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Lay Abstract

Turbulence is known to consume kinetic energy in a fluid system. To enhance the

efficiency of fluid transportation, various techniques are developed. Especially, it was

found that a small amount of polymers in turbulent flows can significantly suppress

turbulent activity and cause considerable friction drag reduction (DR). Extraordi-

nary progress has been made to study this phenomenon, however, some questions

still remain elusive. This dissertation tries to address some fundamental questions

that relate to the two typical polymeric turbulent motions: the inertia- (IDT) and

elasticity-driven turbulence (EDT). In IDT, mechanisms of transitions between the

intermediate stages are investigated from the perspective of vortex dynamics. The

different effects of polymers at each stage of the flow lead to different flow behaviors.

Particularly, starting from the low- to high-extent DR transition, the lift-up process

of vortices is suppressed by polymers. The regeneration cycles of turbulence are thus

modified, which results in qualitative changes of flow statistics. Numerical study

on EDT is enabled by a newly developed hybrid pseudo-spectral/finite-difference

scheme. A systematic investigation of the parameter space indicates that EDT is one

self-contain turbulence driven purely by the elastic force. It can also interact with

IDT and lead to a dynamical flow state in which EDT and IDT can alternatively

occur.
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Abstract

In dilute polymer solution, polymers are able to change the flow structures and sup-

press the intensity of turbulence, resulting in a considerable friction drag reduction

(DR). Despite the extraordinary progress made in the past few decades, some critical

questions remain unanswered. This dissertation will try to address two fundamen-

tal questions in dilute polymeric turbulence: (I) interactions between polymers and

turbulent motions during the qualitative low-extent to high-extent drag reduction

(LDR and HDR) transition in inertia-driven turbulence, (II) roles of the inertia- and

elasticity-driven turbulent motions in the dynamics of high elasticity polymeric flows.

Many studies in the area of DR turbulence have been focused on the onset of

DR and the maximum drag rection (MDR) asymptote. Between these two distinct

stages, polymeric turbulent flows can also be classified into the qualitative LDR and

HDR stages. Understanding the polymer-turbulence interactions during the dras-

tic LDR-HDR transition is of vital importance for the development of efficient flow

control technology. However, knowledge regarding this qualitative transition is still

limited. In our DNS (direct numerical simulation) study, differences between the LDR

and HDR stages are presented by a number of sharp changes in flow structures and

statistics. Drag reduction in the flows is thus governed by two different mechanisms.

The first is introduced at the onset of DR, which has been well explained by the
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indiscriminate suppression of turbulent fluctuations during the coil-stretch transition

of polymers. The second mechanism starts at the LDR-HDR transition but its phys-

ical origin is not clear. Based on instantaneous observations and indirect statistical

evidence, we proposed that polymers, after the LDR-HDR transition, could suppress

the lift-up process of the near-wall vortices and modify the turbulent regeneration

cycles. However, direct evidence to support this hypothesis is not available without

a statistical analysis of the vortex configurations. Therefore, a new vortex tracking

algorithm – VATIP (vortex axis tracking by iterative propagation) – is developed

to analyze statistically the configurations and distribution of vortices. Implement-

ing this method in the polymeric turbulence demonstrates that the lift-up process of

streamwise vortices in the buffer layer is restrained at HDR, while the generation of

hairpins and other three-dimensional vortices is suppressed. In addition, the charac-

teristic lifting angle of conditional eddies extracted by a conditional sampling method

is found to be larger in HDR than in the Newtonian turbulence. These observations

all support our hypothesis about the mechanism of LDR-HDR transition.

Research on the low elasticity turbulence usually considered the flow motions to

be Newtonian-like. Turbulence here is driven by the inertial force (and hence called

“inertia-driven” turbulence (IDT)) while polymers are responsible for dissipating tur-

bulent kinetic energy. In the high elasticity turbulence, recent studies found a com-

pletely different turbulent flow type in which turbulence is driven by the elastic force

and polymers could also feed energy to the flow. The behaviors of this “elasticity-

driven” turbulence (EDT) are of significant interest in this area because of its potential

connection to the MDR asymptote. However, EDT is difficult to capture by the tra-

ditional pseudo-spectral DNS scheme (SM) as a global artificial diffusion (GAD) term
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is involved in the polymer constitutive equation to stabilize the simulation. In our

study, a new hybrid pseudo-spectral/finite-difference scheme is developed to simulate

the polymeric turbulence without requiring a GAD. All of the spatial derivative terms

are still discretized by the Fourier-Chebyshev-Fourier pseudo-spectral projection ex-

cept for the convection term in the constitutive equation which is discretized using a

conservative second-order upwind TVD (total variation diminishing) finite difference

scheme. The numerical study using the hybrid scheme suggests that turbulent flows

can be either driven by the inertial or the elastic forces and respectively result in the

IDT and EDT flows. A dynamical flow state is also found in the high elasticity flow

regime in which IDT and EDT can be sustained alternatively.
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Chapter 1

Introduction

Turbulence represents a broad range of flows that are random in details but coherent

in statistics. Studies on turbulence usually involve self-sustaining mechanism, i.e.,

turbulence can reproduce itself in the absence of external disturbance. The “vortical

structures” – typical recurrent flow structures in the turbulent flows – are believed to

play the key role in the self-sustaining of turbulence (Cantwell, 1981; Robinson, 1991;

Panton, 2001). Based on the concept of vortex, a number of theories for the dynamics

of turbulence were proposed in the past (Brooke and Hanratty, 1993; Bernard et al.,

1993; Hamilton et al., 1995; Schoppa and Hussain, 2002).

When adding a small amount of polymers into the Newtonian turbulence, the

self-sustaining dynamics of the flows are modified and distinct drag reduction (DR)

is observed (Graham, 2018). Several qualitative different stages are found in the

DR turbulence. Especially, the flow can be driven by the inertial and elastic forces,

leading to the fundamentally different flow states: the inertia- and elasticity-driven

turbulence.
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1.1 Turbulence and coherent structures

Turbulent flows exist everywhere. They occur when wind blows into the room, when

cars travel on the road and even when people stir their coffee. Although it is intuitive

to accept this concept, turbulence, in fact, is far from been fully understood after

hundreds years of studies (Pope, 2000; Mathieu and Scott, 2000). It is even difficult

to precisely define turbulence due to its highly chaotic nature. Intuitively, turbulence

represents a broad range of flows that share some common features: they are random

in details but highly coherent in statistics, they are made up by correlated flow

structures with a wide range of scales, and they are responsible for intensive energy

exchanging and dissipation (Mathieu and Scott, 2000). Despite such abundant types

of turbulence, we will only focus on the wall-bounded turbulent flows.

A wide range of the engineering turbulence interacts with the walls, e.g., those

flows over wings of an aircraft or inside a pipeline. When in contact with the walls,

friction drag is induced as the walls try to retard the flow which consumes a large

amount of kinetic energy. In the meantime, turbulence could be triggered which

enhances the consumption of energy by opening another pathway: the fluid kinetic

energy is extracted from the mean flow and continuously transferred to smaller and

smaller turbulent eddies until it is eventually dissipated into the internal heat at the

Kolmogorov scale (Pope, 2000). The process described above is self-sustaining, i.e.,

reproduction of turbulence by itself in the absence of external disturbance. Study on

how turbulence sustains is of significant importance for developing new flow control

strategies in practice (Mullin, 2011). In the past century, much progress has been

made to reveal the physics of the self-sustaining process of turbulence. Particularly,

the so-called “coherent structures” (Corrsin, 1943; Einstein and Li, 1956) – spatial
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and temporal coherent structures that repetitively occur in turbulence – are inten-

sively discussed and are believed to have a key role in the self-sustaining process of

turbulence (Cantwell, 1981; Robinson et al., 1989; Panton, 2001; Jiménez, 2018).

The concept of coherent structures involves various types of structures, e.g. the

near-wall quasi-streamwise streaks and vortices, which are difficult to be fully ad-

dressed. The readers are referred to those high impact papers (Robinson, 1991; Pan-

ton, 2001; Adrian, 2007; Jiménez, 2018) for a more comprehensive overview of the

entire area. In this dissertation, we will mostly focus on the vortex structures which

represent a class of rotating flow motions that broadly distribute in the turbulent

flows (Robinson, 1991; Panton, 2001). Vortex is usually regarded as the fundamental

element in many proposed theories to explain the self-sustaining dynamics of tur-

bulence. Schoppa and Hussain (2002) roughly summarized those theories into two

categories: (i) the “parent-offspring” mechanism in which the lifted-up “parent” vor-

tex can generate a new “offspring” vortex around its two ends in the streamwise

direction (Brooke and Hanratty, 1993; Bernard et al., 1993), and (ii) the “streak-

instability” mechanism in which new vortices are generated through interactions be-

tween the old vortices and the near-wall streaks (Hamilton et al., 1995; Schoppa and

Hussain, 2002). These two types of mechanisms could both exist and regenerate

vortices in turbulent flows, but their importance will depend on flow conditions.

The shape of vortices can be greatly different in the wall-bounded turbulence. In

the near-wall region, the quasi-streamwise vortices were frequently observed in ex-

periments (Kim et al., 1971; Smith and Schwartz, 1983) and simulations (Bernard

et al., 1993). This type of vortices is inclined in the quasi-streamwise direction, their

downstream head can occasionally lift up towards the outer layer. The dominant
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population of the quasi-streamwise vortices in the near-wall region (Schoppa and

Hussain, 2002) brings it to the central of a number of proposed mechanisms (Bernard

et al., 1993; Hamilton et al., 1995; Schoppa and Hussain, 2002) to explain the self-

sustaining of turbulence. In the meantime, another type of vortex with more complex

configuration is found outside the buffer layer (Robinson, 1991). This so-called “hair-

pin” (aka “horseshoe” (Theodorsen, 1952)) vortex usually has a Ω- or Λ-shape with

the head (i.e. the top of the arc of Ω) oriented in the downstream direction and

drastically lifting up towards the outer layer of the turbulent flows. Although the

concept of the hairpin vortex was raised some 80 years ago (Theodorsen, 1952), di-

rect visualization of this structure is not available until fairly recent direct numerical

simulation implemented by Wu and Moin (2009). Compared with the well-known

quasi-streamwise vortices, the role of hairpin vortices in turbulence is less under-

stood and still controversial. Some studies (Smith, 1984; Adrian et al., 2000; Zhou

et al., 1999; Adrian, 2007) suggested that hairpin is important for the self-sustaining

of turbulence. Adrian (2007) proposed that hairpin in the wall-bounded turbulence

could rapidly regenerate themselves and form the so-called “vortex packets”. The

alignment of the vortex packets also offers an explanation for the large-scale-motion

(LSM) and very-large-scale motion (VLSM) that observed in high-Re experiments.

Meanwhile, some other studies (Schlatter et al., 2014; Morris et al., 2007; Jiménez,

2013) suspected the critical roles of the hairpin vortices in high Re turbulence.

The debate on the role of hairpin vortex in the self-sustaining process of turbu-

lence is partially due to the lack of an efficient vortex tracking algorithm to extract

the configuration information of individual vortices from the vortex fields (Marusic

et al., 2010). In general, two steps are required to extract the vortex configuration:
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(1) determining vortex regions by an identification criterion, and (2) grouping the

vortex regions to individual vortex objects by a vortex tracking algorithm. An intu-

itive option for the identification of vortex is the vorticity ω ≡ ∇× v which defines

the angular velocity of fluid elements. However, the limitation of vorticity soon be-

comes clear as it cannot efficiently distinguish between pure shear and real swirling

motion (Jeong et al., 1997). Instead, invariant vortex identification techniques are

commonly adopted. In this thesis, we adopt one of the invariant criterion – the

Q-criterion (Hunt et al., 1988) – which is defined by

Q =
1

2
(‖Ω‖2 − ‖S‖2). (1.1)

Here, Ω ≡
(
∇v −∇vT

)
/2 and S ≡

(
∇v + ∇vT

)
/2 are the vorticity and rate of

strain tensors. Beyond the Q-criterion, other criteria, such as the λ2-criterion (Jeong

and Hussain, 1995) and ∆-criterion (Chong et al., 1990), were also designed for vortex

identification in the literature. Despite their different mathematical definitions, it is

widely agreed that vortex fields obtained by these criteria are largely equivalent in

practice (Chakraborty et al., 2005; Chen et al., 2015).

Identification criteria enable the visualization of vortex fields but do not differenti-

ate the identity of individual vortices. In order to quantitatively analyze the topology

of vortices, another tracking step is required to automatically disintegrate the vortex

fields and capture each vortex. However, development on this front is limited. One

classical method for this was developed by Jeong et al. (1997), which represents the

vortex tubes by their axis-lines. In their method, the axis-lines are obtained by con-

necting the planar maximum of each (y, z) cross-sectional plane through a so-called

“cone detective” algorithm. However, the Jeong et al. (1997) approach was designed
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only for the detection of the quasi-streamwise vortices.

Inspired by Jeong et al. (1997), we developed a new vortex tracking algorithm –

VATIP (vortex axis tracking by iterative propagation) – which iteratively searches for

planar maxima in all directions. VATIP is then applied to the vortex fields identified

by any scalar vortex identification criteria (e.g., Q-criterion or λ2-criterion) and is

capable of efficiently tracking the configuration of highly curved vortices, e.g., the

hairpin vortices. It is also adopted, in this dissertation, to understand the influence

of vortex dynamics and self-sustaining mechanism in the polymeric flows. A detailed

discussion will be presented in chapters 3 and 4.

1.2 Dilute polymeric turbulence

1.2.1 Drag reduction turbulence

The influence of polymers on the turbulent flows has long been observed since the

20th century. Especially, in the dilute polymer solution (“dilute” indicates solutions

in which the polymer-polymer interactions are negligible), a small amount of flexible

linear polymer chains could significantly change the dynamics of turbulent coherent

structures and lead to significant friction drag reduction (Toms, 1948; Virk, 1975).

This phenomenon has great practical implications for the development of flow control

methods that can imitate these effects for friction drag reduction. In particular, it

can help us break the ceiling of the maximum drag reduction in DR flows.

In dilute polymeric turbulence, the configuration of individual polymers is con-

stantly changed by the flows. Depending on the immediate configurations and flow
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conditions, a polymer can be either stretched or recoiled. The feedback of the poly-

mer to surrounding flow can be expressed as additional polymer stress that appears in

the momentum balance (governed by the Navier–Stokes equations) of the flow. The

dynamics of polymers and their contributions to the flows can be well captured by the

FENE-P (finite extension nonlinear elastic model with Peterlin closure approxima-

tion) constitutive equations (Bird et al., 1987) in which polymers are mimicked as the

finitely extensible nonlinear elastic dumbbells. The mean configuration of polymers

in the FENE-P model is described by the polymer conformation tensor α ≡ 〈QQ〉

(where Q stands for the end-to-end vector of each polymer dumbbell). As polymers

are extended in the flow, it has the tendency to relax and approach to the equilibrium.

The time required by the polymers to relax reflects the “memory” of the fluid, i.e., the

elasticity. In the FENE-P model, the elasticity is measured by the non-dimensional

parameter: Weissenberg number Wi which is defined by the ratio of the polymer

relaxation time λ and the flow deformation time 1/γ̇ (where γ̇ is the characteristic

shear rate of the flow).

Depending on the relative magnitudes of inertial and elastic forces (measured

respectively by the Reynolds number Re and Wi), polymeric flows could exhibit

completely different behaviors, some of which will not be entirely covered by this

dissertation. Instead, we will only focus on the viscoelastic flows at a moderate Re that

near the laminar-turbulence transition of Newtonian flows. As have been reported

by a number of investigations (Xi and Graham, 2010; Li et al., 2005; Housiadas

et al., 2005; Owolabi et al., 2017), polymeric turbulence in this regime would exhibit

distinct DR which has obviously practical and academic interests. In particular,

several qualitatively different stages are sequentially observed when increasing Wi in
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the DR turbulence. Differences between these stages can be clearly demonstrated by

the schematic mean velocity profiles (fig. 1.1). At a low Wi (Wi ≤ 10 (Housiadas

and Beris, 2003; Xi and Graham, 2010; Li et al., 2015)), the influence of polymers

is negligible and the flow behaves the same as the Newtonian turbulence. Further

raising Wi rephrases into the low-extent drag reduction (LDR) stage where polymers’

effects on the flow statistics concentrate in the buffer layer (y+ . 30 in Newtonian

turbulence, where y is the distance from the wall and “+” indicates quantities in

turbulent inner scales (Pope, 2000)). As a result, the turbulent intensity in this layer

becomes weaker and the layer becomes thicker, which is referred to as the “elastic

sublayer” (Virk et al., 1967). Continuously increasing Wi leads to the high-extent

drag reduction (HDR) stage at which the influence zone of polymers extends to the

log-law layer (y+ & 30). As shown in fig. 1.1, the slope of the velocity profile increases

in the log-law layer (Warholic et al., 1999) at HDR but is almost equivalent to the

Newtonian turbulence at LDR. From the pre-onset of DR to the HDR, the level of DR

successively increases but cannot infinitely grow and will eventually converge to an

asymptotic upper bound. Moreover, experimental and numerical studies (Virk, 1975;

Warholic et al., 1999; Xi and Graham, 2010; Housiadas and Beris, 2013) found that

this so-called maximum drag reduction (MDR) asymptote is identical in solutions

with different rheological properties.

Despite the qualitatively different flow statistics between these stages, the in-depth

mechanisms behind still remain puzzling in many respects. It has been gradually ac-

cepted that the complex interactions between polymer and turbulence could suppress

the critical near-wall vortical structures and result in the reduction of turbulent inten-

sity (Dubief et al., 2005; Li and Graham, 2007; Kim et al., 2007). This effect is related
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Figure 1.1: Schematic of mean velocity profiles (mean streamwise velocity as a func-
tion of the distance from the wall) at different stages of DR. Reprinted with permission
from (Zhu et al., 2018).Copyright (2018) Elsevier.
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to the onset of DR as it appears during the coil-stretch transition of polymers (Li

et al., 2015). In addition to the relatively well-established theory for the onset of

DR, mechanisms for the qualitative LDR-HDR and HDR-MDR transitions are still

waiting to be uncovered. Understanding of the MDR transition is undoubtedly the

heart of this field. Intuitively, the universality of this stage indicates the existence of

a unique mechanism that does not completely eliminate turbulence but pushes it to

a steady turbulent status (Zhu et al., 2019). However, a consistent theory to explain

this universal upper limit is still not available as contradictory evidence was found

in the literature (White and Mungal, 2008; Procaccia et al., 2008; Xi and Graham,

2012b).

Comparing with the long-known LDR and MDR stages, the concept of HDR

is more recent. Flow statistics, e.g. the mean velocity profile, in this stage are

considerably different from the LDR, indicating the existence of two-stage interactions

between polymers and turbulence in the DR flows: one starts at the onset while the

other at the LDR-HDR transition (Zhu et al., 2018). Studying the turbulent dynamics

of HDR is pivotal for the understanding of MDR, in the sense that it is immediately

followed by the MDR and thus highly correlated. Recent work by Xi and Graham

(2012b,a) in the minimal flow unit suggested that the alternation of the two turbulence

phases, active and hibernating phases, may correspond to the qualitative LDR-HDR

transition. In Xi and Graham (2012b)’s work, the increasing DR in HDR stage is

accompanied by the reducing fraction of the stronger turbulent phase (i.e. the active

phase) that resembles the Newtonian turbulence, and the increasing fraction of the

weaker phase (i.e. the hibernation phase). This theory was recently supported by

Wang et al. (2017); Zhu et al. (2018) in a large simulation domain at various Re.
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Study on the HDR turbulence is meaningful due to its direct connection to both

the LDR (and hence the onset of DR) and the MDR. In this dissertation, following

the active-hibernating protocol, we investigate the underlying dynamics of turbulent

coherent structures in the DR turbulence and propose a hypothesis that relates the

alternation of turbulent phases in HDR to the modification of vortex shapes and

regeneration mechanisms. Our hypothesis is supported by the statistical analysis of

vortices using the self-design vortex tracking algorithm – VATIP.

1.2.2 Inertia- and elasticity-driven turbulence

In most of the studies on DR turbulence (Housiadas and Beris, 2003; Kim et al., 2008;

Li et al., 2006; Xi and Graham, 2010), flows are driven by the inertial force, leading

to inertia-driven turbulence (IDT). Although modified by polymers, the flow struc-

tures and statistics of IDT still share tremendous similarities with the Newtonian

turbulence. For instance, it has the Newtonian-like quasi-streamwise vortices and

streaks (Robinson, 1991; Zhu et al., 2018). The contribution of polymers to the tur-

bulent kinetic energy is mostly negative, indicating the suppression effect of polymers

on the turbulent flows. On the other hand, when elasticity rises to a certain level,

the Newtonian-like turbulent structures may be erased by polymers and a new type

of turbulent motions, i.e., the so-called elasticity-driven turbulence (EDT) can occur

and dominate the flows. Dallas et al. (2010) found that the contribution of polymers

to the turbulent kinetic energy becomes positive in EDT flows. That is, polymers

are responsible for the generation of turbulence. Meanwhile, EDT flow is dominated

by spanwise vortices and sheet-like polymer structures (Dubief et al., 2013; Samanta

et al., 2013), which is drastically different in comparison with IDT. Also, the strictly
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two-dimensional (2D) nature of EDT allows it to sustain in a 2D flow geometry (Sid

et al., 2018). The concept of EDT is comparatively new, but soon attracted great

attention due to its potential relation to MDR (Dubief et al., 2013). In addition, it

may be related to the elastic turbulence – an inertia-less turbulent flow that occurs

in curved streamline geometry (Groisman and Steinberg, 2000).

It is well accepted that EDT is governed by small-scale structures that are driven

by the elastic forces (Sid et al., 2018). However, the detailed dynamics of this flow

and its role in the DR turbulence are still highly controversial. Dubief et al. (2013)

suggested that EDT plays a critical role in the dynamics of DR turbulence. They pro-

posed that the elastic structures can dominate HDR stage of polymeric turbulence

and eventually connect to MDR. On the other hand, the occurrence of the elastic

structures is not captured by some previously numerical studies (Xi and Graham,

2010; Li et al., 2006; Housiadas et al., 2005), and the flow relaminarizes once the

IDT structures cannot sustain. Sid et al. (2018) suggested that the absence of the

EDT structures in those numerical studies is due to the addition of a global artificial

diffusion term (GAD) when solving the polymer constitutive equations. As will be

discussed in this dissertation, with a newly developed hybrid pseudo-spectral/finite-

difference algorithm, sustained IDT is also obtained at HDR without a GAD. The

elastic structures only become dominant after the IDT structures are mostly elimi-

nated by polymers. Moreover, based on a careful investigation on the initial conditions

and parameters, we find a dynamical flow state existing in the polymeric turbulence

in which IDT and EDT are coexistence.

12



Ph.D.Thesis - Lu Zhu McMaster - Chemical Engineering

1.3 Objectives

The phenomenon of polymer additives drag reduction has been used in many indus-

try areas. Compared with its wide applications, fundamental understanding of this

phenomenon is still not completed. In particular, as the elasticity of the polymeric tur-

bulence gradually increases, several qualitatively different stages are observed which

indicate the multiple complex effects of polymers on the turbulent flows. In this the-

sis, we attempt to numerically study the polymeric turbulence and understand these

interactions. There are five specific objectives:

• To find the qualitative changes of flow statistics and dynamics during the LDR-

HDR transition of IDT.

• To understand the beneath polymer-turbulence interactions during the LDR-

HDR transition from the vortex perspective.

• To develop a vortex tracking algorithm for the analysis of vortex statistics in

the LDR and HDR stage.

• To develop an artificial-diffusion-free DNS method for accurate and efficient

simulation of high elasticity polymeric turbulence.

• To study the roles of IDT and EDT in the dynamics of high elasticity polymeric

turbulence.

1.4 Dissertation outline

This dissertation is targeted to address questions in the dilute polymeric solution.

Essentially, polymeric turbulence can be driven by the inertial or the elastic forces
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which respectively result in the drastically different inertia- and elasticity-driven tur-

bulence. The inertia-driven turbulence occurs at a relatively low elasticity in which

Newtonian-like turbulent motions still dominate the flow. A series of intermediate

states (e.g., the pre-onset of DR, LDR, and HDR) can be sequentially observed as

the elasticity gradually increases in IDT. The complex polymer-turbulence interac-

tions that lead to the transitions between these intermediate stages, are still not fully

understood and are attempted to be addressed in Chapters 2-5. On the other hand,

elasticity-driven turbulence is found at a higher elasticity. The numerical method to

capture this type of turbulence and the study on its role in DR turbulence will be

the focus of Chapter 6 and 7.

As illustrated in fig. 1.2, the dissertation will be divided into two parts. The first

part (Chapters 2-5) will focus on the inertia-driven polymeric turbulence in the low

and intermediate elasticity regime. In Chapter 2, we present the distinct differences

between the LDR and the HDR stages. A hypothesis based on the dynamics of

vortical structures is proposed for the qualitative LDR-HDR transition. To support

this hypothesis, an efficient vortex tracking scheme – VATIP – is developed to capture

vortices in turbulent flows (Chapter 3). This tracking scheme allows the statistical

analysis of vortex shapes and their distribution in the flows. It is then applied to the

polymeric turbulence to study the influence of polymers on the flow structures at the

LDR and HDR stages (Chapter 4). In Chapter 5, a conditional sampling algorithm is

employed to analyze the characteristic features of vortices in the HDR stage. Results

from the vortex analysis are consistent with our hypothesis for the mechanism of

LDR-HDR transition in Chapter 2.

In the second part (Chapters 6 and 7), we will extend our knowledge to the
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Figure 1.2: Illustration of the dissertation outline.
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elasticity-driven turbulence. Simulations on this type of turbulence are enabled by a

hybrid pseudo-spectral/finite-difference scheme. Numerical details and validation of

this hybrid scheme are presented in Chapter 6. In Chapter 7, we will further discuss

the characteristics of the elasticity-driven turbulence and its roles in high elasticity

polymeric turbulence.
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Chapter 2

Distinct transition between low-

and high-extent drag reduction

In this chapter, we use direct numerical simulation (DNS) to explore the parameter

space of polymer-induced drag reduction (inertia-driven) turbulent flows. In particu-

lar, several abrupt changes of the flow statistics and structures are found to accompany

the transition from the low-extent to high-extent drag reduction (LDR and HDR).

These observations suggest the existence of two different polymer-turbulence interac-

tions in the inertia-driven turbulence. The first starts at the onset of drag reduction

where the coil-stretch transition of polymers causes the overall suppression of turbu-

lent fluctuations. The second starts at the LDR–HDR transition which drastically

changes flow statistics in the log-law layer and leads to turbulence localization. As

the polymer-turbulence interaction during the LDR-HDR transition is not clear, we

proposed a hypothesis based on the changing vortex dynamics.
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A B S T R A C T

Flexible polymer additives are known to reduce the energy dissipation and friction drag in turbulent flows. As
the fluid elasticity increases, the flow undergoes several stages of transitions. Much attention in the area has been
focused on the onset of drag reduction (DR) and the eventual convergence to the maximum drag reduction
(MDR) asymptote. Between the onset and MDR, recent experimental and numerical observations prompted the
need to further distinguish the low- and high-extent drag reduction (LDR and HDR). Fundamental knowledge of
this transition will be important for understanding turbulent dynamics in the presence of polymers, as well as for
inspiring new flow control strategies for efficient friction reduction. We use direct numerical simulation (DNS) to
explore all these transitions in the parameter space and, in particular, demonstrate that the LDR–HDR transition
is not merely a quantitative effect of the level of drag reduction, but a qualitative transition into a different stage
of turbulence. A number of sharp changes in flow statistics are found to accompany the transition and at HDR,
turbulence becomes localized with vortices forming clusters. These observations suggest that polymer-induced
drag reduction follows two distinct stages. The first starts at the onset of drag reduction, where the coil-stretch
transition of polymers causes an overall suppression of turbulent fluctuations. The second starts at the LDR–HDR
transition, where flow statistics become fundamentally changed in the log-law layer and turbulence localization
is observed. A mechanism is then proposed for the latter based on the changing vortex regeneration dynamics
between LDR and HDR.

1. Introduction

The phenomenon of turbulent drag reduction (DR) caused by
polymer additives is widely known and has been studied extensively in
the literature [1–3]. As a small quantity of polymers is added to a
Newtonian liquid, turbulent structures are modified. The resulting
friction drag reduction, measured by

≡
−C C

C
DR% f,s f

f,s (1)

(Cf,s and Cf are the friction factors of the pure solvent and polymer
solution, respectively), can reach up to 80%. As a result, the mean flow
rate under the same pressure drop increases which considerably en-
hances the fluid transportation efficiency. Understanding of this phe-
nomenon has significant practical implications for the development of
mechanical flow control schemes and has thus gained significant at-
tention since the 1940s.

In viscoelastic fluids, polymer-induced elasticity is measured by the
Weissenberg number = λγWi ˙ , which is defined as the product of the
polymer relaxation time λ and the shear rate γ̇ of the flow. Below a
critical magnitude of Wi, the mean flow is statistically indistinguishable
from that of Newtonian turbulence: in most of the boundary layer, both
follow the same Prandtl–von Kármán (PvK) log law [4]

= ++ +U y2.5 5.5 (2)

where the superscript “ + ” indicates quantities in turbulent inner
scales: i.e. velocities and lengths are scaled by the friction velocity and
viscous length scale or “wall unit” (see definitions in Section 2), re-
spectively. The onset of DR typically occurs at = OWi (10)onset [5–8].
Further raising Wi leads to increasing levels of DR (see Fig. 1), which
eventually saturate and approach an asymptotic upper bound. Rather
surprisingly, this maximum drag reduction (MDR) asymptote is found
to be insensitive to the rheological properties of the polymer solu-
tion [1].
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The original theory of Virk [1] postulates that polymer effects
concentrate in the buffer layer, corresponding to ≲ ≲+y5 30 in New-
tonian turbulence (right below the log-law layer) [9]. Increasing Wi
leads to a thicker buffer layer, now termed the “elastic sublayer” to
reflect the polymer effects, but the log law layer remains unaffected
with the same slope and only a larger intercept (Fig. 1). The elastic
sublayer keeps on expanding with increasing Wi until MDR is reached
where it occupies the whole channel.

Despite the intellectual appeal of its conceptual simplicity, this
elastic sublayer theory was later proven oversimplified. Experiments by
Warholic et al. [10] revealed that the PvK-like log law is only preserved
for low-extent DR (LDR) (≲ 35% in that study) and for high-extend DR
(HDR), the slope of the mean velocity profile in a linear-log plot is
ostensibly higher than the PvK magnitude (Fig. 1). This was further
confirmed by a number of experimental and numerical stu-
dies [5,7,8,11–13]. Although often associated with the quantitative
magnitude of DR% in the literature, emerging evidences have suggested
that the LDR–HDR transition is indeed a qualitative change in the
turbulent dynamics. A recent analysis by White et al. [14] showed that
at HDR +U does not even strictly follow a logarithmic dependence. In
addition, for minimal flow units (MFUs) and one low Re, Xi and
Graham [7] showed that this change in the shape of the + +U y( ) profile
can occur at DR% as low as ≈ 15: DR%>30 is not required for HDR
behaviors. Beyond the mean velocity profile, changes between LDR and
HDR in other quantities are much less documented. Major observations
(in the aforementioned studies) at HDR include significantly reduced
Reynolds shear stress and smooth flow field patterns with longer
streamwise correlation, although direct connections with the LDR–HDR
transition still need to be established.

MDR is arguably the crown jewel of this field, whose curious nature
remains puzzling in many respects. However, the hitherto over-sha-
dowed problem of LDR–HDR transition certainly deserves attention in
its own right. For one thing, it has significant practical implication in
the area of turbulence control. Existing mechanical (non-additive-
based) flow control techniques pale in comparison with polymer-in-
duced DR: both the DR% achieved by these techniques and the shape of
the + +U y( ) profile are only comparable to LDR in polymer fluids [15] –
understanding the turbulent dynamics of HDR will be pivotal to break
this ceiling. Meanwhile, the fundamental significance also should not
be overlooked. Despite the ongoing debate between viscous vs elastic
mechanisms [16,17], it has been generally accepted that DR is caused

by the polymer-turbulence interaction and the resulting suppression of
vortical structures [18–21]. This effect kicks in at the coil-stretch
transition of the polymers [8] and corresponds to the onset of DR. The
additional LDR–HDR transition at Wi distinctly higher than the onset
suggests that there is another change in the underlying polymer-tur-
bulence dynamics that we do not as yet understand: i.e. DR with in-
creasing polymer elasticity is a two stage process with a first me-
chanism being triggered at the onset and a second mechanism at the
LDR–HDR transition. The change in the + +U y( ) profile suggests that the
first mechanism mainly acts in the buffer layer whereas the second one
extends to the log-law layer.

In the recent framework by Xi and Graham [22], turbulent dy-
namics in MFUs is classified into two phases: regular strong turbulence
that dominates the Newtonian flow is termed active turbulence and
weak nearly two-dimensional turbulent state is termed hibernating
turbulence. The latter occurs in Newtonian flow as well – which was
confirmed in experiments [23] and believed to be intermittent visits
towards the laminar-turbulent edge state [24,25] – with very low fre-
quency but become unmasked at high Wi. Its remarkable resemblance
to MDR prompts the hypothesis that MDR is an asymptotic state where
hibernating turbulence becomes the statistical norm. Taking an ergodic
view of turbulence and neglecting the long-range spatial correlation,
the temporal intermittency in MFUs (between active and hibernating
periods) should reflect the spatial intermittency in extended flow do-
mains. This was investigated recently by Wang et al. [26] who showed
that flow-field patches corresponding to active and hibernating regions
can be clearly identified in a large domain and the total area of hi-
bernating patches increases as the flow converges to MDR. Interest-
ingly, in MFUs and at least one low Re, the Wi where hibernation fre-
quency starts to ramp up seems to coincide with that of the LDR–HDR
transition [27]. If HDR is indeed triggered by the unmasking of hi-
bernating turbulence, that would perfectly explain the change in the
shape of the + +U y( ) profile, as conditional average studies have re-
vealed that hibernating turbulence has a drastically steeper + +U y( )
profile than active turbulence [26,27]. This link, however, has not been
tested in larger domains nor for more than one Re. As we will show
later, the correlation between vortex dynamics in different regions
turns out to be important for understanding HDR, which was not con-
sidered in this MFU framework.

The purpose of this study is first to systematically investigate the
differences between LDR and HDR in an extensive flow domain (com-
pared with MFU) by densely sampling the parameter space. In parti-
cular, at each Re and in both LDR and HDR regimes, multiple points
need to be included to establish the LDR–HDR transition as a qualitative
one. A new mechanism will be proposed for the changing vortex dy-
namics underlying the transition. The paper is organized as follows.
After introducing our simulation approach in Section 2, changes in flow
statistics at the LDR–HDR transition will first be summarized in
Section 3.1. We will then study and quantify the transitions in flow
structure (Section 3.2). Our new mechanism for the changing vortex
dynamics at HDR is proposed in Section 3.3.

2. Formulation and numerical details

Direct Numerical Simulation (DNS) of the governing equations in a
plane Poiseuille geometry is performed following the standard proce-
dure first introduced by Sureshkumar et al. [28]. The geometry of the
simulation domain is shown in Fig. 2(a). The flow is driven by a fixed
streamwise pressure gradient orientated in the x-direction. The no-slip
boundary condition is applied to the walls (y-direction) and the peri-
odic boundary condition is applied to both the streamwise (x-direction)
and spanwise (z-direction) boundaries. The periods are denoted by Lx
and Lz, respectively. By default, all variables are nondimensionalized by
turbulent outer units: i.e., lengths are scaled by the half-channel height
l, velocities by the laminar center-line velocity Uc, time by l/Uc, and
pressure by ρUc

2 (ρ is the total density of the fluid). Meanwhile, near-

Fig. 1. Schematic of mean velocity profiles (mean streamwise velocity as a
function of the distance from the wall) at different stages of DR.
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wall quantities are often represented in inner scales: velocities scaled by
the friction velocity ≡u τ ρ/τ w and lengths by the viscous length scale
δv≡ η/ρuτ, where τw is the mean wall shear stress and η is the solution
viscosity. Then for Re≡ ρUcl/η, the friction Reynolds number

≡ =ρu l ηRe / 2Reτ τ . The y coordinate in the inner scale +y ranges
from 0 at the wall to =+y ReτCL at the channel center-line.

The momentum and mass balance equations are

∂
∂

+ = − + ∇ +
−v v v v τ

t
p

β β
·

Re
2(1 )

ReWi
( · ),p

2  
(3)

=v· 0. (4)

where the Weissenberg number Wi is the product of polymer relaxation
time λ and the mean wall shear rate, i.e., Wi≡ λUc/l, and ≡β η η/s is
the ratio of the solvent viscosity to the total viscosity. The last term on
the right-hand-side of Eq. (3) accounts for the polymer effect, where τp
is the polymer stress tensor. It is calculated with the FENE-P con-
stitutive equation [29]
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The FENE-P model treats polymer molecules as finitely extensible
nonlinear elastic (FENE) dumbbells, as shown in Fig. 2(b). The polymer
conformation tensor is defined as α≡ ⟨QQ⟩, where Q donates the end-
to-end vector of the dumbbell. The length of the dumbbells is con-
strained by the maximum extensibility parameter b: i.e., max (tr
(α))≤ b.

All variables are discretized with a Fourier-Chebyshev-Fourier
pseudo-spectral scheme. The grid size in the x direction is =+δ 9.09x and
that in the z direction is =+δ 5.44z ; the number of grid points in the y
direction is 97, 127, and 195 for =Re 86.15,τ 121.84, and 172.31, re-
spectively. For the time integration, we adopt a third-order semi-im-
plicit backward-differentiation/Adams-Bashforth scheme [30], and the
time step is chosen to be =δ 0.01t . Numerical settings used in produc-
tion runs are listed in Table 1. An artificial diffusion term 1/(ScRe)∇2α
is added to the right-hand side of Eq. (5) with the Schmidt number

=Sc 0.5 for =Re 86.15τ and 0.3 for =Re 121.84τ and 172.31. This term
is required for the numerical stability of the pseudo-spectral method

used here and it has been established in the literature that a numerical
diffusivity of O(0.01) does not significantly impact the re-
sults [8,11,28,31,32]. The magnitudes of diffusivity 1/ScRe used in this
study are all at −O (10 )4 (Table 1). According to Sureshkumar et al.
[28,31], when the numerical diffusivity decreases (by increasing Sc)
linearly with the grid size, the solution converges to that of the original
equation. This convergence is validated here for a high-Wi case with
proportionally varying resolution and numerical diffusivity as listed in
Table 2. As an example, we present the streamwise one-dimensional
energy spectra of all three velocity components – defined as

̂ ̂∫= ′ ′E k v v dk( ) *·ii x k i i z
z (7)

(where =i x y z, , is the index for velocity components, “′” indicates the
fluctuating component of the velocity field, ·̂ indicates the Fourier
transform, and “*” indicates the complex conjugate) – in Fig. 3. For all
cases, results from different resolutions and numerical diffusivity
magnitudes well collapse onto one another, indicating that our choice
of Sc is sufficient.

The numerical code used for this study is a custom MPI-parallelized
code developed based on the C++ Channelflow package [33]. A
Newtonian version of the code was earlier used for the DNS of New-
tonian Poiseuille flow [34]; the code was then extended for viscoelastic
simulation by integrating the original algorithm of Xi and Graham [7].

3. Results and discussion

Simulations in this study are all performed in the box size of

Fig. 2. Schematics of the (a) flow geometry and (b) FENE-P dumbbell.

Table 1
Numerical settings for production runs.

Re Reτ δt +Lx
+Lz

+δx
+δz

3711 86.15 0.01 4000 800 9.09 5.44
7423 121.84 0.01 4000 800 9.09 5.44
14845 172.31 0.01 4000 800 9.09 5.44
Re Ny +δy,min

+δy,max Sc 1/ScRe

3711 97 0.046 2.81 0.5 × −5.39 10 4

7423 127 0.038 3.03 0.3 × −4.49 10 4

14845 195 0.022 2.79 0.3 × −2.25 10 4

Table 2
Settings of the validation tests.

No. Reτ Wi Sc 1/(ScRe) ×+ +L Lx z Nx×Ny×Nz

1 86.15 64 0.3 × −8.98 10 4 4000×800 256×59×87
2 86.15 64 0.5 × −5.39 10 4 4000×800 440×97×147
3 86.15 64 0.75 × −3.59 10 4 4000×800 640×145×221

Fig. 3. Three components of the one-dimensional energy spectra against the
spanwise wave number at =+y 60.
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× = ×+ +L L 4000 800,x z which is well within the range considered to be
an extended domain. A series of Wi at each of three different Reτ (86.15,
121.84, and 172.31) are reported. These Reτ values are closer to the
critical magnitude Reτ, crit≈ 45 for the laminar-turbulent transi-
tion [35] than several recent high-Re viscoelastic turbulence DNS stu-
dies [8,36]. This choice is deliberate. Previous research has clearly
shown that all key stages of viscoelastic turbulence are observed in the
near-transition regime [1,7]: higher Re is not a necessary condition for
the LDR–HDR transition. At lower Re, the turbulent dynamics is more
tractable and also different stages of DR are contained in a smaller
parameter-space region (see Fig. 5), both bringing mechanistic under-
standing within reach. On the other hand, unlike most previous studies
which focused on the direct comparison between one LDR and one HDR
case, our attention is on the parametric dependence of the qualitative
behaviours. This requires simulations at a larger number of parameter
combinations and keeping the Re at this level reduces the computa-
tional cost per run. (Nevertheless, the computation is still substantial:
for viscoelastic simulation at the highest =Re 172.31τ and running on
32 processors in parallel, the time-stepper proceeds by ≈ 7 time units
per wall-clock hour; each data point, including both equilibration and
production runs, requires 3500 time units, which takes more than 20
days on a state-of-the-art computing facility.) For the two lower Re, the
full transition path from Newtonian to MDR is captured. For the highest
Re, numerical instability starts to show up at =Wi 96. Instead of in-
creasing the artificial diffusivity, we decided to exclude results at higher
Wi since =Wi 96 is already well beyond the LDR–HDR transition. The
rheological parameters b and β in all cases are fixed to be 5000 and
0.97, respectively. Time average results in this section are all calculated
from 20 evenly-spaced snapshots within a total period of 1000 time
units, after the DNS solution has reached the statistical steady state.

3.1. Changes in flow statistics

In this section, statistical results are summarized and compared
between LDR and HDR. In Fig. 4, DR% as a function of Wi are plotted
for three Reynolds numbers Reτ: 86.15, 121.84 and 172.31. (DR% is
defined in Eq. (1) and the friction factor is defined as

≡C τ
ρU
2

f
w

avg
2

(8)

whereUavg is the volume average streamwise velocity.) As expected, DR
% of all Re increases with Wi. Interestingly, profiles of three Re nearly
overlap until they get close to the asymptotic plateau. This suggests that
the quantitative dependence of DR% on Wi can be approximated by the
same empirical correlation, as also reported by Housiadas et al. [37]
and Owolabi et al. [38]. We adopt the same formula used by Housiadas
and Beris [37]

=
⎧

⎨
⎩

<

− ≥
+ −( )
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1 (Wi Wi )
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2
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onsetWi Wionset

W (9)

which models a smooth monotonic increase from =DR% 0 at Wionset to
=DR% DR%MDR as Wi→∞; parameterW adjusts the profile steepness.

We set =DR% 51.5%MDR which is the average DR% value of our MDR
data points. Eq. (9) is then rearranged to
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MDR
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W W (10)

from which W and Wionset can be determined with linear regression.
The regression line from all our LDR and HDR data points is shown in
Fig. 4(b). The data points remain close to the linear line until very high
Wi (> 60), indicating that Eq. (9) offers satisfactory correlation except
in the regime near MDR (also seen in Fig. 4(a)). Parameters obtained
from the regression – =Wi 5.76onset and = 23.41W – are very close to
the values estimated by Housiadas and Beris [37] ( =Wi 6onset and

= 25W ). The agreement is expected since Housiadas and Beris’s [37]
relation was also based on DNS data over a broad range of Reτ (which
covers our Reτ magnitudes). Note that Eq. (9) is simply a more general
form of the Owolabi et al. [38] model: it reduces to the latter when

=Wi 1/2onset and = 1W . Owolabi et al.’s [38] Wionset was much lower
because there is no one-to-one mapping between the definitions of Wi
in experiments and in DNS. Even after this difference is corrected for,
fitting of our data to the Owolabi et al.’s [38] form is less successful: the
additional steepness parameterW in Eq. (9) is necessary.

Also noteworthy is that the LDR–HDR transition, which occurs at
around =DR% 20% (shown later in Fig. 9), is not reflected as any dis-
cernible change of trend in DR%. For the two lower Reτ where high Wi
results are available, DR% eventually saturates to an asymptotic upper
limit. In its literal interpretation, MDR is the limit where DR% saturates
with polymer elasticity. We will therefore refer to this limit as MDR in
this paper. Further increasing the Wi causes the flow to laminarize.
Experimentally, MDR should be a self-sustaining turbulent state where
laminarization is avoided. However, re-laminarization at Wi is often
observed in simulation studies [5,7]. There are several possible causes
for this discrepancy, including the lower Re and limited domain size
used in simulations. Deterioration of numerical accuracy due to the
artificial diffusion may also play a role at this level of Wi [12].
Nevertheless, the LDR–HDR transition studied here occurs at much
lower Wi and none of the major conclusions of this study should be
affected.

Simulation points reported in this study are summarized in a
−Re Wi parameter space in Fig. 5, which is divided into four stages of

DR behaviours: pre-onset (P.O.), LDR, HDR, and MDR. In the current
domain, =Re 61.28τ is the smallest Re to observe sustained turbulence,
where introducing polymers immediately leads to laminarization. At
the higher Re, the full transition path from Newtonian turbulence to
MDR is observed, resonating with the experimental observation that

Fig. 4. (a) dependence of the percentage of drag reduction (DR%) on Wi at =Re 86.15,τ 121.84 and 172.31 and comparison with the empirical fitting using Eq. (9);
(b) linear regression plot using Eq. (10) (data symbols are the same as those in panel (a)).
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qualitative transitions in viscoelastic turbulence extend all the way
down to the laminar-turbulent transition regime. Critical Wi’s for the
transitions increases with Reτ, leading to a wider range of Wi being
occupied by each stage. Convergence to MDR occurs at =Wi 80 for

=Re 86.15τ and =Wi 128 for =Re 121.84τ . Variation in the onset Wi is
almost negligible and a ≈Wi 10onset is observed for all cases. The cri-
tical Wi for the LDR–HDR transition is 22, 24, and 28 for =Re 86.15,τ
121.84, and 172.31, respectively.

Current results of =Re 86.15τ are compared with the MFU simula-
tion of Xi and Graham [7]. The =Re 84.85τ of that study is very close to
the current value and the rheological properties (i.e. β and b) are the
same. The only different setting is the size of the simulation domain

×+ +L Lx z which is 4000× 800 in the current study and in Xi and
Graham [7] =+L 360x and = ∼+L 140 260z depending on the Wi. As a
result, the sequence and qualitative behaviours of different stages of DR
are the same between the two domain sizes, but the quantitative
magnitudes of the critical Wi and DR% for all transitions differ. In
MFUs, the LDR–HDR transition occurs at =Wi 20 with DR%≈ 15 and
convergence to MDR is found at =Wi 27 and DR%≈ 26; whereas in
the extended domain, both these transitions are found at higher Wi and
DR%. In a way, the restrictive domain of MFU compresses the transi-
tions into a smaller parameter region but still preserves all qualitative
aspects.

Fig. 6 shows the mean velocity profiles of the =Re 86.15τ and
=Re 121.84τ cases. The Newtonian profile at =Re 86.15τ is parallel to

the PvK log law for >+y 30 but the intercept is slightly higher, because
at this lowest Re the log-law layer is not fully developed. At

=Re 121.84,τ the Newtonian profile is already very close to the PvK log
law and at =Re 172.31τ (not shown here) it completely overlaps the

latter. Before the onset of DR, viscoelastic profiles are indistinguishable
from the Newtonian ones and thus omitted from Fig. 6. At LDR
( =Wi 16 for both Re in Fig. 6), the mean velocity profiles rise in the
buffer layer region and remain parallel to the Newtonian case in the
log-law region. At HDR (i.e. =Wi 32 for =Re 86.15τ and =Wi 48 for

=Re 121.84τ ), the profiles lift up in the log-law layer showing slopes
clearly higher than that of the PvK asymptote. For each Reτ, two profiles
are chosen in the MDR stage (i.e. =Wi 80 and 96 for =Re 86.15τ and

=Wi 128 and 144 for =Re 121.84τ ) to show the convergence of the
mean velocity. At both Reτ, the profiles are close to but still slightly
below the Virk asymptote. Although it is a common practice in the
literature to take the Virk log law as the criterion for identifying MDR,
we note that it is only an empirical correlation for experimental data
often gathered at higher Re than most computational studies. The ap-
propriateness of the Virk log law is even challenged recently [14]. As
stated above, we take a literal interpretation and identify MDR as the
asymptotic limit of DR with increasing Wi. The nature and definition of
MDR are not the focus of this study.

