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Abstract

High-intensity X-ray radiation through the human body can cause damage to cells,

increasing the chance of complications such as cancer. A possible solution is lowering

the dosage of radiation. In low dose CT (LDCT) images, fundamental structures are

still easily identifiable. However, noise and other additional artifacts are introduced.

Removing the visual effects of artifacts caused by lowering radiation dose has been an

active area of research in the last few years. Recently, deep learning approaches have

demonstrated impressive performance for LDCT denoising. In this thesis, we propose a

new machine learning-based approach for LDCT noise reduction that outperforms other

methods.

Deep Learning is based on the idea of stacking many layers of neurons together. Over

the past years, deep learning researchers have successfully optimized the performance

of neural networks by stacking more layers. With the growing availability of high-

performance GPUs as well as more massive datasets, deep learning technology has proven

very useful. However, deeper networks are more challenging to train, not because of their

computational cost, but due to the difficulty of propagating gradients through so many

layers.

Deeper neural networks are more complex to train. We present a residual framework

to ease the training of networks that are substantially deeper than the others. Residual

learning means each subsequent layer in a deep neural network is only responsible for,

fine-tuning the output from a previous layer, which is possible only by adding a learned

"residual" to the input. This method differs from a more traditional approach where

each layer had to generate the total desired output. By using residual learning in LDCT

denoising, we prevent degradation of training accuracy once traversing the network and,

increase the training pace.
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Another aspect of our work is using Generative Adversarial Network (GAN), which

is a framework for estimating generative models via an adversarial process. We simulta-

neously train two models a generative model G, that we are using for generating Normal

Dose CT (NDCT) and a discriminative model D that estimates the probability that a

sample came from the training data rather than G. GANs’ potential is enormous since

they can learn to mimic any distribution of data.

The novelty of our approach is in combining Residual learning and GAN. For training

a convolutional neural network (CNN), a large amount of data is needed. We address this

problem by using patch coding. Inspired by the idea of deep learning, we combine the

autoencoder, deconvolutional network, and skip connections into residual learning. One

motivation for skipping over the layers is to avoid the problem of gradient vanishing. Our

experiments show that our method outperforms recent works on LDCT image denoising

in terms of Peak SNR (PSNR), and SSIM.
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Chapter 1

Introduction

1.1 Introduction

The need for an X-ray imaging arises for diagnosing a bone fracture or occasionally

other forms of complication in the body. Similar to radio waves, X-rays are a form

of electromagnetic radiation but at a higher frequency. This translates into X-rays

conveying with higher energy enabling them to pass through human soft tissues and

internal organs due to their inability to absorb high energy radiation. On the other

hand, denser tissues such as bones absorbing the radiation. The difference in absorption

is utilized to form a picture of the imaged area. Although X-rays remain one of the most

traditional diagnostic imaging techniques, the high beam radiation through the human

body can cause damage to cells, increasing the chance of complications such as cancer.

Brenner et al. [3] provides a thorough study on the ascending number of CT scans, dose

amount, and the increase in the risk of cancer associated with X-ray type imaging.

Additionally, X-ray radiation is employed for generating Computed Tomography (CT)

scan, in which a series of X-ray images are taken from multiple angles of the tissue of

interest. CT scans provide a more detailed capture making them a suitable choice for

diagnosing a wider range of internal injuries. However, this also implies the higher risks
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involved with CT scan compared to plain X-ray due to longer exposure time to ionizing

radiation. According to [3], the risk involved with CT scans depends on various factors

including tube current and scanning time.

In recent years, there has been an increasing use of CT; according to [3], an average

of over 62 million CT scans are taken in the United States per year which is about 20

times more than what it was in 1980 and at least 4 million of this number was CT scans

taken from minor patients.

One of the approaches proposed to reduce the risk of CT imaging is lowering the

dosage of radiation. In low dose CT (LDCT) imaging, fundamental structures are still

easily identifiable. However, noise and additional artifacts are introduced to CT im-

ages [40] as a drawback. Several studies have been conducted to improve the quality

of LDCT images. One common technique in the literature is to denoise LDCT images.

This thesis aims at developing a deep neural network solution for denoising LDCT scans.

The following is how the rest of this chapter proceeds: an introduction to CT scan is

given, followed by elaborating on the risks involved with X-ray imaging; concluding the

chapter by description of challenges in denoising LDCT images and proposing a solution

for tackling them by deploying Convolutional Neural Network(CNN). Sections 1.4 and

1.5 include a brief description of the Neural Networks (NN), and more specifically CNN.

1.2 How CT-scan works

CT scan is a procedure leveraging X-ray radiation to create cross-sectional images that

are more thorough than conventional X-ray images. While conventional X-ray generators

use a fixed tube sending X-ray in only one direction, CT scanners use motorized X-ray

source that shoots narrow beams of X-ray as it rotates around the body. There are

digital X-ray detectors, located directly on opposite side of the X-ray source[42]. The

2
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patient lies down on the metal (aluminum or silver) tray and gets pushed through a

hoop in a wide annular apparatus, as shown in Figure 1.1. As an X-ray emitting source

rotates around the annulus as well as the patient’s body, the detectors capture the X-ray

on the opposite side of where it is projected, and transmit it to a computer for processing

purposes.

Figure 1.1: CT imaging
Image by: https://www.macmillan.org.uk/

1.2.1 Processing a CT scan

Each time the X-ray source completes one full rotation, the CT computer uses sophis-

ticated mathematical techniques to construct a 2D image slice of the patient’s organ.

Image slices can either be displayed individually or stacked together to generate a 3D

reconstruction of the organ. The algebraic procedure to describe what a slice consists of

is as follows:

3
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Figure 1.2 presents a simplified version of a body, each of its nine squares representing

a particular organ type. As shown in this figure, only a fraction of emitted X-ray

radiation travels through and is detected. In Figure 1.2, taking the first square on the

top left only 1/1000 of X-ray units are passed, representing a bone structure. Next

square represents a fluid type texture allowing 1/10. Finally, the last square relates to

a muscle tissue, passing 1/100 of units through.

Taking each of the top squares in figure 1.2 as A, B, and C in the described order,

we can define the dampening factor for each tissue type and identify the total X-ray

attenuation via the following equation:

A×B × C = 1
1000, 000 (1.1)

In order to find the exact dampening amount in the square, we have to project more

X-ray in every direction, including horizontally, vertically, and diagonally. Dampening

of X-rays can be expressed as a "line integral"; the sum of the absorbed amount along the

path of the beam. The challenge is to determine the patterns of tissue X-ray absorption

from the detected X-ray[13].

Finding the texture of each organ type (each square in the example given by figure

1.2) is achievable by number of equations. However, in ones’ body, millions of points

have to be identified, and the algebraic procedure tends to be computationally expensive

[14]. The current method of solving such equation, uses Radon’s method for finding

dampening amount I(x) at point x, as illustrated in figure 1.3. In mathematical terms:

I(x) = I0exp(−
∫
µdx) (1.2)

4
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Figure 1.2: An example to explain how the X-ray imaging works, gray
square represents bone texture, on its right blue square represents a fluid
structure and finally red square displays a muscle

In this equation, 1.2 I0 is intensity at x = 0 and µ is the measure of absorption.

Therefore, Equation 1.3 demonstrates the rate of attenuation with respect to distance:

dI

dx
= −µI (1.3)

So far, we assumed that the absorption coefficient µ is constant. We can generalize

the equation by varying the absorption coefficient as a function of distance x; i.e. for a

non-homogeneous body. Yielding into a more general case presented in Equation 1.4:

I(x) = I0exp(−
∫ x

0
µ(x)dx) (1.4)

If we consider the total absorptionM by a material bounded to an interval [a, b] with

0 ≤ a < b ≤ L, then:

M =
∫ b

a
µdx (1.5)

5
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Expanding this into two dimensions, a slightly different approach is taken. Given the

total amount of absorption for every cross-section through the body, we can construct

the absorption coefficient µ(x, y) as a function of the position. Johann Radon was the

first who showed this in 1917. To reconstruct the structure completely, using Figure 1.2

we need X-rays along every line through the body, which is hard to achieve. However,

we can come close to an exact picture by having a broad set of lines.

Any line L in the xy-plane can be specified by its perpendicular distance r from the

origin and the angle θ of the perpendicular. Then any point a on the line is given by

Equation 1.6 as follows with s varying along the line.

a(x, y) = (r cos θ − s sin θ, r sin θ + s cos θ) (1.6)

Figure 1.3: Illustration of Radon effect, a is an example point that we
are trying to measure its absorption and find its texture according to that

6
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If we consider the absorption of an X-ray beam along a line L, we must integrate

with respect to s. The result will depend on r and θ:

M(r, θ) =
∫
µ(r cos θ − s sin θ, r sin θ + s cos θ)ds (1.7)

The Radon transform is a function of the polar coordinates (r, θ). It is a linear

operation with respect to the function µ(x, y) being transformed. A graph of M(r, θ)

with r and θ on orthogonal cartesian axes is called a projection data or sinogram; which

depicts all the data from a 2D CT scan.

1.2.2 Risk Definition

Each X-ray procedure has a different level of risk associate depending on the type and

amount of radiation as well as the body part being exposed. Generally, CT is identified

as the most hazardous procedure among X-rays and more specifically abdominal CT,

puts the body in the most exposed state of radiation. According to statistics provided

by [3]and [17], the two most common organs requiring CT scans are head and abdomen.

Consequently, we are focusing on abdominal CT.

A major risk involved with general X-ray radiation is altering healthy body cells

into cancerous ones, while inducing immediate side effects such as vomiting, bleeding,

fainting, hair and skin loss.

A measure is needed to quantify the risk of exposure. Traditionally, the amount of

radiation one receives is measured in Sieverts (Sv), or Grays. One Gray is 1 joule of

radiation energy absorbed per kilogram; however the effective dose measures in Sieverts

(for X-ray radiation 1 mSv = 1 mGy)[38]. According to [3], every single person receives

an average 2 mSv from the background per year.

7
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It is worth mentioning that although organ dose is the ultimate desired quantity for

risk estimation, CT dose remains the closest measurable quantity mapping the X-ray

exposure risk.

