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Lay Abstract

Perceiving speech and musical sounds in real time is challenging, because they
occur in rapid succession and each sound masks the previous one. Rhythmic
timing regularities (e.g., musical beats, speech syllable onsets) may greatly aid
in overcoming this challenge, because timing regularity enables the brain to
make temporal predictions and, thereby, anticipatorily prepare for perceiv-
ing upcoming sounds. This thesis investigated the perceptual and neural
mechanisms for tracking auditory rhythm and enhancing perception. Per-
ceptually, rhythmic regularity in streams of tones facilitates pitch percep-
tion. Neurally, multiple neural oscillatory activities (high-frequency power,
low-frequency phase, and their coupling) track auditory inputs, and they are
associated with distinct perceptual mechanisms (enhancing sensitivity or de-
creasing reaction time), and these mechanisms are coordinated to proactively
track rhythmic regularity and enhance audition. The findings start the dis-
cussion of answering how the human brain is able to process and understand
the information in rapid speech and musical streams.
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Abstract
Humans must process fleeting auditory information in real time, such as speech
and music. The amplitude modulation of the acoustic waveforms of speech
and music is rhythmically organized in time, following, for example, the beats
of music or the syllables of speech, and this property enables temporal pre-
diction and proactive perceptual optimization. At the neural level, external
rhythmic sensory input entrains internal neural oscillatory activities, includ-
ing low-frequency (e.g., delta, 1-4 Hz) phase, high-frequency (e.g., beta, 15-25
Hz) power, and their phase-amplitude coupling. These neural entrainment
activities represent internal temporal prediction and proactive perceptual op-
timization. The present thesis investigated two critical but previously unsolved
questions. First, do these multiple entrainment mechanisms for tracking au-
ditory rhythm have distinct but coordinated perceptual functions? Second,
does regularity in the temporal (when) domain associate with prediction and
perception in the orthogonal spectral (what) domain of audition? This the-
sis addressed these topics by combining electroencephalography (EEG), psy-
chophysics, and statistical modeling approaches. Chapter II shows that beta
power entrainment reflects both rhythmic temporal prediction (when events
are expected) and violation of spectral information prediction (what events
are expected). Chapter III further demonstrates that degree of beta power en-
trainment prior to a pitch change reflects how well an upcoming pitch change
will be predicted. Chapter IV reveals that rhythmic organization of sensory
input proactively facilitates pitch perception. Trial-by-trial behavioural-neural
associations suggested that delta phase entrainment reflects temporal expec-
tation, beta power entrainment reflects temporal attention, and their phase-
amplitude coupling reflects the alignment of these two perceptual mechanisms
and is associated with auditory-motor communication. Together, this thesis
advanced our understanding of how neural entrainment mechanisms relate to
perceptual functions for tracking auditory events in time, which are essential
for perceiving speech and music.

iv



Acknowledgements
I am grateful to complete my Ph.D. in a very supportive and kind labora-

tory filled with joy. There are many people whom I would like to thank. First
of all, thank you very much to my supervisor Laurel J. Trainor from the very
bottom of my heart. Thanks to her great support on my research, professional
development, and networking (I must have spent over millions of dollars at-
tending conferences). I was very lucky to freely explore the research topics I
am interested in while being able to have her guidance on how to implement
them. She built a perfect lab (actually, “labs”) composed with skilled and
nice colleagues that I could never dream of. Beyond professional aspects, I feel
that Laurel is my friend. She never questioned me for attending rehearsals
for Symphony on the Bay instead of working late in the lab. Doing my Ph.D.
with Laurel was one of the best decisions I have ever made, even thought I was
merely tempted by the Niagara Falls and winery tour she took me on when
she tried to recruit me.

Thanks to my progress committee members, Dan Bosnyak and Ian Bruce,
my comprehensive exam committee members, Bruce Milliken and Larry
Roberts, and my external examiner, Sidney Segalowitz. Their opinions and
input have always made my research better. They were always there when
I needed help, and have always guided me through technical and scientific
challenges.

Thanks to my lab-mates, Haley Kragness, Laura Cirelli, Chris Slugocki,
Kate Einarson, Rayna Friendly, Sima Hoseingholizade, Sarah Lade, Hector
Orozco Perez, David Prete, Chantal Carrillo, Dobri Dotov, Dan Cameron,
Erica Flaten, and Debanjan Borthakur. They made doing science much
more fun. Thanks to the lab staff members, Dave Thompson, Dan Bosnyak,
Elaine Whiskin, Susan Marsh-Rollo, Carl Karichian, and Steven Living-
stone. Research would have been much more challenging without their assis-
tance. Thank you very much to my undergraduate assistants, Alexandra Rice,
Michael Wan, Jessica Empringham, Michael Ku, Keeyeon Mark Hwang, Jen-
nifer Chan, Katie Clayworth, Emily Kaunismaa, Brittany Ung, Elger Baraku,
Jasmine Zhang, Jessica Otoo-Appiah, Taylor Barton, and Tessa Dickison. The
data collection process would have been much much much more painful without
them. Their hard work and their consent of slavery are deeply appreciated.

v



Specifically, I am truly indebted to Dave Thompson for making all my ex-
periments possible, no matter how technically complicated they were. Thanks
to Elaine and Susan for always being so enthusiastic. Having lunch with them
was my daily retreat. Also, I enjoyed playing squash with Chris, even though
failing to defeat him before completing my Ph.D. might be my biggest regret
forever. Last but not least, I appreciate Haley and Laura for dragging me out
of my cave to hang out with people and explore the city. They have helped
me appreciate the North American bad jokes.

Thanks to the music cognition gang of my cohort, Blair Ellis, Lorraine
Chuen, and Haley (again). It was truly fun to hang out with these guys, no
matter if we were discussing science, music, or any crazy topic, although I still
cannot appreciate the weird indie movie we have watched together (picked by
Blair, btw). Thanks to all my friends in the program, Brandon Paul, Fiona
Manning, Blake Anderson, Jessica Cali, Mike Galang (GO Raptors!), Mike
Slugocki (don’t support the Warriors), Ali Hashemi, Kiret Dhindsa, Lux Li,
Ye Yuan, Anna Siminoski, Aimee Battcock, Sharmila Sreetharan, and many
others. They all have made my graduate life special.

Thanks to all the Taiwanese friends I have had in Hamilton and Toronto,
Fred Liao, 李曜全, 賴宣安, Leo Hsu, Allison Yeh, 陳奕全, Darren Wang, 葉
婷婷, Johnson Chen, Mei-Ju Shih, Mei-Cheng Shih, 張棨勛, Lucia Huang,
Yu-Sian Li,唐婕,蕭斌, Mandy Chu, Ming-Feng Chiang, Amy Liao, and many
others. Thanks for their hospitality when I first arrived Hamilton. They all
made me feel at home, except once we got lost in the woods in Dundas Peak.

Thanks to my parents, I am extremely lucky to be in a family that fully
supports my career path and has a background of working in academia. They
supported me to do my Ph.D. 12,104 km away from them. They have offered
me great and honest guidance of academic survival skills, not to mention all
the free statistical consulting sessions offered by my dad. I cannot enjoy doing
research without their unconditional support and love, especially that they fed
me quite a lot every time I went back home. Thanks to my parents-in-law,
again, I am extremely lucky to have their unconditional trust and support, as
they never questioned why the husband of their lovely daughter is still a poor
graduate student at the age of 29.

Most importantly, I cannot express how grateful I am for the love of my
wife Wei Vivian Tsou. She supported my goal to pursue my Ph.D. abroad,

vi



even when we just met in Taiwan and I planned to leave in less than a year.
She defied the challenges of our 40-month long-distance relationship between
Hamilton and Taipei as well as Hamilton and New York. She relocated to
Hamilton to start our family together after we were married. She was happy
and sad for all the accomplishments and obstacles I have had, and she cheered
me up whenever I was too anxious to make any moves. Her unconditional
love and endless support made me a better person and that I can better enjoy
this career path, which should also be granted with a Ph.D. (Push husband to
Doctorate). This thesis could not be completed without her, not only because
she is my proofreader, but she is also my perfect companion on this journey.

vii





Table of Contents

Lay Abstract iii

Abstract iv

Acknowledgements v

Table of Contents ix

List of Figures xiii

List of Tables xv

Declaration of Academic Achievement xvii

I General introduction 1
I.1 Perceptual mechanisms of auditory rhythm tracking . . . . . . . 3
I.2 Dynamic neural mechanisms of auditory rhythm tracking . . . . 4

I.2.1 Definition of neural entrainment . . . . . . . . . . . . . . 5
I.2.2 Neural entrainment for tracking auditory rhythm . . . . 5

I.3 Aims of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 8

II Unpredicted pitch modulates beta oscillatory power during
rhythmic entrainment to a tone sequence 11
II.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
II.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
II.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
II.4 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . 15

II.4.1 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
II.4.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 16
II.4.3 Participants . . . . . . . . . . . . . . . . . . . . . . . . . 16
II.4.4 Electroencephalographic Recording . . . . . . . . . . . . 17

ix



II.4.5 Signal Processing of the EEG Data . . . . . . . . . . . . 17
II.4.6 Time-Frequency Decompositions . . . . . . . . . . . . . . 21
II.4.7 Discrete Fourier Transform for Neural Oscillation En-

trainment . . . . . . . . . . . . . . . . . . . . . . . . . . 22
II.4.8 Data Analysis and Statistics . . . . . . . . . . . . . . . . 23

II.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
II.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
II.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . 34

IIIBeta oscillatory power modulation reflects the predictability
of pitch change 35
III.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
III.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
III.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
III.4 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . 39

III.4.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . 39
III.4.2 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
III.4.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 40
III.4.4 EEG recording . . . . . . . . . . . . . . . . . . . . . . . 41
III.4.5 Signal processing for source-space neural oscillatory ac-

tivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
III.4.6 Time-frequency decompositions . . . . . . . . . . . . . . 43
III.4.7 Signal processing for ERPs . . . . . . . . . . . . . . . . . 44
III.4.8 Single-trial correlation between beta desynchronization

and P3a amplitude . . . . . . . . . . . . . . . . . . . . . 46
III.4.9 Experimental design and statistical analysis . . . . . . . 46

III.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
III.5.1 Predictability of pitch change modulates pre-

deviant beta power . . . . . . . . . . . . . . . . . . . . . 47
III.5.2 Predictability of pitch change modulates deviant ERP

amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . 48
III.5.3 Pre-deviant beta power is associated with deviant P3a

amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . 51
III.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
III.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
III.8 Supplementary Materials . . . . . . . . . . . . . . . . . . . . . . 58

III.8.1 Induced beta power fluctuates at the stimulus presenta-
tion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



III.8.2 Predictability of pitch change and pre-deviant low-
beta/high-beta power . . . . . . . . . . . . . . . . . . . . 60

III.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 60

IVRhythmicity facilitates pitch discrimination: Differential
roles of low and high frequency neural oscillations 63
IV.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
IV.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
IV.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
IV.4 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . 67

IV.4.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . 67
IV.4.2 Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
IV.4.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 68
IV.4.4 Psychometric model fitting . . . . . . . . . . . . . . . . . 70
IV.4.5 Electroencephalographic recording and preprocessing . . 70
IV.4.6 Modeling dipole sources for auditory cortex . . . . . . . 71
IV.4.7 Delta band (1–3 Hz) analyses . . . . . . . . . . . . . . . 73
IV.4.8 Beta band (15–25 Hz) analyses . . . . . . . . . . . . . . 74
IV.4.9 Delta-beta coupling analyses . . . . . . . . . . . . . . . . 76
IV.4.10Partial out covariances among EEG indexes for EEG-

behaviour correlations . . . . . . . . . . . . . . . . . . . 77
IV.4.11Experimental design and statistics . . . . . . . . . . . . . 78

IV.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
IV.5.1 Behavioural performance and psychometric modeling . . 79
IV.5.2 Beta power modulation is affected by rhythmicity and

associates with pitch discrimination sensitivity . . . . . . 81
IV.5.3 Delta phase is modulated by rhythmicity but not asso-

ciated with perceptual performance . . . . . . . . . . . . 85
IV.5.4 Delta-beta phase-amplitude coupling is modulated by

rhythmicity and associates with RT . . . . . . . . . . . . 87
IV.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
IV.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
IV.8 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . 96

IV.8.1 Shared covariances among EEG indexes . . . . . . . . . 96
IV.8.2 Rhythmicity moderating EEG-behaviour associations . . 97

IV.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 99

V General discussion 103

xi



V.1 Unique contributions and limitations of each chapter . . . . . . 104
V.1.1 Chapter II . . . . . . . . . . . . . . . . . . . . . . . . . . 104
V.1.2 Chapter III . . . . . . . . . . . . . . . . . . . . . . . . . 105
V.1.3 Chapter IV . . . . . . . . . . . . . . . . . . . . . . . . . 106

V.2 Theoretical contributions and future directions . . . . . . . . . . 108
V.3 Neural signal processing challenges . . . . . . . . . . . . . . . . 109
V.4 Potential clinical implications . . . . . . . . . . . . . . . . . . . 113
V.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Bibliography 115

xii



List of Figures

I.1 Figure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II.1 Figure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
II.2 Figure 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
II.3 Figure 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
II.4 Figure 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
II.5 Figure 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
II.6 Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

III.1 Figure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
III.2 Figure 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
III.3 Figure 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
III.4 Figure 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
III.S1 Figure S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
III.S2 Figure S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

IV.1 Figure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
IV.2 Figure 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
IV.3 Figure 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
IV.4 Figure 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
IV.5 Figure 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
IV.S1 Figure S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
IV.S2 Figure S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
IV.S3 Figure S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xiii





List of Tables

IV.S1 Table S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xv





Declaration of Academic
Achievement
I, Andrew Chang, declare that this thesis titled, “Perceptual functions of audi-
tory neural oscillation entrainment” and the work presented in it are my own.
This thesis consists of five chapters in total and is presented in the format of a
sandwich thesis. The thesis consists of a general introduction, three empirical
chapters, and a general discussion. All three empirical chapters are published
in peer-reviewed scientific journals.

I am the primary author of all five chapters. I conceptualized and designed
each experiment in consultation with Laurel J. Trainor and Dan J. Bosnyak,
who co-authored the three empirical chapters. For each study, I was the pri-
mary individual responsible for creating stimuli, collecting data, supervising
data collection by undergraduate students, analyzing the data, and preparing
the manuscripts. These studies were implemented with technological assis-
tance of research staff Dave Thompson.

The LATEX typeset of this thesis follows the McMaster Thesis Example
by Benjamin Furman, license: CC BY-NC-SA 3.0. (https://github.com/
benjaminfurman/McMaster_Thesis_Template)

This thesis includes three published research articles with permissions from
the Frontiers and Elsevier Ltd.:

• Chang, A., Bosnyak, D.J., Trainor, L.J. (2016). Unpredicted pitch mod-
ulates beta oscillatory power during rhythmic entrainment to a tone se-
quence. Frontiers in Psychology, 7:327. doi: 10.3389/fpsyg.2016.00327

• Chang, A., Bosnyak, D.J., Trainor, L.J. (2018). Beta oscillatory power
modulation reflects the predictability of pitch change. Cortex, 106, 248-
260. doi: 10.1016/j.cortex.2018.06.008

• Chang, A., Bosnyak, D.J., Trainor, L.J. (2019). Rhythmicity fa-
cilitates pitch discrimination: Differential roles of low and high
frequency neural oscillations. NeuroImage, 198, 31-43. doi:
10.1016/j.neuroimage.2019.05.007

xvii

https://github.com/benjaminfurman/McMaster_Thesis_Template
https://github.com/benjaminfurman/McMaster_Thesis_Template




Chapter I

General introduction

Humans constantly process fleeting auditory information, such as speech and
music, in real time in everyday life. The dynamic nature of auditory signals
makes it challenging to perceptually capture and process the incoming sen-
sory information. However, auditory information in communication signals is
commonly temporally structured in regular patterns, rather than randomly
organized. In this thesis, rhythm refers to the temporal amplitude modulation
(AM) pattern of the acoustic waveform. In isochronous rhythmic patterns,
events tend to occur at regular time intervals, and this cyclical feature can
be described by frequency (number of events/cycles per second) and phase
(the temporal position within a cycle). Isochronous rhythmic temporal struc-
ture in acoustic waveforms is very useful for audition. This regularity greatly
simplifies the burden on perceptual processing, because it enables temporal
predictions toward the future, based on the past isochronous rhythmic tempo-
ral regularity, which the enables proactive temporal optimization of perceptual
processing for upcoming events that are at predicted temporal positions (Hae-
gens & Zion Golumbic 2018; Nobre & van Ede 2018).

Following the perceptual advantage for regularity, AM in speech and music
acoustic waveforms, across languages and music genres, is commonly rhyth-
mically structured (Ding et al., 2017). The important acoustic information
is often highlighted in time, as it is usually positioned at regularly spaced
isochronous time points. In the case of music, AM rhythm (the onset to onset
times between adjacent musical notes) usually has varying lengths rather than
always being isochronous. Nevertheless, these varying onset-to-onset times
are usually related by small integer ratios, producing a temporal organization
under an invariant isochronous unit of time (i.e., beat). Musical rhythmic
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structures are often hierarchical, with beats occurring at different nested tem-
pos (Kotz et al., 2018; Patel, 2010). In the case of speech, the inter-onset
intervals of syllables are quasi-isochronously organized. As in music, there are
nested hierarchical beat levels, corresponding to phoneme, syllable, word, and
phrase structures (Keitel et al., 2018).

Beyond the perceptual domain, isochronous rhythmic regularity also plays
a critical role in sensorimotor coordination (Repp, 2005), interpersonal coor-
dination (Savage et al., 2015), and even prosocial behaviours (Cirelli et al.,
2018). Indeed, the temporal optimization of perceptual processing is hypothe-
sized to have an evolutionary motor origin (Kotz et al., 2018). The capacity for
producing periodic or isochronous motion is nearly universal among animals,
and thus perceiving these motion-generated periodic perceptual events (e.g.,
sound) could be critical in evolution. In the case of vocalization, the motions
involved in facial displays (e.g., lip-smacking) of certain non-human primates
appear rhythmic and are repeated in the same frequency range as syllables
in human speech and beats in music, raising the possibility that such facial
displays might be an evolutionary precursor of speech production (Ghazanfar
et al., 2012). Although the current thesis does not aim to investigate the evo-
lutionary origin of rhythmic auditory perception, the motor origin hypothesis
suggests that the rhythmic organization of human audition is closely tied to
benefits of perceiving periodic fluctuations in acoustic information.

Note that the use of term “rhythm” is not entirely consistent across research
fields. The field of music cognition uses “rhythm” to describe the temporal
pattern of AM of the acoustic waveform, which usually consists of varying
onset-to-onset times between adjacent tones in music, and “beat” refers to the
invariant isochronous unit of time underlying the AM rhythm (Kotz et al.,
2018; Patel, 2010). Under this definition, beat is the level at which temporal
prediction occurs. However, the field of temporal prediction usually uses the
term “rhythm” to refer to an isochronous AM temporal pattern (Nobre & van
Ede 2018), as most of the studies in this field only use isochronous AM stimuli
as sensory inputs. In this case, “rhythm” and “beat” are equivalent terms,
and thus temporal prediction occurs at this level. For convenience, following
the field of temporal prediction, the current thesis uses the term “rhythm” to
describe isochronous rhythmic patterns. Rhythm in the sense used by music
cognition will be specifically referred to as “musical rhythm”.
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I.1 Perceptual mechanisms of auditory
rhythm tracking

Dynamic attending theory, one of the most popular and successful perceptual
theories related to tracking auditory rhythms, proposes that internal temporal
attention is rhythmically allocated at regular temporal positions according to
rhythmic regularity (i.e., places of expected maximal amplitude) in an exter-
nal sensory input (Jones, 2010). Specifically, the rhythmic attending mode
extracts the statistical temporal regularity of the acoustic waveform (e.g., the
beats of music, the syllables of speech), and it anticipatorily directs atten-
tion to certain temporal positions (e.g., beat or syllable onsets) in the sensory
input, based on the extrapolated temporal regularity (Jones & Boltz, 1989).
This mechanism is described by an oscillatory model: an internal oscillator,
which represents periodic and isochronous temporal expectation, adapts its
period to match the external temporal regularity of the acoustic input, and an
attentional pulse, which is centred at a specific phase of the oscillator (Large
& Jones, 1999). During rhythmic attending, the oscillatory temporal expecta-
tion “rolls” along the temporal dimension and allocates the attentional pulse
rhythmically.

Internal rhythmic expectation can be automatically, involuntarily, and ex-
ogenously (bottom-up) driven by external stimuli, with its precision depending
on the temporal coherence (i.e., the degree of statistical regularity) of external
events (Large & Jones, 1999; Jones & Boltz, 1989; Jones, 2010). Empirical
evidence shows that the rhythmic pattern of a stimulus sequence automatically
orients attention towards expected time points, independent from voluntary
control (Rohenkohl et al., 2011). As the same time, rhythmic attending can
be deliberately or voluntarily (endogenously, top-down) controlled to a certain
extent. For example, in music, there might be hierarchically organized nested
levels of temporal regularity, such as an 8 Hz, a 4 Hz and a 2 Hz beat rate.
Studies have shown that participants can endogenously orient their attention
toward a particular beat level of the temporal hierarchical structure or acous-
tic stream (Jones & Boltz, 1989). It is also possible for complex music to be
ambiguous in that it can be, for example, perceived as either in groups of 2
as in a march or in groups of 3 as in a waltz. In these cases, endogenous
processes are involved in beat perception (Fujioka et al., 2015). Also, while
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voluntary temporal orienting of attention can be impaired by focal brain dam-
age or transcranial magnetic stimulation (TMS), the rhythmic cues in such
cases, may still be able to drive automatic involuntary aspects of temporal
orientation of attention (Correa et al., 2014; Triviño et al., 2011).

Empirical evidence shows that rhythmic regularity proactively optimizes
perceptual processing for events that occur at expected time positions (Large &
Jones, 1999; McAuley & Jones, 2003), and the gradient of perceptual enhance-
ment is sharpened by the increased coherence of external temporal regularity
or by simpler rhythmic structure (Jones et al., 2002; Klein & Jones, 1996).
Also, near-threshold deviant stimuli presented at a time point matching the
preceding rhythmic context will be better perceived, compared to those pre-
sented at non-isochronous times, or in a temporally random context (Haegens
& Zion Golumbic 2018; Nobre & van Ede 2018). This rhythmic facilitation
effect has been observed and replicated in multiple domains. Performance ac-
curacy for comparing the duration of two empty intervals is facilitated if it
is preceded by an isochronous tone sequence (see Henry and Herrmann 2014
for a review). Also, participants’ detection thresholds for tones embedded in
noise are lower when the tones are presented in an isochronous sequence rather
than a random sequence, suggesting that rhythmic regularity facilitates signal
to noise detection sensitivity (ten Oever et al., 2017). The same effect is also
observed in visual perception. The grating orientation of a visual target is bet-
ter perceived when it is presented embedded in a visual isochronous rhythmic
sequence than in a random visual sequence (Cravo et al., 2013; Rohenkohl et
al., 2012).

I.2 Dynamic neural mechanisms of auditory
rhythm tracking

One of the important goals of neuroscientific studies on tracking auditory
rhythm is to understand how neural activities implement the necessary compu-
tations in real time. Given the dynamic nature of tracking auditory rhythms,
this goal is usually investigated using high temporal-resolution neuroimag-
ing approaches, such as invasive local field potential (LFP) recordings in
non-human animals (e.g., monkeys), and non-invasive electroencephalography
(EEG) and magnetoencephalography (MEG) recordings in humans.
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I.2.1 Definition of neural entrainment

Entrainment, a term originating from complex system theory, describes that
two or more independent oscillators, which share the same physical context
but with independent oscillation frequencies, mutually influence each other’s
oscillations. The coupling force of entrainment will adjust each oscillator’s fre-
quency and phase until they are the same. In neuroscience, neural entrainment
specifically describes how the external physical oscillation of a sensory stimu-
lus (e.g., a sound, light) influences the internal neural oscillations in the brain
of an individual until they have the same frequency. Note that the scope of
the current thesis only includes the sensory aspect of neural entrainment, only
considering the unidirectional influence of physical stimuli on an individual’s
neural oscillations. The reverse direction (an individual influencing the phys-
ical world) and bidirectional interactions are beyond the scope of the current
thesis.

I.2.2 Neural entrainment for tracking auditory rhythm

Neural entrainment is thought to play a critical role in tracking auditory
rhythm, and both the phase of the low-frequency and the power envelope
of the high-frequency oscillations entrain to the rhythmic regularity of the
amplitude-modulated sensory input (Figure 1).

LFP recordings from the sensory cortex (visual or auditory) of monkeys
showed that AM of a sensory input stream entrains the phase of low-frequency
neural oscillations (Calderone et al. 2014; Lakatos et al. 2008, 2013, 2016;
Schroeder & Lakatos 2009). Specifically, the excitation phase of the neural
oscillation will match the onset timings of the upcoming sensory input (Fig-
ure 1), and thus anticipatorily facilitate perceptual processing. Such neural
activity can also be observed in human EEG and MEG studies, in which ex-
ternal isochronous or quasi-isochronous rhythmic sensory input at 1-4 Hz AM
rates entrains the phase of delta (1-4 Hz) oscillations. Functionally, similar to
the findings on LFP recordings in animals, the human neuroimaging studies
showed that the phase angle of neural the oscillations relative to the timing
of sensory input modulates the quality of perceptual processing, including de-
tection of timing or intensity deviations, speech perception (e.g., Arnal et al.,
2015; Bauer et al., 2018; Henry & Obleser, 2012; Henry et al., 2014; Herrmann
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Figure I.1: Figure 1. Schematic illustrations of rhythmic AM of the sound en-
training neural oscillations

et al., 2016; Stefanics et al., 2010; ten Oever et al., 2017), and even visual
orientation discrimination (e.g., Cravo et al., 2013).

The power envelope of high-frequency oscillations can also be entrained
by rhythmic AM input (Figure 1), but the perceptual functions of this en-
trainment have been investigated much less compared to low frequency phase
entrainment. EEG and MEG recordings in human participants showed that
beta (15-25 Hz) power decreases following each tone onset in an isochronous
stream, and then increases with the appropriate slope to anticipate the pre-
dicted onset time of each upcoming tone, as a function of the tempo of the tone
sequence, suggesting that beta power entrainment reflects isochronous rhyth-
mic temporal prediction (Cirelli et al., 2014; Fujioka et al., 2012, 2015). This
power entrainment activity can be disrupted by non-isochronous sequences
(Fujioka et al., 2009, 2012), and modulated by hierarchical timing structures
(e.g., waltz, march) (Snyder and Large, 2005; Iversen et al. 2009; Fujioka
et al. 2015). However, prior to the research in this thesis, the associations
between high-frequency power entrainment and behavioural and perceptual
consequences were largely unknown.

Low and high frequency neural entrainment activities work in concert
for tracking auditory rhythms. Phase-amplitude cross-frequency coupling is
thought to result when the excitatory or inhibitory phase of low-frequency
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oscillations modulates the power fluctuation in high-frequency oscillations
(Canolty & Knight, 2010; Hyafil et al., 2015b), and this coupling is optimized
for rhythmic input (Lakatos et al., 2005; Schroeder & Lakatos, 2009). Func-
tionally, studies show that the degree of delta-beta phase-amplitude coupling
associates with the accuracy of detecting an auditory temporal delay following
an isochronous rhythmic sequence (Arnal et al., 2015); as well, better cou-
pled entrainment is associated with better speech comprehension (Keitel et
al., 2018).