Fig. 7 shows the distribution of four components ( ′ ′+ +v v ,x x ′ ′+ +v v ,y y
′ ′+ +v vz z and − ′ ′+ +v vx y ) of the Reynolds stress across the channel at

=Re 86.15τ and 121.84. For both Re and after onset, the streamwise
Reynolds stress profiles rise up with increasing Wi while the wall-
normal, spanwise, and shear components are all suppressed. All four
components converge as MDR is reached. In addition to the commonly
discussed change of shape in the mean velocity profile (Fig. 6), the
LDR–HDR transition can also be clearly identified with the changing
Reynolds stress profiles as well especially of the xy shear component.
From the bottom panels of Fig. 7, it is clear that at LDR ( =Wi 16 for
both Reτ), the suppression of the − ′ ′+ +v vx y profile is localized in the
buffer layer – ≲ ≲+y5 30 and at higher +y the profile well overlaps
with the Newtonian one. By contrast, at higher Wi (after the LDR–HDR
transition), the suppression extends across the whole channel. A ver-
tical dashed line is drawn within the log-law layer as an eye guide to
show the reduced magnitude there. This transition between local and
global suppression is more clearly seen when the deviation of the
Reynolds shear stress from the Newtonian case is plotted in Fig. 8.

Note that in our MDR cases, although − ′ ′+ +v vx y is significantly
suppressed by polymers, its magnitude remains finite and differs from
the Newtonian value by no more than one order of magnitude.
Vanishing Reynolds shear stress is often cited in the literature as a key
feature of MDR, an argument first made by Warholic et al. [10] based
on their experimental observation. Later experimental and numerical
observations were not always consistent with this conclusion and non-
zero Reynolds shear stress was often seen even when the Virk MDR
asymptote is reached [11–13]. Flow statistics at MDR is not our current
focus and we do not intend to settle this debate in this paper. However,
our observations do indicate that for Reynolds shear stress it is the wall
regions of suppression, not the magnitude itself, that determines the

Fig. 5. Multi-stage transitions of DR behaviours in the −Re Wi parameter
space. Transition boundaries are drawn according to the B-spline interpolation
between the critical Wi of the transitions at different Reτ. Vertical dashed lines
indicate the LDR–HDR transition for each Reτ.

Fig. 6. Mean velocity profiles ( +U vesus +y ) for (a) =Re 86.15τ (b) =Re 121.84.τ
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onset of HDR.
In other components, changes in the Reynolds stress magnitudes

(increase in the streamwise component and decrease in other compo-
nents) in the log-law layer all become augmented at the LDR–HDR
transition. Notably, it even results in a clear change of shape of the wall-
normal profile: at LDR, same as the Newtonian limit, the profiles climb
up to a maximum near =+y 40, followed by a steady decline at higher

+y , whereas at HDR, the profiles stay flat in the log-law layer.
Qualitative transitions observed in both Figs. 6 and 7 indicate that

fundamental changes have occurred in the turbulent dynamics of the
log-law layer. To further tie these transitions to the phenomenological
LDR–HDR transition, we compare the trends of quantity changes using
multiple data points in both LDR and HDR regimes. Note that the
Reynolds shear stress is related to the velocity gradient, which de-
termines the log-law slope of the mean velocity profile, via the shear
stress balance

= + − ′ ′ +
−+

+

+
+ +τ β dU

dy
v v

β
τ

1
Wi

.xy x y p xy,
(11)

The three components on the right-hand side of Eq. (11) are the con-
tributions of the mean viscous shear stress, Reynolds shear stress, and
polymer shear stress to the total shear stress. Fig. 9(a) and (b) show the
quantitative correlation between these terms and DR% in the buffer
layer (i.e. =+y 25) and the log-law layer ( =+y 0.6Reτ), respectively. In
the buffer layer (Fig. 9(a)), all three terms vary – increase for the vis-
cous and polymer shear stresses and decrease for the Reynolds shear
stress – nearly linearly with DR% between the DR onset and MDR.
Comparing different Re, the viscous shear stress decreases and the
Reynolds shear stress increases as Re increases, which is consistent with
previous observations in Newtonian flows [39,40]. At higher Re (than
those reported here), the Re-dependence of these shear stress terms is
expected to be weaker according to the previous study of Housiadas and
Beris [41]. Interestingly, for these two terms, the slope of the trendlines
stays approximately the same with varying Re, suggesting that despite
the significant weakening of turbulence, polymer effects remain quali-
tatively similar in this layer. Meanwhile, the polymer term also shows a
Re-dependence but the slope of the trendlines increases. On the other
hand, in the log-law region (Fig. 9(b)), clear sharp transitions are found

Fig. 7. Reynolds stress profiles for (a) =Re 86.15τ and (b) =Re 121.84.τ

Fig. 8. Deviation of the Reynolds shear stress from the Newtonian case: (a) =Re 86.15τ and (b) =Re 121.84τ .
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in all three terms between LDR and HDR. Before the LDR–HDR tran-
sition, variations in these quantities with increasing DR% are barely
existent, but in the HDR regime, a clear trend of either increase or
decline is observed. Re-dependence is still observed but becomes less
obvious as Reτ grows higher, especially in the cases of Reynolds and
polymer shear stresses. The turning point between these two behaviors
puts the LDR–HDR transition at DR%≈ 20, a value lower than the
experimental transition point of DR%≈ 35 reported by Warholic et al.
[10]. This is likely due to our lower Re: note that in Fig. 9(b) the
transition point does shift toward higher DR% as Reτ increases. We
stress here again that LDR–HDR is a qualitative transition in the tur-
bulent dynamics that is not tied to a particular quantitative magnitude
of DR% for different Re. Observations in Fig. 9 are also consistent with
our earlier hypothesis that DR is a two stage process with different
mechanisms: the first one is triggered at the DR onset and takes effect in
the buffer layer and the second one gives rise to HDR in which the log-
law layer dynamics becomes affected.

To further inspect the changing flow statistics in the log-law layer,
the energy spectrum of the streamwise velocity Exx (defined in Eq. (7))
is calculated in the log-law layer and plotted in Fig. 10(a). As Wi in-
creases, the profile is raised at smaller kx and reduced at larger ones.

This is consistent with the observation in previous studies that polymer
additives suppress small scale fluctuations and strengthen energy-con-
taining large-scale structures [10,42,43]. The effect becomes apparently
amplified in HDR, which is more clearly observed when we calculate
the proportion of energy contained in the 15 leading modes
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and plot it as a function of +y in Fig. 10. As Wi increases, the accu-
mulated energy contained in the large scales increases, consistent with
the increasing importance of the large-scale turbulent structures. In all
cases, the profiles decrease as they approach the center of the channel.
For Newtonian and LDR cases, the decline is rather steep: the latter is
nearly parallel to the former for the whole channel. Therefore, LDR
preserves the same near-wall turbulent dynamics typical of Newtonian
flow, where the buffer layer is dominated by recurrent coherent vortical
motions and their outward eruptions, the so-called “bursting” events,
generate intense small-scale fluctuations at larger +y [44]. DR is caused
by an across-the-board suppression of turbulent motions extending over
the entire channel. By contrast, for the HDR cases, profiles are gradually

Fig. 9. Correlation between different contributions to the total shear stress (Eq. (11)) with varying DR% at (a) =+y 25 and (b) =+y 0.6Reτ . In panel (a), lines
represent the linear regression results of all points; in panel (b), dashed lines are for the linear regression results of LDR and solid lines for HDR.

Fig. 10. (a) The energy spectra (x-x component) of different Wi at =+y 64 and =Re 86.15τ and (b) Proportion of energy contained in the large scales (kx≤ 15).
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lifting up in the log-law layer and near the center. This suggests that at
the HDR and MDR stages, polymers become more effective in sup-
pressing the small-scale fluctuations at high +y , which supports our
hypothesis that a second mechanism is triggered at HDR for DR in the
log-law layer. This change of profile shape can be shown to correspond
exactly to the LDR–HDR transition when we take the part of each
profile in Fig. 10 within the bulk of the channel – defined here as
|y|≤ 0.5, calculate a profile slope using linear regression, and plot this
characteristic slope in Fig. 11 versus DR%. It is clear that at LDR, the
characteristic slope is nearly flat with increasing DR% and the slope
starts to increase only in HDR. With increasing Re, the characteristic
slope increases (becomes less negative) at the Newtonian and LDR end:
i.e., the profiles of ∼Exx

15
are flatter near the channel center. This is

however a trivial observation. It is important to be reminded that the
characteristic slope is defined in terms of the wall-normal position in
the outer unit – i.e., |y|≤ 0.5 – and it does not correspond to the same
wall layer in the inner unit. At higher Re, the slope reflects more of the
turbulent core than the boundary layer. Likewise, the universal cutoff of
kx≤ 15 used in the definition of ∼Exx

15
is also arbitrary and affects results

from different Re differently. Comparison of the slope in Fig. 11 is only
meaningful at the same Re and any interpretation of the Re-dependence
can be misleading.

As for the polymer conformation statistics, we show the normalized
profiles of the square root of the trace of the polymer conformation
tensor α at =Re 86.15τ and 121.84 in Fig. 12. This quantity is essen-
tially proportional to the average end-to-end distance of the polymer
chains. As expected, polymer extension increases with Wi, but inter-
estingly the trend does not stop in the MDR stage: i.e., even after the
flow statistics have converged, polymer extension continues to increase.
There is also a clear qualitative difference between low and high Wi,

which occurs roughly at the LDR–HDR transition. At lower Wi, polymer
extension is highest at the wall, where the mean shear rate is highest,
and it declines monotonically with +y . At higher Wi, a maximum is
found in the buffer layer between =+y 10 and 20. A similar change of
peak position was also observed in MFUs [7] and it indicates a quali-
tative shift in the polymer-turbulence interaction.

3.2. Turbulence structures

To unravel the turbulent dynamics behind these changing flow
statistics, we first turn to the flow patterns and vortex structures. We
will start with velocity distributions which have been widely discussed
in the literature. We will then show that the changing velocity patterns
are a reflection of a change in the vortex distribution and topology.

3.2.1. Turbulence localization: visualization and quadrat analysis
Fig. 13 shows the streamwise velocity distribution at =+y 20 for

Newtonian, LDR, HDR and MDR stages at =Re 86.15τ . The alternating
bright and dark stripes correspond to the high- and low-speed streaks,
typical of near-wall coherent structures. It is clear that as Wi increases,
the length of velocity streaks increases while the curvature of the

Fig. 11. Characteristic slope of the accumulated energy profile (Fig. 10(b)) in
the bulk region of the channel (|y|≤ 0.5). The solid and dash lines are obtained
with linear regression of the data in the HDR and LDR stages, respectively.

Fig. 12. Normalized profiles of the square root of the trace of the polymer conformation tensor: (a) =Re 86.15τ and (b) =Re 121.84.τ

Fig. 13. Instantaneous streamwise velocity in the xz plane at =+y 20.
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streaks decreases. For Newtonian and LDR cases, the streaks wiggle
around as they extend downstream, whereas in HDR and MDR, the
streaks are wide and straight in shape and wrinkles become spotty.
These changes are reported in various prior experimental and numer-
ical studies [13,43,45,46].

Vortices in the flow field are identified by the Q criterion [47,48],
where

≡ −Ω ΓQ 1
2

( )2 2
(13)

is the difference between the Frobenius norms of the vorticity tensor

≡ −Ω v v1
2

( )T 
(14)

and the rate of strain tensor

≡ +Γ v v1
2

( ).T 
(15)

A pure shear flow has =Q 0 and in turbulent flow large positive and
negative Q values correspond to regions dominated by rotational and
extensional flows, respectively.

Isosurfaces of =Q Q0.7 ,rms whereQrms is the root-mean-square of the
Q field in that domain, are shown in Fig. 14 for the same four instants of
Fig. 13. As Wi increases, not only is the vortex strength weakened –
which can be judged from the isosurface level (∝ Qrms) and is expected
because polymers are known to suppress turbulence, but the distribu-
tion pattern also seems to have changed. In the Newtonian and LDR
( =Wi 16) cases, the domain is densely populated by a large number of
vortices and the distribution is mostly uniform in space. From the up-
stream side (left side), the vortices originate from the wall (light color)
and lift upwards (darker color) as they extend downstream. Most of
them do not exceed ≈ 300 wall units and despite the low Re, the so-
called “hairpin” vortices are already observed. A symmetric hairpin is
developed when two streamwise vortices lift up at the downstream end

and connect via an “arc” in the spanwise direction. More often the
hairpin is incomplete or asymmetric where one of the legs is not clearly
developed. By contrast, in the case of HDR ( =Wi 32) and MDR
( =Wi 96), the distribution becomes clearly heterogeneous where vor-
tices tend to agglomerate: i.e., turbulence is more localized and regions
between those vortex clusters are nearly laminar. Vortices also become
elongated and most remain aligned in streamwise direction. Indeed, the
smooth streak patterns observed in Fig. 13 for HDR (and MDR) are
simply a reflection of the turbulence localization, where the straigh-
tened streaks correspond to the quasi-laminar regions and the spotty
wrinkles result from localized vortex clusters.

Vortex structures at =Re 172.31τ are also identified by isosurfaces of
=Q Q0.7 rms and shown in Fig. 15. Same as the lower Re case, distinct

aggregation of vortices also occurs at the HDR stage ( =Wi 80). Com-
pared with the low Re case, the major difference is the presence of a
considerable number of hairpin vortices in Newtonian flow, which is
commonly observed in the literature at similar Re levels [49,50]. These
hairpin-like vortices are mostly asymmetric with one leg extending
much longer than the other. Qualitative changes in the flow structures
and patterns between LDR and HDR have been noticed in the literature
at even higher Re (e.g., =Re 395τ in Li et al. [13]). Vortex clustering
and localization reported here offer an effective explanation for those
observations. For example, the emergence of larger quiescent regions
results in areas with straight and elongated streaks in velocity contour
plots and the localized vortical structure corresponds to isolated wrin-
kles on those streaks (see Fig. 13 here as well as, e.g., Fig. 4 of Li et al.
[13] and Fig. 17 of Housiadas et al. [43]).

In order to quantitatively analyze the level of turbulence localiza-
tion at high-Wi turbulence, we adopt the so-called quadrat ana-
lysis [51]. In this algorithm, the computational domain is divided into
an array of rectilinear cells in the xz plane. Within each cell,

≡p V V/turb cell (16)

is the fraction of the volume occupied by turbulence Vturb over the total

Fig. 14. Typical snapshots of the vortex structures at =Re 86.15τ (top view; only vortices in the bottom half of the channel are shown). Isosurfaces of =Q Q0.7 rms are
chosen to represent the vortex surfaces. The color shade (from light to dark) maps to the wall distance +y (from 0 to Reτ).
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cell volume Vcell. Here, turbulent regions are identified as those where
>Q Q0.7 rms. The extent of localization is quantified by the coefficient of

variation

=
s
p

CV p

(17)

where sp and p are the standard deviation and the mean of the p values
of individual cells. Obviously, when turbulent distribution is more
heterogeneous, there will be a larger disparity between the p values of
different cells, leading to a larger ratio of its standard deviation to the
mean.

Results of this quadrat analysis are presented in Fig. 16. Since the
choice of cell size is arbitrary, we tested multiple sizes to make sure that
our conclusions do not depend on this artificial parameter; two of the
sizes are tested, i.e., × = ×+ +l l 200 80x z and 50× 32, are shown in this
figure. It is clear that the cell size only affects the quantitative magni-
tude of CV without changing the qualitative trend of the profiles. At
lower Wi (still above the DR onset), CV remains at the same level as the
Newtonian case. After the LDR–HDR transition ( =Wi 24LDR-HDR ), this
number steadily increases: i.e., turbulence becomes more localized.

Similar as the case in Fig. 11, differences in CV between the two Re
do not lead to any physically meaningful conclusion. Both the cell size
and the cutoff threshold of Q are arbitrarily chosen parameters with
unknown Re-dependence: comparison is only meaningful at the same
Re. We have also tested a two-dimensional variant of the quadrat

analysis, where the xz-planar average Q values – at the =+y 25 (buffer
layer) and =+y 0.6Reτ (log-law layer) planes – are used in place of Qcell
in the identification of turbulent regions. The results are similar to those
of the three-dimensional version shown in Fig. 16 (and thus not shown
here), which indicates that the clustering of vortices and the turbulence
localization are occurring across the domain as the flow enters HDR.

3.2.2. Discussion: relationship with flow statistics
The above observations are consistent with our initial hypothesis

that DR is a two stage process. At the onset of DR, polymers undergo the
coil-stretch transition and start to suppress all vortical motions. This
across-the-board vortex suppression occurs throughout all stages of DR
after the onset. As shown in Fig. 17, the magnitude of Q steadily de-
creases with increasing DR% in both LDR and HDR stages. The locali-
zation of turbulence, however, only occurs in HDR, which could be the
second mechanism for DR and responsible for the qualitative changes in
flow statistics.

The observation of turbulence localization at the transition to HDR
resonates with the spatio-temporal intermittency between active and
hibernating turbulence discussed earlier [22,26,27]. These two con-
cepts are clearly related but the distinction between them should not be
overlooked. Of course, the localization and clustering of turbulent
vortices open up large regions in the domain with little turbulent ac-
tivity. This is consistent with the higher fraction of hibernating

Fig. 15. Typical snapshots of the vortex structures at =Re 172.31τ (top view; only vortices in the bottom half of the channel are shown). Isosurfaces of =Q Q0.7 rms are
chosen to represent the vortex surfaces. The color shade (from light to dark) maps to the wall distance +y (from 0 to Reτ).

Fig. 16. The three dimensional quadrat analysis at =Re 86.15τ and
=Re 121.84τ . Two cell sizes are reported: × = ×+ +l l 200 80x z and 50×32. Fig. 17. The root-mean-square of Q with varying DR%.
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turbulence at high Wi reported in Xi and Graham [27]. On the other
hand, in theory one may as well increase the hibernation fraction
without relying on turbulence localization: i.e., by enlarging the hi-
bernating spots evenly across the domain. Indeed, turbulence locali-
zation requires the cooperation of coherent structures (shown in
Section 3.2.3) over longer length scales not captured in MFUs (from
which the active-hibernating framework was first proposed). The
nature of this cooperation is the focus of Section 3.3, which is also
central to the understanding of HDR.

On the surface, associating HDR with a higher fraction of hi-
bernating regions offers a straightforward explanation for the different
flow statistics at HDR. To see this, we need to first make two hy-
potheses: (1) after the DR onset, polymers suppress buffer-layer struc-
tures in active turbulence, which causes DR there but leaves the log-law
layer flow statistics largely unaffected and (2) after the LDR–HDR
transition, hibernating turbulence becomes statistically significant.
Since the mean velocity profile in hibernating turbulence is known to
have a much higher slope, not only in the buffer layer but across the
channel, its higher fraction will naturally lead to higher log-law layer
slope in the time-average profile. To test this, we first divide the domain
along the xz plane according to the comparison between the local y-
averaged |Q| magnitude

∫= +Q Q dy1
Rey

τ 0

Reτ

(18)

and a cutoff value Qcutoff : regions with >Q Qy cutoff are considered ac-
tive and those with ≤Q Qy cutoff hibernating. Conditional average mean
velocity profiles of these two groups, using two drastically different
values of =Q Q0.2cutoff rms and Q2 ,rms are shown in Fig. 18. Contrary to
the first hypothesis above, even for active regions, the mean velocity
profile in the log-law layer has clearly risen up, showing much higher
slopes than the PvK log law. This result indicates that the binary divi-
sion into active and hibernating regions while neglecting any correla-
tions between them is too simplified to explain the phenomenology of
HDR.

3.2.3. Percolation analysis
A simple extension of the active-hibernating framework from MFU

to an extended domain would imply that there is no difference in vortex
topology within the active regions between LDR and HDR: at high Wi,
polymers only quench the turbulent activity in parts of the domain
(hibernating regions) while vortex dynamics in the rest (active regions)
are generated from the same instability as in Newtonian turbu-
lence [7,27]. Here, however, using the percolation analysis proposed by
Lozano-Durán et al. [52], we discover a fundamental shift in the vortex
topology that accompanies the localization of turbulence.

Recall the Q-criterion used in Fig. 14, the choice of the threshold
value of Q for vortex identification is largely arbitrary. The resulting

vortex configuration clearly depends on this choice: as Qthreshold in-
creases, fewer and fewer regions satisfy the criterion, resulting in fewer
and smaller vortices being identified. Vortex configuration with the
increasing threshold magnitude, measured by the non-dimensional H
parameter defined with

≡Q HQ ,threshold rms (19)

is shown in Fig. 19. For each H, interconnected vortices are considered
to form a vortex cluster and coded with the same color in Fig. 19.
(Vortices are determined to be connected when at least two grid points,
one from each isosurface, are immediately adjacent to each other.)
Identified clusters are then ranked according to their volumes and only
larger clusters that accumulatively account for 80% of the total vortex
volume in the domain are shown (for the =H 0.5 image of the New-
tonian case the cutoff is 60%). This is to eliminate the large number of
small vortex fragments to clear the view.

In Newtonian turbulence (Fig. 19(a)), at =H 0.2, the threshold is
lower than even the Q magnitude of the weak rotational motion be-
tween vortex cores. These regions form “tunnels” that connect the main
vortex bodies, resulting in an interconnected network that percolates
the domain. As H increases to 0.4 and 0.5, the “tunnels” quickly break
and the percolating network decomposes into separate vortex clusters,
marked by different colors. This process is quantified by the ratio of the
volume of the largest vortex cluster Vmax to the total volume of all
vortices identified Vtot and plotted in Fig. 20. As shown in Fig. 19(a), at
the lowest H all vortices belong to the same cluster and therefore

=V V/ 1max tot . For the Newtonian case, raising H to around 0.5 triggers a
quick collapse of the percolating network into much smaller clusters.
Accordingly,V V/max tot drops sharply since now even the largest cluster is
only a small fraction of the total volume. The ratio stays almost constant
as H increases beyond 1, indicating that individual clusters shrink in
size proportionally while keeping the volume ratio between themselves.
Lozano-Durán et al. [52] suggested that the proper threshold for vortex
identification should fall within the transition between percolating and
non-percolating behaviors. Our choice of =H 0.7 used in Fig. 14 is
within this range.

The V V/max tot curve for LDR is nearly identical to the Newtonian
case. At HDR, the transition period still centers around H∼ 0.5 but the
decline of V V/max tot is smoother and the transition extends over a larger
range of H. At the highest Wi shown in Fig. 20 – i.e., 96, the transition
starts at H well below 0.1. This indicates that the percolation disin-
tegration evolves into a continuous process. The corresponding vortex
configuration is shown in Fig. 19(b). At H as low as 0.2, a clear vortex
cluster dominates the domain and no vortical structures are found in
the laminar-like (hibernating) regions, reaffirming the true localization
of turbulence. As H increases, no sudden disintegration is observed,
indicating that the vortices in the cluster are closely connected with
strong mutual interaction. The V V/max tot ratio only decreases smoothly
because the tips of the “tentacles”of the cluster are gradually etched
away with higher H. Disintegration of the cluster is not observed until H
is close to O(1) and even there the process is progressive with new
vortices being shed off with each increment of H. The large H magni-
tude required to break the cluster and the stepwise nature of its disin-
tegration show that the interaction between vortices in the same cluster
is stronger than the “tunnels” between clusters observed in the New-
tonian case. All in all, the percolation analysis reveals that the vortex
dynamics at HDR becomes qualitatively changed where vortices are
generated and sustained in large clusters with strong mutual interac-
tions, whereas at LDR the process appears more stochastic. This dif-
ference leads to the apparent turbulence localization.

3.3. Proposed mechanism

We have so far demonstrated that the LDR–HDR transition is not
simply a quantitative effect of the level of DR, but a qualitative tran-
sition likely involving two different stages of DR mechanisms. The

Fig. 18. Conditional average mean velocity profiles of active and hibernating
regions at =Re 86.15τ and =Wi 48. Results from two different cutoff magni-
tudes Qcutoff are shown in comparison with the time-average Newtonian and

=Wi 48 profiles.
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transition is associated with a range of qualitative changes in flow
statistics, behind which turbulent activities are found to become loca-
lized. Although the first mechanism of DR, which sets its onset, is well
understood as a generic across-the-board weakening and suppression of
turbulent fluctuations [13,19], the nature of the second mechanism,
which drives the LDR–HDR transition, is unknown. Here, we make the
first attempt at its mechanistic understanding by proposing a possible
mechanism that is compatible with currently known observations.

We start our discussion by revisiting the self-sustaining dynamics of
Newtonian turbulence. Schoppa and Hussain [53] summarized the
vortex regeneration mechanisms proposed in the literature into two
major categories (Fig. 21). The first is what we will refer to as the
“streak-instability mechanism”. Upward ejection of near-wall fluid by
streamwise vortices forms low-speed streaks. A strictly x-independent
streak is stable but as the streak intensifies (i.e., larger contrast between
low- and high-speed streaks), it becomes increasingly susceptible to x-
dependent perturbations, which leads to the so-called streak breakdown
and the generation of streamwise vortices. This process is not only
important for understanding the self-sustaining process of near-wall
turbulence [54], streak breakdown is also a central step in the laminar-
turbulent transition [55,56]. In the second so-called “parent-offspring
mechanism”, a “parent” vortex lifts up at its head and instability of the
shear layer between the vortex and the wall gives rise to a new “off-
spring” vortex. In this scenario, the new vortex is generated

immediately next to its parent, implying strong correlation and spatial
proximity between them. On the other hand, although the streak-in-
stability mechanism does not require any immediate parent vortex,
existing vortices still influence the generation of new ones. For ex-
ample, the bursting of existing vortices generates perturbations that can
destabilize streaks elsewhere in the domain. Obviously, this link be-
tween existing and new vortices is indirect and not necessarily local,
compared with the parent-offspring mechanism. Finally, we note that
this binary categorization is simplistic and there are a number of dif-
ferent mechanisms within either category. But it suffices for our dis-
cussion on the vortex dynamics leading up to HDR.

Both mechanisms are observed in our DNS. In Fig. 22, we pick and
show one typical scenario for each case. Fig. 22(a) shows a typical life
cycle of a hairpin vortex following the streak-instability mechanism,
which is found in Newtonian turbulence. At =T 0, a small tentacle-like
vortex lifts up from a packet of streamwise vortices and connects with a
neighboring one at =T 8 to form a hairpin vortex (Vortex A). As this
vortex pair evolves from an initial parallel configuration to a three-
dimensional hairpin, the low-speed streak sandwiched between them
(not shown) twists with the instability. The hairpin grows from a C-
shaped arch ( =T 8) to a Ω -shaped structure with its head lifting up
towards the bulk of the flow ( =T 36). At =T 40, the arch bursts and
disappears from the view, with only one leg left behind at =T 48. Al-
though difficult to show here in an extended turbulent domain, in our

Fig. 19. Vortex decomposition with increasing H (normalized threshold Q value for vortex identification; see Eq. (19)) in the percolation analysis: (a) Newtonian,
=Re 86.15τ and (b) =Wi 96, =Re 86.15τ . Each interconnected vortex cluster is coded with the same color.

Fig. 20. Percolation diagrams: (a) =Re 86.15τ (b) =Re 121.84τ . Vertical dashed lines mark the =Q Q0.7threshold rms used in Fig. 14.
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recent study [57] where the vortex growth and bursting process were
tracked in an MFU, it was observed that the bursting of coherent vor-
tices generates strong small-scale fluctuations that quickly propagate
across the MFU. Borrowing that knowledge, we may postulate that the
bursting event at =T 40 gives rise to small-scale fluctuations that can
spread and trigger instabilities in other streaks, thus completing the
vortex regeneration cycle.

The self-sustaining process of Newtonian turbulence includes both
streak-instability and parent-offspring mechanisms. These two pro-
cesses offer two parallel pathways whereby the vortex dynamics can be
continuously regenerated. Our simulations show that the situation
changes at high Wi where the streak-instability process is rare and the
parent-offspring pathway becomes exposed. A typical scenario is shown
in Fig. 22(b). Compared with the Newtonian case, much fewer hairpin
vortices are observed at high Wi, which was also reported by Yarin [58]
and was further supported by Kim et al. [59] through their dynamical
simulations of counter-rotating pairs of quasistreamwise vortices. These
streamwise vortices often align head-to-tail to form a string ( =T 0),
which was also observed by Li et al. [13,60] at higher Re. In the vortex
string, new vortices are often generated at the upstream end of their
parents (e.g., the births of vortices 4 and 5 at =T 16 and 32), effectively
extending the string against the oncoming flow. Interestingly, this order

of vortex generation – i.e., from downstream to upstream, is opposite to
the typical observation reported in Newtonian turbulence, where the
offspring is more likely to be generated at the downstream side of the
parent [61], although the reversed order was also occasionally observed
in the Newtonian case [62]. In addition to suppressing the formation of
hairpins, vortex lift-up or eruption and its subsequent bursting are also
prevented. Overall, streamwise vortices are stabilized by the high
polymer elasticity, allowing them to extend to much longer length
scales (see Figs. 13, 14 and also refer to [59,63,64]). Not able to burst,
the vortices eventually decay and disappear (vortices 1 & 2 at =T 64).
This again is consistent with observations made in Bai and Xi [57] that
polymers are able to help the flow bypass the bursting of vortices and
avoid small-scale fluctuations. Here, instead of bursting, we only ob-
served a mild and temporary swelling and proliferation of vortices at

=T 64. This regeneration dynamics, that vortices are more often gen-
erated as an offspring of a nearby parent, explains perfectly why vor-
tical structures are more localized at high Wi and why vortices within
the same clusters are strongly correlated (see Fig. 19). In addition, the
suppression of hairpins and their lift-up and eruption at larger +y can
also explain the suppressed Reynolds shear stress in the log-law layer.
And since bursting is bypassed, intense small-scale fluctuations are
avoided, which is consistent with the larger proportion of energy

Fig. 21. Vortex regeneration mechanism and polymer effects thereon in (a) LDR and (b) HDR.

Fig. 22. Typical vortex evolution scenarios observed in our DNS at =Re 86.15τ : (a) streak-instability mechanism (Newtonian) and (b) parent offspring mechanism
( =Wi 96).
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accumulating in large scale structures in the log-law layer (Fig. 10).
After the direct comparison between the vortex regeneration dy-

namics of a Newtonian and high-Wi cases, we now need to show that
the suppression of the streak-instability pathway does indeed correlate
with the LDR–HDR transition. According to [53], the relative stability
of a streak is determined by its “strength”, which is basically described
by how much the base flow has been distorted by the upward ejection
of the low-speed streak, which creates spanwise variation or contrast in
vx. As sketched in Fig. 23, the strength is quantified locally by the streak
lift angle

⎜ ⎟≡ ⎛
⎝

⎞
⎠

θ
ω
ω

arctan y

z (20)

where ωy and ωz are the wall-normal and spanwise components of the
local vorticity. The stability of low-speed streaks is measured by their
characteristic lift angle

≡θ θmax( )c 20 (21)

at the =+y 20 plane. Here, regions with ′ ≤v 0x are first identified as the
low-speed streak regions; local maxima along the x direction that fall
into these regions are collected into the sample pool of θc.

Fig. 24 shows the probability density functions (PDFs) of the char-
acteristic streak lift angles θc collected in each simulation. The solid
black line is the average angle. The decrease of the average angle with
increasing of Wi shows the weakening of the streak lift-up “strength”,
which indicates higher streak stability and less probability for vortex
generation by streak instability. In addition, the shape of the distribu-
tion changes drastically from LDR to HDR. Before the LDR–HDR tran-
sition, the distribution is highly skewed with only one sharp peak lo-
cated in the range of 80 and 90 degrees. As Wi increases, the
distribution of θc starts to spread towards the side of lower θc. At HDR,
the distribution becomes nearly even for a wide range of θc with no
distinct peak at the high θc end. The mean and skewness of the dis-
tribution are plotted in Fig. 25 against DR% and it is clear that both
metrics change sharply at the LDR–HDR transition (DR%≈ 20%) (The
turn of trend in skewness is not as clear only at the lowest Re but it
becomes sharp at higher ones). Note that a streak is considered unstable
at θc>50 for sinuous streak instability [53]. The sharp change in the
distribution at the beginning of HDR indicates a drastic decrease in the
number of streaks eligible for instability, which supports the me-
chanism we propose: HDR is a stage where the streak-instability
pathway for vortex regeneration is greatly suppressed, exposing the
parent-offspring mechanism as the main pathway (Fig. 21(b)). Since the
latter is known to maintain the clustering and close interaction between
vortices, this mechanism consistently explains the observed turbulence
localization.

4. Conclusions

In this study, DNS simulation of viscoelastic turbulent channel flow
is performed for a large number of parameter combinations at a mod-
erate-Re regime not far above Recrit. The landscape of the −Re Wi
parameter space is explored (Fig. 5), including the whole range of
transitions in DR behaviors. In particular, we focus on the LDR–HDR
transition, which occurs between the DR onset and MDR. Literature in
the area often attributes the transition to a quantitative effect of the DR
%. However, we show that it is indeed a qualitative transition of dif-
ferent turbulent dynamics.

Changes in flow statistics are first investigated and the major fea-
tures of HDR (compared with LDR) are summarized as follows.

• The mean velocity profile deviates from the PvK log law behavior in
the log-law layer (Fig. 6).

• The Reynolds shear stress is suppressed not only in the buffer layer,
but across the whole channel (except the viscous sublayer) (Fig. 7).

• As the Reynolds shear stress becomes suppressed in the log-law
layer, viscous and polymer shear stresses increases (Fig. 9; in LDR,
these changes only occur in the buffer layer).

• The energy spectrum in the log-law layer becomes qualitatively
changed in the log-law layer, with a sudden increase in the energy
accumulated in large scales (Figs. 10 and 11).

In summary, unlike at LDR where most DR effects are contained in
the buffer layer, at HDR these effects extend to the log-law layer.
Behind these apparent changes in flow statistics, the turbulent structure
has also changed fundamentally. At LDR, turbulent vortices homo-
geneously spread across the domain, but at HDR they cluster into
strongly interacting groups. Turbulence becomes localized, leaving the
regions outside these vortex clusters laminar-like. Percolation analysis
reveals a fundamentally changed vortex topology at HDR (Fig. 20).

These changes indicate that DR goes through two distinct stages
with different mechanisms. The first starts at the onset of DR, where the
coil-stretch transition of polymers starts a generic inhibition of all
turbulent fluctuations. The second mechanism is triggered at the
LDR–HDR transition and its origin is unknown, for which a mechanism
is proposed. In Newtonian turbulence, vortex regeneration cycles in-
clude two parallel pathways. The streak-instability pathway generates
new vortices by perturbing streamwise low-speed streaks and the
growth and lift-up of these vortices eventually lead to their bursting,
which generates small-scale fluctuates that can destabilize another
streak. This process is intrinsically non-local, as the perturbations can
spread quickly to other parts of the domain, and the bursting events can
feed the turbulence in the log-law layer. The parent-offspring pathway
generates new vortices immediately next to an existing one. The vor-
tices are thus clustered and interact strongly with one another.
Polymers, for its capability of suppressing bursting and stabilizing
streamwise vortices, are able to substantially block the first pathway,
leaving the parent-offspring pathway the main mechanism of turbu-
lence self-sustenance at HDR. The proposed mechanism offers a con-
sistent explanation for the changes in flow statistics at the LDR–HDR
transition and the localization of turbulence. Quantitative analysis of
streak stability shows that after the LDR–HDR transition, much fewer
streaks are susceptible to instability, which supports the mechanism.

Admittedly, the binary categorization of vortex regeneration me-
chanisms is simplistic and, more importantly, there still lacks sufficient
direct evidence for the proposed mechanism. The nature of HDR is far
from being a solved problem. For future work, we will further test this
hypothesis by systematically investigating the polymer effects on the
vortex regeneration process. This is difficult to achieve using DNS in
statistically steady turbulence (as in this study), where the chaotic dy-
namics makes any direct comparison of vortex dynamics nearly im-
possible. Transient processes must be carefully constructed to simulate
the vortex generation and growth dynamics. Results from different Wi

Fig. 23. Schematic of the definition of the streak lift angle measured at =+y 20:
θ20. Solid lines represent the contour of streamwise velocity.
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can then be systematically compared for complete understanding. In
the case of streak breakdown, examples of such transient processes can
be borrowed from the existing literature on the Newtonian bypass
transition [56]. In particular, recent work by Brandt and de Lange [65]
offers a neat example of creating different vortex configurations from
controlled collisions between streaks. In addition, conditional sampling
also offers a convenient way of generating hairpin vortices [66].
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Chapter 3

VATIP: tracking three-dimensional

vortices in turbulence

Vortices are essential for the understanding of turbulent dynamics. In polymeric tur-

bulence, vortical structures are significantly modified by polymers, which are strongly

related to the qualitative transitions between intermediate flow stages. Studying the

modification of vortices is thus important for the understanding of the drag reduc-

tion phenomenon. However, most of the available vortex identification criteria in the

literature only label spatial regions belonging to vortices, without any information

on the identity, topology, and shape of individual vortices. To quantitative analyze

those vortical structures in the polymeric turbulence, we developed a new tracking

algorithm – VATIP (vortex axis tracking by iterative propagation) – which propa-

gates along the vortex axis lines and iteratively searches for new directions for growth.

Based on the new tracking scheme, we also proposed a procedure to classify vortices

into commonly observed shapes.

The VATIP algorithm enables the statistical analysis of vortex configurations in
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turbulence and offers a pathway to discuss the self-sustaining of turbulence. However,

as one early attempt, it is restricted to moderate Re wall-bound turbulence (the focus

of this dissertation) that is dominated by vortices with streamwise aligned legs and

roughly constant diameter. The improvement of VATIP to adapt to more general

vortex configurations, such as reverse hairpin (Wu et al., 2015) and concentrated

hairpin packet with random filaments (Wu et al., 2017) that appear in high Re flows,

will be discussed in the future.
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Vortex is a central concept in the understanding of turbulent dynamics. Objective
algorithms for the detection and extraction of vortex structures can facilitate the
physical understanding of turbulence regeneration dynamics by enabling automated
and quantitative analyses of these structures. Despite the wide availability of vortex
identification criteria, they only label spatial regions belonging to vortices, without
any information on the identity, topology and shape of individual vortices. This
latter information is stored in the axis lines lining the contours of vortex tubes. In
this study, a new tracking algorithm is proposed which propagates along the vortex
axis lines and iteratively searches for new directions for growth. The method is
validated in flow fields from transient simulations where vortices of different shapes
are controllably generated. It is then applied to statistical turbulence for the analysis
of vortex configurations and distributions. It is shown to reliably extract axis lines
for complex three-dimensional vortices generated from the walls. A new procedure
is also proposed that classifies vortices into commonly observed shapes, including
quasi-streamwise vortices, hairpins, hooks and branches, based on their axis-line
topology. Clustering analysis is performed on the extracted axis lines to reveal
vortex organization patterns and their potential connection to large-scale motions in
turbulence.

Key words: turbulent boundary layers, turbulence simulation, vortex dynamics

1. Introduction
The dynamics and physics of turbulent flows in wall-bounded geometries have

been extensively studied for decades for their fundamental significance and practical
implications. The perpetual extraction of fluid kinetic energy from the mean flow
to feed turbulent fluctuations (which is eventually lost to viscous dissipation) is
a self-sustaining process, in the sense that continuing external disturbance is not
required. It is thus natural to ask how turbulence regenerates itself in parallel
wall-bounded flows where the laminar state is linearly stable until a Reynolds number

† Email address for correspondence: xili@mcmaster.ca
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(Re) much (for the cases of Couette and pipe flows, infinitely) higher than the critical
magnitude Recrit for turbulence transition (Mullin 2011). Much progress has been made
over the decades but the detailed dynamics remains elusive because of the complexity
of turbulent flow fields. The concept of coherent structures, apparently repetitive
flow patterns showing strong coherence in space and time frequently observed in the
near-wall region of wall turbulence, is now the basis for understanding the physics
of turbulence (Cantwell 1981; Robinson 1991; Panton 2001). These structures are
believed to play a central role in the self-sustaining dynamics and in the turbulent
transport of mass and momentum (Brooke & Hanratty 1993; Schoppa & Hussain
2002; Marusic et al. 2010).

The concept of coherent structure was introduced some 80 years ago (Corrsin
1943; Theodorsen 1952; Einstein & Li 1956) and encompasses various types of flow
structures. It is often reflected in well-recognizable patterns in turbulent velocity
fields, such as the well-known low- and high-speed velocity streaks in near-wall
turbulence (Kline et al. 1967; Offen & Kline 1975) intricately involved in the
turbulence production and regeneration processes (Kim, Kline & Reynolds 1971;
Jiménez 2018). Contributions of velocity variations to the shear component of the
Reynolds stress (which describes turbulent momentum transport from the mean
flow) are usually quantifiable through the quadrant analysis (Wallace, Eckelmann &
Brodkey 1972; Willmarth & Lu 1972). This approach was recently generalized by
Lozano-Durán, Flores & Jiménez (2012) to analyse three-dimensional flow structures
most responsible for the Reynolds shear stress, defined as continuous regions with
high |v′xv

′

y| (the apostrophe indicates the fluctuation components of the velocities).
Therein, wall-attached structures were found to be self-similar in size and display
increasing complexity with wall distance. In addition to this Eulerian perspective,
coherent structures are also studied using Lagrangian approaches, in which they are
identified as either long-lived events with attracting or repelling material lines or local
maxima of finite Lyapunov exponents (Haller 2001). This approach is particularly
useful for applications such as mixing and scalar transport. Given the large number
of excellent review articles on the topic (Blackwelder & Kaplan 1976; Robinson
1991; Panton 2001; Adrian 2007; Haller 2015; Jiménez 2018), it is not our intention
to provide a comprehensive overview of the entire field of coherent structure. Instead,
we focus on the vortex structure, which has been particularly instrumental in helping
researchers to conceptualize turbulent structures and dynamics. Despite its wide
popularity, the concept of a vortex is very difficult to precisely define. Broadly, it
describes the general class of revolving flow motions and the axis of fluid rotation is
called the vortex axis or centre line: e.g. Robinson (1991) defined vortex as motions
with roughly circular or spiral instantaneous streamlines. Although it is conceptually
intuitive, the intrinsic flaw in this definition is that the topology of streamlines itself
is not Galilean invariant (Haller 2005). More precise criteria for vortex identification
and how these impact vortex analysis will be further discussed below.

Understanding how vortices are continuously produced and reproduced is thus the
key to the fundamental inquiry into the turbulent self-sustaining dynamics. Many
mechanisms for vortex regeneration have been proposed. These known mechanisms
can be roughly summarized into two major categories according to Schoppa &
Hussain (2002). In the first category, velocity streaks between streamwise vortices are
susceptible to three-dimensional disturbances. This instability leads to the so-called
‘breakdown’ of the streaks, which, through nonlinear interactions, further feeds the
generation of vortices (Hamilton, Kim & Waleffe 1995). This was the basis for the
first self-sustaining model for turbulent dynamics (Waleffe 1997) and has led to the
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discovery of various nonlinear travelling-wave solutions featuring the streak-vortex
structure (Waleffe 1998; Gibson, Halcrow & Cvitanotić 2009). Streak breakdown
is also found to play a pivotal role in the bypass transition to turbulence (Brandt
& Henningson 2002; Schlatter et al. 2008). In the second category, as an existing
vortex (the ‘parent’) lifts up, its rotational motion leads to a strong spanwise shear
layer underneath, from which new vortices (‘offspring’) can be generated (Bernard,
Thomas & Handler 1993; Brooke & Hanratty 1993). Our recent study suggested that
when sufficient drag-reducing polymer additives are introduced, the streak-instability
mechanism can be greatly suppressed, exposing the parent–offspring mechanism as
the primary pathway for vortex regeneration in viscoelastic fluids with high polymer
elasticity (Zhu et al. 2018).

Vortices in near-wall turbulence appear in distinct shapes. The best-known type
is quasi-linear: nearly straight vortex tubes were frequently observed in experiments
(Kim et al. 1971; Smith & Schwartz 1983) and simulations (Bernard et al. 1993).
These vortices align mostly along the streamwise direction with their downstream
heads sometimes lifting up towards the upper layers. Quasi-streamwise vortices have
been studied extensively: they are considered to be the dominant structure in the buffer
layer (5 . y+ . 30; where superscript + indicates turbulent inner scaling – see § 2.1)
(Robinson 1991) and an essential element in both categories of the self-sustaining
mechanisms reviewed above (Bernard et al. 1993; Hamilton et al. 1995; Waleffe
1997; Schoppa & Hussain 2002). On the other hand, vortices with more complex
three-dimensional configurations are often observed at larger y+, from the log-law
layer up to the edge of the boundary layer (Robinson 1991). The axis of this type of
vortex is often described as Ω- or Λ-shaped: the top of the arc of Ω is a spanwise
segment that lifts up from the wall at the downstream end; the two legs extend
towards the wall along the streamwise direction at the upstream end. These so-called
‘hairpin’ or ‘horseshoe’ vortices were first conjectured in the conceptual model of
Theodorsen (1952). Their observations, in both experimental and numerical studies,
remained anecdotal for decades (Willmarth & Tu 1967; Head & Bandyopadhyay
1981; Perry & Chong 1982; Smith 1984; Adrian, Meinhart & Tomkins 2000) until
model hairpin structures were constructed via the conditional sampling of ejection
events in direct numerical simulation (DNS) (Adrian et al. 1989; Adrian 1994).
Direct evidence for the existence of clearly shaped and well-organized hairpins in
unfiltered statistical turbulence was not reported until fairly recently when Wu &
Moin (2009) observed a ‘forest’ of hairpins – arrays of well-aligned near-perfectly
Ω-shaped vortex objects – in the DNS of boundary-layer flow. Notably, numerical
travelling-wave solutions resembling a hairpin – streamwise vortex pairs coalescing
at the lifted-up downstream end – were recently reported (Shekar & Graham 2018).
The Wu & Moin (2009) scenario was later challenged by Schlatter et al. (2014),
who, by analysing a DNS dataset of boundary-layer flow extending to much higher
Re, showed that, although the signature of a hairpin forest is clear near the transition
to turbulence, hairpin vortices become increasingly insignificant as turbulence further
develops. Complete-shaped symmetric hairpin structures conforming to the canonical
Ω-shape are never predominant in channel flow. Instead, hairpin-like structures are
often highly asymmetric (e.g. one legged) and fragmented, especially at high Re
(Morris et al. 2007; Dennis & Nickels 2011).

Compared with the relatively well-studied case of quasi-streamwise vortices, the
role of hairpin vortices in turbulent dynamics is much less understood and often
debated. Because of their stronger presence in the log-law and outer layers, much
effort has been invested in unravelling their dynamics and relationship with turbulent

46



L. Zhu and L. Xi

self-sustaining cycles (Smith 1984; Zhou et al. 1999; Adrian 2007). The most
notable model was by Adrian (2007), which proposed that hairpin regeneration
is achieved through their quick reproduction and the formation of ‘hairpin packets’.
This conceptual model is related to Townsend’s (1980) attached eddy model and
the alignment and grouping of hairpin vortex objects offer an appealing explanation
for the experimentally observed large-scale motions (LSMs) and very-large-scale
motions (VLSMs) in high-Re flows (Jiménez 1998; Kim & Adrian 1999). However,
whether this picture is sufficient to describe the turbulent regeneration cycles in fully
developed turbulence is still up for debate (Jiménez 2018). In particular, it remains
to be confirmed if hairpins are essential in the generation of turbulence or are they
simply consequences of other primary coherent structures (Del Álamo et al. 2006;
Lozano-Durán & Jiménez 2014). After all, as noted by Schlatter et al. (2014), at
high Re, it is unlikely that such well-defined structures can persist over the extended
time period of their lift-up, without being disrupted by other turbulent motions. The
challenge of depicting a widely accepted picture of hairpin dynamics is partially
attributed to the lack of quantitative information on the evolution and conformation
of these structures (Marusic et al. 2010). Compared with quasi-streamwise vortices
in the buffer layer, hairpin vortices are not only more complex in shape, at higher
y+ they are also submerged in more complex surroundings and their interaction with
nearby structures becomes non-trivial. A reliable method that objectively detects
and extracts these structures from complex turbulent flow fields is required for their
detailed statistical analysis. In addition to the turbulent regeneration mechanism at
higher y+ and higher Re, such a method will also be a valuable research tool in other
areas. One example is the bypass transition, where different modes of streak instability
and streak interaction can lead to various breakdown pathways driven by different
types of vortices (Brandt & de Lange 2008; Schlatter et al. 2008; Wu et al. 2015).
Another is turbulent friction drag reduction, where reduced three-dimensional vortices
and the dominance of extended quasi-streamwise vortices are strongly associated with
high levels of drag reduction (Xi & Graham 2010, 2012).

