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Lay Abstract 

Lead generation is an integral requirement of any research organization in all fields and is 

typically a time-consuming and therefore expensive task.  This is due to the requirement 

of human intuition to be applied iteratively over a large body of evidence.  In this thesis, a 

new technology called the Artificially-intelligent Desktop Assistant (AiDA) is explored 

in order to provide a large number of leads from accumulated biomedical information.  

AiDA was created using a combination of classical statistics, deep learning methods, and 

modern graphical interface engineering.  It aims to simplify the interface between the 

researcher and an assortment of bioinformatics tasks by organically interpreting written 

text messages and responding with the appropriate task.  AiDA was able to identify 

several potential targets for new pharmaceuticals in acute myeloid leukemia (AML), a 

cancer of the blood, by reading whole-genome data.  It then discovered appropriate 

therapeutics by automatically scanning through the accumulated body of biomedical 

research papers.  Analysis of the discovered drug targets shows that together, they are 

involved in key biological processes that are known by the scientific community to be 

involved in leukemia and other cancers. 
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Abstract 

Evidence-based software engineering (EBSE) solutions for drug discovery that are 

effective, affordable, and accessible all-in-one are lacking.  This thesis chronicles the 

progression and accomplishments of the AiDA (Artificially-intelligent Desktop 

Assistant) functional artificial intelligence (AI) project for the purposes of drug discovery 

in the challenging acute myeloid leukemia context (AML).  AiDA is a highly automated 

combined natural language processing (NLP) and spreadsheet feature extraction solution 

that harbours potential to disrupt the state of current research investigation methods using 

big data and aggregated literature.  The completed work includes a text-to-function (T2F) 

NLP method for automated text interpretation, a ranked-list algorithm for multi-dataset 

analysis, and a custom multi-purpose neural network engine presented to the user using 

an open-source graphics engine.  Validation of the deep learning engine using MNIST 

and CIFAR machine learning benchmark datasets showed performance comparable to 

state-of-the-art libraries using similar architectures.  An n-dimensional word embedding 

method for the handling of unstructured natural language data was devised to feed 

convolutional neural network (CNN) models that over 25 random permutations correctly 

predicted functional responses to up to 86.64% of over 300 validation transcripts.  The 

same CNN NLP infrastructure was then used to automate biomedical context recognition 

in >20000 literature abstracts with up to 95.7% test accuracy over several permutations.  

The AiDA platform was used to compile a bidirectional ranked list of potential gene 

targets for pharmaceuticals by extracting features from leukemia microarray data, 

followed by mining of the PubMed biomedical citation database to extract recyclable 
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pharmaceutical candidates.  Downstream analysis of the candidate therapeutic targets 

revealed enrichments in AML- and leukemic stem cell (LSC)-related pathways.  The 

applicability of the AiDA algorithms in whole and part to the larger biomedical research 

field is explored. 
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Chapter 1: Introduction 

1.0: Preamble 

The core directive of this thesis was to demonstrate that next-generation sequencing data 

extraction and deep natural language processing could be applied to create an end-to-end 

lead generation platform.  It is a work that combines several components of 

bioinformatics, stem cell science, clinical oncology, and deep learning in an unlikely 

combination to produce a highly automated, targeted solution for research investigation.  

Regression statistics and deep learning are sequentially applied in the endeavor of 

automating specific niches of human intuition such as functional responses to text and 

contextual recognition.  The deep learning technologies applied in this work, discussed in 

Chapter 2, were implemented using a custom neural network engine created in the C++ 

programming language.  Discoveries made by this combination of new technologies will 

be covered in detail in Chapter 3, which include validations of the custom deep learning 

engine, the regression methods, and the predictions made by the system.  The core 

translatability of the concepts discussed in this work will be discussed in Chapter 4, most 

of which revolve around integration with the desktop application called the Artificially-

intelligent Desktop Assistant (AiDA).  The AiDA platform, and many of the algorithms 

integrated as part of this work, were built using the CVision and HyperC open source 

libraries, which are contributions to the development community provided free of any 

charge (or requirement for any attribution).   
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In this chapter, several required concepts will be covered at the surface level to 

acquaint the reader with the knowledge required to understand the methods descripted in 

Chapter 2, and the results reported in Chapter 3.  Supplementary visuals will be provided 

alongside the text in pertinent areas—in cases where the images have not been originally 

created for the purposes of this thesis, the original authors have been cited.  It is highly 

recommended that the reader follows along with citations in this chapter in areas where 

they are not familiar with the content, in order to strengthen their understanding of the 

core concepts.  As a high-level summary, the concepts of this chapter include: 

• Natural language processing for biomedical research 

• The relevance of next-generation sequencing analytics to lead generation 

• Chatbots in the enhancement of the user experience (UX) 

• A prelude to deep learning theory using neural networks 

• Background on the Acute Myeloid Leukemia cancer, and the relevance of stem 

cells to its severity 

This chapter begins with an introduction to natural language processing, and the logic 

behind the automation of data extraction from unstructured text data. 

1.1: Automatic text mining in bioinformatics 

An essential task in all fields of research is the identification of viable leads either 

directly or indirectly supported by accumulated evidence for the purposes of investigating 

novel avenues of study and/or justifying the continuation of current research projects.  

The most thorough method of accomplishing this today is the systematic review process, 
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which involves an aggregation of evidence from the scientific literature through 

systematic literature review (SLR) and experimental data through data analytics.  

Systematic review currently incurs a high time cost, and therefore financial cost, due to 

the inefficiency and laborious nature of both SLR and data analytics (Higgins and Green, 

2008; Chapman et al., 2010; Jonnalagadda et al., 2015).  The process of hypothesis 

generation, often accomplished by a combination of systematic review, previous work, 

and open source data analysis, is a major determinant for the curation of funding for 

future research.  For many research groups, long-term success is mediated by consistency 

in identifying and following research leads, among other critical factors such as the 

competency of the team as a unit and effective management of time and resources.  On a 

societal level, consistent, quality hypothesis generation fuels a chain of innovation that 

over time drives national economic growth through the evolution of ideas into basic 

research, which are then followed by translatable proof-of-concepts and eventually 

productive, profitable solutions. 

The Cochrane guideline for extensive SLR suggests that a single investigator invests a 

mean total review time of 6-8 months, with an upper limit of one full year (Higgins and 

Green, 2008).  Less extensive exploratory literature reviews poised at satisfying simpler 

questions take an average of 26.9 hours (Bullers et al., 2018).  Time measurements of 

literature review tasks in a randomized sample of librarians indicated that the search, 

interpretation, and writing components of formal systematic reviews explained much of 

the variability in the time taken to completion (Bullers et al., 2018).  The need for 

automated software solutions for SLR has been formally recognized since 2004, spurring 
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forward the field of Evidence-Based Software Engineering (EBSE) (Dyba et al., 2005).  

A number of freeware and commercial software tools have been created to attempt to 

mitigate the time costs of SLR, such as the EPPI-Reviewer (Thomas and Brunton, 2007), 

SLR-Tool (Fernández-Sáez et al., 2010), TrialStat SRS (trialstat.com), and most recently 

DistillerSR (Evidence Partners, 2011).  All of these solutions are closed-source software 

that do not offer internal API tools for redistribution.  Those that are commercial come 

with substantial price tags that do not reduce the combined time-financial costs of SLR.  

Others have recognized that accessible solutions in EBSE have not been created, 

particularly those that can track literature searches and analyze clinical data (Brogger, 

2007). 

To help scale the use of NLP in large-scale literature searches, software engineers have 

created syntactical search tools such as Agilent Literature Search 

(https://www.agilent.com/labs/research/litsearch.html), which make use of NLP to help 

the user find information related to a number of criteria.  Cytoscape is the most well-

known way to visualize gene interaction information, and has integrated Agilent 

Literature Search into its app engine to create gene interaction networks bolstered by 

NLP (Shannon et al., 2003).  As powerful as the duo may be for early hypothesis 

generation, the extensive syntax of the Agilent literature search tool and the method to 

merge its outputs with the Cytoscape front-end present a significant learning curve to the 

end user.  Considering that the intended end user may have limited background in the 

syntax of computer logic, significant time investment is required for users to bring 

themselves up to speed enough to install the tool, peruse the documentation and learn the 
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syntax, and then deploy it.   As a result of these roadblocks to user engagement, Agilent’s 

literature search been relatively underused by the biomedical research community 

compared to other packaged solutions such as the Broad Institute’s GSEA tool 

(Subramanian et al., 2005).   

In addition to small-scale lead generation, a need has been acknowledged for high-

throughput large-scale text mining solutions in the bioinformatics community 

(Ivanisenko et al., 2015; Labaer, 2003; Spangler et al., 2014).  The challenges faced in 

small scale hypothesis-generation are exponentially exacerbated when the same processes 

are applied on large, automated runs across the accumulated literature.  At the time of 

writing there are over 29 million citations indexed by the PubMed citation database, a 

number which demands that any holistic analysis of the accumulated biomedical evidence 

body be fully automated.  Full automation of the literature experiences many seemingly 

insurmountable obstacles due to the variability of unstructured text formats in the 

literature.  Publication formats differ between journals, as well as within journals (ie. 

letters to the editor, communiqués, review papers, methods papers, and results papers).  

An effective EBSE solution for large-scale automated text mining requires that these 

diverse text input types be standardized in order to produce standardized inferences and 

responses.  Currently, the state-of-the-art is a combination of manual curation and 

automated lead generation which involves the extraction of key words from a large body 

of papers and the ordering of papers according to key word scores (Delen and Crossland, 

2008; Franceschini et al., 2012; Ivanisenko et al., 2015).  Databases such as STRING 

incorporate automated text mining to help fill the gaps in manually curated data, thus 



 MSc. Thesis – D. Tran; McMaster University – Health Science  

 

6 

 

speeding up the process while introducing an acceptable margin of automation error 

(Franceschini et al., 2012).  These methods proved to be invaluable in speeding up the 

process of biological pathway reconstruction but lacked the ability to discern the 

directionality and type of interactions between named biomedical entities.  The most 

recent technology to address automated text mining needs is ANDSystem, which 

implements a dictionary-based parsing model to identify named entities in the literature 

and integrate new discoveries with accumulated pathway knowledge (Ivanisenko et al., 

2015).   

All present automated literature-mining methods require an abundance of present 

knowledge to help fact-check discoveries made by the forward algorithms.  This is 

because the ability to discern the main idea and context of a body of dense literature is, at 

the time being, a purely human ability.  There are many variables with many degrees of 

freedom that require deep inference to identify.  When considering that the only free 

information available about the vast majority of publications emerges from their title and 

abstracts alone, computational algorithms become thrown against challenges that even 

most humans have difficulty discerning.  When perusing the literature, for each 

publication a reader must be able to correctly identify: 

1. The main idea of the work 

2. The contextual background of the work 

3. The discoveries made as a result of the work 

4. The validity and confidence of the work’s results  
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We can partially satisfy requirements (1) and (3) using the methods cited previously but 

struggle greatly with requirements (2) and (4).  Consider the search for the gene locus 

coding for the pyruvate carboxylase enzyme, abbreviated “PC.”  There is an enormous 

diversity of abstracts cited in the PubMed database abbreviating other word combinations 

for “PC,” such as prostate cancer (Kamisawa et al., 2008), pancreatic cancer (Fattahi et 

al., 2009; Horvath et al., 2001), and phosphatidylcholine (Amtmann, 1996; Exton, 1990).  

One might suggest the intuitive solution of searching purely for the name of the gene 

product, however many abstracts do not define the names of their abbreviations and thus 

this kind of search would prove to be too conservative.  If not otherwise defined, the way 

a human would be able to discern between the proper definitions of an acronym across a 

range of different papers would be through the context of the text.  A paper failing to 

define an acronym in a general study of democratic decline across the globe would 

certainly signify that the acronym’s definition is unlikely to correspond to a biochemical 

definition, and thus an educated inference can be made about an alternate meaning based 

on that probability.   An automated solution that can perform that kind of probabilistic 

inference would allow for a vast improvement in the coverage of today’s manually 

curated biomedical databases. 

1.2: Big data analytics in hypothesis generation 

Robust, reproducible data analytics are, alongside SLR, an integral component of 

evidence-based systematic review.  While the literature serves the purpose of validating 

findings based on collective reports and opinions founded upon experimental data, it is 

impossible to move forward along new lines of investigation without some kind of new 
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input in the form of novel experimental evidence, or reanalysis of existing evidence in 

innovative ways.  Therefore, it would be a basic requirement of a true hypothesis-

generating AI that it be able to peruse the body of experimental evidence in addition to 

the accumulated literature. 

Several tools have been published to help users manually extract and visualize 

information from raw experimental data.  These include the R programming language 

(Ihaka and Gentleman, 1996) and associated microarray analytics packages such as 

Limma (Smyth, 2005).  Web developers have also assembled public web tools such as 

the cBIOPortal for cancer genomics (Gao et al., 2013) and the BloodSpot gene 

expression platform for hematopoiesis (Bagger et al., 2015).  Other tools for higher-level 

population analytics exist such as the Pathway Commons centralized biomedical pathway 

hub (Cerami et al., 2010), the Gene Ontology unified biology database (Ashburner et al., 

2000), and the DrugBank drug discovery web tool (Wishart et al., 2006).   

Since these tools are scattered between multiple sources on multiple platforms, it requires 

much background knowledge, some technical expertise, and time spent finding and/or 

sourcing the tools to piece together a complete virtual pipeline that can adequately 

analyze experimental data for a single potential research lead.  There are no tools that 

chain together all these software options into one solution, let alone one that can allow for 

sequential analyses of multiple leads.  Likely barriers to the creation of a unified solution 

would be the complexity of consolidating information across multiple platforms, and 

potential cluttering that would arise from the required user interface.  A platform unifying 
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all these tools would turn multiple learning curves into a single learning curve associated 

with learning how to use the aggregated interface. 

A major challenge to consolidating these kinds of tools however is the maintenance of 

simplicity in the user experience (UX).  UX design has more recently become a major 

priority for developers in many industries, especially as the demands for versatility in 

each software product increase over time (Gray et al., 2015; Øvad and Larsen, 2015; 

Unger and Chandler, 2012).  While relatively simple interfaces such as literature searches 

can be presented in the form of a search bar with “advanced options,” the degrees of 

freedom required in deep data analytics would make such a page expand to unreasonable 

depth.  For example, when the visualization of categorical data in a spreadsheet is 

required, the typical path of extraction would follow: 

1. If data is not normalized and/or formatted, push the dataset through a pre-

processing toolchain 

2. Find the labels associated with each category in the spreadsheet 

3. (If annotations are not present) look for annotations in another file included with 

the data package 

4. Determine the organization of the annotations (headers vs. body) 

5. Determine the orientation of the annotations (row vs. column) 

6. If required, match annotations to IDs in the raw data spreadsheet. 

7. Seek along the required rows/columns for the location of the desired data values 

8. Perform a dictionary lookup if the data points have been hashed or tagged 

9. Extract the data values into vector format for each category 
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10. Perform logistic/linear regression statistics on the selection against the 

background 

11. Visualize the data, supply supplementary statistics for reporting 

The enormous amount of customizability that follows along each step makes it nearly 

impossible to create a tool with an options panel that is both intuitive and flexible enough 

to capture the range of user demands.  Each of these steps may vary to a greater extent if 

the data is presented in a non-standard format, the data labels and data points are 

separated into different files, or the data points are labelled using a hash or conversion 

table (for example, microarray data).  Therefore an intuitive user experience would 

require that the application be able to foresee the users’ needs based on the many baseline 

criteria of the dataset and experimental question. 

1.3: Chatbots in modern applications 

A supplement—and sometimes alternative—to classic graphical user interfaces is the 

emergent chatbot technology powered by deep learning.  Chatbots have the potential to 

simplify the user experience by removing rarely-used buttons and menus from the 

interface, and providing a more fluid interface to functions that are difficult to control 

with conventional GUI methods (Dove et al., 2017).  Chatbot technology as a deployable 

asset is still in its infancy and being actively experimented with by many corporate and 

research organizations to find the best-fitting use cases.  The more modern push for 

chatbot integration into modern workflows arises around market reports that proper 

integration of chatbot technology can reduce customer service costs through enhanced 

accessibility to routine information (Reddy, 2017).   
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A recent UX poll investigated users’ motivations for using online chatbot technology and 

found that overall, users reported that they perceived an overall increase in productivity, 

and better access to timely information (Brandtzaeg and Følstad, 2017).  Despite the 

incentives, IBM’s Watson recently experienced disappointing numbers in its AI-related 

sales revenue last year (Green, 2018).  Limitations of IBM’s Watson solution include lack 

of a localized hardware option, inaccessibility to individuals and small businesses, and 

difficulty in learning and integration (CompareCamp, 2019; Jarvis, 2019).  Other 

competing solutions such as PandoraBots’ Mitsuku (pandorabots.com/mitsuku) and Rollo 

Carpenter’s Cleverbot (cleverbot.com) are technically impressive but have not gained 

traction as portable solutions because they have not yet been demonstrated in functional 

contexts.  More functional solutions such as Siri (Apple Computers, Inc.), Alexa 

(Amazon, Inc.) and the Google Assistant, have seen success among larger client bases but 

do not have lower-level APIs accessible to developers to perform more specific tasks 

(with the exception of Alexa). 

State-of-the-art chatbot technologies are created using deep learning methods involving 

the conversion of words into a variable-dimensional (n-dimensional) vector called a word 

embedding.  The problem space in natural language processing is immense due to the 

sheer number of word syllables, semantic ordering, and potential for mis-spelt words and 

non-conventional grammar.  By classifying words based on many orthogonal “features” 

during the process of “feature extraction” it’s possible to reduce the number of degrees of 

freedom, and therefore the training time of learning models.   
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The model fitting process in NLP includes the necessary splitting of information into test 

and training datasets, which themselves consist of sentences mapped to a desired output.  

If this system is set up to map sentences to required actions, it’s possible to 

simultaneously guarantee that a large array of possible requests will be understood by the 

chatbot while forecasting response accuracy to unseen user requests.  Furthermore, the 

deep learning NLP method is not only a powerful, development technique but also a 

robust, measurable automated testing protocol.     

1.4: Deep learning using artificial neural networks 

Artificial neural networks (ANN) are computational mimics of the biological method of 

signal transduction (ie. real neurons).  The idea behind non-linear signal transduction was 

first conceived by Warren McCulloch and Walter Pitts in 1943 (McCulloch and Pitts, 

1943).  They postulated that more complicated, non-linear logic could arise from math 

emulating the neural “all-or-none” action potential system.  This train of thinking wasn’t 

well applied at the time since the means to cognate such complex systems was as of then 

far out of reach.  Donald Hebb iterated upon this thinking when he made the original 

publication of his book: The Organization of Behaviour: a Neuropsychological Theory, 

in 1949 (Hebb, 1962).  In doing so, he established a method of unsupervised learning 

called “Hebbian learning.”  He postulated that a field of virtual neurons could be 

corrected into a specific desirable configuration by activity-dependent synaptic 

modification.  Research had begun on emulating these models in early digital computers, 

and in 1954 the first self-organizing computational system was described (Farley and 
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Clark, 1954).  The activation parameters for this kind of network were initially defined 

as: 

 

(Farley and Clark, 1954) 

Where hj(t) represents the threshold function and Δsj(t) represents the change in 

excitation for a node at index j at time t.  As this network was only a single layer deep, a 

single bias (hbias) was applied to offset the distribution of the input signals into a more 

favourable range for the activation function.  The concept of “signal decay” had been 

considered (represented by bj), which was a method of avoiding divergence in the system. 

