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Lay Abstract

Soft condensed matter physics studies the properties of materials that easily

deform, such as soap, gel and plastic. Many of these materials can self-assemble

into various fascinating ordered structures. One particularly complex class of

structures, found in a wide range of soft materials, is the class of Frank-Kasper

phases. Frank-Kasper phases in soft materials have potential applications in

fields such as photonics, so their formation in these materials is particularly in-

teresting. However, it is not well understood why the Frank-Kasper structures

occur in so many soft materials. We investigate this problem, and show that

the occurrence of these structures might be described by a very simple math-

ematical model known as the Landau-Brazovskii model. The fact that such a

simple model can predict the complex Frank-Kasper phases provides insight

into the origin of the widespread nature of the occurrence of Frank-Kasper

phases in soft materials.
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Abstract

Recently, a number of spherical packing phases belonging to the class of Frank-

Kasper (F-K) phases have been observed in a wide range of soft matter systems,

including block copolymers, ionic surfactants, liquid crystalline dendrimers,

and giant surfactants. Although their emergence in such systems has been

conjectured to be due to a competition between mesodomain sphericity and

incompressibility, we lack a description of a precise and general mechanism

underlying the formation of F-K phases in soft matter systems. In this work,

we consider the two most common F-K phases found in soft matter systems,

the σ and A15 phases, and study their stability in the context of a well-

known Landau model known as the Landau-Brazovskii model. This model

has been applied to systems ranging from block copolymers to liquid crystals.

We find that the phase behavior of the Landau-Brazovskii model is controlled

only by two parameters, rather than by three parameters, as was suggested

by previous works. We also find that the Landau-Brazovksii phase diagram

contains regions in which the σ or A15 phase is the most stable among a set

of candidate phases. The fact that such a simple model can predict these

complex phases provides some insight into the question of why the occurrence

of the Frank-Kasper phases in soft matter is so widespread.
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Chapter 1

Introduction

Soft condensed matter physics studies the properties of materials which are

relatively easy to deform at room temperature [1–3]. The domain of soft

matter physics includes polymeric systems, colloids, surfactant suspensions,

and even biological systems [1, 3]. These soft matter systems, often simply

called “soft matter,” are usually composed of basic constituent units, such as

polymers or colloidal particles, which are very large compared to atomic length

scales [1–3]. Soft matter commonly exhibits complex behavior both at and/or

out of equilibrium. These systems frequently contain multiple intrinsic length

scales [1], and often produce nonlinear responses to external perturbations [1,

2]. The diverse, interesting behavior and many applications of soft matter

make its study an attractive proposition, and the field has been growing in

recent years.

Given the right conditions, soft matter systems can form a wide array of meso-

scopic ordered structures [1], sometimes similar to those formed in conventional
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metallic crystals [4]. We will focus on a problem related to the self-assembly

of these structures; in particular, our topic relates to the spontaneous and

somewhat unexpected emergence of certain particularly complex structures in

a wide range of soft matter systems.

1.1 Self-Assembly in Soft Matter

In soft matter physics, the characteristic binding energy between constituent

units is typically similar in magnitude to the characteristic room temperature

thermal energy kBT [2, 3]. Hence, entropy frequently plays an important role

in soft matter [2].1

The competition between entropic and energetic effects can cause soft matter

systems to self-assemble into ordered one-, two-, and three-dimensional struc-

tures [1, 4–6]. Many of these structures are similar to those found in more

traditional atomic crystal systems [4], where the “atoms” in metallic systems

correspond to macromolecular clusters of molecules in soft systems. For in-

stance, the phase diagram of AB diblock copolymers exhibits a generic phase

transition sequence from the lamellar phase (a one-dimensional phase consist-

ing of periodic sheets), to a bicontinuous network phase (the double gyroid

phase), to the cylindrical hexagonal phase (consisting of cylinders packed on

a hexagonal lattice), to the BCC (body-centered cubic) phase (consisting of

1When the characteristic binding energy per constituent unit ε is similar in magnitude

to the characteristic thermal energy per constituent unit kBT , each constituent unit has

considerable freedom to move around and explore its phase space, and this exploration is

controlled by the tendency to maximize entropy.
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spheres packed on a BCC lattice), and finally to the HCP (hexagonally close

packed) phase (consisting of spheres on an HCP lattice), as the volume fraction

fA of the minority A-blocks decreases from fA = 1
2

[7]. The aforementioned

structures (schematic depictions of which are shown in Fig. 1.1) are comprised

of polymeric domains rich in the monomers of one particular block type (usu-

ally the type of block with the smaller volume fraction), which sit in a matrix

of monomers of the other block type. For instance, in a body-centered cubic

phase, the spheres are usually rich in monomers of the type with the smaller

volume fraction.

(a) HCP unit cell (b) BCC unit cell (c) Cylindrical hexagonal

structure

(d) Double gyroid unit cell (e) Lamellar structure

Figure 1.1: Some structures (one-, two-, and three-dimensional) found in soft

matter systems.
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In recent years, certain members of a complex class of structures known as the

Frank-Kasper phases have been found in a wide range of soft matter systems,

including liquid-crystalline systems [8–10], small ionic surfactants [6], block

copolymer melts [11–15], nanoparticle mixtures [16], and in certain hybrid

macromolecules, such as so-called “giant tetrahedra” and “giant surfactants”

[5]. The Frank-Kasper phases were originally discovered over 60 years ago in

metallic alloys [17–19], but their discovery in these soft matter systems oc-

curred mostly in recent decades. The existence of Frank-Kasper phases in

metallic alloys is, perhaps, to be expected, as Frank-Kasper phases always

contain at least two types of non-equivalent lattice sites, making them natural

candidates for systems with more than one type of constituent unit. How-

ever, in soft condensed matter, Frank-Kasper phases are often formed such

that the macromolecular “atoms” in the system are made only of one type

of constituent unit (e.g., one type of monomer in a block copolymer system)

[5, 6, 8–12, 14], in contrast to their original discovery in multi-component

metallic systems. Indeed, even now, most known metallic systems for which

a Frank-Kasper phase is stable are multi-component systems, two exceptions

being uranium and manganese [12]. The exact mechanisms governing the ap-

pearance of these phases in soft systems are not yet fully understood.

In this thesis, I shall show how we produced a phase diagram of a well-known

Landau free energy functional, and shall discuss the existence of two important

Frank-Kasper phases within this diagram. The existence of these Frank-Kasper

phases in the aforementioned phase diagram provides some insight into the

universality of the appearance of Frank-Kasper phases in soft systems.

4
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1.2 The Frank-Kasper Phases

1.2.1 Origin and Significance

Even in physics, it often pays to start with history. The class of Frank-Kasper

phases was originally constructed over 60 years ago by Sir Charles Frank and

J. S. Kasper, who used these phases to model certain metallic alloys [17, 18].

In one of two seminal papers on the topic, Frank and Kasper noted that certain

transition metal alloys exhibit complex crystal structures formed by piecing

together four distinct types of coordination polyhedra2 with 12, 14, 15, and 16

vertices.

Now, at sufficiently high pressure or with sufficiently strong interparticle at-

tractive potentials, it is natural to suppose that packing efficiency – how many

atoms, or other constituent units, one can fit in a unit volume – plays an impor-

tant role in determining the equilibrium structures of a system. Assuming that

we can model some system as a collection of hard spheres, the packing fraction

of the spheres (the spatial volume fraction occupied by the spheres) will be an

important factor in determining the equilibrium ordered phases of the system.

Indeed, the fact that the maximum equal-volume hard sphere packing fraction

of π√
18
≈ 0.74 (this packing fraction has been thought to be the maximum since

2If one considers a single, central atom in such a structure, the centers of the surrounding

neighbouring atoms can be joined to form a polyhedron. It is this that I refer to by the term

“coordination polyhedron.” Here I employ the definition of “neighbours” used by Frank

and Kasper, in which a “neighbour” is any atom which is the first to be encountered as one

proceeds in a straight line from the central atom through the Voronoi cell of this atom, in

such a way as to make this line intersect the Voronoi cell normally to the planar face being

pierced.
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(a) CN-12

(icosahedron) – Ih

(b) CN-14 – D6d (c) CN-15 – D3h (d) CN-16 – Td

Figure 1.2: Sample Frank-Kasper coordination polyhedra of each of the four

types (CN = coordination number). The central atoms are colored yellow, and

the coordination atoms are coloured according to the number of coordination

polyhedron edges to which they are connected: coordination atoms connected

to five edges are coloured red, and coordination atoms connected to six edges

are coloured blue. The ideal point group symmetries of each polyhedron are

also given (see [20, 21]).

at least 1611, when Kepler made such a conjecture, but this was not proven

until 1998 [22]) is attained with the FCC and HCP lattices [22, 23] has been

invoked to explain the prevalence of the HCP structure in a variety of hard and

soft materials [23]. Noting the importance of sphere-packing in determining

the favored structures in complex materials, Frank and Kasper [17] proceeded

to consider the local grouping of 12 spherical coordination atoms and one cen-

tral spherical atom. This is a natural grouping to consider, because (assuming

equal-volume coordination spheres) “12” is the maximum number of spheres

that can be placed in contact with a central sphere of the same size, and, as

mentioned, tight packing is often preferred in crystal systems. We then ask the

question: what is the best way to arrange the 12 coordination atoms around

the central atom; in other words, what is the preferred coordination geometry?

6
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If we assume that all spheres in our local grouping are of equal volume, and

if we assume that the spheres associated with the coordination atoms all con-

tact the central sphere – which is a natural assumption to make since we are

considering tightly packed configurations – then there are only three possible

coordination geometries. One possibility is icosahedral coordination, where

the 12 coordination atoms sit on the vertices of an icosahedron. The only

other possible coordination environments are those associated with the FCC

and HCP lattices [17]. Again, considering the equal-sphere-volume case, the

FCC, HCP, and icosahedral coordination environments all lead to the same

local packing density (that is, the radius of the smallest encompassing sphere

is the same [17]). However, if the spheres are slightly deformable, icosahedral

coordination can have advantages over the FCC and HCP coordination types.

First, if the spheres are not truly hard spheres, but are mutually attracting,

deformable, “soft spheres” interacting via a Lennard-Jones potential, then the

local grouping of 13 atoms can achieve a higher binding energy with icosahedral

coordination than it can with the FCC and HCP coordination environments

[17, 24]. This results from the fact that, in contrast to the case of FCC or HCP

coordination, it is not necessary (even if all spheres have the same volume) for

the coordination spheres in an icosahedral coordination environment to touch

each other, allowing for more freedom in deformation [17]. This suggests that

icosahedral coordination produces more favourable local packing in systems of

mutually attracting, deformable “soft” spheres [17].

Secondly, the fact that there are many possible (non-regular) icosahedral coor-

dination environments allows one to select an environment that accommodates

a set of coordination atoms with slightly different radii [17] – one cannot do

7
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this as easily with FCC or HCP coordination, because in such coordination

environments all atoms in the coordination shell touch one another (if the co-

ordination atoms have the same size as the central atom), and therefore one

would have to enlarge the central atom in order to enlarge any atom on the

coordination shell. Therefore, one might expect icosahedral coordination to

be locally preferred by systems with multiple types of atoms.

