of the data.

63

Figure 14. Average times of IDLA, BSLA, and TRLA on extreme IDLA
strings

Figure 1: Extreme Averages

101 102 103 104104 105 106

10−6

10−5

10−4

10−3

10−2

10−1

100

Length of String

T
im

e
(s
ec
o
n
d
s)

BSLA
IDLA
TRLA

Figure 15. Average times of IDLA, BSLA, and TRLA on extreme TRLA
strings

64

Length
Random binary strings

IDLA BSLA TRLA

10 4.18× 10−7 9.93× 10−7 1.59× 10−6

50 4.10× 10−6 5.84× 10−6 1.33× 10−5

100 1.83× 10−5 1.21× 10−5 2.14× 10−5

500 8.51× 10−5 6.37× 10−5 1.14× 10−4

1, 000 1.96× 10−4 1.40× 10−4 2.34× 10−4

5, 000 1.26× 10−3 8.09× 10−4 1.18× 10−3

10, 000 2.75× 10−3 1.72× 10−3 2.36× 10−3

50, 000 1.64× 10−2 9.56× 10−3 1.23× 10−2

100, 000 3.53× 10−2 1.98× 10−2 2.47× 10−2

500, 000 2.05× 10−1 1.31× 10−1 1.25× 10−1

1, 000, 000 4.34× 10−1 3.61× 10−1 2.61× 10−1

measurements are in seconds

Table 7.1: Average times of IDLA, BSLA, and TRLA on random binary datasets.

Length
Random 4-ary strings

IDLA BSLA TRLA

10 4.05× 10−7 1.18× 10−6 1.59× 10−6

50 3.58× 10−6 6.05× 10−6 1.11× 10−5

100 8.85× 10−6 1.28× 10−5 2.10× 10−5

500 6.39× 10−5 6.81× 10−5 1.13× 10−4

1, 000 1.43× 10−4 1.48× 10−4 2.35× 10−4

5, 000 8.83× 10−4 8.65× 10−4 1.19× 10−3

10, 000 1.93× 10−3 1.85× 10−3 2.39× 10−3

50, 000 1.35× 10−2 1.05× 10−2 1.20× 10−2

100, 000 2.41× 10−2 2.18× 10−2 2.42× 10−2

500, 000 1.39× 10−1 1.69× 10−1 1.34× 10−1

1, 000, 000 2.92× 10−1 4.38× 10−1 2.72× 10−1

measurements are in seconds

Table 7.2: Average times of IDLA, BSLA, and TRLA on random 4-ary datasets.

65

Length
Random 26-ary strings

IDLA BSLA TRLA

10 3.97× 10−7 9.17× 10−7 1.56× 10−6

50 3.18× 10−6 5.74× 10−6 9.99× 10−6

100 7.51× 10−6 1.22× 10−5 2.54× 10−5

500 4.98× 10−5 7.21× 10−5 1.11× 10−3

1, 000 1.11× 10−4 1.43× 10−4 2.33× 10−4

5, 000 6.73× 10−4 1.23× 10−3 1.17× 10−3

10, 000 1.45× 10−3 1.95× 10−3 2.37× 10−3

50, 000 1.15× 10−3 1.24× 10−2 1.22× 10−2

100, 000 1.81× 10−2 2.58× 10−2 2.51× 10−2

500, 000 1.02× 10−1 1.88× 10−1 1.44× 10−1

1, 000, 000 2.16× 10−1 6.00× 10−1 2.99× 10−1

measurements are in seconds

Table 7.3: Average times of IDLA, BSLA, and TRLA on random 26-ary datasets.

