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Abstract

The use of microorganisms in industrial processes has become very common. In

this thesis, we analyze three models of such systems that have applications in

green technology. The first is a simplified model of anaerobic digestion, originally

introduced as a qualitative simplification of the anaerobic digestion model no 1

(ADM1). While ADM1 is very complicated, the simplified model is composed of

only five ordinary differential equations. We show that this model can be reduced

to a two-dimensional system that is equivalent to the basic chemostat model with

explicit species death rate and non-monotone response function. We show that this

chemostat model has no periodic solutions and completely characterize the possible

dynamics of the two dimensional system and then the full five-dimensional sys-

tem. In the second model, we consider the self-cycling fermentation process with

two limiting essential resources with impulses that occur when both resources fall

below a prescribed threshold. We show that the successful operation of the self-

cycling fermentor is initial-condition dependent and that success is equivalent to

the convergence of solutions to a periodic solution. We show numerically that

there is an optimal choice for the emptying/refilling fraction and that the optimal

choice is not always 1/2, the standard choice in the engineering literature. In the

third model, we consider the self-cycling fermentation process with an arbitrary

number of nutrients with impulses that occur when one specified nutrient concen-

tration falls below a prescribed threshold. We show that successful operation of

the self-cycling fermentor is equivalent to the convergence of solutions to a peri-

odic solution. We derive conditions for the existence of this periodic solution and

initial-condition-dependent conditions for convergence to this solution.
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Chapter 1

Introduction

While the use of microorganisms in industrial processes is not new, the mathe-

matical modelling of these industrial processes is, with the first serious models

appearing in the 1960s. There are two main philosophies for modelling these com-

plex systems. On the one hand, we can try to capture as many of the specific

interactions occurring in the system as possible. Such models can end up as very

detailed descriptions of the true situation, and can give accurate quantitative pre-

dictions for a given set of initial conditions if the functions are known and the

parameters can be measured. However, they are often large and complicated, only

qualitative properties of the functions are usually known and many (if not most)

of the parameters are not measurable. For example, the anaerobic digestion model

No. 1 (ADM1) [3] is a system of 32 differential equations and 8 algebraic equa-

tions that describe 7 different microbial species, the nutrients that are consumed,

and certain products produced by the microorganisms. The size and complexity

of these models often limits our ability do rigorous mathematical analysis and

hence make predictions concerning the full spectrum of dynamics of the system

1
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or even understand the mechanisms responsible for certain outcomes. Numerical

simulations are possible, but functions, parameters, and initial conditions must be

specified. After creating a detailed model of the system, we can try to reduce the

model to include what we suspect are the most important aspects. In the case of

anaerobic digestion, this approach was taken in, for example, [4] and [18]. The goal

in this case is to obtain a model that is simple enough for mathematical analysis

but is still a good approximation of the actual system being modelled.

Another approach is to start with a basic model and use it as a foundation to

build from. This way, modellers can ensure that they understand the fundamental

mechanisms before testing more complex ideas. These models tend to be simple

enough for rigorous mathematical analysis, since they typically focus on only one

or two important interactions. The ability to conduct mathematical analysis can

lead to important insights that would not be possible through numerical simulation

alone. One very successful model in microbiology is the basic model of species

competition in the chemostat [15].

The chemostat is a laboratory apparatus, originally developed by Novick and

Szilard [14] to study bacterial growth in the laboratory. Ecologists have since used

chemostats as a lab-scale model of a lake ecosystem. The basic setup involves a

small tank that is filled with a solution containing a community of microorganisms

and an abundance of all the nutrients the microorganisms need to grow and survive,

except for one nutrient that is present in limiting quantities. A fresh supply of

nutrients is fed into the tank at a constant rate, while excess liquid is removed

at the same rate in order to keep the volume constant. Chemostats are operated

under ideal conditions. The input nutrient concentration and dilution rates are

2
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held constant, and the medium in the tank is stirred in order to keep the content of

the vessel homogeneous. Under these conditions, a system of autonomous ordinary

differential equations can be used to predict the concentration of limiting nutrients,

s(t), and the biomass, xi(t), i = 1, 2, . . . , n, at time t, of populations competing

for the limiting nutrient. The basic model of the chemostat model is given by

s′(t) = D(sin − s(t))−
n∑
i=1

1
yi
µi(s(t))xi(t), (1.1)

x′i(t) = −Dxi(t) + µ(s(t))xi(t)− kixi(t), i = 1, . . . , n, (1.2)

where D is the flow rate of the incoming nutrient solution; sin is the concentra-

tion of the incoming limiting nutrient; µi : R+ → R+ is the nutrient-dependent

growth rate of the microbial population, xi, often called a response function; yi

is a species dependent conversion factor called a yield coefficient; and ki is each

species’ decay rate, or maintenance coefficient. The simplicity of this mathemat-

ical model allowed for detailed mathematical analysis. In particular, the analysis

of this model led to the prediction that the relative values of the minimum con-

centration of the limiting nutrient required to sustain growth of each species of

the microbial community (called the break-even concentration) was the key factor

in determining the outcome of microbial competition in the chemostat. When

species-specific death rates were ignored, the analysis of the model in the case of

Monod response functions was done in [9], in the case of general monotone re-

sponse functions restricted to a globally attracting simplex in [1], and for general

monotone and non-monotone response functions with general initial conditions in

[5]. When death rates were included, the analysis in the case of Monod response

functions was done in [7] and for general monotone response functions and some

3
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non-monotone response functions in [20]. This competitive-exclusion principle was

verified experimentally in 1980 by Hansen and Hubbell [6].

The model of the basic chemostat has been used as the foundation for many

other models of microbial systems. In [10], the chemostat model was modified

to consider the case that the medium in the tank is not perfectly well-stirred,

a situation that is likely to occur in large bioreactors or lakes. The unstirred

chemostat model in [10] was then used to develop a model of microbial growth

in the large intestine [2]. In [8], the chemostat model was modified to include

periodically varying nutrient input concentrations, meant to describe seasonally

varying nutrient input in lakes. Even highly complicated models, such as ADM1,

often use the chemostat model as a foundation.

The goal of this thesis is to investigate several models that can be seen as either

modifications of the chemostat model or as simplifications of more detailed models.

By rigorously analyzing these models, we hope to contribute to the understanding

of microbial dynamics and how microbial populations can be used in industrial

processes.

In Chapter 2, we study a qualitative simplification of ADM1, which is used

to describe the industrial anaerobic digestion process used for biogas production.

Biogas is an important (and relatively easy to produce) biofuel that can be used

in place of natural gas and other fossil fuels to produce energy. In contrast to

ADM1’s 32 differential equations, the simplified model (proposed by Bornhöft

et al. [4]) has only 5 state variables. While the authors claim that the simpli-

fied model has the same qualitative long-term dynamics as ADM1, we show that

4
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this cannot be the case and that the simplified model is missing a key secondary

biogas-producing equilibrium that was shown to potentially be the optimal biogas-

producing equilibrium in [18]. We show that, at its core, the simplified model is

equivalent to a variant of the basic model of growth in the chemostat in which the

response function is non-monotone (i.e., the nutrient is inhibitory at both low and

high concentrations) and the species decay rate is not neglected. The dynamics

of this model had not been completely analyzed in the case when the parameters

predict existence of two interior equilibria with bistability involving one of the

interior equilibria and the washout steady state. We show that no periodic orbits

are possible in this case, and that all solutions converge to an equilibrium point,

completing the analysis of this system. Despite our objections on the validity of

the model proposed in [4], we conduct some stochastic simulations of the system,

and demonstrate that if stochasticity causes the microorganism population to die

out, then it does so shortly after start up. Once the system is near equilibrium,

the dynamics appear robust to stochastic perturbations. This chapter appeared

in SIAM Journal of Applied Math as [13].

In Chapter 3 we investigate the growth of a microorganism on two essential, lim-

iting nutrients in a self-cycling fermentor (also called a sequential batch reactor),

which is a variant on the chemostat model in which nutrient is not continuously

fed into the system, but input as a discrete event when a prescribed condition

(called an impulse condition or decanting condition) is met. By assuming that

the emptying/refilling time is much shorter than the growth dynamics (i.e., in-

stantaneous), we can model the self-cycling fermentation process using a system

of impulsive differential equations.

5
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Impulsive differential equations are a form of discontinuous dynamical system

in which the flow of a continuous dynamical system is intermittently mapped else-

where in phase space. To describe a system of impulsive differential equations,

we require the differential equations that govern the flow between mappings, a

condition to define when the mappings occur (called an impulse condition) and

the mappings on phase-space that occur when the impulse condition is met (called

impulses or an impulse map). Each piece of information is important to the dy-

namics, and the problems encountered can be much more complex than those

encountered in ordinary differential equations. Nevertheless, the questions we ask

are often the same, for example: ‘What are the long term dynamics of the system?’

and ‘How do the long term dynamics depend on parameters or initial conditions?’

Many of the tools used to answer these questions are also similar to those used in

continuous dynamical systems, such as Lyapunov’s second method, which makes

regular appearances throughout this thesis.

For the model studied in Chapter 3, we derive conditions for the existence of

a periodic solution to the system of equations that corresponds to the survival

of the microorganism. We further derive initial-condition-dependent criteria for

solutions to converge to this periodic orbit and show that, when these criteria

are not satisfied, the microorganism eventually dies out. With the application of

wastewater treatment in mind, we numerically find an optimal fraction of liquid to

add and remove at impulses to maximize the throughput of the fermentor. This

chapter appears in Mathematical Biosciences and Engineering as [11].

Chapter 4 is an extension of the results of Chapter 3. In this model, we consider

an arbitrary number of limiting essential nutrients in a self cycling fermentor. In

6
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contrast to Chapter 3, the response functions considered are general monotone-

increasing functions that vanish if any nutrient concentration vanishes. This class

of functions includes the response functions used in Chapter 3 as an example.

We also consider different impulse conditions, with impulses occurring only when

the tracked nutrient reaches a threshold value. Again, we find conditions for the

existence of a periodic solution and determine initial-condition-dependent criteria

for other solutions to converge to the periodic solution.

In Chapter 5, we summarize the results of the thesis and discuss how they fit

into the landscape of current research.

7
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Chapter 2

Global analysis of a simplified

model of anaerobic digestion and

a new result for the chemostat

Abstract

A. Bornhöft, R. Hanke-Rauschenbach, and K. Sundmacher, [Nonlinear Dyn.,

73 (2013), pp. 535–549] introduced a qualitative simplification to the ADM1

model for anaerobic digestion. We obtain global results for this model by

first analyzing the limiting system, a model of single species growth in the

chemostat in which the response function is non-monotone and the species

decay rate is included. Using a Lyapunov function argument and the theory

of asymptotically autonomous systems, we prove that even in the param-

eter regime where there is bistability, no periodic orbits exist and every

solution converges to one of the equilibrium points. We then describe two

8
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algorithms for stochastically perturbing the parameters of the model. Simu-

lations done with these two algorithms are compared with simulations done

using the Gillespie and tau-leaping algorithms. They illustrate the severe

impact environmental factors may have on anaerobic digestion in the tran-

sient phase.

2.1 Introduction

Anaerobic digestion is a biochemical process where microorganisms or multicellu-

lar organisms break down organic material in the absence of oxygen. Anaerobic

digestion is an important part of many industrial practices, including the treat-

ment of wastewater and the production of biogas. The role of anaerobic digestion

in such applications has been an active area of recent research [1, 2, 3, 4, 10, 12,

14, 15, 19, 21]. This paper focuses on a particular model of anaerobic digestion in

biogas production.

The foundation of previous work on the mathematical analysis of the production

of biogas is the Anaerobic Digestion Model 1 (ADM1) [1] introduced in 2002. If

implemented as a system of differential equations, this model has 32 state variables,

including seven different species of microorganisms. Understandably, anything

other than numerical analysis has not been feasible.

In an effort to formally analyze the system, several groups [4, 10, 12, 24] have

studied various subsystems of ADM1. Recently, Weedermann et al. [24, 25] com-

bined two previous models [10, 12] to get a reasonably complete picture using only

9
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eight state variables. Due to the inclusion of two pathways to biogas production in

[24] and because the model captures the ADM1’s sensitivity to the accumulation

of acetic acid, [24] illustrates some of the complexity of ADM1, which must exhibit

the same or an even richer dynamics than the model in [24].

Bornhöft et al. [4] introduced a model with five state variables based on their

observations from a numerical steady-state analysis of the ADM1 model, and con-

jectured that their model undergoes the same bifurcations as the ADM1 model

with the substrate inlet concentration as bifurcation parameter. The model in [4]

is the first simplified model to consider the effects of ammonia. It is demonstrated

that the proposed model is able to capture the same effects of ammonia on anaer-

obic digestion that are displayed by the ADM1 model. However, the analysis in

this paper shows that the model does not possess all of the dynamics of ADM1,

even if a broader class of growth functions is considered than the ones that were

initially proposed. The model is missing some of the dynamics shown in [24],

namely the possible bistability between two equilibria that both correspond to

biogas production, a behaviour of the full ADM1 model that is also noted in [4].

The model in [4] considers two stages of anaerobic digestion, acidogenesis and

methanogenesis. In the first stage, simple substrates are broken down by acidogenic

microorganisms. The microorganisms use the energy from the simple substrates to

grow, and produce volatile fatty acids (VFAs) and ammonia as byproducts. The

VFAs and ammonia have opposing effects on the pH of the system; an increase

in the concentration of VFAs will decrease the pH, while an increase in the con-

centration of ammonia will increase the pH. In the second stage, methanogenic

microorganisms convert the VFAs to biogas. The methanogenic microorganisms

10
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Simple
Substrates

(S1)

(1)
Acidogenesis

(X1)

Volatile
Fatty Acids

(S2)

Ammonia
(S3)

(2)
Methanogenesis

(X2)
Biogas

-

Figure 2.1: The anaerobic digestion process. (1) Acidogenic
microorganisms break down simple substrates into VFAs and am-
monia. (2) Methanogenic microorganisms break down VFAs into
biogas such as methane. This process is inhibited by ammonia.

are very sensitive to the environment, and can only tolerate a relatively narrow

pH range. Furthermore, ammonia is toxic to the methanogenic microorganisms

in large quantities and will restrict their growth. The flow chart in Figure 2.1

summarizes the process.

In this paper we provide a formal mathematical analysis of the model proposed

in [4], allowing a more general class of response functions. In Section 2.2, we

describe the model and assumptions, and give properties of the solutions of the

system. If the substrate input concentration is too low, the system converges

to a state where no microorganisms are present. We show that if the substrate

input concentration is high enough to allow the acidogenic microbial population

to survive, the system reduces to a limiting system that is a two-dimensional basic

model of growth in the chemostat that includes the decay rates and allows for any

non-monotone response function.

In Section 2.3, we study the dynamics of this limiting system. We obtain a new

global result in the case that the parameters allow bistability by proving that no

nontrivial periodic orbits exist.
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In Section 2.4 we use the theory of asymptotically autonomous systems and

the results for the limiting system from Section 2.3 to provide a complete global

analysis of the anaerobic digestion model in [4] for a more general class of response

functions.

In Section 2.5, we propose two alternative prototype functions to model the

growth of the methanogenic archaea and capture the inhibition by ammonia. These

prototypes complement the one used in [4], which has the property that there is

no growth in the absence of ammonia. The prototypes we introduce allow growth

in the absence of ammonia, but are either unimodal or decreasing in ammonia.

We provide bifurcation diagrams for all three prototypes, and compare how they

influence the outcome.

In Section 2.6 we further investigate the model when the parameters are selected

so that there are two stable steady states. In industrial applications of processes

such as anaerobic digestion, operators must be aware of how physical and envi-

ronmental processes, and changes in the biology of the species can affect the long

term health of the reactor. One way to address these challenges is to include the

effects of stochasticity in simulations of the model. Stochasticity can be a result of

random births and deaths, or of fluctuations in the model parameters, possibly due

to mutations or changes in the environment. Models of chemostats that include

stochasticity have been considered in the literature (e.g., [6, 13]), but our approach

differs from the ones presented in those papers. We consider stochasticity in the

case where there are fluctuations in the parameters, and compare the results to two

well known methods for simulating stochasticity in the case where there are ran-

dom births and deaths. Our studies give new insight into why seemingly identical
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reactor setups can lead to very different reactor performances. In Section 2.7, we

summarize our results and discuss their implications for biogas production using

anaerobic digestion.

2.2 The Model

Let X1, X2, S1, S2 and S3 denote the concentrations of the acidogenic microorgan-

isms, methanogenic microorganisms, simple substrates, acetic acid and ammonia,

respectively. The model is described by the system

Ṡ1 = (S(0) − S1)D − y1µ1(S1)X1, (2.1a)

Ẋ1 = −D1X1 + µ1(S1)X1, (2.1b)

Ṡ2 = −DS2 + y2µ1(S1)X1 − y3µ2(S2, S3)X2, (2.1c)

Ṡ3 = −DS3 + y4µ1(S1)X1, (2.1d)

Ẋ2 = −D2X2 + µ2(S2, S3)X2, (2.1e)

where D is the dilution rate, S(0) is the input concentration of simple substrates,

Di = D + ki, where ki ≥ 0 are the respective decay rates of Xi, and yi are yield

constants.

Let R+ and R2
+ denote the set of non-negative real numbers and the non-

negative plane, respectively. We make the following assumptions concerning µ1

and µ2:

(H1) µ1(S1) ∈ C1([0,∞)), and µ′1(S1) > 0 for all S1 > 0.

13
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(H2) µ1(0) = 0, µ1(S1) > 0 for all S1 > 0.

(H3) µ2(S2, S3) ∈ C1(R2
+), and µ2(S2, S3) > 0 if S2 > 0 and S3 > 0.

(H4) limS3→∞ µ2(S2, S3) = 0 for all S2 ≥ 0.

(H5) limS2→∞ µ2(S2, S3) = 0 for all S3 ≥ 0.

(H6) µ2(0, S3) = 0 for all S3 ≥ 0 and µ2(S2, 0) ≥ 0 for all S2 > 0

(H7) There exists Γ(S3) ∈ C(R+) such that for S2 < Γ(S3), ∂S2µ2(S2, S3) > 0 and

for S2 > Γ(S3), ∂S2µ2(S2, S3) < 0.

Unlike in [4], we do not assume that both Xi have identical decay rates. (H1) and

(H2) are satisfied by any of the Holling type I, II or III growth functions, which

are standard to chemostat models. (H3), (H4), and (H5) capture the inhibitory

nature of S2 and S3, guaranteeing that large quantities of either S2 or S3 will

be detrimental to the growth of X2. (H6) ensures that an absence of acetic acid

will result in no growth of the methanogenic microorganisms, while an absence

of ammonia does not necessarily have this effect. We would like to note that the

prototype describing the growth of methanogens proposed in [4] has the property

that limS3→0 µ2(S2, S3) = 0 for all S2 ≥ 0. We decided to relax this condition.

(H7) intends to capture the nature of the inhibition mechanisms outlined in [4],

whereby small concentrations of S2 are limiting on the growth of X2, while large

concentrations of S2 will increase the pH and hence be inhibitory. The curve

Γ(S3) is intended to describe how ammonia will decrease the pH to counteract

the increase in pH caused by an increase in acetic acid. We make no further

assumptions about how µ2(S2, S3) changes with S3. In many cases, including
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ADM1, µ2(S2, S3) will have a unimodal shape for fixed S2, but we do not want to

rule out the possibility of other profiles that may be useful.

Here, we introduce some notation. The break-even concentration of S1, λ1, is

the unique positive extended real number that solves

µ1(λ1) = D1. (2.2)

If no such number exists, we take λ1 = +∞. When S1 = λ1 and X2 = 0, the

equilibrium concentrations of S2 and S3, λ2 and λ3, respectively, are given by

λ2 = y2

y1
(S(0) − λ1) (2.3)

λ3 = y4

y1
(S(0) − λ1). (2.4)

The break-even concentrations of S2, σ1 and σ2, are the extended real numbers

σ2 ≥ σ1 that solve

µ2(σi, λ3) = D2. (2.5)

If no such numbers exist, which is the case when µ2(Γ(S3), S3) < D2, then we write

σ1 = σ2 = +∞.
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System (2.1) has a total of four possible equilibria,

E = (S(0), 0, 0, 0, 0) (2.6a)

E0 = (λ1, X
∗
1 , λ2, λ3, 0) (2.6b)

E1 = (λ1, X
∗
1 , σ1, λ3, X

∗
2,σ1) (2.6c)

E2 = (λ1, X
∗
1 , σ2, λ3, X

∗
2,σ2), (2.6d)

where

X∗1 = D(S(0) − λ1)
y1D1

and X∗2,σi = D(λ2 − σi)
y3D2

.

These equilibria are only biologically meaningful if each of the components is non-

negative. E1 and E2, when they exist, are called interior equilibria, since they lie

in the interior of the positive cone R5
+. E and E0 are called boundary equilibria,

since they lie on the boundary of the positive cone R5
+.

The following propositions give well-posedness results for system (2.1), provide

conditions for the washout of the microorganisms in the reactor when the substrate

input concentration is too low, and introduce the limiting system when the input

concentration is high enough so that the acidogens survive. The proofs are given

in Section 2.A.

Proposition 2.2.1. Assume that Xi(0) ≥ 0 and Si(0) ≥ 0.

i) If X1(0) = 0, then solutions converge to E as t→∞.

ii) If X1(0) > 0 and X2(0) = 0, then X1(t) > 0 and Si(t) > 0 for all t > 0 while

X2(t) = 0 for all t ≥ 0.
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iii) If X1(0) > 0 and X2(0) > 0, then Xi(t) > 0 and Si(t) > 0 are positive for

all t > 0.

iv) All solutions are bounded for t ≥ 0.

Proposition 2.2.2. If λ1 ≥ S(0), then E is a globally asymptotically stable equi-

librium of (2.1).

Proposition 2.2.3. If λ1 < S(0), then (2.1) is a quasi-autonomous system with

limiting system

Ṡ2 = −DS2 + λ2D − y3µ2 (S2, λ3)X2, (2.7a)

Ẋ2 = −D2X2 + µ2(S2, λ3)X2. (2.7b)

By Theorem 1.4 in [22], it will be enough to study the dynamics of this limiting

system.

