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Lay Abstract 

Flood is one of the top weather related hazards and causes serious property damage and 

loss of lives every year worldwide. If the timing and magnitude of the flood event could 

be accurately predicted in advance, it will allow time to get well prepared, and thus 

reduce its negative impacts. This research focuses on improving flood forecasts through 

advanced Bayesian techniques. The main objectives are: (1) enhancing reliability and 

accuracy of flood forecasting system; and (2) improving the assessment of predictive 

uncertainty associated with the flood forecasts. The key contributions include: (1) 

application of Bayesian forecasting methods in a semi-urban watershed to advance the 

predictive uncertainty quantification; and (2) investigation of the Bayesian forecasting 

methods with different inputs and models and combining bias correction technique to 

further improve the forecast performance. It is expected that the findings from this 

research will benefit flood impact mitigation, watershed management and water resources 

planning.  
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Abstract 

The number of flood events and the estimated costs of floods have increased dramatically 

over the past few decades. To reduce the negative impacts of flooding, reliable flood 

forecasting is essential for early warning and decision making. Although various flood 

forecasting models and techniques have been developed, the assessment and reduction of 

uncertainties associated with the forecast remain a challenging task. Therefore, this thesis 

focuses on the investigation of Bayesian methods for producing probabilistic flood 

forecasts to accurately quantify predictive uncertainty and enhance the forecast 

performance and reliability. 

In the thesis, hydrologic uncertainty was quantified by a Bayesian post-processor - 

Hydrologic Uncertainty Processor (HUP), and the predictability of HUP with different 

hydrologic models under different flow conditions were investigated. Followed by an 

extension of HUP into an ensemble prediction framework, which constitutes the Bayesian 

Ensemble Uncertainty Processor (BEUP). Then the BEUP with bias-corrected ensemble 

weather inputs was tested to improve predictive performance. In addition, the effects of 

input and model type on BEUP were investigated through different combinations of 

BEUP with deterministic/ensemble weather predictions and lumped/semi-distributed 

hydrologic models. 

Results indicate that Bayesian method is robust for probabilistic flood forecasting with 

uncertainty assessment. HUP is able to improve the deterministic forecast from the 

hydrologic model and produces more accurate probabilistic forecast. Under high flow 
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condition, a better performing hydrologic model yields better probabilistic forecast after 

applying HUP. BEUP can significantly improve the accuracy and reliability of short-

range flood forecasts, but the improvement becomes less obvious as lead time increases. 

The best results for short-range forecasts are obtained by applying both bias correction 

and BEUP. Results also show that bias correcting each ensemble member of weather 

inputs generates better flood forecast than only bias correcting the ensemble mean. The 

improvement on BEUP brought by the hydrologic model type is more significant than the 

input data type. BEUP with semi-distributed model is recommended for short-range flood 

forecasts. 
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Chapter 1. Introduction 

1.1 Flood Risk and Flood Forecasting Systems 

Over the past few decades, climate change has led to raised air temperature and intense 

precipitation events, and the more frequent precipitation events have in turn resulted in 

increased risk of flooding (Allen et al. 2014). In Canada, according to the Canadian 

Disaster Database (CDD), the number of floods has dramatically grown from under 10 in 

the 1930s to over 60 in the 2000s (Figure 1-1). There is also a rapid growth of the 

estimated flood costs since 1960s, and the total cost during 2010s reaches 7.18 billion 

dollars (Figure 1-2). Flood is among the top weather-related killers (Chin 2006), to 

reduce and alleviate the negative impacts of flooding, flood forecasting provides an 

essential tool to allow for mitigation action. Structural measures such as construction of 

flood control facilities usually require huge capital investment (Mays 2010), in many 

regions flood forecasting as a nonstructural measure is the only effective and affordable 

way for flood protection (WMO, 2006).  

Various flood forecasting systems were developed worldwide. For example, the 

European Flood Forecasting System (EFFS) was developed for European countries in 

2003 (De Roo et al. 2003). The National Flood Forecasting System (NFFS) has been used 

in England since 2005 and Wales since 2006 (Werner et al. 2009). The Scotland Flood 

Early Warning System (FEWS) was expanded into a national system in 2007 (Cranston 

and Tavendale 2012). The National Weather Service River Forecast System (NWSRFS) 

has been employed in United States for over 30 years, and was replaced by the 
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Community Hydrologic Prediction System (CHPS) in recent years (Roe et al. 2010). The 

NFFS and FEWS adopted the same open shell called Delft Flood Early Warning System 

(Delft-FEWS). Delft-FEWS can incorporate any forecasting model through a model 

adapter and combine a wide range of data (Werner et al. 2013). 

Hydrologic models (or rainfall-runoff models) are embedded in the forecasting system; 

most of them are mathematical representation of the hydrologic cycle in the watershed, 

including hydrologic processes such as precipitation, infiltration, interception, 

evapotranspiration and runoff. Each model has its own unique structure and characteristic, 

which is defined by a set of model parameters. The main input to the hydrologic model is 

precipitation; others may include air temperature, soil moisture, topography, physical 

parameters and so on, and the model output is streamflow or discharge (Devia et al. 

2015). Prior to the forecast, the model parameters should be calibrated using historical 

data. In the forecast mode, the model is fed by forecasted weather data and produces 

estimated streamflow or discharge. The model outputs for the future are used to make 

decisions on warnings of floods and watershed management (Jain et al. 2018).  
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Figure 1-1 Number of floods in Canada (Data source: Canadian Disaster Database; the 

final bar only covers data for 2010-2016) 

 

 

Figure 1-2 Total estimated flood costs in Canada (Data source: Canadian Disaster 

Database) 
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1.2 Probability Theory and Predictive Uncertainty 

Hydrologic model could be used in a deterministic or probabilistic manner. Deterministic 

model attempts to provide an exact representation of the physical system and gives a 

single estimate of model response (Farmer and Vogel 2016). It ignores the uncertainty 

and has certain limitations. First, the deterministic representation is a simplified version 

of the real system and relies on limited knowledge, as the statistician George Box said, 

“All models are wrong, some are useful” (Box et al. 2005). Second, the reality for a 

particular point in time cannot be exactly or perfectly represented by the measurements 

due to the measurement errors. Third, most mathematical models cannot be solved 

exactly and only have an approximate solution (Reich and Cotter 2015). As such, 

deterministic forecast is giving way to probabilistic forecast, which considers uncertainty 

from various sources and assigns a probability to each of the different model outcomes. 

Based on the probability theory, there are three different ways to derive probability 

(Leonard and Hsu 1999; Reich and Cotter 2015): 

(1) Replicate a large number of experiments under identical conditions and record the 

frequency of an event to occur, the probability of this event is the frequency of 

occurrence over the total number of outcomes. 

(2) Identify possible alternatives that are equally likely to occur, and assign each of the 

alternatives with equal probability.  

(3) Estimate the probability based on current knowledge of the system or previous 

experiment of a similar system, and then revise the prior probability to posterior 

probability when new information is available. 
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In this thesis, the Bayesian methods were used to develop probabilistic flood forecast, 

which belongs to the last category of probability. The prior distribution is first estimated 

based on all the received information at the onset of the forecast. After running the model, 

the new information from the model forecasts is used to update the prior distribution into 

posterior distribution, and everything we know about the future condition and associated 

uncertainty is summarized in this Bayesian posterior distribution or predictive 

distribution. Predictive uncertainty is defined as “the expression of a subjective 

assessment of the probability of occurrence of a future (real) event conditional upon all 

the knowledge available up to the present (the prior knowledge) and the information that 

can be acquired through a learning inferential process” (Rougier 2007). Although a 

variety of techniques about predictive uncertainty assessment has been developed, 

however, great challenges are still remaining. First, the uncertainties in flood forecast 

comes from various sources, it is difficult to accurately quantify all of them or even just 

the major uncertainties. Some proposed methods only allow to measure limited sources 

such as model parameter uncertainty or input data uncertainty. Second, predictive 

uncertainty is different from simulation uncertainty or forecast sensitivity. It requires a 

probability distribution for the future true value conditional on the model predictions, and 

cannot be fully represented by a distribution of model predictions based on observations 

or the sensitivity of the model predictions (Todini 2009). Third, there is an increasing 

need for the flexibility of the framework; it should be able to work with various 

hydrologic models and different types of data. Thus, further research is necessary to 

address these challenges. 
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1.3 Research Objectives and Thesis Outline 

The research presented in this thesis focuses on the uncertainty assessment in flood 

forecasting through Bayesian methods, and the goal of this work is to enhance the 

accuracy and reliability of flood forecasting system and improve the assessment of 

predictive uncertainty associated with flood forecasts. To achieve the overall objective, 

four journal papers have been completed and are presented in chapter 2-5 of the thesis.  

This thesis includes six chapters. Chapter 1 is an overview of the research background 

and context. Chapter 2 presents a comprehensive review of the Bayesian flood 

forecasting methods (1999-2016) and a summary of alternative predictive uncertainty 

assessment methods. Chapter 3 presents an application of the Hydrologic Uncertainty 

Processor (HUP) for probabilistic flood forecasting to quantify the hydrologic uncertainty, 

and assesses the performance of HUP combined with different hydrologic models. 

Chapter 4 extends the HUP into the Bayesian Ensemble Uncertainty Processor (BEUP) to 

quantify the dominant uncertainties, and integrates bias correction of ensemble weather 

forecasts with BEUP to enhance the predictive performance. Chapter 5 investigates the 

effects of different input data types and different hydrologic model types on the 

performance of BEUP. Chapter 6 is a summary of major conclusions and 

recommendations for future research. 
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Chapter 2. Bayesian Flood Forecasting Methods: A Review 

Summary of Paper 1: Han, S. and Coulibaly, P. (2017). Bayesian Flood Forecasting 

Methods: A Review. Journal of Hydrology, 551, 340-351. 

This research is an extensive literature review on Bayesian forecasting methods used in 

flood forecasting, and the focus is on research works from 1999 until 2016. The main 

topics include: 

 Overview of fundamentals of Bayesian forecasting system (BFS) 

 Recent advances in BFS 

 Literature review on BFS application 

 Advantages and limitations of Bayesian forecasting methods  

 Pros and cons of alternative predictive uncertainty assessment methods 

 Future research direction in Bayesian flood forecasting 

Key results of this research include: 

 Bayesian method can provide an effective and advanced approach for 

probabilistic flood forecasting; 

 Bayesian forecasting system is able to consider all major sources of uncertainty 

and produce more accurate and reliable flood forecasts; 

 Some emerging Bayesian forecasting methods could overcome certain limitations 

and reduce predictive uncertainty. 
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2.1 Abstract 

Over the past few decades, floods have been seen as one of the most common and largely 

distributed natural disasters in the world. If floods could be accurately forecasted in 

advance, then their negative impacts could be greatly minimized. It is widely recognized 

that quantification and reduction of uncertainty associated with the hydrologic forecast is 

of great importance for flood estimation and rational decision making. Bayesian 

forecasting system (BFS) offers an ideal theoretic framework for uncertainty 

quantification that can be developed for probabilistic flood forecasting via any 

deterministic hydrologic model. It provides suitable theoretical structure, empirically 

validated models and reasonable analytic-numerical computation method, and can be 

developed into various Bayesian forecasting approaches. This paper presents a 

comprehensive review on Bayesian forecasting approaches applied in flood forecasting 

from 1999 till now. The review starts with an overview of fundamentals of BFS and 

recent advances in BFS, followed with BFS application in river stage forecasting and 

real-time flood forecasting, then move to a critical analysis by evaluating advantages and 

limitations of Bayesian forecasting methods and other predictive uncertainty assessment 

approaches in flood forecasting, and finally discusses the future research direction in 

Bayesian flood forecasting. 

Results show that the Bayesian flood forecasting approach is an effective and advanced 

way for flood estimation, it considers all sources of uncertainties and produces a 

predictive distribution of the river stage, river discharge or runoff, thus gives more 

accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. 
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ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown 

to overcome limitations of single model or fixed model weight and effectively reduce 

predictive uncertainty. In recent years, various Bayesian flood forecasting approaches 

have been developed and widely applied, but there is still room for improvements. Future 

research in the context of Bayesian flood forecasting should be on assimilation of various 

sources of newly available information and improvement of predictive performance 

assessment methods. 

Key words: Probabilistic flood forecast; Bayesian forecasting system; Uncertainty 

quantification; Predictive distribution; Predictive density function; Probability 

2.2 Introduction  

According to the fifth IPCC (Intergovernmental Panel on Climate Change) climate 

assessment report, extreme weather events were increased during the 21st century due to 

climate change (IPCC, 2014). Accelerated hydrological cycle leads to increased 

frequency of intense precipitation events and enhanced fluctuation in streamflow to some 

extent, which in turn results in more frequent floods and droughts (Reggiani & Weerts, 

2008). Floods were seen as one of the most common and largely distributed natural 

disasters in the world, and caused significant damage to life and property over the past 

few decades (Balica et al., 2013). So there is an increasing need for flood control 

measures, both structural and non-structural. Among them, flood forecasting and 

estimation is an effective method that allows time for mitigating action. If floods could be 

predicted accurately in advance, then their negative impacts could be minimized.  
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Hydrologic models used for forecasting river stage, river discharge or runoff volumes are 

usually deterministic, and forecast results are normally exhibited as time series of 

estimates. However, their estimates are not free of error and contain limited amount of 

information though operationally simple. From the viewpoint of a decision maker who 

must make a rational flood mitigation decision based on the information provided by a 

hydrologic forecaster, a point estimate of the predictand may be insufficient 

(Krzysztofowicz, 1999; Krzysztofowicz, 2001b). In order to provide more valuable 

information, the uncertainty associated with the predictand needs to be quantified in 

terms of probability distribution and degree of certitude, decisions should be made 

according to this probability distribution instead of just a single value of estimate 

(Krzysztofowicz, 1983). The growing demand for forecast products and the increasing 

capability to quantify predictive uncertainty give an impetus for research into 

probabilistic forecasting of hydrologic variates.  

It is widely recognized that proper uncertainty quantification associated with a hydrologic 

forecast is of great importance for both operational application and scientific research 

(Biondi et al., 2010). In recent years many approaches have been developed for 

uncertainty quantification and reduction, but there are still challenges as uncertainties 

could arise from a variety of sources (Biondi & De Luca, 2012). Among the 

methodologies well suited for flood forecasting process, Bayesian forecasting system 

(BFS) provides an ideal theoretic framework that can be developed for different purposes 

using probabilistic forecast of inputs via any deterministic hydrologic model. It considers 
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and quantifies all sources of uncertainties which gives more reliable estimation 

(Krzysztofowicz, 1999). 

This paper provides a comprehensive review on Bayesian flood forecasting approaches 

and discusses the research direction within this field. BFS can be developed for 

diversified probabilistic forecasting systems suitable for various purposes. Here the paper 

only focuses on the review of BFS approaches used for flood forecasting from the year of 

1999 until now.  

2.3 Overview of Advances in Bayesian Forecasting System (BFS)  

2.3.1 Fundamentals of BFS 

Bayesian forecasting system is a robust theoretical framework that can be used for 

probabilistic forecast through deterministic hydrologic model of any complexity 

(Krzysztofowicz, 1999). In the domain of flood forecasting, BFS could be developed to 

produce probabilistic river stage forecast (PRSF), probabilistic river discharge forecast 

(PRDF) or probabilistic runoff volume forecast (PRVF) at any time step. 

In the BFS, the total uncertainty associated with the hydrologic forecast is broken down 

into two sources: precipitation uncertainty and hydrologic uncertainty. Precipitation 

uncertainty is related to the future average precipitation amount. Hydrologic uncertainty 

is the aggregate of all other uncertainties. These sources include: imperfections of the 

hydrologic model (e.g. model structure, model parameters), measurement errors of 

physical variables (e.g. temperature, streamflow, and precipitation), incorrect temporal 

and spatial downscaling of the total precipitation (e.g. deterministic forecast of spatial 
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disaggregation of total precipitation amount into subbasins, deterministic forecast of 

subperiods’ precipitation amount from temporal disaggregation of total amount) and so 

on. In the first place, precipitation uncertainty and hydrologic uncertainty are quantified 

respectively, and then integrated together to produce a probabilistic forecast 

(Krzysztofowicz, 1999; Krzysztofowicz & Kelly, 2000a; Krzysztofowicz & Herr, 2001; 

Krzysztofowicz, 2002). It is technically impractical and perhaps unnecessary to 

specifically quantify every source of uncertainty. Usually only a few sources dominate 

the contribution to the total uncertainty, therefore a compromise between the exactness 

and practicality can be reached by limiting the decomposition into the dominant 

uncertainties and all other uncertainties in the aggregate (Krzysztofowicz, 1999; 

Krzysztofowicz & Kelly, 2000a).  

The decomposition method of uncertainties leads to the fundamental structure of BFS 

shown in Figure 2-1. There are two processors attach to the hydrologic model. One 

processor propagates the precipitation uncertainty into the output uncertainty under the 

assumption of nonexistence of hydrologic uncertainty. Another processor maps the 

hydrologic uncertainty into the output uncertainty based on the assumption that no 

precipitation uncertainty exists within this process. The two uncertainties are then 

incorporated together to generate a probabilistic forecast and this incorporation is 

nonmonotonic and nonadditive. Therefore, the BFS consists of three interrelated 

structural components: (1) Input uncertainty processor (IUP), the dominant source of 

input uncertainty is future precipitation, thus this processor is also called precipitation 

uncertainty processor (PUP), (2) Hydrologic uncertainty processor (HUP), (3) Integrator 
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(INT). If the hydrologic predictand is river stage, then for PUP, the distribution of 

precipitation amount and response function induces the distribution of model river stage. 

For HUP, given the marginal prior distribution of actual river stage, prior dependence 

parameters, likelihood dependence parameters and marginal initial distribution of model 

river stage, the posterior distribution and posterior density can be derived by Bayesian 

revision process. Based on the output of PUP and HUP, the task of INT is to produce the 

predictive distribution and predictive density (Krzysztofowicz, 1999; Krzysztofowicz, 

2002). 

 

Figure 2-1 Structure of basic Bayesian Forecasting System 
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2.3.2 Developments in BFS from 1999-2015 

Since Krzysztofowicz introduced BFS in 1999, it has been gaining in popularity 

worldwide. Then two types of BFS were formed, one is to obtain a probabilistic river 

stage forecast (PRSF) on the basis of probabilistic quantitative precipitation forecast 

(PQPF), another one is to generate probabilistic stage transition forecast (PSTF) in 

accordance with PQPF. These two types of BFS rest on the same theoretic structure, but 

the second BFS provide more information such as river stage process evolution besides 

each river stage. There are two kinds of HUP within the BFS: precipitation-independent 

hydrologic uncertainty processor (PI-HUP) and precipitation-dependent hydrologic 

uncertainty processor (PD-HUP). PD-HUP is composed of two branches, one is under the 

condition of precipitation occurrence, and another one is under nonoccurrence of 

precipitation. Hence provides more reliable information for prior distribution and 

likelihood function. Later on, with the introduction of ensemble weather prediction, 

Bayesian ensemble forecast (BEF) for flood was developed. The ensemble flood forecast 

can be generated by Monte Carlo simulation and is called ensemble Bayesian forecasting 

system (EBFS). Based on EBFS, a modified method named ensemble Bayesian 

forecasting system with randomization (EBFSR) was proposed. EBFSR is a more 

operationally feasible and computational efficient approach (Herr & Krzysztofowicz, 

2015a). 

Based on the PRSF or the PSTF, probabilistic flood forecast (PFF) can be obtained either 

approximately or exactly. In real-time flood forecasting, BEF could also be generated by 

Bayesian ensemble uncertainty processor (BEUP). In order to address model structure 
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uncertainty, an integrated Bayesian uncertainty estimator (IBUNE) was proposed then to 

combine multi-model prediction. Recently a sequential Bayesian multi-model 

combination method was applied and showed its ability to overcome the limitations that 

exist in data assimilation (DA) and Bayesian model averaging (BMA) methods. A 

graphical presentation of the developments in BFS method can be found in Figure 2-2. 

These Bayesian approaches are efficient tools for flood forecasting with uncertainty 

estimate. 

 

Figure 2-2 Developments of BFS method 
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There are over 30 published papers in the application and development of Bayesian flood 

forecasting from 1999 until now. A summary of the BFS applied in river stage 

forecasting is shown in Table 2-1, and the BFS applications in real-time flood forecasting 

are summarized in Table 2-2. In the following section, the characteristics of these 

Bayesian flood forecasting methods and the major findings will be further discussed.  
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Table 2-1 Summary of studies on BFS approaches applied for river stage forecasting 

(1999-2015) 

References Key Objectives Methods Major Findings/ Contributions 

Krzysztofowicz, R. 

(1999) 

Introduce BFS 

theory  

Interpreted the principles 

of Bayesian predictive 

inference 

 

5 general properties of BFS:  

 Decomposition of total uncertainty 

 Predictive result: predictive 

distribution  

 Bayesian inference 

 Self-calibration 

 Coherence property 

Kelly, K. S., & 

Krzysztofowicz, R. 

(2000) 

Describe theory 

of PUP 

Implemented PUP under 

different timing pattern, 

probability and initial 

condition 

 Response function: two-piece 

power function 

 Conditional distribution: two-piece 

Weibull distribution 

 PQPF: deterministic equivalence 

principle 

Krzysztofowicz, R., 

& Kelly, K. S. 

(2000) 

Describe theory 

of HUP 

Parametric HUP based 

on Bayesian formulation  

 Significance of hydrologic 

uncertainty  

 Nonlinear and heteroscedastic 

dependence structure  

 Properties of Meta-Gaussian 

model 

Krzysztofowicz, R., 

& Herr, H. D. (2001) 

Quantify the 

hydrologic 

uncertainty by 

PD-HUP 

PD-HUP based on Meta-

Gaussian model 

 Informativeness of PD-HUP  

 Nonlinear and heteroscedastic 

dependence structure  

 Non-stationarity of prior density 

and likelihood function  

Krzysztofowicz, R. 

(2001) 

Describe theory 

of INT 

INT with PD-HUP  Predictive density: bimodal and 

asymmetric 

 Superiority of the PD-HUP over 

PI-HUP, Monte Carlo simulation 

and ensemble techniques 

Krzysztofowicz, R. 

(2002) 

Produce a short-

term PRSF based 

on PQPF 

Presented the synthesis 

of BFS for PRSF 

 Theoretically derived structure 

 Empirically validated models  

 Parsimonious analytic-numerical 

method  
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Maranzano, C. J., & 

Krzysztofowicz, R. 

(2004) 

Seek the simplest 

likelihood and 

prior dependence 

structures 

BFS for PSTF based on 

multivariate HUP  

 HUP: two-branch structure 

 Prior distribution: first-order 

Markov dependence structure 

 Likelihood function: second-order 

conditional dependence structure 

Krzysztofowicz, R., 

& Maranzano, C. J. 

(2004a) 

Implement the 

multivariate HUP 

for PSTF 

Multivariate HUP based 

on Meta-Gaussian model 

 Non-stationarity of prior 

distribution and likelihood 

function 

 Any form of marginal distributions 

 Nonlinear and heteroscedastic 

dependence structure 

Krzysztofowicz, R., 

& Maranzano, C. J. 

(2004b) 

Produce a short-

term PSTF based 

on PQPF 

Presented the synthesis 

of BFS for PSTF 

 Comparison between BFS for 

PRSF and BFS for PSTF 

 The PSTF is computationally 

simple but difficult to use and 

display compared with the 

Markovian PSTF 

Herr, H. D., & 

Krzysztofowicz, R. 

(2010) 

Determine the 

smallest 

ensemble size for 

BEF 

Used BFS as a generator 

of BEF 

 PRSF and PFF: several hundreds 

 PSTF: several thousands 

Herr, H. D., & 

Krzysztofowicz, R. 

(2015) 

Develop EBFSR 

based on EBFS 

 EBFS using Monte 

Carlo simulation 

 EBFSR 

 Compared EBFS and 

EBFSR 

EBFSR was more computationally 

efficient and operationally feasible 

than EBFS 
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Table 2-2 Summary of studies on BFS approaches applied for real-time flood forecasting 

(1999-2015) 

References Key Objectives Methods Major Findings/ Contributions 

Krzysztofowicz, 

R. (2002) 

Obtain bounds on and 

approximations to the 

PFF from PRSF 

 Bounds on PFF: 

Fréchet bounds and 

tighter bounds 

 Approximations to PFF: 

DLI and RLI 

 Construction methods are 

simple to obtain bounds on and 

estimators of the PFF 

 Parameter is invariant with 

forecast point, hydrologic 

season and time step 

Ajami, N. K., et 

al. (2007) 

Develop IBUNE to 

confront uncertainty 

in input errors, model 

parameters and 

structure 

IBUNE with SAC-SMA, 

HYMOD and SWB 

 Useful and applicable technique  

 Improved model prediction 

uncertainty bounds 

Reggiani, P., & 

Weerts, A. H. 

(2008a) 

Implement HUP for 

the operational flood 

forecasting system 

 HBV for hydrologic 

response 

 Embedded HUP in 

Delft-FEWS 

 Inclusion of water level 

observations improved accuracy 

 Inadequacy of linear regression 

Reggiani, P., & 

Weerts, A. H. 

(2008b) 

Produce PQPF by a 

modified BPO  

 HIRLAM for rainfall 

forecasting 

 BPO for weather model 

output 

 BPO has larger skill in 

predicting event occurrence or 

nonoccurrence rather than event 

depth 

 Uncertainty due to spatial and 

temporal variability of 

precipitation cannot be ignored 

Todini, E. 

(2008) 

Introduce MCP to 

assess predictive 

uncertainty 

 MCP: simple lag-1 

Markov model, phase-

space approach 

 Compared MCP with 

HUP and BMA 

 Reconciled physically based 

with data driven models 

 Reduced predictive uncertainty 

Reggiani, P., et 

al. (2009) 

Implement HUP for 

an ensemble 

streamflow forecast 

 HBV model 

 BEUP for uncertainty 

assessment 

 BEUP was an effective 

uncertainty assessment tool 

 Establishment of a cost function 

to express the economic value 

Biondi, D., et al. 

(2009) 

Quantify the 

predictive uncertainty 

on river discharge  

 Used RISE model to 

simulate hydrologic 

response 

 Applied PD-HUP for 

BFS 

 Hydrologic uncertainty grew 

with increased discharge, high 

precipitation and increased lead 

time 

https://en.wikipedia.org/wiki/Fr%C3%A9chet_distribution
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Biondi, D., et al. 

(2009) 

Assess the predictive 

uncertainty on water 

discharge  

 RISE model  

 BFS based on PD-HUP  

 Hydrologic uncertainty grew 

with increased discharge and 

lead time 

 Inadequacy of liner model 

Biondi, D., et al. 

(2010) 

Assess uncertainty 

through PD-HUP 

 RISE model  

 PD-HUP for real-time 

forecasting 

 Hydrologic uncertainty grew 

with increased discharge, high 

precipitation and increased lead 

time 

Biondi, D., & 

De Luca, D. L. 

(2012) 

Apply BFS for real-

time forecasting 

 PRAISE model for 

rainfall forecasting 

 RISE model to simulate 

hydrological response 

BFS based on PD-HUP 

 Crucial role of HUP 

 Importance to develop 

predictive distribution 

 Necessity for PD-BFS 

Biondi, D., & 

De Luca, D. L. 

(2013) 

Assess the 

performance of BFS 

 PRAISE model  

 RISE model  

 Assessed the BFS 

performance under UD, 

PD, HD and TD 

 TD presented the best 

predictive results 

 Importance of multifaceted 

view of assessment 

Krzysztofowicz, 

R. (2014) 

Derive the exact PFF 

from PSTF 

 Exceedance functions 

 Isoprobability time 

series 

 Distribution of time to 

flooding 

 RLI was accurate and simple 

for real-time flood forecasting 

DeChant, C. M., 

& Moradkhani, 

H. (2014) 

Address model and 

initial condition 

uncertainty 

 Combine ESP with 

ensemble data 

assimilation 

 Combine ESP with 

Sequential Bayesian 

Combination 

 ESP combined with DA and 

SBC increased the reliability 
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2.4 Application of Bayesian Flood Forecasting Methods  

2.4.1 BFS Application in River Stage Forecasting 

Over the past few decades, flood forecasting has received considerable attention. In order 

to fully explore flood forecast uncertainty and improve forecast accuracy, 

Krzysztofowicz introduced a Bayesian Forecasting System (Krzysztofowicz, 1999). He 

interpreted the basic principles of Bayesian predictive inference and constructed 

numerical examples to show the quantification and integration of the uncertainties in a 

BFS. He indicated that BFS has five general properties: (1) The BFS decomposes the 

total uncertainty into input uncertainty and hydrologic uncertainty. Each of them is 

quantified respectively and then integrated into the probabilistic forecast. (2) The 

predictive result is shown as predictive density function. (3) The predictive density is 

obtained by revising prior density based on available information. (4) It owns a property 

of self-calibration. Suppose the probabilistic forecast of inputs is well calibrated, so does 

the BFS. (5) It guarantees a coherence property which guards against poor forecast. If the 

informativeness of the hydrologic model production is lower than the prior density, the 

predictive density will automatically converge to the state of prior density. 