Length
Random integer strings

IDLA BSLA TRLA

10 3.95× 10−7 9.21× 10−7 1.59× 10−6

50 3.12× 10−6 5.24× 10−6 9.95× 10−6

100 7.31× 10−6 1.08× 10−5 2.34× 10−5

500 4.75× 10−5 5.76× 10−5 1.12× 10−4

1, 000 1.06× 10−4 1.19× 10−4 2.33× 10−4

5, 000 6.44× 10−4 7.08× 10−4 1.19× 10−3

10, 000 1.39× 10−3 1.57× 10−3 2.37× 10−3

50, 000 8.07× 10−3 9.63× 10−3 1.34× 10−2

100, 000 1.72× 10−2 2.00× 10−2 2.79× 10−2

500, 000 9.83̄× 10−2 1.83̄× 10−1 1.61× 10−1

1, 000, 000 2.09× 10−1 5.65× 10−1 4.24× 10−1

measurements are in seconds

Table 7.4: Average times of IDLA, BSLA, and TRLA on random integer datasets.

66

Length
IDLA extreme strings

IDLA BSLA TRLA

10 7.90× 10−7 5.90× 10−7 1.42× 10−6

50 1.83× 10−5 3.00× 10−6 8.20× 10−6

100 7.22× 10−5 5.81× 10−6 1.59× 10−5

500 1.79× 10−3 2.81× 10−5 7.35× 10−5

1, 000 7.08× 10−3 5.90× 10−5 1.43× 10−4

5, 000 1.78× 10−1 2.96× 10−4 7.15× 10−4

10, 000 7.12× 10−1 5.81× 10−4 1.47× 10−3

50, 000 1.78× 101 3.05× 10−3 7.50× 10−3

100, 000 7.12× 101 6.19̄× 10−3 1.51× 10−2

500, 000 1.79× 103 3.25× 10−2 7.8× 10−2

1, 000, 000 7.18× 103 6.80× 10−2 1.66× 10−1

measurements are in seconds

Table 7.5: Average times of IDLA, BSLA, and TRLA on IDLA extreme strings.

Length
TRLA extreme strings

IDLA BSLA TRLA

10 4.59× 10−7 1.25× 10−6 1.63× 10−6

50 4.97× 10−6 6.46× 10−6 1.45× 10−5

100 1.27× 10−5 1.31× 10−5 2.18× 10−5

500 8.97× 10−5 6.44× 10−5 1.10× 10−4

1, 000 2.60× 10−4 1.28× 10−4 2.22× 10−4

5, 000 1.31× 10−3 7.19× 10−4 1.15× 10−3

10, 000 2.90× 10−3 1.58× 10−3 2.34× 10−3

50, 000 1.84× 10−2 8.54× 10−3 1.27× 10−2

100, 000 3.93× 10−2 1.73× 10−2 2.51× 10−2

500, 000 2.21× 10−1 1.11× 10−1 1.31× 10−1

1, 000, 000 4.67× 10−1 3.13× 10−1 2.70× 10−1

measurements are in seconds

Table 7.6: Average times of IDLA, BSLA, and TRLA on TRLA extreme strings.

8 Conclusion

Given that computing maximal Lyndon substrings is one of two ways to
compute all the runs of a string in linear time, it is only reasonable to
assume that improving on the efficiency of such algorithms is important
and relevant. Further, as there were only two “standard” algorithms for
computing the Lyndon array, it is essential to use them as a benchmark
against any future advances within this field.

This thesis has analyzed, formally proven correct, implemented, and
demonstrated the performance of two novel algorithms: BSLA and TRLA.
Specifically, these algorithms have been developed both theoretically and
programatically for empirical analysis and comparison against IDLA; one
of the two standard algorithms for computing maximal Lyndon substrings of
a string.

The first of the algorithms designed in the course of this thesis re-
search, BSLA is an important advancement in the field, as the algorithm is
both linear and elementary. By that it is meant that it does not require any
pre-processing of a global data structure. For example, SSLA or BWLA are
currently the only other linear algorithms to compute the Lyndon array,
but they both have to first compute the suffix array which, in a sense, is
completely unrelated to the task. BSLA does not need to do that.

