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Lay Abstract

Mathematical and statistical models are widely used in studying infectious disease.
Over the last couple of decades, modeling techniques have advanced tremendously due
to improvements in computational power, data availability and data accessibility; this
enables researchers to use various modeling approaches that capture more realistic
aspects of infectious disease epidemics. My work focuses on exploring and improving
methods for modeling the spread of infectious disease; in particular, in simulations of
hypothetical emerging disease outbreaks and in real-life epidemic outbreaks of canine
rabies. I used a high-quality data set from an ongoing rabies study in Africa to show
that variation among dogs biases transmission calculations, and that the parameters
underlying spread in canine rabies are more complicated and less well understood than
previously thought. T also developed a method to improve modeling trait relationships

while incorporating phylogenetic relationships.
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Abstract

Mathematical and statistical models are widely used in studying infectious disease.
They provide important insights — including mechanisms of the spread of infectious
disease, forecast epidemic size and duration, and effects of intervention strategies —
which are useful in studying and combating infectious disease. Over the last couple of
decades, modeling techniques have advanced tremendously due to improvements in
computational power, data availability, and data accessibility; this enables researchers
to use various modeling approaches to capture more realistic aspects of infectious
disease epidemics. Despite having flexible modeling techniques, these approaches use
different modeling assumptions to incorporate information and propagate uncertainty,
often arriving at inconsistent conclusions. My work focuses on exploring and improving
methods for modeling the spread of infectious disease; in particular, exploring the state
of the art techniques for disease modeling in real epidemic outbreaks and simulation
settings.

Motivated by a synthetic forecasting challenge inspired by the 2014 West African
Ebola outbreak, I compared simple Markov chain Monte Carlo approaches to simulated
epidemics (Chapter 2). Using high-resolution data from an ongoing rabies contact-
tracing study, I apply robust techniques to reassess global historical risk estimates of
canine rabies (Chapter 3), and show that disease trait correlations bias generation time
estimates, with implications for conclusions about control (Chapter 4). In Chapter 5,
I developed a method to improve modeling trait relationships while incorporating
phylogenetic relationships by reformulating phylogenetic mixed models to improve

flexibility and speed.
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Chapter 1: Introduction

Thesis overview

In this thesis, I show a series of works exploring and developing methods for modeling
the spread of infectious disease and phylogenetic mixed models. In Chapter 2, I
present a simulation study that compares different modern Bayesian Markov Chain
Monte Carlo (MCMC) modeling approaches to the early stages of epidemic outbreaks
where data is limited. In Chapter 3 and 4, I focus on canine rabies, a feared disease
which causes an estimated 50,000 human deaths each year. Using historic outbreak
case-incidence time series data from around the world and high-resolution contact-
tracing data, I used newly developed modeling and estimation techniques to reassess
epidemiological parameters and the risk of these historical outbreaks (Chapter 3).
In Chapter 4, I focus on exploring the details and issues in estimating generation
intervals. I carefully define these intervals, and their component parts, and construct
equations that clarify the source of differences between generation intervals and the
related serial intervals. Then I use rabies as a case study to explore the differences
between constructed generation intervals and observed generation and serial intervals.
Lastly, the work I present in chapter 5 is a general statistical framework in modeling
traits while incorporating phylogenetic correlations. This work can be integrated into
disease trait models with multiple species.

In addition to the results presented, I also focus on the importance of methodological
validation and reproducibility. All methods in this thesis are validated with simulations,

and all code is available, with reproducible examples, in public GitHub repositories.



Mathematical and statistical models

Mathematical and statistical models are widely used in studying infectious disease.
They provide important insights — including evaluating mechanisms of spread, fore-
casting epidemics, and predicting effects of intervention strategies.

The use of mathematical models to study infectious diseases dates back at least
to the 18th century when Daniel Bernoulli used mathematical analysis to encour-
age universal inoculation against smallpox (Bernoulli and Blower, 2004; Dietz and
Heesterbeek, 2002). In the early 1900s, Ronald Ross developed influential modeling
ideas while studying malaria (he was also the first to show that mosquitoes transmit-
ted malaria) (Cox, 2010; Smith et al., 2012). In particular, Ross noted that a disease
can be eliminated from a population as long as each case causes on average less than
one new case, and used this idea to argue that malaria could be effectively controlled
by reducing mosquito density.

Over the last few decades, increases in power and availability of computers have led
to new developments in epidemiological modeling. Specifically, modern methods allow
the application of statistical approaches to mathematical models which account for
dynamics of disease spread. This progress is facilitated by improvements in the quality
and availability of epidemiological data, particularly disease-incidence data, but also

demographic, geographical, environmental, and even biological sequence data.

Reproductive numbers

Ross’ insight about epidemic spread has become the foundation of a critical concept
in mathematical epidemiology. The basic reproductive number Ry, is defined as the
expected number of new cases per cases in a fully susceptible population (Macdonald,
1952). Ry is often used to guide disease control: disease-control programs based on
the idea that if Ry can be estimated, and transmission reduced by a factor of Ry, the

disease can be eliminated. For example, for a disease with effective vaccines, if less



than 1/R of a population remains unvaccinated, the population is expected to be
protected by ‘herd immunity’ (shared protection). Thus, the statistical estimation of
Ry is often of interest.

One common way to calculate R is using two other quantities that are often easier
to measure empirically: the rate of spread and the generation interval (Wallinga and
Lipsitch, 2006). The rate of spread describes the speed the disease is spreading
at the population level and is inferred primarily from case-incidence reports (Park
et al., 2019). The generation interval is the time in between one individual getting
infected and infecting another individual. The distribution of the generation interval
describes how fast the disease spreads at the individual level and is typically inferred
from contact tracing or estimated if data are limited.

Another common way to estimate R, is based on the idea that diseases reach
equilibrium when there is one case per case. If per-individual transmission (i.e.,
the number of cases per case) is controlled by the proportion of susceptibles in a
population, then Rq can be estimated from the estimated proportion susceptible at

equilibrium.

Rabies

Rabies has been feared throughout human history. It is highly virulent, with vir-
tually every clinical case ending in death, and poses a high mortality burden, with
an estimated 50,000 annual deaths in humans (Knobel et al., 2005). Rabies viruses
(RABVs) co-circulate among a wide range of mammalian hosts (Bourhy et al., 2008);
however, most rabies viruses are found in canine-associated clades and particularly
in domestic dogs (C. domesticus), are responsible for more than 99% of human ra-
bies deaths (Knobel et al., 2005). While rabies has been eliminated from domestic
dog populations in Western Europe and North America, it remains a huge problem

in many low- and middle-income countries (LMICs), primarily in Asia and Africa



(Cleaveland and Hampson, 2017).

Canine rabies can be effectively controlled by vaccinating domestic dog popula-
tions; high-income countries have used this approach to eliminate human deaths from
dog-mediated rabies. A few LMICs in Africa and Asia have implemented mass dog
vaccination at scale; however, they are not as effective and more challenging than ex-
pected. United Against Rabies recently launched a campaign to eliminate rabies by
2030 by partnering with World Health Organization (WHO), the Food and Agricul-
ture Organization of the United Nations (FAO), the World Organisation for Animal
Health (OIE) and the Global Alliance for Rabies Control (GARC); this is an exciting

time to study rabies.

Chapter summaries

Chapter 2. Inspired by recent Ebola forecast challenge (Viboud et al., 2018), I
explored the performance and limitations of different Bayesian Markov Chain Monte
Carlo (MCMC) modeling approaches to estimating disease parameters and forecast-
ing epidemics. I developed relatively simple MCMC approaches that were able to
incorporate stochasticity in both transmission and observation, and applied them to
data from simulated epidemics. The simulation design in this study mimics the early
stages of emerging disease outbreak where data are limited. I learned two things in
this study: first, modeling different processes with dispersion is a naive but effective
way to add uncertainty in the model; and, approximating discrete latent state process

with continuous processes can aid efficiency without losing robustness of fit.

Chapter 3. In an earlier, influential paper, estimates of Ry based on historical
outbreaks of rabies have surprisingly low, typically between 1 and 2 (Hampson et al.,
2009). I further investigated and re-assessed why these rabies R, estimates have

generally been low. I used a logistic model to estimate the initial growth rate r



in a Bayesian framework using Hamiltonian Monte Carlo and empirical generation
intervals from contact tracing data. I developed a hybrid approach where I was able
to incorporate uncertainties in both r and generation interval when estimating R.
Ry estimates using the hybrid approach are larger with wider confidence intervals
than previously estimated. The results suggest more efforts are needed to control

rabies and rabies is not as well known as previously thought.

Chapter 4. Following up on Chapter 3, I explored the difference between con-
structed estimated generation intervals (Hampson et al., 2009), realized generation
intervals and serial intervals from contact tracing data. I used a simple generalized
linear mixed model approach to model dogs’ biting behaviour and time distributions
and compared incubation periods simulated from the predictive model and random,
independent resampling from the empirical data. The results showed that incuba-
tion periods are positively correlated with biting behaviour in rabies. I learned that
neglecting correlations between time distributions and biting behaviour can bias gen-

eration interval estimates.

Chapter 5. Inspired by the inflexible and computationally demanding approaches
to fit phylogenetic mixed models; I explored the performance and limitations of exist-
ing R packages. I developed an alternative approach in parametrizing the phylogenetic
tree covariance matrix (similarity between species) with a species-branching matrix
(branches shared between species) and implemented in R package 1me4 and glmmTMB.
I compared the new approach with existing R packages that fit phylogenetic mixed
models with simulated phylogenetic trees. The new approach is much more flexible in
fitting phylogenetic random effects, magnitudes faster, and able to fit large volumes
of data. This improvement offers researchers a flexible way to fit multi-species trait

models.
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Chapter 2: Fitting mechanistic epidemic models to
data: A comparison of simple Markov
Chain Monte Carlo approaches

In this chapter, I developed a simulation study comparing different Bayesian Markov
Chain Monte Carlo modeling approaches fitting to simulated epidemics data. The
simulation design mimics the data-stream at early stages of emerging disease outbreak
where data are limited. The simulation model is a discrete-time SIR model that incor-
porates stochasticity and additional sources of variation in the form of overdispersion
in both transmission and observation processes. I compared model approaches of
varying complexity as well as different MCMC platforms. This study illustrates the
importance of propagating uncertainty in at least at one level of and ways to aid
efficiency without losing robustness of fit.
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manuscript.
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Abstract

Simple mechanistic epidemic models are widely used for forecasting and parameter estimation of infectious diseases
based on noisy case reporting data. Despite the widespread application of models to emerging infectious diseases, we
know little about the comparative performance of standard computational-statistical frameworks in these contexts. Here
we build a simple stochastic, discrete-time, discrete-state epidemic model with both process and observation error and
use it to characterize the effectiveness of different flavours of Bayesian Markov chain Monte Carlo (MCMC) techniques.
We use fits to simulated data, where parameters (and future behaviour) are known, to explore the limitations of different
platforms and quantify parameter estimation accuracy, forecasting accuracy, and computational efficiency across
combinations of modeling decisions (e.g. discrete vs. continuous latent states, levels of stochasticity) and
computational platforms (JAGS, NIMBLE, Stan).

Keywords
Markov chain Monte Carlo, Hamiltonian Monte Carlo, discrete-time susceptible-infectious-removed model, dispersion,
moment-matching

I Introduction

Simple homogeneous population models have been widely used to study emerging infectious disease outbreaks.
Although such models can provide important insights — including estimated epidemic sizes and predicted effects of
intervention strategies, as well as short-term forecasts — they neglect important spatial, individual-level and other
heterogeneities. Decades of work have created frameworks that enable researchers to construct models that
capture many of these more realistic aspects of infectious disease epidemics. But many challenges remain. In
particular, estimating parameters (and associated uncertainties) is always challenging, especially for models
incorporating multiple forms of heterogeneity, and especially during the early stages of an epidemic when data
are limited. Using complex models that are insufficiently supported by data can lead to imprecise and unstable
parameter estimates' — in such cases, researchers often revert to simpler models for practical purposes.

In the past few decades, researchers have begun to adopt Bayesian approaches to disease modeling problems.
Bayesian Markov Chain Monte Carlo (MCMC) is a powerful, widely used sampling-based estimation approach.
Despite the widespread use of MCMC in epidemic modeling,>* however, there have been relatively few systematic
studies of the comparative performance of statistical frameworks for disease modeling.*

In this paper, we apply relatively simple MCMC approaches to data from simulated epidemics that incorporate
stochasticity in both transmission and observation, as well as variable generation-interval distributions (not assumed
to be known when fitting). We compare model approaches of varying complexity, including an estimation model that
matches the simulation model. For each model, we quantify parameter estimation accuracy and forecasting accuracy;
this sheds light on which phenomena are most important to include in models to be used for estimation and forecasting.

'Department of Biology, McMaster University, Hamilton, Ontario, Canada
2Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
3Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada

Corresponding author:
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We also compare three different MCMC platforms: JAGS,” NIMBLE® and Stan.” In principle, for any given
model, any valid method of MCMC sampling should eventually converge on the same (correct) posterior
distribution. However, even with the relatively simple models considered here, a theoretically valid software
package can experience problems in practice: we wanted to investigate this phenomenon. Furthermore, even
when different platforms converge to essentially the same result, they may show large differences in
computational efficiency: we therefore also quantify efficiency for the models we study.