These two advantages might suggest that there should be many cyrstalline

materials, especially those with multiple atom types, which contain icosahedral

coordination within their ordered phases. Unfortunately, icosahedra cannot fill

space due to their crystallographically-forbidden five-fold symmetry. In order

to efficiently fill space, it is necessary to supplement icosahedra with other

coordination polyhedra. This is how the Frank-Kasper phases are constructed:

one supplements 12-vertex distorted icosahedra with 14-, 15-, and/or 16-vertex

polyhedra [17] (see Fig. 1.2), the larger polyhedra being natural locations

for larger atoms in a multi-component system. The 14-, 15-, and 16-vertex

polyhedra are chosen so that all faces are triangular, and so that every vertex

in such a polyhedron is attached to either five or six edges, and, finally, so that

no two vertices connected to six edges (each) themselves share an edge [17, 20].

There are no polyhedra with a vertex count different than 12, 14, 15, or 16 that

meet all the criteria above [17, 20] (the 12-vertex polyhedron meeting these

criteria is the icosahedron). I will refer the reader to [17] for the reasoning

underlying these criteria. It should be noted, however, that because each

of these polyhedra (including the icosahedron) is constructed in such a way

that every face is triangular [17], when combined these coordination polyhedra

yield a structure in which all interstices in the system are tetrahedral (which

gives the Frank-Kasper phases the alternate name “tetrahedrally close-packed”

8
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[tcp] phases). The (nearly regular [4]) tetrahedral nature of the interstices can

be partially rationalized by noting that a regular tetrahedron represents the

densest local packing for a group of four equal-sized spheres [4, 17].

One can form a large array of Frank-Kasper phases from the four coordination

polyhedra mentioned above. To my knowledge, 27 types of Frank-Kasper

phases have been observed in physical systems [20]; it is possible, however, to

construct a number of additional Frank-Kasper structures which are not among

these 27 observed types [20]. The Frank-Kasper phases have been discovered

in many intermetallic elements [12], including superconductors like Nb3Zr [25]

and Nb3Sn [25, 26]. However, our concern is the existence of these phases in

soft matter systems.

1.2.2 Soft Matter Systems

Recently, a number of Frank-Kasper phases (including the A15 [5, 6, 10, 14],

σ [5, 6, 8, 9, 11, 12], C14 [13, 27], and C15 [13, 27] structures) have been

observed in soft condensed matter systems. As mentioned in §1.1, many soft

matter systems form Frank-Kasper phases in which the spherical domains (the

macromolecular analogous of the atoms in metallic crystal systems) consist of

only one species of molecule or macromolecule. The single-component nature

of the domains in these materials stands in contrast to the metallic case, where

Frank-Kasper phases mainly exist in alloys. The principles underlying this

type of Frank-Kasper phase formation are not, to our knowlege, completely

understood. In this work, we will focus on two Frank-Kasper phases, the A15

and σ phases, which represent the most common Frank-Kasper phases found

9
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in soft matter systems [5].

σ and A15 Phases

(a) A15 unit cell (b) σ unit cell

Figure 1.3: Schematic depictions of σ and A15 unit cells. The atoms are

coloured according to which of the (nonequivalent) types of lattice sites they

occupy. The parameters used to generate the σ unit cell depiction are found

in [28].

The A15 phase (space group: Pm3n) is a cubic phase with two nonequivalent

types of lattice sites: one whose atoms sit at the edges and center of the con-

ventional unit cell, and one whose atoms are placed (two at a time, at equal

distances from the nearest edge and from each other) along lines subdividing

the cubic faces into two congruent parts [21] (see Fig. 1.3a). The atoms on

the faces have an icosahedral coordination shell with a coordination number

of 12; the central and corner atoms have a coordination number of 14 [21, 29].

The A15 phase is found in a number of transition metal alloys, including IrV3,

10



M. Sc. Thesis - Duncan McClenagan; McMaster University - Physics & Astronomy

Cr3Si, and AlNb3 [21]. It has also been identified experimentally in a num-

ber of soft matter systems, including diblock copolymer melts [14], tetrablock

copolymer melts [15], giant surfactants [5], giant tetrahedra [5], ionic surfac-

tants [6], and dendrimers [5, 10]. More details on the A15 structure are found

in §A.1.

The σ phase (space group: P42/mnm) has a larger, much more complicated

tetragonal unit cell with 30 atoms (Fig. 1.3b) [5]. In this unit cell, there

are five non-equivalent types of lattice sites [21]. Two of them have 12-fold

coordination, two have 14-fold coordination, and one has 15-fold coordination

[21, 29]. See §A.2 for details. The σ phase has been identified in metallic alloys,

such as CrFe, FeMo, and AlNb2 [21]. It has also been found in a number of

soft systems, including diblock and tetrablock copolymers [11, 15], dendrimers

[8, 9], giant surfactants [5], and ionic surfactants [6].

Formation Mechanisms of Frank-Kasper Phases in Soft Matter

The reasons for the occurrence of the Frank-Kasper phases in such a diverse

array of soft systems are currently unclear. Nevertheless, one important factor

contributing to the formation of these phases appears to be the existence of

competition between the tendency of soft systems to fill space without gaps3

and the tendency of such systems to form spherical minority domains (this last

tendency can be rationalized by noting that sphericity minimizes interfacial

area costs per unit volume) [4]. Although we are focusing on soft matter, it is

interesting to note that a similar mechanism – competition between packing

3This tendency, favoured by attractive van der Waals forces [23], is similar to the tendency

of hard crystalline systems to adopt ordered structures with high spherical packing fractions.

11
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considerations and a tendency towards maximum Jones zone sphericity – has

been proposed [12, 30] to explain the existence of Frank-Kasper phases in

certain metallic systems.

The stability of the σ and A15 phases in diblock copolymer melts, for instance,

has been explained as follows. Define the isoperimetric quotient of a closed

three-dimensional region R in real space by S (R) = 36π[V (R)]2/[A(R)]3,

where A is the surface area of R and V is its volume [7]. It is easy to verify

that S is simply the cube of the ratio between the surface area of a sphere with

the same volume asR and the surface area ofR itself. Hence, S is a measure of

how muchR deviates from a sphere of the same volume. Since the sphere is the

minimal surface-area region at any given volume, S is bounded above by unity.

With this definition in place, one can make the following argument (see [7]).

For a diblock copolymer melt in an ordered three-dimensional phase (the BCC

phase, for instance), under suitable conditions one might expect the (roughly)

spherical minority domains in the system to deform to approximately match

the shape of the Voronoi cells associated with the lattice sites upon which

they sit. This is intuitively reasonable, because block copolymer melts are

incompressible, and there exists within them an entropic tendency to avoid

excessive stretching or compression of their polymers. Now, there exists some

free energy cost of the interfacial surface between any minority domain (rich in

one particular block type) in the system and the surrounding matrix (rich in

the other block type), due to chemical incompatibility between the two block

types. Hence, one expects the system to prefer to form spherical minority

domains if possible, in order to minimize this interfacial cost.

However, the shape of the domain is constrained also by its tendency to match

12
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the shape of its surrounding Voronoi cell. One might, therefore, expect the

system to prefer structures whose Voronoi cells have, on average, high spheric-

ities (that is, high S-values). In this way, the system could simultaneously

form highly spherical domains while adopting minority domain shapes that

approximately match those of the enclosing Voronoi cells. If one computes

the average Voronoi cell S-values for the “classical” FCC and BCC structures,

along with those for the A15 and σ phases, for instance, one finds that the

σ and A15 phases typically have very close average S-values (0.7617(0) and

0.7617(4), respectively4 [7]) which are both considerably higher than those for

the FCC and BCC phases (0.7405 and 0.7534, respectively [7]). This fact has

been proposed to explain the preference in diblock copolymer melts (under

certain conditions) of the σ and A15 phases over the more common spherical

FCC and BCC structures [7] (see also [4, 11, 12] for similar arguments).

Unfortunately, a general theory of Frank-Kasper phase formation in soft matter

systems does not yet, to my knowledge, exist, although considerable progress

in this area has been made in the context of block copolymer systems [4, 7, 12,

19, 31, 32]. We wished to gain a better understanding of the general principles

governing the soft matter formation of Frank-Kasper phases in general, and of

the σ and A15 phases in particular. To do so, we examined the phase behavior

of a generic Landau model known as the Landau-Brazovskii model.

4For the σ phase, the average value of S depends on the ratio of the two non-equal lengths

of the σ phase unit cell. We are assuming a typical value for this ratio of 1.89 [7].

13
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1.3 Landau-Brazovskii Model

The Landau-Brazovskii model [33–36] is a generic model for describing weakly

first-order order-disorder phase transitions for isotropic systems (that is, sys-

tems for which the free energy, as a function of some order parameter field, is

invariant under spatial rotations) whose equilibrium order parameter fields are

dominated in Fourier space by a single, finite principal wavenumber q0. This

model has been applied to a variety of specific physical systems, including

block copolymers [35, 37, 38] and liquid crystals [34]. The model has also been

derived for more general systems of hard spheres interacting via an isotropic

pairwise potential which is either short-ranged or strongly negatively peaked

in Fourier space [39]. A generalization of the Landau-Brazovskii model has

been applied to a wide range of other microphase-separating systems [40].

The Landau-Brazovskii functional can be derived in a straightforward man-

ner. First, one performs a Taylor expansion of the free energy F̃ in the order

parameter field φ̃ (r̃), truncating this expansion at the fourth-order term:

F̃
[
φ̃ (r̃)

]
= F̃0 +

∫
∆̃×∆̃

γ2 (r̃1, r̃2) φ̃ (r̃1) φ̃ (r̃2) d3r̃1d3r̃2

+

∫
∆̃3

γ3 (r̃1, r̃2, r̃3) φ̃ (r̃1) φ̃ (r̃2) φ̃ (r̃3) d3r̃1d3r̃2d3r̃3

+

∫
∆̃4

γ4 (r̃1, r̃2, r̃3, r̃4) φ̃ (r̃1) φ̃ (r̃2) φ̃ (r̃3) φ̃ (r̃4) d3r̃1d3r̃2d3r̃3d3r̃4,

where ∆̃ is the spatial domain of the system. The Landau-Brazovskii model

simplifies the expansion by approximating the third- and fourth-order terms as

local terms. This model also rewrites the second-order term in Fourier space,

where it can be written as an integral over a single wavevector because of
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translational symmetry. Then, by approximating the second order coefficient

with a quadratic expression centered on the principal wavenumber q0, and

choosing F̃0 = 0, we arrive at the Landau-Brazovskii free energy functional

[36]:

F̃
[
φ̃ (r̃)

]
=

∫
∆̃

d3r̃

[
ξ̃2

8q0
2
(∇2φ̃+ q0

2φ̃)
2

+
τ̃

2
φ̃2 − γ̃

3!
φ̃3 +

λ̃

4!
φ̃4

]
, (1.1)

where φ̃ (r̃) is the order parameter field as a function of position r̃, and ξ̃, τ̃ ,

the symmetry parameter γ̃, and λ̃ > 0 are adjustable parameters. Note that

F̃ is invariant under the transformation φ̃→ −φ̃, γ̃ → −γ̃.

By re-scaling the free energy, position variable, and order parameter field, we

can reduce the number of parameters in the Landau-Brazovksii model from

five (λ̃, γ̃, τ̃ , ξ̃, and q0) to two (τ and γ, defined below):

r = q0r̃,

φ (r) =
[
2
√
λ̃/
(
q0ξ̃
)]
φ̃ (r/q0) ,

F = q0
316F̃ λ̃/

(
q0ξ̃
)4

,

τ = 4τ̃ /
(
q0ξ̃
)2

,

γ = 2γ̃/
(
q0ξ̃
√
λ̃
)
.