The second of the algorithms designed in the course of this thesis re-
search is TRLA. It has the worst-case complexity of O(n log(n)) for an
input string of length n. Despite this, the algorithm is of interest to the
stringology community for two reasons: it is quite likely that an improve-
ment of the computation of the missing values can lead to an overall linear
complexity, and the τ-reduction developed for the algorithm can be of in-
terest elsewhere; for instance it could be used for a different approach for
linear suffix sorting.

67

8.1 Future Work 68

Empirical tests performed revealed that both BSLA and TRLA are good
algorithmic alternatives to IDLA as generally they both outperformed it;
for a particular class of strings significantly so. However, an unexpected
surprise was how negligible the differences were for random strings. As
a result of the testing it seems that it tells us more about random strings
than the three algorithms. Random strings tend to have a lot of very
short maximal Lyndon substrings, and that is what makes all three algo-
rithm perform very similarly. Testing using more heavily biased strings is
needed. To truly map the performance, both BSLA and TRLA need to be
compared to the fastest implementation of SSLA.

8.1 Future Work

There are several avenues which can be pursued in this area. Some of
which are:

1. Test the performance of BSLA, and TRLA against a suffix sorting al-
gorithm with next-smaller-value (SSLA) and on an algorithmic scheme
based on Burrows-Wheeler transform (BWLA).

2. Formally analyze, and prove correct, an algorithm based on ranges
(RGLA). Furthermore, investigate possible connections to deBruijn
sequences.

3. Test TRLA against larger ‘extreme’ strings to exhibit a more dis-
tinguishable worst-case upon empirical comparison with BLSA and
IDLA.

4. Optimize and reduce the space requirement of current BSLA imple-
mentation.

5. Optimize and reduce the space requirement of current TRLA imple-
mentation.

6. Investigate the claim [21] that computing Lempel-Ziv factorization
may be harder than computing all runs for general alphabets in a
framework of working with general alphabets as opposed to the cur-
rent state of affairs when only constant and integer alphabets are
considered.

Bibliography

[1] C++ code for IDLA, BSLA, and TRLA algorithms. Available at:
https://github.com/MichaelLiut/Computing-LyndonArray.

[2] U. Baier. Linear-time suffix sorting — a new approach for suffix array
construction. M.Sc. Thesis, University of Ulm, Ulm, Germany, 2015.

[3] U. Baier. Linear-time suffix sorting — a new approach for suffix array
construction. In R .Grossi and M. Lewenstein, editors, 27th Annual
Symposium on Combinatorial Pattern Matching (CPM 2016), vol-
ume 54 of Leibniz International Proc. in Informatics (LIPIcs), pages
1–12, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[4] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta.
The “Runs" Theorem. Available at: https://arxiv.org/abs/1406.

0263, 2015.

[5] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta.
The “Runs" Theorem. SIAM J. Comput., 46:1501–1514, 2017.

[6] J. Berstel and D. Perrin. The origins of combinatorics on words.
European Journal of Combinatorics, 28(3):996 – 1022, 2007.

[7] W. Bland, G. Kucherov, and W.F. Smyth. Prefix table construction
and conversion. In Thierry Lecroq and Laurent Mouchard, editors,
Combinatorial Algorithms, pages 41–53, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[8] G. Chen, S.J. Puglisi, and W.F. Smyth. Lempel-Ziv factorization using
less time & space. Mathematics in Computer Science, 1(4):605–623,
2013.

69

https://github.com/MichaelLiut/Computing-LyndonArray
https://arxiv.org/abs/1406.0263
https://arxiv.org/abs/1406.0263

BIBLIOGRAPHY 70

[9] M. Christodoulakis, P.J. Ryan, W. F. Smyth, and S. Wang. Inde-
terminate strings, prefix arrays and undirected graphs. Theoretical
Comput. Sci., 600:34–48, 2015.

[10] M. Crochemore, L. Ilie, and W.F. Smyth. A simple algorithm for com-
puting the Lempel-Ziv factorization. In Proc. 18th Data Compression
Conference, pages 482–488, 2008.

[11] C. Digelmann. Personal communication. 2016.

[12] J-P. Duval. Factorizing words over an ordered alphabet. J. Algorithms,
4(4):363–381, 1983.