1.3 Problem Description

A possible approach for decreasing the risks involved with CT is lowering the dosage of

radiation by reducing the X-ray tube current or shortening the exposure time[38]. It is

believed that exposure to lower dosage of radiation reduces the risk of health compli-

cations. In low dose CT (LDCT) images, organ structures are still easily identifiable.

However, noise and other additional artifacts are introduced to CT images [40] as a

drawback. A substantial amount of undergoing research is carried out in the field of

image denoising, and more specifically denoising medical images have drawn a lot of

attention recently. Some research works have already been implemented in this area to

solve the problem and reproduce images as close as possible to normal dose CT (NDCT)

images from LDCT.

Image Restoration (IR) is a fundamental problem in the field of image processing

involving the recovery of clean image x from its corrupted perception y as stated by the

following relation:

y = Hx+ z (1.8)

[53] where H is the degradation matrix, z is additive noise of standard deviation σ [53].

Depending on the matrix H the image restoration problem differs.

In the scope of this thesis, our image restoration challenge is of a denoising nature;

hence H is an identity matrix and the objective is to obtain an estimate of x denoted

by x̂ as the following:

8
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x̂ = argmax
x

logP (y|x) + logP (x) (1.9)

where logP (y|x) is log-likelihood of observation y, logP (x) gives us priori of x and it is

independent of y. Equation 1.9 can be expanded into the following equation:

x̂ = argmin
x

1
2‖y −Hx‖

2 + λφ(x) (1.10)

The above equation contains two terms, fidelity term, 1
2‖y −Hx‖

2, and regularization

term (or priori term), φ(x). Additionally, λ is a trade-off parameter. There are two

approached for solving Equation 1.10:

• Model-based optimization

• Learning methods

The main difference between model-based optimization method and discriminative

learning method is that, the former is flexible to handle various IR problems and solves

for the Equation 1.10, with computationally complex algorithms. However, the latter

method provides a solution in order to learn the function φ and requires training datasets

with certain degradation matrices to achieve that, making them limited to specialized

tasks. However, with new variable splitting techniques it is possible to handle fidelity

and regularization terms separately. More specifically, the latter is the only factor cor-

responding to our denoising subproblem[53]. The ultimate objective is to minimize the

cost function l(x̂, x) as denoted in Equation 1.11[53]:

min
φ

l(x̂, x) s.t x̂ = argmin
x

1
2‖y −Hx‖

2 + λφ(x; θ) (1.11)
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Therefore, we train a Convolutional Neural Network(CNN) as a denoiser and inte-

grate it into our model-based optimization method. To fully understand how a CNN

works, we will discuss the fundamentals of general Neural Networks (NN), in upcoming

subsection1.4 and followed by an introduction to CNN.

1.4 Introduction to Neural Networks

The word Neural Network (NN) is inspired by the term neuron, which refer to neural

processing units that are interconnected with one another. By leveraging weights and

biases, a neural network could mimic how the biological brain’s neurons work. In a basic

NN, neurons are arranged in three main layers including: input layer, hidden layer, and

output layer. Figure 1.4 shows a simplified model of a NN with three layers of input,

hidden, and output[23]. In this figure, X can be a matrix of multiple inputs, and Y can

be a matrix of multiple or single outputs. For simplicity purposes, only three weights

are shown in the image.

The hidden layers, which may contain one or multiple layers perform the complex

calculations. The procedures taking place within these layers may not be visible to end

users; unlike the input being fed in to the network and the network’s output as the end

result. Each layer consists of one or a number of nodes, which the computation takes

place in the following manner: a node linearly combines input with a set of coefficients,

the weights that either amplify or damper the input to that node by being multiplied to

and add a bias. A node receiving inputs from two or more nodes can determine which

input requires more attention and assign weights accordingly[23]. These input-weight

products are summed, then passed through a node’s so-called activation function. If the

signals pass through, the neuron has been “activated" as illustrated in figure 1.5.
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Figure 1.4: A simplify model of a neural network, consist of an input, a
hidden and an output layer. X shows the inputs and Y shows the outputs
also w is for weights

To commence the training procedure, the weights are usually initialized randomly.

The training carries on to the point where the parameters are capable of producing

accurate classification or prediction. A trained model is the collection of the learned

weights aiming to model a relationship that can produce a data structure [31].

The error is defined as the difference between the ground truth and what is estimated

through the model. The weights are adjusted with the objective of lowering the error.

The sum of the nodes get passed through a non-linear activation function e.g. sigmoid,

tanh, or ReLU in order to prevent increasing without a limit. We are discussing the

nature and purpose of activation functions further in section 1.5.2.

For adjusting the weights according to the error we use an optimization function,

gradient descent being one of the commonly used algorithms. The relationship between

network Error and each of those weights is a derivative, dE
dw , that measures the degree

to which a slight change in weight causes a slight change in the error.
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Figure 1.5: A hidden layer structure, including the input nodes, corre-
sponding weights and summation node following an activation function

1.5 Convolutional Neural Network

Convolutional Neural Networks (CNN) constitute a class of neural networks that expand

convolution in general matrix multiplication in at least one of their layers [18]. There

are three main part in a typical CNN layer:

• Performing several parallel convolutions

• Going through a non-linear activation called detector stage

• Applying a pooling function affecting the output layer[18]

The following subsections, a brief discussion of each procedure is given.
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1.5.1 Convolution

In CNN, the first argument to the convolution operation is called input and the second

one is a kernel or filter. The output can be referred to as a feature map. A multidi-

mensional array of data along with the kernel is often called a tensor. The following

equation is called cross-correlation function for a two-dimension convolution:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (1.12)

In this equation, I is the input to the network, K is a 2-D kernel/filter, i and j are

the horizonal and vertical positions of the element in 2-D space. To better understand

the equation, Figure 1.6 demonstrates the convolutional procedure. In this example,

the filter size is 2× 2, and our step size/pace is considered as 1, which means after the

operation takes place on the first window, the second one only slides by one step [18].

Each convolutional layer includes several numbers of filters that are defined by a specific

dimension and convolves the input image. Therefore an output is given when a given

input is convolved with a particular filter, i.e. the output is a matrix of pixels consisted

of the input pixels’ convolution.

1.5.2 Activation functions

In artificial NN, activation functions play an important role in converting an input of a

neuron to an output for being passed to the next neuron. The output value of a neuron

can be anything ranging −∞ to +∞. For a neuron to determine to either fire or dismiss

a calculated output is to leverage an activation function.

Depending on the application, three different classes of activation function exist: step,

linear, and nonlinear. The most basic function of all is known to be the step function,
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Figure 1.6: Yellow window shows the first input matrix that is convolved
with the blue filter and the output of convolution is the green window

which is a threshold-based function. If the output value is above a specific threshold,

the neuron is declared as activated; otherwise, it is not.

Where an activation proportional to the input is desired a linear activation function

is applied. This provides a range of activation outputs, as opposed to a binary activation

in a step type activation function. The above-mentioned function can be mapped as a

linear function brought below:

A = cx (1.13)

with input x, and a constant derivative c; i.e. the gradient is independent of x and it

is a constant descent. If there is an error in prediction, the adjustments made through

backpropagation are constant and not depending on the changes in input. Backpropa-

gation is a procedure following a gradient descent approach that exploits the chain rule.

Also, no matter how many layers we have, if all are linear, the final activation function

of the last layer is nothing but just a linear function of the input of the first layer.

The third class of activation functions, are the non-linear functions. In case of a
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significantly complex mapping of inputs to output/s, non-linear activation functions

may be deployed. Hence by using a nonlinear activation, we can generate nonlinear

mappings from inputs to outputs, yet assuring its differentiability.

Consequently, we can use backpropagation optimization strategy, which includes

propagating backwards in the network to compute gradients of error (or loss) concerning

the given weights. We then accordingly optimize weights using gradient descend or any

other optimization technique to reduce error.

In the following sections, there is a brief overview of some of the widely used activation

functions in the scope of CNN.

Sigmoid

The most commonly used activation function is the sigmoid function. The equation

below shows how a sigmoid function is defined:

f(x) = 1
1 + e−x

(1.14)

As can be depicted from the above equation, sigmoid function gives a 0 as x approaches

−∞ and outputs a 1 as it approaches +∞. However, there exists a major disadvantage

involved with sigmoid activation functions called the vanishing gradient problem. When

a neuron activation saturates close to 0 or 1, the gradient at the regions is very close to

0 during backpropagation. The local gradient affects the entire procedure; so if the local

gradient is minimal, it will slowly vanish the gradient and almost a zero signal will flow

through the neuron. The other disadvantage of sigmoid function is that the output is

not zero centered, i.e. if the output value of the function is positive, the gradient of the

weights come out as either all positive or all negative; hence forcing the gradient updates
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fluctuate more aggressively in either directions resulting in a more complex optimization

process.

Figure 1.7: The most commonly used activation functions for CNN

Tanh

The Hyperbolic tangent function (Tanh) is another common activation function, defines

as the following[18]:

f(x) = 2
1 + e−2x − 1 (1.15)

This function is zero-centered, therefore creates a smoother optimization process in com-

parison with sigmoid function. However, similar to sigmoid, hyperbolic tangent function

also suffers from the vanishing gradient problem. [30]
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ReLU

ReLU (Rectified Linear Unit) activation function became a popular choice in deep learn-

ing. ReLU was mainly deployed to solve the vanishing gradient problem mentioned above

[1]. The following describes the functionality of ReLU:

f(x) =


0 for x < 0

x for x ≥ 0
(1.16)

As long as input value is greater than zero, regardless of how large it is, the gradient

of the activation function will be 1. This solves the vanishing gradient problem present

in the sigmoid activation function.

In the case of classification, the ReLU is only used in hidden layers, and the output

layer usually applies a softmax function. Softmax provides a probability for different

classes, and a linear function for regression since the signal goes through unchanged.