2 Methods

We generated test data using a simple framework that combines a transmission process based on a simple discrete-
time model with an observation process to account for incomplete reporting. Both processes are assumed to be
stochastic. We then fit the observed cases from these simulations using Bayesian methods that model the
underlying true number of infections as a latent (i.e. unobserved) variable. Our Bayesian fitting models explore
an approach that matches the assumptions of the simulation model, as well as various simplifications: in
particular, we explore simpler methods of accounting for variation in both the transmission process and the
observation process, and the use of continuous rather than discrete latent variables. For simplicity, we have
here assumed that data are reported on the same discrete time scale on which the disease process is simulated
(but not that the reporting period is the same as the generation time of the disease; see below). This assumption
requires that the generation time be at least as long as the reporting period. It would be relatively straightforward
to relax this assumption, for example by assuming that the epidemic dynamics occur on a finer time scale than the
reporting interval, or by simulating in continuous time but fitting with a discrete-time model; we do not explore
these questions here.

2.1 Simulation model

The transmission process of our dual-process framework is based on the Reed-Frost chain binomial model, which
can also be described as a discrete-time, stochastic compartmental SIR model.® To account for the possibility that
some fraction of the population may be beyond the scope of the epidemic — geographically or socially isolated,
genetically resistant, vaccinated or immune due to previous exposure — we assume that only a proportion Peg of
the total census population is actually susceptible to infection. We further assume that, in every time step, only a
proportion (randomly chosen with mean P.,) of new infections are actually observed. We model both
transmission and observation using a beta-binomial (rather than binomial) distribution to account for
additional sources of variation (i.e. overdispersion) in both processes. The equations are

Neir = PerN (1)
S =Ner— 1 (2)
14
b, = Zk(i)lt—[ﬂ‘ 3)
i=1
I,41 ~ BetaBin (1 —e™%,S,,8p) 4)
St+1 =S8 - Ir+1 (5)
Obs; ~ BetaBin (Prep, I, Sobs) (6)

where @, is the force of infection at time 7; Negr is the effective population size; and ¢ is the number of lags.

The most common parameterization of the beta-binomial comprises three parameters: the binomial size
parameter N plus two additional shape parameters (o and g) that describe the Beta distribution of the per-trial
probability. Uses of the beta-binomial in statistical modeling instead typically transform the shape parameters into
a pair of parameters that describe the per-trial probability and a dispersion parameter’; larger values of
the dispersion parameter § correspond to less variability. We use a slight modification of this parameterization
(see Figure 1).

We extend the Reed-Frost model by allowing the infectious period to last longer than one step, and the infectivity
to vary based on how long an individual has been infected; we do this by parameterizing a transmission kernel that
describes the force of infection coming from individuals who were infected ¢ time steps ago. For convenience,
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Figure |. Discrete distribution relationships. For beta-binomial distribution (bottom right panel), we used an alternative
parameterization « and f, where o :ls%p and = %“. Moving from the top to bottom row adds a size parameter (replacing it with np).
Moving from left to right adds a dispersion parameter 8p and 85 for Poisson and Binomial distribution, respectively.

we assumed a fixed maximum window length (£ = 5). We then based our transmission kernel on a negative binomial
distribution, truncated to fit this window:

k(i) = 195D x exp(GP_i z)’ i=1,....¢ 7)

Ry k()
New = YL k()

k(i) = i=1,....¢ (8)

Here, Ry represents the basic reproductive number and Ggs and Gp are shape and position parameters,
respectively.

2.2 Fitting model

2.2.]1 Transmission and observational process errors

The transmission (equation(4)) and observation (equation (6)) processes in the simulation model are both defined
as beta-binomial (BB) processes. In fitting, we used the BB to match the simulation model, but also tried several
simpler alternatives: binomial (B), Poisson (P), and negative-binomial (NB) processes. Process B does not allow for
overdispersion, while NB does not incorporate the size of the pool from which a value is chosen; that is, it is
theoretically possible for a NB sample of the number of infections to be larger than the current susceptible
population (although this is extremely unlikely when the per capita infection probability is small). Process P
neglects both of these phenomena. Figure 1 illustrates the relationship of the four discrete distributions.

2.2.2 Multiple scale decorrelation

The proportion of the population assumed to be effectively susceptible (Pey) and the reporting proportion (Prep)
has very similar effects on observed incidence. We therefore reparameterized the model so that it uses a single
parameter P, for their product, and a second to govern how the product is apportioned between the two
quantities:

Pe = Pyl ©
PFBP = ngfrep (10)

We expected a priori that this parameterization would improve statistical convergence, since it makes it possible
to sample different values of the poorly constrained value of p without changing Pegyrep. It is straightforward to

10



back-calculate Peyand P, once the model is fitted. For similar reasons, we experimented with measuring infected
individuals on a “‘reporting” scale in our continuous-variable models (see below).

2.2.3 Continuous latent variables
Another simplification we considered was treating the unobserved number of underlying cases as a continuous
variable. To do this, we matched the first two moments of the discrete distribution to a Gamma distribution
(Figure 2).

Equations (4) and (6) can be rewritten as

f,+1 ~ Gamma <a, L) (11)
rep
Obs, ~ NB(T;, 8obs) (12)

One advantage of this continuous approximation approach is that it allows us to scale our latent variable
to help with model convergence, so that infected individuals are measured on the reporting scale. Another
advantage is that it allows us to use Hamiltonian Monte Carlo (HMC), which cannot easily use discrete latent
variables.

2.3 Bayesian Markov Chain Monte Carlo

In Bayesian MCMC, model parameters are sampled from the posterior distribution by a reversible Markov chain
whose stationary distribution is the target posterior distribution. Classical MCMC techniques include the
Metropolis-Hasting algorithm,'® Gibbs sampling,'' and slice sampling.'? Recently, convenient implementations
of a powerful MCMC technique called Hamiltonian Monte Carlo (HMC: also called hybrid MC)!® have become
available. HMC uses the concept of Hamiltonian dynamics to create a proposal distribution for the M-H
algorithm, together with the leap-frog algorithm and the No U-Turn sampler."* HMC requires more
computational effort per sample step compared to other MCMC techniques, but because subsequent steps are
less strongly correlated it also produces more effective samples per sample step.”'

2.3.1 Platforms

Many software platforms implement the automatic construction of MCMC samplers for user-defined models. One
of the most widely used platforms is JAGS (Just Another Gibbs Sampler); despite its name, it implements a variety
of MCMC techniques to fit models. NIMBLE (Numerical Inference for Statistical Models for Bayesian and
Likelihood Estimation) is a more recent platform that allows users to flexibly model and customize different
algorithms and sampling techniques for MCMC. Neither JAGS nor NIMBLE has yet implemented HMC. One
of the relatively few platforms that currently implements HMC is Stan, which provides full Bayesian inference for
continuous-variable models based on the No-U-Turn sampler, an adaptive form of HMC.

Continuous Approximation (Hybridization)
Gamma(shape = a,rate = 7)
Poisson Negative Binomial
a=p a= ur
r=1 r= ép
Op + p
Binomial Beta Binomial
a=npr a:=mppr
_ 1 e 9B+p(l-p)
"Ti1op (1-p)(dg +np(1 —p))

Figure 2. Continuous approximation of discrete distributions via moment matching. Distributions in Figure | were matched to a
Gamma distribution with equivalent first and second moments.
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2.3.2  Simulation and evaluations

We evaluated our estimates of (1) total cases predicted over the forecast window (disaggregated forecasts are

analyzed in the supplementary material) and (2) key model parameters, including the estimated mean generation
YA

. ) ik(i .

interval [ MGI : defined as ng‘y((?) We used bias, root mean square error (RMSE), and coverage to assess model

i=1 !

fit. Bias and RMSE are based on proportional errors, defined as the log ratio of our estimate (taken as the median of

the posterior sample) to the known true value from our simulations. Errors were compared on the log scale in order

to allow comparison of the accuracy of estimation of different parameters that may be on very different scales. The

median is a scale-invariant, robust summary statistic for the location parameter of a Bayesian posterior

distribution.'® Thus in order to compare different parameters in a consistent, unitless fashion, the errors were
calculated as ¢; = log(med@) /6). We then calculated bias (median(e)) and RMSE (y/mean(e?)).

Coverage refers to the frequency with which the computed confidence intervals include the true values of
parameters or simulated quantities such as the forecast number of cases. We used 90% quantile-based intervals
to evaluate coverage (i.e. a range from the 0.05 to the 0.95 quantile of the sampled posterior distributions).'®

Evaluating the coverage of Bayesian model estimates based on simulated parameters runs the risk of
confounding two questions: How well does the modeling implementation work? and How appropriate are the
prior distributions for the particular question? In particular, when tested parameters are from regions with high
prior density, coverage is biased upwards (i.e. it will be higher than the nominal value when the method is working
properly) — particularly problematic is that this bias may make fits look good when in fact they are under-covering.
This scenario can easily occur if we follow the standard frequentist simulation scheme of simulating all epidemic
realizations with the same fixed set of parameters, then choose Bayesian priors that are centered on or near the
fixed parameters. One potential solution is to use only uninformative priors (so that the simulation parameter
values do not have high prior density); this was both impractical, because completely uninformative priors led to
numerical instability in our fitting procedures, and unrealistic, because it is likely that researchers would use
informative priors in a real epidemic-fitting exercise.

As an alternative way to resolve this situation, we implemented an established Bayesian validation protocol'®
where we: draw parameters from our assumed prior distribution; generate data using the drawn parameters; and fit
the Bayesian model with the same prior distributions. This scheme matches the assumptions of our model, and is
therefore a fair way to evaluate how well the implementation works. We sampled 100 sets of the parameters from
the same prior distribution that was used in the fitting process; for each parameter set, we simulated one realization
of 15 time steps (10 for fitting and 5 to compare to forecasts). All model variants were used to fit each realization
(Tables 1 and 2 in the online appendix give more detail about parameters and priors). We combined two
convergence criteria to assess convergence for the main parameters (Ro, Pesr, Prep): We required a value of the
Gelman and Rubin statistic R < 1.1 and an effective sample size (ESS) greater than 400 for each replication. For
each replication we sample four chains starting with 4000 iterations; we repeatedly double the number of iterations
(with a upper threshold of one million iterations) until the convergence criteria are met. Forecasts were made by
simulating incidence five time steps forward using parameters sampled from the fitted posterior distributions.

3 Results

The full model (which matches the simulation model) provides generally good forecasts and parameter estimates as
assessed by bias (Figure 3) or RMSE (Figure 4), except for estimates of P.g using JAGS.

In general, models with any kind of dispersion in the transmission process, or with negative binomial dispersion
in the observation process, did well. The exception is that models that combined negative binomial transmission
dispersal with beta binomial observation dispersal produced biased forecasts and estimates of Py,

There are no clear differences in the quality of model fit due to multi-scale decorrelation, latent continuous
transmission process or platform.

Figure 5 shows the statistical coverage of our estimates. Similar to the results for bias and RMSE (Figures 3
and 4), we find generally good coverage (i.e. close to the nominal value of 0.9) for models with dispersion in the
transmission process, except that the negative-binomial transmission process model undercovers across the board
(coverage ~0.8 for all observation process models and platforms) for forecasts and P.., For models without
dispersion in transmission, models with dispersion in the observation process have low coverage (~0.8) for most
parameters, while the beta-binomial process model has low coverage (x0.4) for P, and models without any
dispersion have uniformly low coverage.
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Figure 3. Comparison of bias (based on proportional errors) for forecasts and parameters using models described in section 2.2
across different platforms described in section 2.3.1. Models with overdispersion in the transmission process (BB and NB, leftmost and
second-left columns of panels) and models with overdispersion in the observation process (BB and NB, leftmost and second-left x-axis
ticks within each panel) have generally low bias. Continuous latent-state models (solid points) are only implemented for negative
binomial and Poisson observational processes.

There are substantial efficiency differences between transmission-process approaches (continuous vs. discrete),
as measured by time per effective sample size, shown in Figure 6. For a given platform, models using continuous
latent variables are generally more efficient than discrete latent processes. Comparing models with continuous
latent variables between platforms (Figure 5, second and fourth column of every panel), Stan (using HMC) is
sightly more efficient for majority of the parameters, followed by NIMBLE and JAGS. Furthermore, continuous
latent-variable models (especially using HMC in STAN) use fewer iterations (when meeting all convergence
criteria described in section 2.3.2) than discrete latent-variable models.
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Figure 4. Comparison of RMSE (based on proportional errors) for all fitting model variants. The layout matches that of Figure 3.
Patterns across models and platforms are similar to those seen in Figure 3. Short-term forecasts have generally high error, even when
bias is low, reflecting inherent uncertainty in the system. The highly correlated parameters P and P, also show high error but not

high bias.

4 Discussion

We have fitted models varying in complexity to simulated epidemic data with multiple sources of heterogeneity,
using several different platforms. Using models that include some form of overdispersion is necessary for robust
fits, but models that include overdispersion only in the transmission process can work as well as or better than the
full model. Including overdispersion only in the observation process (if implemented as a negative binomial
distribution) also provides relatively robust fits to these data. Simplifying the models by using continuous

rather than discrete latent variables increased efficiency with little effect on the quality of the fits.
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Figure 5. Comparison of coverage probability for forecast and parameters. Models with overdispersion in the transmission process
(BB and NB, leftmost and second-left columns of panels) and models with overdispersion in the observation process (BB and NB,
leftmost and second-left x-axis ticks within each panel) have coverage near the nominal value of 0.9 for all parameters and model

variants. The black line shows the nominal coverage, and the grey ribbon the 95% binomial confidence interval based on 100 simulated
fits. Vertical axis is plotted on a logit scale.