[13] M. Farach. Optimal suffix tree construction with large alphabets. In
Proc. 38th IEEE Symp. Foundations of Computer Science, pages 137–
143. IEEE, October 1997.

[14] F. Franek and M. Liut. Algorithms to compute the Lyndon array
revisited. In Proc. of Prague Stringology Conference 2019, pages 16–
28, 2019.

[15] F. Franek, M. Liut, and W.F. Smyth. On Baier’s sort of maximal
Lyndon substrings. In Proc. of Prague Stringology Conference 2018,
pages 63–78, 2018.

[16] F. Franek, A. Paracha, and W.F. Smyth. The linear equivalence of the
suffix array and the partially sorted Lyndon array. In Proc. Prague
Stringology Conference, pages 77–84, 2017.

[17] F. Franek, A.S.M. Sohidull Islam, M. Sohel Rahman, and W.F. Smyth.
Algorithms to compute the Lyndon array. In Proc. of Prague
Stringology Conference 2016, pages 172–184, 2016.

[18] C. Hohlweg and C. Reutenauer. Lyndon words, permutations and
trees. Theoretical Computer Science, 307(1):173–178, 2003.

[19] J. Kärkkäinen and P. Sanders. Simple linear work suffix array con-
struction. In Proc. of the 30th international conference on Automata,
languages and programming, ICALP’03, pages 943–955, Berlin, Hei-
delberg, 2003. Springer–Verlag.

[20] R. Kolpakov and G. Kucherov. Finding maximal repetitions in a word
in linear time. FOCS40, pages 596–604, 1999.

[21] D. Kosolobov. Lempel-Ziv factorization may be harder than comput-
ing all runs. Available at: https://arxiv.org/abs/1409.5641, 2014.

https://arxiv.org/abs/1409.5641

BIBLIOGRAPHY 71

[22] M. Lothaire. Combinatorics on words. Cambridge University Press,
2003.

[23] M. Lothaire. Applied Combinatorics on Words. Cambridge Univer-
sity Press, 2005.

[24] F.A. Louza, W.F. Smyth, G. Manzini, and G.P. Telles. Lyndon array
construction during Burrows–Wheeler inversion. Journal of Discrete
Algorithms, 50:2–9, 2018.

[25] G. Nong. Practical linear-time O(1)-workspace suffix sorting for con-
stant alphabets. ACM Trans. Inf. Syst., 31(3):1–15, 2013.

[26] G. Nong, S. Zhang, and W. H. Chan. Linear suffix array construc-
tion by almost pure induced-sorting. In 2009 Data Compression
Conference, pages 193–202, 2009.

[27] A. Paracha. Lyndon factors and periodicities in strings. Ph.D. Thesis,
McMaster University, Hamilton, Ontario, Canada, 2017.

[28] B. Smyth. Computing patterns in strings. Pearson Addison-Wesley,
2003.

	Acknowledgements
	Abstract
	Problem Statement
	Overview
	Introduction
	Notation and Basic Facts
	Basic Properties of Lyndon Strings
	Basic Properties of Lyndon Substrings

	Background of the Problem
	Brute Force
	Iterative Duval Algorithm – IDLA
	Recursive Duval Algorithm - RDLA
	Algorithmic Scheme Based on Suffix Sorting - SSLA
	Algorithmic Scheme Based on Burrows-Wheeler Transform – BWLA
	An Algorithm Based on Ranges – RGLA

	Iterated Duval Algorithm (IDLA)
	Implementation Notes

	Baier's Sort Inspired Algorithm (BSLA)
	Notation and Notions for Analysis of BSLA
	The Refinement
	Intuition Behind the Refinement Process
	Implementation Notes

	-Reduction Algorithm for Lyndon Array (TRLA)
	-pairing
	-reduction
	Properties Preserved by -reduction
	Computing L'x from L'(x).
	The Complexity of TRLA
	Implementation Notes

	Empirical Testing and Results
	Conclusion
	Future Work