A disadvantage to ReLU is that during the training, some units would be fragile and

die. It means a significant gradient flowing through a ReLU neuron could cause a weight

update that blocks the activation on any other data point. Therefore the gradient flowing

through a neuron will always be equal to zero from that point onwards. [30]

LReLU

Leaky ReLU is a modification of ReLU which replaces the zero part of the domain in

[−∞, 0] by a slow slope, as we can see in Figure 1.7 and formula below:

f(x) =


x for x ≥ 0

ax for otherwise

fora ≤ 1 (1.17)
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LReLU was introduced to fix the problem in ReLU. Instead of the function outputting

a zero when x is smaller than zero a small negative slope is used. The motivation for

using LReLU instead of ReLU is that constant zero gradients can also result in slow

learning, similar to a saturated neuron with a sigmoid activation function. Furthermore,

some of the neurons may not even activate. However, the preceding effect sacrifices the

zero-sparsity and according to the authors in [35], may obtain worse results than when

the neurons are entirely deactivated. In figure 1.7, sigmoid, Tanh, ReLU and LReLU are

shown respectively. We are using LReLU in our work as our activation function, since

it has demonstrated the best performance out of all the above mentioned functions.

1.5.3 Pooling layer

A pooling function replaces the output of the network with a statistical summary of the

nearby outputs. For example, max-pooling which is extremely useful in image restoration

problems gives us the maximum output within the neighborhood.

We elaborate max pooling functionality by the aid of Figure 1.8. Figure 1.8 is a 4×4

matrix which is converted to a 2 × 2 matrix after max pooling. This process which is

called downsampling and has been commonly used in discrete time systems[39]. After

a signal conversion from continuous to discrete domain, the effective sampling rate can

be reduced via max-pooling. Max-pooling leads to faster convergence rate by selecting

superior invariant features which improves generalization performance[39].

Max pooling is an operation that is typically added to CNN’s following the individ-

ual convolutional layers. When we integrate a model with max pooling, it reduces the

dimensionality of images by reducing the number of pixels in the output from the previ-

ous convolutional layer. The output of the max-pooling layer is given by the maximum

activation over non-overlapping rectangular regions.
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Figure 1.8: In each window of 2 × 2 the bigest data is chosen as the
representetive of that window, in The first window colored yellow the
highest number is 6, so 6 represents that window

1.5.4 Data types

The data that we use in CNN usually have several channels, and each channel is an

observation of a variant quantity. The table below shows some examples of different

data types [18].

Single-channel Multi-channel

1-D Audio waveform Skeleton animation data

2-D Audio data that has been preprocessed with a Fouriet Transform Color image data

3-D Volumetric data, Medical imaging such as CT scans Color video data

Table 1.1: Example of different data types

The data that we are working with is 3-D multi-channel type data, i.e. that is a

collection of 2-D image data. Voxel is a data type tailored for our application which is

described further in the following subsection.
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Voxel

In 3-D raster graphics, the volume is divided into evenly spaced rows and columns,

covering the three different directions (up-down, left-right, in-out). In other words, 3-D

space can be partitioned into cubes, also known as voxels (volume elements).

A voxel is a unit of information, same as a pixel for 2-D; voxel defines a point in

three-dimensional space. In a voxel reperesentation each 3-D point consist of a position,

color, and density. With this information and 3-D rendering software, a two-dimensional

view from various angles of an image can be obtained and processed by a computer[49].

For X-ray, CT, and Magnetic Resonance Imaging (MRI) scans, the widely used data

type is a voxel.

1.6 Contribution

The contribution of this work is examining three main approaches towards denoising

abdominal LDCT, as summarized in the following:

• Residual Encoder Decoder Convolutional Neural Network (RED-CNN) [24]

• Generative Adversarial Network (GAN)

• Our proposed framework, which is a combination of the latter two approaches with

modifications adopted to best tailor it for the application of our interest

In the following chapter there is a review of previous works on denoising natural and

medical images, followed by Chapter 3 and 4 which provide descriptions of how state

of art techniques are implemented to solve the given problem with a discussion of their

achieved results. In chapter 5 we go through our proposed approach which is a novel

alteration and combination of Residual Encoder-Decoder Convolutional Neural Network
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(RED-CNN) and Generative Adversarial Network (GAN), calling it RES-GAN. The last

chapter concludes by a discussion and overview of this thesis and its future works.
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Chapter 2

Literature Review

In Chapter 1 we briefly discussed the problem of denoising LDCT images and the method

that we deploy to solve it, which involves using a deep neural network. In this chapter, we

review the works of other researchers on this problem. To better understand the concept

of image denoising, first we revisit some previous works on natural image denoising in

section 2.1, and following that in section 2.2 a review on medical image denoising, which

is mostly based on the former denoising methods.

The two main artifacts in images are blur and noise. Blur is innate to image acqui-

sition systems because digital images have a finite number of samples and must respect

the Shannon-Nyquist sampling conditions[48]. The meaning of noise is unwanted signal;

unwanted electrical fluctuations are also called noise. A pixel value is light intensity

measurement, usually made by Charge Coupled Device (CCD) or CMOS sensors con-

nected to a light focusing system. Each detainer of the image sensor is a square, and

the incoming photons are being counted. If the light source stays constant, the number

of photons received by each pixel stays around its average as a result of the central limit

theorem. Furthermore, if each captor is not cooled enough, it generates spurious heat

photons. The effect is called "dark noise" [4].

Image denoising is a common issue in various imaging systems. Therefore, there
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are diverse existing methods for solving it. The important property of a good image

denoising approach is the ability to completely remove noise as far as possible while it

preserve the edges [43].

2.1 Natural Image Denosing

In natural image denoising, Zhang et al. [52] compare several conventional methods

including Block Matching and 3-D filtering (BM3D) [12], Last Setting for Learned Si-

multaneous Sparse Coding (LSSC) [36], Nonlocally Centralized Sparse Representation

(NCSR) [15] and, Weighted Nuclear Norm Minimization (WNNM) [20] as well as CNN

based methods. Among those, BM3D shows the best performance in term of quanti-

tative measurement, and between CNN based methods, residual learning demonstrates

the superior performance over full image learning with CNN. Some of these commonly

used denoising methods are summarized as follow:

1. BM3D: This method is based on sparse representation in the transform domain.

In a procedure called collaborative filtering similar 2-D images blocks are grouped

into 3-D data arrays [12]. There are three steps for this method, including the

3-D transformation of a group, shrinkage of the transform spectrum, and inversing

3-D transformation. Applying these three steps progressively results in a 3-D

estimation of jointly grouped image blocks.

2. LSSC: This method proposes sparse coding as a framework for combining non-local

means and sparse coding approaches [36].

3. NCSR : Dong et al. [15] present a model for image restoration, which defines the

difference between the sparse code of the noisy image and unknown original image
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as sparse coding noise. The difference should be minimized and used to enhance

the performance of sparsity-based image restoration.

4. WNNM: The standard nuclear norm minimization regularizes each singular value

equally to pursue the convexity of a low rank matrix factorization problem. Gu

et al. [20] proposed a method that singular values assigned as weights and when

the weights are in a non-increasing order, WNNM is still convex and presented

the optimal analytical solution. On the other hand, when the weights are in

an arbitrary order, they suggest an iterative algorithm to solve them. Finally,

when the weights are in a non-decreasing order, they proved that the iterative

algorithm can result in an analytical fixed point solution, which can be efficiently

computed. They claim that their algorithm outperforms many state-of-the-art

denoising algorithms such as BM3D in terms of both quantitative measure and

visual perception quality.

To the best of our knowledge BM3D outperforms most of the existing methods for

Additive White Gaussian Noise (AWGN) denoising, and if not all, it is still remains the

most popular method for natural image denoising. However, its performance decreases

as the noise level increases in images since it is harder to find a proper match for reference

blocks in the presence of highly corrupted pixel values [22].

We discussed the advantages of the above methods nonetheless, they all suffer from

the following drawbacks [52]:

• They mostly contain a complex optimization problem in the testing stage, therefore

they are time-consuming.

• They are non-convex in general and involve manually parameter choosing.

Machine learning-based methods come in the picture to overcome quoted drawbacks.
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In general, machine learning methods are divided into two main categories, including

supervised and unsupervised learning. In supervised learning, a model has conferred

with an input feature x and labeled pairs y. They can take several forms, depending on

the learning task. In a classification setting, y is generally a scalar, while in regression,

it could be a vector of continuous variables. Supervised training typically aggregates to

find model parameters that best predict the data based on a loss function [34]. On the

other hand, unsupervised learning deals with data-set without labels, and it is trained

to find a pattern such as principal component analysis and clustering methods. An

advantage to the unsupervised method is adapting to perform under many different loss

functions [34]. Using machine leaning for image denoising benefits from the following

advantages:

1. Enhancing efficiency and flexibility to recognize image characteristics

2. Being able to handle blind denoising with unknown noise level[52]

3. Eliminating the need for a pipeline of specialized and hand-crafted methods by

being able to learn from images

Later in Chapter 3 we explain the details of residual convolution and deconvolution

layers in a network. However, Mao, Shen, and Yang [37] were the first who use this

method in their work. They used convolutional layers for feature extraction and decon-

volutional layers for recovering the image detail. The convolutional layers deploy the

network to capture the image details and removing the noise. They proposed to link the

convolutional and deconvolutional layers with skip-layer connections. Skip connections

pass every convolutional layers to their mirrored deconvolutional ones. Adopting skip-

layer connections provides benefits, such as ability of a signal to be back-propagated

directly to lower layers. It also helps with gradient vanishing problem and makes the

training of the deep networks more prosperous. Another aspect of using skip-layer is that
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skip connections move image details from convolutional layers to deconvolutional ones,

make recovering the original images much easier. All in all result in gaining restoration

performance.

Zhang et al. [52] separate noise from a noisy image, using feed forward Denoising

Convolutional Neural Network (DnCNN). Instead of outputting the denoised image x̂

from Equation 1.10 directly, DnCNN is designed to predict v̂, where v is the differ-

ence between ground truth High-Resolution (HR) image and bicubic up-sampling of

Low-Resolution (LR) image. Consequently, the problem becomes a Single Image Super

Resolution (SISR) problem. However, in SISR the noise v is different from AWGN. They

also claim that their method solves all the image denoising problems including, SISR,

JPEG deblocking, and Gaussian denoising.

