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Lay Abstract

The automotive industry is on the verge of groundbreaking transformations as a
result of electrification and autonomous driving. Electrified autonomous car of the
future is sustainable, energy-efficient, more convenient, and safer. In addition to the
advantages of electrification and autonomous driving individually, the intersection and
interaction of these mainstreams provide new opportunities for further improvements
on the vehicles. Autonomous cars generate an unprecedented amount of real-time
data due to excessive use of perception sensors and processing units. This thesis
considers the case of an autonomous hybrid electric vehicle and presents the novel
idea of autonomous-specific energy management strategy. Specifically, this thesis is a
proof-of-concept, a trial to exploit the motion planning data for a self-driving car to
improve the fuel economy of the hybrid electric power unit by adopting a more efficient
energy management strategy. With the ever-increasing number of autonomous hybrid
electric vehicles, particularly in the self-driving fleets, the presented method shows an
extremely promising potential to reduce the fuel consumption of these vehicles.
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Abstract

This thesis addresses the problem of energy management of a hybrid electric power
unit for an autonomous vehicle. We introduce, evaluate, and discuss the idea of
autonomous-specific energy management strategy. This method is an optimization-
based strategy which improves the powertrain fuel economy by exploiting motion
planning data. First, to build a firm base for further evaluations, we will develop a
high-fidelity system-level model for our case study using MATLAB/Simulink. This
model mostly concerns about energy-related aspects of the powertrain and the vehicle.
We will derive and implement the equations for each of the model subsystems. We
derive model parameters using available data in the literature or online. Evaluation
of the developed model shows acceptable conformity with the actual dynamometer
data. We will use this model to replace the built-in rule-based logic with the proposed
strategy and assess the performance.

Second, since we are considering an optimization-based approach, we will develop
a novel convex representation of the vehicle and powertrain model. This translates
to reformulating the model equations using convex functions. Consequently, we will
express the fuel-efficient energy management problem as the convex optimization
problem. We will solve the optimization problem using dedicated numerical solvers.
Extracting the control inputs using this approach and applying them on the high-fidelity
model provides similar results to dynamic programming in terms of fuel consumption
but in substantially less amount of time. This will act as a pivot for the subsequent
real-time analysis.

Third, we will perform a proof-of-concept for the autonomous-specific energy
management strategy. We implement an optimization-based path and trajectory
planning for a vehicle in the simplified driving scenario of a racing track. Accordingly,
we use motion planning data to obtain the energy management strategy by solving an
optimization problem. We will let the vehicle to travel around the circuit with the
ability to perceive and plan up to an observable horizon using the receding horizon
approach. Developed approach for energy management strategy shows a substantial
reduction in the fuel consumption of the high-fidelity model, compared to the rule-based
controller.
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Notation and Abbreviations

A-HEV Autonomous Hybrid Electric Vehicle

ABS Anti-Lock Brake

ACC Adaptive Cruise Controller

ADAS Advanced Driver-Assistant Systems

AI Artificial Intelligence

ASEMS Autonomous-Specific Energy Management Strategy

AV Autonomous Vehicle

AWD All Wheel Drive

BEV Battery Electric Vehicle

CAFE Corporate Average Fuel Economy

CNN Convolutional Neural Network

DP Dynamic Programming

ECMS Equivalent Consumption Minimization Strategy

EMS Energy Management Strategy

EPA Environmental Protection Agency

ESS Energy Storage System

F1 Formula 1
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FC Fuel Consumption

FCA Fiat Chrysler Automobiles

FIA Federation Internationale de l’Automobile

GHG Greenhouse Gas

GPS Global Positioning System

HEV Hybrid Electric Vehicle

ICE Internal Combustion Engine

ITS Intelligent Transportation System

KKT Karush-Kuhn-Tucker

LDV Light-duty Vehicle

LMI Linear Matrix Inequality

LP Linear Programming

M/G Motor/Generator

MPC Model Predictive Control

NEDC New European Driving Cycle

OCV Open Circuit Voltage

OEM Original Equipment Manufacturer

PGS Planetary Gear Set

PHEV Plug-in Hybrid Electric Vehicle

PMP Pontryagin Minimum Principle

QP Quadratic Programming

SDP Semidefinite Programming
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SOC State of Charge

SOH State of Health

UDDS Urban Dynamometer Driving Schedule

VMT Vehicle Miles Traveled

VTTS Value of Travel Time Saving

ZEV Zero Emission Vehicle
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Chapter 1

Introduction

The automotive industry is a quintessential combination of art, technology, and business.
Originated in the late 1800s, this industry has seen the fascinating achievements,
rivalries, and products. The scale of the modern automotive industry is colossal with
significant economic and social impacts. Thanks to the intensive investments and
research on automotive technologies worldwide in the last century, current vehicles are
complicated technical systems with multiple function-specific subsystems. A modern
car is a meticulously designed and assembled combination of thousands of components,
equipped with highly advanced technologies. Current automotive technologies are
results of the evolution of previously existing technologies. The improvements are also
due to new emerging achievements in electronics, materials science, and computer
science. The passion of engineers, the desire of designers, the demand of customers,
and legislation have consistently expanded the borders of the automotive industry to
produce more efficient, practical, safer, and attractive cars.

Among the most important advances in vehicular technologies, we primarily focus
on the powertrain electrification and autonomous driving in this work. Most other
automotive technologies usually end up integrating with the existing vehicle to improve
an aspect or aspects of the transportation such as fuel economy, emissions, performance,
and safety. For instance, anti-lock brake systems (ABS) replaced the conventional
brakes since they showed the potential to improve the safety of the vehicles while
barking by employing threshold braking and cadence braking. Similarly, widespread
adoption of fuel injection systems instead of conventional carburetors has resulted
in more powerful and efficient engines with a reduction in undesirable emissions.
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Turbocharging has also helped to increase the performance and drivability or to
downsize the engine while getting the same output power. Although these technologies
are the crucial elements of modern cars, the overall impact is not comparable to the
potentials of electrification and autonomous mobility at all.

1.1 Motivation

The internal combustion engine has been an inseparable component of the cars of the
20th century. As a result of extensive long-term research and development, modern
engines are highly complex and advanced. However, they all share fundamental draw-
backs. ICEs are essentially heat engines, restricted to the maximum of Carnot efficiency.
Considering reasonable temperatures for the hot and cold source, Carnot efficiency of
an ICE might be around 75%. Practically, efficiency tends to be much lower due to
reasons such as friction and imperfect combustion. Peak efficiency for the majority
of the modern operating engines is around 30-35%. Besides unacceptable efficiency,
emissions is another major environmental concern. The large-scale negative impact
of greenhouse gas (GHG) emissions is well-known. According to the environmental
protection agency (EPA), almost 29% of the U.S. GHG emissions of the economic
sector is from transportation in 2017 [1]. Following table shows a comparison between
conventional and electric vehicles, for a Toyota Prius sized family car [2].

While current transportation depends heavily on fuel-powered vehicles, there is an
intensive global competition toward prototyping and developing the next generation
of vehicles. This generation of vehicles should be sustainable. The most promising
solution is the electrified transportation - transportation 2.0 [3]. Apart from sporadic
trials to prototype electric vehicles in the 20th century, the project such as GM EV1
for instance, it is the modern advances in battery technology, electric machines, and
the power electronics that have made widespread adoption of the electric vehicles
feasible.

In the battery section, there is a promising trend toward the next generation
of battery packs, which are lighter and more power and energy-dense. Advantages
of lithium-metal-polymer and lithium-ion batteries over the conventional lead-acid
counterparts made the concept of EV feasible in this century. Lithium-silicon, solid
state, and lithium-air batteries promise an even brighter future for dominance of
battery electric vehicles.
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Table 1.1: Conventional vs. EV

Conventional vehicle Electric vehicle

Power supply
components Fuel tank + ICE Battery + Inverter

+ AC machine

Tank-to-wheel
efficiency

≈ 20%
1.2 kWh/mile or 28 MGP

≈ 85%
0.17 kWh/mile or 200 MGP

Energy storage 12.3 kWh/kg
Gasoline energy content

0.1 kWh/kg
LiFePO4 Battery

Refueling 11 MW or
140 miles/minute

6 kW ac charger:
<32 miles/hour

100 kW dc charger:
<9 miles/minute

Cost 12 ¢/mile
at $ 3.50/gallon

2 ¢/mile
at $ 0.12/kWh

CO2 emissions 300-350 g/mile
0 g/mile at tailpipe

≈ 120 g/mile well-to-wheel
at current U.S. electricity mix

Regenerative braking No Yes

EVs rely on the electric machines as the propulsion means. Two main types of
electric motors in EVs, AC induction motors and permanent magnet synchronous
motors, are getting more efficient and power-dense as a result of intensive research
on these motors. Besides, researchers and engineers aim to develop more desirable
electric motors for traction purposes such as switched reluctance motors, which have
shown outstanding propulsion and manufacturing characteristics [4–6].

Power electronics provide the opportunity to seamlessly convert the different forms
of electric power into each other with the ability to modify the output voltage and
current. Power electronic converters consist of AC-AC converter, DC-AC inverter,
AC-DC rectifier, and DC-DC choppers [3].

3
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Electrification in the lower level for the powertrain results in a hybrid electric
vehicle (HEV), a vehicle which takes advantage of both fuel energy in an internal
combustion engine (ICE) and electric energy from batteries to electric machines. As
the share of the electric power increases in the propulsion and vehicle offers all-electric
drive with ICE off, we achieve to plug-in hybrid electric vehicles (PHEV). The ultimate
form of powertrain electrification is in the battery electric vehicles (BEV) with only
electric power to propel the vehicle.

Besides discussed ongoing concerns regarding conventional vehicles, governmental
legislation also play into the hands of electrification. In Canada, for instance, effective
2018, regulations push automakers toward selling more zero-emission vehicles (ZEV)
[7]. Moreover, in British Columbia, all new vehicles should be emission-free by 2040
[8]. This would significantly ramp up the current trend in new electric car sales, shown
in Figure 1.1. Although BEVs are promising solutions to address the environmental
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Figure 1.1: Number of new EV/PHEV car sales in Canada for 2013-2018. (adapted
from [9])

problems and energy concerns regarding conventional transportation, widespread
employment of battery electric vehicles have a few challenges to tackle. Besides
immature infrastructure in the electricity grid and charging stations, safety issues,
extended charging time, high manufacturing cost, the rare material intensity of the
manufacturing, and undesirable driving range constitute other challenges for BEVs [10].
These problems would be tackled as technologies in battery manufacturing and power
electronics are expanding, and up to that point, PHEVs, HEVs, and mild hybrids
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would be the alternatives.
The other mainstream in automotive with a substantial impact not only on the

automotive industry, but on any other related field (e.g., delivery, public transit,
logistics, robotics), is autonomous driving. This time, autonomous vehicles (AV) are
not just science projects, and they are only steps away from commercialization. Major
automotive companies are investing an incredible amount of effort and money on
autonomous vehicle programs and real-life testing. In the large-scale, the market for
autonomous driving is anticipated to grow up to $173.15 B by 2030 [11]. Figure 1.2
shows the anticipated contribution of different levels of autonomy (discussed later) in
North America. Concludingly, autonomous mobility and electrification are essential
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Figure 1.2: Number of new car sales with autonomous driving features in North
America for 2019-2030. (adapted from [11])

elements of next-generation transportation. Car of the future is hybrid/electric (HEV,
PHEV, and BEV) and autonomous. In the car of the future, technologies in both
fields of autonomous driving and electrification should interact effectively, to bolster
up the overall advantages while minimizing the drawbacks. For instance, autonomous
driving provides an unprecedentedly overwhelming amount of data about driving scene,
objects, and vehicle motion, as a result of perception and processing units. This data
can be efficiently employed to design and control the electrified power unit. While the
effect of the available data on control of different systems within the powertrain is
highly extensive, we consider a niche but critical application in this work. In a hybrid
electric vehicle, the powertrain control unit is managing the power flow among different
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components to satisfy the power demand within the powertrain constraints. Different
strategies to manage power flow result in a particular fuel economy, performance, and
emissions. These strategies are known as energy management strategies (EMS) and
are a crucial element of any hybrid system. In this work, we present autonomous-
specific energy management strategies (ASEMS). ASEMS is a strategy, specifically
designed to integrate with autonomous mobility modules, to provide improved efficiency,
performance, and emissions. In this work, we have only focused on the performance
and fuel economy side. We also provide a proof-of-concept of an optimization-based
ASEMS, based on model predictive control (MPC) approach in this work.

We believe ASEMS has an immense potential to make the autonomous hybrid
electric (A-HEV) car of the future more efficient. Just considering the announced
partnerships, Waymo is going to add 62,000 more Chrysler Pacificas to the current 600
sized fleet [12]. Pacifica has almost the similar HEV architecture that we examine in this
work. Additionally, Uber has a plan to add 24,000 Volvo XC90 to its self-driving fleet
[13]. This vehicle has a T8 twin-engine plug-in hybrid powertrain [14]. Also, Argo AI
has a partnership with Ford and currently has a fleet of self-driving Ford Fusion sedans.
Toyota is also working on the autonomous prototype of Lexus GS 450h, which also
has a similar architecture, used in this work. The mentioned cases are just examples
of HEVs in self-driving fleets, and we expect this amount to increase significantly in
the upcoming years. We also note that beside ever-increasing growth in total number,
A-HEVs in self-driving fleets operate significantly more than a conventional family car.
Conservatively, for even very short prediction horizons (100 m and 200 m), as presented
later, our work shows the potential of improving the fuel economy by about 3.2%.
Roughly, this conservative assumption results in gasoline saving of about 30,000,000
liters per year, in the upcoming Waymo and Uber fleets combined. This amount of
saving would be much more notable if longer horizon is available and the introduced
approach (ASMES) has been investigated comprehensively.

1.2 Thesis Outline and Contributions

In this section, we will outline the thesis by introducing the chapters. In each part, we
will also explain our contributions.

6
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1.2.1 Chapter 2: Hybrid Electric Powertrains

We discuss the state-of-the-art in hybrid electric powertrains in the second chapter.
We start by explaining the electrification level and illustrating the common hybrid
power unit architectures. We will also designate the architecture we are considering in
this work and how it can be applied for other cases with a few modifications. Next,
we discuss the main advantages of electrified powertrains in great details in terms
of fuel economy, performance, and emissions. Finally, we discuss the feasible future
trends for the electrification. This chapter contributes to providing a brief tour of the
electrification, which is crucial for the next chapters.

1.2.2 Chapter 3: Autonomous Driving

Although the extent of autonomous driving technologies and applications is vast, again,
our purpose is to present a short but valuable introduction over the technology. Since
our work is at the intersection of electrification and autonomous driving, this chapter
is necessary to realize how these two mainstreams in automotive interact. Next, we
discuss the global impact of achieving autonomous transportation. Later, we categorize
the vehicles based on the level of autonomy and explain which levels do we target
in this work. Finally, we shortly discuss different modules within the autonomous
driving.

1.2.3 Chapter 4: Fundamentals of Energy Management
Strategies

We elaborate on the fundamentals of various energy management strategies in this chap-
ter. This includes rule-based, fuzzy logic-based, equivalent consumption minimization
strategy, dynamic programming, Pontryagin’s minimum principle, convex optimiza-
tion, and model predictive control. This chapter contributes to show the canonical
mathematical format for each of these methods rather than discussing implemented
results in the literature. This is the last chapter of the literature review.