The first type of the BFS was to produce a short-term PRSF, PQPF was input into a 

deterministic hydrologic model that simulate the hydrologic response of watershed to 

precipitation (Kelly & Krzysztofowicz, 2000; Krzysztofowicz & Herr, 2001; 

Krzysztofowicz & Kelly, 2000a; Krzysztofowicz, 2001a, 2002). Subsequent papers 

detailed the principle and the formulation of each component separately. The study area 

throughout the series of case studies was Eldred, Pennsylvania, situated in the upstream 
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of the Allegheny River which covers a drainage area of 1430 km2. The data used was a 

single input of average basin precipitation with 6-hour time interval. As the input to PUP, 

PQPF consists of two parts: (1) the probabilistic forecast of the total precipitation 

quantity, (2) the deterministic forecast of the temporal disaggregation. Forecasting the 

disaggregation deterministically can get almost the same model river stage distribution as 

forecasting probabilistically, this finding is called deterministic equivalence principle. 

For PUP, the output distribution can be represented by a five-parameter two-piece 

Weibull distribution and the response function can be represented by a two-piece power 

function. The PQPF scheme performed well for PRSF (Kelly & Krzysztofowicz, 2000). 

For HUP, it was a parametric model developed through Bayesian formulation under a 

family of meta-Gaussian distribution. The hydrologic uncertainty was verified as 

significant to the total uncertainty and cannot be ignored. The prior density and likelihood 

function was found nonstationary and a 1st order Markov model of river stage process 

seemed to be suitable for modeling the prior density. It also revealed that the dependence 

structure among the actual river stage was nonlinear and heteroscedastic, and the 

dependence structure among the model river stage and actual river stage was nonlinear 

and heteroscedastic as well (Krzysztofowicz & Kelly, 2000). As for the INT, it output a 

numerical representation of predictive distribution and predictive density of actual river 

stage, and the predictive density could be bimodal and asymmetric (Krzysztofowicz, 

2001b, 2014). The overall BFS offered suitable theoretical structure, empirically 

validated models and reasonable analytic-numerical computation method. For a blueprint 
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of BFS operational implementation, the reader is referred to Krzysztofowicz (2002a, 

2014a). 

Suppose the information contained in PQPF was inadequate to predict the river stage on a 

special occasion, then the predictive distribution is the same as the prior distribution. If 

the PQPF was perfect, the posterior distribution could serve as a representative of the 

predictive distribution. Similarly, if the hydrologic model didn’t have enough predictive 

capability, then the posterior distribution converges to the prior distribution. If the 

hydrologic model was perfect, then the output distribution represents the predictive 

distribution (Krzysztofowicz, 2001a). 

There are two versions of HUP: PI-HUP and PD-HUP. PD-HUP has two branches that 

are conditional on the precipitation occurrence. Thus besides the two branches of 

posterior distribution from HUP, the INT also needs the conditional probabilities that 

combine them. The PD-HUP proved to provide more information for both prior 

distribution and likelihood function than the PI-HUP. Because large hydrologic 

uncertainty will appear when precipitation occurs, the posterior distribution under 

precipitation occurrence or nonoccurrence are distinct. The BFS with PD-HUP was 

shown superior over the BFS with PI-HUP, Monte Carlo simulation and ensemble 

techniques. Monte Carlo simulation and ensemble forecasting are only techniques for 

executing PUP to estimate output distribution, without HUP and INT, they don’t yield 

probabilistic forecasts (Krzysztofowicz & Herr, 2001; Krzysztofowicz, 2001a). 

The second type of the analytic-numerical BFS was proposed to produce a short-term 

PSTF with PQPF input into a deterministic hydrologic model that simulates the 
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hydrologic response of watershed to precipitation (Krzysztofowicz & Maranzano, 2004a, 

2004b; Maranzano & Krzysztofowicz, 2004). Unlike PRSF that demonstrates sequential 

predictive n-step transition density functions, PSTF demonstrates a finite sequence of 

infinite families of predictive one-step transition density functions. The PSTF quantifies 

the total uncertainty about the river stage process evolution in time besides the 

uncertainty of each river stage. To produce a PRSF, the first BFS requires a univariate 

HUP that generates a family of posterior distributions of actual river stage in order to 

quantify hydrologic uncertainty about the n-step transition. To produce a PSTF, the 

second BFS requires a multivariate HUP that produces a family of posterior joint 

distribution of actual river stage process conditional on the model river stage process to 

quantify hydrologic uncertainty associated with the one-step transition. The posterior 

joint distribution could be decomposed into posterior one-step transition distributions, 

each of them can be obtained from a prior distribution and a likelihood function through 

Bayes theorem. The first BFS and the second BFS are based on the same PQPF input and 

theoretic structure, meet same design requirement and share many assumptions, but the 

BFS for PSTF requires more numerical calculation and a more general HUP. 

Some studies were performed to seek the simplest mathematical structure which is 

sufficient to capture the empirical dependence structures of prior density functions and 

likelihood functions and to implement the general multivariate HUP for short-term PSTF. 

The hydrologic models selected for application in the four forecast points in USA were 

lumped antecedent precipitation index (API)-based hydrologic model, lumped 

Sacramento catchment model, and semi-distributed Sacramento catchment model, 
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respectively (Krzysztofowicz & Maranzano, 2004b; Maranzano & Krzysztofowicz, 2004). 

The main conclusions are shown below. (1) For both the BFS-PSTF and BFS-PRSF 

system, the HUP must consist of two branches, each conditional on the occurrence and 

non-occurrence of precipitation. The prior distributions and the likelihood functions in 

these two branches can be non-stationary. (2) In the HUP-PSTF system, for the prior one-

step transition distributions, Markov dependence structure of order one seemed adequate. 

While for the likelihood functions, conditional dependence structure of order two can 

meet the requirements. (3) With respect to the HUP-PRSF system, for the prior n-step 

transition distributions, Markov dependence structure of order one was adequate. And for 

the likelihood functions, conditional dependence structure of order one was adequate. (4) 

The multivariate HUP tolerates all forms of marginal distribution, and it allows for an 

asymmetric and bimodal conditional density function and a heteroscedastic and nonlinear 

dependence structure. (5) The likelihood parameters have no relation between the level of 

hydrologic uncertainty and the study area, the basin size, the spatial disaggregation of 

precipitation, the hydrologic model type and the storm type. 

With respect to forecast output, comparison between the PSTF and the Markovian PSTF 

leads to the conclusion that the PSTF is computationally simple but difficult to use and 

display. Because it specifies dependence of order n to the predictive one-step transition 

density functions. Conversely, the Markovian PSTF is computationally complex but 

simple to use and display because it specifies dependence of order one to the predictive 

one-step Markov transition density functions (Krzysztofowicz & Maranzano, 2004a). 
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The introduction of ensemble weather prediction in recent years has served as a reference 

in the domain of ensemble flood forecasting (EFF). EFF starts from a central analysis 

which is also called control forecast, and generates other members by perturbing the 

initial conditions and the parameter values. Thus ensemble forecasts can be obtained 

which was found can provide a numerical quantification and representation of predictive 

uncertainty and give more information for flood forecasting and early warning (Cloke & 

Pappenberger, 2009; DeChant & Moradkhani, 2014). 

For Bayesian ensemble forecast, two approaches were tested to generate BEF: (1) attach 

an ensemble generator to the analytic-numerical BFS (Herr & Krzysztofowicz, 2010a, 

2014); (2) implement the BFS exactly and entirely through Monte Carlo simulation, 

which is called EBFS (Herr & Krzysztofowicz, 2015). EBFS has three structural 

components: input ensemble forecaster (IEF), deterministic hydrologic model, hydrologic 

uncertainty processor (HUP). The function of IEF is to produce an ensemble precipitation 

time series that inputs to the hydrologic model, and other two components work the same 

as in traditional BFS. An ensemble of inputs produced by IEF is transformed 

deterministically by the hydrologic model to an ensemble of outputs, the model outputs 

next transformed stochastically into an ensemble of predictands by the HUP. Besides the 

general properties possessed by BFS, one additional property is required for EBFS: that is 

it should generate an ensemble size large enough to meet the accuracy requirement. As 

indicated in Herr & Krzysztofowicz (2010b), in order to avoid significant errors, the 

smallest ensemble size required for the PRSF and the PFF was on the order of several 

hundreds, and for PSTF the smallest ensemble size required was on the order of several 
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thousands. However, the computing time increased linearly with the increase of ensemble 

size, which can be a hurdle for operational use. This gave an impetus to the emergence of 

EBFSR. EBFSR is a refined method based on EBFS and it takes advantage of auxiliary 

randomization to reduce the model runs to generate large Bayesian ensemble size. 

Experiments have shown that EBFSR is more computational efficient and operationally 

feasible than EBFS (Herr and Krzysztofowicz, 2015a). Since the ensemble size was 

determined by the randomization factor and the number of hydrologic models runs, 

methods to find the best values of these two factors were discussed in (Herr and 

Krzysztofowicz, 2015b). 

2.4.2 BFS Application in Real-time Flood Forecasting 

Based on the PRSF or the PSTF produced by BFS, PFF can be constructed either 

approximately or exactly, which specifies a sequence of maximum river stages 

exceedance functions within a time step. The notion of time interval is important because 

it is required to assess the total risks of flooding and it is needed to obtain the temporal 

distribution of flooding. For the method on how to establish bounds on and 

approximations to the PFF via a short term PRSF, see (Krzysztofowicz, 2002b). As to 

how to derive the exact PFF via a short term PSTF, reader should refer to 

(Krzysztofowicz, 2014b). The PFF may be displayed in three formats: (1) the sequence of 

maximum river stage exceedance functions, (2) the isoprobability of the maximum river 

stage quantiles, and (3) the temporal distribution of flooding. 

Several studies have adapted the BFS to evaluate the total uncertainty associated with 

water level or river discharge for real-time flood forecasting. For precipitation forecasting, 
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the High-Resolution Limited-Area Model (HIRLAM) (Reggiani & Weerts, 2008b) or a 

stochastic model called Prediction of Rainfall Amount Inside Storm Events (PRAISE) 

(Biondi & De Luca, 2012, 2013) was employed. A modified Bayesian processor of 

output (BPO) was implemented in one study to process the quantitative precipitation 

forecasts output from the numerical weather prediction model, the processor represented 

a larger skill in predicting the occurrence or nonoccurrence of the event rather than in 

forecasting the event depth. For large basins, the uncertainty due to spatial-temporal 

variability of precipitation cannot be ignored and should be addressed (Reggiani & 

Weerts, 2008b). As for hydrologic response, it was simulated by Hydrologiska Byrans 

Vattenbalansavdelning model (HBV) (Reggiani et al., 2009; Reggiani & Weerts, 2008a) 

or by the rainfall-runoff model namely Runoff by Infiltration and Saturation Excess 

(RISE). RISE is a deterministic process-oriented model especially suitable for catchments 

with small and medium size (Biondi et al., 2009; Biondi & De Luca, 2012, 2013; Biondi 

et al., 2010). In real-time flood forecasting systems, sometimes hydrological and 

hydraulic models were interlinked and embedded in a data management environment. 

Delft-FEWS (Flood Early Warning System) was chosen as the platform in Reggiani & 

Weerts (2008a) to integrate these models due to its flexibility in model integration and 

facilitation for data assimilation. 

Some applications were carried out for the operational flood forecasting of the river 

Rhine (160,000 km2) (Reggiani et al., 2009; Reggiani & Weerts, 2008a). Instead of 

assuming a Markov chain process for the river system, Reggiani & Weerts (2008a) 

proposed a linear regression for prior density taking upstream observing stations into 
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consideration. The integration of water level observations from these stations 

significantly improved the accuracy of prior distribution and revised posterior distribution. 

However, the linear relation seemed not adequate. Reggiani et al (2009) extended the 

focus of the Bayesian processor from a deterministic forecast to an ensemble streamflow 

forecasts named BEUP, the processor translated the prior distribution into an ensemble of 

posterior distributions and then averaged into a single posterior meta distribution to 

represent the ensemble forecast. BEUP was shown as an effective uncertainty assessment 

tool when compared with non-Bayesian uncertainty assessment on the basis of criteria of 

ranked probability skill score. 

Other applications were conducted in Turbolo Creek catchment (29 km2), a semi-arid 

region situated in Southern part of Italy and the data used within these studies included 

rainfall amount, temperature and discharge values which were sampled at a 20 minutes 

time interval (Biondi et al., 2009; Biondi & De Luca, 2012, 2013; Biondi, et al., 2010). 

For the HUP applied, it rests on three assumptions: (1) precipitation dependent structure 

conditioned on the occurrence or nonoccurrence of precipitation, (2) nonstationarity of 

both model river discharge and actual river discharge, (3) meta-Gaussian formulation for 

all the conditional distributions. It was found that the hydrologic uncertainty grew with 

increased forecasted discharge and increased lead time, and it would be higher if 

precipitation occurred (Biondi, Sirangelo, et al., 2009; Biondi, Versace, et al., 2009; 

Biondi et al., 2010). The real-time simulation of storm event indicated that the linear 

regression for the dependence structure between observed and simulated discharge was 

inadequate for high values (Biondi et al., 2009). Results also revealed the crucial role of 
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HUP to produce predictive distribution of river discharge, highlighted the importance of 

this complete predictive distribution, and emphasized the superiority of precipitation 

dependent BFS in real-time flood forecasting (Biondi & De Luca, 2012).  

The applications of BFS for real-time flood forecasting have been described in many 

papers, but its performance assessment is still rare. In order to perform comprehensive 

analysis of the predictive ability of BFS, graphical tools and scalar metrics learned from 

meteorology and well suited for probabilistic forecast were used (Biondi & De Luca, 

2013). The verification tools included calibration which concerns the statistical 

consistency between forecasts and observations, sharpness that characterizes the marginal 

distribution of observations and forecasts, accuracy that considers the joint distribution of 

the forecasts and observations, and together with continuous ranked probability score 

(CRPS). Based on these assessment criteria, the interaction of different sources of 

uncertainty and its impact on the prediction performance were discussed under four 

different hypotheses: (1) predictive distribution (UD) which relates to the implementation 

of a perfect hydrologic model; (2) prior distribution (PD) which corresponds to a non-

informative PQPF; (3) posterior distribution (HD) that relates to a perfect input; and (4) 

total predictive distribution (TD) which considers both sources of uncertainty. TD 

showed best calibration, PD was slightly underestimated, HD showed slight 

overestimation, while UD lead to marked overestimation. TD provided the widest 

forecast intervals, UD represented the narrowest bands and relatively higher sharpness, 

while PD and HD showed intermediate forecast interquartile range (IQR) widths. In 

terms of Root Mean Square Error (RMSE), TD and HD indicated a better predictive skill 
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than UD and PD under lead time of 1 h. In summary, TD showed the best predictive 

capability for river discharge prediction. It also emphasized the importance to perform 

the multifaceted analysis of prediction attributes (Biondi and De Luca, 2013). 

As an alternative to HUP, a new Bayesian processor, model conditional processor (MCP) 

which combines the observations with the model forecasts in a multi-Normal space was 

shown as an effective approach to reconcile physically based models with data driven 

models and to reduce the predictive uncertainty in some extent (Coccia et al, 2010; 

Todini, 2008, 2012, 2013). In addition, a flexible and hybrid Bayesian multi-model 

combination framework IBUNE was applied by combining multi-model predictions so 

that the prediction error of one model can be counteracted by other models. It takes input 

error, model parameters error and model structural deficiency into account. The results 

suggested that the input error and model structural uncertainty cannot be ignored, IBUNE 

was proved to be a useful and applicable technique and able to improve model prediction 

uncertainty bounds (Ajami et al., 2007). DA and BMA also gained attention recently as 

they can reduce forecast uncertainty. However, DA methods are limited to one single 

model, and BMA methods are limited to Gaussian likelihood assumption of predictive 

distribution and fixed value for model weights. Thus a sequential Bayesian multi-model 

combination method was proposed which can overcome these limitations (Moradkhani et 

al., 2009). In ensemble streamflow prediction (ESP), it was combined with ensemble data 

assimilation and sequential Bayesian combination to address the model and initial 

condition uncertainty, and it did increase the accuracy of probabilistic forecasts (DeChant 

& Moradkhani, 2014).  
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2.4.3 Other Bayesian Method Application in Flood Estimation 

Flood frequency analysis is also an important aspect in flood control and water resources 

management, and it aims at estimating future flood behavior based on historic peak flows. 

As an alternative to the traditional analysis, a rainfall-runoff model placed in Bayesian 

inference was used for flood frequency estimation, based on the limited available 

information in ungauged or poorly gauged basin, the posterior parameters distribution 

was assessed (Biondi & De Luca, 2015). Both event-based and continuous simulation 

methods were considered and compared with purely statistical approach. The use of 

regional hydrological signatures reduced the uncertainty bounds on simulated peak 

discharge, and the continuous simulation method matched better with the statistical flood 

frequency analysis (Biondi & De Luca, 2015). It was also demonstrated that the 

combination of extra information reduced the estimation uncertainty (Viglione et al., 

2013). In addition, a Bayesian hierarchical model that consists of several layers, was 

proposed and better presented the spatial and temporal variability (Yan & Moradkhani, 

2014). Multi-model ensemble approach based on BMA can be developed for flood 

frequency analysis as well. The BMA method provided more robust prediction than 

single model and the major uncertainty in flood frequency analysis lied in model 

structure (Yan & Moradkhani, 2015). 

Other Bayesian methods applied in the research field of flood forecasting include 

Bayesian neural network (BNN) for rainfall-runoff modelling (Khan & Coulibaly, 2006), 

Bayesian networks (BNs) for drought forecasting (Madadgar & Moradkhani, 2014b), 
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Bayesian dynamic modelling  for time series analysis (Mike, 2013) and Bayesian Multi-

modeling for streamflow forecast (Madadgar & Moradkhani, 2014a). 

The main inputs to a flood forecast model are precipitation and temperature data, 

advances in their forecast can improve flood forecast accuracy. BMA is a method 

designed to average the different competing models so that uncertainty accompanied by 

model selection could be quantified (Hoeting et al., 1999). It can be adopted in 

streamflow (Najafi & Moradkhani, 2016), precipitation (Sloughter et al., 2007) and 

temperature estimation (Raftery et al., 2005). Bayesian processor of output (BPO) is a 

method designed to process model output, and fuse it with observed data to quantify the 

uncertainty about the predictand (Krzysztofowicz, 2004). (Marty et al., 2015) tried to 

combine BMA and BPO in a new framework to form a new methodology called 

Bayesian processor of ensemble members (BPEM) aiming at post processing an 

ensemble of the numerical weather prediction (NWP) model output, primarily 

temperature. The forecast skill of BPEM was found to slightly outperform BMA, BPO 

and climatological forecast according to the assessment of continuous ranked probability 

score (CRPS) and reliability component. Other methods conducted include Bayesian 

weighting approach for precipitation forecasting based on observation likelihood to 

determine a set of weights for each member (Raynaud et al., 2015), hierarchical Bayesian 

model (HBM) for temperature forecasting (Di Narzo and Cocchi, 2010), hierarchical 

Bayesian network (HBN) for soil moisture data assimilation (Qin et al., 2013). 
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2.4.4 Review and Discussion of the Predictive Uncertainty Assessment Approaches 

in Flood Forecasting 

Besides the Bayesian forecasting methods discussed before, there are other various 

approaches developed to assess predictive uncertainty in flood forecasting application. 

From their theoretical base, all the predictive uncertainty assessment methods used in 

flood forecasting can be classified into 5 types: (1) model error analytical methods, which 

are based on the statistical analysis of model errors, e.g. Quantile regression (QR) 

(Weerts et al., 2011) and meta-Gaussian approach (Montanari & Grossi, 2008); (2) 

ensemble based techniques, relying on numerous simulations or multi-models to generate 

the output probability distribution, e.g. BMA (Duan et al., 2007), hydrologic model 

output statistics (HMOS) (Regonda et al., 2013), general linear model post-processor 

(GLMPP) (Zhao et al., 2011), and non-Gaussian copulas approach (Madadgar et al., 

2014); (3) Bayesian methods, in which Bayesian theory is used to estimate the probability 

distribution of predictand conditional on available information, e.g. BFS (Krzysztofowicz, 

2002a), model conditional processor (MCP) (Todini, 2008, 2012), BEF (Herr & 

Krzysztofowicz, 2010, 2015; Reggiani et al., 2009), IBUNE (Ajami et al., 2007) and 

Sequential Bayesian Multi-model Combination (DeChant & Moradkhani, 2014); (4) data 

assimilation (DA) methods, e.g. ensemble Kalman filter (EnKF) (Dechant & Moradkhani, 

2012) and particle filter (PF) (Salamon & Feyen, 2009); (5) machine learning techniques, 

e.g. uncertainty estimation based on local errors and clustering (UNEEC) (Dogulu et al., 

2014; Solomatine & Shrestha, 2009), grey neural networks (Alvisi & Franchini, 2012), 

grey number theory based approach (Alvisi et al., 2013), and Bayesian neural network 
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(BNN) (Khan & Coulibaly, 2006). No method is perfect, each of them has advantages 

and limitations. The choice of a method highly depends on the available data and the 

research purpose. The detailed disccusion of Prons and Cons of each approach can be 

found below and also summarized in Table 2-3. 
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Table 2-3 Comparison of the predictive uncertainty assessment approaches in flood 

forecasting (in chronological order) 

References Key Objectives Methods Pros Cons 

Krzysztofowicz, R. 

(1999); 

Krzysztofowicz, R. 

(2002); 

Krzysztofowicz, R., 

& Maranzano, C. J. 

(2004); Biondi, D., & 

De Luca, D. L. 

(2012) 

Assess the total 

uncertainty 

associated with 

PRSF, PSTF or real-

time flood 

forecasting  

Bayesian 

Forecasting 

System (BFS) 

 Flexible and robust 

theoretical structure 

 Able to quantify all 

sources of 

uncertainties 

Rest on structural and 

distributional 

assumptions 

Montanari, A., & 

Brath, A. (2004); 

Montanari, A., & 

Grossi, G. (2008) 

Assess the 

uncertainty 

associated with 

rainfall-runoff 

simulations  

Meta-

Gaussian 

Approach 

 Low computational 

requirement 

 Quite 

straightforward to 

apply 

 Require model 

error assumption 

 Consider limited 

sources of 

uncertainty 

Khan, M. S., & 

Coulibaly, P. (2006); 

Zhang, X., et al. 

(2009); Zhang, X., et 

al. (2011) 

Apply BNN for 

uncertainty 

estimation of 

streamflow 

simulation 

Bayesian 

Neural 

Network 

(BNN) 

Can address the problem 

of overfit and underfit 

Identification of 

interaction between 

different uncertainties 

need to be improved 

Duan, Q., et al. 

(2007); Vrugt, J. A., 

& Robinson, B. A. 

(2007); Liang, Z., et 

al. (2013)  

Develop reliable 

probabilistic 

streamflow forecast  

Bayesian 

Model 

Averaging 

(BMA) 

Use multi-model to 

reduce the model 

structure uncertainty 

Might cause large 

uncertainty in real-

time predictions 

Vrugt, J. A., & 

Robinson, B. A. 

(2007); Salamon, P., 

& Feyen, L. (2009); 

DeChant, C. M., & 

Moradkhani, H. 

(2012);  Moradkhani, 

H., et al. (2012)  

Quantify uncertainty 

in hydrologic 

forecasting 

Data 

Assimilation 

(DA) 

 Assimilate various 

sources of data  

 Update states 

automatically 

 EnKF: 

assumption of 

Gaussian error 

distribution 

 PF: computational 

demand increase 

in some cases 

Ajami, N. K., et al. 

(2007) 

Build IBUNE to 

confront input 

uncertainty, model 

parameter 

uncertainty and 

model structure 

uncertainty 

Integrated 

Bayesian 

Uncertainty 

Estimator 

(IBUNE) 

 Bayesian multi-

model combination 

framework 

 Produce improved 

model prediction 

uncertainty bounds 

Expensive to be used 

in real-time 

operational application 
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Scholzel, C. & 

Friederichs, P. 

(2008); Madadgar, S., 

et al. (2014) 

Introduce the non-

Gaussian copulas 

approach for 

ensemble flow 

forecast 

Non-

Gaussian 

Copulas 

Approach 

 Able to catch 

covariance structure 

 Account for 

connection between 

forecasts and 

observations  

Don't solve 

dimensionality 

problem 

Todini, E. (2008); 

Todini, E. (2013) 

Propose the MCP as 

an alternative to 

HUP to assess 

predictive 

uncertainty 

Model 

Conditional 

Processor 

(MCP) 

 More capable for 

multi-model and 

multi-location 

application 

 MCP algorithm and 

its derivation are 

more simple than 

HUP 

Little consideration for 

precipitation input 

uncertainty 

Wang, Q. J., et al. 

(2009); Wang, Q. J. 

& Robertson, D. E. 

(2011); Zhao, T., et 

al. (2015) 

Quantify predictive 

uncertainty by post 

process 

deterministic 

streamflow forecast  

Bayesian 

Joint 

Probability 

(BJP) 

 Low requirement for 

input data 

 Capable to apply in 

real-time forecasts 

 Might cause 

bound-related 

issue 

 Sensitive to initial 

catchment 

condition 

Solomatine, D. P. & 

Shrestha, D. L. 

(2009); Dogulu, N., 

et al. (2014) 

Estimate model 

uncertainty by 

UNEEC and 

compare with 

GLUE, meta-

Gaussian and QR 

Uncertainty 

Estimation 

based on 

Local Errors 

and 

Clustering 

(UNEEC)  

 Can express the 

whole model error 

distribution  

 No requirement for 

residual pdf 

assumption  

 Issue of 

extrapolation 

 Accuracy highly 

depend on 

regression model 

Reggiani, P., et al. 

(2009); Herr, H. D., 

& Krzysztofowicz, R. 

(2010); Herr, H. D., 

& Krzysztofowicz, R. 

(2015) 

Produce Bayesian 

ensemble forecast 

that provide 

numerical 

characterization of 

predictive 

uncertainty 

Bayesian 

Ensemble 

Forecast 

(BEF) 

Combine BFS with 

ensemble technique 

Computing time 

increases with the 

increase of ensemble 

size 

Moradkhani, H., et al. 

(2009); DeChant, C. 

M., & Moradkhani, 

H. (2014) 

Assess initial 

condition 

uncertainty, future 

climate uncertainty 

and model errors 

with streamflow 

forecasting 

Sequential 

Bayesian 

Multi-model  

Combination 

method 

 Sequential updating 

to blend multiple 

models 

 Not limited to fixed 

model weight as in 

BMA 

Require to combine 

with other technique 

for some cases, e.g. 

DA 
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Brown, J. D., & Seo, 

D. J. (2010) 

Quantify and reduce 

bias in ensemble 

hydrologic forecasts  

Non-

Parametric 

Postprocessor 

Good for variables lack 

of parametric 

distribution  

 Don't quantify 

sampling 

uncertainty with 

extreme events  

 May not good for 

dynamic 

modeling 

Weerts, A. H., et al. 

(2011) 

Estimate 

hydrological 

uncertainty 

associated with 

water level forecast 

Quantile 

Regression 

(QR) 

 Relatively simple to 

apply 

 Require very few 

assumptions 

 Easy to understand 

the theory 

 Require long time 

period of data 

 Don't include non-

linear model 

Zhao, L., et al. 

(2011); Ye, A., et al. 

(2014); Ye, A., et al. 

(2015) 

Adjust and reduce 

bias in ensemble 

streamflow 

predictions  

General 

Linear Model 

Post-

Processor 

(GLMPP)  

 Easily applied to 

ensemble forecasts 

 Remove mean 

biases effectively 

Sensitive to different 

settings 

Steenbergen, N. V., 

et al. (2012) 

Use a non-

parametric data-

based approach for 

probabilistic flood 

forecasting 

Non-

Parametric 

Data-based 

Approach  

Generate more realistic 

confidence interval 

Unable to assess the 

uncertainty for value 

out of the historical 

range 

Alvisi, S. & 

Franchini, M. (2012) 

Quantify the 

uncertainty with 

river stage 

forecasting  

Grey Neural 

Networks 

Capture non-linear 

relationship between 

variables without 

physical process 

simulation 

Require excessive 

computing time 

Alvisi, S., et al. 

(2013) 

Quantify the 

uncertainty with rr 

model and compare 

with GLUE 

Grey Number 

Theory based 

Approach 

Significantly reduce the 

computation time 

Require good quality 

of data 

Regonda, S. K., et al. 

(2013) 

Generate ensemble 

streamflow forecasts 

from single-valued 

forecasts 

Hydrologic 

Model Output 

Statistics 

(HMOS) 

 Preserve temporal 

correlation over 

successive lead 

times 

 Less expensive to 

develop and apply 

 Limited sample 

size with 

operational 

forecasts 

 Consider limited 

sources of 

uncertainty 
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Quantile regression (QR) was introduced by Koenker (2005), and applied by Weerts et al 

(2011) to estimate hydrologic uncertainty associated with water level forecast. QR 

provides a predictive uncertainty assessment method that is easy to understand and 

relatively simple to apply. Its main limitation is that it requires long time period of data in 

order to generate ideal results, and unlike UNEEC, QR relies on linear regression. The 

meta-Gaussian approach, which is based on the regression of model errors over the model 

forecast to assess rainfall-runoff modeling uncertainty, was found quite straightforward to 

apply and has low computational requirement, but the model errors need to be assumed 

as Gaussian and homoscedastic (Montanari & Grossi, 2008; Montanari & Brath, 2004). 

The preditive uncertainty can also be estimated by analyzing the residuals in a non 

parametric way, as the non-parametric data-based approach presented by Steenbergen et 

al (2012). 