4.1 Ceilings

The effects of using distributions with ceilings (i.e. binomial and beta-binomial distributions) instead of their less
realistic counterparts without ceilings (Poisson and negative binomial) were relatively small. In our framework,
ceilings only apply in models with discrete latent variables; the primary effect of such ceilings is to reduce variance
as probabilities (of infection or of sampling) become large. (Reporting-process models without ceilings also allow
for false positives or over-reporting, which may be important in some contexts.)
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Figure 6. Comparison of efficiency for all fitting model variants: layout of models and platforms as in Figure 3.

4.2 Overdispersion

Accounting for overdispersion had more impact on our fits than the presence or absence of ceilings. In
particular, models with no overdispersion in either process lacked flexibility and tended to be over-confident
(that is, they showed low coverage). However, models that account for overdispersion in only one process
(either transmission or observation) tended to be reliable for estimating parameters such as Ry, mean
generation interval, and short-term forecasts, particularly when overdispersion was implemented through the
negative binomial (a less constrained distribution than the beta binomial). However, parameters that are closely
tied to the details of a particular model structure (such as the overdispersion parameters for the observation and
transmission processes) must change when the overdispersion model changes, in order to compensate for missing

sources of variability.
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Several authors'”'® suggest that accounting for process as well as observation error in estimates of Ry and in

forecasts is necessary in order to avoid over-confident estimates. Our exploration does not include any cases
where process error is completely absent — even our “‘dispersion-free’” processes incorporate sampling error in
the process. However, we find that neglecting overdispersion can still lead to over-confident and unreliable
estimates.

4.3 Reporting

In classic infectious disease models, reducing reporting rate and reducing the total effective population size have
similar effects: reducing the observed size of the epidemic. While we want to make as few assumptions as possible
about unobservable aspects of the epidemic, underreporting is of huge practical importance. Additionally,
modeling observation error explicitly is required for reliable estimates of uncertainty.!” If reporting error is
modeled with a ceiling, then underreporting is a necessary component of reporting error (i.e. reporting will be
biased downward in the presence of other sources of noise). Allowing overdispersion decouples the variance from
the mean of the reporting process (i.e. the extra overdispersion parameter means that the variance is not
determined by the mean).

Because reporting rate and effective population size play similar roles in epidemic dynamics, incorporating them
both in a model may make their parameter estimates strongly correlated and hence difficult to identify: we may be
very uncertain whether low observed epidemic incidence is driven by a small effective population size or a low
reporting rate. We have addressed convergence problems arising from this issue by reparameterizing the model
(Section 2.2.2). From a conceptual point of view, joint unidentifiability is not necessarily a serious problem, as long
as the quantities we are most interested in (such as Ry) are identifiable. In practice, however, weak identifiability
can cause hard-to-detect convergence problems; known-parameter simulations like those implemented here are
useful for validation in such cases.

4.4 Extensions and alternative approaches

Our analysis covers classical MC (i.e. conditional updating of parameters via conjugate, slice, and Metropolis-
Hastings samplers) and HMC approaches. Even within this scope there is additional room for analysis, both in
terms of exploring important heterogeneities that we have neglected here (such as spatial, age and social structure),
and in improving sampling techniques (e.g. by adjusting the choice of samplers in JAGS or NIMBLE or by
redundant parameterization'?).

More broadly, a plethora of other model-fitting tools is available to researchers, from deterministic
optimization tools based on the Laplace approximation®™?! to sequential techniques such as iterated filtering
and particle MC.?*?* These techniques can in principle be combined flexibly with the methods we explore here,
e.g. using HMC to sample top-level parameters while implementing a sequential MC technique for the latent
states. It will be interesting to see how the single-technique methods here compete with hybrid approaches, and
how flexible toolboxes such as NIMBLE will fare against more focused platforms like Stan.

4.5 Prior distributions

This paper focuses on evaluating Bayesian methods for fitting and forecasting epidemics. For the purposes of
evaluation, we use parameter distributions for simulation that exactly match our Bayesian priors. We are assuming
that researchers have a reasonable method of choosing appropriate Bayesian priors; in real applications this will be
an important challenge.

5 Conclusion

We have presented a comparison of simple MCMC approaches to fit epidemic data. We learned two things
about fitting epidemic data. First, modeling different processes with dispersion (BB and NB) is a naive but
effective way to add uncertainty in the model; models that neglect such uncertainty are likely to be over-
confident and less accurate at forecasting. Second, approximating discrete latent state process with continuous
processes can aid efficiency without losing robustness of fit. This allows more efficient fitting in the classic
framework (e.g. JAGS and NIMBLE), and also allows us to use the more advanced HMC technique (which
we implemented via Stan).
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Supplementary material

In the main text, we present the bias, RMSE, coverage and efficiency plots for aggregated forecast, Ro, MGI, Py and Py,
Here, we present plots showing the other parameters (shape G and position Gp of the transmission kernel and process and
observation overdispersion parameters 8, and §,,,) and disaggregated forecasts (five forecast steps) that are excluded in the
main text. We also add some representative plots of the simulated cases and forecast.
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Chapter 3: Reassessing global historical R estimates
of canine rabies

In my first of two chapters on canine rabies, I present the results of R estimates of
historical rabies outbreaks around the world. In this chapter, I revisiting different R,
estimation approaches for canine rabies. Using the same time series data, [ used a more
reliable approach to model the growth rate r. Using a hybrid approach that propagates
uncertainties from both r estimates from a Bayesian framework and generation in-
tervals from empirical data result in larger R estimates with wider confidence intervals.

The text I present here is a draft of a manuscript planned for submission for publication
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Abstract

Rabies spread by domestic dogs continues to cause tens of thousands of human deaths
every year in low- and middle-income countries. Despite this heavy mortality burden,
rabies is often neglected, perhaps because it has been eliminated from high-income
countries through mass dog vaccination. Estimates of the intrinsic reproductive num-
ber (Ry) of canine rabies from a wide range of times and locations are low (values <2),
with narrow confidence intervals. The persistence of rabies in environments that vary
enormously in ecological conditions is thus surprising. We combined incidence data
from many historical outbreaks of canine rabies from around the world and used high-
quality data from contact tracing from Tanzania (2002-present) to investigate initial
growth rates (r), generation intervals (GIs) and reproductive numbers (Ry). We used
hybrid techniques to propagate uncertainties for R, which accounts for uncertainties
for both r and GI. Our R estimates and larger with wider confidence intervals com-
pared to previous estimates. Our results suggest that in general R for rabies may

be more uncertain and less well constrained by data than previously thought. This
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hybrid approach of estimating R is applicable to other diseases systems that uses r

and GIs to estimate Ry.

Introduction

Canine rabies, primarily spread by domestic dogs, is a vaccine-preventable disease
that continues to cause tens of thousands of human deaths every year in low- and
middle-income countries (LMICs) (Minghui et al., 2018; Taylor et al., 2017). Canine
rabies has been effectively eliminated from high-income countries by mass dog vacci-
nation (Rupprecht et al., 2008). Despite the effectiveness of vaccinating dogs, rabies
continues to cause considerable mortality and large economic losses in LMICs due to
the limited implementation of rabies control strategies (Hampson et al., 2015). Over
the past two decades, there has been an increase in efforts to control rabies — includ-
ing dog vaccination campaigns and improvements in surveillance (Gibson et al., 2018;
Kwoba et al., 2019; Mazeri et al., 2018; Mtema et al., 2016; Wallace et al., 2015). More
recently, the World Health Organization (WHO) and partners (OIE, FAO, GARC)
joined forces to support LMICs to eliminate human deaths from dog-mediated rabies
by 2030 (Abela-Ridder et al., 2016; Minghui et al., 2018). In some LMICs mass dog
vaccination campaigns have begun and are being scaled up (Castillo-Neyra et al.,
2019; Evans et al., 2019). An understanding of rabies epidemiology — in particular,
the basic reproductive number (Ry), a quantitative measure of disease spread that is
often used to guide vaccination strategies, could inform rabies control efforts.

Ry is defined as the expected number of secondary cases generated from each
primary case in a fully susceptible population (Macdonald, 1952). Estimates of R,
using various methods (i.e., direct estimates from infection histories, epidemic tree
reconstruction, and epidemic curve methods) based on historical outbreaks of rabies

have generally been low, typically between 1 and 2 (Hampson et al., 2009; Kitala et al.,
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2002; Kurosawa et al., 2017). In contrast to diseases with large R (e.g. measles with
Ro >10 (Guerra et al., 2017)), R, estimates for rabies imply that control through
vaccination should be relatively easy (compared to e.g., rinderpest with Rg ~ 4
(Mariner et al., 2005)). Even in the absence of vaccination, one might expect rabies
to fade out from behavioural control measures combined with stochastic fluctuations.

Our focus is to explore why rabies nonetheless continues to persist, often robustly,
in many countries around the world. This persistence suggests that rabies potential
for spread, and therefore the difficulty of control, may have been underestimated. In
this chapter, I will use inferences from epidemic curves and a large number of observed
generation intervals from a high-resolution contact tracing data to estimate rabies Ry
around the world. Compared to other Ry estimation approaches, this approach is
relatively robust to under-reporting; it also allows us to apply the generation interval
data to historical rabies incidence data around the world. Re-assessing R, estimates

can improve the estimation of Ry and understanding of disease control more generally.

Materials and Methods

Ry is often estimated from two other epidemiological quantities: the initial growth
rate of an epidemic (r) and the generation interval (GI) distribution, where a GI
is defined as the time between successive infections along a transmission chain. 7
is often estimated by fitting a growth rate to time series data from the early stages
of epidemics. GI is an individual level quantity that measures the time between an
individual getting infected to infecting another individual. The generation interval
distribution is the natural way to link r and Ry (Champredon and Dushoff, 2015;
Wallinga and Lipsitch, 2006). During an outbreak in a fully susceptible population,

Ry can be calculated from r and the GI distribution by the Euler-Lotka equation
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(Wallinga and Lipsitch, 2006)

1

Ro= S= Gie

(1)

where t is time, and G(t) is the generation interval distribution. This formula is
convenient to calculate point estimates of Ry; however, propagating uncertainty from

estimates of r and the GI distribution can be hard.

Initial growth rate

Disease incidence typically increases approximately exponentially during the early
stages of an epidemic. The initial growth rate r is often estimated by fitting expo-
nential curves from near the beginning to near the peak of an epidemic. However,
recent studies have shown that exponential models and their estimated growth rates
are biased, overconfident, and sensitive to the choice of fitting windows (Ma et al.,
2014). Alternative models such as the logistic model and generalized Richards model
provide robust estimates of r in simulations (Chowell, 2017; Ma et al., 2014).

Here we instead assume that cumulative incidence follows a logistic function, but
fit directly to incidence in each epidemic (to avoid statistical independence problems)
(Ma et al., 2014). We select our fitting window consistently as follows: the starting
point is the first detected case such that all time points (monthly incidence reports)
after the starting point have at least one case; the final point in the first point after

the observed global peak (the month with the highest incidence) of period incidence.

Observed Generation intervals

Transmission events are generally hard to observe for most diseases. In an earlier,
influential paper, my colleagues and others constructed estimated generation intervals

by summing two quantities: a latent period (the time from infection to infectiousness),
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and a wait time (time from infectiousness to transmission). Since clinical signs and
infectiousness appear at nearly the same time in rabies, the incubation period (the
time from infection to clinical signs), is routinely used as a proxy for the latent
period. In their analysis, latent (really, incubation) periods and infectious periods
were randomly and independently resampled from empirically observed distributions
(Hampson et al., 2009), and then wait times sampled uniformly from the selected
infection periods.

My research has uncovered a previously overlooked problem with this approach
for constructing GIs: random, independent resampling of incubation and infectious
periods values does not account for the possibility of multiple transmissions of the
same individual and the correlation between time distributions and biting behaviour.
Figure 1 illustrates the generation intervals of a single transmission event from a
rabid animal (comprising a single incubation period plus a waiting time) and multi-
ple transmission events from a rabid animal (comprising a single incubation period
and three waiting times). For diseases like rabies, where transmissions links (and
generation intervals) are observable, multiple transmissions and possible correlation

structures are all accounted for within the observation processes.
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Figure 1: Decomposing generation intervals. Generation intervals start when
a focal animal acquires infection (solid red circle); and end after virus replication
(dashed line) when an animal shows clinical signs (blue star), becomes infectious
(solid black circle) and infects another animal — in rabies the onset of clinical signs
and of becoming infectious are closely synchronized. Once the infectious period (grey
block) starts, there is a wait time (solid black line) until a susceptible host (solid red
circle) is bitten. The focal host dies (black X) at the end of the infectious period.
The generation interval is the interval between getting infected and infecting a new
case (red interval between open and solid circles). (right) If a single biter transmits
multiple times, the wait times are generally different, but the incubation period will
be the same.