1.2.4 Chapter 5: High-fidelity Model

Since any designed or newly developed control strategy should be evaluated first on a
high-fidelity model and ultimately on the actual system, developing the high-fidelity

7
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model is crucial in our work. In this chapter, we choose the Toyota Prius 2010 as our
case study. We also use MATLAB/Simulink programming and modeling language to
develop a system-level high-fidelity model of the vehicle with the powertrain inside.
The model consisted of a driver, control unit, and vehicle subsystems. We explain the
components within each of these subsystems in great details. We obtain the required
data for the model using the available online sources and also taking the reverse-
engineering approach to identify the model parameters, given the vehicle dynamometer
data. The contribution in this chapter, as shown in the evaluation section, is achieving
an accurate model in capturing the actual vehicle energy-related details without getting
obsessed in irrelevant model dynamics.

1.2.5 Chapter 6: Fast Offline Energy Management Strategy

In the context of EMS, offline translates to having access to the velocity profile in the
form of established driving cycles in advance. The offline analysis is highly critical for
design and dimensioning purposes. In this chapter, we present a first of its kind convex
representation of a power-split powertrain. This includes deriving a convex model
for the component (some are novel) and expressing the overall fuel-efficient control
strategy problem in the canonical convex optimization format. We show that the
developed convex model differs acceptably with the high-fidelity model. Advantage of
facing a convex optimization problem is having access to dedicated efficient numerical
solvers. Finally, we discuss the results and compare the presented method with other
established methods such as dynamic programming. We also accentuate the potentials
of the developed method in real-time applications.

1.2.6 Chapter 7: Real-time Energy Management Strategy
for an Autonomous Vehicle

In this chapter, we present the novel idea of autonomous-specific energy management
strategy (ASEMS). ASEMS should integrate with the autonomous driving modules
to use the motion planning data. To perform the proof-of-concept, first, we carefully
simplify the driving scenario. Then, we employ an established optimization-based
approach to apply the path planning and trajectory planning for the vehicle, considering
the comfort and travel time as objectives. Later, we integrate the developed convex
representation of the powertrain into the model, the integrated model. Finally, we
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present the results and analyze the sensitivity on a few hyper-parameters. The
fascinating result is that fuel consumption shows a potential decrease of between 3.2 -
13.5 % reduction, depending on the prediction horizon, or as we call, the observable
horizon.

1.3 Publications

In the time of articulating this work, we have prepared the following publications.
Some of the chapters are based on the following publications. These publications are
either submitted or planned to submit to journals and conferences or accepted and
officially published.

1. Saeed Amirfarhangi Bonab, Ali Emadi. "Fuel-optimal Control Strategy for a
Power-split Powertrain via Convex Optimization", Submitted to IEEE Access.

2. Saeed Amirfarhangi Bonab, Ali Emadi. "Optimization-based Path Planning for
an Autonomous Vehicle in a Racing Track", Submitted to IEEE 45th Annual
Conference of the Industrial Electronics Society, To appear.

We have also planned to present the ASEMS with obtained results in the form of
another journal paper.
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Chapter 2

Hybrid Electric Powertrains

2.1 Introduction

Developing alternative powertrains with the ablility to incorporate more than a single
fuel-based power source has a long tradition, comparable to the history of automotive
industry itself. Lohner-Porsche Elektromobil, introduced in 1900, initially was an
electric vehicle. Later on, Porsche included an internal combustion engine in the
powertrain to run a generator to keep the batteries charged. Batteries then would
supply power for two or four wheel hub electric motors. Also, it is intersting to note
that by 1900, American companies had produced more EVs than gasoline cars [10].
However, the idea of electric or hybrid electric vehicle faded into the history, and just
resurfaced few times with now practical impact in the following century. [15].

Interest in vehicles with alternative propulsion systems has been revived in the
past decades as a development plan with large-scale global impact and there has been
substantial growth in applied investments in research and development of technologies
regarding these vehicles. Batteries, supercapacitors, and fuel cells combined with
electric motors are examples of alternative power sources.

In this chapter, our main focus is on the vehicles with hybrid electric powertrains.
Although by definition, a hybrid can be assumed as any sort of combining different
power sources in the powertrain, we exclusively consider a hybrid electric powertrain to
consist of an internal combustion engine (ICE), battery pack, and electric motors as the
means power generation and propulsion. Hybrid electric powertrains are in different
level of electrification with variety of architectures. Moreover, these powertrains provide
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a reasonable trade-off between fuel economy, emissions, performance, and the driving
range which makes them a suitable choice as a propulsion system, at least up to the
point that battery and fuel cell technologies get mature enough to provide comparable
performance. We will discuss these later in this chapter in more details.

2.2 Electrification Level and Architecture

As discussed, in a hybrid electric propulsion system, ICE operates accordingly with
electrical units to provide the required propulsive power. Considering this, we can
categorize the available powertrain technologies based on the electrification level, which
is the share of each propulsion component in producing the total energy consumption
for typical driving scenarios [16]. As shown in Figure 2.1, degree of electrification
for hybrid electric vehicles (HEVs) falls in the spectrum with conventional vehicles
and fully electric vehicles on both ends and directly contributes to the emissions
reduction. Powertrain electrification is closely connected with powertrain architecture.

Figure 2.1: Degree of electrification for various electrified powertrains with resulted
reduction in emissions on new european driving cycle (NEDC). (adapted from [17])

Architecture can be simply seen as the arrangement of propulsion systems in the
powertrain, which imposes how components will interact to supply the demanded power.
Figure 2.2 shows the arrangement of components in few common HEV architectures.
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While various architectures deliver different operation conditions, we will focus mainly
on the power-split architecture in this work. Power-splits are the most advanced hybrid
powertrains which benefit from the redundant degree of freedom in planetary gear
sets (PGS). This particular architecture offers complex operation conditions, wide
electrification degree, and better fuel economy/performance. Examples of this kind
has been successfully employed in vehicles such as Fiat-Chrysler Pacifica, Toyota Prius,
and Chevrolet Volt.
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Figure 2.2: Common HEV architectures: (a) mild hybrid, (b) parallel hybrid, (c) series
hybrid, and (d) power-split hybrid. Note that M/G, B, and D denote motor/generator,
battery, and drivetrain respectively. Mechanical joints are shown with solid line, while
dashed lines stand for electric connections.
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2.3 Fuel Economy

The competition and the endeavor to achieve better fuel economy is highly intense
in the automotive field. Less fuel consumption benefits customers financially and the
world environmentally. In the course of their progress, vehicles are getting lighter,
more aerodynamic, and they are using more efficient components to achieve better
fuel economy while staying competitive on the performance side. The average fuel
economy for all U.S. cars has improved 12 percent from 2010 to 2017 [18]. However,
the fuel economy rate, imposed by governmental standards seems inapproachable with
current rate of improvement in fuel economy. Corporate average fuel economy (CAFE)
for instance, requires passenger vehicles to achieve fuel economy of 54.5 MPG by 2025
[19]. Figure 2.3 shows the previous trend and legislated trend for fuel economy of the
vehicles by CAFE for different types of vehicles in more detail. The trend toward more
fuel efficient vehicles is clear in each category.
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Figure 2.3: Required fuel economy standards for each model year by corporate average
fuel economy (CAFE) standard. (adapted from [19])

Electrification of the powertrain is one of the most appealing solutions for automo-
tive companies. According to Fiat-Chrysler Automobiles chief technical officer, "You
won’t get the 2025 standards without significantly higher penetration of electrification
than we have today" [18]. Some of the benefits of an electrified powertrain, which
especially significant for urban driving cases, is to help reduce the fuel consumption
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by operating ICE in higher efficiency zone, avoiding total energy waste during braking
by performing regenerative braking, and avoiding idling for ICE. The current trend
suggests that electrification plans should be boosted up by automakers to meet the
prospective standards.

2.4 Emissions

Fossil fuels are the major source of carbon dioxide production [20]. In addition to
greenhouse gas emissions (GHG), other exhaust emissions such as CO and NOx are
among substantial environmental threats. Table 2.1 shows the incurred cost as a result
of the vehicle emissions on the society, estimated by NHTSA in Final Regulatory
Impact Analysis report [21]. Despite the effort of automotive companies to lower the

Table 2.1: Emissions Cost Estimate in 2010

Emissions Cost Weighted Costs

Carbon dioxide (CO2) $22/metric ton

Nitrogen oxides (NOx) $6,700/ton

Sulfur dioxide (SO2) $39,600/ton

Volatile organic compounds (VOC) $1,700/ton

Particulate matter (PM) $306,500/ton

Economic benefits oil import reduction $0.197/gallon in 2025

emissions by deploying catalyst converters, advance A/F ratio control, choke operation,
spark timing, and exhaust gas recirculation (EGR) [22], emission standards seem
to be highly demanding to be met with the current progress. Beside market-based
approaches such as emission penalties for motor vehicles and gasoline tax, produced
vehicles are also restricted by strict emission standards. Euro VI emission standards,
for instance, restricts light-duty vehicles (LDV) to producing 1 g/km of CO and 0.06
g/km for NOx emissions for gasoline vehicles over NEDC driving cycle [23]. Also,
as Figure 2.4 suggests, produced passenger vehicles should meet even more stringent
CO2 emissions performance in various countries in the near future. Electrification
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Figure 2.4: Future, current, and historical CO2 emission performance for passenger
car fleets. (adapted from [24])

of the powertrain, in any level, have shown a great potential for reducing vehicle
exhaust emissions by first, improving the efficiency and decreasing fuel consumption,
and second, avoiding the operational condition for ICE which is prone to producing
undesirable emissions. In [25] for instance, Euro VI hybrid buses have shown 93%
less NOx emissions compared to Euro V ones. More noticeably, HEVs are better
than PHEVs recharged by mixed electricity generation in case of GHG emissions
[26]. Regardless, by moving toward sustainable electricity generation and nonfossil
generation mix, power-split PHEVs have the potential to reduce the GHG emissions
by 60% compared to gasoline ICE-powered vehicles [26]. Ultimately, BEVs are the
most sustainable means of transportation in terms of emissions, if conditioned to be
recharged by renewable electricity generation.

2.5 Performance

While discussed benefits of electrified powertrains guarantee better fuel economy and
the fewer emissions, it is often the performance, or by other words the "coolness
factor" [27], that makes vehicles attractive and marketable. In this context, there is a
significant opportunity to utilize the available electric power in the HEV in harmony
with ICE power to achieve unprecedented vehicle drivability in case of acceleration,
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handling, stability, and braking. We will examine the methods of achieving better
performance as a result of electrification in more detail in this section.

Turbocharging is helpful with increasing the engine efficiency and power to weight
ratio. In fact, this is one of the current mainstreams in engine design that modern
engines tend to be downsized and turbocharged. In the U.S. market, for example, 27.6
% of the cars and light trucks were produced with a turbocharged engine in 2017 [28].
Most significant disadvantage for a turbocharged engine from the performance point
of view is the time gap for the turbocharger to spool up to provide a useful boost,
known as turbo lag. Dynamic characteristics of these engines can be substantially
improved by using an electric motor attached to the turboshaft [29]. Electrically-
assisted turbochargers are more effective than conventional turbochargers in reducing
the engine response time and providing instant power.

Electric motors can also compensate for the lack of available torque from engine at
low speed. As it is well-known, electric motors can provide the maximum rated torque
at low motor speed, which is highly desirable for traction and propulsion purposes.
While ICEs can produce the peak torque around at least 1/3 of the maximum engine
speed. As a result, a hybrid powertrain can provide better acceleration by providing
electric boost. Figure 2.5 compares the performance of the ICE with an electric
motor in terms of torque and power. In addition to better traction performance, the

Figure 2.5: Different torque and power charactristics of an ICE and an electric motor.
(adapted from [30])

possibility of regenerative braking imposes less pressure on the brakes and recovers
free energy in braking zones which can be used as an electric boost later.
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Finally, having an independent electric motor for each wheel provides all wheel
drive (AWD) drivability and toque vectoring during cornering which would result in
overall better stability and performance .

The recent trend in the motorsport supports the application of the electrified pow-
ertrains in the high-performance racing vehicles. Policies of Federation Internationale
de l’Automobile (FIA) have pushed racing teams to be in the front line of developing
faster, fuel-efficient, and sustainable. Taking Formula 1 (F1) competition as the
case, regulations have progressively pushed powertrains toward utilization of smaller,
efficient, and turbocharged engines since 2000. Electrification considered as the best
option to keep the vehicles competitive compared to former F1 cars with giant naturally
aspirated engines. This made a breakthrough in the history of F1 competition in 2014
by incorporating two motor generators in the powertrain, the period after which is
known as the hybrid era. This enabled Mercedes AMG Petronas F1 engineering team
to achieve a thermal efficiency of more than 50% for the powertrain for the first time
[31]. The recent updates in the powertrain of F1 cars is captured in the following table.

Table 2.2: Formula One Powertrains

Specification 1995-2005 2006-2008 2009-2014 2014-Present

Engine Type Naturally
aspirated

Naturally
aspirated

Naturally
aspirated Turbocharged

Engine Cylinders V10 or V12 V8 V8 V6

Engine Power 650-965 hp < 740 hp 700-800 hp 700-800 hp

Engine Capacity 3000 cc 2400 cc 2400 cc 1600 cc

Electric System n/a n/a KERS MGU-K and
MGU-H

Electric Power n/a n/a 81 hp 160 hp
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2.6 Future Trend

Increasing fossil fuel cost, clean electricity generation, demand to achieve higher
efficiency and performance, and environmental issues are the propellants of powertrain
electrification stream. Electrification is the solution for most of the upcoming challenges
in the automotive industry. Although research and development on internal combustion
engines show potentials of improving efficiency and decreasing the emissions, they are
naturally unable to meet the future standards. Therefore, powertrain electrification
should be considered more seriously. Although technical issues have been investigated
for the key hybrid electric powertrain components, the major challenge is the cost,
regulations, and the infrastructure for electrified vehicles to dominate the market.
However, one can safely state that "future drives electric" [30].

On the other hand, ICE has been considered as the primary power source in the
HEVs with electric systems to compensate for the deficits of the internal combustion
engine. However, as electrification becomes the dominant philosophy, we predict
intensive research on re-designing engines in the near future to achieve a new generation
of ICEs with characteristics suitable for compensating the deficits of electric drivetrain.
New technologies for internal combustion engines can substantially prolong the existence
of these propulsion systems in the market.

While fully electric vehicles are considered as the future of transportation, this
will not happen abruptly. Definitely, there is a transition period, moving from ICE-
powered vehicles to BEVs. The overall transition time depends on the customer
feedback, original equipment manufacturers (OEMs) initiatives, and governmental
regulations, but it would cover a few decades at least.

Although battery technology is growing fast toward the next-generation batteries
that offer lower cost and higher better specific energy characteristic, but currently,
the cost of a battery pack pushes the overall cost of the vehicle significantly. Also,
manufacturing of the current batteries is aggressive on the rare earth materials. Other
major challenges for the prevalence of the EVs are battery pack weight, offered range
for a fully charged battery pack, availability of the public chargers, recharging time,
and the impact on the power grid.

There is also a remarkable challenge regarding the charging time and the range
of electric vehicles. While refueling of a 10-gallon fuel tank takes a few minutes, it
provides about 360 kWh of energy and adds only 62 pounds to the vehicle mass. This
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amount of fuel is enough for 300 miles, considering a vehicle with reasonable fuel
economy of 30 MPG [30]. Competing with this luxury of conventional vehicles would
be arduous for EVs.