2.3 Global Analysis of Growth in the Chemostat

After the change of variables

X(t) = y3X2(t), S(t) = S2(t), µ(S(t)) = µ2(S2(t), λ3), S0 = λ2,
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system (2.7) becomes a model of the chemostat:

Ṡ(t) = −(S(t)− S0)D − µ(S(t))X(t) (2.8a)

Ẋ(t) = −D2X(t) + µ(S(t))X(t). (2.8b)

Recall that µ2(S(t), λ3) satisfies (H3) and (H4), and hence µ(S(t)) is a non-

monotone response function with break-even concentrations 0 < σ1 < σ2, the

extended real numbers that solve µ(σi) = D2.

We define the equilibria of (2.8) that correspond to E0, E1, and E2, respectively,

for system (2.1) defined in (2.6b)-(2.6d):

E0 = (S0, 0), E1 = (σ1, X
∗
σ1), E2 = (σ2, X

∗
σ2).

where X∗σi = D(S0 − σi)
D2

, i = 1, 2.

Models of the chemostat have been well studied (e.g., see [20, 11] and the

references therein). Model (2.8) is a model of growth of a single species in the

chemostat with non-monotone response function that includes the species decay

rate, i.e. D2 = D + ε where ε > 0 is the species decay rate.

In Wolkowicz and Lu [26], model (2.8) extended to the n species case was an-

alyzed. The results of that paper, if applied to the single species growth model,

completely determine the dynamics of (11) when µ(S(t)) is any monotone increas-

ing function or it is non-monotone and σ1 < S0 ≤ σ2. However, the case that

µ(S(t)) is a non-monotone response function and σ1 < σ2 < S0, remained open.
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Here, we provide a proof in this case and thus complete the global analysis of

system (2.8). In particular, we prove that there are no periodic orbits, and hence

although the outcome is initial condition dependent, either the species dies out or

it approaches an equilibrium.

In the following theorem, we summarize what is known for the dynamics of

(2.8), and provide a proof in the case that had remained open.

Theorem 2.3.1. Consider model (2.8). Assume µ(S) is continuously differen-

tiable, µ(0) = 0, µ(S) ≥ 0 for all S > 0, and there exist positive numbers σ1 ≤ σ2

(possibly infinite) such that µ(S) < D2 if 0 < S < σ1, µ(S) > D2 if σ1 < S < σ2,

and µ(S) < D2 if S > σ2. Let S(0) ≥ 0 and X(0) > 0.

i) If S0 ≤ σ1 ≤ σ2, then E0 is globally asymptotically stable.

ii) If σ1 < S0 ≤ σ2, then E1 is globally asymptotically stable.

iii) If σ1 = σ2 < S0, then E0 is locally asymptotically stable and attracts all

solutions except the solutions in the stable manifold of E1 = E2.

iv) If σ1 < σ2 < S0, then E1 and E0 are locally asymptotically stable and E2

is a saddle. Furthermore, any orbit that is not in the stable manifold of E2

converges to either E1 or E2.

Proof. i)-ii) See [26].

iii) This result follows from standard phase plane analysis. When σ1 = σ2, E1

and E2 coalesce and are unstable. All orbits converge to E0 except those in the

stable manifold of the degenerate saddle E1 = E2.
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iv) If σ1 < σ2 < S0, then E0, E1, and E2 all lie in R2
+. From standard local

stability analysis, it follows that E0 and E1 are both locally asymptotically stable

and E2 is a saddle.

Next we show that no nontrivial periodic solutions are possible. We proceed

using proof by contradiction. Suppose that there exists a nontrivial periodic solu-

tion, Φ. By Proposition 2.2.1 all solutions are bounded and the first quadrant is

invariant. By the Poincaré-Bendixson Theorem and standard phase-plane analysis,

Φ must surround E1, and must lie in the set

G = {(S,X) : 0 < S < σ2, X > 0}.

Define the Lyapunov function,

V (S,X) =
∫ S

σ1

(µ(ξ)−D2)(S0 − σ1)
D2(S0 − ξ) dξ +

[
X −X∗σ1 −X

∗
σ1 ln

(
X

X∗σ1

)]
, (2.9)

as in [26]. See Figure 2.2 for phase portraits of system (2.8) with typical level sets

of the Lyapunov function. Note that (2.9) is a valid Lyapunov function for E1 in

G, and

V̇ (S,X) = X(µ(S)−D2)
(

1− µ(S)(S0 − σ1)
D2(S0 − S)

)
,

is non-positive, for all S ∈ [0, σ2] and X ≥ 0, i.e., for all S in the closure of G. By

examining

∇V (S,X) =
(

(µ(S)−D2)(S0 − σ1)
D2(S0 − S) , 1−

X∗σ1

X

)
= 0,

20

http://www.mcmaster.ca/
http://ms.mcmaster.ca/


Ph.D. Thesis — Tyler Meadows; McMaster University — Math and Stats

we see that E1 and (σ2, X
∗
σ1) are the only critical points of V (S,X) with S ≤ σ2.

(σ2, X
∗
σ1) is directly above E2 in phase space, since by definition X∗σ1 > X∗σ2 . Notice

that ∂2V (S,X)/∂X2 = X∗σ1/X
2 > 0 for all X > 0, ∂V (S,X)/∂S < 0 for 0 < S <

σ1, ∂V (S,X)/∂S > 0 for σ1 < S < σ2, and ∂V (S,X)/∂S < 0 for σ2 < S < S0. It

follows that E1 is a local minimum of V (S,X), and (σ2, X
∗
σ1) is a saddle point of

V (S,X). The level set V (S,X) = V (σ2, X
∗
σ1) is given by

V (σ2, X
∗
σ1) =

∫ σ2

σ1

(µ(ξ)−D2)(S0 − σ1)
D2(S0 − ξ) dξ.

For S ≤ σ2, it is a closed curve surrounding E1 and it passes through the point

(σ2, X
∗
σ1) (see the bold level set in Figure 2.2). The set

U = {(S,X) ∈ R2
+ : 0 ≤ S ≤ σ2, V (S,X) ≤ V (σ2, X

∗
σ1)}

is a positively invariant set where V̇ (S(t), X(t)) ≤ 0. For the periodic orbit, Φ, to

surround E1, it must enter U . Since U is a positively invariant set, it follows that Φ

is contained entirely in U . By the minor variation of LaSalle’s invariance principle

[26], any trajectory in U converges to the largest invariant set in U ∩ {(S,X) :

V̇ (S,X) = 0}. The only such invariant set is E1, and therefore Φ = E1 is an

equilibrium point, a contradiction.

Now, from standard phase plane analysis and the Poincaré-Bendixson Theorem,

it follows that all orbits converge to one of the three equilibria as t tends to infinity.

The one-dimensional stable manifold of E2 acts as a separatrix, defining the basins

of attraction for E1 and E0.
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(a) (b)

Figure 2.2: Phase portraits of system (2.8) with the level sets
of V (S,X). The dashed lines are the nullclines for X and the
dashed curve is the nullcline for S. The equilibria E0, E1, and E2
are indicated by circles, and the point (σ2, X

∗
σ1) is indicated by

a diamond. The grey curves are the level sets of V (S,X). The
bold curve is the level set of V (S,X) that passes through the point
(σ2, X

∗
σ1). These figures were produced using Maple [16].
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2.4 Global Analysis of the Full System (2.1)

Theorem 2.4.1. Consider model (2.1).

i) If λ1 ≥ S
(0)
1 , then E is globally asymptotically stable.

ii) If λ1 < S
(0)
1 and λ2 ≤ σ1 ≤ σ2, then E0 is a globally asymptotically stable

equilibrium.

iii) If λ1 < S
(0)
1 and σ1 < λ2 ≤ σ2, then E1 is a globally asymptotically stable

equilibrium.

iv) If λ1 < S
(0)
1 and σ1 < σ2 < λ2, then E0 and E1 are locally asymptotically

stable, and E2 is a saddle. Furthermore any orbit that does not lie on the

stable manifold of E2 converges to one of E0 or E1.

Proof. i) was proved in Proposition 2.2.2.

ii) - iv) Since each of the Ei, i = 0, 1, 2 for model (2.1) corresponds to Ei

for system (2.8), the results follow from the results for the limiting system given

in Theorem 2.3.1, followed by an application of the theory for asymptotically

autonomous systems, either by using Theorem 1.4 in [22], or by a direct proof

using the Butler-McGehee Lemma (as stated in Lemma 5.2 in [5] and applied

there).
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2.5 Bifurcation Analysis of Full System (2.1)

As a result of the analysis of the previous two sections, the only possible bi-

furcations that can occur in (2.1) are transcritical bifurcations and saddle-node

bifurcations.

In [4], a prototype growth function was introduced to capture the inhibition

caused by ammonia. This prototype

µ2,I(S2, S3) = mIS2S3

(K + S2)(S3 + k1S2)(1 + k2S3) , (2.10)

has the property that when there is no ammonia, which is toxic to the methanogenic

microorganisms, the methanogenic microorganisms are unable to grow. We intro-

duce two additional prototype functions

µ2,II(S2, S3) = mIIS2

K + k1(S2 − S3)2 + rS2S3
, (2.11a)

µ2,III(S2, S3) = mIIIS2(1 + S3)
(K + k1S2 + rS2

2)(a+ S2
3) , (2.11b)

that satisfy (H3)-(H7). Both µ2,II(S2, S3) and µ2,III(S2, S3) satisfy the additional

property, µ2,(S2, 0) ≥ 0 with equality only when S2 = 0 or in the limit as S2 →∞.

For the parameters given in Table 2.1, µ2,II(S2, S3) is strictly decreasing in S3 and

can be thought of as the opposite extreme of µ2,I(S2, S3). It describes the scenario

where ammonia is strictly inhibitory and the methanogenic microorganisms do best

without any ammonia present. With a different set of parameters this response

function can be unimodal in S3. The third prototype, µ2,III(S2, S3) covers the

middle ground between µ2,I(S2, S3) and µ2,II(S2, S3); it is unimodal in S3, like
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(a) (b)

(c) (d)

Figure 2.3: Plots of each prototype in 3-dimensions: (a)
µ2,I(S2, S3), (b) µ2,II(S2, S3), (c) µ2,III(S2, S3). (d) shows all three
prototypes on the same axes for comparison. Parameters values
used are given in Table 2.1.
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µ2,I(S2, S3), but is non-zero when S2 > 0 and S3 = 0, like µ2,II(S2, S3).

The substrate input concentration, S(0), and dilution rate, D, are the two pa-

rameters that the operator of a reactor has the ability to control. In our bifurcation

analysis, we focus on how the dynamics of the full system (2.1) change when these

parameters vary. We note that λ2 and λ3 depend on S(0) (see (2.3) and (2.4)), and

hence, maxS2>0 µ2(S2, λ3) changes when S(0) changes. From the stability analysis

in Section 2.3, two scenarios are possible. In the first scenario (see Figure 2.4),

there is a transcritical bifurcation when λ2 = σ1, a transcritical bifurcation when

λ2 = σ2, and a saddle-node bifurcation when maxS2>0 µ2(S2, λ3) = D2. In the

second scenario (see Figure 2.5) there are two saddle node bifurcations as λ3 in-

creases. This sequence of bifurcations occurs because µ2,I(S2, S3) and µ2,III(S2, S3)

are unimodal in S3. With the parameters listed in Table 2.1, the second prototype,

µ2,II(S2, S3), is strictly decreasing in S3, and so only the first scenario is possible.

The other two prototypes, µ2,I(S2, S3) and µ2,III(S2, S3), are unimodal in S3, and

either scenario is possible.

In the bifurcation diagrams shown in Figures 2.4 and 2.5,

µ1(S1) = κS1

r1 + S1
, (2.12)

and the parameters are the ones used in [4]. Any parameters not given in [4] (e.g.,

mII , mIII , r, and a), were chosen so that the functions, µ2,II and µ2,III, closely

resemble the function µ2,I given in [4]. See Table 2.1 for the parameter values

used. A plot of each function is shown in Figure 2.3. The bifurcation diagrams

in Figure 2.4 are qualitatively similar for each uptake function. The bifurcation
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Table 2.1: The parameter values used in the following bifurca-
tion diagrams are the ones used in [4], except mII ,mIII , r, and a,
which were chosen so that the response functions µ2,II and µ2,III
closely resemble µ2,I . The parameter D is the bifurcation parame-
ter in Figures 2.4(a), 2.4(c) and 2.4(e), and S(0) is the bifurcation
parameter in Figures 2.4(b), 2.4(d) and 2.4(f).

Parameter S(0) D Di, i = 1, 2 κ K k1 k2 r r1

Value 50 0.15 0.16 1.2 9.28 0.05 0.5 0.1 7.1

Parameter mI mII mIII y1 y2 y3 y4 a

Value 1.64 0.4 3 42.14 116.5 268 1.165 12

diagrams corresponding to µ2,II(S2, S3) and µ2,III(S2, S3) resemble the diagram for

ADM1 in [4] more closely than the diagram for µ2,I(S2, S3).

In the diagrams where D was used as the bifurcation parameter (Figures 2.4(a),

2.4(c) and 2.4(e)), there are three clear regions. In the first region when 0 <

D < D∗1, only the equilibria E1 and E0 lie in the positive cone, E1 is globally

asymptotically stable and therefore all non-stationary solutions converge to E1.

When D = D∗1 the washout equilibrium E0 undergoes a transcritical bifurcation.

In the second region, where D∗1 < D < D∗2 all three equilibria lie in the positive

cone. E1 and E0 are locally asymptotically stable and E2 is a saddle. All solutions

(except the stable manifold of E2) converge to one of E1 or E0, depending on initial

conditions. When D = D∗2, the two interior equilibria E1 and E2 undergo a saddle

node bifurcation. In the third region, where D∗2 < D only E0 exists, and it is

globally asymptotically stable. Therefore all solutions tend to E0.
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Figure 2.4: Bifurcation diagrams with bifurcation parameter
D in (a), (c), (e) and S(0) in (b),(d), (f) and response func-
tion µ2(S2, S3) = µ2,I(S2, S3) in (a) and (b), and µ2(S2, S3) =
µ2,II(S2, S3) in (c) and (d) and µ2(S2, S3) = µ2,III(S2, S3) in (e)
and (f).
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Figure 2.5: Bifurcation diagrams with bifurcation parameter
S(0) illustrating two saddle node bifurcations. (a) µ2(S2, S3) =
µ2,I(S2, S3). (b) µ2(S2, S3) = µ2,III(S2, S3). The diagrams with
µ2,II(S2, S3) do not exhibit this behaviour.
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2.6 Stochastic Simulations of the Full System (2.1)

We describe two stochastic algorithms to capture stochasticity in the parameters.

For comparison we also include simulations done with Gillespie’s stochastic simu-

lation algorithm [8] and the adaptive tau-leaping algorithm [9].

The simulations in this section are all done for the full system (2.1) with

µ1(S1) = κS1

r1 + S1

and µ2(S2, S3) = µ2,III(S2, S3). The parameters are listed in Table 2.1. With these

parameters, the deterministic system has two stable equilibria, E0 and E1, and so

the long-term behaviour of the solutions is initial condition dependent. If

(S1(0), X1(0), S2(0), S3(0), X2(0)) = (50, 0.4, 0, 0, 1.16), (2.13)

the solution of the deterministic system converges to E1 (see Table 2.2), and if

(S1(0), X1(0), S2(0), S3(0), X2(0)) = (50, 0.4, 0, 0, 1.14), (2.14)

the solution of the deterministic system converges to E0 (see Table 2.2). Thus,

for one set of initial conditions, the deterministic system (2.1) predicts that the

methanogens survive and produce biogas, and for the other it predicts that they

do not. These initial conditions simulate the start up and inoculation of the

reactor. The only difference between the initial conditions in (2.13) and (2.14) is

the value of X2(0). Both initial conditions are close to the separatrix. We only
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include figures that show the population of methanogens, X2(t), to compare the

effect of stochasticity on biogas production, which only occurs if X2 is positive.

In simulations (not shown) with initial conditions farther from the separatrix,

solutions converged to the same equilibrium predicted by the deterministic model

every time. The figures were produced using Matlab [17].

Table 2.2: Equilibria for system (2.1) with parameters given in
Table 2.1, with µ2(S2, S3) = µ2,III(S2, S3).

Equilibria
E (50, 0, 0, 0, 0)
E0 (1.092, 1.088, 135.2, 1.352, 0)
E1 (1.092, 1.088, 3.304, 1.352, 0.4614)
E2 (1.092, 1.088, 28.09, 1.352, 0.3747)

We use two different approaches to study the behavior of (2.1) under stochastic

perturbations. The first method is meant to model fluctuations in the parameters

due, for example, to fluctuations in the environment. The second method captures

the effect of potential mutations in members of the populations. In both schemes,

multiple parameters are perturbed at randomly chosen times. Because we are

varying many parameters, some of which appear in the non-linearities of the sys-

tem, we are unable to write the resulting stochastic equations as a linear stochastic

perturbation of the original system as was done in [23, 27] for chemostat models.

In [23], the dilution rate and in [27], the dilution rate and the decay rates are

assumed to vary stochastically. In one algorithm the perturbations are from the

mean and in the other the perturbations are accumulative. Between perturbations

the system is treated as a deterministic system that is solved numerically.

Let τ0 = 0 and τi+1 = τi−ln(Ti), where Ti ∈ (0, 1) is a uniformly distributed ran-

dom variable. Therefore, {τi} describes a monotone increasing sequence of times.
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Let P0 be a row vector containing the parameter values present in the determin-

istic system that are affected by stochasticity. At each randomly chosen time τi,

these parameters values are updated to obtain a sequence of vectors {Pτi}∞i=1, and

we set the parameters equal to Pt = Pτi , for t ∈ [τi, τi+1).

In the first stochastic algorithm, which we call the environmental based fluc-

tuation algorithm, we assume that the parameter values are influenced by the

environment. As such, they cannot be perfectly controlled and so at random in-

tervals of time they undergo small random changes. However, the parameters

remain near their mean values given in the row vector P0. Following this inter-

pretation, we let Nt be a diagonal matrix with entries given by Gaussian random

variables with mean µ = 1 and standard deviation, σ. We assume that Nt = Nτi

for t ∈ [τi, τi+1). Then

Pτi+1 = P0Nτi . (2.15)

Figures 2.6(a) and 2.6(b) show five simulations using the environmental based

algorithm with σ = 1
10 and

P0 = [S0, D, y1, y2, y3, y4, K, k1,mII , r]

In Figure 2.6(a) the initial conditions are given by (2.14) and the solution to the

deterministic system converges to E0. In Figure 2.6(b), the initial conditions are

given by (2.13) and solutions converge to E1. The solutions for the deterministic

system are shown in bold for comparison.

In the second stochastic algorithm, which we call the mutation based algorithm,
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Figure 2.6: Sample paths of system (2.1) for the methanogens,
X2(t), using the environmental fluctuation based method in Fig-
ures 2.6(a) and 2.6(b), and using the mutation based method in
Figures 2.6(c) and 2.6(d). On the left, the initial conditions are
given in (2.14) and are in the basin of attraction of E0 for the de-
terministic system. On the right, the initial conditions are given in
(2.13) and are in the basin of attraction of E1 for the deterministic
system. The darker curve in each graph is the solution of the deter-
ministic system and the lighter curves show the results of different
stochastic runs.
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Figure 2.7: Sample paths of system (2.1) for the methanogens,
X2(t), using Gillespie’s SSA in Figures 2.7(a) and 2.7(b), and using
the tau-leaping method in Figures 2.7(c) and 2.7(d). On the left,
the initial conditions are given in (2.14) and are in the basin of at-
traction of E0 for the deterministic system. On the right, the initial
conditions are given in (2.13) and are in the basin of attraction of
E1 for the deterministic system. The darker curve in each graph
is the solution of the deterministic system and the lighter curves
show the results of different stochastic runs.
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we assume that the parameters are dependent on properties of the microorgan-

isms that can mutate, and therefore are subject to changes at random times that

accumulate. In this case, many of the parameters are beyond the control of the

operator, however we assume that the operator has complete control of the dilution

rate D and the input concentration S0. Following this interpretation, we update

the parameters at random times to obtain,

Pτi+1 = PτiNτi = P0

i∏
n=1

Nτn , (2.16)

where again σ = 1
10 ,

P0 = [y1, y2, y3, y4, K, k1,mII , r],

and Nτi are as before. Using this algorithm, {Pτi}∞i=1 is a random walk with

mean P0, and the mutations accumulate. Random walks have the property that

σ2 →∞ as t→∞, and therefore the system is subject to wild fluctuations as time

increases. Care must be taken so that the parameters, which have interpretations

as positive quantities only, do not become negative. We ensure non-negativity by

taking Pτi+1 = max{0, PτiNτi}, and control the wild fluctuations by limiting the

difference between current parameter values Pτi and the initial parameter values

P0 to be less than four standard deviations. Figures 2.6(c) and 2.6(d) shows five

simulations using the mutation based algorithm.

We also include simulations using Gillespie’s stochastic simulation algorithm

(SSA) [8], in Figures 2.7(a) and 2.7(b). The SSA is an essentially exact description

for systems with a finite number of interacting particles. The SSA is based on the

principle of mass action, and as such the deterministic system must be converted
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to an equivalent system that is of the form

Ṡ1 =
∑

i,j,k,`,m

aijklmX
i
1S

j
1S

k
2S

`
3X

m
2 , (2.17a)

Ẋ1 =
∑

i,j,k,`,m

bijklmX
i
1S

j
1S

k
2S

`
3X

m
2 , (2.17b)

Ṡ2 =
∑

i,j,k,`,m

cijklmX
i
1S

j
1S

k
2S

`
3X

m
2 , (2.17c)

Ṡ3 =
∑

i,j,k,`,m

dijklmX
i
1S

j
1S

k
2S

`
3X

m
2 , (2.17d)

Ẋ2 =
∑

i,j,k,`,m

eijklmX
i
1S

j
1S

k
2S

`
3X

m
2 . (2.17e)

To do so, we rescale the time variable by dt = (r1 +S1)(K+k1S2 +rS2
2)(a+S2

3)dt̂.