Correcting for vaccination

In a population where some animals are not susceptible, calculations based on esti-
mates of  and the GI distribution (1) estimate the realized average number of cases
per case, also known as the effective reproductive number R.. In the case of rabies,
vaccination is the only known cause of immunity (case fatality in dogs is believed to

be 100%). For a given population with v vaccination proportion, R, is:

R. = Ro(1 — v). 2)
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We therefore adjust our estimates of Ry in dog populations that have been vaccinated:

Ro = . (3)

Data and material

We used data from January 2002 — May 2019, from an ongoing contact tracing project
in Tanzania (Hampson et al., 2008, 2009). Since 2002, ~ 12,000 transmission events
(~ 10,000 animals and ~ 1,300 humans), and ~ 3,300 suspected rabid animals in-
cluding ~ 370 confirmed cases were observed.

Transmission events were documented through retrospective interviews with wit-
nesses, applying diagnostic epidemiological and clinical criteria from the six-step
method (Tepsumethanon et al., 2005). Each animal was given a unique identifier.
The date of the bite and clinical signs were recorded if applicable and available. We
restricted our analysis in this paper to domestic dog transmissions (i.e., dog to dog),

and obtained 1179 directly observed generation intervals.

Fitting and Propagating Parameter Uncertainties

To propagate uncertainties for both r and GI, we used a hybrid approach. We first fit-
ted logistic models, with negative binomial observation error, to incidence data using
a Hamiltonian Monte Carlo (Duane et al., 1987) implemented in STAN (Carpenter
et al., 2017). We obtained a posterior distribution for r, from a relatively broad prior
(Normal(0.5/month,3)). We then calculate a sample of 500 R using equation (3); for
each value of 7'\3,0, we first draw a value of 7 from its posterior distribution and 1000
GIs (sampling with replacement from the empirical contact tracing data).  Sam-
pling from the empirical generation interval distribution accounts for the possibility
of correlations between time distributions (incubation period and waiting times) and

biting behaviour (dogs with multiple transmissions) that was previously overlooked.
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Generation intervals are independent of transmission (secondary cases). This hybrid
approach incorporates both sources of uncertainties from r (Bayesian posterior dis-
tribution) and GIs (frequentist empirical bootstrap) when calculating R estimates.

Finally, we take the 2.5, 50, 97.5% quantiles R estimates for each rabies outbreak.

Results

Observed Generation intervals

Figure 2 shows the empirical distributions of the observed incubation periods,
rabid dog biting frequency, and generation intervals from contact tracing data. The
mean observed incubation period is 21.3 days (n = 1,134 dogs) and the weighted mean
incubation period is 31.3 days (n = 248 biting dogs). The mean observed generation
interval is 32.1 days (n = 250 primary infections resulting in 1179 secondary cases) is
greater than the mean generation interval constructed from independently summing
incubation periods and wait times 24.9 days. (Hampson et al., 2009). The weighted
incubation period distribution resembles much closer to the generation interval dis-

tribution than the incubation period of all dogs.

We estimated r from historical outbreak data (see supplement Figure Al), and
combined them with empirical GIs from our detailed Tanzanian data to produce
R. estimates. Our estimates of R, ranged from 1.08 to 2.66, with upper confidence
intervals greater than 2 for most locations. The hybrid approach provides larger values
of R. and wider confidence intervals than previous R, estimates after propagating

uncertainty from both 7 and generation interval distributions (see Figure 3).
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Figure 2: Empirical distributions from contact tracing data. Top left) the
distribution of observed incubation periods. Top right) the distribution of infectious
periods weighted by each dog’s biting frequency (biting frequency shown bottom left).
The weighted distribution corresponds to the contribution of incubation periods to
generation intervals, which are shown bottom right. Dash-dotted lines show the means
of each time-interval distribution.
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Figure 3: Reproductive number estimates for global historical outbreaks of
rabies, with 95% confidence intervals. Previous estimates of R (solid line) are
shown in gray; R. (dash line) estimates from our hybrid approach are shown in black.
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Figure 4: R, estimates for global historical outbreaks, with 95% confidence
intervals. Adjusting R. estimates for vaccination coverage.
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Of the listed historical outbreaks, four occured in locations with prior rabies vac-
cination coverage: Memphis in the US (1947), Serengeti in Tanzania (2003), Ngoron-
goro in Tanzania (2003), and Sultan Hamad in Kenya (1992). The proportion of the
dogs thought to be vaccinated in these populations was 10%, 20%, 20%, and 24%
respectively. We adjusted our R. estimates to obtain R, estimates for these four

outbreaks (Figure 4).

Discussion

The basic reproductive number R is commonly used to summarize the risk of in-
fectious disease and to inform control measures. Here, we used a relatively simple
approach to estimate Ry by combining initial growth rate () estimates from incidence
data and generation intervals from contact tracing data. We improved on earlier work
by correcting for slowdown in growth in estimating r and by developing a hybrid ap-
proach to propagate uncertainty from both r and GI, resulting in higher R estimates
with wider confidence intervals.

Re-analysis of these data also allowed us to identify an overlooked fact about ra-
bies generation intervals: observed generation intervals are longer on average than
constructed ones, because of within-individual correlations in time distributions and
biting behaviour. The unexpected importance of these correlations could have impli-
cations for GI-based studies of other infectious diseases. Further investigation of how
these correlations affect the overall dynamics of rabies is warranted.

Estimates of Ry are strongly affected by estimates of the growth rate during the
initial phase of the epidemic. The logistic model gives a better approximation of
the initial phase of the epidemic resulting in a larger estimate of r compared to the
exponential model (Ma et al., 2014). Our estimates of r account for observation

error (measurements may not perfectly match reality), but not for process error (the
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fundamental stochasticity of the system itself). Thus, there may be more uncertainty
in 7 than we estimate (King et al., 2015), but this is not always true in practice (Li
et al., 2018).

Nevertheless, our estimates suggest that rabies Ry may be larger, and more un-
certain than previously thought. This finding may explain some of the formerly
unexplained variations in the success of rabies-control programs (e.g., low levels of
coverage (30-50%) have been successful in some setings while high coverage 75% was
not enough to control rabies in others (Eng et al., 1993)). While exploring why rabies
R were low and narrow was our primary goal, we were able to reveal an interesting
biological process in rabies generation interval. A mechanistic fitting framework will

likely be required to study these patterns in more detail.
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Chapter 4: (Generation time bias in disease trans-
mission mechanism

In my second of two chapters on canine rabies, I present empirical evidence of the
difference in the generation and serial intervals in rabies. In this chapter, I explored
the high-resolution contact-tracing rabies database to extract generation and serial
intervals and other disease traits for the animals. After finding differences in the
generation and serial intervals, I investigate further to explore the mechanism of the
discrepancies of these intervals. I exploited the discrepancies by fitting a generalized
linear model to disease traits, where I find dogs with longer incubation periods have
more secondary cases on average.

The text I present here is draft of a manuscript planned for submission for publi-
cation.
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Abstract

The generation interval distribution links two key quantities in infectious disease dy-
namics: the exponential rate of epidemic growth r and the basic reproductive number
Ro. For many infectious diseases, generation intervals are difficult to observe directly;
in these cases, researchers often use the serial interval as a proxy for the generation
interval. In fact, the terms “generation interval” and “serial interval” are often (in-
correctly) used interchangeably in the literature. Here we explore a high-resolution
20-year contact-tracing dataset for canine rabies, and find sharp differences between
the average observed generation and serial intervals: the generation interval is ap-
proximately 50% larger than the serial interval — a difference with important effects
on estimates of the basic reproductive number. We develop a theoretical framework
to show that these differences arise from individual-level correlations between incu-

bation period and biting. These findings are critical for accurate estimation of rabies
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transmission parameters, and hold the potential to guide investigations of other dis-

cases.

Introduction

The “generation interval” is the time between the moment a focal (primary) host is
infected and the moment that they infect another (secondary) host. The generation-
interval distribution links two key quantities that characterize infectious-disease dy-
namics: the exponential rate of growth (r) and the basic reproductive number (Ry).
In particular, the product Ry ~ rG, where G is the average generation interval; more
precise expressions can be used when the entire generation interval distribution is
known (Park et al., 2019).

Generation intervals are often hard to estimate reliably because transmission
events are difficult to observe for most diseases. Generation intervals are thus some-
times estimated by summing two quantities: a latent period (the time from infection
to infectiousness), and an infectious period; the sum of the average latent and average
infectious periods is the average generation interval (Anderson et al., 1991). However,
in the previous chapter, I showed that constructed estimated generation intervals and
observed generation intervals are different for canine rabies; mean generation inter-
vals are larger than constructed generation intervals. In this chapter, I will examine
some issues in estimating mean values of the generation intervals and discrepancies
between generation and serial intervals (often as a proxy for generation intervals).

The above formulation of the generation interval as the sum of latent and infec-
tious periods (Anderson et al., 1991) is only true under the assumption of exponential
infectious periods. We can generalize this formulation by replacing the infectious pe-

riod by the infectious-waiting time, which is the time from the onset of infectiousness
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to transmission. We thus write the generation interval as:

GI=L+F, (1)

where L is the latent period and F is the infectious-waiting time.

An alternative way to estimate the generation interval is to use the serial interval;
researchers often in fact conflate the two terms (Andreasen et al., 2008; Chunara
et al., 2012; Majumder et al., 2016; Vynnycky and Fine, 2000; Wallinga and Lipsitch,
2006; Wallinga and Teunis, 2004; White et al., 2009). The “serial interval” is the
time between the onset of signs or symptoms in the primary and secondary host.
The serial interval can be constructed by summing two time delays: the symptomatic
waiting time of the primary host and an incubation period of the secondary host. Note
that the symptomatic waiting time need not always be positive: for some diseases
infected individuals can begin to transmit infection before the onset of clinical signs
or symptoms.

Intuitively, the serial- and generation-interval distributions describe generations
from the same process (but with different focal points), and would be expected to
be similar. There are theoretical arguments about circumstances under which these
intervals should be the same, or approximately the same. However, these arguments
do not always apply, and the distributions are not always similar. In fact, in a disease
where clinical symptoms typically come later than infectiousness, it is even possible
for the serial interval (but not the generation interval) to be negative. Several studies
have reported differences between serial and generation intervals (Cowling et al., 2009;
te Beest et al., 2014). To our knowledge, work on how differences between generation

and serial intervals affect inferences about disease systems has been very limited.

39



To examine the differences between generation and serial interval, we construct

the intervals using a similar formulation. We construct the generation interval as:

GI=1,+S,, (2)

where I, and S, are the incubation periods and symptomatic waiting time of the

primary host, and the serial interval as:

SI =28, + I, (3)

where I, is the incubation period of the secondary host.

Figure 1 shows our reformulation of the generation interval to match the serial
intervals. This view makes clear that the difference between the generation and
serial interval is the incubation periods: the generation interval uses the incubation
period of the primary host, and the serial interval uses the incubation period of the
secondary host. Thus, we expect the two distributions to have the same mean as long
as incubation periods are independent of tendency to transmit; and the same variance
if incubation periods are also independent of symptomatic waiting times (Svensson,
2007).

In the previous chapter, however, I showed that in canine rabies the observed
generation interval compared to estimated constructed generation intervals (Hampson
et al., 2009) are not the same on average; the incubation periods are not independent
of tendency to transmit. This means that in this case incubation times of the primary
individual in a typical transmission is expected to differ from those for a secondary
individual. The intuitive expectation that GIs and SIs will be the same does not hold.

In this chapter, I will use canine rabies as a case study to explore how such correlations
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Figure 1: Generation and serial interval. Generation intervals start when primary
host acquires infection (open red circle); and after virus replication (solid black line),
the host becomes infectious; this is the latent period. Once the infectious period (grey
block) starts, there is an infectious waiting time (dashed red line) until a susceptible
host (solid red circle) is infected. The primary host becomes non-infectious at the end
of the infectious period. Another way to construct the generation interval is when
the primary host acquires infection; and after virus replication (the incubation period
is shown with a light blue solid line) when the host shows clinical signs or symptom
onset (blue star) and infects another. There is a symptomatic-waiting time (dashed
blue line) until a susceptible host (solid red circle) is infected. Serial intervals start
when primary host shows symptoms (blue star); and end when the new secondary
host develops symptoms.

affect the relationships between time distributions and tendency to transmit (i.e.,

number of secondary cases).

Rabies

Canine rabies, spread primarily by domestic dogs, is a preventable disease that causes
more than 50,000 estimated annual deaths in humans and economic burden in low-
and middle-income countries (LMICs) (Hampson et al., 2015). Rabies transmission

chains are relatively easy to record compared to many diseases because infection
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events (through biting) are observable and the onset of infectiousness coincides with
clinical signs (aggressive behaviours and biting). The transmission cycle begins when
an infected animal bites a susceptible host; the virus spreads through the saliva of
primary host to the wounds of the secondary host. Once the virus enters the secondary
host, it travels through the nerves to the spinal cord and brain; and it takes about
3 to 12 weeks depending on the location of the wound. Clinical signs occur when
the virus reaches the brain and infectiousness (when the virus reaches salivary gland)

starts at around the same time.