Another probabilistic streamflow forecast, BMA proposed by Raftery (1993), was used in 

several studies (Duan et al., 2007; Liang et al., 2013; Vrugt & Robinson, 2007). It uses 

multi-model to reduce the uncertainty due to model selection, and the model with better 

performance gets higher BMA weight. Due to these advantages, BMA was also widely 

used in meteorology. Some studies found that it will lead to less biased predictive 

distribution and smaller uncertainty when integrating other methods with BMA, for 

example, copula-embedded BMA (Cop-BMA) (Madadgarand & Moradkhani, 2014) and 

combination of Genetic Algorithms (GA) and BMA (Zhang et al., 2009). One 

disadvantage is that it may cause large uncertainty in real-time predictions.  
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Hydrologic model output statistics (HMOS) introduced by Regonda et al (2013) as an 

uncertainty post processor, is able to generate ensemble streamflow forecasts from single-

valued forecasts. The ensemble members can preserve the temporal correlation over 

successive lead times. For further improvement, the issue of limited sample size obtained 

from the operational forecasts should be considered. In meteorological applications, 

model output statistics (MOS) (Glahn & Lowry, 1972) and ensemble model output 

statistics (EMOS) (Gneiting et al., 2005) were widely adopted, which are based on the 

same theory as HMOS. The general linear model post-processor (GLMPP) developed by 

Zhao et al (2011), was found capable to remove mean biases effectively in ensemble 

streamflow predictions (Ye et al., 2014, 2015). In operational application, one may pay 

attention to the parameter setting as the results are sensitive to different settings. The non-

Gaussian copulas approach have been recently introduced in climatological applications 

(Scholzel & Friederichs, 2008), and its variant, the multivariate post-processor was used 

to set up uncertainty post processors for forecasted flow (Madadgar et al., 2014). This 

multivariate copula-based method is able to catch covariance structure and account for 

the joint connection between forecasts and observations. The limitation of the copula 

approach is that it doesn’t deal with the problem of dimensionality, obtaining the 

parametric distribution for high dimensional variables still remains complicated.  

BFS provides a flexible and robust theoretical structure and is able to quantify all sources 

of uncertainties, but it rests on certain structural and distributional assumptions. As an 

alternative to HUP, which is one essential component of BFS, MCP is more capable for 

multi-model and multi-location application and its derivation is more simple than HUP 
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(Todini, 2008, 2013). By combining BFS with ensemble technique, BEF has the ability to 

generate Bayesian ensemble forecasts to numerically characterize the predictive 

uncertainty. Based on a Bayesian multi-model combination framework, IBUNE can 

provide improved model prediction uncertainty bounds. However, BEF and IBUNE show 

potential weakness in terms of operational application, for example, the computing time 

of BEF increases with the increase of ensemble size (Herr & Krzysztofowicz, 2010, 

2015), while IBUNE is computationally expensive to be used in real-time operational 

application (Ajami et al., 2007). Not limited to the fixed model weights as in BMA 

method, Sequential Bayesian Multi-model Combination has the flexibility to assign 

higher weights to better performed models for a certain time period, and the adjustable 

parameters are sequentially updated to blend multiple models, sometimes it is required to 

combine with other techniques such as DA to obtain adequate outcome. 

Due to the ability to assimilate various sources of data, merge observations and 

simulations optimally and update the state continuously, DA method has gained 

popularity in quantifying uncertainty in hydrologic forecasting, such as EnKF (Dechant 

& Moradkhani, 2012; Vrugt & Robinson, 2007), PF (Salamon & Feyen, 2009). Several 

variants of PF like particle filter-sequential importance resampling (PF-SIR) (Dechant & 

Moradkhani, 2012), particle filter-markov chain monte carlo (PF-MCMC) (Moradkhani 

et al., 2012) have been proposed. EnKF is computationally efficient, and could achieve 

better performance compared with BMA (Vrugt & Robinson, 2007), whereas the theory 

depends on the assumption of gaussian error distribution. It is noteworthy that in 

prediction mode, the Kalman filter cannot be directly used for assessing predictive 
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uncertainty since future observations are not available, thus the model forecasts are now 

required to work as “pseudo measurements” of the future predicted quantities (Todini, 

2006, 2016). PF is more capable of preserving the spatial distribution pattern than EnKF 

(Dechant & Moradkhani, 2012), but in filtering algorithms, the problem of weight 

collapse might happen due to particle weight disparity, if trying to handle this issue by 

adding a resampling step, the computational cost will be high.  

Machine learning techniques have also been used in order to assess the predictive 

uncertainty, for example, uncertainty estimation based on local errors and clustering 

(UNEEC) (Dogulu et al., 2014; Solomatine & Shrestha, 2009), grey neural networks 

(Alvisi & Franchini, 2012), grey number theory based approach (Alvisi et al., 2013), 

Bayesian neural network (BNN) (Khan & Coulibaly, 2006; Zhang et al., 2009, 2011). 

The advantage of these machine learning approaches is that they can capture the non-

linear relationship between variables without explicitly modeling the physical process, 

and improved model uncertainty estimation can be generated compared with other 

methods, such as meta-Gaussian and QR (Alvisi et al., 2013; Solomatine & Shrestha, 

2009). The main limitation is their inability to extrapolate beyond the boundary of the 

training dataset.  

Under the condition that the variables don’t have a parametric distribution form, non-

parametric postprecessor applied by Brown & Seo (2010) is a good way to quantify and 

reduce bias in ensemble hydrologic forecasts, it is based on Bayesian optimal linear 

estimation and is similar to indicator co-kriging (ICK). The shortcoming of this method is 

the lack of ability for dynamic modeling as it doesn’t model joint distribution of 
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observations across different lead time. If the quality of data record is not ideal, Bayesian 

joint probability (BJP) will be a possible method to consider for probabilistic streamflow 

forecasting. BJP has low requirement for the input data, which means it can contain some 

missing record, and it should be able to work in real-time forecasts (Zhao et al., 2015). 

On condition that the variable has a physical range, bound-related issue might happens 

(Wang et al., 2009). The extended BJP is applicable to streams with zero flows, however, 

it is sensitive to the initial catchment condition (Wang & Robertson, 2011). 

2.5 Conclusions and Future Work 

A comprehensive review of Bayesian methods applied to flood forecasting over the last 

two decades is provided. Bayesian flood forecasting is an advanced and effective way for 

probabilistic flood forecast with uncertainty estimate. It offers an ideal theoretical 

structure and quantifies all sources of uncertainties, thus can reduce predictive 

uncertainty to some extent and lead to a more reliable and accurate forecast. As shown in 

this paper, the Bayesian flood forecasting approaches have been developed rapidly and 

widely applied since 1999, which brings great confidence in the research field of accurate 

and reliable flood forecast and estimation. However, there is still room for improvement 

and some challenges to overcome. First, only limited types of river basin were studied to 

develop and test the Bayesian forecasting approaches, it remains unknown whether these 

Bayesian flood forecasting approaches are suitable for different watersheds with different 

sizes and different physical and climatic characteristics. Second, more forecast products 

could be developed to express the predictive uncertainty. Third, most of the previous 

studies used single average precipitation amount as input to the Bayesian forecasting 
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methods. However, many other sources of data may have added value (e.g., radar data, 

numerical weather prediction data, and remotely sensed data), thus it is expected that the 

Bayesian approach could be more flexible to assimilate various sources of newly 

available information. This does require further research. Finally, as performance 

assessment of Bayesian flood forecasting is rare, it might be a potential research direction. 

Overall, significant work is needed in the future to address all the above issues in the 

context of flood forecasting with uncertainty estimate. 
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Chapter 3. Assessing Hydrologic Uncertainty Processor Performance 

for Flood Forecasting in a Semiurban Watershed 

Summary of Paper 2: Han, S., Coulibaly, P. and Biondi, D. (2019). Assessing 

Hydrologic Uncertainty Processor Performance for Flood Forecasting in a Semiurban 

Watershed. Journal of Hydrologic Engineering, 24(9), 05019025. 

This research work applied the precipitation-dependent Hydrologic Uncertainty Processor 

(HUP) in a semiurban watershed to quantify the hydrologic uncertainty with flood 

forecast, and compared the performance of HUP with different hydrologic models under 

different flow conditions.  

Key findings of this research include: 

 HUP is able to correct the deterministic forecast from the hydrologic model, and 

produces more accurate probabilistic forecast with quantification of hydrologic 

uncertainty. 

 For low peak flow events, HUP combining with different hydrologic models show 

comparable performance. 

 For high peak flow events, the better deterministic forecast is yielded from the 

hydrologic model, the better probabilistic forecast is produced by applying HUP 

with that hydrologic model. 
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3.1 Abstract 

A key challenge in enhancing flood forecast relies in the difficulty of reducing predictive 

uncertainty. The Precipitation-Dependent Hydrologic Uncertainty Processor (HUP) is a 

flexible model independent Bayesian processor that can be used with any hydrologic 

model to provide probabilistic forecast. This study investigates the use of HUP with 

different hydrologic models for hydrologic uncertainty quantification in a flood 

forecasting scheme for a semi-urban watershed of southern Ontario (Canada). The 

purpose is to better understand predictive uncertainty and enhance flood forecasting 

system reliability in semi-urban conditions. HUP is based on Bayes’ theorem, it updates 

the prior distribution given available information at the forecast time to obtain the 

posterior distribution that is close to future unknown actual value. In this study, HYMOD 

and GR4H were selected to work with HUP, and the Bayesian processor was calibrated 

using a number of selected flood events from 2005 to 2014. The performance of the 

processor was assessed by graphical tools and performance metrics, like reliability plots, 

Nash Sutcliffe efficiency (NSE), and continuous ranked probability score (CRPS). 

Results show that HUP provides a robust framework and a reliable analytic-numerical 

method for the quantification of hydrologic uncertainty, the actual values are well 

captured by the uncertainty bounds, the CRPS values are relatively small, and reliability 

curves lie close to the bisector. The comparison between the NSE calculated from the 

output of the sole deterministic hydrologic model (HYMOD/GR4H) and from the median 

of the predictive distribution produced by HUP-HYMOD/HUP-GR4H, demonstrates that 

HUP has the ability to improve the deterministic forecast. For low peak flow events, HUP 
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combining with different hydrologic models presents similar predictive performance, 

while for high peak flow events, a well performed deterministic model is required in 

HUP to produce an accurate probabilistic forecast.  

Author keywords: Hydrologic Uncertainty Processor; uncertainty quantification; 

posterior distribution; Bayes theorem; flood forecasting 

3.2 Introduction 

Over the past few decades in Canada, the frequency of floods has been increasing, and 

the estimated total costs of large flood events could exceed 5 billion dollars over a ten 

year period (The City of Windsor 2012). Therefore, in the research field of non-structural 

flood management, it is extremely important to address flood forecasting challenges and 

enhance flood forecasting systems. Accurate quantification of uncertainties associated 

with deterministic forecast is one of these challenges. As deterministic forecast that gives 

a point estimate of the predictand through model simulation can have limited value to 

decision-makers (Reggiani and Weerts 2008), the scientific hydrologic community shows 

an increasing interest in probabilistic forecast, which not only predicts the point forecast 

but also expresses the associated degree of confidence under uncertainty.  

Uncertainties within flood forecasting are manifold, they could arise from various sources, 

including model uncertainty (uncertainty of model parameter and model structure), 

measurement uncertainty, uncertainty associated with initial condition, insufficient and 

incomplete data input, uncertainty of future precipitation and temperature, etc. Although 

uncertainty quantification (UQ) associated with the forecast is an essential support to 
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make an effective decision, sometimes uncertainties are difficult to interpret 

probabilistically and are not always fully and accurately quantified. 

Research in recent years has been significantly focused on the quantification and 

reduction of uncertainty and many methodologies have been introduced. Approaches that 

are suitable for predictive uncertainty quantification include Data-Based Mechanistic 

(DBM) with Kalman Filter (Young 2002; Romanowicz et al. 2006), Bayesian Joint 

Probability (BJP) (Wang et al. 2009; Wang and Robertson 2011; Zhao et al. 2015), 

Bayesian Forecasting System (BFS) proposed by Krzysztofowicz (1999), Model 

Conditional Processor (MCP) by Todini (2008, 2013), Data Assimilation (DA) (Dechant 

and Moradkhani 2012; Moradkhani et al. 2012; Salamon and Feyen 2009; Vrugt and 

Robinson 2007), Quantile Regression (QR) (Weerts et al. 2011), Non-Gaussian Copulas 

Approach (Madadgar and Moradkhani 2014; Schoelzel and Friederichs 2008), Non-

Parametric Databased Approach (Van Steenbergen et al. 2012), Grey Neural Networks 

(Alvisi and Franchini 2012), Bayesian Neural Network (BNN) (Khan and Coulibaly 2006; 

Zhang et al. 2009, 2011), Hydrologic Model Output Statistics (HMOS) (Regonda et al. 

2013), and etc. The predictive uncertainty quantification techniques have been largely 

improved, however, there are still some aspects that need further investigation. Most of 

the approaches quantify the predictive uncertainty in a lumped way, the contribution of 

each individual source of error to the total uncertainty is not clear yet, and the 

understanding of the dominant individual uncertainties needs to be improved (Zhang et al. 

2011).  
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Among the predictive uncertainty quantification approaches, BFS provides a robust and 

flexible theoretical framework for probabilistic forecasting, considers all the major 

sources of uncertainties and can work with any deterministic hydrologic model. BFS 

breaks down the total uncertainty into precipitation uncertainty and hydrologic 

uncertainty, the hydrologic uncertainty processor (HUP) is a component of BFS that 

specifically quantifies hydrologic uncertainty and provides probabilistic forecast under 

the assumption of a perfect forecast of precipitation amount (Liu et al. 2018). A series of 

papers have described the theory of each BFS component (Kelly and Krzysztofowicz 

2000; Krzysztofowicz 1999, 2001; Krzysztofowicz and Herr 2001; Krzysztofowicz and 

Kelly 2000), and several studies have presented the application of BFS for river stage 

forecasting (Herr and Krzysztofowicz 2010, 2015; Krzysztofowicz 2002) as well as for 

real-time flood forecasting (Reggiani and Weerts 2008; Reggiani et al. 2009; Biondi et al. 

2010; Biondi and De Luca 2013, 2012). 

BFS has been applied for limited types of watersheds at daily or hourly time scale and its 

performance on other types of watersheds needs to be further investigated. This study 

focuses on application of the HUP component to a semi-urban watershed encompassing 

hundreds of square kilometers at hourly time step. Semi-urban watersheds include both 

rural areas which are open and sparsely populated and urban areas which are heavily 

built-up and densely populated. Humber River watershed, the watershed selected for the 

present study, is comprised of half urban area in downstream and half rural area located 

in upstream. During high intensity precipitation events, water level in urban area rises 

rapidly due to the impervious surface, and then the increased flow in urban downstream 
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is fed by the water stored in rural area upstream, often resulting in extended flood 

duration. The complexity and variability of the rainfall-runoff response in semi-urban 

watersheds, due to mixture of urban and rural lands, is likely to lead to multiple flow 

peaks, and increase prediction uncertainty (Fletcher et al. 2013). In addition, enhancing 

the reliability of flood forecasts through better uncertainty estimate is of particular need 

in populated semi-urban watersheds. 

Previous studies have focused on the application of HUP to assess hydrologic uncertainty 

(Krzysztofowicz and Herr 2001; Krzysztofowicz and Kelly 2000; Biondi et al. 2010; 

Reggiani and Weerts 2008; Reggiani et al. 2009; Liu et al. 2016; Liu et al. 2018), but 

very few studies have compared the performance of HUP working with different rainfall-

runoff models. There are many post-processing approaches that aim to improve flood 

predictions considering the information content from the outputs of different hydrological 

models. The Bayesian Model Averaging (BMA), introduced by Raftery (1993), has been 

frequently applied in hydrology to combine forecasts from different hydrological models 

and estimate predictive uncertainty as a weighted mean of the predictive distributions of 

individual models. Other approaches that make use of the model-based ensemble 

information have been proposed to estimate the predictive uncertainty distribution, e.g. 

the already mentioned QR and MCP as well as the EMOS (Ensemble Model Output 

Statistics) by Gneiting et al. (2005) and the non parametric approach by Brown and Seo 

(2010). A recent review paper by Han and Coulibaly (2017) considers most of the 

proposed Bayesian approaches, while a comprehensive review of the commonly used 
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statistical post-processing methods for uncertainty estimation of meteorological (e.g. 

precipitation) and hydrological (e.g. streamflow) forecasts, is provided in Li et al. (2017).  

This contribution aims at investigating the use of HUP with different hydrologic models 

in a semi-urban watershed, and provides a comprehensive analysis of HUP performance 

under different flow conditions. The objectives of this study are: (i) to accurately quantify 

hydrologic uncertainty associated with flood forecast through a precipitation-dependent 

HUP given the information available at the forecast time and assumption of perfect 

precipitation input; (ii) to compare the predictability of HUP combined with different 

deterministic hydrologic models under different lead times; (iii) to assess the predictive 

performance of HUP for different magnitudes of peak flow events (low peak flow event, 

medium peak flow event, high peak flow event).  

3.3 Methodology 

3.3.1 Hydrologic Uncertainty Processor (HUP) 

3.3.1.1 Background of the Bayesian Processor 

BFS consists of three components: precipitation uncertainty processor (PUP), hydrologic 

uncertainty processor (HUP) and integrator (INT). Precipitation uncertainty (related to 

the forecast of the total average precipitation amount) is quantified in PUP under the 

hypothesis of nonexistence of hydrologic uncertainty; the purpose of the HUP, a 

Bayesian processor, is to quantify the hydrologic uncertainty (related to the aggregate of 

all sources of error other than precipitation amount error, including spatial and temporal 

downscaling of precipitation forecast, and measurement and estimation errors of other 
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model inputs) associated with flood forecast under the assumption that precipitation 

uncertainty is zero; then these two uncertainties are combined in INT (Krzysztofowicz 

and Herr 2001). Based on Bayes’ theorem, i.e. combining a prior distribution with a 

likelihood function, HUP outputs a posterior distribution conditional on initial states and 

deterministic forecasts, that is able to provide a complete characterization of uncertainty 

(Liu et al. 2018). 

Two versions of HUP can be distinguished: a precipitation-independent HUP and a 

precipitation-dependent HUP. Precipitation-independent HUP is a one branch processor 

where all the hydrologic processes are analyzed together, while precipitation-dependent 

HUP is a processor with two branches, each conditional on the precipitation occurrence: 

if precipitation occurs, the hydrological process will be allocated to and analyzed in the 

first branch; if there is no precipitation, the hydrological process will be assigned to the 

second branch. Some studies found that hydrologic uncertainty grew under occurrence of 

precipitation, as more components in hydrologic models are active when precipitation 

occurs and the precipitation-dependent HUP turned out to be more efficient and 

informative than precipitation-independent HUP (Krzysztofowicz and Herr 2001), hence 

the precipitation-dependent HUP was employed in this study. 

Define V as an indicator of precipitation occurrence or non-occurrence over the forecast 

period, it is binary with V = 0 indicating basin precipitation amount is equal to 0 and V = 

1 indicating precipitation amount is larger than 0. Define n (n = 1, 2,…, N) as the lead 

time in units of hours, and time step tn - tn-1 is fixed at a value of 1 hour. Let hn denote the 

actual river discharge at the outlet of the basin for every lead time n ∈ {1,…, N}; at time 
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t0, h0 is the observed river discharge, the actual river discharge at time tn is uncertain and 

thus treated as a random variable Hn. Similarly, let sn denote the model river discharge for 

every lead time n, produced from the hydrologic model to estimate Hn and stands for a 

realization of variate Sn. Supposing there is no hydrologic uncertainty, sn would be 

expected to equal hn for every n, the impact of hydrologic uncertainty is to give rise to a 

probability distribution of the actual river discharge Hn. 

For each precipitation indicator v (v = 0, 1) and every lead time n (n = 1,…, N), the HUP 

gives a family of posterior distributions Фnv and posterior densities ϕnv for Hn. The prior 

density g of Hn exists before the forecast, and is characterized in terms of marginal 

density and a family of transition densities. The posterior density of actual river discharge 

Hn can be given by the Bayes theorem via the revision of the prior density on the basis of 

all the available information. Conditional on the model river discharge sn and observed 

river discharge h0 at time t0, the posterior density ϕnv takes the form (Krzysztofowicz 

1999):  


𝑛𝑣

(ℎ𝑛|𝑠𝑛, ℎ0) =  
𝑓𝑛𝑣(𝑠𝑛|ℎ𝑛, ℎ0)𝑔𝑛𝑣(ℎ𝑛|ℎ0)

𝜅(𝑠𝑛|ℎ0)
 

(3-1) 

Where f is the likelihood function derived by looking at the relationship between 

predictands and observations, and the expected density 𝜅 of model river discharge Sn, 

conditional on the observed river discharge h0, can be obtained from Eq. (3-2) below by 

combining gnv and fnv into a Bayesian revision process (Krzysztofowicz 1999): 

𝜅(𝑠𝑛|ℎ0) =  ∫ 𝑓𝑛𝑣(𝑠𝑛|ℎ𝑛, ℎ0)𝑔𝑛𝑣(ℎ𝑛|ℎ0)𝑑ℎ𝑛

∞

−∞

 (3-2) 
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More detailed information about the formula derivation can be found in (Krzysztofowicz 

and Kelly 2000; Krzysztofowicz 2002; Krzysztofowicz and Herr 2001). As for the steps 

about how to implement the precipitation-dependent HUP, they will be discussed in 

detail below. 

3.3.1.2 Normal Quantile Transform (NQT) 

A meta-Gaussian approach (Krzysztofowicz and Kelly 2000; Krzysztofowicz and Herr 

2001) was adopted in this study to apply the precipitation-dependent HUP. Within this 

meta-Gaussian model, each variate, Hn and Sn, was transformed into normally distributed 

variate, Wn and Xn, respectively. In the transformed space, the variates are assumed to 

follow Gaussian distribution and the stochastic dependence structure is modelled in terms 

of normal linear equations, which makes it easy for regression and parameter estimation. 

Then the estimation results are transformed back into the original space, resulting in 

meta-Gaussian distributions.  

Based on the matching between the historical discharge record and the discharge output 

from the hydrologic prediction, a joint sample {(v; s1,…sN; h0, h1,…hN)} can be formed. 

For every v ∈ {0, 1} and every n ∈ {0, 1,…N}, define nv as marginal prior distribution 

of Hn, and 𝛬̅
𝑛𝑣  as marginal initial distribution of Sn. The corresponding densities are 

represented by nv and �̅�𝑛𝑣. Once the appropriate marginal distribution type is determined, 

each original variate is transformed into a normal variate through the standard normal 

inverse Q-1 of the marginal distribution, the process is called normal quantile transform 

(NQT) and presented by these equations (Krzysztofowicz and Kelly 2000): 
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𝑊𝑛 = 𝑄−1(Г𝑛𝑣(𝐻𝑛)), 𝑛 = 0,1, … , 𝑁 (3-3) 

𝑋𝑛 = 𝑄−1(𝛬̅
𝑛𝑣(𝑆𝑛)), 𝑛 = 0,1, … , 𝑁 (3-4) 

3.3.1.3 Dependence Parameters 

In the transformed space, the stochastic dependence structures of transition density and 

likelihood function are characterized by two linear regressions. By looking at the 

relationship between actual river discharge at time tn and tn-1 in normal space, the 

dependence parameters of the transition densities cnv (v = 0, 1; n = 1,…, N) can be 

defined as (Krzysztofowicz and Herr 2001): 

𝐸(𝑊𝑛|𝑊𝑛−1 = 𝑤𝑛−1, 𝑉 = 𝑣) = 𝑐𝑛𝑣𝑤𝑛−1 (3-5) 

𝑉𝑎𝑟(𝑊𝑛|𝑊𝑛−1 = 𝑤𝑛−1, 𝑉 = 𝑣) = 1 − 𝑐𝑛𝑣
2  (3-6) 

The parameters cnv are regression constants, and the residual is statistically independent 

of Wn-1 and normally distributed with zero mean and variance 1 − 𝑐𝑛𝑣
2 . 

By looking at the distribution of the model river discharge at time tn conditional on actual 

river discharge at tn and actual river discharge at the forecast time t0 in the normal space, 

the dependence parameters of the likelihood function anv, bnv, dnv and σnv (v = 0, 1; n = 

1,…, N) can be defined as (Krzysztofowicz and Herr 2001): 

𝐸(𝑋𝑛|𝑊𝑛 = 𝑤𝑛, 𝑊0 = 𝑤0, 𝑉 = 𝑣) = 𝑎𝑛𝑣𝑤𝑛 +  𝑑𝑛𝑣𝑤0 +  𝑏𝑛𝑣 (3-7) 

𝑉𝑎𝑟(𝑋𝑛|𝑊𝑛 = 𝑤𝑛, 𝑊0 = 𝑤0, 𝑉 = 𝑣) = 𝜎𝑛𝑣
2  (3-8) 
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The parameters anv, bnv and dnv are regression constants, and the residual is statistically 

independent of other variables and normally distributed with zero mean and variance 𝜎𝑛𝑣
2 . 

3.3.1.4 Prior Density and Prior Distribution 

Given the prior dependence parameters cnv defined in Eq. (3-5), the parameters that 

characterize meta-Gaussian prior density and prior distribution can be calculated 

(Krzysztofowicz and Herr 2001): 

𝐶𝑛𝑣 = ∏ 𝑐𝑖𝑣

𝑛

𝑖=1

 
(3-9) 

𝑡𝑛𝑣
2 = 1 − 𝐶𝑛𝑣

2  (3-10) 

The meta-Gaussian prior distribution of actual river discharge Hn on the nth hour, 

conditional on precipitation event V = v, and given the observed river discharge H0 = h0 at 

the forecast time, can be derived (Krzysztofowicz and Herr 2001): 

𝐺𝑛𝑣(ℎ𝑛|ℎ0) = 𝑄(
𝑄−1(𝑛𝑣(ℎ𝑛)) − 𝐶𝑛𝑣𝑄−1(0𝑣(ℎ0))

𝑡𝑛𝑣
) (3-11) 

And the corresponding meta-Gaussian prior density takes the form (Krzysztofowicz and 

Herr 2001):  

𝑔𝑛𝑣(ℎ𝑛|ℎ0) =


𝑛𝑣
(ℎ𝑛)𝑞(𝑄−1(𝐺𝑛𝑣(ℎ𝑛|ℎ0)))

𝑡𝑛𝑣𝑞(𝑄−1(𝑛𝑣(ℎ𝑛)))
 

(3-12) 

Where, Q is the standard normal distribution, Q-1 is its inverse and q stands for its 

corresponding density. 
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3.3.1.5 Posterior Density and Posterior Distribution 

Given the parameters defined in Eqs. (3-7) - (3-10), the dependence parameters used in 

posterior density and posterior distribution Anv, Bnv, Dnv and Tnv can be calculated as 

follows (Krzysztofowicz and Herr 2001): 

𝐴𝑛𝑣 =
𝑎𝑛𝑣𝑡𝑛𝑣

2

𝑎𝑛𝑣
2 𝑡𝑛𝑣

2 + 𝜎𝑛𝑣
2

 
(3-13) 

𝐵𝑛𝑣 =
−𝑎𝑛𝑣𝑏𝑛𝑣𝑡𝑛𝑣

2

𝑎𝑛𝑣
2 𝑡𝑛𝑣

2 + 𝜎𝑛𝑣
2

 
(3-14) 

𝐷𝑛𝑣 =
𝐶𝑛𝑣𝜎𝑛𝑣

2 −𝑎𝑛𝑣𝑑𝑛𝑣𝑡𝑛𝑣
2

𝑎𝑛𝑣
2 𝑡𝑛𝑣

2 + 𝜎𝑛𝑣
2

 
(3-15) 

𝑇𝑛𝑣
2 =

𝑡𝑛𝑣
2 𝜎𝑛𝑣

2

𝑎𝑛𝑣
2 𝑡𝑛𝑣

2 + 𝜎𝑛𝑣
2

 
(3-16) 

The meta-Gaussian posterior distribution of actual river discharge Hn on the nth hour, 

conditional on precipitation event V = v and the model river discharge Sn = sn which 

output from the hydrologic model based on a perfect precipitation input, and given the 

observed river discharge H0 = h0 at the forecast time, can be derived (Krzysztofowicz and 

Herr 2001): 

Ф𝑛𝑣(ℎ𝑛|𝑠𝑛, ℎ0)

= 𝑄 (
𝑄−1(Г𝑛𝑣(ℎ𝑛)) − 𝐴𝑛𝑣𝑄−1(𝛬̅

𝑛𝑣(𝑠𝑛)) − 𝐷𝑛𝑣𝑄−1(Г0𝑣(ℎ0)) − 𝐵𝑛𝑣

𝑇𝑛𝑣
) 

  

(3-17) 

And the corresponding meta-Gaussian posterior density takes the form (Krzysztofowicz 

and Herr 2001):  
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𝑛𝑣

(ℎ𝑛|𝑠𝑛, ℎ0) =
𝛾𝑛𝑣(ℎ𝑛)𝑞 (𝑄−1(Ф𝑛𝑣(ℎ𝑛|𝑠𝑛, ℎ0)))

𝑇𝑛𝑣𝑞 (𝑄−1(Г𝑛𝑣(ℎ𝑛)))
 

  (3-18) 

HUP can be used independently with any operational flood forecasting system; it offers 

an analytic expression for probabilistic forecast distribution considering hydrologic 

uncertainty. The calibration of HUP can be done off-line, and the estimated parameters 

are ready to be used in real-time forecasting (Krzysztofowicz and Kelly 2000; 

Krzysztofowicz and Herr 2001).  