The resulting system has 104 different reaction terms that must be accounted

for. As such, reporting the system here would be impractical. Although we have

rescaled the time variable, the dynamics of system (2.17) are identical to those of

(2.1). The SSA assumes that each reaction occurs independent of the others, and

occurs with rates given by the coefficients of the differential equations. The SSA

determines a time until each reaction takes place using the rate coefficients and the

population of individuals relevant to that reaction, and increases or decreases the

population(s) of the fastest reaction by a set step size. Once we have realized the

simulation, we scale time back to the original time variable before plotting in order

to compare with the other stochastic algorithms. Five simulations with a step size

of 1
100 are shown in Figures 2.7(a) and 2.7(b). In reality, the step size is meant to

represent a single individual in the population, but since SSA is notoriously slow,

modelling a population of trillions of microorganisms and on the order of 1023

molecules in this way is computationally impossible. It is also well known that as

35

http://www.mcmaster.ca/
http://ms.mcmaster.ca/


Ph.D. Thesis — Tyler Meadows; McMaster University — Math and Stats

you decrease the step size, the SSA will approach the deterministic solution [8].

Finally, we include simulations using the adaptive tau-leaping algorithm in

Figures 2.7(c) and 2.7(d). The tau-leaping algorithm is an improvement on the

SSA in terms of speed, and is generally easier to implement, although it is less

accurate. One interpretation of the tau-leaping algorithm is that it is analogous

to Euler’s method, but instead of the derivative, a Poisson random variable with

mean proportional to the derivative is used. Here, (2.1) takes the form

S1(t+ τ) = S1(t) + δP (τ Ṡ1(t)), (2.18a)

X1(t+ τ) = X1(t) + δP (τẊ1(t)), (2.18b)

S2(t+ τ) = S2(t) + δP (τ Ṡ2(t)), (2.18c)

S3(t+ τ) = S3(t) + δP (τ Ṡ3(t)), (2.18d)

X2(t+ τ) = X2(t) + δP (τẊ2(t)), (2.18e)

where δ is the step size (typically interpreted to be an individual particle, as with

the SSA). There has been much discussion on how to choose τ appropriately [7, 9].

We chose

τ = min
{

1
|Ṡ1|

,
1
|Ẋ1|

,
1
|Ṡ2|

,
1
|Ṡ3|

,
1
|Ẋ2|

}
(2.19)

so that the fastest reaction determines τ .

The stochasticity as simulated in the environmental based fluctuation algorithm

and the mutation based algorithm stems from uncertainty in the system parame-

ters, whether due to environmental noise or from mutations. The stochasticity of

the SSA and tau-leaping algorithm is derived from the fact that the populations
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are treated as discrete quantities. Since the populations are very large in prac-

tice, it may be more realistic to implement stochasticity using continuous hybrid

algorithms that reflect the uncertainty in the parameters.

In the simulations using all four algorithms, if the stochasticity caused the

system to predict a different outcome than the deterministic system, it usually

happened while the system was transient. Once the system neared an equilibrium,

the behaviour was usually quite stable. In rare instances, noise caused the system

to destabilize after nearing an equilibrium, but this seemed only to occur for the

mutation based method when the noise was quite large.

2.7 Conclusion

We analyze the system introduced by Bornhöft et al. [4], which was proposed

as a qualitative reduction of the ADM1 model, and claimed to capture the most

relevant qualitative features of the ADM1 model. We give a complete global anal-

ysis of the dynamics of the model. If the concentration of the simple substrates is

too low, both the acidogenic and methanogenic populations of microogranisms are

eliminated from the reactor and no biogas is produced. Even if the input concentra-

tion of simple substrates is high enough, if the equilibrium concentration of VFAs

produced by the acidogenic microorganisms is too low, then the methanogenic

microorganisms will be eliminated from the reactor, and the system will converge

to an equilibrium where no biogas is produced. If the VFA concentration is in a

proper range, the system has a single globally stable interior equilibrium. Finally,

if the equilibrium concentration of VFAs is very high, then the system possesses
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two stable equilibria and one unstable equilibrium, and no sustained oscillatory

behaviour is possible. In this case the long-term behavior is initial condition de-

pendent. Only one of the two stable equilibria corresponds to the production of

biogas meaning that it depends on the initial conditions whether the reactor will

produce biogas in the long-term. The system does not allow bistability involving

two or more biogas producing equilibria, previously shown to be possible for the

ADM1 model [1] and for the models studied in [24, 25]

The dynamics predicted by a bifurcation analysis of the model is qualitatively

similar for all three prototype functions. Ammonia inhibition is included in the

ADM1 model, however, in ADM1 ammonia is not included as a dynamic variable.

Ammonia concentration in ADM1 is computed as the difference of the concentra-

tion of inorganic nitrogen and NH+
4 . In the present model, ammonia is included

as a dynamic variable and it is important to determine how to best model the

effect of ammonia on the growth of the methanogens to capture the behaviour of

ADM1. For all three prototype functions, inhibition of the growth of acetoclastic

methanogens due to ammonia is unimodal with respect to the ammonia concen-

tration. However, for µ2,I(S2, S3), acetoclastic methanogens will not grow in the

absence of ammonia, while for µ2,II(S2, S3) and µ2,III(S2, S3) the organisms grow

even if the ammonia concentration is zero. Based on a comparison with Fig. 10

in [4], using µ2,II or µ2,III in model (2.1), the behavior resembles the behavior or

the ADM1 model shown in [4] more closely than using µ2,I(S2, S3). This indicates

that these two functions are better suited to model the dependence of acetoclastic

methanogens on ammonia.

We consider two algorithms that simulate stochastic effects in system (2.1).
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The aim of these two algorithms is to model the uncertainty and variation in en-

vironmental and biological parameters that are hard to control with numerical

algorithms that are easy to implement and run relatively quickly. We compare the

resulting graphs with the graphs produced using the well-known Gillespie algo-

rithm and the the tau-leaping algorithm.The stochastic simulations from all four

algorithms seem to indicate that a failure of the reactor is most likely to occur

early in the reactors operating cycle, and that once the reactor has reached a

steady state, it is quite resilient and less affected by minor perturbations due to

mutations or small fluctuations in the environment. The one possible exception

is in our mutation based stochastic algorithm that is intended to simulate the ac-

cumulation of mutations within the microbial population. Therefore, it appears

to be most important to control the environment of the reactor during start up,

and then to carefully monitor the characteristics of the microorganisms within the

reactor after start up.

The analysis of the model of anaerobic digestion proposed by Bornhöft et al. [4]

involved studying the limiting system (2.8), a model of growth in the chemostat in

the case of a non-monotone response function with species decay rate added to the

dilution rate. Armstrong and McGehee [18] considered model (2.8) extended to n

species competition in the case of monotone response functions. By ignoring the

species decay rate, they were able to apply a conservation law to obtain a limiting

system. They then studied the resulting limiting system, but did not apply the

theory of asymptotically autonomous systems to obtain results for the full system.

Butler and Wolkowicz [5] used a different method, provided a complete global

analysis of this n species model for both arbitrary monotone and non-monotone
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response functions, and applied results for asymptotically autonomous systems so

that their results applied to the full system, not just the limiting system. They

proved that competitive exclusion holds, i.e., all solutions approach an equilibrium

that can be initial condition dependent in the non-montone case. In Wolkowicz

and Lu [26], the decay rates were no longer ignored. There it was proved that for a

large class of monotone and non-monotone response functions, again competitive

exclusion holds and all populations approach equilibrium. However, in the case

of non-monotone response they only considered the case when the species with

the lowest break-even concentration also has its larger break-even concentration

larger than the substrate input concentration. In the case of only one species, their

method works for all monotone response functions, but for non-monotone response

functions still requires the assumption that the larger break-even concentration is

larger than the input concentration. In this paper we were able to eliminate this

assumption, and hence complete the analysis for the model of growth in the basic

chemostat.

2.A Proofs

Proof of Proposition 2.2.1

i) Assume first that X1(0) = 0 and all other initial conditions are non-negative.

It follows that X1(t) = 0, for all t ≥ 0. Hence, (2.1) reduces to the system of first
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order differential equations

Ṡ1 = (S(0) − S1)D, (2.20a)

Ṡ2 = −DS2 − y3µ2(S2, S3)X2, (2.20b)

Ṡ3 = −DS3, (2.20c)

Ẋ2 = −D2X2 + µ2(S2, S3)X2. (2.20d)

Equations (2.20a) and (2.20c) imply that S1 and S3 converge exponentially

to S(0) and 0, respectively. The hyperplane given by S2 = 0 is invariant under

(2.20b) by (H6), and the hyperplane given by X2 = 0 is invariant under (2.20d).

By uniqueness of solutions to initial value problems, if S2(0) ≥ 0 and X2(0) ≥ 0,

then S2(t) ≥ 0 and X2(t) ≥ 0 for all t ≥ 0. Consider Σ = S2 + y3X2. Then

Σ̇ = −DS2 − y3D2X2 ≤ −DΣ and thus Σ(t) → 0 as t → 0, implying X2(t) and

S2(t) must each converge to 0 as t→∞.

ii) and iii) Assume that X1(0) > 0 and X2(0) ≥ 0, with all other initial

conditions non-negative. Notice first that (2.1a) and (2.1b) decouple from the

system. They describe a simple chemostat, for which it is known that if X1(0) > 0

and S1(0) ≥ 0, then S1(t) > 0 and X1(t) > 0 for all t > 0 (e.g., see [20, 26, 11]).

Note that the hyperplane X2 = 0 is invariant under (2.20d), and so if X2(0) = 0,

X2(t) = 0 for all t ≥ 0, and if X2(0) > 0, then X2(t) > 0 for all t ≥ 0. If

S3(0) = 0, then by (2.1d), Ṡ3(0) > 0, and so there exists ε > 0 such that S(t) > 0

for all t ∈ (0, ε). Let S3(0) ≥ 0. Suppose that there exists t̂ > 0 such that

S3(t) > 0 for all t ∈ (0, t̂) and S3(t̂) = 0. Then, Ṡ3(t̂) ≤ 0, but again from (2.1d),

Ṡ3(t̂) = y4µ1(S1(t̂))X1(t̂) > 0, a contradiction. Hence, S3(t) > 0 for all t > 0.
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Using (2.1c), a similar argument applies to S2.

iv) It is known (e.g., see [20, 26, 11]) that solutions to the simple chemostat

((2.1a) and (2.1b)) are bounded. Hence, there exists 0 < M < ∞ such that

S1(t) < M and X1(t) < M for all t ≥ 0 . Thus, S3 satisfies

Ṡ3 ≤ −DS3 + y4M̃, (2.21)

where M̃ = µ1(M)M . This differential inequality implies that S3(t) ≤ y4M̃
D

+

S3(0)e−Dt for all t ≥ 0, and thus S3(t) is bounded for t > 0. Since Di ≥ D the

following differential inequality holds

Ẋ2 ≤ −DX2 + µ2(S2, S3)X2. (2.22)

Let Σ = y3X2 +S2− y2
y4
S3. Using (2.22), we see that Σ̇ ≤ −DΣ, which implies that

Σ(t) ≤ Σ(0)e−Dt. Since S3(t) is bounded above and we know that S2(t), X2(t) ≥ 0

for all t ≥ 0, they too must be bounded above.

Proof of Proposition 2.2.2

Since (2.1a) and (2.1b) depend only on S1(t) and X1(t), these equations de-

couple from the full system (2.1), and it follows from known results on the basic

model of the chemostat (e.g., see [20, 11] ) that if λ1 ≥ S(0), then (S1(t), X1(t))→

(S(0), 0) as t → ∞. Therefore, for any ε > 0, there is a T > 0 such that for

t > T , S1(t) < S(0) + ε and X1(t) < ε. Then, for t > T , Ṡ3(t) ≤ −DS3(t) +

y4µ1(S(0) + ε)ε, which gives S3(t) ≤ S3(T )e−Dt + y4
D
µ1(S(0) + ε)ε

(
1− e−D(t−T )

)
.

Then, limt→∞ S3(t) = y4
D
µ1(S(0) + ε)ε. Since this holds for all ε > 0, letting
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ε → 0, gives limt→∞ S3(t) = 0. Next, let Σ2(t) = S2(t) + 1
y3
X2(t). Since D ≤ D2,

Σ̇2(t) ≤ −DΣ2(t) + y2µ1(S1(t))X1(t). The same argument as before proves that

limt→∞Σ2(t) = 0. Since for all t, S2(t) ≥ 0 and X2(t) ≥ 0, it follows that

limt→∞ S2(t) = limt→∞X2(t) = 0.

To show that system (2.1) is a quasi-autonomous system with limiting system

(2.7), we first prove a lemma. We call

ẋ(t) = f(t, x(t)) (2.23)

with x(t) ∈ X a quasi-autonomous system with limiting system

ẏ(t) = g(y(t)) (2.24)

if for any compact set K ⊂ X

∫ ∞
t0

sup
x(t)∈K

||f(t, x(t))− g(x(t))||dt <∞. (2.25)

Lemma 2.A.1. Let ẋ(t) = f(t, x(t)) be quasi-autonomous with limiting system

ẏ(t) = g(y(t)) and assume that there exists h(x(t)) such that for all K ⊂ X

compact ∫ ∞
t0

sup
x(t)∈K

||g(x(t))− h(x(t))||dt <∞. (2.26)

Then ẋ(t) = f(t, x(t)) is quasi-autonomous with limiting system ẏ(t) = h(y(t)).
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Proof. By the triangle inequality,

∫ ∞
t0

sup
x∈K
||f(t, x)− h(x)||dt ≤

∫ ∞
t0

sup
x∈K
||f(t, x)− h(x) + g(x)− g(x)||dt

≤
∫ ∞
t0

sup
x∈K
||f(t, x)− g(x)||+ ||g(x)− h(x)||dt

≤
∫ ∞
t0

sup
x∈K
||f(t, x)− g(x)||dt+

∫ ∞
t0

sup
x∈K
||g(x)− h(x)||dt

<∞.

Proof of Proposition 2.2.3

First we show that (2.1) is quasi-autonomous with limiting system:

Ṡ2 = (−S2 + λ2)D − y3µ2(S2, S3)X2, (2.27a)

Ṡ3 = −DS3 + λ3D, (2.27b)

Ẋ2 = −D2X2 + µ2(S2, S3)X2. (2.27c)

Since we are assuming that µ1(S1) is a monotone response function, the results in

[26] can be applied to the first two equations in (2.1) to prove that (S1(t), X1(t))

converge exponentially to (λ1, X
∗
1 ) as t→∞. (The restriction that the results in

[26] only apply to a general class of monotone response functions rather than any

monotone response function does not apply to the single species growth model.)

Let x(t) = (S1(t), X1(t), S2(t), S3(t), X2(t)) be any solution of (2.1), K ⊂ R5
+

be a compact set, and let || · || denote the Euclidean norm. For t0 ≥ 0, consider

Q1 =
∫ ∞
t0

sup
x∈K
||(Y1(t), Y2(t), Y3(t), Y4(t), 0)|| dt,
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where

Y1(t) = (S(0) − S1(t))D − y1µ1(S1(t))X1(t),

Y2(t) = −D1X1(t) + µ1(S1(t))X1(t),

Y3(t) = y2µ1(S1(t))X1(t)−Dλ2,

Y4(t) = y4µ1(S1(t))X1(t)−Dλ3.

If t0 = 0, then for any 0 < t1 <∞, by continuity of the norm,

∫ t1

0
sup
x∈K
||(Y1(t), Y2(t), Y3(t), Y4(t), 0)|| dt <∞. (2.28)

Thus, we need only consider the case t0 > 0. By the Cauchy-Schwartz inequality,

Q1 ≤
(∫ ∞

t0

1
t2
dt
) 1

2

∫ ∞
t0

t2 sup
x∈K

(Y1(t)2 + Y2(t)2 + Y3(t)2 + Y4(t)2) dt
 1

2

. (2.29)

The first integral,
∫∞
t0

1
t2
dt, is finite. Since all of the terms of

∫ ∞
t0

t2 sup
x∈K

(
Y1(t)2 + Y2(t)2 + Y3(t)2 + Y4(t)2

)
dt, (2.30)

are positive, we can consider them individually. We begin with the second term,

∫ ∞
t0

t2 sup
x∈K

Y2(t)2dt =
∫ ∞
t0

t2 sup
x∈K

X2
1 (t) [−D1 + µ1 (S1(t))]2 dt.

Since µ1(S1) ∈ C1, by the Mean Value Theorem, for every t > 0, there exists θ(t),

such that S1(θ(t)) lies between S1(t) and λ1. Let M0 = supt∈[0,∞) |µ′1(S1(θ(t))| >

0. Since S1(t) → λ as t → ∞, µ′1(S1(θ(t)) remains bounded, M0 is finite and
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| − D1 + µ1(S1(t))| = | − µ1(λ1) + µ1(S1(t))| = |µ′1(S1(θ(t)))|| − λ1 + S1(t)| ≤

M0| − λ1 + S1(t)| → 0, exponentially as t→ 0. Thus, there is a k > 0, such that

∫ ∞
t0

t2 sup
x∈K

X2
1 (t)[−D1 + µ1(S1(t))]2dt ≤ X1M̃0

2
∫ ∞
t0

t2e−2ktdt <∞,

where X1 is the maximum value of X1(t) ∈ K, and M̃0 = M0|S1(0)− λ1|.

We now consider the first term,

∫ ∞
t0

t2 sup
x∈K

Y1(t)dt =
∫ ∞
t0

t2 sup
x∈K

[
(S(0) − S1(t))D − y1µ1(S1(t))X1(t)

]2
dt

≤
∫ ∞
t0

t2 sup
x∈K

[
(λ1 − S1(t))D − y1µ1(S1(t))X1(t) + (S(0) − λ1)D

]2
dt.

By Young’s inequality and using S(0) − λ1 = y1X
∗
1 ,

∫ ∞
t0

t2 sup
x∈K

Y1(t)dt ≤
∫ ∞
t0

2t2 sup
x∈K

[
(λ1 − S1(t))2D2 + y2

1 (µ1(S1(t))X1(t)−X∗1D)2
]
dt.

Since this integral is a sum of positive terms we may consider each term individ-

ually. The first term is bounded above by the integral of a decaying exponential,

and so is finite. We use Young’s inequality to bound the second term,

2
∫ ∞
t0

t2 sup
x∈K

[
y2

1 (µ1(S1(t))X1(t)−D1X1(t) +D1X1(t)−X∗1D)2
]
dt

≤ 4y2
1

∫ ∞
t0

t2 sup
x∈K

[
X1(t)2(µ1(S1(t))−D1)2 +D2

1

(
X1(t)−X∗1

D

D1

)2 ]
dt, (2.31)
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where both of the terms in (2.31) are bounded above by a decaying exponential

and so this integral is finite. For the third term in (2.30), write

∫ ∞
t0

t2 sup
x∈K

[y2µ1(S1(t))X1(t)−Dλ2]2 dt

=
∫ ∞
t0

t2y2
2 sup
x∈K

[
µ1(S1(t))X1(t)−D1X1(t) +D1X1(t)− Dλ2

y2

]2

dt

≤
∫ ∞
t0

t2y2
2 sup
x∈K

[µ1(S1(t))X1(t)−D1X1(t)]2 dt+
∫ ∞
t0

t2 sup
x∈K

[y2D1X1(t)−Dλ2]2 dt.

Noting that y2D1X
∗
1 = Dλ2, the exponential decay of (X1(t)−X∗1 )2, and the same

decay arguments as with the first term in (2.30). The finiteness of the fourth term

in (2.30) follows from a similar idea, noting that y4D1X
∗
1 = Dλ3. Thus, (2.1) is

quasi-autonomous with limiting system (2.27).

Now we finally show that (2.1) has limiting system (2.7). From (2.27b), if

follows that

|S3(t)− λ3| = |S3(0)− λ3| e−Dt. (2.32)

We use this to argue that

Q2 =
∫ ∞
t0

sup
x∈K

√
(y2

3 + 1)Y5(t)2 +D2Y6(t)2dt <∞,

where, Y5(t) = µ2(S2(t), λ3) − µ2(S2(t), S3(t))X2(t), and Y6(t) = S3(t) − λ3. The

Cauchy-Schwartz inequality allows us to split the integral into more manageable

pieces,
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Q2 ≤
(∫ ∞

t0

1
t2
dt
) 1

2
(∫ ∞

t0
t2 sup
x∈K

[(y2
2 + 1)Y5(t)2 +D2Y6(t)2]dt

) 1
2

.

By (2.32), the term containing Y6(t) is bounded above. In order to show the

integral containing Y5(t) is bounded above we use the fact that µ2(S2, S3) ∈ C1

and (2.32) to argue that there exists M1 ≥ 0 such that

|µ2(S2(t), λ3)− µ2(S2(t), S3(t))| ≤M1|S3(0)− λ3|e−Dt.

Since X2(t) is bounded we have

∫ ∞
t0

t2 sup
x∈K

[
(y2

3 + 1)X2M1|S3(0)− λ3|e−Dt
]
dt, (2.33)

Where X2 is the maximum value of X(t) in K. The integral on the right is finite

and therefore, by Lemma 2.A.1, (2.1) is quasi-autonomous with limiting system

(2.7).
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Chapter 3

Growth on two essential nutrients

in a self-cycling fermenter

Abstract

A system of impulsive differential equations with state-dependent impulses

is used to model the growth of a single population on two limiting essential

resources in a self-cycling fermentor. Potential applications include water

purification and biological waste remediation. The self-cycling fermenta-

tion process is a semi-batch process and the model is an example of a

hybrid system. In this case, a well-stirred tank is partially drained, and

subsequently refilled using fresh medium when the concentration of both

resources (assumed to be pollutants) falls below some acceptable threshold.

We consider the process successful if the threshold for emptying/refilling

the reactor can be reached indefinitely without the time between successive

emptying/refillings becoming unbounded and without interference by the
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operator. We prove that whenever the process is successful, the model pre-

dicts that the concentrations of the population and the resources converge

to a positive periodic solution. We derive conditions for the successful op-

eration of the process that are shown to be initial condition dependent and

prove that if these conditions are not satisfied, then the reactor fails. We

show numerically that there is an optimal fraction of the medium drained

from the tank at each impulse that maximizes the output of the process.

