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Abstract 

High-accuracy electromagnetic design and analysis of electric machines is enhanced 

by the use of various numerical methods. These methods solve Maxwell’s equations to 

determine the distribution of the electric and magnetic fields throughout the considered 

machine structure. Due to the complicated architectures of the machines and the 

nonlinearity of the utilized magnetic materials, it is a very challenging task to obtain an 

analytical solution and, in most cases, only a numerical solution is possible. 

The finite element method (FEM) is one of the standard numerical methods for 

electromagnetic field analysis. The considered machine domain is divided into finite 

elements to which the field equations are applied. FEM solvers are utilized to develop 

optimization procedures to assist in achieving a design that meets the required 

specifications without violating the design constraints. The design process of electric 

machines involves adjusting the machine parameters. This is usually done through 

experience, intuition, and heuristic approaches using FEM software which gives results for 

various parameter changes.  There is no guarantee that the achieved design is the optimal 

one.  

An alternative approach to the design of electric machines exploits robust gradient-

based optimization algorithms that are guaranteed to converge to a locally-optimal model.  

The gradient-based approaches utilize the sensitivities of the performance characteristics 

with respect to the design parameters. These sensitivities are classically calculated using 

finite difference approximations which require repeated simulations with perturbed 

parameter values. The cost of evaluating these sensitivities can be significant for a slow 
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finite element simulation or when the number of parameters is large. The adjoint variable 

method (AVM) offers an alternative approach for efficiently estimating response 

sensitivities. Using at most one extra not-iterative simulation, the sensitivities of the 

response to all parameters are estimated. 

Here, a MATLAB tool has been developed to automate the design process of switched 

reluctance motors (SRMs). The tool extracts the mesh data of an initial motor model from 

a commercial FEM software, JMAG. It then solves for magnetic vector potential 

throughout the considered SRM domain using FEM taking into consideration the 

nonlinearity of the magnetic material and the motor dynamic performance. The tool 

calculates various electromagnetic quantities such as electromagnetic torque, torque ripple, 

phase flux linkage, x and y components of flux density, air-region stored magnetic energy, 

phase voltage, and phase dynamic currents. 

The tool uses a structural mapping technique to parametrize various design parameters of 

SRMs. These parameters are back iron thickness, teeth height, pole arc angle, and pole 

taper angle of both stator and rotor. Moreover, it calculates the sensitivities of various 

electromagnetic quantities with respect to all these geometric design parameters in addition 

to the number of turn per phase using the AVM method. 

The tool applies interior point optimization algorithm to simultaneously optimize the 

motor geometry, number of turns per phase, and the drive-circuit control parameters 

(reference current, and turn-on and turn-off angles) to increase the motor average dynamic 

torque. It also applies the ON/OFF topology optimization algorithm to optimize the 
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geometries of the stator teeth for proper distribution of the magnetic material to reduce the 

RMS torque ripple.  

A 6/14 SRM has been automatically designed using the developed MATLAB tool to 

achieve the same performance specifications as 6110E Evergreen surface-mounted PM 

brushless DC motor which is commercially available for an HVAC system. 
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Chapter 1 

Introduction 

1.1 Research Motivation 

High-accuracy electromagnetic design and analysis of electric machines enhances the 

use of various numerical methods. These methods solve Maxwell’s equations to determine 

the distribution of the electric and magnetic fields throughout the considered machine 

structure [1]. Due to the complex geometrical features of the machines and the nonlinearity 

of the utilized magnetic materials, it is a very challenging task to obtain an analytical 

solution and it will not be as accurate as a numerical solution. 

The finite element method (FEM) is one of the standard numerical methods that takes 

into consideration the geometrical complexities, material properties, and terminal electrical 

conditions in electric drives [1]. The considered machine domain is divided into finite 

elements to which the field equations are applied. This method was proposed in the 1940s. 

However, it has been used to electromagnetic problems since 1968 [2]. It is currently the 

most popular method for solving vector field problems [1]. 

FEM solvers are utilized to achieve a design that meets the required specifications 

without violating the design constraints [3]. The design process of electric machines 

involves adjusting the machine parameters. This is usually done through experience, 

intuition, and heuristic approaches using FEM software [3].  There is no guarantee that the 

achieved design is the optimal one.  

An alternative approach to the design of electric machines exploits robust gradient-

based optimization algorithms that are guaranteed to converge to a locally-optimal model.  
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Gradient-based geometric or topology optimization may be applied to the machine under 

study to achieve an optimal design. The gradient-based approaches utilize the sensitivities 

of the performance characteristics with respect to the design parameters. These sensitivities 

are classically calculated using finite difference approximations which require repeated 

simulations with perturbed parameter values. The cost of evaluating these sensitivities can 

be significant for a slow finite element simulation or when the number of parameters is 

large. The adjoint variable method (AVM) offers an alternative approach for efficiently 

estimating response sensitivities. Using at most one extra not-iterative simulation, the 

sensitivities of the response to all parameters are estimated. 

Permanent-split capacitor (PSC) motors utilized in household heating, ventilation, and 

air-conditioning (HVAC) application are currently replaced by the more-efficient brushless 

DC motors, also known as electronically commutated motors (ECM) [4]. This type of 

motors utilizes permanent magnets (PMs) in the rotor. Thus, the motor has a high power 

density, efficiency, and power factor. However, the market for rare-earth PMs is not stable. 

The prices of rare-earth materials have experienced a drastic increase in 2011 as shown in 

Fig. 1.1. The reason is that China, the supplier of 85% of rare-earth metals and 100% of 

heavy rare-earth metals [5], has threatened to ban its supply at the end of 2010 [4, 5].  

As a result, extensive research is conducted to find an alternative to PM motors. Switched 

reluctance motors (SRMs) do not use permanent magnets or windings on the rotor. This 

results in a simpler and rugged construction and lower manufacturing cost.  SRMs are also 

capable of operating at high speeds. These merits make SRM viable alternative to PM 

motors. 
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Fig. 1.1. Prices of rare-earth materials compared with gold [4, 5]. 

In this thesis, adjoint-based geometric and topology optimization are applied to a 6/14 

SRM to achieve the same performance specifications as 6110E Evergreen surface-mounted 

PM brushless DC motor which is commercially available for an HVAC system [4].  

1.2 Background 

This section includes a literature review about switched reluctance motors, geometry, 

control, and topology optimization of electric motors, and the adjoint variable method. 

1.2.1 Switched Reluctance Motors  

The increasing prices and limited supply of permanent magnets motivated researchers 

to focus on the use of switched reluctance motors in many applications such as HVAC 

applications [6]. A 3D model of a 6/14 switched reluctance motor is shown in Fig. 1.2. The 

first and second numbers refer to the number of stator and rotor poles, respectively. Since 

there are no permanent magnets or windings used on the rotor, SRM has simple and rugged 

structure, high operating temperature and low manufacturing cost [7]. SRM, on the 
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contrary, has high torque ripple and high acoustic noise and vibrations [8].  

 

Fig. 1.2. A 3D model of a switched reluctance motor. 

The first application of SRM was more than 150 years ago to drive a locomotive [9]. 

In 1969, a variable reluctance motor was proposed for variable speed drives [9]. 

SRM commonly uses a larger number of poles on stator than rotor [7]. A comparative study 

of three topologies of SRMs for electric vehicle propulsion with a different number of 

phases and various combinations of stator and rotor poles was carried out in [10]. The effect 

of changing the number of phases and slot/pole combination of segmented SRM on 

performance characteristics (efficiency, operating speed range and overload capability) 

was studied in [11]. 

In [12] various methods of designing SRMs were presented. Linear, nonlinear, and finite 

element methods were introduced. In [13] a comparison between tapered and straight 

designs of stator poles of SRMs was presented. It was found that the tapered motor is 



5 

 

superior in terms of the average and peak torques, and the torque ripple is almost the same 

for both designs. A switched reluctance motor which has an inner pancake stator with axial 

winding was proposed in [14]. This design provides a high slot-fill factor and can be 

implemented as a flat pancake-shaped stator. In [15] a detailed design of a double-rotor 

switched reluctance motor was presented. A double-rotor SRM was proposed for integrated 

hybrid transmission of a hybrid electric vehicle in [16]. An outer-rotor in-wheel SRM was 

proposed for electrical bus application in [17]. The proposed motor was shown to be 

superior in terms of the torque ripple and efficiency. In [18] a comparison between a 

proposed cylindrical outer shape rotor and conventional rotor of SRMs was presented. The 

proposed rotor was found to have significantly lower windage loss and acoustic noise. The 

design of segmented outer-rotor SRM for a direct-drive application was investigated in 

[19]. In [20] an improved planar switched reluctance motor (PSRM) with minimized force 

ripple was proposed. A hybrid motion SRM which can operate in rotary, linear, and rotary-

linear modes with independent control for both rotary and linear motions was presented in 

[21]. The suitability of SRMs for electric and hybrid vehicles was investigated in [22] 

where the static and dynamic performance of several 8/6 and 6/4 SRM geometries were 

studied with different geometric changes. 

The dynamic performance of a three-phase 6/10 switched reluctance motor used in 

traction application was investigated in [23]. A phase-shift design methodology of SRM 

for boosting the motor starting torque and ensuring its startup capability was proposed in 

[24]. A comparison between SRM drive and an inverter-fed induction motor drive for a 

particular traction application was presented in [25]. In [26] many performance 



6 

 

specifications of SRM drives such as torque per unit volume, efficiency, converter volt-

ampere rating, etc. were compared with those of typical induction motor drives. A 

comparison between SRM, induction motor, and PM synchronous motor (PMSM) was 

presented in [27]. The comparison showed that SRM is competitive with the other two 

motor types in terms of torque/weight and power/weight ratios. In [28] a switched 

reluctance motor was proposed which competes the interior PMSM employed in the 2009 

Toyota Prius in terms of torque, power, speed-range, and efficiency. Torque sharing 

function (TSF) was used in [29] to control the SRM torque at extended speed and low 

torque ripple.  

1.2.2 Geometry, Control, and Topology Optimization of Electric Motors 

Geometry optimization of SRM was applied in [30] to increase the motor power density 

and efficiency and reduce the acoustic noise. Two multi-objective optimization methods, 

Parametric Solution Selection (PSS) and Augmented Lagrangian Genetic Algorithm 

(ALGA), were utilized in [31] to design an 8/14 SRM with minimized torque ripple and 

maximized average torque. Taguchi method was used in [32] to optimize the turn-on and 

turn-off angles of an SRM drive circuit in addition to the motor geometry to reduce the 

torque ripple and increase the efficiency. In [33] a two-phase 4/2 SRM rotor was optimized 

using the level set method (LSM) to improve its static torque characteristics. Multi-

objective design optimization of SRMs utilizing a combination of design of experiments 

(DOE) and particle swarm optimization (PSO) methods was investigated in [34]. A simple 

search technique was proposed in [35] to optimize the turn-on and turn-off angles of an 
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SRM drive to increase the motor efficiency and torque per ampere ratio simultaneously 

and reduce the torque ripple and energy consumption. 

The pole shape of a brushless DC motor was optimized to reduce the cogging torque in 

[36]. In [37], a level set method was used to optimize the rotor shape of a synchronous 

reluctance motor to maximize the average torque and minimize the cogging torque. The 

steepest descent algorithm was utilized in [38] to optimize the rotor pole shape of spoke-

type interior permanent magnet IPM motor to reduce the cogging torque and the partial 

magnet demagnetization. Single-phase and multi-phase level set methods were used in [39] 

to maximize the Lorentz force on the moving coil of a voice coil motor. A gradient ascent 

method was utilized in [40] to optimize the stator and rotor poles of a switched reluctance 

motor to maximize the average torque and minimize the torque ripple. Topology 

optimization of the rotors of surface permanent magnet (SPM), IPM, and synchronous 

reluctance motors was conducted to maximize the total torque for a specific motors cost 

[41]. A level set method was utilized in [42] to optimize the stator and rotor shapes of 

synchronous reluctance motors to maximize the torque. 

The stator tooth face shape and the rotor tooth shoe of a 6/4 SRM were optimized to 

minimize the torque ripple in [43]. In [44], the steepest descent method was utilized to 

optimize the stator tooth shape of an 8/6 SRM to reduce the torque ripple and increase the 

average torque. The rotor tooth shape of a 4/2 SRM was optimized in [45] to reduce the 

torque ripple and increase the average and starting torques. The electromagnetic 

performance of a 16/20 in-wheel outer-rotor SRM was improved in [46] by optimizing the 

motor geometry. 
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Topology optimization based on the level set method was used to optimize the distribution 

of the magnetic material in the rotor teeth of an 8/6 SRM to reduce the torque ripple in 

[47].  The stator and rotor geometries of a 6/4 SRM were optimized using topology 

optimization with optimizing the electric-circuit turn-on and turn-off angles to reduce the 

torque ripple and the rotor mass in [48].  