2.2 Medical Image Denoising

There are three leading solutions for filtering the noises caused by lowering the projecting

X-ray, including sinogram filtering before reconstruction, iterative reconstruction, and

image post-processing after restoration. In this section, we are going to review each of

these methods.

2.2.1 Sinogram filtering

Sinogram filtering works with either raw data or log-transformed data before image re-

construction, such as Filtered Back Projection(FBP). An advantage of using this method

is that the noise characteristics are well known. Wang et al. [45] discussed the fact that

LDCT sinogram data have been shown to be signal-dependent with an analytical rela-

tionship between the sample mean and sample variance. They have used this dependency
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in order to propose a novel filtering method. The method they proposed is not based

on nonlinear filters’ statistics. Their system shows drastically better results in terms of

noise suppression and structure preservation compared to the previous works on sino-

gram filtering.

According to [45], there are two main edge-preserving filtering methods; Anisotropic

diffusion filtering and Non-Linear Gaussian filtering Chain (NLGC). In the former ap-

proach, edges are detected in multiscale space, and the diffusion strength is controlled

by gradient image intensity. This method is popular in medical imaging, while the draw-

back is that it does not provide image dependency guidance for selecting an optimum

gradient magnitude. Therefore, lots of works have been done to overcome this limitation.

In the latter method, NLGC, there are some advantages including, none critical choice

of parameters and, being faster than robust statistic estimation smoothing. Moreover,

three to five filters is enough to separate the random noise from the structure of an

image. The contribution of works before [45] is changing the formula for finding a noise

level estimation value. Their proposed method is useful for noise reduction compared to

previous edge-preserving noise smoothing methods. Methods before [45] are not optimal

choices for LDCT noisy sinogram since they can not remove the streak artifacts in the

LDCT image.

There are some drawbacks to sinogram filtering method, including scarcity of raw

data; most of the time, it is hard to have access to raw data. Moreover, the sinogram fil-

tering methods often suffer from spatial resolution loss when edges are not well preserved

[10].
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2.2.2 Iteration reconstruction

For any analytical reconstruction algorithm, like FBP the measurement process and

the projection data are given by continuous functions [16]. The iterative reconstruction

method is a combination of statistical properties of data in the sinogram domain and

information in the image domain.

The emerging of computers resulted in using a variety of iterative reconstruction al-

gorithms and their application for CT imaging. The iterative reconstruction implemen-

tation reduces the CT image noise that drives to improving the image quality, compared

to those using FBP reconstructions.

Work proposed by Zhang et al. [16] make use of iterative reconstruction in which

they have access to both raw data and CT images. Their method has been proved to be

a powerful tool for noise reduction. These types of methodology generally has resulted

in superior performance in comparison to sinogram filtering.

Using a Total Variation (TV) as a regularization term is the most common term for

disposing of the noise. The drawback to TV is causing smoothness edges and structures,

called blocky effect, which can have decisive clinical value. Zhang et al. [54] establish

a new TV method called fractional order for defeating the blocky effect. Their method

achieve better results than other TV methods on detail and contrast preservation. They

compute characteristics of each pixel with a local variance, which is a statistical variable

defined as local variance and introduced into the computation of the fractional order.

We can not deny that sinogram filtering and iteration reconstruction are based on the

processing of raw data. Having access to raw-data is not always possible, and working

with their structure is time demanding. That is where post-processing methods, which

only based on image processing were introduced.
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2.2.3 Post-processing after reconstruction

Earlier we mentioned that a considerable disadvantage to sinogram filtering and iterative

reconstruction methods is the scarcity of raw data. The advantage of post-processing

methods over the other two is ability to perform without having access to raw-data.

Post-processing of images with noise reduction filters can decrease noise in LDCT

images. A method made in [27] using six different filters results in an outstanding noise

reduction methodology in LDCT images. Their method eliminates appearance of the

noise without perceptible loss of definition of anatomic structures. The fundamental

processing steps of noise reduction in their work is presented in Figure 2.1.

Figure 2.1: A picture of the fundamental processing steps of noise re-
duction in [27]
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According to Figure 2.1, they are using gradient analysis methods to separate the

image into structured and nonstructured regions. A threshold parameter controls the

segmentation process. The nonstructured regions are filtered with a low-pass filter while

the structured regions are directionally filtered with a smoothing filter operating parallel

to the edges with an enhancing filter operating perpendicular to the edges. A blending

parameter regulate the recombination of the structured and nonstructured segments.

Majority of state-of-art approaches in the field of LDCT image denoising, deploy Con-

volutional Neural Networks (CNN), which have demonstrated promising performance as

a result of their capability of learning high-level noise characteristics.

Chen et al. [8] provide an extensive survey on several frameworks involving denois-

ing, comparing the performance of noise dependence methods such as median filtering,

Gaussian filtering, anisotropic diffusion, etc. which are designed for a particular noise

type. On the other hand, approaches based on machine learning tend to provide a gen-

eral solution to any noise model. ML methods are capable of learning more complicated

noise features, mainly because they can be exposed to a considerable amount of training

samples. According to their work [8] Sparse Representation(SR) is popular for image

processing. The main idea of SR is to extract patches of an image with a pre-trained

dictionary. The dictionary can be divided into two groups, including analytic dictionar-

ies such as Discrete Cosine Transfrom (DCT) wavelet, Fast Fourier Transform (FFT),

etc. and learned dictionaries which conserve application if they have proper training

samples.

Burger, Schuler, and Harmeling [5] show that CNN tends to have better quantitive

and perceptual results compared to the non-learning based method such as BM3D devel-

oped by [12] if the capacity of ML is chosen large enough. Large in terms of the number

of hidden layers and the patch size to contain adequate information.
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Residual deep learning is another class of approach to implement LDCT image denois-

ing. In [10] they are using a combination of the auto encoder, deconvolutional network,

and shortcut connections. Their proposed method helps to achieve outstanding perfor-

mance in low-dose CT image denoising. To define the problem Chen et al. [10] use an

FBP reconstruction from LD scan and starting to work with reconstructed CT image,

adopting the fact that deep learning based methods are independent of the statistical

distribution of image noise level. Works before [10], have used CNN, which is suitable

for image restoration, but as a result of multiple down-sampling, some image details

can be removed. However, a residual network inspired by the work of [37], where auto-

encoder and CNN are merged, solved the problem. Instead of using fully-connected

layers for encoding and decoding, Mao, Shen, and Yang [37] used both convolutional

and deconvolutional layers. The other change they made to the network is removing the

Rectified Linear Units (ReLU) layers before summation and adding shortcuts to improve

the learning process.

In medical image denoising, methods based on CNN, transfer learning [44] and Gen-

erative Adversarial Networks (GANs) are starting to be methods of interest. According

to [44], when solving the problem with small training data-set, using transfer learning

is so efficient. Transfer learning definition is using a pre-trained network as a feature

extractor and fine tuning that pre-trained network on our desirable data-set.

GANs were first introduced by Goodfellow [19] primarily to secure networks against

adversarial attacks. However, GAN’s functionality has been expanded to other applica-

tions, including image restoration. The general GAN structure consists of two networks;

Generator and Discriminator. The role of the generative network is to produce fake data,

while the discriminator is deployed to distinguish real data from fake. An architecture

of GAN is shown in Figure 2.2. By training the latter, two networks simultaneously, can

form a generative model which closely maps scenarios from the real world [19].

31

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/


Masters of Applied science in Electrical Engineering– Paria Kargar Samani;
McMaster University– Department of Electrical and Computer Engineering

Wolterink et al. [50] achieve exceptional performance, despite the misalignment of

LDCT and NDCT. However, the drawback introduced by approaches based on GANs

includes the complexity involved with the training of the two counterparts of these

networks. They use three different loss componenets for training GAN networks, only

voxel-wise loss, voxel-wise plus adversarial loss and finally, using only adversarial loss.

Previous methods [9], [28], [29] minimize the per-voxel squared error between ground

truth NDCT and LDCT. Minimizing the squared error results in smoothed images that

lack the structure of an NDCT image. These smoothed images are the reason why they

conclude that voxel-wise regression alone in noise reduction is inadequate.

Figure 2.2: Architecture of a GAN

Consequently, they proposed training a generator CNN along with an adversarial

discriminator CNN as their network. The performance of discriminator is a loss term for

optimizing the generator, and results in getting more realistic image estimations from

the generator.

They proposed two ways for comparing images generated by the generator and the

ground truth NDCT. The first one is minimizing the voxel-wise error between generated

CT and NDCT. The second one is a discriminator loss which is trained simultaneously to

differentiate between normal and low dose CT. If the discriminator can identify NDCT
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easily, the generator has to improve its production. Equation below shows the problem:

ILD = IND +N (2.1)

In which ILD is a patch of low-dose image and IND is corresponding patch of NDCT

image, using as the reference for training. N is the noise added to NDCT. This equation

is exactly the same as Equation 1.8.

In [50] all layers use leaky rectified linear activation function (LReLUs) except last

layer, for stability purpose. Loss components which affect generator are, first squared

error between G(ILD) and IND, second the ability of discriminator to identify generated

images. A binary cross-entropy measures the second one. G(ILD) is the output of the

generator network with ILD as input. They optimize generator in their work in three

ways:

1. Voxel-wise loss between G(ILD) and IND

2. Voxel-wise loss plus discriminator feedback

3. Only discriminator feedback

Two first proposes need spatial alignment between NDCT and LDCT, but the third

one doesn’t need alignment.

Wolterink et al. [50] achieve exceptional performance, despite the misalignment of

LDCT and NDCT. However, the drawback introduced by approaches based on GANs

includes the complexity involved with the training of the two counterparts of these

networks.

In our work we have used both GANs and Residual CNN which both give acceptable

results among the state-of-the-art methods, in Chapter 3 we discuss the residual learning
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methods, and in Chapter 4 discuss and show results of GAN’s method. In Chapter 5 we

have our proposed method and the results of running tests.
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Chapter 3

Residual Learning Approach

3.1 Introduction to Residual Learning

In this chapter, we discuss an eminent image denoising technique, known as residual

deep learning. In a neural network with the network depth increasing, accuracy may get

compromised due to network saturation. Residual learning approach aims to address

the potential performance degradation caused by increasing the network depth. Deeper

networks generally tend to have a smoother training process with residual mapping as

opposed to original mapping.

