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Lay Abstract 

Collections of RNA polymers are good candidates for the origin of life. RNA is 

able to store genetic information and act as polymerase ribozymes allowing RNA to 

replicate RNA. Polymerases have been experimentally developed in labs, however none 

are sufficiently general to work well in an origins of life setting. These polymerases are 

vulnerable to mistakes during copying, making survival of RNA systems difficult. Such 

systems have been studied by computer simulations, showing that the strands need to be 

kept together for survival, either on surfaces or in primitive cells. Differences in the details 

of the models has made comparing the surfaces to cells difficult. This work creates a unified 

model base allowing for comparison of these two environments. We find that the existence 

of primitive cells is very beneficial to systems of RNA polymers and thus it is likely such 

cells existed at the origin of life. 
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Abstract 

 In hypothesized RNA-World scenarios, replication of RNA strands is catalyzed by 

error-prone polymerase ribozymes. Incorrect replication leads to the creation of non-

functional, parasitic strands which can invade systems of replicators and lead to their death. 

Studies have shown two solutions to this problem: spatial clustering of polymerases in 

models featuring elements to limit diffusion, and group selection in models featuring 

protocells. Making a quantitative comparison of the methods using results from the 

literature has proven difficult due to differences in model design. Here we develop 

computational models of replication of a system of polymerases, polymerase complements 

and parasites in both spatial models and protocell models with near identical dynamics to 

make meaningful comparison viable. We compare the models in terms of the maximum 

mutation rate survivable by the system (the error threshold) as well as the minimum 

replication rate constant required. We find that protocell models are capable of sustaining 

much higher maximum mutation rates, and survive under much lower minimum replication 

rates than equivalent surface models. We then consider cases where parasites are favoured 

in replication, and show that the advantage of protocell models is increased. Given that a 

system of RNA strands undergoing catalytic replication by a polymerase is fairly survivable 

in protocell models, we attempt to determine whether isolated strands can develop into 

genomes. We extend our protocell model to include additional functional strands varying 

in length (and thus replication rate) and allow for the linkage of strands to form proto-

chromosomes. We determine that linkage is possible over a broad range of lengths, and is 

stable when considering the joining of short functional strands to the polymerase (and the 
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same for the complementary sequences). Moreover, linkage of short functional strands to 

the polymerase assures more cells remain viable post division by ensuing a good quantity 

of polymerase equivalents are present in the parent cell prior to splitting.    
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Chapter 1: Introduction 
 

1.1 Motivation 

The question of how life arose on Earth and developed into the intricate living systems 

we see today is a complicated one. Modern life features elaborate reaction networks 

involving numerous biomolecules interacting with each other and the environment they are 

contained in. Biopolymers of deoxyribonucleic acid (DNA) make up the genome of all 

organisms, encoding the various proteins that each lifeform can synthesize (Phillips et al.,      

2012). Polymers of ribonucleic acid (RNA) have a variety of functions: messenger RNA is 

used in translating the genetic code into a form which directs the synthesis of proteins, 

transfer RNA carries amino acids to the site of protein synthesis and ribosomal RNA 

catalyzes the formation of peptide bonds, linking amino acids together to form proteins 

(Phillips et al., 2012). Proteins catalyze the vast array of chemical reactions living 

organisms use to survive, grow and replicate. 

It is doubtful that such complexity could be present from life’s inception, rather it must 

have developed over time starting from a collection of simpler prebiotic entities. The most 

popular theory for the origin of life is the RNA world theory, which was first posited by 

Alexander Rich and further developed by Gilbert in 1986 (Rich, 1962; Crick, 1968; Orgel, 

1968; Gilbert, 1986; Higgs and Lehman, 2015). The theory states that the current system 

used by all modern cells, in which information flows from DNA to RNA to proteins, 

originated from a self-sustaining system composed entirely of RNA molecules with the 

ability to store genetic information and act as replicases, with replication dictated by 
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Watson-Crick base-pairing (Rich, 1962; Gilbert, 1986; Pace and Marsh, 1985; Joyce, 2002; 

Robertson and Joyce, 2012).  

Akin to DNA, RNA has the ability to store information in polymers of itself (Joyce, 

1989). While all known life uses DNA to store genetic information due to it being more 

stable than RNA, genomes made of RNA do exist, in fact most viruses have RNA genomes 

(Ahlquist, 2002). Moreover RNA is functional: self complementary parts of the single 

stranded polymer can undergo conformational changes in which parts fold together to form 

helices, stem loops, knots and other complicated structures (Tinoco and Bustamante, 1999). 

These tertiary structures can directly catalyze chemical reactions or associate with other 

RNA polymers and metal cofactors to form large scale complexes of RNA which are 

catalytic. These RNA enzymes are commonly referred to as ribozymes. Prebiotically, 

through this folding mechanism RNA is able to perform the role played by proteins in 

modern life.  

The first naturally occurring ribozyme was a self-splicing intron discovered in 1982 by 

Cech (Kruger et al, 1982). The intron was found to catalyze the breaking of phosphodiester 

bonds between it and the exons, allowing the ribozyme to cut itself out of the overall RNA 

strand (Kruger et al, 1982). Since then, many other ribozymes have been discovered which 

can catalyse the splicing, ligation, recombination and even replication of RNA (Hayden et 

al., 2008; Lincoln and Joyce, 2009; Attwater et al., 2013). A subset of these ribozymes are 

capable of catalyzing the synthesis of other RNA strands from provided templates. If such 

polymerase ribozymes were autocatalytic – that is if they could catalyze their own 

replication and replication of their complementary templates – then systems of polymerases 
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would be good candidates for the first living systems. While we have yet to discover 

evidence that such general replicators existed in an RNA world, work has been done by 

many groups in developing polymerase ribozymes in the lab (Johnston et al, 2001; 

Lawrence and Bartel, 2005; Zaher et al, 2007; Cheng et al, 2010, Wochner et al., 2011; 

Attwater et al., 2013; David and Joyce, 2016; Attwater et al., 2018).  

Replicators in these first living systems would be highly error prone as they lack the 

error proofing machinery employed by cells today. Under erroneous replication, the 

maximum length of RNA molecules is inversely proportional to the mutation rate, leading 

to lengths too small to comprise a polymerase, let alone a genome; the theory behind this 

will be covered in the following sections. In other words, for a non-zero mutation rate, non-

functional products resulting from erroneous replication will overwhelm and kill the system 

of replicators. Much work has been done to address this issue and has led to the 

development of many models featuring interactions between different molecules and 

different higher-level selection mechanisms, primarily spatial clustering of RNA strands or 

compartmentalization of strands into protocellular structures. The absence of any organism 

relying on spatial clustering and the ubiquity of membranes in modern biology suggests 

that the first cell-like structures were a significant development for life. In this thesis we 

compare these two mechanisms to see their impact on a system of error-prone polymerases 

in an RNA world scenario.  

1.2 Structure of thesis 

The remainder of this chapter serves to provide background information for various 

topics developed in chapters 2, 3 and 4. Chapter 2 presents a paper submitted to Life 
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currently awaiting publication, focusing on comparing spatial models and protocellular 

models of a system of replicators in the RNA world. Chapter 3 provides additional material 

created during the research process on this topic that was deemed not pertinent for 

publication. Chapter 4 presents an investigation into the formation of a proto genome 

formed by the linkage of strands. Chapter 5 discusses the major conclusions of this thesis 

and suggests avenues for future investigation. 

1.3 Prebiotic Replication  

This section adopts the notation of Wu and Higgs (2012), Shay et al. (2015), Kim and 

Higgs (2016), Higgs (2017) and Higgs (2018) and summarizes work presented in Higgs 

(2017) and Higgs (2018).  

There are three primary ways in which synthesis of RNA strands may occur in prebiotic 

systems. The first is through random chemical synthesis, which is referred to as s. This s 

reaction continuously produces random oligomers from monomers present in the 

environment, extends existing oligomers and can join existing oligomers together to form 

longer ones (Higgs, 2018). Mechanisms by which this can occur include wet-dry cycling 

(Damer and Deamer, 2015) or clays assisting phosphodiester bond formation (Himbert et 

al., 2016). The oligomers formed by this process are inherently random or intrinsically 

biased in composition depending on the nature of the monomer source. This synthesis 

method is required to produce the first oligomers as the latter two methods require a pre-

existing template sequence to be present. Additionally, this method is capable of producing 

a diverse set of oligomers. It is thought that rarely this synthesis would create a functional 

sequence capable of acting as a ribozyme. Through the s reaction, there is no aspect of 
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selection for such functional or beneficial sequences; every sequence produced will be 

random so the likelihood of producing the same sequence repeatedly is infinitesimal. Even 

if a functional sequence were to arise, it could not create more of itself unless it was 

autocatalytic (thus not dependent on the s reaction). With no way to increase the 

concentrations of beneficial sequences, it is hard to imagine the s reaction sustaining a 

living system. It follows that once the first oligomers were formed, this would rapidly cease 

to be the dominant replication method, replaced by one of the two methods discussed 

below.  

The second method to synthesize RNA strands is via non-enzymatic template directed 

replication of RNA, which is termed the r reaction (Higgs, 2018). An existing oligomer or 

RNA strand is used as a template onto which monomers in the environment can bind 

following the Watson-Crick base pairing rules, or the wobble base pairing rules (Varani 

and McClain, 2000). If these monomers are ligated together, a complementary sequence to 

the template is synthesized. Upon separation, the two strands can again be used as 

templates. Prebiotically, this may occur in a variety of ways as outlined by Szostak (2012). 

By its mechanism, the r reaction is able to increase the concentration of the template (and 

its complementary sequence) in a system; models by Chen and Nowak (2012) show that 

this process selects sequences with the highest fitness. Diversity can be generated from 

mutations – erroneous base pairing. Provided that monomers are plentiful, the higher the 

concentration of templates, the more often template directed replication will occur. 

Whether or not the r reaction can sustain a system depends on how fast it acts. All oligomers 

in solution are vulnerable to breakdown from hydrolysis. If the rate of the r reaction is fast 
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compared to the hydrolysis rate, then on average a strand will be able to create a copy of 

itself before it breaks down, allowing a system reliant on template directed replication to 

survive. Indeed, the work of Higgs (2018) shows using a simple spatial model that a rate r 

≳ 1.4 times the breakdown rate is enough for survival. 

The last method is by means of a catalyst, termed the k reaction (Higgs, 2018). In this 

method a ribozyme is used to catalyze the synthesis of a strand complementary to the 

template. The exact mechanism in which the catalyst acts is dependent on the catalyst – it 

can span from simple unitary primer extension, extension in groups of nucleotides, assisting 

in the formation of a phosphodiester bond, etc. (Higgs, 2018). In essence this reaction 

works in much the same way as the template directed one, however there are now two 

concentrations of importance, that of the catalyst and that of the template. Similar to the 

template directed case, a system can be sustained by the k reaction if it is fast enough.  

In principle a living system can be sustained by the both the r reaction and the k 

reaction, or even a mixture of the two. Should the r reaction be faster than the k reaction, 

there is no need for catalyzed replication and vice versa. Based on the fact that all modern 

life undergoes catalyzed replication, it is fair to hypothesize at some point during the RNA 

world a transition was made to catalyzed replication. There is another important distinction: 

if a beneficial sequence arises with an intrinsic r < rmin and replication occurs solely by the 

r reaction, then the sequence will become extinct, whereas if replication occurs by the k 

reaction, or both the r and k, then sequences with r < rmin will still be maintained as it is the 

activity of the catalyst that matters (Higgs, 2018). This suggests that systems sustained by 

catalytic replication allow for a wider variety of strands. In their work, the groups of Ma et 
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al. and Wu and Higgs considered the case featuring all three reaction types (Ma et al., 2007; 

Ma et al., 2010; Wu and Higgs, 2012). In this thesis we consider models which involve 

only the k reaction under the premise that the s reaction is irrelevant on the length scales of 

polymers that we are interested in, and that the r reaction occurs at a much slower rate than 

the k reaction.  

1.4 Ribozymes Catalyzing RNA Replication 

Replication that is catalytic in nature is still a very broad topic. Is this catalytic 

replication mediated by a single ribozyme or is it the result of several ribozymes working 

as part of a network? Both methods are prebiotically viable. The following are examples of 

ligases and recombinases, different to the polymerases considered in this thesis. In 2002, 

Paul and Joyce developed the R3C ligase ribozyme which was capable of binding two 

substrates and catalyzing their ligation to generate a copy of itself. Further development by 

Lincoln and Joyce (2009) converted this ribozyme to a cross-catalytic form in which the 

enzyme catalyzes the ligation of two substrates creating a minus strand of the enzyme, 

which in turn can catalyze ligation of two different substrates forming the original 

ribozyme. A more complex network which is autocatalytic is that of fragments from the 

Azoarcus group I intron (Hayden and Lehman, 2006; Draper et al., 2007; Hayden et al., 

2008). This network has 4 fragments, W, X, Y and Z which assemble into a complex that 

catalyzes the recombination of the fragments into a WXYZ ribozyme (Hayden and 

Lehman, 2006; Draper et al., 2007; Hayden et al., 2008). The WXYZ ribozyme in turn 

catalyzes the ligation of the fragments into various intermediaries that eventually lead to its 

production (Hayden and Lehman, 2006; Draper et al., 2007; Hayden et al., 2008). 
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While such autocatalytic systems do count as catalytic replication, they have the issue 

that they are sequence specific. Such networks can only catalyze the formation of 

themselves or other members of the network; should a novel beneficial strand come about 

in these systems it will not be replicated. Similarly, the substrates used in these networks 

tend to be relatively long oligomers that would have to be synthesized in some manner. The 

work of Lincoln and Joyce (2009) does show that these sets are capable of evolution, 

however it is limited to evolving variations of the existing members of the set, often 

focusing on refining existing domains of the strands to increase catalytic ability. As of yet 

no study has shown the ability of such networks to incorporate a significantly different 

strand. 

An ideal ribozyme would be one able to catalyze the replication of any sequence 

provided to it as a template, a general polymerase ribozyme. Naturally, a general 

polymerase ribozyme is autocatalytic and non-sequence specific. The presence of such a 

ribozyme would allow a living system to sustain itself, incorporate any beneficial strands 

and develop complexity (Higgs, 2018). While a general polymerase has yet to be 

discovered, polymerase ribozymes have been developed in laboratory settings. In 2001, 

Johnston et al. developed a polymerase 189 bases long that could extend a primer by 14 

nucleotides provided with a template. Lawrence and Bartel (2005) further derived 8 other 

polymerase ribozymes from that of Johnston et al. which could perform similar primer 

extension on any template provided. Zaher and Unrau (2007) improved on this with 

polymerase ribozyme B6.61 which extended a primer by at least 20 nucleotides, as did 

Wochner et al. (2011) who developed the tC19 and the tC19Z polymerase ribozymes which 
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were more general and could extend primers by up to 95 bases on favourable templates. In 

2013, Attwater et al. developed the first polymerase (tC9Y) capable of synthesizing an 

RNA sequence longer than its own length of 202 nucleotides and in 2018, Attwater et al. 

discovered the t5+1 ribozyme which uses RNA triplets as substrates. Horning and Joyce 

(2016) discovered the 24-3 polymerase which achieved primer extension at rates about 100 

times faster than the tC19Z, and was capable of forming a full length tRNA, a first, from a 

15-nucleotide template, although in low yields. These results are promising, supporting the 

notion that a general RNA polymerase could have been present during the RNA world. In 

the studies presented in chapters 2-4, we use a processive general polymerase as the 

replicator in our models. We propose that it can synthesize a complement to any template 

provided to it at a rate inversely proportional to the length of the template.  