Speech AM rates are typically above 4 Hz (Ding et al., 2017) and, as a
result, theta (4-8 Hz) phase and the gamma (25-50 Hz) power entrainment,
rather than delta phase and beta power, are involved in tracking speech ampli-
tude envelopes, and are associated with speech comprehension (e.g., Doelling
et al., 2014; Gross et al., 2013; Kösem et al., 2018; Pefkou et al., 2017).
Specifically, gamma power is modulated at the theta rate (i.e., theta-gamma
phase-amplitude coupling), and it has been hypothesized that theta oscil-
lations reflect chunking of the continuous speech waveform into meaningful
segments, whereas gamma oscillations reflect encoding of speech information
(Zion Golumbic et al., 2013; Hyafil et al., 2015a; Giraud & Poeppel, 2012;
Peelle & Davis, 2012). Note that the current thesis did not investigate speech
perception, and the AM rates of the stimuli used in the studies were around 2
Hz; thus, the current thesis did not investigate theta and gamma entrainments.

These neural entrainment activities also reflect communication among brain
regions. Delta phase entrainment activities are mainly generated from audi-
tory cortex (Henry et al. 2014; Stefanics et al. 2010; ten Oever et al. 2017).
However, intracranial electrophysiology recordings in humans showed that the
posterior parietal, inferior motor, inferior frontal and superior midline frontal
cortex also generate delta phase entrainment activities, reflecting communica-
tion among these regions as well as between them and sensory areas (Besle
et al., 2011). Regarding beta power entrainment, auditory cortex is also the
most dominant source, and its cortico-cortical coherence reflects communica-
tion between auditory cortex and sensorimotor cortex, inferior-frontal gyrus,
supplementary motor area, and cerebellum (Fujioka et al., 2012). A recent
MEG study further showed that bottom-up communication from the auditory
cortex to the sensorimotor cortex is reflected by delta phase entrainment at
the AM (musical rhythm) rates of the sensory input, and top-down communi-
cation from the sensorimotor cortex to the auditory cortex is reflected by delta
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phase entrainment and beta power entrainment at the beat rate, which is the
periodic temporal structure underlying the acoustic AM envelope (Morillon
& Baillet, 2017). Thus, together, low and high frequency entrainment activi-
ties reflect different directions of cortical communication, and they coordinate
bottom-up and top-down signals to track auditory rhythms.

I.3 Aims of this thesis

Why do humans have multiple entrainment mechanisms for tracking audi-
tory rhythm, including low frequency phase, high frequency power, and their
coupling? Do these mechanisms have different perceptual functions? Most
previous studies only focused on either low or high frequency entrainment, so
they could not address this question. Furthermore, the perceptual correlates
of high frequency power entrainment have been investigated much less com-
pared to those of low frequency phase entrainment. Therefore, the first aim
of the present thesis is to investigate the different perceptual functions of low
and high frequency entrainment activities, with an emphasis on the function
of high frequency power entrainment.

It is also unclear whether neural oscillations specifically reflect prediction
for what is expected to occur as well as when it will occur. Accordingly, the
second aim of this thesis is to investigate whether high frequency entrainment
reflects prediction for pitch. In general, sounds can vary in time, intensity,
and spectral dimensions. Temporal variation includes duration, sound onset
spacing, and rhythm; intensity variation constitutes patterns of sound pres-
sure change resulting in perceived loudness changes; and spectral variation in-
volves changes in frequency content resulting, for example, in perceived pitch
or timbre changes. However, most previous studies on neural entrainment
and rhythmic tracking have ignored spectral factors. It is not obvious a pri-
ori that rhythmic regularity would enhance pitch perception similarly to how
it enhances time and intensity perception (Haegens & Zion Golumbic 2018),
because pitch perception can be dissociated from time and intensity percep-
tion. For example, people with amusia or tone deafness typically have auditory
perceptual deficits in the spectral domain but not in the temporal or inten-
sity domains (Peretz 2016; Zendel et al. 2015). This topic is important for
understanding audition, because spectral features are critical for identifying
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auditory objects and understanding speech and music, which are part of the
what domain of auditory perception.

Note that spectral prediction is a type of sensory prediction based on sta-
tistical regularities in the spectral domain of the audition. For example, an
ascending or descending sequence of musical tones sets up the expectation that
the next tone will continue in the same direction. Similar to temporal predic-
tion, spectral regularities enable the perceptual system to predict upcoming
auditory spectral information. Because spectral information informs as to ob-
ject identity, it is regarded as part of the what domain of sensory prediction
(Arnal & Giraud, 2012). Although what and when are physically orthogonal
in audition, the information from these two dimensions is usually associated.
For example, the inter-note time interval (when) tends to be longer between
two phrases than within a phrase (what) in music (Kragness et al., 2016),
suggesting that these two domains are statistically dependent in real-world
stimuli.

Chapter II investigates whether beta power entrainment activity is dis-
rupted by an unexpected pitch in an isochronous sequence (i.e., no temporal
deviations) of tones of one pitch. If beta power entrainment activity only re-
flects temporal prediction, regardless of the spectral content, beta power should
not be affected by an unexpected pitch if it is presented at the expected time
of the next auditory event. In contrast, if an unexpected pitch affects beta
power entrainment activity, then beta power entrainment reflects spectral as
well as temporal prediction. The results showed that beta power does reflect
both temporal expectations and violations of spectral expectations.

Chapter III investigates whether beta power entrainment activity is asso-
ciated with pitch prediction by examining changes in beta entrainment just
prior to a predicted pitch change. The results of Chapter II cannot satisfac-
torily show whether beta power entrainment activity reflects spectral predic-
tion because the neural modulation was measured following the pitch change.
Therefore, in the study of Chapter III, isochronous auditory tone sequences
with infrequent pitch changes were created in which the pitch changes were
either at predictable positions (every 5th tone) or at unpredictable (random)
positions (but with the same 20% rate). If beta power entrainment reflects
prediction for pitch, predictable pitch changes should be preceded by changes
in beta power modulation that reflect the prediction. This is what was found,
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providing strong evidence that beta power entrainment reflects both temporal
and spectral prediction.

Chapter IV studies the different roles of delta phase, beta power, and their
coupling entrainment activities on perception. Critically, the studies of Chap-
ters II and III could not directly reveal the perceptual functions of these
oscillations because behavioural outcomes were not measured. In Chapter
IV, participants were required to perform a pitch discrimination task with
target tones embedded in either rhythmic (isochronous) or arrhythmic (non-
isochronous) tone sequences. In order to investigate how delta phase, beta
power and their coupling proactively facilitate perceptual performance, each
of these were measured prior to target tones and correlated with behavioural
perceptual performance (pitch discrimination sensitivity and reaction time) on
a trial-by-trial basis. The results suggested different roles, with delta relating
to temporal regularly, and beta also to pitch prediction and attention.
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Chapter II

Unpredicted pitch modulates
beta oscillatory power during
rhythmic entrainment to a tone
sequence

Chang, A., Bosnyak, D.J., Trainor, L.J. (2016). Unpredicted pitch modu-
lates beta oscillatory power during rhythmic entrainment to a tone sequence.
Frontiers in Psychology, 7:327. doi: 10.3389/fpsyg.2016.00327

Copyright © 2016 Chang, Bosnyak and Trainor. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, distribu-
tion or reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which does
not comply with these terms.

II.1 Preface

Fluctuations in power of beta band (15–25 Hz) oscillations in auditory cortex
are involved in predictive timing during rhythmic entrainment, but whether
such fluctuations are affected by prediction in the spectral (frequency/pitch)
domain was unclear from previous research. In Chapter II, university under-
graduates were recruited to passively listen to isochronous auditory tone se-
quence with unpredictable infrequent pitch changes while EEG was recorded.
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The induced beta power was affected by unpredictable infrequent pitch
changes, and this response was larger when the pitch change was less pre-
dictable. This study showed, therefore, that beta power rhythmic entrainment
activity not only reflects temporal prediction, but can also be modulated by
unpredicted spectral (frequency/pitch) information.

II.2 Abstract

Extracting temporal regularities in external stimuli in order to predict upcom-
ing events is an essential aspect of perception. Fluctuations in induced power
of beta band (15–25 Hz) oscillations in auditory cortex are involved in predic-
tive timing during rhythmic entrainment, but whether such fluctuations are af-
fected by prediction in the spectral (frequency/pitch) domain remains unclear.
We tested whether unpredicted (i.e., unexpected) pitches in a rhythmic tone
sequence modulate beta band activity by recording EEG while participants
passively listened to isochronous auditory oddball sequences with occasional
unpredicted deviant pitches at two different presentation rates. The results
showed that the power in low-beta (15–20 Hz) was larger around 200–300 ms
following deviant tones compared to standard tones, and this effect was larger
when the deviant tones were less predicted. Our results suggest that the
induced beta power activities in auditory cortex are consistent with a role in
sensory prediction of both “when” (timing) upcoming sounds will occur as well
as the prediction precision error of “what” (spectral content in this case). We
suggest, further, that both timing and content predictions may co-modulate
beta oscillations via attention. These findings extend earlier work on neural
oscillations by investigating the functional significance of beta oscillations for
sensory prediction. The findings help elucidate the functional significance of
beta oscillations in perception.

II.3 Introduction

Perceptual systems extract regularities from the stream of continuous sensory
input, and form internal representations for predicting future events. Predic-
tive timing is the sensory prediction (or expectation) of when an event will
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occur (Nobre et al., 2007; Schroeder and Lakatos, 2009). Such predictions
are hypothesized to be essential for many human behaviors, including under-
standing speech and music (Ding et al., 2015; Doelling and Poeppel, 2015), and
synchronizing movements (Jenkinson and Brown, 2011; Fujioka et al., 2012,
2015; Kilavik et al., 2013). Predictive timing can be studied at a basic level
in that an isochronous stream of metronome clicks sets up a strong prediction
for when the next click will occur.

Entrainment is the process of internal neural oscillations becoming synchro-
nized with temporal regularities in an external auditory rhythmic input stream,
and it provides a mechanism for predicting future events in time (Jones, 2010).
Such entrainment appears to be accomplished in the brain by neural oscillatory
activity, which has been shown to represent temporal regularities in the sen-
sory input, as well as the prediction of upcoming sensory events (Friston, 2005;
Jones, 2010; Arnal and Giraud, 2012; Fujioka et al., 2012, 2015; Henry and
Herrmann, 2014; Morillon and Schroeder, 2015; Herrmann et al., 2016). While
time domain event-related potential (ERP) analyses of electroencephalogram
(EEG) waveforms in response to unpredicted stimuli have revealed aspects
of neural processes underlying sensory prediction (e.g., Costa-Faidella et al.,
2011; Schwartze and Kotz, 2013; Schröger et al., 2015), recent studies indi-
cate that neural oscillatory activities obtained by decomposing EEG signals
into frequency-specific bands reveal processes of communication between neu-
ral ensembles (Buzsaki, 2006) that are essential to sensory prediction (Arnal
and Giraud, 2012).

Oscillatory activities in sensory cortices in both delta (1–3 Hz) and beta
(15–25 Hz) bands are associated with temporal prediction (Henry and Her-
rmann, 2014). The phase of the delta oscillation shows entrainment to rhyth-
mic sequences and it is reset by the onset of a stimulus and predicted (imag-
ined) onset of a future stimulus. On this basis, it has been suggested that delta
phase reflects an oscillatory time frame for parsing a continuous sensory stream
into meaningful chunks for subsequent perceptual processing (Schroeder and
Lakatos, 2009; Calderone et al., 2014). Neural responses to sensory inputs that
occur at the time of the excitation phase of delta oscillations are enhanced com-
pared to those that coincide with the inhibition phase (Schroeder and Lakatos,
2009). Local field potential recordings in primary visual and auditory cortices
of macaque monkeys show that the delta phase entrains to the onsets of stim-
uli in rhythmic stimulus streams (Lakatos et al., 2008, 2013), consistent with
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intracranial electrocortical and surface EEG recordings in humans (Besle et
al., 2011; Gomez-Ramirez et al., 2011; Henry and Obleser, 2012; Herrmann et
al., 2016), and it can be endogenously directed by selectively attending to one
or the other of two simultaneous stimulus streams (Lakatos et al., 2008, 2013;
Calderone et al., 2014).

The amplitude fluctuation dynamics of induced (non-phase-locked) beta
band power also entrain to the tempo of events in an auditory input stream,
as well as reflecting temporal prediction. EEG and MEG recordings of
isochronous auditory sequences show that induced beta power decreases fol-
lowing each tone onset, and increases again prior to the onset time of the
next tone, with the timing of the increase varying with tempo in a predictive
manner (Snyder and Large, 2005; Fujioka et al., 2009, 2012, 2015; Iversen
et al., 2009; Cirelli et al., 2014; Figure 1). Both delta phase angle and beta
power in auditory and motor areas in the pre-stimulus onset period predict the
accuracy of detecting a temporal delay in the stimulus (Arnal et al., 2015).
Furthermore, in primary motor cortex, beta power is modulated by attention,
and aligned with the delta phase, suggesting that beta power might reflect at-
tentional fluctuation in time and delta phase an entrained internal clock that
aids in the execution of a motor task (Saleh et al., 2010).

Although delta phase and induced beta power are both associated with
temporal prediction, compared to the compelling evidence for delta oscilla-
tions, the functional significance of beta oscillations in perceptual processing
remains less clear. We hypothesized that the entrainment of induced beta
power in auditory cortex to an external stimulus might reflect more than pre-
dictive timing. Specifically, given that auditory cortex is sensitive to both
spectral and temporal dimensions of the input (Fritz et al., 2003; Griffiths and
Warren, 2004; King and Nelken, 2009), and auditory evoked ERP components
can be interactively modulated by predictions of both pitch and time (Costa-
Faidella et al., 2011), beta oscillations might also reflect predictive coding for
specific content, such as pitch. In order to examine this hypothesis, we con-
ducted two experiments in which we presented isochronous auditory oddball
sequences containing occasional deviations in pitch at different presentation
rates. If the induced beta power only reflects predictive timing, the occasional
unpredicted pitch changes should not affect the ongoing beta entrainment be-
havior, given that the pitch deviants are presented at the predicted rhythmic
time points. On the other hand, if the induced beta power is affected by the
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unpredicted deviant pitches, it would suggest that beta power is associated
with predictive perceptual processing for both what and when. In the case
that induced beta power is affected by unpredicted deviant pitches, we exam-
ine further whether it is modulated by response to novelty (rare events in the
preceding local context) or prediction error (the probability of encountering a
deviant pitch under the statistical conditions of the context).

Figure II.1: Schematic illustrations of power modulation in induced (non-phase-
locked) beta (15–25 Hz) entraining to the tempo of the stimuli. Specifically, power
decreases following isochronous onsets and increases that predict the onset time of
the next stimulus (e.g., Fujioka et al., 2012; Cirelli et al., 2014). The dotted curve
above the beta waveform envelope represents this power modulation.

II.4 Materials and methods

II.4.1 Stimuli

Two recorded piano tones, C4 (262 Hz) and B4 (494 Hz), from the University
of Iowa Musical Instrument Samples were used. The amplitude envelopes of
the piano tones were percussive with 10 ms rise times. Tones were truncated
to be 200 ms in duration, and a linear decay to zero was applied over the
entire excerpt to remove offset artifact. The DC shift was removed for each
tone. Sounds were converted into a monaural stream at 71 dB (C weighted),
measured through an artificial ear (type 4152, Brüel & Kjær) with sound level
meter (type 2270, Brüel & Kjær).
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II.4.2 Procedure

The experiment was conducted in a sound-attenuated room. Each participant
was presented with a continuous sequence of tones in two sessions, each lasting
30 min, while they watched a silent movie on a computer screen. Participants
took a 3-min break between sessions. Sounds were delivered binaurally via
ear inserts (Etymotic Research ER-2). All stimulus sequences were presented
under the control of a digital signal processor (Tucker Davis RP2.1).

The tones were presented in an oddball sequence. The C4 tone was used as
the standard and the B4 tone as the deviant. For the first group of participants,
the inter-onset interval (IOI) was fixed at 500 ms. There were 3600 tones
presented in each session, and the deviance occurrence rate was 10% in one
session and 20% in the other session, with an equal number of participants
completing the 10% or 20% session first. Within each session, tone order was
pseudorandomized with the constraint that two deviant tones could not be
presented sequentially, and each session started with five consecutive standard
tones. Participants were instructed to sit comfortably and remain as still as
possible during the experiment while watching a silent movie. They were not
required to make any responses.

In order to replicate and to generalize the findings to a different presentation
rate, for a second group of participants, we employed a longer IOI of 610 ms
in an isochronous oddball sequence with the 10% deviant tones condition.
Otherwise, the procedure for group two was the same as that for group one.

For convenience, we refer to the 500 ms IOI experimental sessions (10%
and 20% deviance occurrence rates) as the Fast Experiment, and the 610 ms
IOI experimental session (10% deviance occurrence rate only) as the Slow
Experiment.

II.4.3 Participants

Sixteen participants (17–22 years old, mean age 18.93± 1.39; 12 female) for the
Fast Experiment and a different thirteen participants (17–21 years old, mean
age 18.62 ± 1.33, 10 female) for the Slow Experiment were recruited from the
McMaster University community. Participants were screened by a self-report
survey to ensure they had normal hearing, were neurologically healthy and were
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right-handed. Signed informed consent was obtained from each participant.
The McMaster University Research Ethics Board approved all procedures.
Participants received course credit or reimbursement for completing the study.

II.4.4 Electroencephalographic Recording

The EEG was sampled at 2048 Hz (filtered DC to 417 Hz) using a 128-channel
Biosemi Active Two amplifier (Biosemi B.V., Amsterdam). The electrode array
was digitized for each participant (Polhemus Fastrak) prior to recording. EEG
data were stored as continuous data files referenced to the vertex electrode.

II.4.5 Signal Processing of the EEG Data

Three stages of signal processing were conducted in order to examine the be-
havior of auditory evoked and induced oscillations in bilateral auditory cor-
tices. In the first stage, we obtained a dipole source model based on auditory
evoked responses, following Fujioka et al. (2012). The second stage segmented
and categorized the source waveform into epochs based on the relative or-
der of the presented auditory sequence. In the third stage, epochs containing
excessive artifacts were rejected.

Stage 1: Dipole Source Modeling

The continuous EEG data was band-pass filtered 0.3–100 Hz for each par-
ticipant for each session, and then segmented into epochs covering the time
period -100 to 300 ms, time locked to stimulus onset. Epochs containing stan-
dard tones that preceded and followed other standard tones with amplitudes
exceeding 150 µV were rejected as artifacts. The surviving standard epochs
(89.6% ± 5.1% for 10% session and 89.5% ± 5.1% for 20% session of Fast
Experiment, and 88.4% ± 5.5% of Slow Experiment) were averaged into ERP
waveforms and band pass filtered between 1 and 20 Hz (Figure 2). To con-
firm that our oddball context was set up appropriately, a similar procedure
was performed on the deviant epochs, and the average of the standard epochs
subtracted from the average of the deviant epochs in order to produce differ-
ence waves. As can be seen in Figure 2, both mismatch negativity (MMN)
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and P3a responses can be observed, consistent with the literature on ERP re-
sponses in oddball contexts (Friedman et al., 2001). Paired t-tests, performed
on the average of channels in the mid-frontal area (F1, Fz, F2, FC1, FCz, and
FC2), confirmed the presence of an MMN component between 100 and 120 ms;
specifically, deviant trials were significantly more negative than standard trials
in this time window in all sessions of both Fast and Slow Experiments (ps <
0.001). There was also a P3a component between 200 and 220 ms: deviant
trials were significantly more positive than standard trials in this time window
in all sessions of both Fast and Slow Experiments (ps < 0.001). It is worth
noting that although the latencies of MMN and P3a observed in the current
study were earlier than are sometimes reported (e.g., MMN: 150–250 ms, P3a:
250–300 ms; Friedman et al., 2001; Näätänen et al., 2007; Polich, 2007), our
results are consistent with several previous studies showing that the latencies
of MMN and P3a are as short as around 100 and 200 ms, respectively, when
the stimuli are presented in a rhythmic context with IOIs less than or equal
to 700 ms (e.g., Regnault et al., 2001; Jongsma et al., 2004; Pablos Martin et
al., 2007; Matsuda et al., 2013).

We employed a dipole source model as a spatial filter for increasing the
signal-to-noise ratio of the EEG signal generated from left and right auditory
cortices for subsequent analyses. A previous study showed that beta activities
generated in both auditory and motor cortices entrained to external auditory
rhythms when participants passively listened to isochronous sequence of tones
(Fujioka et al., 2012). In the present study, we were primarily interested
in responses from auditory areas, so we analyzed the EEG signals in source
space rather than from surface channels, to extract the oscillatory signals gen-
erated from auditory cortex while attenuating signals generated from other
brain regions. The source modeling was performed on each participant’s mean
standard ERP waveform using the multiple source probe scan algorithm and
the four-shell ellipsoid model included in the Brain Electrical Source Analysis
(BESA) software package. Two auditory cortex sources were estimated for
each participant for the auditory evoked P1 (60–100 ms; Figure 2) with the
dipoles constrained to be symmetric across hemispheres in location but not
orientation. P1 was chosen because it is the dominant peak at fast presenta-
tion rates (N1 peaks are strongly reduced at fast rates; Näätänen and Picton,
1987), and is generated primarily from primary auditory cortex (Godey et al.,
2001). The mean locations of fitted dipoles across participants were at Ta-
lairach coordinates -45.0, -3.2, 16.2 with orientation (0.2, 0.6, 0.8) and 45.0,
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Figure II.2: Auditory evoked event-related potential (ERP) waveforms of mid-
frontal electrodes from the (A) 10% session and (B) 20% session of the Fast Ex-
periment, and (C) Slow Experiment. Waveforms were collected using 128 EEG
channels, and averaged across channels located at the mid-frontal area (F1, Fz, F2,
FC1, FCz, and FC2), with stimulus-onset at 0 ms (indicated by the vertical dashed
line in each plot). The shaded areas indicate the SEMs of standard trial (blue),
deviant trial (red), and the difference waveform of deviant minus standard trial
(black). The ERP waveforms of standard trials show a prominent P1 component
around 70–90 ms (indicated by the blue line above each waveform). P1 topogra-
phy of each session (inset; red represents positive potential, blue negative) shows
a mid-frontal focus, consistent with generators in primary auditory cortex. The
ERP difference waveforms show significant MMN (100–120 ms, indicated by the
black line below each waveform) and P3a (200–220 ms, indicated by the black line
above each waveform) components. The topography of the MMN (inset) shows the
typical frontal negativity of the MMN. The P3a is larger in deviant than standard
trials (inset), with typical topography showing a frontal positivity.

-3.2, 16.2 with orientation (-0.1, 0.7, 0.7) in the 10% session of the Fast Exper-
iment; and at -45.4, -3.1, 17.2 with orientation (0.3, 0.7, 0.7) and 45.4, -3.1,
17.2 with orientation (-0.1, 0.8, 0.6) in the 20% session of the Fast Experiment;
and -44.9, -4.7, 16.4 with orientation (0.1, 0.7, 0.7) and 44.9, -4.7, 16.4 with
orientation (-0.2, 0.7, 0.7) in the Slow Experiment, which are all closely located
at bilateral primary auditory cortices with orientations toward the mid-frontal
surface area (Figure 3). The residual variances of the source fittings for each
session for each participant were between 5% and 10%.
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Figure II.3: The mean locations and orientations of dipoles. Dipole locations
were symmetrically fitted for the auditory P1 ERP component across participants
for each (A) 10% session and (B) 20% session of the Fast Experiment, and (C)
Slow Experiment, presented in both sagittal and coronal planes. The fitted dipoles
are closely located at bilateral primary auditory cortices with orientations toward
frontal midline.

Stage 2: Epoching

Based on individual participant dipole model fits for each session, the source
activities of single trials in auditory cortices were extracted for all epoch types
using signal space projection following Fujioka et al. (2012). Because we were
interested in the inter-stimulus neural responses, and to avoid edge effects in
subsequent time-frequency analysis, the unfiltered EEG data of each session
were segmented into relatively long -500 to 1000 ms epochs, where 0 ms rep-
resents a stimulus onset. The epochs were categorized based on the relative
position of tones presented in the experiment, including standard (standard
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tones between two standard tones), deviant (deviant tones between two stan-
dard tones) and SpreD (standard tones preceding a deviant tone and following
a standard tone). The individual source waveform epochs as well as raw chan-
nel EEG data were exported from BESA to MATLAB for further processing.

Stage 3: Artifact Rejection

Another artifact rejection procedure was applied to the raw 128-channel data.
Epochs identified to have artifacts were noted, and the corresponding source
waveform epochs were eliminated from further analysis. Thus we made sure
the source waveform epochs entered into the time-frequency analysis in the
next stage were artifact-reduced and unfiltered, to maximize the signal-to-noise
ratio. Because we aimed to reject epochs containing EOG or EMG responses,
each raw channel EEG epoch was filtered by a third-order Butterworth band
pass filter (1–60 Hz). The filtered EEG epochs that exceeded a threshold
(40 µV, compared to the baseline mean voltage of -100–0 ms) for more than
10% of the epoch at any channel were excluded from further analysis. An
additional seven participants’ data were not included in the current data set
because more than 50% of their epochs did not pass the criteria at this stage.
For the remaining participants 66.18% ± 8.68% of the epochs in the Fast
Experiment and 71.57% ± 10.54% in the Slow Experiment were accepted for
further analysis.

II.4.6 Time-Frequency Decompositions

Time-frequency decompositions were calculated for each participant on each
single-epoch source waveform in left and right auditory cortices and for each
stimulus condition using a Morlet wavelet transform (Bertrand et al., 1994)
for beta frequency band.

In order to remove the evoked (phase-locked) responses from the epoch
and thereby obtain the induced (non-phase-locked) responses for subsequent
analyses on beta band, we averaged the source waveform for each trial type
(evoked response estimate), and then subtracted it from each source waveform
epoch (Kalcher and Pfurtscheller, 1995; Fujioka et al., 2012).
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The Morlet wavelet transformation was calculated for each time point for
each induced epoch with 32 logarithmically spaced frequency bins between 15
and 25 Hz. The wavelet was designed such that the half-maximum width was
equal to 3.25 periods of the lowest frequency while the width was equal to
3.56 periods of the highest frequency, linearly interpolated for each frequency
bin in between. Subsequently, 300 ms at the beginning and ending of the
epoch were eliminated to avoid edge effects. The induced oscillatory mean
signal power was calculated by averaging the magnitude of each time-frequency
point of wavelet coefficients across trials. Normalizing this to the mean value
of the standard epochs across the whole epoch for each frequency resulted
in relative signal power changes expressed as a percentage (Fujioka et al.,
2012), and all types of epochs within the same session were compared to the
same baseline (mean power in the averaged standard epoch between 0 and
500 ms). The fluctuation in power for each type of epoch at each frequency
was visualized as a function of time and frequency in color-coded maps of
event-related synchronization and desynchronization (Pfurtscheller and Lopes
da Silva, 1999).