As long as the mentioned challenges have not been addressed efficiently, OEMs
should have an alternative for the transition period. A PHEV which offer a reasonable
electric range with an ICE used to extend the overall range while avoiding the cost of
a bulky battery pack, as well as providing the option of refueling to keep the vehicle
operating continuously for a long period of time is a firm bridge from ICE-powered
vehicles to full EVs. Besides, in spite of the fact that most of the different forms of
full hybrid vehicles have a low benefit to cost rate, HEVs with power-split powertrain
have shown outstanding efficiency, driving comfort, and customer feedback. From a
different perspective, as discussed, electric systems in today’s HEVs are considered and
designed to account for flaws of ICE-powered powertrain. However, we believe this
process can be reversed by changing the design language of ICEs, promoting the idea
of designing ICEs in a way to compensate for the defects of the electrically powered
powertrain. As a result, a power-split PHEV can be the best option for post-ICE and
pre-EV era.
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Chapter 3

Autonomous Driving

3.1 Introduction

It has been more than 80 years from "Futurama," an exhibit where General Motors
seriously depicted the idea of autonomous mobility for the future transportation [32].
While the vision seemed to be over-ambitious for the time, but initiated a dream of
smart and autonomous transportation. The dream seems to coming true now, thanks
to recent advances in computing, sensors, and artificial intelligence.

The automotive industry is moving toward intelligent transportation systems (ITS)
to improve the safety and efficiency. For the case of passenger vehicles, it is quite
pleasant to imagine that cars are autonomous, sustainable, connected, and they are
operating on the real-time supervised roads with intelligent infrastructures. Being
autonomous is not restricted only to the case of passenger vehicles. Advances in
this field can deeply impact other areas such as unmanned aerial, agricultural, and
transport vehicles. Autonomous vehicles play a key role in the prospective scheme for
transportation and they can revolutionize the concept of mobility we hold today.

Although the concept of autonomous mobility is fascinating, the implementation is
technically complicated. Introduced technology should be able to outperform human
performance in driving, while humans are not necessarily poorly under-performed
drivers. As mentioned, one of the potentially significant benefits of autonomous
vehicles (AVs) is better safety. While casualties in the car accidents are unfortunately
a considerable number (more than 40000 reported traffic deaths in 2017 in U.S.[33])
and human errors are to blame for the 94% of the car crashes in U.S.[34], but human
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fatal driving mistakes are likely to happen every 86 million miles for each individual in
U.S. [35]. From the technological point of view, the difficulty arises from both scene
perception aspect as well as the fact that operating artificial intelligence of an AV
should function in any arbitrarily complex condition, and should reason and generalize
for the unpredictable situations based on the available data. Moreover, this process
should happen real-time with the obtained perception of computer vision systems.

Research on autonomous vehicles spans over the last decades. One of the important
early examples is the Eureka Prometheus project (1986), which is also the largest R&D
project ever held on the self-driving cars [36]. In recent years, competition between
major vehicle manufacturers and technology giants to achieve the first commercial
fully autonomous vehicle have heated up. As for now, Waymo self-driving cars and
the Tesla Autopilot technology seem to lead the competition as a result of massive
R&D effort and ever-increasing amount of available data from their autonomous fleets.
Despite the current achievements, dated technologies for autonomous mobility have
yet to face great challenges such as acceptance from customers, regulations, technology
maturity, and the infrastructure. [37]

In the rest of this chapter, we will examine the large-scale impact of the autonomous
mobility to appreciate the vast importance of this technology. Also, we will categorize
the vehicles based on their degree of autonomy. Finally, we will illustrate how a modern
autonomous vehicle operates to get the required helpful intuition for understanding
the motivation of the presented work in the next chapters.

3.2 Global Impact

AVs have the potential to significantly influence the transportation aspects, including
safety, traffic congestion, mobility, and efficiency. There are both individual and public
level sides of these effects. In this section, we will explain some of the large-scale
impacts that prevalence of autonomous mobility will bring along. The extent of each
aspect of the autonomous vehicles’ global impact depends on the prospective policies,
customer acceptance, and the infrastructure. Although there are disadvantages for
autonomous mobility as for any other technology, advantages generally outweigh the
negative aspects by a large margin.

Safety has been served as the pinpoint of autonomous mobility implication. Social
acceptance of the AVs highly depends on the safe performance of these vehicles. The
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motivation behind this is quite clear. Statistics below, adapted from [38], shows the
dramatic negative side of vehicular transportation. Apart from the dramatic effect

of accident casualties on society, most of the accidents also incur property damage,
medical costs, and lost earnings. Autonomous mobility and advanced driving assistant
systems (ADAS) has great potential to improve the safety of available transportation
by a large margin. Examples of such driving assistant safety systems are adaptive cruise
controller, forward collision warning and avoidance, lane departure and lane keeping,
lane change assistance, active steering and evasion assist, and proactive pedestrian
protection. As it can be seen in Figure 3.1, although the potentials of passive safety
systems have been exploited substantially, there is a plausible improvement in the
vehicle safety by exploiting active safety technologies. In the context of safety, the

Figure 3.1: Active and passive safety systems exploitation in last decades. (adapted
from [39])

current progress of the AVs is very promising. For instance, Waymo’s self-driving cars
finished five million miles of driving in U.S. up to February 2018 with 30 minor crashes
[40]. However, these vehicles had caused just one of these accidents. According to [41],
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the U.S. crash rate for an average human driver is 4.2 crashes per million miles, which
means human drivers could have caused 20 more accidents if they were operating the
Waymo’s fleet.

Another beneficial aspect of autonomous driving can be seen from the value of
travel time savings (VTTS) perspective. VTTS can be defined as the benefits of faster
travel that saves time [42]. In large-scale, many governmental regulations and actions
regarding transportation are designed to decrease the cost and the time of the traveling
and commuting [43]. In fact, owning and driving an AV can potentially reduce the
VTTS by almost 30% compared to driving a non-AV [44]. This can be as a result of
providing the opportunity for passengers to perform more valuable activities while
having a drive, less traffic congestion as a result of autonomous mobility, and using
shared autonomous vehicles.

AVs can also substantially extend the application of automobiles for the vast
majority of the population who cannot or are not permitted to drive a vehicle, including
people with disability, children, and senior citizens. It is very probable to imagine
on-demand services for impaired or injured individuals shortly, equipped with AVs,
which are more comfortable and cost-effective than other alternatives. This aspect
of autonomous mobility has been brilliantly showcased, as a legally blind man had a
successful ride around Austin in 2015 in Waymo’s self-driving car [45]. Similar services
can be provided as mobility options for children, an AV as the school bus for instance.
Moreover, a study shows that elderly people who give up driving, considerably travel
less, far beyond to be justified by normal aging [46]. This shows the traumatic aspect
of driving cessation and indicates that having access to AVs would potentially improve
the well-being of these people.

Adoption of AVs can influence traffic congestion in at least three ways: affecting
vehicle miles traveled (VMT) per capita, increasing vehicle throughput for the roads,
and eliminating traffic delays, caused by crashes. Willingness to travel by vehicle
is directly related to travel cost (fuel, insurance, parking, etc.) and drive comfort.
Autonomous driving can encourage AV owners to drive more and thus increase the
VMT by reducing travel costs and improving comfort by letting them engage in other
activities. A significant jump in VMT can also be as a result of new transportation
models such as car-sharing programs, autonomous transit lines, and autonomous taxi
services [21]. Car-sharing programs have a two-sided effect on VMT. These programs
can decrease the overall VMT since the availability of car-sharing would lead to a
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reduction in the number of owned automobiles per household. On the other hand,
existing AVs in car-sharing programs would operate significantly longer hours and
distances if otherwise owned by a household. The net result of this is a more efficient
transportation system. An excellent example of this is the Tesla Robotaxi program
for 2020, introduced in Tesla autonomy day event [47], in which every customer can
add or remove their vehicles to the network of Tesla Robotaxis. This has a substantial
impact of increasing weekly vehicle operation hours five times, and also offsetting some
of the monthly vehicle payments.

Fine-tuned sensors/actuators, inter-vehicular communication, and access to travel
data would enable AVs to increase vehicle throughput on the roads. In this context,
one study shows that vehicle throughput per lane (vehicles per lane per hour) can
be increased by 500 percent as a result of AV platooning [48]. Moreover, there is an
optimal point for traffic flow speed to produce maximum vehicle throughput. AVs
can keep the traffic flow in the optimal condition by removing start-and-stop traffic
conditions [49]. Additionally, traffic incidents, mainly vehicle crashes, account for 25
percent of all congestion delays [21]. Therefore, more fluent traffic can be expected by
AVs which have far less chance of causing a collision compared to human drivers as
discussed.

The final impact of AVs as a result of large-scale utilization that we discuss here
and focus in more details in the following chapters is related to the energy consumption
of AVs. As shown in Figure 3.2, the mainstream trend for vehicles since 1975 has
been getting more efficient and powerful at the same time. NRC estimates that fuel
economy improvements will fall between 130 to 250 percent for passenger vehicles in
2050, hybrid vehicles expected to have the 145 MPG fuel economy [21].

AVs can contribute to fuel economy improvement, first by providing optimal
driving know as "eco-driving." This mode of driving avoids unnecessary accelera-
tion/deceleration and incorporates the best driving habits to improve efficiency. More-
over, from the large-scale point of view, fuel economy can be improved as a result of
the increased vehicle throughout and lane capacity and decreased traffic congestion.
Cars that are connected can improve drive-cycle efficiency by reducing the idle time.
Also, vehicle platooning provides the opportunity for AVs to travel efficiently in a way
that resembles a train, which can lead to higher effective speeds and low aerodynamic
drag on the vehicles [51]. Pod-car AVs, which can accommodate one or two passengers
are also gaining attention, with great potential in improving the fuel economy. Overall,
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Figure 3.2: Estimated changes in maximum available power, real-world fuel economy,
and weight of production vehicles since 1975. (adapted from [50])

Figure 3.3 summarizes the potentials of combining electrification and automation of
vehicles in terms of fuel economy. In the context of improving fuel economy for AVs,

Figure 3.3: Potential influence of autonomous driving on fuel economy of conventional
and hybrid electric vehicles. (adapted from [21])

we will focus on a very niche area in the following chapters. In summary, we will try
to employ the potentials of journey mapping and motion planning data, produced
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by perception and control system of AVs, to obtain the optimal energy management
strategy of HEV or PHEV. It should be noted that although being niche, the effect
of this would not be trivial by no mean. We predict a substantial improvement in
fuel economy using autonomous-specific EMS and we will demonstrate this. To get
to know the large-scale impact of this, in just a single case, the Alphabet unit have
announced deploying further 62,000 minivans, made by Fiat Chrysler Automobiles,
in Waymo’s self-driving fleet [12]. Chrysler Pacifica has a power-split hybrid electric
powertrain, very similar to the case we are considering. We will discuss benefits of our
idea in great details later in this work.

3.3 Level of Autonomy

According to [52], an autonomous vehicle is a self-driving motor vehicle, being able to
operate without human intervention using GPS, AI, and sensors. There is a broad
variation in vehicles with zero autonomy to full autonomy. Hence, there are few
well-known standards, tried to assign and define different levels of autonomy. Society
of automotive engineers (SAE) has defined a level of autonomy in J3016 [53] document,
which is summarized below.

Level 0 - No Automation In this level, the driver is performing all aspects of
diving such as steering, monitoring the environment, and acceleration/deceleration at
all the times.

Level 1 - Driver assistance Driver-assist systems can execute either steering or
acceleration/deceleration. The human driver is solely responsible for safe operation
and should keep full attention to the driving environment. Also, different functions of
driving-assistance are operating independently in this level. Examples of these systems
are adaptive cruise controller (ACC), lane assist, stability control, emergency brake,
and parking assist.

Level 2 - Partial Automation Driving mode-specific can execute both of primary
functions, steering and acceleration/deceleration. This can be seen as deploying lane
centering and ACC modes at a same time. Driver is still fully responsible for monitoring
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the driving environment, and should be available to intervene or regain the full driving
operation immediately.

Level 3 - Conditional Automation While the driver should be able to intervene
and respond appropriately, the vehicle can take control of performing all critical safe
driving actions in specific conditions by monitoring the environment.

Level 4 - High Automation The vehicle can perform all aspects of driving, even
without requiring the human driver to intervene or respond. However, in some
conditions, such as adverse weather or environment, vehicle might ask the human
driver to take over driving.

Level 5 - Full Automation There is no need for human supervision for this level of
autonomy at all, considering that vehicle can perform all driving tasks at any time in
any condition, even without human existence inside the vehicle. There is no definition
of the human driver for the vehicle in this case, and everyone can be considered as a
passenger.

The idea we are following in this research considers a vehicle to have a level of
automation of three and above, mostly because in these vehicles, autonomous driving
systems can provide rich information about the environment and design action plans
for driving.

3.4 Autonomous Vehicle Modules

Autonomous driving is a result of multiple modules embedded in AVs, each responsible
for specific tasks, but working coordinately. A generic overview of the autonomous
system architecture is shown in Figure 3.4. We will explain each module in this figure
in more details, highlighting information that would be useful for our purpose.

Route planning functions similar to the commercially available GPS navigation
systems and produces a high-level journey plan. This might include the preferred path
between the current location and the destination.

Perception module analyzes and fuses real-time data from sensors such as radar,
lidar, and cameras to identify and track various objects within the driving scene. These
objects can be pedestrians, traffic lights and signs, and other vehicles. Lidars (light
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Figure 3.4: Schematic of autonomous vehicle modules. (adapted from [37] and [54])
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detection and ranging) are laser-based sensors which can produce a high resolution
3D map of the environment. Besides, intensive application of convolutional neural
networks (CNN) in the camera-based perception systems have achieved an incredible
results in scene understanding and semantic segmentation of the environment [55]. 3D
representation of the lidar can be fused with the semantic segmentation of the camera
output to finally produce a 3D semantic segmentation of the driving scene.

To operate safely and efficiently, AV needs to localize itself with respect to other
objects in the environment and identify the vehicle states (e.g., position, speed, and
orientation). Localization module is responsible for this, employing the fusion of global
location data (GPS) and local landmarks.

Scene understanding uses the data from perception and localization modules to
represents the driving scene in a useful way for planning and decision making. In this
context, the dynamic and static object would be differentiated, and occupancy grid is
constituted at this level. Moreover, the prediction of dynamic objects behavior and
interaction of vehicles on each other would be examined in this module.

Motion planning targets producing a feasible and ideally an optimal path and
trajectory for the vehicle to execute, subjected to obstacles and vehicle dynamic
constraints. Motion planning can take place in both structured and unstructured
areas. Three main approached for motion planning is searching, sampling, and
optimization-based algorithms [56]. In this work, we will focus on optimization-based
motion planning in a structured area for the following reasons. First, optimization-
based approaches can be implemented real-time and can handle constraints while
generating non-jerky output. Dedicated embedded optimization problem solvers are
achieving higher performance because of more competent hardware and more efficient
implementation. Also, AVs are operating mostly in structured areas in terms of both
driven distance and driven time. These factors justify our choice since our main target
is employing motion planning data to improve fuel economy.

Finally, motion control is responsible for manipulating throttle, brakes, steering
wheel, and other vehicle actuators to follow a given path or trajectory, obtained by
motion planning module. This can be addressed using classical control, nonlinear
control, model predictive control (MPC), etc.

In this work, we will consider that data from perception, localization, and situation
awareness modules is provided for the vehicle in a structured path. Then we will
develop and implement an optimization-based approach for motion planning. Generated
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path/trajectory will be later used to improve vehicle efficiency using a real-time
controller for the hybrid electric powertrain.
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Chapter 4

Fundamentals of Energy
Management Strategies

4.1 Introduction

Energy management strategy (EMS) can be seen as an action plan for deciding about
power supply from different propulsion units (e.g., ICE, electric motor, fuel-cell) and
ultimately energy sources (e.g., gasoline fuel tank, battery pack, hydrogen fuel tank) in
a HEV to provide the demanded power from the powertrain. This is an integral part
of powertrain supervisory control unit [57]. EMS decision should be near optimal and
feasible. Various strategies result in different fuel economy, emissions, and drivability.
It should be noted that the overall performance of a hybrid electric powertrain is linked
to the implemented EMS. Performance of an EMS can be evaluated using software
simulation, real-world driving [58], and vehicle simulators [59]. In order to best employ
the additional degree of freedom in hybrid electric powertrains, energy and power flow
among components should be meticulously determined. Therefore, defining EMS is
one of the crucial elements in HEV powertrain design.