1.5 Methods of Higher-level Selection 

Prebiotically, spatial clustering of RNA strands is possible due to the presence of  

physical environments capable of limiting the effects of diffusion such as in porous, 

connected mineral lattices (Branciamore et al., 2009) or RNA molecules adsorbed on clay 

(Franchi and Gallori, 2005). In these environments, RNA strands face limited movement 

and the localization provided can help with increasing encounters between strands, raising 

the chance for reactions to occur. Previous spatial models discussed in section 1.7 study the 

means by which spatial clustering helps the survival of the RNAs, often by simulating large 

lattices capable of housing one sequence at each site. Our models presented in Chapters 2 

and 3 extend this by considering cases where multiple RNA strands can be present on a 

single site. In this manner new dynamics arise as the presence of a single parasite on a 
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lattice site is no longer enough to deem the site dead Moreover, replication cannot be halted 

by the neighbouring sites being occupied as the products of replication are placed in the 

same site as the parents. Site composition plays a role in determining the fate of the system, 

larger site volumes can even lead to the coexistence of parasites with polymerases. 

In the modern world, all organisms make extensive use of membranes. Cellular 

membranes formed from lipids and sterols isolate cells from their environments, provide 

structural support and selective intake capabilities. Viruses can contain lipid envelopes and 

the even the most basic of them have a protein capsid enclosing their genome. While 

complicated membranes would not have existed prebiotically, lipids or lipid-like molecules 

(long chain hydrocarbons) could be synthesized (Segré et al., 2001). Some examples are 

fatty acids and fatty alcohols that could arise from Fischer-Troph synthesis (Segré et al., 

2001). Analysis of the Murchison meteorite revealed amphiphilic compounds that have the 

propensity to self-aggregate could form membranes, films, and even vesicular structures 

(Deamer, 1985; Deamer and Pashley, 1988). Damer and Deamer (2015) propose that the 

presence of such molecules in a warm little pond environment could lead to RNA strands 

squished in layers of a multilamellar structure of the lipids when the pond is dry, and inside 

vesicles formed by the lipids when the pond is hydrated. Protocellular models outlined in 

section 1.7 study the case in which RNA systems grow and develop in such vesicles, 

drawing much similarity to modern cells. 

1.6 Error Threshold 

The idea of an error threshold comes from the work of Manfred Eigen (1971). The error 

threshold in Eigen’s study is the maximum amount of information a genome can store at a 
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given replication fidelity. We outline the essence of Eigen’s model following Szilágyi et 

al. (2017). Eigen considered a virus-like first order system in free space: a population made 

of a wild type master sequence (xW) competing against its own mutants (xM) both of which 

are being replicated externally to the model (Eigen, 1971). Replication of wild type 

sequences is error-prone: for a sequence L nucleotides long with each base having a point 

mutation rate µ, the fidelity of replication is given by 𝑄 = (1 − 𝜇)𝐿  ≅ 𝑒−𝐿𝜇. Thus, 

replicating a wild type sequence produces another wild type sequence with a fidelity Q or 

a mutant otherwise. The mutant sequences may also replicate, in which case we do not care 

about the fidelity of replication (assuming that back mutations are negligible due to their 

rarity of occurrence). Assigning the replication rates AW for the wild type sequence and AM 

for the mutant sequence, and employing an outflow Φ to keep the total concentrations fixed, 

the equations: 

𝑑𝑥𝑊

𝑑𝑡
= 𝑥𝑊(𝑄𝐴𝑊 − Φ) 

𝑑𝑥𝑀

𝑑𝑡
= 𝑥𝑀(𝐴𝑀 − Φ) + (1 − 𝑄)𝐴𝑊𝑥𝑊 

describe the system (Szilágyi et al., 2017). In this case, if the wild type was less fit than its 

mutants (AW < AM) then it would go extinct, while coexistence of both the wild type and 

the mutants requires that QAW > AM. This gives 
𝐴𝑊

𝐴𝑀
>

1

𝑄
, and solving the fidelity relation 

for sequence length, 𝐿 <
−𝑙𝑛 𝑄

𝜇
 , gives the error threshold inequality: 

𝐿 <
𝑙𝑛 (

𝐴𝑊

𝐴𝑀
) 

𝜇
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which shows the maximum amount of information that the system can maintain is limited 

by the superiority of the master sequence and the mutation rate. Eigen’s paradox comes 

about when solving for the length with reasonable values:  𝑙𝑛 (
𝐴𝑊

𝐴𝑀
)   ~ 1, and a nominal 

mutation rate of 1% gives that a sequence of length up to 100 nucleotides can be 

maintained. Past this value, the wild type sequence is lost and the equilibrium population 

is an amalgamation of the various mutants. This is far shorter than a genome, and shorter 

than the polymerase ribozymes that have been developed thus far (see section 1.4). Eigen’s 

paradox states that without a large genome, there could be no accurate replication as the 

error proofing machinery cannot be encoded in a small genome, and without accurate 

replication large genomes cannot be maintained. This issue can be resolved to some degree 

by requiring cooperation and interdependence between molecules to avoid out-competition 

of the ensemble by a single species, as well as through higher level selection mechanisms 

acting upon the population.  

Suggestions have been made that the limit on information by the error threshold is too 

strict. Studies studying RNA secondary structure folding revealed that there is a large 

amount of redundancy in going from sequence to structure in that many different sequences 

may fold to the same secondary structure, and that a subset of structures are found far more 

often than others (Schuster et al., 1994). The realization of such neutral networks in which 

sequences differing by a few nucleotides formed the same structure give rise to the 

possibility that the impact of mutations on a sequence may not be as severe as is thought 

(Huynen et al., 1996). Instead, a distinction must be made between the classical genotypic 

error threshold where sequence information cannot be maintained, and a new, more 



Master’s Thesis – V. Shah; McMaster University – Physics and Astronomy 

13 
 

important phenotypic error threshold where the folded structure cannot be maintained 

(Huynen et al., 1996). Takeuchi et al., 2005 show that even considering base substitutions 

not impacting each other, the actual increase in error threshold is limited as the average 

number of base substitutions rendering the phenotype unchanged is small. Work by Kun et 

al. (2005) builds on their results and demonstrates the tolerance provided by the phenotypic 

error threshold. They experimentally determined the number of neutral single nucleotide 

substitutions leaving two ribozymes unchanged, then assumed a replication accuracy of 

0.999 as in the worst viral replicators and found the phenotypic error threshold to be about 

7000 nucleotides, sufficient for a riboorganism to exist (Kun et al., 2005). The relaxation 

of the genotypic error threshold applies more for common sequences compared to rare ones 

and more work must be done to determine whether considering only the phenotypic error 

threshold is viable. 

In the study presented in chapters 2 and 3 of this thesis, we use the idea of a mutational 

error threshold as a metric to test various spatial and protocellular models. This error 

threshold differs from that of Eigen. Instead of looking for the amount of information the 

system can maintain, we look for the maximum mutation rate that the system can tolerate. 

Moreover, the systems we test feature second-order catalysis, where the replicator itself is 

part of the system and reactions require the presence of a replicator and another molecule 

in order to get underway. Since strands are replicated externally in Eigen’s model, going 

beyond the error threshold leads to a population of only mutants, whereas in our study, 

exceeding the maximum supported mutation rate (going beyond the mutational error 
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threshold) results in the loss of the replicators in the system and subsequently the rest of 

the strands.  

1.7 Computational Models 

Computational models have been used extensively to study the survival of prebiotic 

replicator systems across various parameters. The exact methodology adopted and the 

metrics tested vary with the study. Generally speaking, these models are dynamical, may 

consider spatial structure and feature local and global dynamics, and either model time 

discretely or continuously (Szilágyi et al., 2017). Here we present an overview of a few 

important model types, with figure 1.1 indicating the chronology of development. 

The basis for all of these computational models stem from the study of exponential 

growth. In the field of population dynamics, a population in an environment with surplus 

resources and not otherwise limited by external factors will grow exponentially (Szilágyi 

et al., 2017). Mathematically, this idea is expressed in the simple differential equation 
𝑑𝑁

𝑑𝑡
=

𝑟𝑁(𝑡), which has the solution 𝑁(𝑡) = 𝑁(0)𝑒𝑟𝑡, where N(t) is the size of the population 

and r the growth rate, which takes on some positive value. 

 



Master’s Thesis – V. Shah; McMaster University – Physics and Astronomy 

15 
 

 

Figure 1.1 Schematic overview of various prebiotic replicator models. Adapted and simplified from Ecology 

and evolution in the RNA World Dynamics and stability of prebiotic replicator systems by Szilágyi et al., 

2017. 

Studying multiple competing populations, N1 and N2 with characteristic growth rates 

r1 and r2 reveals that the population with the higher growth rate will exponentially 

outcompete the other one. This is a problem of importance: if only the population with the 

highest growth rate can survive, how do we develop complexity in an RNA world scenario? 

 

1970 

1975 

1980 

1985 

1990 

1995 

2000 

2005 

Exponential 

Growth 

Eigen’s Quasispecies 

Model 

Metabolically 

Coupled Replicator 

System 

Stochastic 

Corrector 

Hypercycle 

Spatial 

Hypercycle 

Compartmentalized 

Hypercycle 



Master’s Thesis – V. Shah; McMaster University – Physics and Astronomy 

16 
 

The solution to this is to look at regulating factors which affect the growth rates of one or 

more species. Such regulating factors include resources consumed for replication, spatial 

requirements for replication products, mixing, enforcing local interactions or limiting 

interactions in general.  

Eigen’s quasispecies model is described in detail in section 1.6. It is a free space model, 

meaning it does not have any defined spatial structure. Eigen’s analysis of this model 

revealed that so long as the master sequence was more fit than its mutants, it could be 

maintained until an error threshold was reached. The inability to maintain long sequences 

can be circumvented if the information is contained in several shorter sequences. Eigen was 

one of the proponents of this, suggesting a set of short catalytic sequences forming a closed 

network such that each sequence in the network catalyzed the formation of the next, a 

hypercycle (see figures 1.2, 1.3) (Eigen, 1971). Despite the sequences competing for the 

same resources they can coexist via the forced cooperation as they require the presence of 

the previous member in the cycle to replicate. In this manner a set of sequences can store 

more information than a single, long sequence, and has the ability to undergo more rapid 

evolution. In theory there is no limit to the number of members in a hypercycle, however 

stable solutions only exist for up to 4-membered cycles in which all members are fully 

cooperative (Hofbauer et al., 1984; Schuster et al., 1979).  
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Figure 1.2 A 5-membered hypercycle model (A-E) featuring a parasite (X). Each member of the network 

catalyzes the replication of the next. B also catalyzes the formation of a parasitic species, X. 

  

Figure 1.3 A 5-membered hypercycle model (A-E), featuring a shortcut where species A can catalyze the 

formation of species D. Over time this network will evolve to omit species B and C entirely, causing it to 

become a 3-membered hypercycle. 
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Further issues arise in cases where the members of the hypercycle are in competition, or 

the rates of formation and catalysis vary across the network, in which case only 3-

membered or lower systems remain stable while higher membered cycles can exhibit 

oscillatory solutions (Hofbauer, 1984; Schuster et al., 1979). Other difficulties faced by 

hypercycles include the inability to incorporate new strands leading to limited evolvability, 

and there is also the issue of information loss should one of the members gain the ability to 

catalyze a member not directly following it, disrupting and shortening the network (see 

figure 1.3).  

All of the work done on the free space models presented assume the superiority of the 

master sequence compared to its mutants. In reality this may not be the case, as was shown 

by Spiegleman’s experiment involving replication of the Qβ genome in vitro (Mills et al., 

1967). Here the wild type (the full genome) rapidly evolved to cut all unnecessary RNA 

away and form a mutant 17% the size of the wild type, capable of being replicated 15 times 

faster (Mills et al., 1967). When considering such prolific mutants, the free space models 

and hypercycle models fail to survive as the quickly replicating mutants outcompete the 

members of the network, starving them of the required resources.  

Attempts were made by Boerlijst and Hogeweg (1991) to implement the hypercycle 

idea on a toroidally wrapped square lattice in which each site could be empty, occupied by 

a member of the hypercycle or occupied by a parasite. The spatial definition made it 

possible for hypercycle members to cluster together and be isolated away from parasites, 

increasing their survival. From their simulations, this clustering effect produced spiral wave 

patterns emerged which stabilized the system to a degree from parasitic invasion. Parasites 
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were still harmful when they emerged into the centre of the spiral formations. Zintzaras et 

al. (2002) instead simulated hypercycles in isolated compartments and found that the 

hypercycle system could sustain higher mutation rates, as in the spatial case. In either 

method, the inherent evolvability of the hypercycle remains limited and thus is a reason the 

hypercycle, spatial hypercycle and compartmentalized hypercycle models should be 

abandoned (Szilágyi et al., 2017). 

A different class of models was proposed by Szathmáry and Demeter (1987) called the 

stochastic corrector model. This model aims to emulate the behaviour of prebiotic cellular 

compartments: it features different replicator types contained within compartments which 

grow as the number of replicators increases. There is competition amongst replicators as 

they use the same resources for replication, but this is offset by them contributing to a 

common metabolism affecting the entire compartment. At sufficiently high internal 

concentrations, the compartments split, randomly distributing the contained strands among 

the two daughters. The stochastic corrector model is able to tolerate higher mutation rates 

and thus is more successful than the hypercycle models mentioned before, while also 

retaining evolvability stemming from the variety produced by random assortment and the 

stochasticity of replication (Szilágyi et al., 2017). In vitro experiments show that even just 

transient compartmentalization in vesicles is sufficient to sustain an array of functional 

replicators (Matsumura et al., 2016). 

The metabolic coupled replicator system model (MCRS) depicted in figure 1.4 is 

similar to the hypercycle models in that it suggests the coexistence of an array of replicator 

species in a network. 
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Figure 1.4 A schematic of a metabolically coupled replicator system with four species of replicators (A-D) 

and a parasitic species (X). Each member draws from the same population of metabolites (M) to catalyze 

their own replication. All members must be present for the network to work optimally. 