Multi-layer models were proposed by Russian data scientists Oleksiy Ivaknenko and 

Grigor’evich Lapa, which Ivaknenko had integrated into his “group method of data 

handling” (GMDH) (Ivakhnenko and Lapa, 1967).  GMDH is a computational inductive 

model that tries to minimize the output of a complicated base function derived from a 

multilayer system.  Its main purpose is to fit non-physical models to multi-parametric 

datasets and allows for the completely automatic tuning of many trainable parameters 

(A.G. Ivaknenko and G.A. Ivaknenko, 1995).  The base function is split into smaller 

partial models with coefficients that are estimated by least-squares regression.  This 

method is still used today and has even proved to be more effective than some 

contemporary neural methods at solving time-series forecasting problems (Li et al., 

2017).  The most popular of the base functions used in the GMDH method is the 
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Kolmogorov-Gabor polynomial support function, which is a high-degree polynomial 

based on the Volterra series with many variable contributors: 

 

(A.G. Ivaknenko and G.A. Ivaknenko, 1995) 

In this function, the vector of inputs X(xi, xj, xk, …) is split into layers (i, j, k, …) that are 

modulated by a vector of input weights A(ai, aj, ak, …) and a single bias ao to produce 

output y.  This system is corrected by a genetic-like system of permutating a set of 

candidate models and selecting those that perform the best.   

There were several issues with these neural optimization methods, mostly centered 

around the large number of trainable parameters, that had made it infeasible to produce 

and deploy them with the available computational hardware.  Deep learning research had 

thus experienced a hiatus until 1974 when Paul John Werbos, a doctoral student in the 

social sciences, devised a clever solution to multi-parametric optimization called 

backpropagation (Werbos, 1974).  His PhD dissertation had delineated a mathematical 

loophole to multi-layer error correction that involved the sending of a reverse signal from 

the outputs to the input layer carrying differential magnitudes of error blame.  Instead of 

attempting to calculate the derivative of a complex polynomial system in order to 

optimize a model with hundreds, potentially thousands of parameters, Werbos postulated 

that each parameter could be assigned a portion of the output error during the backward 

progression of this signal that would then be carried over to other dependent parameters.  
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By splitting the signal, many smaller, less computationally expensive derivatives would 

be computed that would be applied at the end of the training batch to increment the model 

in the direction of lowest error.  The signal would be modified after passing through each 

parameter proportionally to the derivative of the forward signal.  Werbos’ dissertation 

had never been published but contained work that laid the foundation for countless 

iterations of modern deep learning publications.  It remains one of the most highly cited 

unpublished works to this date (4999 citations as of July 2019). 

Following Werbos’ discovery of the backpropagation algorithm was a vastly accelerated 

push into neural network research using the exponentially-advancing power of micro-

transistor computing.  The idea of distributing the processing of error was thus named 

“parallel distributed processing,” which was first reported in David Rumelhart and James 

McClelland’s work using the fully connected multi-layer neural network, or multilayer 

perceptron (MLP) (Rumelhart, 1986).  This movement in cognitive computing was also 

called “connectionism”, due to the adherence to full connectivity among the layers of 

artificial neurons of fully connected networks.  These MLP networks found utility in 

modelling tasks of high complexity such as the prediction of protein secondary structures.  

Over the course of 7 years, bioinformaticians had progressed from the conception of the 

system to the prediction of transmembrane helices from primary structure information 

with over 95% accuracy (Qian and Sejnowski, 1988; Rost and Sander, 1993; Rost et al., 

1995).   

Complex image processing tasks were vastly simplified when powered by a concept 

called “max-pooling,” which was first applied to the automatic segmentation of 3D 
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images (Weng et al., 1992, 1993).  The pooling method sub-samples an input of 

dimensions (nx,ny) into one of (nx/px, ny/py) where p represents the pool size.  Within each 

pool, the pixel with the highest intensity represents the pooled pixel, and all other 

information from the pool is discarded.  This introduces “shift invariance” to the internal 

construct of a neural model, allowing it to make the same predictions for input data that 

has been transformed within the variability of the pooling range (typically, a 2x2 or 3x3 

coordinate range).  In 1997, to satisfy industry demands for reliable identity verification 

biometrics, Lawrence at al. developed the “convolutional neural network” (CNN) concept 

that applies a series of image transformations to extract pertinent patterns from faces 

before feeding it into an MLP network (Lawrence et al., 1997).  The CNN was a 

diversion from classic connectionism which introduced pre-processing by layers of 

neurons that were not fully connected, but instead shared a kernel of weights together.  

This pre-processing was necessary to capture the enormous variability in face images that 

arises from direction, lighting, expressions, hair, and color.  The authors of the CNN 

work had surmised that images could be simplified by extracting key features from the 

images while throwing out the remainder of confounding noise. 
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(Lawrence et al., 1997) 

The diagram above demonstrates how this is performed, written in 1997 but still applied 

in the same way today for tasks such as digit recognition on bank notes and cheques (Holi 

and Jain, 2019; Pham et al., 2017; Srivastava et al., 2019).  Convolution of an input 

image of size (nx,ny) becomes altered and compressed by a convolutional filter of size 

(kx,ky) into a slightly smaller feature map of size (nx – kx – 1, ny – ky – 1).  Max-pooling 

of the feature map by dimensions (px,py) then provides an even more condensed feature 

map of ((nx – kx – 1)/px, (ny – ky – 1)/py).  Through successive processing and 

compression cycles a relatively large input image containing 644 unique pixels is 

simplified by multiple cycles of convolution and pooling such that it can be read by a 

layer of only 40 neurons.  Previous methods would have required 644 input neurons to 

read the image in order to feed it to the deeply connected MLP.  Thus the CNN system 

not only adds additional translational invariance and feature sensitivity, but also greatly 

simplifies the fully connected component of deep learning models. 

Modern neural networks have become extremely diverse in their implementations, with a 

variety of different activation functions, cost functions, architectures, and optimizers.  

The canonical MLP architecture can be diagrammed as follows: 



 MSc. Thesis – D. Tran; McMaster University – Health Science  

 

18 

 

 

The key mathematical mechanisms in an MLP are the activation function (𝑓𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛), 

the cost function (𝑓𝑐𝑜𝑠𝑡), and the gradient (𝑓𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡).  The activation function is a two-

step function that consists of the summation of incoming weighted signals and bias (𝑎1) 

followed by a differentiable non-linear function such as the sigmoid transformation 

(Cybenko, 1989).  The sigmoid function was one of the earliest non-linearities to be 

introduced into cognitive computing, proposed due to its regions of first order sensitivity 

at the input extremes.   
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Shown above are the graphs of the sigmoid function (left) and its derivative (right).  The 

sigmoid function with no transformations ranges from 0 < 𝑦 < 1, 𝑦 ∈ ℝ, and as a result 

“squashes” inputs of all ranges into a standardized range that can be learned by deeper 

layers in the network.   

Once the output layer of the MLP has been activated, the value of the cost function (often 

referred to as the “loss” function) can be calculated.  The cost function is a metric of how 

erroneous the current network inference is and is proportional to the difference between 

the expected and observed values at each output neuron.  The two most popular cost 

functions are the mean squared error of outputs (Scalero and Tepedelenlioglu, 1992; 

Specht, 1991) and more recently the cross-entropy loss function meant to be used 

together with the “Softmax” activation function (Hautamäki et al., 2013; Kline and 

Berardi, 2005; Zhang and Sabuncu, 2018).  The derivative of the loss function is the 

substrate for the initialization of the backpropagation signal, and is calculated for each 

output neuron and sent back in a step-wise manner through the entirety of the network. 
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The backpropagation phase involves the differential, step-wise assignment of “blame” to 

every trainable parameter in the network (weights, biases, batch normalization shifts, and 

others).  The rate of change of error with respect to each output neuron is the seed for the 

signal which accumulates at each node in the network, allowing for computationally-

efficient alteration of each parameter via the “delta rule.” 

 

(Stone, 1986) 

Exemplified above in Greg Stone’s overview of the delta rule for the earliest parallel 

distributed processing models.  The value of each trainable parameter at trial n (W(n)) is 

incremented by the derivative of the cost function at trial n (δ(n)) multiplied by the input 

𝑖𝑇(𝑛), collectively the delta.  The derivative, for both the mean squared error and cross-

entropy loss functions, simplifies to the difference between expected and observed 

values.  The delta is modulated by the learn rate hyperparameter η, which tunes the 

distance of each step taken during the backpropagation process.  As the delta rule is only 

a close approximation of the total system derivative, a learn rate of 1.0 would result in 

undesirable non-convergence, and even divergence, of the system.  Typically, the learn 

rate is tuned to orders of magnitude between 10-2 and 10-4 such that the system follows a 

gentler error function surface on its search for a global minimum (Huang and Stokes, 

2016; Krähenbühl et al., 2015; Shin et al., 2016). 
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There are several functional, architectural, and hyperparameter decisions that can be 

made before the training process to attempt to fine-tune the convergence of a neural 

network system toward the theoretical zero error limit.  The first, and most obvious, is the 

method of activation at each layer of the network.  Layers may be activated differently 

across the network, but all neurons of a layer tend to share the same activation function in 

order to ensure that the entirety of the neural network behaves in a predictable way.  It 

has been widely acknowledged that some form of non-linearity in the activation is 

necessary to give networks enough density in the function space to model any range of 

data complexity (Chen et al., 1990; Glorot et al., 2011; Maas et al., 2013).  The simplest 

explanation for this is that linear functions can only model other linear functions, and as 

such a network of infinite depth will inevitably collapse into a linear function that is the 

sum of its parts.  By introducing ranges of the first order derivative that have resistance to 

motion, we provide opportunities for different step sizes, and thus the network may shift 

amorphously.   

This resistance to motion was initially a desirable attribute of the sigmoid function (Chen 

et al., 1990).  The “squashing” of the input signal, while a convenient normalizing metric, 

results in a phenomenon called “gradient vanishing” due to the near-zero value of the 

derivative as x diverges to positive and negative extremes (Hochreiter, 1998).  Following 

this, Rectified Linear Units (ReLUs) have become increasingly popular as the non-linear 

component of the activation function due to their ability to introduce complexity into the 

network model while being computationally lenient (Dahl et al., 2013; Nair and Hinton, 

2010; Zeiler et al., 2013).  The implementation of the ReLU is straightforward, as below: 
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𝑛2 = max(𝑎1, 0) 

 

Shown above are the graphs of the ReLU function (left) and its derivative (right).  The 

nonlinearity is imposed by the restriction of all actionable values of y to positive values.  

This type of activation more closely resembles the biological “all-or-none” system 

mediated by neural activation gates in the axon hillock.  The shortfall of this method is 

that, due to the high likelihood of zero gradient deltas, the network may experience 

“neuron death” over long training runs as neurons run into long regions of flat gradient 

space and never recover.  To combat this, many successful modern network models are 

trained with “leaky” ReLU activation functions, where a small amount of information is 

allowed through the activation function proportional to the hyperparameter α (Pigou et 

al., 2018; Viereck et al., 2017; Yin et al., 2017). 

On the output layer, the “softmax” activation function was conceived to be used in 

conjunction to cross-entropy loss (Dunne and Campbell, 1997; Schuster and Paliwal, 

1997).  This function takes in a vector of activations (or “logits”) and transforms them 

into a valid probability distribution based on the gaussian probability density function.  
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This method is used overwhelmingly for multi-class detection problems where the 

likelihood prediction for each class is desired (Jung et al., 2015; Payan and Montana, 

2015; Rajpurkar et al., 2017). 

It is often said that the fine-tuning of neural network architectures is much like an art, and 

this sentiment certainly holds true with regards to hyperparameter selection.  The long list 

of hyperparameters used in this thesis is listed in Appendix 1, which exemplifies the 

extensiveness and intricacy of the hyperparameter tuning process.  There are several 

automated methods that have been implemented to attempt to facilitate the 

hyperparameter tuning process, such as grid searching (Loshchilov and Hutter, 2016; 

Nalçakan and Ensari, 2018) and learning curve estimation (Domhan et al., 2015).  The 

selection of hyperparameters is a difficult topic for the data science community to agree 

on simply because the performance of models with identical hyperparameter 

configurations deviates greatly for diverse types of data.  Typically a data-dependent 

approach to selection is taken, where the sparsity, quantity, and quality of data are all 

taken into account to make initial estimates on each hyperparameter (MacKay, 1996, 

1999).   Other dynamic learning methods such as learning rate scheduling and/or 

oscillation, as well as time-series attenuation, are applied to adapt the learning rate 

dynamically to the learning progress of the network (Darken and Moody, 1991; Smith, 

2017; Zeiler, 2012).   

1.5: Current deep learning frameworks 

Open source deep learning frameworks have been published such as PyTorch and 

TensorFlow (Alphabet, Inc.) that are simplified collections of methods in deep learning 
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that focus mainly on the automation of the training and validation stages of fitting a 

learning model to user data.  Both PyTorch and TensorFlow can complete the end-to-end 

machine-learning protocol of data-formatting, model fitting, model testing, and model 

deployment.  They are built primarily for Python developers with the intention of 

integrating with existing Python libraries to facilitate machine learning in common 

contexts such as the classification of images, natural language, and sound recognition.  

The proper handling of data and the deployment of these models however are not 

standardized.  Non-standardized data handling presents room for human error introduced 

during the pre-processing of the data.  This would increase the variability and granularity 

of the data in undesirable ways that induce a phenomenon called “overfitting”, where the 

learning model gleans from patterns that are specific to the training data but poorly-

translatable to outside data.  Both deep learning frameworks are capable of automating 

the intake of some commonly-used databases such as the MNIST and CIFAR databases 

(Deng, 2012; Krizhevsky and Hinton, 2009; Xiao et al., 2017), thus providing 

standardized benchmarks that are commonly used to test experimental deep learning 

architectures.  More specific databases however must be programmatically reformatted 

and normalized into states that are acceptable by neural networks created by these deep 

learning frameworks.  Applications such as Microsoft Excel and Cytoscape (Shannon et 

al., 2003) have implemented data import templates that offer standardized interfaces 

between the user’s data and the program.  Import methods such as these often come 

accompanied with graphics interfaces and APIs that provide enough flexibility on the 

parameters while ensuring that the imported data matches with an accepted standard. 
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Since PyTorch and TensorFlow are libraries developed in Python, the deployment of 

solutions using them is hindered by the requirement for the Python interpreter.  It is 

possible to use script “freezing” libraries such as pyInstaller (pyinstaller.org) or Glow 

(github.com/pytorch/glow) that “compile” whole or parts of the Python script by 

bundling it together with the Python interpreter and any other required files 

(“dependencies”) into a single executable file, thus removing the relatively complex 

process of installing Python for non-programmers (Abdullah, 2017).  This file however 

carries a large size overhead and multiple performance inefficiencies associated with 

internal module crosstalk and runtime script parsing.  In TensorFlow, the inefficiency of 

the interpreted Python language is overcome by compiling the learning model into a 

small program (a “kernel”) through the C programming language.  In this regard, Python 

is a middleman between the user and the C language, providing a simplified application 

programming interface (API) in exchange for performance during data processing, 

compiling, and communication with the model kernel.  The PyTorch and TensorFlow 

teams recently released a C++ front-end which provides access to a few frequently-used 

functions directly through C++.  The use of the C++ front-end however requires 

advanced knowledge of several C++ data structures which would be out of the reach of 

the beginner-intermediate level programmer.  A flexible solution rooted in the fast C++ 

programming language with a gentle learning curve that provides a quick path from data 

to deployable learning model is currently lacking. 
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1.6: Big data and next-generation sequencing challenges in clinical oncology 

With powerful modern tools and the opportunity for enhanced flexibility in the user 

experience, we can turn to the numerous powerful data substrates that exist in high-

impact research fields to perform the required validations.  Clinical oncology has made 

use of computational tools of increasing power and complexity to attempt to detect, 

diagnose, and monitor the status of patients during the progression of their disease 

(Cheng et al., 2015; Cottrell et al., 2014; Guan et al., 2012; Robson et al., 2015).  The 

abundant availability of genome-scale datasets in clinical oncology has presented 

lucrative opportunities for the formation of high level statistical models of disease 

(Rhodes & Chinnaiyan, 2005; Hanash et al., 2008; The Cancer Genome Atlas, 2013).  Of 

these tools, machine learning algorithms have become widespread, having found 

successful applications in many fields of cancer research (Ooi and Tan, 2003; Wei et al., 

2004; Libbrecht and Noble, 2015).  These flexible tools possess the ability to markedly 

reduce the time and financial expenses associated with the development of personalized 

pharmaceutical treatments for the many diverse types of cancer (Bielinski et al., 2014; 

Lebofsky et al., 2015).  Genomics data at the methylome, transcriptome, and proteome 

levels—colloquially referred to as “omics” data—are difficult to interpret using manual 

techniques but have been previously interpreted by “prediction analysis of microarrays,” 

(PAM) to detect prognostic gene signatures (Ng et al., 2016; Park et al., 2015; Pongor et 

al., 2015).  PAM represents a collection of machine learning techniques that iteratively 

apply linear and logistic regression to attempt to internally model the structure of the 

data, the most popular method being the “nearest shrunken centroids” (NSC) approach 
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(Leal et al., 2018; Liu et al., 2005; Tibshirani et al., 2002; Wang et al., 2007).  NSC is 

currently one of the state-of-the-art methods in bioinformatics being applied to gene 

signature detection problems due to their ability to discern polynomial regression 

coefficients for relatively small numbers of gene contributors (Wang et al., 2007).  There 

have been valid concerns about the applicability of machine learning in cross-dataset 

comparisons which, at the moment, experience difficulties due to the diverse formatting 

with regards to data source, storage architecture, and retrieval methods (Goble and 

Stevens, 2008; Merelli et al., 2014).   

As opposed to regression machine learning, neural deep learning methods may show 

promise in generating generalizable models across datasets due to their ability to self-

normalize and discard “noise” data consistently across samples.  This has been very 

recently demonstrated in the consistent detection, and even isolation, of speech from a 

variety of levels of background noise (Kumar and Florencio, 2016; Qian et al., 2016).  

These applications apply “very deep” convolutional neural networks that pre-process the 

data automatically by applying a range of learned transformations before performing deep 

learning in the fully-connected component (LeCun et al., 2015).  Neural networks have 

already made enormous leaps and bounds in profound applications in clinical oncology, 

from automated analyses of histology to the detection of deep-level gene signatures 

(Araújo et al., 2017; Chen et al., 2015; Esteva et al., 2017; Spanhol et al., 2016).  Along 

the tangent of current use cases, deep learning algorithms hold remarkable promise for 

revolutionizing drug discovery methods in cancer using NGS data.  Neural machine 

learning methods can be well-applied in the macroscopic scope of the cancer disease 
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where many mechanisms of pathogenesis are poorly understood, and pathological 

phenomenon are frequently driven by many unseen variables.  The current barriers 

behind the more widespread adoption of neural networks for NGS analysis stem from the 

sparse availability of sample data, which is currently extremely expensive and time-

consuming to collect (Muir et al., 2016; Patel et al., 2016).  For a multi-class image 

classification problem, a typical deep learning neural network requires thousands of 

samples per class, which makes datasets such as the CIFAR-100 so difficult to learn.  