(1.2)

It is our understanding that this reduction of the effective number of param-

eters in this model (that is, the number of parameters defining the phase

behavior of the model) from five to two has never before been discovered for

this model, although others have reduced the parameter count in this model

to three [36, 41]. Also, instead of the free energy F , we will consider the free
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energy density f = F/V , where V is the volume of the system with respect

to the re-scaled length scale. This allows us to compare the free energies of

periodic ordered structures by comparing the free energy densities of unit cells

of those structures. Hence, Eqs. (1.1) and (1.2) yield:

f =
1

V

∫
∆

d3r

[
1

2
(∇2φ+ φ)

2
+
τ

2
φ2 − γ

3!
φ3 +

1

4!
φ4

]
, (1.3)

where ∆ is the domain of integration in r-space. The order parameter field φ

represents the thermal average of some physical quantity, and is exactly zero

(φ(r) = 0∀r) in the disordered phase. φ typically satisfies Eq. (1.4) below [36].

This is the case, for instance, if φ represents the deviation of mass or number

density from its average, for then Eq. (1.4) is implied by mass conservation.

∫
∆

φ(r) d3r = 0. (1.4)

τ in Eq. (1.3) is a temperature-like parameter which, when negative, tends

to induce stronger average segregation as it increases in magnitude.5 τ also

controls the onset of the order-disorder spinodal: the disordered phase becomes

unstable at τ = 0.

Our model exhibits a first-order phase transition for some τ > 0 provided

γ 6= 0. If γ = 0, the model has a second-order phase transition at the critical

point (γ = 0, τ = 0). For any given system, the Landau-Brazovskii model can

only be expected to be strictly valid near the critical point. This is a result

5Since τ multiplies φ2, if τ < 0, the τ term is more negative when there is greater

root-mean-square deviation from the spatial average of the order parameter, 0.
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of the first-order nature of the transition: in general the order parameter

field changes discontinuously across the order-disorder transition. Hence, the

order parameter field cannot be expected in general to be small, even near

the order-disorder transition. One can expect the order parameter field to be

small near the critical point, since the order-disorder transition is continuous

at the critical point. When we analyze the phase diagram of the Landau-

Brazovskii model, we will be looking at regions where γ is large (γ ∼ 1), far

away from the critical point. We cannot expect the Taylor expansion in Eq.

(1.3) to hold in such regions. However, one still may expect this functional

to be qualitatively useful, even far from the critical point. One could, for

instance, fit the phenomenological parameters in the Landau-Brazovskii model

to experimental data, or to data generated by a superior model. In what

follows, we treat the Landau-Brazovskii model as a general phenomenological

model for the description of order-disorder phase transitions in which a periodic

phase emerges with a single dominant wavelength.

1.3.1 Phase Diagram

The primary purpose of this work is to construct a phase diagram for the

Landau-Brazovskii model. The stable phase of Eq. (1.3) at any given γ and

τ is that minimizing the free energy density f . It is not feasible to directly

compute the global minimum of f ; however, with suitable numeric optimiza-

tion techniques one can compare the optimal free energies for a number of

candidate structures, selecting as the stable phase the phase with the lowest

free energy. This was done, for instance, by Shi in [36], where the free en-

ergies for the disordered phase, cylindrical hexagonal phase, lamellar phase,
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BCC phase, and double gyroid phase (space group: Ia3d) were compared to

produce a phase diagram in the γ-τ plane. Shi found regions of stability for all

of the phases mentioned above [36]. His diagram was later qualitatively repro-

duced by [41], and we also qualitatively reproduced his diagram by considering

the same candidate phases (see Fig. 1.4). This “candidate phase approach”

does not, of course, exclude the possibility that other phases, not in the list

of candidate phases, are stable in some regions of the phase diagram. Nev-

ertheless, this approach allows us to identify the relative stability among the

phases considered. I will shortly present the phase diagram we constructed for

the Landau-Brazovskii model; first, however, I discuss in the following chapter

how we produced this diagram.
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Figure 1.4: Original Landau-Brazovskii model phase diagram, similar to that

obtained by previous researchers [36, 41]. Phase boundary points are shown

with green dots; the lines connecting the points are cubic interpolations that

were added as a guide to the eyes. This diagram was produced using the

method described in Chap. 2.
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Chapter 2

Methods

The primary goal of this work is to construct a phase diagram for the Landau-

Brazovskii free energy functional defined by Eq. (1.3). This diagram, presented

in Fig. 3.1, was produced by comparing the free energy densities of a number

of candidate structures, including the σ and A15 Frank-Kasper phases. The

candidate phases included all the phases that were found in the phase diagrams

of [36] and [41] (the disordered, lamellar, BCC, cylindrical hexagonal, and

double gyroid phases), as well as the face-centered-cubic (FCC) phase, and

the aforementioned Frank-Kasper A15 and σ phases. We here present in detail

our numerical method for constructing our phase diagrams.

2.1 Rescaling of Landau-Brazovskii Model

When creating the phase diagram for the Landau-Brazovskii model, we did not

actually work with the functional in Eq. (1.3), but with the different rescaling
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of Eq. (1.1) given below [36, 41]:

f ′ =
1

V

∫
∆

d3r

[
(ξ′)2

2

(
∇2ψ + ψ

)2
+
τ ′

2
ψ2 − γ′

3!
ψ3 +

1

4!
ψ4

]
. (2.1)

The parameters in this equation are related to those in Eq. (1.3) as follows,

as can be easily verified:

f ′ = (ξ′)
4
f,

ψ = ξ′φ,

τ ′ = (ξ′)
2
τ,

γ′ = ξ′γ.

(2.2)

The phase diagram of Eq. (2.1) is identical to that associated with Eq. (1.3),

as long as the relationships of τ ′, γ′, and ξ′ with τ and γ are taken into

account. Initially, I computed the phase diagram of Eq. (2.1) for several

different values of ξ′, but all appeared to produce nearly the same diagram

when these relationships were considered, as expected. The phase diagram

presented in this thesis (Fig. 3.1) was produced by finding a phase diagram

for Eq. (2.1) by setting ξ′ = 0.65, and then using Eq. (2.2) to relate τ ′ and γ′

to the parameters τ and γ appearing in Eq. (1.3) and Fig. 3.1.

2.2 Construction of Phase Diagrams

The equilibrium phase of Eq. (2.1) for any given ξ′, γ′, and τ ′ is that with

the lowest free energy density (henceforth, I shall use the terms “free energy
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density” and “free energy” interchangeably). Therefore, to produce a phase

diagram for Eq. (2.1), we numerically located the minimal free energies of

several different ordered phases at various values of γ′ and τ ′, and then inter-

polated this free energy data to find the phase boundaries. In this section, I

will discuss this procedure in more detail.

First, let us note that the order parameter field ψ appearing in Eq. (2.1) is

subject to the following constraint (from Eq. (1.4) and Eq. (2.2)):

∫
∆

ψ d3r = 0. (2.3)

Also, let us define T to be the set consisting of the ordered pairs (γ′, τ ′) where

γ′ ranges from 0 to 1.5 in increments of 0.05, and τ ′ ranges from −0.2 to 0.2

in increments of 0.0125. T defines the set of parameter values at which free

energies of the different phases were numerically estimated (ξ′ is fixed at 0.65).

Below, I describe the procedure by which these free energy values can be ob-

tained, and how they can be used to produce a phase diagram for the Landau-

Brazovskii model.

1. For each pair (γ′, τ ′) in T , assign free energies to the phases considered in

our study, that is, to the disordered, lamellar, double gyroid, cylindrical

hexagonal, BCC, FCC, σ, and A15 phases. Let us use the notation

(P, a) to denote the combination of a given phase P and a given element

a ∈ T (the free energy of (P, a) is the free energy of phase P for the τ ′

and γ′ values corresponding to a). The free energy assigned to (P, a) is

determined as follows:
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(a) If P is the disordered phase, assign (P, a) the free energy zero.

(b) Otherwise, choose an initial density profile (i.e., an initial order

parameter field ψ (r)) which approximates the structure of phase P ,

and choose the initial width, length, and height of the simulation

box. This step is discussed in detail in §2.3.

(c) To ensure a fair comparison between the free energies of the different

ordered phases, we must determine the optimal (minimum) free

energy for each phase, and then compare these optimal free energies

to determine the equilibrium phase. Hence, numerically minimize

the free energy f ′ subject to Eq. (2.3), with the initial condition

mentioned above. Our goal is to find a local minimum of f ′ whose

basin of attraction includes the aforementioned initial condition.

Assign the resulting, minimized, free energy density to (P, a). If

the minimization algorithm fails to converge, note that an error

occurred and record the error. This step is discussed in detail in

§2.4.

2. Next, create the phase diagram using the free energies found for all the

pairs (P, a). This step is discussed in more detail in §2.5.

3. Finally, perform verification procedures to ensure the ordered phases

found in the phase diagram actually are the structures they claim to be.

Although we choose (when running our minimization algorithm for a

given phase) an initial condition corresponding to the phase of interest,

it is possible that our minimization algorithm might cause this phase

to decay to a different ordered phase. This verification procedure is

described in Appendix D.
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We now consider three of the steps mentioned above in greater detail.

2.3 Choice of Initial Conditions for each Phase

After selecting a particular phase P , we must choose the initial order parameter

field we wish to use when minimizing the free energy f ′ for given τ ′ and γ′ val-

ues. Table 2.1 gives the expressions used to generate the initial density profile

for each ordered phase. This table also includes the initial lattice parameters

and dimensions (width = W , length = L, and height = H) of the simulation

box used with a given phase. In Table 2.1, we split the position vector r into

its components along the x, y, and z directions, so that r = xx̂ + yŷ + zẑ,

where x̂, ŷ and ẑ form a right-handed triple, and are aligned with the axes of

the simulation box (which is a right rectangular prism). For any given phase,

the origin r = 0 sits at one corner of the simulation box.
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Table 2.1: Initial density profiles and associated parameters, including the

mathematical expressions ψ representing these structures. For the cubic and

tetragonal unit cells in this table, a and c represent lattice parameters for the

conventional unit cell, a being the length of that cell in the x and y directions,

and c being its length in the z-direction (for cubic unit cells, of course, only

a is needed). The symbols ΛA15, Λσ, x2, x3, y3, x4, y4, x5, and z5 are defined

in the text following the table. Note: “HEX,” “GYR”, and “LAM” refer to

“cylindrical hexagonal,” “gyroid,” and “lamellar,” respectively.

Phase Expression (ψ (r)) Parameter Values

A15


Ae
− 1

1−d2a0
−2 − A′ if Φ(r),

−A′ otherwise.


with:

Φ(r) := (∃r′ ∈ ΛA15 (a) |

d = |r− r′| ≤ a0)

a = L = W = H = 2π
√

5,

a0 = a/5.5, A = 3e

BCC
A( cos

2πx

a
cos

2πy

a
+

cos
2πy

a
cos

2πz

a
+

cos
2πz

a
cos

2πx

a
)

a = L = W = H = 2π
√

2,

A = 1

HEX A(cos 4πy√
3a

+ 2 cos 2πx
a

cos 2πy√
3a

)
a = 4π/

√
3, W = a,

L =
√

3a, A = 1

FCC A cos 2πx
a

cos 2πy
a

cos 2πz
a

a = L = W = H = 2π
√

3,

A = 3
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Table 2.1: Initial density profiles and associated parameters cont.