The difference in the MCRS is that the various species do not catalyze the replication 

of the next member in the cycle – rather there is no cycle. All species draw from the same 

pool of metabolites and are able to template replicate themselves (Könnyű and Czárán, 

2015). Additionally, the members are mutually dependent in the sense that all are required 

to replenish the pool of metabolites they draw from (Könnyű and Czárán, 2015). MCRS 

systems cannot survive in the well mixed case as the best replicator in the system 

outcompetes the others and then is starved for resources, however defining an MCRS model 

with spatial definition (by means of a lattice model) allows the replicators to coexist 

(Szilágyi et al., 2017). Furthermore, the MCRS is resistant to parasites as their appearance 

only locally drains the monomer supply, halting replication in a region and starving the 
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strands there without affecting the system at large. The MCRS has been widely studied in 

its ability to tolerate variances in ribozyme activity, system size, neighbourhood size, and 

phenotype-genotype distinction (Könnyű and Czárán, 2013; Könnyű and Czárán, 2014; 

Könnyű et al., 2015). Additionally, the replicator network is an open network capable of 

incorporating novel strands which can amplify the production of the metabolite, showing 

the MCRS demonstrates evolvability. 

1.8 Aims of Thesis 

The aims of this thesis are twofold. We wish to reconcile the various spatial and 

protocellular models discussed into a form lending to quantitative comparison of the 

benefits provided spatial clustering versus group selection on a system of replicators in an 

RNA world scenario. We also wish to investigate the conditions in which the linking of 

functional strands to form a proto-genome is favourable. A comparison of protocells with 

a spatial self-organization in a lattice based spatial model has previously been done by 

Takeuchi and Hogeweg (2009) by projecting protocells onto the same lattice structure as 

the spatial model. While their work demonstrated that the two model types display a similar 

response in stability, they note that the comparison made was qualitative due to the inherent 

differences in the models developed in the study (Takeuchi and Hogeweg, 2009).  

To allow for proper quantitative comparison, this research uses simulations of 

protocellular and surface models developed to be dynamically identical with the exception 

of cell division and diffusion. We model replicators in the form of an error-prone general 

processive RNA polymerase capable of replicating any template provided to it, the 

complementary sequence to that polymerase as well as non-functional parasitic sequences 
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arising from mutation. Systems of these strands are placed into compartments or onto a 

toroidally wrapped square lattice capable of containing multiple strands per site. The 

success of the model is tested by determining the maximum mutation rate that can be 

sustained, as a function of both the size of the compartment or lattice site and the minimum 

polymerase activity constant. 

To study the viability of linking functional strands together, a computational protocell 

model developed in the prior study is modified to allow additional replicators in the form 

of synthases and their complementary sequences, as well as linked versions of the 

functional strands and their complementary sequences. The synthases are assigned a 

parameter σ indicating their benefit to the system of replicators. Mixtures of the unlinked 

strands are invaded by the linked strands, and mixtures of the linked strands are invaded by 

the unlinked strands to determine the conditions under which the linkage of strands is more 

beneficial than having the strands remain unlinked.   

Chapter 2: Survival of RNA replicators in protocells and 

surface-based systems 
 

2.1 Summary 

In this chapter, I present a paper published on August 7, 2019 in Life, 9(3), 65. There 

is a plethora of studies on the survival of replicators in protocells or bound to a surface in 

a prebiotic RNA world scenario, and accordingly many computational models have 

previously been developed and analyzed in an attempt to determine which of the two 

methods works best. In the studies conducted, disparate dynamics in all the models 

developed and use of different metrics to judge success make a grounded, quantitative 
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comparison impossible. In this paper we address this by developing a suite of protocell and 

spatial lattice models with near identical dynamics, and use the error threshold (see section 

1.6) as a metric for success to allow a quantitative comparison to be made.  The models 

discussed are all Monte Carlo computational models, most similar to the stochastic 

corrector models described previously. The spatial models simulated feature multiple 

strands per lattice site, analogous to the multiple strands a protocell may contain. Thus, the 

difference between spatial models and protocell models is the presence of diffusion 

allowing for mixing between sites in a spatial model, and cellular division in protocell 

models. The models are compared across a variation in the size (number of strands allowed) 

of the lattice site/protocell as well as polymerase rate constant (representative of how good 

the polymerase is). It is found that protocellular models can sustain higher mutation rates 

in both cases. A further comparison is done with rapidly replicating parasites where again 

the protocellular model considered performs better than the spatial model.  

This project was designed in collaboration with my supervisor, and was motivated by 

the issue outlined above as well as the partial work of an undergraduate summer student Q. 

Pauli. I developed the various models presented in the paper in C++ and performed the data 

analysis primarily using Python code that I wrote, except for the deterministic version of 

the spatial model which was coded and analyzed by J. de Bouter and the deterministic 

version of the protocell model  which was developed in part by my supervisor and Q. Pauli. 

The paper makes use of data from an older work by A. Tupper and my supervisor. The 

paper was written by myself and my supervisor, with assistance during development and 
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revision from A. Tupper. Figure numbers and table numbers have been reformatted to 

match the style of this thesis. 

2.2 Shah et al., 2019 

Survival of RNA replicators is much easier in 

protocells than in surface-based, spatial systems 
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Abstract:  

In RNA‐World scenarios for the origin of life, replication is catalyzed by polymerase 

ribozymes. Replicating RNA systems are subject to invasion by non‐functional parasitic 

strands. It is well‐known that there are two ways to avoid the destruction of the system by 

parasites: spatial clustering in models with limited diffusion, or group selection in 

protocells. Here, we compare computational models of replication in spatial models and 

protocells as closely as possible in order to determine the relative importance of these 

mechanisms in the RNA World. For the survival of the polymerases, the replication rate 

must be greater than a minimum threshold value, kmin, and the mutation rate in replication 

must be less than a maximum value, Mmax, which is known as the error threshold. For the 

protocell models, we find that kmin is substantially lower and Mmax is substantially higher 

than for the equivalent spatial models; thus, the survival of polymerases is much easier in 
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protocells than on surfaces. The results depend on the maximum number of strands 

permitted in one protocell or one lattice site in the spatial model, and on whether 

replication is limited by the supply of monomers or the population size of protocells. The 

substantial advantages that are seen in the protocell models relative to the spatial models 

are robust to changing these details. Thus, cooperative polymerases with limited accuracy 

would have found it much easier to operate inside lipid compartments, and this suggests 

that protocells may have been a very early step in the development of life. We consider 

cases where parasites have an equal replication rate to polymerases, and cases where 

parasites multiply twice as fast as polymerases. The advantage of protocell models over 

spatial models is increased when the parasites multiply faster. 

Keywords: RNA World; polymerase; error threshold; protocell; membranes; spatial 

lattice model; evolution of cooperation; parasites. 

 

1. Introduction 

The most widely studied theory for the origin of life—specifically, the transition from 

a mixture of prebiotic chemical components to a living system that is sustained by 

autocatalytic replication—is the RNA World theory [1–7]. Most versions of the RNA 

World propose the existence of RNA polymerase ribozymes that use a second strand as a 

template to synthesize the complementary strand to the template. RNA polymerase 

ribozymes have been experimentally developed while using in vitro evolution with 

maximum template lengths of 200 nucleotides and per‐base error rates of a few percent [8–

10]. Although none of the laboratory ribozymes is yet able to replicate its own sequence, 
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these experiments point to the likelihood that ribozymes working in this way could have 

supported life in its earliest stages. 

Replicating systems containing polymerase ribozymes are subject to invasion by non‐

functional sequences that act as parasites. Parasite strands are likely to frequently arise, 

either as a result of chemical synthesis of new random sequences, or as a result of errors in 

the replication of functional strands. It is known that parasites destroy the replicating 

system unless there is a mechanism that promotes cooperation among groups of functional 

polymerases. Two such mechanisms have been widely studied: spatial clustering of 

polymerases in two‐dimensional lattice models representing RNA strands bound to a 

surface [11–18], and group selection of polymerases inside protocell compartments [19–

21]. Spatial clustering is beneficial to polymerases, because a neighbour of a polymerase is 

more likely to be another polymerase and less likely to be a parasite than it would be if 

sequences were randomly mixed. Protocell compartments benefit polymerases, because 

compartments with more functional strands and fewer parasites grow and divide more 

frequently. There have also been several experimental studies of replication inside artificial 

protocells [22–25]. It is unknown whether the first replicating molecules arose outside of 

compartments, and they were later encapsulated in membranes, or whether they arose 

inside a pre‐existing system of simple membrane compartments. The ubiquity of cellular 

life today and the absence of current surface‐ based, non‐encapsulated life forms suggest 

that cells arose rather early in the history of life.     

For polymerase ribozymes to survive, they must replicate faster than the rate at which 

they are destroyed by hydrolysis; hence, there is a minimum value of the replication rate 
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constant, kmin, which is required for survival. The polymerases must also replicate 

accurately enough to pass on their own sequence and avoid invasion by parasitic mutant 

sequences; hence, there is a maximum value of the mutation probability, Mmax, required for 

survival. RNA replicating systems are most likely to survive in systems with low kmin, and 

high Mmax. Here, we study several alternative versions of protocell and spatial models for 

RNA replication in order to compare the values of kmin and Mmax. 

The maximum tolerable error rate in models of sequence replication is usually called 

the error threshold. The original error threshold theory of Eigen et al. [26] dealt with first 

order replication, meaning that one strand has the ability to make a second. This is 

applicable if the catalyst that replicates the strand is not part of the evolutionary model, as 

is the case in experiments where the RNA sequence evolve in the presence of a supply of 

Q replicase protein that is provided by the experimenter. Here, we deal with second‐order 

catalysis, meaning that two molecules have the ability to make a third. This is applicable in 

the RNA World, if a polymerase ribozyme acts on a template strand to make a third strand. 

In both the first‐ and second‐order replication problem, selection favors functional 

molecules and mutation creates non‐functional molecules (or slower replicators with 

reduced functionality). In the first‐order problem, selection arises due to the functional 

molecule, or master sequence, replicates faster than the mutant sequences. There is no need 

for spatial structure or protocells in the first‐order model, because the master sequence 

survives by selective advantage even in the well‐mixed case. On the other hand, in the 

second‐order problem that was studied here, mutant sequences are parasites that cannot 

replicate themselves, and we assume that the rate at which parasites are copied by the 
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polymerase is the same as the rate at which polymerases and complements are copied. 

There is no selective advantage of the polymerase in this case, and mutation favors the 

parasites. Therefore, the polymerases are destroyed by the parasites for any non‐zero value 

of the mutation rate if the system is well‐mixed. In the second‐order case, either spatial 

structure or protocells are essential for the survival of the polymerases, as we have 

considered in several of our previous papers [6,16–18], because polymerases then have a 

selective advantage arising from clustering or group selection. 

The simplest kind of deleterious mutation is one that destroys the function of the 

polymerase completely, without changing its ability to act as a template. We presume that 

such deleterious mutations will be frequent, because (i) a substantial fraction of point 

mutations in RNA sequences disrupt the secondary structure and (ii) a useful polymerase 

in the RNA World needs to be very insensitive to the sequence of the template, otherwise 

it cannot support further evolution and it cannot provide a means of replicating genes with 

other functions (for example, nucleotide synthetases [17]). Here, we focus on the case 

where the replication rate of the parasites is equal to the functional sequence, however the 

case of parasites whose replication rate is faster than that of the polymerases is also relevant, 

and it is considered at the end of this paper. In some cases, the advantage to the polymerase 

arising from clustering or group selection is sufficient to outweigh a large replication‐rate 

advantage of the parasite (we consider a two‐fold replication rate advantage in Section 3.4). 

One reason why parasites might replicate faster is if the mutation destroys the secondary 

structure of the polymerase, and the mutant sequence spends a larger fraction of its time in 

an unfolded state that is accessible as the template for another polymerase. A second reason 
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might be that parasites could be shorter in sequence, and hence more rapidly replicated. We 

previously considered the case where short parasites are created by incomplete replication 

that terminates before the end of the strand is reached [18].  

Although catalytic replication in the RNA World is second‐order, first‐order 

replication could also be relevant if it is non‐enzymatic. We refer to first‐ and second‐order 

rates as r and k respectively. We have previously considered cases where both r and k are 

considered in the model [16,27]. These earlier papers focus on the transition to 

life/replication, rather than the maintenance of replication in system that is already living, 

as we do here. Some small r rate is necessary for creating the first catalysts, but the k rate 

is likely to be much higher than the r rate once well‐adapted polymerases are present; hence, 

we assume that r can be neglected. The relative rates of r and k are important when we 

consider the question of which kind of ribozymes came first [28]. If r was small, the first 

biological catalysts must have been polymerases, whereas if r was high (because non‐

enzymatic replication was intrinsically fast), then other kinds of catalysts that contribute to 

the synthesis of RNA and its precursors could have preceded polymerases. These scenarios 

are qualitatively different, as we discuss in [28]. Functional ribozymes are likely to be quite 

long (maybe 100 nucleotides or more). We do not know whether the replication of 

sequences of this length could be non‐enzymatically possible; however, non‐enzymatic 

replication of short oligomers seems likely, and it may have preceded the origin of 

ribozymes. We have referred to non‐enzymatic replication of oligomers as  ʺchemical 

evolutionʺ  [29]. Such a system would really be evolving, because sequence information in 

the oligomers would be passed on during replication. However, it would be distinct from 
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the usual view of molecular evolution, which we have called  ʺbiological evolutionʺ, 

because sequences would be selected based on physicochemical properties rather than 

encoded function, and because oligomers would be short enough to be synthesized from 

scratch as well as by replication of existing oligomers. In the chemical evolution case, 

diversity can arise by chemical synthesis as well as by mutations of existing sequences, 

whereas, in biological evolution, diversity arises only by mutation, because functional gene 

sequences (including well‐adapted ribozymes in the RNA world) would be too long to be 

synthesized by means other than copying an existing template. We have argued that 

chemical evolution is a significant step on the path to life [29], and that, if evolution is 

considered to be a defining feature of life, then it is the presence of biological evolution 

that defines life, not simply chemical evolution. 

We now return the principle question in the present paper. Assuming that replication 

in the RNA World is maintained by second‐order polymerases, and that first‐order non‐

enzymatic replication can be neglected at this stage, then how can we quantitatively 

compare spatial clustering and encapsulation in protocells as mechanisms allowing for the 

survival of polymerases? This requires us to think carefully about what the spatial models 

actually represent. In spatial lattice models of RNA replicators [11–18], it is usually 

assumed that only one strand is allowed per lattice site, and that a polymerase on one site 

replicates a template on a neighboring site. One way to view this would be to say that the 

lattice represents a two‐dimensional surface, on which the strands are fixed. There is 

evidence that synthesis of short RNA oligomers can occur in the presence of clay surfaces 

[30] and in alkaline hydrothermal vent systems [31], but it is less clear whether minerals 
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help in ribozyme function. It has been shown that clays can increase the rate of self‐

cleavage of the hammerhead ribozyme [32], but cleavage is not equivalent to replication. 