3.3.2 Rainfall-Runoff Models 

The HUP processor is a post-processor of a deterministic hydrologic model that 

statistically analyzes the model output and observations based on Bayes’ rule in order to 

produce probabilistic forecast. In this study, the rainfall-runoff models selected to 

cooperate with HUP are the HYdrological MODel (HYMOD) and the modèle du Génie 

Rural à 4 paramètres Horaire (GR4H). 

3.3.2.1 HYMOD 

The HYMOD model was introduced by Boyle in (2001) for hydrological model 

uncertainty analysis. It is a lumped conceptual rainfall-runoff model, widely used in the 

literature, that despite its simplicity has proven to provide very good results (Quan et al. 

2015; Sun et al. 2015). The model considers a runoff generation process based on a 

simple rainfall excess model as in the probability-distributed theory proposed by Moore 

(1985). The watershed is regarded as composed of infinite independent units and the 
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distribution function of the spatial variability of the water storage capacity within the 

basin is defined as (Boyle 2001): 

𝐹(𝐶) = 1 − (1 −
𝐶

𝐶𝑚𝑎𝑥
)𝑏𝑒𝑡𝑎 

(3-19) 

Where, F is the cumulative probability of a given storage capacity; C is the water storage 

capacity (mm) while Cmax is the maximum water storage capacity (mm), and beta is the 

degree of spatial variability within this basin. The amount of the water storage depends 

on the rate of precipitation and evapotranspiration over a certain time period; when the 

water storage is over the maximum water storage capacity, the excess of water is treated 

as runoff. For each time step, the actual evapotranspiration is equal to potential 

evapotranspiration if enough water is stored, otherwise it equals the available stored 

water. The runoff volume is divided into overland flow and subsurface flow according to 

the partition coefficient alpha. The overland flow is considered as quick flow and routed 

through three identical linear reservoirs to the outlet, the flow rate in this routing is 

described by the recession coefficient Kquick of each reservoir. While the subsurface flow 

is considered as slow flow, and goes through one parallel reservoir, with recession 

coefficient Kslow, to the outlet of the basin. Eventually, the quick flow and slow flow 

arriving at the outlet at that time step are combined to estimate the total streamflow of the 

watershed outlet. The description and range of model parameters are presented in Table 

3-1, and more details about the model structure can be found in Sun et al. (2015). 
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3.3.2.2 GR4H 

GR4H is an hourly lumped rainfall-runoff model, first introduced by Mathevet in (2005) 

for flood estimation in headwater basins. It is derived from the modèle du Génie Rural à 

4 paramètres Journalier (GR4J), which is a daily lumped continuous rainfall-runoff model 

(Perrin et al. 2003). GR4H and GR4J share similar model structure. GR4H includes two 

major modules and four parameters to calibrate: x1 and x2 for production module; x3 and 

x4 for routing module. The description of model parameter is presented in Table 3-1. 

In the production module, rainfall amount and potential evapotranspiration are subtracted 

to determine the net rainfall Pn and net evapotranspiration En, the fraction Ps of Pn that 

goes to the production store S is determined by a soil moisture accounting store (SMA), 

and the remaining amount Pn – Ps is the effective rainfall. Percolation leakage Perc 

coming from the production store plus the effective rainfall define the water amount that 

finally reaches the routing process Pr = Perc + (Pn – Ps). The production store level is 

then updated to serve as the initial production store value for the next time step. In the 

routing module, Pr is divided into two flow components: 90% indirect flow being routed 

by a unit hydrograph UH and a nonlinear routing store R, and 10% direct flow being 

routed via a single unit hydrograph. A water loss or gain function F is applied to both 

components to find out the groundwater exchange along the way. The total streamflow Q 

is finally given by the sum of the flow coming from the two branches: output of indirect 

flow Qr and output of direct flow Qd. The differences between GR4H and GR4J are the 

percolation rate in the production function and the number of UH in the routing function 
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(Andreassian et al. 2006). More details about the model structure can be found in 

Mathevet (2005). 

Table 3-1 Model parameters of HYMOD and GR4H 

Parameter Description Unit  Range 

Calibrated 

parameters 

optNVE optKGE 

HYMOD           

Cmax Maximum storage capacity mm 10-700 261.41 273.25 

Beta 
Degree of spatial variablity of the soil 

moisture capacity 
-- 0.1-2 1.58 1.69 

Alpha 
Factor distributing the flow between 

slow and quick release reservoirs 
-- 0.2-0.99 0.35 0.21 

Kslow 
Residence time of the slow release 

reservoir 
day 0.001-0.1 0.01 0.02 

Kquick 
Residence time of the quick release 

reservoirs 
day 0.01-0.99 0.17 0.28 

GR4H 
     

x1 Maximal capacity of production store  mm 1-2000 1387.77 1247.38 

x2 Water exchange coefficient mm -10-5 -0.66 -0.59 

x3 Maximal capacity of the routing store mm 1-500 2.38 2.33 

x4 Time parameter of unit hydrograph hour 0.5-96 21.63 20.33 

 

3.3.2.3 Models Setup 

HYMOD and GR4H were set up using event-based approach, the selection of events are 

presented in the following section. The two rainfall-runoff models were calibrated for 

each calibration event independently to obtain the optimized parameter sets, the average 

values of the parameter sets were calculated as the final calibrated parameters which used 

for validation events. Particle swarm optimization (PSO) was employed as the 
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optimization algorithm based on a previous study (Razavi and Coulibaly 2016). Two 

objective functions were used: NVE (combined Nash Sutcliffe efficiency and volume 

error) (Samuel et al. 2011) and KGE (Kling-Gupta efficiency) (Gupta et al. 2009). The 

closer NVE or KGE is to 1, the better the model is performing.  

NVE considers both low and high peak flow (Samuel et al. 2011):  

𝑁𝑉𝐸 = 0.5𝑁𝑆𝐸 − 0.1𝑉𝐸 + 0.25𝑁𝑆𝐸𝑙𝑜𝑔 + 0.25𝑁𝑆𝐸𝑠𝑞𝑟 (3-20) 

Where NSE is Nash Sutcliffe efficiency, and VE is volume error. NSElog is NSE based on 

the logarithm of discharge, NSEsqr is NSE based on square of discharge, and they can be 

calculated as below (Samuel et al. 2011): 

𝑁𝑆𝐸𝑙𝑜𝑔 = 1 − [
∑ (𝑙𝑜𝑔𝑄𝑠𝑖𝑚 − 𝑙𝑜𝑔𝑄𝑜𝑏𝑠)2𝑁

𝑖=1

∑ (𝑙𝑜𝑔𝑄𝑜𝑏𝑠 − 𝑙𝑜𝑔𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑁

𝑖=1

] 
(3-21) 

𝑁𝑆𝐸𝑠𝑞𝑟 = 1 − [
∑ (𝑄𝑠𝑖𝑚

2 − 𝑄𝑜𝑏𝑠
2)2𝑁

𝑖=1

∑ (𝑄𝑜𝑏𝑠
2 − 𝑄𝑜𝑏𝑠

2̅̅ ̅̅ ̅̅ ̅)2𝑁
𝑖=1

] 
(3-22) 

Qsim and Qobs are simulated and observed discharge, respectively. 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  is the mean value 

of observed discharges, and N is the number of discharge values. 

NSE and mean squared error (MSE) can be decomposed into three components, 

representing the correlation, the bias and a measure of variability. KGE is formulated 

through calculating the Euclidian distance of the three components from the ideal point 

(Gupta et al. 2009): 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (3-23) 
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Where r is the linear correlation coefficient between observed and simulated discharge, 𝛼 

is calculated as the ratio between standard deviation in simulated values and standard 

deviation in observed values, 𝛽 is the ratio between mean simulated and mean observed 

discharge. 

3.4 Study Area and Data 

The Humber River Watershed, located in Southern Ontario, Canada (Figure 3-1), was 

selected as a case study to apply the HUP for flood forecasting because it is identified as 

a flood-prone area and the risk of flooding is a key issue in some regions of this 

watershed. The watershed covers 911 km2, flowing from the headwaters on the Niagara 

Escarpment and Oak Ridges Moraine down through flat clay, till plains and marshes to 

the Lake Ontario. Elevation in the watershed varies from 75 to 488 m a.s.l., the 

northwestern part is characterized by hummocky terrain and steep slopes, while the 

central part is relatively flat. As of 2015, land use within the Humber River Watershed 

was approximately 54% rural, 33% urban and remaining 13% urbanizing, with 32% 

under natural cover (17% forest, 9% meadow, 3% successional and 2% wetland) (TRCA 

2008).  

A continental climate moderated by Great Lakes is found in the Humber Watershed, the 

climate characteristic is affected by cold dry air masses from the north and warm moist 

masses from the south. Based on the historical climate records, the average annual 

precipitation ranges from 798 to 933 mm, and the mean annual temperature ranges 

between 6.5 and 8 oC. The fluctuations of precipitation and temperature depend on the 
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elevation and the distance to Lake Ontario. As for the mean annual evapotranspiration, it 

ranges from 469 mm along the shoreline of the lake, to 517 mm in higher elevation areas 

(TRCA 2008). Heavy precipitation events in this region occurred more often in summer 

time from June to August. 

 

Figure 3-1 Humber River Watershed in Southern Ontario, Canada 

 

The two hydrologic models employed with the HUP, namely HYMOD and GR4H, were 

calibrated against hourly observed discharge using hourly precipitation and 

evapotranspiration as inputs. Evapotranspiration was calculated based on temperature 

through an adjusted potential evapotranspiration model proposed by Oudin et al. (2005a, 
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2005b). Precipitation and temperature data were provided by Toronto and Region 

Conservation Authority (TRCA). The discharge data were from Water Survey of Canada. 

The available period of the dataset was from 2005 until 2014. Thiessen polygon method 

was used to calculate mean areal precipitation; the flows from the two stream gauges near 

the outlet, Humber River at Weston and Black Creek near Weston, were considered to 

estimate the total outflow of the Humber Watershed.  

Based on the available period of historic record, precipitation events that have been noted 

to have produced relatively high flows (total rainfall amount larger than 20 mm) were 

selected as candidate flood events to calibrate the model and assess the predictive 

performance of the processor (TRCA and AMEC 2012). Main characteristics of the 24 

selected flood events are presented in Table 3-2, including initial discharge, peak 

discharge, runoff volume, and rainfall depth. Runoff volume is defined as the cumulative 

flow volume during the flood event (Reddy and Ganguli 2012), and was estimated using 

the formula from Yue (2001). The average rainfall depth of these events is 54.20 mm, 

and the peak discharge ranges from 27.01 to 355.23 m3/s. For some events, the flow 

reaches the peak in a few hours, leading to potential flooding in this region. Based on the 

25% (50.59 m3/s) and 75% (90.14 m3/s) quantile of the empirical distribution of the peak 

discharges for the available sample, the events were classified as high peak flow event 

(Qpeak ≥ 90.14 m3/s), medium peak flow event (50.59 m3/s < Qpeak < 90.14 m3/s) and 

low peak flow event (Qpeak ≤ 50.59 m3/s). With the aim of having sets of independent 

events, according to the dates of the events (at least one event per year for calibration, 

and the validation events are from different year) and their hydrograph characteristics 
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including the magnitude of peak flow and shape of hydrography (validation events were 

selected to cover different types of events), 20 events were chosen for model calibration 

and 4 events (event 4, event 7, event 14 and event 23) were chosen for validation.  

Table 3-2 Main characteristics of the selected flood events 

Event ID 
Date 

(mm/dd/yyyy) 
Qpeak (m3/s) Q0 (m3/s) 

Runoff volume  

(106 m3) 

 Rainfall 

depth (mm) 

1 8/19/2005 282.43 3.90 16.81 53.30 

2 8/31/2005 49.86 4.32 3.01 24.01 

3 9/26/2005 49.56 3.75 4.10 34.90 

4 11/15/2005 50.59 4.56 11.53 48.21 

5 4/23/2006 70.00 4.79 14.16 36.56 

6 7/10/2006 81.05 3.04 14.29 66.74 

7 10/17/2006 56.25 3.64 15.23 64.23 

8 5/15/2007 81.05 3.85 13.20 47.12 

9 7/23/2008 90.14 4.18 14.81 83.37 

10 8/9/2008 80.17 4.04 10.40 55.21 

11 8/9/2009 46.87 4.56 9.88 56.66 

12 8/20/2009 62.72 2.60 6.21 19.94 

13 5/7/2010 83.12 4.52 7.73 37.64 

14 7/23/2010 104.11 4.49 10.44 43.93 

15 9/28/2010 50.30 3.03 7.50 41.43 

16 5/14/2011 90.10 4.98 20.32 64.21 

17 10/20/2011 90.61 4.91 17.43 75.63 

18 11/29/2011 147.24 4.98 26.36 75.22 

19 10/27/2012 53.83 4.76 20.99 77.98 

20 5/21/2013 27.01 4.90 5.17 34.18 

21 5/29/2013 200.21 4.88 17.28 64.53 

22 7/8/2013 355.23 4.74 36.14 81.90 

23 7/27/2014 67.31 2.56 8.87 29.83 

24 9/10/2014 76.75 3.79 16.33 84.12 

Validation events are underlined 
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3.5 Results and Discussion 

3.5.1 Rainfall-Runoff Model Calibration 

The optimized parameter sets obtained independently for each calibration event by 

optimizing NVE (optNVE) and KGE (optKGE) are presented in Figure 3-2 on a 

logarithmic scale. The final calibrated model parameters, chosen as the average 

parameter values of the calibration events, are listed in Table 3-1. In Figure 3-2, the red 

line in the middle of the boxplot stands for the median value, the central box represents 

the interquartile range of the data, the whiskers above and below the box show the 

location of the maximum and minimum, and the red crosses are outliers. Comparison 

between optNVE and optKGE indicates that for some parameters the box plots have 

similar distribution but slightly different median, while for other they have similar 

median but different distribution. For HYMOD in both cases, the box plots for Cmax and 

Kslow are relatively tall, indicating a wider distribution range, and the box plots for Beta 

are comparatively short, indicating a high level of consistency for different events. In the 

same way for GR4H, the box plots for x2 are relatively short and the box plots for the 

other three parameters are tall. Optimal parameter values for different events using 

different objective functions could be very different, selecting the best model parameter 

set for future flood event forecast becomes tricky, therefore error in model parameter 

estimation is a large contributor to hydrologic uncertainty. 
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Figure 3-2  Model parameter estimation and uncertainty: (a) HYMOD optNVE; (b) 

HYMOD optKGE; (c) GR4H optNVE; and (d) GR4H optKGE. Box plots show the spread 

of optimized parameters for 20 calibration events. 

 

To assess performances for these 4 scenarios, different models calibrated using different 

objective functions, were evaluated in terms of NSE, modified peak flow criterion 

(MPFC), percentage error for peak flow and runoff volume. The comparisons of the 

scatterplots can be found in Figure 3-3. The MPFC was modified from PFC (Coulibaly et 

al. 2001) and computed by MPFC=1-PFC. MPFC statistics are specifically for assessing 
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accuracy of peak flow forecast and a value equal to 1 indicates a perfect fit. The NSE 

values for HYMOD range from 0.57 to 0.95 while for GR4H range from 0.33 to 0.85. 

The peak flow differences between the observed value and simulated value using 

HYMOD are within -30% and 10%, while the peak flow differences using GR4H are 

within -60% and 20%. The average MPFC values for the 4 scenarios (HYMOD optNVE, 

HYMOD optKGE, GR4H optNVE, GR4H optKGE) are 0.76, 0.78, 0.73 and 0.74, 

respectively. The runoff volume differences for HYMOD varies between -20% and 20%, 

and for GR4H varies between -30% and 10%. Overall, the calibration and validation 

results show that HYMOD performed much better than GR4H. The use of objective 

function KGE gave slightly better performance than objective function NVE for event-

based simulation. The two calibrated models using objective function KGE were then 

passed to HUP to analyze the hydrologic uncertainty. 
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Figure 3-3  Model performance evaluation. Event 4, 7, 14 and 23 are validation events, 

the remaining are calibration events. 

 

3.5.2 Application of the Precipitation-dependent HUP 

3.5.2.1 Estimation of Prior Distribution 

For the application of the precipitation-dependent HUP, all the data samples from the 20 

calibration events were put together to estimate the HUP parameters. Recall that v is 

precipitation indicator and hn is actual river discharge for every lead time n. In this study, 

lead times up to 6 hours were tested as it is the duration of precipitation forecast assumed 
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to know at each forecast occasions, and it is also assumed that beyond 6 hours the 

precipitation forecast is null. From the observed discharge data, joint samples {(v; h0, h1, 

h2,…, hN)} were extracted and were classified according to v = 0 or v = 1. Then for each v 

and each n, the corresponding subsample {hn} was used to estimate the marginal prior 

distribution Г
𝑛𝑣

 of Hn. 

The modified Shapiro-Wilk test (MSW) developed by Ashkar and Aucoin (2012) is a 

powerful method to determine the goodness of fit for non-normal distribution, a MSW 

value of 1 indicates perfect fit. Among all the 15 distributions tested by MSW, 

Generalized Extreme Value (GEV) generated the largest MSW value 0.99 for v = 0, thus 

GEV is the best distribution function for v = 0. While Log-normal (LN), GEV and 

Inverse Gaussian produced the best MSW value 0.98 for v = 1, and LN was selected as 

the most suitable distribution for v = 1 because it fits better for the tails. Figure 3-4 

illustrates the goodness of fit for the selected distributions. 
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Figure 3-4  Marginal distributions Г𝑛𝑣 of observed discharges Hn for (a) n = 1; and (b) n 

= 6 conditional on precipitation indicator v = 0, 1. 

 

Table 3-3 describes the statistics and the parameter values for each subsample. In the 

branch of v = 0, the standard deviation of Hn demonstrates a decreasing trend with a 

falling mean observed discharge, while for v = 1, the standard deviation (S.D.) indicates 

an increasing trend as the mean value rises. As expected, the uncertainty measured by 

standard deviation is uniformly higher under precipitation occurrence (v = 1) than under 

nonoccurrence of precipitation (v = 0). Conditional on precipitation indicator v, the prior 

dependence structure can be obtained. The Pearson’s correlation coefficient cnv was 

estimated by looking at the linear relationship between joint transformed subsample {(wn-

1, wn)}, under the hypothesis of a first order markov chain process, as defined by Eq. 

(3-5). The prior distribution parameter Cnv and tnv shown in Table 3-5 were computed by 

Eqs. (3-9) and (3-10). Cnv characterizes the dependence structure between Hn and H0, the 
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decreasing trend in Cnv for both branches indicates that the informativeness of H0 

decreases as the lead time grows. 

Table 3-3 Sample statistics and marginal prior distributions of observed discharge 

Precipitation event Variate 
Sample Distribution 

type 

Parameters of 𝛤nv Correlation  

coefficient cnv Mean S.D. α β γ 

v = 0 

h0 9.80 17.29 GEV 0.73 2.63 4.04 -- 

h1 9.54 16.71 GEV 0.72 2.58 4.01 0.999 

h2 9.30 16.24 GEV 0.71 2.53 3.99 0.998 

h3 9.14 15.76 GEV 0.70 2.50 3.97 0.997 

h4 9.04 15.50 GEV 0.69 2.49 3.96 0.995 

h5 8.96 15.50 GEV 0.69 2.48 3.96 0.995 

h6 8.93 15.40 GEV 0.68 2.48 3.97 0.994 

v = 1 

h0 23.83 35.69 LN 2.55 1.07 -- -- 

h1 24.75 36.25 LN 2.60 1.07 -- 0.975 

h2 25.57 36.63 LN 2.65 1.06 -- 0.975 

h3 26.18 37.07 LN 2.68 1.05 -- 0.979 

h4 26.55 37.29 LN 2.70 1.05 -- 0.983 

h5 26.85 37.14 LN 2.71 1.05 -- 0.983 

h6 27.00 37.22 LN 2.72 1.05 -- 0.987 

Sample size: 5473 for v = 0, 1607 for v = 1 

 

Figure 3-5 shows the dependence structure conditional on v = 1 under certain lead time n, 

as we are more interested in high precipitation conditions in flood forecasting. It presents 

the scatterplot of (wn, wn-1) and (hn, hn-1) along with the conditional median of Wn and Hn 

(p = 0.5), and the conditional quantiles for p = 0.1 and p = 0.9, obtained from Eqs. (3-24) 

and (3-25), defining the 80% central credible interval around the median. ρnv assesses the 
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relationship between hn and hn-1 in the original space is Spearman’s rank correlation 

coefficient. The upper three scatterplots indicate a linear and homoscedastic dependence 

structure in the transformed space between Wn and Wn-1, while in the lower three 

scatterplots, which are derived in the original space, the relationship between Hn and Hn-1 

is less evident.  

 

Figure 3-5  Dependence structure of the prior densities under v = 1 in the (a) 

transformed space; and (b) original space for lead time equal to 1, 3, 5 hours. hn = 

actual river discharge in original space for every lead time n; and wn = actual river 

discharge in transformed normal space for every lead time n. 

 

𝑤𝑛(𝑝|𝑤𝑛−1, 𝑣) = 𝑐𝑛𝑣𝑤𝑛−1 + (1 − 𝑐𝑛𝑣
2 )

1
2𝑄−1(𝑝) (3-24) 

ℎ𝑛(𝑝|ℎ𝑛−1, 𝑣) = 𝛤𝑛𝑣
−1(𝑄(𝑐𝑛𝑣𝑄−1(𝛤𝑛−1,𝑣(ℎ𝑛−1)) + (1 − 𝑐𝑛𝑣

2 )
1
2𝑄−1(𝑝) (3-25) 
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3.5.2.2 Estimation of Likelihood Function 

From the simulated discharge produced by HYMOD, {(v; s1, s2,…, sN)} were extracted 

and matched with {(v; h0, h1, h2,…, hN)}, providing joint samples {(v; s1, s2,…, sN; h0, h1, 

h2,…, hN)} conditional on precipitation indicator. The sample statistics are expressed in 

Table 3-4. Similar to the estimation of prior distribution, for each v and each n, the 

corresponding subsample {sn} was used to construct the marginal distribution 𝛬̅
𝑛𝑣 of Sn. 

Again, for v = 0 GEV is the best one according to MSW test, and LN, GEV and Inverse 

Gaussian are the most suitable one for v = 1. GEV gave the largest MSW value 0.99 for v 

= 0, while for v = 1, LN, GEV and Inverse Gaussian gave the best MSW value 0.98: LN 

was selected in coherence with the marginal distribution of observed discharges. The 

parameters �̅�, �̅� and �̅� of the distributions for 𝛬̅
𝑛𝑣 are reported in Table 3-4. Figure 3-6 

exemplifies the goodness of fit for the selected distributions. 

Each subsample {(v; s1, s2,…, sN)} was processed through NQT by Eq. (3-4) to obtain {(v; 

x1, x2,…, xN)} in the normal space. The joint sample {(v; x1, x2,…, xN; w0, w1, w2,…, wN)} 

was used to estimate the likelihood function parameters anv, bnv, dnv and σnv. These 

parameters were defined by the linear regression between xn, wn and w0 based on Eqs. 

(3-7) and (3-8) (Table 3-5).  For every v and every n, anv ≠ 1 and σnv ≠ 0, implying that 

hydrologic uncertainty exists, otherwise Sn should equal to Hn under the perfect forecast. 

In all cases dnv ≠ 0, indicating Sn is stochastically dependent on H0 to some degree, the 

negligibly small bnv value conveys that Sn is dominated by Hn and H0.  

 



Ph.D. Thesis – Shasha Han                                 McMaster University – Civil Engineering 

89 

 

Table 3-4 Sample statistics and prior distributions of simulated discharge 

Precipitation event Variate 
Sample Distribution 

type 

Parameters of  Λ̅nv 

Mean S.D. �̅� �̅� �̅� 

v = 0 

s1 9.80 17.29 GEV 0.73 2.63 4.05 

s2 9.58 16.83 GEV 0.73 2.58 3.96 

s3 9.39 16.41 GEV 0.73 2.54 3.89 

s4 9.23 16.06 GEV 0.72 2.51 3.82 

s5 9.09 15.82 GEV 0.72 2.49 3.75 

s6 8.97 15.62 GEV 0.71 2.47 3.69 

v = 1 

s1 23.94 35.70 LN 2.56 1.07 -- 

s2 23.63 34.71 LN 2.55 1.07 -- 

s3 23.38 33.83 LN 2.55 1.07 -- 

s4 23.19 33.06 LN 2.54 1.07 -- 

s5 22.99 32.33 LN 2.54 1.07 -- 

s6 22.86 31.70 LN 2.54 1.07 -- 

Sample size: 5473 for v = 0, 1607 for v = 1 

 

 

Figure 3-6  Marginal distributions 𝛬𝑛𝑣 of simulated discharges Sn for (a) n = 1; and (b) n 

= 6 conditional on precipitation indicator v = 0, 1 
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The likelihood dependence structure between Sn and Hn conditional on v =1 is revealed in 

Figure 3-7, it shows how the linear regression of Xn on Wn (the upper three panels) is 

mapped into the original space of Sn versus Hn (the lower three panels). The 80% central 

credible interval around the median is also indicated in the normal and the real space 

according to Eqs.(3-26) and (3-27), respectively. The graphical evidence supports that the 

nonlinear and heteroscedastic dependence structure between Sn and Hn is better captured 

by the likelihood function in the normal space. 

 

Figure 3-7  Dependence structure of the likelihood function under v = 1 in the (a) 

transformed space; and (b) original space for lead time equal to 2, 4, 6 hours. sn = model 

river discharge in original space for every lead time n; and xn = model river discharge in 

the transformed normal space for every lead time n. 
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𝑥𝑛(𝑝|𝑤𝑛, 𝑤0, 𝑣) = 𝑎𝑛𝑣𝑤𝑛 + 𝑑𝑛𝑣𝑤0 + 𝑏𝑛𝑣 + 𝜎𝑛𝑣𝑄−1(𝑝) (3-26) 

𝑠𝑛(𝑝|ℎ𝑛, ℎ0, 𝑣)

= 𝛬̅
𝑛𝑣

−1
(𝑄(𝑎𝑛𝑣𝑄−1(𝛤𝑛𝑣(ℎ𝑛)) + 𝑑𝑛𝑣𝑄−1(𝛤𝑛0(ℎ0)) + 𝑏𝑛𝑣

+ 𝜎𝑛𝑣𝑄−1(𝑝))) 

(3-27) 

3.5.2.3 Estimation of Posterior Distribution  

According to the Bayes’ equation, the posterior knowledge is equal to the prior 

knowledge updated using likelihood function. The parameters of posterior distribution 

Anv, Bnv, Dnv and Tnv, obtained for HYMOD and GR4H are shown in Table 3-5 and Table 

3-6, respectively. To summarize, the precipitation dependent HUP processor is specified 

by estimating 185 (30N+5) parameters:  

(i) Parameters of the marginal prior distribution Г𝑛𝑣 of actual river discharge Hn, {(𝛼nv, 

𝛽nv, 𝛾nv): v = 0, n = 0, 1,…, N; (𝛼nv, 𝛽nv): v = 1, n = 0, 1,…, N} 

(ii) Parameters of the marginal distribution 𝛬̅
𝑛𝑣 of model river discharge Sn, {(�̅�nv, �̅�nv, 

�̅�nv): v = 0, n = 1,…, N; (�̅�nv, �̅�nv): v = 1, n = 1,…, N} 

(iii) Parameters of prior distributions, {(Cnv, tnv): v = 0, 1; n = 1,…, N} 

(iv) Dependence parameters of likelihood function, {(anv, bnv, dnv, σnv): v = 0, 1; n = 1,…, 

N} 

(v) Dependence parameters of posterior distribution, {(Anv, Bnv, Dnv, Tnv): v = 0, 1; n = 

1,…, N} 
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These parameters were used during validation period to quantify hydrologic uncertainty 

and assess the performance of the processor.  