Stacking multiple dense convolution layers, does not necessarily increase the learning

rate. Although techniques such as employing more suited activation functions such

as ReLU might help, the problem may still remain. Inspired by the work done by

[24], we use a concept called skip connections which involves jumping over a number of

layers. This technique allows us to increase the number of layers without hesitation. To

summarize, two advantages are introduced as a result of leveraging this method [24]:

• Preventing degradation of training accuracy once traversing deeper into the net-

work [24].
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• Increasing the training pace.

Earlier in section 2.2.3, we discussed some recent work developed on residual learning.

In the following section inspired by the work of [11], we define and remodel the denoising

of LDCT problem with the use of residual neural networks.

3.1.1 Problem Description

Let Y ∈ Rm×n and X ∈ Rm×n denote an LDCT image and its corresponding NDCT

counterpart, respectively. The following procedure aims at establishing a function, F ,

that maps Y to X:

F (Y ) = X (3.1)

The simplest form of mapping Y to X would be addition of a noise term, Z ∈ Rm×n, as

shown below:

Y = X + Z (3.2)

The objective in residual learning approach is to learn the noise (residual) maps rather

than the actual NDCT images. The obtained noise, Z, can then be subtracted from

LDCT image Y to produce the NDCT denoised version X. In Figure 3.1 a typical layer

of a residual network is shown in which R(Y ) ≈ Z is subtracted from Y to produce

F (Y ). This procedure constitutes Residual Learning of CNN. The input to the network

is still a patch of LDCT, Y , and the output is F (Y ), a close estimate of NDCT patch,

X.

For calculating R(Y ), we implement a network with ten layers, including five convolu-

tional and five deconvolutional symmetric layers for feature extraction and reconstruction
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Figure 3.1: A structure of a Residual NN, the weighted layers are for
learning the type of residual mapping: F (Y ) = Y −R(Y )

of image details, respectively. After a preliminary analysis of various activation functions

discussed in 1.5.2, LReLU activation function [41] is deployed for each layer.

3.2 Network Architecture

The architecture we are adopting in this portion of our implementations is a form of

an autoencoding scheme. Traditionally auto-encoding is considered to be a data com-

pression algorithm, for specific applications, i.e., it can only compress data similar to

what it has been trained with. Although the autoencoder approach was first introduced

for unsupervised learning, it is also sufficient for image restoration purposes, including

image denoising.

What follows in the upcoming subsections is a discussion of the fundamental segments

of the autoencoder design executed in the scope of this chapter which include: patch

coding, feature extraction, structure recovery, and skip connection.

3.2.1 Patch Coding

Image denoising schemes are implemented in mainly two classes of: pixel-based image

filtering and patch-based image filtering. In the former approach, any processing is done

at the pixel level and the similarity of each pixel with all its neighbouring pixels within
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a given window is calculated. The left box in figure 3.2 represents a pixel-based method.

However with the patch-based denoising, the noisy image is divided into blocks and the

proximity function is now calculated between patches. The box on the right in figure

3.2, shows a patch-based search within a certain window size and similar/close patches

to the reference patch of our interest are circled.

Lack of sufficient labelled training data has always been a problem in the medical

image domain. In field of medical image restoration, patch coding is commonly used in

order to increase the number of samples. In [10], a patch coding technique is proposed

Figure 3.2: The left box respresents a pixel-based is a N × N size
window with a reference pixel in the center, and neighboring pixels are
the 8 pixels sharing a boundary with it, representing pixel-based method;
Right window of the same size, shows patch coding method, where a
reference patch and similar patches are shown respectively

in which the patches are overlapping, and subsequently, perceptual differences of local

regions are detected. In our work, we extract fixed-size samples which correspond to
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patches from LDCT images and their corresponding NDCT counterparts. In our net-

work, we extract patches from the training image with fixed slide size of 64 × 64, and

the result is shown in section 3.3.

3.2.2 Feature Extraction

Feature extraction procedure includes derivation of features that best describe the rele-

vant information contained in a pattern in order to increase the feasibility of its following

classification process. In terms of feature extraction, the extraction of suitable features

is always a topic of concern. It is often crucial to discriminate between the relevant

and irrelevant features. In image processing, feature extraction is a particular form of

dimensionality reduction. The main goal of feature extraction is to obtain the most

relevant information from the original data and represent that information in a lower

dimensionality space [33].

Features of an image can be extracted by its content: either in form of color, texture,

shape, position, dominant edges of image items or regions. To extract local features,

traditional methods for example calculate the first and second-order derivative of the

image patch. The approach is similar to filtering the image with high-pass filters. Deep

learning-based methods automatically learn these filters from training data. In other

words, the patches from NDCT images are our labeled training dataset that network

tries to learn features from. In this network, we deploy fully-connected convolutional

layers for feature extraction, consisting of 5 layers to suppress image noise and artifacts.

In Chapter 1, we discussed the pooling layer and its advantages, but the major drawback

in using pooling layer is discarding important structural details [10]. Therefore, it is

removed from the portion of our implementation.
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To map image patches into a feature space, we use stacked encoders with Equation

3.3 [46]:

Fl = LReLU(Wl ∗ Fl−1 + bl) (3.3)

In Equation 3.3, Wl and bl denote the convolutional filter and the bias of the lth layer,

consecutively. Fl demonstrate the output feature map and F0 is the original LDCT

with fixed block size. LReLU is a non-linear mapping, using for activation function

as previously discussed in section 1.5.2. The following points reiterate the motivation

behind using LReLU as activation function:

• The greatest advantage of using a LReLU or ReLU is indeed non-saturation of its

gradient, which greatly accelerates the convergence of stochastic gradient descent

compared to the sigmoid or tanh functions.

• Compared to tanh and sigmoid neurons that involve expensive operations, the

ReLU can be implemented by simply thresholding a matrix of activations at zero.

3.2.3 Structure Recovery

In this step of our work, we review the details of deconvolving the features extraction

step, for reconstructing the denoised image. Removing pooling layer from convolutional

layers helps retaining some important structures, but we still lose some crucial details

after a series of convolutional layers. To overcome this problem, we use deconvolutional

layers for recovery of structural details [10, 37]. For deconvolutional layers Equation 3.4

can be used to describe the procedure, with Wl′ and bl′ denoting weights and biases of

deconvolutional layer respectively.
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Dl = LReLU(Wl
′⊗Dl−1 + bl

′) (3.4)

There is the need to ensure that convolutional and deconvolutional layers match exactly

in terms of numbers as well as filter size.

3.2.4 Skip Connection

As the network gets deeper, the gradient vanishing problem tends to affect our network

more, hence compromise the training procedure. The use of LReLU activation function

was a measure to avoid this problem. Additionally as demonstrated by the work done by

[10, 37], we introduce the skip connection technique to our network. The skip connection

technique involves jumping some layers in the neural network, and feeding the output

of one layer to another layer without undergoing any processing.

Usually, some information is captured in an initial layer and is required for recon-

struction in a following layer. If we do not use the skip connection architecture, there

would be a risk of losing information. Consequently, a piece of information that we have

in the first layers can be fed explicitly to the later layers using this method. The following

summarizes the benefits we are gaining by leveraging the skip connection shceme:

• Being able to pass image details forwardly and recovering clean image

• Helping pass the gradient backwardly, resulting in finding better local loss function

minimum
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3.2.5 Data-set

The training and test data-set we use is the data-set presented within a coding challenge

held in 2016, known as “NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge”.

The data-set consists of contrast-enhanced abdominal CT examination taken from 10

patients. In this data-set, both normal-dose and quarter dose CT fan-beam reconstruc-

tion counterparts are included. A method proposed by Chen et al. and [7] was used to

decode the sinogram data into images. We are using the produced images to construct

our data-set. Table 3.1 summarized our data-set in terms of patient ID, the number

of slices for each CT, and normal/routine-dose and low/quarter-dose tube current in

milliampere. Each slice of CT consists of 512× 512 pixels.

Patient ID Number of slices ND tube current(mA) LD tube current(mA)
L067 310 234.1 59.2
L096 500 327.6 82.9
L109 254 322.3 79.2
L143 418 416.9 105.5
L192 370 431.6 109.2
L286 300 328.9 82.2
L291 450 322.7 81.7
L310 340 300.0 73.7
L333 400 348.7 88.2
L506 300 277.7 70.2

Table 3.1: Data set

3.3 Experimental Result

In this section we discuss a brief overview of widely used image evaluation techniques.

We evaluate the performance of our implementation using residual learning method on

different combinations of training and test data-set, while varying the size of patches.

In our experiments, we consider both patch size 64 × 64 and 55 × 55. However, patch
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size of 64×64 yielded a better performance in terms of image qualitative measurements.

Therefore, only the results for 64× 64 patches are presented.

3.3.1 Image Evaluation

Image quality evaluation methods are mainly categorized into objective and subjective

methods. Subjective methods are based on human opinion and are conducted with often

no need to the reference. On the other hand, objective methods are based on comparisons

using explicit numerical criteria [25]. Due to high cost of subjective methods, we require

accurate objective metrics for making comparisons.

Objective methods are classified into three types:

1. Full-reference: most existing approaches are known to be full-reference. In this

category, the original image is available as a reference for the impaired one.

2. No-reference or blind: the reference image is not available.

3. Reduced-reference: some attributes of the reference image is available.

In this work, there exists the luxury of access to Full Dose CT images. Therefore,

as our objective evaluation method, we may use full-reference quality metrics. In this

subsection, a number of full-reference metrics are described which are potentially suitable

for our work. The simplest and most used full-reference quality measurement is Mean

Squared Error (MSE) [47]. For a refernce image f , and a test image g, both size M ×N

we define MSE as follow:

MSE = 1
MN

M−1∑
i=0

N−1∑
j=0

[f(i, j)− g(i, j)]2 (3.5)
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And based on MSE, Peak to Signal Noise Ratio (PSNR) is:

PSNR = 10 log10
MAXI

2

MSE
(3.6)

WhereMAXI is maximum possible pixel value of the image. The common used equation

for PSNR is:

PSNR = 20 log10( MAXI√
MSE

) (3.7)

This equation shows that if MSE reaches 0, then the PSNR approaches to ∞, meaning

higher PSNR corresponds to higher image quality [25].