Objective vortex analysis must go beyond direct visual inspection and rely on
quantifiable criteria and properly designed algorithms for vortex auto-detection. Any
such approach requires two steps: vortex identification and vortex tracking. The first
step goes back to the definition of a vortex and determines the quantitative criterion
for identifying vortex regions in a flow field. By instinct, one would most likely be
drawn to the concept of vorticity ω ≡ ∇ × v . However, its fundamental deficiency
quickly becomes clear as it does not effectively differentiate between pure shear and
real swirling flow motions. Several more rigorous criteria for vortex identification
have been proposed, all of which are Galilean invariant and define vortex regions
based on the quantitative magnitude of certain scalar quantities calculated from the
flow field, or more specifically, the velocity gradient tensor ∇v . The earliest of them
is the Q-criterion by Hunt, Wray & Moin (1988), which defines vortex zones as
regions where the second invariant of ∇v is positive. (The original Hunt et al. (1988)
criterion also requires pressure to reach a minimum within the vortex region, which is,
although not identical to the Q-criterion, practically equivalent in most cases (Jeong
& Hussain 1995).) The corresponding scalar criterion for vortices in incompressible
fluid flow is

Q≡ 1
2(‖Ω‖

2
− ‖S‖2) > 0, (1.1)

where S ≡ (∇v +∇vT)/2 and Ω ≡ (∇v −∇vT)/2 are the rate of strain and vorticity
tensors and ‖ · ‖ denotes the Frobenius tensor norm. Other criteria have been proposed
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thenceforth. For example, Chong, Perry & Cantwell (1990) defined vortex zones
as regions containing complex eigenvalues of ∇v . For incompressible fluids, the
corresponding scalar criterion is

∆≡ (R/2)2 + (Q/3)2 > 0, (1.2)

where Q is given by (1.1) and R ≡ −det(∇v) (Chong et al. 1990; Chakraborty,
Balachandar & Adrian 2005). Another is the λ2-criterion by Jeong & Hussain (1995)
which defines vortex zones as regions where

λ2(S
2
+Ω2) < 0 (1.3)

and λ2(·) denotes the second largest eigenvalue of a tensor. These three criteria are
the most widely used in the literature and they all serve the same purpose: turning
a velocity field into a scalar field that maps to the strength of vortex motion at
different positions in the domain. Taking the Q-criterion for example, Q> 0 and Q< 0
correspond to regions dominated by rotation and deformation (extension), respectively
(Hunt et al. 1988) and a small absolute value of Q (|Q| � ‖∇v‖2/2 according to
Xi & Bai (2016)) reflects simple shear. Despite their different mathematical origins,
for application in real turbulent flows, they are shown to give comparable results
with no practically significant differences (Dubief & Delcayre 2000; Chakraborty
et al. 2005; Chen et al. 2015). A number of further attempts were made. For
example, Zhou et al.’s (1999) swirling-strength criterion extends the ∆-criterion
to include information on the local strength in a plane of swirling motions through
the imaginary part of the complex eigenvalue of the velocity gradient tensor. Kida
& Miura (1998) developed a kinematic swirling condition to be used together with
the pressure minimum criterion which avoids the arbitrariness in the choice of the
vortex-identification threshold common to all major single scalar identifiers.

Choosing a minimum threshold of Q, ∆ or −λ2 for a given region to be identified
as a vortex structure is non-trivial. The original idea of using 0 as the threshold would
connect nearly all vortex regions into an indistinguishable percolating structure that
is nearly impossible to decipher – a value larger than 0 is thus required (Blackburn,
Mansour & Cantwell 1996; Jeong et al. 1997; Chong et al. 1998). Obviously, both
the size and configuration of the vortex regions identified depend on this threshold
(see, e.g. figure 19 of Zhu et al. (2018)). Although some arbitrariness is inevitable,
Lozano-Durán et al. (2012) have demonstrated (for the quadrant quantity |v′xv

′

y|

in their case) that there is a well-identifiable threshold range in which individual
structures are separated but not yet overly quenched. Their so-called percolation
analysis works equally well for vortex identifiers such as Q (Zhu et al. 2018).
Details of this approach, which is also used in this study, will be discussed in
§ 4.5. Isosurfaces of the scalar identifier at the threshold value show the volumetric
shapes of vortex structures. Jiménez and coworkers have extensively studied the
complex three-dimensional vortex structures in high Re turbulence (Moisy & Jiménez
2004; Del Álamo et al. 2006). In the case of channel flow, Del Álamo et al. (2006)
found that using a threshold value (for the ∆-criterion by Chong et al. (1990)) that
varies with wall distance y+ can fully reveal the complexity of outer-layer structures
which deviate from the classical hairpin shape and are highly branched and often
nearly isotropic. These structures are clearly divided into the wall-attached and
-detached classes and the former type shows self-similar dimensions with increasing
y+. Lozano-Durán & Jiménez (2014) then proposed an elegant method that, given
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sufficiently resolved DNS data, is able to track the temporal evolution of volumetric
flow structures and document their lifetime kinetics.

Vortex-identification criteria generate vortex-containing volumes without
differentiating their individual identities (e.g. the analysis of Del Álamo et al. (2006)
was based on vortex ‘clusters’ – interconnecting vortex regions – instead of individual
vortex objects). By carefully adjusting the threshold, individual vortices can be visually
spotted by direct inspection. However, this information is not easily passed on to a
computer program for automated analysis. A second step of the objective vortex
analysis workflow – i.e. vortex tracking – is thus needed. This step turns volumetric
vortex structures into line representations reflecting vortex conformation and topology,
in which interconnected line segments represent a complete standalone vortex object.
(Note that in this study the word ‘tracking’ refers to the extraction of such line
representations from vortex volumes, which is to be differentiated from the temporal
tracking of Lozano-Durán & Jiménez (2014).) These vortex lines enable the direct
quantitative measurements of the size, position, orientation and conformation of
vortices and are instrumental in understanding their roles in turbulent dynamics.

Much less development has been made on this front. The most intuitive approach is
to represent vortices with their axis lines – the centre line for the swirling motion of
fluid elements in each vortex tube. This is best exemplified by the vortex extraction
scheme of Jeong et al. (1997) for conditional sampling. The axis line of a vortex
tube is considered to cut through each of its cross-sectional planes at its planar
maximum. These two-dimensional maximum points are labelled and then connected
into the vortex axis line through a so-called ‘cone-detective’ method (see § 3). The
Jeong et al. (1997) approach was designed for streamwise vortices only, in which
the axis lines are constrained in the streamwise direction. The method was recently
adapted for the conditional sampling of streamwise vortices in viscoelastic flows
(Zhu & Xi 2018). However, the observations were limited to the changes in the
vortex dimension and lifting angle with the addition of drag-reducing polymers. The
most important fundamental changes in vortex dynamics, i.e. the suppression of
three-dimensional vortices and different vortex regeneration mechanisms, could not be
tested because of the restriction of streamwise tracking. A similar approach was used
in Kida & Miura (1998) which extracted the axis line of each vortex in isotropic
turbulence by connecting the two-dimensional pressure minima (in regions satisfying
their swirling condition) within planes that are normal to the direction of vorticity or
the third eigenvector of the pressure Hessian matrix. Tracking of three-dimensional
vortex structures in inhomogeneous wall turbulence with line representations was only
reported very recently by Hack & Moin (2018). They used a ‘morphological thinning’
method which gradually trims the vortex volume while preserving its topology,
until each tube is reduced to a line. Different from the direct axis-line tracking
approach of Jeong et al. (1997) and Kida & Miura (1998), the Hack & Moin
(2018) approach does not always render vortex axis lines. Indeed, it is designed to
preserve the connectivity of vortex volumes at the line representation level: vortex
tubes that have interconnection in their volumes but no intersection between axis
lines – i.e. interacting vortices that are not topologically connected – will result
in interconnected representation lines. In another closely related development, Lee
et al. (2014) proposed and implemented a streak-tracking method – which extracts
line representations of velocity streaks by detecting the ridges in a smoothened
surface capturing the velocity structure. Distribution of these ‘spine’ lines reveals the
spatio-temporal patterns of LSMs and VLSMs.

In this study, we propose a new algorithm – vortex axis tracking by iterative
propagation (VATIP) – for the axis-line tracking and analysis of three-dimensional
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FIGURE 1. Conceptual plot of the plane Poiseuille flow geometry.

vortices in wall turbulence. The method builds on the initial idea of Jeong et al.
(1997) for tracking vortex axis lines by sequentially connecting axis points (thus
the word ‘propagation’) but extends its target from simple quasi-linear vortex axes
to complex three-dimensional configurations representative of generic hairpin-like
vortices, including not only the strictly Ω- or Λ-shaped vortices, but also asymmetric,
incomplete, distorted and highly branched ones. For this purpose, the algorithm must
also ‘iteratively’ grow the propagating axis line in all three dimensions. We will
first test VATIP in transient flow fields in which well-organized hairpin vortices
are generated in a controlled manner. It is then applied to flow fields of statistical
turbulence at several different Re and the statistics of vortex configuration are analysed.
In addition to vortex tracking, we also propose a procedure for vortex categorization
based on the axis-line topology. Statistics of vortices of different topologies are thus
also analysed. Access to the detailed information about vortex conformation and
position, enabled by the new method, allows us to analyse their clustering patterns,
which offers direct insight into the organization of vortices and its potential connection
with LSMs. After presenting all major results, we will examine the robustness of the
method with different parameters and settings. Finally, a major assumption of the
method is that vortices can be traced to well-aligned streamwise legs, which applies
well to nearly all major vortices in the near-wall layer. However, it no longer holds
for complex isotropic structures observed in the outer layer of turbulence at higher
Re. This limitation and future development will be discussed at the end.

2. Formulation and numerical details
2.1. Direct numerical simulation (DNS)

This study focuses on plane Poiseuille flow. Figure 1 shows the geometry of the
simulation domain. A constant streamwise (x-direction) pressure gradient drives the
flow between two infinite parallel plates. The periodic boundary condition is applied
in the streamwise and spanwise (z-direction) directions with the period dimensions
represented by Lx and Lz. A no-slip boundary condition is applied to the walls in
the y-direction (wall-normal). By default, non-dimensionalization using turbulent outer
scales is applied to all variables: i.e. the half-channel height l is used for the scaling
of length, the laminar centre-line velocity Uc for velocity, l/Uc for time and ρU2

c for
pressure (where ρ denotes the density of fluid). The Reynolds number is thus defined
as Re ≡ ρUcl/η, where η is the viscosity of the fluid. Turbulent inner scales are
used to report results of near-wall flow statistics and structure, for which the friction
velocity uτ ≡

√
τw/ρ and viscous length (or wall unit) δv ≡ η/ρuτ are used. Quantities

so scaled are denoted with a superscript ‘+’. Under these definitions, the friction
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Re Reτ δt L+x L+z δ+x δ+z Ny δ+y,min δ+y,max

3600 84.85 0.01 4000 800 9.09 5.44 97 0.046 2.81
14 400 169.71 0.01 4000 800 9.09 5.44 195 0.022 2.79
80 000 400 0.01 4000 800 9.09 5.44 437 0.011 3.03

TABLE 1. Summary of the numerical settings for the DNS of statistical turbulence.

Reynolds number, Reτ ≡ ρuτ l/η, can be directly related to Re through Reτ =
√

2Re.
The governing equations of momentum and mass balances are

∂v

∂t
+ v · ∇v =−∇p+

1
Re
∇

2v, (2.1)

∇ · v = 0. (2.2)

A Fourier (x)-Chebyshev (y)-Fourier (z) pseudo-spectral scheme is adopted for
spatial discretization while a third-order semi-implicit backward-differentiation
Adams–Bashforth scheme (Peyret 2002) is used for time integration. DNSs have been
performed at three different Re, i.e. 3600 (Reτ = 84.85), 14 400 (Reτ = 169.71) and
80 000 (Reτ = 400). A summary of the numerical settings for the DNSs of statistical
turbulence is provided in table 1. The simulation domain is kept the same in inner
units (L+x × L+z ; and thus in outer units both Lx and Lz scale with 1/Reτ ). Likewise,
the grid sizes in the transverse directions δ+x and δ+z are also kept constant in inner
units. The number of grid points in the y-direction increases with Re to keep the
wall-normal resolution approximately the same in inner units. The numerical solver
is implemented in a custom code parallelized with MPI based on the open source
ChannelFlow package (Gibson 2012); the code was first reported in Tuckerman et al.
(2014).

2.2. Streak transient growth (STG) simulation
In statistical turbulence, vortices are often irregular in shape, highly concentrated in
space and intricately positioned relative to (sometimes partially connected with) one
another. Meanwhile, for the initial test of our vortex-tracking algorithm, a benchmark
system that enables controllable generation of well-defined three-dimensional vortex
structures is required. We adopt the streak transient growth (STG) approach of
Schoppa & Hussain (2002) for this purpose, which controls the vortex configuration
by adjusting several parameters of the initial condition. (As another option, one may
as well follow the approach of Brandt & de Lange (2008) in which vortices of
different configurations are generated from different modes of streak interaction.)

The initial condition for STG is constructed by superposing a base flow with a
perturbation velocity. The base flow

Ub(y, z)=Um(y)+Us(z)g(y), Vb =Wb = 0 (2.3a,b)

is quasi-two-dimensional (Ub, Vb and Wb are the x-, y- and z-component, respectively)
and itself a superposition of the mean velocity profile of statistical turbulence at the
same Re

Um(y)≡
∫
∞

0

∫ Lx

0

∫ Lz

0
vx(x, y, z, t) dz dx dt, (2.4)
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Re Reτ δt L+x L+z δ+x δ+z Ny δ+y,min δ+y,max η As βs v′+z,rms Ap αp

80 000 400 0.005 400 200 8.33 8.33 291 0.023 4.333 200 4 100 0.4 0.016 400

TABLE 2. Numerical settings and initial condition parameters used for STG simulations.

(where vx is the instantaneous streamwise velocity component in the statistical
turbulence) with a streamwise velocity streak adjustment Us(z)g(y). The latter is
factorized into spanwise and wall-normal dependence terms

Us(z)= As cos(βs(z− zβ)) (2.5)

and
g(y)= y exp(−ηy2). (2.6)

Here, As adjusts the amplitude of the spanwise undulation, βs adjusts the spanwise
streak spacing, zβ is the spanwise phase parameter which is set so that the low-speed
streak is aligned to the middle of the domain and η is set to align the wall-normal
maximum at y+ = 20. The perturbation velocity

v′x = v
′

y = 0, v′z = Ap sin(αpx)g(y) (2.7)

(v′x, v′y and v′z are the x-, y- and z-component, respectively) adds streamwise
dependence to the base flow, without which the instability would not grow (Waleffe
1997). Here, Ap is the perturbation amplitude and αp is the streamwise wavenumber.

STG parameters used in this study for transient vortex generation, along with the
numerical settings of the STG simulations, are listed in table 2. Note that v′+z,rms is the
root mean square (r.m.s.) magnitude of the spanwise perturbation velocity. A small
simulation domain close to a minimal flow unit (MFU) (Jiménez & Moin 1991) is
used because we only need to focus on a small set of vortex structures for algorithm
testing purpose. Vortices are generated by STG only in half of the channel: i.e. both
the streak velocity and perturbation velocity are only applied at the y< 0 side of the
domain while for y> 0, g(y)= 0 and the initial velocity is simply Um(y).

3. The algorithm: vortex tracking by VATIP
We first review the original method by Jeong et al. (1997) for quasi-streamwise

vortex tracking (illustrated in figure 2a). In their study, the −λ2 isosurfaces are used to
identify vortex shells in the three-dimensional flow domain and local maxima of −λ2
in yz-planes are considered to be on vortex axes and labelled as vortex axis points
(circle markers). The key element of the algorithm is a cone-detective procedure which
groups individual vortex axis points into the axis lines for different vortices. Starting
from one axis point, a cone is drawn toward the downstream direction. If another
axis point at the adjacent downstream yz-plane is found within the cone, i.e. the yz-
projection of the vector connecting the two points is shorter than half of the cone
diameter dmax, the two axis points are grouped to the same vortex (red/solid makers).
Because the search is limited to yz-planar maxima and the tracking cone extends in
the downstream direction only, the method is only suitable for vortices staying closely
aligned with the x-axis. For significantly curved vortices, the tracking stops as soon as
the axis line steers towards other directions (hollow marker near the top of figure 2a).

52



L. Zhu and L. Xi
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FIGURE 2. (Colour online) Conceptual plots of the vortex-tracking algorithms for
(a) quasi-streamwise vortices (by Jeong et al. 1997) and (b) three-dimensional vortices
(by VATIP).

Symbol Description Symbol Description

i Index of planes normal to the
search direction

D Distance set

j Index of candidate points in
plane i

Djj′ Distance between points j and j′

j′ Index of candidate points in
plane i+ 1

Dmin Minimum distance in D

θ Index of individual vortices Eθ Propagation point of vortex θ

θ( j) Vortex-containing point j Pi Set containing all candidate
points in plane i

TABLE 3. Nomenclature for VATIP flow charts in figure 3.

Building on the idea of extending an vortex axis line by connecting new points in
its direction of propagation, the new VATIP algorithm introduces two major changes
to accommodate complex three-dimensional vortices typically observed at larger y+

and higher Re. First, identification of axis points goes beyond the yz-planar maxima
(hereinafter referred to as ‘x-axis point’ in which ‘x’ indicates the primary direction
of the vortex axis) and also includes two-dimensional maxima in xz- and xy-planes
(y- and z-axis points). Second (and more substantially), vortex axis propagation is no
longer restricted to the x direction and the search must explore all three dimensions
iteratively until all possible directions of axis extension are exhausted. For canonical
hairpins, the vortex axis runs from the x (legs), to the y (lift up) and then to the z (the
arch) direction. Other complicated (fragmented or highly branched) vortex configures
are also observed, which requires the search algorithm to re-examine the x direction
after the y and z searches reach their end (figure 2b).

The approach of iterative propagation over all three dimensions is thus proposed
to allow for more general topologies of vortex axis lines. The resulting algorithm
is much more complex than the original Jeong et al. (1997) method. Flow charts
illustrating all detailed steps in VATIP are presented in figure 3 and the symbols used
are explained in table 3. The main algorithm is illustrated in figure 3(a) in which two
specific subroutines are called: subroutine 1 (figure 3b) is used to initiate the vortex
axis lines and subroutine 2 (figure 3c) is used to extend existing axis lines in a new
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Start

Identify vortex regions by Q≥HQrms.

Find 2D local maxima of Q on (x, y)-,

(y, z)-, and (x, z)-planes.

Initialize the vortex axis-lines

in the x direction

(with Sub. 1)

Extend the vortex axis-lines

in the y direction

(with Sub. 2)

Extend the vortex axis-lines

in the z direction

(with Sub. 2)

Extend the vortex axis-lines
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False
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End.

Number of

propagation points

has converged?

(a)

FIGURE 3. For caption see next page.

direction. The latter is repeatedly called in a loop to allow the vortex axis lines to
explore different directions of propagation.

A three-dimensional velocity field is first converted to a scalar field of the vortex
identifier using one of the criteria reviewed above in § 1. Without loss of generality,
the Q-criterion is used here for illustration. (One may adapt the VATIP algorithm to
any other vortex-identification criterion as long as the maximum – or minimum – of
the scalar identifier marks the vortex axis.) Regions with Q larger than the threshold
value of 0.4Qrms (Qrms is the r.m.s. value of Q; the threshold choice is discussed
in § 4.5) for statistical turbulence or 1.4Qrms for STG (a higher threshold is needed
because turbulent structures from STG are localized and Qrms is diluted by large
non-turbulent regions) are selected, within which local maxima in two-dimensional
grid planes of all three dimensions are recorded (figure 3a). Maximum points found in
the yz-, xz- and xy-planes are labelled as x-, y- and z-axis points, respectively. Regions
with lower Q are not considered to avoid the interference from small-magnitude
fluctuations in Q.

These scattered axis points are connected to form vortex axis lines through
a multistep iterative vortex-tracking process. All axis lines are initialized with
subroutine 1 in the x-direction only (figure 3b). This choice is based on the conceptual
model that vortices generated from the walls initially align along the streamwise
direction in the buffer layer. Many of them can then lift up at the downstream
end and rise into upper flow layers, forming hairpins, branches or other complex
configurations. This model well describes the vortex dynamics in the near-wall
boundary layer (Robinson 1991; Zhou et al. 1999; Panton 2001) (see figure 8 for
example). Consequently, as shown below, VATIP can reliably detect and extract the
axis lines for these vortices. However, recent advances in the field revealed that
vortex structures can also be generated independently of the walls as long as there is
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set Pi; define all vortex propagation points and all 
2D axis-points (including those already claimed

by another vortex) on plane i + 1 as set Pi+1

Calculate the distance between point j
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plane i and one 2D axis-point j � in plane i + 1, Djj�,
and store it in the distance set D

 œ( j�) = œ(j), Eœ  =  j�  

FIGURE 3 (cntd). Flow charts for the VATIP algorithm: (a) main routine, (b) subroutine
1 for the initial tracking in the x direction, and (c) subroutine 2 for the continued
tracking by iterative propagation in all directions. For the last, the loop over planes is
unidirectional for the x- (downstream) and y- (wall→centre) directions and bidirectional
for the z direction – see text.
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sufficient mean shear (Del Álamo et al. 2006; Jiménez 2013). These ‘detached’ vortex
structures are often more isotropic and complex in shape – it is thus expected that, at
higher Re where these structures become more prominent, this bias towards x-lying
legs will restrict the applicability of VATIP mainly to near-wall regions. Further
discussion about the necessity of this choice and limitations resulting therefrom is
deferred to § 4.6.

Starting from the first yz-plane (at x= 0 and labelled as plane i= 0; as shown in
§ 4.5, one can choose to start at any other yz-plane, which gives no real difference in
the results), all x-axis points on the plane are initially assigned different vortex labels
θ . Each growing vortex axis line must have an open connection point – referred to
as the propagation point – to which new axis points can be added. The propagation
point of the axis line of vortex θ is denoted as Eθ . At the very beginning (i= 0), since
each axis line only has one point, it is automatically labelled as the propagation point.
For every propagation point on plane i, the closest axis point on plane i+ 1 is found
and if the distance between them is shorter than the slant edge of the cone (figure 2),
the new axis point is connected to the existing vortex axis line and designated as its
new propagation point. If an axis point on plane i+ 1 is eligible for connection with
multiple existing propagation points on plane i, the closest one is chosen. In practice,
this is implemented by first calculating all distances between propagation points on
plane i and axis points on plane i + 1 and storing the results in a set D. Potential
connections are processed from the shortest distance in D up to the cutoff distance
(cone slant edge length; see figure 3b). After all eligible connections are made, the
process is repeated for the next yz-plane. On plane i + 1, if an x-axis point is not
already designated as the propagation point of an existing vortex (in step i), it is
labelled as the propagation point of a new vortex initiating from plane i+ 1. All these
propagation points on plane i+ 1 are then tested for connection with x-axis points on
plane i+ 2 following the same procedure as the previous step. The iteration continues
until all yz-planes are processed. The resulting set of vortex axis lines from this step
(subroutine 1) is equivalent to the outcome of the Jeong et al. (1997) method.

Extension to three-dimensional vortex tracking requires the continuation of the
search in other directions after the initial x-direction tracking stage. As shown in
figure 3(a), the search continues in the y- and then z-direction. This order is chosen
considering the typical configuration of hairpin-like vortices (see, e.g. the t = 60
image of figure 5): the legs of the Ω-shaped axis line align in the x-direction and
as they extend downstream, the vortex contour lifts up (y-direction axis line) before
they merge to form a spanwise arch (z-direction axis line). However, the vortex
does not have to conform to this canonical shape: e.g. for a vortex without a clear
lift-up (aligned in the y-direction) segment, the search will continue to the z-direction
without interruption. The tracking method for axis-line extension (subroutine 2 and
figure 3c) is very similar to that of axis-line initialization (subroutine 1 and figure 3b)
with two major modifications. First, it only extends existing vortex axis lines by
adding to their propagation points and no new vortex will be initiated from any loose
axis point. Limiting vortex initiation to subroutine 1 (which is only called before the
iteration of search directions) ensures that vortex segments in different directions are
only grouped when they are topologically related: e.g. a y-segment happens to start
where an x-segment ends. Planar maximum points of Q that are spatially adjacent
but showing no clear topological connection are not included. This is necessary to
minimize false connections in complex flow fluids densely populated with vortex
structures. Its impact on the generality of the method will be discussed in § 4.6.
Second, when the axis point on the next plane (plane i+ 1) selected for connection
is already part of another vortex, these two vortices must be properly merged.
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For canonical hairpins, the steps of initial tracking (subroutine 1) in the x-direction
followed by continued tracking (subroutine 2) in the y- and then z-direction would
suffice. In order to capture more general three-dimensional vortex configurations,
especially disfigured, highly branched and partially merged vortices, the loop
containing subroutine 2 over all three dimensions must be continued until the number
of vortices (measured by the number of propagation points; figure 3a) has converged.
The specific algorithm of subroutine 2 is nearly identical for different directions
with proper adjustment for the directionality: for, e.g. the y- (or z- or x-) direction
search, it moves over all xz- (or xy- or yz-) planes and connects y- (or z- or x-)
axis points to the propagating axis lines. The only difference is that the vortex
axis-line propagation is unidirectional in the x- and y-tracking and bidirectional in
the z-tracking. The x-direction propagation proceeds in the flow direction (i.e. plane
i + 1 is immediately downstream of plane i) because of the convective asymmetry:
vortex structures are always carried downstream by the flow. The z-direction should
be statistically symmetric and thus the propagation must sweep both directions. As
shown in § 4.5, the VATIP tracking result is practically unaffected by the choice of
start planes in these two dimensions, indicating that these sweeping directions can
well account for the translational symmetry in x and z. The y-direction propagation
always starts from the walls towards the channel centre (i.e. plane i+ 1 is father away
from the wall than plane i). This choice, again, restricts VATIP to wall-generated
vortices which generally grow from the buffer layer to higher y+.

The size of the detection cone is determined based on the average cross-sectional
radius of vortex tubes. The average streamwise vortex radius

rv =

√
Av,total

πNv

(3.1)

is used as the estimated vortex tube size. Here, regions with Q > Qthreshold on all
yz-planes are grouped according to spatial adjacency: for a given yz-plane, grid points
satisfying the Q-criterion that are immediate neighbours are grouped into the same
vortex cross-section. The total area of all vortex regions on these planes Av,total divided
by the number of separate vortex cross-sections Nv gives the average cross-sectional
area of vortex tubes, from which an average radius is deduced. In this study, the
detection core is chosen so that it extends from plane i to plane i + 1 with a base
(on plane i + 1) radius of 1.5rv (figure 2). The choice of this parameter will again
be examined and discussed in § 4.5. In addition, rv is also used as the minimum
separation between identified axis points on each two-dimensional plane. If two or
more local Q maxima are separated by less than rv on the plane, they are considered
to belong to the same vortex tube and the one with higher Q value is kept as an axis
point.

The computational cost of VATIP is negligible compared with DNS. To analyse a
typical DNS flow field image in this study (domain size and resolutions are provided
in table 1), the whole algorithm takes ≈100 s, 370 s and 1600 s (running as a serial
program on an Intelr E5-2683 v4 2.10 GHz processor) for Reτ = 84.85, 169.71 and
400, respectively. To imitate the original algorithm of Jeong et al. (1997), we turned
off the whole iteration loop (see figure 3). The computational time of this streamwise-
only search is comparable to that of the full VATIP algorithm. This is because the
calculation of the Q field and the finding of its planar maximum points are both
computationally intensive within the program. For the search and propagation steps,
the first x-search step (subroutine 1) is also more expensive than the following iterative
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FIGURE 4. (Colour online) Time series of the root mean square of Q in the STG
simulation. Moments of the flow fields shown in figure 5 are marked with red circles.

propagation steps (because of its larger number of distance calculations). In all cases,
the tracking result converges after 3 iterations or less. The memory requirement of the
program is 1.02 GB, 2.25 GB and 5.10 GB (in order of increasing Re).

4. Results and discussion
4.1. Test of VATIP with STG-generated vortices

We start by testing the effectiveness of VATIP in STG flow fields, where vortex
generation is controllable by the parameters of initial disturbance (Schoppa & Hussain
2002). Figure 4 shows the time series of the root mean square of Q in our STG
simulation (numerical settings given in § 2.2) and vortex configurations of selected
moments are shown in figure 5. The initial disturbance flow field (t = 0) contains
strictly streamwise vortices with a spanwise phase shifts between upstream and
downstream vortex sets. At the beginning of STG, the Qrms profile starts to grow and
reaches the first plateau at around t= 15. At this stage, the quasi-streamwise vortices
tilt and bend sideways to the spanwise direction but wall-normal lifting up remains
small (t=20 in figure 5). After the first plateau, the Qrms profile continuously increases
and reaches its peak at t = 75. During this period, neighbouring tilted-streamwise
vortices lift up and conjoin to form well-defined hairpin vortices (t= 60 in figure 5).
The value of Qrms gradually decreases after t= 75. Vortices in this period have a high
lifting tendency despite their lower strength (t= 120 in figure 5).

Typical vortex configurations in these moments, including the strictly streamwise
(t = 0), titled-streamwise (t = 20), lifted-up hairpin (t = 60) and decaying hairpin
(t = 120) vortices, are used as our benchmark systems for vortex tracking. The
original method of Jeong et al. (1997) is recovered when the algorithm of figure 3(a)
is truncated right after subroutine 1 (i.e. no iterative propagation in other directions).
This would be sufficient if the target was limited to streamwise (t = 0) or quasi-
streamwise vortices (as in the case of Jeong et al. (1997)). Its inadequacy starts to
surface in titled-streamwise vortices (t= 20) where the spanwise segment of the vortex
is not fully captured in the axis line obtained (circular markers). For hairpin vortices
(t= 60 and 120) not only are some of the axis points missing (because they are not
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FIGURE 5. (Colour online) Vortex configurations of selected moments in the STG
simulation. The isosurfaces are Q= 0.015 for t= 0, 20 and 60 and Q= 0.01 for t= 120.
The colour scale maps to the distance from the wall in outer units. Vortex axis lines from
(a) a streamwise-only tracking approach (equivalent to the Jeong et al. (1997) method) and
(b) VATIP are compared (circular marks; different colours are used for different vortices
as identified by the method).

yz-plane maxima of Q), the method also breaks the axis line of a well-defined hairpin
into separate pieces. The new VATIP algorithm successfully identified the complete
axis lines of vortices of all shapes and correctly grouped axis points of the same
vortex into one axis line.

4.2. DNS: flow statistics and visualization
We now give an overview of the DNS results of statistical turbulence at three different
Re (Reτ = 84.85, 169.71 and 400) in this section. Application of VATIP to these flow
fields will be discussed in § 4.3. The mean velocity U+ as a function of y+ is plotted
in figure 6(a). As Re increases, the profile outside the buffer layer (y+ > 30 (Pope
2000)) gradually approaches the von Kármán log law (Kim, Moin & Moser 1987;
Pope 2000)

U+ = 2.5 ln y+ + 5.5. (4.1)

At the lowest Reτ = 84.85, the profile is slightly higher than the von Kármán
asymptote, indicating that the log-law layer is not fully developed. The agreement is
much better at the two higher Re and at the highest Reτ = 400, it nearly completely
collapses onto (4.1) for a wide range of y+ (until the channel centre).

From a generic logarithmic profile

U+ = A ln y+ + B, (4.2)
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FIGURE 6. (Colour online) (a) Mean velocity profiles (U+ versus y+) and (b) log-law
indicator functions (y+dU+/dy+ versus y+) of the statistical turbulence at Reτ = 84.85,
169.71 and 400.

the log-law slope can be expressed as

A= y+
dU+

dy+
. (4.3)

When the profile does not strictly follow a logarithmic dependence (4.2), A becomes a
function of y+ – its variation indicates the departure from the log law. This quantity
(4.3), which is thus sometimes referred to as the log-law indicator or diagnostic
function (Hoyas & Jiménez 2006; Marusic et al. 2010), is plotted in figure 6(b) for
our DNS results. For the lowest Reτ = 84.85, the function goes nearly straight down
with no discernible flat region, indicating the lack of a well-defined log-law layer
(despite the fact that the profile is seemingly parallel to the von Kármán asymptote
in figure 6a). For the two higher Re (Reτ = 169.71 and 400), an inflection point
shows up at y+ ≈ 50 with nearly the same value of 2.5, which agrees well with the
von Kármán log-law slope reported in Kim et al. (1987) and is also consistent with
the observations of Moser, Kim & Mansour (1999) and Jiménez & Moser (2007).
After the inflection point, the profile is not strictly flat but its variation is small
for a distinct range of y+ (50 . y+ . 100 for Reτ = 169.71 and 50 . y+ . 320 for
Reτ = 400), indicating that these Re are sufficiently close to and have already shared
some common features with fully developed turbulence (Moser et al. 1999; Hoyas &
Jiménez 2006).

Figure 7 shows the four components of Reynolds stress, 〈v′+x v
′+

x 〉, 〈v
′+

y v
′+

y 〉, 〈v
′+

z v
′+

z 〉

and −〈v′+x v
′+

y 〉, as functions of y+. Consistent with the literature (Moser et al. 1999;
Abe, Kawamura & Matsuo 2001), the profiles of all components rise with Re
at y+ above ≈30 while the peak shifts towards the centre of the channel. The
Re-dependence is stronger in the transverse components 〈v′+y v

′+

y 〉 and 〈v′+z v
′+

z 〉, which
reflects increasing energy redistribution (Abe et al. 2001), and the dependence in the
streamwise component 〈v′+x v

′+

x 〉 is much weaker.
Figure 8 shows the vortex structures identified by the Q-criterion in typical

snapshots at the lowest (Reτ = 84.85) and the highest (Reτ = 400) Reynolds numbers.
In both cases, the flow fields are filled with tube-like vortices. Quasi-streamwise
vortices are more prevalent in the vortex field, but hairpin vortices can still be
observed. Examples of these hairpins are shown in the enlarged views. Vortices at the
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FIGURE 7. (Colour online) Reynolds stress profiles for Reτ = 84.85, 169.71 and 400.

(a) Re† = 84.85, Q = 0.01

(b) Re† = 400, Q = 0.02
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FIGURE 8. (Colour online) Instantaneous vortex structures at (a) Reτ = 84.85 and (b)
Reτ = 400. Isosurfaces are identified by the Q-criterion and in the wall-normal direction
only the bottom half and 20 % of the top half of the channel are shown (i.e. 0 < y+ <
1.2Reτ ). The colour shade (from light to dark) maps to the distance from the bottom wall
in outer units.
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FIGURE 9. Measurements of vortices in x and z dimensions.

higher Re display a high extent of lifting up and many instances of detached vortices
are observed. (A vortex becomes detached when its upstream legs leave the wall and
become shielded from wall interaction (Perry & Marušić 1995; Marusic et al. 2010).)
Meanwhile, most of the vortices at the lower Re remain attached to the wall with a
comparatively weaker extent of lifting.

4.3. VATIP application in DNS: vortex classification and conformation
Visualization based on the Q field can only provide a cursory glance of the
instantaneous vortex fields and lacks both quantitative precision and statistical
certainty. The new VATIP algorithm automatically detects vortices with a variety
of shapes without subjective bias. It thus offers a feasible pathway to the statistical
analysis of the population and configurations of vortex structures, facilitating the
understanding of their roles in turbulent dynamics. In this section, VATIP is applied
to the DNS results of statistical turbulence. Another algorithm is also proposed to
classify vortices according to the topology of the vortex axis lines identified thereby.
Note that a lower Q threshold of 0.4Qrms is used for VATIP as discussed previously
in § 3.

To begin with, vortex size is measured according to figure 9: the streamwise and
spanwise measurements (l+x and l+z ) are defined as the maximal separation between
axis points in these two dimensions, respectively. The statistical distributions of these
measurements are presented in figures 10 and 11. (As discussed below, vortices with
l+x < 50 are considered fragments and not included in the statistics.) At all Re, the
probability density function (PDF) of l+x monotonically decreases with increasing l+x .
The average l+x is approximately 120 and is nearly independent of Re. This value is
comparable with Jeong et al.’s (1997) 200 (using their streamwise tracking algorithm)
and Panton (2001)’s 100 (from empirical observation). Sensitivity of this measurement
to varying Qthreshold ≡ HQrms is rather small: e.g. for Reτ = 84.85, increasing H from
0.4 to 1.6 (well beyond the percolation level), the average l+x only decreases from 126
to 104. This is consistent with the earlier (§ 3) statement that vortex axis topology is
insensitive to the changing H value.

By contrast, Re has a much stronger effect on the spanwise vortex measurement.
The distribution of the vortex aspect ratio l+z /l

+

x (figure 11) becomes broader and high
l+z /l

+

x values are more frequently sampled with increasing Re. The average aspect
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FIGURE 10. (Colour online) Probability density function of the streamwise measurement
of vortices: (a) Reτ = 84.85, (b) Reτ = 169.71 and (c) Reτ = 400. The vertical line marks
the mean value.
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FIGURE 11. (Colour online) Probability density function of the spanwise–streamwise
aspect ratio of vortices: (a) Reτ = 84.85, (b) Reτ = 169.71 and (c) Reτ = 400. The vertical
line marks the mean value.

ratio also increases with Re. Because l+x is nearly the same, higher l+z /l
+

x is solely
due to the increasing spanwise measurement of the vortices. There are two major
possible contributions to this increase: (i) streamwise vortices becoming increasingly
bent and tilted towards the spanwise direction (see the t= 20 panel of figure 5 for an
illustration) and (ii) the increasing occurrence of curved and three-dimensional vortices
such as hairpins. Quantitative assessment of these changes requires the statistics of
vortices of different topologies.

A new procedure is thus proposed to automatically classify the individual vortex
axis lines, obtained from VATIP, according to their dimensions, geometry and topology.
A flow chart of the procedure is provided in figure 12; the geometric quantities used
in the procedure are shown in figure 13 and typical examples of different types
in figure 14. The procedure consists of a series of binary decisions. First, all axis
lines identified by VATIP are divided into two groups based on their streamwise
measurement: those with l+x > 50 are considered as clear-cut vortices and smaller
pieces are identified as fragments. This cutoff is smaller than the 150 wall units
used in Jeong et al. (1997) because VATIP considers vortices with three-dimensional
curvatures and the streamwise dimension does not necessarily account for the full
vortex axis length. Those identified as vortices are further divided into streamwise
versus three-dimensional types based on whether a significant spanwise segment can
be found in the axis line. Note that any axis line identified by VATIP is formed
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FIGURE 12. Flow chart of the vortex classification procedure.
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FIGURE 13. (Colour online) Definitions of the geometric quantities used in the vortex
classification procedure of figure 12. Circles and squares represent x- and z-axis-points,
respectively.

by connecting axis points in any of the three dimensions (figure 13). The spanwise
extent of all segments consisting of spanwise axis points only l+z,zap are measured and
if the maximum span max(l+z,zap)> 25, it is determined that the vortex can no longer
treated as a streamwise one.
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FIGURE 14. (Colour online) Classification of three-dimensional vortices: (a) hairpins,
(b) hooks, (c) branch type A, (d) branch type B and (e) branch type C. Top row –
representative examples from DNS; middle row – schematics of the vortex axis line;
bottom row – streamwise profiles of the number of x-axis points Nxap and spanwise extent
Dz.

Non-streamwise (or three-dimensional) vortices are further classified into several
types based on the axis topology and geometry. A canonical hairpin is described as a
vortex with two largely symmetric streamwise legs conjoining at its downstream head
into a spanwise arc (figure 14a). Many three-dimensional vortices bear some of the
key features of a hairpin but significantly depart from its norm in other aspects. The
classification procedure relies on two major geometric metrics of the identified vortex
axis line (figure 13) to differentiate these different types: (i) the number of x-axis
points at a given x position Nxap and (ii) the spanwise separation between legs (again)
at a given x position Dz. (For irregular vortices with more than two legs, e.g. column
(c) of figure 14, Dz is the spanwise separation between the two closest legs.) Variation
of these two metrics with different x positions is sketched for different vortex types in
the bottom panels of figure 14. For a canonical hairpin (column (a)), Nxap is 2 for the
majority of the x range although it may reduce to 1 at the beginning as the legs do
not exactly match in length. Its Dz starts high near the leg tips and gradually reduces
to 0 as the legs fuse.

For any vortices deemed three-dimensional (versus streamwise) from the previous
step, the procedure first checks the percentage of x positions with only one x-axis
point Px(Nxap= 1) (Px(C) is the percentage of x positions where a specific condition C
is satisfied) – if this quantity is >80 %, i.e. for over 80 % of the vortex length it only
has one leg, the vortex is a highly asymmetric variant of a hairpin where one of the
legs is not clearly developed. This type is termed ‘hooks’ in our taxonomy. The other
vortices have at least two legs, but there are various other branching configurations
than the canonical hairpin. For example, in vortex packets where vortices are highly
entangled and dynamically coalescing with one another, multi-legged – pitchfork-like
– vortices are often observed (figure 14c). If a vortex has more regions with three or
more legs than those with two, i.e. Px(Nxap> 2)/Px(Nxap> 1)> 50 %, it is identified as
a branch type-A. Even vortices that only branch into two legs may appear significantly
different from a canonical hairpin. For instance, the branch type-B (figure 14d) looks
more like a fusion between a quasi-streamwise vortex with a partial hairpin (or hook).
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This type of vortex was also reported in Robinson (1991) and Brooke & Hanratty
(1993) and was believed to result from the spanwise shear dragging a side branch of
a quasi-streamwise vortex to form an ‘arch’ on its side (Robinson 1991). The profile
of Nxap for this type shares some similarity with the hairpins, as both start with two
legs which gradually merge. The main difference is that a hairpin ends with the arch
where most axis points are counted, whereas in branch type-B the arch is followed by
an extended streamwise segment downstream. Here, the x projections of the centre-of-
gravity (COG) of all x-axis points xCOG,xap and that of all z-axis points xCOG,zap are
calculated. A canonical hairpin would be much ‘heavier’ at the downstream end, so
if both COGs are at the upstream end, i.e. xCOG,xap < xmid and xCOG,zap < xmid (xmid ≡

(xmax − xmin)/2 being the x coordinate of the middle point of the vortex axis line –
see figure 13), the vortex is classified into branch type-B. In a similar scenario, when
a side branch from a quasi-streamwise vortex protrudes towards the channel centre,
because of the weaker transverse flows and higher mean velocity, the branch extends
substantially downstream before any arch is formed. This is labelled as branch type-C
in this study (figure 14e) and identified by the criterion that xmax-Dz > 1.5xCOG,Nxap>1,
where xmax-Dz is the x coordinate of the maximal branch separation Dz and xCOG,Nxap>1
is the x coordinate of the COG of the branched part of the vortex axis line (where
Nx-cp > 1). Finally, the remaining vortices – i.e. those predominated by two legs and
with no substantial quasi-streamwise downstream segments – are classified as hairpins.

The criteria used in this classification procedure are mostly empirical. For starters,
there is no physical ansatz supporting the classification of three-dimensional vortices
into the five particular types listed in figure 14 – they are chosen solely based
on empirical observations in our own and previous studies. Likewise, the dividing
criteria and cutoff magnitudes used in the procedure (figure 12) are all chosen based
on a combination of physical intuition and practical experience. For example, there
is no physical basis as to how long a third leg needs to reach for a vortex to be
considered a branch type-A (multi-legged) rather than a slightly modified hairpin.
Indeed, the question of whether there is any fundamental difference between various
types of branches and the canonical hairpin itself cannot be answered. The lack of
objective vortex classification criteria is an inevitable consequence of the current
limited knowledge of the complex vortex dynamics in wall turbulence. It is for this
reason that an algorithm like VATIP is much needed. Future application of VATIP
to a wider range of flow systems is anticipated to bring forth better experience
and understanding of the characteristics of turbulent vortices, which will lead to
a more standardized approach of vortex classification. Finally, we note that any
vagueness in the current classification criteria does not affect the validity of any
of the following discussion: e.g. the changes of all three-dimensional vortices show
similar Re dependence (figure 17) regardless of the further differentiation between
hairpins and different branch types. In addition, from our test, changing the cutoff
magnitudes by up to 50 % does not affect the comparison of vortex statistics between
different Re.

Figures 15 and 16 show the distributions of vortex axis lines, as identified by
VATIP, of different classes for one typical snapshot of the lowest (Reτ = 84.85) and
the highest Re (Reτ = 400), respectively. Direct visual inspection of these images
indicates that the VATIP algorithm together with the vortex classification procedure
in figure 12 has successfully identified and extracted all types of vortices and sorted
them properly according to their axis topology. This resonates with the earlier
tests by STG in figure 8. Comparing different classes of vortices, streamwise ones
still dominate at both Re, but the method has no difficulty in finding all types of
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FIGURE 15. (Colour online) Distribution of vortex axis lines of different classes in
a typical snapshot at Reτ = 84.85: (a) hairpins, (b) hooks, (c) branches (all types),
(d) fragments and (e) streamwise vortices. Each marker represents one axis point.
Individual vortices are differentiated by colours and marker types.

three-dimensional vortices. Unlike the case of boundary-layer flow where a so-called
‘forest’ of well-organized hairpins was observed (Wu & Moin 2009), in our DNS
results clear-cut hairpins are the minority compared with other three-dimensional
configurations. In particular, the asymmetric hook type significantly outnumbers all
other three-dimensional vortex types, which validates the earlier empirical notion
in the literature about the prevalence of incomplete or one-legged hairpins in plane
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FIGURE 16. (Colour online) Distribution of vortex axis lines of different classes in
a typical snapshot at Reτ = 400: (a) hairpins, (b) hooks, (c) branches (all types),
(d) fragments and (e) streamwise vortices. Each marker represents one axis point.
Individual vortices are differentiated by colours and marker types.

Poiseuille flow (Robinson, Kline & Spalart 1989; Robinson 1991). On the other hand,
the frequent appearance of various irregular branch types demonstrates the importance
of iterative propagation in all three dimensions – a central element of VATIP.

Comparing between the two Re, three-dimensional vortices (hairpins, hooks and
branches) grow larger in size at higher Re. This can be attributed to the increasing
thickness of the wall layer (more wall units in the wall-normal direction) which allows
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FIGURE 17. (Colour online) Fraction of vortices of different types by vortex numbers.
Only vortices with streamwise length l+x > 50 are included.

these vortices to further lift up and develop to a higher altitude. They also become
more populous at higher Re. Indeed, even after factoring in the across-the-board
increase of all vortices, the percentage share taken by three-dimensional vortices still
steadily climbs. As shown in figure 17, with increasing Re, quasi-streamwise vortices
take up a lower percentage (despite a net increase in their number) and their share is
replaced by all types of three-dimensional vortices. From Reτ =84.85 to 400, the share
of hooks increases by approximately 50 % and those of hairpins and branches more
than double. Recall that hooks are often considered as asymmetric or incomplete
hairpins, their slower growth (compared with symmetric hairpins and branches)
suggests that they are likely the outcome of the insufficient development of hairpins
and may become less important at higher Re. Finally, in all Re cases, complete
hairpins are significantly outnumbered by their mutants – hooks and branches.

Near-wall vortex growth is often characterized as a lift-up process: the downstream
end of the vortex becomes detached from the wall and rises towards the outer layer,
where it can further burst and generate new disturbances (Hinze 1975; Zhou et al.
1999). Lift-up extent of vortices at different wall layers can now be statistically
analysed with the axis lines extracted by VATIP. Figures 18 and 19 show the joint
PDF between the wall-normal positions of the heads and tails of all quasi-streamwise
and three-dimensional vortices at different Re. The head position y+head is measured
as the highest wall-normal position of all axis points, which is normally found at
the downstream end; likewise, the tail position y+tail is the lowest position normally
found at the upstream end. Obviously, the distribution can only sample the upper-left
triangle of the domain. Vortices that have not lifted up are represented by the diagonal
where the head position is levelled with the tail and regions closer to the ordinate,
i.e. y+head� y+tail, and correspond to highly lifted up vortices.