1.2.3 Adjoint Variable Method 

The gradient-based optimization approaches utilize the sensitivities of motor 

performance characteristics versus design parameters. These sensitivities are classically 

calculated using finite difference approximations. These approximations carry out repeated 

simulations with perturbed parameter values [49-52]. The cost of evaluating these 

sensitivities can be significant for a slow finite element simulation or when the number of 

parameters is large [49-51]. 

The adjoint variable method (AVM) offers an alternative approach for efficiently 

estimating response sensitivities. Using at most one extra simulation, the sensitivities of 

the response to all parameters are estimated [49-51].  AVM may be classified into two 

different approaches; the first approach is the discrete approach in which desired 

sensitivities are obtained using derivatives of a discretized system of equations. This 

approach was utilized in the optimization process of voice coil motor [39], levitated rod 

and a cantilever electromagnet [53]. It was also used in the sensitivity analysis of 

anisotropic structures [54], to obtain wideband second-order sensitivities of 

electromagnetic structures [55], and transient sensitivity analysis of metallic waveguides 

[56].  The second approach is the continuum approach where closed-form design sensitivity 
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expression is obtained by applying a variational approach to equations governing the 

electromagnetic system. This approach was utilized in the optimization process of 

synchronous reluctance motors [37, 57], brushless DC motors [36, 58], IPM motors [59, 

60], and synchronous generators [61]. The AVM approach has been applied in different 

fields. In addition to the low frequency structures [36, 37, 39-42], [53], [57-60] and high 

frequency structures [50], [51], [54-56], [62], it is also utilized in the field of structural 

analysis [63-66]. 

1.3 Research Novelty and Contributions 

A MATLAB tool has been developed to automate the design process of switched 

reluctance motors (SRMs). The tool extracts the mesh data of an initial motor model from 

a commercial FEM software, JMAG. It then solves for magnetic vector potential 

throughout the considered SRM domain using finite element method (FEM) taking into 

consideration the nonlinearity of the magnetic material and the motor dynamic 

performance. The tool calculates various electromagnetic quantities such as 

electromagnetic torque, torque ripple, phase flux linkage, x and y components of flux 

density, air-region stored magnetic energy, phase voltage, and phase dynamic currents. 

The tool uses a structural mapping technique to parametrize various design parameters of 

SRMs. These parameters are back iron thickness, teeth height, pole arc angle, and pole 

taper angle of both stator and rotor. Moreover, it calculates the sensitivities of various 

electromagnetic quantities with respect to all these geometric design parameters in addition 

to the number of turn per phase using the AVM method. 
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The tool applies an interior point optimization algorithm to optimize the motor geometry, 

number of turns per phase, and the drive-circuit control parameters (reference current, and 

turn-on and turn-off angles) to increase the motor average dynamic torque. It also applies 

an ON/OFF topology optimization algorithm to optimize the geometries of the stator teeth 

for proper distribution of the magnetic material to reduce the RMS torque ripple. 

A 6/14 SRM for an HVAC application has been automatically designed using the 

developed MATLAB tool. 

1.4 Thesis Outline 

The thesis includes finite element analysis of switched reluctance motors when utilizing 

either linear or nonlinear magnetic materials. The adjoint variable method is used for the 

sensitivity analysis of SRMs in both linear and nonlinear cases. In the thesis, geometry, 

control, and topology optimization approaches are applied to a 6/14 SRM to achieve the 

performance specifications of a commercially available surface-mounted PM brushless DC 

motor of an HVAC system.  

Chapter 2 presents the construction, working principle, and modeling of SRMs. The 

fundamentals of magnetostatic finite element analysis in case of utilizing either linear or 

nonlinear magnetic materials are also investigated. Various electromagnetic responses of 

SRMs are then calculated using the finite element method.  

Chapter 3 introduces the sensitivity analysis using the adjoint variable method in case 

of linear and nonlinear systems of equations.  
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Chapter 4 studies the sensitivities of various electromagnetic responses of SRMs with 

respect to different geometric design parameters when utilizing either linear or nonlinear 

magnetic materials. The sensitivities obtained using the adjoint variable method are 

compared with those obtained using the more-accurate but time-intensive Central Finite 

Differences (CFD).  

Chapter 5 investigates geometric optimization of the considered 6/14 SRM to maximize 

the motor static torque profile using the interior-point algorithm. Structural mapping 

technique is utilized to control the geometry of the considered motor. Moreover, the motor 

geometry and the drive-circuit control parameters are simultaneously optimized to 

maximize the motor steady-state dynamic torque.  

Chapter 6 studies the topology optimization of the considered SRM to achieve a 

particular average value of the dynamic torque while minimizing the RMS torque ripple. 

The ON/OFF topology optimization technique is used for that purpose.  

Chapter 7 summarizes the main findings of the thesis and the recommendations for 

future work. 
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Chapter 2 

Fundamentals and Finite Element Analysis of Switched Reluctance 

Motors (SRMs) 

2.1 Introduction 

Switched reluctance motors (SRMs) do not use permanent magnets or windings on the 

rotor. This results in a simpler and rugged construction and reduces manufacturing cost 

[67, 68]. SRMs are also capable of operating at high speeds [69]. These merits, in addition 

to supply shortage and increasing prices of permanent magnets, motivate researchers to 

focus on replacing permanent magnet (PM) motors with the lower-cost SRMs [69]. High 

torque ripple and acoustic noise are the main disadvantages of SRMs [70]. Preliminary 

research is conducted on how to reduce the torque ripple and the audible noise [70, 71].  

Due to the motor complex magnetic geometry and nonlinearity of magnetic materials, 

the Finite Element Method (FEM) is more suitable to obtain the field distribution 

throughout the motor domain [1, 72].  FEM calculates the magnetic vector potential values 

in the whole domain [1, 72]. These values are then post-processed to compute different 

electromagnetic quantities [1]. Fundamentals of the finite element method and its 

application to SRMs will be discussed later in the chapter. 

2.2 Fundamentals of Switched Reluctance Motors 

A switched reluctance motor has double salient structure. It is comprised of a stator and 

a rotor which have salient poles. The motor configuration is determined by the number of 

phases and the number of stator and rotor poles. A schematic diagram of a three-phase 6/4 
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SRM configuration is shown in Fig. 2.1. This motor configuration has six stator poles and 

four rotor poles. The SRM has simple and rugged construction since there are no permanent 

magnets or windings mounted on the rotor. This feature enables the motor to work at high 

speeds and high temperatures [73, 74]. Concentrated, also known as short-pitched, coils 

are wound around the stator teeth. Due to the doubly-salient structure, the rotor position 

affects the magnetic reluctance of the flux path. When a stator coil is energized, the rotor 

pole tends to align itself with the stator pole to reduce the magnetic reluctance of that flux 

path [74]. The fundamentals, principle of operation, and modeling of SRMs will be 

investigated in the following subsections. 

 
Fig. 2.1. A schematic diagram of a three-phase 6/4 SRM. 

2.2.1 Operation of Switched Reluctance Motors 

The inductance profile of a switched reluctance motor represents the effect of the rotor 

position on the phase inductance. The profile affects the motor developed torque. The main 

locations of the rotor pole with respect to the stator pole are presented as shown in Fig. 2.2. 

The presented positions and the corresponding angles depend on the stator pole arc angle 
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βs and the rotor pole arc angle βr, shown in Fig. 2.1, in addition to the number of rotor poles 

Nr. These angles are obtained using the following equations [75] 

                           
             (a) Unaligned position (0°)                                                           (b) θ1 position 

                                
                      (c) θ2 position                                                                      (d) Aligned position (θ3) 

                                     
                       (e) θ4 position                                                                               (f) θ5 position 

Fig. 2.2. Different rotor positions of a three-phase 6/4 SRM. 
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The ideal inductance profile of SRMs is shown in Fig. 2.3 when the rotor rotates in a 

counter-clockwise direction [75, 76]. The inductance profile is further investigated as 

follows [75, 76]. 

 

Fig. 2.3. Ideal inductance profile of SRMs. 

• Position 0° is the reference position or the unaligned position of the motor. The 

magnetic reluctance of the flux path is maximum and the corresponding inductance, 

known as unaligned inductance Lu, is minimum. 

• Position 0° – θ1: There is no overlapping between the rotor and stator poles, so the 

inductance is constant at its minimum value. There is no developed torque at this 

region.  
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• Position θ1 – θ2: The overlapping between stator and rotor poles starts and increases as 

the rotor moves. Hence, the magnetic reluctance decreases, and the inductance 

increases. Due to the positive change of inductance with respect to the rotor position, a 

current applied in this region produces positive torque (motoring mode).  

• Position θ2 – θ4: There is complete overlapping between stator and rotor poles starting 

from the position θ2 hence the inductance, known as aligned inductance La, is 

maximum. The complete overlapping continues from θ2 to θ4. The inductance is 

constant at this region, so there is no developed torque at this region.  

• Position θ4 – θ5: The overlapping between stator and rotor poles decreases as the rotor 

moves. Hence, the magnetic reluctance increases, and the corresponding inductance 

decreases. Due to the negative change of inductance with respect to the rotor position, 

a current applied in this region produces negative torque (generating mode).  

• Position θ5 – 360°: This region is the same as the region from position 0° to θ1. There 

is no overlapping between the rotor and stator poles, so the inductance is constant at its 

minimum value. There is no developed torque at this region.  

The phases are energized in the corresponding positive-torque inductance region in 

sequence to maintain a continuous operating torque. This is shown in Fig. 2.4. The 

sequence is ACB for counter-clockwise rotation and ABC for clockwise rotation.   

2.2.2 Modeling of Switched Reluctance Motors  

The voltage equation per phase for a switched reluctance motor neglecting mutual 

coupling between phases is [77-79]  
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Fig. 2.4. Ideal inductance, current, and torque profiles of a 6/4 SRM. 
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where uj and ij are the jth phase terminal voltage and current, respectively. jψ  is the jth 

phase flux linkage, and R is the resistance per phase. jθ is the rotor position angle referred 

to phase j.  

The phase voltage can be rewritten as follows [78] 
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where 
mω is the mechanical speed which equals dθj/dt.  Eqn. (2.7) is rewritten in terms of 

the jth phase incremental inductance lj and back EMF Ej as follows [78]  

 ( ) ( ), .
j

j j j j j j j

di
u i θ Ri θ l E

dt
= + +   (2.8) 

This leads to the per-phase equivalent circuit of SRMs which is shown in Fig. 2.5.  

 

Fig. 2.5. Per-phase equivalent circuit of SRMs. 

Neglecting the copper losses, the change in the input electrical energy of the jth phase Win,j 

equals the sum of the changes in the stored magnetic energy Wf,j and the mechanical energy 

Wm,j [76, 78] 
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However, from eqn. (2.7), the change in the input electrical energy equals  
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The change in the stored magnetic energy is obtained from the following equation [78] 
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and the change in the mechanical energy is obtained from  

 , ,m j j jdW T dθ=   (2.12) 

where Tj is the developed torque due to energizing the jth phase. 

Substituting from (2.10) to (2.12) into eqn. (2.9) results in  
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By separating the dθj coefficents and the dij coefficents on both sides of eqn. (2.13), it can 

be thus deduced that  
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The term ( ) ( ),, ,j j j j f j j ji ψ i θ W i θ− is known as the magnetic coenergy Wc,j which can also 

be obtained from [77, 78] 
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Substituting eqn. (2.16) into eqn. (2.15), the electromagnetic torque due to energizing the 

jth phase is obtained from  
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The phase flux linkage versus current characteristic is shown in Fig. 2.6 where the 

difference between the magnetic energy and coenergy is illustrated.  

 

Fig. 2.6. Flux linkage versus current characteristic. 

SRMs are nonlinear machines [78]. A voltage-fed model of switched reluctance motor 

is presented here since voltage source converters are commonly used to control the motor 

voltage [78].  

The total torque is obtained by summing up the phases’ torques [77, 78]  
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The voltage-fed model of SRM is shown in Fig. 2.7. The model depends on static torque 

in addition to flux linkage, also known as magnetization characteristics. Both 

characteristics are obtained at different rotor positions and different excitation currents 

using the finite element method. In this model, static torque data are used directly while 
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magnetization data are inverted such that flux linkage and rotor position angle are inputs 

and motor current is output.  

 
Fig. 2.7.  Voltage-fed model of SRM using inverse magnetization characteristics. 

The model is built to obtain the dynamic currents and torque of three-phase SRMs for 

different speeds at different turn-on angle
on , turn-off angle off , and reference current Iref. 

SRM dynamic currents at a certain speed, on , off , and Iref are shown in Fig. 2.8. 