Phase Expression Parameter Values

GYR


−A′ for f(r) ∈ [−α, α],

A− A′ otherwise.


with:

f(r) := sin
2πy

a
cos

2πz

a
+

sin
2πz

a
cos

2πx

a
+

sin
2πx

a
cos

2πy

a

a = L = W = H = 2π
√

6,

A = 3, α = 1

LAM cos 2πx
L

L = 2π

σ


Ae
− 1

1−d2a0
−2 − A′, if Φ(r)

−A′, otherwise


with:

Φ(r) := (∃r′ ∈

Λσ (a, c, x2, x3, y3, x4, y4, x5, z5) |

d = |r− r′| ≤ a0)

a = (2π)4.44, c = (2π)2.27,

L = W = a, H = c,

A = 3e, a0 = c/6,

x2 = 0.39, x3 = 0.46,

y3 = 0.13, x4 = 0.74,

y4 = 0.07, x5 = 0.18,

z5 = 0.25

Fig. 2.1 gives isosurface plots of the initial density profiles for the different

candidate structures. A few remarks about Table 2.1 are in order. a, in the

case of the cylindrical hexagonal phase, refers to the smallest distance between

lattice sites in the hexagonal lattice. The symbol A′ is a constant that is always

defined so that Eq. (2.3) is met for the initial density profile.

The initial conditions for the BCC, cylindrical hexagonal, FCC, and lamellar
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phases are single-wavenumber approximations of Fourier expansions associated

with these structures. The gyroid phase initial condition is obtained by assign-

ing the positive constant A−A′ to any point in a union of regions bounded by

the two level surfaces sin 2πy
a

cos 2πz
a

+sin 2πz
a

cos 2πx
a

+sin 2πx
a

cos 2πy
a

= ±α (see,

e.g., [42] or [43]) and assigning the constant −A′ to any point not in this union

of regions. Turning to our choice of initial lattice parameters for the different

ordered phases, I note first that the initial period chosen for the lamellar phase

(2π) is a natural choice designed to minimize the (∇2ψ + ψ)
2

term in the free

energy (Eq. 2.1). The lattice parameters for the BCC, cylindrical hexagonal,

FCC, double gyroid, and lamellar phases come from epitaxial relationships

between these phases. In particular, we used the cylindrical-lamellar epitaxial

relationship given in [44], the cylindrical-BCC relationship given for a block

copolymer melt in [45], the BCC-FCC relationship given for a block copoly-

mer solution in [46], and the lamellar-gyroid or cylindrical-gyroid relationship

found for a lyotropic liquid crystalline system in [47] (which is also found in

other systems; see [48] for a review).

The initial conditions for the A15 and σ phases are generated as follows. First,

our algorithm defines the simulation box as the conventional unit cell for the

phase of interest. a0 is defined to be the radius of the “atoms” (regions where

ψ > −A′) in the structure. The sets ΛA15 and Λσ each refer to the set of atomic

positions which are either within the simulation box, or within a distance a0

from an edge of the simulation box. For a point r in the unit cell that is

within one of the atoms, so that the condition Φ(r) (see Table 2.1) holds, the

distance d to the center of the atom is computed by our algorithm. When

d is determined, the value of the initial density profile at r is given by a

“bump function” (see Table 2.1) which reaches its maximum value of A − A′
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at the center of the atom, and goes smoothly to −A′ as d → a0. If our

point with position r is not inside an atom, the density profile at that point

is simply assigned a constant value of −A′. In this way, we create a smooth

initial density profile which takes on higher values in the vicinity of an “atom”

associated with the structure of interest.

Note that the quantities x2, x3, y3, x4, y4, x5, and z5 in Table 2.1 are adjustable

parameters that define the precise way in which the atoms in the σ phase are

configured (see §A.2). Our choice for these parameters comes from [49].

(a) A15 (b) BCC (c) Hexagonal (d) FCC

(e) Double gyroid (f) Lamellar (g) σ

Figure 2.1: Plots of initial density profiles. The filled yellow regions represent

the minority domains, where the order parameter field is positive. Note that

the lamellar and cylindrical hexagonal phases are shown in three dimensions

for ease of viewing, but were treated as one- and two-dimensional phases,

respectively, by our minimization program.

We now consider the initial lattice parameter (a) for the A15 phase. The ratio
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between this value and our initial BCC a-value closely matches that found

experimentally in certain ionic surfactant systems [6] and in numerical diblock

copolymer SCFT calculations [29].

The ratio cσ/aBCC , between our initial c parameter for the σ phase and our

initial a parameter for the BCC phase, is close to that found in certain sim-

ulations and experiments of diblock copolymer melts [29] and in certain ionic

surfactant systems [6]. Likewise, the ratio c/a for the initial σ phase condition

is close to (within 5% of) the value found experimentally in certain diblock

copolymer [11, 29], ionic surfactant [6], and giant surfactant [50] systems.

2.4 Minimization Procedure

Next, we consider the process of finding a local minimum of f ′ (Eq. (2.1)),

given ξ′, γ′, τ ′, and a phase P with its associated initial density profile ψ0.

We impose periodic boundary conditions. Furthermore, we assume that the

simulation box with domain ∆ is three-dimensional, but the procedure herein

can easily be modified for the two- and one-dimensional cases. We also im-

pose the constraint given by Eq. (2.3). If P is metastable or stable at our

values of ξ′, γ′, and τ ′, then we expect that locally minimzing f ′ will produce

the optimal free energy of phase P for these parameter values, because the

initial condition used when we perform the local minimization approximates

the structure of phase P . If P is unstable for these parameter values, the

minimization algorithm will cause the initial density profile ψ0 associated with

P to change to some other structure. In this case, the final minimized free

energy produced by the minimization algorithm will not be that of P , but of
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some other structure. We explain how we deal with this in §2.5 and Appendix

D. For now, we simply explain how we numerically minimize Eq. (2.1) subject

to some initial density profile (associated with a phase P ) and with certain

parameter values ξ′, γ′, and τ ′.

2.4.1 Minimization Problem Formulation

Minimizing f ′ involves the determination of the optimal density profile ψf (r)

and the optimal simulation box dimensions. Focusing on the determination

of the density profile, we will consider the problem in which the simulation

box dimensions are fixed, and will return later to the problem of determining

optimal values for these dimensions. We must minimize Eq. (2.1) subject to

Eq. (2.3) over the space of density profiles ψ (r). The constraint makes the

optimization problem significantly more complicated. There are a number of

ways to deal with it. We chose to reformulate the minimization problem as

an ordinary differential equation whose independent variable is a pseudo-time

parameter t, such that as t → ∞, the order parameter field approaches the

order parameter field with the locally minimal value of f ′.

Roughly, we may derive the differential equation we used in the following

way. We can define a space-dependent chemical potential µ(r) by taking the

variational derivative of f ′ with respect to the order parameter field ψ:

µ :=
δf ′

δψ
.

Since we are seeking the minimal value of f ′ under the constraint in Eq. (2.3),
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we will formulate our pseudotime evolution such that the free energy f ′ de-

creases with t. We also will ensure that the constraint in Eq. (2.3) is satisfied

for all t. To do so, we design a pseudotime evolution equation that locally

conserves ψ, and follows the negative gradient of the chemical potential. This

latter consideration guarantees that f ′ is nonincreasing with t, and the local

conservation ensures that the constraint given by Eq. (2.3) is always satisfied,

provided it is satisfied by the initial density profile. In other words, we allow

ψ to pseudotime-evolve under a current density J given by:

J = −η∇µ,

where η > 0 is a constant. Since our order parameter is locally conserved, it

must change with t according to the continuity equation:

∂ψ

∂t
= −∇ · J.

Combining the three equations above yields:

∂ψ

∂t
= η∇2

[
δf ′

δψ

]
. (2.4)

Because of the definition of J, Eq. (2.4) ensures that f ′ will be nondecreasing

with time (provided that ψ satisfies periodic boundary conditions). Further-

more, the “maximum principle” for harmonic functions ensures that the steady

state (
∂ψf

∂t
= 0) solutions ψf to Eq. (2.4) will be uniformly constant (again,

given periodic boundary conditions), i.e.,
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ψf (r) = K,

for some K. If we interpret K as a Lagrange multiplier associated with the

constraint given by Eq. (2.3), we see that the steady state solutions to Eq.

(2.4) satisfy the first-order optimality conditions for f ′ subject to Eq. (2.3),

provided the initial density profile satisfies Eq. (2.3). However, ψf need not

be a local minimum – it could be the constrained optimization analogue of a

saddle point. We assume that our initial density profiles are close enough to

their optimized counterparts that such behavior does not occur.

To solve Eq. (2.4) given some initial order parameter field ψ0, we cannot simply

apply standard explicit methods, as the equation is too unstable. The explicit

Euler and Runge-Kutta methods, for instance, demand impractically small

time steps. We also cannot easily apply standard implicit methods, because of

the nonlinear nature of Eq. (2.1). Fortunately, more suitable algorithms exist.

I created a C++ implementation of the first-order “scalar auxilary variable”

algorithm [51, 52], which enabled us to efficiently find steady state solutions

of Eq. (2.4).

2.4.2 Density Profile Real-Space Discretization

In order to solve Eq. (2.4), we must find some method of representing the

density profile ψ – a function of a continuous variable r – in finite computer

memory. To do so, we divide the simulation box ∆ into a grid of discrete

points. Let there be N points along the x-direction, M along the y-direction,

and L along the z-direction. The position rijk of any point in the grid is given
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by rijk = (∆W ) ix̂ + (∆L) jŷ + (∆H) kẑ, where ∆W , ∆L, and ∆H represent

the spacings between grid points in the x, y, and z directions, respectively. i,

j, and k range between 0 and N − 1, M − 1, and L− 1, respectively. We can

thus represent ψ approximately by the set of values of ψ at all the points in

the aforementioned grid. This set we indicate with {ψ (rijk)}.

2.4.3 Density Profile Fourier-Space Discretization

Now, since ψ (r) is a periodic function, we may represent it as a multidimen-

sional Fourier series. Let Fq [ψ] be the operator yielding the Fourier component

ψ̂ (q) of ψ corresponding to wavevector q. Fq satisfies the following well-known

relation:

Fq

[
∇2ψ

]
= −q2Fq [ψ] . (2.5)

If we assume that ψ changes sufficiently slowly over real space, we expect that

the high-frequency (high-q) Fourier components will be very small, and that

we can approximate ψ with a partial Fourier series consisting only of the low-q

Fourier terms.

This is the motivation underlying the discrete Fourier transform (DFT). The

DFT of the discretized real-space ψ-data {ψ (rijk)} consists of a set of estimates

for the Fourier components at specific locations on a grid in Fourier space. In

particular, the DFT of {ψ (rijk)} can be written as
{
ψ̂
(
qîĵk̂

)}
, where:
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ψ̂
(
qîĵk̂

)
=

L−1∑
k=0

M−1∑
j=0

N−1∑
i=0

ψ (rijk) e−iqîĵk̂·rijk , (2.6)

with qîĵk̂ =
(

2πî/W
)

x̂ +
(

2πĵ/L
)

ŷ +
(

2πk̂/H
)

ẑ. î, ĵ, and k̂ index a grid

point in q-space, with −dN
2
e + 1 ≤ î ≤ bN

2
c, −dM

2
e + 1 ≤ ĵ ≤ bM

2
c, and

−dL
2
e + 1 ≤ k̂ ≤ bL

2
c. We can also invert the DFT

{
ψ̂
(
qîĵk̂

)}
to obtain the

original real-space discretization of ψ:

ψ (rijk) =
1

MNL

bL
2
c∑

k̂=−dL
2
e+1

bM
2
c∑

ĵ=−dM
2
e+1

bN
2
c∑

î=−dN
2
e+1

ψ̂
(
qîĵk̂

)
eiqîĵk̂·rijk , (2.7)

Assuming that the DFT of {ψ (rijk)} contains enough Fourier components

to approximate ψ sufficiently well, we can simplify certain calculations. For

instance, if we want to estimate the Laplacian ∇2ψ of ψ given discretized real-

space data {ψ (rijk)}, we may do so by computing the DFT of this real-space

data, applying Eq. (2.5) to the Fourier components generated by the DFT,

and then (if we wish) changing back to a real space representation with Eq.