II.4.7 Discrete Fourier Transform for Neural Oscillation
Entrainment

In order to examine whether the observed neural oscillation activity entrained
to the presented stimulus rate, we analyzed the time series of each participant’s
normalized mean induced beta power (derived as above) via discrete Fourier
transforms (DFT). For each participant, we took the -200 to 700 ms epoch
for the averaged induced beta power from the wavelet transform, zero-padded
to 5 s in order to increase the frequency resolution of the DFT to a bin size
0.2 Hz. For each of the beta power time series, the power spectrums revealed
by the DFTs were averaged across participants at each of the left and right
auditory cortices.
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II.4.8 Data Analysis and Statistics

In order to examine whether the deviant tone affected the beta band induced
power (1) we compared the standard and deviant trials for each individual par-
ticipant for both the 10% and 20% deviance sessions to identify deviant-elicited
prediction error responses, and (2) we compared this difference of “standard -
deviant” between the 10% and 20% deviance rate sessions to investigate the
effect of prediction precision, as deviants in the 10% session are less predicted
than those in the 20%. We analyzed the window 0–500 ms for the Fast Exper-
iment and 0–610 ms for the Slow Experiment, time-locked to stimulus onset.
The standard and deviant trials of individual participants were then used for
random effects analysis.

To assess the statistical differences between the induced beta band powers
while controlling for multiple comparisons, we performed cluster-based permu-
tation analyses on the two-dimensional time-frequency maps (Maris and Oost-
enveld, 2007). First, we used a Wilcoxon signed-rank test, a non-parametric
paired difference test, to examine the mean power difference in the beta band
between each paired time-frequency sample from 0 to 500 ms for the Fast
Experiment or 0–610 ms for the Slow Experiment. Second, we grouped the
time-frequency adjacent samples reaching a threshold of p < 0.05 into sin-
gle clusters. Third, we summed the test statistics within each cluster into a
cluster-level statistic, which became the observed value. Fourth, to build a
permutation distribution, we randomly interchanged the experimental condi-
tions for each participant, repeated the previous three steps 5000 times, and
extracted the largest cluster-level statistics for each repetition. The final p-
value was calculated by comparing the observed value of each cluster with the
permutation distribution.

II.5 Results

We first tested whether the induced beta power entrainment phenomenon re-
ported by Fujioka et al. (2012) was replicated in the standard trials. In the
Fast Experiment, the induced power in the beta band of the standard trials
showed a clear entrainment to the IOI rate (2.0 Hz). Specifically, the DFT
analysis on induced beta band power showed the strongest power at 2.0 Hz for
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both the 10% and 20% sessions at both left and right auditory cortices (Fig-
ures 4A–D). In the Slow Experiment, the induced power in the beta band of
the standard trials showed a clear entrainment to the slower IOI rate (1̃.6 Hz)
with the DFT analysis showing the strongest power at 1.6 Hz at both left and
right auditory cortices (Figures 4E,F). These results replicate previous stud-
ies showing that induced beta band power entrains to the IOI of isochronous
stimulus sequences (Fujioka et al., 2009, 2012, 2015; Cirelli et al., 2014).

We then examined whether trial type (deviant vs. standard) and session
(deviant rate) modulate the induced beta power, in additional to the entrain-
ment activities. In the Fast Experiment, the cluster-based permutation test
identified one significant cluster in the 10% session at right auditory cortex,
in which the mean induced power at 16–20 Hz, within the range of low-beta
band (15–20 Hz), around 200–300 ms after stimulus onset was larger in the
deviant trials than the standard trials (p = 0.044; Figure 5A) with a large ef-
fect size (rank correlation = 0.67). We did not identify any significant cluster
at left auditory cortex. We examined the same contrast for the 20% session.
Although we failed to identify any significant cluster at either left or right au-
ditory cortex, the power difference of “deviant–standard” trials peaked around
200–300 ms in the low-beta band at right auditory cortex (Figure 5B), which is
consistent with the results of the 10% session. We further compared the power
difference of “deviant–standard” trials between the 10% and 20% sessions at
the previously identified cluster. The Wilcoxon signed-rank test showed that
the power difference was significantly larger in the 10% session than in the 20%
session (p = 0.026), with a large effect size (rank correlation = 0.56). Taken to-
gether, this indicates that the induced power in low-beta band around 200–300
ms after stimulus onset was higher in deviant trials than in standard trials,
and that this effect was larger in the 10% session than in the 20% session.

The results of the Slow Experiment replicated the results of the Fast Exper-
iment. A cluster-based permutation test showed only one significant cluster
around 200–300 ms after stimulus onset at 15–19 Hz at right auditory cortex
(p = 0.026; Figure 5C), in which the mean induced power was larger in the
deviant trials than the standard trials with a large effect size (rank correlation
= 0.79).

To further distinguish whether the deviant-induced responses in low-beta
band are associated with prediction error or response to novelty (rare events
in the preceding local context), given that both processes can be engaged by
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Figure II.4: Power fluctuations of induced beta (15–25 Hz) and associated dis-
crete Fourier transformation (DFT) analyses. Fast Experiment: (A) shows the
induced beta power fluctuations in the standard trials of the 10% and 20% sessions
in left auditory cortex, with shaded areas indicating SEM and vertical dashed lines
representing the onsets of tones at 0 and 500 ms. The induced beta power decreases
after the onset of a standard tone, and increases (or “rebounds”) again before the
onset of the next tone. The DFT analyses (B) confirmed entrainment to the stim-
ulus presentation rate (dashed lines) in each case, with maximum power at 2.0 Hz.
The same results were replicated at the right auditory cortex (C,D) of the Fast
Experiment. Slow Experiment: (E) shows the induced beta power fluctuations in
both left and right auditory cortex, with the vertical dashed lines representing the
onsets of tones at 0 and 610 ms. The DFT analyses (F)confirmed that the power
entrained to the stimulus presentation rate (dotted lines), with maximum power
at 1.6 Hz.

deviant stimuli in an oddball context (Friedman et al., 2001), we performed
an additional analysis for standard tones occurring in different places in the
sequence. This was based on the idea that in an oddball sequence, not only can
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the presentation of a deviant tone violate a prediction for a standard tone, but
also the presentation of a standard tone that follows several standard tones in
a row can violate an expectation (prediction) for a deviant tone. Specifically,
the more standards that occur in a row, the more likely it is that a deviant
will occur next, given a fixed overall probability of a deviant. On the other
hand, a standard occurring after several standards in a row would not elicit
a novelty response, as there is no change in the stimulus. If the beta band
response that we measured reflects prediction error and not response to novelty,
then the response to standard tones should depend on how many standards
occurred prior to the standard of interest (as each successive standard builds
prediction for an eventual deviant), whereas if the response simply associates
with novelty, there should be a larger response to standards in the 20% than
10% condition, but no effect of how many standards occur in a row. Given
that a deviant tone must occur eventually along the time line (Luce, 1986;
Nobre et al., 2007), the conditional likelihood of encountering a standard tone
decreases with the number of repetitions of the standard tone in a row, and
thus, on average, the prediction of standard tones preceding a deviant tone
will be lower in the 10% than in the 20% session since there are on average
more standards in a row before each deviant in the 10% condition.

We can compare responses to standards between 10% and 20% sessions
that occur either immediately before a deviant (SpreD) or between two other
standards in the sequence (here referred to as SbS). SbS trials occur earlier
on average in the sequence compared to SpreD trials. This allows a test of
the two alternative hypotheses. Specifically, if the induced low-beta power
response at right auditory cortex results from prediction error, the power dif-
ference between SpreD trials (20% session–10% session) should be larger than
the difference between SbS trials (20% session–10% session), because the pre-
diction error (mismatch between standard and deviant tone) is modulated by
conditional likelihood (the position of standard tones in a stimulus sequence).
On the other hand, if the induced low-beta power response is modulated by
the novelty in the preceding context, the power difference between SpreD trials
(20% session–10% session) should be equal to the difference between SbS trials
(20% session–10% session), because the conditional likelihood does not matter.
Indeed, if anything, the SbS trials would be predicted to show a larger induced
low-beta power difference than the SpreD trials because the SbS trials consti-
tute a deviation from a more recently presented deviant tone whereas SpreD
trials follow a larger number of standard trials. A cluster-based permutation
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Figure II.5: Time-frequency maps of induced power difference between deviant
and standard trials in the beta frequency range (15–25 Hz) at right auditory cortex
of Fast and Slow Experiments. The shaded areas under each time-frequency map
indicates SEM of the low-beta (15–20 Hz) power fluctuations. In the Fast Experi-
ment, standard/deviant tones begin at 0 ms, and the onset time of the next tone is
500 ms (dashed lines). The black contours represent the significant time-frequency
cluster. (A)The difference between time-frequency maps (deviant minus standard
trials) shows that the deviant tone in the 10% sessions induced stronger power
compared to the standard at right auditory cortex, around 16–20 Hz and 200–300
ms. (B) The difference between time-frequency maps (deviant minus standard tri-
als) did not show any significant difference in the 20% session at right auditory
cortex. (C) In the Slow Experiment, the standard/deviant tones begin at 0 ms,
and the onset time of the next tone is 610 ms (dashed lines). The difference be-
tween time-frequency maps (deviant minus standard trials) shows that the deviant
induced stronger low-beta (15–19 Hz) power compared to the standard at right
auditory cortex, around 200–300 ms. (D) This shows the subtraction of the two
difference maps SpreD trials (20% minus 10%) minus SbS trials (20% minus 10%)
of Fast Experiment. The result showed that the power difference is larger between
SpreD trials than between SbS trials across sessions, around 15–19 Hz and 50–250
ms.

test in low-beta band at right auditory cortex showed that the SpreD trials
had a larger induced power difference than the SbS trials (p = 0.045; Figure
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5D) around 50–250 ms at 15–19 Hz with a large effect size (rank correlation =
0.74). This suggests that the increased induced low-beta power is elicited by
prediction error, modulated by conditional likelihood, rather than response to
novelty, modulated by rareness of a pitch in the preceding context.

Another additional analysis was performed to investigate whether the cur-
rent results were associated with the mechanism of auditory stimulus-specific
adaptation (SSA) rather than sensory prediction. Auditory SSA refers to the
phenomenon that the neural response to the same tone decreases as the num-
ber of times it is repeated increases, and raises the possibility that responses
to rare tones in an oddball context reflect release from adaptation rather that
prediction or response to novelty (e.g., Butler, 1968; Näätänen et al., 1988;
Lanting et al., 2013). In the present study, it is possible that the magnitude
of the low-beta response to pitch deviants reflects a release from adaptation to
the repeated standard tones in our oddball context. Further, the finding that
the low-beta power response was stronger on deviant trials in the 10% than
20% session might be due to the fact that there were on average more repeated
standard tones preceding a deviant trial in the former case. In order to inves-
tigate whether the low-beta response was modulated by a predictive process,
we compared conditions where the effect of SSA was constant, but prediction
differed. Specifically, to accomplish this, we compared 10% and 20% sessions
of the Fast Experiment where the number of standards since the previous de-
viant was held constant. Thus, we averaged separately deviant effects where
there were two standards, three standards, four standards, five standards, or
six standards since the last deviant. In each case, we took the low-beta power
difference of deviant minus standard trials and compared between the 10% and
20% sessions. The critical point is that, for a given number of standard trials
preceding a deviant, the sensory prediction hypothesis indicates that deviants
are more expected in the 20% than 10% session because there is a generally
higher probability of a deviant in the 20% condition. Specifically, the condi-
tional likelihoods of encountering a deviant tone can be estimated by summing
up the empirical occurrence rates of a deviant tone in the all the locations in
a sequence following a deviant trial, until the current location (Figure 6A).
We performed a cluster-based permutation test on the low-beta band at right
auditory cortex. We did not find any cluster to be significant, but there was a
trend for the power difference at the cluster at 200 to 300 ms to be larger in the
10% session than in the 20% session (Figure 6B) as predicted by the sensory
prediction hypothesis. The fact that it did not reach conventional significance
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levels is likely due to the small number of trials (in the 10% session, 141.0
± 19.0 deviant trials were included in the current analysis, compared to the
244.6 ± 37.8 trials that were included in previous analyses). We compared the
maximum deviant minus standard power difference of the averaged low-beta
frequency band between 10% and 20% sessions in the time window 130–370 ms
for each participant, time-locked to stimulus onset (Figure 6C). The Wilcoxon
signed-rank test showed that the maximum low-beta power difference between
deviant and standard trials was significantly larger in the 10% session than in
the 20% session (2.96 ± 1.09 vs. 0.32 ± 0.45, p = 0.040) with a medium effect
size (rank correlation = 0.53). This suggests that the increased induced low-
beta power is associated with the degree of prediction error when we controlled
the effect of SSA to be the same in both sessions.

Figure II.6: The cumulative conditional likelihoods of encountering a deviant
tone, and the time-frequency maps of induced difference (deviant minus standard)
responses on matched trial locations in the beta frequency range (15–25 Hz) at
right auditory cortex between the 10% and 20% sessions of Fast Experiment. (A)
The cumulative conditional likelihoods of encountering a deviant tone as a function
of the nth location following a deviant trial in 10% session (red) and 20% session
(blue) with error bar indicating SEM. This was calculated by summing up the
empirical occurrence rates of deviant tones at the current location and all preceding
locations in the experiment. The likelihood of a deviant tone being presented at the
nth location is the accumulation of the occurrence rate from the first to nth location
following the previous deviant trial. (B) The subtraction of the two difference maps
in the 10% session (deviant minus standard) minus the 20% session (deviant minus
standard) at the second to the sixth trial following a deviant tone. Although the
cluster-based permutation test did not find any cluster to be significantly different,
the maximum of low-beta power difference (deviant minus standard) within the
130 to 370 ms window, time-locked to stimulus onset, was significantly larger in
the 10% session than in the 20% session. (C) The shaded areas indicate SEM
of the averaged low-beta (15–20 Hz) power difference (deviant minus standard)
fluctuations of 10% session (red) and 20% session (blue).

In sum, we showed that the deviant tone induced an increase in power in
the low-beta band around 200–300 ms following tone onset in right auditory
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cortex, regardless of the presentation rate. Also, the effect was stronger when
the deviance occurrence rate was lower. Furthermore, two additional analyses
suggest that the induced low-beta power was higher for standard tones that
violated a stronger prediction for a deviant tone, confirming that the low-beta
response is more likely to reflect prediction error than response to novelty.
Also, the induced low-beta power response was larger on deviant trials when
they were less predictable, even when the effects of SSA were controlled, again
suggesting that the low-beta response to deviant tones reflected processes as-
sociate with prediction.

II.6 Discussion

We sought to understand the roles of beta oscillations in entrainment to rhyth-
mically predictable sequences by introducing occasional unpredictable pitch
deviants. We replicated previous findings related to timing entrainment in
induced beta power (Snyder and Large, 2005; Fujioka et al., 2009, 2012, 2015;
Iversen et al., 2009; Cirelli et al., 2014), showing that fluctuations in beta power
entrained to the rate of presented isochronous auditory stimulus sequences in
both left and right auditory cortices. In addition, we found that induced beta
band power at right auditory cortex increased around 200–300 ms after the
onsets of deviant tones compared to standard tones, especially in the low-beta
range (15–20 Hz). This effect was larger when the deviant pitch was less likely
to occur (10% vs. 20%), suggesting it is related to prediction processes. The
right lateralization of the beta response to pitch deviants is consistent with
the idea that the right auditory cortex is more sensitive for processing spectral
information than its left counterpart (e.g., Zatorre et al., 1992, 2002). To the
best of our knowledge, this is the first study to show that induced beta power
in auditory cortex is sensitive to an unpredicted pitch change, even when it is
presented at the predicted time. This suggests that induced beta power plays
a role in sensory prediction for both what will occur as well as when it will
occur.

The increased beta response with decreased likelihood of deviance occur-
rence indicates that beta oscillations may associate with precision-weighted
prediction error. It has been suggested that while prediction error signals do
not necessarily involve attention, high precision-weighted prediction errors act
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through attention to increase the gain of neural responses, acting as teaching
signals for subsequent prediction updating (Friston, 2009; den Ouden et al.,
2012; Hohwy, 2012; Schröger et al., 2015). According to predictive coding the-
ory, prediction error is defined as the sensory mismatch between the predicted
and perceived stimuli, and precision is the inverse of the input variance of
the context which determines whether or not to deploy attention for updating
future predictions (den Ouden et al., 2012). For example, prediction precision
is higher for standard tones in the 10% than 20% session, because on average
there are fewer deviant tone are intermixed in the same length of sequence in
10% than 20% sessions. Thus, larger beta power responses to deviants in the
10% compared to 20% session might indicate that the process involved is one
of prediction precision. That beta oscillations are associated with deploying
attention for improving perceptual performance is supported by attentional
blink studies showing that enhanced phase synchronization in low-beta band
among frontal–parietal–temporal regions involved in the attentional network
is associated with improved behavioral performance for targets with abrupt
onsets (Gross et al., 2004; Kranczioch et al., 2007). Further, it has also been
suggested that gamma oscillations (>30 Hz) reflect feed forward prediction
error signals (Herrmann et al., 2004) while beta oscillations represent a subse-
quent feed back processing stage for updating prediction (Arnal and Giraud,
2012), again consistent with the idea presented here that low-beta is sensitive
to the precision of prediction, and associates with attention and prediction
updating.

The latency of the low-beta response also implies that it is likely associated
with attention and prediction updating. The low-beta response to pitch de-
viants in our data was around 200–300 ms after tone onset, which was later
than the well-studied MMN prediction error response in the time waveform
ERP, which was around 100 to 120 ms (Figure 2), consistent with other stud-
ies employing rhythmic sequences with relatively fast IOIs (Näätänen et al.,
2007; Pablos Martin et al., 2007; Fujioka et al., 2008; Matsuda et al., 2013;
Hove et al., 2014). This suggests that the low-beta response reflects a pro-
cessing stage that is later than detecting prediction error. Interestingly, the
200–300 ms timing of the beta band power response occurs around the same
time as P3a (Regnault et al., 2001; Jongsma et al., 2004, see Figure 2 for
P3a latency), which is known to reflect exogenous attentional orienting and
attentional updating (Friedman et al., 2001; Polich, 2007). The P3a and in-
duced low-beta power likely reflect distinct neural responses because the P3a is
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phase-locked to stimulus onset and originates in the anterior cingulate cortex
and related structures (Polich, 2007) while, in contrast, the induced low-beta
power response is not phase locked to stimulus onset and is observed with a
spatial filter located in auditory regions. However, the overlapped response
latencies are consistent with the idea that attentional processing in frontal
areas, reflected by P3a, interacts with prediction precision, and is associated
with induced beta power in auditory cortex.

To further evaluate the idea that beta is associated with precision-weighted
prediction error, it is important to consider the alternative possibility that the
beta band power increases we observed following pitch deviants are simply
a response to novelty in the preceding local context rather than prediction
error. Indeed, a number of studies in humans and other animals have shown
effects of rare stimuli on both induced and evoked beta oscillations (Haenschel
et al., 2000; Kisley and Cornwell, 2006; Hong et al., 2008; Fujioka et al.,
2009; Pearce et al., 2010; Kopell et al., 2011). Our results strongly favor the
idea that induced beta power associates with prediction rather than a simple
response to rareness for two reasons. First, the induced power fluctuations of
beta oscillation entrain to external isochronous tone sequences in the absence
of deviants (Fujioka et al., 2012), which suggests that a primary function of
induced beta power concerns temporal prediction rather than detecting rare
events. Second, our analyses of standard tones showed that induced low-beta
power responses were stronger after the onset of standard tones that were less
likely to occur (i.e., the last standard tone occurring after an uninterrupted
series of sequential standard tones, SpreD trials) than standard tones that
were more likely to occur (i.e., standards occurring earlier in a sequence of
standards, SbS trials). This confirms that increased induced low-beta power
after tone onset reflects a process that is sensitive to the precision of prediction
error.

Our results also suggest that the low-beta response is associated with preci-
sion weighted prediction error while controlling possible effects of SSA. Previ-
ous studies on adaptation show that the neural response decreases to repeated
tones, and that an increased response to the presentation of a new (rare) tone
in an oddball context could reflect a release from this adaptation (e.g., Butler,
1968; Näätänen et al., 1988; Lanting et al., 2013). By selecting the deviant
trials in the 10% and 20% sessions that had a matched number of standard
tones preceding them we equated any effects of SSA between sessions. The
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results showed that the low-beta response to a deviant tone was larger in the
10% session than in the 20% session even after SSA was equated. Thus, the
lower conditional likelihoods of encountering a deviant tone in the 10% than
20% session associate with a larger low-beta response on deviant trials. This
analysis suggests that the low-beta response associates with precision-weighted
prediction error although there may also have been a smaller effect of stimulus
adaptation. Further research is needed on this question (e.g., see Herrmann et
al., 2013, 2014, 2015).

A remaining question concerns the relation between prediction of rhythmic
timing (Fujioka et al., 2012, 2015) and prediction precision for pitch, given that
induced beta power is interactively modulated by both factors. Here we pro-
pose that timing and content (when and what) interact through attentional
processing. Dynamic attending theory proposes that internal rhythmic en-
trainment to external temporal regularities is accomplished by a combination
of self-sustained neural oscillation and the dynamic allocation of attention in
the temporal dimension (Jones and Boltz, 1989; Large and Jones, 1999; Jones,
2010). The self-sustained oscillation acts as a time frame, and adapts its rate
and phase to the external auditory rhythm. Attention increases at impor-
tant time points such as the onset of beats, which is guided by the temporal
prediction of the oscillatory time frame, and reflects temporal prediction for
upcoming events during rhythmic entrainment. This attentional rhythmic en-
trainment is characterized as exogenous orienting (Jones et al., 2006; Nobre
et al., 2007; Coull and Nobre, 2008; Jones, 2010), which is involuntary and
automatic (Rohenkohl et al., 2011; Triviño et al., 2011; Correa et al., 2014).
Further, an MEG study has shown that the mathematical model of dynamic
attending theory predicts delta power activities generated in auditory cortex
(Herrmann et al., 2016), suggesting that rhythmic attending modulates oscil-
latory activities in auditory cortex. In this way, it is possible that rhythmic
beta power fluctuations representing attention to events with temporal reg-
ularity increase perceptual processing of the content of the input stream at
predictable time points, such as beat onsets. The idea that beta oscillations
reflect temporal attention is also consistent with converging evidence that sim-
ilar processes occur in the motor system, where rhythmic temporal structure
also plays a critical role (e.g., Nobre et al., 2007; Coull and Nobre, 2008; Moril-
lon et al., 2015). This is particularly interesting given that an auditory rhythm
sets up beta power oscillations not only in auditory cortex, but also in motor
areas even though movement is not involved. Thus, beta power oscillations in
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response to a rhythmic auditory input have also been interpreted as reflecting
communication between auditory and motor system in the cortex (Jenkinson
and Brown, 2011; Fujioka et al., 2012, 2015; Kilavik et al., 2013).

A lack of concurrent behavioral measurements to confirm whether induced
beta power modulates perceptual sensitivity is a limitation of the current study.
Further experiments are needed to examine this directly. However, the evi-
dence to date shows that increased beta power before a stimulus onset reflects
enhanced predictive readiness and improves perceptual performance. Studies
using an auditory spatial temporal order judgments task (Bernasconi et al.,
2011), an auditory temporal delay detection task (Arnal et al., 2015), intensity
detection task (Herrmann et al., 2016), pitch distortion detection task during
music listening (Doelling and Poeppel, 2015), or an audiovisual temporal inte-
gration task (Geerligs and Akyürek, 2012), all show that when the beta band
power happened to be larger in the pre-stimulus period, participants made
more accurate judgments or had enhanced audiovisual integration compared
to when beta power was smaller. Together, the results of these studies are
consistent with our speculation that beta oscillations reflect attention (Wró-
bel, 2000; Buschman and Miller, 2007, 2009).
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Chapter III

Beta oscillatory power
modulation reflects the
predictability of pitch change

Chang, A., Bosnyak, D.J., Trainor, L.J. (2018). Beta oscillatory power mod-
ulation reflects the predictability of pitch change. Cortex, 106, 248-260. doi:
10.1016/j.cortex.2018.06.008

Copyright © 2018 by the Elsevier Ltd. Reprinted with permission. No further reproduction
or distribution is permitted without written permission from the Elsevier Ltd.

III.1 Preface

The study reported in Chapter II cannot distinguish whether the beta power
modulation following a pitch change reflects a process of pitch prediction per se
or a reaction to a pitch change, because the neural modulation was measured
following the pitch change. If beta power entrainment reflects prediction for
pitch, predictable pitch changes should be preceded by modulated beta power
that reflects the prediction. In Chapter III, two isochronous auditory tone
sequences with infrequent pitch changes were presented, such that the only
difference between them was that the pitch change was predictable (every 5th
tone) in one sequence but unpredictable (pseudorandom) in the other sequence.
University undergraduates were recruited to passively listen to these auditory
sequences while the EEG activities were recorded. Results showed that beta
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power entrainment activity prior to a pitch change is modulated by its pre-
dictability. Furthermore, trial-by-trial correlations showed that predictive beta
power entrainment activity prior to a pitch change correlates with the size of a
post-change prediction error neural response (P3a). Thus, this study demon-
strates that beta power entrainment reflects the prediction of both when and
what (pitch change).

III.2 Abstract

Humans process highly dynamic auditory information in real time, and regu-
larities in stimuli such as speech and music can aid such processing by allowing
sensory predictions for upcoming events. Auditory sequences contain informa-
tion about both the identity of sounds (what) and their timing (when they
occur). Temporal prediction in isochronous sequences is reflected in neural os-
cillatory power modulation in the beta band (~20 Hz). Specifically, power de-
creases (desynchronization) after tone onset and then increases (resynchroniza-
tion) to reach a maximum around the expected time of the next tone. The cur-
rent study investigates whether the predictability of the pitch of a tone (what)
is also reflected in beta power modulation. We presented two isochronous au-
ditory oddball sequences, each with 20% of tones at a deviant pitch. In one
sequence the deviant tones occurred regularly every fifth tone (predictably),
but in the other sequence they occurred pseudorandomly (unpredictably). We
recorded the electroencephalogram (EEG) while participants listened passively
to these sequences. The results showed that auditory beta power desynchro-
nization was larger prior to a predictable than an unpredictable pitch change.
A single-trial correlation analysis using linear mixed-effect (LME) models fur-
ther showed that the deeper the pre-deviant beta desynchronization depth,
the smaller the event-related P3a amplitude following the deviant, and this
effect only occurred when the pitch change was predictable. Given that P3a
is associated with attentional response to prediction error, larger beta desyn-
chronization depth indicates better prediction of an upcoming deviant pitch.
Thus, these findings suggest that beta oscillations reflect predictions for what
in additional to when during dynamic auditory information processing.
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III.3 Introduction

Humans need to process highly dynamic, fleeting incoming sensory informa-
tion in real time, including speech and music. Structural regularities (e.g.,
beat, meter and pitch patterns in music; timing, stress, phonological, syntac-
tic and semantic structure in speech) and the context in which sensory events
occur allow predictability, which can greatly simplify the problem. Indeed,
there is considerable evidence that sensory systems extract regularities from
perceived external events and predictively encode upcoming sensory input, in-
cluding what (predictive coding) it might be and when (predictive timing) it
might happen (Arnal & Giraud, 2012; Friston, 2005; Heilbron & Chait, 2018;
Nobre, Correa, & Coull, 2007; Schröger, Marzecová, & SanMiguel, 2015; Win-
kler, Denham, & Nelken, 2009), which facilitates perceptual processing in real
time (Henry & Obleser, 2012; Henry, Herrmann, & Obleser, 2014; Hickok,
Farahbod, & Saberi, 2015; Rohenkohl, Cravo, Wyart, & Nobre, 2012). Pre-
diction is also essential for anticipatorily deploying auditory attention (Large
& Jones, 1999; Schroeder & Lakatos, 2009) and coordinating motor actions
(Chang, Livingstone, Bosnyak, & Trainor, 2017; Kragness & Trainor, 2016,
2018; Trainor, Chang, Cairney, & Li, 2018; Warren, Wise, & Warren, 2005).