Considering that image data presents readily extractable features, this makes image 

classification a relatively simpler task than prognostic prediction from deep sequencing 

data.  Furthermore, effective deep sequencing predictions by conventional deep learning 

methods could require many more samples to be robust, unless adaptations are made to fit 

these models for deep sequencing characteristics such that they become more 

generalizable.  The challenge past that point would be the statistically-valid verification 

of prediction results from relatively small validations sets, a roadblock which may not be 

lifted until much more powerful technologies bring down the cost of deep sequencing 

further. 

1.7: Stem-cell like bodies drive heterogeneity of acute myeloid leukemia and 

disease relapse 

The development of intricate algorithms for therapeutic discovery has become a 

necessary supplement to experimental “wet-lab” validations in cancers research, where 

patients exhibit high frequencies of post-remission relapse, as is the case in the multiple 

subclasses of leukemia (Steensma and Tefferi, 2003; Hehlmann et al., 2007; Döhner and 
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Bloomfield, 2015).  Leukemia as a malignancy is diverse in many ways, and subtypes are 

classified by cell of origin, the presence of pre-existing conditions, cytochemistry, and 

histology (Arber et al., 2016; Foon, 1986; Vardiman et al., 2009).  The complexity of 

AML, a highly aggressive acquired leukemia, is today widely attributed to the 

transformation of rare populations of primitive cells in the bone marrow into malignant 

leukemic counterparts (Hope et al., 2004; Li et al., 2007; Kikushige et al., 2011; 

Tabatabai and Weller, 2011; Kreso and Dick, 2014).  These malignant primitive cells are 

referred to as cancer stem cells due to their comparable abilities to normal stem cells in 

the replenishment of more committed cell populations. Cancer stem cells however are 

aberrant in that the cells they generate are blocked in their differentiation status and 

remain in a semi-primitive state that is non-functional but competes for the host tissue’s 

energy resources. In leukemia, the presence of a relatively small number of cancer stem 

cells allows for the disproportionate accumulation of aberrantly differentiated blast cells 

in the bone marrow niche.  This aggregation eventually displaces the healthy 

hematopoietic stem cell (HSC) population that is responsible for the replenishment of the 

blood cell supply in circulation (Bonnet and Dick, 1997; Hope et al., 2004; Testa, 2011).  

These leukemic stem cells (LSCs) are relatively inactive, slowly replicating cell species 

that, for most of their life cycles, lie quiescent in the bone marrow niche and evade 

chemical therapeutic treatments.  Often this produces the illusion of a successful 

remission before, as a result of the untargeted LSC, the leukemia awakens at a later 

timepoint to recapitulate the disease. 
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Thus, the unique machineries that distinguish these cells from normal primitive bone 

marrow have been of critical interest (Giustacchini et al., 2017; Jung et al., 2016; Zhang 

et al., 2016). The gene expression patterns that govern the function and life cycle of LSC 

cell types are poorly understood and under active investigation with the assistance of 

next-generation sequencing techniques (NGS) such as RNA-seq and ChIP-seq 

(Lilljebjörn et al., 2014; Pelish et al., 2015).  These techniques are performed on fractions 

of leukemic blood samples that are differentially enriched for primitive blood cells by 

their molecular surface markers using fluorescence-activated cell sorting (FACS) (Bernt 

et al., 2014; Xu et al., 2014).  Despite these technologies, the differences in gene 

expression patterns between LSCs and the normal primitive bone marrow remain difficult 

to discern with significance due to the low relative proportions of both populations 

compared to the bulk bone marrow tissue.  The variance introduced by cell sparsity is 

exacerbated by the error margin of the FACS method and the abundant diversity of gene 

expression patterns and copy numbers (De Magalhães et al., 2010; Treangen and 

Salzberg, 2012).  Due to these barriers, it becomes nearly impossible to capture the wide 

range of cellular and genetic configurations with significance.   

The cell-of-origin question has become highly pertinent due to the discovery that AML 

tumors, along other cancers, can exhibit “clonal” qualities that are defined by a variety of 

different genetic characteristics (Li et al., 2016; Young et al., 2016).  This knowledge has 

spurned proactive research into preleukemia and anaemias, which share certain genetic 

characteristics with leukemia and may explain its mechanisms of transformation (Horiike 

et al., 1997; Shiozawa et al., 2017; Tiacci et al., 2018).  What adds to the complexity of 
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the AML disease is the differences in gene expression during myelodysplastic states, 

early leukemia, relapse, and endpoint (Corces et al., 2016; Ho et al., 2016; Kotini et al., 

2017; Li et al., 2016).  Now when considering that genetic expression profiles may differ 

by stage, by cell of origin, and by patient genetic variation, the multivariate complexity of 

genetic dependencies in leukemia becomes apparent.  As understandings of AML evolve 

toward increasing appreciation of its genetic complexity, robust controls, abundant 

validations, and conservative significance thresholds will become increasingly necessary 

when applying high-level statistical models for predictive cancer genomics. 

1.8: Gene set enrichment analysis (GSEA) for NGS analytics 

To address the statistical validity concerns arising from microscale biological 

comparisons, analysis techniques such as GSEA, which make use of ranked list 

comparisons in addition to linear and logistic statistical metrics, have become 

instrumental in validating evidence produced by NGS-based experiments (Kim and 

Volsky, 2005; Subramanian et al., 2005).  It is possible to discern minor differences 

between samples with similar characteristics using these methods due to the richness of 

NGS data.  Small inflections in gene expression on a single gene are more than likely 

within the margin of chance, however when differences in many concerted genes arise 

repetitively across samples the variance becomes less explainable by probabilistic factors.  

When genes known to interact together are selectively affected between samples, it may 

indicate that an entire pathway has been affected by the experimental variable.  GSEA 

allows for the visualization of this phenomenon and the assignment of scores to the 
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likelihood that a data metric is enriching or a group of related genes.  To exemplify this, 

the following GSEA example from Figure 9b has been prepared: 

 

Immediately visible in this plot are several characteristics: a running enrichment score 

visualized by the fluorescent green line, a gene list metric in sorted order shown at the 

bottom in grey, and a supplemental gene expression heatmap stratified by phenotype 

class.  This plot visualizes a test of the hypothesis that a specific group of genes can be 

found at the highest ranks of all genes in a dataset that have been ordered by some 

specific metric.  In this case, the differential expression was calculated for every gene in 

the microarray dataset across LSC+ and LSC- sorted cell fractions via the signal-to-noise 

metric, as below: 

�̅�𝐿𝑆𝐶+ − �̅�𝐿𝑆𝐶−
𝜎𝐿𝑆𝐶+ + 𝜎𝐿𝑆𝐶−
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Where �̅� represents the population mean and σ represents the population standard 

deviation.  Every gene in the dataset is then ranked from highest signal-to-noise to 

lowest, which is then analyzed by GSEA to identify patterns at the high ranks of the list.  

The running enrichment score (RES) is calculated by starting at the top of the ranked list 

and walking down rank-by-rank to the bottom.  The algorithm increments the running ES 

away from zero when a gene in a gene pathway of interest is encountered, and toward 

zero when the gene does not belong to the pathway.  When enrichment is discovered at 

either end of the ranked list, the result is a wave-like pattern that crests on the top-left or 

bottom-right of the RES plot.  The maximum deviation from zero made by the running 

algorithm is returned as the enrichment score (ES) and provides a surface metric for the 

amount of enrichment encountered during the ranked list walk.  This ES score is further 

normalized to the size of the gene set to provide the normalized ES (NES) which is often 

reported as the ES result.  The significance of the NES is established by calculated by 

permutation-based statistics, where phenotype labels and gene set order are randomized 

and the ES is re-calculated (usually 1000 times) to obtain the false-discovery rate (FDR) 

(Benjamini et al., 2001; Reiner et al., 2003).  Other methods such as the nominal p-value 

(nominal P) and the family-wise error rate (FWER) are also provided as supplementary 

statistics, however the GSEA developers note that the former is not conservative enough 

and the latter is too conservative (Subramanian et al., 2005).  Generally, a FDR threshold 

of 0.25 has been established as an acceptable false-positive rate in GSEA (Dinu et al., 

2007; Jordan et al., 2016; Pantel et al., 2014). 
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Though GSEA is often performed using differential expression metrics, the running ES 

algorithm applies to the identification of the enrichment of any group of labels in a 

ranked list of background labels.  The GSEA application provides an interface to upload 

“pre-ranked” gene lists in *.rnk file format, allowing researchers to predefine a ranked list 

using a different metric and then compare it to genetic and molecular pathways to 

identify if there are any defining characteristics at the extremes of the ranks (Bateman et 

al., 2014; Murohashi et al., 2010; Musso et al., 2015).  This allows for enormous 

flexibility in signature enrichment detection for virtually any type of metric that can be 

used to rank a list of labels.  In the following GSEA plot taken from Figure 11a, we can 

see that the ranked list metric appears differently than in the previous example: 

 

There is no expression heatmap to the right of the plot, and the ranked list metric appears 

to be much more linear than the hyperbolic sinusoid of the signal-to-noise metric graph.  

This is because the ranked list metric here is simply the rank of each label normalized to 
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the size of the list and centered at zero.  The RES algorithm continues to work and 

identifies that this gene pathway of interest appears beyond-chance at the high ranks of 

the pre-ranked list.  Since FDR statistics are permutation-based, the validity of this 

method continues to hold up despite the less canonical approach to GSEA. 

Lists of genes involved in concerted pathways that are used for this kind of analysis can 

be obtained from manually curated online databases.  Data repositories such as the 

Molecular Signatures Database (MSigDB) have curated lists of genes involved in such 

concerted pathways for use in statistical tests such as GSEA, and for the visualization of 

pathway workflows using tools like Cytoscape (Shannon et al., 2003; Liberzon et al., 

2011).  Pathway analyses have been widely accepted as a more fruitful avenue of 

investigation for drug discovery due to the cascading nature of causality in gene 

expression (Hennessy et al., 2005; Huang, 1999; Takahashi-Yanaga and Sasaguri, 2007; 

Thompson and Lyons, 2005).  The difficulty in this approach arises when considering 

that the manually curated spaces account for a miniscule fraction of all the possible 

molecular interactions in the body.  We rely heavily on the previous avenues of 

investigation to power future investigations, which funnels the research community into 

limited bottlenecks out of concerns for the safety of their hypothesis.  This can be 

exemplified in the Alzheimer’s disease research community, where many reviews have 

been very recently published in high-impact journals questioning the direct causative 

nature of β-amyloid in dementia following widespread clinical trial failures (Hardy and 

De Strooper, 2017; Kametani and Hasegawa, 2018; Makin, 2018).  Therefore it remains 
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important to iteratively re-investigate the experimental data in search of new, more robust 

leads while using SLR as a mechanism of fact-checking. 

1.9: AiDA, a chatbot and NLP-powered solution for enhanced research 

investigation 

A series of algorithms were developed that harbour potential to drastically reduce 

literature review time by automating the extraction of key decision-making material from 

large-scale numeric data as well as aggregated unstructured text data.  A chatbot interface 

was constructed in order to facilitate the curation and analytics of the extracted data via 

the Text-to-Function (T2F) convolutional deep learning system (Figure 1).   Furthermore, 

the platform facilitates SLR by combining NLP technologies and a new cross-dataset 

ranked-list method in order to increase the throughput of complex multi-factorial 

analyses.  Named the Artificially-intelligent Desktop Assistant (AiDA) platform, it 

attempts to simplify the user experience by performing activities driven by naturally 

formatted text requests.  The chatbot interface is combined with GUI elements from the 

open source CVision graphical user interface (GUI) engine 

(https://github.com/DamianTran/cvision) which is optimized for low-power personal 

computers and built specifically with internal handles that make automated machine 

control possible.   
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Figure 1. Pipeline flowchart for automated user request processing with AiDA.  A user requests the 

program to discover dataset IDs matching several different factors in several different datasets.  This 

information can be conveyed to the program using informal language, which is processed through natural 

language algorithms and used to determine the appropriate responses.  Responses occur in the form of 

algorithms applied at large to the user’s requested datasets, and result from decisions made by the program 

that best suit dataset criteria including orientation, sample size, and peripheral datasets in the same 

directory.  The output is a condensed interactive ranked-list that can be easily interpreted for downstream 

applications. 

To benefit researchers and investigators, the AiDA dashboard allows for simpler, less 

error-prone, and more well-documented analysis of data from many sources.  The AiDA 

chatbot can additionally benefit developers by providing a simple interface to 

documentation.  The chatbot begins with a baseline array of learned responses and can be 

further trained by creating response pairs using any text editor of choice (ie. MS Word, 

Excel, Notepad).  This allows developers to easily train AiDA to learn responses to 
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general questions that they anticipate the user to ask.  More specific questions by users 

can be routed to the developer team through the AiDA chatbot email service hosted by 

Microsoft Outlook, allowing developers to manage customer request chains without 

requiring the customer to divulge their identity. 

The complexity of the proposed work and the specific code architecture required for the 

speech-to-function system exposed a need for a custom neural network circuitry that 

would be plastic enough to scale in proportion to the number of inputs, the variability of 

the data, and the number of required response actions.  For scalability and simple 

deployment the network engine would have to be readily retrainable and preferably 

reactive to the user’s unique profile on their local hardware.  Therefore to fulfill 

requirements for a flexible deep-learning program I created the custom neural network 

engine using the C and C++ programming languages.  This engine produces neural 

networks that function through a unique combination of range-normalized logarithmic 

math, matrix transformation, and type-mapped convolution kernels alongside accepted 

standards for convolutional neural networks.  This combination of algorithms empowers 

neural models with flexible, stretchable perception fields that add additional degrees of 

freedom to adjust to the function space as well as the intensity of the data.  These range-

normalized models converge faster and form learning models that generalize better to 

unseen data.   

Considering that it would take an unreasonable amount of time to curate a dataset of 

sentence-to-action mappings that would be representative of the total number of natural 

language possibilities, having a learning model that can expand its learning beyond the 
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small sample it’s been exposed to will bring everyday developers closer to mimicking 

and exceeding the human capacity for sensory learning.  The processes of data 

aggregation and data augmentation are further facilitated with the use of a generalized 

data construct.  This data type adds a layer of processing onto each input data type that 

allows for generalized handling regardless of the source or format.  The result is a much 

simpler data handling process that expedites the lengthy task of training and validating 

neural models.   

1.10: Summary of Intent 

AML is a cancer of the blood with poor prognosis affecting thousands of individuals 

globally (LLS, 2016).  The disease manifests itself through the bulk accumulation of 

immature leukemic blast cells in patient bone marrow driven by malignant proliferation 

of leukemic progenitor cells (Lowenberg, 2003).  These progenitors are in turn 

replenished by relatively inactive LSCs that evade modern therapies and contribute to the 

frequent post-treatment relapses characteristic of AML (Kreso and Dick, 2014).  The 

comparison of functionally validated LSC-enriched fractions extracted from AML 

peripheral blood to LSC-deficient fractions using RNA microarrays and RNA-seq have 

presented transcriptome-wide databases of genes differentially expressed across the 

leukemic hierarchy that form major substrates of the work of this thesis (Eppert et al., 

2011; Ng et al., 2016).  The analysis of this work is made easier by computational 

bioinformatic tools through GSEA: massive-scale virtual comparisons of genes having 

similar biological pathway correlations can isolate a small, concentrated list for a more 

focused practical purpose (Subramanian et al., 2005).   
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Since modern methods in next-generation sequencing remain highly costly, the existing 

AML, LSC, and normal stem cell datasets are amalgamations of samples from diverse 

origins.  Even with the collaboration of multiple international research groups, the 

coverage of resulting genome atlas projects remains limited in the statistical sense.  The 

complexity and heterogeneity of the AML condition, as well as the rareness of their cells 

of origin, necessitates a sensitive, robust solution that employs conservative statistics to 

draw realistic inferences on aggregated data.  A series of novel algorithms were 

implemented in this thesis in order to capitalize on the wealth of open source data 

currently available for both cancer genomics and stem cell characterization.   

This thesis aims to report on the progress of an artificial intelligence platform that makes 

use of a series of novel algorithms to attempt to automate series matrix data extraction 

and deep text mining.  A custom neural network engine is described that uses a new 

configuration of activation functions, a cost-inertia hyperparameter optimizer, and 

convolution of word embeddings to achieve high prediction accuracy from limited, sparse 

text data.  This engine, in sequential combination with several ranked list algorithms, has 

yielded predictions for novel therapeutic compounds recycled from use cases in other 

known diseases.   

This work seeks to test the hypothesis that drug discovery of reasonable accuracy 

can be automated end-to-end by a workflow of ranked list feature extraction and 

deep-learning text mining algorithms. 
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The null hypothesis in this case would be the inability of the automated drug discovery 

platform to find tractable leads from the accumulated biomedical evidence beyond 

chance.  To refute this null hypothesis, a list of chemical, enzyme, or functional nucleic 

acid inhibitors of reasonable impact and actionable value must be produced by the 

workflow.  This would indicate potential for the automation of key rate limiting evidence 

review steps in the drug discovery process.   

Candidates for true positives include: 

A. Molecules known to downregulate gene pathways highly expressed in leukemic 

stem cell samples, but lowly expressed in normal hematopoietic stem cell samples 

B. Molecules known to upregulate gene pathways lowly expressed in leukemia stem 

cell samples, but highly expressed in normal hematopoietic stem cell samples 

Thus, the experimental aims of this thesis are to: 

1. Validate the accuracy of novel algorithms postulated for component automation 

2. Compare the accuracy of novel algorithms against peer-reviewed, standardized 

benchmarks 

3. Analyze the predictions of the workflow to discover promising therapeutic 

compounds for AML.  

The following chapter (2) provides detailed schematics, equations, and tables pertaining 

to the implementation of several novel algorithms required for the accomplishment of 

these experimental aims. 
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Chapter 2: Methods 

2.1: CVision graphical user interface library for C++ 

All interface items appearing in the AiDA dashboard were created in CVision 

(https://github.com/DamianTran/cvision).  CVision was created in the C++ programming 

language, and is an open-source project to make interface creation more accessible for 

C++ programmers (schematic illustrated in Figure 2).  An application (“CVApp”) is 

instantiated with a media package manager and a runtime loop.  For cross-platform 

portability a “CVView” window is instantiated on the main executable thread and 

occupies the executable with draw, update, and event handling functions on a framerate-

synchronized runtime loop until the view element is closed by the user or an internal 

function call.  All other operations (in this example, the AI runtime loop) are instantiated 

on other parallel threads and interact with the “CVView” by requesting elements through 

a Javascript-like API (ie. getElementById(“elementTag”)).   
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Figure 2. Flowchart of the GUI signal transduction cascade in the CVision engine.  Draw, update, and 

event handling processes are transduced, via virtual class functions inherited from “CVElement”, down a 

hierarchy stemming from the high-level “CVApp” instance.  CVApps contain “CVView” instances, which 

in turn contain “CVPanel” instances that contain “CVElements”.  CVElements themselves are constructed 

from OpenGL primitives.  User interactions are monitored and accessible through the CVision external API   

Drawable CVision elements, or “CVElement” instances, are grouped into CVision panels 

(“CVPanels”) that distribute the draw, update, and event information through cascaded 

virtual functions.  The update hierarchy moves in reverse order of the draw hierarchy, 

such that elements that are last to be drawn (and thus appear on top) are first to capture 

operating system events.  To create a drawable element, a CVPanel or CVElement item is 

created using the new operator, parameters are edited such as size, position, color, 



 MSc. Thesis – D. Tran; McMaster University – Health Science  

 

45 

 

outline, animations, and others, and then the item is added to the CVView.  At this point, 

the resources associated with the drawable element are automatically managed such as 

textures, fonts, primitives, and shaders.  For most effective management, CVPanels are 

created first, such as the “CVBasicViewPanel”, “CVListPanel”, “CVSwitchPanel”, and 

“CVTogglePanel”.  CVElements are then created and added to these panels.  All items in 

a panel are drawn and updated collectively, and modifiers are applied to all members 

equally such as movement, physics, and transitions.  Panels may also apply additional 

properties such as scrolling in the case of the CVListPanel, lateral panning in the case of 

CVSwitchPanel, and single-panel display in the case of the CVTogglePanel.  Colors and 

fonts can be applied upon creation when CVElement items request theme elements from 

the CVApp package manager.  In this way, all the themes of a CVision application can be 

managed simply through a simple CVApp control panel.  User interactions and timing are 

tracked by the app and can be accessed programmatically to determine where the user is 

focusing and what the user is interacting with.  This allows for many more powerful 

automation functions if the CVApp is paired with a backend app that reads the CVApp 

interaction log to inform changes in app activity based on what the user is currently 

doing. 