To better understand the embedded EMS responsibility, Figure 4.1 shows a simpli-
fied overview of how EMS functions with respect to other vehicle components in a HEV.
EMS module takes vehicle data, feedback from propulsion and vehicle component (e.g.
ICE, M/G, ESS), and demand from the driver as the input. EMS then decides about
the power split between powertrain components and generates a reference output for
components to follow. Implemented strategy or heuristic inside the EMS is considered
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to guarantee optimal or near-optimal performance for the powertrain. In case of an
AV, the signal from the driver is replaced by the output of the motion planning/control
module.

Figure 4.1: Overview of EMS operation in a HEV.

Defining EMS is essential both in real-time operation of HEV and also HEV design.
There is a rich literature regarding EMS for HEVs or PHEVs, and this problem has
been approached from various perspectives. In rest of this chapter, we will discuss the
fundamentals of a few important approaches, comparing them in terms of optimality,
the potential for real-time implementation, and required control horizon.

4.2 Rule-based and Fuzzy Rule-based

Rule-based EMS is the most applied strategy in the industry because of real-time
capability and technical simplicity [60]. However, control design process is highly
time-consuming and arduous [61]. Rule-based strategy can be simply viewed as having
a pre-defined embedded rule book, written by control engineers, which generates a
decisive action for different conditions. Majority of these rules are in the logical form of
if-then format. For instance, one rule can be if the power demand from the powertrain
is negative which signifies braking condition, the engine would be dismissed and the
generator would try to recover as much as energy by performing regenerative braking.
The main disadvantage of these controllers is that the performance can be significantly
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deteriorated depending on the condition, because the rules are designed according to
a typical set of experimental and simulation data.

Fuzzy logic-based EMS differs from rule-based strategies in a way that these
controllers are easily adjustable and less sensitive to measurement errors and variations.
The base is still sets of mostly if-then rules [62], with the addition of membership
functions which can lead to better performance. There is no prediction horizon needed
for these controllers and the performance in real-time can be acceptable if calibrated
accurately.

4.3 Equivalent Consumption Minimization
Strategy

These strategies are among the highly investigated strategies in the literature. The
initial idea is to convert the electrical energy consumption to an equivalent amount
in actual fuel consumption using the average efficiency of the components [63]. How-
ever, the idea can be extended to a broader point of view, trying to minimize the
instantaneous cost, expressed in the following equation

u∗ = arg min
u∈U

ṁfuel(u) + µ1Pelec(u) + µ2ṁem(u) (4.1)

where µ1 and µ2 are tuning factors. The overall cost is a scalarization between fuel
mass flow rate, ṁfuel, consumed electric power, Pelec, and mass flow rate of emissions,
ṁem. Moreover, U is the set of all feasible control inputs at the moment. The potential
of real-time implementation is very clear in this formulation [64]. To move toward
optimality, however, tuning factors should be meticulously defined. This can be done
by considering an average operation for components, employing historical data and
make predictions, or considering available future data. Moreover, the sensitivity of the
final solution on the tuning factors should be considered as well. As a result, required
horizon depends on the implementation. Based on this concept, more advanced
heuristics for defining the energy management strategy can be designed [65].
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4.4 Dynamic Programming

It is a numerical optimization strategy to find the global optimal solution, introduced
for a first time in [66]. The theory is based on the principle of optimality, expressed in
following equation

J∗(x(t), t) = min
u(t)∈U

(
J∗(x(t+ ∆t), t+ ∆t) +

∫ t+∆t

t
g(x(τ), u(τ), τ)dτ

)
(4.2)

Note that this criterion is necessary and sufficient for optimality, and which enables
DP to obtain the globally optimal solution. In this equation, J∗() is the optimal
cost-to-go function. DP is the discrete numerical implementation of this equation,
based on two concepts in computer science, recursion and memoization. If states are
discretized in N points with an index of i in 1, 2, ..., N and time is discretized in M
points with the index of k, this equation can be re-written as

J∗(xi, k) = min
u(k)∈U(k)

{J∗(xi+1, k + 1) + g(xi, u(k), k)} (4.3)

where xi+1 = F (xi, u(k), k) with F representing the nonlinear time variant model. DP
can handle nonlinear dynamical systems with any cost function, g(x, u) in equation
above, and any constraints on control inputs and states. However, this comes with
the price of extensive computation burden. In practice, the optimality of final results
rely considerably on the discretization of numerical implementation. This makes the
computation time to grow rapidly as problem dimension and resolution increases. Also,
for the case of obtaining EMS, DP needs a prior knowledge about the driving cycle.
As a result, DP is neither an option for real-time applications, nor the powertrain
design cases with broad design space. Nevertheless, DP can provide the benchmark
solution to assess the performance of other proposed techniques for EMS [67–69].

4.5 Pontryagin’s Minimum Principle

For the general case of optimal control problems, PMP [70] as a generalization of the
Euler-Lagrange equations can define the necessary but not sufficient conditions for a
trajectory to be optimal, using the Hamiltonian mathematical formulation. Since PMP
algorithm finds the control input based on minimizing the instantaneous Hamiltonian,
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real-time implementation is feasible. For instance, for an unconstrained nonlinear
time-invariant system of ẋ = f(x, u) with initial condition of x(t0) = x0 and fixed final
state of x(tf ) = xf , if we try to minimize the following cost function

J = Φ(x(tf )) +
∫ tf

t0
g(x(t), u(t))dt (4.4)

For this case Hamiltonian is defined as

H(x, u, p) = g + p>f (4.5)

where p is the costate vector. Based of PMP, the necessary condition for u ∈ U to
minimize (4.4) is

ṗ = −
(
∂H

∂x

)>
(4.6)

and
u∗ = arg min

u∈U
H(x, u, p) (4.7)

While PMP has a less computation burden compared to DP, it produces just the
necessary condition for optimality. Hence, the final output would be sub-optimal.
Moreover, the solution of the PMP become more complex while handling numerous
constraints on states and control inputs.

For the real-time purposes, again costate vector remains as the tunable parameter,
influences directly on the overall performance of the controller. Interestingly, a study
shows that PMP and ECMS approaches for EMS are equivalent in essence [71], showing
that costate vector and ECMS tunable parameters are correlated.

4.6 Convex Optimization

Convex optimization problems is the set of optimization problems with in following
form [72]

minimize f 0(x)

subject to f i(x) ≤ 0 i = 1, 2, ...n

hi(x) = 0 i = 1, 2, ...m (4.8)
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where all functions are Rn → R. Objective function f0(x) as well as functions in
inequality constraints, fi(x), are convex functions in x. Moreover, functions in equality
constraints, hi(x), are affine functions in x. Convex function is a function with a
convex set as the domain which satisfies the following equation

fi(θ1x1 + θ2x2) ≤ θ1fi(x1) + θ2fi(x2) (4.9)

for all x1, x2 ∈ domf . Also, θ1, θ2 ≥ 0 and θ1 + θ2 = 1. Convex optimization relies on
dedicated solvers to find the optimal solution. Convex optimization is a generic name
for the problems in a variety of formats including linear programming (LP), quadratic
programming (QP), general conic programming, and semidefinite programming (SDP).
Moving from LP to more complex forms of convex optimizaiton problems makes using
more complex convex functions feasible. However, same in the size of variables and
constraints, LP problems are the easiest to solve.

Convex optimization is gaining remarkable attention in various engineering and
science fields such as optimal control, image processing, signal processing, and machine
learning as a rapid and reliable approach for solving optimization problems. It has
been noted that some of the major engineering problems in different fields are indeed
convex optimization problems [73]. Convex optimization has also been employed in
automotive research fields such as real-time powertrain optimal energy management
[74] and component dimensioning [75]. Another application is also provided in [76],
which is useful for finding the time-optimal control strategy for a racing car.

To be able to use the convex optimization in these problems, the first challenge
is to express the model and components within the convex format. This would
probably introduce some uncertainties to the model due to the inaccuracy of convex
approximations. The second challenge is handling discrete parameters such as gear
decision or clutch state. This problem arises from the fact that minimizing a convex
function over a mixed-integer set is an NP-hard problem. Currently, intesive research
and developement effort is going on in the field of convex optimization to tackle these
problem by developing new convex functions and also heuristics to handle mixed-integer
convex optimization problems [77], [78].

The first part of our contribution in this work will be dedicated to develop a convex
model for a power-split hybrid electric powertrain, analyze the computational time, and
evaluate the optimality of the final solution. Although employing convex optimization
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needs a prior knowledge of the driving cycle in advance, we will discuss that how
proposed model can be used effectively to improve the powertrain performance.

4.7 Model Predictive Control

MPC is an advanced control technique, very suitable for control problems with higher
order dynamics and response delays while having strict constraints on states and
control inputs. Figure 4.2 shows a simple schematic of MPC-based controller. The
philosophy of MPC is to iteratively find the optimal control policy up to a horizon.
Optimal policy is a result of solving an optimization problem using the predictions of
the embedded system model and estimated state. [79]. For the simple case of LTI with

Figure 4.2: Overview of model predictive control operation.

no disturbance and model uncertainties, MPC can be seen as solving the following
problem iteratively in time

minimize
N−1∑
k=0

g(x(k), u(k))

subject to x(k) ∈ X , u(k) ∈ U k = 0, 1, ..., N − 1

x(k + 1) = Ax(k) +Bu(k) k = 0, 1, ..., N − 1

x(0) = x0, x(N) = xf (4.10)

Where N is the controller horizon and keeps receding as optimization moves to the
next iteration.

MPC would be our primary approach for developing a real-time EMS in the last
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chapters, and we will demonstrate the advantages of MPC in autonomous mobility
applications.

4.8 Comparison

We end this chapter by a comparison of the discussed methods for addressing the
energy management problem. Figure 4.3 shows an illustrative comparison of the rule-
based, equivalent fuel consumption minimization, Pontryagin’s minimum principle,
model predictive control, dynamic programming, and convex optimization in terms
of optimality, real-time implementation, and having access to the control horizon.
Comparative analysis of these strategies is investigated in [80]. For the rest of this
work, we will focus mainly on the convex optimization and model predictive approaches.

Figure 4.3: Comparison of various energy management strategies. (adapted from [81])
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Chapter 5

High-fidelity Vehicle Model

5.1 Introduction

Developing a high-fidelity model in any application regarding design and control
is crucial. Particularly in control applications, any modification or a new control
strategy should be first evaluated on the model and then implemented in the actual
system. Having a high-fidelity vehicle model which can reproduce the behavior of the
actual vehicle for the energy-related metrics will help us to observe the performance of
developed strategies and to increase the probability of obtaining similar performance
from the actual vehicle.

We use MATLAB/Simulink programming and modeling language to develop a high-
fidelity model considering the Toyota Prius 2010 as the case study. Our objective is to
develop a system-level model which simulate the power flow between the components
in the actual vehicle. The developed model is not case-specific and can be readily
extended for other vehicles with power-split powertrain such as Chrysler Pacifica.

As the model organization, to have same framework comparing different strategies,
we assume that the driving cycle is provided for the driver in advance. Driving cycle
data includes the vehicle velocity, v(t), for time scope of 0 to T . Example of a driving
cycle is provided in Figure 5.1. In the case of non-flat path, road slope, θ(t), is also
provided in the driving cycle. Based on the driving cycle, the driver then requests a
necessary torque to follow the given velocity. This demanded torque then is fed to the
control unit to decide about splitting the torque and power among components and
generates a control input for powertrain components. Finally, the torque passes the
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Figure 5.1: Urban Dynamometer Driving Schedule (UDDS).

drivetrain and reaches the wheel to provide acceleration/deceleration. Consequently,
vehicle speed forms feedback to the vehicle and the driver. The structure is shown
in Figure 5.2. Our model comprises three main components of a driver, control unit,

Figure 5.2: Main subsystems of the model: driver, control unit, and the vehicle.

and the vehicle model. We obtain the required data for the model using available
publications, technical reports, and software packages such as Autonomie. Also, we
will take a reverse-engineering approach to acquire some parameters from the available
vehicle dynamometer data. We will also evaluate the fidelity of the developed model
using dynamometer data. For these data, we use publicly available data of Argonne
National Laboratory [82].
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5.2 Vehicle Model

Figure 5.3 shows the schematic of the vehicle components. Naturally-aspirated gasoline
internal combustion engine provides propulsion power by converting fuel chemical
energy to the mechanical energy. First motor generator (MG1) unit engages directly
to the engine in the first planetary gear set (PGS1) and mostly acts as a generator,
converting a portion of the engine power to the electrical power and helps to crack the
engine. Second motor generator (MG2) unit is placed in the second planetary gear
set (PGS2) and is considered mostly for traction and propulsion purposes. MG2 is
also responsible for regenerative braking. It worth mentioning that these applications
for MG1 and MG2 are not definite. In other words, the design of the powertrain
is in a way which provides a possibility to use MG1 in regenerative braking and
MG2 to generate electrical power from the engine. Energy storage system (ESS) for
the powertrain is a Nickel-metal hydride battery pack, which provides or captures
dc electrical energy within some limitations. ESS also provides required power for
auxiliary devices. Parameters for vehicle components are summarized in Table 5.1.
We will examine each component in more details and explain the applied model for
each of these components.
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Figure 5.3: Main powertrain components.
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Figure 5.4: Simulink model for the vehicle, consisting battery, MG1, MG2, ICE,
power-split device, final drive, wheel, and vehicle dynamics.
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Table 5.1: Vehicle Component Parameters

Category Parameter Symbol Value

Wheel
Dynamic radius rw 0.31 m
Efficiency ηw .98
Moment of inertia Jw 0.8 kgm2

Power-split
PGS1 ratio r1 78/30
PGS2 ratio r2 58/22

Drivetrain
Gear ratio rd 3.268
Efficiency ηd 0.95
Moment of inertia Jd 0.1 kgm2

MG1
Max. Torque Tmg1,max 45 N.m
Max. Power Pmg1,max 42 kW
Moment of inertia Jmg1 0.02 kgm2

MG2
Max. Torque Tmg2,max 207 N.m
Max. Power Pmg2,max 60 kW
Moment of inertia Jmg2 0.05 kgm2

Battery
Capacity Cb 6.5 Ah
Rated power Pb,max 27kW
Nominal battery voltage Vb,nom 202 V

Engine
Max. Power Pe,max 73 kW
Max. Torque Te,max 142 N.m
Moment of inertia Je 0.18 kgm2
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5.2.1 Internal Combustion Engine

We use a quasi-static model for ICE, ignoring the dynamics of the engine and complex
losses. The static model is embedded in the ICE block of our Simulink model, using
the 2-D lookup table. This map is shown using contour plot in Figure 5.5. Note that
the solid black curve shows the engine maximum torque curve. This curve in addition
to maximum speed and minimum idle speed for engine are considered in the model to
avoid infeasible operation for the engine. As a result, we can write

Pe,fuel = Pe

F1(Te, ωe)
(5.1)

Pe = Te · ωe (5.2)

Where Pe,f and Pe are the fuel and mechanical power of ICE and F1 is the 2-D lookup
table.
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Figure 5.5: Contour map for the ICE with maximum toque curve.