3.1 Introduction

The self-cycling fermentation (SCF) process can be described in two stages: In

the first stage, a well-stirred tank is filled with resources and inoculated with

microorganisms that consume the resources. When a threshold concentration of

one or more indicator quantities is reached, the second stage is initiated. The first

stage is a batch culture [5]. During the second stage, the tank is partially drained,

and subsequently refilled with fresh resources before repeating the first stage.

SCF is most often applied to wastewater treatment processes, where the goal

is to reduce the concentration of one or more harmful compounds [10, 16]. In

this application the concentration of harmful compounds is the most reasonable

threshold quantity, since acceptable concentrations would typically be given by

some government agency. More recently, the SCF process has been used as a

means to improve production of some biologically derived compounds [20, 23]. In

these instances, dissolved O2 content, or dissolved CO2 content have been used as
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threshold quantities, since they are good indicators of when the microorganism ap-

proaches the stationary phase in its growth cycle. In both scenarios, the end goal

is to maximize the amount of substrate processed by the reactor, while maintain-

ing stable operating conditions. SCF has also been used to culture synchronized

microbial cultures [17], where stability of the operating conditions is much more

important than output of the reactor. It is the first scenario that we model, i.e.

we consider the case that the microbial population is used to reduce two harmful

compounds to an acceptable level.

Assuming that the time taken to empty and refill the tank is negligible, we can

model the SCF process using a system of impulsive differential equations. Smith

and Wolkowicz [18] used this approach to model the growth of a single species

with one limiting resource. Fan and Wolkowicz [7] extended this model to include

the possibility that the resource is limiting at large concentrations. Córdova-Lepe,

Del Valle, and Robledo [6] also modeled single species growth in the SCF process,

but used impulse dependent impulse times instead of the state dependent impulses

used by the other models. For references on the theory of impulsive differential

equations, see e.g. [1, 2, 3, 9, 15].

When there are two (or more) resources in limited supply, it is important to

think about how the resources interact to promote growth. If any of the resources

can be used interchangeably with the same outcome, we say the resources are sub-

stitutable. For instance, both glucose and fructose are carbon sources for many

bacteria, and can fulfill the same purpose in bacterial growth. If all of the re-

sources are required in some way for growth, and the bacteria will die out if any

were missing, we say the resources are essential. For instance, both carbon and
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nitrogen are required for growth of many bacteria, but glucose cannot be used as a

nitrogen source, so some other compound such as nitrate is required. Growth and

competition with two essential resources has been studied in the chemostat [4], in

the chemostat with delay [12], and in the unstirred chemostat [24]. In all of the

aforementioned studies, the interaction of essential resources is through Liebig’s

law of the minimum [22]. To illustrate the law of the minimum, consider a barrel

with several staves of unequal length. Growth is limited by the resource in shortest

supply in the same way that the capacity of the barrel is limited by length of the

shortest stave.

In this paper we investigate the dynamics of the self-cycling fermentation pro-

cess in a semi-batch culture with two essential resources that are assumed to be

pollutants. The goal is to reduce both pollutant concentrations to acceptable lev-

els. In Section 3.2, we introduce the model. In Section 3.3, we analyze the system

of ordinary differential equations (ODEs) associated with the model introduced in

Section 3.2. In Section 3.4, we analyze the system of impulsive differential equa-

tions introduced in Section 3.2, and obtain our main results: Theorem 3.4.6, which

gives necessary and sufficient conditions for the existence of a unique periodic orbit,

and Theorem 3.4.15, which summarizes all of the possible long term dynamics of

the model. In Section 3.5, we demonstrate numerically that the emptying/refilling

fraction can be used to maximize the output of the SCF process. In Section 3.6,

we summarize our results and discuss the implications of our analysis. All figures

were produced using Matlab [13].
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3.2 Model Formulation

For a given function y(t) and time τ , using the standard notation for impulsive

equations we denote by ∆y(τ) = y(τ+)− y(τ−), where

y(τ+) ≡ lim
t→τ+

y(t) and y(τ−) ≡ lim
t→τ−

y(t).

Our model takes the form

ds1(t)
dt

= − 1
Y1

min{f1(s1(t)), f2(s2(t))}x(t),
ds2(t)
dt

= − 1
Y2

min{f1(s1(t)), f2(s2(t))}x(t),
dx(t)
dt

= (−D + min{f1(s1(t)), f2(s2(t))})x(t),


t 6= tk

(3.1)

∆s1(tk) = −rs1(t−k ) + rsin
1 ,

∆s2(tk) = −rs2(t−k ) + rsin
2 ,

∆x(tk) = −rx(t−k ),


t = tk

where tk are the times at which

either
(
s1(tk) = s̄1, s2(tk) ≤ s̄2

)
or

(
s1(tk) ≤ s̄1, s2(tk) = s̄2

)
. (3.2)

Here, t denotes time. The variables si, i = 1, 2 denote the concentration of the

limiting resources (assumed to be pollutants) in the fermentor as a function of t,

with associated parameters Yi, the cell yield constants, sin
i , the concentrations of

each limiting resource in the medium added to the tank at the beginning of each
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new cycle, and s̄i the threshold concentrations of limiting resource that trigger the

emptying and refilling process. Since we are considering the scenario where both

s1 and s2 are pollutants, the emptying and refilling process is only triggered when

both concentrations reach the acceptable levels s̄1 and s̄2 set by some environmen-

tal protection agency. The variable x denotes the biomass concentration of the

population of microorganisms that consume the resource at time t, assumed to

have death rate D. The emptying/refilling fraction is denoted by r. It is assumed

that D > 0, 0 < r < 1 and for i = 1, 2, Yi > 0, and sin
i > s̄i > 0.

We call the times tk > 0, impulse times, and when they exist they form an

increasing sequence that we denote {tk}Nk=1. If (3.2) is satisfied at t = 0 or si(0) <

s̄i, i = 1, 2, then we assume that there is an immediate impulse at time t = 0. We

consider the process to be successful if N = ∞ and the time between impulses,

tk − tk−1 remains bounded. We consider the process a failure if either there are a

finite number of impulses, and hence N is finite, or if the time between impulses

becomes unbounded.

The two resources are assumed to be limiting essential resources (see e.g.,

Tilman [21] or Grover [8]) also called complementary resources (see Leon and

Tumpson [11]), and as in those studies we use Liebig’s law of the minimum [22] to

model the uptake and growth of the microbial population.

We assume that each response function fj(s), j = 1, 2, in (3.1) satisfies:

(i) fj : R+ → R+ is continuously differentiable;

(ii) fj(0) = 0 and f ′j(s) > 0 for s > 0;
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Define λi, i = 1, 2, to be the value of each resource that satisfies fi(λi) = D, and

refer to each λi as a “break-even concentration". If fj is bounded below D, then

we define the corresponding λj =∞.

Between two consecutive impulses the system is governed by a system of ordi-

nary differential equations (ODE) that models a batch fermentor [5],

ds1(t)
dt

= − 1
Y1

min{f1(s1(t)), f2(s2(t))}x(t),

ds2(t)
dt

= − 1
Y2

min{f1(s1(t)), f2(s2(t))}x(t), (3.3)

dx(t)
dt

= (−D + min{f1(s1(t)), f2(s2(t))})x(t).

We will refer to system (3.3) as the associated ODE system.

3.3 Dynamics of System (3.3)

First we show that system (3.3) is well-posed.

Proposition 3.3.1. Given any positive initial conditions (s1(0), s2(0), x(0)), the

solution (s1(t), s2(t), x(t)) of (3.3) is defined for all t ≥ 0 and remains positive.

Furthermore, limt→∞(s1(t), s2(t), x(t)) exists, is initial condition dependent,

limt→∞ x(t) = 0, and limt→∞ si(t) < λi for at least one i ∈ {1, 2}.

Proof. Since the vector field in (3.3) is locally Lipschitz, the positivity of

(s1(t), s2(t), x(t)) follows from the standard theory for the existence and uniqueness
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of solutions of ODEs (see e.g., [14]). Also observe that

d

dt

(
x(t) + Y1

2 s1(t) + Y2

2 s2(t)
)

= −Dx(t) < 0,

so the solution (s1(t), s2(t), x(t)) exists and is bounded for t in [0,∞).

From (3.3), s′i(t) < 0, i = 1, 2. By the positivity of si(t), limt→∞ si(t) ≥ 0

exists. Denote limt→∞ si(t) = s∗i , i = 1, 2.

We claim that min{f1(s∗1), f2(s∗2)} < D. Suppose not. Then,

min{f1(s∗1), f2(s∗2)} ≥ D. Since both s1(t) and s2(t) are strictly decreasing func-

tions, it follows that min{f1(s1(t)), f2(s2(t))} > D for all t ≥ 0. From the equation

of x′(t) in (3.3), x(t) would be a strictly increasing function. Then, s′1(t) < −D
Y1
x(0)

for all t ≥ 0, contradicting the positivity of s1(t). Hence, s∗i < λi for at least one

i ∈ {1, 2}.

Since min{f1(s∗1), f2(s∗2)} < D, define γ = −D + min{f1(s∗1), f2(s∗2)} < 0. By

the equation for x′(t) in (3.3), x′(t) < γ
2x(t) < 0, for all sufficiently large t. Hence

x(t)→ 0 as t→∞.

Note that from (3.3), Y1
ds1
dt

= Y2
ds2
dt
. Define

R12 = Y2

Y1
and R21 = Y1

Y2
= 1
R12

. (3.4)

Then, every trajectory of (3.3) satisfies ds2
ds1

= R21.
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Lemma 3.3.2. Let (s1(t), s2(t), x(t)) be a solution of (3.3) on an interval t ∈

[t0, t1] with positive initial conditions. Then,

s1(t) = s1(t0) +R12(s2(t)− s2(t0)), (3.5)

or equivalently

s2(t) = s2(t0) +R21(s1(t)− s1(t0)), (3.6)

x(t1)− x(t0) = Y1

∫ s1(t0)

s1(t1)

1− D

min
{
f1(v), f2

(
s2(t1) +R21(v − s1(t1))

)}
 dv,

(3.7)

or equivalently

x(t1)− x(t0) = Y2

∫ s2(t0)

s2(t1)

1− D

min{f1
(
s1(t1) +R12(v − s2)

)
, f2(v)}

 dv. (3.8)

Proof. Solving the separable ODE, ds1
ds2

= R12, yields (3.5), and solving ds2
ds1

= R21,

yields (3.6). Dividing the s′1(t) equation in (3.3) by the x′(t) equation, substituting

for s2(t) using (3.6), and then integrating both sides, yields (3.7). We obtain (3.8)

similarly.

3.4 Analysis of the Full System (3.1)

First we visualize solutions of (3.1) in the s1-s2 plane as illustrated in Figure 3.1.

Given any solution (s1(t), s2(t), x(t)) of (3.1) with positive initial conditions, let
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Figure 3.1: u0 = (s0
1, s

0
2), indicated by 4, is the initial condition.

uin = (sin
1 , s

in
2 ), indicated by 5, is the input concentration. u±k =

(s1(t±k ), s2(t±k )), k = 1, 2, . . . , satisfy u+
k = (1− r)u−k + ruin, where

uin = (sin
1 , s

in
2 ). Each connected piece of the solution has slope

R21. û = (s̄1, ŝ2) = (s̄1, s
in
2 − R21(sin

1 − s̄1) and û+ = (s̄+
1 , ŝ

+
2 ) =

((1− r)s̄1 + rsin
1 , s

in
2 − (1− r)R21(sin

1 − s̄1)). The set Ω1 lies above
and to the right of Γ− and between the two lines with slope R21,
through (0, s̄2) and (s̄1, 0), respectively.
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t0 = 0 and let tk, k ∈ N, denote the kth impulse time if it exists.

Let u±k = (s1(t±k ), s2(t±k )). By (3.6), the trajectory of (s1(t), s2(t)), t ∈ (tk, tk+1),

is a line segment with slope R21 and endpoints u+
k and u−k+1. The conditions for

impulses to occur are given in (3.2). Therefore, each point u−k lies in the following

union of the two horizontal and vertical line segments:

Γ− ≡
{

(s1, s̄2) : s1 ∈ [0, s̄1]
}
∪
{

(s̄1, s2) : s2 ∈ [0, s̄2]
}
.

Define

uin = (sin
1 , s

in
2 ) and s̄+

i = (1− r)s̄i + rsin
i , i = 1, 2.

By the definition of ∆si given in (3.1),

u+
k = (1− r)u−k + ruin. (3.9)

This implies that each u+
k lies in the following union of horizontal and vertical line

segments:

Γ+ ≡
{

(s1, s̄
+
2 ) : s1 ∈ [0, s̄+

1 ]
}
∪
{

(s̄+
1 , s2) : s2 ∈ [0, s̄+

2 ]
}
.

Therefore, if impulses occur indefinitely, then the total trajectory of (s1(t), s2(t)),

t ∈ [t1,∞), is a countable union of line segments with slope R21 and endpoints in

Γ− ∪ Γ+, (i.e., u+
k ∈ Γ+ and u−k ∈ Γ−.)

For any positive solution (s1(t), s2(t), x(t)) of (3.1) with (s1(0), s2(0)) lying be-

tween the coordinate axes and Γ−, i.e., 0 ≤ s1(0) ≤ s̄1 and 0 ≤ s2(0) ≤ s̄2, an
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impulse occurs immediately at t = 0, and so, after at most a finite number of im-

pulses, (s1(0+), s2(0+)) lies above or to the right of Γ−. In the rest of this section,

we therefore assume (s1(0), s2(0)) lies above or to the right of Γ−, i.e., si(0) > s̄i,

for at least one i ∈ {1, 2}.

The following proposition asserts that system (3.1) does not exhibit the phe-

nomenon of beating. That is, the system possesses no solution with impulse times

that form an increasing sequence with a finite accumulation point.

Proposition 3.4.1. Assume that (s1(t), s2(t), x(t)) is a positive solution of (3.1)

with an infinite number of impulse times, {tk}∞k=1. Then limk→∞ tk =∞.

Proof. Between impulses, s1 and s2 are strictly decreasing for all x(t) > 0, and

therefore we can solve the first equation in (3.3) for the time between impulses:

tk+1 − tk = Y1

∫ s1(tk)

s1(tk+1)

1
min

{
f1(v), f2(s2(tk+1) +R21(v − s1(tk+1))

}
Xk(v)

dv

(3.10)

where Xk(v) is defined by Xk(s1(t)) = x(t) for t ∈ (tk, tk+1).

To show that {tk}∞k=1 has no finite accumulation point, it suffices to show that

there exists positive constants, M1, M2 and m, such that

s1(t+k )− s1(t−k+1) > m for k = 1, 2, . . .

and

min{f1(s1(t)), f2(s2(t))} < M1, x(t) < M2, for t ≥ 0,

since then the difference tk+1 − tk is greater than Y1m
M1M2

.
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Since s1(t−k ) ≤ s̄1, s2(t−k ) ≤ s̄2, and either s1(t+k ) = s̄+
1 or s2(t+k ) = s̄+

2 , we have

either s1(t+k )− s1(t−k+1) ≥ s̄+
1 − s̄1 or s2(t+k )− s2(t−k+1) ≥ s̄+

2 − s̄2.

From (3.5) it follows that

s1(t+k )− s1(t−k+1) ≥ min{s̄+
1 − s̄1, R12(s̄+

2 − s̄2)} ≡ m.

Since after the first impulse occurs, (s1(t), s2(t)) is bounded by Γ+, the existence

of M1 follows from the continuity of f1 and f2. By (3.7), there exists M0 > 0 such

that

x(t) < x(t+k ) +M0, for t ∈ (tk, tk+1). (3.11)

From the relation that x(t+k ) = (1− r)x(t−k ), we obtain

x(t+k+1) < (1− r)(x(t+k ) +M0), for k = 1, 2, . . .

By the comparison principle applied to x(tk) and the sequence {yk} defined by

y0 = x(0) and yk+1 = (1− r)(yk +M0), k = 1, 2, . . . ,

lim sup
k→∞

x(t+k ) ≤ lim
k→∞

yk = (1− r)M0

r
. (3.12)

The existence of M2 follows from (3.11) and (3.12).

Define Ω1 to be the set of points (s0
1, s

0
2) such that, for some x0 > 0, the forward

trajectory of the solution of (3.3) with initial value (s0
1, s

0
2, x

0) intersects Γ−. Then

the boundary of Ω1 is the union of Γ− and the two lines of slope R21 passing
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through (s̄1, 0) and (0, s̄2), respectively. Then,

Ω1 =

(s1, s2) :
s1 > s̄1 or s2 > s̄2, and

s2 − s̄2 < R21s1, s2 > R21(s1 − s̄1)

 .

Define Ω0 to be the open set complementary to Ω1 in the first quadrant above

and to the right of Γ−. Then,

Ω0 =

(s1, s2) :
s1 > s̄1 or s2 > s̄2, and

s2 − s̄2 > R21s1 or s2 < R21(s1 − s̄1)

 .

Remark 3.4.2. The sets Ω0 and Ω1 do not include the marginal cases where

(s1(0), s2(0)) lies on the lines of slope R21 passing through (s̄1, 0) or (0, s̄1). If

(s1(0), s2(0)) lies on one of these lines and si(0) > 0 for i = 1, 2, then no

impulses occur, since the solution curve does not reach Γ− in finite time. If

(s1(0), s2(0)) = (s̄1, 0) or (s1(0), s2(0)) = (0, s̄2), then an impulse occurs imme-

diately, and (s1(0+), s2(0+)) may be in either Ω0 or Ω1, depending on the location

of uin.

In the following case, the fermentation process fails.

Lemma 3.4.3. If (s1(t), s2(t), x(t)) is a solution of (3.1) with (s1(0), s2(0)) ∈ Ω0,

then no impulses occur.

Proof. Since Ω0 is complementary to Ω1, (s1(t), s2(t)) /∈ Γ− for any t ≥ 0, and

hence no impulses occur.
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Next we define a Lyapunov-type function

V (s1, s2) = Y2(sin
2 − s2)− Y1(sin

1 − s1). (3.13)

Then,

Ω1 =

(s1, s2) :
s1 > s̄1 or s2 > s̄2, and

V (0, s̄2) < V (s1, s2) < V (s̄1, 0)


and

Ω0 =

(s1, s2) :
s1 > s̄1 or s2 > s̄2, and

V (s1, s2) < V (0, s̄2) or V (s1, s2) > V (s̄1, 0)

 .
Note that the level sets of V are straight lines with slope R21 in the s1-s2 plane.

For any fixed value of s1, V (s1, s2) is a decreasing function of s2, and for any fixed

value of s2, V (s1, s2) is an increasing function of s1.

Lemma 3.4.4. Assume (s1(t), s2(t), x(t)) is a solution of (3.1) with positive initial

conditions. Let t0 = 0 and tk, k ∈ N, denote the kth impulse time, if it exists;

otherwise set tk =∞. Define V (t) = V (s1(t), s2(t)). Then,

(i) d
dt
V (t) = 0 for t ∈ (tk, tk+1),

(ii) V (t+k ) = (1− r)V (t−k ), if tk <∞.

Proof. (i) By the equations for dsi/dt in (3.3),

d

dt
V (t) =

(
Y2

Y2
− Y1

Y1

)
min{f1(s1(t)), f2(s2(t))}x(t) = 0.
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(ii) Substituting (3.9) into (3.13),

V (t+k ) = (1− r)(s1(t−k )− sin
1 , s2(t−k )− sin

2 ) · (Y1,−Y2) = (1− r)V (t−k ),

where · denotes the inner product in R2.

By the definition of V (s1, s2) in (3.13) and Lemma 3.4.4, the line

{(s1, s2) : V (s1, s2) = 0} = {(sin
1 + vY2, s

in
2 + vY1) : v ∈ R} (3.14)

is invariant under (3.3) for all x(0). By symmetry, we may assume the point (s̄1, s̄2)

lies on or above this invariant line, i.e., V (s̄1, s̄2) ≤ 0, or

sin
2 − s̄2 ≤ R21(sin

1 − s̄1). (3.15)

Next we show that in the case that (sin
1 , s

in
2 ) lies in Ω0, once again the fermen-

tation process is doomed to fail.

Lemma 3.4.5. If (sin
1 , s

in
2 ) ∈ Ω0, then every solution of (3.1) with positive initial

conditions has at most finitely many impulses.

Proof. Note that, V (sin
1 , s

in
2 ) = 0, so the condition (sin

1 , s
in
2 ) /∈ Ω1 implies that either

V (0, s̄2) > 0 or V (s̄1, 0) < 0. Since V (0, s̄2) < V (s̄1, s̄2) ≤ 0, by assumption (3.15),

V (s̄1, 0) < 0.

We proceed using proof by contradiction. Suppose that a solution
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(s1(t), s2(t), x(t)) of (3.1) with positive initial conditions has infinitely many im-

pulses. Denote the impulse times by t1 < t2 < · · · . By Lemma 3.4.4(ii),

V (s1(t−k ), s2(t−k )) → 0 as k → ∞. Hence, V (s1(t−k ), s2(t−k )) > V (s̄1, 0) for some

k ≥ 1. By Lemma 3.4.3, no more impulses can occur.

In the case of (sin
1 , s

in
2 ) ∈ Ω1, under assumption (3.15), the line given by (3.14)

intersects Γ− at the point (s̄1, ŝ2) given by

ŝ2 = sin
2 −R21(sin

1 − s̄1).

Define L to be the portion of the line given by (3.14) from the point (s̄1, ŝ2) to its

image via the impulsive map, namely

L = {(s1, s2) : s̄1 ≤ s1 ≤ s̄+
1 , V (s1, s2) = 0}

= {(s1, s2) : s̄1 ≤ s1 ≤ s̄+
1 , s2 = ŝ2 +R21(s1 − s̄1)}.

Then L is invariant under (3.1) for all x(0).

3.4.1 Existence of Periodic Orbits

Next we investigate under what conditions the reactor has a periodic solution and

the process has the potential to succeed.