For the lower Reτ = 84.85 case (figure 18), both the head and tail positions of
quasi-streamwise vortices (panel a) concentrate at 10 . y+ . 50: i.e. within or near
the buffer layer. Three-dimensional vortices (hairpins, hooks and branches) have a
higher altitude and their distribution peaks at (15, 80): i.e. the tail (legs) stretches
deep into the buffer layer while the head (arc in the case of hairpins) rises up into the
log-law layer. In terms of distribution, the tails are concentrated at y+ < 25 whereas
the heads are found in a much broader range extending from y+ = 25 to y+ > 80.
These observations can all carry over to the higher Reτ = 400 (figure 19) where, in
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FIGURE 18. (Colour online) Joint probability density function (PDF) between the y+
positions of the tail and the head of vortices at Reτ = 84.85: (a) quasi-streamwise and
(b) three-dimensional vortices.

(a) (b)

0.1 0.4 0.7 1.0 1.3 1.6 1.9

50

500 100 150 200 500 100
y+

taily+
tail

150 200

100y+ he
ar

d

150

200

(10-3)

FIGURE 19. (Colour online) Joint probability density function (PDF) between the y+
positions of the tail and the head of vortices at Reτ = 400: (a) quasi-streamwise and (b)
three-dimensional vortices.

addition, the larger number of wall units in the y direction allows more room for
vortex growth and their lift-up extent is easier to observe. Most quasi-streamwise
vortices (figure 19a) are lying flat in the buffer layer (concentration peak in the
lower-left corner) but two more concentration bands can be spotted: one lies along
the ordinate up to y+ = 100, indicating that a small fraction of streamwise vortices
can lift up to the log-law layer; the other lies along the diagonal to even higher
y+, indicating the existence of flat-lying vortices at higher altitudes. Both bands are
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also clearly visible in the three-dimensional case (figure 19b) but the vertical one
is stronger over a broader range of y+, meaning that these vortices are more likely
to lift up and their heads can reach various altitudes. Vortex activities at y+ > 250
are much weaker and thus not included in figure 19. (Alternatively, following the
example of Lozano-Durán et al. (2012), Lozano-Durán & Jiménez (2014), one may
apply non-uniform Q threshold values – with lower thresholds for the bulk – for
a complete picture.) Observations from this analysis largely confirm the earlier
empirical depiction by Robinson (1991) that quasi-streamwise vortices dominate the
buffer layer and hairpin-like vortices are more likely to be found in the log-law layer
and beyond. Robinson (1991) conceived the log-law layer to be comprised of a mix
of streamwise and hairpin vortices, whereas we are able to more clearly show that
streamwise vortices are only concentrated in the lower log-law layer (y+ < 50) and
three-dimensional vortices can rise up to a variety of altitudes.

4.4. Vortex organization through clustering analysis
Previous observations of LSMs and VLSMs ignited an immense interest among
researchers in understanding the organization patterns of coherent structures (Jiménez
1998; Kim & Adrian 1999; Lee et al. 2014). Given the specific information, available
from VATIP, about the location and conformation of axis lines representing individual
vortices, we adapt the DBSCAN (density-based spatial clustering of applications with
noise) algorithm (Ester et al. 1996) – a widely used clustering analysis method in
data mining and machine learning – to VATIP results for understanding the clustering
patterns of vortices. (Structures classified as fragments according to figure 12 are not
considered in this analysis.)

The standard DBSCAN algorithm groups scattered points in space into clusters
based on their spatial proximity and mutual relationship. Two points that are close
to each other (within a cutoff distance ε) are considered as neighbours. Points
inside a cluster are known to have many neighbours. Points with at least Nc,min

neighbours are thus labelled as ‘core points’ and all interconnected (in the sense of
mutually neighbouring) core points are grouped into one cluster. (Both ε and Nc,min

are user-specified parameters.) If a point does not qualify as a core point by itself
but is neighbour to one or more core points, it is labelled as a ‘border point’ which
resides on the surface of a cluster. Border points are grouped to the same cluster as
their nearest neighbouring core point. Points that do not neighbour any core points
and are not core points themselves are isolated outliers not belonging to any cluster.

Since the VATIP output contains not simple sizeless points but complex axis
lines representing vortex geometry and topology, the simple distance criterion used
for neighbour identification needs to be adapted. We consider two vortices to be
neighbours if the minimum distance between any two axis points – one on each axis
line – does not exceed ε = 4rv which is only slightly larger than the detection cone
diameter used in VATIP tracking (2× 1.5rv = 3rv). We have tested a wide range of ε
and found that for ε as low as 3.5rv nearly all vortices in the domain, from both sides
of the channel, are interconnected into the same neighbour network: i.e. for Nc,min= 1
and any ε > 3.5rv, the DBSCAN algorithm will identify one supersized cluster that
includes nearly all vortices. The fact that a cutoff distance of the same order as the
vortex diameter would connect all vortices is not surprising, considering the level of
crowdedness found in their distribution (see figures 15 and 16). Ideally, we would
also need to test the ε-dependence at other Nc,min levels. However, our priority is
to understand the importance of multi-vortex cooperation (instead of inter-vortex
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FIGURE 20. (Colour online) Dependence of DBSCAN clustering analysis on Nc,min
(Reτ = 169.71): left/red/circle – number fraction of all vortices grouped into clusters;
right/blue/square – number fraction of vortices in the largest identified cluster.

distance, which we knew would be close). Therefore, given the limited scope of this
investigation, we will focus here on the Nc,min-dependence of the clustering results at
a constant ε= 4rv.

With increasing Nc,min, less vortices are qualified as core vortices (counterpart to
core points in the standard DBSCAN) and more become isolated outliers. This first
leads to the shrinkage of all clusters: for the same total number of vortices Nv,tot,
the number of vortices assigned to clusters Nv,clus decreases (figure 20). At Nc,min = 2
(lowest level shown in figure 20), Nv,clus/Nv,tot starts at close to 1 (nearly all vortices
are grouped into clusters) and steadily drops afterwards towards 0. The number
of vortices contained in the largest cluster Nmax,clus is also calculated. In figure 20,
Nmax,clus/Nv,tot starts at ≈0.5, because the channel flow geometry has two boundary
layers (near each wall) and at the lowest Nc,min vortices near each wall are nearly all
grouped into one super-cluster. The decline pattern of this profile is very different
from that of Nv,clus/Nv,tot – it drops sharply in a small window of Nc,min= 8∼ 14 with
the steepest slope found between Nc,min = 10 and 12. This faster decline cannot be
solely accounted for by the overall reduction of qualifying core vortices (otherwise
Nmax,clus/Nv,tot would have the same slope as Nv,clus/Nv,tot). Indeed, the steeper descent
indicates a sudden disintegration of the dominant clusters into smaller pieces. As
Nc,min increases beyond ≈8, some vortices in the structure, which are not as highly
intertwined as most others in the vortex cluster network, are disqualified as core
vortices. Removing those ‘bridge’ vortices dismantles the cluster network into several
well-defined and strongly coupled clusters that are much smaller in size. This effect
is most clearly seen from the ratio between these two profiles, plotted in figure 21.
For all three Reτ tested, Nmax,clus/Nv,clus is initially flat at low Nc,min, indicating that,
within this regime, drops in both profiles in figure 20 are attributed to the overall
reduction of clustered vortices. Disintegration of the dominant clusters starts when the
Nmax,clus/Nv,clus profile turns downwards, which for Reτ = 169.71 occurs at Nc,min ≈ 8.
The process finishes as the curve reaches its minimum at Nmax,clus/Nv,clus= 0.1∼ 0.15:
the domain is now populated by O(10) well-defined clusters with comparable size
(see figure 22c for roughly half of the clusters on one side of channel). After the
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FIGURE 21. (Colour online) Number fraction of vortices included in the largest cluster
among vortices in all clusters as a function of Nc,min.

minimum the profile rises again as a result of smaller clusters gradually being
eliminated by the increasingly stringent Nc,min cutoff.

The vortex cluster configuration during this disintegration process with increasing
Nc,min is shown in figure 22 for Reτ = 169.71. Consistent with our earlier analysis,
at Nc,min = 2 all vortices on one side of the channel are interconnected (by their
neighbouring network) into a super-cluster. Disintegration of the network is observed
at Nc,min = 12 (>8 where it starts). At Nc,min = 15 (figure 22c), Nmax,clus/Nv,clus reaches
its minimum (figure 21) and the disintegration process has completed with a number
of clear vortex clusters remaining unbroken. Much space can be found between
the clusters where the turbulent flow field is occupied by unclustered vortices. The
Reynolds shear stress, averaged over the wall-normal (y) direction,

τ̄xy =−

∫ 1

0
v′x(x, y, z, t)v′y(x, y, z, t) dy (4.4)

is shown with contour lines in the images. Spots with strong τ̄xy (dense contour lines)
are found within or immediately around these vortex clusters, indicating their strong
contribution to the Reynold stress generation. Interestingly, the characteristic length (in
the x direction) of these clusters seems to be between 500 and 1500 wall units, which
is at the same level as the typical streamwise length scales of LSMs reported in the
literature (Adrian 2007; Lee et al. 2014). The existence of such clusters consisting
of a large number (O(10) or higher; see figure 23) of vortices strongly intertwined
through multi-body interactions (>Nc,min= 15 neighbours, in the case of Reτ = 169.71,
with close contacts between their axis lines for the core vortices) is consistent with the
hypothesis that LSMs are results of the cooperative dynamics involving many vortices
organized as ‘packets’ (Kim & Adrian 1999). However, these ‘packets’, as discussed
below, are not composed of well-aligned hairpin vortices with their classical shape. In
addition, clear evidence for clustering is found in this study for Reτ all the way down
to below 100, suggesting that cooperative dynamics between vortices is a universal
feature for wall turbulence not limited to the high-Re regime. Meanwhile, VLSMs are
often conjectured to occur at a higher level of organization involving the alignment
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FIGURE 22. (Colour online) Distribution of vortex clusters (on one side of the channel
and from a typical instantaneous flow image) at Reτ = 169.71 identified by DBSCAN
with (a) Nc,min = 2, (b) Nc,min = 12, (c) Nc,min = 15 and (d) Nc,min = 21. Individual clusters
are differentiated by colour. Black lines show the contours of y-average Reynolds shear
stress τ̄xy (4.4) at 11 equispaced levels from 0.5 × 10−5 to 1.25 × 10−4; higher contour
line density corresponds to higher magnitudes.

of multiple LSMs (Kim & Adrian 1999; Lee et al. 2014). This would correspond to
the cooperative organization involving multiple vortex clusters in this study. The length
scale of VLSMs is comparable to or larger than the current domain size and they were
previously studied mostly at much higher Reτ (O(103)). For these reasons, they are not
discussed here. As Nc,min further increases to 21, all clusters are now eliminated except
the strongest one, which has shrunken in size but still clearly marks the location of
strong Reynolds stress activity.

Note that the term ‘cluster’ has a different meaning here than that in earlier studies
of three-dimensional vortex analysis, such as Del Álamo et al. (2006) where clusters
referred to the interconnected structures with overlapping vortex volumes identified
by the scalar identifier (∆ in that study and Q here), regardless of the individual
identities of vortices or their conformation and topology. In our analysis, a cluster is
defined as individual vortices grouped together based on the existence of a mutually
interacting (neighbouring) network between multiple vortex objects rather than a
pure spatial-proximity criterion. There are likely close connections between these
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FIGURE 23. (Colour online) Probability density function of the number of vortices in a
single cluster at (a) Reτ = 84.85, (b) Reτ = 169.71 and (c) Reτ = 400. The vertical line
marks the mean value.
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FIGURE 24. (Colour online) Probability density function of the number of vortices in a
single cluster normalized by the total number of vortices in the domain at (a) Reτ = 84.85,
(b) Reτ = 169.71 and (c) Reτ = 400. The vertical line marks the mean value.

two interpretations, but at this point, a direct comparison is not possible, because, as
further discussed in § 4.6, the current VATIP algorithm can only capture a subset of
structures analysed in Del Álamo et al. (2006) that are directly generated from the
lift-up-from-wall process. The strength of the current approach is its access to the
information of individual constituting vortices, which we discuss below.

Unless otherwise noted, we pick the Nc,min value at the minimum in each
Nmax,clus/Nv,clus curve (figure 21) – i.e. Nc,min = 11, 15 and 22 for Reτ = 84.85, 169.71
and 400, respectively – for the DBSCAN analysis, which is the point where the
percolating super-cluster has been fully disintegrated into unbreakable clusters while
most individual clusters are not yet eliminated. (This choice is in the same spirit as
the percolation analysis of Lozano-Durán et al. (2012) explained in § 4.5.) The PDF
of the number of vortices constituting a single cluster Nv,single, shown in figure 23,
is clearly skewed to the right with the most probable value at O(10) but in some
extreme cases with O(100) vortices in each cluster. The average Nv,single increases
with Re and is ≈18, 26 and 35, respectively, from the lowest to the highest Reτ tested.
Note, however, that the total number of vortices in the domain Nv,tot also increases
with Re. Indeed, when Nv,single is normalized by Nv,tot (figure 24), the distribution
profile becomes nearly the same between different Re (mean value at 0.014, 0.013
and 0.012 for Reτ = 84.85, 169.71 and 400, respectively). Since the domain size
of different Re is kept the same in inner units (table 1), this observation, that the
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FIGURE 25. (Colour online) Number fraction of vortices of different types grouped into
clusters out of the total number of all vortices of the same type in the domain (Reτ =
169.71).

(b) (c)

N3d,single/N√,single N3d,single/N√,single N3d,single/N√,single

(a)

PDF

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

1.5

3.0

4.5

6.0

7.5

FIGURE 26. (Colour online) Probability density function of the number fraction of three-
dimensional vortices in a single cluster at (a) Reτ = 84.85, (b) Reτ = 169.71 and (c) Reτ =
400. The vertical line marks the mean value.

average cluster size in terms of the number fraction of vortices in each cluster (out
of all vortices filling the domain), remains roughly constant, suggests that the cluster
size is more or less the same in inner units (i.e. streamwise length within 500∼ 1500;
see figure 22) within the Re range tested (further demonstrated in figure 27).

Comparing vortices of different types (figure 25), hairpins and branches are more
likely to be included in a cluster than both streamwise and hook vortices. Since
hooks are essentially incomplete or asymmetric hairpins that are also highly lifted
up, this indicates that the large dimensions of hairpins and branches are likely the
key factor determining their higher clustering tendency. In particular, their wide span
in the z direction exposes them to vortices from a wider flow region, which enables
them to play a central role in stitching more vortices into a cluster. As seen in
figure 26, within a single cluster, a significant fraction of the vortices belong to
the three-dimensional classes (hairpins, branches or hooks). This fraction increases
with Re and at Reτ = 400, on average nearly half of the vortices in each cluster
are three-dimensional ones. However, note that hooks and branches significantly

76



L. Zhu and L. Xi

100

(a)

(b)

(c)

(d)

(e)

(f)

100
0

0 0

0

0100
100

100

200 200

200

200
300

300

0
100
200

100
200

300

400

100
200 200

300
400 400

400

500

500

600

600

100
300

500
700

600
800

600
800

1000
50

50
50

100

100
100

100
200

100
200

0 200
600

1000
100

200

50
50
0

100

100

100 100
100

200

200

200
300

50

50

0
0

100
500

FIGURE 27. (Colour online) Representative images of vortex clusters identified by
DBSCAN at (a,b) Reτ = 84.85, (c,d) Reτ = 169.71 and (e, f ) Reτ = 400. Isosurfaces show
all vortices in the viewable region (colour varies from light to dark with y+); red dots
show the axis lines of vortices in the identified cluster.

outnumber canonical hairpins (figure 17), the hypothesized picture of packets of
clean-cut hairpins (Adrian 2007) forming the LSMs is not seen at least at the current
Re range.

Direct images of representative vortex clusters are shown in figure 27 where
vortices forming the particular cluster are highlighted by explicitly showing their axis
lines. Consistent with our earlier observations, these clusters (at different Re) all have
a streamwise length in the range of 500–1500 wall units. Two typical organization
configurations are observed. In the first (panels a, f ), different vortices forming the
cluster have their axis lines braided together along the streamwise direction. These
clusters have a shape of twisted doughnuts and they remain slender (narrow in the z
direction) while extending downstream for O(1000) wall units. For the second type,
which is more frequently observed, other than the downstream twisting, the clusters
also expand in the spanwise direction by connecting more vortices through the wider
vortex types (hairpins and branches).

Finally, we note that the analysis of vortex clustering and organization in this
section is still preliminary and limited in scope. It is intended to provide some
first insight into how the axis-line information extracted by VATIP can be used to
address some of the most important outstanding questions in turbulent dynamics
(Jiménez 2018). Further research is needed to better connect these observations with
the existing conceptual models and results from other structure analysis techniques.

4.5. Determination of parameters and settings in VATIP
After presenting the main results, we are now ready to assess the robustness of VATIP
tracking outcomes and discuss the procedure for choosing its parameters and settings.
There are two major adjustable parameters in the method: (i) the threshold magnitude
Qthreshold for vortex identification with the Q-criterion and (ii) the cutoff cone radius
rcone used in the axis-line propagation search (figure 2). In addition, sensitivity to grid
sizes and the selection of the search starting plane will also be examined.

The choice of the threshold for Q (or any other vortex identifier) has been widely
discussed in the literature for the purpose of vortex visualization. It is a common
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FIGURE 28. (Colour online) Vortex disintegration with increasing Qthreshold = HQrms at
Reτ = 169.71: (a) H = 0.2, (b) H = 0.4 and (c) H = 0.7. Interconnected vortex tube
structures are coded with the same colour. For clarity, only the largest vortices that
cumulatively account for 80 % (for a,b) or 60 % (for c) of the total vortex volume are
shown. For (b,c), only vortices from the bottom half of the channel are shown.

practice to choose a threshold in proportion to its r.m.s. value in the flow field

Qthreshold ≡HQrms, (4.5)

where H in this study is chosen based on the percolation analysis, proposed in
Lozano-Durán et al. (2012) (from which we also borrowed the notation H). When
H is low, the identified vortex regions interconnect with one another and form a
percolating network across the domain (figure 28a). With increasing H, the ‘necks’
bridging stronger vortex cores gradually break to reveal individual groups of vortices
(figure 28b,c); meanwhile, a higher threshold also erases many weaker vortices from
the view. A percolation diagram (figure 29) plots the ratio of the volume occupied
by the largest interconnected structure (Vmax) to that of all vortex regions (Vtot) as
a function of H. This value starts at 1 at the low H end where all structures are
interconnected into a complete percolating network. Increasing H reduces both Vmax

and Vtot, whereas the decrease of their ratio Vmax/Vtot reflects the disintegration
of larger interconnected structures into smaller separate pieces. The latter clearly
dominates the window of 0.3 . H . 0.7 where the sudden disintegration of the
largest structure into multiple objects is reflected in a steep descent in Vmax/Vtot. This
window provides the best choices for H, in which individual objects are separate and
identifiable whereas the most important vortex structures are not yet erased (as what
will happen at higher H) (Lozano-Durán et al. 2012).
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FIGURE 29. (Colour online) Percolation diagram for Reτ = 169.71. The vertical dashed
line marks the HQ= 0.4Qrms used in this study.
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FIGURE 30. (Colour online) Average number of vortices (excluding fragments) detected
by VATIP in each instantaneous flow field as a function of H (with rcone = 1.5rv).

Also as a result of the competition between vortex shrinkage and disintegration, the
average number of vortices identified by VATIP in each flow domain Nv displays a
non-monotonic dependence on H (figure 30). Nv initially increases with H, reflecting
the splitting of vortex objects. After reaching a maximum at H ≈ 0.2, Nv starts
to decline because the identified vortices shrink in size with increasing H and are
increasingly categorized as fragments. This effect becomes more dominant at higher
H after the disintegration of the percolating network. Within the acceptable range of
H = 0.3 ∼ 0.7 – as identified above by the percolation analysis – the drop of Nv is
relatively mild (.10 % for the two higher Reτ ). More importantly, as shown later, all
major conclusions from the study remain intact within this range of H. It is worth
noting that the peak of Nv is found out of this range at a slightly lower H: i.e. the
main vortex disintegration events are detected at a slightly lower H using VATIP than
the percolation analysis. This is because VATIP is more sensitive to the breakage
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FIGURE 31. (Colour online) Average number of vortices (excluding fragments) detected
by VATIP in each instantaneous flow field as a function of ζ (with Qthreshold = 0.4Qrms).

between vortex structures: neighbouring vortices could well overlap in their shells
and be grouped into the same interconnected structure in figure 28 while their axis
lines do not have topological connection. This also explains, in part, why Nv does
not start from 1 at H = 0 in figure 30. (Another reason – further discussed in § 4.6
– is that VATIP is designed with wall-generated vortices in mind and may not fully
capture the connections between weaker and more isotropic vortex structures in the
bulk region, which are only unveiled at very low H.) Taking this into account, the
optimal H pick should be slightly lower than that for the steepest descent in figure 29.
Therefore, H = 0.4 is chosen in this study for VATIP tracking (in comparison with
H = 0.7 used in Zhu et al. (2018) for vortex visualization). Note that in figure 30,
Nv is nearly constant in the range of H = 0.3∼ 0.4.

The cone size is chosen based on the average radius of the vortex tubes (3.1)

rcone ≡ ζ rv, (4.6)

where ζ is expected to be larger than (but of the same order of magnitude as) 1 to
account for vortex size variations. The average number of vortices identified by VATIP
in each flow domain Nv is also non-monotonic with increasing ζ (figure 31). For
ζ < 1, many well-defined vortices are broken into pieces and excluded as fragments.
Meanwhile, at ζ � 1, false connection between separate vortices becomes more
common and Nv decreases with ζ . Interestingly, for all Reτ tested, Nv reaches its
maximum at exactly ζ = 1, indicating that rv calculated by (3.1) does provide an
accurate measurement of the vortex radius. We recommend the range of ζ = 1.2∼ 1.6
for VATIP where the decline of Nv is modest (compared with higher ζ ) and, more
importantly, all major physical observations are consistent with changing ζ (shown
below). For ζ = 1.5 used in this study, the resulting r+cone is approximately 15, 16 and
18 wall units for Reτ = 84.85, 169.71 and 400, respectively. For comparison, Jeong
et al. (1997) used r+cone ≈ 10 for their streamwise-only search at Reτ ≈ 180, which
is equivalent to ζ ≈ 1. The larger ζ used in VATIP is necessitated by the expansion
of the search to all three spatial dimensions. First, dislocation between successive
axis points is typically larger around the bends or turns of the axis line, which does
not occur in a unidirectional search along nearly straight lines. Second, inclusion
of highly lift-up hairpin-like vortices extends the search deep into the log-law layer,
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Re identified by VATIP with different H (and a constant ζ = 1.5): (a) streamwise,
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Re identified by VATIP with different ζ (and a constant H = 0.4): (a) streamwise,
(b) hairpin, (c) hook and (d) branch.

where the vortex diameters are often larger compared with the streamwise vortices
in the buffer layer. Lastly, a streamwise search only looks for new axis points in the
yz-plane where the numerical grids are typically more refined (than the x direction)
in DNS. Searches in other directions need to accommodate axis-point dislocation in
the x direction: with the coarser mesh of Jeong et al. (1997), r+cone = 10 covers less
than one x-grid spacing – δ+x = 17.7: i.e. no dislocation in x would be allowed. Our
experience also shows that ζ = 1 would break well-defined hairpin vortices (such as
in STG) into pieces.

The similarity between Nv profiles of different Reτ in both figures 30 and 31
suggests the robustness of VATIP at least within the Re range tested. In figures 32
and 33, it is clear that within the recommended ranges of H = 0.3 ∼ 0.7 and
ζ = 1.2 ∼ 1.6, changes in vortices of different types with increasing Re follow the
same consistent trend with different H and ζ . Clear disruption to the trend is only
observed in cases well out of these ranges: most notably H = 0.2 in figure 30 and
ζ = 0.8 and 3.0 in figure 31. Quantitative magnitudes of the profiles do depend on
H and ζ , which is very much expected. As illustrated in figure 34, adjusting these
parameters inevitably changes the lengths of vortex branches and legs, to which the
classification scheme of figure 12 is very sensitive: missing one axis point at the
branch end could result in a vortex being classified as a hook rather than hairpin, or
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FIGURE 34. (Colour online) Effects of parameters and settings on VATIP tracking results
in a representative flow region at Reτ = 169.71 (note: panel ( f ) is out of the recommended
range of H). Dots represent axis points identified by VATIP (different colours for different
vortices) and grey tubes are the isosurfaces of Q=HQrms (same H used in VATIP). Partial
vortices (with parts extending out of the view box) are not included in VATIP tracking.

even a fragment rather than a vortex. Nevertheless, quantitative differences between
curves are significantly smaller (mostly contained within a few percentage points) in
the ranges of H = 0.3 ∼ 0.7 and ζ = 1.2 ∼ 1.6, compared with those out of these
ranges. The physical observation made in figure 17 are completely robust when
acceptable H and ζ are used.

The robustness of VATIP is most clearly demonstrated in figure 34 where different
parameters and settings are tested and compared for a same flow region with various
vortex configurations. Compared with the standard case (panel a) with H = 0.4
and ζ = 1.5, changing ζ to 1.2 (panel d) or changing H to 0.6 (panel e) brings
little noticeable difference. In panel ( f ), H is further increased to 0.8 (beyond the
recommended range), which only causes the identified vortex tubes to shrink in
size, and VATIP still faithfully captures their axis lines. Note that the brown vortex
at the lower-left corner has changed from a curved shape to a linear shape at
H = 0.8 owing to the erosion of one of its legs, which well illustrates how changing
parameters affect the number of vortices classified into each category (including
fragments). These changes, however, do not reflect the reliability of VATIP itself.
We have also doubled the resolutions in the x- and z-dimensions (panel b; the flow
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FIGURE 35. (Colour online) Joint PDF between the y+ positions of the tail and the head
of streamwise vortices at Reτ = 169.71 under different VATIP parameters and settings
(note: panel ( f ) is out of the recommended range of H).

field is interpolated to the finer grid before VATIP analysis) and changed the starting
search plane in x and z directions (first steps in subroutines 1 and 2 of figure 3; with
no translational symmetry, y-direction searches always start from the walls – also
see discussion in § 4.6) from the first planes (x = 0 or z = 0) to the middle planes
(x= Lx/2 or z= Lz/2). Both do not lead to any discernible difference in the tracking
outcome. This observation is general: at Reτ = 169.71, the average number of vortices
in each flow domain (excluding fragments) identified by VATIP Nv = 2178, whereas
the high resolution case has Nv = 2193 and the mid-plane start case has Nv = 2182.
In both cases, the difference is way less than 1 %.

Finally, echoing the observations in figures 18 and 19, we examine the effects of
VATIP parameters and settings on vortex conformation statistics in figures 35 and 36
– this time at Reτ = 169.71. Despite the small quantitative differences – which, as
discussed above, are inevitable as vortices are classified based on quantitative metrics,
the qualitative picture is well preserved for all cases shown, including the H = 0.8
case which is out of the recommended range. Similar to the earlier observations at
other Reτ , the distribution of streamwise vortices is highly concentrated in the lower-
left corner corresponding to the buffer layer. Weaker, but noticeable, concentration
bands extend along both the diagonal and the ordinate, reflecting the flat-lying and
lifted-up streamwise vortices, respectively. By contrast, three-dimensional vortices are
predominantly lifted up, with their concentration peak found well in the log-law layer.
Changing resolution or the starting plane shows little effect on these distributions,
whereas adjusting H or ζ more directly affects vortex classification and thus causes
some subtle changes in the contour shapes, especially at low density levels.
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FIGURE 36. (Colour online) Joint PDF between the y+ positions of the tail and the
head of three-dimensional vortices at Reτ = 169.71 under different VATIP parameters and
settings (note: panel ( f ) is out of the recommended range of H).

4.6. Discussion: limitations and future development
Recall from § 3: the algorithm of VATIP is built on the premise that vortices are
wall generated, starting with segments or ‘legs’ that align along the x direction (most
often in the buffer layer but the algorithm does not impose this restriction) and
can lift up to higher-y+ layers to bend, curve or branch. VATIP always initiates the
propagation points in the x-lying legs and later allows them to move away from
the walls (in the y-direction search) and swing sideways (in the z-direction search).
For canonical hairpins, the axis lines initiate from both streamwise legs which rise
at the downstream end and merge in the middle along the z-direction. Branched
vortices are found in a similar manner with one propagation point planted in each
streamwise leg and the growing legs (or more appropriately for the branch type –
arms) will eventually merge after a limited number of iterations. As demonstrated
above (comparing the Q-isosurfaces and VATIP-identified axis lines), this algorithm
faithfully captures nearly all vortices identified by the Q-criterion in wall turbulence
for Reτ 6 400 tested in this study.

Recent evidences have indicated that at high Re and large y+, vortices can be
generated in the absence of wall interaction (Del Álamo et al. 2006; Jiménez 2013).
These vortices can deviate significantly from this premise: they are nearly isotropic
(segments are equally likely to align with any direction) and often highly branched
(multiple arms with complex connection topology). The current algorithm would
not perform as well on those structures. First, the requirement on initialization in
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the x-direction search only will undoubtedly bias the resulting axis line to have
better sampling of the x-lying segments. For instance, in a strictly y-aligned segment
with no connection to any x-segment at the bottom, the current algorithm would
still capture a point in the middle that is an yz-planar maximum. It would skip
the x-direction propagation (for the lack of other x-axis points) and the next step
of y-search would propagate away from the wall only. The end result is missing
one part of the segment below the initial point. Second, with only one propagation
point in each initial x-segment, the algorithm would struggle with highly branched
configurations because the propagation will only pick one of the directions to proceed
after each junction. This is not much a problem for wall-generated branched vortices
at moderate Re (the focus of this study), because these structures mostly consist
of a few conjoining arms, each of which can be traced back to a streamwise leg
(i.e. starfish or octopus shaped). The current algorithm has been shown to capture
these structures well. However, for detached structures at higher Reτ and higher y+
(see, e.g. figure 6 of Del Álamo et al. (2006)) with more complex configurations, it
will likely miss some of the bridges connecting different arms, if they do not happen
to align in the x direction, and falsely break them into pieces.

There seems to be a easy remedy in sight, that as long as we relax these constraints
to allow a truly multidirectional tracking – i.e. axis lines are initiated in all three
dimensions and propagation is allowed to follow all branches after each junction – we
should be able to capture these isotropic and highly branched structures. The problem,
however, is its insurmountable side effect: relaxation of the current constraints will
inevitably lead to massive false identification and false connection, making the
tracking result next to meaningless. There are two major sources of this problem.
First, not all planar Q maxima belong to a vortex axis. Consider a simple linear
streamwise vortex as an elongated ellipsoid, the true axis line aligns with its major
axis and consists of yz-planar Q maxima. However, the minor axes also contain Q
maximum points (in xy- and xz-planes), which do not belong to any vortex axis
line. This is further compounded by fluctuations in the Q fields, which may create
Q maxima unrelated with any actual vortex. The total number of planar maximum
points identified in an L+x × L+z = 4000 × 800 flow domain ranges from ∼80 000
to ∼350 000 (for the lowest and highest Reτ tested, respectively). Only 30∼40 %
of them are included in the final axis lines (counting both vortices and fragments).
Second, in flow fields densely populated by vortices, close encounters between axis
lines of separate vortices are common: spatial proximity does not necessarily indicate
connectivity. The current algorithm takes advantage of the fact that, despite the overall
complexity of vortex configuration and distribution, wall-generated vortices can be
traced back to the near-wall region where their legs are regularly aligned (largely in
parallel) in the streamwise direction. Regularity in their distribution pattern makes
tracking easier and connection is usually unambiguous. This is the rationale behind
the choice of axis-line initiation in the x-search. Continued propagation in other
(y and z) directions minimizes false inclusion of points and false connection with other
vortices by requiring the new segments to be natural extensions from the growing
axis line. By contrast, a general multi-initiation and multi-directional algorithm would
indiscriminately connect any points in the vicinity of a growing end. Extension of the
VATIP algorithm to detached vortex structures with no preference to the x direction
and more complex branch configurations calls for new physics-based constraints to
be incorporated, which is a focus of our future research.

Another potential challenge of extending the method to higher Re is the determina-
tion of parameters. Section 4.5 thoroughly examined the effects of the adjustable
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parameters H and ζ and proposed their recommended ranges of use based on the
balance between minimizing false connections and minimizing false disintegrations or
truncations of vortex axis lines. For higher Re, structures in the bulk regions (higher
y+) become non-trivial. Del Álamo et al. (2006) showed that a lower H is required
to capture these detached structures because of the overall lower turbulent intensity
in those regions. A y+-dependent H was thus proposed for vortex identification in
that study. It is likely that, for VATIP, a similar approach needs to be taken for both
H and ζ . Determining the dependence of these parameters on y+ will require trial
and error. Moreover, whether a ‘sweet-spot’ range still exists for these parameters
in the high-Re and high-y+ regime remains to be seen. Finally, we note that, as a
brand new method, its future application and testing in broader parameter regimes
and systems will be essential for its continued improvement and generalization. In
this sense, the development of VATIP itself is an ‘iterative’ process that requires the
experience and feedback from its application.

5. Conclusions

In this study, a new method has been proposed for the identification and extraction
of three-dimensional complex vortices from turbulent flow fields. This method, named
VATIP, connects points of vortex axis lines using the cone-detective criterion of
Jeong et al. (1997) and propagates the growing axis over all three spatial dimensions
iteratively in order to accommodate various types of vortex topologies. Transient
simulation based on streak instability (STG) is performed to generate flow fields
featuring streamwise, titled/curved and hairpin vortices and the method is shown
to successfully capture all these types. In addition, a new procedure is proposed
to classify the axis lines obtained by VATIP into different topological types
commonly observed in wall turbulence, including quasi-linear vortices, hairpins, hooks
(asymmetric/incomplete hairpins) and various branched types. Tracking outcome from
VATIP is shown to be robust with changing parameters and settings. For both
adjustable parameters (H and ζ for the vortex scalar identifier and search cone size,
respectively), suitable parameter ranges are identified. The method is the first that
directly extracts the individual axis lines of typical three-dimensional vortices found
in turbulent near-wall layers. Future work will focus on extending this method for
complex isotropic vortex configurations at higher Re and in outer layers, to which
the current method is not applicable.

VATIP is applied to analyse the vortex configurations and statistics in statistical
turbulence (from DNS) at three different Re, where vortices of all types are
successfully identified. The results show that the streamwise vortex length l+x is
insensitive to Re with the distribution nearly identical between all three Re tested.
The spanwise width l+z , however, has higher average values at higher Re as a result
of the higher fraction of wide vortices. The number of vortices increases with Re
(for the same domain size in inner units). Quasi-streamwise vortices are dominant in
the low-to-moderate range of Re (Reτ from 84.85 to 400) tested, but their number
fraction decreases with Re. Complex three-dimensional vortices of all shapes (hairpins,
hooks and branches) become more prevalent at higher Re, which accounts for the
increasing frequency of large l+z values. The number of symmetric hairpins and
branched vortices grows faster than asymmetric vortices (hooks), suggesting that
the latter is likely an incomplete version of full hairpins occurring more often at
lower Re. Quasi-streamwise vortices populate the buffer layer and the lower log-law
layer whereas hairpins and other three-dimensional vortices dominate higher layers
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(although the legs of these vortices still stretch down to the buffer layer). The latter
are also more likely to be found in a lifted-up state and the head of those vortices
can rise to a broad range of distances from the wall.

Clustering analysis is applied to VATIP results for understanding vortex organization
patterns. Well-defined vortex clusters consisting of O(10)–O(100) individual vortices
are consistently identified. These clusters appear at regions with high Reynold shear
stress and are reminiscent of the large-scale motions previously observed in the
literature. They have a streamwise length scale of 500–1500 wall units, which stays
roughly constant (in inner units) for the Re range tested.

The current study focused on the static analysis of vortex conformation and
distribution. On the subject of hairpin vortices, which is heatedly debated in the
literature, it reveals the definitive evidence for the existence of such structures in
the statistically steady turbulence of channel flow. However, it is also shown that
canonical hairpin vortices with highly symmetric legs (as reported in the transient
boundary-layer flow by Wu & Moin (2009)) remain rarities at least within the range
of Reτ 6 400 tested. They are greatly outnumbered by their asymmetric (hooks) and
highly branched mutants. These latter types seem to have the same level of lift-up
and may be formed by the incomplete development of hairpins (for hooks) or their
coalescence with other structures (for branches). Compared with canonical hairpins,
branched vortices seem to be equivalently effective at binding vortices into clusters
owing to their similar spanwise dimensions, whereas hooks are more similar to
streamwise vortices in this aspect. Important questions on the role of these general
hairpin-like vortices in turbulence dynamics, especially, whether they are the cause or
consequence of turbulence generation, cannot be answered until a dynamical tracking
approach (such as that of Lozano-Durán & Jiménez (2014)) is integrated with VATIP.

The success of VATIP provides access to the detailed statistics on the configuration,
topology and distribution of vortices in near-wall turbulence. It thus offers a powerful
tool for the study of vortex dynamics and the auto-regeneration mechanism of
turbulence, as well as other areas such as vortex development during the bypass
transition and the changing vortex dynamics in turbulent drag reduction.
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Chapter 4

Vortex statistics in LDR and HDR

revealed by VATIP

Our previous work proposed a hypothesis that the lifting tendency of vortical struc-

tures are suppressed by polymers during the low- to high-extend drag reduction (LDR-

HDR) transition, which may be responsible for this qualitative transition. In this

chapter, this hypothesis is tested through statistically analyzing the vortex configu-

rations using our recently developed vortex tracking algorithm – VATIP (vortex axis

tracking by iterative propagation, chapter 3). As indicated by the results, vortices at

LDR are across-the-board weaken by polymers. At HDR, the lift-up process of the

streamwise vortices is suppressed which prevents their downstream heads from rising

into the log-law layer and forming hairpins and other curved vortices. The transfers

of momentum and energy of turbulence between the buffer and log-law layers are thus

interrupted, which clearly explains the distinct changes of flow statistics during the

LDR-HDR transition and supports our hypothesis.
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4.1 Introduction

When a small amount of polymers are added into Newtonian turbulence, their strong

interaction with the flow can significantly modify turbulent coherent structures, which

results in the drastic reduction of the turbulent friction drag. Polymer-induced turbu-

lent drag reduction (DR) has been a subject of intense interest in the literature (Virk,

1975; White and Mungal, 2008; Graham, 2014) due to its significant practical implica-

tions for the development of flow control techniques for enhanced fluid transportation

efficiency.

In polymeric turbulent flows, the Weissenberg number Wi ≡ λγ̇ (λ and γ̇ are the

polymer relaxation time and the characteristic shear rate of the flow, respectively)

measures the level of polymer-induced elasticity. Polymer effects on turbulent flow

statistics are not noticeable until Wi exceeds a critical magnitude, often denoted

by Wionset, which corresponds to the coil-stretch transition of polymer molecules.

After the onset, the level of DR increases with Wi but eventually converges to an

asymptotic upper bound (Virk, 1975) – the widely known maximum drag reduction

(MDR) asymptote. (At low enough Re, laminarization was also observed after the

flow passes the Virk asymptote, before another type of instability emerges (Choueiri

et al., 2018).) Before MDR, distinction is further made more recently between low-

extent (LDR) and high-extent drag reduction (HDR) (Warholic et al., 1999). Starting

from the Newtonian limit and with increasing Wi, the flow undergoes a series of

transitions between four different stages of behaviors: pre-onset, LDR, HDR, and

MDR (Xi and Graham, 2010b).

94



Ph.D.Thesis - Lu Zhu McMaster - Chemical Engineering

LDR and HDR were first differentiated because their mean velocity profiles ap-

pear different in shape, which is observed in various experimental and numerical stud-

ies (Warholic et al., 1999; Ptasinski et al., 2003; Li et al., 2006a; Mohammadtabar

et al., 2017). Recall that Newtonian turbulent mean velocity profiles display the

Prandtl-von Kármán (PvK) log law

U+ = 2.5 ln y+ + 5.5 (4.1)

across most of the near-wall layer (y+ & 30) (Kim et al., 1987). This log-law layer is

connected to the near wall viscous sublayer via a buffer layer at 5 . y+ . 30 (Pope,

2000). At LDR, the buffer layer velocity profile raises up and its thickness also

increases. Meanwhile the log-law layer stays parallel to the PvK log law only with

a vertical offset (i.e., same slope but larger intercept compared with eq. (4.1) owing

to the DR in the buffer layer). At HDR, however, the slope of the mean velocity

profile clearly increases in the log-law layer. This effect was initially attributed to the

quantitative magnitude of DR in earlier studies with DR% ≈ 35 (

DR% ≡ Cf − Cf,s

Cf

× 100% (4.2)

is the percentage drop of the friction factor Cf; subscript “s” indicates the solvent

– i.e., Newtonian benchmark fluid) often cited as the cutoff (Warholic et al., 1999).

Recent more systematic studies revealed that this transition is accompanied by a

series of sharp changes in flow statistics and may occur at much lower DR% at lower

Re (Xi and Graham, 2010b; Zhu et al., 2018). Most notably, suppression of Reynolds

shear stress (RSS) is mainly contained in the buffer layer at LDR which extends
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across the whole boundary layer at HDR. In addition, the mean velocity profile was

shown to no longer follow a logarithmic dependence at HDR (White et al., 2012;

Elbing et al., 2013). All these evidences indicate that turbulent DR is a two-stage

process with distinct mechanisms. The first is a localized weakening of turbulence

concentrated in the buffer layer which starts at Wionset. The second is a fundamental

change in turbulent dynamics in the log-law layer that is only triggered at the LDR-

HDR transition. Fundamental understating of the second mechanism (HDR) is very

limited which however has important implications in the area of flow control. In

particular, existing non-additive based DR techniques mainly results in flow statistics

characteristic of LDR (Deng et al., 2016). Knowing how polymers trigger HDR will

inspire new approaches that elevate the DR outcome to the next level.

Flow statistics and turbulent dynamics are often conceptualized in the framework

of coherent structures such as vortices and streaks (Robinson, 1991; Bernard et al.,

1993; Adrian, 2007). These structures are commonly spotted in flow field images

(from flow visualization experiments or direct numerical simulations – DNS) and pro-

vides a vehicle for describing mechanisms of turbulent self-sustaining processes and

momentum transport (Panton, 2001; Jiménez and Moser, 2007; Wallace, 2016). At-

tempts have also been made to establish the relationship between the mean velocity

profile and the underlying coherent structures (Lozano-Durán et al., 2012). For in-

stance, Perry and Marušić (1995) attributed the logarithmic dependence (eq. (4.1))

to the population of highly lifted-up vortices. For viscoelastic turbulence, it is com-

monly accepted that polymer stresses can cause DR by suppressing the motion of

vortices (De Angelis et al., 2002; Dubief et al., 2005; Li et al., 2006b; Kim et al.,

2007; Li et al., 2015), which offers a convincing explanation for the onset of DR.
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Much less is known about the second stage of DR as the LDR-HDR transition was

not considered a qualitative change in turbulent dynamics until very recently (Zhu

et al., 2018). Quantitative analysis of vortex distribution revealed that sharp changes

in flow statistics coincide with the start of coherent structure localization, with HDR

characterized by spotty clusters of vortices separated by laminar-like regions (Zhu

et al., 2018), which corroborates the earlier description of the intermittent transi-

tions between active and hibernating turbulence (Xi and Graham, 2010a, 2012b,a; Xi

and Bai, 2016). Based on this, Zhu et al. (2018) hypothesized that the LDR-HDR

transition stems from a fundamental change in the turbulence regeneration mecha-

nism and the two-stage DR process is a reflection of two different modes of polymer

effects on turbulent structures. At lower Wi, polymers cause an across-the-board

weakening of vortices and thus the onset of DR. At higher Wi they start to suppress

vortex lift-up and prevent its subsequent bursting events. Since bursting can lead to

the spreading of flow disturbances and trigger streak instability elsewhere in the do-

main (Hamilton et al., 1995; Schoppa and Hussain, 2002), its suppression effectively

blocks this pathway for vortex regeneration and exposes the more localized parent-

offspring mechanism – generation of new vortices at the edge of existing ones – as

the main process for turbulence sustenance at HDR. Prevention of vortex lift-up also

offers an explanation for the breaking of the mean velocity log law at HDR.

Like all studies of turbulent coherent structures, although there is no shortage

of anecdotal evidences for this conceptual model, systematical analysis of changes in

vortex configuration without subjective bias is a non-trivial challenge. Conditional

sampling has been an influential tool in the coherent structure analysis of viscoelastic
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turbulence, which averages the flow structures extracted based on events such as ve-

locity ejection (Kim et al., 2007, 2008) and occurrence of streamwise vortices (Sibilla

and Beretta, 2005). Its outcome has significantly contributed to the fundamental un-

derstanding in this area, especially that of vortex suppression by polymer forces which

causes the transition into the first DR stage at Wionset (as reviewed above). However,

focusing on the average smears the variation between individual vortex objects and

loses the information on the statistical distribution. Reliance on the predetermined

detection events also limits its representativeness when studying dynamics involv-

ing complex vortex topologies and motions. Proper-orthogonal decomposition (or

Karhunen-Loève analysis) was also widely used (De Angelis et al., 2003; Housiadas

et al., 2005; Wang et al., 2014; Mohammadtabar et al., 2017), which is most effective

for quantifying energy distribution between flow modes of different length scales but

information on real individual vortices is still missing. A method that can extract

individual realizations of vortex objects and objectively analyze their configurations

and topologies can contribute new insight especially to the second stage of DR which,

as discussed above, may involve more complex vortex dynamics.

At the conceptual level, this is achieved in a two-step process: (1) vortex identi-

fication – determining which regions in the flow field display vortical motions – and

(2) tracking – grouping these regions into individual vortex objects. Various vortex

identification criteria have been proposed in the literature. The necessity of such

criteria may not be obvious at first sight as one would intuitively turn to the vorticity

field ω ≡ ∇ × v for describing swirling flows. The limitation of vorticity becomes

clear when we consider a simple shear flow where, despite the absence of any vortex,

still has a vorticity magnitude proportional to the shear rate. Most commonly used
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vortex identification criteria are based on scalar identifiers calculated from the veloc-

ity gradient tensor ∇v (Jeong et al., 1997; Chong et al., 1990; Hunt et al., 1988).

Here, we take the Q-criterion (Hunt et al., 1988) used in this study as an illustrative

example. For incompressible flow, the Q quantity is defined as

Q =
1

2
(‖Ω‖2 − ‖S‖2), (4.3)

where ‖ · ‖ denotes the Frobenius tensor norm: e.g., ‖Ω‖ ≡
√∑

i

∑
j Ω2

ij. The strain-

rate tensor, S ≡
(
∇v + ∇vT

)
/2, and the vorticity tensor, Ω ≡

(
∇v −∇vT

)
/2,

are the symmetric and antisymmetric parts of ∇v, respectively. Equation (4.3), on

its face, can be interpreted as a comparison between the magnitudes of fluid rotation

(measured by ‖Ω‖2) and strain (‖S‖2). The magnitude of Q provides a basis for

categorizing flow regions based on their local kinematics. Regions with large positive

Q are dominated by strong rotation and thus correspond to vortices. Regions with

large negative Q are dominated by strain – i.e., stretching of fluid elements, which

indicates extensional flow. For a strict shear flow, it is easily verifiable that Q = 0.

The reader is referred to Xi and Bai (2016) for a more quantitative discussion on the

relationship between Q and local flow type. A similar argument was also adopted by

the recent studies of Pereira et al. (2017a,b) which divided viscoelastic flow fields into

regions with different Q magnitudes. Energy exchanges between these Q regions were

analyzed to understand polymer-turbulence dynamics. Other criteria use different

definitions for the scalar identifier but the results are practically equivalent in complex

turbulent flow fields (Chakraborty et al., 2005). A more detailed introduction of

vortex identification was provided in our earlier paper (Zhu and Xi, 2019).
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Much less development was seen in vortex tracking. Scalar fields of the identi-

fier, e.g., Q, can be easily visualized by rendering its three-dimensional isosurfaces,

although care must be taken in the selection of the threshold level (Chu and Kar-

niadakis, 1993; Lozano-Durán et al., 2012; Lozano-Durán and Jiménez, 2014). This

makes vortex objects easy to identify by eyes but not by a computer program for

quantitative analysis. A vortex tracking algorithm will enable the identification of in-

dividual vortex objects and quantification of their location, size, and topology without

the subjectivity of human intervention. A classical example is the method of Jeong

et al. (1997), which identifies vortex axes – center-lines around which the fluid ro-

tates in a swirling motion – by stitching together local planar maxima of the identifier.