5.2.2 Motor Generator Units and Power Electronics

Similar to ICE, we use a quasi-static model with efficiency maps for M/Gs and their
related power electronics. Figure 5.6 and 5.7 show these maps in terms of contours for
MG1 and MG2. We also consider the maximum available torque, maximum power,
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and maximum speed for each of motor generator units to avoid infeasibilites. As a
result, we can write

Pmg1,elec = Pmg1 · F2(Tmg1, ωmg1)−sgn(Pmg1) (5.3)

Pmg1 = Tmg1 · ωmg1 (5.4)

Pmg2,elec = Pmg2 · F3(Tmg2, ωmg1)−sgn(Pmg1) (5.5)

Pmg2 = Tmg2 · ωmg2 (5.6)

Where F2 and F3 are the 2-D lookup tables.
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Figure 5.6: Efficiency map shown in contours for the MG1. Solid black line indicates
the maximum available torque in absolute value.
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Figure 5.7: Efficiency map shown in contours for the MG2. Solid black line indicates
the maximum available torque in absolute value.

5.2.3 Battery

We model battery using an equivalent circuit model. While we can use higher order
battery model with a few RC branches, for our analysis, a complex battery model
which is able to replicate the highly dynamic behavior of the battery is redundant.
We use a simple equivalent circuit model for the battery, shown in Figure 5.8. We
believe this level of abstraction is sufficient for our application as we will discuss in
the evaluation section. This model uses a single voltage source, known as battery
open circuit voltage (OCV), and resistance, known as battery’s internal resistance.
These parameters are dependent on temperature, battery state of health (SOH), and
battery state of charge (SOC). For our analysis, we have considered a constant internal
resistance with a SOC-dependent OCV. We have derived the resistance from the test
data to be R0 = 0.32 Ω, and the SOC-OCV curve is shown in Figure 5.9. Based on
assumed battery model, we can write following equations

Vb = Voc −R0 × Ib (5.7)

Pb = Vb × Ib (5.8)
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Figure 5.8: Equivalent circuit model for battery with a voltage source and a resistance.
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Figure 5.9: Open circuit voltage as a function of state of charge for an equivalent
circuit model.

Combining these two equations, we can derive

Ib =
Voc −

√
V 2

oc − 4R0Pb

2R0
(5.9)

Also, for the battery SOC, following equation holds

d SOC
dt

= 1
Cb

dQb

dt
= − Ib

Cb

(5.10)

where Qb is the amount of electric charge stored in battery, and Cb is the battery
capacity, shown in Table 5.1. Throughout this work, we will consider positive sign for
consuming power and discharging battery and vice versa. We also note the following
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equation for energy balance at battery terminal

Pb = Pmg1,elec + Pmg2,elec + Paux (5.11)

We also consider a constant auxiliary load of Paux = 500W .

5.2.4 Power-split

The power-split device provides a more complex operation for powertrain compared
to conventional series or parallel hybrid electric powertrains. This is the result of
employing planetary gear sets. The powertrain for our case study, as seen in Figure 5.3,
includes two planetary gear sets. Internal combustion engine connects to the carrier of
the first set. Planet gears of carrier engage with the sun gear and ring gear. In the
first set, the sun gear is connected to MG1 and ring gear is coupled to the ring gear of
the second set. In the second set, the carrier is held stationary through a coupling
and MG2 is connected to the sun gear. Both ring gears are connected to counter drive
gears, which make input direction of rotational speed for the final drive in the same
direction of the engine rotational speed. Last connections for drivetrain are final drive
and wheel. We use a quasi-static model for two existing PGSs in the power-split. For
the first PGS, we can write

− TR1 = r1 · Te

1 + r1
= −r1 · Tmg1 (5.12)

r1 · ωR1 + ωmg1 = (1 + r1) · ωe (5.13)

TR1 , Te, and Tmg1 denote torque for the first ring gear, engine, and MG1 respectively.
ω also indicates the rotational speed of the components. Moreover, r1 is the gear ratio
for PGS1, which is shown in Table 5.1. Using the same approach, following equations
has been considered for the PGS2

TR2 = r2 · Tmg2 (5.14)

ωmg2 = r2 · ωR2 (5.15)
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5.2.5 Final Drive and Wheel

We use a constant efficiency of ηd = 0.95 and ηw = 0.98 for the final drive and wheel
efficiency (due to slip), respectively. Overall drivetrain gear ratio, combining final
drive and counter-drive gears is rd = 3.268. Dynamic rolling radius of the wheel is
also rw = 0.31m.

5.2.6 Longitudinal Dynamics

For design, component dimensioning, and EMS analysis, full 3D vehicle dynamics
model is unnecessary and just a longitudinal vehicle dynamics will provide sufficient
accuracy.

We model the load on vehicles to consist of aerodynamics, rolling resistance, intertia,
and gravitational load. We have also summarized the required parameters in Table
5.2. For the aerodynamic drag force, we consider the following approximation

Table 5.2: Parameters for Longitudinal Dynamics

Parameter Symbol Value
Frontal area A 2.5 m2

Air density ρ 1.23 kg/m3

Drag coefficient cd 0.25
Total vehicle mass m 1480 kg
Equivalent vehicle mass meq 1557 kg
Gravity constant g 9.81 m/s2

Rolling resistance coefficient cr 0.02

Fa = 1
2ρ cd Av

2 (5.16)

where ρ is the air density, cd is coefficient of drag, and A is the projected frontal area
for the vehicle. Following approximation is considered for rolling resistance force

Fr = cr mg cos(θ) (5.17)
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in which cr denotes coefficient of rolling resistance. Gravitational drag force is also
considered as

Fg = mg sin(θ) (5.18)

As a result, the overall force load on the vehicle is

Fl = Fa + Fr + Fg (5.19)

We can derive the vehicle acceleration/decceleration using following equation

meq
dv

dt
= Fp − Fl (5.20)

Where Fp is the propulsion force, supplied by the powertrain at the wheel. Also meq

is the equiavalent vehicle mass, which is combination of vehicle mass and moment of
inetria for rotational components, obtained by following equation

Jtotal =
(
r2

1Jmg1 +
(

r1

1 + r1

)2
Je + r2

2Jmg2

)
r2

d + Jd + 4Jw

meq = m+ Jtotal

r2
w

(5.21)

Figure 5.10 shows the free body diagram for the longitudinal dynamics of the vehicle.
To evaluate the considered model for longitudinal dynamics, we use the tractive effort

Figure 5.10: Free body diagram for a vehicle driving on a slanted surface. (adapted
from [83])
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data, provided in [82]. Dyno tractive effort in the mentioned data is as follows

Ft = m
dv

dt
+ 1

2ρ cd Av
2 (5.22)

Figure 5.11 shows the accuracy of the introduced dynamics model in estimating the
tractive effort for the driving cycle shown in Figure 5.12.

Figure 5.11: Measured dynamometer tractive effort (including inertia and aerodynamic
forces) compared to modeled tractive force from vehicle longitudinal dynamics for a
driving cycle shown in Figure 5.12. Overall rms error is 62.8 N.
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Figure 5.12: Drive cycle used for evaluation of longitudinal vehicle model. This drive
cycle includes sets of time periods of constant velocity.

5.3 Control Unit

Control unit with an embedded EMS is responsible for getting a toque/power request
from the driver and generate the required control inputs. The logic should consider
component limits, vehicle limits, and other parameters to ensure the feasibility of the
final decision. Implemented control strategy in the actual vehicle for our case study is
a rule-based control strategy. We use the developed control logic tool by MathWorks,
Stateflow, to implement the rule-based controller in the control unit. In this section,
we will try to derive and tune the rules for the control unit, based on the actual vehicle
data [82] combined with other performed studies on the powertrain of the Prius 2010
[84–86].

The first parameter that control unit should decide about is whether the ICE should
be on or off. Also, it is important to note that whether powertrain is providing power
(positive power demand or propulsion) or captures power (negative power demand or
braking). Based on our observation, three important tuning factors of power demand
threshold, Pth, vehicle speed threshold, vth, and state of charge threshold, SOCth, are
deciding about different cases. Based on this, we summarize the rules as below
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Propulsion:
if Pdmd ≥ Pth or v ≥ vth or SOC ≤ SOCth then Case 1
if Pdmd < Pth and v < vth and SOC > SOCth then Case 2
Braking:
if v ≥ vth then Case 3
if v < vth then Case 4

If we want to tag each of these cases, Case 1 is propulsion with engine on, Case 2 is
propulsion with engine off, Case 3 is braking with engine on, and Case 4 is braking
with engine on. For each of these cases, there is a special set of control inputs for
components, summarized as bellow

Case 1:
Engine speed ωe = f1(Pdmd)
Battery power Pb = f2(SOC)
Engine Torque Te = (Pdmd − Pb)/ωe

MG1 speed, ωmg1, obtained by (5.12)
MG1 torque, Tmg1, obtained by (5.13)
MG1 power, Pmg1, obtained by (5.3) MG2 speed, ωmg2, obtained by
(5.15)
MG2 torque, Tmg2 = (Pb − Pmg1)/ωmg2

Brake power, Pbrk = 0

In case 1, f1 and f2 are both a 1-D lookup table, shown in Figure 5.13. These tables
have been derived based on comparing the model output and the available data. Con-
trol strategy for case 2 is
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(a) ICE speed vs power demand. (b) Battery power vs SOC.

Figure 5.13: 1-D lookup tables in Simulink model to obtain control inputs in case 1.
We refer to these lookup tables using f1 for the left and f2 for the right figure.

Case 2:
Engine speed ωe = 0
Engine Torque Te = 0
MG1 speed, ωmg1 = 0
MG1 torque, Tmg1 = 0
MG2 speed, ωmg2, obtained by (5.15)
MG2 torque, Tmg2 = Pdmd/ωmg2

Brake power, Pbrk = 0

Case 3 and case 4 are conditions when regenerative braking should be used as much
as possible. Feasible regenerative braking fraction can be considered as a 1-D lookup
table, getting vehicle speed as an input. This lookup table have been shown in Figure
5.14. In case 3, unlike the case 4, engine is kept on while braking to avoid frequent
changes in engine mode and energy loss while restarting the engine. Obtained rules in
these two cases have been summarized below

56



McMaster - Mechanical Engineering M.A.Sc. Thesis - Saeed Amirfarhangi Bonab

Case 3:
Engine speed ωe = 1000 rpm
Engine power Pe = 1kW , to keep idling
Engine torque Te = Pe/ωe

MG1 speed, ωmg1, obtained by (5.12)
MG1 torque, Tmg1, obtained by (5.13)
MG2 speed, ωmg2, obtained by (5.15)
MG2 torque, Tmg2 = f3(v) · Pdmd/ωmg2

MG2 power, Pmg2 = Tmg2 · ωmg2

Brake power, Pbrk = Pdmd − Pmg2

Figure 5.14: Regenerative braking fraction as a function of vehicle speed. We refer
to this lookup table as f3. Note that least amount of mechanical braking is always
required to ensure vehicle stability during braking.

Finally, for the case 4 which is braking with ICE off, we have derived following rules

57



M.A.Sc. Thesis - Saeed Amirfarhangi Bonab McMaster - Mechanical Engineering

Case 4:
Engine speed ωe = 0
Engine torque Te = 0
MG1 speed, ωmg1, obtained by (5.12)
MG1 torque, Tmg1 = 0, obtained by (5.13)
MG2 speed, ωmg2, obtained by (5.15)
MG2 power, Pmg2 = f3(v) · Pdmd

MG2 torque, Tmg2 = Pmg2/ωmg2

Brake power, Pbrk = Pdmd − Pmg2

5.4 Driver

The driver is responsible for following a given reference speed. This can be done by
comparing the current vehicle speed with the reference vehicle speed and generating the
torque and power demand from the powertrain. To model driver, we use a combination
of closed-loop and open-loop approaches. For a given speed, vehicle dynamics can
specify the expected force and power load on the vehicle, and hence generate the
required torque/power request. However, due to model uncertainty and powertrain
limits, just supplying the request from open-loop approach might not give an acceptable
reference following. We use a PI controller to compensate for this using a vehicle speed
feedback from the vehicle model. We use the trial and error approach to tune the PI
controller parameters, considering the coordination of vehicle speed and the reference
speed. We fix PI parameters for later evaluation of the model. It should be noted that
significant portion of the power/torque request have been provided by the open-loop
vehicle model and PI controller just compensates for the rest of this request. Hence,
PI parameters trivially influence the overall model results. Schematic of the driver
model is shown in Figure 5.15.
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Figure 5.15: Schematic of the driver model.

5.5 Evaluation

To evaluate the fidelity of the developed model, we have compared the results of the
model with available experimental data [82], obtained by experimenting the vehicle on
the dynamometer and logging the operation signals. Data is in the form of different
signals (SOC, fuel consumption, etc.) for a few driving cycles. Note that we have
kept a few driving cycles intact while modeling and obtaining the model parameters.
Therefore, those driving cycles can truly test the performance of the developed model.
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Figure 5.16: Reference vehicle speed compared with vehicle speed generated by model,
trying to follow the reference speed. Overall rms error is 0.303 m/s.

As it can be noted, the first four figures are for a driving cycle with a set of steady-state
velocities. This is the main driving cycle we have concentrated while extracting the
model parameters. To further evaluate the developed model, we assess and compare
some signals from data with model signals for the UDDS driving cycle. Results
are provided in the following figures. Discrepancies are mainly due to unmodeled
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Figure 5.17: Provided SOC profile in data, compared to model SOC profile. Overall
rms error is 0.0053 with maximum error of 0.0118 in absolute value.
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Figure 5.18: Engine speed profile in data, compared to model engine speed profile.
Overall rms error is 106.69 rpm.

0 50 100 150 200 250 300 350 400 450 500 550
Time (sec)

0

1

2

3

4

5

6

Fu
el

 f
lo

w
 (

g/
s)

Data
Model

Figure 5.19: Fuel consumption in data compared to model fuel consumption. Overall
rms error is 0.091 g/s.
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system dynamics (e.g., power-split and engine dynamics, higher order dynamics of
battery voltage). Particularly, the discrepancy of SOC profiles is more clear because
of integrative nature of this signal over time. However, we observe that signal trends
for each case are comparable which means model generated results have an acceptable
agreement with actual experimental results. Also, overall rms error for each case is
trivial. Therefore, this level of model abstraction have avoided significant loss of model
fidelity. Table 5.3 summarizes the results of evaluating the model for different driving
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Figure 5.20: Reference vehicle speed compared with vehicle speed generated by model,
trying to follow the reference speed. Overall rms error is 0.424 m/s.
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Figure 5.21: Provided SOC profile in data, compared to model SOC profile. Overall
rms error is 0.0098 with maximum error of 0.0322 in absolute value.

cycles. This table includes the result for overall consumed fuel and the SOC at the final
point of driving cycle. Since we want to evaluate the performance of various proposed
energy management strategies from the fuel economy perspective, it is important to
make sure that the model is producing comparable total fuel consumption to the actual
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Figure 5.22: Engine speed profile in data, compared to model engine speed profile.
Overall rms error is 122.53 rpm.
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Figure 5.23: Fuel consumption in data compared to model fuel consumption. Overall
rms error is 0.105 g/s.

fuel consumption for the vehicle, during testing. Table 5.3 implies that model is very
close to an actual vehicle considering fuel economy. Also note that, in some cases that
model and data fuel consumption difference is not trivial, this difference is partially
compensated by the final SOC difference. Energy dissipation, energy consumption,
and energy balance of the model matches acceptably to the actual vehicle. As a result,
the developed high-fidelity model is an appropriate tool for evaluating the performance
of proposed energy management strategies.
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Table 5.3: Model vs Data

Driving cycle Fuel consumption (g) Final SOC

data model diff. data model diff.