 

Fig. 2.8. SRM dynamic currents. 
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2.3 Fundamentals of Finite Element Analysis 

The main approaches utilized to derive finite element equations are the variational and 

Galerkin approaches [72]. Many analysis cases of electric machines do not have variational 

expressions but can be solved using the Galerkin approach. Thus, the Galerkin approach 

became more common [72] and will be utilized in this analysis. Magnetostatic field 

analysis using this approach in case of both linear and nonlinear cases is investigated. A 

detailed derivation is covered here since the formulations are implemented in the 

MATLAB tool. This also facilitates the link between the finite element equations of the 

electromagnetic quantities and the corresponding sensitivities obtained in Chapter 4.   

2.3.1 Magnetostatic Field Analysis (Linear Case) 

For a linear magnetostatic field problem, the field can be represented using the 

following equations [1]  

 0, =B   (2.19) 

 , =H J   (2.20) 

 ,= B H   (2.21) 

 ,=B A   (2.22) 

where B, H, J, A and   are the magnetic-flux-density vector, the magnetic-field-strength 

vector, the electric-current-density vector, the magnetic vector potential, and the magnetic 

permeability, respectively. 

Utilizing eqns. (2.20), (2.21), and (2.22), the field problem, eqn. (2.20), can be rewritten as 

[1] 
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In 2-D field problems with Cartesian coordinates, both J and consequently A have only a 

z component, so eqn. (2.23) becomes Poisson’s equation [1] 
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where zA
 is the exact solution.  

The partial differential equation (2.24) relates the magnetic vector potential at every point 

in the domain to the electric current density at that point.   

For an approximate solution Az, the residual R becomes [72] 
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The integral of the residual times the weighting function fw over the considered domain Ω 

equals zero [72]: 
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Substituting eqn. (2.25) into eqn. (2.26) 
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Integrating LHS of eqn. (2.28) by parts leads to [72]: 
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where Cb is the domain boundary and n is the normal unit vector. 

The integral throughout the domain can be replaced by a summation of integrals over 

individual finite triangular elements [72]: 

( )

( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )( )

1 1
 ,

e e
b

e ee e e
e e ew wz z z

w b z we e
M MC

A A A
dxdy dC J dxdy

x x y y n 
 

    
+ − =       

   
f f

f f         (2.30) 

where M is the total number of elements within the domain. e refers to the eth element. 

 
Fig. 2.9. Triangular element. 

The line integral in eqn. (2.30) is determined only over the boundary elements. Applying 

zero homogenous Neumann boundary condition, also known as natural boundary 

condition, the term 
( )e

zA

n




equals zero [1, 72]. This leads to:  

 
( ) ( )

( )

( ) ( )

( ) ( )
( )

( )

1
 

e e

e ee e
eew wz z

z we
M M

A A
dxdy J dxdy

x x y y
 

   
+ =      

  
f f

f   (2.31) 

In the Galerkin method, the weighting function is the finite element shape function. Thus, 

expressions of the eth element magnetic vector potential and shape functions are needed.  

The magnetic vector potential is assumed to vary linearly within a triangular element 

such as the one shown in Fig. 2.9. Thus the magnetic vector potential of the eth element 

( )e

zA is obtained from [72]: 
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( )

,
e

zA a bx cy= + +   (2.32) 

where a, b and c are constants.  

The eth element magnetic vector potentials at nodes 1, 2, and 3 are obtained from [1, 72]  

 

( )

( )

( )

1 1 1

2 2 2

3 3 3

,

,

.

e

z

e

z

e

z

A a bx cy

A a bx cy

A a bx cy

= + +

= + +

= + +

  (2.33) 

The constants a, b, and c can be solved using Kramer’s rule [72]: 

 

( )

( )

( )

1 1 1

2 2 2

3 3 3

1 1

2 2

3 3

.
1

1

1

e

z

e

z

e

z

A x y

A x y

A x y
a

x y

x y

x y

=   (2.34) 

Thus  

 
( )

( ) ( ) ( )
1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

1
( ) ( ) ( ) ,

2

e e e

z z ze
a A x y x y A x y x y A x y x y

S
 = − + − + −
 

  (2.35) 

where 
( )e

S  is the area of the triangular element which equals  

 ( )
1 1

2 2

3 3

1
1

1 .
2

1

e

x y

S x y

x y

=   (2.36) 

Similarly 

 

( )

( )

( )

( )
( ) ( ) ( )

1 1

2 2

3 3

1 2 3 2 3 1 3 1 2

1 1

2 2

3 3

1

1

1 1
( ) ( ) ( ) ,

1 2

1

1

e

z

e

z

e

z e e e

z z ze

A y

A y

A y
b A y y A y y A y y

x y S

x y

x y

 = = − + − + −
 

  (2.37) 
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( )

( )

( )

( )
( ) ( ) ( )

1 1

2 2

3 3

1 3 2 2 1 3 3 2 1

1 1

2 2

3 3

1

1

1 1
( ) ( ) ( ) .

1 2

1

1

e

z

e

z

e

z e e e

z z ze

x A

x A

x A
c A x x A x x A x x

x y S

x y

x y

 = = − + − + −
    (2.38) 

Notice from (2.35)-(2.38) that the unknown coefficients are functions of the nodal values.  

The constants a, b, and c are thus rewritten as [1]: 

 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

1
,

2

1
,

2

1
,

2

e e e

z z ze

e e e

z z ze

e e e

z z ze

a A p A p A p
S

b A q A q A q
S

c A r A r A r
S

 = + +
 

 = + +
 

 = + +
 

  (2.39) 

where  

 

1 2 3 3 2

2 3 1 1 3

3 1 2 2 1

,

,

,

p x y x y

p x y x y

p x y x y

= −

= −

= −

  (2.40) 

 

1 2 3

2 3 1

3 1 2

,

,

,

q y y

q y y

q y y

= −

= −

= −

  (2.41) 

 

1 3 2

2 1 3

3 2 1

,

,

.

r x x

r x x

r x x

= −

= −

= −

  (2.42) 

Substituting eqn. (2.39) into eqn. (2.32) [1, 72]: 

 
( )

( )
( )

3

1 2

e ei i i
z zie

i

p q x r y
A A

S=

+ +
=   (2.43) 
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Eqn. (2.43) is rewritten as [1, 72] 

 
( ) ( ) ( )

3

1

,
e e e

z i zi

i

A N A
=

=   (2.44) 

where
( )e

iN represents the shape function at the ith node of the eth element. Eqn. (2.44) can 

be expressed in the matrix form: 

 
( ) ( ) ( ) ( )

( )

( )

( )

1

1 2 3 2

3

  ,

e

z

e e e e e

z z

e

z

A

A N N N A

A

 
 

 =   
 
  

  (2.45) 

where  

 

( )
( )

( )
( )

( )
( )

1 1 1
1

2 2 2
2

3 3 3
3

,
2

,
2

.
2

e

e

e

e

e

e

p q x r y
N

S

p q x r y
N

S

p q x r y
N

S

+ +
=

+ +
=

+ +
=

  (2.46) 

Using (2.45), the derivatives of the magnetic vector potential of the eth element with respect 

to x and y are obtained by differentiating eqn. (2.45) as follows 

 

( )

( )  

( )

( )

( )

( )

( )  

( )

( )

( )

1

1 2 3 2

3

1

1 2 3 2

3

1
  ,

2

1
  .

2

e

z
e

ez
ze

e

z

e

z
e

ez
ze

e

z

A
A

q q q A
x S

A

A
A

r r r A
y S

A

 
 

=  
  

  

 
 

=  
  

  

  (2.47) 

For the Galerkin method, the eth element weighting function is given by [72]: 
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( )

( )

( )

( )

1

2

3

e

e e

w

e

N

N

N

 
 

=  
 
  

f   (2.48) 

The derivatives of the weighting function with respect to x and y are obtained by 

differentiating eqn. (2.48) as follows 

 

( )

( )

( )

( )

1

2

3

1

2

3

1
,

2

1
.

2

e

w

e

e

w

e

q

q
x S

q

r

r
y S

r

 
  

=
 
  

 
  

=
 
  

f

f

  (2.49) 

Substituting from (2.47) and (2.49) into the left-hand side of eqn. (2.31) 

 
( ) ( )  

( )

( )

( )

 

( )

( )

( )( )

1 11 1

2 1 2 3 2 2 1 2 3 22

3 33 3

1
     ,

4e

e e

z z

e e

z ze e
M

e e

z z

A Aq r

LHS q q q q A r r r r A dxdy
S

q rA A


               = +                        

 


  (2.50) 

and 

 
( )

( )
 

e

e
dxdy S



=   (2.51) 

Thus 

 
( ) ( )

( )

( )

( )

2 2
11 1 1 2 1 2 1 3 1 3

2 2

2 1 2 1 2 2 2 3 2 3 2

2 2

3 1 3 1 3 2 3 2 3 3 3

1
.

4

e

z

e

ze e
M

e

z

Aq r q q r r q q r r

LHS q q r r q r q q r r A
S

q q r r q q r r q r A

  + + +
  

= + + +   
  + + +    




  (2.52) 

The coefficient matrix in eqn. (2.52) is the local stiffness matrix ( ) 3 3e K whose terms 

are obtained from [1] 
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( )

( ) ( ) ( )
1

,           , 1, 2,3
4

e

ij i j i je e
K q q rr i j

μ S
= + =   (2.53) 

Substituting eqns. (2.46) and (2.48) into the right-hand side of eqn. (2.31), then

( )

( )

( )

( )( )

( )

( )

( )

( )

( )

( )

1 1 1 1 1 1

1

2 2 2 2 2 2
2

3
3 3 33 3 3

2 2

22

22

e e

ee

e e e e

z z ze
M M M

e

e

p q x r y p q x r y

SN
p q x r y p q x r y

RHS J N dxdy J dxdy J
S

N p q x r yp q x r y

S

 

+ +  + + 
          + + + +   = = =            + ++ +     
     

             

                                                                                                                                                                  (2.54) 

where x and y  represent the coordinates of the triangular element centroid which are 

obtained from [72] 

 

( )

( )

1 2 3

1 2 3

1
,

3

1
.

3

x x x x

y y y y

= + +

= + +

  (2.55) 

Substituting eqns. (2.40), (2.41), (2.42), and (2.55) into eqn. (2.54), then  

 
( )

( )

( )

( )

.
3

e

z
e

e

z

e

z

J
S

RHS J

J

 
 

=  
 
  

  (2.56) 

This right-hand side term is known as the local forcing vector 
( ) 3 1e Q  . 

After obtaining the stiffness matrix and forcing vector for all domain elements, these 

local matrices and vectors are then assembled to get the global stiffness matrix n nN N
K

and forcing vector 1nN 
Q , respectively where Nn is the total number of domain nodes. 
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After the assembly process, the boundary conditions are imposed to the global system 

of equations. There are two common types of boundary conditions in magnetostatic field 

analysis. Neumann’s boundary condition which has been assigned while deriving the 

system of equations. Dirichlet boundary condition which is applied by assigning zeros to 

the magnetic vector potential of the boundary nodes. This is obtained by assigning zeros to 

the terms of the kth row of the global stiffness matrix, assuming the kth node lies on the 

Dirichlet boundary, while the principal diagonal term is assigned to unity. Zero is also 

allocated to the kth row of the global forcing vector [1]. 

The magnetic vector potential
1nN

z


A of the whole nodes within the domain is obtained 

by solving the following system of equations [1, 72] 

 .z =KA Q   (2.57) 

2.3.2 Magnetostatic Field Analysis (Nonlinear Case) 

For a nonlinear magnetostatic problem, the field distribution throughout the domain is 

obtained by solving Poisson’s equation [80]: 

 ( ) ( ) ,z z
z

A A
v B v B J

x x y y

    
 +  = −  

      
  (2.58) 

where v is the magnetic reluctivity and B is the magnitude of the magnetic flux density. 

By discretizing the domain into small triangular elements, equation (2.58) is rewritten in 

the form of the system of equations in (2.59) [1]:  

 ( ), ,z =K v p A Q   (2.59) 

where v is the vector of element reluctivity of the nonlinear magnetic material and p 

represents the geometric parameters within the domain. In solving (2.59), a mathematical 
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model of the nonlinear magnetic properties of the material is required. The local reluctivity 

of the eth element ( )e
v is commonly expressed as a function of ( )e

B , which is the magnitude 

of the 2D local flux density ( ) ( ) ( )( ),
e e

x y

e
B B=B .  