2.2: Smith-Waterman local alignment for natural language 

String matching in the AiDA NLP engine is scored using the Smith-Waterman algorithm, 

originally developed by Michael Waterman and Temple Smith, illustrated in Figure 3 

(Smith and Waterman, 1981; Waterman and Eggert, 1987; Waterman and Smith, 1986).  

The Smith-Waterman algorithm is a more computationally expensive alternative to the 
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often-used Levenstein distance in classic NLP and is frequently used by 

bioinformaticians for local DNA alignment (Ligowski and Rudnicki, 2009; Pearson, 

1991).  Like the Levenstein distance, edit events are captured between two candidate 

strings, however a score is applied differently based on whether the event is a 

substitution, deletion, or insertion.   

The Smith-Waterman algorithm has been recently applied to NLP contexts due to the 

“gap opening” and “gap extension” penalties that are able to better-discriminate between 

strings with higher edit distances, or sequential edit events (Gomaa and Fahmy, 2012; 

Smith et al., 2013).  These applications use the algorithm to discover reordered and edited 

sentence transcripts, but have not been well-explored for the detection of typos and 

homology between the letters of different words.  The source code for the templated 

implementation of the Smith-Waterman algorithm is a component of the larger open 

source Hyper library for C++ (https://github.com/DamianTran/hyper). 
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Figure 3. The Hyper C++ implementation of the Smith-Waterman algorithm.  The Smith-Waterman 

algorithm for local string alignment compares two strings, annotated as a (TASTE) and b (TEST) using a 

two-step matrix crawl.  (A) Step 1 involves the forward calculation of scores by starting at row 0 and 

looking for initial matches between strings a and b.  Once a match is discovered, the crawling algorithm 

populates the score matrix based on matches/mismatches (diagonal movement) and gaps (lateral/vertical 

movement).  (B).  In Step 2 the alignment is obtained by starting at matrix coordinates with scores greater 

than the match threshold, and walks backward along the path of highest scores crossing the match 

threshold.  (C). The substitution matrix holds increment values for matches (+5) and mismatches (-4).  Gap 

penalties between strings are incremented based on the gap extension weight (W1) multiplied by size of the 

gap (k) and added to the gap opening penalty (W0).  The match threshold is calculated at the end of step 1 

by obtaining the maximum score from the score matrix and multiplying it by the threshold weight of 0.6.  
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(D). The alignment is obtained by obtaining indices i and j along the walk for strings a and b.  The final 

score is normalized to the length of the shortest string (La) and the substitution matrix match score.    

The Smith-Waterman score derived herein is a weighted sum of edit events between two 

strings using a scoring matrix that is one wider than the length of the first string and one 

taller than the length of the second string (Figure 3a-b).  A walk is initiated along the sites 

of first matches between the two compared strings, and incremented based on the 

substitution matrix, which is a hyperparameter to the algorithm along with the gap 

opening and gap extension penalties (Figure 3c).  Case-insensitive matches caused an 

upward increment of the running score equal to the match score, while mismatches 

caused a decrement of the running score equal to the mismatch score.  Here I used a 

match score of +5, and mismatch score of -4, a gap opening penalty of -12, and a gap 

extension penalty of -4.  It’s worth noting that not all implementations of the Smith-

Waterman algorithm use the gap opening penalty, however in language contexts where 

repeated alignment gaps are undesirable the gap opening penalty ensured that these were 

discriminated against.  In testing, the severe gap opening had less of a relative penalty in 

longer strings with many direct matches, because higher match counts increase the 

probability that the misalignment was unintentional.  When the position of the best 

alignment is required, it is selected by walking backward from matrix indices containing 

the highest scores in the score matrix above the test threshold.  In all cases where the 

algorithm was applied to for simple match checking, the backward walk step could be 

omitted to reduce the computational cost of the algorithm by roughly half.  The final 

score is obtained from the matrix origin of the best alignment normalized to the best 
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possible score, which is the multiple of the length of the shortest alignment query and the 

substitution match score.  A score of at least 0.5 was required to indicate a positive match 

between any two strings.  Since the algorithm normalization provides relatively higher 

scores to smaller strings for the same number of edit events, strings of size less than 4 

were compared instead by using case-insensitive matching and assigning a score of 1.0 if 

these exception conditions were met. 

2.3: 2D word embedding generation for convolutional deep learning NLP 

Raw text was connected to AiDA’s deep learning framework by means of feature 

extraction using a thesaurus of 308 unique word classes covering over 2000 individual 

words.  The thesaurus was maintained in memory and persistent during user interactions, 

such that novel word associations could be learned and mapped to the various 

overarching verbal themes.  Additional learning was performed by searching key words 

from each thesaurus category using cURL GET requests to thesaurus.com, and retrieving 

synonyms from among the HTML document object model (DOM).   

Words were mapped to thesaurus categories by parsing paragraphs into sentences based 

on sentence-terminating punctuation (“.”, “?” and “!”), and then into words by splitting 

the white space and all other punctuation marks between them (Figure 4a).  Individual 

words were then soft-matched using the Smith-Waterman algorithm against the thesaurus 

to identify matching word themes.  Each theme was then translated into a point in n-

dimensional space, each dimension being an orthogonal metric about the original word 

that provides the point uniqueness in this virtual space (Series of equations in Figure 4b).  

A list of dimension names, or metrics, is provided in Table 1 below. 
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Metric Algorithm Example 

Frequency Count Ho, ho, ho (3) 

Match Smith-Waterman Found/hound (0.8) 

Order 

 

She sells sea shells by the 

sea shore (0.33) 

Plurality Ending in “s”, “ese”, “y”, “i”, “ae” Many (1)/ single (0) 

Emphasis Bounded by quotes + fraction 

capitalized 

“ELAvl1” (1.5) 

Table 1. Orthogonal metrics in embedding generation.  The dimension name (metric) on the left is 

coupled with a brief algorithm description (center) and an example (right).  Note that the order score is 

(0.33) for the bolded example, corresponding to a ratio of 2/6.  The C convention of zero-centered memory 

is applied when calculating the value of i. 

As a thought experiment, imagine the words “runner” and “runners” occurring right next 

to each other in the text, being the only occurrences of those words—in the dimensional 

space defined by three dimensions of word order, frequency, and match, these points 

would appear identical.  A model relying on the identification of words on these 

dimensions alone would find difficulty discerning between this and other similar cases (in 

natural language, this occurs quite often).  To distinguish between the similar cases, we 

can add a fourth dimension of “plurality” that defines the likelihood that these words are 

plural.  A plurality algorithm would be applied to meter these words in a fourth 

dimension, which would immediately pick out “runner” from “runners.” 
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Figure 4. Word embedding generation by n-dimensional flattening.  (A). The AiDA parser separates 

raw text into sentences based on the presence of sentence-delimiting punctuation (“.”, “!”, and “?”).  

Sentences are then split into separate words based on white-space and all other punctuation marks.  (B). 

Words are cross-referenced to a thesaurus containing 308 word categories to obtain points in the word 

embedding matrix.  A Smith-Waterman match with a score greater than 0.5 triggers the up-dimensioning 

process, where features are extracted from the matching word to create 5 additional vector dimensions.  

(C).  The dimensions for each thesaurus group are linearized and combined into a 2D word embedding 

matrix.  This matrix is 5 x n, where n represents the number of thesaurus groups that could be discovered in 

the sentence transcript. 
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While n-dimensional vector space is highly useful for providing uniqueness to embedding 

features in orthogonal dimensions, the data is difficult to access with consistency in 

computationally efficient ways by constrained MLP systems.  Therefore, the multiple 

dimensions of each word embedding are flattened into a one-dimensional vector, and then 

laid out orthogonally to each other to create a 2D embedding matrix input (Figure 4c).  

This embedding matrix, now reduced to two dimensions, conveniently shares 

characteristics with images such as repeatable features and constrained dimensions.  

Unlike images however, different text transcripts can have varying “intensities” among 

the “pixels” of the 2D embedding matrix, and diverse sizes along the dimension 

harboring the list of thesaurus classes.  To achieve consistency between reads, a map of 

embedding coordinates was retained during the initial network configuration.  When each 

embedding class was encountered in the text, its vector would be assigned the same y-

coordinate in the network input layer or feature map on all future reads. 

2.4: Custom deep learning engine 

A custom deep learning engine was made using the C++ programming language to 

automate the complete pathway of machine learning development from data handling to 

deployment (flowchart in Figure 5).  Neural network classes were given specialized 

handling methods for different data formats (ie. binary images, RGB images, plain text).  

These methods handled the transfer of raw data into a set of node values in the input layer 

that could be transduced to the remainder of the network architecture using generalized 

activation functions.  Activation functions were implemented for sigmoid, range-sigmoid, 

rectified linear units (ReLU), exponential linear units (ELU), hyperbolic tangent (tanh) 
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and softmax equations.  Neurons were treated as separate entities with storage members 

for values, weights, biases, deltas, field depth, and location.  Neurons were assembled 

into layers and managed during forward and reverse propagation differently based on 

whether they were of convolutional, fully connected, dropout, batch normalization, or 

pooling types. 

 

Figure 5. Workflow of the neural network engine.  Multiple diverse data formats are handled by the 

neural network input activation functions. An appropriate filter matrix is created through a pre-processing 

interface, which is then interpreted by the multilayer perceptron (MLP), or fully-connected layers.  The 

MLP cycle involves feed-forward propagation via the activation function (factivation), calculation of the error 

via the cost function (fcost), and correction of the system via gradient descent optimized by adaptive moment 

estimation (fgradient). 

The mathematics of the some custom engine features harbour several deviances from 

previously described work on feed-forward neural networks and gradient descent (Hecht-

Nielsen, 1992; Leshno et al., 1993).  Notably, a new self-normalizing sigmoid activation 

function was used in conjunction to the popular ReLU non-linearity called the range 

sigmoid (Equation 1).  This node-by-node normalization is shares similarities with the 
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layer-based batch normalization that is applied to a single node at a time, and adaptively 

boosts or attenuates the incoming signal based on the maximum of the activation 

components.  The self-normalization parameter is the signal gain (μ) which is the inverse 

of the absolute maximum signal value.  This parameter is stored in the neuron as the 

forward propagation signal passes through it, and enacted upon again during the 

backpropagation step for use in the calculation of the node delta.  For layers below the 

output layer, the vertical stretch factor v was 2.0 and the vertical shift factor b was 1.0.  

This resulted in an output range of -1.0 < fabs(i,l) < 1.0.  In the output layer, though not 

applied in this work, the parameters v and b should be initialized to 1.0 and 0.0 

respectively, resulting in an output range of 0.0 < fabs(i,l) < 1.0.  Notably, the form of the 

range sigmoid is the proper expanded form of the sigmoid function with freedom of 

motion on all translational parameters.   

 

 

 

 

Equation 1.  Self-normalizing sigmoid activation function with transformability.  The signal 

absorption (fabs) for a neuron of index i on layer l is a relation of the aggregate of input activation functions 

(ai,l) from N neurons on layer l-1.  The outbound signal for a neuron is described as the product of its node 

𝑓𝑎𝑏𝑠 = 𝑓(𝑖, 𝑙) =
𝑣

(1 + 𝑒(−𝜇𝑎𝑖,𝑙))
+ 𝑏 

𝑎𝑖,𝑙 = ∑ 𝑛𝑗,𝑙𝛽𝑖,𝑙𝑤𝑖,𝑗,𝑙−1

𝑁𝑙−1

𝑗=0

 

𝜇𝑖,𝑙 =
1

max(|𝛿𝑎𝑙−1|)
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value (n), bias (β), and synaptic weight (w).  The signal gain (μ) applied to the activation function is a 

horizontal stretch factor that is obtained from the maximum absolute inbound signal component (δa) from 

the layer below.  The function is further transformed by the vertical stretch factor v and the vertical shift b. 

 

Equation 2. Cross-entropy cost function for the softmax output layer.  The cost function (ε, left) is 

described as the negative sum of natural logarithms obtained from each difference between expected (ei) 

and observed (oi) values for neurons at all indexes i in the output layer. Its derivative with respect to the 

input weight for a single neural output is also described (right).  

 

The cost function (fcost) is formulated in Equation 2 and represents the cross-entropy loss 

of the system at any given trial.  The derivative of this function for each output neuron is 

the difference between the observed and expected value and is the origin signal 

propagated from each output neuron toward the input layer during backpropagation.  The 

The Nadam optimizer was used which calculates first and second order estimates on the 

running averages for all trainable parameters, and additionally applies Nesterov 

momentum to the first moment (Dozat, 2016).  During testing, it was found for this use 

case that the additional momentum coefficient helped propel the model through long 

segments of flat gradient surfaces, brought on mostly by the sparsity of smaller 

transcripts.   

𝑓𝑐𝑜𝑠𝑡 = 𝜀 = −∑𝑒𝑖log(𝑜𝑖)

𝑁𝑜

𝑖=0

 𝑑𝜀

𝑑𝑤𝑖
= 𝑒𝑖 − 𝑜𝑖  
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Equation 3. Reinforcement gradient function for synaptic weight correction in stochastic gradient 

descent with momentum (SGD-M).  The gradient function (fgradient) represents the partial derivative of the 

cost function (ε) with respect to a synaptic connection weight (wi,j,l) between a neuron at index i on layer l 

and a neuron at index j on layer l-1.  Using the chain rule, the derivative is supplied down the network and 

can be split into three differentials: the derivative of the cost function with respect to the output value of 

neuron the neuron on layer l (ni,l), the derivative of the output value of neuron (ni,l) with respect to the 

incoming activation (ai,l), and the derivative of the input signal with respect to the synaptic connection 

weight.  On the output layer (l = number of layers, L) the derivative of the cost function with respect to the 

outbound signal is simply the derivative of the cost function alone.  On layers below it, the derivative is the 

sum of outgoing signal strengths multiplied by the error delta (δ) of the neurons they connect to.  The 

derivative of the output node value with respect to the activation input is the derivative of the activation 

function with respect to the activation.  Finally, the derivative of the activation with respect to the input is 

the freely-variable neuron weight.  The synapse weight is finally modified by the result of the gradient 

calculation at read point t, limited by the learn rate (η) and amplified by the last gradient at read point t-1 

modulated by the neuron momentum (m). 
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For baseline stochastic gradient descent with momentum (SGD-M), the mechanisms of 

backpropagation are delineated in Equation 3.  The complex derivative of error with 

respect to each trainable parameter (w) is split by chain rule into three distinct differential 

equations representing: 

1. The rate of change of the cost function w.r.t. the node value:  
𝑑𝜀

𝑑𝑛
 

2. The rate of change of the node value w.r.t. its activation:  
𝑑𝑛

𝑑𝑎
 

3. The rate of change of the activation w.r.t. the synapse weight:  
𝑑𝑎

𝑑𝑤
   

The gradient function is computed at each read point t, and error deltas (δ) are computed 

based on the components of the chain rule separation that are not free to vary with respect 

to each synapse weight (i.e. the first two components in Equation 3, line 2).  Error deltas 

are aggregated in the neurons for a number of read points equalling the read batch size 

(B).  When the number of reads equalling the read batch size have passed, the aggregated 

deltas are used to modify all synapse weights at once by the average of accumulated 

deltas.  The amount of modification is a fraction of the aggregated deltas proportional to 

the network learn rate hyperparameter (η), which was initialized at 0.001 for all 

experiments and changes dynamically according to the convergence of the system using 

the hyperparameter cost-inertia system.  In the example in Equation 3, a relatively 

simpler prelude to momentum is provided, which acts to push the system through shallow 

local minima into deeper, more global minima of the cost function surface. 
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For all deep learning applications in this work, the Nadam optimizer was applied.  This 

optimizer is a variant of the Adam optimizer, the name of which was derived from the 

short form of “adaptive moment estimation” (Kingma and Ba, 2014).  The Adam 

optimizer is currently considered state-of-the-art and used in many winning contributions 

to Kaggle for complex image recognition tasks due to its computational efficiency and 

the collectively reported fast convergence rates (Bello et al., 2017; Raissi, 2018; 

Richardson, 2018; Salehinejad et al., 2018).  There have been mathematical rebuttals 

refuting the ability of Adam to find true global minima (Keskar and Socher, 2017; Reddi 

et al., 2019), and in testing performed during the development of this project it was 

observed that the Adam optimizer presented a slight overfit of about 1% (±0.5%) 

compared to SGD-M.  Thus, Nadam was adapted to the custom engine created for this 

work to supply inertia to the nascent models and caused them to perform on-par with 

SGD-M results.  The application of the Adam and Nadam optimizers, and slight 

differences between the first order estimates are exemplified in Equation 4 below. 
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Equation 4.  Summary of moment estimates and update function for Adam and Nadam optimizers.  

Both optimizers obtain the first (m) and second (v) order estimates at time t+1 by applying a corrective bias 

respective to each order (βi) to the running average for each at former time t and incrementing by the delta 

attenuated by the inverse of the bias. The second order estimate uses the square of the delta, effectively 

attempting to predict “ahead” of the current gradient by re-applying the delta rule.  In the Nadam case, 

Nesterov momentum is applied to the second order estimate to provide inertia to the forward prediction.  In 

both cases, time-corrected biases βi
T respective to each order are calculated to account for initialization 

bias.  The first and second order estimates are thus corrected by dividing by the inverse of these time-

corrected parameters.  The trainable parameter w is then incremented by the fraction of the corrected first 

over moment over the square root of the second order moment.  The epsilon parameter ε is virtually always 

10-8 and exists to maintain the stability of the system during low second moment estimates. 
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2.5: Cost-inertia hyperparameter tuning for maintenance of neural 

convergence 

In order to maintain stable convergence of the system and improve convergence during 

long training runs, a new parallel hyperparameter tuning system was implemented.  This 

system, called the “cost-inertia” hyperparameter tuning method, was initialized on a 

parallel thread to the main neural network scan.  Its purpose was to monitor the progress 

of the network as it converged by taking regular reads of the output loss in order to make 

informed predictions about how the learning rate, weight decay, and gradient noise 

hyperparameters should be tuned.  The cost inertia dampening (ζ) is applied at every time 

point to attenuate or amplify each hyperparameter based on the rate of convergence. The 

“inertia” property is conferred due to the response cycle of the dampening coefficient to 

the first order cost estimate.   