Table 3-5 Calibrated dependence parameters of posterior distribution for HUP-HYMOD 

Precipitation 

event 

Lead 

time 

n 

Likelihood function 
Prior 

distribution 
Posterior distribution 

anv bnv dnv σnv^2 Cnv tnv^2 Anv Bnv Dnv Tnv 

v = 0 

1 0.04 0.00 0.96 0.00 1.00 0.00 0.89 0.00 0.11 0.04 

2 0.16 0.00 0.84 0.00 1.00 0.01 0.31 0.00 0.69 0.07 

3 0.29 0.00 0.71 0.01 0.99 0.01 0.35 0.00 0.64 0.10 

4 0.36 0.00 0.64 0.02 0.99 0.02 0.38 0.00 0.62 0.13 

5 0.39 0.00 0.60 0.03 0.98 0.03 0.37 0.00 0.62 0.16 

6 0.42 0.00 0.57 0.04 0.98 0.04 0.37 0.00 0.62 0.19 

v = 1 

1 0.07 0.00 0.93 0.00 0.98 0.05 1.20 0.00 -0.22 0.21 

2 0.15 0.00 0.85 0.01 0.95 0.09 1.12 0.00 -0.16 0.28 

3 0.22 0.00 0.79 0.02 0.93 0.13 1.17 0.00 -0.23 0.31 

4 0.27 0.00 0.75 0.03 0.92 0.16 1.08 0.00 -0.16 0.34 

5 0.31 0.00 0.71 0.04 0.90 0.19 1.08 0.00 -0.17 0.35 

6 0.35 0.00 0.68 0.05 0.89 0.21 1.00 0.00 -0.09 0.37 

 

Table 3-6 Calibrated dependence parameters of posterior distribution for HUP-GR4H 

Precipitation 

event 

Lead 

time 

n 

Likelihood function 
Prior 

distribution 
Posterior distribution 

anv bnv dnv σnv^2 Cnv tnv^2 Anv Bnv Dnv Tnv 

v = 0 

1 1.42 0.00 -0.72 0.52 1.00 0.00 0.00 0.00 1.00 0.04 

2 0.92 0.00 -0.22 0.53 1.00 0.01 0.01 0.00 0.99 0.07 

3 0.72 0.00 -0.02 0.53 0.99 0.01 0.02 0.00 0.98 0.11 

4 0.69 0.00 -0.01 0.54 0.99 0.02 0.03 0.00 0.97 0.14 

5 0.70 0.00 -0.01 0.54 0.98 0.03 0.04 0.00 0.96 0.17 

6 0.72 0.00 -0.04 0.55 0.98 0.04 0.05 0.00 0.94 0.20 

v = 1 

1 0.44 0.00 0.42 0.27 0.98 0.05 0.08 0.00 0.91 0.22 

2 0.52 0.00 0.35 0.27 0.95 0.09 0.17 0.00 0.81 0.29 

3 0.59 0.00 0.29 0.26 0.93 0.13 0.26 0.00 0.71 0.33 

4 0.63 0.00 0.26 0.25 0.92 0.16 0.32 0.00 0.64 0.36 

5 0.68 0.00 0.22 0.25 0.90 0.19 0.39 0.00 0.58 0.37 

6 0.71 0.00 0.19 0.25 0.89 0.21 0.42 0.00 0.54 0.38 
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3.5.3 Discussion of Results and Performance Assessment 

As an example, Figure 3-8 and Figure 3-9 show the HUP outputs for event 18 (selected 

from calibration set) and event 7 (selected from validation set). Peak flow in event 18 is 

147.24 m3/s which is considered as a high peak event, while event 7 is a medium peak 

event with the peak flow of 56.25 m3/s. In each figure, the observed discharge, the 

deterministic forecast derived from the rainfall-runoff model and the uncertainty bound 

generated by the probabilistic forecast via HUP are compared under 4 different 

conditions: (i) 1 hour ahead forecast by HUP-HYMOD; (ii) 6 hour ahead forecast by 

HUP-HYMOD; (iii) 1 hour ahead forecast by HUP-GR4H; (iv) 6 hour ahead forecast by 

HUP-GR4H. From lead time n = 1 to n = 6, the discharge at time tn is forecasted n hours 

ahead, at each forecast time, the model updates all the available information (e.g. initial 

discharge), and feed by precipitation for the next n hours (observed precipitation is 

assumed as the perfect precipitation forecasts). For lead time equals to 1 hour, whether 

high peak flow or medium peak flow event, basically all the observed discharges fall 

within the uncertainty bound expressed by 25% to 75% quantile of the predictive 

distribution. As the lead time increases, the uncertainty bound becomes wider, especially 

for high discharge values. When lead time equals 6 hours, as expected, a deterioration in 

the probabilistic forecast can be seen compared with 1 hour ahead forecast, since some 

observed discharges lie outside the uncertainty bound. In terms of different rainfall-runoff 

models combined with HUP, results are similar in HUP-HYMOD and HUP-GR4H for 

shorter lead time (e.g. 1 hour); for larger lead time (e.g. 6 hours), HUP-HYMOD 
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performs better, particularly for event 7 as the observed values are slightly better captured 

by the uncertainty bound.  

The behavior of the predictive power with time largely depends on the ability of rainfall-

runoff model to accurately reproduce the streamflow and on the forecast horizon of the 

precipitation forecasts. The performance of HUP is expected to be higher at times smaller 

than the concentration time of the catchment as there is still effect of measured 

precipitation and known initial condition, after the duration of the precipitation forecast 

plus the time of concentration, it is expected that the effect of assuming a null 

precipitation mainly influences the deterioration of discharge forecasts. Additionally, the 

rainfall-runoff transformation would be improved by including more information about 

the spatial distribution of precipitation and by using a more complex semi-distributed or 

distributed hydrologic model, which may reduce the width of the uncertainty bound. A 

different pattern of GR4H is revealed in Figure 3-9 as compared to observations or 

HYMOD. This may be because the UH used in GR4H has m ordinates which determined 

by the time parameter x4, and the water is staggered into m UH inputs, thus the effective 

rainfall is spread over several successive time steps. Nevertheless, the effect of the HUP 

significantly improved the outcomes of the GR4H model.  
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Figure 3-8 Hydrologic uncertainty bound generated by HUP for event 18: (a) 1 hour 

ahead forecast by HUP-HYMOD; (b) 6 hours ahead forecast by HUP-HYMOD; (c) 1 

hour ahead forecast by HUP-GR4H; and (d) 6 hours ahead forecast by HUP-GR4H. 
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Figure 3-9 Hydrologic uncertainty bound generated by HUP for event 7: (a) 1 hour 

ahead forecast by HUP-HYMOD; (b) 6 hours ahead forecast by HUP-HYMOD; (c) 1 

hour ahead forecast by HUP-GR4H; and (d) 6 hours ahead forecast by HUP-GR4H. 

 

The performance in terms of accuracy of the deterministic forecast and probabilistic 

forecast, considering the median of the predictive distribution, were compared in terms of 

NSE value. As presented in Table 3-7, HYMOD and HUP-HYMOD show similar NSE 

values for lead time n = 1, but for lead time n = 2 up to 6, HUP-HYMOD presents larger 

NSE than HYMOD, indicating improved probabilistic forecasts. Accordingly, HUP-

GR4H has greater NSE values than GR4H for all the lead times.  
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Table 3-7 Comparison of NSE between HYMOD/GR4H and HUP-HYMOD/GR4H 

(median value) 

Mean NSE n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 

Calibration 

events 

HYMOD 0.94 0.85 0.78 0.74 0.70 0.67 

HUP-HYMOD 0.94 0.86 0.81 0.77 0.74 0.70 

GR4H 0.71 0.69 0.56 0.56 0.56 0.55 

HUP-GR4H 0.94 0.85 0.79 0.73 0.69 0.66 

Validation 

events 

HYMOD 0.95 0.85 0.77 0.72 0.67 0.64 

HUP-HYMOD 0.95 0.87 0.81 0.77 0.74 0.71 

GR4H 0.50 0.50 0.50 0.50 0.49 0.49 

HUP-GR4H 0.94 0.84 0.74 0.66 0.60 0.55 

 

Continuous ranked probability score (CRPS) was used to assess the predictive ability of 

HUP. CRPS is one of the most widely used metrics for probabilistic and ensemble 

forecasts verification (Hersbach 2000). CRPS measures how well the predictive 

distributions match the observed values by considering both the location and spread of 

the distribution. It can be expressed as in Eq. (3-28) (Hersbach 2000) where Ф𝑛(·) is the 

predictive distribution, ℎ𝑎,𝑛 is the observed value and 𝐻(·) is the Heaviside function, its 

perfect score of 0 is only achieved when Ф𝑛(·) = 𝐻(·). 

𝐶𝑅𝑃𝑆 = ∫ [Ф𝑛(ℎ𝑛) − 𝐻(ℎ𝑛 − ℎ𝑎,𝑛)]2𝑑ℎ𝑛

+∞

0

 
(3-28) 

The comparison of CRPS values between HUP-HYMOD and HUP-GR4H for different 

lead times is shown in Figure 3-10, and Table 3-8 illustrates the comparison of mean 

CRPS under different types of events. According to Figure 3-10, it is obvious that the 
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CRPS for all the events goes up with the increase of lead time. The CRPS values are 

relatively low, with the majority under 4.00, revealing good performance for the HUP 

processor in most of the cases. Among all the 24 events, the distributions of CRPS 

between HUP-HYMOD and HUP-GR4H are different for event 7, 14, 21 and 22, and 

very similar for other events. Event 14, 21 and 22 are flood events with high peak flow: 

104.11 m3/s, 200.21 m3/s, and 355.23 m3/s, respectively. Event 7 is a multi-peak event. 

As indicated in Table 3-8, for low peak flow events, the mean CRPS value of HUP-

HYMOD and HUP-GR4H is quite similar for every lead times, but for high peak flow 

events, smaller CRPS values are obtained for HUP-HYMOD compared to HUP-GR4H, 

indicating the better performance of the former vs. the latter. The hydrologic model 

calibration results indicate that HYMOD performed better than GR4H for almost all the 

type of the events, however, using HUP as a post-processor of GR4H presents 

comparable performance to HUP-HYMOD for low peak flow events. While for high 

peak flow events, the better deterministic forecast is generated from the hydrologic model, 

the better probabilistic forecast is produced by applying HUP to that hydrologic model.  
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Figure 3-10 Comparison of CRPS between HUP-HYMOD and HUP-GR4H for different 

lead times, and CRPS value for (a) HUP-HYMOD validation events; (b) HUP-GR4H 

validation events; (c) HUP-HYMOD calibration events; and (d) HUP-GR4H calibration 

events 

 

Based on the numerical results in Table 3-8, hydrologic uncertainty increases with 

increasing lead time, which leads to deterioration of the probabilistic forecast, although a 

decreasing trend is indicated in the deterioration with increasing lead time. For example, 

considering the HUP-HYMOD validation events, the mean CRPS value for lead time 1 

hour is 0.58, while the mean CRPS for lead time 6 hour is 1.89 which increased by 226%, 
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while the relative differences of CRPS between lead time n and n-1 (n = 2 to 6) are about 

72%, 28%, 18%, 10%, 11%, respectively, revealing a decreasing trend. HUP 

performance also decreases with high discharge value. For example, as shown in Table 

3-8, the mean CRPS values by HUP-HYMOD for low, medium and high peak flow 

events are 1.10, 2.30 and 4.16, respectively (n = 6). The trends indicate that increasing 

lead time and high discharge decrease the structural robustness of HUP in capturing 

actual model predictive uncertainty. 

Table 3-8 Comparison of mean CRPS under different conditions 

Mean CRPS  
Lead 

time 

Calibration 

events 

Validation 

events 

Low peak 

flow 

events 

Medium peak 

flow events 

High peak 

flow events 

HUP-HYMOD 

n = 1  0.82 0.58 0.36 0.73 1.33 

n = 2 1.38 1.00 0.62 1.23 2.22 

n = 3 1.75 1.29 0.79 1.58 2.79 

n = 4 2.07 1.53 0.92 1.87 3.29 

n = 5 2.31 1.69 1.00 2.11 3.67 

n = 6 2.56 1.89 1.10 2.30 4.16 

HUP-GR4H 

n = 1  0.83 0.68 0.36 0.75 1.32 

n = 2 1.41 1.13 0.61 1.27 2.25 

n = 3 1.84 1.51 0.79 1.65 2.98 

n = 4 2.18 1.82 0.94 1.95 3.57 

n = 5 2.45 2.09 1.04 2.19 4.03 

n = 6 2.67 2.33 1.13 2.39 4.42 

 

In addition, reliability of the forecasts was analyzed using a reliability plot suggested by 

Laio and Tamea (2007). The reliability plot represents the Zi values against their 

empirical cumulative function Ri/n, in which Zi is the cumulative density function 
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corresponding to the observed discharge xi, and Ri/n is the associated rank in the ordered 

Zi vector divided by the sample size n. Kolmogorov confidence bands, parallel to the 

bisector with a distance of q(𝛼)/√𝑛 (q(𝛼 = 0.05) = 1.358), were also included in the graph 

to test the uniformity. As indicated in the evaluation criterion shown in Laio and Tamea 

(2007), the forecast is deemed reliable under the condition that the plotted (Zi, Ri/n) pairs 

lie close to the bisector and distributed within the confidence bands, otherwise, problem 

regarding the prediction bias or the spread of the probabilistic distribution is revealed.  

Figure 3-11 presents the comparison of reliability plots between HUP-HYMOD and 

HUP-GR4H for different lead times. The Kolmogorov 5% confidence bands, displayed 

as the dashed lines, are larger in validation events than in calibration events, this is 

because the sample size in validation set is smaller than in calibration set, causing wider 

acceptability limit. The results show that most of the reliability curves are distributed 

around the bisector and lie within significance bands, indicating relatively reliable 

forecasts. For both HUP-HYMOD and HUP-GR4H calibration events, the reliability 

curves closely follow the bisector for small lead times, while suggest a tendency to away 

from the bisector as the lead time increases. For HUP-HYMOD and HUP-GR4H 

validation events, parts of the reliability curves lie below the bisector, revealing 

underestimation of the predictions. However, the degree of the under-prediction using 

HUP-HYMOD is less than using HUP-GR4H.  
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Figure 3-11 Comparison of reliability plots between HUP-HYMOD and HUP-GR4H for 

different lead times, and reliability plots for (a) HUP-HYMOD calibration events; (b) 

HUP-GR4H calibration events; (c) HUP-HYMOD validation events; and (d) HUP-

GR4H validation events. 

 

3.6 Conclusions 

The paper highlights the feasibility and benefits of using precipitation-dependent HUP in 

a semi-urban watershed to quantify the hydrologic uncertainty associated with flood 
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forecast under the assumption of perfect precipitation input. Based on all available 

information at the time of the forecast, particularly the prediction of deterministic 

hydrologic model, the Bayesian processor is able to revise a prior distribution into a 

posterior distribution of the future actual value of the predictand. The procedure for HUP 

parameter estimation demonstrates the ability of the meta-Gaussian approach to capture 

the nonlinear and heteroscedastic dependence structures of the variables in the normal 

space. The predictive strength of the HUP was explored by analyzing its predictive 

distributions, CRPS values and reliability plots. This analysis revealed that hydrologic 

uncertainty has direct impact on the forecast result and cannot be overlooked. HUP is 

proved as a robust method for hydrologic uncertainty quantification, the actual discharges 

are well captured by the uncertainty bound produced from the processor, the CRPS 

values for most of the cases are relatively low, and the most of the reliability curves in 

reliability plots lie near the bisector and within the significance bands. 

The performance of HUP combined with two different hydrologic models HYMOD and 

GR4H was tested. Results suggest that HUP has the ability to correct the deterministic 

forecast from HYMOD and GR4H, and produces a reliable predictive distribution which 

contains more valuable information. For low peak flow condition, HYMOD shows better 

performance than GR4H, and combining HUP with HYMOD doesn’t show significant 

gain in performance compared with HUP-GR4H. However, under high peak flow 

condition, HYMOD outperforms GR4H and the combined HUP-HYMOD also 

significantly outperforms HUP-GR4H, indicating that through the post process of HUP, a 

better performing deterministic model produces better probabilistic forecast. As expected, 
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hydrologic uncertainty increases as the predicted discharge increases, and grows with 

increasing lead time. The increased hydrologic uncertainty leads to deterioration of the 

processor performance, but the degree of deterioration decreases with the increase of lead 

time.  

The method can be easily used in any operational flood forecasting system to obtain 

probabilistic forecasts that account for hydrologic uncertainty. It has the ability to correct 

the deterministic forecast (e.g. from HYMOD and GR4H), and produce a more reliable 

predictive distribution which contains more valuable information. 
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Chapter 4. Probabilistic Flood Forecasting Using Hydrologic 

Uncertainty Processor with Ensemble Weather Forecasts  

Summary of Paper 3: Han, S. and Coulibaly, P. (2019). Probabilistic Flood Forecasting 

Using Hydrologic Uncertainty Processor with Ensemble Weather Forecasts. Journal of 

Hydrometeorology, 20(7), 1379-1398. 

This research work extended the Hydrologic Uncertainty Processor (HUP) into an 

ensemble prediction framework to assess both meteorological uncertainty and hydrologic 

uncertainty, which constitutes the Bayesian Ensemble Uncertainty Processor (BEUP), 

and integrated the BEUP with bias-corrected ensemble weather forecasts to enhance the 

forecast performance. 

Key findings of this research include: 

 The performances of BEUP are promising for short-range forecasts (3h – 24h). 

 HUP can improve the performance for both short-range and medium-range 

forecasts, and the improvement is significant for short lead times and becomes 

less evident as lead time grows. 

 The best scenario for short-range forecast is applying bias correction to each 

ensemble plus applying HUP. 

 Bias correcting each ensemble of weather forecasts produces better predictive 

performance than just bias correcting the ensemble mean. 
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4.1 Abstract 

Recent advances in the field of flood forecasting have shown increased interests in 

probabilistic forecast as it provides not only the point forecast but also the assessment of 

associated uncertainty. Here, an investigation of hydrologic uncertainty processor (HUP) 

as a post-processor of ensemble forecasts to generate probabilistic flood forecasts, is 

presented. The main purpose is to quantify dominant uncertainties and enhance flood 

forecast reliability. HUP is based on Bayes’ theorem and designed to capture hydrologic 

uncertainty. Ensemble forecasts are forced by ensemble weather forecasts from Global 

Ensemble Prediction System (GEPS) which are inherently uncertain, the input 

uncertainty propagates through the model chain and integrates with hydrologic 

uncertainty in HUP. The bias of GEPS was removed using multivariate bias correction, 

and several scenarios were developed by different combinations of GEPS with HUP. The 

performance of different forecast horizons for these scenarios was compared using 

multifaceted evaluation metrics. Results show that HUP is able to improve the 

performance for both short-range and medium-range forecasts; the improvement is 

significant for short lead times and becomes less obvious with increasing lead time. 

Overall, the performances for short-range forecasts when using HUP are promising, and 

the most satisfactory result for short-range is obtained by applying bias correction to each 

ensemble member plus applying HUP post processor.  

4.2 Introduction 

As the fifth IPCC (Intergovernmental Panel on Climate Change) climate assessment 

report concludes, acceleration of hydrological cycle due to climate change has led to 



Ph.D. Thesis – Shasha Han                                 McMaster University – Civil Engineering 

114 

 

more frequent floods over the last few decades (IPCC 2015). Large floods during recent 

years, such as the 2013 Southern Ontario flood (Canada), 2017 Texas floods (United 

States), and 2007 United Kingdom floods, raised more demand of reliable flood 

forecasting system and methods (Reggiani et al. 2009). If flood can be forecasted 

accurately in advance, up to 35 percent of flood damage can be reduced by mitigation 

actions (United Nations 2004). Various flood forecasting models and techniques have 

been developed; however, adequate assessment of uncertainties associated with the 

forecast remains a challenging task.  

A variety of uncertainties affect the forecast performance, including uncertainty related to 

model structure and parameter, uncertainty of weather forecasts, measurement error in 

observations, etc. No matter where the uncertainty comes from, the total predictive 

uncertainty has to be addressed (Reggiani and Weerts 2008a). Therefore, probabilistic 

forecast accompanied by uncertainty evaluation is gaining more interest to supplement 

the traditional deterministic forecast. Many predictive uncertainty assessment methods 

have been introduced and applied in flood forecasting experiments [see a recent review 

by (Han and Coulibaly 2017)]. This includes methods such as Model Conditional 

Processor (MCP) (Todini 2008), Data Assimilation (DA) (Vrugt et al. 2005), Quantile 

Regression (QR) (Koenker 2005), Hydrologic Model Output Statistics (HMOS) 

(Regonda et al. 2013), Ensembles Model Output Statistics (EMOS) (Gneiting et al. 2005), 

Bayesian Model Averaging (BMA) (Raftery et al. 2005) and so on. In this study, 

Bayesian forecasting system (BFS) introduced by Krzysztofowicz (1999) is selected due 

to its serveral salient properties: (i) it can produce probabilistic forecast through any 
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deterministic hydrologic model, (ii) the system is targeted to quantify all sources of 

uncertainties, (iii) it is able to update the prior distribution to posterior distribution based 

on Bayes’ theorem by assimilating all the available information at the forecast time. 

BFS consists of three parts: (i) input uncertainty processor (IUP), (ii) hydrologic 

uncertainty processor (HUP), and (iii) integrator (INT). As the name suggests, IUP is 

designed to quantify input uncertainty from the basin average precipitation amount 

during the forecast period; HUP aims to quantify hydrologic uncertainty which is the 

aggregate of all other uncertainties, including measurement and estimation error of model 

inputs, model structural and parametric uncertainty, model initial condition uncertainty 

and so on; and INT combines them together. Detailed descriptions of each component are 

shown in a sequence of paper (Krzysztofowicz and Kelly 2000; Krzysztofowicz and 

Maranzano 2004; Krzysztofowicz 2002, 2001; Krzysztofowicz and Herr 2001; Kelly and 

Krzysztofowicz 2000). Nowadays, weather forecasts are mostly outputs obtained from 

running different numerical weather prediction models or applying different perturbations 

(Schefzik 2016). Given the recent advances and popularity of ensemble weather products, 

instead of using the original probabilistic quantitative precipitation forecast (PQPF) in 

IUP, ensemble forecasts are served as the IUP component of the BFS in this study. In the 

case, the ensemble weather forecasts are an auxiliary randomization of future 

meteorological conditions (Reggiani and Weerts 2008a). Thus the inherent input 

uncertainty propagates through the model chain, and integrates with hydrologic 

uncertainty addressed by HUP to estimate total predictive uncertainty (Reggiani et al. 

2009). In this context, HUP is performed as a hydrologic post-processor of ensemble 
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forecasts forced by ensemble weather forecasts, and this approach is referred to as 

Bayesian ensemble uncertainty processor (BEUP) in Reggiani et al.   (2009). 

Due to the variable atmospheric condition, imperfect orography in the model, 

unavoidable simplifications of the physics and thermodynamic processes, uncertainty in 

model parameterization and limited spatial resolution, weather forecasts generated from 

global or regional weather prediction models inherently exhibit systematic biases relative 

to observations (Eden et al. 2012). Thus, weather forecasts should be bias corrected or 

post-processed before practical application (Maraun 2016). Here, ensemble weather 

forecasts produced by the Global Ensemble Prediction System (GEPS) are used, their 

bias is removed in different ways, resulting in different weather forecast datasets to drive 

the Bayesian ensemble uncertainty processor (BEUP). Since many flood forecasting 

centers across Canada use deterministic weather forecasts (e.g. Global Deterministic 

Prediction System GDPS, Regional Deterministic Prediction System RDPS) instead of 

ensemble weather forecasts (e.g. Global Ensemble Prediction System GEPS, Regional 

Ensemble Prediction System REPS) to force their hydrologic models, therefore, besides 

ensemble weather forecast datasets, the ensemble mean is also tested as a potential 

substitute for the deterministic weather forecast. 

The contribution of this work is to integrate for the first time (to our best knowledge) the 

bias correction (meteorological post-processing) and the HUP (hydrologic post-

processing) in flood forecasting, and provide a comprehensive assessment of the 

predictive performance of HUP using different combinations of weather forecast inputs. 

The main objectives of this research include: (i) showing the applicability of BEUP for 
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enhanced probabilistic flood forecasts using GEPS ensemble forecasts, as an alternative 

to the use of deterministic weather forecasts as currently practiced by Canadian 

hydrologic forecast centers and in other countries; (ii) assessing the predictive 

performance of HUP with bias-corrected ensemble weather forecasts; (iii) investigating 

the forecast performance of using different weather forecast datasets, including raw 

GEPS, bias-corrected GEPS, and their ensemble mean.  

4.3 Methodology 

An overview of the methodology used for the probabilistic flood forecast with total 

uncertainty assessment is presented in a flowchart (see Figure 4-1). Based on historical 

observations, the hydrologic model is calibrated prior to the forecast time. The calibrated 

hydrologic model is passed to HUP to analyze the model uncertainty. In HUP, the 

hydrologic model imitates the forecasts using meteorological observations given 

available information at the forecast time, and the forecasted discharges are statistically 

analyzed in comparison with observed discharges for different lead times. On the basis of 

Bayesian theory, HUP updates the prior distribution into the posterior distribution 

conditional on model forecast and initial condition. The HUP parameters which 

characterize the uncertainty expressed in the posterior distribution are estimated 

beforehand. In the forecast mode, the ensemble weather forecasts are used to run the 

hydrologic model after bias correction, and the model outputs are then passed to the 

calibrated HUP. Finally the ensemble posterior distributions generated by HUP are 

lumped into one representative predictive distribution. Overall, the methodology includes 

four major parts: (i) calibration of hydrologic model, (ii) calibration of Hydrologic 
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Uncertainty Processor, (iii) bias correction of ensemble weather forecasts, and (iv) 

application of ensemble weather forecasts with Hydrologic Uncertainty Processor. 

Detailed explanation about the bias correction method and the Bayesian ensemble 

processor are shown below. 

 

Figure 4-1 Flowchart of methodology 

 

4.3.1 Multivariate Bias Correction Algorithm 

Some of the popular bias correction methods include quantile mapping (Maurer and 

Hidalgo 2008), equidistant quantile mapping (Li et al. 2010) and equiratio quantile 

mapping (Wang and Chen 2014); however, these methods only apply to bias correcting 
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individual variable and do not consider the correlation between variables. As an 

alternative to univariate bias correction, multivariate bias correction has been developed 

in order to also correct the dependence structure. Three multivariate bias correction 

(MBC) algorithms were proposed: MBC Pearson correlation (MBCp) (Cannon 2016), 

MBC rank correlation (MBCr) (Cannon 2016), and MBC N-dimensional probability 

density function transform (MBCn) (Cannon 2017), their performances were compared, 

and MBCn showed best results (Cannon 2017). Therefore, MBCn was applied in this 

study to bias correct the ensemble weather forecasts. 

MBCn algorithm matches multivariate distribution using quantile delta mapping (QDM) 

and the N-dimensional probability density function transform (N-pdft). Three datasets 

should be prepared: the matrix of observations during the calibration period XT, the 

matrix of climate model output during the calibration period XS, and the matrix of climate 

model output during the projected period XP. To use MBCn, we assume that (i) 

observations during calibration period are the perfect representation of the true historical 

weather; (ii) the statistical characteristics of the biases between the model outputs and 

observations during the calibration period also apply to the projected period (Cannon et al. 

2015; Cannon 2017). Three steps are involved in MBCn (Cannon 2017): (i) apply the 

orthogonal rotation to the source, projection, and target datasets, where superscript [j] 

stands for the jth iteration of the N-pdft, and R is the uniformly distributed random 

orthogonal rotation matrix; 
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if the variable, such as precipitation, contains absolute zero value, the 
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below 
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suppose the dataset is I×N matrix, n is the nth variable in the matrix and i is the ith value 

of this variable, F̃  means the empirical cumulative distribution function (cdf) of the 

rotated dataset, and F̃−1denotes its inverse; (iii) apply the inverse rotation to the resulting 

data 

𝑋𝑆
[𝑗+1]

= �̂�𝑆
[𝑗]

𝑅[𝑗]−1
  

𝑋𝑃
[𝑗+1]

= �̂�𝑃
[𝑗]

𝑅[𝑗]−1
 (4-4) 

𝑋𝑇
[𝑗+1]

= 𝑋𝑇
[𝑗]

  

Repeat step (i) - (iii) until the multivariate distribution of corrected source data matches 

target data. A corresponding R package is available for download from  

https://CRAN.R-project.org/package=MBC. 

4.3.2 Principle of Bayesian Ensemble Uncertainty Processor 

The Hydrologic Uncertainty Processor (HUP) is formulated as a Bayesian processor 

which post-process the model outputs through Bayesian revision. It revises the prior 

density which is based on past evidence, through the likelihood function which brings in 

various hydrologic uncertainty sources to the process, and yields posterior density that 

expresses the aggregation of these uncertainties. In this study, the total predictive 

uncertainty associated with flood forecast is assessed using HUP with ensemble weather 

forecasts following Reggiani et al. (2009) approach. This involves applying Bayesian 

revision for each ensemble streamflow forecast and lump the ensemble posterior 

distributions into a single posterior meta-distribution as a representative function. 
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However, instead of using linear regression to parameterize the prior density, first-order 

Markov chain proposed by Krzysztofowicz and Kelly (2000) is employed. The reason for 

this is that the first-order Markov chain was applied to a watershed of 1450 km2, and the 

basin size herein is similar to that study area size. While the linear regression was applied 

to super large watershed with an area of 160,000 km2, which is unlikely to behave like 

first-order Markov (Reggiani and Weerts 2008b). And also, instead of using one-branch 

HUP processor (Krzysztofowicz and Kelly 2000), a two-branch HUP processor 

(Krzysztofowicz and Maranzano 2004; Krzysztofowicz 2002, 2001; Krzysztofowicz and 

Herr 2001) that is conditional on precipitation occurrence is adopted, since the two-

branch processor was found to be more efficient and informative (Krzysztofowicz and 

Herr 2001). The algebraic manipulations of this Bayesian ensemble processor are 

summarized below, more details about the formula derivation are described in (Reggiani 

and Weerts 2008b; Reggiani et al. 2009), and more details about the HUP can be found in 

(Krzysztofowicz and Kelly 2000; Krzysztofowicz and Herr 2001; Krzysztofowicz 2002). 

Following the notation in Krzysztofowicz’s papers, let define n (n = 1, …, N) as forecast 

lead time, and v as precipitation indicator, with v = 1 indicates precipitation occurrence, 

while v = 0 means no precipitation. Let Hn denotes discharge observation at time tn, and 

the observed discharge at forecast time t0 is H0. Let Sn denotes the modeled discharge 

resulting from historical precipitation observation, and Sn,j denotes the modeled discharge 

resulting from ensemble weather forecast with ensemble member j = 1, …, J. The 

corresponding lowercase letters hn, h0, sn and sn,j stand for realizations of variates Hn, H0, 

Sn and Sn.j, respectively. 