In a study of in vitro RNA evolution with and without the presence of clay [33], it was 

concluded that the effect of the clay was minimal, neither improving nor preventing the 

ability of RNA to evolve functional structures. Furthermore, ligases and polymerases are 

the most relevant laboratory ribozymes for replication in the RNA world [8–10], and these 

are not associated with mineral surfaces. 

We suggest that the spatial models of replication are best viewed as representing the 

effects of confined geometry, slow diffusion, and spatial clustering of cooperating 

molecules, rather than literally representing molecules that are ʺstuckʺ on a surface. Spatial 

models require slow diffusion of molecules, so that clustering of polymerases arises. 

Nevertheless, some degree of motion is required so that replicating molecules can spread 

and encounters occur between polymerases and templates. One conceptual problem is that, 

if a molecule is stuck to a surface, it is difficult to see how it could slide along the surface 

without detaching. If it detached from the surface, then it would often diffuse away from 

the surface and be lost in open water. On the other hand, if the spatial lattice represents a 

confined geometry, such as pores in a rock [34], a mineral matrix [13], or cavities in which 

strands are trapped by thermophoresis [35], then diffusion will slowly occur and the 

molecules will remain within the restricted space. 

In this paper, we consider the spatial models in which diffusion occurs slowly in a 

restricted space. When we think in this way, there is a small length scale (pore or cavity 

size) within which strands can quickly mix and interact, but motion of strands on large 
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scales is controlled by slow diffusion. We can think of one lattice site in the models as a 

pore size, and the volume of this pore will control the maximum number of strands that can 

be on one site, which we call S0. One example of a model that is defined in this manner is 

featured in the study of Branciamore et al. [13]. In their paper, several types of autocatalytic 

replicators, each catalyzing one reaction in a metabolic network, could be present in a pore. 

Each pore was assigned a fitness that corresponded to the diversity of replicators it 

contained, with the requirement that at least one strand of each replicator type be present. 

Parasitic replicators were introduced through invasion and were also autocatalytic, 

competing with members of the network for resources without catalyzing any of the 

reactions [13]. In contrast, instead, we focus on a trans‐acting polymerase. The parasitic 

sequences that we consider are fundamentally different: they cannot replicate without a 

polymerase present in the site. The polymerases may erroneously produce parasites from 

an improper replication. Hence, in our study, the central question is the maximum mutation 

rate the system can sustain rather than the number of different replicator species that can 

be sustained. 

The minimum number of strands that must be allowed on a site if we want to allow for 

second order replication steps to occur on one site is three. The ʺtwoʹs company and threeʹs 

a crowdʺ scheme that we previously studied [27,16], allows up to three strands per site for 

this reason. In the current paper, our object is to compare lattice models with protocell 

models; therefore, we want the underlying rules of the two types of models to be as similar 

as possible. In protocell models [19–21], it is typically assumed that the strands inside one 

protocell are well mixed and interact freely, but there is no interaction between strands in 
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different protocells. Here, we want to make a direct analogy between one lattice site in the 

spatial models and one protocell in the protocell models. We define S0 in the protocell 

models as the number of strands at which cells divide. Thus, S0 controls the maximum 

number of strands per cell/site in both types of model. The rules for replication of strands 

are identical in the two types of models when we define the models in this way. This enables 

us to focus on the differences between spatial models and protocells: in spatial models, 

replication occurs locally on one lattice site and the diffusion of strands occurs between 

neighbouring sites, whereas in protocell models, replication occurs locally in one protocell, 

new cells arise when cells divide, there is no diffusion of strands between cells, and there 

is no spatial structure of the cells. 

An alternative way to compare spatial models and compartments is to use the Cellular 

Potts Model (CPM) [14], in which each compartment occupies multiple sites and only one 

strand is allowed per site. However, this model does not separate the effects of the 

compartments from the effects of spatial structure, because the compartments in the CPM 

are themselves on a lattice and they have spatial neighbours. Diffusion of strands can occur 

between neighboring compartments in the CPM, whereas in the protocell models that we 

use here, there is no diffusion between cells, simply growth, division, and death of cells. In 

some ways, the CPM model is closer to a spatial model in a restricted geometry than it is 

to a model of independent protocells. The study using the CPM [14] deliberately avoided 

making quantitative comparisons between the models with and without compartments, and 

concluded that it was impracticable to make a fair quantitative comparison. However, here, 

we have defined the rules of the models so that a fair quantitative comparison can be made, 
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and such that there is either slow diffusion and spatial clustering or group selection in 

compartments, and not both. We will show that the outcome of this comparison is that there 

is a substantial quantitative advantage to the protocell models over the equivalent spatial 

models, both in terms of the minimum catalytic rate that is required for survival and the 

maximum error rate that can be tolerated. 

2. Materials and Methods  

2.1. Overview of models  

In this study, we compare protocell models and spatial lattice models in such a way 

that there is close analogy between one site in the lattice models and one protocell in the 

protocell models. Each lattice site (or each protocell) can hold multiple strands. Reactions 

that create and destroy strands occur locally on one site (or in one protocell) and are 

equivalently defined in the two kinds of models. Differences between the models are related 

to the dynamics of strands between sites (or protocells) and the factors that limit the 

replication of strands. 

Each strand is one of three types: a polymerase (P), a complementary sequence to the 

polymerase (C), or a non‐functional strand, which we refer to as a parasite (X). Accurate 

replication of a P produces a C, and vice versa. If a point mutation occurs during replication 

of a P or C, an X is produced. The replication of an X always produces another X. We do 

not allow back mutations that produce P or C strands from replicating an X. Replication 

only occurs via the action of a polymerase catalyst, and we ignore non‐enzymatic template‐

directed replication. There is a rate of breakdown of strands back to monomers that is 

assumed to be equal for the three types of strands. 
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Figure 2.1 and Table 2.1 summarize the models that were studied in this paper. In the 

two protocell models, division occurs when the number of strands in a cell, S, reaches a 

specified value, S0. This produces two daughter cells with the strands that were randomly 

divided between them. The number of protocells in the population, N, is a fixed parameter 

in the PCP model (Protocells with Constant Population), and is variable in the PML model 

(Protocells‐Monomer Limited). In the PCP model, whenever a cell divides, another random 

cell is removed from the population to keep N fixed. This represents a situation where 

resources, such as lipids or available space, limit population growth. It is analogous to the 

standard Moran model that was used in population genetics [36]. In each model, there is a 

limiting factor F in the replication rates, which is required for preventing indefinite increase 

of either the population or the number of strands (details below in Section 2.2). In the PCP 

model, the population is already limited by fixing N, therefore no additional limiting factor 

is needed (F = 1). In the PML model, there is no limit to the number of cells, but the number 

of strands is limited by the availability of monomers (i.e. nucleotides). The limiting factor 

is 𝐹 = 1 − 𝑆𝑡𝑜𝑡/𝑆𝑚𝑎𝑥, where 𝑆𝑡𝑜𝑡 is the total number of strands in the whole population , 

and 𝑆𝑚𝑎𝑥 is the maximum allowed number of strands. We call this limit global, because it 

applies equally to all cells in the population. In the PML case, when a cell divides, it is not 

coupled to the removal of another cell. Instead, all empty cells with S = 0 are immediately 

removed in order to prevent the accumulation of empty cells. In the PCP model, we do not 

need to immediately remove empty cells because they are eventually removed at random 

due to the birth and death process of cells.  
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Figure 2.1 A cartoon representation of the spatial model with local diffusion dynamics (left) and the protocell 

models (right). The red strands are polymerases (P), orange strands are complements to polymerases (C), 

and black strands are parasites (X). The blue arrows indicate the possibility of diffusion to and from the eight 

neighboring sites. 

Table 2.1 Overview of models in this study. 

Model Dynamics Limiting Factor Volume 

PCP - Protocells with 

Constant Population 

Division when 

𝑆  𝑆0 

N fixed 

No limit, F = 1 
Grows with cell 

V = S 

PCPCV - Protocells with 

Constant Population and 

Constant Volume 

Division when 

𝑆  𝑆0 

N fixed 

No limit, F = 1 Constant V = S0 

PML - Protocells - Monomer 

Limited 

Division when 

𝑆  𝑆0 

N variable 

Global limit,  𝐹 =
1 − 𝑆𝑡𝑜𝑡/𝑆𝑚𝑎𝑥 

Grows with cell 

V = S 

SLD - Spatial Model with 

Local Diffusion 

Local diffusion 

rate h 
Local limit,  𝐹 =

1 − 𝑆/𝑆0 

Constant 

V = S0 

SMF - Spatial Model with 

Mean Field dynamics 

Mean field 

diffusion rate h 
Local limit, 𝐹 =

1 − 𝑆/𝑆0 

Constant   

 V = S0 

SML - Spatial Model – 

Monomer Limited 

Local diffusion 

rate h 
Global limit,  𝐹 =

1 − 𝑆𝑡𝑜𝑡/𝑆𝑚𝑎𝑥 

Constant 

V = S0 
 

 

The PCP and PML models correspond to different assumptions regarding the processes 

limiting protocell growth. However, we will show below that these two models are 
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surprisingly similar with regard to their error threshold behaviour. Hence, the differences 

that we observe between the protocells and spatial models do not depend on the process 

that limits protocell growth. 

In spatial lattice models, there is no division process, but strands can diffuse from one 

site to another. The most natural spatial model, which we call SLD (Spatial model with 

Local Diffusion) has local diffusion of strands between each site and its nearest neighbours 

that is controlled by a hopping rate h. In this model, the parameter S0 controls the number 

of strands on any one site. The limiting factor is 𝐹 = 1 − 𝑆/𝑆0, which means that no further 

replication is possible on a site when S  S0. The local motion of strands leads to a build up 

of correlations between the contents of one site and its neighbouring sites. This correlation 

causes the clustering of polymerases, which is part of the reason that the spatial model 

allows for the survival of polymerases and avoids destruction by parasites. Therefore, it is 

useful to consider the Spatial Model with Mean Field dynamics (SMF) model as a 

comparison to this. In mean field dynamics, whenever a strand hops to a different site, it is 

placed on any other site with equal probability, rather than on a neighbouring site. We have 

previously studied mean field models with small numbers of strands allowed per site [16, 

27]. If only one strand is allowed per site, then the mean field model is the same as the well-

mixed case, which is not useful, because polymerases are always destroyed by parasites. 

When up to three strands are permitted per site, the mean field model shows the correct 

qualitative behaviour, but is still quantitatively very different from the model with local 

dynamics. We will show here that when many strands are possible per site (S0 = 10 or larger 

in the examples in this paper), there is very little difference between mean field and local 
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dynamics; hence, the mean field approximation is useful. An advantage of the SMF model 

is that it is possible to give a deterministic solution; whereas the SLD model requires 

stochastic simulations. 

In both SMF and SLD, the limiting factor on strand growth is applied locally on each 

site. We also considered a third model, SML (Spatial - Monomer Limited), in which the 

global supply of monomers limits the strand growth, that is, the limiting factor is 𝐹 = 1 −

𝑆𝑡𝑜𝑡/𝑆𝑚𝑎𝑥, as in the PML model. This corresponds to a case where monomers diffuse 

rapidly, hence the concentration is the same everywhere. In this way, we can compare 

protocell and spatial models when the monomer limitation is applied in the same way in 

the two cases. We did not study a protocell case where there is a local limit on growth, 

because we are assuming that there is no spatial structure in the protocell population above 

the level of the cells. 

The last column in Table 2.1 gives the volume, V. This is fixed at V = S0 in the spatial 

models, and it grows in proportion to the number of strands in the PCP and PML models, 

V = S. The volume determines the strand concentrations, and hence the reaction rates, as 

described in Section 2.2. Although it seems natural to keep V constant in the spatial models 

and to allow it to grow in the protocell models, it is useful for comparison to consider an 

additional model, PCPCV, in which the volume is kept constant. We will show below that 

there is a relatively small difference between the PCPCV and PCP models, so the question 

of whether the protocell volume grows or is fixed is a relatively minor one. 
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2.2. Model details 

In all models, replication requires the encounter of a polymerase with another strand 

serving as a template, and produces a strand complementary to the template. Let p, c and x 

label the numbers of P, C and X strands in one site/protocell at a given moment in time, 

and let 𝐾𝑃(𝑝, 𝑐, 𝑥), 𝐾𝐶(𝑝, 𝑐, 𝑥), and 𝐾𝑋(𝑝, 𝑐, 𝑥) denote the rates of production of P, C and 

X strands in this site/protocell. For all models, we may write 

𝐾𝑃(𝑝, 𝑐, 𝑥) = (1 − 𝑀)
𝑝𝑐𝐹

𝑉
𝑘. 

𝐾𝐶(𝑝, 𝑐, 𝑥) = (1 − 𝑀)
(𝑝 − 1)𝑝𝐹

𝑉
𝑘. 

𝐾𝑋(𝑝, 𝑐, 𝑥) = 𝑀
𝑝𝑐𝐹

𝑉
𝑘 +  𝑀

(𝑝 − 1)𝑝𝐹

𝑉
𝑘 +  

𝑝𝑥𝐹

𝑉
𝑘. 

In the formula for 𝐾𝑃, k is the replication rate per polymerase, c is the number of C templates 

from which new P strands can be produced, and the concentration of polymerases is p/V, 

where V is the volume of the cell/lattice site. Note that the rate of increase in the 

concentration of product strands would be proportional to the concentration of the 

polymerases, p/V, times the concentration of the templates, c/V. However, Kp is the rate of 

increase in number of strands per cell, not the concentration, so there is an extra factor of 

V. Hence, Kp depends on pc/V, not pc/V2. Equivalently, we may say that the rate of increase 

in the number of product strands is proportional to the concentration of polymerases, p/V, 

times the number of templates, c. 

M is the probability that a mutation occurs from a P or C to an X during replication. F 

is the limiting factor that prevents the indefinite increase of strands, as discussed in section 

2.1 and Table 2.1. The formula for 𝐾𝐶  differs, in that the number of P templates is p, and 
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the concentration of other P strands that can act as polymerases is (p-1)/V. The formula for 

𝐾𝑋  includes the term for direct replication of X, plus the terms for creation of X strands by 

errors in replication of P and C.  

The stochastic simulation of these models proceeds in time steps t. In each time step, 

births and deaths of strands are considered separately on each site/protocell. The 

probabilities of adding one P, C or X strand are 𝐾𝑃(𝑝, 𝑐, 𝑥)𝑡, 𝐾𝐶(𝑝, 𝑐, 𝑥)𝑡, and 

𝐾𝑋(𝑝, 𝑐, 𝑥)𝑡. Strands break down at a constant rate, defined as v = 1. The probabilities of 

removal of one P, C, or X strand from a site/protocell are therefore vpt, vpt and vxt, 

respectively. After birth and death of strands, protocell division occurs in the protocell 

models and diffusion occurs in the spatial lattice models. 