Primary Host b = - o- O
1

C, * Dog 1
L G ~y1_ Sk~
I2
C * Dog2
L G2 Sl
Is
C=k
L Gs \- Slaj/ Dog 3
O Acquired Infection . Infecting * Symptoms Onset
Incubation Period = = Symptomatic waiting time Symptomatic Period

Figure 2: Generation and serial interval for rabies. Generation intervals (red
intervals) start when the primary host acquires infection (solid red circle) and ends
after biting another host. If a single primary host transmits multiple times, the symp-
tomatic waiting times (dashed blue lines) are generally different, but the incubation
(Ip) period will be the same. Serial intervals (blue intervals) start when the primary
host shows clinical signs (blue star at the end of Iy) and ends when the secondary
host show clinical signs. Each secondary case (dog) has its own symptomatic waiting
time and incubation period (Iy, I, I3).
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In rabies, the incubation and latent periods are well synchronized: clinical signs
and infectiousness appear at nearly the same time. Since clinical signs can be directly
observed, the incubation period is routinely used as a proxy for the latent period.
Figure 2 shows the generation and serial interval of a primary host with multiple

transmission for rabies. From Figure 2 we can write the generation intervals as:

GL,:]()—{—Sl fOTZ:1,2,3, (4)

and the serial intervals as:

If waiting time is correlated with transmission behaviour, this will affect SIs and
GIs in the same way, since both incorporate the (same) waiting time of the primary
individual. If incubation time is correlated with transmission behaviour (or with
waiting time), however, this will affect GIs, but not SIs (since the incubation period

in the SI does not come from the primary individual).

Methods

Zero-inflated negative-binomal

Because infectious periods are highly variable, hard to measure, and do not show
clear correlations, we focus for this example on modeling the relationship between
incubation period and biting behaviour (specifically, the number of secondary hosts
identified). We modeled the number of infectious bites (measured as secondary hosts)
as a function of incubation in a GLM framework with a log link and a simple linear
response. Thus, we assume that the expected number of bites is exponentially related

to the infectious period. To account for (1) a high proportion of dogs without observed

43



infectious bites and (2) large variation in the number of infectious bites among other
dogs, we used a zero-inflated negative binomial model; that is we modeled the outcome
variable as being “structurally” zero with a certain probability, and otherwise having

a negative-binomial distribution:

Pr(z; = 0) = p; + (1 — p;)NBinom(0, p, 0)
Pr(z; = k) (k>0)=(1—p)NBinom(k, y,6)

e = exp(Bo + Bit)
1

1+ exp(—(55 + p7t))’

where p; is the probability of structural zeros when incubation period is t days; [

Dt =

and [3; are the coefficients of the conditional model; and 3§ and 37 are the coefficients
of the zero-inflation model.

To calculate confidence intervals for the effect of incubation period on mean biting,
we fixed the intercepts (8o, 5f), and simulated 100 multivariate normal samples of
(61, 57) using the maximum-likelihood estimated mean and covariance matrix of the

zero-inflation model, and used the median and (2.5%, 97.5%) quantiles.

Permutation and Prediction Contour Regions

We used a permutation test to see the effects of correlation between incubation period
and biting on generation and serial intervals. We generated 5000 uncorrelated data
sets by permuting the bite counts in the original data (i.e., a new bite count for each
incubation period). For comparison, we also generated 5000 data sets which include
our estimated correlation structure by making random predictions of bite counts from
our fitted ZINB model for each incubation period. All incubation periods are then

weighted by the simulated number of bite counts.
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Data and material

A high-resolution rabies database from an on-going contact-tracing program in Tan-
zania from January 2002 to present was used for this study. This database contains
~~ 12,000 specific transmission events documented through retrospective interviews
with witnesses to gather information about suspected animals. For each suspected
animal (i.e., an animal suspected to have rabies or bitten by a suspected animal), re-
searchers collected: date bitten, clinical sign information, location, and biting history.
We restrict our analysis to transmission between domestic dogs, and to cases where
we were able to link the transmission events via contact-tracing history (i.e., the in-
fector (primary case) that is responsible for the transmission event of the observed
animal (secondary case) also appeared as an observed case of an earlier event in the
database). With these restrictions, we obtained 1179 directly observed generation

intervals and 1048 directly observed serial intervals.

Results

Time intervals in Rabies

The mean generation interval (32.1 days) is nearly 50% greater than the mean
serial interval (21.7 days). This difference in interval lengths occurs both because
biters have longer mean incubation periods (26.6 days) than non-biters (19.8 days)
and because dogs that bite more have longer incubation periods on average than dogs
that bite less. The incubation period of all dogs closely resembles the serial interval
distribution, while the weighted incubation period distribution (weighted by number

of secondary cases) closely resembles the generation interval distribution.
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Figure 3: Rabies interval distributions estimated from contact-tracing data.
First row: directly observed SIs (left) are shorter on average than GIs (right). Middle
row: the observed incubation-period distribution (left) is similar to the SI distribu-
tion above it, while the same observed incubation periods weighted by the number
of infectious bites (right) is similar to the GI distribution is similar to the same
incubation-period distribution. Last row: biters have longer mean incubation periods
than non-biters, which is what leads to the lengthening of the GIs in the first row.
Dashed lines show the means of each time-interval distribution.

Results: Incubation period and secondary infection relation-

ship
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Figure 4: Effects plot for the zero-inflated negative-binomial model. The
black line shows the expected number of secondary cases as a function of incubation
period. The red region is the 50% confidence interval (CI) and the blue region is the
95% CI. Only uncertainty in the slope of the relationship is shown; uncertainty in the
intercept is neglected.

We used a GLM to investigate the relationship between incubation period and

biting behaviour. Figure 4 shows the inferred relationship with confidence intervals.

On average, dogs with longer incubation periods cause more secondary cases.
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Figure 5: Correlated and uncorrelated regions. Prediction regions for the mean
and standard deviation of the GI based on uncorrelated (grey) from permutations
and correlated (black) zero-inflation negative binomial simulations. Intervals are il-
lustrated with square points and incubation periods with circles.

Figure 5 explores the effects of this observed correlation on simulated intervals.
GI distributions from simulated populations with correlations (black contours) have
higher mean and standard deviation compared to those from permuted populations

without correlations (grey contours). The mean and standard deviation of the gen-

eration interval is similar to that for the weighted incubation period, and those of the
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serial interval are similar to both the non-biter and overall (unweighted) incubation

periods.

Discussion

The link between generation intervals and the reproductive number is an important
concept in infectious disease modeling (Park et al., 2019). Reliable estimates of the
generation interval distribution are crucial; researchers often overlook important cor-
relation structures. Here, we found that two widely used approaches for estimating
generation intervals — summing latent periods and infectious-waiting times (Hamp-
son et al., 2009), or using serial intervals — cannot capture and the observed genera-
tion interval distribution in rabies. We used a relatively simple approach to model the
relationship between incubation and biting behaviour showed that this relationship
explains some of the discrepancy between earlier approaches and observed generation
intervals.

In the previous chapter, we estimated r for Serengeti to be 0.23 (95% CI: 0.16,
0.36) per month; the corresponding R. estimates (i.e., using R, = exp(rG) (Park
et al., 2019)) estimating G from mean serial interval (21.7 days), constructed mean
generation interval (24.9 days) and observed generation interval (32.1 days) are 1.18,
1.21, and 1.27 respectively. Although the relative difference between the observed
mean serial and generation intervals is large for rabies, the corresponding increase in
R. estimates is small because r is low.

Reformulating the constructed generation intervals with incubation and symptomatic-
waiting times allowed us to compare the difference between generation and serial
intervals: generation interval uses the incubation period of the primary host while
serial interval uses the incubation period of the secondary host. Compared to other

infectious disease systems, rabies is relatively simple conceptually because the latent
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and infectious periods are well synchronized. Even in this simple system, where we
expected the generation and serial interval to be similar, we find that individual-level

correlations instead drive big differences between the two.
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Chapter 5: Reformulating phylogenetic mixed mod-
els to improve flexibility and speed

In this chapter, I explored different platforms in modeling trait relationships among
different species while account their shared evolutionary history. While a wide range
of tools is available for comparative analyses, existing procedures may be either insuf-
ficiently flexible or too computationally demanding when analyzing large volumes of
data. Using the generalized-linear mixed model framework, I reformulating phyloge-
netic mixed models to improve flexibility and speed. I demonstrate the method with
simulated phylogenies and evolutionary models of varying complexity, as well as real
data from several previous studies. This algorithmic approach is general and could be
implemented in a wide range of computational platforms, I implemented using the
“lme4” and “glmmTMB” R package (the most widely used package for fitting mixed
effect models). I also compare our results against existing R packages to explore the
limitations of different methods and quantify simulation accuracy and computational
efficiency.

The text I present here is a draft of a manuscript planned for submission for publication.
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Abstract

1. Phylogenetic comparative methods (PCM) using phylogenetic regression are
a powerful technique to explore relationships among related groups of species
traits. However, existing procedures may be either insufficiently flexible or too

computationally demanding when analyzing large volumes of data.

2. We propose an alternative formulation of phylogenetic generalized linear mixed
models that is mathematically equivalent to previous approaches, but is more
flexible in practice. We have implemented this formulation in two R statistical

packages (1lme4 and glmmTMB).

3. Our reformulation of phylogenetic generalized linear mixed models is compu-
tationally efficient, operating orders of magnitude faster than existing methods

for fitting phylogenetic mixed models.

4. Our approach can, in principle, be implemented in any platform for generalized
mixed models. Our implementation in 1me4 and glmmTMB allows users to fit
phylogenetic mixed models to a broad range of previously difficult cases (e.g.,

large data, unbalanced observational designs, complex random effects).
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Introduction

Phylogenetic comparative methods (PCMs) are a powerful technique to explore re-
lationships among related groups of species traits. Given a known phylogenetic tree,
PCMs explore the relationships among species traits or distributions while taking the
underlying evolutionary relationships of the species into account; they can be used
to control statistically for phylogenetic relationships, to quantify phylogenetic sig-
nal (a measure of the dependence among species responses due to their evolutionary
relationships) in trait distributions, or both.

Ever-increasing data collection capabilities (e.g., genomic sequencing, telemetry
studies of animal behaviour, or environmental remote sensing), in combination with
large-scale synthetic databases of species occurrence and phenotypic traits, are mak-
ing larger volumes of biological data available over an ever-wider taxonomic range.
Researchers use these data to fit complex models describing species occurrence and
traits. For example, ecologists have used phylogenetic relationships in multi-species
models (Davies et al., 2013; Freckleton et al., 2002; Garland Jr et al., 1992; Ord
et al., 2010); more recently they have begun to integrate evolutionary considerations
in applied ecological studies addressing biodiversity conservation and the effects of
climate change (Lankau et al., 2011; Lavergne et al., 2010; Mace and Purvis, 2008;
Santamaria and Mendez, 2012; Winter et al., 2013).

Unlike standard regression-based statistical models, where all of the predictor
variables of interest (for example, species traits and environmental factors) are di-
rectly observable, PCMs using phylogenetic regression use phylogenetic relationships

to estimate the unobserved process of trait evolution (Butler and King, 2004; Felsen-
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stein, 1985; Hansen and Bartoszek, 2012). While a wide range of tools is available
for phylogenetic regression, existing procedures may be either insufficiently flexible or
too computationally demanding when analyzing large volumes of data. In such cases,
researchers typically search for ways to simplify their analyses: for example, treat-
ing species effects as independent, thus neglecting phylogenetic correlations among
species responses (Bunnefeld and Phillimore, 2012); ignoring degrees of relatedness
and treating taxon as a strictly hierarchical description (Tella et al., 1999); or neglect-
ing within-species variation (Ord et al., 2010). In this paper, we propose an alternative
method for flexibly and efficiently modeling phylogenetic relationships by extending
existing software for fitting mixed effect models. This method allows researchers to

easily incorporate evolutionary and statistical complexities without sacrificing speed.

Challenges in modeling phylogenetic processes

Standard statistical regression techniques do not allow for correlations among species
responses due to their shared evolutionary history. Classic phylogenetic regression
uses a statistical model in which phylogenetic correlation in the residuals from a
regression between two species-level traits arises because the residual variation in
the dependent-variable trait evolves along the branches of the phylogeny accord-
ing to a Brownian-motion evolutionary model (Felsenstein, 1985). If in addition
the residuals are normally distributed and observed without any additional error or
within-species variation, Felsenstein’s method of phylogenetically independent con-
trasts (PICS: Felsenstein, 1985; Nicolakakis and Lefebvre, 2000) is sufficient to ac-
count for the phylogenetic correlation. More recent approaches — including phyloge-
netic generalized linear mixed models (PGLMM) (Housworth et al., 2004; Ives and
Helmus, 2011), Pagel’s A (Pagel, 1999), and Blomberg’s K (Blomberg et al., 2003)
— build upon PICs by considering different (non-Gaussian) response distributions

and by accounting for evolutionary processes other than Brownian-motion. These
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methods partition residual variation into two components: (1) uncorrelated, or inde-
pendent, residual variation (observation error or tip variation) and (2) phylogenetic
signal (evolutionary process error) (Hansen and Bartoszek, 2012; Housworth et al.,
2004). If each species’ traits are observed more than once, possibly under differ-
ent conditions, we can potentially distinguish a third level of variation; in this case,
phylogenetic variation and tip variation can both be considered part of the evolution-
ary process error (which we will call tip variation or intercept-level variation) while
the among species residual variation is associated with among observation variation
within each species. Although many studies include multiple observations per species,
phylogenetic analyses rarely take advantage of such information to partition variabil-
ity more finely. Indeed, many existing methods are restricted to single observations
per species, requiring users to collapse multiple observations per species to species
mean values.