Another famous full-reference quality metric is Structural Similarity Index Method

(SSIM). SSIM is designed by modeling any image distortion as a combination of three

factors including, loss of correlation, luminance distortion and contrast distortion. It is

defined as:

SSIM = l × c× s (3.8)

Where each of l, c, s are luminance comparison function, contrast comparison function

and, structure comparison function respectively. The luminance comparison function

measures the closeness of the two images define as:

l(f, g) = 2µfµg + C1
µ2
fµ

2
g + C1

(3.9)

In this equation µf and µg are mean luminance of images f and g. The l(f, g) only equals

to one if µf = µg. Second factor which measures the closeness of contrast between image

f and g is:

c(f, g) = 2σfσg + C2
σ2
fσ

2
g + C2

(3.10)
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The last one which is structure comparison function, measures the correlation coefficient

between the two images f and g with covariance σfσg between f and, g.

s(f, g) = σfg + C3
σfσg + C3

(3.11)

The positive constants C1 C2 and C3 are used to avoid a null denominator. The positive

value of SSIM is between 0, 1 and 1 is for when images f and g are exactly the same

[25]. Further information of how to measure µ and σ can be found in [25].

Our evaluation approaches to compare our method with previous works in this area

are PSNR and SSIM. In Chapter 4, we define another evaluation method, which is the

closest to a subjective method, i.e., human perception.

3.3.2 Training and Test

In the learning of the mapping from LDCT to NDCT needs to estimate the weights

of the convolutional and deconvolutional filters are determined. This is achieved by

minimizing the MSE between the output of the network and the ground truth. We

randomly extracted pairs of image patches from all of our CT training data-set images

of all patients in 3.1 except the one we wanted to test with. We used cross-validation.

Cross-validation is a resampling procedure used to evaluate machine learning models

on a limited data sample. The procedure has a single parameter called k that refers

to the number of groups. The process is often called k-fold cross-validation when a

specific value for k is chosen for our data-set. We have the abdominal CT of 10 patients,

therefore, k = 10.

Cross-validation is popular since it is simple to understand. Another reason is that

it generally results in a less biased or less optimistic estimate of the model’s ability than

other methods, such as a simple train/test split [26].
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LDCT RED-CNN [10] Proposed Residual CNN
PSNR 34.3094 39.1959 40.0227
SSIM 0.8276 0.9339 0.9473

Table 3.2: PSNR and SSIM of LDCT, RED-CNN [10], and our proposed
residual learning

The general steps of cross-validation in our work are as follow:

1. Shuffle the data-set randomly.

2. Split the data-set into 10 groups.

3. For each unique group, we take a group as a hold out or test data-set and we take

the remaining groups as a training data-set.

4. Fit our model residual learning on the training set and evaluate it on the test set.

5. Keep the evaluation score, which is PSNR and SSIM and discard the model.

6. Repeat steps 3 to 5 on a different set.

7. Using evaluation scores to summarize the capability of the model.

The quantitative results for the image data-set using cross-validation are shown in

table 3.2. As can be seen from the table our implementation achieves PSNR and SSIM

values that are slightly better than the one represented in [10]. Overall, our residual

CNN is successful in generating NDCT from LDCT.

We implemented and trained our network using Adam optimizer with learning rate of

10−5. the base learning rate for all layers are the same. The residual CNN is initialized to

0 for all biases and LReLU is used for activation function. Table 3.3 shows the quantity

and other details of this network in particular.
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Parameters in the proposed network
Training environment Specification
Patch size 64× 64
Initializer Random Gaussian distribution (0, 0.01)
Learning rate 10−5

Number of iteration 2000
Optimizer Adam
Loss function MSE

Table 3.3: Hyper-parameters for Residual learning network

Figure 3.3 shows the loss function of our proposed network for one of the training-

test samples. In essence, the loss function graph represents how much a certain quantity

of difference between an estimator F (Y ) in Equation 3.1 and actual value X will be

penalized by the model. The plot shows that the training process converged well. The

plot for loss is smooth after 600 iteration, and the loss function approaches zero.

Figure 3.3: Loss function which is MSE, approaching zero after 600
iterations and settliing

In Figure 3.4, a slice of abdominal CT in quarter-dose, final output, and full-dose/ground

truth is shown from top to bottom, respectively. We can visually observe that Result

of our proposed residual network is less fuzzy than the quarter dose, and we cannot

perceptual tell the difference between NDCT and Result of our network. By all means,

our network is successful in producing a denoised CT image from LDCT one.

47

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece/


Masters of Applied science in Electrical Engineering– Paria Kargar Samani;
McMaster University– Department of Electrical and Computer Engineering

Figure 3.4: From top to bottom, Quarter-Dose/LDCT, Full
Dose/NDCT and Result which is output of proposed residual network;
All three images are from a same slice of L067 patient’s abdominal CT
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Chapter 4

GAN approach

In this chapter, we discuss another approach towards denoising LDCT images, called

Generative Adversarial Network (GAN). We reviewed some previous works on GANs in

Chapter 2. First, we discuss the detailed practice of GANs, and then we elaborate on

our novel proposed network called Wasserstein Generative Adversarial Network (WGAN)

with detail. In the end, we discuss our proposed approach and the results of evaluations.

4.1 Generative Adversarial Network

Goodfellow et al. [19] were the first who proposed GANs in 2014. GAN is a class of

machine learning systems that has attracted attention recently. One of the outstanding

merits of GANs is that they generate data that is similar to real data, which results

in having multiple applications in the real world. They can generate images, text,

audio, and video that is indistinguishable from real data. Images generated by GANs

have applications in marketing, e-commerce, games, advertisements, and many other

industries. Moreover, they have shown promising results for LDCT image denoising in

terms of both quantitative measurement and visual perception.
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As we raised earlier in 2.2.3, Generative Adversarial Networks consist of two models,

Generator and Discriminator. The generator produces synthetic data and the discrimi-

nator, acting as a critic, tries to discover if the received data is either a sample of fake

or real data [19].

We train both networks in alternating steps and lock them into a fierce competi-

tion to improve themselves. Eventually, the discriminator identifies the tiny difference

between the real and the generated data. Then the generator creates images that the

discriminator cannot segregate them from real data. By training the discriminator and

the generator networks simultaneously, the generator network eventually converges and

is capable of producing a model similar to the ground truth; NDCT.

GANs learn the internal representations of data. As mentioned earlier, GANs can

learn messy and complicated distributions of data, which can be helpful for many ma-

chine learning problems. Also, after the training step, we end up having a discriminator

and a generator. The discriminator network plays a classifier role which its task is

classifying the objects. The main disadvantages to GANs are, being hard to train and

time-consuming. The function these networks try to optimize is a loss function that

essentially has no closed-form, unlike standard loss functions such as log-loss or squared

error. Thus, optimizing this loss function is very hard and requires several trial-and-error

regarding the network structure and training protocol.

In LDCT denoising, we use GAN to reconstruct a normal dose CT with generator

network. In the following section, we discuss how we utilized GAN in order to outperform

the state-of-the-art LDCT image denoising methods.
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4.1.1 GAN In LDCT Image Denoising

The input to the generator network, are LDCT images and we use NDCT ground truth

images for training both generator and discriminator. Now we have a double feedback

loop. The discriminator is in the loop with NDCT images, and the generator is in

another loop with the discriminator. We have to hold the generator constant while we

train the discriminator and vice versa.

Each of the networks should be trained against a static adversary, and both networks

must have a similar skill level. For example, if the discriminator is far better than the

generator, then it will return values close to 1. In other words it can discriminate real

and fake data with a probability close to 1. However, if it is the other way around and

the generator is better, then it will frequently apply weaknesses in the discriminator

that leads to a large number of false negatives. During the training discriminator gets

both NDCT and LDCT as inputs and determines whether the input is real or not, by

calculating the probability of the input image being real.

Loss component for our discriminator is an adversarial goal to differentiate LDCT and

NDCT correctly. The whole point of having a discriminator is, if we have two NDCT

images with same PSNR and SSIM, the one we have produced with using a GAN is

visually better than the one that is only used a CNN or any deep learning methods.

The reason behind this is that we yet do not have quality measurements comparable to

human vision. To summarize, the steps a GAN takes in our work are:

• First the generator takes an LDCT image and generate an image in next level.

• Generated image is then fed into the discriminator alongside a stream of images

taken from the ground-truth NDCT image.
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• The discriminator takes in both real and fake images and returns probabilities,

values between 0 and 1, where 1 representing a prediction of authenticity and 0

representing image being synthetic.

• The generator error and discriminator error both are used for training generator.

When the models are both multilayer perceptrons, the adversarial modeling is simpler.

According to [19], the generator essentially defines probability distribution pg over data

x and pz(z) is input noise variable; G(z; θg) , D(x; θd) represents mappings of generator

and discriminator to data space, respectively. We often define GAN’s training as a

min-max game which G wants to minimize V while D wants to maximize it [19]:

min
G
max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (4.1)

Gnereative and discriminative networks learned jointly by the alternating gradient

descent. In GAN the generator model’s parameters is fixed and a single iteration of

gradient descent is performed on the discriminator using the ground truth images. Then

they switch sides; set the discriminator and train the generator for another single iter-

ation. Both networks are trained in alternating steps until they reach the point that is

satisfying, for example, a quantitative image measurement.

4.1.2 Our WGAN Implementation

Insted of cost function defined in 4.1, and inspired by work of Yang et al. [51], we use

Wasserstein distance estimation to compare data distributions and training the GAN.

In section 4.1.3, we discuss the reason behind using Wasserestein distance. Instead of

using a discriminator to classify or predict the probability of generated images as being
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real or fake, the WGAN changes or replaces the discriminator model with a critic that

scores the realness or fakeness of a given image.