In the protocell models, S = p + c + x is the current number of strands. Cells with S  

S0 undergo random division. Cell division is assumed to be rapid once the split size is 

reached, i.e. all cells with S ≥ S0 divide with probability 1 in one time step. The strands 

from the parent cell are assigned independently with equal probability to one of the two 

daughter cells. Even though cell division immediately occurs on reaching S0 strands per 

cell, it is possible for a small number of cells with S ≥ S0 to remain in the population after 

cell division. Firstly, it is occasionally possible to create cells with more than S0 strands, 

because replications of P, C and X strands are independently considered; hence, more than 

one replication can occur in the same cell in one time step. Secondly, it is possible for the 

random split to occasionally yield S0 strands in one daughter and zero in the other; hence, 

there will sometimes still be S0 strands after division.  
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In the PCP model, we begin with N cells, each having one P, one C and one X. The 

maximum number of strands that can arise in the PCP model is NS0. We set Smax in PML to 

NS0, where N is the fixed population size of the PCP model in order to compare PML with 

PCP. In the PML model, we begin with 𝑆𝑚𝑎𝑥/2 cells, each having one P, one C and one X. 

In the spatial lattice models, the number of lattice sites is analogous to the population 

size. We consider a square lattice of N = L  L sites with periodic boundaries (edges 

connected in a torus). We begin with one P, one C and one X in each site. There is a 

probability ht per time step that a strand diffuses to another site. In the SLD and SML 

models, strands randomly move to one of the eight sites in their Moore neighbourhood 

(Figure 2.1). In the SMF model, strands move to any other site at random. The destruction 

rate of strands is v = 1 in the spatial models, in the same as for the protocell models. 

All these models can be simulated by stochastic methods with finite population sizes 

and finite numbers of strands. However, in some cases, we can also consider deterministic 

versions of these models by solving the master equations for the probability distribution 

P(p,c,x) that a site/protocell has p, c and x strands of types P, C and X. This is done in the 

Appendix for the protocell model with constant population size and the lattice model with 

long-distance diffusion. 

3. Results and Discussion 

3.1. Error Threshold Behaviour 

Figures 2.2a and 2.2b show the concentrations of P, C and X strands as a function of 

mutation rate, M, for the PCP model with S0 = 10 and 20. The smooth lines are obtained 
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from the deterministic theory in the Appendix, which applies for infinite populations. The 

points are measured by simulations with N = 1024. These show typical error-threshold 

behavior. The numbers of P and C strands per cell decrease steadily as the mutation rate is 

increased, while the number of X strands passes through a maximum. There are always 

slightly more P than C strands because of the (p-1) factor in 𝐾𝑐(𝑝, 𝑐, 𝑥), (i.e. a P cannot 

replicate itself, whereas a P can replicate all C's). All three strands die out at the error 

threshold, M = Mmax. The deterministic theory predicts that the strand numbers smoothly 

decrease to zero as M approaches Mmax. Close to this point, the expected number of viable 

cells in a finite population is very small; hence, the finite population simulations are 

vulnerable to stochastic fluctuations causing the death of the system. The average number 

of strands in the simulations in the long-time limit is then zero. This causes the simulated 

systems to die out at slightly smaller values of M than is predicted by deterministic models. 
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Figure 2.2 Average numbers of strands per cell in the PCP model. (a) S0 = 10, (b) S0 = 20. k = 25 in both 

cases. Points are from finite population simulations. Smooth lines are from deterministic theory.   

Figures 2.3a and 2.3b show the error threshold behavior for the SMF model. In this 

case, the deterministic theory and the finite population simulation both show a 

discontinuous transition at the error threshold, i.e. the jump in the curve is not due to 

stochastic extinction in small populations, as it is in Figure 2.2. Comparison of Figures 2.2 

and 2.3 shows that the error threshold is much larger in the protocell model than the lattice 
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model, as we discuss in more detail in section 3.2. Additionally of note is the fact that in 

both the deterministic and mean field versions of the spatial model, at higher S0 values, 

there is a non-zero parasite population present even at zero mutation rates. In other words 

there is a coexistence of non-functional parasites with polymerases, even when the parasites 

are not replenished by mutations from the polymerases. This is a significant difference from 

the protocell models considered in Figure 2.2, where the parasites are always purged from 

the systems at zero mutation rates. 

 
(a) 
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(b) 

Figure 2.3 Average numbers of strands per site in the SMF model. (a) N = 100, k = 25, h = 0.4 and (b) N = 

400, k = 20, h = 0.4. Points are from finite population simulations. Smooth lines are from deterministic 

theory.  

3.2. Comparison of Error Thresholds in Different Models 

The two key properties that we wish to compare between all of the models are the error 

threshold value, Mmax (i.e. the maximum sustainable error probability per replication of the 

whole sequence) and the minimum catalytic rate, kmin, required for survival of the 

polymerases. Figure 2.4 shows Mmax measured from simulations as a function of k. The 

estimates of Mmax were obtained by running a series of simulations at each value of k and 

gradually adjusting the mutation rate to zero in on the error threshold. A similar method 

was used to produce Figure 2.5, where S0 was held fixed.  
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Figure 2.4 Comparison of the error threshold of the various models studied as a function of the 

polymerization rate k. S0 = 10 in all models except the one per site model, and h = 0.4 in the lattice models. 

All results are from stochastic simulations except for SMF, which results are from the deterministic method. 

OSPS is the one strand per site model from [18]. Other models are defined in Table 2.1. 

We will initially discuss the two principal protocell models, PCP and PML, in 

comparison to the two principal spatial models, SLD and SMF. The other models will be 

discussed later, because we consider them to be less realistic. The PCP and PML models 

show a higher error threshold than the SLD and SMF over the whole range of k studied, 

and require the lowest values of k to survive. The protocell models are thus "better" for the 

RNA World, in the sense that survival of the polymerases is substantially easier in the 

protocells than the lattice models.  
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Figure 2.5 Comparison of the error threshold of the various models studied as a function of S0. k = 25 in all 

models, and h = 0.4 in the lattice models. Results for SMF are obtained from the deterministic method, except 

for the points with S0 > 150, where the deterministic method becomes much slower than the stochastic 

simulation. Results for the other models are obtained from stochastic simulations. OSPS is the one strand per 

site model from [18]. Other models are defined in Table 2.1.   

It should be remembered that, even when there are no replication errors (M = 0), a 

minimum value of k is necessary for survival, because replication must be faster than the 

breakdown rate of the strands (v = 1). Thus kmin is the value of k at which Mmax becomes 

zero. For the PCP and PML models, kmin is approximately 3, whereas it is approximately 

18 for SLD and SMF. Thus there is a substantial range 3  k  18 where replication is 

possible in protocells and not in spatial models. All these rates should be thought of as 

relative to the breakdown rate, because we have set v = 1. 
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For well-adapted ribozymes, where k  kmin, we find Mmax is around 0.36 for PCP, but 

only approx 0.075 for SLD and 0.09 for SMF. Thus the protocell models are four- to five-

fold more tolerant of error. These figures are per-sequence. If they are converted to per-

base error rates, this implies that there is a four- to five-fold greater limit in the maximum 

length of replicating sequences that can be maintained in protocells relative to spatial 

models. 

Figure 2.4 also shows the PCPCV model. This model has the volume fixed to S0 in the 

same way as it is in the spatial models, and therefore eliminates a minor difference in the 

definitions of protocell and spatial models. The error threshold of PCPCV is reduced 

slightly relative to PCP, but it is still much higher than the spatial models. Therefore the 

issue of whether the protocell volume is fixed or grows with the number of strands is only 

a minor effect. PCP seems more realistic because in reality a cell cannot keep constant 

volume when it divides.  

We now turn to the SML model. This has Mmax intermediate between the protocell 

models and the other spatial models, and has kmin almost equal to the protocell models. This 

comparison is interesting from a theoretical point of view, as it highlights the fact that the 

local limitation on growth that applies in the SLD and SMF models leads to much lower 

error thresholds than the global limitation in the SML model. However, there are problems 

with the SML model that mean that is not a biologically realistic model. Replication is 

fastest on sites with the largest number of polymerases. Strands tend to pile up with very 

large numbers of strands on a very small number of sites, and with many other sites being 

empty, as there is no local limit on the number of strands per site in the SML model. This 
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cannot be realistic, because sooner or later, local limits must take effect. Either the 

monomer limit becomes local, because the concentration of available monomers becomes 

depleted on sites when there is a lot of replication, or the local limit of space takes effect. 

Thus, we consider the SLD to be the most realistic of the spatial models, and the comparison 

between the SLD and the two protocell models as the most valid comparison of the 

differences between spatial models and protocells. 

The final model on Figure 2.4 is the surface model with only one strand per site 

(OSPS), taken from Figure 3 of Tupper et al. [18]. In that model, a P strand replicates a 

strand on a neighbouring site (because there is no other strand on the same site). This model 

is also intermediate between the protocell models and the SLD model, but again, this seems 

less realistic than SLD, and it cannot be easily compared with the protocell models because 

there is no way of having a protocell with only one strand per compartment. 

The parameter S0, which controls the number of strands per site/cell has important 

effects on the error threshold, as shown in Figure 2.5. For a site/cell to be viable, there must 

be a minimum of either two P's or one P and one C. When S0 is small, there are many sites 

that are not viable, and the whole system dies out. Once S0 is above this minimum size for 

viability, Mmax increases rapidly with So and then decreases slowly as S0 becomes large. For 

very large S0, each site is a well-mixed model, and there is no more clustering or group 

selection. Therefore, Mmax must tend to zero for very large S0. The SML model is an outlier 

here in that it is not affected by high S0 values. In the SML model, the only effect of S0 is 

to determine the total number of strands, because Smax = SoN, and it does not limit the 

number of strands on one site, as it does in the other models. The one strand per site model 
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from Tupper et al. [18] is also shown as a comparison, but there is no equivalent of S0 in 

this case. It should be remembered that polymerases replicate templates on neighbouring 

sites in ref. [18], but on the same site in this paper. Hence it is not possible to have S0 = 1 

in the spatial models in this paper. Once again, in Figure 2.5, we see that the PCP and PML 

models are very similar, and that the PCPCV is only slightly lower than the PCP model. 

The most useful comparison is between the PCP/PML models and the SLD model, and this 

shows a substantially larger error threshold for the protocell models, by a factor of 4 to 10. 

An interesting observation in Figures 2.4 and 2.5 is that the PCP and PML 

models have almost equal error thresholds, even though the models differ in 

important respects. For example, all cells die with equal probability in the PCP 

model, but only empty cells die in the PML model. The average replication rate of 

strands is substantially faster than v in the PCP model, because replication has to 

balance the removal of strands occuring when cells die as well as when individual 

strands are removed. In contrast, the average replication rate of strands in the PML 

case is equal to v, because the limiting factor reduces this rate to balance the 

removal of individual strands. Nevertheless, we observe that these apparently large 

differences do not have a large effect on the error threshold. This is probably because the 

differences between the models disappear as the mutation rate approaches the error 

threshold. In the PCP model, the fraction of viable cells becomes very small when 𝑀 →

𝑀𝑚𝑎𝑥; therefore the cell division rate is very low, and the rate of removal of strands due to 

cell death becomes small relative to the rate of removal of individual strands. In the PML 
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model, there is a limiting factor 𝐹 = 1 − 𝑆𝑡𝑜𝑡/𝑆𝑚𝑎𝑥 which is not present in the PCP model. 

However, when 𝑀 → 𝑀𝑚𝑎𝑥, the total number of cells is very small and the total number of 

strands is much less than 𝑆𝑚𝑎𝑥. This means that 𝐹 → 1, so this difference between the 

models also disappears close to the error threshold.  

3.3 Effect of Diffusion Rate in the Spatial Models 

It can also be seen in Figures 2.4 and 2.5 that SLD and SMF models give quite similar 

results. This means that the mean field approximation is quite a good one. With the 

parameters that are chosen in Figures 2.4 and 2.5, the error threshold is slightly lower with 

local diffusion than in the mean field case. However, this depends on the hopping rate h, 

which we have not yet considered. All of the above results were performed with a single 

value, h = 0.4, which was chosen at the beginning of this study because it gave fairly good 

survival of polymerases in the spatial models. If h is too large, the spatial model becomes 

well-mixed, and polymerases do not survive. If h is too small, there is no spread of strands 

between sites, and polymerases become extinct independently on each site. The effect of 

diffusion has also been studied by Branciamore et al. [13] in the case of metabolic 

replicators, rather than polymerases. 

Therefore, we performed a further comparison of SLD and SMF models as a function 

of h, as shown in Figure 2.6. There is an optimum value of h close to 1, at which the error 

threshold is highest. The optimum h is slightly higher for the local diffusion model, but is 

of order h ~ 1 in both cases. Below the optimum h, the SMF has a slightly higher error 

threshold (as in Figs. 4 and 5), and above the optimum h, the SLD model has a slightly 

higher error threshold, but the difference is always small. The value h = 0.4 chosen initially 
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is slightly below the optimum value for both models. Hence, if h were tuned to the 

optimum, the results for SLD and SMF in Figs 4 and 5 would be slightly higher. 

Nevertheless, the error threshold in the two spatial models is only 0.07 at the optimum h, 

which is still very much less than the protocell models (Mmax is approximately 0.32 for the 

protocell models with S0 = 10 and k = 25, as shown in Fig 2a). Furthermore, there is no 

reason in nature why diffusion should be tuned to the optimum value. For most of the range 

of h, the error threshold for the spatial models would be even lower than those shown in 

Figures 2.4 and 2.5, and the system cannot survive at all (Mmax = 0) if h is too high or too 

low. The problem of tuning diffusion does not arise in the protocell models, which is 

another advantage of protocells. 

 
Figure 2.6 Comparison of the error thresholds of the spatial models with long distance diffusion and local 

diffusion as a function of the diffusion rate h. Made using S0 = 10, k = 25. 

The fact that the difference between local diffusion and mean field cases is small means 

that the effect of the dimension of space is small. Our spatial models are all studied on a 
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two‐dimensional square lattice. However, we have argued that the spatial model is more 

usefully thought of as representing a confined geometry, such as pores in a rock rather than 

molecules stuck on a two‐ dimensional surface. There is no reason why the lattice needs to 

be two‐dimensional. If we considered a three-dimensional lattice, the results would be 

between the two‐dimensional (2D) and mean field cases, i.e. there would be little 

difference. However, it should be remembered that the spatial clustering mechanism only 

works if diffusion is very slow. Therefore, it would not apply to an open solution in three‐

dimensions (3D), in which diffusion and mixing would be rapid when compared to 

replication. 