The extracted axis-lines can be used in conditional sampling studies to align individ-

ual vortex objects for averaging (Jeong et al., 1997; Hussain and Hayakawa, 1987;

Zhu and Xi, 2018). This method was however designed only for (quasi-)streamwise

vortices whose axis-lines extend in nearly-straight lines aligned with the mean flow.

These vortices are important for the self-sustaining process of turbulence at least at

lower Re (Waleffe, 1997) and DR in the buffer layer (Li et al., 2006b): the latter,

as reviewed above, is responsible for LDR. Vortices of more complex configuration,

such as hairpin vortices with Ω-shaped axis-lines, are of broad interest to many out-

standing areas of research, including turbulence regeneration at high Re, dynamics in

the log-law layer, and bypass transition to turbulence (Adrian, 2007; Wu and Moin,

2009b; Schlatter et al., 2008). In the case of viscoelastic flow concerned here, complex

three-dimensional vortices are key to the understanding of HDR. Recall that HDR

is marked by qualitative changes in the turbulent statistics of the log-law layer (Zhu

et al., 2018) where highly curved vortices are expected to play a more important
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role. The mechanism proposed in Zhu et al. (2018) for the LDR-HDR transition also

requires the understanding of polymer effects on lifted-up vortices, which are again

significantly curved away from the streamwise direction.

Motivated by these, Zhu and Xi (2019) have recently developed a new method

termed “vortex tracking by iterative propagation” or VATIP. The method borrows

the original idea of Jeong et al. (1997) of extracting vortex axis-lines by connecting

points along their pathways and introduces an iterative search process to connect

new points for axis-line propagation in all three spatial dimensions. It has been

shown to successfully capture vortices with more general three-dimensional configu-

rations, including those with curved axis-lines, non-streamwise alignment, or complex

branched topology. A vortex classification procedure was also proposed in the same

study which sorts vortices identified by VATIP into commonly-observed types, such

as quasi-streamwise vortices, hooks, hairpins, and irregularly branched ones.

The development of VATIP has enabled for the first time statistical analysis of

vortex distribution and conformations. This study will leverage this new tool to inves-

tigate polymer effects on vortex dynamics in different stages of viscoelastic turbulence.

Although much attention has been dedicated to the vortex-polymer interaction in the

literature, this is the first time that the statistical distribution of vortex configuration

and topology can be quantitatively analyzed and compared between different Wi in an

unbiased manner. Special focus is on the LDR-HDR transition, where knowledge of

the dynamics of complex hairpin-like vortices is particularly important, and how the

changing vortex dynamics may be responsible for the observed changes in the mean

flow. As shown later, our results lead to extensive evidences for the lift-up suppression

mechanism hypothesized in Zhu et al. (2018) and, perhaps more importantly, the first
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complete description of vortex dynamics that accounts for both LDR and HDR. The

paper is organized as follows. In section 4.2, we will describe our simulation protocol

and provide a brief introduction to the VATIP algorithm. We will then start the re-

sults part in section 4.3.1 with flow statistics and highlight their changes between the

LDR and HDR stages. This includes the quadrant analysis of velocity fluctuations as

an indirect measurement of the changes in coherent structures. Direct visualization

of vortex configurations at different stages will be compared in section 4.3.2, where

the capability of VATIP in vortex tracking will also be demonstrated. The extracted

vortex axis-lines will then be statistically analyzed in sections 4.3.3 and 4.3.4. After

polymer effects on different aspects of vortex dynamics are investigated, the paper

will conclude with a physical description of the vortex dynamics behind the two DR

stages (in section 4.4).

4.2 Formulation and methodology

4.2.1 Direct numerical simulation

DNS in plane Poiseuille flow (the geometry is shown in Figure 4.1) is implemented

in this study. The flow is driven by a constant pressure drop and is oriented in the

x-direction. The simulation domain size is Lx × 2l × Lz. Variables in the simulation

are nondimensionalized by the turbulent outer units. That is, lengths are normalized

by the half-channel height l, velocities by the laminar centerline velocity Uc, pressure

by ρU2
c (where ρ is the fluid density: i.e., for viscoelastic cases, it is the density of the

polymer solution), and time by l/Uc.
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Governing equations for the polymeric turbulence are summarized as

∂v

∂t
+ v ·∇v = −∇p+

β

Re
∇2v +

2 (1− β)

ReWi
(∇ · τ p) , (4.4)

∇ · v = 0 (4.5)

and

∂α

∂t
+ v ·∇α−α ·∇v − (α ·∇v)T =

2

Wi
(− α

1− tr(α)
b

+
bδ

b+ 2
) +

1

ScRe
∇2α, (4.6)

τ p =
b+ 5

b

(
α

1− tr(α)
b

−
(

1− 2

b+ 2

)
δ

)
. (4.7)

In eq. (4.4), the Reynolds number Re and corresponding friction Reynolds number

Reτ are defined as Re ≡ ρUcl/η and Reτ ≡ ρuτ l/η (uτ is the friction velocity),

respectively. The two Reynolds numbers can be directly related through Reτ =
√

2Re.

The Weissenberg number measures the level of elasticity and is defined as the product

of the polymer relaxation time λ and the mean wall shear rate, i.e., Wi ≡ 2λUc/l. The

viscosity ratio β ≡ ηs/(ηs + ηp) is the ratio of the solvent viscosity to the total zero-

shear-rate viscosity of the polymer solution (subscripts “s” and “p” indicate solvent

and polymer contributions to viscosity, respectively). The contribution of polymers to

the flow momentum is accounted for by the last term on the right-hand side (RHS) of

eq. (4.4), where τ p is the polymer stress tensor. The FENE-P constitutive equations

(eqs. (4.6) and (4.7)) (Bird et al., 1987), where polymer molecules are treated as

finitely extensible nonlinear elastic (FENE) dumbbells, are adopted in this study

to calculate τ p. In FENE-P, α represents the polymer conformation tensor and is

defined as α ≡ 〈QQ〉 , where Q denotes the end-to-end vector of the dumbbell.
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Figure 4.1: Schematic of the flow geometry.

The maximum extensibility parameter b constrains the length of polymer dumbbells

through max(tr(α)) ≤ b. The last term on the RHS of eq. (4.6) (1/(ScRe))∇2α

(Sc is the Schmidt number) is an artificial diffusion term (not part of the FENE-P

model) introduced for the sole purpose of maintaining numerical stability. The use

of artificial diffusion is required for the DNS of viscoelastic fluid flows using pseudo-

spectral methods (see below). The practice is well studied and established in the

literature (Sureshkumar and Beris, 1995).

The Poiseuille flow implies periodic boundary conditions in the x- (streamwise)

and z- (spanwise) directions, meaning that all variables are continuous across domain

boundaries: e.g., v(Lx, y, z) = v(0, y, z). In the y- (wall-normal) direction, the no-slip

boundary condition is applied to the parallel walls for the velocity field: i.e.,

v = 0 at y = ±l. (4.8)

The original FENE-P equation does not require boundary conditions in the y-direction.

Adding artificial diffusion introduces second-order partial derivatives and changes the
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Reτ Wi β b Sc δ+
x δ+

z Ny δt DR% Stage
172.31 vary 0.97 5000 0.3 9.09 5.44 195 0.01 vary vary

400
25 0.9 900 0.25

9.09 5.44 473 0.005
16.8 LDR

50 0.9 3600 0.25 41.2 HDR

Table 4.1: Physical parameters and numerical settings of viscoelastic DNS simula-
tions.

mathematical nature of the equation, for which wall boundary conditions are now re-

quired. Boundary values of α are computed at each time step by directly integrating

eq. (4.6) in time for grid points at the walls (y = ±l or ±1 after nondimensional-

ization) without the artificial diffusion term. These values then provide boundary

conditions for solving the equation, including artificial diffusion, for the rest of the

channel.

DNS results of two different Re are analyzed with VATIP in this study. The lower

Re case, i.e., Re = 14845 (Reτ = 172.31), uses the same dataset previously reported

in Zhu et al. (2018). At this Re, a clear transition between LDR and HDR is already

clearly observable with all features of the transition captured. Also, for Newtonian

flow, this Re is sufficient to produce a pronounced PvK log-law layer (Zhu and Xi,

2019). Simulation runs at a wide range of Wi with fixed β and b (see table 4.1) have

been performed at this Re, including multiple cases in both LDR and HDR stages.

At the higher Re = 80000 (Reτ = 400), two viscoelastic cases are simulated. The

parameters are so selected that one is at LDR and the other at HDR. Newtonian flow

is also simulated for both Re. Parameters for the DNS runs reported in this study

are summarized in table 4.1.

A Fourier-Chebyshev-Fourier pseudo-spectral scheme is adopted to discretize all

variables in space. The spatial periods are L+
x ×L+

z = 4000×800 for all simulations at
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both Re. (The superscript “+” represents quantities nondimensionalized with inner

scales – velocities by uτ and lengths by η/ρuτ ). An Nx×Nz = 440×147 mesh is used

for the x and z Fourier transforms and Chebyshev-Gauss-Lobatto points are used for

the Chebyshev transform in the y-direction. The number of grid points Ny is adjusted

with Re (see table 4.1): for Re = 172.31, the range of y-grid spacing δ+
y is 0.022 to 2.79

(minimum at the walls and maximum at the channel center) and for Reτ = 400, it

is 0.011 to 3.03. The time integration chooses a third-order semi-implicit backward-

differentiation/Adams-Bashforth scheme (Peyretr, 2013). Different time step sizes

are chosen at the two Re (table 4.1) according to the Courant-Friedrichs-Lewy (CFL)

stability condition. The magnitude of the numerical diffusivity 1/(ScRe) (in the ar-

tificial diffusion term of eq. (4.6)) is 2.25× 10−4 for Re = 172.31 and 5× 10−5 for

Re = 400, respectively. This is lower than most studies in the literature in which a

numerical diffusivity in the order of O(0.01) is generally found to be safe (Ptasinski

et al., 2003; Sureshkumar et al., 1997; Sureshkumar and Beris, 1995; Dimitropoulos

et al., 1998). A detailed numerical sensitivity analysis at three different levels of nu-

merical diffusivity and resolution was reported in Zhu et al. (2018) and not repeated

here. The viscoelastic DNS code used in this study is custom-developed by expand-

ing the open-source package for Newtonian DNS ChannelFlow, originally developed

by John F. Gibson (Gibson, 2012) and later improved and parallelized by Tobias

Schneider, Hecke Degering (Schrobsdorff), and co-workers (Tuckerman et al., 2014).

4.2.2 VATIP for vortex tracking

The purpose of VATIP is to extract the axis-lines of individual vortices around which

the fluid rotates. If a vortex is defined as a tube in which the scalar identifier Q
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Figure 4.2: The conceptual plot of the VATIP algorithm. A new point is connected
to a propagating axis-line if it falls within a detection cone. The x-direction search
round looks for local maxima of Q in the yz plane (labeled x-axis-points); the search
continues in other directions after no more x-axis-points can be added. For simplic-
ity, the plot only sketches a two-dimensional scenario without explicitly showing the
search round in the y-direction. The triangles thus represent the planar projection of
the detection cones.

Reτ = 172.31 Newt. Wi = 20 Wi = 80
Qrms 0.0325 0.017 0.0061

Reτ = 400 Newt. LDR HDR
Qrms 0.0305 0.0125 0.00461

Table 4.2: Values of Qrms in representative Newtonian and viscoelastic DNS flow
fields.
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exceeds a curtain threshold, the Q magnitude increases from the tube shell inwards

and peaks at the axis. The axis-line preserves the position, size, shape, and topology

of the vortex and is thus particularly instrumental in vortex analysis. The scalar Q

field first needs to be calculated from the velocity data (eq. (4.3)). To determine

the threshold value of Q for vortex identification, we follow a systematic procedure

based on the so-called “percolation analysis”, which has been extensively discussed in

previous studies (Zhu et al., 2018; Zhu and Xi, 2019). In short, a very low Q threshold

will over-identify vortex regions and render one interconnected (percolating) vortex

structure whereas at the other limit (high threshold), vortices will be under-identified

with many valid vortices excluded from the result. The percolation analysis identifies

Q values at which individual vortex objects are just separated apart but are still

mostly preserved. In this study, spatial regions with Q > 0.4Qrms (Qrms being the

root-mean-square – RMS – value of Q over the domain

Qrms ≡
√

1

2lLxLz∆T

∫ ∆T

0

(∫∫∫
Q2dxdydz

)
dt (4.9)

) are identified as vortex regions. Values of Qrms for several representative cases (in

different flow stages) are provided in table 4.2. Notably, Qrms decreases monotonically

with increasing DR%, indicating the correlation between vortex weakening and drag

reduction. More detailed results and discussion in this regard are found in our earlier

study (Zhu et al., 2018).

Each point on the axis-line is the maximum of Q in the corresponding cross-

sectional plane of the vortex tube. Depending on the direction of the vortex segment

concerned, the axis-point may appear as a local two-dimensional maximum in the yz,

xz, or xy plane (for vortex segments aligned in the x, y, or z direction, respectively).
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Therefore, all two-dimensional local maxima in planes of all orientations within the

identified vortex regions need to be found and recorded as potential axis-points.

Connecting axis-points that belong to the same vortices to form axis-lines is the

central task of vortex tracking which is illustrated in fig. 4.2. The process starts with

yz planes for x-direction tracking. At each yz grid plane, a new axis-line is initiated

from each unassociated potential axis-point. Existing axis-lines attempt to propagate

along the x direction by finding eligible axis-points in the next plane for connection.

Connection is made if the next axis-point falls within a cone-shaped region projected

from the propagating end of the axis-line. The size of the cone is determined from

the average radius of a streamwise vortex tube

rv =

√ ∑Nx

i=1Av,i

π
∑Nx

i=1 Nv,i

, (4.10)

(where Nx is the number of x-grid points – i.e., the number of yz-planes, i is the

yz-plane index, Av,i is the total area of vortex regions on plane i calculated by adding

up all areas that satisfy the vortex identification criterion (Q > 0.4Qrms in this study)

on the plane, and Nv,i is the number of separate vortex areas on the plane) and a base

diameter of dmax = 1.4rv is used in this study. This so-called “cone-detective” idea

was first proposed by Jeong et al. (1997) which however only focused on streamwise

vortices and their algorithm stops the search after the x-direction search round. In

VATIP, the search continues in the y and then z direction for vortices whose axis-

lines are no longer confined in the x-direction. These continued search rounds extend

the existing axis-lines in new directions by connecting axis-points in two-dimensional

planes of other orientations: e.g., for the search in the z-direction, local Q maxima in

xy-planes, which are termed z-axis-points, are added to the growing axis-lines when
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they fall into the detection cones (now pointed towards the z direction; see fig. 4.2).

Initiation of new axis-lines is not allowed in these continued search rounds to avoid

false identification (i.e., all axis-lines are initiated in the first round of x-direction

search). However, separate axis-lines are allowed to merge if the detection cone from

the propagating end finds another axis-line within its range. Consider a hairpin vortex

typically observed in the log-law layer (Robinson, 1991; Adrian, 2007; Wu and Moin,

2009b) with an Ω-shaped axis configuration, its two legs extend towards the wall and

along the x-direction and will be captured with the first x-direction search round; at

the downstream end, the legs lift up away from the wall (which requires y-direction

search) and merge along the z-direction to form an arc (which requires z-direction

search and axis-line merging). An x-y-z search cycle would successfully capture such

vortices. Many vortices observed in DNS results, however, do not conform to this

canonical shape and in order to capture a wider variety of three-dimensional vortices

with complex axis-line topology, the VATIP algorithm continues to iteratively loop

over searches in all three directions until the number of identified vortices converges.

VATIP was tested with intentionally generated curved vortices such as hooks and

hairpins as well as actual DNS flow fields. It was shown to successfully capture vortices

of all known shapes and configurations typically observed in near-wall turbulence (Zhu

et al., 2018). Note that this section only provides a high-level description of the key

elements of VATIP. The readers are referred to Zhu and Xi (2019) for implementation

details and further discussions about the method.
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Figure 4.3: (a) Mean velocity profiles (U+ vesus y+) and (b) log-law indicator function
(y+dU+/dy+ vesus y+) at Reτ = 172.31; horizontal line marks the PvK magnitude
of 2.5 (eq. (4.1)).

4.3 Results and Discussion

4.3.1 Flow statistics

By injecting polymers into turbulent flows, properties of the flows are significantly

changed which leads to considerable reduction of the friction drag and increase of the

mean flow rate. In fig. 4.3(a), we show the mean velocity profiles of the Newtonian and

three viscoelastic cases (Wi = 20, 48, and 80) at Reτ = 172.31. For the Newtonian
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case, the profile closely follows the PvK asymptote (eq. (4.1)) at y+ & 50, indicating

that the log law layer has been sufficiently developed at this Reτ = 172.31. For the

Wi = 20 case, the velocity profile lifts up in the buffer layer (20 . y+ . 50) but stays

parallel to the PvK asymptote at higher y+. By contrast, the profiles of the Wi = 48

and 80 cases lift up across most of the channel including what used to be the log-law

layer. This observation has been the most-discussed difference between LDR and

HDR in the literature (Warholic et al., 1999; Ptasinski et al., 2003; Li et al., 2006a;

Housiadas and Beris, 2003; Xi and Graham, 2010b; Zhu et al., 2018; Mohammadtabar

et al., 2017). In our case, it is clear that Wi = 20 belongs to LDR and Wi = 48 and

80 are well within the HDR regime. The qualitative change in the mean velocity

gradient is more clearly seen in the logarithmic law indicator function (fig. 4.3(b)).

Note that any U+(y+) dependence can be written in the generic form of

U+ =
1

κ
ln y+ +B (4.11)

where B is a constant and the indicator function

1

κ
=

dU+

d ln y+
= y+dU

+

dy+
(4.12)

is a constant only if the profile follows a logarithmic dependence. For Newtonian and

LDR (Wi = 20) cases, a clear inflection point with 1/κ ≈ 2.5 shows up at y+ ≈ 50,

which is followed by a nearly flat segment at 50 . y+ . 100 – a clear log-law layer.

For HDR cases (Wi = 48 and 80), the inflection point disappears and the segment at

larger y+ is no longer flat. This indicates the log law is no longer valid at the HDR

stage, which is consistent with the finding of White et al. (2012).
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Figure 4.4: Shear stress components at y+ = 103.2 plotted against DR% (Reτ =
172.31), including the Newtonian case (DR%) and viscoelastic cases at Wi = 8, 12,
16, 20, 24, 32, 48, 64, 80, and 96 (DR% increases monotonically with Wi with the
exception of Wi = 8, which is pre-onset and nearly overlaps with the Newtonian
case). The lines are guides to the eyes for the LDR (dashed) and HDR (solid) stages.

The mean velocity gradient (which determines the indicator function – eq. (4.12))

is related with velocity fluctuation and polymer stress through the shear stress bal-

ance:

〈τ+
xy〉 = β

dU+

dy+
+ 〈−v′+x v′+y 〉+

1− β
Wi
〈τp,xy〉 (4.13)

where the three terms on the RHS represents contributions from the viscous, Reynolds,

and polymer shear stresses, respectively (〈·〉 represents averages over x, z, and t axes).

Under constant mean pressure gradient, the total shear stress is a constant for given

Re and y+ position –

〈τ+
xy〉 = 1− y+

Reτ
. (4.14)

With increasing DR%, the rise of viscous and polymer shear stresses must be accom-

panied by the drop of RSS. Recent studies further showed that, similar to the change

of 1/κ, the suppression of RSS is contained within and near the buffer layer at LDR
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and significant reduction of RSS at larger y+ is only obvious at HDR (Xi and Graham,

2010b; Zhu et al., 2018). In fig. 4.4, the magnitudes of these shear stress components

at y+ = 103.2 (which is well within the log-law layer for the Newtonian case) are

plotted against DR% for DNS results at Reτ = 172.31, including the Newtonian and

viscoelastic cases at ten different Wi (see caption of fig. 4.4). The LDR-HDR tran-

sition occurs at DR% ≈ 20% and Wi ≈ 24, which is marked by a sharp turn in all

three components. Variations in these quantities are mild at LDR but for HDR their

DR%-dependencies become steep. The rapid decline of RSS, in particular, indicates

a new stage of turbulence suppression in the log-law layer which is only initiated at

the start of HDR. Note that the transition point of DR% ≈ 20% is not universal and

at higher Re the critical DR% will be higher. Although earlier studies widely quoted

DR% ≈ 30 ∼ 35% as the separation between LDR and HDR (Warholic et al., 1999; Li

et al., 2006a, 2015), it was recently established that the transition point is a function

of Re (Zhu et al., 2018), which again shows that the LDR-HDR transition is more

than a quantitative effect of the level of DR% but a shift between two qualitatively

different stages of DR.

Velocity fluctuations at Reτ = 172.31 are inspected with quadrant analysis which

plots the joint probability density function (PDF) between the streamwise and wall-

normal velocity fluctuations (figs. 4.5 and 4.6). The distribution is typically skewed

towards the second and fourth quadrants (Q2 and Q4) where v′+x and v′+y have op-

posite signs and thus contribute positively to the RSS (second term on the RHS of

eq. (4.13)). The Q2 events, in which v′+x < 0 and v′+y > 0, correspond to the upward

movement of the slower fluids near the wall to larger y+ which causes a local reduction

in the streamwise velocity and is often termed “ejections”. Meanwhile, the opposite
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Figure 4.5: Joint PDF of the streamwise and wall-normal velocity fluctuations at
y+ = 25 (Reτ = 172.31).

Figure 4.6: Joint PDF of the streamwise and wall-normal velocity fluctuations at
y+ = 100 (Reτ = 172.31).
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Q4 events are called “sweeps” (Lozano-Durán et al., 2012; Wallace, 2016). The buffer

layer (Figure 4.5) distribution is flatter owing to its stronger streamwise velocity fluc-

tuations. As Wi increases, the joint PDF contour span shrinks in the y-direction while

expands along x-direction, which is consistent with the established observation in the

literature that the wall-normal and spanwise velocity fluctuations are suppressed by

polymers but the streamwise fluctuations are often enhanced (Sureshkumar et al.,

1997; Ptasinski et al., 2003; Min et al., 2003; Li et al., 2006a). Suppression of the

ejections and sweeps in the buffer layer reduces the wall-normal momentum fluxes

responsible for the high Reynolds stress (Townsend, 1980; Marusic et al., 2010). Note

that in the buffer layer, the joint PDF shape is already clearly modified in LDR, which

only continues into HDR. By contract, at higher y+ (fig. 4.6), the transition between

LDR and HDR is sharp. The joint PDF patterns are similar between Newtonian and

LDR cases whereas at HDR it is clearly flattened, indicating that polymer-induced

changes in coherent motions only start at HDR in that wall region. Our quadrant

analysis results are remarkably similar to the recent experimental measurement by

Mohammadtabar et al. (2017) at comparable or lower Re (Reτ ranges from approxi-

mately 200 to 70 from the Newtonian limit to the highest DR%).

Observations in flow statistics suggest that the LDR-HDR transition is under-

pinned by a sudden shift of the regions or wall layers where polymer interaction with

turbulence is substantial. At LDR, polymers mainly suppress turbulence in the buffer

layer, causing its enlargement and higher mean velocity gradient, whereas the log-law

layer is left largely intact. This is indeed the essence of the elastic sublayer theory of

Virk (1975). The theory, however, does not account for the occurrence of the second
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stage of DR – HDR – where polymer effects on turbulent dynamics begin to substan-

tially alter the log-law layer. Further evidences for the transitions in flow statistics,

as well as the localization in turbulence distribution at HDR, are found in Zhu et al.

(2018) and not repeated here. The primary focus of this study is to investigate the

changes in coherent structure dynamics behind these observations.

4.3.2 Vortex conformation and tracking in instantaneous flow

fields

We start with instantaneous images of flow-field vortices and their axis-line confor-

mations identified by VATIP at Reτ = 172.31. Vortices are identified with the Q

criterion and the isosurfaces of Q = 0.4Qrms are plotted in fig. 4.7. Although stream-

wise aligned vortices are seen in all cases especially near the wall, the Newtonian

and LDR cases show strong tendency for vortex lift up, in which the vortex legs

(in the upstream) are initiated near the wall along the streamwise direction but its

head becomes detached from the wall in the downstream. Detached vortex segments

become distorted and deviate away from the flow direction. Hairpins are a distinct

type of lifted-up vortices with an Ω-shaped contour: a transverse arc at the down-

stream end with two streamwise legs extending upstream towards the wall. At this

Re, they are already populating the flow domain in the Newtonian and LDR cases.

The HDR image appear drastically different with significantly reduced instances of

vortex lift-up, hairpins, and curved vortices. The vortices are more likely to stick

close to the wall and become much more extended in the flow direction than LDR.

This observation is consistent with the earlier observations in conditional eddies by

Kim et al. (2007). This dominance of elongated vortex conformation underlines the
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Figure 4.7: Instantaneous vortex structures of (a) Newtonian, (b) Wi = 20 and (c)
Wi = 80 cases Reτ = 172.31 identified by the Q-criterion (only the bottom half of the
channel is shown). The color shade (from light to dark) maps to the distance from the
bottom wall in outer units. Part of the domain (orange box) is enlarged and shown
on the right. Circular markers are axis-points identified by VATIP: orange (light) for
x-axis-points; blue (dark) for y- and z-axis-points.
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common observations of much smoother velocity distribution at HDR with extended

streak patterns (Warholic et al., 2001; White et al., 2004; Housiadas et al., 2005; Li

et al., 2006a).

VATIP allows us to go beyond direct intuitive visual inspection and extract vortex

conformations without subjective bias. Vortex axis-points identified by VATIP are

shown in fig. 4.7 with circular markers for a smaller region in the domain. It is

clear that in all cases, the axis-lines (connecting all axis-points) obtained by VATIP

successfully capture all visible vortices and well preserve their size, position, shape,

and topology, including both straight (quasi-streamwise) and curved (e.g., hairpins)

vortices. Quasi-streamwise vortex axis-lines are mainly composed of x-axis-points

(which are local maxima of Q in yz-planes), represented by orange markers. For

significantly lifted-up vortices (including hairpins), mostly seen in the Newtonian and

LDR cases, y- and z-axis-points (blue markers; local maxima in xz- and xy-planes)

must be included. This is a major improvement of VATIP compared with earlier

approaches which are limited to streamwise vortices (Jeong et al., 1997; Sibilla and

Beretta, 2005). These y- and z- axis-points become less important at HDR where

streamwise vortices dominate. Spatial proximity between vortices in the DNS of

full steady-state turbulence makes it difficult to clearly visualize individual vortex

conformations. More isolated vortices of a variety of shapes can be generated using

transient DNS to test the VATIP performance, which was done in Zhu and Xi (2019)

and not repeated here.
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Figure 4.8: Average dimensions of the enclosing cuboid of each vortex at Reτ =
172.31: (a) streamwise length l+x , (b) wall-normal length l+y and (c) spanwise length
l+z . Dashed line marks the LDR-HDR transition.

4.3.3 Polymer effects on vortex conformation and lift-up

Axis-lines extracted by VATIP open up the possibility for the statistical analysis

of vortex conformations. Figure 4.8 shows the average dimensions of vortices at

Reτ = 172.31, measured by the edge lengths of a minimal cuboid enclosing each

vortex. A dashed line is drawn at DR% = 20%, which was identified earlier as the

point of LDR-HDR transition at Reτ = 172.31 based on flow statistics (fig. 4.4). This

line is provided in all DR%-dependence plots in this study to provide a reference for

identifying the correlation, or the lack thereof (if that is the case), between changes in

flow statistics and vortex structure measurements. The average streamwise dimension

of a vortex l+x (fig. 4.8(a)) increases nearly monotonically with DR%, indicating that

vortices become elongated in the streamwise direction with polymer DR effects. This

is indeed a well-established observation in the literature (Li et al., 2006a, 2015; Kim

et al., 2007, 2008) and consistent with the direct observation in fig. 4.7. The trend

continues after the LDR-HDR transition with no notable change in pattern. Stream-

wise vortex elongation can be interpreted as the result of vortex stabilization (Dubief
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et al., 2005; Zhu et al., 2019): when a vortex does not lift up away from the wall or

burst into pieces for an extended period of time, it is continuously stretched by the

flow. Because vortices are in general not strictly aligned with the x axis, its elongation

can also lead to increasing dimensions in the other directions l+y and l+z . This effect

seems to dominate at LDR where l+y and l+z grow nearly monotonically (fig. 4.8).

Due to the increasing stability of vortices, the wall-normal and spanwise length also

increase in the LDR stage. However, this trend is turned around after the LDR-HDR

transition. In fig. 4.8(b), the wall-normal length l+y immediately drops when the HDR

stage is reached, which is consistent with the hypothesis of Zhu et al. (2018) that at

HDR polymers suppress the lift up of vortices. Lift-up exposes the downstream end,

or the “head”, of the vortex to transverse flows, which bend the vortex sideways

to form spanwise segments of vortex tubes (such as the arc in an Ω-shaped hairpin

vortex) and increase its dimension in z direction l+z . Suppression of vortex lift-up

explains the reduction of curved vortices such as hairpins, as seen in fig. 4.7. The

spanwise vortex length l+z (fig. 4.8(c)) does indeed drop substantially at HDR. The

turning point is slightly delayed compared with the LDR-HDR transition. This seems

to suggest that the start of HDR is more directly linked to lift-up suppression, which

blocks the transfer of turbulent motions from the buffer layer to the log-law region,

and the reduction of hairpins and spanwise vortex dimension is a secondary effect.

Highly lifted vortices will eventually burst into intense fluctuations (Zhu et al., 2019)

which may seed new streak stabilities and lead to turbulence proliferation. Confining

the stabilized vortices to the streamwise direction leads to their prolonged stretching

and a shift in the turbulent regeneration dynamics.

Vortex lift-up can now be quantified by the wall-normal positions of the head
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Figure 4.9: Joint PDFs of the wall-normal positions of the head and tail/legs of each
vortex, as measured respectively by the maximum and minimum y+ coordinates of
the vortex axis-line, at Reτ = 172.31 and different Wi.
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Figure 4.10: Joint PDFs of the wall-normal positions of the head and tail/legs of each
vortex, as measured respectively by the maximum and minimum y+ coordinates of
the vortex axis-line, at Reτ = 400 and different Wi.

(highest point, typically at the downstream end) and leg(s)/tail (lowest point, typ-

ically at the upstream end) of the vortices. These positions can be measured from

the axis-lines obtained from VATIP and the joint PDFs between them are shown in

fig. 4.9 for the Re = 172.31 case. The distribution at LDR (Wi = 16 and 20 cases)

closely resembles that of the Newtonian case and is highly concentrated in the buffer

layer (y+ < 30). Two concentration bands extend from the peak distribution there:

one along the vertical axis that corresponds to the highly lifted-up vortices (leg/tail

y+
min in the buffer layer but head y+

max well into the log-law layer) and the other, slightly

less populated, along the diagonal that corresponds to flat-lying vortices that align

mostly along the streamwise direction. The pattern clearly changes at HDR where

the vertical band becomes significantly weakened and the diagonal band is more pro-

nounced and extends to higher y+. The concentration peak is still found in the buffer

layer but it is now more aligned with the diagonal than the ordinate. Distribution
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pattern at Reτ = 400 (fig. 4.10) is strikingly similar, not only qualitatively (i.e., the

pivot towards the diagonal) but also quantitatively. Wall-normal positions and spans

of vortices are well comparable, in inner units, between these two distinctly different

Re, indicating strong scalability of coherent structures at different DR stages with

increasing Re.

From these results, it becomes clear that at LDR, despite an overall weakening of

all vortices, vortex distribution has changed little compared with the Newtonian limit,

whereas the suppression of vortex lift-up only starts at HDR, which corroborates our

earlier notation that the LDR-HDR transition is a reflection of a new stage of DR

with a distinct mechanism. Earlier studies have suggested the possibility of lift-up

suppression by polymers through direct flow field inspection or conditional sampling

of average eddies (Kim et al., 2007; Zhu and Xi, 2018; Zhu et al., 2019). Statistical

quantification of vortex lift-up tendency would not have been possible without the

specific information on individual vortex axis-lines. More importantly, this is the first

time polymer-induced lift-up suppression is associated with the LDR-HDR transition

by direct evidence. Vortex lift-up is important in the turbulent momentum transfer

between different wall layers and widely believed to be responsible for the PvK log law

(eq. (4.1)) (Townsend, 1980; Perry and Marušić, 1995; Lozano-Durán et al., 2012).

Its suppression at HDR thus offers a clear pathway to explain the changing mean

flow profile in that regime. Meanwhile, extension of the diagonal band indicates the

increasing frequency of flat-lying vortices at higher wall layers, which again supports

a change in the log-law dynamics.

Townsend (1980) introduced the concepts of “attached” and “detached” vortices.

Attached vortices interact closely with the wall and were believed to be responsible for
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Figure 4.11: Schematics of vortex categorization by wall position and lift-up extent:
(I) attached-flat, (II) attached-lifted, (III) detached-flat, and (IV) detached-lifted.

the generation and transport of Reynolds stress and TKE. Detached vortices are found

away from the wall and they were conjectured to be associated with the dissipation of

turbulent activities (Perry and Marušić, 1995). Lozano-Durán et al. (2012) classified

coherent structures into attached and detached groups based on their wall positions:

structures with their bottom sticking close to the wall (i.e. y+
min ≤ 20) were considered

to be attached and the others detached. Distinction was further made based on the

wall-normal span of the structures by the same authors. In particular, “tall-attached”

structures that extend across the channel were believed to be of particular importance

in the transport of Reynolds stress. Following the same spirit, we categorize vortices

into four types based on these two metrics of vortex wall position and wall-normal

span, which are both quantitatively measurable from vortex axis-lines extracted with

VATIP. Each type maps to a region in the y+
max-y+

min coordinates (same as fig. 4.9) as

illustrated in fig. 4.11. Type I or “attached-flat” vortices are those with y+
min ≤ 20

and l+y ≡ y+
max − y+

min ≤ 50. Note that the y+
min criterion measures the proximity

to the wall and the l+y criterion measures the extent of vortex lift-up. This type

125



Ph.D.Thesis - Lu Zhu McMaster - Chemical Engineering

thus includes vortices lying flat in regions very close to the wall without strong lift-

up. These vortices are the dominant structures in the buffer layer and are most

frequently spotted in all cases (fig. 4.9). Type II or “attached-lifted” vortices satisfy

y+
min ≤ 20 and l+y > 50. These vortices are generated by wall interaction but their

strong lift-up allows them to efficiently transport turbulent activities between the

buffer and log-law layers. Type III or “detached-flat” (y+
min > 20 and l+y ≤ 50) and

type IV or “detached-lifted” (y+
min > 20 and l+y > 50) are similarly differentiated by

their extent of lift-up and in both cases, the vortices are detached from the wall and

thus less influenced by the latter. The cut off magnitudes of y+
min = 20 and l+y = 50

were arbitrarily chosen based on the observed distribution patterns in fig. 4.9 and our

general experience with vortices in channel flow. We have tested that changing the

cut off values within a reasonable range (y+
min = 20 ∼ 40 and l+y = 35 ∼ 50) would

not change the following results in any significant manner.

It is necessary to clarify here that VATIP, in its current form, is an intrinsically

static approach. It captures vortex instances from a frozen image of the flow field.

Therefore, categorization results according to fig. 4.11 should be interpreted through

the lens of ensemble statistics – i.e., for an arbitrarily selected vortex at a random time

moment, what is the probability that it is caught in a configuration belonging to one

of these four types. The method does not provide direct information on the dynamical

lineage of vortices and does not track the time evolution of vortex configuration. The

category label does not carry though different times: a vortex may as well evolve into

a different type at a future moment. For instance, a classical streamwise vortex in

the buffer layer would be categorized as type I, but if it lifts up at a later time, it

would become type II.
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Figure 4.12: Distribution of TKE and volume between vortices of different types
at Reτ = 172.31: (a) percentage of TKE contained in each type of vortices; (b)
percentage of volume occupied by each type of vortex; and (c) normalized TKE
density. Percentages are with respect to the flow domain total. Dashed line marks
the LDR-HDR transition. Error bars smaller than the symbol size are not shown.

Polymer effects on these vortex types are quantified in fig. 4.12 in terms of the

percentage of TKE contained in all vortices of type i

ki% ≡
ki
kt

(4.15)

and the percentage of volume occupied by all vortices of type i

Vi% ≡
Vi
Vt

(4.16)

where kt and Vt are the total TKE and total volume of the flow domain, respectively.

The ratio between the two

ki%

Vi%
=
ki/Vi
kt/Vt

(4.17)
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is the volumetric density of TKE in vortex type i normalized by the TKE density

of the entire domain. Since VATIP only renders an axis-line, instead of a three-

dimensional volume, of each vortex, volumetric statistics of the vortex are calculated

within a region around the axie-line. A square with the edge length of 1.5rv is drawn

(in the vortex cross-sectional plane) around each axis-point (placed at the center of

the square) of the vortex axis-line and regions falling into these confining squares

are counted to that vortex. In the Newtonian limit, each type takes up nearly the

same share (≈ 20%) of the TKE and volume. (The numbers do not add up to unity

because there are regions in the flow domain not allocated to any vortex.) With

increasing DR%, type I (attached-flat) vortices are monotonically suppressed with

dwindling shares of TKE and volume. Type II (attached-lifted) vortices are also

nearly monotonically reduced but there is a clear turning point at the LDR-HDR

transition. Reduction of type II vortices at LDR can be attributed to the general

weakening of vortices (first mechanism of DR) as well as the smaller numbers of type

I available as its feed. For the latter, types I and II can be viewed as different stages of

the same category of attached vortices: a type I vortex may develop into a type II as

it lifts up later in its lifetime (Perry and Marušić, 1995). At HDR, lift-up suppression

becomes important (fig. 4.9 and more evidences below) which leads to the faster

decline of shares in type II vortices. Polymer effects on detached (types III and IV)

vortices are much subtler. There is a clear increase of TKE shares of both types at the

LDR-HDR transition whereas the volume share stays roughly at the same level for all

levels of DR. As a result, the normalized TKE density (fig. 4.12(c)) starts to increase

after the transition: i.e., as the flow reaches HDR, the relative intensity (compared

with other vortex types) of detached vortices increases without them expanding in
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Figure 4.13: Distribution of turbulent kinetic energy contained in each vortex type of
(a) Newtonian, (b) Wi = 20 (LDR), and (c) Wi = 80 (HDR) cases at Reτ = 172.31.

overall volume. Since the overall turbulent intensity or the average TKE density of the

flow domain kt/Vt (denominator in eq. (4.17)) is decreasing with DR%, this simply

indicates that detached vortices are much less susceptible to polymer suppression,

compared with attached ones, in the HDR regime. Also, attached vortices (types I

and II) are much stronger than detached ones with their TKE density more than 50%

higher than the latter. At LDR, normalized density of type IV vortices are close to

unity (the domain average magnitude), making them nearly not differentiable from

the turbulent background. This is consistent with observations in fig. 4.9 that this

region (IV in fig. 4.11) is rarely populated by vortices. The role of type IV is thus

much less significant than the rest and it is included in our analysis for completeness

only.

Figure 4.13 shows the TKE share of each vortex type as a function of y+ for the

Newtonian, LDR (Wi = 20), and HDR (Wi = 80) cases at Reτ = 172.31. Type I
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Figure 4.14: Distribution of turbulent kinetic energy contained in each vortex type
of (a) Newtonian, (b) LDR, and (b) HDR cases at Reτ = 400.

represents the flat-lying attached vortices and they are most predominant in the buffer

layer, accounting for 50% of the total TKE in the buffer layer. Detached vortices

(types III and IV) only become important in the log-law layer. Type II, meanwhile,

carries TKE across the wall layers because they originate from the wall and lift

up to upper layers. Compared with the Newtonian case, at LDR vortex type I is

significantly suppressed, which corresponds to the first stage of DR effect concentrated

mainly in the buffer layer. Changes in other types are much less significant. There

is a minor reduction in the type II profile within the buffer layer only, which is

consistent with the earlier discussion that at LDR, type II reduction is a combined

effect of general vortex weakening and reduced number of type I. Lift-up suppression

becomes important only at HDR where reduction of the type II profile in the log-law

region becomes significant (as type I share continues to drop). Meanwhile, profiles

for detached vortices (types III and IV) are slightly raised.

The same observations are largely preserved at the higher Reτ = 400 (fig. 4.14).
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Compared with the lower Re case, increasing Re leads to an overall increase of lifted

vortices, both attached (type II) and detached (type IV). This is consistent with the

previous finding in Newtonian turbulence that lifted-up three-dimensional vortices

(e.g., hairpins) become more prevalent at higher Re (Zhu and Xi, 2019). For both

Re, attached vortices (types I and II) are contained within roughly the same wall

layers in inner units: type I is found at y+ . 100 and type II shows highest TKE

at y+ ≈ 30 and its upper end extends close to y+ ≈ 200. Meanwhile, detached

vortices (types III and IV) are less contained and spread to the highest y+ available

at each Re. The position of peak TKE, however, is still comparable in inner units at

different Re. The effect of increasing Wi and comparison between different stages of

DR remain the same between these two Re.

In summary, analysis of vortices of different types shows that polymers mainly

suppress attached vortices. This effect is confined to the buffer layer at LDR. Polymer

effects on TKE distribution in the log-law region becomes important only at HDR

because of their suppression of vortex lift-up (evidences in fig. 4.9 and also below),

which reduces the turbulent momentum transfer between wall layers and results in

the changing flow profiles in the log-law layer.

4.3.4 Vortex shape distribution at different stages of DR

Analysis so far has been focused on the size, wall position, and lift-up status of

vortices without considering their topological shape. Determination of the latter by

a computer code requires a set of quantitative criteria on the vortex geometry. We

will adopt the vortex classification procedure proposed in Zhu and Xi (2019) based on

measurements of axis-lines extracted by VATIP. Like before, we will only recapitulate
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Figure 4.15: Schematic illustrations of major vortex types by shape.

Figure 4.16: Definitions of vortex metrics used in the classification of their shapes
(xz-plane projection). Circular and square markers represent x- and z-axis-points,
respectively.
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Condition Frag. Stream. Hook
Branch

Hairpin
A B C

l+x < 50 T F F F F F F
max(l+z,zap) < 25 - T F F F F F
Px(Nxap = 1) > 80% - - T F F F F
Px(Nxap>2)

Px(Nxap>1)
> 50% - - - T F F F

xCOG,xap < xmid or
xCOG,zap < xmid

- - - - T F F

xmax-Dz > 1.5xCOG,Nxap>1 - - - - - T F

Table 4.3: Vortex classification criteria based on geometric metrics of the axis-line.

the approach at the conceptual level here and refer the readers to Zhu and Xi (2019)

for implementation details. Vortices are classified into six major types illustrated in

fig. 4.15 based on quantitative metrics defined in fig. 4.16. Criteria for differentiating

different types are summarized in table 4.3.

The classification is done by a series of binary decisions. First, it differentiates frag-

ments from substantial vortices by requiring the streamwise length l+x to be at least 50

for the latter. Second, it identifies quasi-streamwise vortices by measuring the length

of the longest spanwise segment in the axis-line max(l+z,zap). (Spanwise segments are

those consisting of a string of connected z-axis-points.) Those with max(l+z,zap) < 25

are considered to not have a substantial spanwise arm to be considered a hairpin or

any other branched type. Note that streamwise vortices that become highly lifted

up are still considered in this class because there is no restriction on wall-normal

segments. Third, the hook type, which can be viewed as an incomplete hairpin with

only one fully developed leg, is identified by counting the number of x-axis-points in

each yz-planes Nxap. If more than 80% of the yz-planes spanned by the axis-line has

only 1 x-axis-point, it is determined that the vortex is dominated by one streamwise
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leg. (In table 4.3, Px(Nxap = 1) represents the percentage of yz-planes that satisfy

the condition of Nxap = 1). Fourth, the remaining unsorted group are either hairpins

or irregularly branched vortices with some features of hairpins but do not conform to

their canonical Ω−shape. A commonly-seen type is a branch structure with 3 or more

legs. These vortices can be formed when a hairpin is merged with another vortex in

highly crowded vortex packets. The third leg is considered to be substantial if the

number of yz-planes containing more than 2 x-axis-points (intersected by 3 or more

legs) is more than that of those with only 2 (planes intersected by two legs). These

vortices are classified as branch type A. Fifth, the branch type B (fig. 4.15) can be

formed when a side arm of the streamwise vortex lifts up and is dragged sideways

by the spanwise flow to form an arc and, sometimes, another leg. It is similar to a

hairpin except that the head or arc of the vortex is not found near the downstream

end but somewhere in the middle. The vortex head is considered to be significantly

away from the downstream end if the x-coordinate of the center of gravity (COG)

of either all x-axis-points xCOG,xap or all z-axis-points xCOG,xap is upstream of the

middle point of the entire x-span (xmid ≡ (xmax + xmin)/2). Sixth, branch type C is

formed in a similar manner except that the side arm is stretched by the streamwise

flow first before lifting up, creating a branch that opens towards the downstream di-

rection. In this case, the x-coordinate with the maximum spanwise span Dz is found

near the downstream end. The quantitative criterion is to compare this coordinate

xmax-Dz with that of the COG. of the branched portion (i.e., those where Nxap > 1)

xCOG,Nxap>1 multiplied by 1.5. Finally, after removing all irregularly branched config-

urations, the rest are considered to be sufficiently close to the canonical Ω-shape and

classified as hairpins.
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In summary, after removing the fragments, quasi-streamwise vortices, and hooks

from the pool, the algorithm identifies hairpins by removing all other branched types

with significant deviation from the canonical Ω-shape. There is obviously some ar-

bitrariness in how the branch types (A, B, and C) are defined and how the cutoffs

are chosen (i.e., when is a deviation big enough to disqualify a vortex as a hairpin).

Fortunately, at least for this study, this is nothing more than a taxonomic issue. For

practical purposes, none of the trends we will discuss below show any difference be-

tween hairpins and other branches (types A, B, and C). This is not surprising: within

our current limited knowledge of vortex dynamics, all these branches seem to be

formed in a similar manner as hairpins. Their existence is merely an inevitability of

the irregular nature of turbulent dynamics. For this reason, we will use one umbrella

term “hairpin-like” vortices for all these branched structures (including canonical

hairpins).

Vortex axis-lines of all these types, at Reτ = 172.31, are shown in figs. 4.17

and 4.18 for one typical snapshot at LDR (Wi = 20) and HDR (Wi = 80) each. (The

“branch” case includes all three types, A, B, and, C and we make no further attempt

to differentiate these groups.) In both cases, near-wall quasi-streamwise vortices are

the most prevalent type of vortex structure in the flow field. However, in the LDR

case, a considerable number of curved vortices are observed, including many well-

defined hairpins (fig. 4.17(a)) and other branches (fig. 4.17(c)). They are however

significantly outnumbered by the strongly asymmetric hooks (i.e., one-legged hair-

pins). Observation in Newtonian flow is similar (Zhu and Xi, 2019). Indeed, it has

been long believed that complete well-defined hairpins are not the most likely con-

figuration and incomplete and asymmetric hairpins (hooks) are the norm (Robinson,
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Figure 4.17: Axis-lines of vortices of different shapes extracted by VATIP in a typical
snapshot at Reτ = 172.31 and Wi = 20 (LDR): (a) hairpin, (b) hook, (c) branch,
(d)fragment and (e) quasi-streamwise vortices. Different vortices are represented by
different colors and markers. Viewed from above the channel and the projection
includes vortices at all y positions.
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Figure 4.18: Axis-lines of vortices of different shapes extracted by VATIP in a typical
snapshot at Reτ = 172.31 and Wi = 80 (HDR): (a) hairpin, (b) hook, (c) branch,
(d)fragment and (e) quasi-streamwise vortices. Different vortices are represented by
different colors and markers. Viewed from above the channel and the projection
includes vortices at all y positions.
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1991). (A “forest” of nearly symmetric hairpins were observed in the DNS by Wu

and Moin (2009a) in boundary layer flow, which is different than the channel flow

here.) At HDR, all three-dimensional curved vortices (hairpins, branches, and hooks)

are significantly reduced. This again is explained by the suppression of vortex lift-up

which is required for their formation. In addition, fragments also become drastically

reduced in the HDR case. This is consistent with the proposed mechanism in Zhu

et al. (2018) that the suppression of vortex lift up prevents its further bursting and

generation of small-scale turbulent fluctuations that can trigger instabilities elsewhere

in the domain, leading to the dominance of a different vortex regeneration mechanism

for HDR.