We regard the emptying/refilling fraction r ∈ (0, 1) as a variable. Without

loss of generality, from now on we assume that (s̄1, s̄2) lies on or above L. Other-

wise, from (3.15), by symmetry we can relabel the resources. Therefore, the right
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Figure 3.2: No periodic solution exists, and the x-component
of every solution tends to 0 as t → ∞. In the simulation, the re-
sponse functions are fi(si) = misi

ai+si , i = 1, 2, with (m1,m2, a1, a2) =
(2, 2, 1.4, 1.2). The parameters are (Y1, Y2, D) = (2, 0.7, 0.5) and
(s̄1, s̄2, s

in
1 , s

in
2 , r) = (0.7, 0.6, 1, 1, 0.4). The initial condition is

u0 = (s1(0), s2(0), x(0)) = (0.1, 0.7, 0.3). After a finite number
of impulses, the orbit converges before reaching the threshold for
an impulse, indicated by �. The value of µ(r) ≈ −0.08 < 0.

endpoint of L is (s̄+
1 (r), ŝ+

2 (r)) given by

s̄+
1 (r) = (1− r)s̄1 + rsin

1 and ŝ+
2 (r) = (1− r)ŝ2 + rsin

2 .

By (3.7), the net change in x(t) over one cycle with impulse at (s̄1, ŝ2) is

µ(r) = Y1

∫ s̄+
1 (r)

s̄1

(
1− D

min{f1(v), f2(ŝ2 +R21(v − s̄1))}

)
dv. (3.16)

We prove the following theorem concerning the existence and the uniqueness of

periodic solutions.

Theorem 3.4.6. Assume (sin
1 , s

in
2 ) ∈ Ω1. If r ∈ (0, 1) and µ(r) > 0, then system

(4.1) has a periodic orbit that is unique up to time translation and has one impulse
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per period. On a periodic orbit, x(t+k ) = (1−r)
r
µ(r) and x(t−k ) = 1

r
µ(r), for all

k ∈ N.

If µ(r) ≤ 0, then system (4.1) has no periodic orbits.

See Figure 3.2 for an illustration of the case with µ(r) < 0.

Proof. Suppose that there is a positive periodic solution (s1(t), s2(t), x(t)). Since

(3.3) has no periodic orbits, the solution has at least one impulse. By periodicity

there are infinitely many impulses. Denote the impulse times by t1 < t2 < · · ·

and the number of impulses within a period by N . Then x(t±N+k) = x(t±k ) for all

k ∈ N. By (3.1),

x(t−k+1) = x(t+k ) + µ(r) and x(t+k ) = (1− r)x(t−k ).

Thus,

x(t−k+1) = (1− r)x(t−k ) + µ(r). (3.17)

If x(t−1 ) > µ(r) (resp. x(t+1 ) < µ(r)), then from (3.17) it can be shown by induction

that x(t−k ) is a strictly decreasing (resp. strictly increasing) sequence, contradicting

x(t−N+k) = x(t−k ). Hence, on any periodic orbit there is only one impulse, and it

follows from (3.17), on a periodic orbit x(t−k ) = 1
r
µ(r) for all k ∈ N. Therefore,

µ(r) > 0, since the solution must be positive, and if a periodic orbit exists it is

unique.

If µ(r) > 0, the solution of (3.1) with initial condition (s̄+
1 , ŝ

+
2 ,

1−r
r
µ(r)) is
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periodic, since if x(t−k+1) = 1
r
µ(r), then x(t+k+1) = 1−r

r
µ(r) and if x(t+k ) = 1−r

r
µ(r),

then x(t−k+1) = 1
r
µ(r).

Proposition 3.4.7. If µ(1) > 0, then there exists a unique r∗ ∈ [0, 1) such that

µ(r) > 0 for all r ∈ (r∗, 1] and µ(r) ≤ 0 for all r ∈ (0, r∗].

Proof. Let

r∗ = max{r ∈ [0, 1] : µ(v) ≤ 0 ∀ v ∈ [0, r]}. (3.18)

Note that r∗ is well-defined, since µ(r) is continuous and µ(0) = 0. By definition,

µ(r) ≤ 0 for all r ∈ [0, r∗]. Since µ(r) is continuous, if µ(1) > 0 then r∗ < 1.

Furthermore, µ(r) > 0 for all r ∈ (r∗, 1], since f1(s1) and f2(s2) are monotone

increasing, and so the integrand in (3.16) with v = s̄+
1 (r∗) must be positive. Oth-

erwise, r∗ can be increased, contradicting definition (3.18). By the monotonicity

of f1(s1) and f2(s2), the integrand in (3.16) with v = s̄+
1 (r) remains positive for

r∗ < r ≤ 1. Hence, µ(r) > 0 for r ∈ (r∗, 1].

Remark 3.4.8. If λ1 ≤ s̄1 and λ2 ≤ ŝ2, then µ(r) > 0 for all r ∈ (0, 1), i.e.,

r∗ = 0, because the integrand in (3.16) is then positive for all v ∈ (s̄1, s
in).

3.4.2 Global Stability of Periodic Orbits

In this subsection we fix an r ∈ (r∗, 1), where r∗ is the number given in Theo-

rem 3.4.6. Hence, µ(r) > 0 and a unique periodic orbit exists.
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For each point (s1, s2) ∈ Ω1, we denote by π−(s1, s2), the point of intersection

of the line through (s1, s2) of slope R21 with Γ−, i.e.,

π−(s1, s2) =


(s1 +R12(s̄2 − s2), s̄2), if V (s1, s2) ≤ V (s̄1, s̄2),

(s̄1, s2 +R21(s̄1 − s1)), if V (s1, s2) ≥ V (s̄1, s̄2).

For each point (s1, s2) ∈ Γ−, we denote by π+(s1, s2) the pre-image of (s1, s2)

in Γ+ under π−. Hence, π+(s1, s2) ∈ Γ+ satisfies π−(π+(s1, s2)) = (s1, s2) for all

(s1, s2) ∈ Γ−. Let g : Γ− → Γ+, be the image of (s1, s2) ∈ Γ− under the impulsive

map, i.e.,

g(s1, s2) = (1− r)(s1, s2) + r(sin
1 , s

in
2 ).

For each point (s0
1, s

0
2) ∈ Ω1, let I(s0

1, s
0
2) denote the net change in x(t), over

the time interval from t = 0 to the first impulse time. Therefore, for a solution

(s1(t), s2(t), x(t)) of (3.1) satisfying (s1(0), s2(0)) = (s0
1, s

0
2) that has at least one

impulse, by Lemma 3.3.2,

I(s0
1, s

0
2)

=


Y2
∫ s0

2
s̄2

(
1− D

min{f1(s0
1+R12(v−s0

2),f2(v)}

)
dv, if V (s1, s2) ≤ V (s̄1, s̄2),

Y1
∫ s0

1
s̄1

(
1− D

min{f1(v),f2(s0
2+R21(v−s0

1)}

)
dv, if V (s1, s2) ≥ V (s̄1, s̄2).

Note that µ(r) = I(π+(s̄1, ŝ2)).

If (s1(t), s2(t), x(t)) is a solution of (3.3) with (s1(t0), s2(t0)) = (s0
1, s

0
2) ∈ Γ+ and

(s1(t1), s2(t1)) = (s1
1, s

1
2) ∈ Γ− for some t0 < t1, then (s0

1, s
0
2) = π+(s1

1, s
1
2) and the

net change in x(t) over the time interval [t0, t1] is I(π+(s1
1, s

1
2)). Since V (s̄1, s̄2) <
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V (s̄+
1 , s̄

+
2 ) < V (sin

1 , s
in
2 ), from V (sin

1 , s
in
2 ) = V (s̄1, ŝ2) there exists s̃2 ∈ (ŝ2, s̄2) such

that V (s̄1, s̃2) = V (s̄+
1 , s̄

+
2 ). Define

Γ−A = {(s̄1, s2) : 0 < s2 ≤ s̃2 : I(π+(s1, s2)) > 0}. (3.19)

Lemma 3.4.9. Assume (sin
1 , s

in
2 ) ∈ Ω1 and µ(r) > 0. Then,

Γ−A = {s̄1} × (s2], s̃2] (3.20)

for some s2] ∈ (0, ŝ2).

Proof. By assumption (3.15), for any s2 ∈ [0, s̃2],

I(π+(s̄1, s2)) = Y1

∫ s̄+
1

s̄1

(
1− D

min{f1(v), f2(s2 +R21(v − s̄1)}

)
dv.

Let

Λ = {s2 ∈ (0, s̃2) : I(π+(s̄1, s2)) > 0}.

By the monotonicity of f1(s1) and f2(s2), since I(π+(s̄1, ŝ2)) = µ(r) > 0, Λ is an

interval containing ŝ2 with right endpoint s̃2. Hence, Γ−A takes the form (3.20) for

some s2] ∈ (0, ŝ2).

Let Ω1A be the set of points (s0
1, s

0
2) such that, for some x0 > 0, the forward

trajectory of the solution of (3.3) with initial value (s0
1, s

0
2, x

0) passes through Γ−A.

Then,

Ω1A = {(s1, s2) ∈ Ω1 : π−(s1, s2) ∈ Γ−A}. (3.21)
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In the case µ(r) > 0, by (3.20),

Ω1A = {(s1, s2) ∈ Ω1 : V− < V (s1, s2) < V+}, (3.22)

where V− = V (s̄1, s̃2) and V+ = V (s̄1, s2]).

Lemma 3.4.10. Assume (sin
1 , s

in
2 ) ∈ Ω1 and µ(r) > 0. Let (s1(t), s2(t), x(t)) be a

solution of (3.1) with x(0) > 0 and

(s1(0), s2(0)) ∈ Ω1A.

The solution converges to the unique periodic solution given by Theorem 3.4.6, if

and only if x(0) > −I(s1(0), s2(0)). If x(0) ≤ −I(s1(0), s2(0)), then no impulses

occur.

Proof. If x(0) ≤ −I(s1(0), s2(0)), then by Lemma 3.3.2 the value of x(t) ap-

proaches 0 before any impulses occur.

If x(0) > −I(s1(0), s2(0)), then the first impulse occurs at some finite time

t1 > 0. The condition (s1(0), s2(0)) ∈ Ω1A implies that (s1(t+1 ), s2(t+1 )) ∈ Ω1A.

Hence, I(s1(t+1 ), s2(t+1 )) > 0. This implies that the net change of x(t) is positive

over any time interval from t1 to a time before the next impulse. Hence, another

impulse occurs at some finite time t2 > t1. Inductively, it follows that impulses

occur indefinitely. By Lemma 3.4.4, limt→∞ V (s1(t), s2(t)) = 0. Hence,

(s1(t−k ), s1(t−k ))→ (s̄1, ŝ2) and (s1(t+k ), s1(t+k ))→ (s̄+
1 , ŝ

+
2 ).
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Therefore, by Lemma 3.3.2 and the relation I(π+(s̄1, ŝ2)) = µ(r),

lim
k→∞

(
x(t−k+1)− x(t+k )

)
= µ(r).

On the other hand, the impulsive map in (3.1) gives limk→∞ x(t+k )−(1−r)x(t−k ) =

0. This gives

lim
k→∞

(
x(t−k+1)− (1− r)x(t−k )

)
= µ(r),

which implies limk→∞ x(t−k ) = 1
r
µ(r) and limk→∞ x(t+k ) = 1−r

r
µ(r). We conclude

that the solution converges to the periodic orbit.

Corollary 3.4.11. If (sin
1 , s

in
2 ) ∈ Ω1 and µ(r) > 0, then all solutions to (3.1)

with (s1(0), s2(0)) = (sin
1 , s

in
2 ) and x(0) > 0 converge to the periodic orbit given by

Theorem 3.4.6.

Proof. By the definitions of Γ−A and Ω1A given in (3.19) and (3.21), respectively,

(sin
1 , s

in
2 ) ∈ Ω1A. Since I(sin

1 , s
in
2 ) > I(π+(s̄1, ŝ2)) = µ(r) > 0, the desired result

follows from Lemma 3.4.10.

For each (s0
1, s

0
2) ∈ Ω1, let N0 = N0(s0

1, s
0
2) be the smallest positive integer such

that

(g ◦ π−)N0(s0
1, s

0
2) ∈ Ω1A. (3.23)

In particular, N0(s0
1, s

0
2) = 1 for all (s0

1, s
0
2) ∈ Ω1A. For (s0

1, s
0
2) ∈ Ω1 \ Ω1A, by the

identities V (g(s1, s2)) = (1− r)V (s1, s2) and V (π−(s1, s2)) = V (s1, s2),

V
(
(g ◦ π−)n(s0

1, s
0
2)
)

= (1− r)nV (s0
1, s

0
2), n = 1, 2, · · · . (3.24)
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If V (s0
1, s

0
2) < 0, then by (3.22), the condition (s0

1, s
0
2) /∈ Ω1A is equivalent to

V (s0
1, s

0
2) ≤ V−. Thus, by (3.24), condition (3.23), is equivalent to

(1− r)N0V (s0
1, s

0
2) > V−.

Similarly, if V (s0
1, s

0
2) > 0 and (s1(0), s2(0)) ∈ Ω1A, then condition (3.23) is equiv-

alent to

(1− r)N0V (s0
1, s

0
2) < V+.

Hence,

N0(s0
1, s

0
2) =


⌈ ln(V (s0

1,s
0
2)/V−)

− ln(1−r)

⌉
, if V (s0

1, s
0
2) < V−,

⌈ ln(V (s0
1,s

0
2)/V+)

− ln(1−r)

⌉
, if V (s0

1, s
0
2) > V+,

(3.25)

where dye is the least integer greater than or equal to y.

For any solution (s1(t), s2(t), x(t)) of (3.1) with (s1(0), s2(0)) = (s0
1, s

0
2) ∈ Ω1,

and x(0) > 0,

x(t−1 ) = x(0) + I(s0
1, s

0
2).

Note that x(t+k ) = (1 − r)x(t−k ) by the impulsive map in (3.1), and x(t−k+1) =

x(t+k ) + I(s1(t+k ), s2(t+k )) by Lemma 3.3.2. Hence, for any n = 2, 3, . . . , the left

limit of x(t) at the nth impulse, if it exists, equals

x(t−n ) = (1− r)x(t−n−1) + I((g ◦ π−)n−1(s0
1, s

0
2)),
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where t0 = 0, and tk, k ≥ 1, is the kth impulse time. By induction,

x(t−n ) = (1− r)n−1x(0) +
n∑
k=1

(1− r)n−kI((g ◦ π−)k−1(s0
1, s

0
2)).

Thus the condition x(t−n ) > 0 is equivalent to

x(0) > −
n∑
k=1

(1− r)−(k−1)I((g ◦ π−)k−1(s0
1, s

0
2)).

We define X(s0
1, s

0
2) to be the least value so that if x(0) > X(s0

1, s
0
2) then

(s1(t−∗ ), s2(t−∗ )) ∈ Γ−A for some t∗ > 0. Hence,

X(s0
1, s

0
2) = −

(
min

1≤n≤N0(s0,s1)

n∑
k=1

(1− r)−(k−1)I
(

(g ◦ π−)k−1(s0
1, s

0
2)
))

. (3.26)

In particular,

X(s0
1, s

0
2) = −I(s0

1, s
0
2) if N0(s0

1, s
0
2) = 1.

The following proposition extends Lemma 3.4.10.

Proposition 3.4.12. Assume (sin
1 , s

in
2 ) ∈ Ω1 and µ(r) > 0. Let (s1(t), s2(t), x(t))

be a solution of (3.3) with (s1(0), s2(0)) ∈ Ω1 and x(0) > 0.

(i) If x(0) ≤ X(s1(0), s2(0)), then there are at most N0(s0
1, s

0
2)− 1 impulses.

(ii) If x(0) > X(s1(0), s2(0)), then the solution converges to the unique periodic

orbit given by Theorem 3.4.6.

Proof. (i) Suppose x(0) ≤ X(s1(0), s2(0)) and the solution has at least N0 =

N0(s0
1, s

0
2) impulses. Denote the first N0 impulse times by t1 < t2 < · · · < tN0 .
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Then, by Lemma 3.3.2 and the definition of X(s1, s2), for some k ∈ {1, · · · , N0},

x(t−k ) = x(0)−X(s1(0), s2(0)) ≤ 0,

contradicting the positivity of the solution.

(ii) If x(0) > X(s1(0), s2(0)), then the solution has at least N0 impulses. Denote

the N0th impulse time by tN0 . Then,

(s1(t+N0), s2(t+N0)) = (g ◦ π−)N0(s1(0), s2(0)) ∈ Ω1A.

Since (s1(t+N0), s2(t+N0)) ∈ Γ+, by the definition of Ω1A, I(s1(t+N0), s2(t+N0)) > 0.

Hence, the result follows from Lemma 3.4.10.

Example 3.4.13. Consider (3.1) with the Monod functional responses fi(si) =
misi
ai+si , i = 1, 2, and parameters (m1,m2, a1, a2) = (2, 2, 1.9, 0.3), (Y1, Y2, D) =

(4, 1.9, 0.5), and (s̄1, s̄2, s
in
1 , s

in
2 , r) = (0.6, 0.5, 1, 1, 0.4).

We compute the following quantities using their definition.

(s̄+
1 , s̄

+
2 ) = (0.76, 0.7), s̃2 ≈ 0.36, ŝ2 ≈ 0.16, µ(r) ≈ 0.03, V− ≈ −0.39.

Taking the initial values (s0
1, s

0
2) = (0.23, 0.6), we have V (s0

1, s
0
2) = −2.32. Then,

N0(s0
1, s

0
2) =

⌈
ln(V (s0

1, s
0
2)/V−)

− ln(1− r)

⌉
= d3.4908e = 4.
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The approximated values of I((g ◦ π−)n(s0
1, s

0
2)), 1 ≤ n < N0, are as follows.

n 0 1 2 3

(1− r)−nI((g ◦ π−)n(s0
1, s

0
2)) −0.2970 −0.1785 −0.0441 0.0846

Therefore X(s0
1, s

0
2) ≈ 0.2970 + 0.1785 + 0.0441 = 0.5196.

In Figures 3.3 and 3.4, the initial data satisfies x(0) = 0.5 < X(s0
1, s

0
2) and

x(0) = 0.53 > X(s0
1, s

0
2), respectively. By Proposition 3.4.12 the fermentation

succeeds only in the latter case.

If (sin
1 , s

in
2 ) ∈ Ω1 and µ(r) ≤ 0, then, by Theorem 3.4.6, system (3.1) has no

periodic solution. The following proposition asserts that the fermentation fails in

this case.

Proposition 3.4.14. Assume (sin
1 , s

in
2 ) ∈ Ω1.

(i) If µ(r) < 0, then for every solution of (3.1) with positive initial conditions,

only finitely many impulses occur.

(ii) If µ(r) = 0, then for every solution of (3.1) with positive initial conditions,

either only finitely many impulses occur, or the time between impulses tends

to infinity.

Proof. Let (s1(t), s2(t), x(t)) be a solution of (3.1) with positive initial condi-

tions. Suppose the solution has infinitely many impulses. Denote the impulse

times by t1 < t2 < · · · . Then by Lemma 3.4.4, (s1(t−k ), s2(t−k )) → (s̄1, ŝ2) and

(s1(t+k ), s2(t+k ))→ (s̄+
1 , ŝ

+
2 ) as k →∞.
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(i) In the case µ(r) < 0, by Lemma 3.3.2 and the relation I(π+(s̄1, ŝ2)) = µ(r),

lim
k→∞

(
x(t−k+1)− x(t+k )

)
= µ(r).

(ii) On the other hand, the impulsive map in (3.1) gives x(t+k ) = (1−r)x(t−k ). This

implies limk→∞ x(t−k ) = 1
r
µ(r) < 0, contradicting to the positivity of the solution.

In the case µ(r) = 0, by Lemma 3.3.2 and the relation I(π+(s̄1, ŝ2)) = µ(r) = 0,

lim
k→∞

(
x(t−k+1)− x(t+k )

)
= 0.

By the relation x(t+k ) = (1− r)x(t−k ), it follows that limk→∞ x(t±k ) = 0. Hence, the

trajectory of (s1(t), s2(t), x(t)), t ∈ (tk, tk+1), approaches the heteroclinic orbit of

(3.3) from (s̄+
1 , ŝ

+
2 , 0) to (s̄1, ŝ2, 0). This implies limk→∞

(
tk+1 − tk

)
=∞.

By (3.25), the function N0(s1, s2) of (s1, s2) ∈ Ω1 has an upper bound

N̄ = max{N0(0, s̄2), N0(s̄1, 0)}.

We summarize our results as follows.

Theorem 3.4.15. Consider system (3.1).

i) If (sin
1 , s

in
2 ) ∈ Ω0, then every solution has at most finitely many impulses.

ii) If (sin
1 , s

in
2 ) ∈ Ω1 and µ(r) ≤ 0, then the fermentation fails in the sense that

for every solution with positive initial conditions, either only finitely many

impulses occur, or the time between impulses tends to infinity.
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iii) If (sin
1 , s

in
2 ) ∈ Ω1 and µ(r) > 0, then there is a unique periodic orbit. More-

over, for any solution (s1(t), s2(t), x(t)), with positive initial conditions, the

number of impulse times is either infinite or is less than N̄ . The case with

infinitely many impulses occurs if and only if

(s1(0), s2(0)) ∈ Ω1 and x(0) > X(s1(0), s2(0)).

Proof. The theorem follows from Lemmas 3.4.3 and 3.4.5 and Propositions 3.4.12

and 3.4.14.
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Figure 3.3: If x(0) ≤ X(s1(0), s2(0)), then only finitely many
impulses occur. The orbit converges, indicated by �, after a finite
number of impulses, and the x-component of the solution tends to 0
as t→∞. The parameters are the values given in Example 3.4.13,
and the initial condition is (s1(0), s2(0), x(0)) = (0.23, 0.6, 0.5).