Iterative methods such as Newton-Raphson method may be used to solve this system of 

equations. This method will be explained as follows; from eqns. (2.52), (2.53), and (2.56), 

the following system of equations is obtained for the eth element 

 
( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )

( )

( )

( )

( )

( )

11 12 13 1

21 22 23 2

31 32 33 3

,
34

e e e e e

z z
e e

e e e e e

z ze

e e e e e

z z

M M M A J
v S

M M M A J
S

M M M A J

     
     

=     
     
          

  (2.60) 

where  

 ( )
,           , 1,2,3

e

ij i j i jM q q rr i j= + =   (2.61) 

The matrix equation (2.60) is decomposed into three equations that represent the rows [72] 

 
( )

( )
( ) ( ) ( )

( )

( )

( )

( ) ( )
1

1 11 12 13 2

3

,
34

e

z
e ee

e e e e z
ze

e

z

A
S Jv

E M M M A
S

A

 
 

 = −  
 
  

  (2.62) 

 
( )

( )
( ) ( ) ( )

( )

( )

( )

( ) ( )
1

2 21 22 23 2

3

,
34

e

z
e ee

e e e e z
ze

e

z

A
S Jv

E M M M A
S

A

 
 

 = −  
 
  

  (2.63) 

 
( )

( )
( ) ( ) ( )

( )

( )

( )

( ) ( )
1

3 31 32 33 2

3

.
34

e

z
e ee

e e e e z
ze

e

z

A
S Jv

E M M M A
S

A

 
 

 = −  
 
  

  (2.64) 
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The derivatives of the first equation with respect to the eth element magnetic vector 

potentials are as follows 

 
( )

( )

( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

( )
1

11 11 1 12 2 13 3

1 1

1
,

4 4

e e
e e e e e e e

z z ze e e e

z z

E v v
M M A M A M A

A S S A

 
 = + + +
  

  (2.65) 

 
( )

( )

( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

( )
1

12 11 1 12 2 13 3

2 2

1
,

4 4
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e e e e e e e

z z ze e e e

z z

E v v
M M A M A M A

A S S A

 
 = + + +
  

  (2.66) 

 
( )

( )

( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

( )
1

13 11 1 12 2 13 3

3 3

1
.

4 4
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e e e e e e e

z z ze e e e

z z

E v v
M M A M A M A

A S S A

 
 = + + +
  

  (2.67) 

Applying the Newton-Raphson approach to the first equation, then 

 
( )

( )
( )

( )
( )

( )1 1 1
1 2 3 1

1 2 3

e e e

z z ze e e

z z z

E E E
A A A E

A A A

  
 +  +  = −

  
  (2.68) 

Substituting eqns. (2.65) – (2.67) into eqn. (2.68), then 
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( ) ( ) ( )
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( )
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( )

( )

( )
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3

1

11 12 13 2

3
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4
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e
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A
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M A M A M A A
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 
 

    
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  

 
    

+   
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  

 
 −

 = +  
 
  

  

( )

3

e
S

  (2.69) 

A similar procedure is followed for the other two equations, then combining the three 

equations result in 
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S

M M M A

=

= = =

 
 
   
   
   
   

       
    

   
   −

=    
   
      



  

( ) ( )
1

1
3

1

e e

zJ S
 
 

+
 
  

  (2.70) 

First, the magnetic vector potentials at all domain nodes are assumed to be zeros. The 

matrices of eqn. (2.70) are then calculated. The local matrices and vectors are assembled, 

and Dirichlet boundary conditions are applied. The global equation is then solved for

3 1

z

 A . Az is then obtained by adding zA to the previous value of Az. This process 

continues until a stopping criterion is met. 

2.4 Calculation of SRM responses Using Finite Element Method  

The switched reluctance motor is discretized into small triangular elements. A possible 

discretization of part of the motor domain is shown in Fig. 2.10. 

The systems (2.57) or (2.59) for linear or nonlinear materials are solved for the 

magnetic vector potential throughout the motor domain. The obtained magnetic vector 

potential Az is then post-processed to estimate different SRM electromagnetic quantities. 
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Fig. 2.10.  A discretization of a part of an SRM.  

2.4.1 Flux Density  

The magnetic vector potential varies linearly over the triangular element. The flux 

density, which is the derivative of the magnetic vector potential, is constant throughout the 

element. 

The eth element flux-density vector is obtained from  

 
( ) ( )

( ) ( )

,
e e

e e z z
z x y

A A
A

y x

 
=  = −

 
B a a   (2.71) 

where ax and ay are the unit vectors in the x and y directions, respectively. 

Substituting eqn. (2.32) into eqn. (2.71) then [1] 

 
( )

.
e

x yc b= −B a a   (2.72) 

Thus the x and y components of local flux density, ( )e

xB and ( )e

yB , are obtained from [81]: 

 ( )
( )   ( )

1 2 3

1
,

2

e e

x ze
B r r r

S
= A   (2.73) 

 ( )
( )   ( )

1 2 3

1
.

2

e e

y ze
B q q q

S

−
= A   (2.74) 
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2.4.2 Air-region Energy  

Air region energy WAR is obtained by summing the magnetic energies of all air region 

finite elements 

 
( )

1

,
e, ARe N

e

AR

e

W W
=

=

=    (2.75) 

where e is element number and Ne,AR is the total number of air region elements. The 

magnetic energy for each air region element ( )e
W is obtained from [72] 

 
( )

 ,
2

e

e

L
W dxdy= B H   (2.76) 

where B and H are the magnetic flux density and the magnetic field strength vectors, 

respectively. L is the axial length in the z-direction. 

For an air region, where the medium is linear, eqn. (2.76) becomes 

 
( )

( )
( ) ( )2

,
2

e e e

e

L
W B S=


  (2.77) 

where ( )e
B  is the eth element magnitude of the local flux density vector ( )e

B   

 
( )

( )
( ) ( ) ( )( ) ( ) ( ) ( )( )( )

2 2

1 1 2 2 3 3 1 1 2 2 3 32

1
.

4

e e e e e e e

z z z z z ze
B A q A q A q A r A r A r

S
= + + + + +   (2.78) 

Substituting (2.78) into (2.77) results in [81] 

 
( )

( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( )( )

2 2

1 1 2 2 3 3 1 1 2 2 3 3 .
8

e e e e e e e

z z z z z ze e

L
W A q + A q + A q + A r + A r + A r

S
=


  (2.79) 

According to eqn. (2.53), the magnetic energy could be cast in the form [81]: 

 
( ) ( ) ( ) ( )

.
2

e e T e e

z z

L
W = A K A   (2.80) 
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2.4.3 Electromagnetic Torque  

The electromagnetic torque is calculated by summing up torque contributions of the 

first layer of elements surrounding the moving part [81, 82] (shown as white elements in 

Fig. 2.11.  

Each element contribution to the torque is obtained by differentiating the magnetic 

energy within each element with respect to a virtual angle of rotation   at constant flux 

linkage [82] 

 
( )

( )

at constant flux lin kage.
e

e W
T


= −


  (2.81) 

Substituting eqn. (2.80) into eqn. (2.81) then [82, 83] 

 
( ) ( ) ( ) ( )

.
2

 
e e T e e

z z

L
T



  
= −  

  
A K A   (2.82) 

The magnetic vector potential is constant since the torque is calculated at constant flux 

linkage. Thus eqn. (2.82) is rewritten as [72, 82] 

 

Fig. 2.11.  The first layer of elements of the air region (white elements) around the rotor. 
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Fig. 2.12.  The rotation of moving nodes coordinates by an infinitesimal angle of . 

 
( ) ( )

( )
( )

.
2

 
e

e e T e

z z

L
T




= −



K
A A   (2.83) 

Using eqn. (2.53), the term ( )
 /

e
 K  is calculated as follows 

 

( )
( ) ( )

( )

( ) ( )2
,  , 1,2,3

4

e
e j ji i

e j i j i i j i j

ij

e e

q rq r S
S q q r r q q rr

K θ θ θ θ θ
i j

θ μ S

    
+ + + − +       = =


  (2.84) 

The derivatives of the coordinates of the eth element moving nodes with respect to the 

virtual angle  can be obtained using the homogeneous-coordinates technique [82, 84]. 

Referring to Fig. 2.12, the initial coordinates before rotation,
0ix and

0iy , of the moving 

nodes are obtained from  

 0 cos ,ix r =   (2.85) 

 0 sin ,iy r=    (2.86) 

where i is the node index of eth element i.e. i=1, 2, 3.  The coordinates of the moving nodes 

after rotation by an infinitesimal angle of   (xi and yi), around the z-axis are obtained 

from 

x

y

(xi0,yi0)


(0,0)

r

r

(xi,yi)


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 ( )cos cos cos sin sin ,ix r r r= +  =  −         (2.87) 

 ( )sin sin cos cos sin .iy r r r= +  =  +         (2.88) 

Differentiating (2.87) and (2.88) with respect to   and taking the limit as  →0, it can 

be shown that [82] 

 0 0,  .i i
i i

x y
y x

 
= − =

  
  (2.89) 

2.4.2 Flux linkage  

The flux linkage per phaseψ , with one current path of the stator winding, is obtained 

from [81, 85]      

 
( ) ( ) ( ) ( )

, ,1 2

1 2, ,

1 11 2

2 2 ,
e S e SN N

e e e ec c
z avg z avg S S

e e

N L N L
ψ p A S A S p ψ ψ

S S= =

 
 = − = −   

  
    (2.90) 

where 2p is the number of poles per phase. Nc is the number of turns per coil. 
1,e SN  and

2,e SN are the total number of elements in the coil winding areas S1 and S2 as shown in Fig. 

2.10, respectively. Area S1 is the coil winding area in which current is positive, i.e., in the 

same direction of the z-axis, and area S2 is the coil winding area in which current is 

negative. 
( )
,

e

z avgA is the average value of the magnetic vector potential over the eth element 

[85]. 
1Sψ and

2Sψ are the total flux linkage contributions of all elements in areas S1 and S2, 

respectively. 
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Chapter 3 

Adjoint Sensitivity Analysis  

3.1 Introduction 

The sensitivities of any objective function/response f with respect to all parameters p, 

including physical and shape parameters, can be classically estimated using finite 

difference approximations [86-89]. The accurate Central Finite Difference (CFD) 

approximation requires two extra simulations per parameter [49, 87, 90, 91]. It effectively 

averages the forward and backward sensitivities as shown in Fig. 3.1. The forward and 

backward sensitivities are obtained from (3.1) and (3.2), respectively [49]: 

 
( ) ( )

 1,  2,......, ,,i i i

i i

f p p f pf

p p
i n

+  −


 
=   (3.1) 

 
( ) ( )

 1,  2,.... , ..,,i i i

i i

f p f p pf

p p
i n

− −


 
=   (3.2) 

 
Fig. 3.1. Forward, backward, and central finite differences. 

where
ip is the ith parameter and

ip is the ith parameter perturbation. The CFD sensitivity 

estimates are calculated by summing (3.1) and (3.2) and dividing by 2 [49, 91]: 
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  1,  2
( )

,......,
( )

,  
2

i i i i

i i

i
f p p f p pf

p p
n

+  −
 =

−

 
  (3.3) 

This approximation is more accurate than forward and backward differences but is more 

computationally expensive. 

Another approach of estimating sensitivities is the Adjoint Variable Method (AVM). 

AVM requires only one extra simulation to evaluate the sensitivities of an objective 

function/response f with respect to all parameters regardless of their number [49, 87, 90].   

3.2 Sensitivity Analysis  

In this Section, we show how the AVM method can be applied to SRMs.  We derive 

the governing equations and the quantities required to calculate the sensitivities of the 

desired response with respect to all parameters. 

3.2.1 Adjoint Variable Method (Linear Case) 

For the following linear system of equations [49]:  

 ( ) ,=Z p I V   (3.4) 

the elements of the system matrix Z are functions of the parameters p. The column vector 

I represents the state variables (electric field, magnetic field, or magnetic vector 

potential) and V is the excitation vector [49, 92]. 

Differentiating (3.4) with respect to the ith parameter
ip gives [49] 

 ,
i i ip p p

  
+ =

  

I Z V
Z I   (3.5) 

which gives the derivatives of the state variables: 
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1 .

i i ip p p

−    
= − 

   

I V Z
Z I   (3.6) 

The gradient of any objective function or response ( ),f p I  with respect to the ith 

parameter pi is obtained from [49] 

 ,  

T

i i iexplicit

f f f

p
.

p p
i

     
= +    

     

I

I
  (3.7) 

The first term on the right-hand side represents the explicit dependence of the objective 

function on the ith parameter pi . The second term is the implicit dependence of f on pi 

through the state variables I. 

Substituting from (3.6) into (3.7), the sensitivity of f with respect to the ith parameter 

can be written as [49, 92]: 

 ˆ ,  ,T

i i i iexplicit

f f
i

p p p p

      
= + −    

      

V Z
I I   (3.8) 

where Î is the vector of adjoint state variables. This vector is obtained by solving the 

adjoint system [49, 92]: 

 ˆ .T f 
=  

 
Z I

I
  (3.9) 

The terms / ip V  and / ip Z  are the derivatives of the excitation vector and the system 

matrix with respect to pi, respectively. These derivatives can be obtained analytically or 

numerically. Here, they are obtained numerically by applying finite differences to the 

matrices and excitation of the original system [49].   
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3.2.2 Adjoint Variable Method (Nonlinear Case) 

Considering a system of nonlinear equations: 

 ( ), ,=Z p I I V   (3.10) 

where the elements of the system matrix Z are functions of parameters p and state 

variables I.  