Percentages of vortices of these shape types at Reτ = 172.31 are plotted in fig. 4.19

as functions of DR%. Changes during LDR are relatively small. The fraction of

streamwise vortices remains nearly invariant. Some subtle changes are observed in

curved vortices in a small region after the onset (DR% < 5%): the shares taken by

hairpin-like vortices (panels (b) and (d)) drop slightly, which is compensated by an

increase in hooks (panel (c)). This again shows that during this first stage of DR,

polymers have an across-the-board vortex weakening effect. It suppresses all types of

vortices (Zhu et al., 2018; De Angelis et al., 2002; Dubief et al., 2005; Kim et al., 2007)

without tipping the balance between them. Changes between hooks and hairpin-like

vortices can be well explained considering that some of the latter type are turned

into hooks as their legs are shortened and trimmed by the polymer stress, but they

remain distinguishable from quasi-streamwise ones with their spanwise arc and strong

lift-up angle. Once HDR starts, all these highly curved vortices (hairpins, branches,

hooks) decline sharply as the quasi-streamwise type makes inroads into their shares.
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Figure 4.19: Number percentage of vortices of different shapes at Reτ = 172.31: (a)
quasi-streamwise, (b) hairpin, (c) hook and (d) branch vortices. Dashed line marks
the LDR-HDR transition. Error bars smaller than the symbol size are not shown.
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Figure 4.20: Joint PDFs of the wall-normal positions of the head and tail/legs of
quasi-streamwise vortices, as measured respectively by the maximum and minimum
y+ coordinates of each vortex axis-line, at different Wi (Reτ = 172.31).

This again can be explained by the suppression of vortex lift-up that generates these

curved three-dimensional vortices during this second stage of DR. Without lift-up,

streamwise vortices is stabilized near the wall and becomes elongated over time as

seen in figs. 4.8 and 4.18.

We now revisit the vortex position and lift-up status analysis (see fig. 4.9) but con-

sider vortices of different shapes in separate categories. Figures 4.20 and 4.21 show

the joint PDFs of vortex head and tail/legs positions for quasi-streamwise and curved
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Figure 4.21: Joint PDFs of the wall-normal positions of the head and tail/legs of
curved vortices (hairpins, branches, and hooks), as measured respectively by the
maximum and minimum y+ coordinates of each vortex axis-line, at different Wi
(Reτ = 172.31).
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(including hairpins, branches, and hooks) vortices for the lower Reτ = 172.31. Distri-

bution patterns are drastically different between these two categories. For Newtonian

flow, quasi-streamwise vortices are mostly found in the lower-left corner and belong

to the attached-flat class or type I (fig. 4.11). Some of them lift up and form a thin

band near the ordinate: i.e. type II attached-lifted vortices. A diagonal band is also

noticeable which corresponds to type III detached-flat vortices. By contrast, curved

vortices are predominantly type II (attached-lifted) which originate from the wall

(legs) but lift high up into the upper layers (the head or arc of the hairpin). At LDR,

the contours remain similar to the Newtonian limit for both quasi-streamwise and

curved vortices. Earlier observation of the decline of TKE shares contained in types

I and II (figs. 4.12 to 4.14) are thus results of the weakening of these vortices rather

than any fundamental change in their distribution pattern. This starts to change at

HDR. For quasi-streamwise vortices (fig. 4.20), the slim vertical distribution band

(type II) disappears as HDR starts, which is accompanied by a distinct shift of the

concentration center towards the diagonal. This is a clear indication that polymers

start to suppress the lift-up of these vortices and stabilize them in the streamwise

direction. Expansion of streamwise vortex distribution to higher y+ (more detached)

positions along the diagonal is comprehensible considering that drag-reducing poly-

mers are known to enlarge the diameter of vortex tubes (Sureshkumar et al., 1997;

De Angelis et al., 2003; Li et al., 2006a; Xi and Graham, 2010b), which inevitably

raises the positions of their axis-lines. By contrast, curved vortices stay mainly in

the type II region for the whole range of DR (fig. 4.21). Entering HDR does not

significantly shift their distribution pattern, despite the substantial reduction in their

total count. Since curved vortices are products of vortex lift up (generated from lifted
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quasi-streamwise vortices), suppression of lift up directly reduces the source for their

formation. For those that do come into existence, they maintain their lifted silhouette

even at HDR. The distribution density does decline at HDR, which means the dis-

tribution must spread to a wider area owing to the conservation of probability. This

reflects an enlarged and more homogeneous boundary layer. The same joint PDFs

for the higher Reτ = 400 case are shown in figs. 4.22 and 4.23. The distribution pat-

terns are again (recall figs. 4.9 and 4.10) strikingly consistent between different Re.

Vortices of the same category are again found in the same wall layer, in inner units,

at the two Re tested. Reduction in vortex lift up at HDR is consistently observed at

both Re. For quasi-streamwise vortices, the suppression of their lift-up tendency was

also observed in the inclination angles of conditionally sampled eddies (Sibilla and

Beretta, 2005). However, for curved vortices, which are more predominant among

lifted vortices, direct evidence was not previously possible before their axis-lines can

be statistically extracted by VATIP. Since hairpins are most likely generated from

the lift-up of streamwise vortices, as conjectured by Robinson (1991) and directly

observed in DNS by Zhu et al. (2018), it is the suppression of the lift-up process

itself, not that of any particular vortex type, that is important for interrupting the

turbulent momentum transfers between the buffer and upper wall layers and the start

of the second stage of DR with distinct log-law region flow statistics.

4.4 Summary and conclusive messages

This study focuses on the transition between two distinct stages of DR: LDR and

HDR. Distinction between these two regimes has been made in the literature for two

decades because of their different mean flow profiles (Warholic et al., 1999). However,
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Figure 4.22: Joint PDFs of the wall-normal positions of the head and tail/legs of
quasi-streamwise vortices, as measured respectively by the maximum and minimum
y+ coordinates of each vortex axis-line, at different Wi (Reτ = 400).

Figure 4.23: Joint PDFs of the wall-normal positions of the head and tail/legs of
curved vortices (hairpins, branches, and hooks), as measured respectively by the
maximum and minimum y+ coordinates of each vortex axis-line, at different Wi
(Reτ = 400).
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it was not until recently that evidences have been established to identify them as two

qualitatively different stages marked by a sharp transition in flow statistics and vortex

configuration (Xi and Graham, 2010b; Zhu et al., 2018). For a given Re and with the

introduction of drag-reducing polymers, there are two critical levels of Wi where two

separate mechanisms of DR set in. The first is the onset of DR: it marks the start of

the LDR stage where DR effects are concentrated in the buffer layer. The second is

the LDR-HDR transition where DR effects spread across the log-law layer.

This study leverages the recent development of a new vortex tracking algorithm,

VATIP, which enables the automatic detection and extraction of vortex axis-lines

without subjective inference (Zhu and Xi, 2019). It allows quantitative and statisti-

cal analysis of the size, position, conformation, and shape of vortices in a turbulent

flow field. The method is applied to flow fields of a wide range of Wi covering from

the Newtonian limit to HDR. Vortices extracted by VATIP are then classified us-

ing two sets of criteria. The first is based on the vortex position and lift-up status,

which identifies three major groups: (1) type I or attached-flat vortices are closely

associated with the wall with little observable lift-up; (2) type II or attached-lifted

vortices are generated from the wall but lift up to higher altitudes – often well into

the log-law layer; and (3) type III or detached-flat vortices are similar as type I except

that they are found at higher positions with less interaction with the wall (type IV,

as discussed above, is not as important and omitted here for the simplicity of discus-

sion). The second is based on vortex shape which categorize vortices into fragments,

quasi-streamwise vortices, hooks (asymmetric or incomplete hairpins), and hairpin-

like vortices (the latter further includes canonical hairpins and irregular branches).
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Analysis of our DNS results shows that type I (attached-flat) and type III (detached-

flat) vortices are nearly all quasi-streamwise vortices, whereas type II contains some

quasi-streamwise vortices plus the majority of the curved – hooks and hairpin-like

– vortices. Polymers are found to mainly impact attached vortices. At LDR, this

effect is an across-the-board weakening of vortex strength without shifting their dis-

tribution pattern. At HDR, polymers start to suppress the lift-up process of vortices

and greatly reduces the number of curved vortices including hooks, hairpins, and

branches.

A clear conceptual picture thus arises from these observations. In Newtonian

flow, the buffer layer is dominated by flat-lying streamwise vortices. These vortices

are prone to lift-up and as the downstream vortex head rises into the log-law layers, it

is subject to the impact of transverse flow which can swing and stretch the vortex into

a curved contour. Existence of these highly lifted vortices facilitates the turbulent

momentum transport across the wall layers, which is reflected in the well-known log-

law flow statistics (Townsend, 1980; Perry and Marušić, 1995; Lozano-Durán et al.,

2012). At LDR, polymers weaken vortex motion and suppress turbulent fluctua-

tions (De Angelis et al., 2002; Dubief et al., 2005; Kim et al., 2007, 2008), without

shifting the overall distribution and balance between different classes of vortices. As

the flow enters HDR, polymers start to suppress the lift-up of streamwise vortices and

interrupt the generation pathway of curved vortices. Reduction in these highly lifted

vortices reduces trans-wall-layer turbulent momentum transfer, which offers a clear

direction for explaining the changing flow statistics in the log-law layer at HDR. As

vortices become stabilized in the streamwise direction, they become elongated and

more detached from the wall. The latter makes them less susceptible to polymer
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effects.

This is, to our knowledge, the first complete depiction of the vortex dynamics in

both stages of LDR and HDR that is based on direct numerical evidences. It sub-

stantiates our earlier hypothesis about the suppression of vortex lift-up as the main

mechanism for HDR (Zhu et al., 2018) with an extensive analysis of vortex conforma-

tion statistics. The second part of the hypothesis regarding the vortex regeneration

mechanism at HDR will be a subject for our continuing research.
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Chapter 5

Vortex characteristics in HDR

enabled by conditional sampling

method

In chapter 2, we found that the qualitative LDR-HDR transition is associated with

the modification of vortex configurations. In this chapter, the characteristic configu-

rations of vortices at different stages of the inertia-driven turbulence are studied using

the conditional sampling method (CS). The CS method was frequently adopted to

extract the statistical features of turbulent coherent structures. We follow a standard

CS process with an improvement in the selection of the reference point for realization

alignment. Especially, analysis of the CS eddies supports our previous hypothesis

that polymers could suppress the lift-up process of vortices at the HDR stage.

I was responsible for writing the CS code, implementing simulations and collecting

data. I also post-processed data with Dr. Li Xi’s suggestions. The draft was written

by me and revised by Dr. Li Xi.
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Abstract. Drag reduction induced by polymer additives in wall-bounded turbulence has been
studied for decades. A small dosage of polymer additives can drastically reduce the energy
dissipation in turbulent flows and alter the flow structures at the same time. As the polymer-
induced fluid elasticity increases, drag reduction goes through several stages of transition with
drastically different flow statistics. While much attention in the area of polymer-turbulence
interactions has been focused on the onset and the asymptotic stage of maximum drag reduction,
the transition between the two intermediate stages – low-extent drag reduction (LDR) and
high-extent drag reduction (HDR) – likely reflects a qualitative change in the underlying vortex
dynamics according to our recent study [1]. In particular, we proposed that polymers start to
suppress the lift-up and bursting of vortices at HDR, leading to the localization of turbulent
structures. To test our hypothesis, a statistically robust conditional sampling algorithm, based
on Jenong and Hussain [2]’s work, was adopted in this study. The comparison of conditional
eddies between the Newtonian and the highly elastic turbulence shows that (i) the lifting
“strength” of vortices is suppressed by polymers as reflected by the decreasing lifting angle
of the conditional eddy and (ii) the curvature of vortices is also eliminated as the orientation
of the head of the conditional eddy changes. In summary, the results of conditional sampling
support our hypothesis of polymer-turbulence interactions during the LDR-HDR transition.

1. Introduction
It is widely known that adding a small amount of polymers into Newtonian turbulence will
significantly modify the flow statistics and structures. As a result, the friction factor of the flow
is considerably reduced by polymers [3, 4]. In certain flow setups, such as the flow in a straight
channel, polymer-induced drag reduction can reach up to 80%. This phenomenology is highly
valuable in the development of new flow control strategies for enhancing the transportation
efficiency of fluids. One example of the application of polymer additive drag reduction is the
Trans-Alaska Pipeline system which saves the pump power by injecting polymers in to the
pipe [5]. However, although the polymer additives drag reduction has been intensively studied
in the past 60 years, the complex mechanisms behind them are still not fully understood.

In polymeric turbulence, several flow stages occur sequentially as the elasticity increases: the
onset of drag reduction (ODR), low-extent drag reduction (LDR), high-extent drag reduction
(HDR) and maximum drag reduction (MDR). Before ODR, the effect of polymers on the flows
is indiscernible and the mean flow is statistically indistinguishable from those of Newtonian
turbulence. Further raising the elasticity leads to the enhancement of drag reduction which
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eventually converges to an universal upper bound, i.e. MDR. Between the ODR and MDR,
recent experimental and numerical studies suggest the existent of two intermediate stages: LDR
and HDR [4, 6, 7]. Out recent study indicated that these two stages are distinguished by the
regions where flow statistics are affected by polymers: at the LDR stage polymer effects are
constrained to the buffer layer while they extend to the whole wall layer at the HDR stage [1].

Same as many other drag reduction strategies, polymer additives drag reduction is the
result of the disruption of the turbulence generation cycle. A widely accepted explanation
of the polymer-turbulence interaction is that polymers can damp the intensity of the near-
wall streamwise vortices in turbulent flows [3]. Dubief et.al. [8] found that the polymer forces
applied to the near vortices tend to damp the ejection and sweeping process. Meanwhile,
Ptasinski et.al. [9] suggested that polymers could absorb and redistribute the turbulence kinetic
energy since the polymer work in the shear stress balance is negative. The mechanism of
polymer damping vortices is in good agreement with observations from DNS simulations and
experiments [3] and is sufficient to explain the occurrence of drag reduction at ODR. However,
this mechanism is not sufficient to explain the drastic changes of flow statistics and coherent
structures at the LDR-HDR transition.

The qualitatively different behaviors between these two intermediate stages suggest the
existent of another mode of polymer-turbulence interaction that starts during the LDR-HDR
transition. In addition to the indiscriminate suppression of vortex intensity, several recent studies
observed additional effects of polymers on the coherent structures. Yarin et.al. [10] studied the
thin vortex filaments and found that the generation of horseshoe and hairpin vortexes in the
near-wall region is prevented by polymers in the high elasticity regime. Moreover, Biancofiore
et.al. [11] observes that the critical amplitude of perturbation to trigger a sustained turbulence
increases with elasticity at the high elasticity regime, but is constant at the low elasticity
regime. This phenomenon is related to the considerable suppression of the lifting strength
of near-wall streaks in high elasticity regime. In addition, our recent study [12] on the laminar-
turbulence transition of polymeric flows found that polymers can stabilize the primary streak-
vortex structures and suppress the bursting of vortexes. These studies all relate the polymer-
turbulence interaction at the HDR stage to the lifting process of coherent structures and its
following bursting event.

In our recent study [1], a systematic study on the statistical and dynamic changes of
turbulence during the LDR-HDR transition was done and a new mechanism which links the
LDR-HDR transition to the modification of coherent structures was proposed. In our hypothesis,
the lifting and breakdown of vortices and streaks are suppressed by polymers after the LDR-
HDR transition. As a result, the bursting process is weakened which prevents the transportation
of energy from the buffer layer to the log-law layer and leads to the decreasing of turbulent
intensity in the log-law layer. This mechanism is consistent with all known observations of
the HDR stage, e.g. turbulence localization and the changing flow statistics in the log-law
layer. However, direct evidences are still needed. The conditional sampling approach allows
us to understand the statistical properties of vortices and offer an accessible way to study the
polymer-turbulence interaction.

The conditional sampling method was initially used in experimental studies of turbulence
to obtain quantitative information of a turbulent flow; the readers are referred to Antonia’s
comprehensive review [13] for more details. In essence, the conditional sampling method is
used to obtain the best estimation of certain targeted events. In early experimental studies, the
quadrant (based on Q2 and Q4 events) [14] and the Variable Interval Time Average (VITA; based
on the large variances of the streamwise velocity) [15] schemes gained considerable attention.
But these methods are originally not appropriate to reveal the spatial details of the flow field [16].
Later, the development of numerical simulation allows researchers to have fully 3D representation
of turbulence and then spatial conditional sampling techniques were proposed. In most of these
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spatial conditional sampling techniques, three steps are involved: (i) applying a predetermined
event identification criterion to the flow field of turbulence, (ii) extract individual coherent
structures from the target field, and (iii) determining the reference points for alignment and
implementing zone average.

For step (i), the velocity-gradient-tensor-based algorithms are one of the most widely adopted
local criteria (i.e. applied to individual points) in the area of vortex identification [17]. The
simplest criterion in this category is vorticity. However, the vorticity is not able to distinguish
the difference between the pure shear and the real swirling motion [2, 17]. Then, Hunt et.al.[18]
introduced the Q quantity

Q ≡ 1/2(‖Ω‖ − ‖S‖), (1)

to describe the swirling motion, i.e. the so-called Q-criterion. The strain-rate tensor S and the
vorticity tensor Ω in equation (1) are the symmetric and antisymmetric parts of the velocity-
gradient tensor ∇v, respectively. In the current study, The Q-criterion is adopted to identify
the vortex structures in polymeric turbulence.

Step (ii) is of particular importance to obtain representative structures in the flows. For this
step, a common approach in the literature takes advantage of the spatial/temporal separation
of structures. For instance, applications based on the VITA and quadrant schemes [19, 20]
employ the spatial continuity to recognize individual coherent structures. For those algorithms,
a careful selection of a cutoff threshold is needed to decrease the potential influence of structure
percolation. On the other hand, Hussain et.al. [21] chose the local extrema of vorticity as
the sampling events. In their approach, the local extrema are picked without predefining the
cutoff threshold which could effectively avoid the percolation issue. Interestingly, Jeong et.al. [2]
extended Hussain et.al. [21]’s 2D local extreme conditional sampling to the 3D spatial fields by
computing the local extrema of the λ2 eigenvalue at each streamwise plane. This method is
designed to capture the centre line of streamwise vortices and is robust to the cutoff threshold.

As for Step (iii), the geometry center is normally adopted as the reference point for
alignment [2, 19, 21, 22]. However, a smearing problem may raise due to the shape variation of
vortex structures. To deal with the smearing issue, a filter is usually set up to discard structures
that differ greatly from the target events [16, 19]. Furthermore, Jeong et.al. [2] shifted the
reference point according to cross-correlation between realizations.

In polymeric turbulence, the near-wall vortices are elongated and weakened by polymers [3],
meanwhile, the long streamwise vortices dominate the near-wall flow field [23]. Therefore, we
adopt the Jeong et.al. [2]’s method which is highly efficient in capturing the streamwise vortices.
In this study, the original Jeong et al.’s method is adapted to the polymeric case and conditional
vortex structures therein are sampled. Comparison is then made with the Newtonian turbulence.
The results offer new insight into the coherent structure modification by polymers during the
LDR-HDR transition.

2. Methodology
2.1. Direct numerical simulation
In this study, Direct Numerical Simulation (DNS) is adopted to simulate the polymeric
turbulence in a plane Poiseuille geometry with a fixed pressure drop. The flow geometry is
shown in figure 1, where x, y and z denote the streamwise, wall-normal and spanwise directions,
respectively. The periodic boundary condition is applied to x- and z-directions while the no-slip
boundary condition is used in the y-direction. The governing equations are

∂v

∂t
+ v · ∇v = −∇p+

1

Re
∇2v +

2 (1− β)

ReWi
(∇ · τp) , (2)

∇ · v = 0, (3)
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Figure 1. The conceptual plot of the flow geometry

α

1− tr(α)
b

+
Wi

2

(
∂α

∂t
+ v · ∇α−α · ∇v − (α · ∇v)T

)
=

bδ

b+ 2
, (4)

τp =
b+ 5

b

(
α

1− tr(α)
b

−
(

1− 2

b+ 2

)
δ

)
. (5)

In the above equations, the Reynolds number is defined as Re ≡ ρUCLl/η where ρ, UCL, l,
and η are the fluid density, laminar center-line velocity, half-channel height, and fluid viscosity,
respectively; under this definition, the friction Reynolds number Reτ =

√
2Re. The Weissenberg

Wi number, defined as Wi ≡ 2λU/l (λ is the polymer relaxation time), measures the level
of elasticity. β ≡ ηs/η is the ratio between the solvent and solution viscosities. The FENE-
P constitutive equations (4)-(5) [24] is adopted to determine the polymer stress tensor τp in
equation (2), where α is the polymer conformation tensor and the maximum extensibility
parameter b constrains the square length of the polymer chains tr(α).

A series of Wi under Re = 3711 (i.e., Reτ = 84.85) is investigated. The rheological parameters
β and b are fixed to 0.97 and 5000, respectively. The streamwise and spanwise periods are
L+
x × L+

z = 4000 × 800, where the superscript “+” indicates quantities in turbulent inner
scales. A Fourier-Chebyshev-Fourier pseudo-spectral scheme is applied for spatial discretization.
Meanwhile, a third-order semi-implicit backward-differentiation-Adams-Bashforth scheme[25] is
used to integrate equations in time. In addition, an artificial diffusion term 1/(ScRe)∇2α with
the Schmidt number Sc = 0.5 is introduced in equation (4) to achieve better numerical stability.

2.2. Conditional sampling
In this study, vortexes are identified by adopting the Q-criterion (equation (1)) [17]. Q = 0
indicates a pure shear flow while a large negative and positive Q correspond to regions dominated
by extensional and rotational flows, respectively. The vortex structures are chosen by satisfying
Q > 0.7Qrms (where Qrms is the root-mean-square of Q).

The conditional sampling algorithm based on Jeong et.al.[16]’s method involves several steps:
(1) detect vortex region which satisfies Q > 0.7Qrms in the 3D instantaneous flow field; (2)
calculate the local maxima of the accepted regions at each y-z plane – the local maxima are
regarded as the x-centrepoints of streamwise vortices; (3) group the local maxima to individual
vortices by adopting a cone detection method, connecting these points form the centrelines
of vortices; (4) categorize vortices into two categories according to the senses of rotation
(clockwise/anticlockwise), the sense is determined by the sign of streamwise vorticity at the
vortex axis; (5) realizations are discarded if they do not satisfy: (a) the vortex streamwise
length l+x ≥ 50, and (b) the average height of the vortex axis h+

y ≤ 50; (6) the x-centrepoint
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Figure 2. Schematic diagram of the cone algorithm method

located at y+ = 50 is chosen as the reference point for alignment and realizations with the same
sense of rotation are aligned and averaged to obtain the conditional eddy.

In order to extract individual vortices, the cone detective method is involved. In this method,
two x-centrepoints are considered to belong to the same vortex when they satisfy: (a) the two
points locate at two adjacent y-z planes; (b) the downstream point is the closest local maximum
on its plane to the upstream point; and (c) the distance between the downstream point and
the projection of the upstream point is smaller than a threshold, i.e., the downstream point
locates within a confining cone extending from the upstream point. A schematic plot of the
cone detective method is shown in figure 2. Dots in this figure are the x-centrepoints while the
dot dash lines indicate the wall of a vortex. Centrepoints are grouped by the detective method
if they fall into the cone (the triangles in figure 2). However, note that this method is inefficient
to detect vortices with a high deviation of vortex line from the streamwise direction, e.g. vortex
with a strong lifting tendency as shown in the figure.

In Jeong et.al.’s original method [16], the geometry center of vortex axis is chosen to be the
reference point for realization alignment. However, since the lengths of streamwise vortexes
are different, fixing the reference point to the geometry center will lead to the misalignment
of heads and tails of vortices, as shown in figure 3a, and cause the smearing problem. This is
worse for high Wi cases where the vortices have a broader range of size and shapes. Instead,
we move the reference point for realization alignment to the x-centrepoint at y+ = 50. The new
reference point ensures the precise alignment of the heads of vortices (figure 3b). Benefiting
from this modification, some important dynamics of vortices, such as the lifting process, can be
accurately captured. In addition, the choice of the reference point relaxes the strict constraint
of vortex length in step (5) of the conditional sampling algorithm, as the variation of vortex
length now has less effects on the conditional eddies (especially in the head region) compared
with the original method.

3. Results and discussion
The presence of multiple stages in the polymeric turbulence suggests the existence of multiple
types of polymer-turbulence interactions at different stages. In this study, we focus on the change
of interaction involved in the LDR-HDR transition. As has been discussed in the literature[3, 4],
the statistical quantities of turbulence in LDR and HDR stages exhibit qualitatively different
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Figure 3. Selection of the reference point at (a) the geometry center and (b) the head

Figure 4. Mean velocity profiles at Reτ = 86.15

behaviors. Figure 4 shows the mean velocity profiles of Newtonian, LDR (Wi = 16), HDR
(Wi = 48) and MDR (Wi = 80) at Reτ = 86.15. Starting at the ODR (Wi ≤ 10), the
velocity profiles lift up as Wi increases and reach an upper bound at the MDR stage. The
identification between LDR and HDR depends on the influenced zones of polymers. For the
LDR case (Wi = 16), the effect of polymers is constrained in the buffer layer (y+ ≈ 5 ∼ 30):
the velocity profile rises in buffer layer but stays parallel to the Newtonian profile outside the
buffer layer region (y+ > 30). By contrast, the slopes of the mean velocity profiles at HDR and
MDR stages differ from the Newtonian profile in the whole channel.

The systematic analysis of the statistical and dynamic changes during the LDR-HDR
transition is the focus of a separate study of ours [1]. Therein, we hypothesized that at the LDR-
HDR transition polymers start to suppress the bursting of turbulence by preventing vortices
from lifting up. The typical vortex structures extracted from the instantaneous flow field before
and after the LDR-HDR transition are presented in figure 5. Before the LDR-HDR transition,
vortexes tend to aggregate into vortex packets. A hairpin vortex is observed at the downstream
end of this vortex packet. As the head of the hairpin vortex lifts up, the vortex eventually breaks
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Figure 5. Typical instantaneous vortex structures in cases before and after the LDR-HDR
transition: (a) and (b) – before, time interval ∆t = 8; (c) and (d) – after, time interval ∆t = 32

down after a period of time. In addition to the hairpin, other type of vortices (e.g. the pseudo-
streamwise vortices) also have a high tendency of lifting. In fact, the lift-up and bursting
of vortices play an important role in the instability-based vortex regeneration cycle [26, 27].
However, in the high elasticity turbulence (HDR and MDR), the lift-up strength of vortexes is
weakened and the hairpin vortices are eliminated by polymers, as shown in figure 5c. Instead,
longer and smoother streamwise vortices with weaker lifting strength dominate the near-wall
coherent structures. Note that these streamwise vortices usually organize to a ultra-long (the
streamwise length l+x ≥ 400) streamwise vortex string in which the head of a upstream vortex
overlaps the tail of an adjacent downstream vortex. The vortex string is similar to those vortices
generated by the parent-offspring vortex regeneration cycle[28]. Eventually, as the strength of
vortices exceeds a certain threshold, the vortex string suddenly bursts and forms a group of
vortices in the adjacent region (figure 5d).

The modification of the vortex organization pattern is due to the change of vortex regeneration
mechanism. In our hypothesis, since the instability-based mechanism is interrupted by polymers
in HDR and MDR stage due to the prevention of lifting and bursting of vortices, the other
mechanism – the parent-offspring vortex mechanism, becomes exposed.

To understand the statistical characteristics of vortices at different stages, the aforementioned
conditional sampling algorithm, improved based on ref. [16], is implemented. Figure 6 shows
the probability density functions (PDF) of streamwise lengths of vortices at different y+. The
PDF distribution of the polymeric flow (Wi = 96) covers a wider range from 0 to over 800 wall
units while the Newtonian turbulence only expands to 500 wall units. Also, the peak of the PDF
distribution adheres to the wall (y+ = 30) in the Newtonian case while it approaches the center of
the channel (y+ = 50) in the polymeric case. To alleviate the potential smearing problem (figure
3), a minimum streamwise length cutoff of vortexes is set to filter vortices with a short streamwise
length. In Jeong et al’s conditional sampling of the Newtonian flow, the cutoff (l+x = 200) is
larger than the average length of vortices. As a consequence, the relatively large cutoff biases
the sample by eliminating many qualified structures, which limits the representativeness of the
conditional eddies. Despite the long cutoff, the issue of uneven vortex length still apparently
caused smearing in their conditional eddy. The new criterion for selecting the reference point
(the x-centrepoint located at y+ = 50) in our improved algorithm significantly alleviates the
smearing issue with a much smaller cutoff (l+x = 50). As a consequence, more realizations
are included in constructing the conditional eddy which improves the representativeness of the
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conditional eddy.

Figure 6. Probability density functions of
vortex streamwise lengths: the color flood
is for the Wi=96 case and lines are for the
Newtonian case.

Figure 7. The average number of centre
points in each vortex class increasing Wi.

Based on their streamwise length, vortices can be grouped into two categories: major vortices
(lx ≥ lcutoff) and fragments (lx ≤ lcutoff). On the other hand (as reviewed above), the vortex
regeneration mechanisms in wall-bounded flow can be categorized into two types [29]: the
parent-offspring and instability-based mechanisms. Noting that the parent-offspring mechanism
depends on the direct contact between the parent and the offspring vortices while the steak
instability does not, major vortices may thus be categorized according to their generation
mechanisms based on their spatial proximity to other vortices. Pseudo-streamwise vortices
overlapping with another vortex with the opposite sense of rotation are categorised to the
parent-offspring vortex class and other vortices are categorised to the instability vortex class.
By employing this classification, we are able to investigate the changing vortex regeneration
mechanism at different stages. The average number of vortex centrepoints Nc of these two classes
for different Wi is plotted in figure 7. Since the threshold to determine fragments is arbitrary,
a number of thresholds are tested and the trend of the profiles is robust to the threshold. In
figure 7, the cutoff threshold is 150.

The critical Wi of the PO-LDR, LDR-HDR and HDR-MDR transitions in figure 7 are 10,
24 and 80, respectively. The number of centrepoints in the instability class starts to decrease at
Wi = 20 which is close to the LDR-HDR transition, suggesting a strong relation between the
LDR-HDR transition and the suppression of the instability mechanism. The parent-offspring
vortices, however, does not decrease until well after Wi = 32. In other words, the parent-
offspring mechanism is more persistent to the strong polymer effect at HDR. On the other
hand, fragments continuously decrease after the onset of drag reduction as polymers suppress
the overall intensity of vortices. These observations are in good agreement with our proposed
polymer-turbulence interaction during the LDR-HDR transition. However, readers should note
that figure 7 is an imprecise estimation of vortex number at different classes. For example, the
poor capability of current vortex tracking method in tracking curved vortexes will overestimate
the number of vortices in the fragment class. To overcome this issue, the detective algorithm
needs to be improved to accommodate higher vortex curvatures, which will be the focus of our
future work.

The conditional eddies are obtained in cases before (Newtonian) and after (Wi = 96) the
LDR-HDR transition and are presented in figure 8. As a reminder, vortex realizations are
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Figure 8. (a) The top and (b) side views of the conditional eddies of the Newtonian (red) and
Wi = 96 (blue) turbulence.

separated into two classes according to the sign of streamwise vorticity before zone averaging.
In figure 8, only the counter-clockwise conditional eddy are shown since the clockwise conditional
eddy is its mirror image.

Figure 8(a) shows the top view of the conditional eddies. In general, the length of the
conditional eddy at Wi = 96 is longer than that of the Newtonian case, which is consistent with
observations in instantaneous flow field images. Comparing the two cases, the tilting angles are
similar, but the head of the Newtonian eddy bends further to the positive z direction, which
is attributed to the prevalence of highly curved vortexes, e.g. hairpins. In figure 8(b), the
lifting angle of the conditional eddy before the transition (Newtonian) is larger than that after
the transition (Wi = 96), which agrees with our previous discussion of polymers suppressing the
lifting process of vortices. Also, in both cases, an additional iso-surface with opposite streamwise
vorticity appears under the head of the main body. Its existence indicates a high probability of
another vortex with the opposite sense of rotation showing up under the head of the upstream
vortex. Note that in the Newtonian case, the additional structure appears irregular; only in
the high-Wi case does the additional eddy become more coherent. This change is possibly a
reflection of the increasing importance of the parent-offspring mechanism.

4. Conclusions
Despite recent efforts in the literature, a complete picture of the polymer-turbulence interaction
is still missing. Especially, the interaction responsible for the LDR-HDR transition remains a
puzzle. A hypothesis was put forward in our recent study on the LDR-HDR transition[1], in
which polymers suppress vortex regeneration through streak instability by preventing the lift-up
and bursting of vortices. In this study, a conditional sampling algorithm improved from that of
ref. [16] is employed to compare the vortex dynamics before and after the LDR-HDR transition.

Observations of the conditional eddies obtained support our hypothesis. The lifting angle of
the Newtonian eddy is considerably larger than that of the Wi = 96 case. Also, the different
shapes of the vortex head suggest that highly curved vortices (e.g., hairpins) existing in the
Newtonian and LDR cases are suppressed by polymers at the HDR and MDR stages.

The near-wall vortices are also divided into three classes: one is fragments and the other two
are major vortices generated by the streak-instability and parent-offspring mechanisms. The
number/size of vortices generated by the streak-instability mechanism drops during the LDR-
HDR transition (Wi = 20) while those in the parent-offspring class remain frequent until well
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beyond Wi = 32. This result also agrees well with our hypothesis of the modification of vortex
regeneration mechanism.
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Chapter 6

A hybrid SM-FDM method for

simulation of elasticity-driven

turbulence

At a high elasticity, the polymeric turbulence can be driven by the elastic force and

express completely different behaviors comparing with the inertia-driven turbulence.

However, this new type of turbulence was not captured in DNS studies that adopted

the pseudo-spectral method (SM), as a global artificial diffusion term is added to

the polymer constitutive equations to stabilize the simulation. This chapter focuses

on developing a hybrid pseudo-spectral/finite-difference method (HM), in which a

finite-difference total variational diminishing (TVD) scheme is adopted for the spa-

tial discretization of the convective term of the FENE-P equations while the other

spatial derivatives are discretized by SM. The HM scheme largely benefits from the

accuracy and efficiency of SM while maintaining stability without GAD. It also has

good portability to be embedded into the pseudo-spectral method that are widely
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adopted by the existing DNS codes for canonical geometries.

I was responsible for developing and testing the numerical scheme. I also collected

the data, post-processed it and wrote the draft with Dr. Li Xi’s suggestions.

This chapter is under preparation for future publication.
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6.1 Introduction

Research on the friction drag reduction in the turbulent system always occupies one

crucial seat in the area of fluid mechanics due to its wide applications in industry. A

well-known technique to reduce the friction drag in the oil delivery system (e.g. the

pipeline) is the so-called polymer additives drag reduction (DR). In the 1940s, Toms

(1948) found that adding a small amount of flexible polymers into the turbulent flows

can significantly change the flow structures and result in up to 80% of friction reduc-

tion in the pipeline system (Virk, 1975; Myska and Stern, 1998). Such extraordinary

performance to reduce friction drag has attracted great attention since then (Nesyn

et al., 2018).

Significant progress has been achieved to uncover the mask of this drag reduction

phenomenon using both experimental and numerical tools (Virk, 1975; Warholic et al.,

2001; Xi and Graham, 2010a; Wang et al., 2017). The DR turbulence is usually

regarded as Newtonian-like, i.e., the flow is driven by inertial force and exhibits

behaviors similar to the Newtonian turbulence (Xi and Graham, 2010a; Li et al.,

2005a; Housiadas et al., 2005). Polymers in this inertia-driven turbulence(IDT) are

mainly responsible for suppressing turbulence which leads to the DR phenomenon.

On the other hand, recent study by Dallas et al. (2010) found that polymers can

also feed energy to the turbulent flow at high elasticity regime. In this type of

turbulence, sheet-like polymer structures and spanwise vortices are found which are

entirely different from those dominated streamwise vortices in IDT (Sid et al., 2018).

In this so-called “elasticity-driven” turbulence (EDT, or “elasto-inertial” turbulence

(EIT) (Samanta et al., 2013; Dubief et al., 2013; Shekar et al., 2019)), polymers

are responsible for both the generation of elastic structures and the suppression of
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Newtonian structures. As a result, the IDT flow can be largely erased while the EDT

flow becomes dominant.

One widely adopted tool to study the polymeric turbulence is the direct numeri-

cal simulation (DNS). This tool was originally developed to study Newtonian turbu-

lence (Moin and Kim, 1982; Kim et al., 1987). Extension to polymeric turbulence re-

quires coupling the Newtonian system with the polymer constitutive equations which

describe the behaviors of polymers in the flows. Following Sureshkumar et al. (1997)’s

work, we adopt the FENE-P (finite extension nonlinear elastic model with Peterlin

closure approximation) model (Bird et al., 1987a) (details will be presented in sec-

tion 6.2.1) to govern the polymer conformation tensor α (which defines the average

extension length and orientation of polymers). In DNS of Newtonian turbulence, the

pseudo-spectral method (SM) has been proved to be one powerful algorithm with high

efficiency and accuracy (Gottlieb and Orszag, 1977; Canuto et al., 1988; Rogallo and

Moin, 1984). This algorithm has also been involved in many studies (Sureshkumar

and Beris, 1995; Li et al., 2005b; Xi and Graham, 2010b) to solve the polymeric turbu-

lent system. However, the hyperbolic nature (due to the lack of diffusion term) of the

polymer constitutive equations could cause strong numerical oscillations and break

down the simulation when adopting SM. A common practice to resolve the oscillation

issue is to introduce an global artificial diffusion (GAD) term 1/(ScRe)∇2α (Sc is the

Schmidt number to control the magnitude of GAD; and Re is the Reynolds number)

to the constitutive equations (Sureshkumar and Beris, 1995). With an appropriate

GAD, the numerical oscillations can be largely eliminated. Nevertheless, introducing

this term would also alter the nature of the equations which may accidentally lose

some physical insight of the flows (Yu and Kawaguchi, 2004; Dubief et al., 2004).
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Thus the magnitude of the GAD, 1/(ScRe), must be strictly restricted (Sureshkumar

and Beris, 1995; Xi and Graham, 2010b).

Pseudo-spectral method coupling with GAD could give a reasonable prediction in

the DR turbulence (Sureshkumar and Beris, 1995). However, recent study by Sid et al.

(2018) doubted the capability of this method in the high elasticity regime of polymeric

flows. Especially, they argued that the involved GAD can significantly damp the small

scale polymer structures and prevent the growth of EDT (Dubief et al., 2005, 2013;

Samanta et al., 2013). Alternatively, finite-difference method (FDM) may offer a

better solution for the polymeric turbulent system. With an elaborate treatment of

the convection term (which is the source of the numerical oscillations (Sureshkumar

and Beris, 1995; Sid et al., 2018)) of the polymer constitutive equations, the FDM

DNS either completely (Vaithianathan et al., 2006; Yu and Kawaguchi, 2004; Dallas

et al., 2010) or mostly (Min et al., 2001; Dubief et al., 2005) avoids adding the artificial

diffusion and is thus closer to the exact solution.

The initial attempt to solve polymeric turbulence with FDM was done by Min

et al. (2001, 2003) who adopted a third-order compact upwind scheme to deal with

the convection term of the constitutive equations. Dubief et al. (2004) improved

this method by involving a special treatment to restrict the maximum extension of

polymers. An alternative way to treat the convection term was done by Lee and

Zaki (2017) who involved a third-order weighted essentially non-oscillating (WENO)

scheme (Shu, 1998, 2009) in their DNS. These algorithms are benefited from their

relative high order of accuracy but with the sacrifice of computational speed. Also, a

local artificial diffusion (LAD, the artificial diffusion is only added to local grid points)

is still required by these methods to stabilize local oscillations that occasionally occur
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in the flows. One faster second-order FDM was developed by Yu and Kawaguchi

(2004). They introduced the second-order upwind total variation diminish (TVD)

scheme (Harten, 1983; Sweby, 1984; LeVeque, 1996) – a classical and widely adopted

approach to solve the convection-dominated problems – to discretize convection terms

in DR turbulence. The excellent stability of the TVD scheme allows them to get

rid of the artificial diffusion completely. Moreover, a second-order central difference

scheme was involved in the polymeric turbulent system by Vaithianathan et al. (2006)

to maintain the strictly provable positive-definiteness of the polymer conformation

tensor at all grid points.

Note that the FDM schemes may encounter numerical diffusion (Douglas and

Russell, 1982; Sod, 1978) due to the limited order of accuracy. Therefore, numerical

schemes with a high-order of accuracy (comparing with those 2nd-order schemes)

are always necessary for an accurate solution in DNS of Newtonian and viscoelas-

tic turbulence (Dallas et al., 2010; Laizet and Lamballais, 2009). However, even for

those high-order schemes, e.g., the fourth-order scheme reported by Sid et al. (2018),

the order of accuracy is still much lower than SM whose accuracy order is infinite.

Besides, the high-order FDM will inevitably increase the computational cost. On

the other hand, SM benefits from its high order of accuracy and excellent compu-

tational efficiency. But it requires additional GAD to stabilize the system which

may violate the nature of the system. In this study, we propose a hybrid pseudo-

spectral/finite-difference method (HM) to solve the polymeric turbulent system. The

HM scheme uses the standard SM to solve all of the spatial derivative terms in the

system except for the convection term of the polymer constitutive equation which

will be discretized by a conservative upwind TVD scheme. As will be discussed later,
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this special treatment could efficiently eliminate numerical oscillations without any

artificial diffusion. Also, it maximizes the benefits of SM, i.e., the high order accu-

racy and computational efficiency, and is potable to be embedded into the widely

used pure SM architecture. In this study, we will first describe the hybrid method

and numerical details in section 6.2. A steak transient growth (STG) simulation is

then implemented in section 6.3.1 to validate the correctness of the method and the

code. Next, we also implement the steady-state simulation of both inertia-driven

turbulence and elasticity-driven turbulence (EDT) in a relative smaller simulation

geometry by using the HM and SM (with artificial diffusion) schemes in section 6.3.2.

The performance of the two schemes and the effects of AD are also discussed in a

large geometry (section 6.4). At the end (section 6.4.1), we will discuss the mesh

resolution sensitivity of the new scheme.

6.2 Methodology

6.2.1 Computational domain and governing equations

In this study, simulation of the plane Poiseuille polymeric flows are implemented.

The geometry of the computational domain is illustrated in fig. 6.1. The incompress-

ible polymeric flow is driven by a constant pressure drop and oriented in x-direction

(streamwise). Two parallel walls are located in y-direction (wall-normal) with a dis-

tance of 2l. The periodic boundary condition is applied to x- and z-directions (span-

wise) with the periods of Lx and Lz, respectively. The no-slip boundary condition

is applied to the walls. The half-channel height l, the Newtonian laminar centerline

velocity U are employed to nondimentionalize the length and velocity scales. The
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Figure 6.1: Schematic of the flow geometry.

pressure p and time t are then scaled by ρU2 (ρ is the total density of the solution)

and l/U , respectively. Direct numerical simulation of the polymeric flow solves the

equation system coupling the momentum balance (eq. (6.1)) and continuity equations

(eq. (6.2)) with the FENE-P constitutive equations (eqs. (6.3) and (6.4)) as given by

∂v

∂t
+ v ·∇v = −∇p+

β

Re
∇2v +

2 (1− β)

ReWi
(∇ · τ p) , (6.1)

∇ · v = 0. (6.2)

∂α

∂t
+ v ·∇α−α ·∇v − (α ·∇v)T =

2

Wi
(− α

1− tr(α)
b

+
bδ

b+ 2
), (6.3)

τ p =
b+ 5

b

(
α

1− tr(α)
b

−
(

1− 2

b+ 2

)
δ

)
. (6.4)

The Reynolds number in eq. (6.1) is defined as Re ≡ ρUl/η (where η is the total

zero-shear rate viscosity) which is directly related to the friction Reynolds number

Reτ ≡ ρuτ l/η (uτ ≡
√
τw/ρ is the friction velocity, where τw is the wall shear stress)
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through Re = Re2
τ/2. The Weissenberg number, defined as Wi ≡ 2λU/l, is the

product of the polymer relaxation time λ and the characteristic shear rate, β is the

ratio of the solvent viscosity ηs and the total viscosity η, i.e., β ≡ ηs/η. The effect of

polymers on the flow is accounted for by the last term on the right-hand side of the

momentum balance equation (eq. (6.1)). Here, τ p is called polymer stress tensor and

is modeled by the FENE-P constitutive equations (Bird et al., 1987b) which describe

a polymer as a finitely extensible nonlinear elastic (FENE) dumbbell. In eq. (6.3),

the polymer conformation tensor α, defined as α ≡ 〈QQ〉 (where Q indicates the

end-to-end vector of dumbbells), is solved and used to compute the polymer stress

tensor τ p through eq. (6.4). The extension of polymers in the FENE-P model is

constrained by the maximum extensible parameter b through max(tr(α)) ≤ b.

6.2.2 Numerical procedures

Time discretization of the equation system adopts a third-order semi-implicit backward-

differentiation/Adams-Bashforth scheme (BDAB3) (Peyret, 2002a). BDAB3 updates

the linear terms with the implicit third-order backward differentiation method while

nonlinear terms with the explicit third-order Adams–Bashforth method.

As for spatial discretization, we developed a hybrid pseudo-spectral/finite-difference

method, in order to maximize the high order accuracy and efficiency of SM while sta-

bilize the simulation without additional GAD. Except for the convection term v ·∇α

of the FENE-P equations (eq. (6.3)), all other spatial derivative terms in the equation

system (eqs. (6.1) to (6.4)) are discretized by a Fourier–Chebyshev–Fourier pseudo-

spectral projection. The v ·∇α term is crucial for the generation of small elastic

scales (Sid et al., 2018) and is also the source of the numerical instability. In the
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new algorithm, we choose to discretize this term using a conservative second-order

upwind TVD (total variation diminishing) scheme which has been well established for

hyperbolic problems (Zhang et al., 2015) and has been implemented in the polymeric

turbulence DNS (Yu and Kawaguchi, 2004). Details of implementation of this hybrid

algorithm will be further presented in section 6.2.2.

Time advancement

As mentioned in section 6.2.2, the equation system (eqs. (6.1) to (6.4)) is advanced

in time using the BDAB3 (Peyret, 2002b). The velocity field is solved following a

classical pseudo-spectral method as discussed by Xi (2009). The velocity and pressure

fields are firstly decomposed to the base and perturbation fields

v = Uex + v†, and p = Πex + p†, (6.5)

where v† and p† indicate the perturbation component of the velocity and pressure.

U is the mean velocity profile of the laminar plane Poiseuille flow, Π is the mean

pressure gradient which is fixed to −2Re in this study, and ex is the unit vector in

the x-direction. The decomposed velocity and pressure fields are substituted into the

momentum balance equation which is then reorganized as,

∂v†

∂t
= −N −∇p† +L+C + Sp (6.6)
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ς a0 a1 a2 b0 b1 b2

11/6 −3 3/2 −1/3 3 −3 1

Table 6.1: Numerical coefficients for the third-order Adams-Bashforth/backward-
differentiation discretization method (Peyret, 2002b)

where N and Sp stand for the inertia and polymer nonlinear terms, C is the constant

term and L indicates the linear term. They are defined as

N ≡ v ·∇v, (6.7)

Sp ≡
2(1− β)

ReWi
∇ · τ p, (6.8)

C ≡ (
β

Re

∂2U

∂y2
− Π)ex, (6.9)

L ≡ β

Re
∇2v†. (6.10)

After taking Fourier transform in x- and z-directions and discretizing in time with

BDAB3 scheme, eq. (6.6) is rewritten as

ς

∆t
ṽ†,n+1 − L̃n+1

+ ∇̃p̃†,n+1 =
2∑

j=0

(− aj
∆t
ṽ†,n−j + bj(Ñ

n−j − S̃n−jp )) + C̃. (6.11)

In above equation, n and n+ 1 are the index of the current and next steps. ς, aj

and bj are the numerical coefficients of the BDAB3 scheme and are listed in table 6.1.

“∼” indicates variables in the Fourier-Physical-Fourier space(in x−y−z dimensions).