3.4 Rapidly-replicating Parasites 

In all of the previous results, we have assumed that parasite templates are replicated at 

the same rate as functional strands. It seems likely that a substantial fraction of point 

mutations in the polymerase would disrupt the structure and prevent its function as a 

ribozyme, but have almost no effect on the ability of the sequence to be a template. 

However, it is also possible that some mutant sequences would be better templates than the 

original polymerase. Therefore, in this section we consider the case where the replication 

rate for parasites is 2k, whereas it remains at k for the polymerase and complement. The 

parasite is thus favored by both mutation and speed of replication. Nevertheless, group 

selection and clustering effects mean that the polymerase can survive the presence of 

rapidly multiplying parasites for some parameter values. 

Figure 2.7 shows the error thresholds of PCP and SLD models as a function of k in the 

case where parasites have the same replication rate as polymerases, together with the 
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equivalent models where parasites have double the replication rate of polymerases (denoted 

PCP2X and SLD2X). Both error thresholds are reduced when the parasites multiply faster, 

but the SLD model is reduced more. For well-adapted ribozymes with high k, the ratio of 

error thresholds for PCP and SLD is 0.36/0.075 = 4.8, whereas the ratio for PCP2X and 

SLD2X is 0.2/0.014 = 14.3. Thus, the addition of faster replicating parasites increases the 

advantage of protocells over spatial models. 

Figure 2.8 shows the error thresholds for the same models as a function of S0. The error 

threshold for PCP2X is reduced substantially relative to PCP for larger S0. Nevertheless 

there is a non-zero error threshold in PCP2X up to at least S0 = 275. On the other hand, 

there is only a very narrow range of S0 (approximately 7 - 20) where the error threshold is 

non-zero for SLD2X, and even within this range, the error threshold is extremely low. For 

S0 > 20 in the SLD2X model, fast replicating parasites multiply and lead to destruction of 

the polymerases (and themselves) even in the limit of zero mutation rate. We allowed the 

system to reach a steady state with only P and C strands present to test the limit of zero 

mutation rate. A very small number of parasites were then added, and replication continued 

with zero mutation rate. For S0 > 20, the initial few parasites multiply and destroy the 

system even though there is no further production of parasites by mutation. In contrast, 

there is a finite error threshold for the PCP2X model at high S0, as we just noted. Thus, 

once again, the advantage of the protocell over the spatial model is increased when we 

consider faster replicating parasites.  
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Figure 2.7 Error thresholds versus k for PCP and SLD models in which parasites and polymerases have 

equal replication rates (same as Figure 2.4) compared with equivalent models where parasites have double 

the replication rate of polymerases (denoted PCP2X and SLD2X). Both error thresholds are reduced when 

the parasites multiply faster, but the SLD model is reduced more, meaning that the relative advantage of the 

protocells over the spatial model is increased. S0 = 10 and h = 0.4. 
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Figure 2.8 Error thresholds versus S0 for PCP and SLD models in which parasites and polymerases have 

equal replication rates (same as Figure 2.5) compared with equivalent models where parasites have double 

the replication rate of polymerases (denoted PCP2X and SLD2X). Both error thresholds are reduced when 

the parasites multiply faster, but the SLD model is reduced more, meaning that the relative advantage of the 

protocells over the spatial model is increased. Note that Mmax = 0 for S0 > 20 for SLD2X, because faster 

parasites kill the polymerases in the spatial model. k = 25 and h = 0.4.  

4. Conclusions 

Although the mechanisms by which compartments and spatial clustering promote the 

survival of polymerases (or other kinds of cooperative replicators) have been understood 

for some time, there has not been much quantitative comparison of the two. It becomes 

apparent that it is necessary to clearly specify which factors limit the growth of strands 

when designing models to allow for this quantitative comparison. The limiting resource 

could simply be space, as is likely to be the case if there is a maximum number of strands 
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that can fit in the space represented by one lattice site. Alternatively, the limit may be the 

availability of monomers to synthesize the strands, or it may be the availability of another 

molecular resource, such as lipids, which limits the growth of protocells before the supply 

of monomers runs out.    

It is also important to consider whether the limiting factor acts globally on the whole 

population, or locally on one protocell/site at a time. In the spatial models, it seems natural 

to apply the limitation locally, as in the SLD and SMF models, however we also considered 

the SML case where a global monomer limitation was applied. The survival of polymerases 

was somewhat easier when the limit was global, but this model does not seem realistic. The 

spatial models are intended to represent restricted geometries where diffusion will be slow, 

such as crevices in rocks. A lattice site would represent a region in which strands can 

interact with one another. Space is obviously limited in such environments. The diffusion 

of strands has to be slow in spatial models, otherwise the system becomes well‐mixed and 

polymerases do not survive. Although the diffusion of monomers might be faster than that 

of strands, it is still finite. Thus the monomer limitation in spatial models has to be local. 

The locally‐limited spatial models have a much lower error threshold and a much higher 

minimum catalytic rate that the protocell models. Hence, our principle conclusion that 

polymerase survival is much easier in protocells than in spatial models with restricted 

geometry, such as pores in a rock. 

In protocell models, it seems natural to assume that the limiting factor is global, as will 

be the case if the protocells are free to move in the surrounding medium, and if supply of 

either lipids or monomers to the protocells is rapid and well-mixed. There is no restrictive 
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geometry or surface binding to slow things down in this case. A somewhat surprising 

finding of this paper is that the PML model, where strand growth is limited by monomers, 

and the PCP model, where protocell growth is limited by factors other than monomer 

supply, give such similar results in terms of the error threshold. Hence, our conclusion that 

the advantages of protocells found in this paper are robust to model variations. 

Although both protocell models and spatial models have been widely studied, there 

has been little previous quantitative comparison. This paper enables us to make that 

comparison in a novel way and to distinguish carefully the different factors that limit 

replication. We will emphasize several detailed aspects of the models that emerge from this 

comparison. There are two different kinds of transitions that occur at the error threshold: 

either the strand concentrations go continuously to zero (as in Figure 2.2), or there is a 

discontinuous jump (as in Figure 2.3). Figure 2.3b also shows the unexpected result that 

parasites can coexist with polymerases in the limit of zero mutation rate where they are no 

longer being created. This occurs in the spatial models with large enough S0 but not in 

protocell models. In the case where parasites multiply faster than polymerases, the 

advantage of the protocells over the spatial models is increased (as in Figures 2.7 and 2.8). 

In Figure 2.8, there is a qualitative difference between the protocells (PCP2X) and spatial 

model (SLD2X). For the protocells, there is a finite error threshold, even for the largest S0 

considered, whereas parasites destroy the spatial system even in the limit of zero mutation 

rate. 

The results in this paper are somewhat different to those obtained from the Cellular 

Potts Model (CPM) [14] because they consider different cases. The CPM begins with a 
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spatial model of only one strand per site, and adds cellular compartments on top of this. It 

is found [14] that these surface models with and without compartments do not qualitatively 

differ from one another in respect to their stability against mutations. This is best thought 

of as representing a case where strands are stuck to surfaces. In contrast, we have referred 

to our lattice models as 'spatial' not 'surface', because they model a case where spatial 

clustering occurs due to slow diffusion in restricted geometries. In our case, mixing is fast 

locally, but slow on a global scale. Fast mixing on the local scale is equivalent to fast mixing 

inside a single protocell. This makes the protocell and spatial models equivalent on the 

local scale and allows direct comparison. Our models clearly separate the effects of 

diffusion between sites from the effects of group selection and cell division, and show that 

group selection is noticeably better as a means of limiting the growth of parasites. 

The diversity and success of cellular life on Earth is evident, and there is no evidence 

for distributed living systems on surfaces. This paper goes some way to showing why this 

is. It also fits with our previous study [17] of interacting polymerase and nucleotide 

synthetase ribozymes, where we pointed out that survival of two complementary types of 

unlinked ribozymes is possible on a surface, but is difficult because it requires joint spatial 

patterns to form. There is no equivalent problem if the ribozymes are in compartments. 

Hence we expect evolution from single replicators to genetic systems involving multiple 

types of ribozymes to be easier in protocells. 

We are very pleased to have the opportunity to contribute to this volume dedicated to 

Prof. David Deamer. The Origins Institute at McMaster has benefitted greatly from Davidʹs 

help and advice over many years, and we are very grateful for his scientific input, 
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friendship, and enthusiasm. David has made many important contributions to the 

understanding of the origins of life. In particular, he has long been an advocate of the 

importance of membranes to early life [37–39]. His recent work has shown that lipid 

membranes can provide an environment in which RNA polymerization becomes possible 

[40]. The stability of membranes in fresh water conditions and the possibility of wetting 

and drying cycles occurring in shallow water has led to his current view that life began in 

freshwater pools associated with volcanic islands [41,42]. Under these conditions, it is 

likely that membranes were available to encapsulate the earliest replicating polymers at the 

time of the origin of life. This ties in with the conclusions of the current paper, in which we 

have shown that encapsulation greatly increases the ability of RNA replicators to survive 

when the replication accuracy is low. Thus, we conclude that the presence of protocells is 

beneficial to the development of early life, and it seems quite likely that the first replicating 

polymers may have functioned inside lipid vesicles from the outset.  
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Appendix A 

In the limit where the number of lattice sites or protocells becomes infinite, it is 

possible to calculate probability distribution 𝑃(𝑝, 𝑐, 𝑥) that a site/protocell will have p, c 
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and x molecules of types P, C and X. For the protocell model with constant population, we 

may write the rate of change of the probabilities due to birth and death of strands as 

 

𝑑𝑃(𝑝, 𝑐, 𝑥)

𝑑𝑡
= 𝐾𝑃(𝑝 − 1, 𝑐, 𝑥)𝑃(𝑝 − 1, 𝑐, 𝑥) + 𝐾𝐶(𝑝, 𝑐 − 1, 𝑥)𝑃(𝑝, 𝑐 − 1, 𝑥)

+ 𝐾𝑋(𝑝, 𝑐, 𝑥 − 1)𝑃(𝑝, 𝑐, 𝑥 − 1) 

−(𝐾𝑃(𝑝, 𝑐, 𝑥) + 𝐾𝐶(𝑝, 𝑐, 𝑥) + 𝐾𝑋(𝑝, 𝑐, 𝑥))𝑃(𝑝, 𝑐, 𝑥) 

+𝑣(𝑝 + 1)𝑃(𝑝 + 1, 𝑐, 𝑥) + 𝑣(𝑝 + 1)𝑃(𝑝, 𝑐 + 1, 𝑥) + 𝑣(𝑥 + 1)𝑃(𝑝, 𝑐, 𝑥 + 1) −

𝑣(𝑝 + 𝑐 + 𝑥)𝑃(𝑝, 𝑐, 𝑥). 

The rate of production of cells of type (𝑝, 𝑐, 𝑥) by random division of cells of type 

(𝑝0, 𝑐0, 𝑥0) is 

  𝑏(𝑝, 𝑐, 𝑥|𝑝0, 𝑐0, 𝑥0) = 2
𝑝0!

2𝑝0𝑝!(𝑝0−𝑝)!

𝑐0!

2𝑐0𝑐!(𝑐0−𝑐)!

𝑥0!

2𝑥0𝑥!(𝑥0−𝑥)!
 . 

All cells with at least 𝑆0 strands divide with probability 1 in one time step. The total 

rate of production of cells of type (𝑝, 𝑐, 𝑥) by division of all cells with at least 𝑆0 strands is   

   𝐵(𝑝, 𝑐, 𝑥) =

∑ 𝑏(𝑝, 𝑐, 𝑥|𝑝0, 𝑐0, 𝑥0)𝑃(𝑝0, 𝑐0, 𝑥0)𝑝0≥𝑝;𝑐0≥𝑐;𝑥0≥𝑥;𝑝0+𝑐0+𝑥0≥𝑆0
. 

As the population is fixed, the total rate of removal of cells when other cells divide is 

equal to the total division rate: 

𝐵𝑡𝑜𝑡 = ∑ 𝑃(𝑝0, 𝑐0, 𝑥0)
𝑝0+𝑐0+𝑥0≥𝑆0

 

The change in probability in one time step due to cell division is therefore 

∆𝑃(𝑝, 𝑐, 𝑥) = 𝐵(𝑝, 𝑐, 𝑥) − 𝐵𝑡𝑜𝑡𝑃(𝑝, 𝑐, 𝑥), for cells with 𝑝 + 𝑐 + 𝑥 < 𝑆0, and ∆𝑃(𝑝, 𝑐, 𝑥) =

𝐵(𝑝, 𝑐, 𝑥) − 𝐵𝑡𝑜𝑡𝑃(𝑝, 𝑐, 𝑥) − 𝑃(𝑝, 𝑐, 𝑥), for cells with 𝑝 + 𝑐 + 𝑥 ≥ 𝑆0. Thus the probability 
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of each cell type after one time step, accounting for both strand birth and death and cell 

division is 

   𝑃(𝑝, 𝑐, 𝑥)|𝑡+𝛿𝑡 = 𝑃(𝑝, 𝑐, 𝑥)|𝑡 + 𝛿𝑡
𝑑𝑃(𝑝,𝑐,𝑥)

𝑑𝑡
+ ∆𝑃(𝑝, 𝑐, 𝑥). 

To solve the model by this deterministic method, we iterate forward in time till the 

stationary state is reached. 

The spatial lattice model can also be solved deterministically if we make a mean field 

assumption, i.e. there is a single central site surrounded by a homogenous environment. 

The terms for birth and death of strands are the same as for the protocell case. Terms for 

diffusion into and out of the central site are added, as follows. 

 

𝑑𝑃(𝑝, 𝑐, 𝑥)

𝑑𝑡
= 𝑏𝑖𝑟𝑡ℎ 𝑎𝑛𝑑 𝑑𝑒𝑎𝑡ℎ 𝑡𝑒𝑟𝑚𝑠 

+ℎ(𝑝 + 1)𝑃(𝑝 + 1, 𝑐, 𝑥) + ℎ(𝑝 + 1)𝑃(𝑝, 𝑐 + 1, 𝑥) + ℎ(𝑥 + 1)𝑃(𝑝, 𝑐, 𝑥 + 1)

− ℎ(𝑝 + 𝑐 + 𝑥)𝑃(𝑝, 𝑐, 𝑥) 

+ℎ𝑝𝑃(𝑝 − 1, 𝑐, 𝑥) + ℎ𝑐𝑃(𝑝, 𝑐 − 1, 𝑥) + ℎ𝑥𝑃(𝑝, 𝑐, 𝑥 − 1) − ℎ(𝑝 + 𝑐 + 𝑥)𝑃(𝑝, 𝑐, 𝑥) 

 

Here, 𝑝, 𝑐 and 𝑥 are the current mean values of the numbers of strands per site across 

the whole lattice: 𝑝 = ∑ 𝑝𝑃(𝑝, 𝑐, 𝑥)𝑝,𝑐,𝑥 , 𝑐 = ∑ 𝑐𝑃(𝑝, 𝑐, 𝑥)𝑝,𝑐,𝑥 ,and 𝑥 = ∑ 𝑥𝑃(𝑝, 𝑐, 𝑥)𝑝,𝑐,𝑥 . 