Neural oscillatory activities are regarded as essential neural mechanisms for
sensory prediction. The power of beta band (~20 Hz) has been shown to reflect
predictive timing (Arnal & Giraud, 2012; Cirelli et al., 2014; Fujioka, Ross,
& Trainor, 2015; Fujioka, Trainor, Large, & Ross, 2012; Morillon & Baillet,
2017), but whether it reflects predictive coding (the what domain) remains un-
clear. Previous electroencephalographic (EEG) and magnetoencephalographic
(MEG) studies show that when listening to an isochronous tone sequence, in-
duced (non-phase-locked) beta oscillation in bilateral primary auditory cortices
desynchronizes following the onset of each tone, resulting in a power decrease,
and then resynchronizes prior to the onset of the upcoming tone. This power
fluctuation is proposed to reflect temporal entrainment and temporal predic-
tion because the slope of the resynchronization depends on the presentation
speed of the isochronous tones (Cirelli et al., 2014; Fujioka et al., 2012), and
because beta power modulation is disrupted in non-rhythmic sequences or by
occasionally omitted tones (Fujioka et al., 2012, 2009; Snyder & Large, 2005).
Outside of a rhythmic context, beta power has also been shown to reflect the
predictability of a temporal gap between tone pairs (Todorovic, Schoffelen, Van
Ede, Maris, & de Lange, 2015). Furthermore, beyond the traditional view that
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beta oscillation reflects cortical communication between sensory (especially,
auditory) and motor regions (Fujioka et al., 2015, 2012; Merchant & Bartolo,
2017; Morillon & Baillet, 2017), accumulating evidence shows beta oscillation
is associated with perceptual performance (Spitzer & Haegens, 2017), including
detecting temporal or intensity deviations (Arnal, Doelling, & Poeppel, 2015;
Herrmann, Henry, Haegens, & Obleser, 2016). Together, this suggests beta
oscillation is important for forming temporal predictions, and may associate
with the fidelity of perceptual processing.

Pitch is a fundamental perceptual feature of sound that is critical for identi-
fying auditory objects and understanding speech and music, which are part of
the what domain of auditory perception. Therefore, it is important to under-
stand how auditory prediction for pitch is represented by neural oscillations.

We hypothesized that beta power modulation in auditory cortex corep-
resents both predictions of spectral frequency (what) and time (when), two
essential dimensions of any auditory signal, consistent with the following evi-
dence. First, neurons in primary auditory cortex are selectively tuned to both
spectral and temporal aspects of sound (Boemio, Fromm, Braun, & Poeppel,
2005; Fritz, Shamma, Elhilali, & Klein, 2003; King & Nelken, 2009; Lakatos
et al., 2013; Schönwiesner and Zatorre, 2009). Second, beta oscillation is asso-
ciated with communication between auditory and motor areas (Fujioka et al.,
2012), and premotor cortex is activated by spectral as well as temporal pre-
dictions (Schubotz, 2007). Third, induced beta power recorded from human
auditory cortex is associated with updating pitch prediction, as beta power
is modulated by prediction error or prediction updating after the onset of an
unpredicted sensory event (Chang, Bosnyak, & Trainor, 2016; El Karoui et
al., 2015; Sedley et al., 2016). However, these studies did not report whether
there is an effect of prediction on beta power prior to the stimulus onset, and
thus it is unclear whether beta power reflects anticipatory sensory prediction.
The current study aimed to overcome this lack of knowledge by investigating
beta power prior to a pitch change.

The P3a component of the event-related potential (ERP) is regarded as an
index of prediction error, and thus it can be used to access whether an audi-
tory event is successfully predicted. When participants passively listen to a
sequence of repeated tones with infrequent deviants, both mismatch negativ-
ity (MMN) and P3a components of the ERP will be evoked by those deviants
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(Polich, 2007; Schröger et al., 2015). Although unpredictability usually co-
varies with rareness in a typical oddball paradigm, these two features can be
dissociated and related to MMN and P3a differentially. The P3a amplitude re-
flects the magnitude of prediction error, as it is elicited by the unpredictability,
but not the rareness, of the deviants (Max, Widmann, Schröger, & Sussman,
2015; Sussman, Winkler, & Schröger, 2003). In contrast, the MMN amplitude
reflects local rareness rather than unpredictability (e.g., Bekinschtein et al.,
2009). Therefore, we hypothesized that, if beta power modulation in audi-
tory cortex reflects sensory prediction, it should attenuate the prediction error
response (i.e., P3a amplitude).

The current study investigated whether beta power modulation, which re-
flects predictive timing, is also modulated by the predictability of an occa-
sional pitch change. We employed two isochronous (temporally predictable)
auditory oddball sequences with 20% of the tones being at a different (deviant)
pitch from the standard tones. The deviant pitches were presented every fifth
tone in one sequence (Predictable sequence), but the deviant and standard
pitches were pseudorandomly intermixed in the other sequence (Unpredictable
sequence). We hypothesized that beta power modulation prior to deviant
pitch onsets would be modulated by the predictability of the pitch change in
the sequence. Furthermore, if beta power modulation reflects the predictabil-
ity of pitch changes, a larger beta power modulation (i.e., desynchronization
depth) should occur prior to the onset of more successfully predicted deviant
pitches. Therefore, in single-trial analyses using linear mixed-effect (LME)
models, larger beta desynchronization depth immediately prior to a deviant
should be associated with smaller deviant-evoked P3a amplitude, a neural re-
sponse reflecting prediction error (Friston, 2005; Polich, 2007; Schröger et al.,
2015).

III.4 Materials and methods

III.4.1 Participants

Seventeen participants were recruited from the McMaster University commu-
nity, and 14 of them (18 – 27 years old, mean age 19.9 ± 2.4; 10 female)
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were used for data analyses (see 2.5.3 Artifact rejection for exclusion crite-
rion). Participants were screened by a self-report survey to ensure they had
normal hearing, were neurologically healthy and were right-handed. Signed in-
formed consent was obtained from each participant. The McMaster University
Research Ethics Board approved all procedures. Participants received course
credit or reimbursement for completing the study.

III.4.2 Stimuli

Two recorded piano tones, C4 (262 Hz) and B4 (494 Hz), from the University
of Iowa Musical Instrument Samples were used, with 10 msec rise times. Tones
were truncated to 200 msec in duration, and a linear decay to zero was applied
over the entire excerpt to remove offset artifact. The DC shift was removed
for each tone. Sounds were converted into a monaural stream at 71 dB (C
weighted), measured through an artificial ear (type 4152, Brüel & Kjær) with
a sound level meter (type 2270, Brüel & Kjær). Sounds were delivered binau-
rally via ear inserts (Etymotic Research ER-2). All stimulus sequences were
presented under the control of a digital signal processor (Tucker Davis RP2.1).

III.4.3 Procedure

The experiment was conducted in a sound-attenuated room. Each participant
was presented with a continuous sequence of tones in each of two 30-min ex-
perimental sessions, while they watched a silent movie on a computer screen.
Participants were instructed to sit comfortably and remain as still as possible
during the experiment while watching a silent movie, and they were not re-
quired to make any responses, so that we could examine beta responses from
auditory cortex without possible artifacts from muscle movement. The tones
were presented in oddball sequences, with the C4 tone as the standard and
the B4 tone as the deviant. There were two sequence types, Predictable and
Unpredictable, such that the only difference between them was whether the
change from a standard pitch to a deviant pitch was predictable or not within
the sequence. In the Predictable sequence, each deviant pitch was preceded by
exactly 4 consecutive standard pitches, and this 5-tone pattern was cyclically
repeated throughout the entire sequence, making the pitch of each tone in the
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sequence predictable. This manipulation has also been used in previous stud-
ies on the predictability of pitch changes (e.g., Dürschmid et al., 2016; Max
et al., 2015; Schubotz, von Cramon, & Lohmann, 2003). In the Unpredictable
sequence, the order of the standard and deviant pitches was pseudorandom-
ized (with the only constraint being that two deviant pitches could not be
presented sequentially), which made the pitch of subsequent tones largely un-
predictable (only a standard immediately following a deviant was predictable,
and these trials were excluded from analysis). The inter-onset interval (IOI)
was fixed at 500 msec in both sequences, and each sequence contained 3600
tones, with a deviant occurrence rate of 20% (720 deviant tones). Although
predictive coding has sometimes been studied in sequences with random IOI,
we used a fixed IOI here as this reduces variability in beta modulation effects
(e.g., Fujioka et al., 2012, 2009; Snyder & Large, 2005). An equal number
of participants completed the Predictable or the Unpredictable sequence first.
Participants took a three-minute break between experimental sessions.

III.4.4 EEG recording

The EEG was sampled at 2048 Hz (filtered DC to 417 Hz) using a Biosemi
Active Two amplifier (Biosemi B.V., Amsterdam). The 128-channel Biosemi
pin-type active electrodes (Ag-AgCl) were placed based on geodesic partition-
ing of the head surface. The electrode array was digitized for each participant
(Polhemus Fastrak) prior to recording. EEG data were transformed to an
average reference offline.

III.4.5 Signal processing for source-space neural oscil-
latory activity

Three stages of signal processing were conducted in order to examine the be-
havior of auditory induced oscillations in bilateral auditory cortices, following
Fujioka et al. (2012) and Chang et al. (2016). In the first stage, we obtained a
dipole source model based on auditory ERP responses. The second stage seg-
mented source waveforms into trials, categorized by whether they were STD,
preDEV or DEV trials (Fig. 1). In the third stage, trials containing excessive
artifacts were rejected.
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Figure III.1: The auditory sequences employed in current study. Two isochronous
(IOI: 500 msec) tone sequences in which 80% of tones are at one pitch (standard
F0: 262 Hz) and 20% are at a different pitch (deviant F0: 494 Hz). The only
difference between sequences was that the deviant pitches were presented regularly
every fifth tone in one sequence, making the pitch change predictable (Predictable
condition), but the deviant and standard pitches were pseudorandomly intermixed
in the other sequence, making the pitch change unpredictable (Unpredictable con-
dition). According to their sequential position relative to the deviant pitch, the
trials were categorized into preDEV (red interval), DEV (blue interval), and STD
(green interval).

Stage 1: Modeling auditory dipole sources with P1 component

We employed a dipole source model as a spatial filter in order to increase the
signal-to-noise ratio of the EEG signal generated from left and right auditory
cortices for subsequent analyses. In the present study, we were primarily in-
terested in responses from auditory cortex, so we analyzed the EEG signals in
source-space rather than from surface channels, extracting the oscillatory sig-
nals generated from left and right auditory cortices while attenuating signals
generated from other brain regions (Scherg & Von Cramon, 1985). The contin-
uous EEG data was band-pass filtered 1–20 Hz and then segmented into time
periods -100 to 300 msec, time locked to stimulus onset. STD trials on which
the amplitude ranged below 150 µV (i.e., low artifact) were averaged into ERP
waveforms and used to model dipole sources. Two auditory cortex sources were
estimated for each participant for the auditory evoked P1 (60–100 msec; Fig.
3) with the dipole locations constrained to be symmetric across hemispheres
in location but not orientation, using the multiple source probe scan algorithm
and the four-shell ellipsoid model included in the Brain Electrical Source Anal-
ysis (BESA) software package. P1 was chosen because it is the dominant peak
at fast presentation rates (N1 peaks are strongly reduced at fast rates; Näätä-
nen & Picton, 1987), and is generated primarily from primary auditory cortex
(Godey, Schwartz, De Graaf, Chauvel, & Liegeois-Chauvel, 2001). The mean
locations of fitted dipoles across participants were at Talairach coordinates
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[±45.8, -7.7, 17.7] with mean orientations [.3, .7, .7] and [-.2, .8, .6] for left and
right dipoles, respectively. These locations are very close to bilateral primary
auditory cortices with orientations toward the mid-frontal surface area, con-
sistent with typical auditory evoked potentials. The residual variances of the
source fittings for each participant ranged from 1.4 to 13.3%.

Stage 2: Trial segmentation

Based on individual participant dipole model fits, the auditory source wave-
forms of each trial at the left and right auditory cortical sources identified
above were extracted for all trial types using signal space projection. Trials
were segmented from -500 to 1000 msec, time-locked to the onset of the tone.
Both the individual source waveform trials and raw 128-channel EEG data
were exported from BESA to MATLAB for further processing.

Stage 3: Artifact rejection

For each segmented source waveform, the corresponding 128-channel data was
examined for artifacts. The segments containing artifacts were eliminated from
future analyses. The artifact rejection criteria (calculated on surface electrode
waveforms) was to eliminate trials in which the amplitude range at any channel
exceeded 40 µV for more than 10% of the 1500 msec trial length compared
to the baseline mean voltage of the 100 msec prestimulus period for all trials.
Three participants’ data were excluded because too few trials (36–38%) were
artifact-free. For the remaining participants (n = 14), 70.0 ± 13.8% (ranging
from 50.6 to 90.9%) of the trials were accepted for further analyses.

III.4.6 Time-frequency decompositions

In order to remove the evoked (phase-locked) responses from the trial and
thereby obtain the induced (non-phase-locked) responses for subsequent anal-
yses on beta band, for each trial type, the source waveform was aver-
aged as the estimation of the evoked response, and then subtracted from
each single-trial source waveform (Chang et al., 2016; Fujioka et al., 2012;
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Kalcher & Pfurtscheller, 1995; Mouraux & Iannetti, 2008; Pfurtscheller, 2001;
Pfurtscheller & Da Silva, 1999).

Time-frequency decompositions in the beta frequency band were calculated
for each participant on each unfiltered single-trial source waveform separately
in left and right auditory cortices using a Morlet wavelet transform (Bertrand,
Bohorquez, & Pernier, 1994). The Morlet wavelet transformation was cal-
culated on a window centered around each time point for each trial with 67
logarithmically-spaced frequency bins between 12 and 35 Hz. The wavelet was
designed such that the half-maximum width was equal to 2.4 periods of the
lowest frequency while the width was equal to 3.4 periods of the highest fre-
quency, linearly interpolated for each frequency bin in between. Subsequently,
300 msec at the beginning and ending of each 1500 msec long trial were elimi-
nated to avoid edge effects, the effectiveness of which was confirmed by visual
inspection. The induced oscillatory power was calculated by averaging the
power at each time-frequency point across trials. Induced power changes were
expressed as a relative percentage, by normalizing the power of a trial to the
mean power of the 0–500 msec time window of the STD trials for each fre-
quency (Chang et al., 2016; Fujioka et al., 2012). For the preDEV trials, in
order to focus on event-related spectral dynamics in the -500 to 0 msec period
(time-locked to the deviant pitch onset), the percentage power was baseline
corrected to the mean power of each frequency bin in the -700 to -600 msec
period on the preDEV trials (equivalent to the -200 to -100 msec period time-
locked to the preceding standard pitch onset).

To quantify the amplitude of desynchronization of the mean beta band
(15–25 Hz) power, we measured the size of the negative peak within the interval
-350 to -150 msec, time-locked to the onset of the deviant pitch. We chose this
time window because it is in the middle of the 500 msec IOI, and we expected
the maximum negative peak occur within this time window.

III.4.7 Signal processing for ERPs

For the analyses on trial-averaged ERP waveforms, the continuous EEG data
for each electrode was .3–40 Hz band-pass filtered for each participant for each
sequence, converted to a standard 81-channel montage in BESA, and then
segmented into trials covering the time period -100 to 500 msec, time locked
to stimulus onset, for the DEV and STD trials. We averaged across frontal
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midline (F1, Fz, and F2) and central midline (C1, Cz, and C2) montaged
channels. The ERP waveform was baseline-corrected by subtracting the mean
amplitude of the 100 msec prestimulus period.

In the ERP, we focused primarily on analyzing the amplitude of P3a, be-
cause previous studies have shown that it reflects the magnitude of prediction
error (Max et al., 2015; Polich, 2007; Sussman et al., 2003) or a violation of the
global regularity of a tone sequence (Bekinschtein et al., 2009; Faugeras et al.,
2012). The P3a component is mainly observed over central midline (Polich,
2007), so P3a was analyzed at this location. In addition, we also analyzed
the amplitude of the MMN at frontal midline, because it reflects an automatic
preconscious response to occasional deviant pitches in a sequence, such as em-
ployed in the present study (Friedman, Cycowicz, & Gaeta, 2001; Näätänen,
Paavilainen, Rinne, & Alho, 2007).

In order to accommodate potential individual differences in MMN and
P3a latency (Conroy & Polich, 2007; Lieder, Daunizeau, Garrido, Friston,
& Stephan, 2013), for each participant for each sequence, we first calculated
the peak latency of the MMN and P3a in the difference ERP waveform (mean
DEV – mean STD waveforms) in the time ranges 80–130 msec and 160–330
msec, respectively. In the second step, we estimated the amplitude of MMN
and P3a by taking the area under the curve of the window of ±10 msec and
±20 msec, centered around the peak latencies of MMN and P3a, respectively.
The ERP waveforms are corrected to the mean amplitude of the 100 msec
prestimulus period.

The signal processing for extracting single-trial ERP waveforms was the
same as the above with the following exceptions. First, the continuous EEG
data was .3–7.0 Hz band-pass filtered, as a lowered cutoff frequency for the
low-pass filter can increase the signal-to-noise ratio by attenuating the high
frequency noise in single-trial ERP analysis (Heinrich et al., 2014; Spencer,
2005). Second, to quantify the single-trial ERP amplitude, the ERP difference
waveform was extracted for each DEV trial by subtracting its preceding pre-
DEV trial, so as to give a measure of the response to a deviant pitch relative
its preceding context of standard pitches.
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III.4.8 Single-trial correlation between beta desynchro-
nization and P3a amplitude

To examine the trial-by-trial association between beta desynchronization depth
on the preDEV trials and P3a amplitude on the DEV trials, we performed
single-trial analyses using a LME model. LME modeling is an extension of
linear regression modeling, which accesses the influence of predictors of inter-
est (i.e., fixed effects), while taking into account variances across participants
(i.e., random effects). In the current study, we were interested in whether P3a
amplitude can be predicted by beta desynchronization amplitude (continuous
variable) and sequence type (Predictable or Unpredictable; categorical vari-
able). Both random intercepts and random slopes are included in our LME
models, because this setup is known to have the best generalizability of the
LME model (Barr, Levy, Scheepers, & Tily, 2013). Model fitting was imple-
mented using the “lme4” package in R (Bates, Mächler, Bolker, & Walker,
2015), and the significance of the fixed effects was determined with type-II
Wald tests using the “Anova” function in the “car” package in R (Fox & Weis-
berg, 2011).

III.4.9 Experimental design and statistical analysis

Participant (n = 14) was the random factor for the within-subject statistical
tests in the current study. We employed planned non-parametric tests because
the normality assumption was violated in many cases. The approximated
test statistics (z-value) is reported for each test. The statistical tests were
performed by MATLAB (2013a) or R (3.3.3). Statistical decisions were based
on a two-tailed test.

46



Doctor of Philosophy– Andrew Chang;
McMaster University– Psychology, Neuroscience & Behaviour

III.5 Results

III.5.1 Predictability of pitch change modulates pre-
deviant beta power

The main goal of this study was to test whether induced beta desynchroniza-
tion is modulated by the predictability of the pitch of the upcoming tone. We
analyzed the beta power activity across the interval preceding the onset of
each deviant pitch (preDEV trials) in both the Predictable and Unpredictable
sequences (Fig. 2), and we hypothesized that the predictability of the deviant
pitch would modulate the induced beta power. We quantified the amplitude of
desynchronization of the mean beta band (15–25 Hz) power by measuring the
size of the negative peak within the interval of -350 to -150 msec, time-locked
to the onset of the deviant pitch. In the right auditory cortex, Wilcoxon signed
rank tests showed that the desynchronization was only significantly lower than
0 in the Predictable sequence (z = -3.23, p < .001), but not detectably differ-
ent from 0 in the Unpredictable sequence (z = -1.66, p = .104). In the left
auditory cortex, the desynchronization was not significantly different from 0
in either sequence (Predictable: z = -1.73, p = .091; Unpredictable: z = -1.79,
p = .079). A Wilcoxon signed rank test showed that the desynchronization
amplitude was more significantly negative in the Predictable sequence than
the Unpredictable sequence in the right auditory cortex (z = -2.17, p = .029).
However, there was no difference between Predictable and Unpredictable se-
quences in the left auditory cortex (z = -.28, p = .808).

We further explored whether the predictability of the pitch has different ef-
fects on low-beta (15–20 Hz) and high-beta (20–25 Hz) bands, as these two sub-
bands could have different functions (e.g., Kilavik, Zaepffel, Brovelli, MacKay,
& Riehle, 2013). However, we did not observe any differences between these
two sub-bands. The detailed results are reported in Supplementary Materials:
S.2 and Figure S2.

In sum, beta desynchronization was only observed prior to a deviant pitch
in a predictable context but not in an unpredictable context. This is consistent
with our hypothesis that predictability for what modulates beta power prior to
a pitch change. In addition, the right-lateralization of the effect is consistent
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with the view that right auditory cortex is more sensitive for processing spec-
tral information than is the left hemisphere (e.g., Chang et al., 2016; Zatorre
et al., 1992, 2002).

III.5.2 Predictability of pitch change modulates deviant
ERP amplitudes

We analyzed whether the deviant pitch evoked larger amplitudes of MMN and
P3a ERP components in the Unpredictable than in the Predictable sequence
(Fig. 3). MMN and P3a responses to occasional deviant tones have been well
studied using auditory oddball sequences such as those in the present study
(see Friedman et al., 2001; Polich, 2007 for reviews).

We first showed that MMN and P3a responses were observed in both se-
quences, as expected in a typical auditory oddball paradigm (Näätänen et al.,
2007; Polich, 2007). The analyses on the average of frontal midline electrodes
using Wilcoxon signed rank tests showed that for both sequence types, the
amplitudes of MMN (z = -3.30, p < .001 in both sequences) and P3a com-
ponents (z = 3.30, p < .001 in Predictable sequences; z = 2.86, p = .002 in
Unpredictable sequences), were significantly different from zero in the differ-
ence waveforms (DEV minus STD trials). Similar results were found for the
same analyses on the average of central midline electrodes: the amplitudes
of MMN (z = -3.30, p < .001 in both sequences) and P3a components (z =
3.30, p < .001 in both sequences) were significantly different from zero in the
difference waves for both Predictable and Unpredictable sequences.

More interesting, we further investigated whether the predictability of the
deviants modulated subsequent MMN or P3a. At the frontal midline average,
Wilcoxon signed rank tests did not show any differences in either MMN (z
= 1.22, p = .241, Fig. 3B) or P3a (peak-to-peak corrected to mean MMN
amplitude, z = -.09, p = .952, Fig. 3C) between Predictable and Unpredictable
sequences. At the central midline average, Wilcoxon signed rank tests did not
show a significant difference in MMN amplitude between sequences (z = 1.16,
p = .268, Fig. 3D). On the other hand, the mean P3a amplitude was larger
in the Unpredictable sequence than the Predictable sequence (z = 2.10, p =
.035, Fig. 3E; if the P3a Amplitude Difference outlier [-.61; exceeding 2.28
standard deviations from the mean] was excluded, then z = 2.69, p = .005).
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Figure III.2: Predictability of pitch change modulates pre-deviant beta power.
The induced (non-phase-locked) oscillatory power was extracted from left (left
panel) and right (right panel) auditory cortices using the dipole source model. (A
and B) Beta (15–25 Hz) power was averaged across trials in each condition for each
participant and are presented as the mean ± standard error across participants.
The time-frequency maps of beta power on preDEV trials are shown in Figure S2.
(C and D) The minimum beta power (desynchronization amplitude) in the -350 to -
150 msec time window was extracted for each participant. The grey dots connected
by a grey line represent the data points of each participant, and the red and blue
dots and the error bars represent the conditional mean ± standard error. Wilcoxon
signed rank tests showed that desynchronization was larger in Predictable than
Unpredictable sequences in right auditory cortex, but not different in left auditory
cortex.
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Figure III.3: Predictability of pitch change modulates deviant ERP amplitudes.
(A) The ERP waveforms of STD (blue) and DEV (red), and the difference wave-
form (DEV – STD [black]) in Predictable and Unpredictable sequences at frontal
midline and central midline electrodes. ERP waveforms are presented as the mean
± standard error across participants. (B, C, D and E) The amplitude differences
(Unpredictable sequence minus Predictable sequence) for MMN (left panel) and
P3a (right panel), where each circle represents the amplitude difference of one
participant at frontal midline electrodes (upper panel) and at central midline elec-
trodes (lower panel). Wilcoxon signed rank tests showed that only the P3a am-
plitude in central midline electrodes were significantly larger in the Unpredictable
sequence than Predictable sequence. (F and G) ERP component topographies
(grand-averaged across participants), including P1, MMN and P3a for the (F) Pre-
dictable and (G) Unpredictable sequences. The highest amplitude is presented as
red, the lowest amplitude is presented as blue, with a symmetrical range around
zero (green).
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Together, these results suggest that the predictability of a deviant pitch
modulates P3a amplitude but not MMN amplitude, such that unpredictable
deviant pitches (generating a prediction error) elicit higher attentional capture
compared to predictable deviant pitches, replicating previous studies (Max et
al., 2015; Polich, 2007; Sussman et al., 2003). The results are also consistent
with previous findings that MMN is sensitive to local deviance occurrence rates
(e.g., Bekinschtein et al., 2009; Faugeras et al., 2012); in the current study,
local deviance occurrence rates were equivalent in the two conditions (20%)
and MMN did not differ between conditions.

III.5.3 Pre-deviant beta power is associated with de-
viant P3a amplitude

The above analyses, by comparing experimental conditions, showed that the
predictability of a deviant pitch in a tone sequence context modulates both the
pre-deviant (preDEV trial) induced beta power activity in the right auditory
cortex and the deviant P3a amplitude at the central midline average. We thus
examined whether these two neural activities are correlated at the trial-by-trial
level.

We performed a single-trial analysis with linear mixed effect (LME) mod-
els of whether the P3a amplitude can be predicted by beta desynchronization
amplitude (negative peak), and whether this relationship is modulated by Pre-
dictable or Unpredictable sequences (Fig. 4A). The initial LME model showed
a significant interaction effect between beta desynchronization amplitude and
the type of sequence [standardized β = -.029, standardized SE = .013, χ2(1)
= 4.56, p = .032]. We thus further analyzed the LME model within each Pre-
dictable or Unpredictable sequence. The results showed a significant positive
relationship between beta desynchronization amplitude and P3a amplitude
for the Predictable sequence [standardized β = .034, standardized SE = .014,
χ2(1) = 6.13, p = .013]; however, the effect was not significant for the Un-
predictable sequence [standardized β = −5.4 ∗ 10−4, standardized SE = .013,
χ2(1) = .002, p = .968].