In the following Corollary, we consider a case in which we are guaranteed that

X(s0
1, s

0
2) ≤ 0. In this case, by Proposition 3.4.12, it follows that any solution of

(3.1) with (s1(0), s2(0)) = Ω1 and x(0) > 0 converges to the periodic orbit.
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Figure 3.4: If L lies in Ω1A and x(0) > X(s1(0), s2(0)), then
the solution converges to the periodic orbit. The parameters are
the values given in Example 3.4.13, and the initial condition is
(s1(0), s2(0), x(0)) = (0.23, 0.6, 0.53).

If s̄1 > λ1 and s̄2 > λ2, we define Ωλ to be the region in the s1-s2 plane that

lies between the lines s2 = s̄2 +R21(s1− λ1) and s2 = λ2 +R21(s1− s̄1) and above

or to the left of Γ−, i.e.,

Ωλ =

(s1, s2) :
s1 > s̄1 or s2 > s̄2, and

V (λ1, s̄2) ≤ V (s1, s2) ≤ V (s̄1, λ2)

 . (3.27)

For every (s1, s2) ∈ Ωλ, we have min{f1(s1), f2(s2)} > D, and so growth of x is

always positive in this region.

Corollary 3.4.16. Assume (sin
1 , s

in
2 ) ∈ Ω1 and µ(r) > 0. If s̄1 > λ1 and s̃2 ≥ λ2,

then any solution (s1(t), s2(t), x(t)) with (s1(0), s2(0)) ∈ Ωλ and x(0) > 0 converges

to the unique periodic orbit of (3.1).

Proof. First note that, since s̃2 ≥ λ2, the line through (s̄+
1 , s̄

+
2 ) is in Ωλ, and

Ωλ ∪ Ω1A is connected. For any (s0
1, s

0
2) ∈ Ωλ, we have I(s0

1, s
0
2) > 0 and (g ◦
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π−)(s0
1, s

0
2) ∈ Ωλ ∪ Ω1A. By (3.26), X(s0

1, s
0
2) < 0 < x(0), and by Theorem 3.4.15,

(s1(t), s2(t), x(t)) converges to the periodic orbit.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

                                                                                                                                                                                    

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Figure 3.5: If u0 ∈ Ωλ \ Ω1A and Ωλ ∪ Ω1A is connected, when
X(s0

1, s
0
2) ≤ 0, the fermentation is still always successful for all

x(0) > 0. The parameters are the values given in Example 3.4.17.
The initial condition is (s1(0), s2(0), x(0)) = (0.6, 0.7, 0.01).

Example 3.4.17. Consider (3.1) with the Monod functional responses fi(si) =
misi
ai+si , i = 1, 2, and parameters (m1,m2, a1, a2) = (2, 2, 1.4, 0.6), (Y1, Y2, D) =

(2, 0.7, 0.5), and (s̄1, s̄2, s
in
1 , s

in
2 , r) = (0.7, 0.6, 1, 1, 0.4). Then,

(s̄+
1 , s̄

+
2 ) = (0.82, 0.76), s̃2 ≈ 0.42, ŝ2 ≈ 0.14, µ(r) ≈ 0.04, V− ≈ −0.19.

The equation fi(si) = D, i = 1, 2, yields λi = aiD
D−mi , which gives λ1 ≈ 0.4677

and λ2 = 0.2. Since λ1 < s̄1 and λ2 < s̃2, Ωλ ∪ Ω1A is a connected set, and the

hypotheses in Corollary 3.4.16 are satisfied.

We take the initial value (s0
1, s

0
2) = (0.6, 0.7). Then, V (s0

1, s
0
2) = −0.59. A

direct calculation gives V (λ1, s̄2) ≈ −0.79, so that V (λ1, s̄2) < V (s0
1, s

0
2) < 0. This
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implies that (s0
1, s

0
2) ∈ Ωλ. By Corollary 3.4.16, the fermentation succeeds for every

initial value x(0) > 0. An illustration is shown in Figure 3.5.

Remark 3.4.18. If λ2 > s̃2 then the set Ω1A∪Ωλ is not connected. Then for some

(s0
1, s

0
2) ∈ Ωλ, (g ◦ π−)(s0

1, s
0
2) is in the gap between Ωλ and Ω1A. We are unable

to rule out the possibility that the net growth in this gap is negative, and so it is

conceiveable that I((g◦π−)(s0
1, s

0
2)) < 0. In particular, we can choose (s0

1, s
0
2) ∈ Ωλ

such that I(s0
1, s

0
2) < −I((g ◦ π−)(s0

1, s
0
2)). Therefore,

X(s0
1, s

0
2) ≥ −I(s0

1, s
0
2)− (1− r)−1I((g ◦ π−)(s0

1, s
0
2)) > 0. (3.28)

Therefore, for some positive initial concentrations of biomass, the reactor will fail,

even though the initial conditions are in Ωλ.

3.5 Maximizing the Output

In this section we regard r as a variable in the interval (r∗, 1), where r∗ is the

number given in Proposition 4.3.8.

For each r ∈ (r∗, 1), there is a periodic orbit. In each period, there is exactly

one impulse. As shown in the proof of Theorem 3.4.6, the left and right limits at

an impulse are, respectively,

(s̄1, ŝ2, x−(r)) and (s̄+
1 (r), ŝ+

2 (r), x+(r)),
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where

x−(r) = 1
r
µ(r) and x+(r) = 1− r

r
µ(r). (3.29)

The trajectory of the periodic orbit can be parameterized by

s2 = ŝ2 +R21(s1 − s̄1)

and

x = X(s1; r) = x−(r)− Y1

∫ s1

s̄1
1− D

min
{
f1(v), f2(ŝ2 +R21(v − s̄1))

} dv (3.30)

= x+(r) + Y1

∫ s̄+
1

s1
1− D

min
{
f1(v), f2(ŝ2 +R21(v − s̄1))

} dv (3.31)

with s1 ∈ (s̄1, s̄
+
1 ) and s̄+

1 = s̄1 + r(sin
1 − s̄1).

Denote the minimal period of the periodic orbit by T (r). Then

T (r) = Y1

∫ s̄+
1 (r)

s̄1

1
min

{
f1(v), f2(ŝ2 +R21(v − s̄1))

}
X(v; r)

dv. (3.32)

In the long run, the average amount of output divided by the total volume is

Q(r) = r

T (r) .

Maximizing Q(r) for r ∈ (r∗, 1) is equivalent to maximizing the output.

Lemma 3.5.1. The minimal period T (r), r ∈ (r∗, 1) of the periodic orbit of (3.1)

satisfies limr→1− T (r) =∞. Also limr→r∗ T (r) =∞ if r∗ > 0.
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Proof. As r → 1, we have x+(r)→ 0. By (3.32) and (3.31), T (r)→∞.

If r∗ > 0, then by (3.29), x−(r) → 0 as r → r∗. Along the periodic orbit,

x ≥ x−(r) > 0 and

min{f1(s1), f2(s2)} ≥ min{f1(s̄1), f2(s̄2)} > 0.

By (3.32) we conclude that T (r)→∞ as r → r∗.

Proposition 3.5.2. The function Q(r) = r/T (r), r ∈ (r∗, 1), satisfies

limr→1Q(r) = 0. If r∗ > 0, then limr→r∗ Q(r) = 0. If r∗ = 0, s̄1 ≥ λ1, and

ŝ2 ≥ λ2, then limr→r∗ Q(r) = min{f1(s̄1), f2(ŝ2)} −D ≥ 0.

Proof. By Lemma 3.5.1, limr→1Q(r) = 1/(limr→1 T (r)) = 0.

If r∗ > 0, then, by Lemma 3.5.1, limr→r∗ Q(r) = r∗/(limr→r∗ T (r)) = 0.

Next we assume r∗ = 0. By (3.32)

Q(r) = r

/Y1

∫ s̄+
1 (r)

s̄1

1
min

{
f1(v), f2(ŝ2 +R21(v − s̄1))

}
X(v; r)

dv

 , (3.33)

where X is defined by (3.30). Since X(s̄1; r) = x−(r) = µ(r)
r
, using L’Hôpital’s rule

and the definition of µ(r) in (3.16),

lim
r→0

X(s̄1; r) = Y1
ds̄+

1 (r)
dr

∣∣∣∣∣
r=0

(
1− D

min{f1(s̄1), f2(ŝ2)}

)
.
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Since s̄+
1 = s̄1 + r(sin

1 − s̄1), we have

ds̄+
1 (r)
dr

∣∣∣∣∣
r=0

= sin
1 − s̄1, (3.34)

and it follows that

lim
r→0

X(s̄1; r) = Y1(sin
1 − s̄1)

(
1− D

min{f1(s̄1), f2(ŝ2)}

)
. (3.35)

Furthermore, we have

T ′(r) = Y1(sin
1 − s̄1)

min
{
f1(s̄+

1 ), f2(ŝ2 + rR21(sin
1 − s̄1))

}
X(s̄+

1 ; r)

− Y1

r2

∫ s̄+
1 (r)

s̄1

µ′(r)r − µ(r)
min

{
f1(v), f2(ŝ2 +R21(v − s̄1))

}
X(v; r)2

dv. (3.36)

Since s̄+
1 (0) = s̄ and X(s̄1; 0) 6= 0, by (3.35) and (3.36) we obtain

T ′(0) = Y1(sin
1 − s̄1)

min
{
f1(s̄1), f2(ŝ2)

}
X(s̄1; 0)

= 1
min{f1(s̄1), f2(ŝ2)} −D.

From the expression Q(r) = r/T (r), using L’Hôpital’s rule, we conclude that

limr→0Q(r) = 1/T ′(0) = min{f1(s̄1), f2(ŝ2)} −D.

Assume r∗ > 0. Since limr→r∗ Q(r) = limr→1Q(r) = 0, by Proposition 3.5.2,

Q(r) attains its maximum at some value of r in (r∗, 1). Unfortunately, the analyti-

cal expression of the derivative d
dr
Q(r) is too complicated for finding a critical point

of Q(r). We have only obtained the maximum value using a numerical simulation.

An illustration of the maximal value of Q(r) is given in Figure 3.6.
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Figure 3.6: (A) T (r) is the minimal period of the periodic orbit,
r ∈ (r∗, 1). The dashed line is r = r∗. As r → r∗ or r → 1, T (r)→
∞. (B) The maximum of Q(r) is attained at r ≈ 0.6416, indicated
by the dotted line. In the simulation, the response functions are
fi(si) = misi

ai+si , i = 1, 2, with parameters given in Example 3.4.17.

3.6 Discussion

We have modeled the self-cycling fermentation process assuming that there are two

essential resources s1 and s2 that are growth limiting for a population of microor-

ganisms, x, using a system of impulsive differential equations with state-dependent

impulses. Assuming that the process is used for an application such as water pu-

rification, where the resources s1 and s2 are the pollutants, we assume that the

threshold for emptying and refilling a fraction of the contents of the fermentor,

resulting in the release of treated water, occurs when the concentrations of both

pollutants reach an acceptable concentration set by some governmental agency.

We called these thresholds, s1 ≤ s̄1 and s2 ≤ s̄2. We consider the process suc-

cessful if once initiated, it proceeds indefinitely without a need for any subsequent

interventions by the operator.
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By solving the associated ODE system for s2 in terms of s1, we show that

solutions, when projected onto the s1-s2 plane, are lines with slope given by the

ratio of the growth yield constants. In order to derive necessary conditions for

successful operation of the fermentor, we first divide the s1-s2 plane into two

regions: Ω0 and Ω1. The model predicts that solutions of the associated system

of ODEs with initial conditions in Ω0 approach the axes without ever reaching

the thresholds for emptying and refilling and the reactor fails, independent of

the initial concentration of microorganisms. Solutions of the associated system of

ODEs with initial conditions in Ω1 have the potential to reach the threshold for

emptying and refilling, but in this case, successful operation can also depend on

the initial concentration of the population of microoorganisms.

In most cases, at startup the input concentration of the pollutant would be

the concentration of the pollutant in the environment, which we are assuming is

constant, i.e., (s1(0), s2(0)) = (sin
1 , s

in
2 ). If, for any solution starting at these input

concentrations of the resources, (sin
1 , s

in
2 ), and positive concentration of biomass,

x(0) > 0, the threshold for emptying and refilling, s1 ≤ s̄1 and s2 ≤ s̄2, is reached

with net positive growth of the biomass, the model analysis predicts that we can

choose an emptying/refilling fraction, r, so that the system cycles indefinitely. In

this case the solution approaches a periodic solution with one impulse per period.

If the system has a periodic solution, the (s1, s2) components of the periodic

orbit lie along the line with slope given by the ratio of the growth yield constants

joining (sin
1 , s

in
2 ) and the point in the s1-s2 plane where both thresholds are reached.

The net change in the biomass on the periodic orbit, that we denote µ(r), must

then also be positive.
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For other initial conditions in Ω1, in order for the process to operate successfully,

it is not enough that µ(r) > 0. There is also a minimum concentration of biomass,

X, that depends on the initial concentration of the resources, that is required for

the reactor to be successful. If the initial concentration of biomass is larger than

X, then our analysis predicts that the reactor will cycle indefinitely and solutions

will converge to the periodic orbit. If the initial concentration of biomass is less

than or equal to X, then the reactor will cycle a finite number of times and then

fail. If there is no periodic orbit, then the reactor will either cycle a finite number

of times and then fail, or will cycle indefinitely, but the time between cycles will

approach infinity.

Besides depending on the initial concentration of the resources at start up, the

minimum concentration of biomass at startup required for successful operation

depends on the emptying/refilling fraction in an interesting way. The closer r is to

one, the smaller the number of impulses that are required for solutions to get to

the periodic orbit. However, the time spent in a region of negative growth could

be larger, and so X would be larger. The closer r is to zero, results in less time

spent in regions with negative growth, but more impulses are then required to

get close to the periodic orbit. Each impulse removes biomass from the reactor,

and so X would also increase. This implies that there is an optimal value of r

for which the reactor has the best potential for success. The values of the growth

yield constants, Y1 and Y2, also play a role in the size of X. If their ratio is held

constant, but each value is scaled by a constant c > 0, then X is also scaled by

the same constant c. Knowing this is important when selecting the population of

microorganisms to use in the process.
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If the choice of potential microorganisms for use in the process is restricted,

then it might be easier to treat more highly polluted water than less polluted

water, provided the microorganisms are not inhibited at high concentrations of

the pollutant. We have shown that for successful operation, it is necessary that an

r exists such that µ(r) > 0. One way to increase µ(r) without changing anything

else is to increase sin
1 and sin

2 in such a way that it still lies on the same line as before.

It is also important to choose a population of microorganisms so that (sin
1 ,sin

2 ) lies

in Ω1. It might only be possible to do this by increasing the concentration of one of

the pollutants. However, another possibility might be to pre-process the input with

a different population of microorganisms that moves (sin
1 ,sin

2 ) into an acceptable

position so that a second population can then treat the water effectively.

We also make what might appear to be other surprising observations. Although

the break-even concentrations play a role, it is not necessary for both break-even

concentrations to be below their respective thresholds for emptying and refilling

for the process to be successful (see Figure 3.4). Also, the process can still fail

when both break-even concentrations are below their respective thresholds (see

Figure 3.2).

For growth on a single, non-inhibitory, limiting resource in the self-cycling fer-

mentation process, it has been shown that when the system has a periodic orbit,

every solution either converges to the periodic orbit, or converges to an equilibrium

without a single impulse [19]. If the resource is inhibitory at high concentrations,

it has been shown that solutions may also converge to an equilibrium after a single

impulse, but if there are at least two impulses then the solution is destined to

converge to the periodic orbit [7]. In contrast, if there are two limiting essential
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resources, we have shown that there may be many impulses before the system con-

verges to an equilibrium, even when the system has a periodic orbit. The example

in Figure 3.3 demonstrates failure after two impulses.

An important issue when setting up the self cycling fermentation process is the

choice of the emptying and refilling fraction, r. In the application we considered we

were interested in optimizing the total amount of output. In the example, shown

in Section 3.5, we demonstrated that the optimal value of the emptying/refilling

fraction is r ≈ 0.64. This result is consistent with what was shown in the single

resource cases [7, 19]. Another reason for implementing a self-cycling fermentation

process instead of a continuous input process is to maximize the concentration

of some microorganism in the output over some time period. For example, one

recent ‘proof of concept’ study [23] investigated using the self-cycling fermenta-

tion process to improve the production of cellulosic ethanol production. In their

investigation, and many other applications of self-cycling fermentation the empty-

ing/refilling fraction r is set to one half. While this is convenient for experiments

and measurements, our results indicate that this is might not be the optimal choice

of r.
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Chapter 4

Growth on multiple essential

limiting nutrients in a self-cycling

fermentor

Abstract

We introduce a model of the growth of a single microorganism in a self-

cycling fermentor in which an arbitrary number of resources are limiting,

and impulses are triggered when the concentration of one specific substrate

reaches a predetermined level. The model is in the form of a system of

impulsive differential equations. We consider the operation of the reactor to

be successful if it cycles indefinitely without human intervention and derive

conditions for this to occur. In this case, the system of impulsive differential

equations has a periodic solution. We show that success is equivalent to the

convergence of solutions to this periodic solution. We provide conditions

that ensure that a periodic solution exists. When it exists, it is unique and
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attracting. However, we also show that whether a solution converges to this

periodic solution, and hence the model predicts that the reactor operates

successfully, is initial-condition dependent. The analysis is illustrated with

numerical examples.

4.1 Introduction

The self-cycling fermentation (SCF) process can be described as a sequential batch

process and is an example of a hybrid system. In SCF, a tank is filled with a liq-

uid medium that contains nutrients and microorganisms that use these nutrients

to grow. The liquid medium is mixed to keep the concentrations uniform while

the microorganisms feed on the nutrients and grow. If a predetermined decant-

ing criterion is met, the tank is partially drained and subsequently refilled with

fresh medium. Many different decanting criteria can be used to initiate the emp-

tying/refilling sequence, such as elapsed time, a specific nutrient concentration, or

a specific biomass concentration. For example, in [17], a specific dissolved oxygen

concentration was used as the the decanting criterion. The goal was to choose the

decanting criterion so that the fermentor would run indefinitely without operator

input.

Self-cycling fermentors and sequential batch reactors are used to improve the

efficiency of wastewater-treatment facilities [6, 8], to cultivate microorganisms [9],

and to produce some biologically derived compounds [11, 16]. The process has been

suggested as an addition to the sidestream partial nitritation process in order to

reduce the competition pressure on the beneficial anammox bacteria [12]. It can
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also be argued that the control mechanism that is implemented in a turbidostat is

closer to a realization of the self-cycling fermentation process than to continuous

flow.

The decanting criterion can have a profound effect on the successful operation

of the reactor. If the decanting criterion is too strict (e.g., complete removal of a

resource), it may never be reached, and if it is too lenient (e.g., a small increase in

biomass concentration), it may be reached too often. Many studies have modelled

the growth of a single species with a single limiting resource with different de-

canting criteria, such as: threshold biomass concentrations [13]; threshold nutrient

concentrations [4, 10]; or after a certain time elapsed that depends on the nutrient

concentrations after the previous decanting stage [3]. Under the assumption that

the emptying/refilling process occurs on a much faster time scale than the other

processes in the system, the system can be modelled using a system of impul-

sive differential equations. For a discussion on the qualitative theory of impulsive

differential equations see [2, 7].

A more recent paper by Hsu et al. [5] investigated the dynamics of a model with

two essential limiting nutrients in which the decanting criterion required both nu-

trient concentrations to reach or be below a prescribed threshold. When modelling

with multiple resources, two resources are said to be essential if the microorgan-

ism cannot grow without both resources. Conversely, two resources are said to be

substitutable if the presence of either resources is enough to promote growth. The

different ways in which a species may respond to multiple limiting nutrients exist

on a spectrum that was described in the book by Tilman [14]. In [5], nutrient

uptake of two essential resources was modelled using Liebig’s law of the minimum
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[15], where the growth is limited by the nutrient concentration that results in the

slowest individual growth rate. Many more modern engineering papers do not

use Liebig’s law and instead model nutrient uptake for essential nutrients using

the product of individual uptake functions [1]. This may be problematic in the

case when a large number of resources are growth limiting; the product of many

uptake functions may predict much lower growth than what is actually observed

if each uptake function is a small number. However, the product of uptake func-

tions is advantageous because it is differentiable, whereas the minimum of uptake

functions given by Liebig’s law of the minimum is only Lipschitz continuous.

Implementation of a self-cycling fermentor can be difficult. Online measure-

ments can be expensive, and measuring quantities of interest may be impractical.

Operators of these reactors will often choose to make easier measurements that

act as a proxy for the quantities of true interest. For example, in [17], the authors

measured the dissolved oxygen concentration, since it was known to reach a min-

imum at the same time as the limiting substrate was exhausted. Alternatively,

operators may not be aware that some nutrient concentrations are lower than re-

quired in the input medium, and, as a result, unanticipated resources may become

limiting.

In this paper, we investigate the growth of a single microorganism with an

arbitrary number of essential nutrients in a self-cycling fermentor. The decanting

criterion is met when one specific tracked nutrient concentration falls below a

prescribed threshold value. We model nutrient uptake using a general class of

functions that includes both the product of uptake functions used in much of the

engineering literature and the minimum of uptake functions preferred by biologists.
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In the case with a single limiting resource, this model reduces to that given in [10].

In the case with two essential limiting resources and nutrient uptake modelled

using Liebig’s law of the minimum, this model is the same as the one in [5] where

one threshold concentration is arbitrarily large.

The paper is organized as follows. In Section 4.2, we introduce the model and

show that it is mathematically and biologically well-posed. In Section 4.3, we

provide conditions for the system to have a unique periodic solution and find the

basin of attraction for the periodic solution. We show that if the initial conditions

lie outside of the basin of attraction, then the population of microorganisms will

eventually die out, and the reactor will fail. In Section 4.4, we summarize what

we have learned, compare with similar models and discuss what implications this

may have for operators of self-cycling reactors.

4.2 The Model

We model the self cycling fermentor using the system of impulsive differential

equations

ṡi(t) = − 1
yi
F (s(t))x(t), i = 1, . . . , n

ẋ(t) = (−D + F (s(t)))x(t)

 s(t−k ) /∈ Γ−, (4.1a)

s(t+k ) = rsin + (1− r)s(t−k )

x(t+k ) = (1− r)x(t−k )

 s(t−k ) ∈ Γ−, (4.1b)
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where s(t) = (s1(t), . . . , sn(t))T . Here, si(t) denotes the concentration of the ith

nutrient and x(t) denotes the concentration of the biomass in the tank at time t.