Steady state 294.88 299.36 1.52% 0.37 0.371 0.001

UDDS 306.61 315.99 3.06% 0.35 0.363 0.013

US06 572.13 556.62 -2.71% 0.44 0.419 -0.021

Highway 439.98 511.07 3.46% 0.40 0.408 0.008
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Chapter 6

Fast Offline Energy Management
Strategy

6.1 Introduction

In the offline analysis, it is assumed that the prior knowledge about the operating
condition is available in advance. In automotive applications, particularly for the
powertrain design and control, the offline analysis includes analyzing the model or
vehicle performance for a given driving cycle. As discussed before, the driving cycle
is a set of data for vehicle speed, road grade, and vehicle acceleration/deceleration,
discretized in time. Driving cycles are the primary inputs for offline analysis. There
are available standard driving cycles, and at the same time, a driving cycle can be
customized for different application.

Offline EMS analysis is crucial from many perspectives. This analysis can be used
to generate benchmarks for further applications as a part of pre-processing. Benchmark
solutions mostly show the optimal or the reference strategy. Based on benchmarks or
reference strategies, other control strategies can be designed or evaluated. For instance,
if the objective is to develop a real-time EMS for a HEV, using artificial intelligence
to classify the driving condition and decide about the power demand distribution
among components, offline EMS can provide the reference solutions for the operation
of powertrain for a large set of driving scenarios. Produced data can be used then to
train a neural network [87] or any other machine learning algorithm.

Another substantial utilization of offline EMS is for design and dimensioning
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purposes. In this case, the objective could be designing an electric motor, ICE, or
transmission to have a desirable performance in some conditions. These conditions are
most likely to happen in the actual driving scenarios and can be derived back from a
driving cycle using an offline EMS. The objective can be also selecting a combination
of ICE, electric motor, and other components, from a set of previously manufactured
or available components. Offline EMS can help to realize which combination of
components could potentially result in user’s preferable performance. It can also be
the case that some components such as battery pack or power electronics are modular,
and the objective is to find an optimal number of modules to use based on an offline
EMS, to get a trade-off between cost and performance.

Dynamic programming has been considered as the main approach for offline EMS
[88]. As discussed before, this algorithm can generate globally optimal results for a
nonlinear model which is constrained nonlinearly. However, despite recent trials to
achieve a faster way of implementing DP [89–91], computational time still remains a
major drawback.

In this chapter, we will try to approach the offline energy management problem
using convex optimization. Convex optimization can also produce the globally optimal
results but in significantly lower amount of time. Low computation time is a great
advantage, especially for applications which require iteratively solving the optimization
problem. To use the convex optimization, the model should be specified in convex
format, a process which is known as convexification. In this chapter, we will show that
considering an appropriate set of parameters, powertrain model can be convexified
without losing meaningful accuracy. We will present a novel convex presentation of a
power-split powertrain. Finally, we will solve the convex optimization problem using
dedicated solvers for various driving cycles and compare the results with DP.

6.2 Convex Model

In this section, we will consider different vehicle components and will try to derive a
convex mathematical model. We will also examine how the convex model fits into the
actual nonlinear model. Figure 6.1 shows the schematic of the power flow between
components in the selected powertrain. Our main focus in convex modeling of the
powertrain is on power and torque as optimization parameters, which as we will see
would result in accurate convex model.
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Figure 6.1: Power flow in the powertrain. Arrows show the positive direction for power
flow. Dashed lines denote electrical connections, where solid lines stand for mechanical
connections. Also, power can flow both ways in connections shown in gray, whereas
black connections can transfer power just in a single direction.

6.2.1 Pre-processing

For a given driving cycle of {[v(t), θ(t)] | 0 ≤ t ≤ T}, we discretize the driving cycle
first, considering total discretization of N to get {[v(k), θ(k)] | k = 1, 2, ..., N}. N is a
hyper-parameter, which should be decided in advance. While larger N would give finer
trajectories and signals as the solution, but in turn will increase the computation time
by adding more optimization variables. In our analysis for different driving cycles, we
consider N in such a way to get a discretization interval of ∆t = T/N = 1 sec.

In the next step, we find the acceleration/deceleration using a simple approximation
of

a(k) = v(k + 1)− v(k)
∆t k = 1, 2, ..., N − 1 (6.1)

We then use the driving cycle data with explained vehicle dynamics in chapter 5, to
get the overall power load and force load on the vehicle for k = 1, 2, ..., N as

Fa(k) = 1
2ρ cd Av(k)2 (6.2)

Fr(k) = cr mg cos(θ(k)) (6.3)

Fg(k) = mg sin(θ(k)) (6.4)
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Fi(k) = ma(k) (6.5)

F(k) = Fa(k) + Fr(k) + Fg(k) + Fi(k) (6.6)

P(k) = (Fa(k) + Fr(k) + Fg(k) + Fi(k)) · v(k) (6.7)

Where as discussed before, Fa, Fr, Fg, and Fi are loads due to aerodynamic drag,
rolling resistance, road grade, and inertia, respectively. Moreover, P(k) and F(k)
are overall demanded power and force load for a given driving cycle. Note that we
use the convention of positive toque and power for accelerating and propulsion and
negative for braking and regeneration. Also note that all other constant parameters
are summarized in Table 6.1 and 5.2.

Considering the wheel slip losses approximated by the wheel efficiency, ηw, and
total drivetrain gear ratio, rd, and drivetrain efficiency, ηd, we can write:

Tps(k) = F(k) · rw

rd · (ηw · ηd)sgn(P(k)) (6.8)

Pps(k) = P(k)
(ηw · ηd)sgn(P(k)) (6.9)

Where Tps(k) and Pps(k) are requested torque and power from driving cycle at power-
split powertrain.

According to powertrain schematic shown in Figure 5.3, ring gears for PGS1 and
PGS2 and as a result, MG2 are mechanically coupled to the wheels with constant gear
ratios. Using this, we can write

ωR1(k) = ωR2(k) = v(k) · rd

rw

(6.10)

ωmg2(k) = r2 · ωR2(k) (6.11)

6.2.2 Power-split

Based on the quasi-static model for power-split, explained in Chapter 5, for the PGS1
we can write

TR1(k) = −r1 · Te(k)
1 + r1

(6.12)

Tmg1(k) = − Te(k)
1 + r1

(6.13)
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ωmg1 = (1 + r1) ωe − r1 ωR1 (6.14)

If we multiply both sides of two (6.13) and (6.14) equalities together and replace ωR1

using (6.10), we will end up in following equation for MG1 power

Pmg1(k) = −Pe(k) +
(

r1 · rd

(1 + r1) · rw

· Te(k) · v(k)
)

(6.15)

It is obvious that in this equation, MG1 power is an affine function of ICE power and
torque. For the PGS2, we can write

TR2(k) = r2 · Tmg2(k) (6.16)

Pmg2(k) = Tmg2(k) · ωmg2(k) (6.17)

Finally, power-split should satisfy the power and torque demand. So we can consider
following equations

Pe(k) + Pmg1(k) + Pmg2(k) ≥ Pps(k) (6.18)

TR1(k) + TR2(k) ≥ Tps(k) (6.19)

Note that we have used inequalities in these equations. This means that powertrain
should always equal or exceed the demand, and we let the mechanical brakes to
dissipate the excess energy by compensating the excess torque. However, it is obvious
that in the case of the globally optimal solution in terms of energy consumption, the
utilization of the mechanical brakes should be minimized. Hence, we expect that these
constraints to hold tight whenever it is feasible.

Overall convex model of the power-split are equations (6.12), (6.15), (6.16), (6.17),
(6.18), and (6.19). All of these equations are affine and hence convex.

6.2.3 Internal Combustion Engine

In this section, we present a novel convex quadratic model for the internal combustion
engine, rather than a simple affine Willans approximation [92]. The proposed ICE
model considers the limitations on engine power and engine torque and is more accurate
than affine approximation. For the engine fuel maps, engine efficiency or brake specific
fuel consumption are expressed as a function of engine speed and engine torque. We
presented an example of this in contour maps in Figure 5.5. To transform this figure to
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a convex manifold, we replace the engine speed axis with engine power to approximate
engine fuel power as a convex function of ICE torque and ICE power. This substitution
is mainly because of the fact that even for the simplest case of Pf = α · Pe with
Pe = Te · ωe, Pf is obviously not a convex function of Te and ωe.

We use a 2-D convex quadratic function as following for the engine fuel power

Pf = f(Pe, Te) = [Pe Te] · A ·
Pe

Te

+ bT ·

Pe

Te

+ c (6.20)

in which A ∈ S2
+, b ∈ R2, and c is a scalar. Note that we assumed A belongs to the set

of positive semidefinite matrices so that (6.20) be convex. A, b, and c can be obtained
by fitting (6.20) to set of engine data. Since it is reasonable to have a zero fuel power
output for zero input power and torque, we can assume that c = 0.

To approximate engine using (6.20), fit this convex quadratic model into engine
operating data including M data points using least squares approach. The objective is
to obtain the following parameters

A =
a1 a2

a2 a3

 � 0 , b =
b1

b2

 (6.21)

with � denoting matrix inequality. We want to obtain mentioned parameters by
minimizing the

J =
M∑

m=1

(
P

(m)
f,data − f(P (m)

e , T (m)
e )

)2
(6.22)

We rewrite this equations as
J = R>R (6.23)

in which R is residual M-vector, defined as

R =


P

(1)
f − f(P (1)

e , T (1)
e )

P
(2)
f − f(P (2)

e , T (2)
e )

...
P

(M)
f − f(P (M)

e , T (M)
e )

 (6.24)

69



M.A.Sc. Thesis - Saeed Amirfarhangi Bonab McMaster - Mechanical Engineering

As it can be seen from (6.24), R is an affine function of A and b. So we can write

R = WM×5



a1

a2

a3

b1

b2


+ h (6.25)

The problem of fitting a convex quadratic ICE model to a set of given data, can be
written as semidefinite programming (SDP) optimization problem as we will explain.
SDP is a set of convex optimization problems in form of [72]

minimize c>x

subject to x1F1 + x2F2 + ...+ xnFn +G � 0

Hx = d (6.26)

with Fi, G ∈ Sk (Sk is a set of all k × k symmetric matrices) and � denotes matrix
inequality. The complex inequality in this for of optimization problems is known as
linear matrix inequality (LMI).

In order to write SDP fitting problem, we relax the (6.23) to have

J ≥ R>R (6.27)

Relaxation is a common practice in convex optimization, during which tight equality
constraints are replaced with relaxed inequality constraints to make the problem convex.
However, it should be explained that relaxation does not influence the final optimal
result. In our case, since J is the objective of the optimization to be minimized, it is
obvious that in case of optimal solution, (6.27) should hold tight to avoid unnecessary
increase in the objective function.

Using the fact that IM � 0 (IM is a M ×M identical matrix) and IM is invertible,
we can write (6.27) as following using Shur complement

IM R

R> J

 � 0 (6.28)
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Schur complement condition states that for a partitioned symmetric matrix of X as

X =
 D B

B> C

 (6.29)

with non-singular D, following criteria holds for positive semi-definiteness of X

if D � 0 then X � 0⇔ C −B>D−1B � 0 (6.30)

where C −B>D−1B is Schur complement of X.
Finally, the overall SDP can be written as

minimize J

subject to
IM R

R> J

 � 0
a1 a2

a2 a3

 � 0

R = W



a1

a2

a3

b1

b2


+ h (6.31)

Problem is first parsed with CVX [93] and then solved by MOSEK [94]. CVX is an
optimization modeling language, developed for disciplined convex programming. CVX
provides an environment to implement the convex mathematical optimization problem
and provides the sufficient inputs for the dedicated solver. MOSEK is a solver for
mathematical optimization problems, with a focus on large-scale convex optimization
problems (LP, QP, and Conic).

The fitting result in following for the given ICE data points in [82], using standard
units for torque and power.

A =
 0 −0.0074
−0.0074 2.7129

 , b =
 3.55364
−178.1220

 (6.32)

Figure 6.2 shows the ICE data points and corresponding convex quadratic function.
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ICE convex model gets mechanical power and ICE torque as inputs and generates the
consumed fuel power. It should be noted that using the actual data points to derive

Figure 6.2: Convex quadratic model for the ICE is identified by fitting (6.20) to the
engine operating points, using semidefinite programming. Normalized rms error is
0.9%.

the convex ICE model would result in a more accurate model rather than just fitting
a convex model to ICE fuel map. In the ICE fuel map, most of the regions are rarely
get used during an actual driving cycle. Using ICE data points for driving cycles to
fit the convex model would emphasize more on the accuracy of the model on those
regions that are likely to be used in the ICE fuel map.

We also consider power and torque constraints for the developed convex ICE model
as

0 ≤ Pe(k) ≤ Pe,max (6.33)

0 ≤ Te(k) ≤ Te,max (6.34)
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6.2.4 Motor Generator Units and Power Electronics

We use two different approaches in convex modeling of the MG1, MG2, and related
power electronics. As we discussed in pre-processing, we can calculate the MG2 speed
for a given driving cycle in advance using (6.11). We take advantage of this, similar to
[95, 96] to obtain a convex quadratic model for each particular MG2 speed, with MG2
torque as an input and MG2 DC power as the output. This model can be written as

Pmg2,dc(k) = p2(ωmg2(k)) · Tmg2(k)2 + p1(ωmg2(k)) · Tmg2(k) + p0(ωmg2(k)) (6.35)

where p2 ≥ 0, p1, and p0 are some coefficients, obtained for given MG2 speed. As a
result, there is a different convex quadratic model for different MG2 speeds. We can
consider that p0 = 0 for any given speed, since it is reasonable to assume for a zero
torque, dc power would be zero. Despite the ICE case, we use the MG2 efficiency map,
show in Figure 5.7, to fit the quadratic curve by minimizing the sum of the square
of the errors to obtain p2 and p1. We use the built-in fit function in MATLAB to
perform the fitting. An example of MG2 operating points from efficiency map and
derived convex model are shown in Figure 6.3 for four different MG2 speeds. Obtained
parameters considering standard units for torque and power are as following

ωmg2 = 2000 rpm then p2 = 0.2813 p1 = 213.5611

ωmg2 = 4000 rpm then p2 = 0.3937 p1 = 421.4786

ωmg2 = 6000 rpm then p2 = 0.6287 p1 = 630.4131

ωmg2 = 8000 rpm then p2 = 1.9669 p1 = 842.5708 (6.36)

(6.37)

Moreover, for the MG2, the maximum and the minimum torque will be calculated at
each moment with a specific ωmg2. As a result, we consider the following constraints
on MG2

Tmg2,min(ωmg2(k)) ≤ Tmg2(k) ≤ Tmg2,max(ωmg2(k)) (6.38)

where Tmg2,min(ωmg2(k)) and Tmg2,max(ωmg2(k)) are calculated from motor maximum/minimum
curve. Since MG2 torque is constrained to be within the maximum and minimum
available torque, MG2 power will also be inside the maximum and minimum power,
so checking power constraint would be redundant.
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Figure 6.3: Convex quadratic model for MG2 input dc power for some given speeds.
Average rms error for these four models is 0.161 kW.

For the MG1 however, neither speed nor torque is available for a given driving
cycle, and they are problem parameters to be determined. Hence, we consider a simple
convex quadratic model for the MG1 dc power and corresponding power electronics as

Pmg1,dc(k) = q2 · Pmg1(k)2 + q1 · Pmg1(k) + q0 (6.39)

in which q2 ≥ 0, q1, and q0 are model parameters. Again we can consider q0 = 0 to get
zero dc power for given zero mechanical power. Unlike MG2, model parameters are
not speed-dependent. We use the same approach as ICE to use the actual MG1 data
points, obtained by the developed high-fidelity model to find the q2 and q1. Figure
6.4 shows the defined model as well as some operational power points for the MG1.
Parameters are as following for power unit in Watts

q2 = 2.069e− 06 q1 = 1.003 (6.40)

Following constraints also hold for the MG1

Pmg1,min ≤ Pmg1(t) ≤ Pmg1,max (6.41)

Tmg1,min ≤ Tmg1(t) ≤ Tmg1,max (6.42)
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Figure 6.4: Convex quadratic model for MG1 dc power as a function of MG1 mechanical
power. Overall rms error for this models is 0.341 kW.

where Pmg1,max and Tmg1,max are mentioned in Table 6.1 and are considered to be same
with the absolute value of Pmg1,min and Tmg1,min, respectively.