The mean field method has also been used in similar models by McCaskill et al. [43] and 

in our previous work [16, 27].  
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Chapter 3: Additional content for Shah et al. (2019) 

 

3.1 Summary of Additional Work 

This section contains material that was not included in the version of the paper 

published in Life. The results presented compare how group selection and spatial clustering 

control the amount of parasitic strands present in a protocell and spatial model, respectively. 

3.2 Additional Results  

 

Figures 3.1 and 3.2 show the distribution of strands in a run of the PCP model SLD 

model respectively, along with the size distribution (blue bars/lines). The strand distribution 

is the fraction of the total population of cells/sites that contain a specific amount of strands 

of a given type, for example figure 3.2a shows just under 60% of all sites contain no 

parasites, just under 20% of all sites contain only 1 parasite, about 10% of all sites contain 

only 2 parasites, and so on. Similarly, the size distribution is the fraction of the total 

population of cells/sites containing a given amount of strands in total, again using figure 

3.2a as an example shows 15% of all sites are empty and about 10% of all sites have 8 

strands in them. The plots are done with different M values as our goal is to determine what 

happens to the distributions as the error threshold is approached. Comparing figures 3.1a 

and 3.2a shows the difference group selection has compared to spatial clustering: almost 

no protocells have any parasites remaining in them, whereas almost half of all lattice sites 

have some number of parasites. We can also see that for the protocells, there is a broad 

distribution in terms of sizes, with a peak at about half the split size, whereas for the spatial 
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model the size distribution is smeared and very slightly bimodal, with a large amount of 

sites which are close to empty and a large amount of sites which are close to being full.  

Comparing 3.1b and 3.2b further shows that group selection prevents the accumulation 

of large numbers of parasites better than spatial clustering can. By allowing more strands 

per site/cell, we see that the behavior in the lattice model changes significantly. When only 

a small number of strands, say 10, are allowed per site, we see that the number of parasitic 

strands per site appears to decrease exponentially, and the number of polymerases and 

compliments tend to outnumber them. Increasing the number allowed per site to 100, we 

see that there is a much broader distribution of parasites, and that while their number still 

drops off, it occurs once they begin to outnumber the polymerases and compliments. 

Essentially, the majority of sites have a few polymerases and compliments – enough for 

them to continue to survive, but the majority of polymerase work is done to increase the 

number of parasites. Conversely, in the protocell model the number of parasites is always 

kept low by the effects of group selection favouring cells with more polymerases and 

compliments (as those with more P and C grow faster), regardless of how many strands are 

allowed per cell. This allows the majority of polymerase work to be focused on generating 

more copies compliments and themselves.  
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(a) 

 
(b) 

Figure 3.1 Strand distributions for (a) protocell model with constant volume at a split size of 10; (b) protocell 

model with constant volume at a split size of 100 
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(a) 

 
(b) 

 

Figure 3.2 Strand distributions for (a) spatial model – local diffusion with a maximum size of 10; (b) spatial 

model – local diffusion with a maximum size of 100 
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To visualize the effect of increasing mutation rate in spatial models, simulations were 

conducted using the SLD model for low (M = 0.01) and high (M = 0.06) mutation rates. 

These runs were performed with a lattice 100 × 100 sites in size, using the parameters S0 = 

15, k = 25 and h = 0.4. The sites depicted in Figures 3.3, 3.4 and 3.5 are coloured as follows: 

empty sites are coloured white, while non-empty sites are coloured according to 

𝐶(𝑝, 𝑐, 𝑥) =
𝑝 + 𝑐

𝑝 + 𝑐 + 𝑥
 

The range of this function is mapped to a linear colour gradient spanning between black 

(𝐶(𝑝, 𝑐, 𝑥) = 0) and red (𝐶(𝑝, 𝑐, 𝑥) = 1). Thus, sites dominated by parasites are coloured 

darker and sites with relatively few parasites are coloured brighter. A summary of 

parameters and results is presented in Table 3.1. 

Table 3. 1 Mutation in Different Spatial Models 

Figure 3.3 3.4 3.5 

Model SLD SLD SMF 

M 0.01 0.06 0.06 

S0 15 15 15 

k  25 25 25 

h 0.4 0.4 0.4 

 

Result 

Full Empty regions and 

clusters of living sites 

Full 
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Figures 3.3 and 3.4 show three snapshots from each simulation, taken at t = 100 shortly 

after initialization, at t = 3000 partway through the simulation and at t = 9000 once the 

simulation had reached equilibrium. Comparing figure 3.3a and figure 3.4a shows little 

difference shortly after initialization, because only a relatively small number of replication 

events have occurred, limiting the effects of a higher mutation rate. Once more time has 

elapsed, the effects of higher mutation rates becomes obvious with many figures 3.4b and 

3.4c showing an increasing number of empty lattice sites, while figures 3.3b and 3.3c show 

few in comparison. The effect of clustering is also readily visible in figures 3.4b and 3.4c, 

with populations of sites grouped together against the empty surroundings. Closer 

inspection also reveals sites with high relative parasite counts are largely found on the 

peripheries of the grouped sites, again showing spatial clustering in effect. 
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(a) 

 
(b) 
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(c) 

Figure 3.3 Snapshots from a SLD simulation performed with M=0.01, S0 = 15, k = 25 and h=0.4. At such 

low mutation rates, effects of clustering are difficult to determine. 
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(a) 

 
(b) 
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(c) 

Figure 3.4 Snapshots from a SLD simulation performed with M=0.06, S0 = 15, k = 25 and h=0.4. b) and c) 

clearly show the effects of clustering allowing groups of polymerases to survive.  

The SMF model features no correlation between sites, here diffusion permits 

strands to move from any one site on the lattice to another, as if they were all connected. 

Figure 3.5 shows snapshots taken at the same times for a run of the SMF model with 

identical parameters to those used to make figure 3.4; the colouring is also done in the same 

manner. The lack of correlation produces a much more random pattern, resembling static.  
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(a) 

 
(b) 
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(c)  

Figure 3.5 Snapshots from a SMF simulation performed with M=0.06, S0 = 15, k = 25 and h=0.4.b) and c) 

show a lack of the large, empty regions seen in figures 3.4b and 3.4c 

Chapter 4: Linkage of strands into a genome 
 

4.1 Prior Work 

Even the simplest of biological entities, viruses, have genomes comprising of several 

individual genes linked together in a continuous strand. Evidently, at some point in the 

evolution of life, there was a transition from an assortment of loose functional and 

complementary strands in a compartment, to a defined genomic structure similar to the 

chromosomes seen in biology today. In modern life there are many asymmetries between 

the genome and the enzymes it codes for. The polymers used by the genome and enzymes 

differ (DNA vs proteins), as does the lifetimes of these polymers and their relative 
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importance in a cell. Additionally, cells feature at most a few copies of the genome, but 

many copies for enzymes. Determining how such differences came about is important to 

understanding the transition from an RNA world to more modern biology. While the origin 

of chromosomes is not known, the potential benefit of such structures existing in an RNA 

world scenario has been explored.  

Szathmáry and Smith (1993) proposed that originally there were strands functioning 

as both a catalyst and template alongside strands functioning only as templates. The benefit 

derived from catalytic capability means evolution would increase the amount of catalysts 

compared to templates, leading to an asymmetry in the populations of the two strands 

(Szathmáry and Smith, 1993), in fact RNA viruses have shown to favour catalysts to 

templates (Winterberger and Winterberger, 1987). This asymmetry is thought to develop 

into the genome-catalyst split observed today (Takeuchi et al., 2017). The symmetry 

breaking of the catalyst from the genome has an additional benefit, by reducing the number 

of copies of the genome, there is less opportunity for variation via mutation to arise, 

protecting the protocell (Takeuchi et al., 2017). 

Smith and Szathmáry (1993) proposed a model to study linkage of genes based on a 

stochastic corrector protocell model (Szathmáry and Demeter, 1987). They set up a system 

of protocells which contained a selfish gene, two cooperative genes as well as a linked 

version of the cooperative genes which was simply the two individual genes joined together 

(Smith and Szathmáry, 1993). Supposing the linked genes replicated slower due to their 

length, Smith and Szathmáry (1993) assigned fitness values to the various genes such that 

at the molecular level the selfish gene was favoured, and also assigned cell-level fitness 
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values in which cells with both the cooperative genes or linked gene were favoured. They 

found that cells with linked genes were readily established in the population so long as cells 

contained few total genes prior to division, and that some fraction of the population had 

linked genes at initialization (Smith and Szathmáry, 1993).  

Linkage of genes and the benefit provided by chromosomes in a protocell model has 

also been studied by Szilágyi et al. (2012). Their focus was on comparing the survival of 

non-specialized enzymes and specialized enzymes capable of catalyzing different steps in 

a linear chain of reactions, with the non-specialized enzymes able to catalyze all steps 

inefficiently and specialized enzymes only able to catalyze a single step highly efficiently. 

Additionally, the evolution of generalized ribozymes to specialized ribozymes was 

permitted. They modeled the reaction chain to convert substrate to biomass accumulation 

(a proxy for fitness) which in turn drove cell division (Szilágyi et al., 2012). Models differed 

in the ability of the ribozymes to replicate only individually, replicate in both individual or 

linked states or only when linked in a chromosome. Szilágyi et al. (2012) found that 

initializing the model with all protocells featuring non-specific ribozymes, without 

chromosomes specific ribozymes never evolved. When linkage was allowed (but not 

required for replication), protocells with chromosomes did evolve specialized ribozymes 

and performed more efficiently, however the independent assortment upon division meant 

they did not dominate the system (Szilágyi et al., 2012). When chromosomes are required 

for replication, and they are assigned to daughter cells so that each gets a complete copy, 

cells evolve towards fully specialized enzymes (Szilágyi et al., 2012). This indicates that 
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without directed assortment of strands upon division, a system with linked strands may be 

unstable. 

In our research, we seek to determine when linkage is favourable in more detail. Instead 

of explicitly assigning molecule-level and cell-level fitness values to genes with 

unspecified function, we will consider a system with multiple functional replicators, 

namely polymerases, nucleotide synthases and their complementary sequences contained 

inside protocells. Such a model has been considered previously in a spatial lattice by our 

group (Kim and Higgs, 2016). We allow for the polymerase and synthase to link together 

and allow the same behaviour for their complementary strands. We determine the cases in 

which incorporation of the individual genes and the linked genes is possible in a system of 

polymerases and polymerase complements. We also determine when the linkage of 

beneficial genes is favourable compared to the genes remaining unlinked.   

4.2 Methods 

The results from chapter 2 show the protocell models far outcompete the spatial 

models, in particular the protocell model with constant population (PCP) performs the best. 

Consequently, the investigation presented here considers only a modified version of the 

PCP model. The maximum size of the cells prior to division is now fixed, as is the 

polymerase rate constant so that S0 = 25 and k = 25, corresponding to values that gave the 

best results in the previous study. The mutation rate has been set to zero and as such 

parasites are not considered. In addition to the polymerases (P) and complements to the 

polymerase (C), we now consider nucleotide synthases (Y+) and their complementary 

sequences (Y−) as well as linked versions of the functional strands (L+) and linked versions 
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of the complementary strands (L−). The linked functional strands are designated as doubly 

functional, capable of serving as a polymerase and synthase simultaneously. The length of 

the polymerases and their complementary sequences is nominally fixed at 100 base pairs 

as before, while the length of synthases and their complementary sequences, ly, is allowed 

to vary. The function of the synthases is to amplify the availability of nucleotides in their 

cell, allowing the polymerase to operate at a higher rate. This benefit is hypothesized to be 

proportional to the number of synthases present, and is parameterized by σ. Following the 

nomenclature from (Shah et al., 2019, see chapter 2), the number of synthases, their 

complements, the linked functional strands and the linked complementary strands are given 

by y+, y−, l+, and l− respectively. We also adopt NSyn = y+ + l+ for readability, modifying the 

rate equations to the following form: 

𝐾𝑃(𝑝, 𝑐, 𝑦+, 𝑦−, 𝑙+, 𝑙−) = (1 + 𝜎𝑁𝑆𝑦𝑛)
(𝑝 + 𝑙+)𝑐

𝑆
𝑘. 

𝐾𝐶(𝑝, 𝑐, 𝑦+, 𝑦−, 𝑙+, 𝑙−) = (1 + 𝜎𝑁𝑆𝑦𝑛)
(𝑝 − 1 + 𝑙+)𝑝

𝑆
𝑘. 

𝐾𝑌+
(𝑝, 𝑐, 𝑦+, 𝑦−, 𝑙+, 𝑙−) =

𝑙𝑦

100
(1 + 𝜎𝑁𝑆𝑦𝑛)

(𝑝 + 𝑙+)𝑦−

𝑆
𝑘. 

𝐾𝑌−
(𝑝, 𝑐, 𝑦+, 𝑦−, 𝑙+, 𝑙−) =

𝑙𝑦

100
(1 + 𝜎𝑁𝑆𝑦𝑛)

(𝑝 + 𝑙+)𝑦+

𝑆
𝑘. 

𝐾𝐿+
(𝑝, 𝑐, 𝑦+, 𝑦−, 𝑙+, 𝑙−) =

100

100 + 𝑙𝑦
(1 + 𝜎𝑁𝑆𝑦𝑛)

(𝑝 + 𝑙+ − 1)𝑙−

𝑆
𝑘. 

𝐾𝐿−
(𝑝, 𝑐, 𝑦+, 𝑦−, 𝑙+, 𝑙−) =

100

100 + 𝑙𝑦
(1 + 𝜎𝑁𝑆𝑦𝑛)

(𝑝 + 𝑙+ − 1)(𝑙+ − 1)

𝑆
𝑘. 

The first term in the rate equations (absent in the KP and KC equations) represents a 

correction factor for the length of the strand being replicated. The polymerase considered 

in our model is a processive polymerase, so the replication rate will be inversely 
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proportional to the length of the strand being replicated. Synthase length was varied in the 

range 10 ≤ ly ≤ 200, corresponding to the synthases having an advantage in replication rate 

when under 100 base pairs in length and a disadvantage when over 100 base pairs. In 

contrast, the linked strands are always longer than the polymerase and will therefore always 

be disadvantaged in terms of replication rate. The second term in the equations represents 

the benefit of synthases present in the cell, either as part of a linked functional strand or 

present on their own. The third term represents the concentration of available replicators, 

whether polymerases or the polymerase parts of the linked strands, multiplied by the 

number of templates of the given strand type. The stochastic simulation, consideration of 

strand breakdown and cell division proceeds identically to the procedure outlined in the 

methods section of (Shah et al., 2019) in chapter 2.  