(2.7). This fact will be useful when we study the algorithm we use to minimize

the free energy f ′.

2.4.4 Overview of Minimization Algorithm

Let us now return to the problem of minimizing f ′ given some phase P and

particular values for ξ′, γ′, and τ ′. To perform this minimization, we used the

procedure below:
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1. Define a simulation box whose initial size is given by Table 2.1. Then,

compute the real-space discretization {ψ (rijk)} of the initial density pro-

file associated with the phase of interest. If P is the σ phase, let this

discretization consist of 128 points along the x- and y-directions, and

64 points along the z-direction; in other words, use a 128 × 128 × 64

discretization. If P is the cylindrical hexagonal phase, use a 64×128×1

discretization. If P is the lamellar phase, use a 64× 1× 1 discretization.

If P is any other phase, use a 64× 64× 64 discretization.

2. Fixing the size of the simulation box, use our implementation of the first

order scalar auxiliary variable (SAV) method (see Appendix B) to locate

the local minimum of f ′. Use a maximum iteration count of 100,000 and

a relative tolerance of 10−13. If the maximum iteration count is reached

during execution of the SAV algorithm, abort the minimization process.

3. Using the discrete Fourier transform (DFT) of the final density profile

data produced in the previous step, minimize the free energy density

f ′ with respect to the width, length, and height of the simulation box.

When performing this minimization, we fix the discretized field values

{ψ (rijk)}: we only stretch the density profile affinely along the principle

axes of the simulation box. See Appendix C for details.

4. Repeat the two steps above until the relative difference between the free

energies before and after the period optimization reaches 10−13. Call the

discretization of the final, minimized density profile {ψf (rijk)}.

5. Double the number of points, in each direction, of the real space dis-

cretization grid constructed in step one (except for the lamellar phase,

in which the number of points is only doubled along the x-direction, and
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for the cylindrical hexagonal phase, in which the number of points is

doubled only along the x and y directions, because these are one- and

two-dimensional phases, respectively).

6. Using the lower-resolution discretization {ψf (rijk)} of the final, mini-

mized field produced in step four, generate a high resolution version of

this final condition on the new higher resolution grid, and use this as the

initial condition to repeat steps 2-4. Declare the resulting free energy

the free energy of the structure in question at the values of ξ′, γ′, and τ ′

we are considering.

2.5 Production of Phase Diagram from Mini-

mized Free Energy Data

Once the minimized free energy data is collected for each phase and set of

parameters a ∈ T , it remains to produce a phase diagram. This was effectively

done in three stages, which are given below.

1. First, create a preliminary phase diagram, showing the “equilibrium”

phase (i.e., the lowest free energy phase among those considered) at each

point a ∈ T . In this way, the general topology of the phase diagram

can be ascertained. Make note of any small, anomalous groupings of

points a ∈ T in which the indicated stable phase is different than that

for a larger region of points in which these points lie. The phase (that is,

the lowest free energy phase) associated with these isolated groupings is

probably unstable at these points, and the minimization algorithm has
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probably caused this phase to decay to the phase associated with the

larger, surrounding region in which these isolated points sit. Verify this

by examining ψf = 0 isosurface plots (here ψf for a given a represents the

final, optimized density profile at point a and associated with the phase

which has the lowest free energy at a) for all the points in T in these

anomalous groupings – these plots should show a structure matching the

equilibrium structure for the surrounding region in which these points

sit.1 Change the assigned phase of any such anomalous points (at which

the equilibrium phase is falsely identified) to the correct phase.

2. We will soon attempt to use quadratic interpolation to estimate the

location of the phase boundaries. First, however, I note that, at some

points a ∈ T – especially close to the order-disorder line of stability – our

algorithm failed to converge, or caused some ordered phases to decay to

the disordered phase when these phases should be metastable. One can

attempt to identify these problematic points in the following way. First,

apply the following procedure to each point a ∈ T :

(a) Determine the equilibrium phase associated with a. Call this phase

P . If P is the disordered phase, skip the following steps.

(b) Then, apply the step below to each nearest neighbour a′ to a.

(c) Sometimes, the free energy of P at a′ is very close to the disordered

phase free energy (we identified a free energy as the disordered free

energy if it was within [−10−10, 10−8]), or our algorithm does not

1I did indeed have to do this for five points in the A15 region, and the actual lowest free

energy phase at these points was indeed the A15 phase. Note that if we look at values of

τ greater than those indicated in the diagram, there seems to be a location at which some

other phase that I did not consider becomes stable, but I did not investigate this in detail.

37



M. Sc. Thesis - Duncan McClenagan; McMaster University - Physics & Astronomy

converge at a′ when considering phase P . Since it is unusual for

a phase to jump from being stable at a to being unstable at a′,

given the first-order nature of all phase transitions2 in the Landau-

Brazovskii model, we would like to investigate this behavior to en-

sure that it is not a computational artifact. To do so, attempt to

apply step three below to locate the phase boundary point between

a and a′. If the phase boundary point cannot be found using that

interpolation procedure, that is an indication that P may not actu-

ally be unstable at a′. To estimate the real free energy of P at a′,

use quadratic extrapolation from points near a′ where P converges

to determine a new free energy for P at a′.

Repeat the procedure above until all anomalies have been corrected.3

3. Using the new, updated free energies from the previous step, identify

points on the boundaries between the different phase regions by per-

forming quadratic interpolation of the free energies computed by our

algorithm for each phase. I obtained these boundary points by fixing

different values of τ ′ and looking for phase boundaries along the γ′ di-

rection, and by fixing different values of γ′ and looking along the τ ′

direction. For instance: if one is moving along the τ ′ direction, let us

say that steps one and two indicate that the cylindrical hexagonal phase

is the stable phase at (γ′ = 0.3, τ ′ = −0.05) and that the BCC phase is

stable at the next point along the τ ′ direction, (γ′ = 0.3, τ ′ = −0.0375).

2Except at the critical point.
3In my case, most anomalies were corrected after one iteration of the procedure above.

However, there were some points close to the cylindrical-A15 phase boundary in the high-γ,

low-τ region of the phase diagram which required multiple applications of the procedure

above to correct all anomalies.
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One could then obtain the phase boundary point at γ′ = 0.3 and with

τ ′ ∈ [−0.05,−0.0375] by performing quadratic interpolation of the dif-

ference between the free energy of the BCC phase and the free energy of

the cylindrical phase, and finding the zero of this interpolating function.

4. Finally, we connected the phase diagram boundaries with smooth cubic

interpolations to obtain the phase boundary curves visible in Fig. 3.1.
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Chapter 3

Results

The phase diagram of the Landau-Brazovskii model (Eq. (1.3)) is given in

Fig. 3.1. The Frank-Kasper σ and A15 phases are stabilized as γ is increased

past around 0.8. Interestingly, the FCC phase is also stable in the upper-

right region of the phase diagram. Such behavior has not previously been

found; to my knowledge, neither the σ nor the A15 phase have hitherto been

identified in the Landau-Brazovskii model. Indeed, up till now, no one has (to

my knowledge) even considered these phases in the context of this model. The

contrast between the behavior of the old Landau-Brazovskii phase diagrams

and our new diagram can be seen in Fig. 3.2, where we have superimposed the

phase boundary lines from Fig. 1.4 (the phase diagram without including the

FCC, σ, or A15 phases as candidate structures) on the new phase diagram in

Fig. 3.1. Fig. 3.2 shows that the spherical region of the new phase diagram

roughly matches that of the old phase diagram, save that the σ and A15 phases

cause the new spherical region to be slightly larger than the old.
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The overall order-order phase transition sequence in Fig. 3.1 proceeds, as γ

increases, from the lamellar phase, to the gyroid phase (a bicontinuous phase),

to the cylindrical phase, and then to a spherical phase. As mentioned in §1.1,

AB diblock copolymers exhibit a generic phase transition sequence from a

lamellar to a cylindrical to a bicontinuous to a spherical phase, as the minority

block fraction fA is decreased from fA = 1
2
. This phase transition sequence

matches that found in the Landau-Brazovskii model: increasing the symmetry

parameter γ corresponds to decreasing the minority block fraction fA (γ = 0

would correspond to fA = 1
2

if the Landau-Brazovksii model were applied to a

system of linear diblock copolymers in which each block had the same Kuhn

length, as γ = 0 would correspond to the case of no asymmetry between the

A and B blocks).

I also created plots from the final (optimized) density profile data produced

using the algorithm in Chap. 2: either ψ = 0 isosurface plots (for the three-

dimensional phases), “heat map” density plots (for the two-dimensional cylin-

drical hexagonal phase), or standard ψ vs. x plots (for the one-dimensional

lamellar phase). These plots are shown in Fig. 3.3.

Additionally, I produced Fourier-space plots from the optimized density profile

data used to generate the real-space plots in Fig. 3.3. Two of these plots,

for the A15 and σ phases, are shown in Fig. 3.4, and the rest are found in

Appendix E. On the x-axis, I plotted the Fourier-space wavevector magnitude

q, and on the y-axis, the logarithm of a “scattering intensity.” For a given

q, this scattering intensity is simply (up to a constant) the average value of

all of the square magnitudes of the discrete Fourier transform components

corresponding to positions (in Fourier space) a distance q from the origin.
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These plots should approximately match small-angle X-ray scattering (SAXS)

plots obtained from real physical systems exhibiting the σ and A15 phases.

Indeed, if we compare Fig. 3.4 with experimental SAXS plots [6] obtained

from a small ionic surfactant system exhibiting the σ and A15 phases, we find

remarkable agreement: the positions of the SAXS peaks for the A15 phase

(Fig. 1 of [6]) are identical to the positions of the peaks in Fig. 3.4a, save for

one extra peak in Fig. 3.4a with Miller indices (420). Likewise, the positions

of the “main group” of SAXS peaks (starting at (310) and ending at (312))

for the σ phase (Fig. S1 in [6]) are identical to those in Fig. 3.4b, except for

one extra peak at (420) in Fig. 3.4b. The relative magnitudes of the peaks are

also qualitatively similar in both cases.

Finally, I include in this chapter two free energy density plots for different

ordered phases. On the y-axes of these plots, I plot the excess free energy ∆f ,

which is the difference between the minimized free energy density (f in Eq.

(1.3)) of the phase of interest and the minimized free energy density of some

reference phase. On the x-axes of these plots, I plot τ . The plotted points

correspond to the free energy density values obtained with my minimization

algorithm (after any anomalies have been corrected by step two of §2.5).