Classic phylogenetic regressions usually allow the response (trait or distribution)
to evolve according to the phylogenetic relationship across species, but the effects of
the predictor variables may evolve according to the phylogenetic relationship across
species as well. Suppose we have examined a collection of species that came from
two groups, and wish to know whether their brain size (Y) is proportional to their
body size (X) (Felsenstein’s (1985) example using a mixed-effect model. Standard
phylogenetic regressions allow for phylogenetic correlations in the intercept of the
relationship between body and brain size. However, species within taxonomic groups
with similar body sizes may vary in overall brain size, or taxonomic groups may vary in
the relationship between brain and body size. Several recent studies have incorporated
phylogenetic variation in different ways and looked at species response to phylogenetic
variation with changes in environmental factors. For example, Nowakowski et al.
(2018) considered phylogenetically correlated slopes in response to habitat conversion

when studying the abundance of amphibian species using a Bayesian phylogenetic
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Model Method Data Platform

Generalized Linear Correlated residual Single observation zll)zzigis’
Model (GLM) Pagel's \
Residual Blomberg’s k

Single observation

+ phylogenetic intercept via nlme:gls

phylolm
. . Single observation
fdeiisgall\l/[zsge{d(lgii\/ﬂ\/[) Random effect Balanced design pez, phyr
Unrestricted 1me4, glmmTMB

Bayesian GLMM Random effect Balanced design MCMCglmm

Unrestricted brms

Table 1: List of phylogenetic generalized linear models and R packages.

GLMM, while Li et al. (2017) considered phylogenetically correlated species nested
within sites when modeling plant abundance via a phylogenetic GLMM approach.
The tools available for extending phylogenetic relationships to predictor variables (or
predictor level variation) in a standard frequentist framework are relatively inflexible;
thus, many biologist needing to fit random-slopes model have usually turned to more
flexible Bayesian approaches, despite their additional computational burden (Biirkner,
2018; Hadfield, 2010). Table 1 summarizes types of platforms, data constraints, and
provides model complexities for phylogenetic comparative analysis.

In this paper, we will propose an alternative formulation of phylogenetic regression
in a generalized linear mixed modeling framework that is mathematically equivalent
to previous approaches, but more flexible. In particular, our new formulation can
be implemented in any framework that allows for random effects (such as random
intercepts, slopes, and interactions), without the need to implement special correla-
tion structures, by incorporating phylogenetic structures as part of the mean model.
We will compare our technique coded in R packages 1me4 and glmmTMB with exist-
ing R packages (i.e. nlme (Pinheiro et al., 2014), phylolm (Ho and Ané, 2014), pez
(Pearse et al., 2015) phyr (Li et al, unpublished), MCMCglmm (Hadfield, 2010), and

brms (Biirkner, 2018)), fitting models to data from simulated model that incorpo-
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rates phylogenetic variation from both predictors and tips/species as well as residual

variation.

Materials and Methods

We generated test data using a simple framework that combines fixed effects, phyloge-
netic random intercept, slope, and their correlations from a phylogenetic tree, as well
as residuals. We then fit the test data from these simulations using our approach im-
plemented using the R packages 1me4 (Bates et al., 2015) and glmmTMB (Brooks et al.,
2017), using assumptions that match those of the simulation model. We also fit with

other platforms, using standard simplifications when necessary for implementation.

Phylogenetic regression

We begin by describing the classic phylogenetic regression in a linear regression set-
ting. Consider a simple linear regression model of observable trait y as a function of
some predictors encoded in a model matrix X, where each species is measured exactly

once. The standard phylogenetic regression can be formulated as

y=XB+e
(1)
e ~ MVN(0,0°C),

where y is an n X 1 response vector; X is an n X m model matrix, describing n observa-
tions of m predictor variables (phenotypic traits or environmental variables, typically
including an intercept column of ones); 3 is an m-vector of coefficients; € is an n x 1
vector which is assumed to be multivariate normally distributed with mean 0 and
variance-covariance matrix given by ¢?C where C is a n x n phylogenetic covariance
(PC) matrix. The PC matrix is inferred from the topology of the evolutionary tree

by quantifying the degree of shared evolution between any pair of taxa (Garamszegi,

o8



2014).

Phylogenetic generalized linear mixed model

Alternatively, one can use the generalized linear mixed effects modeling (GLMM)
framework to define a wider range that includes the standard phylogenetic regression
as a special case (Lynch, 1991). The generalized linear mixed effect model allows
for non-Gaussian responses and uses random effects to flexibly incorporate multiple

types of variability. The typical GLMM has the form:

where Z is an n X m model matrix for the n-dimensional vector-valued m predictor
variables; b (sometimes referred to as the “G-side” effect) representing the conditional
modes, is assumed to be multivariate normally distributed with a variance-covariance
matrix given by 3(#); and ¢ is a scale parameter for the conditional distribution
D. When D is Gaussian, g is the identity function, Z is the identity matrix, and
3(0) = 02C, (2) reduces to (1).

There are forms of random variation in the mixed model framework. First, ran-
dom intercepts can allow the response trait to vary independently across groups other
than species (e.g., patches, sites, or experiments). Second, random intercepts can also
allow the response (trait or distribution) to vary either independently among species
(since species represent the tips of the phylogenetic tree) or among species in a phy-
logenetically correlated way (i.e., species that are closely related tend to have similar

responses). The third type of variation that is often neglected is random slopes. Ran-
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dom slopes allow fixed effects (the relationship between predictors and responses)
to vary among groups. Analogous to phylogenetically correlated variation in inter-
cepts, phylogenetic random slopes can allow the relationship between predictors and
responses to vary between species in a phylogenetically correlated way (i.e., similar

species will have similar predictor-response relationships).

Reformulating the phylogenetic covariance matrix

Suppose that the evolution follows a Brownian-motion process, i.e., continuous traits
evolve independently, following an unbiased, continuous-time random walk, along
each branch of the phylogeny. In this case, the phylogenetic variability of a particular
species can be written as the sum of the variances of evolutionary changes that oc-
curred on all of the branches in its history. Thus, modeling the evolutionary history
of each species with a sequence of independent errors with species—branch matrix S
is equivalent to imposing a correlation C. For example, for the phylogeny in figure 1,

the corresponding S takes the form:
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Fig. 1: Three-species phylogenetic tree.

The phylogenetic variability corresponding to species 1 is f1€1 + fo€9, where ¢; = /L;
the square root of the branch length L; in figure 1, and the ¢; are independent Normal

variates with zero mean and o2 evolutionary variance (i.e. the variance for species 1

is E[(€161 + EQEQ)Q] = (Ll + L2)02).

Constructing the species—branch random effects model matrix

The S matrix is the product of an m x b indicator matrix S;,4 of branch indices and

a vector £ of square roots of branch lengths:
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Sina is a binary (indicator) matrix that describes whether a particular branch occurs
in the history of a focal species. SS? gives the variance-covariance matrix of the
phylogeny.

In general, the random-effect model matrix Z for a GLMM can be decomposed
into term-wise model matrices Z; as described in Bates et al. (2015). Analogous to the
procedure described in Bates et al. (2015), the phylogenetic correlated random-effect

matrix Z¢ is

Zi = (8'J] «X)", (3)

where S is the m x b species—branch matrix; J; is the n; x m indicator matrix of
grouping factors; X; is the n x p; raw random-effects model matrix; and * is the
Khatri-Rao product (Khatri and Rao, 1968) partitioned at the observation level (n).

For example, using the phylogeny above (figure 1), if we begin with a raw model

matrix corresponding to a random-slope model,

X = 1

then the term-wise phylogenetic random effects model matrix is,
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Simulation
Single group model

We generated test data based on the random slopes mixed model formulation (2) with
a single response variable y and a single continuous normally distributed predictor
variable t for n = 25, 50, and 100 species. For simplicity, the response variable y is
conditionally normally distributed (i.e., D is a Gaussian distribution, and ¢ is the
identity link function), corresponding to a linear mixed effect model. For the first
set of simulations, we simulate one observation per species. Thus, the full simulation

model is as follows:

y = (Bo+ bphyim) + (81 + bphyslope)t +T€

2 by

thint thintfslope
(bthint’ bthSlope) ~ MVN 07 (5)
Y phying_« 2,
int—slope Physiope

€ ~ N(0,02).

The model contains two fixed effect parameters (5, and 3;), three random effect pa-

rameters (phylogenetic random intercept variance Zihy_ R phylogenetic random slope
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2

riance X
variance physlope

and covariance between phylogenetic random slope and intercept
3 phyin_siope) a0d residual variance (o2). The covariance between phylogenetic random
intercept and slope measures the correlation of phylogenetic dependency variability
in regression effect (byny,,,..) and response (byny,, ); i-e. if a positive correlation indi-
cates that similar species have similar relative intercepts and slopes. Predictor-level
and intercept-level random effects of species are not applicable in this simulation set-

ting because there is only a single observation per species, so within-species variation

cannot be separated from tip variation.

Multi-group model

We extend the simulation model by adding multiple groups where each group has one
observation per species. The multi-group model is a generalization of multiple-site
models used in community ecology to model phylogenetic attraction (Helmus et al.,

2007). The full multi-group model is as follows:

y = (50 + bthint + bspint + bgroup) + (/81 + bPhYSlope + bspslope)t + bsp:group +e€

2 b))
phyint phyintfslope
(bphyint7 bthSlope) ~ MVN 0’
) X
thint—slope thSlope
2 o)
SPint SPint—slope
(bspint7 bspslope) ~ MVN 07 2
O-Spint—slope O-Spslopc

baroup ~ MVN(0

’ Ugroup)
bsp:group ~ MVN(Oa Igroup & Ezzyhy)
e ~ N(0,02),
(6)
where Igoup is @ indicator matrix of groups; and ® is the Kronecker product.

The multi-group full simulation model has five additional random effects (predictor-

level (03, ) and intercept-level (02, ) random effect of species variance and their
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covariance (0g, . ....), random intercept of group (bgroup) and random intercept of
species-group interaction (bsp:group)) compared to the single-group full model. Predictor-
level and intercept-level random effects of species are applicable in the multi-group
model setting because there are multiple observations per species; thus we can quan-
tify variation among species separately from residual variation. Variance in the in-
tercept of species-group interactions (bsp:group) describes whether the species within
a group have more similar responses on average than expected by chance, equivalent

to phylogenetic attraction (Helmus et al., 2007).

Platforms

We compare our approach with five other R packages that can fit phylogenetic compar-
ative models: nlme (Pinheiro et al., 2014), phylolm (Ho and Ané, 2014), pez (Pearse
et al., 2015), and brms (Biirkner, 2018). Phylogenetic generalized least squares
(PGLS) (gls in nlme) is one of the most widely used techniques in phylogenetic
comparative analysis; it fits a linear model where the covariance structure between
species assumes an evolutionary process on the tree (typically Brownian-motion, but
other processes can be used) instead of treating the residual error for each species as
independent. Phylogenetic generalized linear models (PGLM) (phyloglm in phylolm)
are a slightly more flexible variation of PGLS that can allow for both phylogenetic and
residual variation, as well as non-Gaussian response variables. Both gls and phylolm
can model non-Brownian evolutionary processes and different correlation structures
(e.g., Pagel’s A or Blomberg’s K'), but we restrict our PGLS fits to the simple BM cor-
relation. Neither PGLS nor PGLM can handle random slopes or multiple observations
within a species. One of the few packages that currently fit phylogenetic correlations
to predictor level variation is pez (and very recently phyr), which can handle addi-

tional random slopes (X2 ) and random intercept of species-group interactions

thSlope

(bsp:group) but does not incorporate covariation between phylogenetic random slope-
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Package nlme | phylolm | lme4/glmmTMB | pez | phyr | brms | MCMCglmm
Single Group X X X X X
Phylo Intercept X X X X
Phylo Slope X X X X
Phylo Slope-Intercept correlation X X X
Residual X X X X
Multi-group X X X X X
Phylo Intercept X X X X X
Phylo Slope X X X X X
Phylo Slope-intercept correlation X X X

Phylo Species-group interaction X X X X

Species intercept X X X X X
Species Slope X X X X X
Species Slope-intercept correlation X X X
Residual X X X X X

Table 2: List of estimable parameters for each R package.

intercept (Xphy;,_gope)- Lastly, Bayesian phylogenetic GLMMs using Markov chain
Monte Carlo (MCMC) can handle all of the cases described above. However, MCMC
is usually much more computationally expensive for GLMMs compared to platforms
using deterministic optimization. MCMCglmm (Hadfield and Nakagawa, 2010) is the
most widely used Bayesian phylogenetic GLMM, but we will instead use brms, which
uses a more computationally efficient MCMC technique called Hamiltonian Monte

Carlo (HMC)(Duane et al., 1987).