Ph.D. Thesis – Shasha Han                                 McMaster University – Civil Engineering 

123 

 

In practice, through a process called normal quantile transform (NQT), Hn and Sn are 

transformed into variate Wn and Xn, respectively. For every v ∈ {0, 1} and every n ∈ {0, 

1,…N}, the NQT steps include: first match Hn with marginal prior distribution (·) 

(corresponding density is ) and match Sn with marginal initial distribution Λ̅ (·) 

(corresponding density is λ̅), and then perform the standard normal inverse Q-1(·) for both. 

NQT makes it easy to fit regression and estimate parameters in normal space, in the end 

the expression results are transformed back into the original space.  

In the normal space, the dependence parameter of the transition density cnv is defined by 

the linear regression below 

𝑊𝑛 = 𝑐𝑛𝑣𝑊𝑛−1 + 𝛯𝑛 (4-5) 

Where residual 𝛯𝑛 is stochastically independent of Wn-1, and normally distributed with 

zero mean and variance 1 − 𝑐𝑛𝑣
2 . The dependence parameters of the likelihood function 

anv, bnv, dnv and σnv can be defined by the following linear regression 

𝑋𝑛 = 𝑎𝑛𝑣𝑊𝑛 +  𝑑𝑛𝑣𝑊0 + 𝑏𝑛𝑣 + 𝛩𝑛 (4-6) 

where residual  𝛩𝑛  is stochastically independent of (Wn,W0), and normally distributed 

with zero mean and variance 𝜎𝑛𝑣
2  (Krzysztofowicz and Kelly 2000).  

Given the dependence parameters estimated by Eq. (4-5) the parameters of prior 

distribution Cnv and tnv (v = 0, 1; n = 1, …, N) are defined in Table 4-2. The parametric 

expression of prior distribution, conditional on discharge observation at time t0, is as 

follow 
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𝐺𝑛𝑣(ℎ𝑛|ℎ0) = 𝑄(
𝑄−1(𝑛𝑣(ℎ𝑛)) − 𝐶𝑛𝑣𝑄−1(0𝑣(ℎ0))

𝑡𝑛𝑣
) (4-7) 

The corresponding prior density is  

𝑔𝑛𝑣(ℎ𝑛|ℎ0) =


𝑛𝑣
(ℎ𝑛)𝑞(𝑄−1(𝐺𝑛𝑣(ℎ𝑛|ℎ0)))

𝑡𝑛𝑣𝑞(𝑄−1(𝑛𝑣(ℎ𝑛)))
 

(4-8) 

Given the dependence parameters derived from Eq. (4-6), the parameters of posterior 

distribution Anv, Bnv, Dnv and Tnv (v = 0, 1; n = 1, …, N) are defined in Table 4-2. The 

posterior distribution for each ensemble member, conditional on each ensemble forecast 

and discharge observation at time t0, is expressed as 

Ф𝑛𝑣,𝑗(ℎ𝑛|𝑠𝑛,𝑗 , ℎ0)

= 𝑄 (
𝑄−1(Г𝑛𝑣(ℎ𝑛)) − 𝐴𝑛𝑣𝑄−1 (𝛬̅

𝑛𝑣(𝑠𝑛,𝑗)) − 𝐷𝑛𝑣𝑄−1(Г0𝑣(ℎ0)) − 𝐵𝑛𝑣

𝑇𝑛𝑣
) 

(4-9) 

And the corresponding posterior density is  


𝑛𝑣,𝑗

(ℎ𝑛|𝑠𝑛,𝑗, ℎ0) =
𝛾𝑛𝑣(ℎ𝑛)𝑞 (𝑄−1 (Ф𝑛𝑣,𝑗(ℎ𝑛|𝑠𝑛,𝑗, ℎ0)))

𝑇𝑛𝑣𝑞(𝑄−1(Г𝑛𝑣(ℎ𝑛)))
 (4-10) 

Next the ensemble posterior densities are integrated into one representative predictive 

density by averaging Eq. (4-10) over the ensemble sn,j 

̅
𝑛𝑣,𝑗

(ℎ𝑛|𝑠�̅�, ℎ0) =
1

𝐽
∑ 

𝑛𝑣,𝑗
(ℎ𝑛|𝑠𝑛,𝑗, ℎ0)

𝐽

𝑗=1

 
(4-11) 

The corresponding cumulative probability distribution is stated as follow  
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Ф̅𝑛𝑣,𝑗(ℎ𝑛|𝑠�̅�, ℎ0, 𝐸𝐹) 
(4-12) 

with EF stands for ensemble forecast (Reggiani et al. 2009). 

4.4 Study Area and Data 

The Humber River Watershed was chosen as study area to apply the BEUP with 

ensemble weather forecasts used as input for uncertainty assessment in flood forecasting. 

The watershed is located in Southern Ontario, Canada with a total drainage area of 911 

km2. A detailed basin description can be found in Han et al. (2018). This region is “flood-

vulnerable”, and recent extreme hydrometeorological events (e.g. 2013 Southern Ontario 

Flash Flood) further emphasize the requirement for enhancing flood forecasting system in 

this populated region of Ontario.  

Two types of data were used in this study: observed precipitation, temperature, and 

discharge from gauging stations (from January 2011 to December 2015); gridded 

precipitation and temperature forecasts from Global Ensemble Prediction System (GEPS) 

(from June 2015 to December 2015). The hourly gauged precipitation and temperature 

time series were provided by Toronto and Region Conservation Authority (TRCA), the 

hourly discharge time series were provided by Water Survey of Canada, and the GEPS 

data were from Environment and Climate Change Canada (ECCC). As shown in Figure 

4-2, the 15 rain gauges and 5 temperature gauges were used to calculate mean areal 

precipitation and temperature, and the 2 stream gauges near the outlet were added up to 

estimate the total outflow. There are some days during winter that none of the 15 rain 

gauges has data, in order to obtain continuous time series, the missing mean areal 
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precipitation was filled first by nearby EC (Environment Canada) stations and then using 

linear interpolation. 

 

Figure 4-2 Study area: Humber River Watershed 

 

Two modes were used to set up the system: historical mode and forecast mode. In 

historical mode, the system was forced by observed precipitation and temperature, with 
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January 2011 to December 2014 as calibration and January 2015 to May 2015 as 

validation. In forecast mode that starts from June 2015 to December 2015, the system 

was forced by ensemble weather forecasts from GEPS which consists of 1 control and 20 

perturbed members, each forecast of GEPS data is initialized at 00Z daily and produces a 

forecast output every 3 hours for 384 hours. The system spatial resolution is 0.5 degree. 

4.5 Application and Discussion 

4.5.1 Hydrologic Model 

A lumped conceptual rainfall-runoff model namely MAC-HBV (McMaster University 

Hydrologiska Byråns Vattenbalansavdelning), following the model structure of HBV 

(Bergström 1976), was used to simulate the hydrologic response. MAC-HBV was 

introduced by Samuel et al. (2011) and applied in many hydrological studies (Razavi and 

Coulibaly 2016, 2017), it adopts a similar concept of the HBV model from Merz and 

Blöschl (2004) and uses a modified routing routine following Siebert (1999). Instead of 

using the simplified Thornwaite formula to account for potential evapotranspiration (PE), 

an adjusted PE calculation approach proposed by Qudin et al. (2005a, 2005b) was 

adopted as it is more efficient in dealing with hourly PE. 

MAC-HBV consists of a snow routine, a soil moisture routine, a response routine, and a 

routing routine. For the snow routine, the simple degree-day concept is replaced with 

SNOW-17 snow accumulation and ablation model (Anderson 2006) which is more 

capable of dealing with snow (Houle et al. 2017; He et al. 2011a,b), it requires only 

temperature and precipitation as inputs, while model output includes snow water 
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equivalent (SWE), and rain plus snowmelt which is passed to soil moisture routine after 

adjustment by rainfall correction factor PXADJ. The soil moisture routine represents the 

changes in soil moisture storage and the contribution to runoff entering into response 

routine. The soil moisture storage is controlled by rainfall, snowmelt and actual 

evapotranspiration. The runoff amount depends on the soil box water content, and its 

maximum value fc, and a non-linear runoff generation controlling parameter beta. The 

response routine comprises two reservoirs: an upper soil reservoir and a lower soil 

reservoir, it represents the water storage in upper zone and lower zone and estimates the 

total outflow of these two reservoirs. Recharge from soil moisture routine flow into the 

upper soil reservoir, and part of the water permeate into the lower soil reservoir based on 

the percolation rate parameter cperc, thus the total outflow includes three parts: (i) 

outflow from the upper zone which is controlled by a flow recession coefficient k0 if the 

water storage exceeds the threshold value lsuz, (ii) outflow from upper zone which is 

determined by flow recession coefficient k1 if lsuz is not exceeded, and (iii) a slow 

outflow from lower zone affected by flow recession coefficient k2. In the routing routine, 

a triangular weighting function determined by parameter maxbas is used to estimate the 

final runoff. All the parameter descriptions are presented in Table 4-1, and a more 

detailed description of each routine and corresponding equations can be found in Samuel 

et al. (2011). 
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Table 4-1 Optimized parameters of MAC-HBV and SNOW-17 

Model 

Parameters 
Descriptions Ranges Units 

Optimized 

Parameters 

MAC-HBV 
    

fc Maximum soil box water content 60 – 600 mm 374.60 

lp/fc 

Limit for potential 

evaporation/Maximum soil box water 

content 

0.1 – 0.9 mm/mm 0.90 

beta 
A non-linear parameter controlling 

runoff generation 
0.1 – 10 –  0.76 

k0 

Flow recession coefficient in an upper 

soil reservoir (for soil moisture exceeds 

a threshold lsuz value) 

1 – 30 days 11.06 

lsuz 

A threshold value used to control 

response routing on an upper soil 

reservoir 

1 – 100 mm 5.77 

k1 
Flow recession coefficient in an upper 

soil reservoir 
15 – 100 days 31.45 

cperc A constant percolation rate parameter 0.01 – 3 mm/days 0.08 

k2 
Flow recession coefficient in a lower 

soil reservoir 
100 – 500 days 261.06 

maxbas 
A triangular weighting function for 

modeling a channel routing routine 
1 – 3 days 2.00 

alpha1 

An exponent in relation between outflow 

and storage representing non-linearity of 

storage-discharge relationship of lower 

reservoir 

0.5 – 1.25 –  1.11 

PXADJ Rainfall correction factor 0.1 – 1 –  0.52 

SNOW-17 
    

scf Snow fall correction factor 0.4 – 1.6 –  0.76 

uadj 
The average wind function during rain-

on-snow periods 
0.01 – 0.22 mm/mb/oC 0.09 

mbase Base temperature for nonrain melt factor 0 – 1  oC 0.43 
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mfmax Maximum melt factor 0.2 – 2 mm/6h/oC 1.62 

mfmin Minimum melt factor 0.02 – 0.7 mm/6h/oC 0.04 

tipm 
Antecedent snow temperature index 

parameter 
0.01 – 0.99 –  0.71 

nmf Maximum negative melt factor 0.05 – 0.5 mm/6h/oC 0.18 

plwhc Percent of liquid water capacity 0 – 0.4 –  0.00 

pxtemp1 
Lower Limit Temperature dividing 

tranistion from snow 
-2 – 2  oC -1.90 

pxtemp2 
Upper Limit Temperature dividing rain 

from transition 
1 – 3  oC 1.19 

 

In order to match the GEPS format in forecast mode, MAC-HBV model was calibrated in 

3 hourly time step using particle swarm optimization algorithm (PSO) approach (Razavi 

and Coulibaly 2017) with modified NVE (combined Nash Sutcliffe efficiency and 

volume error) as objective function (Samuel et al. 2011; Razavi and Coulibaly 2017). As 

shown in Eq. (4-13), MNVE (modified NVE) gives more weight to NSEsqr, which is 

better at reflecting the performance for capturing high flows, since we are more interested 

in high flow rather than low flow in the context of flood forecasting.   

𝑀𝑁𝑉𝐸 = 0.5𝑁𝑆𝐸 − 0.1𝑉𝐸 + 0.5𝑁𝑆𝐸𝑠𝑞𝑟 (4-13) 

Calibration and validation results are shown in Figure 4-3. For calibration period, MPFC 

[modified peak flow criteria, MPFC=1-PFC, equation for PFC can be found in (Coulibaly 

et al. 2001)], which provides more accurate performance evaluation for flood period with 

1 indicating a perfect forecast, could reach 0.81, NSE (Nash Sutcliffe efficiency) can 

reach 0.62 and VE (volume error) is 0.23. For validation period, MPFC is near 0.80, NSE 
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value is 0.60 and VE is 0.02. The MPFC values for both calibration and validation are 

fairly good, indicating that the model performs well in simulating peak flows. Although 

the NSE values are in the acceptable model range, they may appear relatively low as the 

model was optimized with emphasis on high flows rather than both low and high flows. 

The emphasis here been on enhancing flood forecasting, the model performance on the 

higher flows is satisfactory. Given that the model is in 3 hourly time step, the NSE values 

are well acceptable, and after post-processing of HUP, the performance can be further 

improved. The optimized parameters of MAC-HBV and SNOW-17 used in the forecast 

mode are presented in Table 4-1. 

 

Figure 4-3 Calibration and validation for MAC-HBV 
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4.5.2 Calibration of Bayesian Processor  

To specify the Bayesian processor, parametric expressions for the family of prior density, 

likelihood function and posterior density should be obtained (Reggiani and Weerts 

2008b). The same time period as the hydrologic model calibration was used to estimate 

these parameters, and lead time up to 72 hours was considered. For every lead time n and 

each precipitation indicator v, the corresponding discharge observation sub-sample hn 

was extracted to estimate marginal prior distribution. According to the modified Shapiro-

Wilk test (MSW) proposed by Ashkar and Aucoin (2012), which is a useful approach to 

determine the goodness of fit for non-normal distribution, kernel was tested to be the 

most suitable distribution function. The goodness of fit for kernel distribution are 

presented in Figure 4-4 for selected lead times. In the normal space after NQT process, 

following Eq. (4-5) and coefficient definition for Cnv and tnv in Table 4-2, parameters for 

prior distribution were calculated and shown in Table 4-2. As lead time grows, Cnv shows 

a decreasing trend and tnv shows an increasing trend for both branches, indicating 

dependence structure between Hn and H0 is weakened with the increase of lead time.  
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Figure 4-4 Marginal distribution of observed discharge for h18, h36, h54 and h72 

conditional on precipitation indicator 

 

Similarly, for every n and each v, the corresponding simulated discharge sub-sample sn 

that matches hn was derived to estimate marginal distribution. Again, kernel was 

determined as the best function based on MSW test, the goodness of fit of kernel 

distribution for selected lead times are displayed in Figure 4-5. Then in the transformed 

space, following Eq. (4-6) and coefficient definition for Anv, Bnv, Dnv, and Tnv in Table 

4-2, parameters for posterior distribution were computed and presented in Table 4-2. It is 
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noted that Bnv values are very small for all the cases and thus approximated to zero. As 

lead time increases, Anv increases and Dnv decreases for both branches, suggesting the 

forecast is less affected by H0 and more influenced by Sn with increasing lead time. These 

HUP parameters characterize the prior distribution and posterior distribution based on 

Eqs. (4-7) to (4-12) they are calibrated offline beforehand and will be used in forecast 

mode for probabilistic forecasting. 

 

Figure 4-5 Marginal distribution of simulated discharge for s18, s36, s54 and s72 

conditional on precipitation indicator 
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Table 4-2 Dependence parameters of Hydrologic Uncertainty Processor 

Coefficient 

definition 

Prior distribution Posterior distribution 

Cnv = ∏ civ

n

i=1

 𝑡𝑛𝑣
2 = 1 − 𝐶𝑛𝑣

2  

𝐴𝑛𝑣

=
𝑎𝑛𝑣𝑡𝑛𝑣

2

𝑎𝑛𝑣
2 𝑡𝑛𝑣

2 + 𝜎𝑛𝑣
2  

𝐵𝑛𝑣

=
−𝑎𝑛𝑣𝑏𝑛𝑣𝑡𝑛𝑣

2

𝑎𝑛𝑣
2 𝑡𝑛𝑣

2 + 𝜎𝑛𝑣
2  

𝐷𝑛𝑣

=
𝐶𝑛𝑣𝜎𝑛𝑣

2 −𝑎𝑛𝑣𝑑𝑛𝑣𝑡𝑛𝑣
2

𝑎𝑛𝑣
2 𝑡𝑛𝑣

2 + 𝜎𝑛𝑣
2  

𝑇𝑛𝑣
2

=
𝑡𝑛𝑣

2 𝜎𝑛𝑣
2

𝑎𝑛𝑣
2 𝑡𝑛𝑣

2 + 𝜎𝑛𝑣
2  

Lead time n v = 0 v = 1 v = 0 v = 1 v = 0 v = 1 v = 0 v = 1 v = 0 v = 1 v = 0 v = 1 

3 1.00 0.92 0.01 0.14 -0.01 0.22 0.00 0.00 1.01 0.75 0.08 0.36 

6 0.98 0.87 0.03 0.24 0.00 0.38 0.00 0.00 0.98 0.58 0.18 0.42 

9 0.96 0.85 0.07 0.28 0.03 0.47 0.00 0.00 0.95 0.50 0.26 0.44 

12 0.94 0.83 0.11 0.32 0.07 0.51 0.00 0.00 0.90 0.46 0.33 0.45 

15 0.92 0.81 0.15 0.34 0.11 0.53 0.00 0.00 0.86 0.44 0.38 0.45 

18 0.90 0.79 0.19 0.37 0.14 0.55 0.00 0.00 0.82 0.42 0.42 0.46 

21 0.88 0.78 0.23 0.40 0.18 0.57 0.00 0.00 0.79 0.40 0.45 0.48 

24 0.86 0.76 0.26 0.42 0.21 0.58 0.00 0.00 0.75 0.39 0.48 0.49 

27 0.84 0.74 0.29 0.45 0.24 0.59 0.00 0.00 0.72 0.37 0.50 0.50 

30 0.82 0.73 0.32 0.47 0.27 0.60 0.00 0.00 0.70 0.35 0.52 0.52 

33 0.80 0.71 0.35 0.50 0.29 0.61 0.00 0.00 0.67 0.34 0.54 0.53 

36 0.79 0.69 0.38 0.52 0.31 0.61 0.00 0.00 0.65 0.33 0.55 0.54 

39 0.77 0.68 0.41 0.53 0.33 0.62 0.00 0.00 0.63 0.33 0.57 0.55 

42 0.75 0.67 0.44 0.55 0.36 0.62 0.00 0.00 0.61 0.32 0.58 0.56 

45 0.73 0.66 0.46 0.57 0.37 0.62 0.00 0.00 0.59 0.31 0.59 0.57 

48 0.72 0.65 0.49 0.58 0.39 0.61 0.00 0.00 0.57 0.31 0.60 0.58 

51 0.70 0.63 0.51 0.60 0.41 0.61 0.00 0.00 0.56 0.30 0.61 0.59 

54 0.69 0.62 0.53 0.61 0.42 0.62 0.00 0.00 0.54 0.30 0.62 0.60 

57 0.67 0.61 0.55 0.63 0.44 0.62 0.00 0.00 0.53 0.29 0.62 0.61 

60 0.66 0.60 0.57 0.64 0.45 0.61 0.00 0.00 0.51 0.28 0.63 0.62 

63 0.64 0.59 0.59 0.65 0.46 0.62 0.00 0.00 0.50 0.28 0.64 0.62 

66 0.63 0.58 0.61 0.66 0.47 0.62 0.00 0.00 0.49 0.28 0.64 0.62 

69 0.61 0.57 0.62 0.68 0.48 0.62 0.00 0.00 0.48 0.27 0.65 0.63 

72 0.60 0.55 0.64 0.69 0.49 0.62 0.00 0.00 0.47 0.27 0.65 0.64 
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4.5.3 Bias Correction of Ensemble Weather Forecasts 

In this study, GEPS ensemble weather forecasts were bias corrected using MBCn in three 

different ways: (i) bias correct each ensemble separately to get bias corrected ensembles, 

(ii) bias correct each ensemble first and then average them to get bias corrected ensemble 

mean, (iii) calculate the ensemble mean first and then bias correct the mean. As a result, 

five types of forecast dataset were obtained: (i) GEPS-raw which means raw GEPS data, 

(ii) GEPS-BC which is bias-corrected GEPS ensembles, (iii) GEPS-raw-mean that 

represents ensemble mean of GEPS-raw, (iv) GEPS-BC-mean which is the ensemble 

mean of bias-corrected GEPS data, and (v) GEPS-mean-BC which stands for bias-

corrected GEPS-raw-mean. After bias correction, the raw GEPS and the bias-corrected 

GEPS data were compared in terms of energy distance score.  

Energy distance score measures the statistical discrepancy between sample x and y from 

two multivariate distributions; energy distance equals zero if and only if distributions of x 

and y are identical, and it increases with the increase of the discrepancy of distributions 

(Cannon, 2017; Székely and Rizzo, 2013). The squared energy distance is defined as 

(Rizzo and Székely, 2016): 

𝐷2(𝐹, 𝐺) = 2𝐸‖𝑥 − 𝑦‖ − 𝐸‖𝑥 − 𝑥′‖ − 𝐸‖𝑦 − 𝑦′‖ ≥ 0 (4-14) 

Where F and G denote the cdfs of sample x and y, respectively. ‖∙‖ is the Euclidean norm 

and E is the expected value, x’ denotes an independent and identically distributed copy of 

x; similarly, y’ is an independent and identically distributed copy of y. The comparison of 

energy distance score between observations and the five datasets are presented in Figure 
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4-6. Energy distances between GEPS-raw and observations range from 11.19 to 21.53, 

while energy distances between GEPS-BC and observations are all within 2 which 

indicates a large improvement when compared with GEPS-raw. Energy distance between 

GEPS-raw-mean and observations is 22.75, after bias correcting GEPS-raw-mean, the 

energy distance drops down to 2.28, and the energy distance between GEPS-BC-mean 

and observations also reduced to 4.49. The results suggest that MBCn bias correction can 

significantly decrease the statistical discrepancy between meteorological observations 

and ensemble weather forecasts.  

 

Figure 4-6 Comparison of energy distance score 
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4.5.4 Experiments and Comparisons 

The five types of GEPS dataset generated from bias correction were used as inputs to the 

calibrated HUP, resulting in seven application scenarios summarized in Table 4-3. The 

forecast performance of these seven different scenarios were evaluated and compared 

using multiple verification metrics and visual graphical tools, such as scatter plots, 

correlation coefficient r, root mean squared error (RMSE), NSE, continuous ranked 

probability score (CRPS), reliability plots and forecast hydrographs (Jha et al. 2018; 

Verkade et al. 2017). The forecast horizons considered vary from short-range forecasts 

(3h - 24 h herein) and medium-range forecasts (24h - 72h herein).  

Table 4-3 Brief descriptions of the seven application scenarios 

Scenario Brief description 

GEPS-raw use GEPS-raw data only to run the model and get ensemble forecast 

GEPS-BC use GEPS-BC only to derive ensemble forecast 

GEPS-raw+HUP use HUP post-process the ensemble forecast from GEPS-raw to get 

probabilistic forecast 

GEPS-BC+HUP use HUP post-process the ensemble forecast from GEPS-BC to 

obtain probabilistic forecast 

GEPS-raw-mean+HUP apply HUP with GEPS-raw-mean to generate probabilistic forecast 

GEPS-BC-mean+HUP use GEPS-BC-mean with HUP to generate probabilistic forecast 

GEPS-mean-BC+HUP use GEPS-mean-BC with HUP to generate probabilistic forecast 
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4.5.4.1 Scenario Results Comparisons 

In order to get single-valued forecast derivative for performance evaluation, the mean 

value is used for ensemble forecasts, and the median is used for probabilistic forecasts. 

For short-range forecasts, scatter plots of single-valued forecasts versus observations for 

all the seven scenarios (from Table 4-3) are presented in Figure 4-7 and Figure 4-9 (the 

first four scenarios are in Figure 4-7, and the other three are in Figure 4-9). For medium-

range forecasts, scatter plots comparison between using GEPS only and combining GEPS 

with HUP (the first four scenarios) are presented in Figure 4-8. For both short-range and 

medium-range, results are shown for selected forecast lead times only instead of all the 

lead times. In all the plots, the forecast-observation pairs are marked by blue point, the 

1:1 diagonals are emphasized by solid black lines, and the x-axes and y-axes are identical. 

Vertically, the scatter plot panel in each column are from the same scenario which is 

indicated at the top of the graph. Horizontally, the scatter plot panel in each row stands 

for the same lead time as indicated at the right edge of the graph. Metrics including r, 

NSE and RMSE are calculated and presented for every scatter plot. 
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Figure 4-7 Scatter plot comparison for short-range forecasts between using GEPS data 

only and combining GEPS with HUP 
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Figure 4-8 Scatter plot comparison for medium-range forecasts between using GEPS 

data only and combining GEPS with HUP 



Ph.D. Thesis – Shasha Han                                 McMaster University – Civil Engineering 

142 

 

 

Figure 4-9 Scatter plot comparison for short-range forecasts between using GEPS mean 

with HUP 

 

As shown in Figure 4-7 and Figure 4-9, Results indicate that for all the scenarios of short-

range forecasts, the pairs are more spread with increasing lead time, and larger flow 
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values have higher spread. As lead time grows, correlation coefficient r decreases, NSE 

and RMSE follow similar pattern and suggest a worsening trend. Comparison between 

Figure 4-7 and Figure 4-8 indicates that the performance of combing HUP is promising 

for short-range forecasts, and worsens for medium-range forecasts. For same forecast 

lead times, comparisons between using GEPS data only and combining GEPS with HUP 

(GEPS-raw versus GEPS-raw+HUP and GEPS-BC versus GEPS-BC+HUP) reveal that 

HUP is able to improve the forecast performance, as lower RMSE and higher NSE are 

obtained when HUP is used, and the improvement is significant for short-range forecasts. 

Comparisons between using bias-corrected GEPS and raw GEPS (GEPS-raw versus 

GEPS-BC and GEPS-raw+HUP versus GEPS-BC+HUP) indicate that bias correcting 

ensemble weather forecasts could also improve the performance for most of the lead 

times. However, the improvement is less obvious for medium range forecasts. Scatter 

plot comparison for short-range forecasts between using GEPS mean with HUP is 

presented in Figure 4-9, there is no notable difference between GEPS-raw-mean+HUP 

and GEPS-BC-mean+HUP. For GEPS-mean-BC+HUP, the results are promising for 

small lead times, while for higher lead times, it shows the most unsatisfactory 

performance among the seven scenarios. For example, the NSE value for lead time 24 

hours is negative, even worse than just using the raw data. This indicates that bias 

correcting each ensemble member outperforms only bias correcting the ensemble mean. 

The NSE values for all the forecast lead times is further analyzed in Figure 4-10, with 

short-range showing in the upper graph and medium-range showing in the lower graph. 

The seven different scenarios are divided into three groups, and each group is plotted in 
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the same color but different line style. For both short-range and medium-range, except 

GEPS-mean-BC+HUP, NSE values are quite similar across the other four Bayesian 

scenarios. NSE for these four Bayesian scenarios are generally higher than non-Bayesian 

scenarios, and the differences become less evident for medium-range forecasts. As for 

GEPS-mean-BC+HUP which represented by orange dotted line, NSE values are 

acceptable for short lead times, but deteriorate as lead time exceeds 21 hours, revealing 

the performance is not stable when GEPS-mean-BC is used as input. The GEPS ensemble 

forecasts are generated by Global Environmental Multiscale Model (GEM) with different 

physics parameterizations, data assimilation cycles, and sets of perturbed observations. 

Therefore, due to the different ensemble configurations, each ensemble may have its 

unique biases that need to be dealt with independently, simply bias correcting the 

ensemble mean could possibly result in poor performance (Cui et al. 2012). Comparison 

between different forecast horizons demonstrates that the performances of short-range 

forecast are better than medium-range for the Bayesian scenarios. For both graphs, the 

green solid line for GEPS-BC is located above the green dashed line for GEPS-raw, this 

further proves the improved performance after bias correction of input data. In terms of 

NSE results, the best scenario for short-range is GEPS-BC+HUP, followed by GEPS-BC-

mean+HUP which presents comparable result over lead time 15 hours. The best scenario 

for medium range is GEPS-raw-mean+HUP, followed by GEPS-BC-mean+HUP which 

shows comparable result from lead time 24 hours to 45 hours. 
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Figure 4-10 Comparison of NSE for different scenarios: (a) short-range; (b) medium-

range 

 

In terms of skill of full ensemble forecast and probabilistic forecast, the overall accuracy 

is assessed by CRPS. CRPS is a commonly used metric for ensemble or probabilistic 
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verification through measuring the spread of ensembles or forecast distributions against 

observations: 

𝐶𝑅𝑃𝑆 = ∫ (𝐹𝑧𝑓(𝑡) −
∞

−∞

𝐹𝑧𝑜(𝑡))2𝑑𝑡 
(4-15) 

Where Fzf denotes cdf of ensemble or probabilistic forecast, and Fzo denotes cdf of 

observation. Fzo is a Heaviside function, and it equals 1 when values are greater than 

observed value and otherwise equal to 0. The forecast is considered more accurate if 

CRPS gets more close to zero. 