In Fig. 3.5a, for which γ = 0.15 and τ ∈ [−0.3, 0.1], one observes a phase

transition from the lamellar to the cylindrical to the BCC to the disordered

phase as τ increases. Note that the cylindrical phase is unstable for sufficiently

negative values of τ (rather, it decays to the lamellar phase), but becomes

metastable at τ ≈ −0.25. All phases in Fig. 3.5a decay to the disordered

phase shortly after crossing the τ = 0 point. In Fig. 3.5b, for which γ = 1.23

and τ ∈ [0.1, 0.36], one observes a phase transition sequence from the A15 to
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the σ to the FCC to the disordered phase as τ increases. As before, all phases

decay to the disordered phase for sufficiently positive values of τ .

Figure 3.1: Landau-Brazovskii model phase diagram. Phase boundary points

are shown with green dots; the lines connecting the points are cubic interpo-

lations that were added as a guide to the eyes.
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Figure 3.2: Landau-Brazovskii model phase diagram with phase boundaries

from original phase diagram (without FCC, σ, or A15 phases) in Fig. 1.4.

The phase boundaries from Fig. 1.4 are shown with dotted lines; the solid

regions are those of the new phase diagram in Fig. 3.1.
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Figure 3.3: Selected plots of final density profiles associated with the equilib-

rium phases in Fig. 3.1.

(a) A15 phase (at

(γ = 1.23, τ = 0)).

(b) BCC phase (at (γ = 0.31, τ = 0)).

(c) Cylindrical hexagonal phase (at (γ = 0.62, τ = −0.12)).
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Figure 3.3: Selected plots of final density profiles cont.

(d) FCC phase (at

(γ = 1.85, τ = 0)).

(e) Double gyroid phase (at

(γ = 0.46, τ = −0.47)).

(f) Lamellar phase (at

(γ = 0.15, τ = −0.24)).

(g) σ phase (at

(γ = 1.08, τ = −0.059)).
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Figure 3.4: Selected Fourier-space plots of final density profiles associated

with two of the equilibrium phases, the σ and A15 phases, in Fig. 3.1. On the

y-axis is plotted log

[ 〈
|ψ̂q|2

〉
|q|=q

maxq

(〈
|ψ̂q|2

〉
|q|=q

)
]

. In other words, the y-axis variable

is the logarithm of a scaled average of the square magnitudes of the Fourier

components (that is, the components of the discrete Fourier transform) ψ̂q of

ψ, where the average for a given q is over all q with magnitude q, and q is

plotted on the x -axis. If the argument to the logarithm above is less than

10−7, the associated peak is omitted from its plot. The indices above each

peak represent sample Miller indices corresponding to the peak in question (in

rare cases two such sample Miller indices are included).

(a) A15 phase (at (γ = 1.23, τ = 0)).
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Figure 3.4: Selected A15 and σ Fourier-space plots of final density profiles

cont.

(b) σ phase (at (γ = 1.08, τ = −0.059)).
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Figure 3.5: Excess free energy plots with γ fixed. Free energy plot points are

connected with straight lines.

(a) ∆f = ((free energy of indicated phase) − (free energy of lamellar

phase)) vs. τ for γ = 0.15.
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Figure 3.5: Excess free energy plots with γ fixed cont.

(b) ∆f = ((free energy of indicated phase) − (free energy of A15 phase))

vs. τ for γ = 1.23.
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Chapter 4

Discussion and Conclusion

4.1 Where do we go from Here?

We found that, when eight candidate phases (the disordered, cylindrical hexag-

onal, BCC, FCC, A15, σ, double gyroid, and lamellar phases) are considered,

the σ and A15 phases have regions of stability within the Landau-Brazovskii

phase diagram. This is despite the fact that the Landau-Brazovskii model is

designed specifically for cases in which one wavelength dominates, and the σ

and A15 phases have multiple characteristic length scales due to their complex

unit cells with multiple nonequivalent lattice sites. Further research is required

to better understand the reason for the emergence of the Frank-Kasper phases

in such a simple model.

It would also be instructive to attempt to link the parameters in the Landau-

Brazovskii model with physical parameters in soft matter systems which ex-
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hibit the σ and A15 phases. This has already been done [35, 37, 38] for linear

diblock copolymers with equal Kuhn lengths, but it would be interesting to

attempt such a derivation for systems such as liquid crystalline dendrimers [8,

9] and small ionic surfactants [6]. The derivation of the Landau-Brazovskii

model for particular physical systems can be done by Taylor expanding the

free energy functional in powers of the order parameter field and applying a

mean field approximation, but this would yield a result that was valid only

near the critical point. However, one might reasonably expect this type of

derivation to produce a model which was qualitatively valid, to some extent,

even far from the critical point.

Once a connection is made with a given physical system, this connection could

be applied to the problem of identifying the origin of a universal phase tran-

sition sequence found in a number of soft matter systems. This sequence

proceeds from the BCC to the σ to the A15 to the cylindrical hexagonal phase

[7] as some parameter (such as the minority block fraction or temperature)

is adjusted, and the sequence appears in a variety of soft matter systems, in-

cluding block copolymers [14], small ionic surfactants [6], giant surfactants1

[5], and dendrimers [9]. Hopefully, one could determine whether the Landau-

Brazovskii model, when applied to these soft matter systems, exhibits a similar

transition sequence.

Finally, it would be interesting to determine if other Frank-Kasper phases,

not considered in this work, are stable in the phase diagram of the Landau-

Brazovskii model. In particular, the Frank-Kasper C14 (MgZn2) and C15

1In giant surfactants, a dodecagonal quasicrystalline phase can be observed in between

the σ and A15 phases [5].
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(Cu2Mg) phases have been identified as stable or metastable structures in a

number of soft matter systems, including diblock copolymers [29] and small

ionic surfactants [27]. It would also be useful to determine whether dodecago-

nal quasicrystalline (DDQC) phases are stabilized by the Landau-Brazovskii

model. Quasicrystalline phases are non-periodic phases which have been found

in many metallic systems; they were originally discovered in Al-Mn alloys in

the 1980s [53]. Quasicrystalline phases with 12-fold rotational symmetry (i.e.,

DDQCs) have also been discovered in a number of soft materials, including tri-

block [54] and tetrablock [15, 55] copolymers, binary systems of nanoparticles

[56], giant surfactants [5], mesoporous silica [57], and colloids [58]. In some of

these DDQC-forming systems [5, 15, 57], the σ and A15 phases can also be

stabilized. Indeed, the σ and A15 phases are approximants to some DDQC

phases [55, 59], and hence it would not be surprising if the Landau-Brazovskii

model stabilizes DDQC structures.

4.2 Conclusion

The Landau-Brazovskii free energy functional is a generic model for studying

weak first-order phase transitions in a near-isotropic system whose free energy

is dominated by a single characteristic wavelength. We have shown that the

phase behavior of this model depends only on two parameters, γ and τ in Eq.

(1.3). We have, furthermore, shown that the Frank-Kasper σ and A15 phases,

which have attracted recent interest due to their discovery in a wide variety

of single-component soft condensed matter systems, are stable in the phase

diagram of this model, at least when compared against the disordered, BCC,

FCC, lamellar, double gyroid, and cylindrical hexagonal phases.
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Our results provide some explanation for the appearence of the σ and A15

phases in such a wide array of soft matter systems: since the Landau-Brazovskii

model is a very simple, generic, model (perhaps the simplest capable of gener-

ating ordered, periodic, phases), this discovery of the σ and A15 phases in its

phase diagram suggests that the occurrence of these phases is a quite general

feature of systems exhibiting periodic order, provided the right conditions are

present. Such a conclusion is coincident with the existence of the σ and A15

phases in a range of soft matter systems, and the Landau-Brazovskii model

would likely thus be a fruitful object for future study in this area.
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Appendix A

σ and A15 Phase Data

A.1 A15 Structure

The A15 structure (space group: Pm3n) consists of an eight-point basis on

a simple cubic Bravais lattice. Let x̂, ŷ, and ẑ be mutually perpendicular

unit vectors in the directions of the three cubic axes, and let a be the lattice

constant. x̂, ŷ, and ẑ form a right-handed triple, such that x̂ × ŷ = ẑ. With

this notation, the positions {ri} of the basis atoms are as shown in Table A.1.
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Table A.1: A15 basis coordinates and associated Wyckoff positions [21, 28].

Basis Atom Position Wyckoff Position

r1 = 0 2(a)

r2 = a
2

(x̂ + ŷ + ẑ) 2(a)

r3 = a
(

1
2
x̂ + 1

4
ẑ
)

6(c)

r4 = a
(

1
2
x̂ + 3

4
ẑ
)

6(c)

r5 = a
(

1
2
ŷ + 1

4
x̂
)

6(c)

r6 = a
(

1
2
ŷ + 3

4
x̂
)

6(c)

r7 = a
(

1
2
ẑ + 1

4
ŷ
)

6(c)

r8 = a
(

1
2
ẑ + 3

4
ŷ
)

6(c)

A.2 σ Structure

The σ structure (space group: P42/mnm) is considerably more complicated

than the A15 phase described above. Its underlying lattice is a primitive

tetragonal Bravais lattice. Let x̂, ŷ, and ẑ be mutually perpendicular unit

vectors such that they form a right-handed triple where x̂ × ŷ = ẑ. Further-

more, let c be the length of the unit cell in the z-direction, and a the unit

cell length in the x- and y- directions. A basis to the underlying tetragonal
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Bravais lattice is thus given by {c1 = ax̂, c2 = aŷ, c3 = cẑ}, and the positions

of the σ phase basis atoms are as shown in Table A.2.

Table A.2: σ basis coordinates and associated Wyckoff positions [28]. x2, x3,

y3, x4, y4, x5, and z5 are adjustable parameters.

Basis Atom Position Wyckoff Position

r1 = 0 2(a)

r2 = a
2

(x̂ + ŷ) + c
2
ẑ 2(a)

r3 = ax2 (x̂ + ŷ) 4(f)

r4 = −ax2 (x̂ + ŷ) 4(f)

r5 = a
[(

1
2
− x2

)
x̂ +

(
1
2

+ x2

)
ŷ
]

+ c
2
ẑ 4(f)

r6 = a
[(

1
2
− x2

)
ŷ +

(
1
2

+ x2

)
x̂
]

+ c
2
ẑ 4(f)

r7 = a (x3x̂ + y3ŷ) 8(i)

r8 = −a (x3x̂ + y3ŷ) 8(i)

r9 = a (x3ŷ + y3x̂) 8(i)

r10 = −a (x3ŷ + y3x̂) 8(i)

r11 = a
[(

1
2
− x3

)
x̂ +

(
1
2

+ y3

)
ŷ
]

+ c
2
ẑ 8(i)

r12 = a
[(

1
2

+ x3

)
x̂ +

(
1
2
− y3

)
ŷ
]

+ c
2
ẑ 8(i)

r13 = a
[(

1
2
− x3

)
ŷ +

(
1
2

+ y3

)
x̂
]

+ c
2
ẑ 8(i)

r14 = a
[(

1
2

+ x3

)
ŷ +

(
1
2
− y3

)
x̂
]

+ c
2
ẑ 8(i)

r15 = a (x4x̂ + y4ŷ) 8(i)′

57



M. Sc. Thesis - Duncan McClenagan; McMaster University - Physics & Astronomy

Table A.2: σ basis coordinates and associated Wyckoff positions cont.