Together, the trial-by-trial analyses showed that deeper beta desynchroniza-
tion depth (lower beta power amplitude) preceded trials with smaller deviant-
evoked P3a amplitude in sequences where pitch changes were predictable (Fig.
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Figure III.4: Pre-deviant beta power depth correlates with deviant P3a am-
plitude when pitch change is predictable. We used LME models to examine the
trial-by-trial relationship between beta desynchronization depth (negative peak) on
preDEV trials and P3a amplitude on the following DEV trials. The visualization
was implemented by the “sjPlot” package in R (Lüdecke, 2016). (A) The best fit-
ted standardized β coefficients (fixed-effects only). In the upper panel, “Sequence”
indicates differences in the effect of Unpredictable versus Predictable sequences on
P3a amplitude, “Beta desynch amplitude” indicates the effect of beta desynchro-
nization amplitude on P3a amplitude, and “Beta desynch amplitude * Sequence”
indicates the interaction effect of these two variables on P3a amplitude. In the
middle and lower panels, the effect of beta desynchronization amplitude on P3a
amplitude was analyzed under each of Predictable and Unpredictable sequences.
The dot and error bar represent the standardized β (fixed-effect coefficient) and
95% confidence interval, with * p < .05. (B) The predicted relationship between
beta desynchronization amplitude and P3a amplitude, under each of Predictable
and Unpredictable sequences, based on the LME model. The x and y axes are
z-scaled for visualization. In sum, the individual trial analyses showed that deeper
pre-deviant beta desynchronization depth (power decrease) was followed by lower
deviant-evoked P3a amplitude in the sequence with predictable pitch changes.
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4B). Increased post-processing (P3a amplitude) is indicative of a failure to pre-
dict the pitch change. Thus, greater beta desynchronization prior to a pitch
deviant appears to enhance the predictability of the upcoming pitch deviant,
resulting in a smaller prediction error response following the pitch deviant.

III.6 Discussion

The current study aimed to investigate whether power modulation of induced
beta oscillation (15–25 Hz) in auditory cortices reflects spectral in additional
to temporal prediction. To manipulate the predictability of pitch changes
while controlling temporal predictability, we employed two isochronous au-
ditory oddball sequences, where both sequences were presented at the same
presentation speed and the same deviant pitch occurrence rate (20%). The
only difference was that the deviant pitch occurred regularly every fifth tone
in the predictable sequence but was pseudorandomly intermixed with standard
pitches in the unpredictable sequence.

We report the novel finding that the predictability of a pitch change mod-
ulates beta power immediately prior to a deviant pitch onset. Specifically,
we found that beta desynchronization was deeper prior to the onset of a pre-
dictable deviant pitch than an unpredictable one. Furthermore, a trial-by-trial
LME analysis showed that within the predictable sequence, the deeper the
beta desynchronization prior to a deviant pitch, the smaller the P3a ampli-
tude evoked by that deviant pitch. This result indicates that even when the
same stimulus is presented on different trials, deeper beta desynchronization
depth prior to the stimulus is associated with better prediction of pitch change.
To the best of our knowledge, while previous reports indicate that beta oscil-
lations reflect temporal prediction, this is the first report that auditory beta
modulation depth reflects sensory prediction of what is expected next.

We demonstrated that P3a amplitude, but not MMN amplitude, was larger
in the Unpredictable than in the Predictable sequence, consistent with previous
findings that predictability of a tone sequence modulate deviant-evoked P3a
amplitude (Max et al., 2015; Sussman et al., 2003). Studies have shown that
P3a reflects involuntary attentional capturing, elicited by unpredicted deviant
stimuli, even when task-irrelevant (Friedman et al., 2001; Polich, 2007; Rinne,
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Särkkä, Degerman, Schröger, & Alho, 2006; Schröger et al., 2015, 2000; Suss-
man et al., 2003; Wetzel, Schröger, & Widmann, 2013). For example, ERP
studies have shown that unpredictable task-irrelevant pitch changes elicit P3a
responses, but that such P3a responses are eliminated when the pitch change
is predictable, either cued by the regularity of a sequence (e.g., every fifth
tone) or by a visual cue (Max et al., 2015; Sussman et al., 2003). Also, other
studies manipulating pitch regularity in tone sequences in global and local hi-
erarchies showed that MMN amplitude responds to locally rare pitch and P3
amplitude responds to violations of global pitch regularity (e.g., Bekinschtein
et al., 2009; Dürschmid et al., 2016; Faugeras et al., 2012). It’s important to
note that these ERP effects might depend on the listening tasks being used in
the experiment, as the MMN amplitude can reflect the global pitch regularity
(predictability) when participants are required to attend to the sound (e.g.,
Wacongne et al., 2011), which is different from the passive listening paradigm
of the current study. Together, the association between beta desynchronization
and P3a amplitude found in the current study is consistent with the interpre-
tation that deeper beta desynchronization reflects more successful prediction
of upcoming pitch changes, and thus reduces exogenous drawing of attention
toward unpredicted events (Friston, 2005; Polich, 2007; Schröger et al., 2015).

There is a debate as to whether the desynchronization response of
beta power modulation reflects predictive or a reactive mechanism (Teki &
Kononowicz, 2016). The predictive coding framework hypothesizes that beta
power modulation reflects prediction of the upcoming event (Arnal & Giraud,
2012) while the reactive event tagging framework hypothesizes that beta oscil-
lation reflects the memory encoding of a perceived salient event (Hanslmayr &
Staudigl, 2014; Teki & Griffiths, 2014, 2016). Previous studies were unable to
distinguish these alternative hypotheses, given that they used metrically ac-
cented tones that occurred cyclically along the sequence (Fujioka et al., 2015;
Iversen, Repp, & Patel, 2009; Snyder & Large, 2005), and the shortest tem-
poral distance between two down-beats was 800 msec, making it even more
difficult to distinguish whether the beta desynchronization reflected prediction
of an upcoming stimulus or reaction to the preceding stimulus. We solved the
cyclical issue by comparing sequences with and without pattern regularity. Un-
der this manipulation, the current study showed that beta desynchronization is
anticipatorily associated with pitch change only in the predictable context but
not in the unpredictable context, which supports the idea that beta desynchro-
nization reflects predictive coding. However, we do not exclude the possibility

54



Doctor of Philosophy– Andrew Chang;
McMaster University– Psychology, Neuroscience & Behaviour

that event tagging processes are represented as another pattern of activity in
beta band. Studies to date suggest that beta oscillation can be subdivided into
high (>20 Hz) and low (<20 Hz) bands, which might be related to different
functions (Kilavik et al., 2013; Spitzer & Haegens, 2017). Specifically, novel
auditory or visual stimuli elicit subsequent activity in the low-beta band (e.g.,
Chang, Ide, Li, Chen, & Li, 2017, Chang et al., 2016; Fujioka, Trainor, Large,
& Ross, 2009; Haenschel, Baldeweg, Croft, Whittington, & Gruzelier, 2000),
and these effects are consistent with the event tagging framework. Therefore,
we suggest that the desynchronization of the entire beta band reflects predic-
tive processes, while the low-beta power increase after an unexpected pitch
might relate more specifically to an event-tagging process.

The view that beta oscillation reflects sensory prediction is consistent with
predictive coding theory, as more salient beta modulation is associated with at-
tenuated P3a amplitude. A successfully predicted sensory input elicits smaller
subsequent attentional responses, which are responsible for propagating error
signals in brain networks for further updating sensory prediction (Arnal & Gi-
raud, 2012; Friston, 2005, 2009; Heilbron & Chait, 2018; den Ouden, Kok, &
de Lange, 2012; Hohwy, 2012; Kopell, Whittington, & Kramer, 2011; Schröger
et al., 2015). Also, beta oscillation has been proposed to reflect the cortical
representation of maintenance or reactivation of the perceived sensorimotor or
cognitive state (Engel & Fries, 2010; Spitzer & Haegens, 2017), which is the
basis for predicting upcoming events. A limitation of the current study is that
we did not orthogonally manipulate pitch prediction and prediction precision
(inverse variance of prediction), which are dissociable factors in predictive cod-
ing theory, and thus we are unable to further distinguish whether beta power
modulation reflects one or both of these processes. However, a recent study,
which recorded local field potentials from human auditory cortex while par-
ticipants listened to sequences with varied pitches, found that post-stimulus
induced beta power was associated with updating spectral prediction but not
prediction precision (Sedley et al., 2016). Although this association was only
observed in the post-stimulus period and not in the pre-stimulus period (Sed-
ley et al., 2016), it favors the explanation that the pre-deviant beta power
modulation in the current study reflects prediction rather than prediction pre-
cision.

It is important to note that the standard and deviant pitches in the current
study were 11 semitones apart. Considering the tonotopic organization of
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auditory cortex, it is likely that the reported beta oscillations were generated
by different neuron ensembles tuned to standard or deviant pitch (cf., Lakatos
et al., 2013). Thus, because the pitch change occurred regularly every fifth
tone of the Predictable sequence (.4 Hz), an alternative explanation of the beta
power modulation effect is that the neuron ensemble tuned to the deviant pitch
frequency independently entrained to the rhythmic inter-deviant interval in the
Predictable sequence (.4 Hz). In other words, there is a potential confound
between timing and pitch expectations, and the beta power modulation might
reflect predictive timing of deviant tone onsets rather than, or in addition
to, predictive coding of pitch changes. However, we argue that it is unlikely
to be the case. Perceptual and sensorimotor evidence shows that rhythm
tracking performance becomes imprecise for tempos slower than .5 Hz (see
Repp, 2005 for a review), and neural oscillatory evidence shows that neural
entrainment activities cannot be robustly observed for tempos slower than 1
Hz (Doelling & Poeppel, 2015). The inter-deviant interval rate (.4 Hz) in
the Predictable sequence of the current study was slower than these limits,
and thus the deviant tempo alone, if processed in a separate channel and not
nested within the 2 Hz tone sequence, is unlikely to be tracked. Therefore, we
propose that the neuron ensembles tuned to different pitch frequencies might
be interconnected and form a predictive coding network in the auditory cortex,
and beta oscillation might play an important role in this (cf., Wang, 2010). We
acknowledge that the current evidence is only in favor of the explanation that
beta oscillatory power reflects the predictability of a pitch change (the what
domain), and the current experimental design is insufficient to completely rule
out the alternative explanations, as the predictability of what and when are
not fully dissociated. Further electrophysiological evidence is needed to fully
test this hypothesis.

The current findings also extend our understanding of the function of beta
oscillation in sensory processing. First, predictions for both what and when
are essential for processing dynamic auditory information, and beta oscillation
likely plays an important role in these processes as it co-represents both pre-
diction types. In particular, prediction is essential for auditory stream segrega-
tion and chunking the input into hierarchical meaningful segments (Wacongne
et al., 2011; Winkler et al., 2009), which are required for perceiving speech
and music (Hickok, 2012; Hickok & Poeppel, 2007; Sridharan, Levitin, Chafe,
Berger, & Menon, 2007) among other sounds. For example, speech must be
hierarchically segmented into phonemes, words and phrases; music must be
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segmented into subphrases and phrases. Second, sensory predictions reflected
by beta power modulation might subsequently be associated with improved
perception, via top-down controlling of attentional gain (Lee, Whittington, &
Kopell, 2013; Morillon & Baillet, 2017). This is consistent with previous audi-
tory studies showing that prestimulus beta power is higher when participants
make correct compared to incorrect judgments at detecting temporal devia-
tion (Arnal et al., 2015), detecting intensity deviation in tone sequences (Her-
rmann et al., 2016), detecting distorted pitch in music (Doelling & Poeppel,
2015), or discriminating frequency and intensity (Kayser, McNair, & Kayser,
2016). Third, the current finding of a relation between beta oscillation and
sensory prediction can potentially be generalized to other sensory modalities.
It has been proposed that beta oscillation plays a role in updating prediction
in micro-scale neural circuits (e.g., Arnal & Giraud, 2012; Wang, 2010), and
it is possible that such neural circuit exist in other cortical sensory regions.
This idea is supported by previous studies showing that beta oscillation is
associated with predicting tactile stimuli (van Ede, Jensen, & Maris, 2010),
predicting spatial-temporal properties of the visual stimuli (Heideman, Ede, &
Nobre, 2018), and motor planning for music performance (Bianco, Novembre,
Keller, Villringer, & Sammler, 2018).

Previous studies indicate that the motor system is involved in predicting
and perceiving temporal (e.g., Chen, Penhune, & Zatorre, 2008, 2006; Fujioka
et al., 2012; Grahn, 2012; Grahn & Brett, 2007; Grube et al., 2010; Manning &
Schutz, 2013; McAuley, Henry, & Tkach, 2012; Morillon, Schroeder, & Wyart,
2014; Phillips-Silver & Trainor, 2005; Schubotz, Friederici, & von Cramon,
2000; Schubotz & von Cramon, 2001; Teki, Grube, Kumar, & Griffiths, 2011,
but see; Meijer, te Woerd, & Praamstra, 2016) and spectral (Schubotz, 2007;
Schubotz & von Cramon, 2002; Schubotz et al., 2003) aspects of auditory se-
quences. Our finding that beta oscillation reflects pitch prediction as well as
temporal prediction is consistent with the general idea that the sensory pre-
diction process involves interactions between sensory and motor areas (Arnal,
2012; Grahn, 2012; Iversen & Balasubramaniam, 2016), given that beta oscil-
lation has been suggested to reflect network communication between auditory
and motor regions (Bartolo & Merchant, 2015; Fujioka et al., 2012; Kilavik et
al., 2013; Merchant & Bartolo, 2017; Morillon & Baillet, 2017).
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III.7 Conclusions

The current study shows that oscillatory beta power desynchronization is
deeper prior to a predictable pitch change than an unpredictable change, indi-
cating that beta power modulation reflects predictability for what is expected
to happen as well as when it will happen. Our further trial-by-trial analysis
showed that deeper beta power modulation prior to a pitch change is correlated
with reduced attention-capturing prediction error responses (P3a amplitude)
following the pitch change, demonstrating the link between sensory predic-
tion and subsequent attentional processes. Together with previous studies,
beta-frequency oscillations reflect predictive aspects of spectral and temporal
processing that are critical for processing dynamic auditory streams, such as
speech and music.

III.8 Supplementary Materials

III.8.1 Induced beta power fluctuates at the stimulus
presentation rate

We analyzed the beta power on the STD trials in the Predictable sequence,
where the same tone was presented isochronously, similarly as in previous stud-
ies (Cirelli et al. 2014; Fujioka et al., 2009; 2012; 2015; Iversen et al., 2009).
As shown in Figure S1C and D, the beta power desynchonization occurred
immediately after the tone onset (0 ms time point), and the power resynchro-
nized prior to the onset time of the next tone at 500 ms point, consistent with
previous studies.

We analyzed the time series of each participant’s normalized mean induced
beta power via short-time Fourier transforms. For each participant, we took
the -200 to 700 ms period of the STD trial for the averaged induced beta power
(mean power across 15 to 25 Hz) from the wavelet transform, zero-padded to 5
seconds in order to increase the frequency resolution to 0.2 Hz. The amplitude
spectrum of the time series of induced beta band power (Figure S1E and F)
showed the strongest amplitude at 2.0 Hz (the stimulus repetition rate), and
Wilcoxon signed rank tests confirmed this observation that the mean power at
2.0 Hz was significantly larger than the mean power at 1.0, 3.0, 4.0, 5.0 and
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Figure III.S1: Beta power entrains to the presentation rhythm of tones. The
induced (non-phase-locked) oscillatory power was extracted from left (left panel)
and right (right panel) auditory cortices using dipole source modeling. (A and
B) The time-frequency maps of induced power on STD trials in the Predictable
sequence, grand averaged across participants. The onset time of standard pitches
are at 0 and 500 ms. (C and D) Beta frequency (15-25 Hz) power was averaged
across trials for each participant and is presented as the mean ± standard error
across participants. The onset times of standard tones are at 0 and 500 ms. (E and
F) The short-time Fourier transform for each beta power time series was averaged
across trials for each participant. The amplitude spectrum is shown as the mean
± standard error across participants. Wilcoxon signed rank tests showed that the
power at 2.0 Hz (the presentation frequency of the tones) was significantly greater
than at 1.0, 3.0, 4.0, 5.0 and 6.0 Hz, showing the induced beta power entrained to
the presentation rhythm of auditory tones. ** p < 0.01; *** p < 0.001.

6.0 Hz, with all z > 2.60 and p < 0.007. These results showed that induced
beta band power entrains to the presentation rate (2.0 Hz in the present case)
of isochronous stimulus sequences.

Although the current study cannot demonstrate beta power entrainment
(e.g., Cirelli et al. 2014; Fujioka et al., 2012), due to the lack of variation
in stimulus presentation rate and/or use of non-isochronous sequences, the
beta power fluctuations observed in the current study are consistent with the
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pattern of beta power entrainment found in previous studies.

III.8.2 Predictability of pitch change and pre-deviant
low-beta/high-beta power

Given the effect of predictability of pitch change on pre-deviant beta power,
we further explored whether the predictability of pitch change modulates low-
beta (15-20 Hz) or high-beta (20-25 Hz) power differently (Figure S2), given
that these sub-bands might related to different functions (Kilavik et al., 2013;
Spitzer and Haegens, 2017). We quantified the amplitude of desynchronization
of the mean low-beta or high-beta power in auditory cortex by measuring the
size of the negative peak within the interval of -350 to -150 ms, time-locked to
the onset of the deviant pitch.

We examined whether the Predictability of pitch change and high/low beta
band have an interaction effect (Figure S2E and S2F). For each participant,
we took the desynchronization amplitude difference between Predictable and
Unpredictable sequences within low-beta and high-beta band. The Wilcoxon
signed rank test did not show a significant effect of the desynchronization
amplitude difference between the low-beta and high-beta bands in left auditory
cortex (z = -0.91, p = 0.391) or in right auditory cortex (z = 1.41, p = 0.173).

Together, this exploratory analysis found that the effect of predictability
of pitch change did not differ significantly between the high and low beta
bands, suggesting low-beta and high-beta oscillatory activities reflect a similar
function in current study.
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Figure III.S2: Pre-deviant beta power activities in Predictable and Unpredictable
sequences. (A, B, C and D) The time-frequency maps of induced power on preDEV
trials in the Predictable and Unpredictable sequences, grand averaged across partic-
ipants. The onset time of standard pitch is at -500 ms, and the onset time of deviant
pitch is at 0 ms. (E and F) The minimum beta power (desynchronization ampli-
tude) in the -350 to -150 ms time window was extracted for each participant for
each sequence, and then the difference (Predictable - Unpredictable) was estimated
for each participant. The grey dots connected by a grey line represent the data
points of each participant, and the colored dots and the error bars represent the
conditional mean ± standard error. Wilcoxon signed rank tests did not show any
significant effect of high/low beta band interacting with Predictable/Unpredictable
sequence on the desynchronization amplitude.
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Chapter IV

Rhythmicity facilitates pitch
discrimination: Differential roles
of low and high frequency
neural oscillations
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discrimination: Differential roles of low and high frequency neural oscillations.
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IV.1 Preface

The studies of Chapters II and III did not directly measure the perceptual
consequences of the neural entrainment activities, and so the different func-
tions of the low-frequency phase and high-frequency power entrainment ac-
tivities remained unclear. In Chapter IV, participants were requested to per-
form a pitch discrimination task, while the tones were embedded in a rhyth-
mic (isochronous) or arrhythmic (non-isochronous) sequence. Both percep-
tual performance and EEG activities were measured. Perceptually, auditory
temporal regularity (i.e., rhythm) facilitated pitch discrimination sensitivity.
Neurally, the findings showed that low and high frequency entrainment and
their coupling associated with different perceptual functions. Specifically, low
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frequency entrainment associates with temporal regularity, high frequency en-
trainment associates with temporal attention, and their coupling associates
with auditory-motor communication. Together, this study revealed that dis-
tinct perceptual functions of auditory neural oscillatory entrainment activities
work in concert for rhythm tracking and proactively facilitate auditory per-
ception.

IV.2 Abstract

Previous studies indicate that temporal predictability can enhance timing and
intensity perception, but it is not known whether it also enhances pitch per-
ception, despite pitch being a fundamental perceptual attribute of sound. Here
we investigate this in the context of rhythmic regularity, a form of predictable
temporal structure common in sound streams, including music and speech.
It is known that neural oscillations in low (delta: 1–3 Hz) and high (beta:
15–25 Hz) frequency bands entrain to rhythms in phase and power, respec-
tively, but it is not clear why both low and high frequency bands entrain to
external rhythms, and whether they and their coupling serve different per-
ceptual functions. Participants discriminated near-threshold pitch deviations
(targets) embedded in either rhythmic (regular/isochronous) or arrhythmic
(irregular/non-isochronous) tone sequences. Psychophysically, we found supe-
rior pitch discrimination performance for target tones in rhythmic compared to
arrhythmic sequences. Electroencephalography recordings from auditory cor-
tex showed that delta phase, beta power modulation, and delta-beta coupling
were all modulated by rhythmic regularity. Importantly, trial-by-trial neural-
behavioural correlational analyses showed that, prior to a target, the depth
of U-shaped beta power modulation predicted pitch discrimination sensitiv-
ity whereas cross-frequency coupling strength predicted reaction time. These
novel findings suggest that delta phase might reflect rhythmic temporal expec-
tation, beta power temporal attention, and delta-beta coupling auditory-motor
communication. Together, low and high frequency auditory neural oscillations
reflect different perceptual functions that work in concert for tracking rhythmic
regularity and proactively facilitate pitch perception.
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IV.3 Introduction

Predictive temporal structure is essential across many aspects of human cogni-
tion and behaviour, ranging from proactively optimizing perceptual processing
(Haegens and Zion Golumbic, 2018) and speech communication (Giraud and
Poeppel, 2012) to facilitating interpersonal coordination (Chang et al., 2017a,
2019b; Savage et al., 2015) and prosocial behaviours (Cirelli et al., 2014, 2018).
Rhythm is a form of predictable temporal structure, in which events tend to
occur at regular time intervals or have recurring characteristics (Nobre and
van Ede, 2018). Given that speech and music unfold over time, and sound
events are fleeting, it is perhaps not surprising that speech and music are
temporally structured (Ding et al., 2017) as the resulting rhythmic regularity
(musical beat; syllable timing) enables prediction of when important upcoming
information is likely to occur. In the present paper we manipulate rhythmic
predictability to investigate whether temporal predictability enhances pitch
perception.

Sounds can vary over time in multiple aspects. The temporal aspect involves
variations in sound onsets, durations and rhythm; the intensity aspect involves
variations in sound pressure; and the spectral aspect involves variations in fre-
quency (e.g., resulting in pitch changes). Previous studies show that rhythmic
regularity in auditory sequences facilitates detection of near-threshold timing
and intensity deviations (e.g., Henry and Herrmann, 2014; McAuley and From-
boluti, 2014). However, to our knowledge, none have investigated the effect of
rhythmic regularity on detecting near-threshold pitch changes, despite pitch
being a fundamental perceptual attribute of sound crucial for speech, music
and object identification. It is not obvious a priori that rhythmic regularity
would enhance pitch perception similarly to how it enhances time and intensity
perception because pitch perception can be dissociated from time and inten-
sity perception. For example, people with amusia or tone deafness typically
have auditory perceptual deficits in the spectral domain but not in the tem-
poral or intensity domains (Peretz, 2016; Zendel et al., 2015). Therefore, it is
important to investigate whether rhythmicity facilitates near-threshold pitch
discrimination in order to determine whether rhythmicity enhances all of the
major dimensions of auditory perception.

Neural oscillations in the brain synchronize their activity to rhythmic reg-
ularities in sensory input, which has been termed “neural entrainment”, and
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this is regarded as an important neural mechanism for tracking rhythmicity
(Haegens and Zion Golumbic, 2018). In monkeys, electrophysiological record-
ings showed that the phase of low frequency oscillations (delta band: 1–3 Hz)
time-lock and entrain to external rhythmic sensory input (Lakatos et al., 2013,
2016), and sensory input coincident with the excitatory phase is selectively fa-
cilitated (Schroeder and Lakatos, 2009; Calderone et al., 2014). In humans,
electroencephalography (EEG) and magnetoencephalography (MEG) studies
show that fidelity of delta phase entrainment associates with perceptual facili-
tation in the auditory temporal and intensity domains (e.g., Arnal et al., 2015;
Bauer et al., 2018; Henry and Obleser, 2012; Henry et al., 2014; ten Oever et
al., 2017), but it remains uncertain whether delta phase associates with facili-
tated pitch perception. Again, rhythmic facilitation might operate differently
at the neural oscillatory level for perceiving pitch changes compared to tem-
poral and intensity changes. Therefore, it is important to investigate whether
delta phase associates with perceptual facilitation in the spectral domain as it
does in the temporal and intensity domains.

Power modulations in high frequency oscillations (beta band: 15–25 Hz)
also entrain to rhythmic regularity and reflect temporal prediction, but per-
ceptual consequences have not been investigated. In response to a rhythmic
tone sequence, beta power decreases following each tone onset, and then in-
creases with the appropriate slope to anticipate the predicted onset time of the
upcoming tone, dependent on sequence tempo (Fujioka et al., 2012; Cirelli et
al., 2014). Beta modulation is disrupted in non-rhythmic sequences (Fujioka et
al., 2009, 2012) and modulated by hierarchical timing structures (e.g., waltz,
march) (Snyder and Large, 2005; Iversen et al., 2009; Fujioka et al., 2015).
Beyond time, a few previous studies hinted at the role of beta in prediction
of pitch (Chang et al., 2016, 2018; Sedley et al., 2016); however, perceptual
performance was not measured or related to beta oscillations in these stud-
ies. Here we hypothesized that the magnitude of beta power entrainment in a
rhythmic context associates with increased pitch sensitivity.

A fundamental question concerns why delta phase and beta power both en-
train to external rhythms. Do they implement different perceptual functions?
One MEG study showed pre-target delta phase, beta power, and delta-beta
coupling all predict detection of a timing deviation (Arnal et al., 2015), but
did not differentiate them functionally. Another MEG study suggested delta
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and beta entrainments represent opposite directions of auditory-motor com-
munication (Morillon and Baillet, 2017), but how they differ in perceptual
functions remained unclear.

The current study investigates (1) whether rhythmic regularity facilitates
near-threshold pitch discrimination and (2) how neural oscillations associate
with such facilitation. Participants performed a pitch discrimination task em-
bedded in either rhythmic (regular, isochronous) or arrhythmic (irregular, non-
isochronous) tone sequences. Behaviourally, we hypothesized that rhythmic
regularity would facilitate pitch discrimination sensitivity and reaction time.
Neurally, we focused on the oscillatory signals generated from bilateral audi-
tory cortices, as they are regarded to be the major sources of auditory neural
entrainment activities (Fujioka et al., 2012; Morillon and Baillet, 2017) and
the primary regions for processing pitch (McDermott, 2018). Specifically, we
used dipole models as spatial filters to extract the source waveforms that fo-
cused on activity in auditory cortices. We hypothesized that rhythmicity would
modulate oscillatory activities, including not only the phase of low-frequency
oscillatory activity, but beta power and delta-beta coupling as well. Further,
we explored how pre-target delta phase, beta power modulation and delta-
beta coupling would predict different aspects of perceptual performance at a
trial-by-trial level.