The continuity equation (eq. (6.2)) is coupled with the momentum balance equa-

tion (eq. (6.1)) using the influence matrix method (Canuto et al., 1988). The inertia

term in eq. (6.1) is computed by an alternating form, i.e., the convection form v ·∇v
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and the divergence form ∇ ·(vv) are switched at each time step. More details regard-

ing the numerical procedure to solve eqs. (6.1) and (6.2) are referred to Xi (2009).

The conformation tensor is also advanced based on the BDAB3 scheme with two

major differences compared with the classical BDAB3 scheme used in SM (Xi and

Graham, 2010b): (i) time advance is implemented in physical space, and (ii) an

implicit time-stepping modification suggested by Vaithianathan et al. (2006) and

Dubief et al. (2005), is introduced to enforce the upper-boundness of the polymer

conformation tensor. The discretized formula of the FENE-P equations is written as,

ς

∆t
αn+1 =

2∑

j=0

(− aj
∆t
αn−j + bjN

n−j
p ) +Cp −

2

Wi

αn+1

1− trαn+1/b
. (6.12)

where N p and Cp are the nonlinear and constant terms defined by,

N p ≡ −v ·∇α+α ·∇v + (α ·∇v)T + κ∆2∇2α, (6.13)

Cp ≡
2

Wi

bδ

b+ 2
. (6.14)

Note that the last term in eq. (6.13) is a local artificial diffusion term adopted by Min

et al. (2003); Dubief et al. (2005) to stabilize the simulation. However, the coefficient κ

is set to 0 in all simulations included in the current study, as the extraordinary stability

of the hybrid algorithm. We show this term in eq. (6.13) only for the convenience of

comparison. ∆ is the grid spacing.

In the FENE-P model, as polymers approach their maximum extension b, the

relaxation term (i.e., the last term on the left-hand side of eq. (6.12)) becomes ex-

tremely high, which prevents the further stretching of the polymers. Therefore, the

FENE-P model can automatically restrict polymer extension to its upper bound b.
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However, due to the accumulated numerical errors, polymer extension may occasion-

ally jump out of the range [0, b] which would cause numerical instability. To resolve

this problem, Vaithianathan et al. (2006); Dubief et al. (2005) proposed an elegant

procedure where the relaxation term is treated implicitly. In this procedure, the con-

stitutive equation of diagonal components of the conformation tensor α are summed

and reorganized as,

(Φn+1)2 − (−∆t

ηb
tr(Rn

p )− 2∆t

ηWi
+ 1)Φn+1 +

2∆t

ηWi
= 0, (6.15)

where

Φn+1 = 1− tr(α)n+1/b, (6.16)

Rn
p ≡

2∑

j=0

(− aj
∆t
αn−j + bjN

n−j
p ) +Cp. (6.17)

Equation (6.15) is a second order polynomial for Φ containing one positive root,

Φn+1 =
B +

√
B2 + 4C

2
(6.18)

where,

B = −∆t

ηb
tr(Rn

p )− 2∆t

ηWi
+ 1, (6.19)

C =
2∆t

ηWi
. (6.20)

The positive root Φn+1 is solved through eq. (6.18) and is substituted into eq. (6.12).

Note that the extra operations to solve eq. (6.18) may slightly increase the com-

putational cost, however, it is negligible comparing with the entire DNS procedure.

Then the polymer conformation tensor αn+1 can be advanced once the non-linear
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term N p in eq. (6.12) is computed. The procedure to obtain N p will be discussed in

section 6.2.2.

Spacial discretization of the polymer nonlinear term

Solving the nonlinear term N p(eq. (6.13)) in the FENE-P equation is crucial for

the stability and accuracy of the simulation. There are three terms in N p: (i) the

convection term −v ·∇α, (ii) the stretching term α ·∇v + (α ·∇v)T, and (iii) the

LAD term κ∆2∇2α. They are treated separately and added together to obtain N p.

Here, the treatment of these terms will be discussed.

For the stretching term, the velocity gradient ∇v is computed prior in Fourier-

Chebyshev-Fourier spectral space. Reverse transform is then implemented to get ∇v

in physical space which is then multiplied by α to obtain the stretching term. For

the LAD term, the second derivative of the conformation tensor, ∇2α, is discretized

using a classical fourth-order centre difference scheme.

The treatment of the convection term requires more attention. In essence, there

are a plethora of differentiation schemes that are elaborately designed for the pure

convection problem. After testing the performance of several schemes in a benchmark

problem (discussed in section 6.2.3), we choose a conservative second-order upwind

TVD scheme considering the balance of efficiency and accuracy. In the TVD scheme,

the convection term of each component of the conformation tensor αij can be written

as,

v ·∇αij = ∇ · (vαij) =
3∑

k=0

∂vkαij
∂xk

. (6.21)

Adopting the conservative form and let F ≡ vkαij to be the numerical flux in direction
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Figure 6.2: Schematic of grids and cells.

k, the convection term at the grid point q can be discretized as,

∂vkαij
∂xk

|q =
∂F

∂xk
|q =

Fq+1/2 − Fq−1/2

∆k,q

. (6.22)

where [q − 1/2, q + 1/2] indicates a virtual cell that contains the grid point q at the

center. Therefore, Fq+1/2 and Fq−1/2 are the numerical flux across the boundary of

the cell. ∆k,q is the size of the virtual cell q in k-direction. Figure 6.2 shows the 1D

schematic of grids and cells. The convection term can be evaluated once the bound-

ary numerical fluxes are obtained. Before adopting the TVD scheme to approach

the boundary numerical fluxes, the Lax-Friedrichs flux splitting (LFFS) (Shu, 1998)

should be applied to all of the grids and boundary numerical fluxes in order to achieve

the upwinding feature of the algorithm. The LFFS splits a numerical flux Fp = vpαp

at the position p (here, p can be any grids or cell boundaries, vp and αp are the

velocity and conformation tensor at position p) into a positive flux F+
p (flux direction

orients to the axis direction) and a negative flux F−p (flux direction is opposite to the

axis direction), i.e.,

Fp = F+
p + F−p . (6.23)
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Here,

F±p =
1

2
(Fp ± |vk,max|αp), (6.24)

where vk,max is the velocity with the maximal value. It is important to notice that

vk,max in eq. (6.24) will have different meanings along different axes. In x- and z-

directions, the periodic feature of the flow is suitable for a global LFFS, i.e., vk,max

is the velocity with maximal value over all grid points in direction k. However, in

the y-direction, the periodic feature is no longer satisfied. As the velocity changes

greatly from the wall to the center, adopting the global LFFS in the y-direction could

cause |vk,max|αp � Fp, which can introduce a strong numerical dissipation in the

near-wall region (Delis et al., 2000). To overcome this issue, a local LFFS procedure

is implemented in y-direction. Here, vk,max becomes the maximal velocity of all grid

points in the stencil of a numerical scheme to approach the targeted boundary flux.

For example, the stencil of the TVD scheme to approximate numerical flux at the

cell boundary q + 1/2 is [q − 1, q, q + 1, q + 2], as shown in fig. 6.2. The definition of

vk,max guarantees |vk,max| ≥ vp, therefore, the direction of F+
p is positive while F−p is

negative.

Positive and negative fluxes at boundaries of each virtual cell will be treated

separately by using the MINMOD scheme (Roe, 1981; Zhang et al., 2015) – one

classical TVD scheme that has been proved to be a robust and stable scheme in DNS

of polymeric turbulence (Yu and Kawaguchi, 2004) – and then summed to obtain

the boundary flux. Here, we will take the q + 1/2 boundary for illustration, other

boundary fluxes can be obtained likewise. For uniform grids, F+ and F− at q + 1/2
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are approached by,





F+
q+1/2 = F+

q + 1
2
φ(r+

q+1/2)(F+
q − F+

q−1),

F−q+1/2 = F−q+1 + 1
2
φ(r−q+1/2)(F−q+1 − F−q+2).

(6.25)

In eq. (6.25), F+
q+1/2 adopts a left bias local stencil [q − 1, q, q + 1], whereas F−q+1/2

adopts a right bias local stencil [q, q + 1, q + 2]. The flux limiter function φ can

have several forms, examples can be found in Sweby (1984); Waterson and Deconinck

(2007); Zhang et al. (2015). The MINMOD scheme (Roe, 1981) defines the flux limiter

function as

φ(r) ≡ max[0,min(1, r)], (6.26)

where r is the successive gradient ratio which estimates the smoothness of solution

at current cell boundary. For F+
q+1/2 and F−q+1/2,

r+
q+1/2 =

F+
q+1 − F+

q

F+
q − F+

q−1

and r−q+1/2 =
F−q − F−q+1

F−q+1 − F−q+2

. (6.27)

The definition of the flux limiter function ensures that φ(r) is in the range of (0, 1).

When the solution is smooth, φ(r) approaches 1, the numerical fluxes in eq. (6.25)

will be evaluated by a 2nd-order upwind scheme, whereas at the discontinuity, φ(r)

is close to 0 and eq. (6.25) reduces to a 1st-order upwind scheme.

For non-uniform mesh, e.g., the mesh in the y-direction, eqs. (6.25) and (6.27) are
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modified accordingly to adapt to the changing grid spacing in flux interpolation,





F+
q+1/2 = F+

q + ∆y,q

2
φ(r+

q+1/2)
F+
q −F+

q−1

yq−yq−1

F−q+1/2 = F−q+1 − ∆y,q+1

2
φ(r−q+1/2)

F−
q+1−F

−
q+2

yq+1−yq+2

r+
q+1/2 = (

F+
q+1−F

+
q

yq+1−yq )/(
F+
q −F+

q−1

yq−yq−1
)

r−q+1/2 = (
F−
q −F−

q+1

yq−yq+1
)/(

F−
q+1−F

−
q+2

yq+1−yq+2
)

(6.28)

In eq. (6.28), yq is the location of the grid point q. Note that the cell size ∆y,q needs to

be determined prior to the discretization. In this study, the non-uniform Chebyshev

grids are adopted in y-direction as required by the pseudo-spectral discretization used

for all other terms. To ensure that each grid point is located at the virtual cell’s center,

the size of each cell must satisfy

∆y,q + ∆y,q−1 = 2(yq − yq−1). (6.29)

The sizes of the cells are determined once the first cell ∆y,0 (i.e., the cell that attaches

to the top wall of the channel) is determined. We eventually decide to set ∆y,0 to 0

due to the characteristic of the Chebyshev grids. Under this definition, the wall grid

point and the cell boundary of the points next to the wall are merged, i.e., y0 = y1/2,

as shown in fig. 6.3. This implementation can significantly simplify the treatment of

boundary conditions at the walls. More importantly, it gives a smoothly increasing

cell size from the wall to the center of the channel which could be beneficial for the

stability and convergence of simulations.

The overall procedure of HM is as follows. At the beginning of the time step n, the

velocity gradient ∇v is computed in the Fourier-Chebyshev-Fourier (spectral) space.

Inverse Fourier and Chebyshev transforms are then implemented to transform the
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Figure 6.3: Schematic of grids and cells near the wall in y-direction.

velocity v and the velocity gradient ∇v to physical space. Here, the convection term

N of the momentum balance equation is directly computed at each grid point. For

the FENE-P equations, the three components of the nonlinear term N p (including

α ·∇v, ∇ · (αv), and ∇2α) are respectively computed by following the procedures

described above and then added together to obtainN p. Thus, the FENE-P equations

are advanced in time (section 6.2.2) to update the polymer conformation tensor α. In

the meantime, the polymer stress term τ p is also computed which is then transformed

to spectral space to compute the polymer force term ∇ ·τ p. After that, the nonlinear

terms (∇·τ p and v·∇v) of the momentum balance equation (eq. (6.1)) are transferred

to intermediate (Fourier-Physical-Fourier) space and then added together. The time

advancement procedure to update the velocity field ∇v starts by following Xi (2009).

The HM scheme is embedded into a custom MPI-parallelized DNS code (Chan-

nelflow 2.0) that was developed by Gibson et al. (2019); Gibson (2014) and extended

for polymeric flows by Xi and Graham (2010b); Xi (2009) with the pure pseudo-

spectral scheme. To validate the correctness and the performance of the current

code, we apply it to the steady-state (SS) simulations and the streak transient growth

(STG) (Schoppa and Hussain, 2002; Zhu and Xi, 2019) simulations and compare its

performance with the pure pseudo-spectral scheme (Xi and Graham, 2012b). Note

that to stabilize the simulations, we have to add a GAD to the SM cases of the steady-

state simulations. The magnitude of GAD, 1/(ScRe), is set to 5.5 × 10−4 which is
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smaller than the accepted magnitude of O(10−2) for the IDT flow, as established by

previous studies from various groups (Xi and Graham, 2010b; Sureshkumar et al.,

1997; Ptasinski et al., 2003; Housiadas et al., 2005; Li et al., 2006). The Reynolds

number performed in this study is Re = 3600 and thus Reτ = 84.85. The polymeric

parameters b and β are fixed to 5000 and 0.97, respectively. Wi is varied in the range

of [1, 64] in order to access to different stages of the polymeric flow.

Table 6.2 summarizes the geometry and resolution of the 3D runs performed in this

study. Here, “+” indicates quantities scaled by the friction velocity and viscous length

scale, i.e., the inner unit. δ+
x and δ+

z are the constant grid sizes in x- and z-directions,

whereas δ+
y,min and δ+

y,max are the minimum and maximum grids in the y-direction.

Nx, Ny, and Nz are the number of the grids in x-, y-, and z-directions, respectively.

Note the resolution adopted in the current steady-state simulations is significantly

higher than those DNS in the literature (Zhu et al., 2018; Xi and Graham, 2010a; Li

et al., 2005a). Such high resolution is required to resolve the EDT flows (Sid et al.,

2018). We also implement the 2D and 3D steady-state DNS to test the dependence

of the mesh resolution in the IDT and EDT flows (section 6.4.1). The information of

the 3D tested mesh is also summarized in table 6.2. Note that the 2D nature of EDT

allows it to sustain in the 2D simulation (Sid et al., 2018). Therefore, 2D DNS is also

performed when testing the mesh dependence of the EDT flow, in order to reduce

the computational cost. The geometry and resolution information of the 2D runs is

summarized in Table 6.3.
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L+
x × L+

z × L+
y Nx ×Nz ×Ny δ+

x × δ+
z × δ+

y,min/δ
+
y,max

STG 360× 250× 169.71 80× 95× 145 4.5× 2.66× 0.02/1.85
SS(standard) 360× 250× 169.71 128× 126× 131 2.81× 1.98× 0.025/2.05

IDT resolution 360× 250× 169.71

40× 46× 73 9.0× 5.43× 0.081/3.70
64× 62× 109 5.63× 4.03× 0.036/2.47
80× 94× 145 4.5× 2.66× 0.020/1.85

128× 126× 217 2.81× 1.98× 0.0090/1.23

EDT resolution 720× 250× 169.71
128× 70× 97 5.63× 3.29× 0.045/2.78
256× 70× 131 2.81× 3.29× 0.025/2.05
512× 142× 185 1.41× 1.62× 0.012/1.45

Table 6.2: Summary of geometry and mesh information for 3D DNS runs.

L+
x × L+

y Nx ×Ny δ+
x × δ+

y,min/δ
+
y,max

EDT resolution 360× 169.71

288× 97 2.50× 0.045/2.78
288× 369 2.50× 0.0031/0.72
512× 185 1.41× 0.012/1.45
512× 369 1.41× 0.0031/0.72
512× 731 1.41× 0.00079/0.37
1280× 369 0.56× 0.0031/0.72

Table 6.3: Summary of geometry and mesh information for 2D DNS runs.
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6.2.3 Scheme performance for pure-convection problem

In this section, the performances of several schemes to deal with the convection term

of the hyperbolic problem are discussed by involving them in a 1D pure-convection

benchmark problem. The governing equation of the benchmark problem is,

∂c

∂t
+
∂(vc)

∂x
= 0. (6.30)

Equation (6.30) describes the time evolution of a concentration profile c(x, t) with

the convective velocity v(x) (v is independent of time). The initial condition of c,

c(x, 0) =





1 0.1L < x ≤ 0.3L

0 else
, (6.31)

is a square wave in the control domain with the length of L = 2. The roaming speed

of the concentration profile is governed by the convective velocity,

v(x) =





0.2 + 4(x− 0.5L)(0.9L− x) 0.5L < x ≤ 0.9L

0.2 else
. (6.32)

The varying velocity profile is used to mimic the real velocity field in the DNS which

can never be a constant. In addition, both the concentration and velocity profiles

satisfy the periodic condition as a prerequisite of SM. Figure 6.4 shows the initial con-

centration profile c(x, 0) and the convective velocity v(x) of the benchmark problem.

The positive convective velocity ensures that the concentration profile will gradually

moves rightward. The periodic boundary condition is applied to domain boundaries

(i.e. x = 0 and x = L). The time advancement of eq. (6.30) still uses the BDAB3
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Figure 6.4: The initial concentration profile c(x, 0) and convective velocity v(x) of
the benchmark problem

scheme to be consistent with the DNS in this study, eq. (6.30) is thus rewritten as

ς

∆t
cn+1 =

k−1∑

j=0

(− aj
∆t
cn−j + bj(

∂(vc)

∂x
)n−j). (6.33)

Five differentiate schemes are adopted to discretize the convection term ∂(vc)/∂x:

(I) a 2nd-order MINMOD TVD scheme (Sweby, 1984; Zhang et al., 2015) (TVD),

(II) a pseudo-spectral scheme (Sureshkumar et al., 1997; Xi, 2009) (SM), (III) a 5th-

order WENO scheme (Shu, 1998, 2009) (WENO), (IV) a 3rd-order compact upwind

scheme (Min et al., 2001; Dubief et al., 2005) (CUD3), and (V) a 2nd-order upwind

scheme (Zhang et al., 2015) (UD2). A brief description of each scheme is summarized

as follows, reader can also refer to (Sweby, 1984; Zhang et al., 2015; Sureshkumar

et al., 1997; Xi, 2009; Shu, 1998, 2009; Min et al., 2001; Dubief et al., 2005) for more

details and discussion of each scheme.

The TVD scheme implemented in the benchmark problem is consistent with that
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described in section 6.2.2. The virtual cells are generated and the LLFS is applied.

An uniform mesh is adopted in the benchmark case. The convection term at a grid

point q is

∂(vc)

∂x
|q =

Fq+1/2 − Fq−1/2

∆q

=
(F+

q+1/2 + F−q+1/2)− (F+
q−1/2 + F−q−1/2)

∆q

. (6.34)

Where F+
q+1/2, F−q+1/2, F+

q−1/2, and F−q−1/2 are the positive/negative numerical fluxes

at the two boundaries of the virtual cell q according to eqs. (6.22) to (6.24), ∆q is the

size of grids. Numerical fluxes in eq. (6.34) are approached according to eqs. (6.25)

to (6.27).

Same as the TVD scheme, the WENO and UD2 schemes also adopt the LLFS to

guarantee the upwind feature. Differences between these schemes are the way they

approach the numerical flux. The UD2 scheme utilizes a similar formula as eq. (6.25)

except that the flux limiter function φ = 1. Still, we will take the cell boundary

q + 1/2 for illustration. The positive and negative fluxes at the q + 1/2 in the UD2

scheme are approximated by,





F+
q+1/2 = F+

q + 1
2
(F+

q − F+
q−1),

F−q+1/2 = F−q+1 + 1
2
(F−q+1 − F−q+2).

(6.35)

For the WENO scheme, the positive/negative numerical fluxes are approached by

the weighted sum of the three polynomials. Here, we only take the positive flux at

q + 1/2 boundary for example,

F+
q+1/2 = w1F

+,(1)
q+1/2 + w2F

+,(2)
q+1/2 + w3F

+,(3)
q+1/2 (6.36)
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where F
+,(1)
q+1/2, F

+,(2)
q+1/2, and F

+,(3)
q+1/2 are the 3rd-order polynomials to approximate F+

q+1/2

using the grids in the local stencils [q− 2, q− 1, q], [q− 1, q, q+ 1], and [q, q+ 1, q+ 2],

respectively. They are formulated as





F
+,(1)
q+1/2 = 1

3
F+
q−2 − 7

6
F+
q−1 + 11

6
F+
q ,

F
+,(2)
q+1/2 = −1

6
F+
q−1 + 5

6
F+
q + 1

3
F+
q+1,

F
+,(3)
q+1/2 = 1

3
F+
q + 5

6
F+
q+1 − 1

6
F+
q+2.

(6.37)

In eq. (6.36), w1, w2, and w3 are the weight of each polynomial and are determined

by the smoothness analysis (Shu, 1998, 2009). The smoothness analysis measures the

relative smoothness of the concentration profile in the local stencil of each polynomial.

Essentially, a smoother concentration profile in the local stencil will give a larger

weight. The polynomial is thus more influential in eq. (6.36) to approach F+
q+1/2. The

entire stencil adopted in the WENO scheme to compute F+
q+1/2 (i.e., [q − 1, q, q +

1, q + 2]) is left bias to reflect the upwind feature. For the negative flux F−q+1/2, a

right-biased stencil is selected.

The CUD3 and SM schemes solve the FENE-P equations in a non-conservative

form. Here, we also take the non-conservative form of eq. (6.30),

∂c

∂t
+ v

∂c

∂x
+ c

∂v

∂x
= 0. (6.38)

As the convective velocity (eq. (6.32)) is independent of time, the analytical solution

of ∂v/∂x is fixed which is substituted into eq. (6.38) prior to the simulation. The

v∂c/∂x term is going to be solved by CUD3 and SM. In CUD3, ∂c/∂x is obtained by

solving
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(2−3sq)(
∂c

∂x
)q+1 +8(

∂c

∂x
)q+(2+3sq)(

∂c

∂x
)q−1 =

6

∆x

((1−sq)cq+1 +2sqcq+(1+sq)cq−1).

(6.39)

where sq is the sign of velocity at the grid point q: sq = 1 when vq ≥ 0, sq = −1 when

vq < 0.

As for the SM scheme, ∂c/∂x is computed in Fourier space and is then inverse

transformed to physical space and multiplied by v, hence,

∂c

∂x
= FFT−1(2πiξc̃), (6.40)

where FFT−1 stands for the inverse Fourier transform, i is the imaginary unit, and ξ

is the wavenumber. Note that the artificial diffusion is not added to the SM scheme

which is different from the real DNS.

The benchmark case adopts an uniform mesh with ∆x = 1.95 × 10−3. The time

step is chosen to be ∆t = 1.95 × 10−4 in order to satisfy the CFL condition. Fig-

ure 6.5 shows the concentration profiles at t = 7 obtained by different schemes. Note

that the exact solution of the benchmark problem should preserve the shape of the

initial condition, i.e., a square wave. In general, all methods are accurate for most of

the domain except near the discontinuities. At the discontinuities, the UD2 scheme

triggers a strong numerical oscillations. Therefore, it is essentially not suitable for

the pure convection problem with sharp gradients. When using the SM scheme, high

frequency oscillations are also triggered. Note that these oscillations could eventually

lead to the breakdown of the real DNS. Despite the oscillations, the concentration

profile approached by SM (without any AD) has a much sharper cliff edge comparing
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Scheme TVD SM UD2 WENO CUD3
CPU time (s) 2.18 1.92 2.04 16.80 15.64

Table 6.4: CPU time required by each scheme to run a 104 time units benchmark
simulation.

all these tested FDM schemes, reflecting its high-order accuracy. In fact, SM is still

more accurate than those FDM schemes but is not stable without AD, whereas adding

AD will change the governing equation. The TVD, CUD3, and WENO schemes all

give an oscillation-free prediction but the resulting profiles are more tapered at the

points of discontinuity. Compared with the TVD and the WENO schemes, CUD3

produces a profile that has a small bulge near the cliff edge. This numerical bulge

may also threaten the stability of DNS and thus require an additional local artificial

diffusion to stabilize simulations (Min et al., 2001; Dubief et al., 2005). Surprisingly,

the 2nd-order TVD scheme performs as good as the 5th-order WENO scheme, as the

gradient of TVD is only slightly lower. As regards the computation cost, the TVD

scheme is much lower than that of WENO and CUD3, and is comparable to the effi-

cient SM scheme. Table 6.4 lists the CPU time required by each scheme to run a 104

time units benchmark simulation. The TVD, SM, and UD2 schemes have a similar

CPU time (∼ 2s) while the WENO and CUD3 schemes (∼ 16s) are about 8 times

slower than the previous three schemes. In this study, we develop the HM scheme

which applies the TVD scheme to deal with the convection term of the FENE-P

equations, whereas other terms adopt the SM scheme. The HM scheme is intended

to achieve a better compromise between accuracy, stability, and efficiency.
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Figure 6.5: Comparison of the solutions to the benchmark problem at t = 7 using
different spatial discretization schemes. Only the left half of domain, i.e. (0, 1), are
shown.

6.3 Results and Discussion

6.3.1 Scheme validation with STG simulation

The correctness of implementation of the hybrid SM-FDM scheme is tested by com-

paring a peseudo-spectral method (Xi and Graham, 2010b; Zhu et al., 2018) without

AD in a low elasticity STG simulation. The STG simulation is usually involved to

study the transient evolution of turbulence. It enables a controllable way to gen-

erate well-defined flow structures, e.g. vortex, and is thus desirable for the direct

comparison of different schemes. Details about the STG simulation can be found in

Zhu and Xi (2019). The initial condition of the STG simulation for polymeric turbu-

lence requires a velocity field and a polymer conformation tensor field. For the initial

polymer conformation tensor, we set each diagonal component to 1/3 whereas the

other components to 0 everywhere in the domain. For the initial velocity, we follow
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the STG approach described by Zhu and Xi (2019): the velocity field consists of a

perturbation and a base flow. The perturbation velocity is

v′x = v′y = 0, v′z = Ap sin(αpx)g(y), (6.41)

where v′x, v
′
y and v′z are the x-, y-, and z-components of the perturbation velocity,

respectively. Ap is the perturbation amplitude and αp is the streamwise wave number.

g(y) adds the wall-normal dependence to the perturbation

g(y) = y exp
(
−βgy2

)
, (6.42)

where βg is adjusted to obtain the maximum magnitude at y+ = 20. The base flow

formulates the mean flow of a turbulent boundary layer with the low- and high-speed

streamwise streaks locating near the bottom wall of the channel, it has the definition

of

Ub(y, z) = Um(y) + Us(z)g(y), Vb = Wb = 0, (6.43)

where Ub, Vb, and Wb are the x-, y-, and z-components of the base flow. Um(y) is the

mean velocity profile of a SS DNS at the same parameter settings. Us(z)g(y) defines

a streamwise-invariant streaks which would not trigger turbulence by itself (Waleffe,

1997). The streaks are located at the bottom side of the channel and

Us(z) = As cos (βs (z − zβ)) . (6.44)
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βg As βs Ap αp

9.0 3.0 125 0.071 360

Table 6.5: Parameters of the initial condition for STG simulations.

Here, As controls the magnitude of the spanwise undulation, βs is the spanwise streak

spacing, zβ is a spanwise phase parameter to adjust the spanwise location of the

streaks. A summary of parameters to construct the initial velocity field is presented

in table 6.5.

In order to ensure faithful solution from SM as a benchmark for comparison, we

focus on low Wi = 1 that is below the onset of DR. At this Wi, a relatively stable

solution and faithful can be obtained by the pseudo-spectral scheme without GAD.

Note that setting GAD to 0 requires to have an infinite Sc which is numerically difficult

by using the current SM architecture. Instead, we decide to choose a negligible GAD

by setting the Schmidt number Sc = 105. For the hybrid scheme, neither the GAD

nor the LAD is required.

In fig. 6.6, the time series of the root-mean-square (r.m.s) value of the Q quantity

and the trace of the polymer conformation tensor tr(α) in the STG simulations of

HM and SM are compared. The Q quantity, initially proposed by Hunt et al. (1988),

is a scalar criterion used to identify vortex structures in turbulent flows (Jeong and

Hussain, 1995; Kolář, 2007). In the Q-criterion, vortices in incompressible fluid flow

can be identified as regions where

Q ≡ 1

2
(‖Ω‖2 − ‖S‖2) > 0, (6.45)
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where Ω ≡
(
∇v −∇vT

)
/2 and S ≡

(
∇v + ∇vT

)
/2 are the vorticity and the rate-

of-strain tensors, and ‖ · ‖ denotes the Frobenius tensor norm. In figs. 6.7 and 6.8,

we also show the iso-surfaces of Q = Qrms and tr(α) = tr(α)rms at the four moments

that are marked by the square markers in fig. 6.6. Starting from the initial condition,

the Qrms profiles of the SM and HM cases gradually increase and reach the first

peak at t = 60. In this period, the quasi-streamwise vortices sweep in the spanwise

direction (fig. 6.7(a)). Their heads bend sideways to build spanwise bridges which

eventually lift up and form the head of asymmetric hairpins (fig. 6.7(b)). After the

peak, the Qrms profiles of the two cases decrease until reaching a basin at t = 100

where the spanwise head of the asymmetric hairpins sheds their legs and starts to

decay (fig. 6.7(c)). The profiles then rise up and reach a plateau. In this period,

the legs of the original hairpins (i.e. quasi-streamwise vortices) grow stronger while

their heads continuously decay. Eventually, the quasi-streamawise vortices become

dominant in the flow domain (fig. 6.7(d)). As for tr(α), the profiles of the SM and

HM cases quickly increase to a plateau starting from the initial condition, after which

they barely change due to the low Wi chosen in the STG simulations.

Comparing the HM case with the SM case, the time trajectories of both Qrms and

tr(α) (fig. 6.6) are nearly the same without distinguishable differences. The vortex

fields (identified by the Q-criterion in fig. 6.7) at the four picked time moments are

also consistent between the two methods. The tr(α) fields (fig. 6.8) still look simi-

lar at t = 30 and 60. Accompanied with the well-organized streamwise and hairpin

vortices, wave-like polymer structures are generated and sequentially align along the

streamwise direction. At t = 100 and 160, in the narrow region between two nearby

opposite-rotating vortices, polymers are drastically stretched by the vortices, which
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Figure 6.6: Time series of r.m.s of Q and tr(α) in STG simulations. Data points
corresponding to the snapshots shown in figs. 6.7 and 6.8 with red squares.

Figure 6.7: Vortex configuration identified by Q = Qrms in STG simulations. Color
varies from light to dark with the distance from the bottom wall.
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Figure 6.8: Iso-surfaces of polymer conformation identified by tr(α) = tr(α)rms in
STG simulation. Color varies from light to dark with the distance from the bottom
wall.
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result in a sharp finger at the head of each wave-like structure. The finger-like struc-

tures indicate a sharp gradient of the polymer conformation tensor in these regions.

It is thicker with jagged edges in the SM case (fig. 6.8(b)) in comparison with the

smoother and thinner fingers obtained by HM (fig. 6.8(a)). These differences suggest

the different performances of the pseudo-spectral and hybrid methods when encoun-

tering drastically changed α. It is well known that SM is generally not suitable for

hyperbolic problems with a sharp gradient and will easily cause oscillations with-

out special treatments (e.g. GAD). These oscillations could significantly affect the

accuracy of the simulation. Even worse, it may break down the simulation as the

accumulated errors become out of bounds. On the other hand, the hybrid method

applies a stable FDM to deal with the convection term in the FENE-P equation (sec-

tion 6.2.2) which performs better compared with the pseudo-spectral method. Despite

the small differences in fig. 6.8, the strong similarity of results obtained by the HM

and the SM schemes supports the correctness and suitability of the new scheme for

polymeric turbulence.

6.3.2 Scheme validation with steady-state simulation

The steady-state simulation is also performed in this study. The hybrid scheme is

compared with the pseudo-spectral scheme at two Wi which exhibit two qualita-

tively different turbulent flows: (i) an inertia-driven turbulence (IDT) at Wi = 23

and (ii) an elasticity-driven turbulence (EDT) at Wi = 64. IDT, in which inertia

is mainly responsible for the generation and evolution of turbulence, is observed in

polymeric flows with relatively low Wi and in Newtonian turbulence. The dynamics

and statistics of polymeric flows at this stage share many common features with that
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of Newtonian turbulence. For example, they are all dominated by streamwise vortices

and streaks. Polymers in IDT are primarily responsible for suppressing turbulent in-

tensity which leads to a reduction of turbulent friction drag. As Wi continuously

increases, the IDT cannot solely sustain and will decay. In the meantime, instability

caused by the elastic force starts to grow and eventually dominates the flow, leading

to the elasticity-driven turbulence. Flow structures and statistics in EDT are sig-

nificantly different from IDT. The flow field is dominated by spanwise vortices and

sheet-like polymer structures. Note that the EDT flow mentioned here is conceptu-

ally similar to the EIT flow described by Samanta et al. (2013); Sid et al. (2018) who

also claimed the pure elastic nature of the turbulent flows. EDT can sustain itself,

e.g., in the 2D DNS (Sid et al., 2018) or at a very low Re (far below the critical

Re of laminar-turbulence transition). In addition, it can also coexist with IDT in

the dilute polymeric flow. In this sense, turbulence is governed by both inertial and

elastic forces.

The concept of EDT is relatively fresh comparing with the long-known IDT. One of

the reasons is the introduction of GAD in the widely adopted SM which could smear

polymer field and break near-wall EDT structures. Note that EDT is a strict 2D

solution which is independent of the spanwise direction (Sid et al., 2018). Therefore,

it can sustain in the 2D geometry. However, to simplify the comparison with IDT,

all of the simulations in this chapter are run in the 3D domain. Both HM and

SM are applied to the steady-state simulation and can obtain a sustained IDT at

Wi = 23. However, only HM can capture EDT at Wi = 64 while the SM cases

directly relaminarize.

202



Ph.D.Thesis - Lu Zhu McMaster - Chemical Engineering

In fig. 6.9, the mean streamwise velocity profile (U+ versus y+) and the time-

averaged log-law indicator function,

A+ ≡ y+∂U
+

∂y+
, (6.46)

are plotted. Note that the indicator function is obtained by taking the differentials of

the log-law relationship of the mean velocity profile. It would have a flat region if the

mean velocity profile has a log-law slope. As shown in fig. 6.9(a), the mean velocity

profiles of the two IDT cases are consistent, which suggests a limited influence of

GAD on the statistics of IDT. In the log-law layer (y+ > 30), the two profiles are

slight higher than the PvK log law due to the effect of polymers. Note that the IDT

profiles are also consistent with the results reported by Xi and Graham (2010b) at

a similar flow condition. In fig. 6.9(b), the log-law slopes of the two IDT cases are

largely persevered as a flat region shows up. For the EDT case, the mean velocity

profile is distinctly higher than the Virk’s MDR. The indicator function does not

show any prominent regions with log-law dependence, as demonstrated in fig. 6.9(b).

The missing log-law relationship at high elasticity flows had been discussed by White

et al. (2012), and was also observed at the HDR stage of IDT (Zhu et al., 2018).

The normalized trace of the polymer conformation tensor is also presented in

fig. 6.10. The two IDT profiles are largely similar, which suggests a reasonable pre-

diction by SM at a low Wi. After the initial plateau near the wall (y+ < 10), the IDT

profiles quickly drop until reaching y+ = 30 after which the decreasing speed dras-

tically slows down. The profile of EDT is significantly higher than the IDT profiles

in most of the channel. As it leaves the wall, a local maximum is firstly reached at

y+ = 10. After the peak, the profile continuously drops until it approaches 0 at the
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Figure 6.9: (a) Mean streamwise velocity (U+) and (b) log-law indicator function
(A+) as functions of the wall distance y+

Figure 6.10: The square root of the normalized trace of polymer conformation tensor

center of the channel. The highly decreasing speed of the EDT profile suggests that

EDT is intensive near the wall while weak in the center. Also note that the shape of

the EDT profile is similar to the 2D EDT profile observed by Sid et al. (2018).

To understand the dynamics of IDT and EDT, we plot the time series of several se-

lected quantities in figs. 6.11 to 6.13. The quantities monitored are: (a) instantaneous
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log-law indicator function in the layer 20 ≤ y∗ ≤ 30, defined by

A∗20−30 ≡
1

10

∫ 30

20

y∗
∂U∗

∂y∗
dy∗ (6.47)

(where “∗” indicates quantities scaled by the instantaneous friction velocity and the

instantaneous viscous length scale), (b) bulk-average Reynolds shear stress, −(v′∗x v
′∗
y )b,

(c) area-average wall shear rate, 〈∂vx/∂y〉w, (d) normalized trace of polymer con-

formation tensor, tr(α)/b, and (e) wall spatial-temporal shear rate patterns along

x+ = 0 (Xi and Graham, 2012b,a). Results on the bottom side of the channel are

included. The choice is arbitrary but does not affect our discussions due to the sym-

metric geometry.

Comparing figs. 6.11 and 6.12, the time series of the two IDT cases share many

common features. Variations of these quantities are strongly correlated and alter-

nation between active and hibernating phases are clearly identifiable. In the active

phase (e.g., t = 1900 in fig. 6.11 marked by the dash line), turbulence is highly in-

tensive, the Reynolds shear stress (−(v′∗x v
′∗
y )b) and the wall shear rate (〈∂vx/∂y〉w)

are thus high. Influenced by the strong turbulence, a lower magnitude of slope of

the mean velocity profile (identified by A∗20−30) is observed, reflecting the lower flow

rate. In the meantime, polymers in active stage are significantly stretched ( tr(α)/b

is thus high), indicating strong polymer activity in this stage. Note that in IDT,

polymers is mainly responsible for the suppression of turbulence. Due to the strong

effect of polymers, the intensity of turbulence starts to drop and the flow transfers to

the hibernation state (e.g., t = 1650 in fig. 6.11 marked by the solid line). Comparing

with the active phase, −(v′∗x v
′∗
y )b, 〈∂vx/∂y〉w, and tr(α)/b in the hibernation phase

are lower, whereas A∗20−30 is higher.
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In fig. 6.11(e) and fig. 6.12(e), the wall shear rate ∂vx/∂y along one spanwise line

x = 0 (z-axis) on the bottom wall is also plotted against time (t-axis). As the streak

moves forward by convection in the periodic box, the sensor at x = 0 will be detecting

different parts of the streak and the resulting signal varies periodically even though the

streak is not changing in time. In both IDT cases, lighter and darker quasi-streamwise

bands are found lying alternatively in the z-direction, which corresponds to the high-

and low-speed streaks, respectively. In the t-direction, there are also alternative

lighter-darker intervals occur on each high-speed streak, which corresponds to the

alternative occurrence of the active/hibernation stages. The blurry areas (such as

the one near t = 6000) are the hibernation turbulence, as the variation between low-

and high-speed streaks has less contrast. As for the active turbulence, the contrast

becomes higher.

The EDT time series (Wi = 64, fig. 6.13) are significantly different from IDT.

The mean velocity slope A∗20−30 is mostly higher than the Virk’s MDR. The Reynolds

shear stress −(v′∗x v
′∗
y )b is one-order smaller than IDT. The wall shear stress 〈∂vx/∂y〉w

has a similar value comparing with IDT but the variation is small (unlike the strong

variation between the active and hibernation stages in IDT). Note that other mea-

sured EDT quantities also have small variation, but they are at least one order of

magnitude smaller than the IDT cases. Important differences can be seen in the

spatial-temporal shear rate pattern. The EDT case does not have a clear streamwise

streak (note that the range of the color bar in fig. 6.13 is narrower comparing with

figs. 6.11 and 6.12). Also, the pattern is highly oscillated along the t axis, reflecting

the fast variation of the flow structures.

The instantaneous flow structures in IDT obtained by the HM and SM schemes
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Figure 6.11: Time series of IDT at Wi = 23 obtained by the HM scheme. From
top to bottom: (a) instantaneous log-law indicator function in the layer 20 ≤ y∗ ≤
30; (b) bulk-average Reynolds shear stress; (c) area-average wall shear rate; (d)
normalized trace of polymer conformation tensor; (e) the wall spatial-temporal shear
rate patterns along x+ = 0. The vertical solid and dash lines respectively mark an
instance of active and hibernation turbulence.
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Figure 6.12: Time series of IDT at Wi = 23 obtained by the SM scheme. From
top to bottom: (a) instantaneous log-law indicator function in the layer 20 ≤ y∗ ≤
30; (b) bulk-average Reynolds shear stress; (c) area-average wall shear rate; (d)
normalized trace of polymer conformation tensor; (e) the wall spatial-temporal shear
rate patterns along x+ = 0.
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Figure 6.13: Time series of EDT at Wi = 64 obtained by the HM scheme. From
top to bottom: (a) instantaneous log-law indicator function in the layer 20 ≤ y∗ ≤
30; (b) bulk-average Reynolds shear stress; (c) area-average wall shear rate; (d)
normalized trace of polymer conformation tensor; (e) the wall spatial-temporal shear
rate patterns along x+ = 0.
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are visualized in fig. 6.14. As mentioned by Xi and Graham (2012b), the IDT flow

at a relatively high Wi can alternate between two distinctly different stages, i.e.,

the active and hibernation stages. In the active stage, the intensity of turbulence is

high, strong streamwise vortical structures occupy the entire domain (fig. 6.14(a) and

(b)). Polymers in this stage also become highly stretched which start to suppress the

intensive turbulence. Due to the influence of the polymers, most of the vortices in

the flow will be killed, and the flow will become quiescent, indicating the occurrence

of the hibernation stage (fig. 6.14(c) and (d)). Both HM and SM are able to capture

phase alternation between the active and hibernation stages. The vortical structures

obtained by the two schemes are also similar: they align along the streamwise direction

with the upstream side (also called “leg”) attaching to the wall while the downstream

side (“head”) lifting up. Interestingly, in the hibernation stage, vortices tend to form

a vortex string as the head of upstream vortices connects with the leg of downstream

vortices. This type of vortex configuration was also observed by Zhu et al. (2018)

and was corresponding to one of the known self-sustaining cycles of turbulence – the

“parent-offspring” cycle. This cycle is believed to be the dominant mechanism to

maintain turbulence in the HDR stage (Zhu et al., 2018).

Despite the overall similarity of vortical structures between HM and SM, dif-

ferences can be observed in the polymer extension (measured by tr(α)/b) contours

(fig. 6.14). In the active stage, the polymer extension contours obtained by the two

schemes are similar. This similarity may due to the rapidly changing of local velocity

field caused by the intensive vortical structures. In this case, a local region of high

polymer stress gradient will soon been destroyed by a different local velocity field

which minimizes the effect of artificial diffusion in the SM scheme. However, in the
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hibernation stage, the flow is quiescent and the IDT vortices are weak. The turbulent

convection is thus weak and the influence of GAD is amplified. Especially, in the

turbulent inner layer (y+ < 10), the high gradient of polymer conformation can lead

to a strong AD under the same Sc. As a result, the extension of polymers changes

faster in the HM case than the SM case as it leaves the wall. Note that the EDT-like

structures were also observed in the IDT-dominated flow fields by Zhu et al. (2019).

In the HM case, we can also observe the sheet-like EDT polymer structures near the

wall. However, these EDT-like structures are restricted in the turbulent inner layer

and have a negligible influence on the vortex dynamics. On the other hand, the span-

wise vortical structures that are typically observed in EDT flows, do not show up in

the current HM IDT flow. In the SM case, the sheet-like structures are completely

eliminated due to the effect of GAD. Despite these differences between HM and SM,

we note that the nature of the self-sustaining process has not been changed by GAD

in the SM case. In both HM and SM, the active-hibernation process is observed with

similarly vortical structures.

Figure 6.15 shows the instantaneous flow structures at the EDT state. Note that

EDT is captured by HM only. The vortical structures of EDT are spanwise-like which

are greatly different from the IDT vortices. Spanwise vortices were also reported by

Samanta et al. (2013) and are widely accepted as the characteristic structures of

EDT. In addition, unlike the IDT vortices which often extend to the center of the

channel (at least in the active stage of IDT), the EDT structures prefer to attach to

the wall. This is also supported by observations in the polymer extension contour

that the sheet-like polymer structures concentrate in the near wall region.
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Figure 6.14: Instantaneous flow structures in IDT captured by the HM and SM
schemes: (a) active turbulence by HM; (b) active turbulence by SM; (c) hibernation
turbulence by HM;(d) hibernation turbulence by SM. Iso-surfaces are vortices iden-
tified by Q = 0.008. Only vortices in the bottom half of the channel are presented.
Color contours are polymer extension normalized the maximum extension b, tr(α)/b.
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Figure 6.15: Instantaneous flow structures in EDT captured by the HM scheme.
Iso-surfaces are vortices identified by Q = 0.008. Only vortices in the bottom half
of the channel are presented. Color contours are polymer extension normalized the
maximum extension b, tr(α)/b.

In fig. 6.16, we show the one-dimensional spectra of the streamwise velocity fluc-

tuation and the x-diagonal component of the polymer conformation tensor, as respec-

tively defined by

Eu,b(kx) =
1

2l∆T

∫

∆T

∫

2l

∫

kz

ṽ′~x ṽ
′
xdkzdydt, (6.48)

Eα,b(kx) =
1

2l∆T

∫

∆T

∫

2l

∫

kz

α̃′~xxα̃
′
xxdkzdydt, (6.49)

(“~” indicates the complex conjugate and ∆T is the time averaging window). In

fig. 6.16(a), the velocity spectra of the two schemes merge in the large-scale regime

but differ in the small-scale regime. That is, only the small-scale flow structures are

changed when adding GAD to the SM scheme, whereas the large-scale flow structures

can be largely preserved. Recall that IDT is driven by the large-scale structures.
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Thus the influence of GAD on the dynamics of IDT is mild. In fig. 6.16(b), difference

between the HM and SM cases is larger. The spectrum profile of the SM case is

generally lower than that of the HM case due to the dissipation caused by GAD.

Also, note that the two profiles are close in the large-scale regime but distinctly

disparate in the small-scale regime. Therefore, GAD is more efficient to dissipate

the small-scale elastic structures, which is consistent with observations in Sid et al.

(2018).

As for EDT, small-scale elastic structures are responsible for the evolution of

turbulence (Dubief et al., 2013; Sid et al., 2018). As GAD can dissipate most of

the small-scale elastic structures, it will lead to the relaminarization of flow. In

fig. 6.16, only the sustained EDT obtained by HM are presented. The spectrum

profile of the conformation tensor of EDT is much higher than the IDT profiles,

indicating a large amount of elastic energy is stored in the polymers. The spectrum

profile of the streamwise velocity of EDT is far below the IDT profiles, suggesting its

weaker turbulent intensity. In the small-scale regime, the EDT profile slightly shifts

up which may be attributed to the insufficient resolution to resolve those extremely

sharp gradient in the polymer conformation field. However, the resolution adopted

by current study (δ+
x × δ+

z × δ+
y,min/δ

+
y,max = 2.81 × 1.98 × 0.025/2.05) is already

significantly smaller than previous studies on IDT (Li et al., 2015; Xi and Graham,

2010b) and is comparable with other studies on EDT (Dubief et al., 2013; Samanta

et al., 2013; Shekar et al., 2019). In fact, the mesh size to fully resolve the sharp

gradients is much smaller than what is computationally feasible, as Sid et al. (2018)

mentioned that the EDT structures have infinite small scales.
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Figure 6.16: The one-dimensional spectra of (a) the streamwise velocity, and (b) the
x-diagonal component of the polymer conformation tensor.

6.4 Impact of artificial diffusion

From section 6.3.2, it is found that the additional GAD required by SM damps the

small-scale structures but its influence on the dynamics of turbulent flows depends on

the immediate state (i.e., EDT or IDT). For IDT, the existence of GAD suppresses

the EDT-like structures and decreases the energy in the small scales. However, its

influence on the large scales of turbulence is minor. Since IDT is driven by large-

scale structures, it will not be significantly changed by GAD. On the other hand, the

EDT state is known to be governed by small-scale structures (Sid et al., 2018; Dubief

et al., 2013). As GAD is efficient to suppress small-scale structures, EDT is thus

significantly erased.

Another factor that affects the roles of GAD in polymeric turbulence is the dif-

ferent influence regions. In fig. 6.17, we plot the average magnitude of the GAD

term and the polymer convection term at different wall distance. Here, the GAD
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Figure 6.17: Magnitude of diffusion and convection terms in the FENE-P equations
(eq. (6.3)) of (a) IDT (Wi = 23) and (b) EDT (Wi = 64), as a function of y+.

magnitude, defined as

D =
1

ScRe
|∇2α|, (6.50)

(Sc = 0.5 is consistent with the current steady-state simulation using SM) is added to

the IDT and EDT solutions of the HM scheme, respectively. The average magnitude

of GAD is then obtained by taking average in the x-, z-, and t-dimensions. The three

diagonal components of GAD, i.e., Dxx, Dyy, and Dzz, are plotted in fig. 6.17. For

comparison, we also compute and plot the magnitude of the three diagonal compo-

nents (Cxx, Cyy, and Czz) of the FENE-P convection term in eq. (6.3),

C = |v ·∇α|. (6.51)

In the IDT flows (fig. 6.17(a)), the xx- and zz-components of GAD initially in-

crease after leaving the wall and reach a peak at y+ ≈ 10. After the peak, the profiles

steadily drop till the center of the channel. For the yy-component, after the initial
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increase, the profile reaches a plateau and becomes flat afterward. Compared with

the diffusion profiles, the convection profiles have a smaller magnitude in the inner

layer (y+ < 20) but a much higher magnitude as they approach the channel’s center.