Basis Atom Position Wyckoff Position

r16 = −a (x4x̂ + y4ŷ) 8(i)′

r17 = a (x4ŷ + y4x̂) 8(i)′

r18 = −a (x4ŷ + y4x̂) 8(i)′

r19 = a
[(

1
2
− x4

)
x̂ +

(
1
2

+ y4

)
ŷ
]

+ c
2
ẑ 8(i)′

r20 = a
[(

1
2

+ x4

)
x̂ +

(
1
2
− y4

)
ŷ
]

+ c
2
ẑ 8(i)′

r21 = a
[(

1
2
− x4

)
ŷ +

(
1
2

+ y4

)
x̂
]

+ c
2
ẑ 8(i)′

r22 = a
[(

1
2

+ x4

)
ŷ +

(
1
2
− y4

)
x̂
]

+ c
2
ẑ 8(i)′

r23 = ax5 (x̂ + ŷ) + cz5ẑ 8(j)

r24 = −ax5 (x̂ + ŷ) + cz5ẑ 8(j)

r25 = ax5 (x̂ + ŷ)− cz5ẑ 8(j)

r26 = −ax5 (x̂ + ŷ)− cz5ẑ 8(j)

r27 = a
[(

1
2
− x5

)
x̂ +

(
1
2

+ x5

)
ŷ
]

+ (1
2

+ z5)cẑ 8(j)

r28 = a
[(

1
2

+ x5

)
x̂ +

(
1
2
− x5

)
ŷ
]

+ (1
2

+ z5)cẑ 8(j)

r29 = a
[(

1
2
− x5

)
x̂ +

(
1
2

+ x5

)
ŷ
]

+ (1
2
− z5)cẑ 8(j)

r30 = a
[(

1
2

+ x5

)
x̂ +

(
1
2
− x5

)
ŷ
]

+ (1
2
− z5)cẑ 8(j)
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Appendix B

SAV Algorithm: A Brief

Overview

The scalar auxiliary variable (SAV) algorithm, first introduced by Shen, Xu,

and Yang [51, 52], provides a method for numerically solving a certain class

of differential equations. In this appendix, I give the class of problems this

algorithm is designed to solve, and give a summary of the algorithm and my

implementation of it. Note that we mix our own notation with that of the

creators of this algorithm [51]. Most of the notation should be familiar; I note

only that I use the notation 〈f |g〉 =
∫

∆
fg dx to denote the inner product.

B.1 Introduction

We roughly follow the presentation of the SAV algorithm given in [52]. Con-

sider a functional H [φ (x)] of a scalar field φ (x). Assume that φ is subject to
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either periodic, or homogeneous von Neumann boundary conditions,1 and let

∆ be the domain over which φ is defined. Assume that φ obeys the following

(pseudo)time evolution law:

∂φ

∂t
= Gµ, (B.1)

where t is a (pseudo)time parameter, G is a symmetric, negative semidefinite,

linear operator (independent of φ), and:

µ :=
δH

δφ
(B.2)

is the variational derivative of H with respect to φ. Note that the negative

semidefiniteness of G guarantees that H will be nonincreasing with increasing

t. We wish to find φ(x; t) given φ(x; 0) at some initial time t = 0. We will

be interested in the steady state solution φ(x; t → ∞) reached in the t → ∞

limit, provided such a solution exists.

Let us suppose that H is bounded from below by a positive constant; that

is, assume H ≥ C0 > 0. Furthermore, we assume that H can be split into a

quadratic and a nonlinear part:

H =
1

2
〈φ|Lφ〉+ P [φ], (B.3)

1More specifically, according to the creators of the SAV algorithm, any boundary con-

dition in which “all boundary terms will vanish when [integration] by parts [is] performed”

[51] is valid.
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where P can be nonlinear, and L is a linear, symmetric, positive semidefinite

operator, independent of φ. P contains, we assume, only derivatives of lower

order2 than those in L. Assume also that P is bounded from below by a

positive constant; that is, suppose P ≥ C1 > 0.3

Eq. (B.1) can sometimes be difficult to solve with usual methods – if this equa-

tion is unstable, solving it by explicit iterative methods can be prohibitively

expensive (for instance, by forcing an extremely small time step between iter-

ations), and the implementation of implicit methods is also generally difficult

to the nonlinearity of P . The SAV algorithm presents an alternate approach,

which we found to work very well in practice.

B.2 Algorithm Details

We have given the assumptions underlying the SAV algorithm above, and we

now turn to the algorithm itself. Again, we roughly follow the presentation in

[51]. First, we introduce the “scalar auxilary variable” p:

p :=
√
P . (B.4)

Using Eqs. (B.1), (B.2), (B.3), and (B.4), we can rewrite the time evolution

2This condition on the derivatives in P is mentioned in [51], but that paper also suggests

that only a weaker condition is necessary: the condition that P contains derivatives of lesser

or equal order than/to the highest order derivatives in L.
3We may also, without loss of generality, release the restriction on C1 and allow it to be

any real number, for in that case we may simply add a constant to P without changing the

flow in Eq. (B.1).
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of φ as follows:

∂φ

∂t
= Gµ,

µ = Lφ+
p√
P
U, (B.5)

∂p

∂t
=

1

2
√
P

∫
∆

U
∂φ

∂t
dx, (B.6)

where

U [φ] :=
δP

δφ
(B.7)

is the variational derivative of P . One may then construct the first-order SAV

algorithm by introducing the discrete time evolution law below:

φn+1 − φn

∆t
= Gµn+1, (B.8)

µn+1 = Lφn+1 +
pn+1√
P [φn]

U [φn], (B.9)

pn+1 − pn

∆t
=

1

2
√
P [φn]

∫
∆

U [φn]
φn+1 − φn

∆t
dx, (B.10)

p0 = P [φ0], (B.11)

where ∆t > 0 is the time step, and where a superscript index k indicates

a quantity associated with the kth iteration (that is, the quantity at time

62



M. Sc. Thesis - Duncan McClenagan; McMaster University - Physics & Astronomy

k∆t, where t = 0 is the initial time) of the discrete time evolution scheme.

By using the above first-order discretization scheme, together with an initial

condition φ0, we can approximate the time evolution of φ under Eq. (B.1). As

explained in §2.4, we used this algorithm to minimize the Landau-Brazovskii

free energy functional subject to the constraint that the zeroth moment of the

density field is zero. In practice, we found this method to permit the use of

much larger time increments ∆t than, for instance, the more standard Euler

or Runge-Kutta methods.

We may implement the first order SAV algorithm using the following three-step

method, given in [51] (I have corrected one small typo):

1. Let φ0 be the initial density profile. Define the following terms for iter-

ation n:

bn :=
U [φn]√
P [φn]

, (B.12)

and

cn := φn + ∆tpnGbn − ∆t

2
〈bn|φn〉 Gbn. (B.13)

Also define:

A = I −∆tGL, (B.14)

where I is the identity operator. Compute bn and cn.

2. One can show that:

〈bn|φn+1〉 =
〈bn|A−1cn〉

1− (∆t/2) 〈bn|A−1Gbn〉
, (B.15)

where A−1 is the inverse of A. Compute 〈bn|φn+1〉.
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3. One can also show that:

φn+1 =
∆t

2
〈bn|φn+1〉A−1Gbn +A−1cn. (B.16)

Using this expression, compute φn+1 using the results from the previous

two steps.

4. Finally, update p using Eq. (B.10), which comes out to:

pn+1 = pn + 〈(bn/2)|
(
φn+1 − φn

)
〉 , (B.17)

noting that p0 is defined by Eq. (B.11).

The only non-trivial parts of this algorithm involve the computation of the

vector-inverse matrix products A−1Gbn and A−1cn. If such products can be

efficiently computed (as is the case in our implementation, as we work in a

diagonal basis of A), then the SAV algorithm has the potential to be highly

efficient.

B.3 Implementation

Let us now consider our implementation of this algorithm. As discussed in

§2.4, we used this algorithm to find steady-state (t → ∞) solutions to Eq.

(2.4). We reproduce Eq. (2.4) below:

∂ψ

∂t
= η∇2

[
δf ′

δψ

]
, (B.18)

where f ′ is given by Eq. (2.1), which we likewise reproduce below:
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f ′ =
1

V

∫
∆

d3r

[
(ξ′)2

2

(
∇2ψ + ψ

)2
+
τ ′

2
ψ2 − γ′

3!
ψ3 +

1

4!
ψ4

]
(B.19)

ψ is defined with periodic boundary conditions over the unit cell domain ∆.

B.3.1 Construction of L and P

We will now split f ′ into a quadratic part 1
2
〈ψ|Lψ〉 and a nonlinear part P [ψ].

First, we make the following claim:

∫
∆

(∇2ψ + ψ)
2

d3r =

∫
∆

ψ(∇2 + 1)
2
ψ d3r, (B.20)

where (∇2 + 1)
2
ψ denotes the operator (∇2 + 1) applied twice to the field

ψ. To prove this, recall the multidimensional integration-by-parts identity, as

given in [60]:

∫
Ω

g∇ · f dV = −
∫

Ω

∇g · f dV +

∫
∂Ω

gf · n̂ dS,

where Ω denotes a region, ∂Ω its boundary, and n̂ a unit outward normal to

∂Ω. Taking Ω to be our domain ∆, f = ∇ [∇2ψ], and g = ψ, we have:

∫
∆

ψ∇ · ∇
[
∇2ψ

]
d3r =

∫
∆

ψ∇2
[
∇2ψ

]
d3r

= −
∫

∆

∇ψ · ∇
[
∇2ψ

]
d3r +

∫
∂∆

ψ∇
[
∇2ψ

]
· n̂ d2r.
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The surface integral vanishes because of the periodic boundary conditions, and

we are left with:

∫
∆

ψ∇2
[
∇2ψ

]
d3r = −

∫
∆

∇ψ · ∇
[
∇2ψ

]
d3r.

However, the reader can easily verify that, for some function h, ∇· [∇h∇2h] =

(∇2h)
2

+ ∇h · ∇ [∇2h] [60]. Making use of this identity, we can rewrite the

equation above as:

∫
∆

ψ∇2
[
∇2ψ

]
d3r =

∫
∆

(∇2ψ)
2

d3r−
∫

∆

∇ ·
[
∇ψ∇2ψ

]
d3r.

The second integral on the right-hand side can be evaluated as a surface inte-

gral using the divergence theorem, and it therefore vanishes by means of the

periodic boundary conditions. Hence, we have the result:

∫
∆

ψ∇2
[
∇2ψ

]
d3r =

∫
∆

(∇2ψ)
2

d3r. (B.21)

Using this result, the proof of Eq. (B.20) is trivial:

∫
∆

(∇2ψ + ψ)
2
d3r =

∫
∆

d3r
[
(∇2ψ)

2
+ 2ψ∇2ψ + ψ2

]
=

∫
∆

d3r
[
ψ∇2

[
∇2ψ

]
+ 2ψ∇2ψ + ψ2

]
=

∫
∆

ψ(∇2 + 1)
2
ψ d3r.

Because of Eq. (B.20), we may now write Eq. (B.19) in the form:
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f ′ =
1

2
〈ψ|Lψ〉+ P [ψ] ,

where:

L = (ξ′)
2
(∇2 + 1)2, (B.22)

and

P =

∫
∆

d3r

[
τ ′

2
ψ2 − γ′

3!
ψ3 +

1

4!
ψ4

]
. (B.23)

B.3.2 Computational Procedure

Now, we will consider the application of the SAV algorithm to solving Eq.