The cost-inertia system took reads of the running cross-entropy loss average at a pre-

determined frequency (24 samples per second) and stored these in a 5-second buffer, a 

temporary storage technique often used in voice activation applications.  The first order 

derivative of the loss function was then estimated by using least squares regression on the 

last 5 seconds of the running loss average in order to calculate the cost-inertia dampening 

(ζ) as follows: 

𝜁 = 1.0 +|log10 |
∆𝜀𝑡

∆𝜀𝑜
| ∗ 1.07

𝑡

𝑁| ∆𝜀 =
𝑑𝜀

𝑑𝑡
 

Equation 5.  Formula for calculation of the cost-inertia dampening coefficient.  The cost-inertia 

dampening (ζ) is necessarily always larger than 1, and is inverse to the state of hyperparameters η, γ, and ψ 
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at time t.  The base-ten logarithm of the ratio of the first order estimate at time t (Δεt) to the initial first 

order estimate (Δεo) is multiplied by the constant 1.07 raised to the power of the current epoch (N) fraction, 

then added to the minimum range of ζ.   

 

Figure 6.  Effect of cost-inertia dampening on oscillating network loss.  The response of the cost-inertia 

dampening coefficient (ζ, blue) is compared to a hypothetical oscillating network loss (red) over 10 epochs, 

each with 100 samples.  A read rate of 96 samples per second is assumed, with a first order estimation 

buffer of 120 samples.  The oscillation was modelled by applying cos (
𝑥

50
) for vector x [1, 2, 3, …, 1000], 

performing parallel vector multiplication with vector y [3, 2.997, 2.994, …, 0] and then scalar addition to 

the minimum of vector x * y.    

The effect of this dampening is visualized in Figure 6, where the cost-inertia dampening 

increases drastically in regions where the loss begins to change directions and decreases 

during long stretches of constant motion.  Effectively, the dampening coefficient serves 

to promote consistency in the motion of the loss function by preventing rapid changes in 

direction.  Each hyperparameter is updated by division of the initial hyperparameter value 
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by the dampening, where larger values of ζ result in inversely smaller values of η, ψ, and 

θ relative to their initial values at the beginning of training. 

𝜂𝑡 =
𝜂𝑜

𝜁
𝜓𝑡 =

𝜓𝑜

𝜁
𝜃𝑡 =

𝜃𝑜

𝜁
   

2.6: Text-to-function deep learning architecture 

Text was translated into automated function calls through a connected system involving 

the AiDA NLP algorithms (described in 2.2, 2.3), the n-dimensional word embedding 

algorithm (described in 2.3), and a custom convolutional neural network architecture 

(Figure 8).  Paragraphs were split into sentences and then converted into a dictionary-

labelled 2D word embedding matrix.  From here, two different architectures were tested: 

an isolated MLP unit with 2 hidden layers and relatively high complexity (Figure 7), and 

a convolutional neural network (CNN) with a relatively simpler MLP unit also containing 

2 hidden layers (Figure 7).   
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Figure 7. Text-to-function deep learning multilayer perceptron architecture.  Text was separated by 

white space and punctuation via the parser and scored in 5 dimensions to create the embedding vector 

space.  The embeddings were then flattened into a single dimension, each dimensional measurement for 

each point was interpreted by a single neuron. Before training, an embedding index was configured for the 

input layer to properly map indices of embeddings with different size/y-dimensions order consistently to 

the proper input neuron.  Input signals were fed through the hidden layer via ReLU and range sigmoid 

activation, through the softmax layer, and finally into the output layer where a the model’s inference of the 

text could be translated into a gaussian probability distribution via the softmax layer.   The final action was 

selected based on the index of the maximum output probability. 
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Figure 8. Text-to-function deep learning convolutional architecture.  Text was separated by white 

space and punctuation via the parser and scored in 5 dimensions to create the embedding vector space.  The 

embeddings were then flattened into 2 dimensions during the convolutional process, whereby all 5 

dimensions where convoluted by a 1D filter.  The filter layer was flattened into the input layer of the 

multilayer perceptron. An embedding index was configured for the convolutional filter maps before 

training to consistently map indices of embeddings with different size/y-dimensions order to the proper 

coordinate.  Input signals were fed through the hidden layer via ReLU and range sigmoid activation, 

through the softmax layer, and finally into the output layer where a the model’s inference of the text could 

be translated into a gaussian probability distribution via the softmax layer.   The final action was selected 

based on the index of the maximum output probability. 

The embedding matrix was then convoluted by 4 [5 x 1] linear kernels to compress the 

input matrix into a 1D feature map, which was fed into the MLP.  The output layer was 
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activated via the softmax method to obtain a probability distribution summing to 1.0, that 

represented predictions on the likelihood that each function corresponded to the input text 

transcript.  The index of the maximum score in the output vector was then used to select 

the predicted action function from the labelled output neurons.  

T2F CNN training was performed over 75 epochs over 25 permutations, where each time 

the models were completely reconstructed and weights were randomly initialized via 

random sampling of the gaussian normal distribution with mean 0 and standard deviation 

of √
2

𝑁𝑙+𝑁𝑙−1
, where N represents the number of neurons on layer l.  Hyperparameters used 

were: learning rate (η) = 0.01, weight decay (γ) = 0.01, gradient noise (ψ) = 0.5, gradient 

clipping (ρ) = ±1.0, backpropagation loss threshold (θ) = 0.05, batch size (B) = 4.  The 

Nadam optimizer (Adam with Nesterov momentum) briefly described in Methods 2.4 

was applied at each batch.  Cost-inertia tuning was applied in parallel during the entirety 

of each run, reinitialized at the beginning of each permutation to ζ = 1.0. 

A custom T2F dataset of 1265 manually paired transcript-function names consisting of 82 

unique function labels was used (included in Supplementary File S3).  81 function labels 

were assigned 15 transcript examples each, with the exception of the “non_function” 

group which was assigned 50 labels.  Blind random splitting of the total set was 

performed at a 73%/27% ratio for every training permutation, where the training set was 

assigned 11 random selections of each label (37 from the “non_function” group) and the 

test set was assigned the remainder.  Therefore, each training run consisted of 928 text-

function pairs, and each test run consisted of 337 pairs. 
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2.7: Hierarchical search tree for complex, resource-intensive lookup tasks 

There are many resource-heavy look-up tasks that the AiDA chatbot is often required to 

do, such as filesystem searches, named entity searches, and value key conversions. I 

found that as the number of complex lookups increased with the development of the 

parser structure, the performance of the runtime AI suffered.  To combat this, I created a 

templated lookup hierarchy structure, which assembles a dendrogram of alphanumeric 

branches according to the position of characters in a string type, and stores an immutable 

memory connection (a “reference”) to the original item.  As a result, the time-complexity 

of searches became virtually linear for all sizes of lookup keys.  This was because a 

search for string “abcd” would begin at the base of the hierarchical tree with words only 

beginning with the letter “a”, then would move to the second tree under branch a1 

containing only words with a first letter “a” and a second letter “b”, and so on.  The 

number of required match checks in the worst-case scenario drops from hundreds of 

thousands to a few hundred.  The assembly and modification of the search structure was 

made more efficient time-wise and memory-wise by storing references instead of copies 

of the original strings, allowing many of these structures to be internally constructed by 

AiDA without running out of RAM space. 

2.8: Ranked list algorithm for multifactorial cross-dataset consolidation of 

named features 

In order to address the issue of data heterogeneity across diverse datasets, a ranked list 

algorithm was implemented.  The ranked list algorithm extracts features from individual 

datasets and performs all comparisons between those features in the isolated environment 
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of each dataset.  This process produces a ranked list for each input dataset which can then 

be used to consolidate results across sets by comparing the ranks of each named feature.  

The process of rank comparison discards artifacts that may confound any predictions 

made between algorithms on the low level, such as sample sizes, qualities, and intensities, 

as well as hardware such as sequencing platforms.  

 

Figure 9. The AiDA ranked list algorithm.  Shown above is a flowchart describing the process of multi-

dataset feature extraction, criteria ranking, and weighted consolidation into final combined ranked lists.  

(A). The ranked list algorithm ingests data from multiple source that can be normalized in different ways 

and/or measured using different metrics/platforms.  (B). Criteria are selected from each dataset.  The 

appropriate algorithm for feature extraction is selected based on the discrete/continuous nature of the 

criteria, and other key words in the user’s request.  (C). Once the appropriate algorithm is selected 
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according to the requested criteria, it is used to extract features iteratively along the most meaningful 

orientation of each respective dataset.  (D). Extracted features are ranked from 1 to N based on descending 

order of their algorithm score for each criteria.  (E).  The final weighted ranks (xt) for each ranked list 

feature at index i is calculated for all features that can be matched by their name across criteria.  Named 

entities that do not appear in all ranked lists are dropped from consideration in the final consolidated ranked 

list.  (F). The consolidated ranked list is produced, and consists of combined ranks, annotated by the 

original dataset, criterion, and algorithm that was used to produce each rank component. 

The rationale behind the ranked list algorithm (Figure 9) was that if named features 

consistently ranked high across several criteria and several datasets, they would have 

statistical grounds to be selected as promising candidates for future study.  The 

consolidated ranked list output that captures these candidates is a weighted sum of ranked 

named features that were calculated from the addition of multiple vectors of other ordered 

sub-lists.  The power of the ranked list method arises from its ability to consolidate 

extracted named features across datasets of heterogenous origin, normalization, and 

metrics, and between criteria with heterogenous feature extraction algorithms.  The 

output is a pure representation of candidates based on the ranked degree to which they 

match all requested criteria in all independent datasets.  Feature extraction as mentioned 

in the context of the ranked list algorithm is defined as the process of applying algorithms 

iteratively for all detectible named entities along the axis orthogonal to the alignment of 

the dataset labels.  If the labels are row-oriented, the algorithm will run column-wise and 

associate individual named entities with rows, and vice versa.  When a user requests that 

AiDA find features of a dataset, (s)he is creating a feature list “building block” that can 

be useful by itself but even more so as part of a consolidated ranked list.   
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The scores for each extracted ranked list are determined based on the type of question 

asked.  A question referring to discrete qualities of the data such as “find correlations to 

high risk” will cause AiDA to use the signal-to-noise ratio to rank all named features in 

the data according to their enrichment in “high risk”-labelled data.  On the other hand a 

question referring to continuous qualities of the data such as “find correlations to gene X” 

will cause AiDA to use the spearman correlation to assess the numeric correlation of all 

named features in the data to “gene X.”  Elements of the NLP engine described in 

Methods 2.2 and 2.3 are used to find the best match to the user’s request if no direct label 

matches are found.  Similar string matches and synonyms are also considered when 

searching for data labels of interest and named features.  A table of implemented feature 

extraction algorithms is shown in Table 1. 

Example Criterion Label Type Algorithms 

“Find correlations to gene 

X” 

Continuous 1. Spearman 

correlation 

2. Pearson correlation 

“What’s associated with 

X category patients?” 

Discrete 1. Signal-to-noise ratio 

2. Point-biserial 

correlation 

“Find correlations to 

overall/disease-free 

survival” 

Continuous 1. Kaplan-Meier 

survival curve 

2. Log-rank test 

3. Hazard ratio 

“What are the lowest X 

values in the data?” 

Continuous Depending on X: 

1. Median (Default if 

no X provided) 

2. Mean 

3. Mode 

4. Signal-to-Noise 
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Table 2.  Criteria match table for implemented feature extraction algorithms.  Algorithms represent 

potential responses to requested example criterion.  The default response algorithm is the first in the list in 

each cell, followed by other algorithms that have been implemented and tested but did not perform as well. 

 

2.9: Automated data bridging 

To facilitate the handling of fragmented datasets, or datasets with separated data matrix 

and annotations, I implemented a data bridge protocol that can create “portals” between 

datasets.  These portals have an “outbound” and “inbound” side, typically mapping to the 

data matrix and associated annotation set, respectively.  Portals are situated upon “staging 

lines,” which represent the line of features that directly map to features under the opposite 

portal on the matching dataset.  All searches initiated on datasets with an outbound portal 

will continue inline with the dataset holding a matching inbound portal.  The linear field 

emerging with field lines orthogonal to the outbound staging line is transferred to the 

inbound portal and field lines are transformed orthogonal to the orientation of the 

inbound staging line.  The orientation of data of interest in a dataset is determined by 

assessing whether the x- or y-distribution of their point cluster is more diffuse.  A higher 

y-diffusion (or higher standard deviation of y-coordinates) represents data that is column-

oriented, while conversely a higher x-diffusion indicates that the data points are row-

oriented (Figure 10a).  This orientation is assessed whenever an automated inference 

needs to be made about what the user is requesting when they ask for information relating 

to a data label.  
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Figure 10. Automated label orientation and data bridging.  (A). The standard deviation (σ) of x and y 

coordinates in a match set are analyzed to determine the orientation of a coordinate cluster.  A higher 

standard deviation of y-coordinates indicates row-oriented data, while a higher standard deviation of x-

coordinates indicates column-oriented data.  (B). The data bridging protocol begins when two data files are 

compared for matching features.  The algorithm walks down rows and columns to identify regions of high 

similarity (such as sample IDs) in order to discover staging lines for the “outbound” and “inbound” bridge 

portals. The orientation algorithm in (A) is applied to determine the orientation of the outbound and 

inbound staging lines.  If an orientation can be determined for both regions, the match score m is calculated 

based on the outbound staging line length (Lout) normalized to the inbound staging line length (Lin) to 

determine if the candidate datasets pass the bridge threshold (Tm, initially 0.6).  If m number of matching 

labels discovered is greater than the bridge threshold then a data bridge is instantiated and stored in 

memory for future reference. Further search operations on the dataset with the outbound portal will always 

include an inline search of the dataset containing the matching inbound portal. 

The candidacy of two datasets for data bridge formation is assessed by searching in a 

cross-hatch iteration pattern across both datasets for highly similar label features using 

the NLP methods described in Methods 2.2 and 2.3.  Highly similar matches across both 

datasets are tallied, and the orientation of matching coordinates is assessed as a cluster to 
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determine their distribution, and therefore their relevant orientation within the dataset.  If 

an orientation can be determined for both candidates, the mode of coordinates in the 

orthogonal dimension to the orientation is selected as the site for the staging line.  A 

match score is assigned to both the outbound and inbound candidates that is equal to the 

ratio of the outbound staging line size to the inbound staging line size (Figure 10b).  If the 

match score is greater than the match threshold, which is initially 0.6, then a bridge is 

formed between the two candidate datasets. 

2.10: The “Spider” web crawler bot 

Web scraping and web crawling tasks were accomplished using the Hyper C++ Spider 

web bot (https://github.com/DamianTran/hyper).  The bot was used for domain-specific 

searches by “placing” it on a key domain search URL (such as a page with a searchbar) 

using the navigator function go_to(URL + extension).  The Spider uses an 

HTML tree parser to extract the document object model (DOM) of online *.html sources 

downloaded using the cURL C API, libcurl (https://curl.haxx.se/libcurl/c/).  The Spider 

navigator keeps track of where the bot has been, and what links are left to navigate at 

depth n from the origin.  Body text, links, and link attributes are extracted from the DOM 

to allow easy navigation and extraction of web text where applicable (<p>, <h>, and <a> 

classes).  The bot is equipped with algorithms from Methods 2.2 and 2.3 to allow it to 

extract key terms from web pages that come proximal to web links, or that occur within 

the body of a web link URL.  Altogether, these tools allow the developer to jump into 

programmatic web surfing in order to automate data extraction.  The web bot was 
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specifically implemented in the AiDA AI for tasks such as thesaurus lookups and UCSC 

gene sequence fetching.       

2.11: Automated testing methods 

The T2F system was validated by permutating each model 25 times using a randomly-

segregated 73%/27% train/test ratio.  Gradient checking was performed on a small subset 

of weights and biases to ensure that backpropagation deltas were being computed 

properly.  In order to check I/O consistency of the neural network engine, trained models 

were fit and validated, saved to the disk, reloaded from scratch, and then validated once 

again to ensure that the same result was obtained.  Trainable parameters were checked for 

identity iteratively before and after reloading to ensure that all information was 

transferred to the drive and back into RAM without corruption.  The model graphs for 

training/testing were completely randomized, and reads were performed in no particular 

order to avoid any sequential biasing.  New algorithm functions were permuted with 

random numbers from -1*109 to 1*109, as well as NaN, 0, and infinite values to test for 

crashes.  Extensive exception handling and GDB debugging were used to identify 

program malfunctions and code errors in the source files. 

2.12: Datasets consumed by the ranked list algorithm 

Normalized datasets used in the development of clinical and biochemical prediction 

models were obtained from the NCBI Gene Expression Omnibus (GEO) database and 

cBIOportal.  Clinical survival data was analyzed from the LAML-TCGA provisional 

dataset (The Cancer Genome Atlas AML, n = 173) and GSE12417 (n = 86).  In LAML-
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TCGA, patients with all karyotypes, mutations, and treatment regimens with RNAseq 

(V2 RSEM) data were included.  Pre-normalized RPKM values, as well as clinical labels 

and whole-genome mutation information were obtained from cBIOportal for LAML-

TCGA.  RPKM values were converted to log2 RPKM in R.  GSE12417 contained 

Affymetrix Human Genome U133 Plus 2.0 microarray data for 86 samples (79 bone 

marrow, 7 peripheral blood); all 79 patients were afflicted with normal karyotype AML.  

Gene expression across the myeloid arm of the hematopoietic hierarchy was analyzed 

using GSE42519 which included 34 sorted bone marrow samples (4 HSC, 2 MPP, 3 

CMP, 5 GMP, 2 MEP, 3 early promyelocytes, 3 late promyelocytes, 2 myelocytes, 3 

metamyelocytes, 4 band cells, 3 polymorphonuclear cells) sequenced by Affymetrix 

Human Genome U133 Plus 2.0 microarray.  Differential expression in LSC-containing 

leukemic blood was assessed from a cohort of 78 untreated AML patients in GSE76009, 

consisting of 227 T-cell depleted mononuclear cell samples sequenced by Illumina HT-12 

v4.0 expression beadchip (138 LSC+/89 LSC-).  All datasets downloaded from GEO 

(GSE12417, GSE42519, GSE76009) were obtained in series data matrix (*.txt) formats 

containing log2-normalized probe intensity values.  To enhance program portability, 

temporary probe conversions to the maximally-responding probe for each gene were 

performed as required. 

2.13: Linear statistical methods 

Coefficient of determination (R2) values predicting gene co-expression were calculated 

using the least squares regression method for the spearman correlation.  P-values for 

differences in patient cohort outcomes for Kaplan-Meier survival curves were calculated 
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using the log-rank test method with right censorship.  Significances between sample 

groups selected by dataset labels were determined by calculating the signal-to-noise ratio 

of the selected group against the background of the remainder.  Verbal enrichments were 

determined to be significant by calculating the Fisher exact p-value for a 2x2 contingency 

table as follows: 

Subset with term a Subset without term b 

Background with term c Background without term d 

 

The probability mass function (PMF) for the hypergeometric distribution can be defined 

as follows: 

𝐻(𝑎, 𝑏, 𝑐, 𝑑) =
(𝑎 + 𝑏)! (𝑐 + 𝑑)! (𝑎 + 𝑐)! (𝑏 + 𝑑)!