Simulation and evaluations

We simulated 100 phylogenetic trees for each sample size (n = 25, 50, 100 and an
additional n = 500 for the multi-group model) to and then modelled responses on
each tree using (5, 6). Each realization was fitted using all model variants. All
simulation parameters are shown in Figure 2 and Figure 5. Correlation p is used
in place of covariances in the simulations. Table 2 shows the parameters that are
estimable for each platform. We only evaluated the goodness of fit for model fits that
passed the convergence tests implemented by the package. For Bayesian GLMM,
we included only realizations where we require values of the Gelman-Rubin statistic

less than the recommended threshold 1.1. Based on recent concerns about Gelman-
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Rubin thresholds (Vats and Knudson, 2018)), we included the additional convergence
criterion of effective sample size (ESS) > 1000 for the fixed effect parameters (5,
and ;) for each replication (Vehtari et al., 2019). For each replication, we sample
two chains starting with 10000 iterations. We first evaluate our estimates by looking
at the distribution of the estimated values (maximum likelihood estimates for non-
Bayesian platforms and posterior medians for Bayesian platforms) to quantify bias and
variance (i.e., quality of the point estimate). We then compute frequentist coverage
to assess the quality of the confidence intervals. Coverage refers to the proportion
of simulations in which the computed confidence intervals include the true values of
parameters. We used 95% Wald confidence intervals for deterministic methods and
quantile-based intervals (for Bayesian GLMM) to evaluate coverage. We also compare
computational speed between different platforms to evaluate the efficiency of different

platforms and methods.

Results

We used our method to reproduce the examples in chapter 11 of Garamszegi (2014)
using phylogenetic GLMMs based on 1me4 and glmmTMB (for more details see example
in supplement). We also used our method and fitted the full model of the dune
meadow data recently used with pez (Li et al., 2017). lme4 and pez give identical
results for fixed and random effect estimates, but our code runs approximately 120
times faster than pez. Codes for analyzing the dune meadow data using 1me4 and

pez are provided in the supplements.
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Single Group model simulations
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Fig. 2: Comparison of single group model parameter estimates across different R
packages in Table 2. Total simulations N = 100 for each category. The horizontal
line shows the true value of the parameters in the simulation model. Models capable
of fitting all parameters (1me4, glmmTMB, and brms) fit well for all parameters.
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Fig. 4: Comparison of coverage probability for fixed effect parameters. Models match-
ing the simulation model (1lme4, glmmTMB and pkgbrms) have coverage near the nom-
inal value of 0.95. The black line shows the nominal coverage, and the blue ribbon
the 95% binomial confidence interval based on 100 simulated fits.

The full fitted model (which matches the simulation model that incorporates phy-
logenetic intercept, slope, and correlation) provides estimates with low bias (average
difference between the estimated parameters and the true simulation parameters) for
all parameters. Estimates for fixed effect parameters (5y and ;) approach nominal
coverage as the number of species increases for Ime4 and glmmTMB but not for other
packages. brms has higher than nominal coverage (i.e., its confidence intervals are

overly conservative) because the prior distributions for the simulation parameters are
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centered at the true values (Li et al. (2018) discuss the interaction of informative
priors and Bayesian calibration).

In general, models that are insufficiently flexible to match the true simulation
model (PGLM and PGLS) will try to fit the data with the parameters available.
PGLM (which lacks the phylogenetic slope parameter) provides reasonably good esti-
mates for the phylogenetic intercept standard deviation parameter (oppy,,, ) but over-
estimates the residual standard deviation; the estimates for the intercept (fy) are
slightly overconfident (the coverage ~ 90% with 100 species) and the fixed slope pa-
rameter (/3;) has poor coverage (< 60%). PGLS, with only one parameter available,
confounds all variation (phylogenetic intercept, slope and residual variation) into the
phylogenetic intercept parameter, resulting in overestimating the phylogenetic inter-

cept and over-covering for 3y, and under-covering for ;.
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Multi-group model simulations
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shows the true value of the parameters in the simulation model. Models capable of
fitting all parameters (Ime4 and glmmTMB) fit well for all parameters. pez and phyr
estimates for n = 100, and 500 are not available because the models did not converge

within 30 minutes.
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In contrast, the multi-group model fits are much more similar across platforms
(only the more powerful platforms can fit these models at all, and the fitting models
are closer to the true simulation model). Similar to the single-group fits, 1me4 and
glmmTMB match the simulation model well and provide good estimates for all param-
eters except the correlation (o, ,,..) for small numbers of species (i.e. n = 25 and
50). The lack of correlations in pez and phyr’s statistical models does not appear
to have a large effect on the estimates of the remaining parameters in the model but
underestimates the residual standard deviation (Figure 5).

Although the parameter estimates are similar across platforms for the multi-group
simulation fits, computational efficiency varies enormously across platforms and sam-
ple size. For example, the new formulation is implemented in both 1me4 and glmmTMB,
but glmmTMB is almost an order of magnitude faster than 1me4 for the cases studied
here. Comparing glmmTMB to pez and phyr, the median time for glmmTMB to fit 50
species model is ~ 9 versus ~ 200 seconds for pez and phyr respectively. glmmTMB
takes &~ 125 seconds to fit a 500-species model; it was not practical for us to fit 500-
species models with pez and phyr, because computational speed scaled faster than

linearly with sample size. glmmTMB is almost an order of magnitude faster than 1me4.

Discussion

We have simulated relatively complex models containing phylogenetic variation in
both intercepts and slopes, as well as within-species variation that is quantifiable
because we allow multiple observations per species. These models are intrinsically
more complex than some simple platforms for phylogenetic regression can handle,
which may seem unfair; nevertheless, our models are certainly less complex than

evolutionary processes occurring in nature. Our results show that models that cannot
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match the full “simulation world” perform poorly even for the parameters they do
estimate; it is important to understand the limitations of these simpler, commonly
used methods.

Even our relatively simple models can incorporate many layers of complexity —
e.g. multiple spatial grouping variables as well as correlated phylogenetic variation in
the effects of several different traits and environmental variables on a focal trait. In
theory, as long as we have enough data and enough computational power, models that
can incorporate more of the complexity will always describe a biological system better.
However, real applications are always data-constrained. Deciding on a practically
appropriate level of model complexity for a given problem and data set is an open
and difficult general problem in statistical modeling, not just in phylogenetic studies.
Should one use simple models that may be overly conservative or risk overfitting by
using more ambitious models? How can one appropriately use the data themselves
to choose model complexity (Roberts et al., 2016)? What are the relative costs and
benefits of using a step-down procedure starting from the most complex possible
model (Barr et al., 2013), choosing simpler models a priori (Baayen et al., 2008), or

using Bayesian approaches with regularizing priors (Hadfield, 2010)?

Incorporating different levels of variation

In classic GLMMs, random effects are used to handle group (or individual) level vari-
ation. In the simplest experimental design with continuous response observations in
different levels of a discrete grouping variable, where the response may vary among
levels of the grouping variable, fitting random intercepts are the “go-to” method to
handle this variation. The random intercept model controls the group effect in the
response level by allowing different intercepts for each level of the grouping variable.
However, random effects can take more complicated forms as the experimental design

becomes more complex. For example, imagine observing another continuous explana-
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tory variable in the experimental design above, where the relationship of the response
and the new explanatory variable may vary according to the grouping variable. A
random slopes model, which allows different slopes (the relationship between contin-
uous variables) for each level of the grouping variable is most appropriate to handle
this type of variation. Random slopes models require appropriate observational or
experimental designs (i.e., multiple measurements of traits and responses within each
evolutionary group) and often require more data overall for reliable estimates, but
they are relevant over a wide range of scenarios (Cleasby et al., 2015; Ord et al.,
2010; Schielzeth and Forstmeier, 2008). Neglecting random slopes can lead to bi-
ased fixed effect estimates with inadequate coverage and type I errors (Schielzeth and
Forstmeier, 2008) as shown in the simulations above.

Nevertheless, it is hard to account for all forms of complexities and decide if when
it is best to use phylogenetic random effects, simple grouping, or both. Optimal
model complexity depends on experimental design and whether the data provides
enough signal to estimate these different levels of variation, which can be strongly
confounded. For example, for experimental designs with single measurement per
species, any method that can account for at least two sources of variation, such
as Pagel’s A\ will be sufficient. However, if multiple observations are available per
species, then these simple methods may confound tip variation with residual variation.
In this case, multiple observations can summarized to a single measurement (for
example, weighted-mean) per species to avoid confounding residual and tip variation.
This is equivalent to assuming homoscedasticity using inverse-variance weights for
unbalanced datasets. Alternatively, when the within-species variance is actually of
interest, accounting for within-species variation (i.e., adding species-level random
effects in our example) can automatically handle multiple observations per species.

It may be easier to be conservative to include both (phylogenetic random effects

and grouping random effects) of them but simplify the phylogenetic relationships (at
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the random slopes level) and think about the random-slopes model in a strictly hier-
archical setting (i.e., estimating different slopes for each family, or taxon (Bunnefeld
and Phillimore, 2012)) - the PGLMM collapses to a standard random-slopes model.

Another simplifying alternative is to be conservative to include both phylogenetic
random effects and grouping random effects but simplify the phylogenetic relation-
ships and think about the random-slopes model in a strictly hierarchical setting (i.e.,
estimating different slopes for each family, or taxon (Bunnefeld and Phillimore, 2012)).
However, this collapses phylogenetic structures to a standard random-slopes model.
Users should be aware of two essential questions when fitting random-slope models:
How much data do we need in order to practically estimate the random slopes? Are

we making a mistake by ignoring random slopes (Schielzeth and Forstmeier, 2008)?

Extension and alternatives

We have presented a range of classical phylogenetic comparative methods (i.e. phylo-
genetic least squares, linear and mixed models) to fit models that incorporate different
levels of phylogenetic variation. Even within this scope, there is additional room for
exploration, such as phylogenetic multivariate response models; non-Brownian evo-
lutionary processes such as the Ornstein-Uhlenbeck (OU) model which accounts for
both selection and drift processes (Butler and King, 2004)); Bayesian approaches
(Hadfield and Nakagawa, 2010); and variable-rate model, where evolutionary param-
eters vary across the phylogeny. However, the simple approach we developed here
offers an efficient way to handle phylogenetic comparative analysis for a wide range
of univariate, Brownian-motion evolutionary models. This approach can in principle
be combined flexibly with any platforms that supports independent latent variables
such as Stan. More importantly, this implementation in 1me4 and glmmTMB allows
users to fit phylogenetic mixed models to the fullest (large data, unbalanced species

observations, complex random effects) and explore new ideas.

77



Authors’ contributions

ML and BMB conceived the ideas and designed methodology; ML and BMB im-
plemented the code in 1me4 and glmmTMB; ML ran all simulations; ML and BMB
analyzed the results; ML wrote the first draft of the manuscript. All authors con-

tributed critically to the drafts and gave final approval for publication.

Data Availability

All codes are available at DOI:10.5281/zenodo.2639887.

References

Baayen, R. H., D. J. Davidson, and D. M. Bates (2008). Mixed-effects modeling
with crossed random effects for subjects and items. Journal of memory and lan-
guage 59(4), 390-412.

Barr, D. J., R. Levy, C. Scheepers, and H. J. Tily (2013). Random effects structure
for confirmatory hypothesis testing: Keep it maximal. Journal of memory and
language 68(3), 255-278.

Bates, D., M. Méchler, B. Bolker, S. Walker, et al. (2015). Fitting linear mixed-effects
models using lmed. Journal of Statistical Software 67(i01).

Blomberg, S. P., T. Garland Jr, and A. R. Ives (2003). Testing for phylogenetic signal
in comparative data: behavioral traits are more labile. FEvolution 57(4), 7T17-745.

Brooks, M. E., K. Kristensen, K. J. van Benthem, A. Magnusson, C. W. Berg,
A. Nielsen, H. J. Skaug, M. Maechler, and B. M. Bolker (2017). glmmTMB bal-

ances speed and flexibility among packages for zero-inflated generalized linear mixed
modeling. The R Journal 9(2), 378-400.

Bunnefeld, N. and A. B. Phillimore (2012). Island, archipelago and taxon effects:
mixed models as a means of dealing with the imperfect design of nature’s experi-
ments. Ecography 35(1), 15-22.

Butler, M. A. and A. A. King (2004). Phylogenetic comparative analysis: a modeling
approach for adaptive evolution. The American Naturalist 164 (6), 683-695.

Biirkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package
brms. The R Journal 10(1), 395-411.

78



Cleasby, 1. R., S. Nakagawa, and H. Schielzeth (2015). Quantifying the predictability
of behaviour: statistical approaches for the study of between-individual variation
in the within-individual variance. Methods in Ecology and Evolution 6(1), 27-37.

Davies, T. J., E. M. Wolkovich, N. J. Kraft, N. Salamin, J. M. Allen, T. R. Ault, J. L.
Betancourt, K. Bolmgren, E. E. Cleland, B. I. Cook, et al. (2013). Phylogenetic
conservatism in plant phenology. Journal of Ecology 101(6), 1520-1530.

Duane, S., A. D. Kennedy, B. J. Pendleton, and D. Roweth (1987). Hybrid Monte
Carlo. Physics Letters B 195(2), 216-222.

Felsenstein, J. (1985). Phylogenies and the comparative method. The American
Naturalist 125(1), 1-15.

Freckleton, R. P., P. H. Harvey, and M. Pagel (2002). Phylogenetic analysis and
comparative data: a test and review of evidence. The American Naturalist 160(6),
712-726.