(B.18), with our energy functional H = f ′ (see Eq. (B.3)), φ = ψ, x = r, and

P and L as given above. We will let η in Eq. (B.18) be 1, so that the operator

G (see Eq. (B.1)) is ∇2. From §B.1, we see that the necessary conditions for

the use of the SAV algorithm are met: our boundary conditions are periodic, L

is linear, symmetric, independent of ψ and positive semidefinite, G is negative

semidefinite, symmetric, and independent of ψ, P is bounded from below due

to its fourth-order term (we only need to add a constant to it to ensure it is

bounded from below by a positive constant), and the quadratic term 1
2
〈ψ|Lψ〉

in f contains all of the highest order derivatives (P contains no derivatives).

We now turn to the computational procedure used to implement the SAV

algorithm. Let {ψn (rijk)} represent the discretized order parameter field at
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iteration n (see §2.4.2). Given an initial discretized order parameter field

{ψ0 (rijk)}, our SAV algorithm implementation proceeds effectively as follows:

1. Compute the discrete Fourier transform (DFT; see §2.4.3) of {ψ0 (rijk)},

and call it
{
ψ̂0
(
qîĵk̂

)}
. We used the FFTW (Fastest Fourier Transform

in the West) algorithm [61] to perform these transforms.

2. Estimate the quadratic part (1
2
〈ψ|Lψ〉) of f ′ using the DFT computed

in the previous step (the matrix elements of L are computed using Eq.

(2.5)).

3. Use {ψ0 (rijk)} to estimate P [ψ0], p0, and the values {U [ψ0 (rijk)]} of U

on the grid used to discretize ψ. Add a constant α to our estimate of

P [ψ0] to ensure a positive value for P .

4. Next, repeat the following steps until either the maximum iteration count

is reached or the relative absolute free energy density difference between

energies computed from subsequent iterations is reached:

(a) Estimate 〈bn|ψn〉 using Eq. (B.12) and the real space discretizations

{ψ0 (rijk)} and {U [ψ0 (rijk)]}.

(b) Compute the DFT associated with bn. Using this result and the

results from the previous steps, compute the DFTs associated with

A−1cn and A−1Gbn with Eqs. (B.14) and (B.13). This calculation is

efficient since we are working in Fourier space, where we can use Eq.

(2.5) to compute the matrix elements of G and A (these matrices

will be diagonal in Fourier space, so, for instance, the inversion of

A is trivial).
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(c) Estimate 〈bn|A−1cn〉 and 〈bn|A−1Gbn〉 using the results from the

previous step.

(d) Use the previous results to compute 〈bn|φn+1〉 from Eq. (B.15).

(e) Compute the DFT for ψn+1,
{
ψ̂n+1

(
qîĵk̂

)}
, using the previous

results and Eq. (B.16). Perform an inverse DFT back to real space

to get the real-space discretization of ψn+1.

(f) Using the previous results and Eq. (B.17), estimate pn+1.

(g) Estimate the quadratic part of f ′, 1
2
〈ψ|Lψ〉, using the DFT for

ψn+1, and estimate P [ψn+1] and the real-space discretization of

U for the next iteration (that is, {U [ψn+1 (rijk)]}) using the real

space discretization of ψn+1. Add the constant α to the estimate of

P [ψn+1], as was done in step three.
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Appendix C

Simulation Box Size

Optimization Procedure

The minimization algorithm outlined in §2.4.4 includes the determination of

the optimal simulation box width (W ), length (L), and height (H), given the

discrete Fourier transform (DFT) of the real-space discretization of the density

profile. We outline here the procedure used to perform this optimization. We

consider the case of a three-dimensional simulation box; however, the methods

herein are easily applied to the one- and two-dimensional cases. Using the

notation of §2.4.3, let us call the DFT
{
ψ̂
(
qîĵk̂

)}
, where qîĵk̂ =

(
2πî/W

)
x̂+(

2πĵ/L
)

ŷ +
(

2πk̂/H
)

ẑ. We wish to fix the Fourier components
{
ψ̂
(
qîĵk̂

)}
,

and minimize the free energy density f ′ with respect to W , L, and H. This

amounts to minimizing f ′ by performing exclusively affine deformations of the

density profile along the x, y, and z directions.

Let us define the quantities kx, ky, and kz as follows:
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kx =
2π

W
, ky =

2π

L
, kz =

2π

H
. (C.1)

Zhang and Zhang [41] demonstrate how one can determine the optimal kx, ky,

and kz. First, they define b1, b2, and b3 as primitive reciprocal lattice vectors

of the Bravais lattice defined by the size and shape of the simulation box –

if we fill space with identical copies of our simulation box, the corners of the

simulation boxes will be points on a Bravais lattice, and a set of non-coplanar

vectors formed from the edges of a simulation box will be a set of basis vectors

for the lattice. Zhang and Zhang do not assume that the simulation box is a

right rectangular prism, so b1, b2, and b3 can represent any Bravais lattice in

their model. The optimal values for b1, b2, and b3 for the Landau-Brazovskii

model can be determined, they show, by solving a system linear in b1 · b2,

b2 ·b3, b3 ·b1, b1
2, b2

2, and b3
2. Since we are assuming that our simulation box

is a right rectangular prism, the Bravais lattice defined by our simulation box

is (in general) a simple orthorhombic lattice with mutually perpendicular basis

vectors along the x, y, and z directions. The reciprocal lattice corresponding

to this orthorhombic lattice is also orthorhombic, and we can set:

b1 = kxx̂,b2 = kyŷ,b3 = kzẑ. (C.2)

Hence, the dot products between any two distinct vectors from the list above

vanish. The linear system representing the optimality conditions for b1, b2,

and b3 is given by Eqs. (2.9), (2.10), (2.11), (2.12), (2.13), and (2.14) in

[41]. Eqs. (2.10), (2.11), and (2.13) in [41] represent the conditions for the

minimization of the free energy density with respect to the dot products b1 ·b2,
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b2 · b3, b3 · b1. Since these dot products are always zero in our case, we may

ignore those equations. Hence, the conditions for the minimization of the free

energy density f ′ with respect to kx, ky, and kz are given by Eqs. (2.9), (2.12),

and (2.14) in [41], where we used Eq. (C.2) and set the dot products bi · bj,

i 6= j to zero:

kx
2
∑
î,ĵ,k̂

∣∣∣ψ̂ (qîĵk̂

)∣∣∣2î4 + ky
2
∑
î,ĵ,k̂

∣∣∣ψ̂ (qîĵk̂

)∣∣∣2î2ĵ2

+ kz
2
∑
î,ĵ,k̂

∣∣∣ψ̂ (qîĵk̂

)∣∣∣2î2k̂2 =
∑
î,ĵ,k̂

∣∣∣ψ̂ (qîĵk̂

)∣∣∣2î2, (C.3)

kx
2
∑
î,ĵ,k̂

∣∣∣ψ̂ (qîĵk̂

)∣∣∣2î2ĵ2 + ky
2
∑
î,ĵ,k̂

∣∣∣ψ̂ (qîĵk̂

)∣∣∣2ĵ4

+ kz
2
∑
î,ĵ,k̂

∣∣∣ψ̂ (qîĵk̂

)∣∣∣2ĵ2k̂2 =
∑
î,ĵ,k̂

∣∣∣ψ̂ (qîĵk̂

)∣∣∣2ĵ2,

(C.4)

kx
2
∑
î,ĵ,k̂

∣∣∣ψ̂ (qîĵk̂

)∣∣∣2î2k̂2 + ky
2
∑
î,ĵ,k̂

∣∣∣ψ̂ (qîĵk̂

)∣∣∣2ĵ2k̂2

+ kz
2
∑
î,ĵ,k̂

∣∣∣ψ̂ (qîĵk̂

)∣∣∣2k̂4 =
∑
î,ĵ,k̂

∣∣∣ψ̂ (qîĵk̂

)∣∣∣2k̂2.

(C.5)

These equations form a linear system in kx
2, ky

2, and kz
2. After solving this

system, the optimal box lengths can be determined using Eq. (C.1). My

minimization program made use of the open source linear algebra library Eigen

[62] to solve this system. In some cases, the equations above can have more

than one solution: that is the case when the dimensionality of the structure

considered is lower than the dimensionality of the simulation box. If this

happens, it is an indication that the structure originally under consideration

has decayed to another structure with lower dimensionality.
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Appendix D

Phase Diagram Verification

Methods

The Landau-Brazovskii phase diagram presented in Fig. 3.1 was created by

comparing the free energy densities of a certain set of ordered phases. However,

this phase diagram is not reliable if, at some points in one of the phase regions

of the diagram, our minimization algorithm causes the supposedly stable phase

to decay to some other phase, so that the free energy densities our algorithm

associates with the stable phase in this region are actually the free energy

densities of another phase.

To test for this, I examined the final minimized density profile of the supposedly

stable phase for three sample points in each of the ordered phase regions we

found in the Landau-Brazovskii phase diagram. In each case, I expected the

density profile to match the structure of the ordered phase we predicted to

be stable. To ensure this prediction was correct, I produced and visually
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analyzed plots produced from the final minimized density profile data. Some

of these plots are shown in Fig. 3.3. I also ensured, for each of the non-

lamellar1 minimized density profiles I considered above, that the symmetry

operations associated with the supposedly stable phase’s space group were

indeed symmetries of the minimized density profile (within a 10% tolerance).

More precisely, I considered each symmetry operation within a generating set

of all possible symmetry operations for that space group. For instance, let O

be such an operation. Let ψ be an interpolation of final, minimized density

profile data produced by our minimization algorithm, and let O [ψ] be the

result of applying O to ψ. Also, let ψ∗ be the maximum value of ψ. Then, I

used numerical integration to ensure that 1
V ψ∗

∫
∆
|ψ (r) −O [ψ (r)] | dnr < 0.1

was satisfied for all appropriate O (n = 2 for the cylindrical hexagonal phase,

otherwise n = 3).

1The test described here is automatically satisfied for the lamellar phase, because of the

periodic boundary conditions on ψ.
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Appendix E

Additional Fourier-Space Final

Density Profile Plots

In this section, we present additional Fourier-space plots derived from the

density profile data used to generate the real-space plots in Chap. 3.

75



M. Sc. Thesis - Duncan McClenagan; McMaster University - Physics & Astronomy

Figure E.1: Selected Fourier-space plots of final density profiles associ-

ated with the equilibrium phases in Fig. 3.1. On the y-axis is plotted

log

[ 〈
|ψ̂q|2

〉
|q|=q

maxq

(〈
|ψ̂q|2

〉
|q|=q

)
]

. In other words, the y-axis variable is the logarithm of

a scaled average of the square magnitudes of the Fourier components (that is,

the components of the discrete Fourier transform) ψ̂q of ψ, where the average

for a given q is over all q with magnitude q, and q is plotted on the x -axis.

If the argument to the logarithm above is less than 10−7, the associated peak

is omitted from its plot. The indices above each peak represent sample Miller

indices corresponding to the peak in question (in rare cases two or more such

sample Miller indices are included).

(a) BCC phase (at

(γ = 0.31, τ = 0)).

(b) Cylindrical hexagonal phase (at

(γ = 0.62, τ = −0.12)).
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Figure E.1: Selected Fourier-space plots of final density profiles cont.

(c) FCC phase (at

(γ = 1.85, τ = 0)).

(d) Double gyroid phase (at

(γ = 0.46, τ = −0.47)).

(e) Lamellar phase (at

(γ = 0.15, τ = −0.24)).
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