The set Γ− is called the impulsive set, and it represents the condition on s that

triggers the emptying/refilling process. We consider the case where only one of the

nutrients is tracked by the operator and the tank is reset when the concentration

of this nutrient reaches a prescribed threshold. Without loss of generality, we label

this nutrient s1 and denote the prescribed threshold by s1. Therefore, we define

the impulsive set

Γ− = {s ∈ Rn
+ : s1 = s1}. (4.2)

This is an (n−1)-dimensional hyperplane restricted to the positive cone, Rn
+ = {z ∈

Rn : zi > 0 for i = 1, ..., n}. For simplicity, we assume that s1(0) > s1. The impulse

times are then the times {tk} such that s(t−k ) ∈ Γ−, where s(t−k ) = limt→t−
k

s(t).

The parameter D is the decay rate (or maintenance coefficient) for the microor-

ganism x, sin = (sin
1 , . . . , s

in
n )T , where sin

i is the concentration of the ith nutrient

in the fresh medium, r ∈ (0, 1) is the fraction of the tank that is decanted and

subsequently refilled, and yi > 0, i = 1, . . . , n, are the yield coefficients for each

nutrient.

We assume F : Rn
+ → R+ is a Lipschitz-continuous function satisfying F (s) = 0

if si = 0 for any i = 1, ..., n, F (s) > 0 if every si > 0, and increasing in each of its

arguments (i.e., F (s + εei) > F (s) for any ε > 0, where ei is the ith positive unit

vector in Rn).
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This class of functions includes Liebig’s minimum function,

F (s) = min{fi(si) : i = 1, ..., n}, (4.3)

as well as the product of functions

F (s) =
n∏
i=1

fi(si), (4.4)

where each fi(si) denotes the rate at which the microorganism uptakes the ith

nutrient and are assumed to be increasing functions. In Tilman’s classification

of resource types [14], Liebig’s minimum function (4.3) describes perfectly essen-

tial nutrients, and the product of functions (4.4) describes interactive essential

nutrients. In the engineering literature, it is common to use the Monod growth

function, fi(si) = µisi
ki+si to describe the uptake of the ith nutrient.

For s /∈ Γ− the system is governed by the system of ordinary differential equa-

tions,

ṡi(t) = − 1
yi
F (s(t))x(t), i = 1, . . . , n, (4.5a)

ẋ(t) = (−D + F (s(t)))x(t). (4.5b)

Lemma 4.2.1. Solutions of (4.5) with initial conditions (s1(0), . . . , sn(0), x(0)) ∈

Rn+1
+ are bounded and satisfy s(t) ∈ Rn

+ for all t ≥ 0. Furthermore, x(t) → 0 as

t→∞.

Proof. Noting that F (s) = 0 if si = 0 for any i = 1, . . . , n, the faces of Rn+1
+
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are invariant. Since the vector field in (4.5) is Lipschitz, solutions to initial value

problems are unique. Therefore, any solution with initial conditions in the interior

of Rn+1
+ is confined to the interior of Rn+1

+ . The right hand side of each nutrient

equation is non-positive, and so the nutrient concentrations are nonincreasing,

which implies that F (s(t)) is a nonincreasing function of t.

If x(0) > 0, then there exists t∗ ≥ 0 such that F (s(t)) < D for all t ≥ t∗. If

not, then F (s(t)) ≥ D for all t, and therefore

x′(t) = (F (s(t))−D)x(t) ≥ 0.

Since x(t) is nondecreasing, it follows that x(t) ≥ x(0) for all t. Therefore,

s′i(t) ≤ −
1
yi
Dx(0).

This implies that si(t) ≤ si(0)− 1
yi
Dx(0)t for all t ≥ 0, and hence si(t)→ −∞ as

t→∞, a contradiction.

Therefore, there exists t∗ ≥ 0 such that F (s(t∗)) < D for all t ≥ t∗. This implies

that

x′(t) ≤ (F (s(t∗))−D)x(t) < 0,

for all t ≥ t∗. Integrating gives

x(t) ≤ x(t∗)e(F (s(t∗))−D)(t−t∗).
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Therefore, x(t)→ 0 as t→∞.

Dividing the other nutrient equations in (4.5a) by the equation for s1(t) (i.e.,

considering ṡi/ṡ1, i = 2, . . . , n) and integrating, it follows that the nutrient con-

centrations are linear functions of s1(t). In vector form,

s(t) = s0 − y1(s0
1 − s1(t))Y, (4.6)

where Y = (1/y1, . . . , 1/yn)T and s0 = (s1(0), . . . , sn(0))T . Note that the equation

for s1 in this form is trivial. For positive initial conditions, s1(t) is strictly decreas-

ing as a function of time, and so s1(t) is invertible, allowing us to write t(s1). This

means we can use s1 as a measure of time. With this in mind, dividing by the s1

equation we can write

s(s1) = s0 − y1(s0
1 − s1)Y, (4.7a)

x(s1) = x0 − y1

∫ s1

s0
1

(
1− D

F (s(τ))

)
dτ, (4.7b)

where x0 = x(s0
1). If there exists t1 such that s1(t−1 ) = s1, then we can repa-

rameterize (4.7) using the percentage of s1 consumed up to that point. Let

ν(s1) = (s0
1 − s1)/(s0

1 − s1). Then ν ∈ [0, 1] and

s(ν) = s0 − νy1(s0
1 − s1)Y,

x(ν) = x0 + y1(s0
1 − s1)

∫ ν

0

(
1− D

F (s(τ))

)
dτ.

After the first impulse, s1 ∈ [s1, s1
+], where s1

+ = rsin
1 + (1− r)s1 is the image of

s1 under the impulsive map. In general, for each k ≥ 1 for which there exists t−k
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such that s1(t−k ) = s1, we write

ϕν(sk) = sk − νy1(sk1 − s1)Y, (4.8)

uν(sk, xk) = xk + y1(sk1 − s1)
∫ ν

0

(
1− D

F (ϕτ (sk))

)
dτ, (4.9)

with the understanding that sk1 = s1
+. In this notation,

ϕ0(sk) = sk = s(t+k ) and ϕ1(sk) = s(t−k+1).

u0(sk, xk) = xk = x(t+k ) and u1(sk, xk) = x(t−k+1).

First we prove that if there are an infinite number of impulses, then the reactor

cycles indefinitely with finite cycle time. I.e., the phenomenon of beating is not

possible for system (4.1).

Lemma 4.2.2. Assume that (s1(t), . . . , sn(t), x(t)) ∈ Rn+1
+ is a solution to (4.1)

with an infinite number of impulse times {tk}∞k=1. Then limk→∞ tk =∞.

Proof. Since the si are strictly decreasing, if x(t) > 0, we can solve the s1 equation

in (4.1) for the time between impulses (i.e., consider dt/ds1 and again use the

substitution ν(s1) = (s0
1− s1)/(s0

1− s1)). After the first impulse, the time between

impulses is given by

tk+1 − tk = y1(s1
+ − s1)

∫ 1

0

1
F (ϕν(sk))uν(sk, xk)

dν.

In order to show that the sequence {tk}∞k=1 has no accumulation point, it is enough

to show that there existsM > 0, independent of k, such that F (ϕν(sk))uν(sk, xk) <
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M . For ν ∈ [0, 1], each component of ϕν(sk) is decreasing in ν; i.e.,

(ϕν)i(sk) ≤ (ϕ0)i(sk) = ski

for ν ∈ [0, 1], where (ϕν)i is the ith component of ϕν , i > 1. By the relationship,

ski = rsin
i + (1− r)(ϕ1)i(sk−1), for i > 1, we obtain

sk+1
i ≤ rsin

i + (1− r)ski .

Let {qki }∞k=0 be the sequence defined by q0
i = s0

i , qk+1
i = rsin

i + (1− r)qki . Then,

lim sup
t→∞

si(t) ≤ lim
k→∞

sup
ν∈[0,1]

(ϕν)i(sk) ≤ lim
k→∞

qki = sin
i , (4.10)

and thus each si(t) is bounded above. It remains to show that x(t) is bounded.

By (4.9), there exists M0 > 0 such that

uν(sk, xk) ≤ xk +M0, for all ν ∈ [0, 1].

Using the relations u1(sk, xk) = x(t−k+1) and xk = (1− r)x(t−k ), it follows that

1
1− rx

k+1 = x(t−k+1) = u1(sk, xk) ≤ xk +M0 (4.11)

and hence

xk+1 ≤ (1− r)(xk +M0). (4.12)
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Consider the sequence {yk}∞k=0, defined by y(0) = x0 and yk+1 = (1− r)(yk +M0),

for k = 1, 2, . . . . Then

lim sup
t→∞

x(t) ≤ lim
k→∞

sup
ν∈[0,1]

uν(sk, xk) ≤ lim
k→∞

yk = (1− r)M0

r
.

Corollary 4.2.3. Let (s1(t), . . . , sn(t), x(t)) ∈ Rn+1
+ be a solution of (4.1). Then,

for all t ≥ 0, the solution is bounded, si(t) > 0, i = 1, 2, . . . , n, and x(t) > 0.

Proof. That solutions to system (4.1) are bounded was part of the proof of Lemma 4.2.2.

It is also clear that the impulse map leaves solutions positive.

4.3 The Periodic Solution

Define the component-wise Lyapunov-like function by

Vi(s) = (sin
1 − s1)y1 − (sin

i − si)yi, i = 1, ..., n. (4.13)

Each component, Vi(s), can be seen as the signed distance from s to the line

through sin in the direction of Y when both are projected onto the s1-si plane. If

Vi(s) > 0, then s lies above the line through sin in the s1-si plane, and if Vi(s) < 0,

then s lies below the line through sin in the s1-si plane. Note that V1(s) ≡ 0 and

if n = 2, then V2(s) is the same Lyapunov-type function used in Chapter 3 (see

also [5]).

While each Vi(s) is useful to determine the location of the projection of s in

the s1-si plane, they are not convex functions, and therefore V(s) does not truly
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constitute a vector-Lyapunov function. On the other hand, the supremum norm,

‖V(s)‖∞ = max{|Vi(s)| : i = 1, . . . , n}, (4.14)

is convex and is therefore a candidate Lyapunov function.

Lemma 4.3.1. Assume that (s1(t), . . . , sn(t), x(t)) ∈ Rn+1
+ is a solution of (4.1).

Let t0 = 0 and tk be the kth impulse time, if it exists. Otherwise, set tk = ∞.

Then, for each i = 2, . . . , n,

1. d
dt
Vi(s(t)) = 0 for t ∈ (tk, tk+1).

2. Vi(s(t+k )) = (1− r)Vi(s(t−k )).

Proof. For each component of V,

d

dt
Vi(s(t)) = d

dt
y1(sin

1 − s1(t))− d

dt
yi(sin

i − si(t)),

= −F (s(t))x(t) + F (s(t))x(t),

= 0,

and so d
dt

max{|Vi(s(t))| : i = 1, . . . , n} = 0.

When t = t+k , using (4.1b),

Vi(s(t+k )) = y1(sin
1 − s1(t+k ))− yi(sin

i − si(t+k )),

= y1(sin
1 − rsin

1 − (1− r)s1(t−k ))− yi(sin
i − rsin

i − (1− r)si(t−k )),

= (1− r)Vi(s(t−k )).
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Figure 4.1: For any s0, Vi(s0) is the length of the perpendicular
line segment connecting s0 to the solution segment through sin in
the s1-si plane. For each i, Vi is the distance from ∂Ω1 to sin in the
s1-si plane.

Corollary 4.3.2. If (s1(t), . . . , sn(t), x(t)) ∈ Rn+1
+ is a solution to (4.1) with an

infinite number of impulses, then V(s(t))→ V(sin) = 0 as t→∞.

We can use the components of V(s) to partition Rn into two complementary

pieces. Define

Vi = y1(sin
1 − s1)− yisin

i ,

(i.e., Vi(s) when s1 = s1 and si = 0), and

Ω1 = {s ∈ Rn
+ : s1 ≥ s1, Vi(s) > Vi, for all i = 2, ..., n},

Ω0 = {s ∈ Rn
+ : s1 ≥ s1, Vi(s) < Vi, for at least one i = 2, ..., n}.
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Lemma 4.3.3. If (s1(t), . . . , sn(t), x(t)) ∈ Rn+1
+ is a solution of (4.1) with s(0) ∈

Ω0, then there are no impulses.

Proof. Without loss of generality, assume that V2(s0) < V 2. Suppose that the first

impulse occurs at t = t1; i.e., s1(t−1 ) = s1. By Lemma 4.3.1,

y1(sin
1 − s1)− y2(sin

2 − s2(t−1 )) = V2(s(t−1 )) = V2(s0) < V 2 = y1(sin
1 − s1)− y2s

in
2 .

This implies s2(t−1 ) < 0, contradicting Corollary 4.2.3, and so there are no impulses.

Lemma 4.3.4. If sin ∈ Ω0, then there are at most a finite number of impulses and

limt→∞ x(t) = 0.

Proof. Suppose not. Then there exists an infinite sequence of impulse times

{tk}∞k=1. Since sin ∈ Ω0, it follows that Vi(sin) = 0 < Vi for at least one i = 2, ..., n.

By Corollary 4.3.2, there exists k ≥ 0 such that Vi(ϕ0(sk)) < Vi. Therefore,

ϕ0(sk) ∈ Ω0, and by Lemma 4.3.3, no more impulses can occur. Thus, the remain-

ing dynamics are governed by (4.5). By Lemma 4.2.1, x(t)→ 0 as t→∞.

Remark 4.3.5. Both Ω1 and Ω0 are open sets, complementary in R+
n . We are

therefore missing the marginal case on their shared boundary,

∂Ω1 = {s ∈ Rn
+ : s1 ≥ s1, Vi(s) ≥ Vi, for all i = 2, ..., n,

and Vi(s) = Vi for at least one i = 2, . . . , n}.
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While not covered here, it can be seen that if s0 ∈ ∂Ω1, then there are no impulses.

If sin ∈ ∂Ω1 and s0 ∈ Ω1, then either finitely many impulses occur or there are

infinitely many impulses but the time between impulses tends to infinity.

In order to visualize solutions, we project them onto the s1-sj plane, where j

is such that Vj = max{Vi : i = 2, . . . , n} . This allows us to see clearly whether

sin ∈ Ω0 or sin ∈ Ω1, since if sin ∈ Ω0, then at least one Vi > 0.

Example 4.3.6. Consider (4.1) with n = 3,

F (s) = min
{ 0.4s1

0.25 + s1
,

1.3s2

0.3 + s2
,

0.5s3

0.5 + s3

}
,

r = 0.7, Y = (1.00, 0.83, 1.25)T , s1 = 0.4, D = 0.05 and sin = (1, 1, 0.6)T . Using

its definition, we compute V = (0,−0.20, 0.52)T . Since V3 = max{Vi : i = 2, 3},

we project solutions onto the s1-s3 plane and easily see that sin ∈ Ω0. The initial

conditions, s0 = (0.6, 0.7, 0.8)T , x0 = 0.5 satisfy s0 ∈ Ω1, yet the conditions for

Lemma 4.3.3 are satisfied, and so, as predicted, in Figure 4.2, we see that x(t)→ 0

as t→∞.

Figure 4.2: The dynamics of Example 4.3.6 illustrated by pro-
jecting orbits onto s1-s3 space, with the line through sin shown in
dotted red on the left. Solutions of s3 and x as functions of time
are shown on the right. As predicted by Lemma 4.3.3, only finitely
many impulses occur and x(t)→ 0 as t→∞.
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If sin ∈ Ω1, then each component of ϕ1(sin) is positive. We define ŝ+ to be the

point on ϕν(sin) with s1 = s1
+, i.e., for fixed r ∈ (0, 1)

ŝ+ := ŝ+(r) = sin − (1− r)y1(sin
1 − s1)Y,

and define

µ(r) = y1(s1
+ − s1)

∫ 1

0

(
1− D

F (ϕν(ŝ+))

)
dν (4.15)

to be the change in x as s changes from ŝ+ to ŝ = ϕ1(ŝ+). Note that, by

Lemma 4.3.1, Vi(ŝ+) = Vi(sin) = 0 for all i = 1, ..., n and for all r ∈ (0, 1).

Since s1
+ = rsin

1 + (1− r)s1, an equivalent representation of (4.16) is

µ(r) = ry1(sin
1 − s1)

∫ 1

0

(
1− D

F (ϕν(ŝ+))

)
dν. (4.16)

Theorem 4.3.7. Assume sin ∈ Ω1. If r ∈ (0, 1) and µ(r) > 0, then system (4.1)

has a unique periodic solution that has one impulse per period. On a periodic

solution, x(t+k ) = (1−r)
r
µ(r) and x(t−k ) = 1

r
µ(r) for all k ∈ N.

If µ(r) ≤ 0, then system (4.1) has no periodic solutions.

Proof. First we show that if (4.1) has a periodic solution, then it is unique.

Assume that (4.1) has a periodic solution. From Corollary 4.3.2, the projection

of the periodic solution onto the resource hyperplane has to lie on ϕν(ŝ+). Since

system (4.5) has no cycles, there is at least one impulse, and, by periodicity, there

are an infinite number of impulses. Denote by K the number of impulses in each

period. Then uν(sK+k, xK+k) = uν(sk, xk) for every ν ∈ [0, 1], k ∈ N. By (4.1b)
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and combining (4.9) with (4.15),

u1(sk, xk) = u0(sk, xk) + µ(r), xk+1 = (1− r)u1(sk, xk),

and therefore, using the relation u0(sk, xk) = xk,

xk+1 = (1− r)(xk + µ(r)).

If xk+1 > xk, then we can show inductively that {xk}∞k=0 is a strictly increasing

sequence. Similarly, if xk+1 < xk we can show that {xk}∞k=0 is a strictly decreasing

sequence. Therefore, if there is a periodic orbit, it is unique up to time translation

and satisfies K = 1, u0(sk, xk) = xk = 1−r
r
µ(r), and u1(sk, xk) = 1

r
µ(r) for all

k ∈ N.

If sin ∈ Ω1 and µ(r) > 0, then the solution with (s0, x0) = (ŝ+, 1−r
r
µ(r)) is

periodic, since ϕ1(ŝ+) = ŝ and u1
(
ŝ+, 1−r

r
µ(r)

)
= 1

r
µ(r).

If µ(r) ≤ 0, then by the uniqueness of periodic solutions and Corollary 4.2.3,

(4.1) has no periodic solutions.

Proposition 4.3.8. If µ(1) > 0, then there exists a unique r∗ ∈ [0, 1) such that

µ(r) > 0 for all r ∈ (r∗, 1] and µ(r) ≤ 0 for all r ∈ [0, r∗].

Proof. Let

r∗ = max{r ∈ [0, 1] : µ(τ) ≤ 0 for all τ ∈ [0, r]}. (4.17)

Note that r∗ is well defined, since µ(0) = 0 and µ is a continuous function of r.

Since µ(1) > 0, it follows that r∗ ∈ [0, 1). By definition of r∗, there exists ε > 0
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such that

µ(r) > µ(r∗) = 0

for all r ∈ (r∗, r∗ + ε). If not, then r∗ could be increased, violating the definition

of r∗. For each ν ∈ [0, 1], F (ϕν(ŝ+(r))) is a nondecreasing function of r, since

ϕν(ŝ+(r)) = ŝ+(r)− νy1(sin
1 − s1)Y,

= sin − y1(sin
1 − s1)Y + r(1− ν)y1(sin

1 − s1)Y.

It follows that µ(r) > µ(r∗) for all r ∈ (r∗, 1].

Proposition 4.3.9. Assume sin ∈ Ω1 and let (s1(t), . . . , sn(t), x(t)) be a solution

to (4.1) with positive initial conditions.

(i) If µ(r) < 0, then there are finitely many impulses.

(ii) If µ(r) = 0, then either finitely many impulses occur or the time between

impulses tends to infinity.

Proof. Suppose the solution has infinitely many impulses. By Corollary 4.3.2,

sk → ŝ+ as k →∞.

(i) If µ(r) < 0, then

lim
k→∞

(xk+1 − xk) ≤ lim
k→∞

(xk+1 − (1− r)xk) = µ(r) < 0.

Therefore, xk eventually becomes negative, contradicting Corollary 4.2.3.
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(ii) If µ(r) = 0, then

lim
k→∞

xk+1 − (1− r)xk = 0,

implying that xk → 0 as k → ∞. Using the relation xk+1 = (1 − r)u1(sk, xk),

it follows that u1(sk, xk) → 0 as k → ∞. Therefore, uν(sk, xk) converges to the

heteroclinic orbit of (4.5) that connects (ŝ+, 0) to (ŝ, 0) as k → ∞. This implies

that tk+1 − tk →∞.

Example 4.3.10. Consider (4.1) with n = 3,

F (s) = 0.4s1

0.25 + s1
· 1.3s2

0.3 + s2
· 0.5s3

0.5 + s3
,

r = 0.7, Y = (1.00, 0.83, 1.25), s1 = 0.4, D = 0.1 and sIn = (1, 1, 1). By definition

V 2 = −0.6 and V 3 = −0.2. Since V 3 = max{V2, V3}, we project solutions onto the

s1–s3 plane, and see that sin ∈ Ω1. Since µ(r) ≈ −0.2924 < 0, by Proposition 4.3.9,

there are a finite number of impulses and x(t) → 0 as t → ∞. This is illustrated

in Figure 4.3.

Figure 4.3: The dynamics of Example 4.3.10, in which µ(r) <
0, illustrated by projecting orbits onto s1–s3 space, with the line
through sin shown in dotted red on the left. Solutions of s3 and
x as functions of time are shown on the right. As predicted by
Proposition 4.3.9, only finitely many impulses occur and x(t) → 0
as t→∞.
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4.3.1 Stability of the Periodic Solution

In this section, we assume that sin ∈ Ω1 and µ(1) > 0. We fix r ∈ (r∗, 1), where

r∗ is given in Proposition 4.3.8, so that µ(r) > 0 and system (4.1) has a unique

periodic solution.