Based on Equation 4.1 the training of our proposed WGAN network would be to

solve:

min
G
max
D

V (D,G) = A+B + C (4.2)

A = −Ex[D(x)] (4.3)

B = Ey[D(G(y))] (4.4)

C = λEx̂[(‖ 5x̂ D(x̂)‖2 − 1)2] (4.5)

In Equation 4.2 terms A + B is Wasserestein distance estimation, and C is gradient

penalty term for network regularization. V (D,G) is adversarial loss. x is the NDCT

(ground truth), and y is the LDCT, and x̂ is uniformly sampled along straight lines

connecting pairs of generated NDCT and ground truth NDCT images. Also, λ is a

weighting parameter. Compared to original GAN 4.1, WGAN removes log functions.

Specifically D and, G are trained alternatively by fixing one and updating the other.

Inspired by work of [51] we are also using a pre-trained network called VGG-19 as an-

other term in our cost function. A pre-trained model, is a model that has been previously

trained on a dataset and contains the weights and biases that represent the features of

whichever dataset it was trained on. VGG-19 is a convolutional neural network that is

trained on more than a million images from the ImageNet [6] database. Further in this

chapter we explain the reasons behind using both Wasserestein distance and VGG-19

in our overall cost function. Therefore, there is a loss component called VGG loss, F
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added to our cost function and define as follows:

F = E(x,y)[
1

whd
‖V GG(G(y))− V GG(x)‖22] (4.6)

Where w, h, d, are the width, height, and depth of the feature space. Therefore the new

network training problem is to solve:

min
G
max
D

LWGAN (D,G) = A+B + C + λ1F (4.7)

We defined A, B, C, F in Equation 4.3 to 4.5. λ1 is a weighting parameter for

controling the trade-off between adversarial loss and VGG loss.

The WGAN architecture for both training and, test phase is shown in Figure 4.1. In

this figure, LDCT, or y is the input of the generator and in the output we have G(y), we

send this G(y) to both VGG and discriminator and they both gives us a loss component;

M refers to discriminator loss, and N refers to VGG loss.

To summarize GAN network and WGAN network are different in the following as-

pects:

• The loss function; using Wasserestein distance in WGAN instead of MSE

• Adding a new pre-trained network, called VGG and use it for computing perceptual

loss

• Compared to the original GAN, WGAN removes the log function in the losses and

also drops the last sigmoid layer in the implementation of the discriminator [21]

We are going to discuss the changes and their advantages over previous works, but

first we need to discuss a number of loss functions. In the following section we review

Wasserestein distance and its influence on our network.
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Figure 4.1: Training phase uses three networks to train the generator,
but in test mode only generator is used and all of their networks details
are shown in each corresponding frame

4.1.3 Wasserestein Distance

Most of the works in CT denoising domain, use Mean Squared Error, as their error

between denoised CT image and the ground truth. Using MSE helps improving PSNR
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but GANs specially WGANs tend to have better perceptual results. The perceptual loss

stifle noise by comparing the perceptual features of a denoised output with ground truth

in an established feature space. The GAN however, focuses more on drifting the data

noise distribution from strong to weak. In the process of learning generative models, we

assume that in data in hand comes from unknown distribution Pr. The purpose of using

Wasserestein distance is to learn a distribution Pθ that approximates Pr, in which θ is

distribution parameter[2]. In other words, the Wasserstein distance is the minimum cost

of transporting mass in converting the data distribution Pθ to the data distribution Pr

There are two methods for learning Pθ:

• Learn Pθ directly, where Pθ is some differentiable function.

Pθ(x) ≥ 0,
∫
x
Pθ(x)dx = 1 (4.8)

We optimize Pθ through Maximum Likelihood Estimation (MLE). MLE objective

function MLE(θ, x) in which data x independent and identically distributed for

unknown population m is to find:

MLE(θ;x) = max
θ∈<d

1
m

m∑
i=1

logPθ(x(i)) (4.9)

MLE estimation Pθ is equivalent to minimizing the Kullback–Leibler (KL) distance

between Pθ and, Pr is defined as:

DKL(P ‖ Q) =
∫
−∞

∞
P (x) log(P (x)

Q(x)) (4.10)

This equation is KL-divergence between two continuous distribution P and Q.

• Learn a function gθ, able to convert an existing distribution z into Pθ where z is
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often a simple distribution such as, uniform or Gaussian distribution.

Pθ = gθ(z) (4.11)

We can use both methods 4.8 and 4.11 for learning Pθ, however, the latter method

is better because of the following reasons:

1. In Equation 4.10 if Q(x) = 0 where P (x) > 0 then the KL-divergence goes to +∞

and it is not good for MLE.

2. Learning a gθ(z) with a known distribution z, given a trained gθ is very easy.

Training gθ demands computing difference between the distributions. There are mis-

cellaneous methods for computing distance between two continuous distribution Pr and

Pg including:

• Total Variation (TV) :

δ(Pr, Pg) = sup
A
|Pr(A)− Pg(A)| (4.12)

• The KL divergence, mentioned in 4.10.

• Jenson-Shannon (JS) divergence:

JS(Pr, Pg) = 1
2DKL(Pr ‖ Pm) + 1

2DKL(Pg ‖ Pm) (4.13)

where m = Pr
2 + Pg

2
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• Earth Mover (EM)/Wasserestein distance:

W (Pr, Pg) = inf
γ∈

∏
(Pr,Pg)

E(x,y)[‖x− y‖] (4.14)

There exist sequences of distribution that do not converge under JS, KL, reverse KL

or TV but do converge under EM distanced. It is shown in [21] that the Wasserestein

distance defined in 4.14 is equivalent to A+B term in Equation 4.7.

4.1.4 VGG19

The ImageNet project is a large visual database designed for use in visual object recog-

nition software research. The ImageNet project runs an annual software contest, the Im-

ageNet Large Scale Visual Recognition Challenge (ILSVRC), where software programs

compete to correctly classify and detect objects and scenes [32].

AlexNet came out in 2012 and was a revolutionary advancement; it improved on

traditional Convolutional Neural Networks (CNNs) and became one of the best models

for image classification until VGG came out. While previous derivatives of AlexNet

focused on smaller window sizes and strides in the first convolutional layer, VGG ad-

dresses another very important aspect of CNNs which is depth. VGG19 is an innovative

object-recognition model that supports up to 19 layers. Built as a deep CNN, VGG19

also outperforms baselines on many tasks and datasets outside of ImageNet. VGG19 is

still one of the most used image-recognition architectures [6]. We use VGG to estimate

perceptual loss between the NDCT images generated by the generator network and the

ground truth NDCT images.
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LDCT GAN WGAN [51] Our Proposed WGAN method
PSNR 34.3094 37.2451 39.0300 38.2227
SSIM 0.8276 0.8967 0.9251 0.9126

Table 4.1: PSNR and SSIM of LDCT, GAN, WGAN [51] and our pro-
posed WGAN method

4.2 Result

In this section we show results of the tests on our WGAN network. Similar to what we

discussed in Chapter 3, we are using 10-time cross validation and Table 4.1 is the mean

performance evaluation of these 10 time of training and testing the network.

Using VGG transfers knowledge of human perception that is embeded in VGG net-

work to CT image quality evaluation [51]. The performance of using GAN alone is not

acceptable, since it only maps the data distribution from LDCT to NDCT but does not

guarantee the image content correspondence.

Figure 4.2, and 4.3 shows generator and discriminator loss. As we can see in Figure

4.3 we do not really know when to stop the training as there is no proper evaluation

metric in GAN’s training, and it is a drawback to this method. However, after 2000

iteration we observed that the generator is just fluctuating around a number so close to

zero, therefore, we used 2000 ieteration as our training’s end point. The plot of generator

loss shows that the model has converged and has reasonable loss on this data-set.

For an example of one of the pieces of training with L298 as our validation file in

Figure 4.4 a slice of abdominal CT in quarter-dose, NDCT, and Result/final output

of our proposed WGAN network is presented from top to bottom, respectively. We

can visually observe that the result of our proposed WGAN network is less fuzzy than

the quarter dose. Moreover, we cannot perceptually tell the difference between NDCT

and results of our network. Our proposed WGAN recovers more fine subtle details and

captures more anatomical information.
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Figure 4.2: Loss function of generator shown for 1000 iterations

Figure 4.3: Loss function of discriminator shown for 1000 iteration
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Figure 4.4: From top to bottom, Quarter-Dose/LDCT, Full
Dose/NDCT and Result which is output of proposed residual network;
All three are from a same slice of L298 patient’s abdominal CT
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Chapter 5

RES-GAN approach

Earlier in Chapter 3 and, Chapter 4, we discussed two recent state-of-art learning-based

methods on LDCT image denoising: Residual learning and Generative Adversarial Net-

work. Inspired by the works of [19] and [50], we propose a new method of low-dose

CT denoising. GAN has traditionally demonstrated superior performance in terms of

correlation with the human visual system. Although it has not yield better results in

terms of quality measurements such as PSNR and SSIM, no one can deny visual superi-

ority of GAN networks. On the other hand, Residual learning has shown an outstanding

outcome in terms of quality metrics. Therefore combining these two networks, is capable

of producing CT images numerically and visually similar to NDCT.

In a typical CNN, multiple downsampling can cause loss of valuable information in

the image while passing through the network layers. To avoid this loss of image details,

we used a residual CNN for our generator network. By combining GAN and residual

CNN, we achieve outstanding results in LDCT denoising as will be presented later in

the results section. The contributions of our proposed network are listed as follow:

• In general we are using a network consist of generator and discriminator, but for

testing phase we put discriminator aside and use our generator alone to produce
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images akin to normal dose, similar to what we have done for WGAN network in

chapter 4.

• We use very deep residual network architecture consist of symmetric convolutional

and deconvolutional layers for our generator.

• We add skip connections, with the same motivation in 3.2.4, between corresponding

convolutional and deconvolutional layers.

Figure 5.1 shows the overall architecture of our approach for noise reduction of low-

dose CT, called RES-GAN. As can be seen, our approach utilizes a generator and a critic

box containing a pre-trained network VGG-19, and a discriminator network referred to as

a Generative Adversarial network. Generally, Generative Adversarial Networks consist of

two networks; Generator and Discriminator. Together they model the high-dimensional

distribution of the data. The generator produces synthetic data and the discriminator,

acting as an expert, tries to discover if the received data is either a sample of artificial

or real data [19]. Here we are adding this VGG network as a feature extractor and using

it as a new loss component, called VGG loss to our loss function.