The residual vector R of this system is given by [93, 94] 

 ( ), .= − = 0R Z p I I V   (3.11) 

Differentiating R with respect to design parameter pi [94] 

 ,

i i

T

p pi i ip p p==

   
= +

   
I I

R R R I

I
  (3.12) 

where I and pi are the nominal state variables and nominal value of the ith design 

parameter respectively. Applying (3.12) to (3.11), we have  

 
( )

.

i i

T

i i i
p = p

p p p
= =

    − + + =
    
 

0

I I I I

ZIZ V I
I Z

I
  (3.13) 

Solving for derivatives of the state variables, one obtains: 

 
( )

1

.

i i

T

i i i
p = p

p p p

−

= =

      = + − 
        I I I I

ZII V Z
Z I

I
  (3.14) 

Using AVM, the gradient of any objective function ( ),f p I  with respect to 

parameters p is obtained using [49, 93, 94] 
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 ,  

T

i i iexplicit

f f f
i.

p p p

     
= +    

     

I

I
  (3.15) 

The first term on the right-hand side represents the explicit dependence of the objective 

function on the ith parameter pi. The second term is the implicit dependence of f on pi 

through the state variables.  Substituting from (3.14) into (3.15) then 

 ˆ  , ,  T

i i i iexplicit

f f

p p p
i

p
= =

     
= + −   

       I I I I

V Z
I I   (3.16) 

where the vector of adjoint state variables Î  is defined such that [93-95] 

 
( ) ˆ .

i i

T

T

p = p

f
    + =  
   
 

ZI
Z I

I I
  (3.17) 

The terms / ip V and / ip Z  are the derivatives of the excitation vector and system 

matrix with respect to the ith parameter 
ip  respectively. / ip V  can be obtained 

analytically or numerically by applying finite differences to the excitation of the original 

system [49, 96]. / ip Z  should be obtained analytically since calculating it numerically 

using finite differences require extra simulation due to the existing nonlinearity where Z 

is a function of the state variables I.   
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Chapter 4 

Adjoint Sensitivity Analysis of Switched Reluctance Motors 

The adjoint variable method has been introduced in case of linear and nonlinear 

systems of equations in the previous chapter. Here, the AVM method is applied to 

switched reluctance motors while utilizing either linear or nonlinear magnetic materials. 

4.1 Application of Adjoint Variable Method to SRMs (Linear Case) 

Applying AVM on the linear system of equations obtained from the finite element 

method, eqn. (2.57), the sensitivity of any SRM electromagnetic response f with respect 

to all design parameters can be obtained from 

 ˆ ,T

z z

i i i iexplicit

f f

p p p p

      
= + −   

      

Q K
A A   (4.1) 

where / ip Q and / ip K are approximated numerically using:  

 
( ) ( )

,
i i i

i i

p p p

p p

+  −


 

Q QQ
  (4.2) 

 
( ) ( )

.
i i i

i i

p p p

p p

+  −


 

K KK
  (4.3) 

It should be noted that if the perturbed design parameter does not have any influence on 

the excitation region, the term / ip Q  vanishes. Az is obtained by solving (2.57), and the 

adjoint magnetic vector potential ˆ
zA  is estimated, according to (3.9), by solving the 

adjoint system  

 ˆ .T

z

z

f
=


K A
A

  (4.4) 
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4.2 Application of Adjoint Variable Method to SRMs (Nonlinear Case) 

The finite element analysis system of equations (2.59) has the same form as (3.10).  

The components of the stiffness matrix in (2.59) are dependent on different material 

properties, geometric dimensions, and the magnetic vector potential response. According 

to (3.16), the sensitivities of any response f of a nonlinear SRM with respect to the design 

parameters are obtained from [97, 98] 

 ˆ ,  ,

z z z z

T

z z

i i i iexplicit

f f
i

p p p p
= =

     
 = + −  

       A A A A

Q K
A A   (4.5) 

where zA is the nominal magnetic vector potential vector. The derivative / ip Q is 

obtained numerically using finite differences:                                

 
( ) ( )

, .
i i i

i i

p p p
i

p p

+  −
 

 

Q QQ
 (4.6) 

Evaluating (4.6) does not require any extra simulations since the excitation vector Q does 

not depend on Az. If the perturbed design parameter does not affect the excitation region, 

the corresponding / ip Q  term vanishes [96].   

The derivative / ip K can be obtained by assembling the derivatives
( )

/
e

ip K . 

These matrix derivatives are derived from [99]: 

 
( )

( ) ( )

( )

( ) ( ) ( ) ( )

( )

( )
( ) ( )

( )

( )

( )

,
,

,
e e e e

e e e ez z z z
z z

e e e e e

e e

i i ip p
v v

v B

p p pv B
= = =

= =

    
= +

   
i iA A A A

A A

K K K
  (4.7) 

where 
( )e

v is the eth element nominal reluctivity.  
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According to (3.17), the adjoint magnetic vector potential is obtained using [97-99]: 

 
( ) ˆ ,

T

z

zT

z z

f  
+ = 

   

KA
K A

A A
  (4.8) 

where ( ) / T

z z KA A  is obtained by assembling  
( ) ( )( ) ( )

/
e e e T

z z K A A  for all elements.  The 

matrix 
( ) ( )( ) ( )

/
e e e T

z z K A A  is obtained using [97] 

 

( ) ( )( )
( )

( ) ( )( )
( )

( )

( )

( )

( )
,

e e e e
e e

z z

e T e e e T

z z

v B
e.

v B

   
= 

   

K A K A

A A
  (4.9) 

Eqns. (4.5) to (4.9) are used to obtain the adjoint sensitivity of any objective function 

with respect to all design parameters in case of a nonlinear system of equations. 

4.3 Adjoint Sensitivities of SRM Responses 

Adjoint sensitivities of various electromagnetic responses of SRMs will be 

investigated in the following subsections. The responses include magnetic vector 

potential, flux density, air-region energy, electromagnetic torque, and flux density.  

4.3.1 Magnetic Vector Potential 

The sensitivities of the magnetic vector potential at the mth node 
z,mf = A  with respect 

to
ip can be obtained from eqn. (4.1) or eqn. (4.5) for the linear and nonlinear cases, 

respectively. The corresponding adjoint magnetic vector potentials are obtained using 

eqn. (4.4) or (4.8), respectively. The adjoint excitation vector /z,m zA A  has zeros at all 

nodes except the considered node at which the adjoint excitation is unity as shown in Fig. 

4.1.               
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,

[ 1 ]
z m T T T

z

A
=

A
0 0   (4.10) 

 

Fig. 4.1.  The adjoint excitation for calculating the sensitivity of the magnetic vector potential at a specific 

node. 

4.3.2 Flux Density 

The sensitivities of the x and y components of magnetic flux density for each element 

with respect to different design parameters are obtained in a similar way.  The explicit 

derivatives of 
( )e

xB and 
( )e

yB  are obtained by differentiating (2.73) and (2.74) with respect 

to design parameter pi.  The explicit parts of the sensitivities are given by: 

 
( ) ( )  

( )
1 2 3

1

1
,

2

e e
ex

z

i iexplicit

r r r
B S

p p

 
     =    

A   (4.11) 

 

( ) ( )  
( )

1 2 3

1

1

2
.

e
e

y e

i i
expl

z

icit

q q q
B S

p p

 
   −  = 

  
 

A   (4.12) 

The excitation vectors for both cases 
( )

/
e

x zB A and 
( )

/
e

y zB A have zeros at all nodes 

except the three nodes of the eth element. The adjoint excitations at these nodes are 

obtained by differentiating (2.73) and (2.74) with respect to 
( )e

zA respectively.  

1
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( )

( ) ( )  
1

,
2

e
Tx

1 2 3e e

z

B
r r r

S


=

A
  (4.13) 

 

( )

( ) ( )  
1

.
2

e
Ty

1 2 3e e

z

B
q q q

S

 −
=

A
  (4.14) 

4.3.3 Air-region Energy 

Following a similar approach, the sensitivities of the air region magnetic energy 

ARf W=  with respect to different design parameters are obtained. The explicit derivative 

of the air region energy with respect to the ith design parameter is obtained by summing 

up the explicit derivatives of all air region elements’ energies as follows: 
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From eqn. (2.80), the explicit derivative ( )( )/
e

i
explicit

W p   is derived from 
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To evaluate the implicit derivative part, the vector /AR zW A is obtained by assembling 

( ) ( )
/

e e

zW A for the nodes shared by the air region elements. The elemental energy 

derivatives 
( ) ( )

/
e e

zW A  are obtained by differentiating (2.80) with respect to
( )e

zA  to get:  
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4.3.4 Electromagnetic Torque 

The sensitivities of the electromagnetic torque f T=  with respect to all design 
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parameters are obtained using eqn. (4.1) or eqn. (4.5). The explicit derivative of torque 

versus a design parameter is obtained by summing explicit derivatives of torque 

contributions of the first layer of elements around the moving part, ( )( )/
e

i
explicit

T p  . This 

is estimated by differentiating (2.83) with respect to 
ip  which results in:  
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The term 
( )
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K
is obtained using finite differences at the nominal magnetic vector 

potential 
zA  , so there is no need to repeat the simulation. 
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where 
( )

( )

 

e
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The derivative 
( )

/
e

 K  is obtained when the derivatives /ix   and /iy   are 

calculated for the ith node of the eth element as presented earlier in Chapter 2. 

The vector / zT A is obtained by assembling ( ) ( )
/

e e

zT A at the nodes shared by the first 

layer of elements around the moving part (shown as white elements in Fig. 2.11). 

( ) ( )
/

e e

zT A is obtained by differentiating (2.83) with respect to
( )e

zA .  
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While we focused in this work on the sensitivities of the torque, the sensitivities of 

other torque-related quantities can be estimated as a byproduct.  For example, the torque 

ripple Tripple may be obtained using [100]  

 ( )
2

1

1
,

M

ripple k avg

k

T T T
M =

= −   (4.21) 

where Tk is the torque value at the rotor angle 
k for k=1,…….., M. M is the total number 

of simulated rotor positions and Tavg is the average torque.  The sensitivities of the torque 

ripple with respect to different design parameters can thus be obtained utilizing the 

electromagnetic torque values and sensitivities at the corresponding rotor positions with 

the corresponding dynamic currents. 

4.3.5 Flux Linkage 

A similar approach applies to the flux linkage. The explicit derivative of flux 

linkage with respect to design parameter pi is obtained using finite differences at the 

nominal magnetic vector potential as follows 
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The flux-linkage excitation vector is obtained from 

 1 22 ,
S S

z z z

p
  

= − 
   

 

A A A
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where 
1

/S zψ A and
2

/S zψ A are obtained by assembling 
( ) ( )

/
e e

zψ A  at the nodes 

shared by elements of the winding areas S1 and S2, shown in Fig. (2.10), respectively.  

The flux linkage contribution of the eth element ( )e
ψ is obtained from 
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where
1 2S S S= = . The derivative 

( ) ( )
/

e e

zψ A is obtained by differentiating (4.24) with 

respect to 
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zA  to yield: 
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4.4 Practical Implementation  

A built-in MATLAB toolbox is used to calculate different responses of the SRM and 

their sensitivities with respect to the various geometric and physical design parameters. 

The stiffness matrix and the forcing vector required for adjoint sensitivity calculations 

have been calculated in our toolbox. The mesh exported from JMAG software [101] is 

utilized to build these matrices. The toolbox extracts the mesh data from JMAG. The 

mesh data includes the indices of the whole elements within the motor domain and the 

corresponding nodes in addition to the x and y coordinates of all domain nodes. 

Moreover, the data defines the elements of the motor different subdomains. This 

facilitates setting the materials inside the elements.  

The mesh data and the material properties of the different parts of the motor are then 

used to recreate the stiffness matrix and the forcing vector for all elements within the 

domain. These local matrices and vectors are then assembled to obtain the global stiffness 
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matrix and forcing vector, respectively. The toolbox applies Dirichlet boundary 

conditions to the matrices. These matrices may have large dimensions for practical 

structures. This is addressed by using a compressed sparse column format. The toolbox 

then calculates the magnetic vector potential values at all domain nodes.  Post processing 

is then applied to calculate different electromagnetic quantities of SRMs. 

This procedure is applied at each rotor rotation step for a complete electrical cycle. 

The rotor is rotated keeping the same mesh as follows.   