It is well-known that IDT structures, e.g. the vortex, are generated in the buffer layer

(20 < y+ < 30) and are highly active in the log-law and even higher region (Robin-

son, 1991; Adrian et al., 2000). As GAD is much weaker outside the inner layer, its

influence on the IDT structures is minimized. The flow field outside the inner layer is

still dominated by turbulent convection. In the inner layer, EDT-like structures can

also show up in high Wi IDT flow. However, the strong magnitude of GAD in this

region can significantly suppress the EDT-like structures. Therefore, these EDT-like

structures are not observed in the SM case.

On the other hand, the shape of the convection and diffusion profiles in EDT

flows is similar. After leaving the wall, the convection profiles will first reach a local

minimum at y+ = 3. After that they increase along with the convection profiles to

a plateau at y+ = 10 and then quickly drop after y+ = 40. Note that the mean

velocity of the EDT flow continuously increases as it leaves the wall. Hence the

decreasing of the convection profiles is mostly due to the the drastically dropping

∇α. It is well-known that the strong gradient of the polymer conformation tensor

is responsible for the generation of EDT structures (Sid et al., 2018). Therefore,

the decreasing convection profiles indicate that EDT is intensive near the wall while

weaker at the center of the channel, which agrees with previous observations (figs. 6.10

and 6.15). Across the entire channel, the xx- and zz-components of the GAD profiles

are everywhere higher than the convection profiles. Especially, in the near-wall region

(y+ < 20) where GAD is one-order of magnitude larger than the convection term.
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Thus it will significantly smear the strong ∇α in this region and suppress the EDT

structures. The EDT flow is thus vulnerable to GAD in comparison with IDT which

also explains why EDT is hard to be captured by the SM scheme.

6.4.1 Effect of mesh resolution

Depending on the flow state (IDT or EDT), the required mesh resolution to obtain a

numerically-converged solution is different. Thus we will discuss the effect of resolu-

tion in the two flow types separately.

For IDT, we test the resolution dependence of four mesh sizes, as summarized in ta-

ble 6.2. Despite the mesh, other parameters of the four test cases are the same as that

of the standard IDT case in section 6.3.2. The profiles of the bulk one-dimensional

spectra of the streamwise velocity Ev,b, the mean velocity U+, the Reynolds shear

stress −〈v+
x v

+
y 〉, and the square root of the normalized trace of polymer conforma-

tion tensor
√

tr(α)/b (which is proportional to the average end-to-end distance of

polymer chains) at different resolutions are plotted and summarized in fig. 6.18. In

general, all of the statistical quantities agree well, suggesting that the lowest mesh

size (40× 73× 46) can obtain a numerical converged solution. Note that the lowest

resolution is similar to those adopted in the pseudo-spectral DNS by Xi and Graham

(2010b); Zhu et al. (2018). Hence, the current hybrid scheme largely preserves the

precision of SM. As to more detailed observations, the Ev,b profiles (fig. 6.18(a)) and

the −〈v+
x v

+
y 〉 profiles (fig. 6.18(c)) of the four cases collapse well onto one another.

As the resolution increases, the U+ profiles (fig. 6.18(b)) and the
√

tr(α)/b profiles

(fig. 6.18(d)) from different resolution fluctuates within a very small range without

any obvious pattern. This fluctuation may be due to the statistical uncertainty of
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Figure 6.18: Statistical quantities of IDT (Wi = 23) at different mesh sizes: (a)
the bulk one-dimensional spectra of the streamwise velocity, (b) the mean velocity
profile, (c) the Reynolds shear stress, and (d) the square root of the normalized trace
of polymer conformation tensor.

measurement.

As for the EDT flows, strictly converged solutions are difficult to be achieved as

the elastic structures have infinitely small scales (Sid et al., 2018). The resolution

dependence of EDT in the 2D DNS was tested by Sid et al. (2018) who found that

energy of the small-scale structures can pile up at the end of the spectrum and change

the shape of the spectrum. This effect will confine to smaller scales as the resolution

increases. Eventually, the large scales of the energy spectrum can converge under

a significantly high resolution. In Sid et al. (2018)’s study, Nx × Ny = 1280 × 384
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for the box size of L+
x × L+

y = 720 × 169.71 is found to have a converged large-scale

spectrum and can provide a reasonable prediction. However, this resolution is already

difficult to achieve in 3D DNS due to the extremely high computational cost. To have

a reasonable mesh resolution, we tested a series of different mesh sizes in both 2D

and 3D simulations. Details about the geometry and mesh of the test runs are listed

in tables 6.2 and 6.3. Note that the box size is chosen to be the same as that in (Sid

et al., 2018; Zhu et al., 2019).

Figure 6.19(a) and (b) show the streamwise velocity spectra of 2D EDT cases with

variate Ny and Nx, respectively. In the y-direction (fig. 6.19(a), Nx = 512 is fixed),

profiles in the small-scale regime do not converge even at the highest resolutions but

the large scales of the profiles converge at Ny = 369 (in fact the Ny = 185 case

is also considerably close to the converged solution), which agrees with the earlier

observations by Sid et al. (2018). Moreover, after comparing the Ny dependence at

differentNx (not shown here), we find that the minimumNy for numerical convergence

is independent of Nx. In the x-direction (fig. 6.19(b), Ny = 269 is fixed), the profiles

do not converge until Nx = 1280 even in the large-scale regime. In fact, at such

resolution, the grid size is already 10 times finer than that of traditional DNS for IDT

(e.g., (Yu and Kawaguchi, 2004; Li et al., 2005a; Housiadas et al., 2005; Wang et al.,

2017; Li et al., 2015; Zhu et al., 2018)). It is difficult to implement 3D DNS under

such high resolution as tremendous computational resources are needed. Fortunately,

by carefully controlling the Nx − Ny ratio, the spectra could sufficiently converge in

the large-scale regime.

Here, we use the Nx×Ny = 1280×369 case as a benchmark which is sufficient close

to the converged solution since further increasing mesh size (without fixing the mesh
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Figure 6.19: The bulk one-dimensional spectra of the streamwise velocity of 2D DNS
(Reτ = 84.85, Wi = 64) with (a) variate Ny, and (b) variate Nx.

ratio) do not change the spectrum profile in the large-scale regime. Next, a wide range

of Nx −Ny mesh ratios is tested. We finally found that by fixing the Nx −Ny ratio

to ∼ 3, the spectrum profiles of courser mesh cases are largely consistent with the

1280× 369 case in the large scale regime (but still deviate in the small-scale regime),

as shown in fig. 6.20. Since the 1280×369 case is well close to the converged solution,

we could expect that the courser mesh cases can have a reasonable prediction.

It is important to notice that the numerically converged solution of EDT is difficult

even in 2D DNS due to the extremely high resolution required. On the other hand,

in order to investigate the relationship between EDT and IDT in the high elasticity

regime, we have to adopt 3D DNS in which both types of flows can exist. Since 3D

EDT solutions cannot quantitatively converge, at least not for the whole spectrum

of scales, we need to inspect how the limited resolution affects qualitative aspects

of the dynamics. In fig. 6.21, we run some 3D DNS (Reτ = 84.85, Wi = 64) with

a controlled mesh ratio, and plot the state-space projections of solution trajectories

of the 3D DNS onto the |〈v′∗x v′∗y 〉|max − A∗25 space. Here, A∗25 is the slope of the

instantaneous mean velocity at y∗ = 25, |〈v′∗x v′∗y 〉|max is the peak of the instantaneous
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Figure 6.20: The bulk one-dimensional spectra of the streamwise velocity of 2D DNS
(Reτ = 84.85, Wi = 64) with controlled mesh size ratio.

RSS profile (the shape of the RSS profile can refer to fig. 6.18). The tested meshes

are listed in table 6.2. For reference, we also plot the time trajectory of a statistically

converged 2D case (N+
x ×N+

y = 1280×369). All of the 3D cases initially shoot up from

an initial condition that close to the EDT state (lower right) and reach to the IDT

state (upper left). Due to the effect of polymers, these 3D cases can only temporarily

stay at the IDT state and then decay after several hundred time units. Note that

these cases do not decay to laminar as the IDT structures disappear. Instead, the

EDT structures become dominant, indicating the occurrence of the EDT state. In

fig. 6.21, the trajectories of the three mesh resolution cases are similar. The locations

of the IDT and EDT phases in the three cases are also close. Importantly, the EDT

phase of the 3D cases are also close to the converged 2D case, indicating a reasonable

prediction of the current mesh for the EDT phase. In summary, a fully converged 3D

EDT solution is computationally difficult. However, by controlling the mesh ratio,

the trajectories of the simulations are most independent of the resolution, whereas the
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Figure 6.21: State-space projection of solution trajectories at different mesh resolu-
tions.

EDT phase of the 3D cases are reasonable close to the converged 2D EDT. Therefore,

the mesh sizes of the 3D EDT DNS are at least suitable for studying the dynamical

relationship of IDT and EDT.

6.5 Conclusions

In this study, a new hybrid SM-FDM algorithm is developed for the DNS of viscoelas-

tic turbulent flows. In the hybrid scheme, a TVD finite difference scheme is adopted

to discretize the convection term of the FENE-P equation in space, whereas the other

spatial derivatives are discretized using a standard Fourier-Chebyshev-Fourier spec-

tral scheme. We choose TVD for its extraordinary performance to eliminate numerical

oscillations which are inevitable when discretizing the FENE-P equations using SM.

It also has an acceptable accuracy in comparison with other high-order finite-different

schemes, e.g., WENO and CUD3, but less computational cost (section 6.2.3).

The HM scheme is validated in the streak transient growth simulation (section 6.3.1)
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by comparing with solutions from an artificial-diffusion-free SM. The results are highly

consistent, but HM is more stable to capture the sharp polymer structures.

In the full-scale steady-state DNS (section 6.3.2), the HM scheme is capable of

capturing two known types of turbulent states: IDT and EDT. In comparison, the

SM scheme (with GAD) can only capture the IDT flows. In IDT, the introducing

of GAD smears the small-scale structures with sharp stress gradient. However, the

dynamics (e.g., figs. 6.11 and 6.12) and statistics (e.g., figs. 6.9 and 6.10) of the IDT

flow are not greatly affected. On the other hand, the EDT structures are generated

by the sharp polymer stress. Therefore, GAD can quench the EDT structures and

lead to flow relaminarization.

The magnitude of GAD depends on the distance from the wall (section 6.4). In

both IDT and EDT flows, GAD will have a much larger magnitude in the near-wall

region(fig. 6.17), but drastically decreases when approaching to the center of the

channel. As IDT structures are likely to become active outside the inner layer while

EDT structures tend to attach the wall, GAD thus has minor influence on IDT but

strong influence on EDT.
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Kolář, V. (2007). Vortex identification: New requirements and limitations. Int. J.

Heat Fluid Flow, 28(4), 638–652.

Laizet, S. and Lamballais, E. (2009). High-order compact schemes for incompressible

flows: A simple and efficient method with quasi-spectral accuracy. J. Comput.

Phys., 228(16), 5989–6015.

226



Ph.D.Thesis - Lu Zhu McMaster - Chemical Engineering

Lee, S. J. and Zaki, T. A. (2017). Simulations of natural transition in viscoelastic

channel flow. J. Fluid Mech., 820, 232–262.

LeVeque, R. J. (1996). High-resolution conservative algorithms for advection in in-

compressible flow. SIAM Journal on Numerical Analysis, 33(2), 627–665.

Li, C. F., Sureshkumar, R., and Khomami, B. (2006). Influence of rheological param-

eters on polymer induced turbulent drag reduction. J. Non-Newton. Fluid Mech.,

140(1), 23–40.

Li, C. F., Sureshkumar, R., and Khomami, B. (2015). Simple framework for under-

standing the universality of the maximum drag reduction asymptote in turbulent

flow of polymer solutions. Phys. Rev. E, 92, 043014.

Li, F. C., Kawaguchi, Y., Segawa, T., and Hishida, K. (2005a). Reynolds-number

dependence of turbulence structures in a drag-reducing surfactant solution channel

flow investigated by particle image velocimetry. Phys. Fluids, 17, 075104.

Li, W., Stone, P., and Graham, M. D. (2005b). Viscoelastic nonlinear traveling waves

and drag reduction in plane poiseuille flow. In IUTAM Symposium on Laminar-

Turbulent Transition and Finite Amplitude Solutions, pages 289–312.

Min, T., Yoo, J. Y., and Choi, H. (2001). Effect of spatial discretization schemes on

numerical solutions of viscoelastic fluid flows. J. Non-Newton. Fluid Mech., 100,

27–47.

Min, T., Yoo, J. Y., Choi, H., and Joseph, D. D. (2003). Drag reduction by polymer

additives in a turbulent channel flow. J. Fluid Mech., 486, 213–238.

227



Ph.D.Thesis - Lu Zhu McMaster - Chemical Engineering

Moin, P. and Kim, J. (1982). Numerical investigation of turbulent channel flow. J.

Fluid Mech., 118, 341–377.

Myska, J. and Stern, P. (1998). Significance of shear induced structure in surfactants

for drag reduction. Colloid Polym. Sci., 276, 816–823.

Nesyn, G. V., Sunagatullin, R. Z., Shibaev, V. P., and Malkin, A. Y. (2018). Drag

reduction in transportation of hydrocarbon liquids: From fundamentals to engi-

neering applications. J. Petrol. Sci. Eng., 161, 715–725.

Peyret, R. (2002a). Spectral methods for incompressible viscous flow.

Peyret, R. (2002b). Spectral methods for incompressible viscous flow. Springer, New

York.

Ptasinski, P. K., Boersma, B. J., Nieuwstadt, F. T. M., Hulsen, M. A., van den Brule,

B. H. A. A., and Hunt, J. C. R. (2003). Turbulent channel flow near maximum

drag reduction: simulations, experiments and mechanisms. J. Fluid Mech., 490,

251–291.

Robinson, S. K. (1991). Coherent motions in the turbulent boundary layer. Annu.

Rev. Fluid Mech., 23, 601–639.

Roe, P. L. (1981). Approximate riemann solvers, parameter vectors, and difference

schemes. J. Comput. Phys., 43(2), 357–372.

Rogallo, R. S. and Moin, P. (1984). Numerical simulation of turbulent flows. Annu.

Rev. Fluid Mech., 16(1), 99–137.

228



Ph.D.Thesis - Lu Zhu McMaster - Chemical Engineering

Samanta, D., Dubief, Y., Holzner, M., Schäfer, C., Morozov, A. N., Wagner, C., and
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Chapter 7

Roles of inertia- and

elasticity-driven turbulence in

polymeric flow

Polymeric turbulence can be either driven by the inertial and elastic forces and re-

sult in two fundamentally different states: the inertia- (IDT) and elasticity-driven

turbulence (EDT). Although previous studies (Li et al., 2005; Housiadas et al., 2005;

Xi and Graham, 2012b; Samanta et al., 2013; Sid et al., 2018) have found that the

two turbulent flows can sustain independently under certain conditions, their rela-

tionship in the dynamics of polymeric flows is actually not clear. In this chapter,

we will investigate the roles of IDT and EDT in polymeric flows with a wide range

of parameters. Particularly, it is found that the two types of turbulent motions can

sustain alternatively, leading to a new dynamical flow state.

I was responsible for implementing simulations and collecting data. I also post-

processed the data with Dr. Xi Li’s suggestions. The manuscript was written by me
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and revised by Dr. Li Xi.

This chapter is under preparation for future publication.
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7.1 Introduction

It is well-known that a small amount of polymers in the turbulent flows can signif-

icantly change the flow structures and reduce the energy dissipation (Toms, 1948;

Virk, 1975; Graham, 2014). As a result, nearly 80% of friction drag reduction can

be achieved in the turbulent flows. The wide applications of this phenomenon in

industry have attracted a considerable amount of attention. However, some key ques-

tions still remain to be answered. Especially, as the elasticity of the polymer solution

continuously increases, the amount of drag reduction will converge at an asymptotic

upper bound. This so-called maximum drag reduction (MDR) asymptote is found

to be insensitive to the rheological properties of the polymer solution (Virk, 1975).

Understanding of MDR has extraordinary practical importance. However, its origin

is still not clear and has been regarded as the most critical unsolved problem in this

area.

The elastic sublayer theory proposed by Virk (1975) believed that the increasing

DR is a consequence of expanding of the “elastic sublayer” where polymers are highly

stretched. Eventually, as the elastic sublayer occupies the entire flow domain, MDR

is achieved. This theory benefits from its conceptual simplicity but is soon proven

oversimplified to explain the complex polymer-turbulence interactions in viscoelastic

fluid. An alternative model for MDR was proposed by Xi and Graham (2012b,a) who

suggested that the flow in MDR is dominated by a weak turbulent state (named as

“hibernating turbulence”) which is sufficiently close to the laminar-turbulence bound-

ary. Stronger turbulent states, i.e. the “active turbulence”, in MDR can occasionally

appear which drags the flow away from the turbulence edge. The “active-hibernating”

theory is supported by large domain DNS (Wang et al., 2017; Zhu et al., 2018) in
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which locally stronger and weaker turbulent regions are found alternatively distribute

in space. Note that the “active-hibernation” theory interprets the origin of MDR from

the Newtonian nature of turbulence. Turbulence, here, is still driven by inertial forces

(thus termed as “inertia-driven” turbulence (IDT)) and has those typical Newtonian

coherent structures, e.g., the quasi-streamwise streaks and vortices. Therefore, it is

insufficient to explain the recent finding of a new type of turbulence in the high elas-

ticity regime. Sid et al. (2018) indicated that in the high elasticity flows, Newtonian

structures can be completely eliminated by polymers. The flow, instead, is dominated

by elastic instability, leading to the so-called “elasticity-driven turbulence” (EDT).

Note that EDT was initially considered to be driven by both inertial and elastic

forces (Dubief et al., 2013; Samanta et al., 2013) (and thus termed as “elasto-inertial

turbulence”(EIT)). However, it was soon found to be purely driven by the elastic

force (Sid et al., 2018). Samanta et al. (2013) further proposed a potential connec-

tion between EDT and the MDR state since EDT can sustain in the high elasticity

regime where MDR occurs. The EDT structures are found to be significantly different

from the IDT structures (which are mostly Newotnian-like). DNS studies by Sid et al.

(2018) indicated that EDT has strictly 2-dimensional near-wall structures, e.g. the

spanwise vortical structure and the sheet-like polymer structure, whereas IDT struc-

tures are mostly 3-dimensional. Moreover, polymers in EDT are not only in charge of

suppressing turbulence, but also feed energy to the flows at the small-scale, exhibiting

a positive contribution in the turbulent kinetic energy budget (Dallas et al., 2010).

The concept of EDT is quite fresh with a lot of unsolved puzzles. Especially, its

roles in the drag reduction phenomenon of polymeric turbulence are remained to be

revealed. Previous studies (Samanta et al., 2013; Sid et al., 2018) suggested that as
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elasticity increases, EDT will eventually dominate the polymeric flow, whereas IDT

is completely erased. However, as will be presented in this study, EDT and IDT both

play an important role in the dynamics of high elasticity polymeric turbulence. The

turbulent flow, here, is governed by a dynamical state in which the EDT and IDT

structures can sustain in an alternative way.

7.2 Methodology

The plane Poiseuille flow driven by a constant pressure drop is investigated in this

study. Periodic boundary conditions are applied to the streamwise (x-) and the

spanwise (z-)directions while no-slip boundary condition is applied to the walls in

the wall-normal (y-)direction. Lengths and velocities are respectively scaled with the

half-channel height l and the Newtonian laminar center line velocity U . Pressure p

and time t are scaled with ρU2 (ρ is density) and l/U , respectively. The polymeric

flow is governed by

∂v

∂t
+ v ·∇v = −∇p+

β

Re
∇2v +

2 (1− β)

ReWi
(∇ · τ p) , (7.1)

∇ · v = 0. (7.2)

α

1− tr(α)
b

+
Wi

2

(
∂α

∂t
+ v ·∇α−α ·∇v − (α ·∇v)T

)
=

bδ

b+ 2
, (7.3)

τ p =
b+ 5

b

(
α

1− tr(α)
b

−
(

1− 2

b+ 2

)
δ

)
. (7.4)

Equations (7.1) and (7.2) are the conservation equations of momentum and mass,

respectively. Equations (7.3) and (7.4) are the FENE-P constitutive equations to
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govern the polymer conformation and stress tensorsα and τ p (Bird et al., 1987). Re ≡

ρUl/η is Reynolds number (η is the solution viscosity), Wi ≡ 2λU/l is Weissenberg

number (λ defines the polymer relaxation time), b is the upper bound of the polymer

extension, i.e., tr(α) ≤ b, and β ≡ ηs/η is the viscosity ratio (ηs denotes the solvent

viscosity).

A hybrid pseudo-spectral/finite-difference scheme is used to solve the equation

system. For spatial discretization, a conservative second-order upwind TVD (total

variation diminishing) finite difference scheme (Zhang et al., 2015; Yu and Kawaguchi,

2004) is adopted to discretize the convection term v ·∇α in eq. (7.3), whereas other

spatial derivative terms are discretized using a Fourier-Chebysheve-Fourier pseudo-

spectral projection. No artificial diffusion is applied. The time discretization uses a

third-order semi-implicit backward-differentiation-Adams-Bashforth scheme (Peyret,

2002). Both 2D and 3D DNS are implemented in this study. Note that the evolution

of EDT is independent of the spanwise direction (Sid et al., 2018). Therefore, we also

include 2D DNS to study EDT, in order to reduce the computational cost. Typical

computational domain sizes for 3D and 2D simulations are L+
x × L+

y × L+
z = 720 ×

2Reτ × 230 and L+
x × L+

y = 720 × 2Reτ (“+” indicates quantities normalized by

turbulent inner scale, and Reτ = ρuτ l/η =
√

2Re is the friction Reynolds number,

where uτ is the friction velocity), respectively. This domain size is consistent with

those studies for EDT (Dubief et al., 2013; Sid et al., 2018) but may be insufficient

to exhibit the full pathway of IDT. However, the extremely high computational cost

required by the current study to simulate the EDT flow prevents us to further explore

in a larger simulation domain. Besides, it will not alter the critical observations, i.e.

the dynamical IDT-EDT state, in this study. In addition, we also choose two mesh
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resolutions (Nx×Ny×Nz) for the 3D simulations. The courser mesh, 72×97×72, is

adopted to explore IDT parameter space which is statistically converged for IDT flow.

The refiner mesh, 256 × 131 × 142, for the IDT-EDT dynamics is comparable with

those adopted by Dubief et al. (2013); Samanta et al. (2013); Shekar et al. (2019),

but is not yet converged for EDT. Note the refiner mesh is already much denser than

the typical IDT DNS in the literature (Sureshkumar et al., 1997; Yu and Kawaguchi,

2004; Li et al., 2005; Xi and Graham, 2010; Zhu et al., 2018). In fact, the numerical

converged EDT solution is not realistic for the 3D simulation, as a mesh with 30

times (estimated from Sid et al. (2018)’s 2D EDT DNS) more grids than current

refined mesh may be needed. However, we notice that current resolution can at least

maintain the IDT-EDT dynamics qualitatively. As for 2D simulations, the resolution

is chosen to be Nx ×Ny = 1280× 369 which can give a converged solution.

7.3 Results and discussion

In dilute polymer flows, IDT and EDT are found under different conditions. In a num-

ber of numerical studies (Xi and Graham, 2010; Housiadas and Beris, 2003; Li et al.,

2005), IDT was observed in a moderate elasticity polymeric flow. The characteristics

of the IDT flow (e.g., the near-wall coherent structures) are still largely similar to

the Newtonian turbulence. Polymers in IDT are mainly responsible for suppressing

turbulence, whereas the flow is driven by inertial force. As the elasticity (measured

by Wi) increases, IDT becomes difficult to sustain due to the strong polymer effect.

In the meantime, the high elasticity of the flow will cause a large elastic force which

could trigger the elasticity-driven turbulence. In addition, unlike IDT in which the

flow is 3-dimensional, EDT instability is strictly 2-dimensional (Sid et al., 2018), in
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the sense that it can sustain in a 2D flow geometry. Although it is well accepted

that both IDT and EDT can exist in the polymeric flow, their roles may change with

the elasticity level and are far from been fully understood. Particularly, in the high

elasticity regime, while Li et al. (2005); Zhu et al. (2018); Wang et al. (2017) observed

an IDT-dominated flow motions, Dubief et al. (2013); Samanta et al. (2013), on the

contrary, suggested that the flow should be dominated by EDT structures. Despite

the different opinions in the literature, this study (as will be presented later) notices

that IDT and EDT can coexist in the high elasticity flow, exhibiting a new dynamical

turbulent state.

Before starting to discuss the roles of IDT and EDT in the dynamics of high

elasticity polymeric flows, we will first look at the qualitatively different near-wall

structures and statistics between these two turbulent motions. To have a sense on

the differences between IDT and EDT, we first investigate the turbulent kinetic energy

(TKE) budget of the two turbulent motions. The TKE budget equation

∂k

∂t
+ 〈v〉 ·∇k + ∇ · T k = Pk − εk − χk, (7.5)

is derived from eq. (7.1), which governs the evolution of TKE in the turbulent flow.

In eq. (7.5), Pk is the production of TKE, εk is the consumption rates of TKE by

viscous dissipation, and χ is the elastic conversion. They are respectively define as,

Pk ≡ −∇〈v〉 : 〈v′v′〉, (7.6)

εk ≡ −2β

Re
〈Γ′ : Γ′〉. (7.7)
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χ̄k ≡ −2(1− β)

ReWi
〈τ ′p : Γ′〉. (7.8)

where v′, Γ′ and τ ′p are the fluctuating components of the velocity, the rate of strain

and the polymer stress tensors, respectively. The transportation terms of the TKE

budget are grouped into T k. Since these terms are not responsible for the energy

transferring between different energy forms, they will not be further discussed. In

fig. 7.1, the spatial average of Pk, χk, and εk (i.e., P̄k, χ̄k and ε̄k, where ·̄ indicates

quantities averaged in all spatial dimensions) in typical IDT and EDT flows are

computed and plotted as a function of time t. We choose the 3D DNS at Re = 3600

and Wi = 30 as a representative example of IDT. The resolution is Nx ×Ny ×Nz =

72× 97× 72, which is sufficient for a statistically converged IDT solution. For EDT,

a much higher resolution is required to resolve the sharp polymer stress gradients,

which is numerically difficult for 3D DNS. Therefore, we adopt a high resolution 2D

DNS (Re = 3600, Wi = 64) which has a converged EDT solution (Sid et al., 2018).

In IDT flows (fig. 7.1(a)), TKE is produced by the inertial force and then con-

sumed by viscous dissipation. Therefore, the production term is always positive and

the viscous dissipation term is always negative. Note that the elastic conversion can

be positive or negative mathematically. In IDT, the elastic conversion term is negative

as TKE is converted into the elastic energy. In addition, periodic increases of all pro-

files are observed. This phenomenon has been observed by Xi and Graham (2012b,a)

and was termed as the “active” turbulent stage. Between two active stages, the flow

is quiescent and is called “hibernating” stage in contrast to the “active” stage. In Xi

and Graham (2012b); Wang et al. (2017)’s studies, the active and hibernating stages

are both dominated by IDT structures. This opinion is validated in our simulations
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Figure 7.1: Time series of the bulk-average production P̄k, elastic conversion χ̄k and
dissipation ε̄k in the turbulent kinetic energy budget of (a) IDT (Wi = 30, 3D DNS)
and (b) EDT (Wi = 64, 2D DNS). Instantaneous 2D snapshots of Q (line contours
with equispaced levels from 0.005 to 0.02) and tr(α)/b (color contours) from the (c)
active, and (e) hibernating stages of IDT, and (d) EDT.

until Wi = 37 at which IDT cannot sustain itself and starts to decay. As we will

discuss later, it could eventually transition to either the laminar or the EDT stage

depending on the flow conditions. EDT (fig. 7.1(b)), on the other hand, has positive

elastic conversion while its production term fluctuates around zero. Polymers here are

responsible for feeding the turbulence while the inertial force has negligible influence.

In addition, compared with the IDT case, the magnitude of the profiles in the EDT

case is much lower, indicating a weaker intensity of turbulence. Quantities here still

slightly fluctuate but do not have a clear period between the active (stronger) and

hibernation (weaker) states.

Figure 7.1(c-e) show the instantaneous 2D snapshots of the vortex identification
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quantity Q (Jeong et al., 1997; Zhu and Xi, 2019), defined as

Q ≡ 1

2

(
‖ Ω ‖2 − ‖ S ‖2

)
(7.9)

(Ω ≡ 1
2

(
∇v −∇vT

)
is the vorticity tensor, S ≡ 1

2

(
∇v + ∇vT

)
is the rate of strain

tensor, and ‖ · ‖ represents the Frobenius tensor norm), and the trace of polymer

conformation tensor α normalized by the maximum polymer extension parameter

b, i.e., tr(α)/b. In fig. 7.1(c) and (e), the instantaneous contours of the active and

hibernating turbulent stages in IDT are plotted which correspond to instance I and

II in fig. 7.1(a). Strong quasi-streamwise vortical structures (the contour lines) are

observed in the active stage with their upstream side attaching the wall while the

downstream side lifting up towards the center of the channel. Polymer configurations

(represented by color contours) are strongly correlated with vortices.The polymers

near the vortices are highly extended which strongly suppress the intensity of the

vortices in the flow field (Zhu et al., 2019; Li and Graham, 2007; Dubief et al., 2005).

In the hibernating stage, only a few weak streamwise vortices are observed. The

extension of polymers are thus smaller than the active stage. In the near wall region,

a larger magnitude of tr(α)/b is observed, polymers here are stretched mainly by the

mean shear. The instantaneous EDT structures are significantly different from those

of IDT. As shown in fig. 7.1(d), a series of thin bands of large polymer extensions are

found extending from the walls to the channel’s center with an angle of ∼ 5 degree to

the wall. Induced by these polymer structures, an array of spanwise vortices occurs

near the wall, which is consistent with Samanta et al. (2013). Note that the spanwise

EDT vortical structures can also been observed in the near-wall region of the IDT

flow but are much weaker comparing with the dominated IDT structures. Thus they
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are mostly hidden in the IDT flows.

In fig. 7.2, we explore the existence of IDT and EDT in the Re – Wi parameter

space. Still, IDT is obtained by a low resolution 3D DNS while EDT is simulated in

2D DNS. The initial condition of EDT/IDT uses a statistically converged solution at

a slightly higher/lower Wi. The initial condition is designed to maximally expand the

region of each turbulent state in the parameter space, as it is easiest to converge to a

similar new state from the state with similar parameters. The “sustained turbulence”

is determined when turbulent motions can persist for a pre-defined time interval (Xi

and Graham, 2010). For IDT, this interval is 5000 time units , while the interval

of EDT is 1000 time units. Three Re (i.e., Reτ = 66.33, 84.85, and 169.70) are

investigated in this study. Starting from the lowest Re (Reτ = 66.33), the highest

Wi (0, 36, and 66 for Reτ = 66.33, 84.85, and 169.70) for a sustained IDT quickly

increases with Re. This phenomenon is also observed by Zhu et al. (2018). In the

meantime, EDT can also sustain at a fairly low Wi. The lowest Wi (21, 16, and 14

for Reτ = 66.33, 84.85, and 169.70) decreases as Re increases, but the Re-dependence

is considerably weaker than that of IDT. It is of great interest to note that there is a

window of Wi for the co-existence of these two types of turbulence and the window

widens with increasing Re. In this overlapping region, both IDT and EDT can sustain

by themselves and the destination of the flow depends on the initial condition.

To understand the relationship of IDT and EDT with the MDR stage, we investi-

gate the Wi-dependence of the mean velocity profiles in the two types of turbulence

in fig. 7.2(b). Cases in this plot are taken at Reτ = 84.85. As Wi gradually increases,

the mean velocity profiles of the IDT cases lift up but eventually converge at Wi = 36.

The converged velocity profile (i.e. the Wi = 36 case) is far below Virk’s MDR. Note
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Figure 7.2: (a) Existence of IDT and EDT in the Re – Wi parameter space. Solid
and dash lines are boundaries of sustained IDT and EDT drawn according to the
B-spline interpolation between the critical Wi of the transitions at different Re. (b)
Mean velocity profiles of IDT and EDT cases at Reτ = 84.85.

that this may be because of the restriction of the current domain size, as Zhu et al.

(2018); Wang et al. (2017) had obtained a converged velocity profile much closer to

the Virk’s MDR asymptote in a larger domain. On the other hand, the mean velocity

profile of the Wi = 40 case of EDT is significantly higher than the Virk’s MDR pro-

file. As Wi increases, the mean velocity profile gradually drops down below the Virk’s

MDR profile. Note that it is intuitive to relate EDT to the MDR stage, as EDT can

sustain at a high Wi where the MDR stage occurs (Sid et al., 2018). However, as

found here, the mean velocity of EDT do not converge to the Virk’s MDR profile.

Moreover, it even does not converge at Wi = 400 where polymers are close to their

fully extension limit. In fact, it is found that the average velocity and the average

polymer extension in EDT have a strong linear relationship at least until current

highest Wi = 800. Therefore, we could expect that the mean velocity profile will

not converge until polymers reaching the maximum extension. Thus the convergence

of EDT will depend on specific rheological properties of the polymer solution (e.g.,

245



Ph.D.Thesis - Lu Zhu McMaster - Chemical Engineering

polymer length), which contradicts experimental observations (Virk, 1975).

In figs. 7.1 and 7.2, simulations are designed to expose one type of turbulence.

Once the turbulent flow cannot sustain, it will decay directly to the laminar state. In

the meantime, by changing the initial condition, we found another type of trajectories

in which one type of turbulence can directly transition to the other. Next, we will

try to probe this type of trajectories.

In fig. 7.3, we plot the projections of trajectories of the high resolution 3D DNS

cases on to the |〈v′∗x v′∗y 〉|max − A∗25 and the |〈v′∗x v′∗y 〉|max − Qrms state-spaces. Here,

|〈v′∗x v′∗y 〉|max defines the peak of the instantaneous Reynolds shear stress (RSS) profile,

A∗25 is the value of the log-law slope of the instantaneous mean velocity profile (White

et al., 2012; Zhu et al., 2019)

A∗ ≡ y∗
∂U∗m
∂y∗

, (7.10)

measured at y∗ = 25, and Qrms is the root-mean-square value of Q. Note that in

figs. 7.1 and 7.2, we adopted a relatively low resolution (Nx×Ny×Nz = 72×97×70) to

simulate IDT. This resolution is enough for the simulation of IDT and will not change

the statistics (e.g. the mean velocity) and dynamics (e.g. the time series of TKE

budget, and the the existence of solution) of IDT. However, capturing EDT requires

much higher resolution than that of IDT to resolve the sharp stress gradient. The EDT

structures will not be captured in those low resolution cases once IDT is erased from

the flow. Therefore, we adopt a higher resolution (Nx ×Ny ×Nz = 256× 131× 142)

here compared with previous 3D DNS for IDT. This resolution is comparable to

that in previous studies (Dubief et al., 2013; Shekar et al., 2019), but is still not

converged for the EDT flows. In fact, a converged mesh resolution for EDT is difficult
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Figure 7.3: State-space projections of solution trajectories on to different coordinate
combinations: (a) instantaneous RSS profile peak, |〈v′∗x v′∗y 〉|max, versus log-law slope
of the instantaneous mean velocity profile at y∗ = 25, A∗25, and (b) |〈v′∗x v′∗y 〉|max versus
the root-mean-square of the Q field, Qrms. Black dash lines occupying the upper and
lower halves (in both panels) are trajectories of the 3D IDT (Wi = 30) and 2D EDT
(Wi = 64) described in fig. 7.1

as mentioned by Sid et al. (2018), since EDT has infinitely small scale structures.

Although quantitative statistics of EDT do not converge, the dynamics, in terms of the

existence of solutions and their transition, has been tested and is largely independent

of the resolutions.

In fig. 7.3, three Wi cases (Wi = 40, 64, and 80) that are above the critical Wi for

a sustaining IDT at Reτ = 84.85, are tested. We also plot the trajectory projections

of the 3D low resolution IDT and the 2D EDT flows that has been discussed in

fig. 7.1, to indicate the location of the IDT and EDT states in the state space. It is

necessary to mention that the initial conditions of the cases in fig. 7.3 are different than

that discussed in fig. 7.2. Cases in fig. 7.3 choose a manually designed perturbation

that distinctly deviates from the two turbulent states, whereas the initial condition in
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fig. 7.1 is a statistically converged solution at slightly different parameters. In fig. 7.3,

the significant differences between the IDT and EDT states are clearly manifested by

the big gap between them in the state-space. Starting from the initial condition,

the trajectories of all these cases initially approach the EDT state. However, all of

them do not stay at the EDT state and quickly jump up to the IDT state. They

can stay at the IDT state for several hundred time units during which intermittent

cycles similar to that of the active-hibernating cycles are observed. Also, the location

of intermittent cycles of the three cases is close to that of the sustaining IDT case

in the two state-spaces. As the IDT structures are eliminated by polymers at the

high Wi, the three cases start to decay. Interestingly, all of them do not decay to

laminar (in fact, they never go to laminar in current time interval of 8000 time units)

but transition back to the EDT state. As the three cases reach the EDT state, they

will stay there for several thousands of time units. During this period, disturbances

of the flow are accumulated and another shooting to IDT can be triggered, which

are observed in all three cases. The alternation of turbulent flow states between

the two distinctly different states provides a new perspective for the dynamics of

polymeric flow at the high elasticity regime. In this dynamically changing turbulent

flow, EDT and IDT (and thus the inertial and elastic forces) both play an important

role. This is different from previous theories (e.g., the active-hibernation theory (Xi

and Graham, 2012b,a) and the EDT-dominated theory (Samanta et al., 2013; Sid

et al., 2018)) which depicted the high elasticity polymer turbulence solely from one

type of turbulent states.

The alternation between IDT and EDT states in the high elasticity polymeric flow

will be further discussed in fig. 7.4. Here, the Wi = 40 case in fig. 7.3 is picked as
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Figure 7.4: (a) Time series of bulk velocity Ub and polymer contribution to TKE
budget χ̄k, (b) time averaged and instantaneous mean velocity profiles, and instan-
taneous coherent structures at (c) instance I and (d) instance II in the Wi = 40 case
described in fig. 7.3. The iso-surfaces in (c,d) are vortices identified by Q = 0.004,
and color contours are tr(α)/b. Only vortices in the bottom half of the channel are
presented.
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a representative example. Figure 7.4(a) shows the time series of the bulk velocity

Ub and the polymer contribution to TKE budget χ̄k. After the initial evolution,

the bulk velocity starts to follow a clear periodic pattern with the period of 2500

time units. Interestingly, the time-averaged mean velocity profile (fig. 7.4(b)) taken

from one period (e.g., t ≈ 1500 − 4000) of the Wi = 40 case, is considerably close

to the Virk’s MDR profile, which indicates its potential relation to the MDR stage.

The decreasing period (t ≈ 1500 − 2200) of the Ub profile is corresponding to the

IDT period. Polymers in the IDT period have strongly negative contribution to the

TKE and thus responsible for dissipating turbulence. In the increasing period (e.g.,

t ≈ 2200 − 4000), the flow is dominated by elastic structures and is referred to as

the EDT state. The polymer contribution in the EDT period is sufficiently close to

zero but continuously increasing. Unlike the 2D EDT DNS in which IDT is restricted

by its 3D nature, in the 3D simulation, the inhibition of IDT is mainly due to the

suppression effect of polymers. Thus polymers in the EDT period are responsible for

both the suppression of IDT and the generation of EDT. As time in the EDT period

advances, more and more IDT structures (e.g. the streamwise vortical structures in

fig. 7.4(c)) are eliminated while EDT structures (e.g. the spanwise vortical structures

in fig. 7.4(d)) become stronger, the polymer contribution thus gradually grows and

eventually becomes positive. To intuitively see these two qualitative different states,

we pick two time instances, labels by I and II, which immediately precede the IDT-

EDT and EDT-IDT transitions. The instantaneous mean velocity profiles and the

flow structures are shown in fig. 7.4(b-d). At instance I, the flow is dominated by

the streamwise vortical structures (fig. 7.4(c)), while the mean velocity profile is far

below the time-averaged profile and is close the pure IDT flow (e.g., the Wi = 30
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case in fig. 7.2(b)). For instance II, the IDT structures are mostly eliminated in the

flow and the spanwise vortex trains and the band-like polymer structures show up

(fig. 7.4(d)) as a distinct sign of the EDT state. The mean velocity profile is higher

than the Virk’s MDR and is consistent with the 2D EDT DNS.

7.4 Conclusions and discussion

The dilute polymeric flow can be driven by the inertial and elastic forces. As a result,

two clearly different turbulent types: IDT and EDT, can be triggered and could

sustain independently or interactively.

There is a clear region in the Re −Wi parameter space where IDT and EDT

coexist. The terminal state of the flow in the overlap regime will depend on the

initial condition and the relative attractiveness of each state. IDT and EDT both

share some common features with the MDR stage but also have some differences. As

Wi increases, the mean velocity of IDT eventually converges to an asymptotic upper

limit, which is consistent with MDR. However, IDT cannot sustain as we further

increase Wi and will decay to the laminar, which is different from MDR. In the

meantime, EDT can sustain at a high Wi (same feature as that of MDR), but the

convergence of EDT will depend on the maximum extension of polymers, which is

also different from MDR.

As Wi is larger than the critical Wi of sustained IDT, the turbulent flow can

periodically alternate between the IDT and EDT states. This newly discovered dy-

namical state may relate to the MDR stage since the time average of this dynamical

state gives a mean velocity that is close to that of Virk’s MDR.
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Chapter 8

Conclusions and contributions

A small amount of polymers in turbulence can cause distinct changes in statistics

and lead to drastic drag reduction. This phenomenon is studied in a plane-Poseuille

channel using direct numerical simulation (DNS). With different parameter settings,

turbulent flows can exhibit qualitatively different behaviors. Especially, polymeric

turbulence can be driven by both the inertial force and the elastic force, resulting

in two completely different flow states: the inertia- and elasticity-driven turbulence

(IDT and EDT). In this dissertation, we discussed the behaviors of the two types of

turbulence.

DNS of IDT in a large box (L+
x × L+

z = 4000 × 800) is first investigated. Sev-

eral intermediate stages with qualitative differences are observed in IDT. The flow

statistics, e.g., the mean velocity profile, the Reynolds shear stress, and the energy

spectrum, are drastically changed in the log-law layer during the LDR-HDR transi-

tion. Despite these apparent changes in flow statistics, turbulent coherent structures

are also modified. Vortices homogeneously distribute across the flow field at LDR, but

strongly cluster at HDR. Turbulence hence becomes localized, creating laminar-like
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regions between these vortex clusters. Demonstrated by these changes are the differ-

ent polymer-turbulence interactions in the LDR and HDR stages. The first interaction

starts at the onset of DR, where the coil-stretch transition of polymers indiscrimi-

nately suppresses all turbulent fluctuations. The second mechanism occurs during

the LDR–HDR transition but its origin is unknown. Therefore, we proposed a mech-

anism based on two typical vortex regeneration cycles. In the streak-instability cycle,

new vortices are generated from small-scale disturbances that come from the bursting

events of the existing lifted-up vortices. On the other hand, a vortex can also be gen-

erated immediately next to an existing one, which forms the parent-offspring cycle.

At the HDR stage, polymers are capable of suppressing the lift-up and bursting of

vortices which substantially block the steak-instability pathway, leaving the parent-

offspring pathway the main mechanism of turbulence self-sustenance. As a conse-

quence, energy feeding to the log-law layer through the bursting process is blocked,

which changes the flow behaviors at the HDR stage.

Direct evidence to support the hypothesis requires the statistical analysis of vortex

configurations. This can be achieved by the newly developed vortex tracking algo-

rithm – VATIP. The VATIP algorithm connects vortex axis-points using the cone-

detective criterion by Jeong et al. (1997) and iteratively propagates the vortex axis

over all spatial dimensions. A classification procedure is also proposed to classify vor-

tices captured by the VATIP algorithm into several categories, including quasi-linear,

hairpins, hooks, and various branched vortices.

Implementation of the VATIP algorithm and the corresponding vortex classifi-

cation procedure to the inertia-driven polymeric turbulence supports our hypothesis

about the polymer-turbulence interactions during the LDR-HDR transition. At LDR,

257



Ph.D.Thesis - Lu Zhu McMaster - Chemical Engineering

polymers can weaken vortex motions and suppress turbulent fluctuations. But the

distribution and the balance between different classes of vortices are not affected. At

HDR, the effect of polymers on the vortex motions becomes different in two aspects:

first, polymers start to suppress the lift-up of quasi-streamwise vortices; second, the

generation pathway of curved vortices are interrupted. Both activities reduce the

group of the highly lifted vortices which is efficient for the momentum and energy

transfer between the buffer layer and log-law layer. This directly explains the chang-

ing flow statistics in the log-law layer at HDR.

The hypothesis of suppressing lift-up of vortices in HDR is also investigated in

a conditional sampling analysis. Here, we adopt Jeong et al. (1997)’s cone-detective

method to extract the axis-line of vortices. The reference points to align individual

vortex realizations are chosen to be the x-axis-point located at y+ = 50 and only the

realizations with the same sense of rotation are picked to form the conditional eddy.

The lifting angle of conditional eddy of the HDR case is considerably smaller than

the Newtonian case, indicating the weaker lift-up trend of vortices in HDR. These

observations also support our hypothesis.

When the elasticity of polymeric flow is high, IDT cannot sustain independently

and EDT becomes dominant in the flow. DNS of EDT requires a numerically stable

scheme that does not require the global artificial diffusion (GAD) – a widely adopted

strategy to avoid numerical oscillations when solving the polymeric turbulent system.

In our study, a new hybrid pseudo-spectral/finite-difference scheme (HM) is devel-

oped. This method uses a TVD scheme to deal with the convection term of the FENE-

P equation which efficiently eliminates the numerical oscillations introduced due to

the hyperbolic nature of the polymer constitutive equations. The hybrid method is
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tested in steady-state DNS and is compared with the pseudo-spectral method (SM)

with artificial diffusion. Although IDT obtained by the HM and SM schemes at low

Wi are largely consistent, only the HM scheme can obtain EDT at high Wi. The

artificial diffusion in SM is highly active in the near-wall region while weaker near

the center of the channel. Therefore it significantly affects the EDT structures which

attach to the wall. On the other hand, the IDT structures are mostly intensive in

regions away from the wall and the effect of GAD is weaker.

Exploring the Re −Wi parameter space of the dilute polymeric turbulence finds

that parameter regions where IDT and EDT can respectively sustain have substantial

overlap region. IDT and EDT both share some common features with the MDR stage

but also have some differences. As IDT cannot sustain independently at the high

elasticity, the flow starts to periodically alternate between the IDT and EDT states,

indicating a new dynamical polymeric turbulence.

As a summary, this dissertation investigated the statistics and dynamics of poly-

meric flows at different levels of elasticity, in order to understand the complex polymer-

turbulence interactions that lead to the drastic drag reduction. The major contribu-

tions of this dissertation are:

• We proposed a new mechanism that explains the qualitative LDR-HDR tran-

sition from the perspective of vortex dynamics. Starting from the LDR-HDR

transition, the lift-up process of vortices in the polymeric turbulence is sup-

pressed by polymers, which results in the modification of vortex regeneration

cycles and the abrupt changes of flow statistics.

• We developed a powerful tool, i.e. VATIP, to efficiently track the axis lines of

individual vortical structures in both Newtonian and viscoelastic turbulence.
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This new tool helps us analyze the vortex statistics at the LDR and HDR

stages of polymer turbulence and confirms our hypothesis of polymer-turbulence

interactions.

• A new hybrid SM-FDM DNS method was also developed to simulate the highly

elastic polymeric turbulence. This method successfully simulates the polymeric

turbulence without requiring an artificial diffusion. It is highly efficient and

accurate, ans is potable to be embedded into the widely used pure pseudo-

spectrum method.

• In the high elasticity polymeric turbulence, a new type of turbulent state was

found in which the flow motions is alternated between the IDT and EDT states.
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