(𝑎 + 𝑏 + 𝑐 + 𝑑)! 𝑎! 𝑏! 𝑐! 𝑑!
 

 

For significance level 0.05, the p-value is calculated, applying the Bonferroni correction 

for N significance tests: 

𝑝0.05 = ∑(𝐻(𝑥, 𝑏 − 𝑥, 𝑐 − 𝑥, 𝑑 + 𝑥)

𝑥=𝑁

𝑥=0

≤ 0.05) ∗ 𝑁 

The direction and intensity of verbal enrichment was quantified by the odds ratio: 

𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠𝑖𝑛𝑠𝑢𝑏𝑠𝑒𝑡
𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠𝑖𝑛𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑⁄

𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑖𝑛𝑠𝑢𝑏𝑠𝑒𝑡
𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑖𝑛𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑⁄
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All comparisons between discrete datasets were performed by forming weighted ranked 

lists.  Initial merging between ranks was unweighted, followed by supervised training of 

the algorithm to reweight gene candidates by annotations from the literature and online 

datasets. 

2.14: Dataset archiving and localized access of the PubMed citation database 

PubMed citations were downloaded in bulk XML format from 

(ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline) using cURL and left in compressed form on 

the hard disk.  Citations were accessed by decompressing each archive into memory 

through a stream using the C compression library zlib (https://zlib.net) and reading the 

bytes into an XML tree.  Accessing citations through this on-demand decompression 

method ensured that the entire baseline held a manageable memory footprint on the hard 

drive.  Citations were then selected from random indices between 0 and 29100000 and 

accessed by opening the corresponding archive using the zlib API and surfing the 

decompression stream to find the PubMed citation with that index. 

Ground truth gene context citations were selected at random locations in the PubMed 

index based on one or more HUGO gene symbols and their matching full names 

appearing side-by-side in the abstract.  The opposite non-gene context citations were 

selected based on their lack of any string sequence matching a HUGO gene symbol, alias, 

full name, or former name in the abstract.  These were further filtered based on the 

presence or absence of key words signifying genetic context, such as “gene”, 

“expression”, “levels”, “sequencing”, and “promoter.”   30000 abstracts of each class 

were accumulated into a database of 60000 automatically-labelled pairs and stored as a 
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tab-delimited file (*.tsv), included in Supplementary File S4.  The neural recognition 

gates for genetic and therapeutic context recognition were set at 0.5 and 0.8, respectively. 

Therapeutic context citations were sampled at random from the Pubmed citation index 

based on the appearance of one or more chemicals from the Therapeutic Target Database 

(TTD) appearing in the body of the abstract, while non-drug context citations were 

selected based on the absence of these terms.  These were also filtered based on the 

presence or absence of therapeutic context words such as “drug”, “administered”, “pill”, 

“injected”, and “trial.”  30000 examples of each class were accumulated into an 

automatically-labelled database of 60000 pairs, which were stored as a tab-delimited file 

(*.tsv), included in Supplementary File S5. 

2.15: Hardware and software specifications 

For all experiments performed in this work, a single Asus® Zenbook™ laptop was used 

with Windows™ 10 (64-bit), an Intel® Core™ i7-7700HQ quad-core CPU clocked at 

2.80 GHz processor, and 16 GB of DDR3 RAM.  All experiments were parallelized on 

the CPU, capable of maximally running 8 threads.  Since networks were trained using a 

single worker thread each, up to 8 network training permutations could be parallelized 

effectively.  An Nvidia® GeForce™ GTX™ 1050 Ti was installed on the laptop, but not 

employed for any of the worker threads.  The decision to not port the engine over to the 

GPU was primarily made to maintain cross-platform compatibility, for simpler 

troubleshooting, and to ensure that all algorithms were optimized on the CPU first before 

moving to more powerful hardware. 
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Engine development was performed using the C++ programming language, compiled 

using MinGW 7.3.0, in the Code::Blocks 16.01 IDE.  The AiDA user interface was 

created using CVision (https://github.com/DamianTran/cvision), an open source library 

built upon SFML 3.5.1.  Data visualization was performed using R Studio 1.1383 and R 

version 3.5.1, additional data extraction and manipulation was performed using the dplyr 

and Bioconductor extensions.  Version control was managed by Github via the MSys2 

Bash interface (open source repositories at https://github.com/DamianTran).  Plots were 

generated in R using the ggplot2, plotrix, lemon, reshape2, and plotROC libraries.   
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Chapter 3: Results 

3.1: A range-normalized sigmoid activation function achieves high accuracy 

in benchmark prediction tasks 

In order to validate the efficacy of several custom neural network algorithms, neural 

network models of varying complexity were created to be tested on benchmark datasets 

of increasing difficulty: Digit-MNIST (Deng, 2012), Fashion-MNIST (Xiao et al., 2017), 

and CIFAR-10.  An extensive list of hyperparameter values at initialization, and 

validation results for all models are included in Appendix 2.  MLP and convolutional 

configurations were tested to validate the positive effect of the custom convolution 

algorithm on network convergence.  A simple MLP model of layers [784, 128, 10] with 

range sigmoid activation achieved a maximum 97.18% validation accuracy on Digit-

MNIST after 20 epochs of training, which was easily beaten by the convolutional 

counterpart in Figure 11, which reached 98.64% accuracy with the same amount of 

training.  Dropout was applied to the hidden layer with a dropout probability of 0.15.  

ReLU activation was applied to the convolutional feature maps with α = 0.15.   
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Figure 11. Convolutional architecture applied to numeric digit recognition in Digit-MNIST.  (A): A 

random sampling of 25 Digit-MNIST images, each 28x28 in size.  (B): Schematic of a simple 

convolutional neural network capable of reaching 98.64% validation accuracy after 20 epochs.  (C): A 

feature map sampling of the input image (top) and six convolutional feature maps (bottom) of the neural 

network while viewing an example of the digit “8.” 

A similar architecture was created to classify fashion items in Fashion-MNIST, a 

relatively more difficult benchmark than Digit-MNIST (Figure 12).  A simple MLP of 

depth [784, 128, 10] achieved a maximum classification accuracy of 89.75% on the 

Fashion-MNIST validation set, but the addition of convolutions enhanced the prediction 

accuracy to 90.3%.  Dropout was applied to the hidden layer with dropout p = 0.1.  The 

range sigmoid activation was used for both hidden layers, and ReLU activation with α = 

0.1 was applied to the convolutional feature maps. 
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Figure 12.  Convolutional architecture applied to low-resolution fashion item recognition in Fashion-

MNIST.  (A): A random sampling of 25 greyscale images sampled from Fashion-MNIST.  (B): A 

schematic of the neural architecture used to achieve 90.3% validation accuracy after 20 epochs.  (C): A 

feature map sampling of an input image (top) and the 6 convolutional feature maps (bottom) while viewing 

an example of a “sandal” image. 

Finally, a deeper convolutional architecture was created to test the scalability of the 

engine with regards to pooled convolution layering.  A network with 4 convolutional 

layers (kernels of 3x3, 3x3, 5x5, and 3x3) and an intermittent 2x2 pooling layer 

connected to an expanded MLP component achieved 62.49% accuracy on the more 

complex CIFAR-10 dataset (Figure 13).   
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Figure 13. Convolutional architecture applied to low-resolution images in the CIFAR-10 dataset.  

(A): Random sampling of 25 images from the CIFAR-10 small images dataset.  (B): The deep 

convolutional neural network architecture used to achieve 62.49% prediction accuracy after 20 epochs.  

(C): A sampling of feature maps at each level of convolution and pooling, from most proximal to the input 

(top) to most distal (bottom).  Only six feature maps were sampled per layer for clarity. 

3.2: A text-to-function (T2F) system achieves high prediction accuracy from 

minimal sparse data 

T2F multilayer perceptron and convolutional network architectures were tested to verify 

if linear convolution of embedding vector dimensions positively contributed to model test 

scores.  The multilayer perceptron configuration shown in Figure 7 and the convolutional 
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neural network architecture shown in Figure 8 were both tested over 25 randomly 

permutated trials.  The T2F systems were tasked to predict the correct function response 

to 1265 manually assembled text transcripts. The dataset was split at a 73%/27% 

training/test ratio, maintaining the ratio across label groups while the random segregation 

was performed.  This resulted in a training epoch size of 928, and a test sample size of 

337. 

Over the range of random permutations, the convolutional network converged slightly 

faster (Figure 14a, bottom) and reached a lower loss minimum of 0.1707 (mean 

prediction confidence = 84.3%) at epoch 59, while the MLP required 72 epochs to reach 

a loss minimum of 0.2 (Figure 14a, top; mean prediction confidence = 81.9%).  Both 

classes were able to fit to a median of 99.68% of the training data (925/928). The 

differences in validation performances are exemplified in Figure 14b, where 

convolutional models collectively scored a median of 83.09% correct on the randomly 

segregated test set (278/337), 1.19% higher than the median score for the MLP models 

(81.9%; 276/337).  Convolutional models were exhibiting higher generalizability, 

overfitting 1.08% less than their MLP counterparts.  Overall, the overfit margin was large 

for both models at a median overfit of 16.8% for the convolutional class and 17.89% for 

the MLP class. 
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Figure 14. Comparison of collective training results over 25 permutations of T2F data training for 

MLP and CNN models.  (A): Loss progression graphs illustrating both the average of stochastic loss for 

all 25 permutations (grey) and the average running loss (red) and associated 95% confidence intervals 

(dotted red) for the multilayer perceptron class (top) and convolutional class (bottom).  (B): Staggered box 

plot comparing test scores on randomly segregated transcript-function pairs over 25 permutations for 

convolutional and MLP classes.  (C): Staggered box plot comparing the overfit margin (inversely 

proportional to generalizability) for convolutional and MLP classes. 

Analysis of the convolutional architecture, which was chosen for future examination due 

to its marginally better performance, revealed that function classes containing similar 

transcripts were assigned similar probability scores (Figure 15c).  A series of example 

transcripts were manually procured for demonstration purposes, none of which belong to 

the original 1265 transcripts in the training dataset (Figure 15a).  The first example, 
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containing words related to scheduling, caused the network to produce top 4 probabilities 

centered on 4/6 labelled scheduling functions (schedule_new: 64.6%, schedule_remove: 

22.6%, schedule_change: 6.7%, schedule_reserve: 3.2%, all others: < 2.9%). The second 

example, containing words related to the access and manipulation of ranked list 

constructs, caused the model to predict outcomes centered around ranked list-related 

functions (memory_find_rank: 61.2%, memory_show_numeric: 31.8%, results_copy: 

2.65%, numeric_subset: 1.57%, open_numericmempanel: 1.29%, all others: < 1.35%).  

The linear convolutional filters (feature maps shown in Figure 15b) each learned different 

polynomial characteristics of the embedding dimensions (Figure 15d). 
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Figure 15. Convolutional kernel analysis and functional response predictions for text transcript 

examples.  (A): Manually-curated text transcripts not belonging to the original 1265 transcripts of the T2F 

text database.  Examples are matched row-wise to panels in (B) and (C).  (B): Input images and 

convolutional feature maps for the best-performing convolutional T2F network while reading each of the 

transcript examples in (A).  Images have been transformed for visibility; true input map dimensions were 5 

x 317 and true feature map dimensions were 1 x 317.  (C): Bar plots of softmax prediction probabilities for 

the top 10 predictions made for each transcript in (A).  All probabilities sum to 1.0.  (D): Convolutional 
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kernel weights for the best performing convolutional T2F model for each filter (rows) and dimension 

(columns).   

3.3: Discovery of gene target candidates with functional genomic screening 

potential in acute myeloid leukemia (AML) 

A genome-wide ranked list analysis comparing overall survival predictions and disease-

free survival predictions was performed between patients exhibiting above- and below-

median gene expression for every gene with transcript expression data in LAML-TCGA 

(Figure 16a).  The ranked list analysis was proficient at enriching for genes with 

enhanced expression in functionally-validated leukemic stem cell (LSC)-containing, 

sorted peripheral blood fractions based on analysis of a cohort of 78 AML patients 

(Figure 16b).  Stratification of patients by high-ranking prognostic genes predicted 

significantly poorer survival outcomes for above-median expression cohorts by up to 

40% over 5 years (Figure 16c).   
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Figure 16.  Weighted ranked list algorithms establish a metric for genome-wide prognosis.  (A): 

Scatter plot of all genes with expression data in LAML-TCGA ranked by their ability to stratify patients by 

overall survival vs. disease-free survival based on above- and below-median expression (Spearman R2 = 

0.62).  Individual scores were calculated by the Kaplan-Meier method to correlate higher gene expression 

with poorer patient outcomes.  A selection of the top 100-ranked genes was made (red) to assess at a higher 

resolution.  (B): Gene set enrichment analysis plot and clustered expression heatmap demonstrating positive 

enrichment of the top 100 prognostic genes in LSC+ samples from a dataset of 227 sorted peripheral AML 

blood fractions (GSE76009).  The leading edge (LE) is indicated by vertical red lines (index 2854).  (C): 

Kaplan-meier survival plots visualizing factors of overall survival (top row) and disease-free survival 

(middle row) for 4 selected genes among the 100 most prognostic ranks.  Patient cohorts were stratified 

from LAML-TCGA (n = 173) based on above- (red) and below-median (blue) expression of the indicated 

genes (above).  P-values were calculated by the log-rank method.  (D): Quantile plots of gene expression 

(log2-normalized RPKM) including the bottom quartile, median, and top quartile of patients in LAML-

TCGA grouped by their cytogenetic risk category (*** = p < 0.001). 
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Following prognostic gene prediction, multiple additional factors of safety were 

considered, notably low expression across the normal hematopoietic hierarchy, as well as 

lowest expression in primitive sorted blood fractions.  Iterative ranked-list analyses were 

performed on a cumulative base of 520 samples from LAML-TCGA (n = 173), 

GSE42519 (n = 34), GSE76009 (n = 227), and GSE12417 (n=86).  Ranked gene lists of 

length 12000 – 18000 were generated, merged, and re-ranked based on the mean of ranks 

across datasets (dataset weights were initialized evenly).  The complete list contained 

11444 gene rank predictions for 6 different factors (4 prognosis, 2 safety; Table S1).  

Selecting among the top 100 of these predictions and mapping back to the predicted 

prognosis list revealed a high degree of overlap with the upper proportion of prognostic 

gene predictions (Figure 17a).  The enrichment of these genes in LSC-containing AML 

blood fractions dropped relative to the high positive enrichment of the binary list 

analysis, while retaining a component of positive enrichment that could be further 

investigated (Figure 17b).  Analyses of overall survival across studies of both treated 

(LAML-TCGA) and untreated (GSE12417) AML patients showed the above-median 

expression of these genes was associated with poorer overall survival outcomes by up to 

30% over 5 years (Figure 17c). 
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Figure 17.  Weighted ranked list algorithms discover gene target candidates matching several 

required clinical characteristics.  (A): Genome-wide prognosis scatterplot created as in figure 2a, with a 

selection of the top 100-ranked multi-factor genes (red).  (B): Gene set enrichment analysis plot and 

clustered expression heatmap revealing a subset of genes driving positive enrichment in LSC+ samples 

from a dataset of 227 sorted peripheral AML blood fractions (GSE76009).  The positive leading edge (LE) 

is indicated by vertical red lines (index 1390).  (C): Kaplan-meier survival plots for 4 selected genes among 

the top 100 multi-factor ranks.  Patient cohorts were stratified from LAML-TCGA (top row, n = 173) and 

GSE12417 (middle row, n = 86) based on above- (red) and below-median (blue) expression of the indicated 

genes (above).  P-values were calculated by the log-rank method.  (D): Quantile plots of gene expression 

(log2-normalized RPKM) including the bottom quartile, median, and top quartile of myeloid blood samples 

in GSE42519 grouped by cell type.  Cell types were ordered left-to-right by increasing myeloid lineage. 

 

In the analysis of these ranked lists, gene candidates IL1RAP, RPS6KA1, IL2RA, and 

SPAG1 were selected as optimally-scoring variables matching all 6 factors of 
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consideration.  From among the most prognostic gene predictions, CALCRL (Calcitonin 

receptor-like receptor), CCND3 (Cyclin D3), FAM124B (Family with sequence similarity 

124 member B), and FHL1 (Four and a half LIM domains 1) were determined to be the 

most positively associated with poor survival outcomes in all AML studies investigated 

(RNAseq V2 RSEM (n = 173) and Affymetrix U133A (n = 173) microarray profiling of 

LAML-TCGA, Affymetrix Human Genome U133plus profiling of untreated AML in 

GSE12417).   

CALCRL codes for a G-protein coupled receptor (GPCR) that interacts strongly with the 

receptor activity modifying protein (RAMP) family of type I transmembrane proteins 

(specifically, RAMP1, RAMP2, and RAMP3) required for the transport of calcitonin-

receptor-like-receptor (CLCR) to the plasma membrane (Archbold et al., 2011; Dackor et 

al., 2007).  CCND3 encodes for a cyclin protein that is reported to be upregulated in 

several leukemias, as well as other non-hematopoietic malignancies (Büschges et al., 

1999; Liu et al., 2015; Smith et al., 2005). FAM124B encodes a mainly nuclear-localized 

protein speculated to be involved in CHARGE syndrome due to evidence showing it to 

be a direct binding partner of chromodomain helicase DNA binding protein 8 (CHD8); 

CHD8 forms a complex with CHD7, a protein known to be mutated in CHARGE 

syndrome (Batsukh et al., 2012).   FHL1 encodes a member of the four-and-a-half-LIM-

only family of proteins that are characterized by two highly conserved, tandemly 

arranged zinc-finger domains each with four highly conserved cysteines binding a zinc 

atom(Zipfel and Skerka, 1999).  It is expressed in cell-type-specific ways, notably in 

skeletal muscle (Morgan and Madgwick, 1999), and mutant variants have been found to 
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be associated with a variety of human myopathies (Chen et al., 2010; Schessl et al., 2008; 

Windpassinger et al., 2008). 

3.4: Expression of highly ranked candidates is positively associated with the 

presence of AML mutational hotspots 

Mutational enrichments in the high ranks of the consolidated ranked list output were 

investigated by performing verbal enrichment analysis on annotation datasets.  Data 

bridges were formed between LAML-TCGA and the associated cBIOPortal dataset 

containing mutation events for all 173 AML patients.  This allowed for the automatic 

discovery of mutation enrichments associated with patient subsets selected by expression 

levels of IL1RAP (Interleukin 1 receptor accessory protein), RPS6KA1 (Ribosomal 

protein S6 kinase A1), IL2RA (Interleukin 2 receptor subunit alpha), and SPAG1 (Sperm 

associated antigen 1) (Figure 18a; data included in Supplementary File S6).  Analysis of 

verbal enrichments for each individual gene in above-median expression cohorts (n = 86) 

for IL1RAP, IL2RA, and SPAG1 revealed positive correlations to FLT3 (Fms related 

tyrosine kinase 3) mutation frequencies.  The FLT3 gene encodes a tyrosine kinase 

protein that is a cell surface receptor for the FLT3LG cytokine (Shurin et al., 1998).  