The airgap is divided by a center arc, named sliding arc, into two sections as shown in 

Fig. 4.2. One section is adjacent to the stator whereas the other one is adjacent to the 

rotor. The nodes on the sliding arc are called sliding nodes, and the angle between two 

consecutive nodes is the sliding angle. The sliding elements are the elements on the rotor 

side which have sliding nodes.  

 

Fig. 4.2. Rotor rotation. 

The rotor is rotated by rotating the azimuthal positions of all the nodes on the rotor 

side keeping their radial positions the same. The sliding nodes are kept fixed. For each 

sliding element, its sliding nodes’ indices will be shifted by Ishift which equals  

Ni+1

Ni

em

em+1

Ni+2

Stator side

Rotor side
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Rotation angle

Sliding angle
shiftI =   (4.26) 

The rotation angle equals either the sliding angle or its multiples.  

As an example, if the rotor is to be rotated by one sliding angle, then beside rotating 

all the nodes on the rotor side, the sliding node of the sliding element em, shown in Fig. 

4.2, will be changed from Ni to Ni+1 whereas the sliding nodes of the element em+1 will be 

changed from Ni and Ni+1 to Ni+1 and Ni+2 and so on. 

The toolbox calculates the sensitivities of the x and y components of the flux density 

at any location within the domain with respect to all parameters.  It also calculates the 

sensitivities of the air-region energy, phase flux linkage, and electromagnetic torque of 

the SRM. This is achieved using the previously presented procedures in Subsections 4.1, 

4.2, and 4.3 for linear and nonlinear cases. It should be noted that it is not necessary to 

rebuild the forcing vector after perturbing the design parameters to estimate the 

derivative. Alternatively, this vector derivative is zero at all nodes except the perturbed 

nodes. The same applies in calculating the stiffness matrix derivative which can be 

obtained by assembling only the perturbed elements. The sensitivities of any objective 

function may be estimated using this procedure. 

4.5 Results 

To illustrate the application of adjoint sensitivity analysis to SRMs, we estimate 

adjoint sensitivities of different electromagnetic quantities of an SRM and compare our 

AVM sensitivities to those calculated using the accurate but time-intensive CFD.  

First, the motor static characteristics in case of linear and nonlinear materials are investigated. 
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Then, the dynamic characteristics are studied in the case of utilizing nonlinear magnetic 

materials. The parameters of the considered SRM are presented in Table 4.1.  

Table 4.1 

Parameters of the considered SRM. 

Parameter Symbol Value 

Stack length [mm] L 74.00  

Stator outer diameter [mm] Do,s 139.21  

Stator teeth height [mm] hs 10 

Stator teeth arc angle [°] βs 9.5 

Stator teeth taper angle [°] θs 4 

Rotor teeth height [mm] hr 7.08 

Rotor teeth arc angle [°] βr 9.3 

Rotor teeth taper angle [°] θr 4 

Stator yoke thickness [mm] ys 10 

Rotor yoke thickness [mm] yr 35.78 

Rotor inner diameter [mm] Di,r 12.70 

Airgap length [mm] Lg 0.40 

Number of turns per phase [turn] N 230  

 

Fig. 4.3 JMAG 2D model of the considered motor. 
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Fig. 4.4 Geometric design parameters of the considered motor. 

The considered SRM has a 6/14 configuration. The JMAG model of the motor is shown in 

Fig. 4.3. Fig. 4.4 shows one-quarter section of the considered motor including the 

geometric design parameters.  

The design parameters are the stator teeth height hs, the rotor teeth height hr, the stator 

yoke thickness ys, the rotor yoke thickness yr, the stator pole arc angle βs, the rotor pole 

arc angle βr, the stator taper angle θs, and the rotor taper angle θr. Table 4.2 presents the 

utilized materials in different motor parts. 

Table 4.2 

Materials utilized in the JMAG model 

Part Material 

Stator NO30-1600 (Nonlinear) 

Rotor NO30-1600 (Nonlinear) 

Winding Copper 

Shaft S45C 

4.5.1 Static Characteristics of SRMs 

The motor electromagnetic characteristics are calculated when only phase A is 

energized. Linear and nonlinear materials of stator and rotor will be taken into 

βr

βs

ys

yr

hr

hs

θr θs
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consideration. 

4.5.1.1 Linear Case 

We consider estimating the sensitivities of the air region magnetic energy and 

electromagnetic torque versus the parameters p = [Do,s   Lg  Di,r  N]T.  These sensitivities 

are estimated at different rotor positions as shown in Fig. 4.5, and at different phase 

excitation currents.   

                

                                   (a) Rotor position 1.                                     (b) Rotor position 2 

                

                      (c) Rotor position 3.                                     (d) Rotor position 4. 

Fig. 4.5. The different rotor positions at which sensitivity analysis is investigated. 
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Since linear magnetic materials are used, there is only one original simulation at each rotor 

position, and the solution is scaled for different currents at this position. At each rotor 

position, there are four design parameters. The CFD requires eight extra simulations. The 

AVM, however, does not depend on the number of design parameters. It requires only two 

extra simulations since there are two objective functions. For the four rotor positions, the 

CFD requires 36 simulations while AVM uses only 12 simulations. The results are shown in 

Figs. 4.6 to 4.9.  All results show an excellent match between AVM sensitivities and those 

obtained using CFD. The absolute relative errors between various AVM and CFD 

sensitivities are presented in Table 4.3. The Table shows that the maximum relative error is 

below 0.8%. 

 

Fig. 4.6.   The sensitivities of air region magnetic energy WAR with respect to stator outer diameter Do,s and 

rotor inner diameter Di,r at a 3A excitation current for different rotor positions. 
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Fig. 4.7.  The sensitivities of air region magnetic energy WAR with respect to airgap length Lg and 

number of phase turns N at a 5A excitation current for different rotor positions.   

 

Fig. 4.8.  The sensitivities of the electromagnetic torque T with respect to stator outer diameter Do,s and 

rotor inner diameter Di,r at an 8A excitation current for different rotor positions. 
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Fig. 4.9.  The sensitivities of the electromagnetic torque T with respect to airgap length Lg and number of 

phase turns N at a 10A excitation current for different rotor positions. 

Table 4.3 

The absolute relative error between AVM and CFD sensitivities (gradients). 

        Gradient 

 

Position 

∂WAR

∂Do,s
 

at 3A 

∂WAR

∂Di,r
 

at 3A 

∂T

∂Lg
 

at 10A 

∂T

∂N
 

at 10A 

1 0.03 % 0.09 % 0.04 % 0.00 % 

2 0.74 % 0.78 % 0.01 % 0.00 % 

3 0.18 % 0.16 % 0.04 % 0.00 % 

4 0.24 % 0.10 % 0.06 % 0.00 % 

4.5.1.2 Nonlinear Case 

Adjoint sensitivity analysis of electromagnetic quantities of the considered SRM, 

with nonlinear magnetic material, is investigated using AVM and CFD. Sensitivities of 

the x and y components of the flux density at a stator tooth tip, phase flux linkage, and 

electromagnetic torque of the SRM with respect to different design parameters are 

calculated throughout a complete electrical cycle at a current of 10A. The design 
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parameters are the stator teeth height hs, the rotor teeth height hr, the stator yoke thickness 

ys, the rotor yoke thickness yr, the stator pole arc angle βs, the rotor pole arc angle βr, the 

stator taper angle θs, and the rotor taper angle θr. The results are shown in Figs. 4.10 to 

4.17. All results show an excellent match between AVM sensitivities and those obtained 

using CFD.   

 

Fig. 4.10.   The sensitivity of Bx at a stator tooth tip with respect to hs, hr, ys, and yr for a complete electrical 

cycle. The marker shows the AVM derivative while the line shows the corresponding CFD sensitivity. 
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Fig. 4.11.   The sensitivity of Bx at a stator tooth tip with respect to βs, βr, θs, and θr for a complete electrical 

cycle. The marker shows the AVM derivative while the line shows the corresponding CFD sensitivity. 

 

Fig. 4.12.   The sensitivity of By at a stator tooth tip with respect to hs, hr, ys, and yr for a complete electrical 

cycle. The marker shows the AVM derivative while the line shows the corresponding CFD sensitivity. 
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Fig. 4.13.   The sensitivity of By at a stator tooth tip with respect to βs, βr, θs, and θr for a complete electrical 

cycle. The marker shows the AVM derivative while the line shows the corresponding CFD sensitivity. 

 

Fig. 4.14.   The sensitivity of ψ with respect to hs, hr, ys, and yr for a complete electrical cycle.  The marker 

shows the AVM derivative while the line shows the corresponding CFD sensitivity. 
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Fig. 4.15.   The sensitivity of ψ with respect to βs, βr, θs, and θr for a complete electrical cycle. The marker 

shows the AVM derivative while the line shows the corresponding CFD sensitivity. 

 

Fig. 4.16.   The sensitivity of the electromagnetic torque T with respect to hs, hr, ys, and yr for a complete 

electrical cycle. The marker shows the AVM derivative while the line shows the corresponding CFD 

sensitivity. 
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Fig. 4.17.   The sensitivity of the electromagnetic torque T with respect βs, βr, θs, and θr for a complete 

electrical cycle. The marker shows the AVM derivative while the line shows the corresponding CFD 

sensitivity. 

4.5.2 Dynamic Characteristics of SRMs 

Sensitivities of the x and y components of flux density, phase flux linkage, and 

electromagnetic torque of the SRM with respect to different design parameters are 

calculated at four different rotor positions, 1.74, 8.7, 11 and 16.81 mech. deg., with the 

corresponding excitation dynamic currents. The dynamic currents are obtained using the 

nonlinear dynamic model presented in Section 2.2.2.  

The design parameters are airgap length, stator pole shaping, rotor pole shaping, stator 

yoke thickness, and the number of turns per phase. Stator and rotor pole shaping are 

obtained by perturbing five nodes at the interface between each of them and the airgap. 

These nodes are shown in Figs. 4.18 (a) and (b), respectively. 
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 (a)  The perturbed nodes of the stator pole.                            (b) The perturbed nodes of the rotor pole. 

Fig. 4.18. The perturbed nodes of the stator and rotor poles. 

At each rotor position, there are five design parameters, so CFD needs ten extra 

iterative simulations. On the other hand, AVM does not depend on the number of design 

parameters, and it requires only one extra direct (not-iterative [99]) simulation for each 

objective function. For the four rotor positions, CFD needs 44 iterative simulations while 

AVM uses only four iterative and four direct simulations. The results are shown in Figs. 

4.19 to 4.25.  All results show an excellent match between AVM and CFD sensitivities. 

 
Fig. 4.19.   The sensitivity of the x component of the flux density Bx at different elements with respect to 

the airgap length Lg, the stator pole shaping nodes SNodes, and the rotor pole shaping nodes RNodes at rotor 

position 1. 

Stator

Rotor
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Fig. 4.20.   The sensitivity of the x component of the flux density Bx at different elements with respect to 

the stator yoke thickness ys and the number of turns per phase N at rotor position 2. 

 

Fig. 4.21.   The sensitivity of the y component of the flux density By at different elements with respect to 

the airgap length Lg, the stator pole shaping nodes SNodes, and the rotor pole shaping nodes RNodes at rotor 

position 3. 
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Fig. 4.22.   The sensitivity of the y component of the flux density By at different elements with respect to 

the stator yoke thickness ys and the number of turns per phase N at rotor position 4. 

 

Fig. 4.23.   The sensitivity of the phase flux linkage   with respect to the airgap length Lg, the stator pole 

shaping nodes SNodes, the rotor pole shaping nodes RNodes, and the number of phase turns N at rotor positions 

1 and 4. 
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Fig. 4.24.   The sensitivity of phase flux linkage   with respect to the airgap length Lg, the stator pole 

shaping nodes SNodes, the stator yoke thickness ys, and the phase turns N at rotor positions 2 and 3. 

 

Fig. 4.25. The sensitivity of electromagnetic torque with respect to the airgap length Lg, the stator pole 

shaping nodes SNodes, the rotor pole shaping nodes RNodes, and the number of phase turns N at the four rotor 

positions. 
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Chapter 5 

Adjoint-based Geometric Optimization of Nonlinear SRMs 

5.1 Introduction 

As presented in Chapter 4, we utilize the AVM method to calculate the sensitivities of 

different static or dynamic electromagnetic quantities of SRMs with respect to different 

geometric design parameters such as teeth height, yoke thickness, pole arc angle, and taper 

angle of both stator and rotor. These sensitivities may be utilized in deterministic 

optimization of the motor geometry to achieve different objective functions. In this chapter, 

two optimization cases are considered. An interior-point optimization method is used to 

optimize the geometry of a nonlinear SRM using the obtained torque sensitivities to 

maximize the motor static torque profile. Moreover, the dynamic torque sensitivities are 

utilized to maximize the motor dynamic torque. The initial designs are different in both 

cases. A structural mapping technique is used to parametrize the motor geometry through 

the optimization process. 