IV.4 Materials and methods

IV.4.1 Participants

The 16 participants (18–27 years old, mean age 19.3 ± 2.3, 11 females) were
students at McMaster University and received course credit for completing the
study. Participants were screened by a self-report survey to ensure they had
normal hearing, were neurologically healthy and were right-handed. Signed in-
formed consent was obtained from each participant. The McMaster University
Research Ethics Board approved all procedures.
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IV.4.2 Stimuli

Auditory stimuli were computer-generated complex tones. Each tone was com-
posed by summing sinusoidal waves at the fundamental frequency (F0) and
two overtones (F1 and F2) with slope -6 dB/oct and frequency components
added in random phases. Tones had 10 ms rise and fall times and a 40 ms
steady-state duration. Sounds were presented at 60.6 dB SPL (C weighted),
measured through an artificial ear (type 4152, Brüel & Kjær) with a sound
level meter (type 2270, Brüel & Kjær). All stimulus sequences were presented
under the control of a digital signal processor (Tucker Davis RP2.1) and de-
livered binaurally via ear inserts (Etymotic Research ER-2).

IV.4.3 Procedure

Initially, a calibration session was conducted to estimate individual pitch dis-
crimination thresholds in order to present near-threshold stimuli for each par-
ticipant in the main experiment. We used a 2-alternative forced-choice proce-
dure. On each trial, participants heard a standard tone (F0 fixed at 500 Hz)
and a target tone (8.4 dB louder than the standard tone, as presented during
the main experiment) that was either higher or lower in pitch (random pre-
sentation order), with a 500 ms inter-onset interval (IOI). Participants were
required to judge which tone was higher in pitch by pressing one of two but-
tons. The target tone started at 500 * e±0.02 Hz (≈510.1 and 490.1 Hz), and
the 1-up/2-down procedure adjusted the F0 of the target tone according to
the performance on previous trials (Levitt, 1971), with step size e0.002 (≈1
Hz). Over 40 trials, the 70.7% correct pitch discrimination thresholds were
estimated for target tones higher and lower than the standard tone. The loga-
rithmic midpoint between these two thresholds (one higher and one lower than
500 Hz) was the point of subjective equality (PSE), and the just-noticeable
difference (Δ) was the logarithmic distance between the PSE and a threshold.
This calibration session took 5–10 min. The mean estimated PSE was 498.07
± 0.45 Hz and the estimated Δ was 3.69 ± 0.40 Hz across participants (mean
± standard error).

To manipulate rhythmic regularity (Rhythmicity), the experiment included
Rhythmic (isochronous) and Arrhythmic (non-isochronous) sequences (Fig.
1A). Each sequence was composed of 100 tones, 90% of which were standard
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tones (F0 = 500 Hz), and 10% were target tones. Two adjacent target tones
were separated by 6–12 standard tones. Target tone F0s were presented at 7
different levels, specifically PSE + [-5Δ, -3Δ, -Δ, 0, +Δ, +3Δ, +5Δ] (loga-
rithmic scale), and there were 8 target tones at the -5Δ level and 7 target tones
at each of the other levels in each condition of each run. A run consisted of
5 Rhythmic and 5 Arrhythmic sequences, randomly intermixed. Each partici-
pant completed 5 runs for a total of 50 sequences, for a total of 250 target tones
in each of the Rhythmic and Arrhythmic conditions. The tones in Rhythmic
sequences were presented isochronously with 500 ms IOI. In contrast, the tones
in Arrhythmic sequences were presented with IOI uniformly random between
250 and 750 ms. The length of each Arrhythmic sequence was controlled to
be between 48 and 52 s, matching the 50 s length of Rhythmic sequences.
Importantly, the IOI before and after each target tone was fixed at 500 ms in
both Rhythmic and Arrhythmic conditions to control for any possible effects
of foreperiod or masking on behavioural or EEG responses (Rohenkohl et al.,
2012; Cravo et al., 2013; Herrmann et al., 2016).

Target tones were presented 8.4 dB louder than standard tones, which
served as a cue for the participant to respond. All participants were able
to clearly detect this loudness change. Participants were instructed to judge
whether the pitch of each loud (target) tone was higher or lower than the other
(standard) tones, by pressing one of two buttons with their thumbs (right for
higher and left for lower) on a controller, as accurately and as quickly as
possible. Participants practiced this task in both conditions prior to the ex-
perimental session. The button pressed and reaction time (RT) of the first
response within 1600 ms was recorded for each target tone. Ten participants
who missed more than 3% of targets were considered to be not following the
instructions (Fig. S1), and were not included in the n = 16 of the subsequent
analyses. We used this strict exclusion criterion because most participants
tended to miss responses when the target levels were difficult (around PSE).
Therefore, a strict criterion made sure the participants included in the analyses
had relatively low bias. After finishing a sequence, the next sequence started
when the participant was ready and pressed a button. After every run, there
was a mandatory break of at least 1 min before starting the next run. The
experimental session lasted approximately 1 h.
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IV.4.4 Psychometric model fitting

Trials with premature response (RT < 200 ms) were excluded as missing re-
sponses. The proportion of “higher” response was calculated based on all
trials that were responded to for each target level for each condition for each
participant.

The psychometric data from each participant and condition was fitted by
a function ψ, which combines a logistic model (F ) and additional parameters
for controlling lapse rate (Kingdom and Prins 2010):

F (x;α, β) = 1
1 + e−β(x−α)

ψ(x;α, β, γ, λ) = γ + (1− γ − λ)F (x;α, β)

which was defined by x (the frequencies of target tones on a logarithmic scale)
and parameters α (the x point at which 50% of responses are “higher”) and β
(the slope of psychometric function, or discrimination sensitivity) of the logis-
tical model, and additional parameters γ and λ (lapse rate, i.e., the probability
of making an incorrect response independent of the stimulus intensity). In the
first step, each of γ and λ was empirically fixed to the mean response at [-5Δ,
-3Δ] or [+3Δ, +5Δ] levels for each model (lapse rate was measured at the
extreme target levels but lapses can occur at any target level). Second, the
fitting of free parameters α and β of function ψ was implemented with PAL_-
PFML_Fit function in Palamedes toolbox (RRID: SCR_006521) (Prins and
Kingdom, 2009), which iteratively searches the best-fitted parameters across
parameter space using a maximum likelihood criterion. Goodness of fit for
each participant was estimated by comparing predicted and observed accu-
racy, with R2 > 95%. The individual perceptual judgment performances and
the fitted psychometric functions are shown in Fig. S2.

IV.4.5 Electroencephalographic recording and prepro-
cessing

The EEG was sampled at 2048 Hz (filtered DC to 417 Hz) using a 128-channel
Biosemi Active Two amplifier (Biosemi B.V., Amsterdam). The electrode array
was digitized (Polhemus Fastrak) for each participant prior to recording. EEG
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data were stored as continuous data, and transformed to an average reference
offline. In subsequent steps, the EEG data was processed in MATLAB using
the FieldTrip toolbox (RRID: SCR_004849) (Oostenveld et al., 2011).

We employed independent component analysis (ICA) to remove artifact
signals (Jung et al., 2000). For performing ICA, we filtered the continuous EEG
data 0.7–100 Hz and segmented it into -3 to 54 s time windows, time-locked to
the first tone of each sequence. The ICA was performed on all sequences of each
participant, and the components reflecting artifact, including eye blinking, eye
movement, electrocardiogram, and 60-Hz powerline noise, were identified by
visual inspection. Once obtaining the unmixing and mixing matrices from
ICA, we went back to the unfiltered data, projected it to ICA space, removed
the artifact components as identified above, and then the data was projected
back to 128-channel space for all subsequent analyses. We used a subsequent
120 µV criterion on epochs to exclude the ones containing artifacts which were
not removed by ICA, with removal rate ranging between 0.2 and 17.0% across
participants. To facilitate the speed of subsequent processes, the data was
downsampled to 256 Hz.

IV.4.6 Modeling dipole sources for auditory cortex

We employed a dipole source model as a spatial filter in order to extract the
EEG signal generated from left and right auditory cortices, following previous
studies (Fujioka et al., 2012; Chang et al., 2016, 2018). In the present study, we
were primarily interested in responses from auditory cortex, so we analyzed the
EEG signals in source space rather than from surface channels, by extracting
the oscillatory signals generated from left and right auditory cortices while
attenuating signals generated from other brain regions.

Using dipole source modelling enabled us to perform hypothesis driven anal-
yses on the EEG signal generated primarily from bilateral auditory cortices.
Most previous entrainment studies that analyze surface electrodes either select
the electrodes that have maximum auditory ERP responses or are known to
reflect auditory responses, such as frontocentral electrodes, and these stud-
ies interpret the results as generated from auditory cortex (e.g., Henry et al.,
2014; ten Oever et al., 2017). The dipole approach has advantages in that it
is a linear weighting of all the surface electrodes that emphasizes the response
from auditory cortex. It also enables assessment of hemispheric effects. Using
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auditory cortical sources is appropriate as electrophysiological evidence from
monkeys shows that delta entrainment is observed in auditory cortex (Lakatos
et al., 2013; Calderone et al., 2014), giving a physiological basis for focusing
on the auditory EEG source.

We estimated the locations of bilateral auditory cortices by localizing the P1
ERP (event-related potential) component. First, the continuous EEG data was
band-pass filtered 0.7–40 Hz and then segmented into -100 to 200 ms epochs,
time locked to standard tone onset in all sequences, which were averaged into
ERP (event-related potential) waveforms and used to model dipole sources.
Second, two auditory cortex sources were estimated for each participant for
the auditory evoked P1 (∼60–90 ms) with the dipole locations constrained
to be symmetric across hemispheres in location but not orientation, using
the multiple source probe scan algorithm and the four-shell ellipsoid model
included in the Brain Electrical Source Analysis (BESA, RRID: SCR_009530)
software package. P1 was chosen because it is the dominant peak at fast
presentation rates (N1 peaks are strongly reduced at fast rates; Näätänen and
Picton, 1987), and is generated primarily from primary auditory cortex (Godey
et al., 2001). The mean locations of fitted dipoles across participants were at
Talairach coordinates [±45.6, -14.9, 23.8] with approximate mean orientations
[0.0, 0.7, 0.7] and [0.1, 0.8, 0.6] for left and right dipoles. These locations are
close to bilateral primary auditory cortices (far below the 1 cm averaged error
range of four-shell head model; Slotnick, 2004) with orientations toward the
mid-frontal surface area, consistent with typical auditory evoked potentials.
The mean residual variances of the source fittings was 9.7% (range 2.4–19.6%).
Finally, using the dipole model, the unfiltered continuous 128-channel EEG was
projected into source-space EEG for further time-frequency analyses. Note
that the current procedure only ensures that the source-space EEG signals are
dominantly generated in the auditory cortex, given the low residual variances
of the source fitting. Considering the spatial specificity of EEG, brain signals
generated from the neighboring areas may contribute to the source waveforms,
but they should have a relatively small contribution compared to the auditory
brain signals.
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IV.4.7 Delta band (1–3 Hz) analyses

We were interested in the delta phase during the pre-target interval, which has
been shown to phase-lock with the stimulus presentation rate and thus reflect
temporal entrainment. To initially identify whether low-frequency oscillations
in the EEG entrained to the presentation rate of the auditory sequence, we
frequency transformed each unfiltered 50 s sequence, using 0.1 Hz frequency
bins ranging 1–7 Hz and a Hanning taper to avoid edge artifacts.

To isolate the delta band, we filtered the continuous source-space EEG
at 1–3 Hz with Butterworth (zero-phase, third order) high-pass and low-pass
filters, performed a Hilbert transform to obtain the instantaneous phase, and
then segmented into -1.5 to 1.5 s epochs, time-locked to target onsets. We
used the Butterworth filter because we aimed to create a narrow band-pass
filter while minimizing ripple effects in the time domain signal (Widmann et
al., 2015), which follows previous studies with similar purposes (Besle et al.,
2011; Ng et al., 2012a, 2012b; Cravo et al., 2013; Tal et al., 2017).

The inter-trial phase clustering (ITPC), sometimes referred to as the phase-
locking value or phase coherence, was used to measure the phase distribution
of delta band at each time point across trials (Cohen, 2014a), which ranges
from 0 (circular-uniformly distributed phases) to 1 (perfectly identical phases).
Higher ITPC of delta phase represents more precise phase entrainment (Tal et
al., 2017; ten Oever et al., 2017).

To correlate delta phase and pitch discrimination sensitivity, we first or-
dered the trials based on the sum of absolute phase deviations from the mean
phase (the aligned phase of delta entrainment) at each time point across the
pre-target interval (-0.5 to 0 s), and then binned the ordered trials into 10
bins (with 50% of trials overlapped across adjacent bins), within each target
level, condition, and participant. Second, we estimated the pitch discrimina-
tion sensitivity (β or slope) by modeling the behavioural performance with
psychometric function (as described in Psychometric model fitting) for each
bin across all target levels. Third, we performed a Spearman rank correlation
between ranked absolute phase deviation and pitch discrimination sensitivity,
and obtained a Spearman rank correlation coefficient for each participant and
condition. Finally, each correlation coefficient was further z-normalized to a
bootstrapped null distribution for each condition and participant. Each null
distribution was built by performing the same preceding steps on randomly
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paired behavioural response and delta phase deviation across trials for 1000
iterations within each target level, which represented the null distribution of
an uncorrelated effect. In sum, more negative z-values (z-normalized Spear-
man rank correlational coefficient) indicate a higher association between better
pitch discrimination sensitivity and pre-target delta phase being closer to the
entraining phase (optimal phase).

To correlate delta phase and RT, we performed a linear correlation between
RT and the absolute phase deviation in the pre-target interval across all cor-
rect trials, within each target level, condition, and participant. Each observed
correlation coefficient was further z-normalized to a bootstrapped null distri-
bution. Each null distribution was built as above by randomly pairing RT
and delta phase deviation across trials for 1000 iterations, which represented
the null distribution of an uncorrelated effect. A mean z-value for each con-
dition and participant was obtained by averaging z-normalized correlational
coefficients across target levels. We only include the PSE ±Δ and ±3Δ target
levels, because the levels at PSE ±5Δ were very easy to discriminate, and
the pitch of target tones at the PSE level was not perceptually discriminable
from the pitch of standard tones. The mean standard deviation of RT across
participants at ±5Δ levels was 113.81 ± 9.99 ms, which is smaller than the
mean standard deviation of RT at ±3Δ and ±Δ levels, which was 146.86 ±
11.44 ms (t(15) = -5.23, p < 0.001). The smaller RT variance at the ±5Δ
levels likely reflects near ceiling performance. In sum, higher mean z-values
indicate that pre-target delta phases that are closer to the entraining phase
(optimal phase) are associated with faster (shorter) RTs to the target.

IV.4.8 Beta band (15–25 Hz) analyses

We were interested in the induced (non-phase-locked) power in beta band in
the pre-target interval. Previous studies show that power decreases (desyn-
chronization) and increases (resynchronization) to entrain to the rate of the
beat of an externally presented tone sequence, and thus reflects temporal pre-
diction (Snyder and Large, 2005; Iversen et al., 2009; Fujioka et al., 2009,
2012; Cirelli et al., 2014; Fujioka et al., 2015, but see Meijer et al., 2016).
To obtain induced activities, the trial-averaged ERP waveform of -1.5 to 1.5 s
around target tone onset was subtracted from each target epoch within each
condition and participant (Fujioka et al., 2012; Cohen, 2014a; Chang et al.,
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2016, 2018). The Morlet wavelet transformation was performed on each target
epoch of induced activities (frequency bin size = 1 Hz; 10 cycles). The beta
power was baseline corrected by percentage change to the mean power in the
pre-target interval for each frequency bin, and the beta power time series was
obtained by averaging induced power across 15–25 Hz. Edge artifacts did not
affect the time-frequency activities at the pre-target interval.

Following our previous studies (Fujioka et al., 2012; Chang et al., 2018),
for each condition, we first identified the latency of beta desynchronization
(decrease in power) as the time point with minimum beta power within the
pre-target interval and the resynchronization (power rebound following the
desynchronization) as the time point with beta power closest to the baseline
(0% power change) between the latency of desynchronization and time point
0 s.

To describe the shape of beta power modulation for each trial, we fitted a
quadratic (parabola) function (y = ax2 + bx + c) on the induced beta power
time series in the pre-target interval (data was centered and scaled, and fitted
with bisquare weights method). The fitted quadratic coefficient (a) reflects
the modulation peak-trough shape of beta power, with more positive values
representing U-shaped modulation with deeper troughs, 0 representing lin-
ear shape, and more negative values representing ∩-shaped modulations with
higher peaks. The vertex position (–b/2a) estimates the beta desynchroniza-
tion latency. The mean R2 of fitting across participants was 59.6 ± 0.6%. This
approach allows us to simply use one parameter to quantify the peak-trough
shape, and one parameter to quantify the vertex latency of the beta power
fluctuation, which is suitable to model single-trial neural activities and per-
form trial-by-trial EEG-behaviour correlations. This approach is better than
a peak-searching approach at a single-trial level as it acts like a low-pass filter;
it avoids identifying spurious noise peaks while extracting the slow modulation
shape and vertex.

To correlate the size of the beta modulation trough or desynchronization
latency with pitch discrimination sensitivity, following the procedure described
above, we ordered and binned the trials into 10 bins (with 50% of trials over-
lapped across adjacent bins), based on each fitted beta modulation index
(quadratic coefficient or vertex position), within each target level, condition,
and participant, and then estimated the pitch discrimination sensitivity (β,
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slope) for each bin across target levels. We performed a Spearman rank cor-
relation between each ranked beta modulation index and pitch discrimination
sensitivity across target levels, and further z-normalized to a bootstrapped null
distribution for each participant and condition. In sum, for the beta power
modulation shape, higher z-values show a greater association between deeper
pre-target beta modulation trough (ideal U-shaped beta power) and better
pitch discrimination sensitivity. For the beta desynchronization latency, higher
z-values show a greater association between later beta desynchronization la-
tency and better pitch discrimination sensitivity.

To correlate beta modulation shape with RT, following the procedure de-
scribed above, each beta modulation index was linearly correlated with RT
across trials within each target level, normalized to z-value (the bootstrapped
null distribution of randomly paired RT and quadratic coefficients across tri-
als). A mean z-value was obtained for each condition and participant by
averaging z-values across target levels. In sum, for the beta power modula-
tion shape, lower mean z-values indicate a greater association between deeper
pre-target beta modulation trough (ideal U-shaped beta power) and faster
(shorter) RT. For the beta desynchronization latency, lower mean z-values in-
dicate a greater association between later beta desynchronization latency and
faster (shorter) RT.

IV.4.9 Delta-beta coupling analyses

Given that both delta phase and beta power modulation are affected by rhyth-
mic regularity, we were interested in the cross-frequency phase-amplitude cou-
pling (PAC) between delta and induced beta activities. Phase-amplitude cou-
pling is thought to result from the excitatory or inhibitory phase of neural
circuits oscillating at low-frequencies affecting the power of high-frequency
oscillations (Hyafil et al., 2015b). To estimate the delta-beta coupling, we
employed the dPAC index, which was calculated for each trial across time
points,

dPAC == | 1
n

n∑
t=1

At(eiϕt − 1
n

n∑
t=1

eiϕt)|
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where the n signifies the total number of time points, At the power amplitude
of modulated frequency, and ϕt the phase of the modulating frequency at time
point t. The dPAC is the debiased version of the widespread PAC method
(Canolty et al., 2006) for solving phase clustering bias (van Driel et al., 2015).
In the present study, we estimated dPAC with reversed beta power polarity
to reflect the modulation trough rather than peak. Each observed dPAC was
further transformed into a z-value (dPACz) by comparing with 1000 time-
shuffled dPAC (null distribution).

To correlate delta-beta coupling with pitch discrimination sensitivity, fol-
lowing the procedure described above, the dPACz values were rank-correlated
with discrimination sensitivity across 10 dPACz-ranked bins (with 50% of tri-
als overlapped across adjacent bins), and then a z-normalized correlational
coefficient (relative to the bootstrapped null distribution) was obtained for
each condition and participant. In sum, a higher z-value indicates a greater
association between better delta-beta coupling and better pitch discrimination
sensitivity.

To correlate delta-beta coupling with RT, the dPACz scores were linearly
correlated with RT across trials within each target level, normalized to z-values
(relative to the bootstrapped null distribution). A z-value was obtained for
each condition and participant by averaging z-values across target levels. In
sum, lower mean z-values indicate a greater association between better delta-
beta coupling and faster (shorter) RT.

IV.4.10 Partial out covariances among EEG indexes for
EEG-behaviour correlations

The covariances were relatively small among the EEG indexes (delta phase
deviation, quadratic coefficient of beta power modulation peak-trough shape,
vertex latency of beta desynchronization, and dPACz) across the two hemi-
spheres (see Supplementary Material and Table S1). However, to exclude any
potential confounding effects among these covariances on the EEG-behaviour
correlations, each EEG index of each hemisphere was partialled out by all
remaining indexes across both hemispheres (taking the residuals from a re-
gression model in which each EEG index was predicted by all other indexes),
prior to each above-mentioned correlational analysis. The only exception was
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that the quadratic coefficient and the vertex latency of the beta power modu-
lation shape were not partial out from each other, because these two indexes
are mathematically dependent in the quadratic function.

IV.4.11 Experimental design and statistics

Participant (n = 16) was the random factor for the within-subject statistical
tests in the current study. The assumptions of parametric tests were checked
(Kolmogorov-Smirnov test with threshold p < 0.01), and the alternative test
or non-parametric permutation tests (1000 iterations) were used when the
assumptions were violated. The test being used is specified below for each p-
value. The statistical tests were performed by MATLAB (2015b) or R (3.3.3).
Statistical decisions were based on two-tailed tests. Multiple comparisons of all
the planned statistical tests of the current study were controlled by experiment-
wise false discovery rate (FDR) (Benjamini and Hochberg, 1995; Luck and
Gaspelin, 2017), and each corrected p-value was reported as pFDR.

To access the EEG-behaviour trial-by-trial correlational effects, we per-
formed statistical tests on the z-normalized correlational coefficients across par-
ticipants. It is important to note that we did not test the statistical significance
of each within-participant correlational coefficient, but we tested whether the
within-participant correlational effect was consistent across all participants. In
other words, for each condition, we used a one-sample t-test to assess whether
the z-normalized correlational coefficients across participants were significantly
different from 0 in the same direction. This approach is statistically similar to
a linear mixed-effect model with random intercepts and slopes, which assesses
the influence of predictors of interest while taking into account the variance
across participants (Barr et al., 2013). The current approach fits our pur-
pose better than a linear mixed-effect model because it can incorporate non-
parametric rank correlation and bootstrapping z-normalization. Note that
the trial-by-trial correlational analyses were only performed within the Rhyth-
mic condition, as we aimed to investigate how neural activities anticipatorily
associate with perceptual performance, when rhythmic temporal regularity
is available. An extended question is whether rhythmicity moderates these
EEG-behaviour relationships, that is, whether such a relationship would be
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diminished in the Arrhythmic compared to Rhythmic conditions. We there-
fore performed post-hoc analyses to investigate this question, and the results
are reported in the Supplementary Material.

IV.5 Results

IV.5.1 Behavioural performance and psychometric
modeling

The psychometric modeling results showed that rhythmic regularity facilitated
pitch discrimination sensitivity (Fig. 1B). The frequency of 50% responding
“higher” (converted from α of logistic model) was not significantly different
between Rhythmic and Arrhythmic conditions (t(15) = -0.16, pFDR= 0.945,
paired t-test; Fig. 1C). The discrimination slope (β of logistic model) was
significantly higher in the Rhythmic than Arrhythmic condition (t(15) = 2.97,
pFDR= 0.029, paired t-test; Fig. 1D), suggesting that participants have better
pitch discrimination sensitivity in the rhythmic than arrhythmic context. This
is equivalent to saying the required frequency difference to achieve 70.7% pitch
discrimination accuracy decreased 11.5% ± 5.3% on a logarithmic frequency
scale, comparing the Rhythmic to Arrhythmic conditions. This effect size is
at the same level (approximately 10%) as other similar behavioural studies
(Haegens and Zion Golumbic, 2018).

The RT results are shown in Fig. 1E. A repeated measure MANOVA (alter-
native ANOVA without sphericity assumption, O’Brien and Kaiser, 1985) on
RT (correct trials only) with variables Rhythmicity (Rhythmic, Arrhythmic)
and Target Levels (PSE ± [Δ, 3Δ, 5Δ]) showed significant main effects of
Rhythmicity (Wilks(1) = 0.49, approximate F(1,15) = 15.55, pFDR= 0.010)
and Target Level (Wilks(1) = 0.12, approximate F(5,11) = 15.83, pFDR=
0.002), but no interaction effect (Wilks(1) = 0.95, approximate F(5,11) =
0.11, pFDR= 0.988). A linear trend analysis (collapsing Rhythmicity) further
showed that RTs are longer when the target level is closer to the PSE (t(15)
= 9.39, pFDR< 0.001) as expected. As for the main effect of Rhythmicity, the
averaged RT across target levels (excluding the PSE level) in the Rhythmic
condition was 16.3 ms shorter than in the Arrhythmic condition, indicating
that temporal regularity facilitates behavioural response speed. This effect
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Figure IV.1: Experimental design and behavioural performance. (A) Stimuli and
task. In both conditions, 10% of tones were targets (yellow), which were higher
or lower in pitch than standards (black) at a near-threshold. Participants judged
whether target tones were higher or lower than standards. Tones in the Rhythmic
sequence were isochronous with 500 ms IOI (inter-onset interval), and tones in the
Arrhythmic (non-isochronous) sequence were presented with IOI uniformly ran-
dom between 250 and 750 ms. Importantly, the IOI before and after each target
tone was fixed at 500 ms in both conditions. (B) Psychometric performance on
the perceptual judgment. For purposes of visualization, the error bars represent
within-subject error (Cousineau, 2005) for the p(higher) at each level. Both PSE
and Δ were individually determined by an initial adaptive psychophysical proce-
dure. We fitted a logistic psychometric model for each participant’s performance
under each condition. Fitted parameters are presented in (C) and (D); each con-
nected dot represents one participant’s data, and the colored dots and error bars
represent the mean ± standard error across participants. (C) The frequency of
50% responding “higher” (converted from α of logistic model) was not significantly
different between Rhythmic and Arrhythmic conditions. (D) Discrimination sen-
sitivity. The discrimination slope (β of logistic model) was significantly higher in
the Rhythmic than Arrhythmic condition, suggesting participants have better pitch
discrimination sensitivity in the Rhythmic than Arrhythmic context. (E) Response
Time (RT). The correct trial RT on PSE ± [Δ, 3Δ, 5Δ] levels was shorter in the
Rhythmic than Arrhythmic condition, suggesting rhythmic regularity facilitates
behavioural response speed. Error bars represent within-subject error. For visual
representation, RTs on PSE level were based on both correct and error trials, and
RTs on other levels were based on only correct trials.
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size is similar to previous studies reporting that rhythmicity facilitates RT
(e.g., Morillon et al., 2016).