For any s0 ∈ Ω1, we define the net change in x over the time until the first

impulse by

I(s0) = y1(s0
1 − s1)

∫ 1

0

(
1− D

F (ϕν(s0))

)
dν. (4.18)

Since s0 ∈ Ω1, I(s0) is finite and an impulse occurs as long as x0 is large enough.

Note that I(ŝ+) = µ(r). Define

Γ+ = {s ∈ Rn
+ : s1 = s1

+} (4.19)

and

G+ = {s ∈ Γ+ ∩ Ω1 : I(s) > 0}, (4.20)

the subset of Γ+ with positive growth before the first impulse. Also define

G− = {ϕ1(s) ∈ Γ− : s ∈ G+} (4.21)

the image of G+ under ϕ1 in Γ−. Let g : Γ− → Γ+ be the impulse map acting on

s. I.e., for s ∈ Γ−,

g(s) = rsin + (1− r)s.

The composition (g ◦ ϕ1)(s0) = s1, and more generally (g ◦ ϕ1)(sk) = sk+1 for

k = 0, 1, . . . .
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Lemma 4.3.11. Assume that sin ∈ Ω1 and µ(r) > 0. Then there exists ρ > 0

such that Γ+
ρ := {s ∈ Γ+ : Vi(s) > −ρ for all i = 2, . . . , n} is a subset of G+.

Proof. Let s̃(z) = ŝ+ − (0, z/y2, . . . , z/yn)T . Then, by Lemma 4.3.1,

Vi(s̃(z)) = y1

(
sin

1 − s1
+
)
− yi

(
sin
i −

(
ŝi

+ − z

yi

))
= Vi(ŝ+)− z = −z

for i = 2, . . . , n. Since sin ∈ Ω1, Vi < 0 for all i = 2, . . . , n. Let σ = min{−Vi : i =

2, . . . , n} > 0. Then ϕν(s̃(σ)) is in Rn
+ for all ν ∈ [0, 1) and intersects the boundary

of Rn
+ when ν = 1. Thus, F (ϕν(s̃(σ))) > 0 for all ν ∈ [0, 1) and F (ϕ1(s̃(σ))) = 0.

Since F (ϕν(s)) is Lipschitz-continuous, there exists K > 0 such that

|F (ϕ1(s̃(σ))− F (ϕν(s̃(σ))| ≤ K|1− τ |,

and hence, since F is decreasing in ν, F (ϕν(s̃(σ))) ≤ K(1 − ν) for all ν ∈ [0, 1].

Therefore,

I(s̃(σ)) = lim
ν→1

y1(s1
+ − s1)

∫ ν

0

(
1− D

F (ϕτ (s̃(σ)))

)
dτ

≤ lim
ν→1

y1(s1
+ − s1)

∫ ν

0

(
1− D

K(1− τ)

)
dτ = −∞.

For z < σ, s̃(z) ∈ Ω1 and I(s̃(z)) is continuous. Since I(s̃(0)) = I(ŝ+) = µ(r) > 0,

by the intermediate-value theorem there exists z ∈ (0, σ) such that I(s̃(z)) = 0.

Let ρ = sup{z ∈ (0, σ) : I(s̃(z)) > 0}. Thus, the set Γ+
ρ is well defined, and all

that is left is to show that Γ+
ρ ⊂ G+.

Let s ∈ Γ+
ρ . Then there exists ε > 0 such that Vi(s) > −ρ + ε = Vi(s̃(ρ − ε))
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for each i = 2, . . . , n. This implies that si > ŝi − (ρ − ε). By the definition of ρ,

we have I(s̃(ρ− ε)) > 0. Since F (s) is nondecreasing in each of the si,

I(s) ≥ I(s̃(ρ− ε)) > 0.

If n = 2, then Lemma 4.3.11 implies that there exists s[2 > 0 such that G− =

{s1}×(s[2,∞). This is the result of Lemma 3.4.9 in Chapter 3 (or equivalently, the

result of Lemma 4.9 in [5]). If n > 2, then we are unable to find such an explicit

formulation of Γ−A.

We use the set G− to define

ΩG = {s0 ∈ Ω1 : ϕ1(s0) ∈ G−}, (4.22)

the set of points in Ω1 that will flow through G− for some value of x0. Using (4.13)

and Lemma 4.3.11, we define

Ωρ = {s ∈ Ω1 : Vi(s) > −ρ, i = 2, . . . , n},

where ρ is given in Lemma 4.3.11. It is clear that

Ωρ ⊆ ΩG. (4.23)

Lemma 4.3.12. Assume that sin ∈ Ω1 and µ(r) > 0. Let (s1(t), . . . , sn(t), x(t))

be a solution of system (4.1) with x0 > 0 and s0 ∈ ΩG.

1. If x0 ≤ −I(s0), then there are no impulses.
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2. As t→∞, (s1(t), . . . , sn(t), x(t)) converges to the unique periodic orbit given

by Theorem 4.3.7 if and only if x0 > −I(s0).

Proof. Suppose x0 ≤ −I(s0) and there is at least one impulse. By (4.9) and the

definition of I(s0),

u1(s0, x0) = x0 + I(s0) ≤ 0.

This implies that x(t) = 0 for some finite value of t, contradicting the uniqueness

of initial values problems to ODEs.

If x0 > −I(s0), then by (4.9) and the definition of I(s0), at least one impulse

occurs. Let t = t−1 be the time of the first impulse. Since s0 ∈ ΩG, we have

s(t−1 ) = ϕ1(s0) ∈ G−. It follows that s1 = rsin + (1− r)ϕ1(s0) ∈ G+ and thus that

I(s1) > 0. Therefore, there is a second impulse at t = t−2 . Inductively, it follows

that impulses occur indefinitely. By Corollary 4.3.2, limk→∞ ‖V(ϕν(sk)‖∞ = 0 for

all ν ∈ [0, 1], and therefore sk → ŝ+ as t → ∞. By (4.9) and the relationship

I(ŝ+) = µ(r),

lim
k→∞

(u1(sk, xk)− u0(sk, xk)) = µ(r).

On the other hand, the impulse map in (4.1b) gives

lim
k→∞

(u0(sk+1, xk+1)− (1− r)u1(sk, xk)) = 0.

Combining these, and using the fact that u0(sk, xk) = xk, leads to

lim
k→∞

(xk+1 + (1− r)xk) = (1− r)µ(r). (4.24)

121

http://www.mcmaster.ca/
http://ms.mcmaster.ca/


Ph.D. Thesis — Tyler Meadows; McMaster University — Math and Stats

This implies that limk→∞ x
k = 1−r

r
µ(r) and limk→∞ u1(sk, uk) = 1

r
µ(r).

Corollary 4.3.13. If sin ∈ Ω1 and µ(r) > 0, then all solutions to (4.1) with x0 > 0

and s0 = sin converge to the periodic orbit given in Theorem 4.3.7.

Proof. Since s0 = sin, I(s0) > µ(r) > 0, and so x0 > 0 > −I(s0).

For each s0 ∈ Ω1 let N0 = N0(s0) be the smallest positive integer such that

sN0 ∈ Γ+
A. Clearly, if s0 ∈ ΩG, we have N0(s0) = 1.

In general, we are unable to get an exact characterization of ΩG in terms of

V(s0). However, we can approximate N0 using Ωρ. Let Nρ be the smallest positive

integer such that sNρ ∈ Ωρ. By applying Lemma 4.3.1 repeatedly,

Vi(sk) = (1− r)kVi(s0). (4.25)

The condition that s0 ∈ Ω1 \ Ωρ is equivalent to Vi(s0) ≤ −ρ for at least one of

i = 2, ..., n. By applying this to (4.25) and solving for k,

Nρ = max
{⌈

ln(Vi(s0)/− ρ)
− ln(1− r)

⌉
: Vi(s0) ≤ −ρ

}
, (4.26)

where dxe is least integer greater than x. By Lemma 4.3.1 and (4.23), N0 ≤ Nρ.

From (4.26), we see that Nρ has the upper bound

N = max
{⌈

ln(V i/− ρ)
− ln(1− r)

⌉
: i = 2, . . . , n

}
,

and so N0 ≤ N ; i.e., every trajectory enters ΩG after finitely many impulses, or

the reactor fails before then.

122

http://www.mcmaster.ca/
http://ms.mcmaster.ca/


Ph.D. Thesis — Tyler Meadows; McMaster University — Math and Stats

For any solution to (4.1) with x0 > 0 and s0 ∈ Ω1, if there exists t−1 with

s1(t−1 ) = s1,

x(t−1 ) = u1(s0, x0) = x0 + I(s0),

and, for any k = 2, 3, ..., the value of x(t−k ) is given by

x(t−k ) = xk + I(sk).

Inductively,

x(t−k ) = (1− r)k−1x0 +
k∑
j=1

(1− r)k−jI((g ◦ ϕ1)j−1(s0)),

and therefore, x(t−k ) > 0 is equivalent to

x0 > −
k∑
j=1

(1− r)1−jI((g ◦ ϕ1)j−1(s0)).

We define X(s0) to be the minimum value of x0 required for s(t−∗ ) ∈ G− for some

t−∗ ,

X(s0) = − min
1≤k≤N0

 k∑
j=1

(1− r)1−jI((g ◦ ϕ1)j−1(s0))
 . (4.27)

In particular, if s0 ∈ ΩG, then X(s0) = −I(s0), since N0 = 1.

Proposition 4.3.14. Assume sin ∈ Ω1 and µ(r) > 0. Let (s1(t), . . . , sn(t), x(t))

be a solution of (4.2) with s0 ∈ Ω1 and x0 > 0.

(i) If x0 ≤ X(s0), then there are at most N0 − 1 impulses.

(ii) If x0 > X(s0), then the solutions converge to the periodic orbit given in

Theorem 4.3.7.
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Proof. (i) Suppose x0 ≤ X(s0) and there are at least N0 impulses. Denote the

first N0 impulse times by t1 < t2 < ... < tN0 . By (4.9) and the definition of X(s0),

x(t−k ) = u1(sk−1, xk−1) = (1− r)k−1(x0 −X(s0)) ≤ 0,

for some k < N0, which contradicts Corollary 4.2.3.

(ii) If x0 > X(s0), then the solution has at least N0 impulses. Then sN0 =

(g ◦ ϕ1)N0(s0) ∈ ΩG. Since sN0 ∈ G+, we have I(sN0) > 0, and the result follows

from Lemma 4.3.12.

Example 4.3.15. Consider (4.1) with n = 3,

F (s) = min
{ 0.5s1

1 + s1
,

0.7s2

0.4 + s2
,

s3

1 + s3

}
,

and r = 0.3, Y = (2.0, 0.2, 1.0)T , s1 = 0.25, D = 0.1 and sin = (0.5, 0.1, 0.5).

By definition, V2 = −0.375, and V3 = −0.375. Therefore, V2 = V3 =

max{V2, V3}. We are free to project solutions onto either the s1-s2 plane, or

the s1-s3. Notice sin ∈ Ω1 and µ(r) ≈ 0.0037 > 0. By Theorem 4.3.7 there

exists a periodic solution. With the initial conditions s0 = (0.3, 0.01, 1)T , we have

V (s0) = (0,−0.35, 0.6)T , and so s0 ∈ Ω1. We calculate the sum in (4.27) for

n = 1, . . . , N0 where N0 is the first integer such that (1 − r)1−nI(sn−1) > 0. The

approximate values are as follows:

n 1 2 3 4 5 6

(1− r)1−nI(sn−1) −0.1766 −0.0575 −0.330 −0.206 −0.0104 0.0007
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Figure 4.4: The dynamics of Example 4.3.15 illustrated by pro-
jecting orbits onto s1-s2 space, with the line through sin shown in
dotted red on the left. Solutions of s2 and x as functions of time
are shown on the right. On the top, x0 < X(s0) and so x(t)→ 0 as
t→∞ after at most N0 = 4 impulses. On the bottom x0 > X(s0)
and so solutions converge to the periodic solution.

We therefore calculate X(s0) ≈ 0.1766 + 0.0575 + 0.330 + 0.206 + 0.0104 = 0.2981.

In Figure 4.4 (top) the initial biomass concentration is x0 = 0.29 < X(s0) and so by

Proposition 4.3.14, x(t)→ 0 after at most 4 impulses. In Figure 4.4 (bottom) the

initial biomass concentration is x0 = 0.31 > X(s0), and so by Proposition 4.3.14,

the solution converges to the periodic solution as t→∞.

The following theorem summarizes the results.

Theorem 4.3.16. Let (s1(t), . . . , sn(t), x(t)) be a solution of (4.1) with positive

initial conditions.

(i) If sin ∈ Ω0, then (s1(t), . . . , sn(t), x(t)) has only finitely many impulses, and

x(t)→ 0 as t→∞.

(ii) If sin ∈ Ω1 and µ(r) ≤ 0, then (s1(t), . . . , sn(t), x(t)) either has only finitely
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many impulses and x(t) → 0 as t → ∞ or the time between impulses tends

to infinity and lim inft→∞ x(t) = 0.

(iii) If sin ∈ Ω1 and µ(r) > 0, then there is a unique periodic orbit. Either

(s1(t), . . . , sn(t), x(t)) has infinitely many impulses and converges to the pe-

riodic orbit or (s1(t), . . . , sn(t), x(t)) has only finitely many impulses and

x(t) → 0 as t → ∞. The case with infinitely many impulses occurs if and

only if

s0 ∈ Ω1, and x0 > X(s0).

Proof. The results follow from Lemmas 4.3.3 and 4.3.4, Theorem 4.3.7, and Propo-

sitions 4.3.9 and 4.3.14.

4.4 Conclusions

We have modelled the self-cycling-fermentation process assuming that there are an

arbitrary number of essential resources, s ∈ Rn, that are growth limiting for a pop-

ulation of microogranisms, x, using a system of impulsive differential equations.

We assume that the criterion for decanting the reactor occurs when the concen-

tration of the first nutrient reaches a threshold, s1. The process is considered

successful if, once initiated, it proceeds indefinitely without intervention.

By solving the associated system of ODEs in terms of the first nutrient, s1, we

have shown that the solutions, when projected onto the nutrient hyperplane, are

lines in the direction of (1/y1, ..., 1/yn)T , where yi is the yield coefficient of the ith
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nutrient. Using a vector Lyapunov function, we divide the nutrient hyperplane

into two regions, Ω0 and Ω1. The model predicts that if the initial nutrient con-

centrations lie in Ω0 then solutions will approach the faces of Rn
+ before s1 reaches

s1, and the reactor will fail. If the initial nutrient concentrations lie in Ω1, then

the concentration of s1 may reach s1, but successful operation of the reactor may

still be limited by other factors.

In reality, we expect that the the initial nutrient concentrations are equal to

the nutrient concentrations in the input; i.e. s(0) = sin. If, for any solution

with initial nutrient concentration sin and positive initial biomass concentration

(x(0) > 0), the threshold concentration of s1 is reached with net positive growth

of the biomass, then we can pick a fraction of medium to remove, r, so that the

reactor will cycle indefinitely. In this case, the solutions converge to a periodic

solution, with period equal to the length of one cycle.

If the model has a periodic solution, the nutrient components of the periodic

solution lie along the line through sin in the direction of (1/y1, ..., 1/yn)T . The

net change in biomass along the periodic orbit, denoted µ(r), must be positive.

For other initial nutrient concentrations in Ω1, the solutions may converge to the

periodic solution. However, there is a minimum concentration of biomass, X,

that is dependent on the initial nutrient concentrations, required for the successful

operation of the reactor. If the initial biomass concentration is higher thanX, then

the reactor will cycle indefinitely and solutions will approach the periodic solution.

If the initial biomass concentrations are less than X, then the reactor will fail after

a finite number of cycles. If the model does not have a periodic solution, then the

reactor will either fail after a finite number of cycles or it will cycle indefinitely,
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but the time each cycle takes will grow larger and larger, approaching infinity.

The model presented here can be thought of as an extension of the single re-

source model developed in Smith and Wolkowicz [10]. In that model, it was shown

that, when a periodic orbit exists, the reactor will either cycle indefinitely or the

reactor will fail without reaching the threshold concentration of s1. We have shown

that if there are more essential limiting nutrients but only one is used for the de-

canting criteria, then the reactor may fail after many cycles, even if the system

has a periodic solution. An example of failure after 4 cycles is shown in Figure 4.4.

This may offer an explanation for failure of the reactor when the analysis of the

single resource model suggests the reactor should operate successfully.
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Chapter 5

Conclusions

In this thesis, we investigated three different models of engineered biological sys-

tems. Each of these systems is applied to a form of green technology, used to

reduce the amount of produced waste that enters the environment or to make use

of the waste produced in a different process. In each of the cases, we have com-

pletely characterized the dynamics of the system based on initial conditions and

parameter values present in the system. Each model is either the simplification of

a more realistic model (Chapter 2) or is a modification of a more basic model that

only focused on one or two mechanisms in the system (Chapter 3 and Chapter

4). The goal of this type of modelling is to make general qualitative observations

about the systems modelled to try to understand the complete spectrum of dy-

namics possible. In each case, we have made some observation from the analysis

that could be useful to those who operate such systems.

The first system uses the anaerobic digestion process to convert animal waste

into fuel in the form of biogas. The model of this process that we analyze is a

system of five ordinary differential equations and was introduced by Bornhöft et
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al. [4]. We complete a global analysis of the system, determining the complete

range of possible dynamics for any parameter regime. In particular, we show that

the dynamics of the full five-dimensional system reduce to the dynamics of a two-

dimensional limiting system. We show that the limiting system is equivalent to

the model of growth in a basic chemostat when the microorganism death rate is

considered and the growth functions are non-monotone. The dimensional reduction

of systems in this way is a common method involving the theory of asymptotically

autonomous systems [16] (although we use the slightly weaker condition that the

system is quasi-autonomous). We consider stochastic simulations of the model

using the Gillespie stochastic simulation algorithm, the tau-leaping algorithm, and

two stochastic simulations in which the parameters are treated as random variables.

All four algorithms give similar results and suggest that if the reactor is going to

fail, it will do so shortly after startup. This result implies that operators should

avoid restarting the system too often, since the reactor is most vulnerable early in

its operation.

The chemostat model that we obtain as the two-dimensional limiting system

had not been completely studied. When only one equilibrium point is locally

asymptotically stable, it is clear that the locally stable equilibrium point is also

globally asymptotically stable. When both an interior equilibrium point and a

boundary equilibrium point are locally asymptotically stable, it was not clear

whether periodic orbits could exist. By using the level sets of a local Lyapunov

function, we were able to approximate the basin of attraction for the interior

equilibrium point. By coupling our estimation of the basin of attraction with

standard phase-plane analysis, we were able to show that trajectories must either
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enter the basin of attraction or converge to one of the other equilibria and therefore

that no periodic solutions are possible.

The second system studied was the self-cycling fermentation process used to

purify wastewater. The model of this system is represented by a system of three

impulsive differential equations, with impulses occurring when both nutrient con-

centrations fall below set threshold levels. We used a symmetry inherent in the

system to visualize solutions in the nutrient plane and decompose the nutrient

plane into two regions, Ω0 and Ω1. We showed that if nutrient concentrations

begin in Ω0, then the population of microorganisms is destined to die out. If the

nutrient concentration begins in Ω1, then the reactor may succeed; however, this

is not the only criterion that is required for success. We showed if the input nutri-

ent concentrations are in Ω0, then the microorganism is destined to die out after

finitely many cycles. However, when the input concentrations are in Ω1, there is

the potential for an attracting periodic solution. The periodic solution only exists

if a specific growth condition on the microorganism population is met. We find

further initial-condition-dependent criteria that must be satisfied for solutions to

converge to the periodic solution, which is equivalent to successful operation of the

reactor.

Operators of self-cycling fermentors often set up their reactors to be as simple

as possible. In many cases, this means that the fraction of medium emptied and

subsequently refilled each cycle is approximately 1/2. By considering a system that

is operating successfully, we numerically optimize the throughput of the reactor

using the emptying/refilling fraction, r. The throughput of the reactor is the

volume of liquid removed from the reactor per unit time. In a toy example, we
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show that the optimal refilling fraction does not necessarily have to be 1/2. With

the application of wastewater treatment in mind, the self-cycling process can likely

be implemented more efficiently by determining the optimal emptying/refilling

fraction.

The third model investigates the self-cycling fermentation process when there

is an arbitrary number of limiting essential nutrients. We model the nutrient up-

take using an arbitrary increasing positive function, and model the self-cycling

fermentation process using a system of n+ 1 impulsive differential equations with

impulses when the first nutrient concentration falls below a prescribed threshold.

Using a symmetry of the system, we show that the time between impulses can

be effectively measured using one of the nutrient concentrations. By making this

change of variables, we can obtain closed-form solutions for the nutrient concentra-

tions and an implicit solution for the biomass concentration between impulses. We

use a vector Lyapunov-type function to show that if impulses occur indefinitely,

then nutrient concentrations converge to a periodic solution, which is a line when

projected onto the n-dimensional nutrient hyperplane. Like the two nutrient case,

we show that the nutrient hyperplane can be split into two regions, Ω0 and Ω1. We

show that if nutrient concentrations begin in Ω0, then the microorganism popula-

tion is destined to die off. If nutrient concentrations begin in Ω1, then the survival

of the microorganism population depends on the location of the input nutrient

concentrations in nutrient space, the net growth of the microorganism population

on the solution curve through the input nutrient concentrations and an additional

initial-condition-dependent criterion on the initial biomass concentration.
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Self-cycling fermentation depends on the ability to be able to make regular on-

line measurements of the system. These measurements can be difficult and expen-

sive, so operators often find ways around measuring the exact quantities of interest.

For example, in the turbidostat [17], the turbidity (cloudiness of the liquid) is used

to estimate the biomass in the liquid, and the dissolved oxygen concentration is a

common proxy measurement for limiting nutrient concentrations [19]. If the mea-

sured quantity also becomes limiting or there is a shortage of other nutrients in

the input medium, then the multiple-nutrient model suggests that the reactor may

fail, even if the single-nutrient model would predict success.
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