6.2.5 Battery

Power balance at battery terminal is obtained by following equation

Pb(k) = Paux + Pmg1,dc(k) + Pmg2,dc(k) (6.43)

where Pb is the battery electric power and Paux is the auxiliary load on the battery,
assumed to be a constant value for our analysis but can be replaced by any other
feasible complex equation.

As we discussed before in the section regarding the battery model in Chapter 5,
we can consider the following equation for battery current

Ib =
Voc −

√
V 2

oc − 4R0Pb

2R0
(6.44)

We take the same approach as [97, 98] to approximate a convex battery model. First,
we consider an affine function of battery charge for battery OCV as follows

Voc = Qb(t)
C̃

+ V0 (6.45)
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where C̃ denotes battery equivalent capacitance. Constant values of V0 and C̃ can
be identified by affine approximation of SOC-OCV curve, similar to Figure 6.5, since
there is a linear relationship between SOC and Qb. Then, we approximate the stored
energy in battery as

Eb = 1
2C̃V

2
oc − E0 (6.46)

where E0 denotes reference battery energy, obtained by following equation

E0 = 1
2C̃V

2
0 (6.47)

For a reasonably fine discretization in time, we can use Euler method to write

Eb(k + 1) = Eb(k)− Voc(k) Ib(k) ∆t (6.48)

We use (6.48) in combination with (6.44) and (6.45) to finally achieve

Eb(k + 1) = Eb(k)− ∆t
RC̃

[
Eb(k) + E0 −

√
(Eb(k) + E0)

(
Eb(k) + E0 − 2RC̃Pb(k)

)]
(6.49)

Note that right-hand side of (6.49) is concave since it is a summation of an affine
term plus geometric mean of two terms that are non-negative and affine themselves.
Moreover, power and energy limitations on battery are

Pb,min ≤ Pb(t) ≤ Pb,max (6.50)

Eb,min ≤ Eb(t) ≤ Eb,max (6.51)

with Eb,min and Eb,max as corresponding battery energy for the maximum and minimum
battery SOC. Note that all required constant parameters, used in these equations are
summarized in Table 6.1.
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Figure 6.5: Affine approximation of open circuit voltage based on SOC.

6.3 Optimal Control Problem

Using the developed models for the components, we from the optimal control problem
for a given driving cycle. We consider the total fuel consumption over the driving
cycle as our optimization objective, however, any further objective can be added with
a regularizer to form a multi-objective optimization problem. Final optimal control
problem has an objective to minimize, subject to some equality/inequality equations.
These equations are due to component models and constraints.

To efficiently solve the optimal control problem, we form the problem in the convex
optimization problem format. As we discussed before, convex optimization problem is
in the following format [72]

minimize f 0(x)

subject to f i(x) ≤ 0 i = 1, 2, ...n

hi(x) = 0 i = 1, 2, ...m (6.52)

where all fi(x) ≤ 0 i = 1, 2, ...n functions should be convex on x ∈ Rn, and all
hi(x) ≤ 0 i = 1, 2, ...m should be an affine function of x. General practice to form
a convex optimization problem includes convexification and relaxation. We have
done convexification by deriving convex models for vehicle components. Moreover,
as we can see, we cannot have convex functions inside equality constraints. In these
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cases, equalities are relaxed and replaced with inequalities, so that the overall problem
becomes a convex optimization problem. In our case, we will do relaxation for a few
constraints, and will make sure that it is not changing the final results, by checking
the constraints for the optimal solution.

We express the final optimization problem for offline fuel-efficient EMS of the
power-split powertrain for a given driving cycle as

minimize
N∑

k=1
Pf (k) ·∆t (6.53)

subject to
Pe(k) + Pmg1(k) + Pmg2(k) ≥ Pps(k) (6.54a)
r1

1 + r1
·Te(k) + r2 ·Tmg2(k) ≥ Tps(k) (6.54b)

Pf (k) ≥ [Pe(k) Te(k)] · A ·
Pe(k)
Te(k)

+ bT ·

Pe(k)
Te(k)

 (6.54c)

0 ≤ Pe(k) ≤ Pe,max (6.54d)

0 ≤ Te(k) ≤ Te,max (6.54e)

Pmg2,dc(k) ≥ p2(k) ·Tmg2(k)2 + p1(k) ·Tmg2(k) (6.54f)

Pmg2(k) = Tmg2(k) · ωmg2(k) (6.54g)

Tmg2,min(k) ≤ Tmg2(k) ≤ Tmg2,max(k) (6.54h)

Pmg1(k) = −Pe(k) +
(

r1 · rd

(1 + r1) · rw

·Te(k) · v(k)
)

(6.54i)

Tmg1(k) = −Te(k)/(1 + r1) (6.54j)

Pmg1,dc(k) ≥ q2 ·Pmg1(k)2 + q1 ·Pmg1(k) (6.54k)

Pmg1,min ≤ Pmg1(k) ≤ Pmg1,max (6.54l)

Tmg1,min ≤ Tmg1(k) ≤ Tmg1,max (6.54m)

Pb(k) = Paux + Pmg1,dc(k) + Pmg2,dc(k) (6.54n)
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Eb(k + 1) ≤ Eb(k)

− ∆t
RC̃

[
Eb(k) + E0 −

√
(Eb(k) + E0)

(
Eb(k) + E0 − 2RC̃Pb(k)

)]
(6.54o)

Pb,min ≤ Pb(k) ≤ Pb,max (6.54p)

Eb,min ≤ Eb(k) ≤ Eb,max (6.54q)

Eb(N + 1) = Eb(1) (6.54r)

with k = 1, 2, ..., N . Note that we have shown the optimization parameters in non-italic
bold font to differentiate these parameters with other constant parameters. Table 6.1
shows the summary of constant parameters, used in the optimization problem. In the
optimal control formulation, it is important to note that (6.54c), (6.54f), (6.54k), and
(6.54o) are the relaxed version of (6.20), (6.35), (6.39), and (6.49), respectively. Since
all of these equations are related to the energy consumption, inequality gap will always
yield in unnecessary energy dissipation. For instance, inequality gap in (6.35) would
result in larger Pmg2,dc which in turn would deplete battery more by increasing Pb. As
a result, for the case of optimal solution, we expect that these inequalities should hold
tight to achieve smaller optimization objective. We will check this assumption later in
this chapter.Concludingly, developed optimization problem is in the form of canonical
convex optimization problems.
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Table 6.1: Optimization Parameters

Category Parameter Symbol Value

Vehicle

Frontal area A 2.5 m2

Air density ρ 1.23 kg/m3

Drag coefficient cd 0.25
Total vehicle mass m 1480 kg
Gravity constant g 9.81 m/s2

Rolling res. coef. cr 0.02
Wheel radius rw 0.31 m
Wheel efficiency ηw 0.97

Power-
split

PGS1 ratio r1 78/30
PGS2 ratio r2 58/22

Drivetrain
Gear ratio rd 3.268
Efficiency ηd 0.95

MG1
Max. Torque Tmg1,max 45 N.m
Max. Power Pmg1,max 42 kW

MG2
Max. Torque Tmg2,max 207 N.m
Max. Power Pmg2,max 60 kW

Battery

Internal res. R0 0.32 Ω
Equivalent capacitance C̃ 169.56 F
Reference energy E0 2.608 MJ

Maximum power Pb,max 27 kW

Engine
Max. Power Pe,max 73 kW
Max. Torque Te,max 142 N.m
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6.4 Results

We have considered expressing the optimzition problem in optimization programming
languages (OPL) of CVX and YALMIP. We have also evaluated the performance of
a few solvers such as SDPT3 [99], MOSEK [94], and Gurobi [100]. Finally, we solve
the optimization problem using a disciplined convex programming package (CVX)
in MATLAB [93] for different driving cycles. For most of the cases, we use SDPT3
numerical solver [99] to solve the optimization problem. All of the following numerical
processes have been done using a personal computer with 3.40 GHz Intel Core i7
processor.

6.4.1 Relaxations

We used relaxations on some of the optimization constraints to form a convex opti-
mization problem. We also mentioned that in the case of the fuel-optimal solution,
these constraints should hold with equality to prevent unnecessary energy dissipation.
As promised, in this section, we will check the validity of our assumptions to assure
that relaxations have not changed the optimal results. Figure 6.6 shows the left hand
and right hand sides of (6.54c), (6.54f), (6.54k), and (6.54o). As this figure suggests,
two sides of these inequalities perfectly match each other, which means that these
inequalities hold tight for the optimal results, and relaxations are valid.
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Figure 6.6: Both sides of (6.54c), (6.54f), (6.54k), and (6.54o) inequalities, sorted in
order from top to bottom.
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6.4.2 Results on Convex Model

In order to better evaluate the optimal results, we have also implemented DP on the
convex model using the same approach as [91, 101], which is among the most efficient
DP implementation packages in MATLAB. For the case of DP, in addition to N which
is the total discretization intervals in time, there should be more hyper-parameters, set
to decide about the discretization in states and control inputs for the dynamical system
which is powertrain. We use SOC as the state with Ns number of discrete points and
Te, ωe, and Tmg2 as control inputs with Nu1 , Nu2 , and Nu3 points, respectively. Ns,
Nu1 , Nu2 , and Nu3 are tuned to get a reasonable trade-off between computational time
and the optimality of the results.

Figure 6.7, 6.8, and 6.9 show the optimal results, obtained by both solving the
convex problem and DP, for the UDDS, JC08, and NEDC driving cycles. We consider
the initial SOC of 37%, and upper and lower boundaries on SOC to be 80% and 20%,
respectively.

Discrepancies in parameter trajectories are mostly due to the sub-optimality of
DP. We should recall that optimality of DP substantially depends on initialization of
the hyper-parameters. Sub-optimality gap can be improved using finer discretization
for state variable and control inputs, which would increase processing time in return.
Since SOC has a nature of integrating the errors over time, the discrepancy is more
observable in the SOC trajectories. Apart from this, the output from both methods
shows good agreement and trajectory trends are fairly comparable. We observed same
behavior for all tested driving cycles.

Table 6.2 shows the comparison of DP and convex optimizer over convex model
in terms of fuel consumption and the computation time for the tested driving cycles.
Percentage of the differences are calculated based on the DP results. As it can be
understood from this table, on the convex vehicle and powertrain model, the convex
optimization problem solver is producing the absolute optimal results, within the
numerical constraints that any numerical solver has. DP is also expected to generate
optimal results theoretically. However, since DP implementation has discretization
of the state and the control inputs, the results are slightly sun-optimal as the table
suggests, around 2.40% on average for the tested driving cycles. Besides obtaining the
optimal results, the substantial advantage of the convex approach is the computational
time. The convex solver needs 97.43% less time on average, compared to DP, to
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Figure 6.7: Result of battery SOC and mechanical power of Engine, MG2, and MG1,
obtained from both DP and the convex solver for the UDDS driving cycle.
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Figure 6.8: Result of battery SOC and mechanical power of Engine, MG2, and MG1,
obtained from both DP and the convex solver for the JC08 driving cycle.
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Figure 6.9: Result of battery SOC and mechanical power of Engine, MG2, and MG1,
obtained from both DP and the convex solver for the NEDC driving cycle.
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solve the optimization problem for the tested driving cycles. To realize how time-
efficient convex solver is in dealing with vast problems, we note that for the case of
UDDS driving cycle, for instance, the optimization problem has 16,180 constraints
and 1,919,111 optimization variables in total.

Additionally, for the long driving cycles (time-wise) such as UDDS, the increase in
the CPU time for the convex solver is less considerable than the increase in DP CPU
time. Figure 6.10 and 6.11 show a better illustration of comparison of DP and convex
approach in terms of the fuel consumption and the CPU time.

Table 6.2: Convex model results

Cycle Quantity Convex DP Difference

Steady
State

Fuel consumption (g) 235.65 239.68 1.68%

CPU time (s) 41.88 1308.10 96.80%

UDDS
Fuel consumption (g) 232.12 238.24 2.57%

CPU time (s) 83.02 3729.63 97.77%

US06
Fuel consumption (g) 352.34 362.56 2.82%

CPU time (s) 42.46 1446.69 97.07%

Highway
Fuel consumption (g) 383.81 391.29 1.91%

CPU time (s) 54.19 1728.99 96.87%

NEDC
Fuel consumption (g) 290.31 297.51 2.42%

CPU time (s) 57.54 3177.32 98.19%

JC08
Fuel consumption (g) 261.87 269.08 2.68%

CPU time (s) 78.25 3702.47 97.89%
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Figure 6.10: Result of fuel consumption, obtained by convex and DP approach, for
tested driving cycles.
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Figure 6.11: Result of computational time, obtained by convex and DP approach, for
tested driving cycles. Note that y-axis is in logarithmic scale, so that results of convex
approach are observable.
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6.4.3 Trade-off Curve

As it is shown in the last discussion, convex optimization produces globally optimal
results in an insignificant amount of time. This characteristic can be employed
in applications which need solving optimal control problem iteratively for different
initialization. Examples of these applications, as discussed in the first section of this
chapter, is regarding design and real-time implementation.

To better show this capability, we examine a compelling case. In the optimization
problem, we remove the strict constraint of (6.54r) and rewrite the objective function
to be

µ · (Eb(1)− Eb(N + 1)) +
N∑

k=1
Pf (k) ·∆t (6.55)

The new assumption means that there is no strict constraint that initial and final
battery state of energy or SOC should be the same. In this case, the optimization can
be interpreted as a scalarized multi-objective optimization, trying to minimize fuel
consumption and overall battery energy difference simultaneously with the trade-off
constant of µ ≥ 0. Figure 6.12 shows the pareto-optimal curve for the new optimization
problem, which is resulted by iterating the optimization problem for different values of
µ : 0→∞. The shaded area also shows the feasible set, and any point in this area is
correlated to a particular strategy to manage the power flow. Since the optimization
problem is convex, shaded feasible set is also a convex set. In the feasible set, any
point which is on the left and bottom of another point, is a result of a better strategy,
since it uses less overall energy. However, points on the pareto-optimal front have no
advantage to each other, and any of these points can be chosen as the optimal strategy
based on the value of µ.

The derivative of the pareto-optimal curve indicates a trade-off between optimization
objectives. From another perspective, λ can be seen as the equivalent factor in ECMS
method, converting the electrical energy from the battery to the equivalent amount of
fuel energy on the whole driving cycle. This figure clearly shows that for about right
half side of ∆SOC axis, the trade-off between the total fuel consumption and gain or
loss in the battery state of charge stays linear. However, the trade-off is getting harder
in the left half of ∆SOC axis. This means much more fuel should be consumed to
gain the same advantage in ∆SOC. To explain this, consider that ∆m1 grams of fuel
should be consumed more to end up with ∆SOC = −31 rather than ∆SOC = −30.
Now, to move from ∆SOC = −31 to ∆SOC = −32, ∆m2 more fuel is needed. We
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Figure 6.12: Pareto-optimal front for the multi-criterion convex optimization for US06
driving cycle. Vertical axis denotes fuel consumption. For horizontal axis, Difference
of final and initial energy of battery is replaced by corresponding difference in state of
charge which is ∆SOC = SOC(1)− SOC(N + 1).

observe that ∆m2 −∆m1 keeps growing as we move toward the left half of ∆SOC
axis.