IV.5.2 Beta power modulation is affected by rhythmic-
ity and associates with pitch discrimination sen-
sitivity

We were interested in the induced (non-phase-locked) power activities in beta
band (15–25 Hz) in the pre-target interval, as previous studies showed that
beta power decreases (desynchronization) and increases (resynchronization) so
as to entrain to the rate of the beat of an externally presented tone sequence,
and thus reflects temporal prediction (Snyder and Large, 2005; Iversen et al.,
2009; Fujioka et al. 2009, 2015, 2012; Cirelli et al., 2014). Replicating these
previous studies, the induced beta power fluctuations in bilateral auditory
cortices (Fig. 2A) showed that power decreased following the onset of a stan-
dard tone, and then increased in anticipation of the upcoming target tone,
prior to the 0 ms point. In the left auditory cortex, the desynchronization la-
tency was earlier in the Arrhythmic than Rhythmic condition (t(15) = -2.88,
pFDR= 0.032, permutation test), as was the resynchronization latency (t(15)
= -2.70, pFDR= 0.046, permutation test) (Fig. 2B). There were no significant
latency effects in the right auditory cortex (t-values < 1.26 and p-valuesFDR
> 0.347, permutation test; Fig. 2B). The resynchronization latency differ-
ence is consistent with a previous study (Fujioka et al., 2012) that found that
resynchronization latency is earlier in arrhythmic than rhythmic conditions.
It was suggested that the beta power resynchronization latency adapts to the
onset time of the next tone when it is temporally predictable, but when timing
is uncertain, beta resynchronization reflects preparation for the possibility of
an early tone onset (Fujioka et al., 2012). The current study was not a full
replication of the previous study, as we did not include variation in the stim-
ulus presentation rate. Nevertheless, the current findings are consistent with
the previous study, suggesting that beta power modulation in the Rhythmic
condition reflects temporal prediction and thus is consistent with beta power
reflecting entrainment.

Beyond replicating the effects of latencies, additional exploratory analy-
ses did not showed any differences on beta desynchronization depth between
Rhythmic and Arrhythmic conditions in either left (-6.61 ± 0.74 vs. -5.16 ±
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0.48, t(15) = -1.38, pFDR= 0.338, permutation test) or right (-6.65 ± 0.65 vs.
-6.41 ± 0.61, t(15) = -0.32, pFDR= 0.869, permutation test) auditory cortex.

We further investigated whether pre-target beta power modulation indexes
are anticipatorily associated with perceptual performance, as our previous
study showed that the depth of the beta power modulation trough reflects
expectations for pitch (Chang et al., 2018). In the present paper, at a trial-by-
trial level, we correlated both pitch discrimination sensitivity and RT with the
depth of the beta trough (the depth of the U-shaped fluctuation) or beta desyn-
chronization latency in the Rhythmic condition, where the rhythmic temporal
regularity is available. The power modulation was modeled by a quadratic
(parabola) function, and the U-shaped fluctuation depth and vertex (desyn-
chronization) latency are represented by fitted coefficients (see Method: Beta
band (15–25 Hz) analyses for details).

The correlational analyses on beta modulation depth and discrimination
sensitivity (Fig. 3A) showed that, in left auditory cortex, deeper beta mod-
ulation troughs are associated with increased pitch discrimination sensitivity
(t(15) = 3.10, pFDR= 0.025, one-sample t-test). The same analyses in right
auditory cortex did not show a significant result (t(15) = -0.55, pFDR= 0.741,
one-sample t-test). This effect was significantly stronger in left than right au-
ditory cortex (t(15) = 2.62, pFDR= 0.045, paired t-test). On the other hand,
depth of the beta modulation trough was not significantly related to RT (Fig.
3B) for either left (t(15) = 1.05, pFDR= 0.474, one-sample t-test) or right (t(15)
= 0.10, pFDR= 0.969, one-sample t-test) auditory cortex.

The correlational analyses on beta desynchronization latency and discrim-
ination sensitivity did not show any significant results (left: t(15) = 0.51,
pFDR= 0.750; right: t(15) = -0.96, pFDR= 0.480; one-sample t-tests; Fig. 3C).
The correlational analyses on beta desynchronization latency and RT did not
show any significant results either (left: t(15) = -0.23, pFDR= 0.909; right:
t(15) = -0.94, pFDR= 0.480; one-sample t-tests; Fig. 3D).

In sum, induced beta power modulation is affected by the rhythmic regular-
ity of the auditory sequence, and trial-by-trial analyses show that a deeper beta
power modulation trough prior to a deviant pitch is anticipatorily associated
with better pitch discrimination sensitivity.
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Figure IV.2: Beta power modulation is affected by rhythmicity. (A) Beta power
(15–25 Hz) decreases (desynchronization) following the onset of a standard tone,
and then increases (resynchronization) again in anticipation of the upcoming target
tone. (B) Beta desynchronization and resynchronization latencies were both earlier
in the Arrhythmic than Rhythmic condition in left auditory cortex (but not in the
right auditory cortex). Error bars represent standard error of mean. (n.s.: non-
significant).

83



Doctor of Philosophy– Andrew Chang;
McMaster University– Psychology, Neuroscience & Behaviour

Figure IV.3: Distributions of trial-by-trial correlational strength between pre-
target neural oscillatory activities and behavioural performance on the target tone
in the Rhythmic condition. For the beta power on each trial, we modeled the pre-
target beta power modulation peak-trough shape with the quadratic coefficient
(quad. coef.) of a quadratic (parabola) function. The beta desynchronization
(desynch.) latency was also estimated by the vertex of the same quadratic function.
For the delta phase on each trial, we extracted the absolute phase deviation from
the mean phase (the aligned phase of delta entrainment) across the pre-target
interval. The dPACz index was used to estimate the delta-beta phase-amplitude
coupling strength on each trial. For each participant, trial-by-trial neural activities
were correlated with discrimination sensitivity and with RT, after the covariances
among these EEG indexes were partialed out (see Methods for details). (A–H) The
distribution of correlational strengths across participants is presented as dots, and
the mean ± standard error across participants is presented as bar graphs ± error
bars. Results showed that (A) deeper pre-target beta power U-shaped modulation
trough in left auditory cortex predicts better pitch discrimination sensitivity, and
(H) better pre-target delta-beta coupling in right auditory cortex predicts faster
RT. (n.s.: non-significant).
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IV.5.3 Delta phase is modulated by rhythmicity but not
associated with perceptual performance

We were interested in the delta (1–3 Hz) phase in the pre-target interval, which
has been shown to phase-lock with stimulus presentation rate and thus reflect
temporal entrainment (e.g., Tal et al., 2017; ten Oever et al., 2017). We first
examined the frequency content of the unfiltered time-domain waveform in
response to each stimulus sequence to confirm that delta oscillations entrained
to the auditory presentation rate (2 Hz). The power spectrum (Fig. 4A) shows
a clear peak at 2 Hz in the Rhythmic but not in the Arrhythmic condition (left
auditory cortex: t(15) = 2.80, pFDR= 0.035; right auditory cortex: t(15) =
3.63, pFDR= 0.020; paired t-tests), as well as at harmonic frequencies of 4 and
6 Hz (t-values > 3.07, p-valuesFDR < 0.025, paired t-tests). Thus this initial
analysis shows delta oscillations entrain to the 2 Hz stimulus presentation rate.

The ITPC (inter-trial phase clustering) was calculated on band-pass filtered
waveforms (delta band 1–3 Hz) for both Rhythmic and Arrhythmic conditions
(Fig. 4B). The group-mean ITPC for each condition in our study was around
the same level reported in previous studies (e.g., Henry and Obleser, 2012; ten
Oever et al., 2017), suggesting that we observed a robust delta-band ITPC sig-
nal at auditory dipoles of similar magnitude as in previous studies. The mean
ITPC across the pre-target interval was higher in Rhythmic than Arrhythmic
conditions in both left (t(15) = 1.98, pFDR= 0.046, permutation test) and right
(t(15) = 3.67, pFDR= 0.023, permutation test) auditory cortices. This finding
replicates previous studies showing that the delta phase phase-locks to the
rhythmic regularity in the auditory input. The reason we averaged the ITPC
across the entire pre-target interval rather than reporting the ITPC time series
results was because the beta power modulation and dPACz indexes considered
the entire pre-target interval, and we wanted the ITPC index to represent the
information over the same time-interval.

An interesting observation is that some previous studies reported a stronger
rhythmicity effect on ITPC using surface electrodes than our findings using
auditory dipoles (e.g., ten Oever et al., 2017). However, as we aimed to in-
vestigate delta entrainment activities generated by auditory cortex, analyzing
ITPC using surface electrodes is a suboptimal approach for the current study,
because surface electrodes will likely include delta entrainment signals gener-
ated from other brain regions (Besle et al., 2011; Morillon and Baillet, 2017).
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Figure IV.4: Delta phase entrains to rhythmic regularity. (A) A frequency trans-
formation of the unfiltered auditory EEG signal (extracted from auditory cortex)
for each individual sequence (∼50 s) for each condition showed that the power
at 2 Hz was stronger in the Rhythmic than Arrhythmic condition in both cor-
tices. (*: pFDR< 0.05) (B) We further band-passed filtered the signal at the delta
range (1–3 Hz) and then obtained the instantaneous phase with a Hilbert trans-
form. The inter-trial phase clustering (ITPC) averaged over the pre-target interval
was obtained for each condition and participant. ITPC ranges between 0 and 1,
where 1 represents perfect phase-locking across trials, and 0 represents uniformly
distributed phase across trials. The results showed that ITPC was higher in Rhyth-
mic than Arrhythmic condition in both cortices. Each connected dot represents
one participant’s data, and the colored dots and error bars mean ± standard error
across participants.
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We further investigated whether the pre-target delta phase was anticipa-
torily associated with subsequent perceptual performance. On a trial-by-trial
level, we separately correlated pitch discrimination sensitivity and RT with
the phase deviation on each trial, relative to the mean phase in the Rhythmic
condition (see Method: Delta band (1–3 Hz) analyses for details). If the mean
(entrained) phase prior to a target represents the optimal neural status for an-
ticipatorily facilitating perceptual performance, then pre-target intervals with
delta phase closer to the mean phase should associate with better subsequent
perceptual performance (e.g., Henry and Obleser, 2012). However, our results
did not show such an effect. Phase deviation was not significantly correlated
with discrimination sensitivity, although there was a trend in the left auditory
cortex (Fig. 3E; left auditory cortex: t(15) = -2.32, pFDR= 0.067; right audi-
tory cortex: t(15) = -0.07, pFDR= 0.970, one-sample t-tests). Phase deviation
was not significantly correlated with RT either (Fig. 3F; left auditory cortex:
t(15) = -0.77, pFDR= 0.583; right auditory cortex: t(15) = -1.03, pFDR= 0.474,
one-sample t-tests).

Together, the analyses replicated previous studies in that the 2 Hz delta
oscillations entrained to the rhythmic regularity of the tone sequence, and the
ITPC of the delta phase was higher in the Rhythmic than Arrhythmic condi-
tion. However, unlike previous studies showing that delta phase is associated
with perceptual performance for auditory intensity and timing (Henry and
Obleser, 2012; Henry et al., 2014; Arnal et al., 2015; ten Oever et al., 2017;
Bauer et al., 2018), the present results suggest that delta phase entrainment
is not strongly related to near-threshold pitch perception performance.

IV.5.4 Delta-beta phase-amplitude coupling is modu-
lated by rhythmicity and associates with RT

Given that both delta phase and beta power modulation are affected by rhyth-
mic regularity, we were interested in, first, whether the degree of delta-beta
phase-amplitude coupling (indexed by dPACz, where higher dPACz values re-
flect better delta-beta coupling; see Method: Delta-beta coupling analyses for
details) related to the rhythmicity of the input sequence. Results showed that
the dPACz was higher in the Rhythmic than Arrhythmic condition in both
left (t(15) = 4.85, pFDR= 0.003, paired t-test) and right (t(15) = 3.69, pFDR=
0.016, paired t-test) auditory cortices (Fig. 5).
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Figure IV.5: Pre-target delta-beta phase-amplitude coupling is modulated by
rhythmicity. Higher dPACz values represent higher phase-amplitude coupling
strength between the phase of low-frequency oscillations (delta: 1–3 Hz) and the
power of high-frequency oscillations (beta: 15–25 Hz). The dPACz value of each
participant is shown as connected dots, and the mean ± standard error across
participants by colored dots. The result showed dPACz is higher in the Rhythmic
than Arrhythmic condition in both cortices.

88



Doctor of Philosophy– Andrew Chang;
McMaster University– Psychology, Neuroscience & Behaviour

We further investigate whether delta-beta coupling in the pre-target period
is anticipatorily associated with subsequent perceptual performance, by cor-
relating dPACz separately with pitch discrimination sensitivity and RT on a
trial-by-trial level in the Rhythmic condition (Fig. 3H). The results showed
that dPACz and RT are negatively correlated in the right auditory cortex
(t(15) = -3.06, pFDR= 0.025, one-sample t-test), indicating that the higher
the coupling strength, the shorter the RTs. The same analyses did not show
any significant effects in left auditory cortex (t(15) = 0.97, pFDR= 0.480, one-
sample t-test). This effect was stronger in right than left auditory cortex (t(15)
= 2.55, pFDR= 0.046, paired t-test). For pitch discrimination sensitivity, there
were no significant correlations in either left (t(15) = 0.39, pFDR= 0.826, one-
sample t-test) or right (t(15) = 1.08, pFDR= 0.474, one-sample t-test) auditory
cortices (Fig. 3G).

Together, the analyses of delta-beta phase-amplitude coupling showed, first,
that coupling strength was higher for Rhythmic than Arrhythmic sequences
and, second, that higher coupling strength is anticipatorily associated with
shorter RT in a subsequent pitch discrimination judgment on a trial-by-trial
level.

IV.6 Discussion

Accurate pitch perception is crucial for identifying objects in the world and
perceiving speech and music. We showed that rhythmic regularity facilitates
fine pitch discrimination, and revealed how it is implemented in neural en-
trainment activities. Participants discriminated near-threshold pitch devia-
tions (targets) in contexts where tones were either rhythmically or arrhythmi-
cally sequenced. The behavioural results showed rhythmic regularity facilitates
both psychophysical pitch discrimination sensitivity and reaction time (RT).
The EEG analyses showed that delta (1–3 Hz) phase, beta (15–25 Hz) power,
and the degree of delta-beta coupling were all modulated by rhythmicity. In-
terestingly, we further showed that these neural activities immediately prior
to target tones have differential behavioural contributions to pitch discrimina-
tion performance at a trial-by-trial level. Specifically, (1) deeper U-shaped beta
power modulation predicts higher discrimination sensitivity, (2) higher delta-
beta coupling strength predicts shorter RT, but (3) delta phase alone was not
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related to either discrimination sensitivity or RT. Note that the covariances
among the EEG indexes were partialed out prior to these EEG-behaviour cor-
relational analyses.

Delta phase entrained (phase-locked) to the rhythmicity in the input se-
quences, consistent with previous studies (Calderone et al., 2014). However,
in contrast with beta modulation depth and delta-beta coupling (discussed
below), degree of delta entrainment did not associate significantly with per-
ceptual discrimination of pitch or RT on a trial-by-trial basis, although there
was a trend for an association between higher pitch discrimination sensitivity
and smaller delta phase deviation in the left hemisphere. In contrast, previous
studies have found robust associations between delta phase and the percep-
tion of timing or intensity deviations (Henry and Obleser, 2012; Henry et al.,
2014; Arnal et al., 2015; ten Oever et al., 2017; Bauer et al., 2018). Thus, there
might be a distinction in how delta phase entrainment relates to spectral-based
(involving frequency and pitch) and temporal/intensity-based (involving on-
sets, intensity changes, duration and rhythm) perceptual sensitivity, although
additional studies need to be done that directly compare associations between
delta phase and pitch, timing and intensity. If found, such a distinction would
be interesting as, at a more abstract level, pitch is more related to the content
or identity of a sounding auditory object, whereas timing and intensity are
more related to an object’s location in time and space, suggesting that delta
phase may relate more to timing than to perceptual facilitation of a sounding
object’s identity. Note, of course, that these post-hoc speculations are based
on null statistical differences and should therefore be taken with caution. It
is possible that a correlation between delta phase and perceptual facilitation
might be observed with a larger sample size. However, given the same statisti-
cal power, beta modulation shape and delta-beta coupling were more strongly
associated with pitch discrimination performance than delta phase.

With respect to beta, we found that beta power modulation latencies are
affected by rhythmicity, and that U-shaped modulation depth predicts pitch
perception. The former is consistent with previous findings on the role of
beta in temporal prediction (Snyder and Large, 2005; Iversen et al., 2009; Fu-
jioka et al. 2009, 2015, 2012; Cirelli et al., 2014; Morillon and Baillet, 2017).
Furthermore, we found that the depth of U-shaped beta power modulation
predicts pitch discrimination sensitivity on a trial-by-trial basis. Thus, our
data indicate that beta power modulation shape affects sensory predictions,
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and anticipatorily facilitates perceptual performance. A few previous studies
hinted at the role of beta in prediction of pitch. Specifically, beta power was
shown to increase after unexpected pitch changes (Chang et al., 2016; Franken
et al., 2018), to reflect the magnitude of pitch prediction updating (Sedley et
al., 2016), and to relate to smaller event-related potential pitch prediction error
responses (Chang et al., 2018). However, the lack of behavioural tasks in these
studies makes it challenging to link the neural findings with perception. Our
finding in the current study that entrained beta power modulation shape prior
to a pitch change affects pitch perception adds to previous literature indicating
that non-entrained beta power reflects information integration leading to im-
proved perceptual performance across many domains (e.g., Arnal et al., 2015;
Herrmann et al., 2016; Kayser et al., 2016; Florin et al., 2017; Pefkou et al.,
2017; Spitzer and Haegens, 2017). Note that we found no association between
beta desynchronization latency and either pitch discrimination sensitivity or
RT on a trial-by-trial basis. It is unclear why rhythmicity affected beta desyn-
chronization latency, but beta modulation depth predicted the discrimination
sensitivity at the trial-by-trial level under the Rhythmic condition. Neverthe-
less, considering that rhythmicity of the sensory input modulates whether the
temporal attending mode is rhythmic or not (Nobre and van Ede, 2018), a
possible explanation is that the beta desynchronization latency effect reflects
the difference between distinct attending modes and beta modulation depth
reflects the trial-by-trial neural mechanism of facilitating pitch discrimination
under the rhythmic attending mode. In sum, data across studies suggest that
for audition, both delta phase and beta power modulation latencies might re-
late to the prediction of rhythmic temporal regularity; but that delta phase
may proactively facilitate perception in the temporal and intensity domains,
whereas the U-shaped beta power modulation depth may relate to the spectral
domain, including prediction of pitch change and the quality of pitch percep-
tion.

Behaviourally, despite the fact that pitch is a fundamental aspect of the
perception of sound and critical for both speech and musical processing, we
provide novel evidence that rhythmicity improves near-threshold pitch sensitiv-
ity. It adds to previous literature indicating that rhythmicity affects sensitivity
to deviations in timing and intensity and detecting signals in noise (e.g., Henry
and Herrmann, 2014; Hickok et al., 2015). Evidence that rhythmic regular-
ity facilitates detection of large (supra-threshold) pitch changes is inconsistent
(Jones et al., 2002; Morillon et al., 2016, but see Bauer et al., 2015), so further
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research is needed to determine whether near-threshold and supra-threshold
pitch discrimination are differentially affected by rhythmic context. In the ab-
sence of a predictable rhythmic context, one study found that predictability of
a timing delay between isolated cue-target pairs was associated with decreased
RT in a pitch discrimination task (Herbst and Obleser, 2017). However, this
study did not show any effects on accuracy, and thus it cannot distinguish
whether the effects of shortened RT were caused by facilitated perception or
simply better motor preparation due to the predictable intervals. The current
psychophysical results further showed that perceptual pitch sensitivity was
improved in a rhythmic context. Together our study and that of Herbst and
Obleser (2017) suggest that predictable temporal structure in general, whether
it arises from a rhythmic context or memory for a time interval, facilitates fine
pitch discrimination.

Finally, the present results show that delta-beta phase-amplitude cou-
pling predicts RT but not sensitivity of pitch discrimination, suggesting that
cross-frequency coupling reflects auditory-motor interaction. Phase-amplitude
coupling is thought to result when the excitatory or inhibitory phase of
low-frequency oscillations modulates the power in high-frequency oscillations
(Hyafil et al., 2015b), such that processing is optimized for rhythmic input
(Lakatos et al., 2005; Schroeder and Lakatos, 2009). Only a few studies have
reported that delta-beta coupling affects perceptual performance. For exam-
ple, delta-beta coupling was reported to associate with the accuracy of detect-
ing an auditory temporal delay (Arnal et al., 2015) and comprehending speech
(Keitel et al., 2018). In a visual task, delta-beta coupling in primary motor
cortex associated with enhanced visual performance (Saleh et al., 2010). In
auditory tasks, delta-beta coupling reflects the communication between motor
and auditory cortical regions and might modulate perceptual and behavioural
selection (Morillon and Baillet, 2017). Our finding is consistent with this
idea that delta-beta coupling reflects the efficiency of auditory-motor commu-
nication, as shorter RTs would indicate faster information transfer between
auditory and motor regions, resulting in faster response selection.

It is an open question as to why we observed that U-shaped beta power
modulation depth correlated with pitch discrimination at the left auditory
cortex but delta-beta coupling with RT at right auditory cortex. We did
not have an a priori hypothesis about lateralization, as the vast majority of
previous studies did not examine hemispheric differences. To our knowledge,
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there are only two previous studies using MEG that looked at hemispheric
lateralization. Our lateralization pattern is in line with these previous studies
in that they found that the beta effect is localized to the left hemisphere and
the delta effect is localized to the right hemisphere (Morillon and Baillet, 2017;
Tal et al., 2017). Together, although further investigation is needed, these
lateralization findings suggest that left and right auditory cortices associate
with different neural entrainment mechanisms and perceptual performances.

The current study focused on neural activities generated from bilateral au-
ditory cortices because they are regarded to be the primary regions for pro-
cessing pitch in the brain (McDermott, 2018) and are typically reported to be
an important source of neural entrainment activities in response to auditory
sequences (Fujioka et al., 2012; Morillon and Baillet, 2017). Indeed, most stud-
ies investigating auditory neural entrainment activities focus on the neural sig-
nal from auditory cortex, either through direct electrophysiological recording,
source modeling, or analysis of surface electrodes that predominantly record
activity from auditory cortex (e.g., Lakatos et al., 2013; Henry et al., 2014;
Morillon and Baillet, 2017; ten Oever et al., 2017). However, neural entrain-
ment activities in response to auditory sequences can also be observed in other
cortical regions, including sensorimotor, premotor, supplementary motor and
inferior-frontal regions (Besle et al., 2011; Fujioka et al., 2012; Morillon and
Baillet, 2017). Examining the activities from those regions is beyond the scope
of the current study, given the lack of individual structural scans or sufficient
spatial specificity of EEG to reliably extract the neural activities from motor
and frontal regions. Nevertheless, we argue that the oscillatory activities from
auditory cortex should be most relevant for studying rhythmic facilitation of
pitch discrimination. Further studies are needed to examine the perceptual
functions of neural entrainment activities beyond auditory cortex.

Many behavioural and neural studies suggest that auditory and motor sys-
tems cooperate in processing rhythm (e.g., Phillips-Silver and Trainor, 2005;
Chen et al., 2008; Grahn, 2012; Merchant et al., 2015), and beta oscillation
is commonly hypothesized as the auditory-motor communication channel (Fu-
jioka et al., 2012; Morillon and Baillet, 2017). Our data suggest delta-beta
coupling is also critical for auditory-motor interactions. It would be inter-
esting for future studies to examine delta-beta coupling in populations with
motor deficits, such as Parkinson’s patients, who are known to have reduced
beta power entrainment to auditory rhythms (te Woerd et al., 2018). Indeed,
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we have hypothesized that children with developmental coordination disorder
will show reduced beta and delta-beta entrainment (Trainor et al., 2018), and
others have proposed that interpersonal auditory-motor synchronization (e.g.,
joint music performance) may involve beta coupling between brains (Novembre
et al., 2017).

It is important to note that our Rhythmic condition used the same repetitive
isochronous intervals while the Arrhythmic condition used random intervals,
and thus the perceptual facilitation effect could be caused by either rhyth-
micity or by memorizing the predictable fixed single interval or both (Breska
and Deouell, 2017; Herbst and Obleser, 2017). Neurally, it has been shown
that a predictable fixed single interval without rhythmicity can increase low-
frequency phase clustering, so this index might reflect non-oscillatory neural
ramping activity (e.g., contingent negative variation) rather than neural os-
cillation (Breska and Deouell, 2017, but see Obleser et al., 2017). For the
current study, we did not aim to eliminate the potential effect of a predictable
fixed single interval on perceptual performance, as a fixed interval is inevitably
embedded in any isochronous rhythmic sequences. The rhythmic/arrhythmic
manipulation was an approach for examining temporal prediction, whether of
a rhythmic or fixed interval nature. The important behavioural contribution
of the current study is in demonstrating that rhythmic temporal predictability
facilitates pitch perception in audition. Future studies are needed to examine
whether the effects reported in the current study can be generalized to other
forms of temporal predictability, such as cue-target association, hazard rate
and repeated intervals (e.g., Breska and Deouell, 2017; Herbst and Obleser,
2017; Nobre and van Ede, 2018). As for delta phase, the current time-frequency
neural measurement cannot dissociate possible ramping activities from oscil-
latory activities. It is possible that the null correlational results between delta
phase and behavioural pitch performance were due to confounding ramping
neural activities; however, many previous studies have reported an association
between delta phase and rhythmic perceptual facilitation, although it remains
unclear whether ramping neural activities played a role. In general, sepa-
rating oscillatory and non-oscillatory neural activities in low-frequency neural
oscillations is challenging and needs to be addressed in further careful studies
(Doelling et al., 2019).

In a broader theoretical context, the composition of two coupled neural
entrainment activities with dissociable functions is consistent with dynamic
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attending theory. It posits two components: oscillatory temporal expectation
and temporal attention (Large and Jones, 1999) in an auditory-motor network
(Large et al., 2015). The alignment between these two components enables at-
tention to be anticipatorily deployed for tracking rhythmic sensory sequences
and enhancing attention, and therefore perceptual sensitivity, at critical points
in time. Our post-hoc speculation is that delta phase might reflect oscillatory
temporal expectation and beta power might reflect temporal attention. In
particular, our finding that delta phase is affected by rhythmicity but is not
related to perceptual pitch enhancement suggests that the primary role of
delta oscillations might concern temporal structure prediction rather than fa-
cilitating fine spectral perception (i.e., pitch discrimination). Our finding that
depth of U-shaped beta power modulation predicts pitch discrimination sen-
sitivity might be explained as beta reflecting enhanced auditory attention at
particular time points, where perceptual gain is increased. This speculative
framework is consistent with previous studies showing that delta phase en-
trainment (temporal expectation) is critical for time and intensity tasks. This
idea is also consistent with converging evidence that the phase of low-frequency
oscillation reflects top-down sensory selection among multiple sensory streams,
that the power of high-frequency oscillation implements endogenous percep-
tual processes or attentional gain, and that the alignment between these two
optimizes perceptual performance (Arnal and Giraud, 2012; Henry and Her-
rmann, 2014; Lakatos et al., 2013, 2016; Morillon and Baillet, 2017; Schroeder
and Lakatos, 2009; Saleh et al., 2010). Additional evidence comes from a study
that mathematically modeled MEG recordings in the context of dynamic at-
tending theory, to show that delta oscillations link to temporal expectations
(Herrmann et al., 2016). The current study extends this model to beta oscil-
lations, but only shows a single-dissociation with correlational evidence; the
differential roles of delta, beta and delta-beta coupling suggested by the present
data would be strengthened by further studies showing causal evidence of a
triple-dissociation.