5.2 Structural Mapping 

Structural mapping is used to parameterize the considered SRM geometry. An initial 

geometry is modified using the structural laws of elasticity [102-104]. The motor shape is 

modified by deforming, expanding and compressing, the motor mesh elements [102, 103]. 

This method guarantees to generate smooth shape boundaries depending on the applied 

forces or the nodal displacements and the material structural characteristics of stiffness and 

Poisson’s ratio [102, 103].  
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A 2D plane stress analysis of the motor domain is performed using constant strain finite 

element due to its compatibility with the first order triangular element used for the 

electromagnetic field analysis [103]. Thus, the same motor mesh can be used for both 

structural and electromagnetic studies.  The structural analysis is performed to control the 

geometric design parameters of the motor. In structural analysis, finite element equation is 

as follows [102-104] 

 ,=Md F   (5.1) 

where M is the global structural stiffness matrix determined by the domain geometry in 

addition to the material properties such as modulus of elasticity E and Poisson’s ratio g 

[102-104]. d is the vector of nodal displacements in the x and y directions, and F is the 

global structural forcing vector which represents the nodal forces in the two directions 

[102-104]. 

The structural model may be perturbed either by applying forces F as loads or by specifying 

nodal displacement components in the vector d [103]. 

The global stiffness matrix is obtained by assembling the local stiffness matrices of all 

domain elements. The element stiffness matrix
( )e dof×dofRM , where dof is the number of 

degrees of freedom per element, is obtained using the following equation [105] 

 ( ) ( ) ( ) ( ) ( ) ,
e e e T e e

S=M C D C   (5.2) 

where 
( )e

C  is the eth element gradient matrix which is obtained from [105] 
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( )e
D is the constitutive matrix which is obtained, for plane-stress analysis, as follows [105] 

 
( )

( )2

1 0

1 0
1

0 0 (1 ) / 2

e
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g
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 

=
 −
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D   (5.4) 

After the assembly process, without applying any forces and with specific nodal 

displacements, eqn. (5.1) is used to calculate the movements of all remaining nodes within 

the domain [1-3]. Eqn. (5.1) is rewritten as follows in a partitioned form [102-104]  

 ,
uu us u

su ss s

   
=   

   
0

M M d

M M d
  (5.5) 

where subscripts u and s refer to unknown and specified, respectively. du and ds represent 

the unknown and specified nodal displacements, respectively. 

The unknown displacements du are obtained by solving the first row of eqn. (5.5) as follows 

[102, 103] 

 uu u us s .= −M d M d   (5.6) 

Each design parameter is controlled by predefined interface boundary nodes. The stator 

outer diameter is kept constant during the optimization process, so the x and y 

displacements of its control nodes, shown in red in Fig. 5.1, are assigned to zero. The same 

applies to any fixed non-optimizable parameter.  

The stator yoke thickness, as an example of the optimizable parameters, is controlled by 

the green control nodes shown in Fig. 5.1. These control nodes move towards either the 

positive or the negative radial direction to decrease or increase the yoke thickness, 

respectively.  
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Fig. 5.1. A part of the considered SRM mesh. 

Based on the values of the initial and modified yoke thicknesses, the value of the radial 

movement is obtained. Keeping the control nodes’ azimuthal angles constant, the x and y 

displacements of these nodes are calculated. A similar procedure is followed to calculate 

the displacements of the control nodes of the rotor yoke thickness, stator teeth height, and 

rotor teeth height.  

Any changes applied to the airgap mesh may introduce numerical errors and affect the 

solution accuracy, so the airgap mesh, shown in Fig. 4.2, moves as one part with relative 

fixation of all the included nodes. 

Structural mapping approach is also applied to control the arc and taper angles of stator 

and rotor teeth. To reduce the deformation of elements while changing these angles, the 

material property of the mesh elements is changed as well. For instance, if the stator pole 

arc angle is required to be wider, the material property of some of the nearby elements in 

the surrounding winding areas, shown in Fig. 5.1, is changed from copper to stator 

electrical steel material. These elements are chosen according to the required stator pole 

arc angle and taper angle. The interface boundary between the modified pole and the 
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winding area is then smoothed using structural mapping. Keeping the radial positions of 

these boundary nodes constant, the nodes’ azimuthal angles are changed to achieve the 

modified arc and taper angles. Based on the radial positions and the azimuthal angles’ 

changes of the boundary nodes, the x and y displacements are calculated. 

The specified displacements of the control nodes of the geometric design parameters are 

assigned to the vector ds of Eqn. 5.6, and then utilized to obtain the unknown displacements 

du of the remaining nodes within the motor domain which move such that the mesh 

deformation is reduced.  

Fig. 5.2 to Fig. 5.4 show examples of using structural mapping in the geometric 

parameterization of different parameters of the considered SRM. Fig. 5.2 shows the change 

in the stator yoke thickness of the considered SRM whereas Fig. 5.3 shows controlling the 

stator and rotor teeth height, and Fig. 5.4 shows changing pole arc angles and taper angles 

of stator and rotor teeth.  

     
Fig. 5.2. Changing stator yoke thickness. 
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Fig. 5.3. Changing stator and rotor teeth height. 

     
Fig. 5.4.  Varying pole arc angles and taper angles of stator and rotor teeth. 

5.3 Geometric Optimization (Static Characteristics) 

An interior-point method [106] is used to optimize the geometry of the considered SRM 

to maximize its static torque profile at a certain current without violating the design 

constraints. This method utilizes the obtained sensitivities of the electromagnetic torque 

with respect to the design parameters. The motor geometric parameters are controlled 

through the optimization process by using structural mapping and by changing the material 

properties of mesh elements. The non-optimizable parameters of the considered motor are 

presented in Table 5.1. 
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Table 5.1 

SRM non-optimizable parameters 

Parameter Value 

Stack length 74.00  mm 

Shaft diameter 12.70 mm 

Stator outer diameter 139.21 mm 

Airgap length 0.40 mm 

Number of turns per phase 230 turn 

 

The optimizable design parameters are p = [hr  ys   yr  βs  βr  θs  θr]
T. Since the motor’s outer 

diameter and airgap length are kept constant, the stator’s teeth height is obtained directly. 

The optimizer starts from initial design and proceeds to reach an optimized design without 

violating the given constraints. The target is to minimize the average value of the negative 

half cycle of the static torque profile Tavg. 

The optimization problem is given by: 

 

7 mm 9 mm,

10 mm 13 mm,

31 mm 37 mm,

56.855 mm,

0.48,

17.1

mi

43   ,

5 12.6 ,

5 12 ,

0 7 ,

0 7

n  

25.714

,

r

s

r

r s r

c

s

avg

r

s

r

r

s

f T

subject to

h

y

y

h y y

ff

 









 

 

 

+ + 



  +  

   

   

   

  

=



p

  (5.7) 

where ffc is the bare copper fill factor inside the slot.  
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Through the optimization process, there are seven design parameters at each rotor angle.  

The CFD requires 14 extra iterative simulations. On the other hand, AVM does not depend 

on the number of design parameters. It needs only one extra direct (not-iterative) simulation. 

The optimization process starts from an initial design p = [7.5mm  11.0mm  32.0mm  8.92°  

8.14º  1.0°  2.0°]T and settles at another design with a higher absolute average value. The 

process is then reset by using this design as the initial one. The optimization process then 

terminates at the optimized design p = [7.0mm 10mm 34.92mm 11.24º 11.06° 2.92°  

4.26°]T. The initial and final JMAG models of the designs are shown in Figs. 5.5 and 5.6, 

respectively. The objective function values versus iteration number are shown in Fig. 5.7. 

The static torque profiles before and after optimization, including the validation with 

JMAG results, are shown in Fig. 5.8. A 33.52 % increase in the average value of the torque 

profile half cycle is achieved. 

 

Fig. 5.5. The initial design of the optimization problem. 
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Fig. 5.6. The final design of the optimization problem. 

 
Fig. 5.7. The objective function value versus iteration number characteristic. 
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Fig. 5.8. A comparison of the considered SRM static torque profile before and after optimization. 

5.4 Simultaneous Optimization (Dynamic Characteristics) 

The interior-point method is used to simultaneously optimize the geometry and electric-

circuit parameters of an SRM to maximize the motor dynamic torque at a speed of 1103 

rpm. There are seven geometric design parameters in addition to four electric-circuit 

parameters. The geometric design parameters are those of the previous optimization 

problem. The electric-circuit parameters are the number of turns per coil, reference current, 

and turn on and turn off angles. The sensitivities of the electromagnetic torque with respect 

to the geometric design parameters and number of turns are calculated using the AVM. The 

sensitivities with respect to the reference current, turn-on angle, and turn-off angle are 

estimated using the CFD since simulations are carried out using MATLAB/SIMULINK 

which is much faster compared to FEA.  
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The optimizable design parameters are p = [hr  ys  yr  βs  βr  θs  θr  N Iref θon  θoff]
T. The 

objective is to maximize the average value of the dynamic torque Tdyn,avg. This is achieved 

by minimizing the negative of Tdyn,avg. The optimization problem is given by: 
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The optimization process starts from an initial design p = [7.4mm   10.8mm  32.5mm  

10.67°  10.47º  1°  2° 100turn  6.25A  -35º  135º]T and terminates at the optimized design 

p = [7.1276mm  10.1268mm 33.693mm 10.080º 9.886°  2.0117°  2.583° 135turn  6.6612A 

-41.865° 134.074°]T. The objective function values versus iteration number are shown in 

Fig. 5.9. It should be noted that the objective function in the figure represents the negative 

of the average value of the dynamic torque in case of un-laminated stator and rotor cores. 

The static characteristics of the optimized design with 90% stacking factor are obtained by 

JMAG software as shown in Figs. 5.10 to 5.17. Fig. 5.10 shows the static torque versus 
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rotor electrical angle characteristics at various excitation currents. The torque increases as 

the current increases. The same applies to the flux-linkage characteristics shown in Fig. 

5.11 where the flux linkage increases with current. However, it can be noticed that at the 

same rotor position, the increase in the flux linkage with current decreases at higher 

currents due to saturation. Fig. 5.12 shows the induced phase voltage characteristics. The 

induced voltage increases with the current at low current levels. However, at high currents 

and due to saturation the induced voltage may decrease with the current increase. The 

airgap flux density characteristics are shown in Fig. 5.13. At low currents, the flux density 

is maximum at the aligned position where the reluctance of the flux path is minimum. This 

is not the case at high currents due to the saturation which increases the magnetic flux path 

reluctance. The flux density characteristics of the stator tooth, stator yoke, rotor tooth, and 

rotor yoke, shown in Figs. 5.14 to 5.17, have the same pattern where the flux density 

increases as the current increases but the increase rate decreases at high currents.  

 
Fig. 5.9. The objective function value versus iteration number characteristic. 
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Fig. 5.10. The electromagnetic torque versus electrical angle characteristics at different currents. 

 

Fig. 5.11. The phase flux linkage versus electrical angle characteristics at different currents. 
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Fig. 5.12. The phase voltage versus electrical angle characteristics at different currents. 

 

Fig. 5.13. The airgap flux density versus electrical angle characteristics at different currents. 
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Fig. 5.14. The stator tooth flux density versus electrical angle characteristics at different currents. 

 

Fig. 5.15. The stator yoke flux density versus electrical angle characteristics at different currents. 
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Fig. 5.16. The rotor tooth flux density versus electrical angle characteristics at different currents. 

 

Fig. 5.17. The rotor yoke flux density versus electrical angle characteristics at different currents. 

The static torque, flux linkage, and voltage characteristics of the considered motor are 

utilized by the nonlinear dynamic model to calculate the dynamic performance. The phase 
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torques versus time characteristics at the speed of 1103 rpm are shown in Fig. 5.18. The 

total output torque waveform, obtained by summing the phase torques, at that speed is 

shown in Fig. 5.19. The average torque is 5.57 Nm. The RMS value of the torque ripple at 

this speed is 0.5 Nm whereas the percentage torque ripple is 38.46%. The high RMS torque 

ripple will be reduced using a topology optimization technique, as will be presented in the 

next chapter. The dynamic phase currents of the motor at 1103 rpm are shown in Fig. 5.20. 

The currents can reach the reference current which is 6.6612A since the motor induced 

voltage, shown in Fig. 5.21, is lower than the DC link voltage of 163V. The currents are 

controlled within upper and lower hysteresis bounds. The RMS value of the current is 4.3A. 

The flux linkage versus current characteristic and the flux linkage versus time 

characteristics at the same operating speed are shown in Figs. 5.22 and 5.23, respectively. 