5.1 Residual Generator

In Figure 5.1 in our proposed method, we use residual learning for our generative net-

work. This network has ten layers, including five convolutional, and five deconvolutional

layers. We removed pooling operation because denoising, unlike object recognition, is

a low-level problem and does not need high-level feature extractor. Moreover, by using

pooling layers image details that are essential for the denoising process can be elimi-

nated [37]. We have 96 filters, size 3 × 3, and the last layer is size 1 × 1. Comparing

results of using different sizes of filters, we empirically found 3 × 3 the most suited for
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Figure 5.1: Overview of the proposed Architecture called RES-GAN for
noise reduction of low-dose CT. The Generator consist of a RED-CNN
with five convolutional and five deconvolutional layers using regression to
determine the Normal-Dose and The critic box including discriminator
and VGG-19 tries to characterize LDCT images from real NDCT

our generator network. To avoid boundary artifacts, we do not use any padding, which

means the network is stride 1. Moreover, in Figure 5.1 A is the output image generated

by our Res Generator. B is the discriminator feedback that we send to the generator to

update its weights, and C is our final result for when we are testing the network, only

using the generator and producing an NDCT image.

To avoid gradient vanishing problem, we also use skip connections between each con-

volutional layer with its corresponding deconvolutional one. We mentioned this earlier

in Section 3.2.4. We set our patch size to 64× 64, since it gave us better result in both

residual network and GAN. We need to have the same kernel size for both encoder and
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decoder [11], which in our case is 3×3 as we mentioned earlier to ensure the matching of

network’s input and output. After encoding the patches and extracting features, we need

to recover image details by using deconvolutional layers. The error of the generator is

computed using the generator, the discriminator, and the perceptual loss (using VGG19

pre-trained network). We are using Equation 4.7 to solve the minmax problem of this

RES-GAN network

Every time that generator receives a feedback error, it changes the cost function and

updates the values of each layer until the error is less than our set point. When the

training job is complete, the work of discriminator is done too. At this time, we divide

networks and use the only generator for producing NDCT.

5.2 Critic Box

Critic box consists of a discriminator and a VGG pre-trained network. The discriminator

gets both NDCT and LDCT as input and determines whether it is real or not, meaning

the probability of it being real. Convolutional layers organized in three blocks and each

block contains two layers without stride and one layer with a stride of 2. We use LReLUs

for activation function and batch normalization. Loss component for discriminator is an

adversarial goal to differentiate LDCT and NDCT correctly.

The whole point of having a discriminator is that when we produce two images; one

with use of a discriminator and the other with only a CNN-based method; both having

similar PSNR and SSIM. The former is visually better than the latter. The reason

behind it is that we yet do not have quality measurements comparable to human vision.

After encoding the patches and extracting features, we need to recover image details

by using deconvloutional layers. After we are done using discriminator for training the

generator, we do not need the discriminator anymore.
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Training environment Specification
Patch size 64× 64
Initializer Random Gaussian distribution (0, 0.01)
Learning rate 10−6

Number of iteration 2000
Optimizer Adam
Loss function of G MSE
Loss function of D EM distance

Table 5.1: Hyper-parameters for training RES-GAN

VGG-19 is a pre-trained network that we are using for feature extraction and compare

denoised output against the ground truth in terms of extracted features. We discussed

VGG-19 with detail in Section 4.1.4.

5.3 Result

In this step of our work, we empirically use the best hyperparameters that we gained

from testing both networks of Chapter 3 and Chapter 4, and utilize them to train our

proposed RES-GAN network. Table 5.1 shows the details of our network training set.

To evaluate our proposed network we trained and tested our network ten times with

cross-validation, changing the training and testing data-set 10 times, same in Chapter 3

and compute the mean PSNR and SSIM of these 10 times. In Table 5.2, we can see our

proposed method along with methods from Chapter 3 and 4. As evident from the Table

5.2 our method has achieved the best result in terms of quantitative measurements.

As an example to show the training phase, we tested our network with another patient

file that has not been used for training and results are shown in Figure 4.3 and Figure

4.2. In Chapter 4 we argued why discriminator is fluctuating and why we are not able

to use it as our stopping point. However, as we can see in the Figure 4.2, the generator

is converged well, and the loss function approaches zero.
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Method PSNR SSIM
LDCT 34.3094 0.8276
BM3D 38.9903 0.9295

Our proposed Residual learning 40.0227 0.9473
Our proposed WGAN 38.2227 0.9126

RES-GAN 40.2378 0.9518

Table 5.2: PSNR and SSIM of different methods

Figure 5.2: Generator loss function over training

Figure 5.3: Discriminator loss function over training
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Our data-set for both training and testing our network is the same “NIH-AAPM-

Mayo Clinic Low Dose CT Grand Challenge” consists of contrast-enhanced abdominal

CT examination, taken from 10 patients and the Table 3.1 shows all the patients’ ab-

dominal CT details.

In Figure 5.4 we demonstrate different slices of the abdominal CT from patient L067.

In the left column are LDCT slices and infront of each, is the result of using proposed

RES-GAN network to produce an NDCT image. It is shown that our method have a

great potential of deep learning for noise suppression, structural preservation, and lesion

detection. The networks using RES-GAN give better overall image quality.

As far as we are concerned, Residual CNN has better results in terms of PSNR, and

SSIM compared to methods using GAN. However, GAN methods tend to have better

perceptual results. Our proposed method is utilizing both Residual learning and WGAN,

divine this problem. We achieve better performance in both quantitative and perceptual

measurements. A significant advantage of the proposed method is its processing speed

during the test since the discriminator CNN is only used during the training. Also, using

residual learning helps speeding up the CNN too.
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Figure 5.4: Results from abdominal CT for comparison, on the left there
are four slices of different parts of abdominal LDCT and on the right are
each of their outputs using RES-GAN
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Chapter 6

Conclusion and Future work

Computed tomography (CT) is widely used for both clinical and research objectives.

CT scan is a series of X-ray images which are taken from multiple angles of the tissue of

the interest. X-ray beams, which is electromagnetic radiation with high intensity, can

cause damage to cells, increasing the chance of complications such as cancer. Each X-ray

procedure has a different level of risk associated depending on the type and amount of

radiation as well as the body part being exposed. CT is identified as the most hazardous

procedure among X-rays, and more specifically, abdominal CT puts the body in the

most exposed state of radiation.

A possible solution proposed to tackle this problem is lowering the dosage of radiation.

In low dose CT (LDCT) images, fundamental structures are still easily identifiable.

However, noise and other artifacts are introduced. Removing the visual effects of artifacts

caused by lowering radiation dose has been an active area of research in the last few years.

The developed methodologies for denoising LDCT can be divided into three main classes:

sinogram filtering, iterative reconstruction, and image processing.

A considerable disadvantage to sinogram filtering and iterative reconstruction meth-

ods is the scarcity of raw data. The advantage of post-processing methods over the other
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two is the ability to perform without having access to raw data. In this thesis, we are

working on post-processing method, which is working directly with CT images.

Majority of state-of-art approaches in the field of LDCT image denoising, deploy Con-

volutional Neural Networks (CNN), which have demonstrated promising performance as

a result of their capability of learning noise characteristics. In our work, we examined

three ML main approaches towards denoising abdominal LDCT, including residual deep

learning, generative adversarial network, and RES-GAN, which is our proposed method

and a combination of the first two.

Residual deep learning is a recent famous method for image denoising, which ad-

dresses the performance degradation problem caused by increasing the network depth.

The objective in residual learning approach is to learn the noise (residual) maps rather

than the actual NDCT images. The residual mapping is much easier to be learned than

the original mapping, especially for networks that are substantially deeper than others.

In this network we are using a combination of the autoencoder, and deconvolutional

network.

The autoencoder was first introduced for unsupervised learning, but it is also useful

for image denoising. Stacking multiple dense convolution layers, does not necessarily

increase the learning rate. Techniques such as employing more suited activation functions

(such as ReLU) might help. Nevertheless, the problem may still remain. Therefore we

use skip connections which involves jumping over a number of layers. This technique

allows us to increase the number of layers without hesitation.

Lack of sufficient labelled training data has always been a problem in the medical

image domain. In field of medical image restoration, patch coding is commonly used

in order to increase the number of traininig data. In our work, we extract fixed-size

samples which correspond to patches from LDCT images and their corresponding NDCT
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counterparts.

Our second approach is Generative Adversarial Network (GAN), which is starting to

be a method of interest. One of the outstanding merits of GANs is that they generate

data that is similar to real data, which results in having multiple applications in the

real world. GANs can learn messy and complicated distributions of data, which can

be helpful for many machine learning problems. The main disadvantages to GANs are,

being hard to train and time-consuming. Loss component for our discriminator is an

adversarial goal to differentiate LDCT and NDCT correctly. Our Proposed method is

a combination of both Residual learning and GAN called RES-GAN. The advantage

of our method is that we utilize high performance in both quantitative and perceptual

measurements. A significant advantage of the proposed method is its processing speed

during the test since the discriminator CNN is only used during the training. Also, using

residual learning helps speeding up the CNN too.

In the learning of the mapping from LDCT to NDCT needs to estimate the weights

of the convolutional and deconvolutional filters are determined. This is achieved by

minimizing the cost function. We randomly extracted pairs of image patches from all of

our CT training data-set images except the one we wanted to test with. We used cross-

validation. Tests demonstrate that our RES-GAN outperforms other LDCT denoising

methods in terms of PSNR and, SSIM.

6.1 Future Work

Our future work is to train different networks with CT image of different parts of the

human body and determine which one works better for a particular section of the body.

Then, by performing a classification before denoising we can get the best overall per-

formance. Recently there has been a new data-set released for a new challenge, called
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cheXpert. CheXpert is a large dataset of chest X-rays and competition for automated

chest x-ray interpretation, which features uncertainty labels and radiologist-labeled ref-

erence standard evaluation sets. Our possible future is to work with this new data-set

and try to increase our network performance.
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