Activating mutations such as internal tandem duplications (ITDs) in the FLT3 locus are 

well-known to be associated with AML and are present in about a third of all AML cases 

(Cortes et al., 2016; Kindler et al., 2010; Kottaridis et al., 2001; Meshinchi et al., 2006; 

Zarrinkar et al., 2009). 
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IL1RAP encodes a coreceptor of IL1R1 (Interleukin 1 receptor type 1) in the interleukin 1 

receptor complex, which initiates signalling events resulting in the activation of 

interleukin 1-responsive genes (Lingel et al., 2009; Tominaga et al., 2000).  It’s been 

recently highlighted as a potential therapeutic target in AML due to its increased presence 

on the surface of AML stem cells, and its involvement with several AML signalling 

pathways (Ågerstam et al., 2015; Askmyr et al., 2013; Mitchell et al., 2018).  The protein 

product of RPS6KA1 (also known as P90RSK) is a serine/threonine-protein kinase that 

acts downstream of MAPK1/ERK2 and MAPK3/ERK1 signalling (Dalby et al., 1998; 

Shimamura et al., 2000; Wingate et al., 2006).  Little is known about its role in any 

genetic diseases, but it has been investigated in the context of kidney fibrosis (Lin et al., 

2019).  IL2RA encodes the alpha subunit of the interleukin-2 receptor involved in the 

regulation of immune tolerance by control of regulatory T cell activity (Bezrodnik et al., 

2014; Goudy et al., 2013).   mRNA expression of IL2RA was very recently reported to be 

an independent prognostic factor in intermediate risk AML (Du et al., 2019).  The protein 

product of SPAG1 is not well-studied but is known to bind GTP and have GTPase 

activity (Lin, 2001).  Assumptions have been about its role in the cytoplasmic assembly 

of ciliary dynein arms, and potentially its participation in the process of fertilization due 

to the similarity of its sequence to a previously-categorized 75-kD peptide involved in 

infertility (Zhang et al., 1992). 

Investigation of mutation types revealed that insertion mutations were overrepresented 

among mutation events (p < 0.0001, odds ratio > 1.7).  IL2RA was highly associated with 

splice region variant labels (p < 0.05, odds ratio > 3), while RPS6KA1 was conversely 
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very lowly associated with splice activity (p < 0.01, odds ratio < 0.5).  From the four 

optimal candidates IL1RAP was the most strongly associated with FLT3 mutation labels 

(p < 0.0001, odds ratio = 2.61).  A subset of patients uniquely expressing above-median 

levels of all four genes simultaneously (n = 19) was selected from the dataset and 

assessed via data bridge to the mutation dataset.  Collectively, the genes were extremely 

enriched for FLT3 mutation incidents (p < 0.0001, odds ratio = 3.28) and insertion 

mutation types (p < 0.0001, odds ratio = 2.41).   

Analysis of FLT3 gene signatures by GSEA demonstrated that genes predictive of AML 

characterised by internal tandem duplications (ITD) of FLT3 (Valk et al., 2004) were 

highly positively enriched among the high ranks of the consolidated ranked list (Figure 

18b; ES = 0.596, p < 0.0001, FDR q = 0.049).  These genes had been identified by the 

gene list authors as part of a larger project with the core aim of discovering prognostic 

gene signatures in AML.  Among the leading edge of the enrichment results, IL2RA ranks 

first, with IL2RAP behind in second. 

Additional analysis revealed above-chance incidences of NPM1 mutation events for 

patient cohorts selected by above-median expression of IL1RAP (N = 86, p = 0.007, odds 

ratio = 1.69).  Significant enrichment for NPM1 mutation events was not observed for the 

other selected candidates, but patient groups selected based on above-median expression 

of all candidates simultaneously exhibited a slight enrichment for these events (N = 19, p 

= 0.039, odds ratio = 1.88).  Gene set enrichment analysis for a gene list previously 

reported to be upregulated in NPM1-mutant AML (Verhaak, 2005) showed strong 
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enrichment at the top ranks of the consolidated list (Figure 18c; ES = 0.596, p < 0.0001, 

FDRq = 0.049, LE = 75/131). 

 

Figure 18.  AML mutational hotspots correlate in frequency with candidate gene expression.  (A): 

Heatmaps of mutation events in 173 patients in LAML-TCGA are sorted in increasing order of the 

expression of 4 high-interest gene outputs.  Mutation events are color coded based on the copy number 

effect of each event.  (B): GSEA enrichment plot for a list of genes reported by Valk et al. (2004) to be 

predictive of FLT3 ITD AML.  30/40 genes could be mapped to the ranked list output, 15/30 comprised the 

leading edge.  (C): GSEA enrichment plot for a list of genes reported by Verhaak et al (2005) to positively 

correlate in expression with NPM1 mutation events.  131/183 gene list members could be mapped to the 

ranked list, 75/131 were found in the leading edge. 
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3.5: Context-recognition CNNs identify therapeutic contexts in the biomedical 

literature 

A genetic and therapeutic context recognition models were trained on databases of 60000 

randomly selected, filtered citation abstracts that were randomly segregated into 42000 

training examples and 18000 test examples (Supplementary Files S4 and S5).  The 

genetic context detection model achieved a validation accuracy of 95.73% after 20 

epochs, with a receiver operating characteristics (ROC) area under the curve (AUC) of > 

0.99 (Figure 19a).  The therapeutic context recognition model achieved a test accuracy of 

83.7% after 20 epochs, with a ROC AUC of 0.92 (Figure 19b).  Both models exhibited 

relatively even true positive and true negative rates, while the genetic context recognition 

model showed a bias toward false positives, and the therapeutic context recognition 

showed a marginal bias toward false negatives. 
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Figure 19.  Validation results for context recognition models on PubMed citation abstracts.  Genetic 

(A) and therapeutic (B) context recognition models were trained on 42000 pre-filtered, randomly selected 

PubMed abstracts for 20 epochs and validated on 18000 pre-filtered, randomly selected PubMed abstracts.  

(A): Confusion matrix (left) and ROC curve (right) for the best-performing gene context recognition model.  

Validation score: 95.73%; AUC (area under curve) 0.9916.  (B): Confusion matrix (left) and associated 

ROC curve (right) for the best-performing therapeutic context recognition model.  Validation score: 

83.72%, AUC: 0.9168.  Labels on ROC line points indicate threshold values. (C): Input embedding images 

(above) and convolutional feature maps (bottom row) for the transcript example “What about the x?” 

shown for the best-performing genetic (left) and therapeutic (right) recognition models. 

Neural network architectures with the highest validation scores were selected to perform 

context recognition on the cumulative PubMed citation database.  Over 29 million 

citations were downloaded locally in compressed form and scanned to detect articles 

containing the top and bottom 25 genes of the consolidated ranked list.  Citation abstracts 

that contained matching gene acronyms were turned into 2D embedding matrices and 

scanned by both the genetic and therapeutic context recognition models.  When neural 

model detection gates were unmodified (detection threshold = 0.5), 216 matching 

PubMed citations were discovered that both networks signalled positive for genetic and 

therapeutic contexts.  For the bottom 25 genes, 336 matching citations were identified 

that met the network thresholds.  272 abstracts for these genes did not meet either the 

threshold for the genetic context model or the therapeutic context model and were filtered 

out.  A summary of these results is displayed in table 3 below (complete list in 

Supplementary File S7). 
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Gene List Rank Abstract Title PMID 

IL2RA 1 Targeting Pseudomonas exotoxin to 

hematologic malignancies. 

8562907 

RPS6KA1 14 Gene expression patterns of hippocampus 

and cerebral cortex of senescence-

accelerated mouse treated with Huang-

Lian-Jie-Du decoction. 

17805973 

 

VNN3 4 Pharmacologic concentrations of ascorbic 

acid cause diverse influence on 

differential expressions of angiogenic 

chemokine genes in different 

hepatocellular carcinoma cell lines. 

19932582 

 

CYP7B1 13 Effect of ribavirin, levovirin and 

viramidine on liver toxicological gene 

expression in rats. 

14635270 

 

TCF3 11433 Inhibition of protein-protein interactions: 

the discovery of druglike beta-catenin 

inhibitors by combining virtual and 

biophysical screening. 

16568448 

 

CCND2 11440 Gamma-secretase inhibitors reverse 

glucocorticoid resistance in T cell acute 

lymphoblastic leukemia. 

19098907 
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UBB 11419 Effects of dimethyl sulphoxide and 

dexamethasone on mRNA expression of 

myogenesis- and muscle proteolytic 

system-related genes in mouse myoblastic 

C2C12 cells. 

18835828 

 

ITM2A 11438 Enhanced ITM2A expression inhibits 

chondrogenic differentiation of 

mesenchymal stem cells. 

19541402 

 

Table 3.  Summary of drug discovery results facilitated by deep text mining.  From a list of abstracts 

enriched for genetic and therapeutic contexts, a handful of promising abstracts were selected for display 

above.   

An abstract discussing a promising pharmacological inhibitor for IL2RA-related 

hematologic malignancies is discussed in PMID 8562907 (Kreitman and Pastan, 1995). 

Excitingly, the authors of this memo report an immunotoxin targeting the interleukin-2 

receptor alpha subunit that underwent clinical trials in patients exhibiting various 

leukemias in 1995. It is a lowly-cited report (75 citations at the time of writing) that failed 

to appear via PubMed’s online search tool when the queries “IL2RA”, “IL2RA 

therapeutic”, and “IL2RA inhibitor” were attempted.  Another difficult-to-find entry, 

published in Neuroscience Letters in 2008, was PMID 17805973 which discusses a 

traditional Chinese medicine therapy called the Huang-Lian-Jie-Du decoction (Zheng et 

al., 2008).   In this paper, with 33 citations at the time of writing, the authors 

demonstrated using RT-qPCR that they to be able to modulate the expression of 
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RPS6KA1.  The article is a less conventional example of a therapeutic application 

compared to more conventional pharmacological examples, such as PMID 19932582, a 

paper discussing pharmacological ascorbic acid and its effect on the expression levels of 

VNN3, among other targets, at different concentrations.  In PMID 14635270, CYP7B1 

was demonstrated to have been inhibited four-fold by Levovirin, an L-enantiomer of 

Ribavirin, which is a common treatment for chronic hepatis C (Fang et al., 2003).  

Importantly, its alternative pathway to fulfilling its normal role in cholesterol metabolism 

via interaction with CYP27 was not affected.  The authors concluded that high doses of 

Levovirin did not cause significant dysregulation of liver toxicological genes, indicating 

viability for the use of this compound as a safe therapeutic.  Levovirin presents potential 

for further investigation due to its inhibition of a highly-ranked candidate gene in AML 

(further discussed in 4.2). 

Studying results procured from the bottom 25 genes of the consolidated ranked list 

yielded equally fruitful results.  PMID 19098907 published in Nature Medicine discusses 

findings that glucocorticoids enhanced the expression of CCND2, which the authors 

suggested could be applied in combination with gamma secretase inhibitors (GSIs) for 

glucocorticoid-resistant T-cell acute lymphoblastic leukemia (Real et al., 2008).  PMID 

19541402 published in Differentiation contains a protocol for forced induction of IMT2A 

in mesenchymal stem cells, resulting in preservation of their primitive states (Boeuf et 

al., 2009). 
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3.6: AML and LSC signatures are enriched at the extremes of the 

consolidated ranked list 

A GSEA analysis was performed using the total curated list of 3173 gene signatures 

available through MSigDB (supplemental file S6).  365 signatures were found to be 

significantly enriched (p < 0.05) at the top half of the list, while 227 signatures were 

significantly enriched at the bottom half of the list.  Among the gene signatures most 

highly enriched at the high ranks of the candidate list, several AML- and LSC-related 

groups were identified (Figure 20).  A list of 40 genes previously reported to hold high 

prognostic value in M4 and M5 FAB subtypes (Valk et al., 2004) mapped to 22 genes on 

the ranked list, all of which were enriched in the top half of the rankings (NES = 0.78, p < 

0.0001, FDR q < 0.0001, LE = 20/22).  Overall the Valk et al. study used prediction 

analysis of microarrays (PAM) and nearest shrunken centroid analysis to predict poor 

survival and event-free outcomes for patients with a combination of aberrations in these 

genes belonging to cluster 5 (Valk et al., 2010).  4 of these genes were leukocyte 

immunoglobulin-like receptor family members (LILRB1, LILRA1, LILRA6, and LILRB3; 

mean rank = 294.25).  Another highly-enriched gene signature contained 131/183 genes 

previously reported to be upregulated in NPM-positive AML by Verhaak at al. in 2005 

(NES = 0.597, p < 0.0001, FDR q < 0.049, LE = 75/131).   This leading edge also 

contained many leukocyte immunoglobulin-like receptor members such as LILRB1, 

LILRA3, LILRA1, and LILRA6 (mean rank = 199.5).  A list of genes found by Gentles et 

al. (2010) to be upregulated in AML LSCs over corresponding progenitor fractions was 

also enriched at the high ranks of the candidate list (NES = 0.516, p = 0.004, FDR q = 
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0.149, LE = 12/24).  These genes were obtained from a retrospective study of AML 

tumor microarray data (n = 1047; Gentles et al, 2010). 

 

Figure 20. Gene set enrichment analysis results for high- and low-ranked gene lists.  (Top): 

Enrichment results for curated lists with high enrichment scores at the high ranks of the consolidated list.  

Results chosen for visualization were selected from among the 119 gene sets significantly enriched at FDR 

< 25%.  (Bottom): Enrichment results for curated lists with low enrichment scores at the low ranks of the 

consolidated list.  Results chosen from visualization were selected from among the 92 gene sets 

significantly enriched at nominal p-values below 1%. 

On the bottom half of the gene list, a gene signature reported to contain members 

expressed at low levels in nasopharyngeal, breast, and liver tumors (Liu et al., 2008) was 
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found to be highly enriched for 46/79 of those members (NES = -0.556, p < 0.0001, FDR 

q = 0.216, LE = 26/46).  Another gene signature found by Naderi at al. (2007) found to 

contribute to poor survival outcomes when lowly expressed was found to be highly 

enriched at the bottom half of the candidate ranked list (NES = -0.501, p = 0.213, FDR q 

= 0.363, LE = 6/16).  16 from the 18 genes reported in this work could be mapped to the 

consolidated candidate list.  Lastly, a group of genes reported by Schlingemann et al. 

(2003) to have been downregulated during carcinogen-induced oncogenic transformation 

in mouse models was found to be enriched at the bottom half of the candidate list (NES = 

-0.509, p = 0.0059, FDR q = 0.347, LE = 7/17). 
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Chapter 4: Discussion 

4.1: Summary 

The task of narrowing down potential avenues of study in research is normally an 

arduous process, performed manually by extracting and visualizing small sections of 

experimental data using a variety of proprietary software options, addition to perusing the 

published literature by using internet search tools for each candidate.  To facilitate this 

process, an automated platform, called AiDA, was created with the intention of becoming 

an end-to-end solution covering the entire workflow from raw data analytics to 

systematic literature review.  This application will be powered by the T2F (text-to-

function) neural technology, which proved to be able to learn organically from a large 

database of paired text-function examples.  The chatbot interface was developed using the 

CVision open source library, which is provided to allow the user to ask more free-form 

questions that would be part of natural thought processes during lead generation.   

Using the T2F system connected to a series of ranked list consolidation algorithms, a 

concise group of candidate genes were identified for further investigation in the acute 

myeloid leukemia context.  The relatively condensed list of candidates, stratified by their 

ranks on a larger consolidated list, was manageable enough to be more thoroughly 

assessed using conventional bioinformatics tools.  The power of automated literature 

searches enabled rapid and concise therapeutics discovery on a scale not previously 

reported.  These tools offer transparency in the way they operate, as shown in the 
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multiple graphs and charts provided as evidence for empirical deep learning throughout 

this thesis. 

4.2: Critical analysis of therapeutic discoveries 

Use of the two-tier context recognition system comprising of a genetic context neural 

gate and a therapeutic context neural gate showed that a vast body of literature could be 

mined and filtered to present the investigator with a select few promising leads.  The 

lower accuracy of the therapeutic recognition gate (83.7%) compared to the genetic 

recognition gate (95.7%) could be offset by increasing the threshold value to 0.8/1.0.  In 

this way, only abstracts that very heavily activated the gate would be flagged as literature 

describing a therapeutic application.  This tuning result shows that, in downstream 

applications, the logic gate thresholds for both context recognizers may be experimented 

with for different effects on sensitivity and specificity.  The requirements for each 

investigator would likely be different, but it’s likely that a conservative search with high 

gate thresholds may be initiated first to find fast results.  Should results fail to appear, the 

gate thresholds may be lowered to display more results, until eventually all unfiltered 

results matching the raw query are presented. 

From 3.5, several promising therapeutic compounds were identified with recyclable 

potential in AML.  To highlight the background and progress of a select example, the 

pseudomonas exotoxin derivative, Anti-Tac(Fv)-PE38 (also known as immunotoxin 

LMB-2), was mentioned in a report by Kreitman and Pastan (1995) to have entered 

clinical trials for IL2RA-positive leukemia, lymphoma, and Hodgkin’s disease.  It was 

reported in several papers a few years later to have some non-specific cytotoxicity (Onda 
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et al., 1999, 2000; Tsutsumi et al., 2000), but overall demonstrated promising results in 

phase I clinical trials (Kreitman et al., 2000).  As of yet, the immunotoxin has not been 

investigated in applications specific to AML. 

 

(Tsutsumi et al., 2000) 

The above figure, taken from a paper by Tsutsumi et al. (2000) discusses methods for 

more site-specific administration of the immunotoxin, and applies polyethylene glycol 

(PEG) as a delivery vessel.  Kreitman and Pastan had reported that a single patient had 

developed cardiomyopathy during the course of phase I trials—perhaps for similar 

reasons the immunotoxin on its own hasn’t been overtly celebrated.  Despite this, clinical 

trials have been progressing, with the most recent reports about the compound being 

published in 2009 (Kreitman, 2009) and 2012 (Singh et al., 2012).  Kreitman had 
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reported that the immunotoxins were most successful after the failure of standard 

chemotherapy (Kreitman, 2009). 

The context recognition system discovered Levovirin reported in PMID 14635270, an 

inhibitor targeting CYP7B1, which is a gene candidate ranking 13th on the consolidated 

ranked list produced using the AiDA platform.  Levovirin had been previously reported 

as the L-enantiomer of Ribavirin, a common treatment for chronic hepatitis C (Fang et 

al., 2003).  While CYP7B1 is expressed mainly in the liver, it was reported to have been 

influenced unexpectedly by a Fanconi anaemia-associated gene, FANCC (Fanconi 

anaemia complementation group C) (Zanier et al., 2004).  The Fanconi anaemia (FA) 

condition is a hematological disorder that is defined by an aplastic anaemia, bone marrow 

failure, and pancytopenia (Joenje and Patel, 2001).  Many reports link FA and its related 

genetic pathways to enhanced likelihood of leukemia and potential contributions to 

leukemogenesis (Alter, 2014; Auerbach and Allen, 1991; Du et al., 2016; Rosenberg et 

al., 2003).  For this reason, and for the ranked list evidence supplied toward CYP7B1 

being a therapeutic target in AML, it could be recommended to investigate the gene’s 

involvement in AML and the potential therapeutic value of the Levovirin, and its 

enantiomer Ribavirin.  At the time of writing, CYP7B1 has not been explored as a 

specific target of therapeutics against AML. 