4.3 Results 

Here we explain the testing method as shown in figure 4.1. We initialize 1000 protocells 

to contain one P and one C strand each, and refer to this as the P state. The simulation is 

allowed to run to equilibrium, after which one of the following two things happen to test 

when incorporation of the second beneficial gene or the linked genes is possible: 

1. The system is invaded with 10 cells containing 2 copies of P and C as well as 2 

copies of Y+ and Y− and is allowed to re-establish equilibrium. 

2. The system is invaded with 10 cells containing 2 copies of P and C as well as 2 

copies of L+ and L− and is allowed to re-establish equilibrium. 

Under scenario 1, successful invasion results in the creation of a state containing P, C, 

Y+ and Y−, termed the PY state, while unsuccessful invasion creates a state with the same 
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P, C equilibrium as before. Scenario 2 differs in that successful invasion by the linked 

strands removes all P and C from the system, creating a state with only linked strands – the 

L state – while an unsuccessful invasion again retains the P, C equilibrium. 

 

Figure 4.1 An overview of the possible equilibrium states in the simulation. Green arrows represent 

successful invasions and black arrows failures to invade. 

The exact behaviour in either case is dependent on the ly and σ chosen as is shown in 

the phase plots presented in figures 4.2 and 4.3. Looking at invasion by synthases shows 

four distinct regions. The region populated by blue squares represents simulations in which 

invasion was unsuccessful and the area with red circles shows simulations in which 

invasion was successful. The purple diamonds indicate a region where invasion was 

stochastic, and feature a purple dotted line indicating the stochastic boundary between the 

two states. Black x’s show cases where the invasion was successful to such a degree that 
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the Y+ and Y− far outnumbered P and C, rapidly leading to no viable cells causing the death 

of the system. This dead region originally found from simulations with 1000 cells (not 

shown) was quite large compared to the region shown in figure 4.2 below. This area was 

reinvestigated using simulations performed with a larger population of 10000 cells for all 

points in the region 25 ≤ 𝑙𝑦 ≤ 60, and was found to shrink in size to the single column of 

x’s depicted below. The higher population results were combined into figure 4.2 such that 

the points in 25 ≤ 𝑙𝑦 ≤ 60 are from simulations with 10000 cells and the other points are 

from simulations with 1000 cells. Larger sizes were not tested as it is computationally 

expensive to do so, however we predict that the dead region is merely a stochastic effect. 

 

Figure 4.2 Phase plot of the invasion of a P state by Y+ and Y−. Red circles represent the cases where 

invasion was successful, blue squares where invasion was unsuccessful, purple diamonds where invasion was 

stochastic and black X’s where invasion caused the death of the system. The purple dotted line represents a 

stochastic boundary between the two states. 
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Figure 4.3 Phase plot of the invasion of a P state by L+ and L−. Red circles represent the cases where invasion 

was successful, blue squares where invasion was unsuccessful, purple diamonds where invasion was 

stochastic. The purple dotted line represents a stochastic boundary between the two states. 

Looking at invasion by the linked strands (figure 4.3) shows similar behaviour, 

however there is no dead region. Here, the linked strands can replace only polymerases if 

the advantage σ is large enough and the length is not too large. 

To determine whether the equilibrium state resulting from the invasion process is 

stable, we undertake another round of invasion. The stability of the PY state is tested by 

invading it with 10 cells containing 2 copies of P and C as well as 2 copies of L+ and L−. 

The result of this shows the conditions in which linked genes are favoured over unlinked 

genes. Similarly, the stability of the L state is tested by invading it with 10 cells containing 

2 copies of P and C as well as 2 copies of Y+ and Y− where the result shows the conditions 

in which unlinked genes are favoured over linked genes. 
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The phase plot presented in figure 4.4 shows the results. The first phase, depicted by 

upwards facing red triangles, shows a region where L+ and L− successfully invade the PY 

state. The second phase, depicted by downwards facing blue triangles, shows a much larger 

region where P, C, Y+ and Y− invade the L state. The last phase, represented by black dots, 

is the region where the benefit provided by the synthase is too small for it to be 

incorporated, leaving the equilibrium as a P state. These regions are separated by purple 

dotted lines indicating stochastic boundaries between the phases. 

 

Figure 4.4 Phase plot of the invasion of an intermediate system by linked or unlinked strands. Red triangles 

represent the cases where linked strands alone form the equilibrium state, blue triangles the cases where the 

equilibrium state is a mixture of P, C, Y+ and Y− and black circles where the equilibrium state is comprised 

of P and C alone. The purple dotted line represents a stochastic boundary between the states. 

The stochastic boundaries in figure 4.4 differ from those in figures 4.2 and 4.3 which 

separate the P state from the PY state or L state, respectively. Figure 4.5 plots the L state, 

PY state and P state as in figure 4.4 with the simulated points removed, retaining the phase 
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boundaries as purple dotted lines. Additionally, it plots the previous phase boundaries from 

figures 4.2 and 4.3 as black dotted lines. This shows that there are 5 distinct regions in the 

phase plot. 

 

Figure 4.5 Phase plot combining information from Figures 4.2-4.4. (1) L state invades P state. PY state is 

not possible. (2) L state invades P and PY states. PY state invades P state. (3) PY state invades L and P states. 

L state invades P state. (4) PY state invades P state. L state is not possible. (5) Only P state is possible. 

The L state from figure 4.4 is comprised of two subregions, regions 1 and 2. Region 1 

is the parameter range in which the synthases as unlinked genes cannot successfully invade 

the P state, but the linked genes can. Region 2 is a small area in which both the unlinked 

and linked strands can invade the P state, however in this range the linked strands are more 

beneficial, resulting in the L state dominating the PY state. This is due to an overabundance 

of Y+ and Y− relative to P and C in each cell, leading to the random assortment of strands 

not producing two viable daughter cells a large portion of the time (see discussion for 

more).  
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Similarly, the PY state from figure 4.4 also has two subregions, regions 3 and 4. Much 

like region 2, region 3 is a parameter range where both the unlinked and linked strands can 

invade the P state, however here the opposite occurs as the PY state is favoured over the L 

state. At such large synthase lengths, there is no overabundance of the synthase and 

synthase complements relative to the polymerases and polymerase complements, thus the 

assortment issue disappears. In such a case, the strands staying unlinked is favourable due 

to quicker replication. Region 4 defines the area where the synthases as unlinked genes can 

successfully invade, but the linked genes cannot. This is because at the large length scales, 

the benefit provided by the synthase must be high to offset slower replication rates. The 

unlinked genes have a higher replication rate than the linked genes, thus require a lower σ 

to invade successfully. Lastly, region 5 is simply where the benefit provided by the synthase 

is not high enough for invasion of any kind to be successful.  

The ly = 60, 100 and 175 columns were selected, and simulations were done to 

determine the average equilibrium cell composition, shown in figures 4.6 and 4.7. We also 

determined the cell division rates and the number of viable cells for both the linked and 

unlinked cases for the same columns as a function of σ, shown in figures 4.8 and 4.9 below. 

In all of these plots, the error bars represent standard error. When considering a mixture 

featuring unlinked strands, the number of viable cells is determined by going through the 

population of cells and determining which ones have at least one P and one C strand or 

those with at least two P strands in them. In the case of the linked strand equilibrium state, 

we count the number of cells with at least one L+ and L− or at least two L+ strands. 
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Figure 4.6 reveals that once invasion is successful, a particular ratio of Y+ and Y− to P 

and C is established, the value of which depends on ly, and that Y− outnumbers Y+. When 

the length of the synthetase is short (see ly = 60 column in figure 4.6), Y+ and Y− far 

outnumber P and C, to the point that the random assortment of strands upon cell division 

produces large amounts of non-viable daughter cells (see ly = 60 column in figure 4.9). In 

contrast, figure 4.7 shows that L+ and L− always exist in equal amounts (a 1:1 ratio) post 

invasion.  

 

Figure 4.6 The average cell composition at equilibrium for simulations where a P, C state was invaded by 

unlinked strands for various ly. Error bars are standard errors from a time average of the equilibrium state. 
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Figure 4.7 The average cell composition at equilibrium for simulations where a P, C state was invaded by 

linked strands for various ly. Error bars are standard errors from a time average of the equilibrium state. 

  

Figure 4.8 A comparison of the number of cell divisions per 100 δt for the cases studied in Figures 4.6 and 

4.7.  
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Figure 4.9 A comparison of the number of viable cells in the population at equilibrium divisions for the cases 

studied in Figures 4.6 and 4.7.  

4.4 Discussion 

The reason for successful invasion by either the linked or unlinked strands is made 

clear by figure 4.8: beyond a certain σ value, the incorporation of the unlinked strands and 

the replacement of P and C by the linked strands increases the replication rate due to the 

benefit provided by the synthase, which in turn increases the cell division rate. The linked 

strands tend to require a higher σ (better synthase) than their unlinked counterparts for this 

to occur due to their larger length, however this is not the case at short synthase lengths (ly 

≲ 60).  While incorporation of the synthase in is beneficial, figure 4.9 shows that the 

number of viable cells in the population has decreased when compared to the P and C 

equilibrium state. This is explained by looking at the strand distributions; when considering 

a system with only P and C strands, post random assortment of strands at cell division 

almost every daughter cell is viable. For the case with the unlinked strands at short synthase 
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lengths, Y+ and Y− outnumber the P and C strands, so when compared to a cell containing 

only P and C there will be far fewer P and C present prior to division. With a dearth of P 

and C to randomly assign to the daughter cells at division, the chances of a daughter cell 

not having a sufficient number of of P and C increases, leading to fewer viable cells. In the 

case with only linked strands the ratio of Y+ and Y− to P and C is fixed to be ~ 1:1, however 

each individual strand is longer, meaning fewer of them fit inside a cell. Thus, at large 

synthase lengths we run into a similar problem as above: upon division there are fewer 

polymerase equivalents to distribute leading to fewer viable cells.  

At low values of ly, the unlinked sequences cannot invade. The invading cells have 

rapidly replicating unlinked synthase strands which start taking over the system, but reach 

states where the number of synthases and synthase complements far exceeds the number of 

polymerases and polymerase complements (see ly = 60 column in figure 4.9). This means 

that a large portion of the time the daughter cells produced are not viable, containing only 

synthases and synthase complements. The population rapidly fills up with cells which are 

unable to replicate, thus unable to divide which halts the takeover of the system. 

Simultaneously, the small fraction of the system featuring cells with only P and C continue 

to make viable daughter cells, leading to the viable daughter cells overwriting the stagnant 

ones with unlinked strands, eliminating the unlinked strands from the population. Linkage 

is beneficial for low values of ly: the increased replication rate provided by adding a small 

portion to the existing polymerase sequence exceeds the length correction factor introduced 

due to the increased length. Linking the Y+ to P and Y− to C ensures a moderate replication 

rate enhancement and the ability to keep the number of polymerase equivalents in a cell 
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high. Since both genes are functional in the linked strand, the issue of non-viable daughter 

cells is lessened greatly and invasion is successful. 

For intermediate to large values of ly, upon invasion the synthases and synthase 

complements do not surge up in numbers on account of their longer lengths allowing fewer 

to fit in a given cell, slowing their replication. This means the system can maintain a good 

number of polymerases and polymerase complements in cells with the unlinked strands, 

avoiding the problem described above. In such cases they can outcompete the longer linked 

strands, as there is no need to moderate the ratio of synthases to polymerases the benefit of 

linkage disappears. At the longest lengths, the systems with linked strands produce fewer 

viable daughter cells than the systems with unlinked strands (see ly = 175 column in figure 

4.9), as their long lengths prevent many strands from existing in a single cell. This leads to 

the same issue that the unlinked synthases had at short synthase lengths, there are not 

enough polymerase equivalents prior to division to ensure the daughter cells remain viable 

post random assortment.  

Chapter 5: Conclusions 

In this thesis, we address the issue of incompatibility of dynamically different 

computational models (see section 1.7 for an overview) of a prebiotic system of replicators 

leading to difficulties in the comparison of higher-level selection methods. Specifically, 

comparison of spatial clustering in lattice models and group selection in protocellular 

models has been attempted before (Takeuchi and Hogeweg, 2009), however the 

comparison made was qualitative at best due to how the model was constructed, making it 

difficult to separate out the effects of diffusion. In the research presented in chapter 2, we 
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develop a variety of computational spatial and protocellular models with near identical 

dynamics, differing only in details of diffusion for spatial models and cell division in 

protocellular models. Our protocell models are most comparable to stochastic corrector 

models (Szathmáry and Demeter, 1987), however we avoid explicitly assigning fitness 

values to cells. Our spatial models resemble cellular automaton models, consisting of sites 

connected globally or locally depending on the model, allowing a large number of strands 

per site to make them analogous to protocells. We simulate polymerases, polymerase 

complements and parasites, and consider the polymerases to be general, error prone 

catalytic replicators. Two kinds of diffusion are studied in the spatial models, allowing 

strands to move to other sites in a Moore neighbourhood or to any other site on the lattice. 

With only the minor differences left between the spatial and protocellular models, 

quantitative comparison is done using the metric of the error threshold, the maximum 

mutation rate survivable by our systems. We are able to show that group selection in 

protocell models can sustain error rates is four- to five-fold higher than spatial clustering 

can when considering normal parasites, or five- to fourteen-fold higher when considering 

fast replicating parasites. Analysis of the models in chapter 3 reveals this is due to spatial 

clustering being unable to purge the parasites from the spatial models unlike how group 

selection can in protocell models. Having established that group selection does a far better 

job allowing a system of replicators to survive, we adopt the protocell model and conduct 

a study to determine the cases under which the linkage of strands to form a proto-genome 

is possible and stable. The results of chapter 4 show that linkage is beneficial and can be 

achieved for a wide range of parameters, however it is only stable for a small subset of this 
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range. Specifically, linkage of functional strands is stable for short sequences attaching onto 

the polymerase and is even advantageous in ensuring that daughter cells remain viable by 

controlling the ratio of polymerases to shorter functional strands.  

This research supports origins of life theories involving RNA replicators in porous 

media, on mineral lattices, or in protocellular systems by showing that spatial clustering 

and group selection can provide stability to mutational pressure from erroneous replication. 

The large amount of stability provided by group selection supports the idea that protocell 

or protocell like structures were present at the onset of life, or arose quickly after. The work 

on linkage further shows the ability of protocellular systems to develop proto-genome like 

structures, a path to the chromosomes in modern biology.  

Further investigations along the lines of this research could do similar tests comparing 

clustering and group selection using the phenotypic error threshold. This can be 

computationally intensive, and involves modelling full sequences and testing the impact of 

point mutations by finding the new folded structure of the strand. While a general 

processive polymerase has not yet been discovered (hence its sequence is unknown), it may 

be substituted by a proxy RNA strand with sufficiently complicated folded structure, or 

perhaps by using the sequence of one of the experimentally developed polymerases 

discussed in section 1.4.  
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