The findings of the current study are relevant to speech perception. First,
the proposal that the theta phase (4–8 Hz) tracks speech envelope, and nested
gamma power (∼25–35 Hz) aligns neuronal excitability to acoustic structure
for perceiving speech (Giraud and Poeppel, 2012) is similar to our proposal
that delta phase reflects temporal prediction and U-shaped beta power mod-
ulation depth associates with temporal attention. Second, rhythm facilitates
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both speech perception (Haegens and Zion Golumbic, 2018) and pitch discrim-
ination (present findings), suggesting beta modulation reflects the “content”
of auditory perception. This relationship might also reflect that frequency
modulation is crucial for speech recognition (Zeng et al., 2005).

IV.7 Conclusion

We present the novel finding that the temporal regularity of rhythmic sound
sequences facilitates perceptual processing of pitch, and that neural oscillatory
entrainment activities from auditory cortex, including delta phase, beta power
modulation, and delta-beta coupling, are all modulated by rhythmicity. At
the same time, trial-by-trial analyses showed that U-shaped beta power mod-
ulation depth predicts discrimination sensitivity whereas delta-beta coupling
strength predicts reaction time. Future studies should investigate whether
temporal predictability in other contexts such as cue-target association, haz-
ard rate, and repeated intervals also enhance pitch perception. With respect
to a neural instantiation of dynamic attending theory, our findings suggest a
speculative interpretation that delta phase maps onto oscillatory temporal ex-
pectations, beta power onto temporal attention, and delta-beta coupling onto
the efficiency of auditory-motor communication. Understanding how these
neural oscillations work together is critical for uncovering the auditory-motor
network and the neural basis of the perception of dynamic auditory inputs
such as speech and music.

IV.8 Supplementary Material

IV.8.1 Shared covariances among EEG indexes

Four EEG indexes in the current study (delta phase deviation, quadratic co-
efficient of beta power modulation shape, temporal position of beta power
modulation vertex, and delta-beta dPACz) might potentially share high co-
variances, as previous studies reported these indexes are likely to be coupled
when averaged data for each condition is examined (e.g., Arnal et al. 2015;
Keitel et al. 2018; Saleh et al. 2010). Therefore, to assess their covariances
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at the single-trial level, we performed pairwise Pearson correlation analyses
among EEG indexes at the single-trial level for each participant.

The pairwise correlation coefficients are listed in Table S1. In general, the
covariances are low. The highest unsigned mean coefficient across participants
was only 0.181, and thus the R2 was only 3.3%, which is very small. There-
fore, we argue that these EEG indexes have low covariances and are largely
mutual independent at the single-trial level. They are therefore likely to reflect
different neural and perceptual functions in the current study.

IV.8.2 Rhythmicity moderating EEG-behaviour associ-
ations

The trial-by-trial EEG-behaviour correlational analyses in the Rhythmic con-
dition showed that beta modulation depth in left auditory cortex predicts
discrimination sensitivity and delta-beta coupling in right auditory cortex pre-
dicts RT. An extended question is whether rhythmicity moderates this EEG-
behaviour relationship. Therefore, we calculated the same trial-by-trial EEG-
behaviour correlations for each participant in the Arrhythmic condition as we
did in the Rhythmic condition, and then we performed a post-hoc compari-
son of the z-normalized correlational coefficients across participants between
conditions. We performed this test for the significant EEG-behaviour corre-
lations reported in the Fig. 3. Results showed that the association between
beta modulation depth and discrimination sensitivity in left auditory cortex
was stronger in the Rhythmic than Arrhythmic condition (t(15) = 2.52, p =
0.023, Fig. S3A). However, the association between delta-beta coupling and
RT in right auditory cortex was not significantly different between conditions
(t(15) = -1.88, p = 0.080, Fig. S3B).
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Figure IV.S1: Distribution of missing rates. (A) The histogram of the missing
rates across participants. Ten out of twenty-six participants missed responding for
more than 3% of the target tones, and thus they were excluded for further analy-
ses. (B) The distribution of missing rates across target levels of each participant.
Participants tended to miss responses when the target levels were difficult (around
the PSE).
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Figure IV.S2: Individual perceptual judgment performances and the fitted psy-
chometric functions.

Figure IV.S3: Rhythmicity modulating EEG-behaviour associations. (A) The
association between beta modulation depth and discrimination sensitivity in left
auditory cortex was stronger in the Rhythmic than Arrhythmic condition. (B)
The association between delta-beta coupling and RT in right auditory cortex was
not significantly different between conditions. Each connected dot represents one
participant’s data, and the colored dots and error bars mean ± standard error
across participants.
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Chapter V

General discussion

Temporal regularity is common among the acoustic waveforms of our every-
day life, such as the beat of music and the quasi-isochronous syllable onsets
of speech. Rhythmic regularity simplifies the complexity and the burden of
perceiving fleeting auditory information because this regularity enables sen-
sory systems to generate temporal predictions and thus proactively optimize
perceptual processing at predicted time points (Large & Jones, 1999; Haegens
& Zion Golumbic 2018; Nobre & van Ede 2018). Indeed, previous percep-
tual studies showed that humans are able to track rhythm, and that rhythmic
temporal regularity enhances perception, as reflected in increased discrimina-
tion sensitivity and decreased perceptual thresholds (e.g., Cravo et al., 2013;
Henry and Herrmann 2014; Rohenkohl et al., 2012; ten Oever et al., 2017).
According to dynamic attending theory, the mechanisms for rhythm tracking
include the alignment between an internal oscillator (representing the period-
icity of temporal expectation) and a regular attentional pulse in time (Large
& Jones, 1999). This theory also explains the rhythmic facilitation effect on
perception as the internal oscillator periodically allocates the attentional pulse
at particular time points, which results in enhanced perceptual performance.

At the neural level, oscillatory entrainment activities, including both low-
frequency phase, high-frequency power, and their phase-amplitude cross-
frequency coupling, have been associated with rhythmic temporal prediction
and perceptual facilitation. Electrophysiological measures, including local field
potentials (LFP), electroencephalography (EEG), and magnetoencephalogra-
phy (MEG) in human and non-human animals, have shown that the rhythmic
temporal regularity in acoustic waveforms entrains neural oscillatory activities
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(see Arnal & Giraud, 2012 for a review). Furthermore, perceptual perfor-
mance can be predicted by these neural activities even prior to the onset of a
target signal (Haegens & Zion Golumbic 2018). This suggests that neural en-
trainment activities set up rhythmic temporal prediction and thus proactively
optimize perceptual processes.

Given this background, the current thesis advances our understanding of
auditory sensory prediction and neural entrainment by addressing several crit-
ical but previously unsolved issues: (1) Why do humans have multiple neural
oscillation entrainment mechanisms for tracking auditory rhythm? Do these
mechanisms have different perceptual functions? (2) How do temporal and
spectral aspects of sound processing interact and relate to neural oscillations?
Does temporal regularity (isochronous rhythm) enhance prediction and/or per-
ception in the orthogonal spectral domain, given that spectral information is
essential for audition (e.g., speech, music, object identification). Time and
frequency are the two fundamental dimensions of audition necessary for track-
ing fleeting auditory information, so understanding how they work together is
essential for understanding auditory perception.

V.1 Unique contributions and limitations of
each chapter

V.1.1 Chapter II

Previous studies on beta power neural oscillation entrainment showed that it
reflects the tempo of isochronous sequences composed of identical tones of the
same pitch (e.g., Fujioka et al., 2012, 2015). However, it remained unclear
whether beta power fluctuations reflect only temporal prediction, regardless
of the spectral content. If yes, then this entrainment activity should not be
disrupted by a tone with unexpected pitch (deviant stimulus) as long as it is
presented at the expected temporal position. Contrary to this, however, this
study found that beta power entrainment activity is disrupted by unexpected
spectral (pitch) information, even when it is presented at a temporally expected
rhythmic position.
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The novel contribution of this study is in demonstrating that beta power
entrainment activity reflects both rhythmic temporal prediction and the pre-
diction violation related to unexpected spectral information. Typically, predic-
tive timing (when) and predictive coding (what) have been studied separately
(Arnal & Giraud, 2012), so it was unclear until the current study whether
neural oscillatory activity in one frequency band (beta) reflected both of these
perceptual processes.

However, this study only measured neural activity following a spectral pre-
diction error (i.e., following the presentation of a tone with unexpected pitch),
but it did not measure predictive neural activity, that is, activity occurring
prior to the onset of an unexpected pitch. Thus, the evidence that beta oscil-
lations reflect predictive processing in the spectral domain was indirect in this
study. Because a prediction error was measured, it was assumed that there
must have been a prediction, but this needed to be tested directly. Also, the
deviant occurrence rate of the oddball paradigm was confounded with pre-
dictability, as this study manipulated predictability by contrasting 10% versus
20% deviance occurrence rates, rather than manipulating predictability while
keeping occurrence rate constant. These issues were addressed in Chapter
III. Finally, this study did not measure the behavioural consequences of pre-
dictions, and thus it was hard to interpret the perceptual functions of the
observed oscillatory neural activities. This issue was addressed in Chapter IV.

V.1.2 Chapter III

This study showed that auditory beta power entrainment is modulated by
the predictability of a pitch change. Specifically, isochronous auditory tone
sequences were presented with infrequent pitch changes at either predictable
(every fifth tone) or unpredictable (random, but with the same overall deviance
rate as in the predictable condition) positions. The results showed that beta
was better entrained prior to a predictable than unpredictable pitch change.
Furthermore, the depth of beta power entrainment activity preceding a pitch
change correlated with the prediction error neural response (i.e., P3a) follow-
ing a pitch change at the trial-by-trial level. This suggests that beta power
entrainment depth reflects spectral prediction. In contrast to most of the pre-
vious neural scientific studies on either predictive timing (predicting when) or
predictive coding (predicting what), the current study showed that beta power
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entrainment activity can reflect both predictive timing and predictive coding
processes.

This study provides stronger evidence than Chapter II in suggesting that
beta power entrainment prior to the onset of a tone reflects the prediction of
both what (frequency) and when (time) events are expected. The findings are
consistent with the fact that, although what and when in audition are physi-
cally orthogonal, the information from these two dimensions often covaries. In
the case of music, for example, inter-note intervals tend to be longer between
two phrases than within a phrase (Kragness et al., 2016; Palmer, 1989). Also,
the tempo of a typical music performance is not completely steady, and musi-
cians often make deliberate timing deviations for expressive purposes (Nakata
& Trainor, 2015; Rankin et al., 2009). In the perceptual domain, pitch in-
formation can also influence time perception. For example, an unpredictable
infrequent deviant stimulus will be perceived as longer than a frequent stan-
dard stimulus (e.g., Tse et al., 2004; McAuley & Fromboluti, 2014). In sum,
the findings of Chapter III suggest the possibility that the sensory predictions
in the what and when domains might have interactive influences on each other.

This study extended the results from the study of Chapter II by measur-
ing the predictive neural activity prior to a pitch change and controlling the
occurrence rate while manipulating predictability. However, an alternative in-
terpretation for the results of the studies in both Chapters II and III is that
beta power entrainment reflects the prediction of which tone in the sequential
position is going to be changed to a different pitch, which can still be regarded
as a type of temporal prediction (i.e., when the change will happen). To fully
show that beta power entrainment reflects spectral prediction, an experiment
should investigate not only whether beta power reflects prediction of an up-
coming a pitch change, but also how well the pitch is perceived. For this, it
is necessary to measure the perceptual consequences of knowing when a pitch
change is expected. This was done in Chapter IV.

V.1.3 Chapter IV

This study made novel contributions to understanding both perceptual conse-
quences and neural mechanisms of rhythm tracking. Participants were asked
to report whether pitch changes at predictable or unpredictable times in a
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tone sequence were higher or lower than standard pitches. Perceptually, audi-
tory temporal regularity (i.e., rhythm) facilitated pitch perception, with lower
thresholds for detection of pitch changes in isochronous than non-isochronous
sequences. Neurally, low and high frequency neural entrainment and their
coupling activities associated with different perceptual functions. Specifically,
beta power entrainment associated with discrimination sensitivity, and delta-
beta phase-power coupling associated with reaction speed. Mapping these find-
ings to dynamic attending theory (Large & Jones, 1999), I argue that the phase
of low-frequency oscillation (i.e., delta band) reflects temporal expectation, the
power of high-frequency oscillation (i.e., beta band) reflects temporal attention,
and phase-amplitude cross-frequency coupling reflects the alignment of these
two perceptual mechanisms and is associated with auditory-motor communi-
cation. This study is the first to map multiple neural oscillation entrainment
activities onto the different perceptual functions of dynamic attending theory.
The distinct but coordinated perceptual functions of the different auditory
neural oscillatory entrainment activities revealed in this study contributes to
our understanding of how auditory rhythm tracking enables processing streams
of phonemes in speech and chord progressions in music.

This study makes contributions beyond those of the two previous studies. It
measured the perceptual consequences of the neural entrainment activities and
revealed different functions of high and low frequency oscillations. However,
this study has limitations. First, the EEG-behaviour relationships were based
on correlational evidence with a single dissociation. Future experiments are
needed to independently modulate each EEG-behaviour association to fully
reveal the distinct perceptual functions of these EEG activities. Second, while
the neural evidence was consistent with dynamic attending theory, much more
work needs to be done to directly prove or disprove this theory. Specifically,
temporal expectation and temporal attention would need to be orthogonally
manipulated in order to determine whether they work as predicted by dynamic
attending theory.
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V.2 Theoretical contributions and future di-
rections

This thesis has made two major theoretical contributions. First, it revealed
that neural beta power entrainment is involved in both temporal and spectral
predictions in audition. Previous studies showed that beta power fluctuations
entrain to the tempo of presented isochronous auditory tone sequences, and
thus reflect temporal prediction (e.g., Fujioka et al., 2012). The present the-
sis showed that beta power, both before and after a pitch change, can be
modulated by the spectral predictability of tones and that temporal regularity
enhances spectral processing. A question for future research is whether the
predictability of the spectral information can also affect the temporal predic-
tion at the perceptual level. I hypothesize that unpredictable pitch changes in
an isochronous auditory sequence will distort the temporal prediction of the
upcoming tone. Two remotely relevant studies have shown consistent evidence
that deviation in the what (content) domain can influence temporal percep-
tion. Specifically, the presentation duration (onset to offset) of an infrequent
visual or auditory deviant stimulus will be perceived to be longer than the
frequent standard stimulus (McAuley & Fromboluti, 2014; Tse et al., 2004).

The second major theoretical contribution of the present thesis is showing
that low-frequency phase, high-frequency power, and their coupled oscilla-
tion entrainment activities have different perceptual functions, which can be
mapped onto distinct components of dynamic attending theory. To the best of
our knowledge, only a few studies have examined multiple frequency oscillation
entrainment activities at the same time (e.g., Arnal et al., 2015; Keitel et al.,
2018), and only a couple of studies have distinguished perceptual functions of
different entrainment activities (e.g., Morillon et al., 2017). Regarding link-
ing dynamic attending theory to entrainment activities, most previous studies
focused on low-frequency phase entrainment (e.g., Henry & Herrmann et al.,
2014; Herrmann et al., 2016), and discussions on high-frequency power and
the cross-frequency phase-amplitude coupling entrainment activities were rare.
The current thesis showed distinct perceptual functions for each entrainment
activity, that are consistent with multiple components of dynamic attending
theory. Two critical future research goals are as follows. The first goal is
to examine whether each entrainment activity will be individually modulated
by temporal expectation and temporal attention, two distinct components of
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the dynamic attending model. Such a study could provide stronger double-
dissociative evidence for distinct perceptual functions. The second future goal
is to examine the behaviours of oscillation entrainment activities when the
temporal regularity of the stimuli is disturbed (e.g., phase shift, change in
tempo), and whether the mathematical model of dynamic attending theory
can predict these activities (Large & Jones, 1999). Such a study could provide
a better assessment of how well dynamic attending theory can explain neural
entrainment activities.

Another future direction is to extend the current findings to situations of
predictable but aperiodic (non-isochronous) temporal regularity. The current
studies, and most of the existing literature, investigated temporal prediction
and neural entrainment by using isochronous rhythms. However, isochronous
rhythms oversimplify the range of regularity possibilities in the real-world.
The AM rates of sound in the real-world (e.g., speech and music) often speed
up and slow down and are unlikely to be perfectly isochronous at a specific
frequency. Nevertheless, humans are still able to track such acoustic signals
(Rimmele et al., 2018). Therefore, it is necessary to investigate how humans
track aperiodic but predictable auditory signals, such as accelerating and de-
celerating non-isochronous rhythms. To date, only a few behavioural studies
have investigated humans’ sensorimotor mechanisms for tracking predictable
aperiodic sound sequences. For example, participants can form temporal pre-
dictions for accelerating or decelerating auditory sequences (Cope, Grube, &
Griffiths, 2012), and participants can synchronize their finger tapping with
auditory sequences containing predictable tempo changes (Loehr, Large, &
Palmer, 2011). Similar to isochronous (predictable periodic) regularity, tone
sequences with regular temporal change (predictable aperiodic) can also facil-
itate perceptual detection performance, compared to random (aperiodic un-
predictable) sequences (Morillon et al., 2016). Future studies are needed to
reveal the underlying neural oscillation mechanisms of this important ability.

V.3 Neural signal processing challenges

The studies of the current thesis faced a number of neural signal processing
challenges. First, the current thesis used dipole models as spatial filters to em-
phasize the EEG signals generated from auditory cortex while attenuating the
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signals from other areas, but this approach cannot completely isolate auditory
cortical activity. Second, neural entrainment activities from areas beyond audi-
tory cortex were not examined. Although the auditory cortex is arguably the
most dominant and important region of neural entrainment activity for the
questions addressed in this thesis (making our approach hypothesis-driven),
other brain regions (such as motor and frontal areas) also generate entrain-
ment activities (e.g., Besle et al., 2011; Morillon et al., 2017). However, this
approach could not reliably investigate entrainment activities beyond the au-
ditory cortex as spatial specificity in EEG is limited and due to the lack of
individual MRI scans. Therefore, it remains unclear whether the features of
neural entrainment showed in this study are specific to the auditory cortex,
whether they generalize to other brain regions, and how oscillations in differ-
ent regions may interact. Further studies with individual MRI scans and using
MEG, which has higher spatial specificity than EEG, could potentially lead to
a better understanding of entrainment activities across brain networks.

Third, a serious confounding factor for our study and others in the field
is the influence of evoked neural responses to sound on measurements of low-
frequency neural entrainment activity. Many neural entrainment studies are
interested in understanding the proactive and predictive feature of the neu-
ral oscillations in the low-frequency range (1-8 Hz). However, evoked neural
activities that occur in response to a sound (i.e., event-related potentials or
ERPs), occur at the same time as entrainment activities, and typically also
have spectral power distributed in the low-frequency range (< 15 Hz) (Co-
hen, 2014a). Thus, the time-frequency analyses for extracting low-frequency
neural oscillations related to entrainment and proactive prediction are difficult
to separate from the reactive evoked neural activities (Novembre & Iannetti,
2018), and how much of the low-frequency neural activities measured are ac-
tually contributed by neural oscillations rather than ERPs remains unknown.
This concern is relevant to the delta band findings of the current thesis, but
is of minimal concern for the main beta band findings of the current thesis,
because the range of beta oscillation (15-25 Hz) is higher than typical ERP
activities, and the averaged evoked activities were removed from our data prior
to analyzing induced beta oscillations.

Fourth, several time-frequency signal processing concerns have been raised
recently in the literature. The Fourier-based time-frequency transformation
(including wavelet transformations used in the current studies) assumes that
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the waveforms are sinusoidal and stationary (time invariant). These assump-
tions are not always met, because EEG contains non-sinusoidal neural oscil-
lations, nonstationary oscillatory bursts, and even aperiodic 1/f pink noise.
Fourier-based time-frequency transformation cannot reliably distinguish or
measure these signals (Cole & Voytek, 2017; Jones, 2016; van Ede et al., 2018).
These concerns are relevant to both the current studies and a very large portion
of the existing neural oscillation literature. Although the current thesis does
not aim to solve time-frequency signal processing concerns, several advanced
signal processing approaches are currently being developed to deal with this
issue. For example, a cycle-by-cycle analysis approach has been proposed to
analyze the amplitude, period, and waveform symmetry of nonsinusoidal neu-
ral oscillations, and it can also handle nonstationary oscillatory bursts (Cole
& Voytek, 2018). Another approach is to eliminate aperiodic pink noise by
parameterizing the neural power spectrum (Haller et al., 2018). Traditionally,
neural oscillatory power has been examined within frequency bands, and has
assumed that pink noise was equivalent across individuals. But this approach
ignores the influence of individual differences in pink noise, which might be
confounded with the estimations of the oscillatory power spectrum. This pa-
rameterizing approach simultaneously estimates the pink noise spectrum and
the neural oscillatory power to separate these activities. Furthermore, to deal
with the time-variant frequency of oscillations, it has been proposed to use
the Hilbert transformation to obtain the phase-angle time series of the time-
domain signal, and then use the first order derivative of the phase-angle time
series to estimate the oscillatory frequency fluctuations (Cohen, 2014b). This
approach is based on the idea that fluctuation of oscillatory frequency will
result in changes in the speed of the phase time series. In sum, although
these new approaches are still under development, they will likely improve the
analyses of neural oscillations and result in more reliable findings in the future.

Last but not least, another limitation of the current thesis is in establishing a
causal relationship between the neural oscillation activities and the perceptual
effects. The studies of the current thesis, as well as most modern neuroimaging
studies, cannot tell whether any behavioural effects (e.g., perceptual sensitiv-
ity) of the experimental manipulations were causally mediated by the neural
activities measured. Modern cognitive neuroscience often assumes a hierarchi-
cal causal relationship in that the experimental manipulation affects the neural
activities, and the neural activities further determine the behavioural outcomes
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(e.g., perception). A causal relationship such as this can be supported by stud-
ies on patients with focal lesions or dysfunctions, but this assumption often
is not examined in neuroimaging studies on healthy participants. Because the
measured behavioural outcomes and the neural activities merely statistically
covary across the experimental conditions, they should be treated as parallel
dependent variables at the same hierarchical level rather than at different hier-
archical levels. Therefore, any causal interpretation between the behavioural
effects and neural activities should be taken with caution. Another related
concern is that hypothesis-driven neuroimaging studies often greatly reduce
and simplify data complexity, and then only neural activities brought to the
spotlight are examined. This approach enables us to analyze the data within
a theoretically interpretable framework, and it also greatly reduces the mul-
tiple comparison concern of examining highly complex data. However, this
approach very likely ignores other neural activities or more complicated (high
dimensional) activities that might be the “true cause” of the behaviours of
interest. Although it is a very difficult challenge for cognitive neuroscience,
integrating multiple research approaches can be a step forward. For example,
transcranial magnetic or direct current stimulation methods have been used
to directly influence neural activities and enable researchers to examine causal
relationship between neural activities and behaviours. A few studies showed
that transcranial current stimulation can causally affect neural entrainment
activities – resulting in modulating speech perception – thus demonstrating
the causal role of neural entrainment on perception (Riecke et al., 2018; Zoefel
et al., 2018). Another data-driven approach is to employ machine learning and
big data methods to examine high-dimensional neural activities, which are too
complicated for most hypothesis-driven approaches. Note that using machine
learning approaches does not imply that future cognitive neuroscience research
has to be data-driven and hypothesis-free; conversely, these approaches may
play a role in liberating researchers from existing theories that sometimes (per-
haps often) corner and limit our scope. Ideally, they will facilitate researchers
in forming more thorough, precise and testable hypotheses and theories.
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V.4 Potential clinical implications

The findings of this thesis can potentially benefit populations with motor disor-
ders, such as Parkinson’s disease (PD) and developmental coordination disor-
der (DCD). Patients with PD feature deficits in gait or walking, neural degen-
eration in the basal ganglia, and neural timing deficits. Beyond motor deficits,
they also have deficits in perceiving isochronous and beat-based rhythms (e.g.,
Grahn & Brett, 2009; Teki et al., 2012) and in forming rhythmic temporal
predictions (Breska & Ivry, 2018). MEG studies further showed that patients
with PD have reduced beta power entrainment to auditory rhythms (te Woerd
et al., 2014, 2018). Given the covariation between motor and timing deficits
of patients with PD, the basal ganglia are regarded as the common etiology of
these deficits (Grahn, 2012). Regarding intervention, it has been shown that
musical rhythms can facilitate the gait of patients with PD (Nombela et al.,
2013), and even individualized rhythmic auditory-cueing has been developed
for patients with PD to optimize rehabilitation effects (Dalla Bella et al., 2018).
Our findings further imply that spectral regularity or predictability would be
beneficial for the most effective rhythmic auditory-cueing, as this thesis showed
that unpredictable spectral information disrupts beta power entrainment, the
neural activity that is associated with motor control among patients with PD
(te Woerd et al., 2014, 2018).

DCD is a congenital neurodevelopmental disorder with an approximately
5 to 15% prevalence rate among school-age children (American Psychiatric
Association, 2013). Children with DCD are usually described as “clumsy”,
and they have deficits in fine and/or gross motor skills, such as motor plan-
ning, sequencing of movements, and motor timing that result in difficulties
in writing, tying shoes, running, and catching a ball (Zwicker et al., 2012).
Beyond motor deficits, children with DCD also have deficits in auditory du-
ration and rhythmic time perception (Chang et al., submitted). Furthermore,
it has been hypothesized that children with DCD will also have deficits in
tracking auditory rhythm and that this might be associated with compro-
mised neural entrainment activities (Trainor et al., 2018). Although the effect
of rhythmic auditory-cueing on motor performance in children with DCD re-
mains unknown, a study reporting six cases showed that intervention using
auditory rhythm can be useful for improving motor performance (Leemrijse
et al., 2000), suggesting that children with DCD might benefit from rhythmic
auditory cueing similarly to patients with PD.
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In general, it would be interesting to discover whether the neural entrain-
ment activities reported in the current thesis are compromised in people with
motor disorders. The results of such inquiries could greatly extend our under-
standing of both neural entrainment activities and motor disorders.

V.5 Conclusion

This thesis investigated the perceptual functions of high frequency power and
low frequency phase neural oscillatory entrainment activities in tracking audi-
tory temporal rhythmic regularity. The findings showed that beta power (high
frequency) entrainment activity is associated with prediction in pitch, in addi-
tion to temporal prediction. Associating neural entrainment with behavioural
performance, the findings suggest that low frequency phase entrainment might
reflect temporal prediction, high frequency power entrainment might reflect
attention, and their coupling might reflect auditory-motor cortical communi-
cation. Together, this thesis has advanced our understanding of how neural
entrainment activities implement the perceptual functions needed for tracking
auditory rhythms that are fundamental for speech and musical perception.
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