Figure 4-11 presents the comparison of mean CRPS for different scenarios for both short-

range (upper graph) and medium-range (lower graph). The line style and color for each 

scenario (Figure 4-11) are consistent with Figure 4-10. According to visual inspection, 

the results are in accordance with the single-valued verification results. For the Bayesian 

scenarios, the CRPS values are very low for short-range (below 3.00) and gradually rises 

with increasing lead time, the CRPS values for medium-range are generally higher than 

short-range as can be expected. The CRPS values for non-Bayesian scenarios such as 

GEPS-raw and GEPS-BC are consistently higher than the Bayesian scenarios for both 

short-range and medium-range, indicating HUP which worked as post-processor of 

ensemble forecast is able to improve the forecast performance across all lead times. 

However, the improvement becomes less pronounced as lead time grows. The deviation 

between GEPS-raw+HUP and GEPS-BC+HUP is subtle, and this also applies to GEPS-

raw-mean+HUP and GEPS-BC-mean+HUP. For short-range, the CRPS values for 

GEPS-mean-BC+HUP are similar to the other four Bayesian scenarios. While for 
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medium-range, the CRPS result for GEPS-mean-BC+HUP is worse than the other four 

Bayesian scenarios, and converges with GEPS-BC at lead time of 63 hours. This reveals 

that bias correcting the ensemble mean only rather than bias correcting each ensemble 

may result in unstable performance. For both graphs, the CRPS values for GEPS-BC are 

lower than GEPS-raw, and larger differences are shown as lead time increases. The 

comparison demonstrates that MBCn bias correction is able to improve the ensemble 

forecast for all the forecast lead times, and the improvement increases with the increase 

of lead time. In general, in terms of CRPS results, the best scenario for short-range 

forecast is GEPS-BC+HUP. GEPS-raw-mean+HUP shows the best performance for 

medium-range, and GEPS-BC-mean+HUP takes second place. 
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Figure 4-11 Comparison of CRPS for different scenarios: (a) short-range; (b) medium-

range 
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4.5.4.2 Comparison of Reliability 

In addition, the reliabilities of the best three scenarios (GEPS-BC+HUP for short-range, 

GEPS-raw-mean+HUP and GEPS-BC-mean+HUP for medium-range) identified are 

assessed using reliability plot introduced by Laio and Tamea (2007). Reliability plot is 

used to evaluate the degree to which the probabilistic forecasts are reliable. Provided that 

Xi is the observed flow at time ti, then Zi is the cdf value derived from the probabilistic 

forecast that corresponding to Xi, and mathematically expressed by Zi = Pi(Xi). And Ri 

denotes the corresponding rank of Zi when Zi values are sorted in increasing order, their 

empirical cumulative distribution function is calculated using Ri divided by sample size n. 

Consequently, reliability plot is a plot of Zi values versus Ri/n, the shape of the reliability 

curves are used to judge the reliability of the forecast. Besides, Kolmogorov confidence 

bands are shown along with the reliability curve in the same plot. They are two lines 

parallel to the bisector at the same distance, one is located above, and another is situated 

below. The distance between the confidence band and the bisector line depends on the 

significance level 𝛼 and computed via q(𝛼)/√n, here 𝛼 of 0.05 is used and 

q(𝛼=0.05)=1.36. The forecast is deemed reliable under the condition that the (Zi, Ri/n) 

pairs are distributed close to bisector and remain inside the confidence bands; otherwise, 

forecast issues are detected.  

Figure 4-12 shows the reliability plots of the three best probabilistic forecast scenarios for 

both short-range (upper graph) and medium-range (lower graph) for a selection of lead 

times, the (Zi, Ri/n) points for different lead time are presented by different marker type 

and color. The bisector line is emphasized by black solid line, and the Kolmogorov 
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confidence bands are plotted in black dashed line. The evaluation criterion of the 

reliability curve can be found in Laio and Tamea (2007). It presents several possible 

outcomes, curve below the bisector line indicates under prediction, while curve above the 

line means over prediction. The S-shaped curve reveals problem of spread of the 

distribution, either narrow forecast or large forecast. For the reliability plots obtained, in 

most cases the forecast can be considered relatively reliable, since most of the points are 

distributed within the significance band and near the bisector. For GEPS-raw-mean+HUP, 

few points for lead time 3 hours and 6 hours are located outside the confidence bands, 

and few points for lead time 12 hours and 24 hours reach the confidence line. While for 

GEPS-BC-mean+HUP, after bias correction process of GEPS forecasts, these points 

move more close to the bisector, indicating that for short-range forecasts, using bias-

corrected GEPS as input appears to be more reliable than using raw GEPS as input. As 

such, even though GEPS-raw based scenarios show comparable performance with GEPS-

BC based scenarios in terms of forecast skill, bias correction of ensemble weather inputs 

is still recommended, and the improvement brought by bias correction would be further 

enhanced if a longer training dataset is available (Cui et al. 2012). We should also note 

that it is possible that a prediction can pass the test but has no operational value, it is 

recommended to use this verification method together with some other method to make a 

multifaceted assessment (Laio and Tamea 2007). Overall, in terms of probabilistic and 

ensemble verification measures along with single-valued verification measures, it turns 

out that the performances of short-range probabilistic forecasts are good, and GEPS-

BC+HUP performs best for short-range.  
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Figure 4-12 Comparison of reliability plot for different scenarios: (a) short-range; (b) 

medium-range 

 

4.5.4.3 Forecast Hydrographs 

A sample of forecast hydrographs at the watershed outlet on 27 June 2015 00Z is shown 

in Figure 4-13. The upper figure is the probabilistic forecast using GEPS-raw as input 

data, and the lower one presents the forecast results using GEPS-BC as input. The solid 

red line is the observed discharge, and the shaded area demonstrates 30% probability 

interval of probabilistic forecast using GEPS with HUP. The mean of ensemble forecasts 

is represented by the black dash-dot line, and the median of the predictive distribution 

from probabilistic forecast is exhibited by the blue dashed line. For both figures, the 
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ensemble mean lies above the observed line, indicating a flow overestimation. However, 

after post-processing by HUP, the predictive median move closer to the observed, and the 

predictive distribution or so-called uncertainty bound could capture most of the 

observations. These results further indicate the Bayesian revising effect of the HUP 

processor. Because of the large uncertainties of ensemble formation and the coarse spatial 

resolution, the quality of the raw GEPS is very limited because of the time lag and large 

bias which is very challenging to correct. Although some biases could be reduced by the 

MBCn as shown in FIG. 13, there is still some remaining bias – suggesting that there is 

still room for improvement. This may require a longer training dataset, observation and 

weather forecasts with higher spatial resolution, or alternative bias correction methods. It 

should be noted that Figure 4-13 is only one example on a particular forecast time, and 

not necessarily the general behavior of all the forecast hydrographs. The behavior of the 

probabilistic forecast, demonstrated by the uncertainty bound, is conditional on the initial 

condition at the particular forecast time, the ensemble discharge forecasts forced by 

corresponding ensemble weather data, and the precipitation indicator (that defines which 

branch it should be assigned to in the two-branch HUP) which determined by the 

precipitation forecast. 
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Figure 4-13 Ensemble forecasts and probabilistic forecasts: (a) using GEPS-raw as input; 

(b) using GEPS-BC as input (take June 27, 2015 for example) 
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4.6 Conclusions 

This paper has presented an application of Hydrologic Uncertainty Processor for post-

processing ensemble streamflow forecasts which were forced by ensemble weather 

forecasts. Conditional on the ensemble forecasts and initial condition, the Bayesian 

processor updates the prior density derived from historical observations to ensemble 

posterior densities via likelihood functions. The ensemble of revised posterior densities 

are subsequently lumped into a representative one to assess the uncertainties. To remove 

the bias of the ensemble weather forecasts, GEPS was bias corrected through MBCn 

approach in three different ways, resulting in five sets of forecast data. Consequently, 

seven different forecast scenarios were developed by using raw GEPS and bias-free 

GEPS independently, as well as using them together with HUP. The prediction skills of 

different forecast horizons for different scenarios were assessed and compared through 

various verification metrics. Based on detailed analysis of the results, the following 

conclusions can be drawn.  

(i) On the whole, the performances of the Bayesian scenarios are promising for short-

range (3h - 24h) forecasts, but showed little to no improvement for medium-range (24h - 

72h) forecasts. The best scenario for short-range forecast is GEPS-BC+HUP, which is 

applying bias correction to each ensemble plus applying hydrologic uncertainty processor. 

(ii) HUP, a hydrologic post-processor for resulting ensemble forecasts from raw GEPS or 

bias-corrected GEPS, is able to improve the performance for both short-range and 

medium-range forecasts. This is indicated by lower RMSE and CRPS, and higher r and 

NSE when HUP is used (except for GEPS-mean-BC scenario). The improvement is 
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significant for short lead times and becomes less evident as forecast lead time grows. 

Most of the forecasts from the selected Bayesian scenarios appeared reliable as the points 

in the reliability plot are located within the bands and close to the bisector line. 

(iii) MBCn, works like a meteorological post-processor of weather forecasts, can greatly 

reduce the statistical discrepancy between GEPS and weather observations. It could also 

yield improved short-range flood forecasts, which is indicated by improved NSE, CRPS 

and reliability plot. However, the improvement is less obvious compared with HUP. 

(iv) The performance of GEPS-mean-BC+HUP is not stable and deteriorates at certain 

point, indicating that each ensemble member should be bias corrected instead of just bias 

correcting the ensemble mean, under the condition that bias-free ensemble weather 

forecasts are preferred. 

(v) For both short-range and medium-range, GEPS-BC outperforms GEPS-raw; however, 

results are quite similar between GEPS-raw+HUP and GEPS-BC+HUP, as well as 

GEPS-raw-mean+HUP and GEPS-BC-mean+HUP. It reveals that the performance 

difference between using raw and bias-corrected weather forecasts becomes less 

noticeable after Bayesian revision process. However, bias correction does enhance the 

forecast reliability. 

Future work will involve testing alternative ensemble weather forecasts with longer 

archive and higher spatial resolution, alternative meteorological post-processing methods 

along with hydrologic post-processing technique, to further assess the potential of HUP 

for operational flood forecasting. 
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Chapter 5. Assessing the Effects of Input and Model Type on Bayesian 

Ensemble Uncertainty Processor 

Summary of Paper 3: Han, S. and Coulibaly, P. (2019). Assessing the Effects of Input 

and Model Type on Bayesian Ensemble Uncertainty Processor. Advances in Water 

Resources, under review. 

The goal of this research was to investigate the effects of weather input type and 

hydrologic model type on the performance of Bayesian Ensemble Uncertainty Processor 

(BEUP). Thus, BEUP with deterministic/ensemble weather predictions and lumped/semi-

distributed hydrologic models were tested and compared. 

Key findings of this research include: 

 BEUP performs well in capturing peak flows. 

 BEUP with the semi-distributed hydrologic model outperforms the lumped model 

in terms of accuracy and reliability. 

 The improvement brought by the hydrologic model type is more significant than 

the input data type. 

 Using BEUP with semi-distributed model is recommended for short-term flood 

forecast (1 day ahead) with uncertainty estimation. 
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5.1 Abstract 

Meteorological uncertainty and hydrologic uncertainty are two major sources of 

uncertainty in flood forecast, to adequately account for both of them, the Bayesian 

Ensemble Uncertainty Processor (BEUP) was applied to post-process the ensemble 

forecasts. The meteorological uncertainty, which is represented by ensembles of weather 

prediction, propagates through the hydrologic model from the weather input to 

streamflow output. After the post-processing of BEUP, hydrologic uncertainty is 

quantified and is then added as another layer of uncertainty. The integration of these two 

uncertainties provides an estimation of the predictive total uncertainty. To investigate the 

factors that have impact on the performance of BEUP, two types of forcing data were 

used: deterministic weather predictions with ensemble dressing and ensemble weather 

predictions, and the hydrologic model combined with BEUP was set up in both lumped 

and semi-distributed scheme. The different combinations of input data type and 

hydrologic model type lead to four different probabilistic forecast scenarios, and their 

performances were compared by various evaluation metrics. Comparisons among the 

different scenarios indicate that using BEUP with semi-distributed model yields more 

accurate and reliable flood forecasts than with lumped model. It was also shown that 

using dressed deterministic weather predictions as input outperforms the use of ensemble 

weather predictions. Results show that the uncertainty bound generated from BEUP 

capture well the peak flows. It was also found that the improvement brought by model 

type is more significant than data type. BEUP combined with semi-distributed model is 

recommended for short-term flood forecast with uncertainty estimate. 
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Keywords: Flood forecast; Uncertainty assessment; Ensemble forecast; Post-processing; 

Bayesian theory. 

5.2 Introduction 

Flood forecasting based on numerical model provides an effective nonstructural measure 

in flood management (Munoz and Constantinescu, 2018; Schendel and Thongwichian, 

2017). Traditionally, the flood forecasts are produced in a deterministic way, which give 

only a single value for a particular time, but the forecast uncertainty is not considered 

(Jones and Kay, 2007; Linde et al., 2017). Over the last two decades, ensemble forecasts 

forced by ensembles of Numerical Weather Predictions (NWPs) have gained popularity 

(Schaake et al., 2007). However, the uncertainty considered for these forecasts is limited 

to the uncertainty in NWPs, and the ensemble output may not be sufficient to represent 

the full distribution of predictive probability (Biondi and Todini, 2018). Therefore, 

whether the forecasts are deterministic or ensemble, they have to be treated using post-

processing approach to adequately account for the total uncertainty (Li et al., 2017).  

Reviews of the post-processing methods for hydrologic forecasts can be found in Li et al. 

(2017) and Han and Coulibaly (2017). Some commonly used methods include the 

Hydrologic Uncertainty Processor (HUP) which updates prior distribution into posterior 

distribution by assimilating new information (Han et al., 2019; Krzysztofowicz and Herr, 

2001), Model Conditional Processor (MCP) which is able to deal with multi-model, 

multi-site and multi-lead time problem (Coccia and Todini, 2011; Todini, 2013), 

Bayesian Model Averaging (BMA) which is designed to assess the posterior mean and 

variance of predictand conditional on several model forecasts (Fragoso et al., 2018; 
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Masadgar and Moradkhani, 2014), Quantile Regression (QR) which is based on statistical 

analysis of model error (Weerts et al., 2011), Ensemble Model Output Statistics (EMOS) 

which post-processes ensemble forecasts using multiple linear regression (Hemri et al., 

2015), and etc. There are many post-processors available in the literature, and the 

Bayesian Ensemble Uncertainty Processor (BEUP) investigated herein is among the most 

robust approaches. 

BEUP is an extension of HUP which was developed to quantify hydrologic uncertainty 

based on Bayes’ theorem, and BEUP has adapted HUP to an ensemble prediction 

framework to treat multiple responses derived from meteorological ensembles (Reggiani 

et al., 2009). In hydrologic prediction, meteorological uncertainty (uncertainties in 

weather predictions) and hydrologic uncertainty (aggregate of uncertainties related to 

modelling process) are two dominant sources of uncertainty (Seo et al., 2006), and BEUP 

is able to address both of them. Within the framework of BEUP, the meteorological 

uncertainty is estimated by ensembles of weather prediction and propagates through the 

hydrologic model. The hydrologic uncertainty which is quantified using HUP is then 

added on, and the final output from BEUP which is in the form of predictive distribution 

gives an estimation of the total uncertainty (Verkade et al., 2017). Previous works have 

proved that BEUP could improve the forecast performance and provides more adequate 

quantification of predictive uncertainty (Han and Coulibaly, 2019; Reggiani et al., 2009). 

However, it still remains unknown which factors could affect the performance of BEUP. 

For example, the effect of the type of NWPs (deterministic vs. ensemble) used as inputs 
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is unknown. Similarly, the effect of the type of hydrologic model (semi/distributed vs. 

lumped) used with BEUP is not documented. 

There are different types of weather prediction product that could be used to force the 

BEUP system. In Canada, with the launch of Canadian Surface Prediction Archive 

(CaSPAr) in 2017, long archives of weather predictions are becoming easily accessible, 

including deterministic weather predictions such as Regional Deterministic Prediction 

System (RDPS) and ensemble weather predictions such as Regional Ensemble Prediction 

System (REPS). Also, the hydrologic model used with BEUP could be set up either 

lumped or semi-distributed. The lumped model treats the entire basin as one homogenous 

unit, while the semi-distributed model divides the basin into smaller sub-basins and each 

sub-basin has a different parameter set (Lobligeois et al., 2014). The contribution of this 

work is to investigate the impact on the performance of BEUP brought by using different 

weather prediction inputs and using different types of hydrologic model. The ultimate 

goal being to identify the best combination (input and model type) for use with BEUP in 

probabilistic flood forecasting. 

To achieve this, RDPS with an ensemble dressing and REPS were used as input data to 

force both lumped and semi-distributed hydrological models, generating ensembles of 

streamflow forecasts. These ensemble forecasts were then post-processed via BEUP, 

producing probabilistic forecasts with uncertainty estimation. The major objectives of 

this research are: (1) to compare the performance of BEUP driven by deterministic and 

ensemble weather predictions for different forecast horizons; (2) to evaluate the 

predictive performance of BEUP based on lumped and semi-distributed model across 
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different forecast horizons; (3) to identify the best combination of input-model-BEUP to 

adequately account for the total predictive uncertainty and enhance flood forecasts 

through the BEUP post-processor. 

5.3 Study Watershed and Data 

The study area selected to conduct the research is Humber River watershed; it is a flood-

prone area which is managed by Toronto Region Conservation Authority (TRCA). 

Humber River watershed is located in the south-central of the Greater Toronto Area (the 

most populous metropolitan region in Canada), it flows from Niagara Escarpment and 

Oak Ridges Moraine and drains to Lake Ontario with approximately 911 km2 total 

drainage area (Figure 5-1). The watershed is characterized as a semi-urban watershed 

which covers a mixture of agricultural, urban and rapidly urbanizing land uses (TRCA, 

2008). Please refer to Han et al. (2019) for a more detailed watershed description. 

Hourly gauge precipitation and temperature observations were provided by TRCA, and 

hourly gauge discharge observations were provided by Water Survey of Canada (WSC). 

Kriging method was used to infill the missing precipitation and temperature data (Bostan 

et al., 2012; Meng et al., 2013). After data processing, the available time period for all the 

observation datasets is from January 2008 to December 2018. As shown in Figure 5-1, 

the eleven precipitation stations and the eleven temperature stations used are spatially 

distributed over the watershed, and the five flow stations selected are either located on 

the main river or the main tributary (Awol et al., 2018).  
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Figure 5-1 Study watershed and model setup 

 

The precipitation and temperature predictions were obtained from Canadian Surface 

Prediction Archive (CaSPAr: https://caspar-data.ca/). Two different prediction products 

were collected: deterministic weather predictions from Regional Deterministic Prediction 

System (RDPS) and ensemble weather predictions from Regional Ensemble Prediction 

System (REPS). They are both gridded hourly forecasts. RDPS issued 4 times per day at 

UTC [00, 06, 12, 18] with each forecast up to 84 hours, the available archive is from 

January 2015 until now, and the spatial resolution is 10 km. REPS issued 2 times per day 
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at UTC [00, 12], and each forecast is up to 72 hours. REPS data are ensemble predictions 

which include 1 control member and 20 perturbed members. The available archive is 

from May 2017 until today with 15 km spatial resolution.  

5.4 Methodology 

5.4.1 Methodology Overview 

The flowchart of the methodology is shown in Figure 5-2. The regional deterministic 

weather predictions (herein RDPS) are first dressed by a spread of meteorological 

uncertainty, then the dressed RDPS and regional ensemble weather predictions (herein 

REPS) are used as inputs to run the lumped and semi-distributed hydrologic models. 

Following this, the produced ensemble discharge forecasts are post-processed by BEUP 

processor. Prior to the forecast, the hydrologic model and the Hydrologic Uncertainty 

Processor (HUP) in BEUP have been calibrated in advance. The inherent meteorological 

uncertainty is presented by the ensemble spread, through the model propagation, it 

integrates with the hydrologic uncertainty which is quantified by HUP. Finally, a 

representative full distribution is obtained to estimate the predictive total uncertainty. 

Based on the different weather prediction inputs and the different spatial structures in the 

hydrologic model, four forecast approaches are developed: (1) lumped model with BEUP 

forced by dressed RDPS (Dressed RDPS + Lump), (2) semi-distributed model with 

BEUP forced by dressed RDPS (Dressed RDPS + Semi-dist), (3) lumped model with 

BEUP forced by REPS (REPS + Lump), and (4) semi-distributed model with BEUP 

forced by REPS (REPS + Semi-dist). Details about the model setup and uncertainty 

assessment are described in the following section. 
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Figure 5-2 Flowchart of methodology 

 

5.4.2 Hydrologic Model and Model Setup 

Sacramento soil moisture accounting (SAC-SMA) model (Burnash et al., 1973) was 

applied to simulate the runoff. It is a conceptual hydrologic model used by National 

Weather Service River Forecast System (NWSRFS) for river streamflow forecasting 

across the United States. Due to the increasing operational requirements, Community 
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Hydrologic Prediction System (CHPS), an enhanced open forecasting system based on 

SAC-SMA is now replacing NWSRFS (Roe et al., 2010). Within CHPS, snowpack input 

for SAC-SMA is from SNOW-17 snow accumulation and ablation model (Anderson, 

2006). Thus, in our version of SAC-SMA, the original snow routine was replaced by the 

SNOW-17 (Bennett et al., 2018). The inputs to the SAC-SMA include precipitation, 

temperature and potential evapotranspiration (PET), where PET was estimated using an 

adjusted PET calculation method based on temperature (Oudin et al., 2005), and the 

model output is simulated streamflow.  

We refer to Razavi and Coulibaly (2017) for the structure of the SAC-SMA model used 

herein. In the model, the basin is divided into upper zone and lower zone, and water is 

stored in the form of tension water and free water. Tension water is firmly bound to the 

soil particles and only can be removed by evaporation or evapotranspiration, while free 

water is not bound to the soil particles and can be moved by gravitational forces. There 

are six state variable reservoirs in this model: additional impervious area content 

(ADIMC), upper zone tension water storage content (UZTWC), upper zone free water 

storage content (UZFWC), lower zone tension water storage content (LZTWC), lower 

zone free primary water storage content (LZFPC), and lower zone free secondary water 

storage content (LZFSC) (Razavi and Coulibaly, 2017). When precipitation, including 

rainfall and snowmelt, occurs over the basin, the portion that falls on the impermeable 

area becomes direct runoff, and the other portion that falls on the permeable area enters 

UZTWC. Once the UZTWC is filled, the excess water which beyond the capacity is 

accumulated in the UZFWC, and the amount of water in UZFWC is available to produce 
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interflow and percolate to the lower zone. When the UZFWC is totally filled, the excess 

precipitation over the capacity will generate surface runoff. The percolated water goes to 

LZTWC first and is then divided between LZFPC and LZFSC after LZTWC meets its 

maximum capacity. LZFPC supplies primary base flow and LZFSC supplies 

supplemental base flow. Therefore, the total runoff comes from five sources: (1) direct 

runoff from ADIMC, (2) interflow from UZFWC, (3) surface runoff from UZFWC, (4) 

primary base flow from LZFPC, and (5) supplemental base flow from LZFSC.  

Our version of SAC-SMA has 26 parameters, 16 for SAC-SMA and 10 for SNOW-17, 

descriptions of these parameters and their ranges are presented in Table 5-1. The model 

was calibrated in hourly time step against discharge measurements, with 2008-2013 used 

as calibration period and 2014-2017 used as validation period (the first year was treated 

as warm-up). Particle swarm optimization (PSO) was employed as optimization 

algorithm (Razavi and Coulibaly, 2017), and modified Nash-volume error (MNVE) 

which is expressed in Eq. (5-1) was used as objective function (Samuel et al., 2012). 

Where NSEsqr is NSE calculated using the logarithm of discharge, it reflects the accuracy 

for simulating high flows, and VE is volume error.  

𝑀𝑁𝑉𝐸 = 𝑁𝑆𝐸𝑠𝑞𝑟 − 0.1𝑉𝐸 (5-1) 

In this study, the SAC-SMA model was set up in two different ways: lumped SAC-SMA 

and semi-distributed SAC-SMA. As indicated in Figure 5-1, following the stream 

network, the basin was divided into four sub-basins in the semi-distributed SAC-SMA 

model: sub-basin 1 (SB1), sub-basin 2 (SB2), sub-basin 3 (SB3) and sub-basin 4 (SB4). 
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Station 02HC0025, 02HC0031, and 02HC009 were used as the pour point of SB1, SB2 

and SB3 respectively, station 02HC003 and 02HC027 were summed up to calculate the 

basin outlet flow. Mean precipitation and temperature were calculated for each sub-basin 

using Thiessen Polygon method (Figure 5-1) and were used as inputs to simulate runoff 

at the pour point for each sub-basin. Muskingum routing method (Mohammad, 2014; 

Oyekanmi and Oladepo, 2017) was applied to route the flow from upstream to 

downstream, thus the total basin outflow was the summation of routed flow from SB1, 

SB2, SB3 and simulated flow from SB4. For the lumped SAC-SMA, the same 

precipitation and temperature information were used, but the areal mean was calculated 

for the entire basin. Accordingly, a single runoff output was simulated at the basin outlet.  

5.4.3 Total Uncertainty Assessment 

The total predictive uncertainty breaks down into two major sources: meteorological 

uncertainty and hydrologic uncertainty. For REPS, the ensemble members are obtained 

by perturbing through initial state, boundary condition and physical tendency of weather 

prediction model (Environment and Climate Change Canada, n.d.), thus the 

meteorological uncertainty is characterized by the spread of the ensembles. While for 

RDPS, which are single deterministic predictions of weather variables, the 

meteorological uncertainty was dressed through a sampling of the meteorological 

ensembles. Based on the analysis of the historical residuals between RDPS and 

observations (from 2015 to 2017), it was found that there is approximately 40% error for 

precipitation forecasts and on average 2 degrees of error for temperature forecasts. We 

assume that the statistical characteristics for the historical period will not change in the 
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very near future. Therefore, to represent meteorological uncertainty for the forecast 

period (the year 2018), other ensemble members were derived equiprobably via Monte 

Carlo sampling from 40% error for precipitation and ±2 degrees for temperature. These 

ensembles were combined with the raw RDPS to construct the dressed RDPS dataset 

which has the same ensemble size as REPS. The meteorological uncertainty represented 

by the ensembles of REPS and dressed RDPS propagates from precipitation and 

temperature inputs to simulated discharge.  

The hydrologic uncertainty was quantified by a precipitation-dependent Hydrologic 

Uncertainty Processor (HUP) under the assumption that the model inputs are perfect 

(Krzysztofowicz and Herr, 2001). Following Bayes’ theorem, HUP revises prior 

distribution into posterior distribution by incorporating likelihood function. Here, “prior” 

means a prior belief based on the available information prior to the forecast, likelihood 

function carries new information from the model output and brings in uncertainty, and 

“posterior” means the updated belief after integrating all the new information through the 

Bayesian revision process. As a result, the hydrologic uncertainty is quantified by the 

updated posterior distribution. The procedure for HUP estimation is summarized in the 

following, and we refer to Krzysztofowicz (2002), Krzysztofowicz and Herr (2001) and 

Han et al. (2019) for a detailed description of the HUP including the mathematical 

background, Bayesian formulation, and all related equations.  

In HUP, the forecast lead time is expressed using n with n = 1, …, N, and the indicator of 

precipitation occurrence is denoted by v (v = 1: precipitation occurs; v = 0: no 

precipitation). Suppose the forecast time is t0, the observed discharge at time tn is denoted 
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by Hn and the modeled discharge at tn is Sn, and realizations of Hn and Sn are expressed 

by hn and sn, respectively. Before actual forecasting, HUP was calibrated beforehand 

according to the following steps.  

Step 1: Through matching between simulated discharge forecasts and corresponding 

discharge observations for different lead times, obtain joint sample (h0, h1, h2, …, hN; s1, 

s2, …, sN) for both branch v = 0 and v = 1. 

Step 2: For both v and every n, estimate marginal prior distribution 𝛤nv for Hn 

(corresponding density is 𝛾nv) and estimate marginal initial distribution 𝛬̅nv for Sn. 

Step 3: Following the estimated marginal distribution functions, transform each variate hn 

and sn into normally distributed wn and xn via standard normal inverse Q-1. 

Step 4: In the normal space, estimate the parameters of the transition densities from the 

linear regression between wn and wn-1, based on these dependence parameters, calculate 

the parameters that defining the prior distributions. 

Step 5: In the normal space, based on the linear regression between xn, wn and w0 and 

residual analysis between the expected value and true value of xn, estimate the parameters 

of the likelihood functions.  

Step 6: Given the parameters of prior distributions and likelihood functions, calculate the 

parameters Anv, Bnv, Dnv, and Tnv that defining the updated posterior distributions.  