4.3: T2F challenges and future directions 

What the deep learning validation results ultimately showed was that the T2F system, and 

its context recognition derivative, were able to learn from text databases of varying size 

and sparsity and produce generalizable models that make sensible predictions about 
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unstructured text.  These, while not perfect, proved in the T2F case that many potential 

unseen user requests could be adequately responded to.  In the context recognition case, 

the models demonstrated that the vast embodiment of accumulated literature could be 

narrowed down to a manageable number of high-priority tractable leads.  The deep 

learning literature selection method requires refinement to bring the accuracy of the 

model up to par with the rigor of systematic review, but this work has shown that it may 

be possible, with enough layering of context recognition, that the process can at least be 

expediated by deep learning methods.   

The present learning model is adequate to support the claim that several human qualities 

such as unstructured text interpretation and context recognition can be partially 

automated and applied iteratively to analyze a large body of evidence.  It can be further 

improved by expanding the training sets to encompass greater representation in the total 

PubMed citation baseline.  Further metrics such as the false discovery rate would be 

desirable to supplement the reported “true positives,” however any permutative methods 

could take exorbitant amounts of time and hardware resources to demonstrate significant 

FDRs together with each independent search.  A new method will have to be 

implemented and integrated with this pipeline to provide users with confidence that the 

reported results occur above chance over several randomized trials.  

Like the context recognition suggestions, the accuracy of the T2F system can be 

improved by providing more training data to the learning model during the model fitting 

process.  Since the current model was only trained on 928 text-function pairs, it is likely 

that expansion of the training set to a few thousand pairs would result in a significant 
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increase in the representation of potential responses.  The accuracy and consistency of 

chatbots powered by T2F could provide more accurate responses to the more 

unstructured and unpredictable human text inputs that are likely to occur when users ask 

questions off the top of their head.  The T2F system generalizes remarkably well to 

sentences with similar order, similar meaning, but synonymous wording.  This is due to 

the discarding of word identity in favour of extracting generalized meaning that results 

from the use of a thesaurus.  Further generalizability is conferred by the use of linear 

convolutional pre-processing on the flattened embeddings, which forces the network to 

identify a global polynomial pattern associated with the values of every dimension of 

each embedding. 

To overcome the difficulty of manually curating thousands of text transcripts with a 

single person workforce, it may be possible to augment the data using previously reported 

NLP data augmentation methods (Bergmanis et al., 2017; Jia and Liang, 2016; 

Kobayashi, 2018).  Notably, data recombination postulated by Jia and Liang (2016) offers 

promise for better generalization to sentences of different order.  The challenge with 

regards to proper data recombination in NLP is the creation of new sentences that are 

reordered versions of their originals, but still retain the same meaning.  Unlike image 

data, where augmentation methods are abundant and in widespread use (Ding et al., 

2016; Han et al., 2018; Zhong et al., 2017), NLP data is much sparser and therefore the 

same data augmentation methods often discard too much data, or alter the original data to 

an extent that does not reflect the classification labels assigned to them.  A simple option 

to enhance the generalizability of the model with respect to sentence order is the removal 
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of the “order” metric from the embedding dimensions, however this runs the risk of 

negatively affecting validation accuracy on sentences where order is semantically 

pertinent (such as “I did do this” vs. “Did I do this”).  Lastly, it may be possible to apply 

generative adversarial networks (GAN) to simultaneously train the discriminative T2F 

system in addition to several text transcript generative models, which would ultimately 

result in a class-by-class augmentation of varying quality. 

While the core demands of AiDA’s T2F system would be for the carrying out of 

naturally-formatted user requests, there would be an expectation from many users that the 

chatbot have basic conversational capabilities.  In order to expand AiDA’s conversational 

capabilities, LSTM models may be implemented that are trained and validated on 

conversational response pairs such as those curated in the Cornell movie dialogs corpus 

(Danescu-Niculescu-Mizil and Lee, 2011) and the Searchqa dataset which includes 

question-answer pairs from encyclopedia-type sources such as Jeopardy! (Dunn et al., 

2017).  The core intention of the “non_functional” class of labels in the T2F dataset was 

to allow the bot to determine if the user’s request does not require a functional response.  

Should this be the case, the T2F system will defer the judgement to a conversational 

LSTM to provide an organically-formulated conversational response. 

4.4: Future directions for the AiDA platform 

In the latest release of AiDA (version 0.1.4, http://www.aifive.tech/personal.php), the 

mindmap tool for idea visualization was shown to be capable for basic biological 

pathway analysis by connecting it internally to Pathway Commons data (Cerami et al., 

2010).  Several features currently exist in the latest build that allow for simple pathway 
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analysis by asking AiDA to show genes on the mindmap.  Every gene shown on the 

mindmap is automatically connected to other genes on the visualizer by performing a 

lookup to Pathway Commons data.  Future work on this platform will involve expansions 

to the complexity of pathway analysis and visualization directed by the T2F system.  

Pathway analysis is currently a powerful method of identifying more nuanced 

determinants of disease that applies connectivity statistics to analyze networks of 

biological interactors.  Visually, it is a supplement to the literature review process that 

helps researchers gain a better sense of how their research foci interact with other genes, 

chemicals, and biological processes. 

If AiDA can be successfully completed as an end-to-end solution with the assistance of a 

development team in the future, there is reason to believe that the platform would have 

disruptive potential to the current research industry.  It would reduce the time taken for 

even the most basic investigative tasks from several minutes or hours to a couple seconds.  

It would keep track of how, where, and when ideas are being searched, and attempt to 

assist the user in connecting those ideas together using several powerful AI-enabled 

dashboard applications.  Should the accuracy of these deep learning models reach a 

human-like cognitive agility on specific tasks, we may learn to trust these automated 

tools as objective standards in the industry.  The end result would be a raising of the 

general expectations of evidence in decision-making such that one or more extensive 

SLRs would be required to initiate a project due to the newfound simplicity of 

performing them.  AiDA as a research tool will always remain freely accessible to its 

intended user base—the researcher—to assist in the generation of hypotheses of 
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increasingly profound impact.  There are typically fewer personal advantages to offering 

complex technologies to the public pro bono, but the primary directive is not losing sight 

of what initially drove human innovation: the desire to understand the world around us, 

often for no personal benefit other than innate curiosity.  As the AiDA chatbot solution 

continues to make algorithmic leaps and bounds using deep learning, over the last year to 

continue driving it forward as a powerful tool in evidence-based assisted research.   

4.5: Translation of discoveries 

The T2F system holds apparent translatability toward the development of effective, 

functional chatbots.  This is because it simultaneously acts as an automated testing 

method to ensure that a large number of user requests can be predictably responded to, in 

addition to providing generalizability to unforeseen user requests.  Often, modern chatbot 

applications fail in this regard, where user requests are funnelled through a subset of 

allowable responses in more primitive cases, and in more advanced cases fail to 

generalize to requests that require deep inference (for example, “I’m lost lol” should be 

responded to by asking the user if they would like a tutorial).  The lack of generalizability 

in many cases is hinged on the enormous variability in word order, synonyms, spelling, 

and grammar that can be applied in conversation to indicate the same meaning.  The T2F 

system drastically compresses this problem space by generalizing syntax through an 

expansive thesaurus with fast look-up, and an n-dimensional embedding system that can 

be standardized across training examples by linear convolution.  While it still struggles to 

generalize for word order like other modern deep learning NLP methods, previous 
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postulations in 4.3, if tested and implemented successfully, may assist in overcoming this 

obstacle. 

The ranked list algorithm, which served to standardize feature extraction across datasets 

of diverse formatting and methodology, has immediate applicability to multi-dataset 

hypothesis generation.  Currently, many NGS datasets are made publicly available at 

large cost to the donating institution(s).  These datasets, while expensive and produced 

through extensive collaborative momentum, often do not comprise of enough samples to 

validate statistical hypotheses about their population characteristics.  The ranked list 

algorithm provides a way to validate these hypotheses, made more generally about certain 

classes of samples, across many datasets.  The justification for this method lies in the 

exponentially-decreasing likelihood that the same feature’s prominence is due to chance 

as it repetitively appears in the extremes of many ranked lists.  The idea that statistical 

stability can be conferred to repeatedly extreme ranked list entries is not new, having 

previously been discussed for the purposes of aggregating ranked lists of genes 

(Boulesteix and Slawski, 2009; Kolde et al., 2012).  The claim that this work makes, 

which is perhaps different from the canonical approach to gene list analysis, is the 

aggregation of many ranked lists analyzed in different ways for the purposes of fulfilling 

a hypothesis that is easy for a user to articulate verbally, but difficult to articulate 

mathematically. 

Convolutional methods in NLP are presently poorly understood and have only recently 

been discussed in the literature (Britz, 2015; Kim, 2014; Zeng et al., 2014).  Technologies 

applied in this thesis, notably the collapsing of syntax and lexical information via a 
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thesaurus and the flattening of n-dimensional word embeddings and convolution of the 

resultant matrix, represent innovations in natural language processing that may be readily 

applied to enhance the performance of existing NLP software.  This work corroborates 

the findings by Zeng et al. (2014) that linear convolution can be applied to word 

embeddings to improve model classification performance.  Embedding generation 

through the use of semantic clustering tandem to extraction algorithms for innate 

characteristics of the text such as order index, plurality, and emphasis, removes the need 

for pre-trained word embedding vectors such as word2vec (Rong, 2014) and GloVe 

(Pennington et al., 2014). The specific decision to apply linear convolution, as opposed to 

planar convolution, was due to the spatial irrelevance of the order of concatenation of 

embeddings in the 2D matrix.  Linear embeddings reinforce learning of interdimensional 

characteristics within embeddings, as opposed to between embeddings, which enhances 

the generalizability of the model with regards to data sparsity and word representation. 

4.6: Conclusion 

Throughout the course of this thesis, a custom deep learning engine was implemented and 

validated for the purposes of carrying out user commands in intuitive ways and 

recognizing genetic and therapeutic contexts in the biomedical literature.  A ranked list 

method for consolidating multi-dataset feature extraction was implemented to answer 

multifactorial user hypotheses, and expediate the process of data analysis and lead 

generation.  Combined, the ranked list algorithms and deep learning engine were 

deployed in the form of the AiDA (Artificially-intelligent Desktop Assistant) platform, 
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which aims to transform the ways that research hypotheses are generated, investigated, 

and validated using collective evidence. 

In Chapter 2, a variety of original algorithms, modifications to existing algorithms, and 

data handling methods were described, in addition to general dataset, hardware, and 

software characteristics.  Much of the time invested in the completion of this thesis was 

placed in the development and automated testing of these algorithms.  In Chapter 3, the 

deep learning engine was put to the test on multiple benchmark datasets commonly used 

by the data science community to validate machine learning models, including Digit-

MNIST, Fashion-MNIST, and the CIFAR-10 set.  While these datasets comprised of 

images, the transferability of the network’s successes in these tasks became apparent 

when similar convolutional networks were applied in a new way to natural language 

processing.  These networks performed similarly well on NLP examples, generalizing 

particularly well in the case of genetic and therapeutic context recognition due to the 

training set sizes.  Ranked list algorithms were applied to generate leads for drug 

discovery in AML by searching for genes that were highly-expressed in patients with 

poor prognosis and in LSC+ samples, while simultaneously being low in normal 

hematopoietic tissue and primitive cell fractions.  The characteristics of these leads were 

investigated, revealing that AML mutational hotspots correlated in incidence with 

expression of high-ranking leads.  Furthermore, GSEA was performed to reveal that 

AML and LSC-related gene signatures were enriched at both extremes of the 

consolidated ranked list.  The genetic and therapeutic context models were then applied 
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to mine the literature for potential therapeutics targeting the leads generated by the ranked 

list method. 

Overall, the evidence presented was sufficient to support the claim that the research 

investigation process can be automated end-to-end by computational methods.   While the 

accuracy of the methods demonstrated will require improvement through continual tuning 

and training data curation, the generalizability and relatively high accuracy of NLP 

models show that it is in fact possible to automate lead generation to some extent.     
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Appendix 1: List of deep learning hyperparameters and 

defaults 

βiT Time-corrected bias on moment estimate of order i (Adam/Nadam) 0.9/0.999 

βi Bias correction on moment estimate of order i (Adam/Nadam) 0.9/0.999 

B Batch size 4 

η Learning rate 0.001 

ε Epsilon (denominator stabilizer) 10-8 

μ Signal gain 1.0 

m Momentum (in SGD + M) 0.9 

ψ Gradient noise 0.5 

ρ Gradient clipping 1.0 

p Dropout probability (per layer) 0.0 

θ Backpropagation loss threshold 0.05 

γ Weight decay 0.01 

ζ Cost-inertia decay 1.0 
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Appendix 2: Summary of deep learning results 

A2.1: Digit-MNIST 

MLP: 784, 128 (Range Sigmoid, p = 0.15), 10 (Softmax); η = 0.01, θ = 0.01, ψ = 0.5, γ = 

0.001, ρ = ±1, B = 4; Nadam optimizer 

Run Train Accuracy (%) Test Accuracy (%) 

1 98.5283 97.05 

2 98.5133 97.04 

3 98.51 97.02 

4 98.4833 97.15 

5 98.4783 97.18 

6 98.5117 97.13 

7 98.44 96.98 

8 98.52 97.05 

9 98.4717 97.14 

10 98.5 97.14 

 

Conv-net: 6@24x24 (ReLU; α = 0.15), 864, 128 (Range sigmoid, p = 0.15), 10 (Softmax) 

η = 0.01, θ = 0.01, ψ = 0.5, γ = 0.001, ρ = ±1, B = 4; Nadam optimizer 

Run Train Accuracy (%) Test Accuracy (%) 

1 99.5883 98.2 

2 99.91 98.34 

3 99.725 98.3 

4 99.2733 97.78 

5 99.235 97.77 

6 99.91 98.64 

7 99.2783 97.79 

8 99.685 98.28 

9 99.2283 97.76 

10 99.2483 98.07 
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A2.2: Fashion-MNIST 

MLP: 784, 128 (Range Sigmoid, p = 0.1), 10 (Softmax); η = 0.001, θ = 0.01, ψ = 0.5, γ = 

0.001, ρ = ±1, B = 4; Nadam optimizer 

Run Train Accuracy (%) Test Accuracy (%) 

1 92.3467 88.47 

2 92.3233 88.48 

3 92.205 88.62 

4 92.125 88.47 

5 92.12 88.75 

6 92.1183 88.75 

7 92.0017 88.38 

8 91.98 88.38 

9 92.1167 88.59 

10 91.9717 88.54 

 

Conv-net: 6@24x24 (ReLU; α = 0.1), 864, 128 (Range sigmoid, p = 0.1), 10 (Softmax); 

η = 0.001, θ = 0.01, ψ = 0.5, γ = 0.001, ρ = ±1, B = 4; Nadam optimizer 

Run Train Accuracy (%) Test Accuracy (%) 

1 95.045 89.83 

2 95.0883 89.9 

3 93.5583 89.3 

4 93.5667 89.3 

5 93.8667 89.84 

6 93.8633 89.82 

7 93.83 89.5 

8 93.835 89.49 

9 94.3133 90.3 

10 94.3067 90.26 
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A2.3: CIFAR-10 

Conv-net: 32@30x30 (ReLU; α = 0.1), 32@28x28 (ReLU, α = 0.1), Max-pooling 2x2, 

64@10x10 (ReLU, α = 0.3), 64@8x8 (ReLU, α = 0.3), 1024, 256 (Range sigmoid, p = 

0.05), 128 (Range sigmoid), 10 (Softmax); η = 0.001, θ = 0.01, ψ = 0.5, γ = 0.001, ρ = 

±1, B = 4; Nadam optimizer 

Run Train Accuracy (%) Test Accuracy (%) 

1 70.36 60.88 

2 69.912 60.75 

3 70.762 59.83 

4 71.306 59.71 

5 71.256 60.21 

6 71.404 60.39 

7 71.032 60.38 

8 71.282 60.51 

9 73.734 62.49 

10 72.872 61.98 

 

A2.4: Text-to-function (T2F) 

MLP: 1585, 256 (Range sigmoid), 196 (Range sigmoid), 10 (Softmax); η = 0.001, θ = 

0.05, ψ = 0.5, γ = 0.01, ρ = ±1, B = 4; Nadam optimizer 

Run Train Accuracy (%) Test Accuracy (%) 

1 99.6767 84.273 

2 99.7845 84.273 

3 99.7845 81.0089 

4 99.7845 80.1187 

5 99.6767 80.1187 

6 99.569 81.6024 

7 99.8922 79.2285 

8 99.6767 81.0089 

9 99.8922 81.0089 
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10 99.7845 81.8991 

11 99.569 82.1958 

12 99.7845 81.6024 

13 99.7845 84.5697 

14 99.569 84.8665 

15 99.6767 82.4926 

16 97.1983 77.7448 

17 99.7845 83.0861 

18 99.7845 81.8991 

19 99.7845 81.8991 

20 99.7845 81.8991 

21 93.319 78.9318 

22 96.5517 78.3383 

23 98.2759 83.3828 

24 97.9526 82.7893 

25 99.2457 83.9763 

 

Conv-net: 4@1x317 (ReLU, α = 0.1), 1268, 256 (Range sigmoid), 196 (Range sigmoid), 

10 (Softmax); η = 0.001, θ = 0.05, ψ = 0.5, γ = 0.01, ρ = ±1, B = 4; Nadam optimizer 

Run Train Accuracy (%) Test Accuracy (%) 

1 99.6767 82.7893 

2 99.7845 83.9763 

3 99.8922 83.6795 

4 99.8922 83.6795 

5 99.1379 78.0415 

6 98.9224 75.6677 

7 99.7845 83.0861 

8 99.7845 82.4926 

9 99.3534 81.8991 

10 99.4612 81.6024 

11 99.7845 83.6795 

12 99.7845 82.7893 

13 99.4612 78.635 

14 96.6595 77.7448 

15 99.7845 84.273 

16 99.569 83.6795 

17 99.6767 81.8991 
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18 99.6767 80.7122 

19 99.3534 81.8991 

20 99.6767 83.9763 

21 99.569 86.6469 

22 99.7845 84.273 

23 99.7845 84.273 

24 99.8922 83.0861 

25 99.8922 83.9763 

 

A2.5: Context Recognition 

Genetic recognition conv-net: 4@1x317 (ReLU, α = 0.15), 1268, 256 (Range sigmoid), 

196 (Range sigmoid), 10 (Softmax); η = 0.001, θ = 0.01, ψ = 0.5, γ = 0.01, ρ = ±1, B = 4; 

Nadam optimizer 

Run Train Accuracy (%) Test Accuracy (%) 

1 94.8 93.9389 

2 95.6714 94.35 

3 96.9476 95.7278 

4 95.6857 94.1167 

5 95.569 94.0722 

 

Therapeutic recognition conv-net: 4@1x317 (ReLU, α = 0.15), 1268, 256 (Range 

sigmoid), 196 (Range sigmoid), 10 (Softmax); η = 0.001, θ = 0.01, ψ = 0.5, γ = 0.01, ρ = 

±1, B = 4; Nadam optimizer 

Run Train Accuracy (%) Test Accuracy (%) 

1 86.3333 81.4667 

2 90.031 83.7222 

3 86.8095 81.6167 

4 86.0881 81.7056 

 