Garamszegi, L. Z. (2014). Modern phylogenetic comparative methods and their appli-
cation in evolutionary biology: concepts and practice. Springer.

Garland Jr, T., P. H. Harvey, and A. R. Ives (1992). Procedures for the analy-
sis of comparative data using phylogenetically independent contrasts. Systematic
biology 41(1), 18-32.

Hadfield, J. and S. Nakagawa (2010). General quantitative genetic methods for com-
parative biology: phylogenies, taxonomies and multi-trait models for continuous
and categorical characters. Journal of evolutionary biology 23(3), 494-508.

Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed
models: the MCMCglmm R package. Journal of Statistical Software 33(2), 1-22.

Hansen, T. F. and K. Bartoszek (2012). Interpreting the evolutionary regression: the
interplay between observational and biological errors in phylogenetic comparative
studies. Systematic Biology 61(3), 413-425.

Helmus, M. R., K. Savage, M. W. Diebel, J. T. Maxted, and A. R. Ives (2007).
Separating the determinants of phylogenetic community structure. FEcology let-
ters 10(10), 917-925.

Ho, L. S. T. and C. Ané (2014). A linear-time algorithm for Gaussian and non-
Gaussian trait evolution models. Systematic Biology 63, 397-408.

Housworth, E. A.; E. P. Martins, and M. Lynch (2004). The phylogenetic mixed
model. The American Naturalist 1653(1), 84-96.

Ives, A. R. and M. R. Helmus (2011). Generalized linear mixed models for phyloge-
netic analyses of community structure. Ecological Monographs 81(3), 511-525.

79



Khatri, C. and C. R. Rao (1968). Solutions to some functional equations and their
applications to characterization of probability distributions. Sankhya: The Indian
Journal of Statistics, Series A, 167—180.

Lankau, R., P. S. Jgrgensen, D. J. Harris, and A. Sih (2011). Incorporating evolu-

tionary principles into environmental management and policy. Fvolutionary Appli-
cations 4(2), 315-325.

Lavergne, S., N. Mouquet, W. Thuiller, and O. Ronce (2010). Biodiversity and
climate change: integrating evolutionary and ecological responses of species and
communities. Annual review of ecology, evolution, and systematics 41, 321-350.

Li, D.; A. R. Ives, and D. M. Waller (2017). Can functional traits account for phylo-
genetic signal in community composition? New Phytologist 21/ (2), 607-618.

Li, M., J. Dushoff, and B. M. Bolker (2018). Fitting mechanistic epidemic models
to data: a comparison of simple Markov chain Monte Carlo approaches. Statistical
methods in medical research 27(7), 1956-1967.

Lynch, M. (1991). Methods for the analysis of comparative data in evolutionary
biology. Ewvolution 45(5), 1065-1080.

Mace, G. M. and A. Purvis (2008). Evolutionary biology and practical conservation:
bridging a widening gap. Molecular Ecology 17(1), 9-19.

Nicolakakis, N. and L. Lefebvre (2000). Forebrain size and innovation rate in Eu-
ropean birds: feeding, nesting and confounding variables. Behaviour 137(11),
1415-1429.

Nowakowski, A. J., L. O. Frishkoff, M. E. Thompson, T. M. Smith, and B. D.
Todd (2018). Phylogenetic homogenization of amphibian assemblages in human-
altered habitats across the globe. Proceedings of the National Academy of Sciences,
201714891.

Ord, T. J., J. A. Stamps, and J. B. Losos (2010). Adaptation and plasticity of animal
communication in fluctuating environments. Fvolution 64(11), 3134-3148.

Pagel, M. (1999). Inferring the historical patterns of biological evolution. Na-
ture 401(6756), 877.

Pearse, W. D., M. W. Cadotte, J. Cavender-Bares, A. R. Ives, C. M. Tucker, S. C.
Walker, and M. R. Helmus (2015). Pez: Phylogenetics for the environmental sci-
ences. Bioinformatics 31(17), 2888-2890.

Pinheiro, J., D. Bates, S. DebRoy, and D. Sarkar (2014). R core team (2014) nlme:
linear and nonlinear mixed effects models. r package version 3.1-117. Awailable at
h ttp://CRAN. R-project. org/package= nlme.

80



Roberts, D. R., V. Bahn, S. Ciuti, M. S. Boyce, J. Elith, G. Guillera-Arroita,
S. Hauenstein, J. J. Lahoz-Monfort, B. Schroder, W. Thuiller, D. I. Warton, B. A.
Wintle, F. Hartig, and C. F. Dormann (2016, December). Cross-validation strate-
gies for data with temporal, spatial, hierarchical, or phylogenetic structure. FEcog-
raphy.

Santamaria, L. and P. F. Mendez (2012). Evolution in biodiversity policy—current
gaps and future needs. Evolutionary Applications 5(2), 202-218.

Schielzeth, H. and W. Forstmeier (2008). Conclusions beyond support: overconfident
estimates in mixed models. Behavioral Ecology 20(2), 416-420.

Tella, J. L., G. Blanco, M. G. Forero, A. Gajon, J. A. DONAzar, and F. Hiraldo
(1999). Habitat, world geographic range, and embryonic development of hosts
explain the prevalence of avian hematozoa at small spatial and phylogenetic scales.
Proceedings of the National Academy of Sciences 96(4), 1785-1789.

Vats, D. and C. Knudson (2018). Revisiting the Gelman-Rubin diagnostic. arXiv
preprint arXiw:1812.0938/.

Vehtari, A.; A. Gelman, D. Simpson, B. Carpenter, and P.-C. Biirkner (2019). Rank-
normalization, folding, and localization: An improved R for assessing convergence

of MCMC. arXiv preprint arXiv:1903.08008.

Winter, M., V. Devictor, and O. Schweiger (2013). Phylogenetic diversity and nature
conservation: where are we? Trends in Ecology & Evolution 28(4), 199-204.

81



PhD Thesis — Michael Li McMaster University — Biology

Chapter 6: Conclusion

Mathematical and statistical models have proven to be useful in studying infectious
disease. Works by Ross (Kermack and McKendrick, 1927) have created a solid
mathematical foundation for the epidemiology of infectious disease. These theoretical
insights have translated into real-life disease control widely used today and have
successful eliminate some of the deadliest diseases in civilization such as smallpox
and rinderpest. Mathematical disease models have evolved tremendously in the new
technology and information era, capable of capturing realistic aspects of disease
epidemics. The increase in power of computation and data integration linked with
theoretical methods has allowed for the development of new approaches for disease

modeling and these methods bring us closer to real-time disease outbreak analysis.

Principal Findings and Contribution to the Field

In Chapter 2, I show that it is challenging to fit models and make adequate predictions
in the early phase of an epidemic outbreak with limited information. Even in a
simple simulation setting, where the fitting models are roughly restricted to match
the simulation model (i.e., stochastic, discrete-time SIR model), there is still a lot of
decision-making when constructing models. For example, what the type of distribution
should we use for the transmission and observation processes? What is the best fitting
platform? Should we allow for overdispersion in these processes?). When comparing
models varying in complexity using several different platforms, I found that it is crucial
to allow the model to incorporate uncertainties, and neglecting such uncertainty are
likely to be over-confident and less accurate in forecasting. Furthermore, approximating

discrete latent state processes with continuous processes increases computational
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efficiency without losing accuracy. In response to modeling real emerging epidemic
outbreaks, fast models allow more opportunity to try lots of scenarios and do rapid
exploration.

In Chapter 3 and 4, I show that rabies dynamics are more complicated and uncertain
than previously thought. I developed and applied improved estimation techniques to
estimate epidemiological parameters and propagate uncertainties for historical rabies
outbreaks around the world. Using the logistic model to estimating initial growth
rate r, and propagating uncertainties in both r and generation interval, I found R,
estimates of historical rabies outbreaks around the world are larger and more uncertain
compared to previous estimates(Hampson et al., 2009). The results may explain why
rabies persists in these countries and have implications to guide rabies control. In
Chapter 4, I used rabies contact tracing data and showed rabies generation intervals
and serial intervals have different distributions. This finding led to exploring the
relationship between dogs’ time distributions and their tendency to transmit where I
found these two disease traits are positively correlated and affect rabies transmission.

Lastly, in Chapter 5, I explored a broader evolutionary biology problem, where I
developed an alternative method for flexibly and efficiently modeling phylogenetic mixed
models. This method allows researchers to model different levels of Brownian-motion
evolutionary model in the generalized linear mixed modeling framework. Existing
procedures may be either insufficiently flexible or too computationally demanding
when analyzing large volumes of data; researchers typically search for ways to simplify
their analyses. Using simulations where I incorporate various phylogenetic correlations
in the simulation model, refitting models which ignores these structures often leads to
bias estimates of the parameters of interest. This improvement offers researchers a

flexible way to fit multi-species trait models.
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Future direction

This work is primarily motived by the vast amount of new approaches developed in
recent years applied to disease modeling applications. At the end of this thesis, two
major possible future directions can be extended in the future. Chapter 4 laid out
the foundations and blueprints of the generation and serial interval differences, witn
an example from rabies. It would be interesting to explore how these results can be
extended to other diseases. Rabies is a straightforward disease system where the two
pivotal time intervals (i.e., incubation and latent periods) match almost perfectly; this
is not the case for many diseases. The second future direction also stemmed from
Chapter 4, where I showed correlations in disease traits affects generation intervals
and ultimately Rg. The focus in Chapter 3 and 4 is on domestic dogs: it would be
interesting to apply this approach to other species that spread canine rabies in this
or other systems. In addition, it may be useful to gather data and fit a multi-species

disease trait model for rabies using the approach developed in chapter 5.
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Appendix : Additional figures for Chapter 2

Supplemental figures, originally presented as a supplemental component of the published
work presented as Chapter 2.
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Supplemental material

In the main text, we present the bias, RMSE, coverage and efficiency plots for aggregated forecast, Ro, MGI,
Pes, and P,ep. Here, we present plots showing the other parameters (shape G's and position G p of the transmission
kernel and process and observation overdispersion parameters d p and dobs) and disaggregated forecasts (five forecast
steps) that are excluded in the main text. We also add some representative plots of the simulated cases and forecast.
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Figure S1. Comparison of bias for G5 (transmission shape), G'p (transmission position), dons (Observation
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appendix for details.
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appendix for details.
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Figure S7. Comparison of coverage for five forecast steps described in Sect. 2.2 across different platforms
described in Sect. 2.3.1. See Figure 5 in the main text for details.
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Figure S10. Comparison of forecast using a different set of parameters. See Figure S9 for details.
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Figure S11. Comparison of forecast of low observed cases. See Figure S9 for details.
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Appendix : Additional Tables for Chapter 2

Supplemental tables, originally presented as a supplemental component of the published
work presented as Chapter 2.
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Tables

Table 1. Simulation model parameters

| Parameter  Description True Prior |

N Total population size Fixed at 100,000 NA

J4 Maximum length of the generation interval Fixed at 5 time steps ~ NA

Ro Basic reproductive number 3 Gamma(shape—lS rate=5)
Pott Effective susceptible proportion of the population 0.5 Beta( f},z ?f Bszfzfe

e

Prep Reporting proportion 0.5 Beta( lB“zep s %:pe

Gp Position parameter for generation interval 0.5 Beta( 5”8 QBS%)
Gs Shape parameter for generation interval 1 Gamma(shape_S,rate:S)
op Beta Binomial transmission process dispersion 1 Gamma(shape=10,rate=10)
dobs Beta-Binomial Observation process dispersion 1 Gamma(shape=10,rate=10)

Table 2. Fitting model parameters

| Parameter Description True Prior
N Total population size Fixed at 100,000 NA
l Maximum length of the generation interval Fixed at 5 time steps ~ NA
Bgsize Beta prior size factor Fixed at 1 NA
Ro Basic reproductive number 3 Gamma(shape:lS rate=5)
Pogs Effective susceptible proportion of the population 0.5 Beta( 1 S}f ?f Blj ’fzfe
. . B €.
Prep Reporting proportion 0.5 Beta(ll*‘;A %gpe
Petfrep Proportion of effective S to I that are observed Pets X Prep Beta( grze  size
1 Poffre E Peffrep
p Scale splitting factor 0.5 Beta( 5” € ?)
Gp Position parameter for generation interval 0.5 Beta( S”e 2 —gtze)
G Shape parameter for generation interval 1 Gamma(shape—S,rate—S)
op Beta Binomial transmission process dispersion 1 Gamma(shape=10,rate=10)
6 p (Neg-Binom) Negative-Binomial Transmission process dispersion NA Uniform(min=0,max=100)
dobs Beta-Binomial Observation process dispersion 1 Gamma(shape=10,rate=10)
dobs (Neg-Binom) Negative-Binomial Transmission process dispersion NA Uniform(min=0,max=100)
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Appendix : Additional Figures for Chapter 3

Supplemental figures, planned as a supplemental component to the work presented as
Chapter 3.
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Supplement

In the main text, we presented the R, estimates for the historical rabies outbreaks
around the world. Here, we present r estimates using two approaches: maximum
likelihood estimation and Bayesian HMC. In addition, we made prediction case plots
(with 95% prediction regions) using the maximum likelihood estimates of .
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Figure A1l: Logistic growth rate fits.
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Figure A2: Prediction plots.
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Figure A3: Prediction plots.
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Figure A4: Prediction plots.
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