These calibrated HUP parameters and estimated marginal distributions are ready to use in 

the forecast period. Conditional on forecasted discharge and initial condition, the 
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posterior distribution Ф𝑛𝑣 of the actual river discharge which takes hydrologic 

uncertainty into account can be defined by the equation (Krzysztofowicz and Herr, 2001):  

Ф𝑛𝑣(ℎ𝑛|𝑠𝑛, ℎ0)

= 𝑄 (
𝑄−1(Г𝑛𝑣(ℎ𝑛)) − 𝐴𝑛𝑣𝑄−1(�̅�𝑛𝑣(𝑠𝑛)) − 𝐷𝑛𝑣𝑄−1(Г0𝑣(ℎ0)) − 𝐵𝑛𝑣

𝑇𝑛𝑣
) 

(5-2) 

The corresponding posterior density 
𝑛𝑣

 can be derived by (Krzysztofowicz and Herr, 

2001):  


𝑛𝑣

(ℎ𝑛|𝑠𝑛, ℎ0) =
𝛾𝑛𝑣(ℎ𝑛)𝑞 (𝑄−1(Ф𝑛𝑣(ℎ𝑛|𝑠𝑛, ℎ0)))

𝑇𝑛𝑣𝑞(𝑄−1Г𝑛𝑣(ℎ𝑛))
 (5-3) 

When it comes to ensemble forecasts which are forced by dressed RDPS and REPS, the 

application of HUP to these ensembles constitutes BEUP. Where HUP is used to post-

process each ensemble, producing ensemble posterior distributions, and then these 

ensemble posterior distributions are averaged into one representative predictive 

distribution. Details about the BEUP can be found in Han and Coulibaly (2019) and 

Reggiani et al. (2009). After post-processing of BEUP, the meteorological uncertainty 

and hydrologic uncertainty are lumped together to provide an estimation of the total 

uncertainty.  

5.5 Results and Analysis 

5.5.1 Comparison between Weather Predictions and Observations  

The quality of raw RDPS and REPS, including precipitation and temperature predictions, 

were assessed by comparing with corresponding observations across various lead times. 
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Figure 5-3 shows the correlation coefficient between RDPS and observation for the entire 

basin and each sub-basin, and Figure 5-4 shows the correlation coefficient between REPS 

mean and observation for the entire basin and each sub-basin. The correlation coefficient 

(COR) measures the strength of the linear relationship between two variables. For both 

precipitation and temperature, the COR presents a decreasing trend as lead time grows. 

The repeating pattern displayed for temperature is due to the forecast cycle, RDPS 

predictions are performed every 6 hours and REPS predictions are performed every 12 

hours. COR for RDPS precipitation ranges between 0.1 and 0.7, COR for REPS 

precipitation ranges between 0.2 and 0.7, and COR for both RDPS and REPS temperature 

are above 0.97. This indicates that the quality of temperature predictions is very good, 

while the quality for precipitation predictions is much more variable and declines quickly 

with forecast lead time. Comparison between RDPS and REPS suggests that REPS have 

slightly better COR than RDPS for higher lead times.  
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Figure 5-3 Comparison between RDPS and observation for (a) precipitation and (b) 

temperature 

 

 

Figure 5-4 Comparison between REPS mean and observation for (a) precipitation and (b) 

temperature 
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5.5.2 SAC-SMA Calibration 

The optimized parameters for the lumped and semi-distributed SAC-SMA are presented 

in Table 5-1, lumped SAC-SMA yields one parameter set for the entire basin, while semi-

distributed SAC-SMA offers different parameter sets for each sub-basin. The 

hydrographs of observed and simulated discharges for the basin outlet are shown in 

Figure 5-5, with calibration period presented in the upper half and validation period in the 

lower half. Observed discharges are expressed by the black dot, simulated discharges 

from the lumped SAC-SMA are expressed by the red line, and simulated discharges from 

the semi-distributed SAC-SMA are expressed by the blue dashed line. Results from the 

hydrographs reveal that the semi-distributed model performs better than the lumped 

model in matching the high flows.  
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Table 5-1 Summary of SAC-SMA and SNOW-17 parameters 

Parameter Description Unit Range Lumped  

Semi-distributed  

SB1 SB2 SB3 SB4 

SAC-SMA 
        

UZTWM 
Upper zone tension 

water capacity 
mm 1–150 35.46 59.35 106.94 23.37 103.16 

UZFWM 
Upper zone free 

water capacity 
mm 1–150 3.07 58.18 74.44 120.27 32.85 

UZK 
Upper zone  free 

water drainage rate 
d-1 0.1–0.5 0.24 0.48 0.49 0.49 0.11 

PCTIM 

Fraction of the 

minimum impervious 

area 

–  0–0.1 0.10 0.09 0.09 0.01 0.09 

ADIMP 

Fraction of the 

additional impervious 

area 

–  0–0.4 0.30 0.14 0.32 0.16 0.03 

ZPERC 
Maximum 

percolation rate 
–  1–250 153.56 174.19 108.29 131.95 81.87 

REXP 

Exponent for the 

percolation demand 

equation 

–  1–5 3.90 3.39 1.76 3.13 2.55 

LZTWM 
Lower zone tension 

water capacity 
mm 1–500 228.38 154.86 197.10 333.38 353.29 

LZFSM 

Lower zone 

supplemental free 

water capacity 

mm 1–1000 466.79 717.82 729.54 394.44 271.58 

LZFPM 
Lower zone primary 

free water capacity 
mm 1–1000 919.55 804.14 400.76 641.52 438.04 

LZSK 

Lower zone 

supplemental free 

water drainage rate 

d-1 0.01–0.25 0.04 0.01 0.02 0.01 0.06 

LZPK 

Lower zone primary 

free water drainage 

rate 

d-1 0.0001–0.025 0.0001 0.0007 0.0001 0.02 0.02 

PFREE 

Fraction of percolated 

water goes directly 

into lower zone free 

water storages 

–  0–0.6 0.59 0.59 0.53 0.57 0.59 
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PEADJ 
ET-demand 

adjustment factor 
–  0.5–1.4 0.76 1.19 1.28 1.39 1.05 

PXADJ 
Precipitation 

adjustment factor 
–  0.5–1.4 1.39 0.97 1.39 1.22 1.38 

Rq 

Residence time 

parameter of quick-

flow 

d 0–0.99 0.00 0.10 0.15 0.01 0.39 

SNOW-17 
        

scf 
Snow fall correction 

factor 
–  0.4–1.6 1.29 0.79 0.67 1.01 0.44 

uadj 

The average wind 

function during rain-

on-snow periods 

mm/mb/oC 0.01–0.22 0.08 0.05 0.09 0.16 0.10 

mbase 
Base temperature for 

non-rain melt factor 
 oC 0–1 0.12 0.90 0.42 0.02 0.83 

mfmax Maximum melt factor mm/6h/oC 0–2 1.04 1.61 1.18 1.79 0.82 

mfmin Minimum melt factor mm/6h/oC 0–0.7 0.13 0.17 0.01 0.002 0.01 

tipm 

Antecedent snow 

temperature index 

parameter 

–  0.01–0.99 0.29 0.10 0.34 0.65 0.05 

nmf 
Maximum negative 

melt factor 
mm/6h/oC 0.01–0.5 0.34 0.48 0.50 0.17 0.46 

plwhc 
Percent of liquid 

water capacity 
–  0–0.4 0.001 0.02 0.01 0.003 0.11 

pxtemp1 

Lower Limit 

Temperature dividing 

transition from snow 

 oC -2–2 -0.39 -1.92 -1.99 0.04 1.60 

pxtemp2 

Upper Limit 

Temperature dividing 

rain from transition 

 oC 1–3 2.18 2.43 2.22 2.89 1.58 
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Figure 5-5 Observed vs. simulated hydrographs at basin outlet for lumped and semi-

distributed SAC-SMA: (a) calibration; (b) validation 

 

The performances of SAC-SMA models were evaluated using KGE (Kling-Gupta 

efficiency), NSE (Nash-Sutcliffe coefficient), previously mentioned NSEsqr, VE (volume 

error) and PFC (peak flow criteria), and the results are summarized in Table 5-2. KGE 

measures the model efficiency by computing the Euclidian distance from its ideal point 

(Gupta et al., 2009), NSE assesses the model efficiency for both low flows and high 

flows by calculating residual variance over measured data variance (Nash and Sutcliffe, 

1970), and NSEsqr determines the model efficiency with more tendency to high flows. For 

KGE, NSE, and NSEsqr, the perfect value is 1, the closer the value to 1, the more efficient 

the model is. VE measures the difference between the summation of simulations and the 

summation of observations relative to the latter, PFC provides a model performance 
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measure for peak flow only (Coulibaly et al., 2000). For VE and PFC, a value of 0 

indicates a perfect fit.  

Table 5-2 Performances of SAC-SMA models 

 
All flows Peak flows 

 Lumped* 
Semi distributed 

Lumped* 
Semi distributed 

 
SB1 SB2 SB3 SB4* SB1 SB2 SB3 SB4* 

Calibration 
         

KGE 0.68 0.71 0.65 0.71 0.80 0.61 0.69 0.69 0.65 0.73 

NSE 0.60 0.57 0.55 0.39 0.62 0.47 0.40 0.50 0.33 0.49 

NSEsqr 0.42 0.59 0.50 0.44 0.76 0.40 0.55 0.49 0.44 0.76 

VE 0.12 0.21 0.27 0.05 0.03 0.05 0.13 0.15 0.05 0.12 

PFC -- -- -- -- -- 0.15 0.10 0.17 0.16 0.11 

Validation 
         

KGE 0.69 0.59 0.45 0.65 0.73 0.68 0.61 0.60 0.59 0.68 

NSE 0.53 0.49 0.51 0.26 0.52 0.39 0.31 0.48 0.16 0.35 

NSEsqr 0.41 0.70 0.61 0.38 0.38 0.35 0.66 0.63 0.39 0.31 

VE 0.21 0.36 0.46 0.03 0.04 0.03 0.29 0.31 0.11 0.07 

PFC -- -- -- -- -- 0.14 0.10 0.11 0.14 0.13 

Note: basin outlet marked with asterisk* 

 

The performances for all flows are presented on the left in Table 5-2. For the basin outlet 

calibration period, the semi-distributed model has higher KGE, NSE, NSEsqr and lower 

VE compared to the lumped model. For the validation period, the semi-distributed model 

has higher KGE, similar NSE, slightly lower NSEsqr, and better VE. The performances 

for peak flows which only consider the flows over 75% quantile are presented on the 
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right. Compared to the lumped model, the semi-distributed model presents better KGE, 

NSE, NSEsqr, and PFC statistics for peak flows during calibration, and same KGE and 

better PFC during validation. For the sub-basins in the semi-distributed model, the NSE 

values seem relatively low, but the KGE, NSEsqr, and PFC values are good. These results 

suggest that, in terms of simulating both low flows and high flows as indicated by NSE, 

lumped and semi-distributed models show comparable performance. However, in terms 

of simulating high flows as reflected by PFC and NSEsqr, the performance of the semi-

distributed model is more satisfactory.  

5.5.3 Calibration of Hydrologic Uncertainty Processor  

The calibrated lumped and semi-distributed SAC-SMA are passed into HUP to analyze 

the hydrologic uncertainty, time period of 2008 to 2017 was used for estimation of HUP, 

and lead time was tested up to 84 hours to make it consistent with the maximum forecast 

lead time of RDPS and REPS. Recall that the predictive distribution produced from HUP 

is defined by Eq. (5-2) depending on marginal distributions for Hn and Sn and parameters 

Anv, Bnv, Dnv and Tnv. Based on the modified Shapiro-Wilk (MSW) test (Ashkar and 

Aucoin, 2012), kernel distribution was determined as the best distribution type as it 

shows the best fit for both Hn and Sn. The estimated parameters Anv, Bnv, Dnv and Tnv for 

both branches across different lead times are presented in Figure 5-6. For both lumped 

and semi-distributed model, Bnv values are near 0. Tnv shows an increasing trend, Tn1 

values are higher than Tn0 for small lead times and the two lines converge for higher lead 

times. This indicates that the variance of forecast distribution increases with the increase 

of lead time and the forecast is more uncertain when precipitation occurs. Anv is 
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increasing while Dnv is decreasing as lead time grows, revealing that as lead time 

increases the predictive distribution is more dominated by the new information which is 

from model forecast and less dominated by the available information prior to the forecast. 

An1 values are greater than An0 while Dn1 values are lower than Dn0, this means that under 

the condition of precipitation occurrence the forecast is less affected by the prior belief.  

 

Figure 5-6 Estimated HUP parameters for (a) lumped SAC-SMA and (b) semi-distributed 

SAC-SMA 
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5.5.4 Scenario Results Comparisons 

During the forecast period, dressed RDPS and REPS were used as forcing data for the 

calibrated lumped and semi-distributed SAC-SMA, and the ensemble forecasts generated 

from the model were post-processed by the calibrated BEUP, resulting in four different 

probabilistic forecast scenarios which are all considering the total predictive uncertainty. 

The performances of the four scenarios were compared using various evaluation metrics, 

including the accuracy of single-valued forecasts and the probabilistic characteristics of 

the forecast distributions.  

Predictive mean from the probabilistic forecasts was used as the single-valued forecast, 

and its accuracy was assessed by NSE and KGE. The comparisons of the deterministic 

metrics for different scenarios as a function of forecast lead time are presented in Figure 

5-7. Where Dressed RDPS+Lump is represented by the magenta dashed line, Dressed 

RDPS+Semi-dist is represented by the magenta solid line, REPS+Lump is represented by 

the blue dashed line, and REPS+Semi-dist is represented by the blue solid line. Scenarios 

with the same input data use the same line color, and scenarios with the same model type 

use the same line style. For all the scenarios, NSE and KGE statistics are getting worse as 

forecast lead time increases. Dressed RDPS+Semi-dist and REPS+Semi-dist show 

similar NSE and KGE within lead time of 24 hours, but they differ for longer lead times 

with Dressed RDPS+Semi-dist showing higher value. In general, NSE and KGE follow 

similar pattern with Dressed RDPS+Semi-dist > REPS+Semi-dist > Dressed 

RDPS+Lump > REPS+Lump. NSE and KGE values of the best two scenarios are above 

0.5 under the lead time of 24 hours, indicating that the 1 day forecasts using these two 
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approaches are acceptable in terms of accuracy. Overall, in terms of model efficiency and 

accuracy, using the semi-distributed model with BEUP significantly outperforms using 

lumped model with BEUP. BEUP with dressed RDPS as input outperforms BEUP with 

REPS as input. The best two scenarios are Dressed RDPS+Semi-dist and REPS+Semi-

dist with the former being the best combination for use with BEUP. 

 

Figure 5-7 Nash-Sutcliffe coefficient (NSE) and Kling-Gupta efficiency (KGE) for 

different scenarios as a function of forecast lead time 
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The probabilistic characteristics of the forecast distributions were assessed using 

continuous ranked probability score (CRPS) and its decomposition. CRPS is a measure of 

how well the forecast distribution match the observation; if the forecast is perfect, the 

CRPS will be 0. To provide a detailed picture of the forecast distribution, mean CRPS 

can be decomposed into three parts as expressed in Eq. (5-4): reliability, resolution, and 

uncertainty (Hersbach, 2000). 

𝐶𝑅𝑃𝑆̅̅ ̅̅ ̅̅ ̅ = 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (5-4) 

The reliability tests whether the frequency of observations falls within each probability 

bin is nearly equal; it should be 0 with a perfectly reliable forecast. The resolution 

measures how much improvement gained from the forecast system compared to the 

forecast based on climatology, the higher the resolution, the more improvement it could 

get. The uncertainty is equal to the best achievable CRPS value when only climatological 

information is available. As such, CRPS and its reliability component are most frequently 

used. 

The comparison of CRPS and its reliability component for different scenarios are 

presented in Figure 5-8, the same scenario is expressed by the same line style and color 

as in Figure 5-7. Results for all flows are shown on the left and results for peak flows 

(flows over 75% quantile) are shown on the right. The CRPS and reliability for all flows 

and peak flows demonstrate similar pattern, all worsen with increasing lead time. When 

considering all flows, the CRPS values do not show significant difference among the 

scenarios, they gradually grow from near 0.3 to around 6. The reliability values of 
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Dressed RDPS+Lump, Dressed RDPS+Semi-dist and REPS+Semi-dist are similar, 

REPS+Lump appears less reliable than the other three scenarios. CRPS and reliability are 

low for short lead times, indicating a relatively skillful and reliable short-term forecast.  

For peak flows, the differences of CRPS and reliability between the scenarios are more 

obvious. The CRPS worsens with higher flow as higher CRPS is shown when 

considering peak flows, it gradually increases from near 0.3 to around 9. Dressed 

RDPS+Lump, Dressed RDPS+Semi-dist and REPS+Semi-dist show comparable CRPS, 

while CRPS for REPS+Lump is a little bit worse for higher lead times. For peak flow 

reliability, the inferiority of REPS+Lump is more evident, and Dressed RDPS+Semi-dist 

is more reliable than REPS+Semi-dist and Dressed RDPS+Lump beyond lead time of 40 

hours. In short, Dressed RDPS+Lump, Dressed RDPS+Semi-dist and REPS+Semi-dist 

indicate comparable forecast skill as reflected by the CRPS, with REPS+Lump showing a 

slightly worse performance. The forecast reliability can be sorted as: Dressed 

RDPS+Semi-dist > REPS+Semi-dist ≈ Dressed RDPS+Lump > REPS+Lump. 
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Figure 5-8 Continuous ranked probability score (CRPS) and its reliability component for 

different scenarios for various forecast lead times: (a) all flows; (b) peak flows 

 

In addition, hit rate was used to provide a direct measure of the forecast quality, here it 

calculates how much percent of peak flows is captured by the defined uncertainty bounds 

from the probabilistic forecasts (Ramos et al., 2007). Figure 5-9 presents the hit rate for 

both 50% and 90% uncertainty bound, 50% uncertainty bound is defined by 25-75% 

quantile of the forecast distribution, and 90% uncertainty bound is defined by 5-95% 

quantile. Hit rates for 50% uncertainty bound are all above 30%, and are higher than 40% 
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within a lead time of 36 hours. Hit rates for 90% bound are all beyond 70% and most of 

the cases are greater than 80%, expressing the ability in capturing peak flows is 

satisfactory. With respect to the comparison between scenarios, none of the scenarios 

performs consistently better than another when forecast lead time increases. However, 

REPS+Semi-dist appears the best performing in term of hit rate for longer lead times. 

 

Figure 5-9 Percent of peak flows lie within (a) the 50% uncertainty bound (25-75% 

quantile) and (b) the 90% uncertainty bound (5-95% quantile) 
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5.5.5 Example Forecast Hydrographs 

Two examples of the forecast hydrograph using the best two scenarios identified are 

demonstrated. Figure 5-10 is a forecast hydrograph for a high flow event issued on April 

15, 2018 using Dressed RDPS+Semi-dist, and Figure 5-11 is a forecast hydrograph for 

the same event issued 12 hours later using REPS+Semi-dist. For each hydrograph, to 

demonstrate how to communicate the uncertainty, both the 50% (25-75% quantile) 

uncertainty bound and a narrower 30% (35-65% quantile) uncertainty bound derived 

from the predictive distribution are presented. Observed discharge is represented by the 

red line, predictive mean is expressed by the blue line, and predictive median is expressed 

by the black line. For both forecasts, peaks are well captured by the uncertainty bounds. 

Predictive mean tends to overpredict the peak flow as it lies above the observation, this is 

because the forecast distributions are right-skewed and have a tail on the right side of the 

distribution; thus the predictive mean is closer to the tail which gives a relatively larger 

flow. However, the forecast is acceptable considering the uncertainty bound performs 

well in capturing high flows and predictive median shows a good match with observation. 

Further improvement may be achieved by applying bias correction or post-processing to 

the weather predictions (Khajehei and Moradkhani, 2017; Khajehei, et al., 2018).  
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Figure 5-10 Forecast hydrograph for a high flow event issued on April 15, 2018 using 

Dressed RDPS+Semi-dist 

 

 

Figure 5-11 Forecast hydrograph for a high flow event issued on April 16, 2018 using 

REPS+Semi-dist 
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5.6 Conclusions and Discussion 

This paper has presented an application of BEUP as a post-processor of ensemble 

forecasts to assess the total predictive uncertainty associated with flood forecast. In 

BEUP, each ensemble was post-processed using HUP, and the ensemble posterior 

distributions produced were lumped together into one representative predictive 

distribution. The total uncertainty represented by the predictive distribution is the 

integration of two major uncertainty sources: meteorological uncertainty which is 

estimated by the ensembles of weather prediction and hydrologic uncertainty which can 

be quantified through the post-processing of HUP. To identify the factors that affect the 

performance of BEUP in flood forecasting context, BEUP with different weather inputs 

and different hydrologic model types were tested. The different weather inputs include 

REPS and dressed RDPS which is the RDPS with an ensemble dressing, the different 

model types include a lumped SAC-SMA and a semi-distributed SAC-SMA which are 

both calibrated with emphasis on high flows. Therefore, the different combinations led to 

four forecast scenarios all with predictive uncertainty estimation using BEUP, and the 

performance of these different scenarios were assessed and compared using multiple 

evaluation metrics.  

Results indicate that BEUP provides a robust post-processing method for total 

uncertainty estimation, the uncertainty bounds produced perform well in capturing peak 

flows as indicated by the high peak flow hit rate. In terms of accuracy, efficiency and 

reliability, BEUP with the semi-distributed model is more accurate and reliable than with 

the lumped model, and using dressed RDPS as forcing data outperforms using REPS as 
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forcing data. In terms of forecast skill, no significant difference is revealed among the 

four different scenarios, indicating they have similar forecast skill. In general, the best 

two scenarios are Dressed RDPS+Semi-dist and REPS+Semi-dist. Dressed RDPS+Semi-

dist has better NSE, KGE and reliability, while REPS+Semi-dist has higher peak flow hit 

rate. For 1-day ahead forecasts, the two best scenarios are promising approaches as 

suggested by their high NSE and KGE values along with low CRPS and reliability score 

values. Comparisons among the scenarios reveal that the improvement brought by the 

hydrologic model type is more significant than the input data type. The semi-distributed 

model, which considers spatial variability within the watershed compared to the lumped 

model, is recommended for use with BEUP for flood forecasting.  

There are some aspects that may further enhance the forecast performance and could be 

tested in future work. For example, there are usually systematic biases exhibited in the 

weather predictions, application of bias correction or post-processing to the weather 

prediction inputs before running the model might lead to an improved performance. 

Additionally, dividing the basin into more sub-basins in the semi-distributed model will 

further reflect the spatial variability, and thus may produce better forecast results. Also, 

the ensemble dressing of RDPS could be conducted in an alternative way, or could be 

changed into an alternative uncertainty dressing technique. However, these 

complementary work would not change the key conclusions drawn from this paper.  
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Chapter 6. Conclusions and Recommendations 

6.1 Conclusions 

This thesis focuses on probabilistic flood forecasting using Bayesian methods to 

adequately account for predictive uncertainty and improve the forecast performance and 

reliability. First, a Bayesian processor, Hydrologic Uncertainty Processor (HUP), was 

employed with different hydrologic models to quantify the hydrologic uncertainty in 

flood forecast. Next, a Bayesian Ensemble Uncertainty Processor (BEUP), which is an 

extension of HUP, was integrated with bias-corrected ensemble weather forecasts to 

assess the major uncertainties. Last, the sensitivity of the BEUP post-processor was 

explored by combining with different weather input types and different hydrologic model 

types. The main conclusions of the thesis are summarized as below. 

6.1.1 Bayesian Flood Forecasting Methods 

 Bayesian method provides a robust approach for probabilistic flood forecasting, 

the associated uncertainty is expressed in the posterior distribution that can be 

derived by combining the prior distribution with the likelihood function. 

 Bayesian forecasting system is able to quantify all major sources of uncertainty 

and provides more reliable and accurate flood forecasts, all the information about 

the total uncertainty are summarized in the final predictive distribution.  

 The framework of Bayesian forecasting system is quite flexible which allow it to 

be adapted to various purposes and work with any deterministic hydrologic model. 
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 Some advanced Bayesian forecasting methods (e.g. ensemble Bayesian 

forecasting system and Bayesian multi-model combination) are capable of 

overcoming certain limitations (e.g. single model or fixed model weight) and 

reducing the predictive uncertainty. 

6.1.2 Hydrologic Uncertainty Processor with Different Models 

 Hydrologic uncertainty is one large source of uncertainty in flood forecasting and 

cannot be overlooked. HUP provides a reliable and accurate analytic-numerical 

method for hydrologic uncertainty quantification based on the results of NSE, 

CRPS and reliability, and the uncertainty bound generated from HUP can well 

capture the observations. 

 HUP, works as a hydrological post-processor, is able to improve the deterministic 

forecast from the hydrologic model, and yields more accurate probabilistic 

forecast with quantification of hydrologic uncertainty. 

 As expected, hydrologic uncertainty increases as forecast lead time grows and 

also increases with increasing flow volume, the increased hydrologic uncertainty 

leads to deterioration of the HUP performance.  

 For low peak flow events, after post-processing of HUP, a poorly performing 

hydrologic model could produce comparable probabilistic forecast as the better 

performing hydrologic model. While for high peak flow events, a better 

performing hydrologic model produces better probabilistic forecast after running 

HUP. 
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6.1.3 Bayesian Ensemble Uncertainty Processor with Ensemble Weather Forecasts 

 BEUP is an extension of HUP for post-processing ensemble forecasts, and it 

considers meteorological uncertainty and hydrologic uncertainty within the 

framework. The performances of BEUP are promising for short-range forecasts 

(3h – 24h) and have little improvement for medium-range forecasts (24h – 72h). 

 Bias correction of ensemble weather forecasts could greatly reduce its statistical 

discrepancy with observation, and bias correcting each ensemble member of 

weather forecasts produces better flood forecasts than just bias correcting the 

ensemble mean. 

 As indicated by NSE, r, RMSE and CRPS, HUP is capable of enhancing the 

predictive performance for both short-range and medium-range forecasts. The 

improvement is significant for short lead times, and tends to be less obvious as 

lead time increases. 

 For short-range forecast, the best results are obtained by applying both 

meteorological post-processing and hydrologic post-processing. Meteorological 

post-processing means applying bias correction to each ensemble member of 

weather inputs, and hydrologic post-processing means applying HUP to each 

ensemble of streamflow forecasts.  

6.1.4 Sensitivity of Bayesian Ensemble Uncertainty Processor  

 BEUP is a robust post-processing method for total major uncertainty estimation. 

As indicated by the high percentage of peak flow hit rate, the uncertainty bound 

produced from BEUP performs well in capturing the peak flows. 



Ph.D. Thesis – Shasha Han                                 McMaster University – Civil Engineering 

206 

 

 BEUP combined with semi-distributed hydrologic model yields more accurate 

and reliable flood forecasts than combined with lumped hydrologic model. Using 

deterministic weather prediction with an ensemble dressing as input to BEUP 

outperforms using ensemble weather prediction as input.  

 The improvement caused by the hydrologic model type (e.g. lumped or semi-

distributed) is more significant than the improvement brought by weather input 

data type (e.g. deterministic or ensemble weather predictions).  

 BEUP with semi-distributed hydrologic model is recommend for short-term (1 

day ahead) flood forecasting. Using dressed deterministic weather prediction as 

forcing data to the system show better NSE, KGE and reliability, and using 

ensemble weather prediction as forcing data show better peak flow hit rate. 

6.1.5 General Conclusions 

The general conclusions from the thesis are listed as follows: 

 Both HUP and BEUP are robust methods for probabilistic flood forecast with 

uncertainty quantification. 

 Short-term flood forecasts using HUP and BEUP are accurate and reliable.  

 Bias corrected meteorological inputs and well calibrated hydrologic models are 

recommended to use with Bayesian methods (HUP, BEUP) for flood forecasting. 

6.2 Recommendations for Future Research 

One topic that needs further research is assimilation of various sources of information 

within the Bayesian method. The main input to a flood forecast model is precipitation, 
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and the unknown future precipitation forms the primary source of uncertainty. There are 

various ways to collect precipitation data: rain gauge measured data, radar-derived 

rainfall data and satellite-based data. Radar could provide useful information in terms of 

spatial variability of precipitation, but they are often accompanied by biases and 

uncertainties. Techniques for adjusting radar rainfall to rain gauge measurements were 

developed (Sinclair and Pegram, 2005; Mazzetti and Todini, 2009). In the meantime, 

with the development of remotely sensed techniques which are able to improve the 

spatio-temporal resolution and reduce latency, advanced methods for retrieving 

precipitation from satellite-based microwave and infrared measurement have been 

developed (Joyce et al., 2004; Kubota et al., 2007). In addition, many other types of data 

may also add value, such as soil moisture. Most of the previous studies used limited 

sources of data as inputs, if multiple sources of data could be assimilated and blended 

together properly, it is expected the forecast accuracy and skill could be further improved. 

Another interesting and challenging topic is the integration of Bayesian ensemble flood 

forecasting with multi-model for advanced flood forecasting. Previous studies have been 

conducted separately on Bayesian ensemble forecasting or on Bayesian multi-model 

combination, further research is required to integrate them to take advantage of both 

systems. If these two components could be combined appropriately in an adaptive and 

flexible framework, the model uncertainty and input data uncertainty could be greatly 

reduced and better quantified, and thus lead to significantly improved flood forecast with 

extended lead time.  
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Lastly, there have been great advances in probabilistic flood forecast with predictive 

uncertainty quantification, such as the previously mentioned methods in Chapter 2 and 

some recently proposed methods including HEAVEN (Hybrid Ensemble and Variational 

Data Assimilation framework for Environment systems) (Abbaszadeh et al., 2019), 

SDMU (state-dependent model uncertainty estimation method) (Pathiraja et al., 2018), 

and EPFM (Evolutionary Particle Filter with Markov Chain Monte Carlo) (Abbaszadeh 

et al., 2018). However, large efforts are still needed about how to communicate these 

uncertainties. For example, it would be more beneficial for the hydrology community and 

the public at large if the advanced technology on flood forecasting could be converted 

into software or smartphone app. The users just click and provide input; the system will 

run and give an answer with associated probability (Singh, 2019).  
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