 

Fig. 5.18. The phase torques versus time characteristic at 1103 rpm. 
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Fig. 5.19. The shaft torque versus time characteristic at 1103 rpm. 

 

Fig. 5.20. The dynamic phase currents versus time characteristic at 1103 rpm. 
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Fig. 5.21. The induced phase voltages versus time characteristic at 1103 rpm. 

 

Fig. 5.22. The phase flux linkage versus current characteristic at 1103 rpm. 
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Fig. 5.23. The phase flux linkage versus time characteristics at 1103 rpm. 
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Chapter 6 

Adjoint-based Topology Optimization of Nonlinear SRMs 

6.1 Introduction  

Geometric optimization of electric motors starts with a basic design of the considered 

motor. The optimizer seeks the optimal values of the design variables without any effect 

on the motor topology. Topology optimization, however, may provide an unpredicted 

shape, and hence a new magnetic circuit, which may be beyond the designer expertise 

[107]. 

Here, the ON/OFF topology optimization approach is utilized to design an electric motor. 

The approach requires the sensitivities of the objective function with respect to the 

reluctivity/permeability of the elements within a chosen design domain. These sensitivities 

are obtained using the Adjoint Variable Method (AVM) which requires only one additional 

not-iterative simulation regardless of the number of design domain elements  [49].  

The target is to minimize the RMS torque ripple of the optimized model which has resulted 

from the simultaneous optimization presented in Chapter 5. The ON/OFF procedure 

optimizes the distribution of the magnetic material within the motor stator teeth. 

6.2 ON/OFF Topology Optimization  

The flowchart of the ON/OFF optimization method is shown in Fig. 6.1. The procedure 

is as follows [108]; The optimization starts with an initial topology. The following steps 

are then performed to minimize the objective function: 
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Fig. 6.1. Flowchart of the ON/OFF topology optimization method. 

1) The objective function value is calculated using the finite element method.  

2) The adjoint variable method is used to obtain the sensitivities of the objective function 

with respect to the reluctivities of the design domain elements.  

Based on eqn. (4.5), the sensitivity of any objective function with respect to the eth  

element reluctivity is obtained from 

 
( ) ( )

ˆ ,  

z z

T

z ze e

f
e.

v v =

  
= −  

   A A

K
A A   (6.1) 

Comparing eqns. (4.5) and (6.1), it can be concluded that there is no explicit 

dependence of the objective function on the element reluctivity. The same applies to 

the forcing vector. 
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      The adjoint magnetic vector potential is obtained from eqn. (4.8).   

3) If the calculated sensitivity with respect to an element reluctivity is positive, a magnetic 

material is assigned to the element. If the sensitivity is negative, the air is assigned 

instead. This process continues for the elements with the highest sensitivities, either 

positive or negative, in descending order until the maximum number of designable 

elements is reached. The designable elements are the elements in which the material 

changes from air to iron or from iron to air.  

4) Finite element analysis is then conducted, and the objective function is recalculated.  

5) If the value of the objective function has decreased, then return to step 2. If not, then 

the maximum number of designable elements is reduced, and return to step 3. 

Here, the objective is to minimize the function f in eqn. (6.1) by changing the magnetic 

material distribution inside the stator teeth. The objective function represents the square of 

the RMS torque ripple:  

 ( )
2

1

1
5.8 ,

M

k

k

f T
M =

= −   (6.1)  

where Tk is the torque value at the rotor angle
k for k = 1,…….., M. M is the total number 

of simulated rotor positions and the value of 5.8 is the reference average value of the motor 

dynamic torque in case of unlaminated stator and rotor cores. 

The optimization domain is shown in Fig. 6.2 where each pole is divided into two mirrored 

parts to assure the symmetry of the achieved design. There are 291 elements in the 

optimization domain. The AVM method requires only one extra not-iterative simulation 

compared to 582 extra iterative simulations required by the CFD method.   
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Fig. 6.2. The initial topology of the stator tooth. 

The objective function values versus iteration number are shown in Fig. 6.3. The objective 

function reaches its minimum value at iteration number 4. The change in the distribution 

of the magnetic material with the iterations is shown in Fig. 6.4.  

  

Fig. 6.3. The objective function value versus iteration number characteristic. 
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                      (a) Iteration 1                                                                                      (b)  Iteration 2 

                                   
                       (c) Iteration 3                                                                                      (d)  Iteration 4 

Fig. 6.4. The evolution of the material distribution in the stator tooth.  

The initial and final stator tooth designs are shown in Fig. 6.5.  

           
                        (a) Initial stator tooth.                                                            (b) Final stator tooth. 

Fig. 6.5. The initial and final stator tooth designs. 

The static torque, flux linkage, and voltage characteristics of the optimized design with 

90% stacking factor are obtained by JMAG software as shown in Figs. 6.6 to 6.8, 

respectively.  



99 

 

 
Fig. 6.6. The electromagnetic torque versus electrical angle characteristics at different currents. 

 
Fig. 6.7. The phase flux linkage versus electrical angle characteristics at different currents. 
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Fig. 6.8. The phase voltage versus electrical angle characteristics at different currents. 

The flux density distribution and the flux lines of the designs before and after the topology 

optimization at a phase-A current of 6.5A at the aligned position are shown in Figs. 6.9 and 

6.10, respectively. 

     
                                    (a)                                                                                                  (b)  

Fig. 6.9. The flux density distribution of the non-optimized design at a current of 6.5A at the aligned position 

(a) complete design. (b) Stator tooth. 
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                                    (a)                                                                                                  (b)  

Fig. 6.10. The flux density distribution of the optimized design at a current of 6.5A at the aligned position 

(a) complete design. (b) Stator tooth. 

Comparing Figs. 6.9 and 6.10, it can be noticed that the flux barriers affect the flux density 

distribution inside the stator teeth which affects the airgap flux density, and hence the motor 

performance. The airgap flux density characteristics of the optimized design at different 

currents are shown in Fig. 6.11. 

 
Fig. 6.11. The airgap flux density versus electrical angle characteristics at different currents. 
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Compared to the airgap flux density characteristics of the non-optimized design, shown in 

Fig. 5.13, the optimized design characatistics are smoother and have lower flux density 

dips at the aligned position at higher current levels. This indicates, to some extent, a 

reduced torque ripple in case of the optimized design. 

The static torque, flux linkage, and voltage characteristics of the considered motor are 

utilized by the nonlinear dynamic model to calculate the dynamic performance. The phase 

torques versus time characteristics at the speed of 1103 rpm are shown in Fig. 6.12. A 

comparison between the total output torque waveforms of the designs before and after 

topology optimization at that speed are shown in Fig. 6.13. The average torque of both 

designs is 5.57 Nm. The RMS value of the torque ripple has been reduced from 0.5 Nm to 

0.268 Nm whereas the percentage torque ripple has been reduced from 38.46% to 22.6%. 

The dynamic phase currents of the optimized motor at 1103 rpm are shown in Fig. 6.14. 

The reference current has been raised to 6.83A to achieve the same torque obtained before 

the topology optimization. The dynamic currents can still reach the reference current since 

the motor induced voltage, shown in Fig. 6.15, is lower than the DC link voltage. The RMS 

value of the current has been increased from 4.3A to 4.41A. A comparison between the 

flux linkage versus current characteristic of both designs is shown in Fig. 6.16. Fig. 6.17 

shows that the radial forces on a stator tooth tip circumference has been significantly 

reduced in the case of the optimized design.  
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Fig. 6.12. The phase torques versus time characteristic of the optimized design at 1103 rpm. 

 
Fig. 6.13. The shaft torque versus time characteristics of the non-optimized and optimized designs. 
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Fig. 6.14. The dynamic phase currents versus time characteristic of the optimized design at 1103 rpm. 

 
Fig. 6.15. The induced phase voltages versus time characteristic of the optimized design at 1103 rpm. 
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Fig. 6.16. The phase flux linkage versus current characteristics of the non-optimized and optimized designs. 

 

Fig. 6.17. The radial force on a stator tooth tip circumference versus time characteristics of the non-optimized 

and optimized designs. 
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Chapter 7 

Conclusions, Future Work, and Publications 

7.1 Conclusions 

The thesis includes finite element analysis of switched reluctance motors when utilizing 

either linear or nonlinear magnetic materials. The adjoint variable method is used for the 

sensitivity analysis of SRMs in both linear and nonlinear cases. In the thesis, geometry, 

control, and topology optimization approaches are applied to a 6/14 SRM to achieve the 

performance specifications of a commercially available surface-mounted PM brushless DC 

motor of an HVAC system.  

Chapter 2 presented the construction, working principle, and modeling of SRMs. The 

fundamentals of magnetostatic finite element analysis in case of utilizing linear and 

nonlinear magnetic materials were also investigated. Various electromagnetic responses of 

SRMs were then calculated using the finite element method.  

Chapter 3 introduced the sensitivity analysis using the adjoint variable method in case 

of linear and nonlinear systems of equations.  

Chapter 4 studied the sensitivities of various static and dynamic electromagnetic 

responses of SRMs with respect to different geometric design parameters. The obtained 

sensitivities using the adjoint variable method were compared to those estimated using the 

more-accurate but time-intensive Central Finite Differences (CFD). A good match was 

shown between the two sets of results. 



108 

 

Chapter 5 investigated geometric optimization of eight geometric design parameters of 

the considered 6/14 SRM to maximize the motor static torque profile using the interior-

point algorithm. The design parameters are teeth height, yoke thickness, pole arc angle, 

and taper angle of both stator and rotor. A structural mapping technique was utilized to 

control the geometry of the design parameters. In addition to the motor static torque profile, 

the steady-state dynamic torque was maximized by simultaneously optimizing the motor 

geometry and the drive-circuit control parameters.  The optimized motor meets the design 

targets of a surface-mounted PM brushless DC motor. An average torque of 5.57 Nm at 

1103 rpm has been achieved. The RMS value of the torque ripple is 0.5 Nm while the 

percentage torque ripple is 38.46%. The RMS value of the phase current is 4.3 A. 

Chapter 6 studied the topology optimization of the considered SRM to minimize the 

RMS torque ripple at a specific average value of the dynamic torque. The ON/OFF 

topology optimization technique was utilized to optimize the ferromagnetic material 

distribution in the stator teeth for that purpose. The average torque has been kept at 5.57 

Nm at 1103 rpm. The RMS value of the torque ripple has been reduced from 0.5 Nm to 

0.268 Nm whereas the percentage torque ripple has been reduced from 38.46% to 22.6%. 

Moreover, the radial forces on the stator tooth tip circumference were reduced after 

applying the topology optimization. However, the RMS value of the current has been 

increased from 4.3 A to 4.41 A.  

7.2 Future Work 

The following topics are recommended for future investigation:  

1) Apply the adjoint variable method to a 3D analysis of SRMs. 
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2) Utilize the sensitivity analysis to define the number of stator and rotor teeth of SRMs.    

3) Study the sensitivity of other electromagnetic responses of SRMs such as radial forces 

versus the geometry and ferromagnetic material distribution of the motor. This may 

serve in reducing the motor acoustic noise which is a main drawback of SRMs. 

4) Other objective functions and constraints may be included in the optimization process 

such as motor efficiency, torque and power densities, temperature distribution, and 

structural integrity.  

5) In this thesis, topology optimization has been utilized to optimize the material 

distribution inside the stator teeth. The approach could be further extended to shape the 

stator and rotor teeth by including the teeth boundary elements in the optimization 

process. 

6) Interior-point optimization algorithm is utilized in this thesis. The effect of utilizing 

different deterministic optimization algorithms on the motor performance may be 

investigated. 

7) Investigate in more details calculating the sensitivity of the objective function with 

respect to discrete design parameters. 

7.3 Publications 

7.3.1 Journal Papers 

1. E. Sayed, M. H. Bakr, B. Bilgin, and A. Emadi, “Adjoint sensitivity analysis of  

     switched reluctance motors,” Electric Power Components and Systems, vol. 46, no.  

    18, pp. 1959-1968, December 2018.  
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2. E. Sayed, M. H. Bakr, B. Bilgin, and A. Emadi, “Adjoint-based design optimization of  

    nonlinear switched reluctance motors,” Submitted, Electric Power Components and  

    Systems. 

3. E. Sayed, S. M. Castano, J. W. Jiang, J. Liang, B. Bilgin, A. Sathyan, H. Dadkhah, M.   

     H. Bakr, and A. Emadi, “Comparative analysis for multi-layer concentric ferrite  

     magnet traction generator designs,” To be submitted to FCA US LLC for review and  
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5. E. Sayed, R. Yang, J. Liang, M. H. Bakr, B. Bilgin, and A. Emadi, “Design of   

     unskewed interior permanent magnet traction motor with asymmetric flux barriers and  

     shifted magnets for Nissan Leaf electric vehicle,” Submitted, Electric Power  
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