6.4.4 Results on High-fidelity Model

Although the convex approach to obtain the optimal EMS of the convex model
outperforms DP by a large margin, it is important to check how the results of convex
approach are applicable to the actual nonlinear vehicle model. For this purpose,
developed high-fidelity model is highly useful. In this section, we will apply the
obtained EMS of the convex approach on the high-fidelity model, and compare the
results with DP results. Implemented DP in this section differs from the previous
section since DP is now implemented on the nonlinear model.

We follow the following procedure. We get the optimal results of convex approach for
different driving cycles. We are particularly interested in torque and power trajectories
of the components. Then we make a control input signal out of these trajectories and
apply the signals to the nonlinear vehicle model in the high-fidelity model. Finally, we
check the overall fuel consumption and the final SOC.
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Table 6.3 shows the comparison of the convex approach, DP, and built-in rule-based
strategy performance on the high-fidelity model for the tested driving cycles. For the

Table 6.3: DP vs Model vs Convex

Steady
state UDDS US06 Highway NEDC JC08

FC (g)

DP 250.71 246.06 376.47 410.20 311.15 282.32
Model 299.36 315.99 556.62 511.07 390.50 350.08
Convex 257.11 251.21 384.73 425.16 321.70 289.76
diff. 1 (%) -16.25 -22.13 -32.37 -19.74 -20.32 -19.36
diff. 2 (%) -14.11 -20.50 -30.88 -16.81 -17.62 -17.23
diff. 3 (%) 2.55 2.09 2.19 3.65 3.39 2.63

Final
SOC (%)

DP 37.04 37.05 36.96 37.04 37.03 36.93
Model 37.10 38.08 35.95 37.27 38.02 36.26
Convex 38.57 35.72 39.15 37.75 38.52 38.25

results of this table, the staring SOC is 37%. Also the values of diff. 1, diff. 2, and
diff. 3 are obtained using following equations

diff.1 = FCDP − FCModel

FCModel

× 100 (6.56)

diff.2 = FCConvex − FCModel

FCModel

× 100 (6.57)

diff.3 = FCConvex − FCDP

FCDP

× 100 (6.58)

Table 6.3 shows that the performance of results from the convex approach are slightly
deteriorated on the high-fidelity model. Convex approaches generate 2.75 % sub-
optimal results on average on the nonlinear model compared to DP. This is mostly
due to loss of accuracy in the constraints and the convexification process. However,
since we took a novel approach to perform convex modeling which was more complex
but accurate instead, the sub-optimality of the convex results on high-fidelity model
is acceptable. Finally, we can observe that the result of convex approach produces
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19.53 % more fuel-efficient results compared to the embedded rule-based strategy. This
shows the existing considerable potential to improve the fuel efficiency just by using
more advanced control strategy.

Figure 6.13 shows a better illustration of DP, convex, and rule-based approach
comparison.
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Figure 6.13: Results of fuel consumption, obtained by DP, rule-based, and convex
approaches on high-fidelity model, for tested driving cycles.
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Chapter 7

Real-time Energy Management
Strategy for an Autonomous
Vehicle

7.1 Introduction

In the previous chapter, we discussed the convex optimization approach for obtaining
the control strategy to manage the power flow. The mentioned approach clearly
signified the potential of improvement in fuel efficiency by employing a more advanced
real-time strategy in energy management of the hybrid electric powertrain. Primary
reasons for the superior performance of offline strategies is the access to the driving
cycle in advance and loose constraints on computational time. However, this is not
the case for real-time applications.

In this chapter, we are introducing a novel approach to address the EMS for
an autonomous HEV (A-HEV). We believe the impact of autonomous mobility on
vehicular transporation is such impressive that most of the vehicle elements, particularly
regarding the control, should be re-designed accordingly. As a result, we discuss
an autonomous-specific energy management strategy (ASEMS) for the mentioned
powertrain. Examples of existing A-HEVs are Fiat-Chrysler Pacifica for Waymo fleet,
Ford Fusion for Argo AI fleet, and Uber-Volvo XC90. These fleets are mainly focused on
robotaxis, but it is interesting to note that Fiat Chrysler has announced a partnership
with Aurora to create a fleet of commercial vans [102]. It can be clearly understood that
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the total number of A-HEVs is growing rapidly. Almost for all of the existing A-HEVs,
autonomous technology and the hybrid supervisory systems are separately developed
and installed. Vehicles with installed and finalized powertrains are provided to the
company, responsible for autonomous systems. These vehicles might have just minor
changes in design, so that vehicle can accommodate extra devices for autonomous
driving, or minor improvements in ADAS. Despite the ever-increasing prevalence
of autonomous vehicles and substantial improvement potential in fuel-economy as a
result of availability of the future driving data, this problem has not been thoroughly
analyzed yet. Thus, to our knowledge, potentials of autonomous driving have not been
investigated extensively to improve the EMS of the hybrid electric powertrain.

In this work, we take a unique approach to investigate the real-time EMS problem
for A-HEVs. There is a common trend in real-time EMS analysis in the literature
that either the real-time control performance is improved using the history of the
driving data, or employing predicted driving condition. While showing desirable
performance for regular HEVs, further enhancements on EMS is feasible by focusing
on the autonomous driving aspect.

In this chapter, we use a more realistic approach, and integrate the EMS with
motion planning problem of an A-HEV. Hierarchically, motion planning occurs after
scene perception and situation awareness and should guarantee safe, comfortable, and
feasible operation. While the generic motion planning problem is highly complex,
in this section, we assume a simpler case. To perform the proof-of-concept without
getting involved in scene perception, scene understanding, and situation awareness
modules of AV, we consider following assumptions regarding the route

1. A-HEV operates in a clear route, with no obstacle interference.

2. Route data, including driveable space with identified boundaries is provided up
to a distance horizon of Hd in front of the vehicle. As the vehicle moves forward,
horizon also recedes in the spatial domain.

3. Route is part of the selected racing tracks. These tracks are Suzuka and Gilles
Villeneuve racing tracks, shown in Figure 7.1 and 7.2.

Suzuka and Gilles Villeneuve circuit has been used for many racing events, particularly
in the Formula One competition. In our case, using these race tracks is mostly to fix
the framework and the route in which vehicle would operate and has less racing-related
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Figure 7.1: Layout of Suzuka circuit in Japan. Track length is 5807 m.
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Figure 7.2: Layout of Gilles Villeneuve circuit in Montreal, Canada. Track length is
4361 m.

implication on our work. We should also note that we consider a flat version of these
circuits, where we discard any road grade, banking or superelevation in the road
geometry. In the rest of this chapter, we will present optimization-based algorithms to
deal with path planning and trajectory planning of the vehicle in the race track. Then,
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we will use the obtained motion data to address the EMS using model predictive control
(MPC) approach, discussed in Chapter 4. This framework provides the required degree
of abstraction for real-time EMS analysis for an A-HEV without getting obsessed with
unnecessary complex aspects of autonomous mobility.

7.2 Path Planning

Deciding about the desired path between two points depends on the required objectives.
Parameters such as path length, travel time, comfort, and physical obstacles affect
the planned path. The output of the path planner creates a reference path for system
controllers to follow. In our case, the objective is to find a path within the current
location of the vehicle up to the observable horizon, considering the discussed three
assumptions. Moreover, path planning will be performed in a receding horizon manner,
which means as the vehicle travels further in the track, new segment of the road will
be included and path planning will be performed again.

In this section, we take a similar approach as [37, 103, 104] to address the path
planning problem for an autonomous vehicle by solving an optimization problem. First,
we will form the discrete spatial domain optimization problem using vehicle dynamics
and the given route, and then specify the path by solving the optimization problem,
and finally discuss the results.

7.2.1 Discrete Path Planning

Spatial domain continuous equations of (7.1), (7.2), and (7.3) explain the motion of a
the vehicle along the path, shown in Figure 7.3, ignoring the vehicle lateral dynamics

dx(s)
ds

= cos(θ(s)) (7.1)

dy(s)
ds

= sin(θ(s)) (7.2)

dθ(s)
ds

= κ(s) (7.3)

These equations can be written in the definite integral form of following equations

x(s) = x0 +
∫ s

0
cos(θ(ζ)) dζ (7.4)
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y(s) = y0 +
∫ s

0
sin(θ(ζ)) dζ (7.5)

θ(s) = θ0 +
∫ s

0
κ(ζ) dζ (7.6)

As inferred from these equations, vehicle path, z(s) = (x(s), y(s)), is only a func-
tion of the path arc-length, s, path curvature, κ(s), and the vehicle initial state,
(x(s0), y(s0), θ(s0)). As a result, problem of path planning from the initial state up to
a horizon can be just seen as obtaining the κ(s). This simple model of a vehicle on a
path is shown in Figure 7.3.

Figure 7.3: Schematic of a vehicle following a path. Vehicle coordinates, x and y, as
well as orientation, θ, and path curvature, κ, are assumed to be dependent on spatial
variable of s.

The route is given as the derivable road ahead of the vehicle with road boundaries.
For the given route, we consider that the desired path to follow is the middle line
between the boundaries of the road. We consider that this line is given with the road
boundaries with a fine resolution in spatial parameter, s. In case the middle line is not
given, and route data just includes the road boundaries, this line can be calculated
easily as a part of pre-processing. Thus, we assume desired path to follow is available
and given in the discrete format as zd(i) = {(xd(i), yd(i)) | i = 0, 1, ..., N}. (see Figure
7.4). Assuming that the discretization in spatial parameter s is fairly fine, we can
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Figure 7.4: Layout of a given route up to a horizon, with road boundaries and the
center line to follow.

write
∆s(i) = s(i+ 1)− s(i) = Dist(zd(i), zd(i+ 1)) (7.7)

where Dist() gives the Euclidean distance of the given 2D points. From control
point of view, we can treat (x, y, θ) as vehicle states. Then for a given initial state of
(x(0), y(0), θ(0)) and control policy ofK = [κ(0) κ(1) ... κ(N−1)]T , vehicle will achieve
the actual path of Z = [z(0) z(1) ... z(N)]T , obtained by the following equations for
i = 0, 1, ..., N − 1

x(i+ 1) = x(i) + ∆s(i) · cos(θ(i)) (7.8)

y(i+ 1) = y(i) + ∆s(i) · sin(θ(i)) (7.9)

θ(i+ 1) = θ(i) + ∆s(i) · κ(i) (7.10)

Example of route with center path to follow and the actual vehicle path is shown
in Figure 7.5. In these equations, (7.8) and (7.9) are nonlinear in K. To achieve
linearity, we can use the first and second terms in the Taylor expansion of trigonometric
functions around an arbitrary chosen point of K̂ = [κ̂(0) κ̂(1) ... κ̂(N − 1)]T . As a
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result, we can rewrite the equations as

x(i+ 1) = x(i)+

∆s(i)·
[
cos(θ̂(i))−Dθ(i) · (K − K̂) · sin(θ̂(i))

] (7.11)

y(i+ 1) = y(i)+

∆s(i)·
[
sin(θ̂(i)) + Dθ(i) · (K − K̂) · cos(θ̂(i))

] (7.12)

Also note that in these equations

θ̂(i) =θ(0)+

[∆s(0) ∆s(1) ... ∆s(i− 1)
N−i︷ ︸︸ ︷

0 · · · 0] · K̂
(7.13)

Dθ(i) = ∂θ(i)
∂K

∣∣∣∣∣
K=K̂

=

[∆s(0) ∆s(1) ... ∆s(i− 1)
N−i︷ ︸︸ ︷

0 · · · 0]

(7.14)

Note that using linear approximation, we could also exclude θ as the state variable.

Figure 7.5: Illustration of desired path to follow and the actual vehicle path. Initial
guess of κ̂(i) is shown as the curvature of local circumscribed circle.
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The guess of K̂ directly influences the accuracy of the linear model, compared to the
nonlinear equations. One practice is to use the curvature of the local circumscribed
circle as κ̂(i) , shown in Figure 7.5. We note that for a given triangle with edges
(a, b, c), the radius of the circumscribed circle is

rc = |1
κ̂
| =

4
√
p(p− a)(p− b)(p− c)

abc
(7.15)

p = a+ b+ c

2 (7.16)

Using these equations, we obtain the initial guess for κ̂(i), considering

a = Dist(z(i− 1), z(i))

b = Dist(z(i), z(i+ 1))

c = Dist(z(i− 1), z(i+ 1)) (7.17)

Repeating this for i = 1, 2, ..., N − 1 would result in initial guess of K̂. Note that we
consider a positive curvature sign for anti-clockwise turns and vice versa. Later on in
this chapter, we will investigate this guess further to find a better candidate for K̂.

7.2.2 Optimization Problem

For the path planning of the vehicle along the mentioned circuit, we will assume an
iterative online process, where at each iteration, the route with the desired path to
follow is given for some distance ahead which includes points zd(i) = {(xd(i), yd(i)) | i =
0, 1, ..., N}. The desired route is the output of the preceding processes in autonomous
driving, processed by other units such as perception, localization, and situation aware-
ness. To form the optimization problem, pre-processing includes calculating the ∆s,
K̂, θ̂, and Dθ using the (7.7), (7.13), (7.14), and (7.15), respectively.

Optimization objective we consider is the drive comfort and the travel time. To
quantify these objectives, for a policy of K, we consider comfort to be expressed by

J1(K) =
N−2∑
i=1
|κ(i− 1)− 2κ(i) + κ(i+ 1)| (7.18)

which is a measure of the second derivative of κ in discrete form and is convex in
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K. The reason behind this choice of comfort criteria is based on the practice, where
the smoothness of the driving can be highly deteriorated by sudden changes in the
derivative of the vehicle path curvature. To better understand this, we can consider the
common driving sense. Considering no-slip condition, path curvature is related to the
tire yaw angle which is connected to the steering wheel. We have the experience that
the most comfortable way to approach a corner in the road while driving is to steadily
turn the steering wheel which keeps the derivative of the changes in the tire angle and
hence the path curvature constant. Therefore, best practice to achieve better comfort
is to avoid any sudden changes in the derivative of the path curvature by minimizing
the second derivative of the path curvature.

In the context of path comfort, in fact, we are looking for a curve with its curvature
linearly varying with the curve length. These curves are known as Euler spirals or
clothoids, shown in Figure 7.6. In the transportation, these curves have been used in
railway smooth transitioning and connection of two points since the late 1800s [105].

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0
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0.4

Figure 7.6: Example of an Euler spiral. Curvature varies linearly with arclength. Euler
curve converges to the points shown with ×, from both sides.

For the second objective function, we focus on the potential travel time of the
path. Assuming that the vehicle is capable of doing harsh acceleration/deceleration,
the magnitude of the local curvature mainly determines the highest allowable vehicle
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speed without slip. Simply, for a given path curvature

vmax =
√
µN

mκ
(7.19)

where µ is the lateral coefficient of friction for the tires and N is the normal force,
exerted on the tires from the road. This force depends on the vehicle mass and the
aerodynamic downforce. Therefore, to quantify the objective of the travel time, we
consider the second objective function to be

J2(K) =
√
KT ·K (7.20)

Finally, for the overall objective function, we use a scalarized sum of J1 and J2 with
the regularizer of λ as following

J(K) = J1(K) + λJ2(K) (7.21)

which is a convex function of K.

Also note that along the given points for the desired path, maximum allowable
deviation from the points is also given as {ε(i)| i = 0, 1, .., N}. Maximum deviation
is responsible for assuring that vehicle remains safely on the track without violating
the road boundaries. This imposes following convex quadratic constraint on the path
coordinates

(x(i)− xd(i))2 + (y(i)− yd(i))2 ≤ ε(i)2 i = 0, 1, ..., N (7.22)

As a result, final optimization problem can be written as a convex optimization problem
as follows. Optimization parameters are presented in bold non-italic characters.

minimize
N−2∑
i=1
|κ(i− 1)− 2κ(i) + κ(i+ 1)|+ λ

√
KT ·K (7.23)

subject to

x(i+ 1) =x(i) + ∆s(i) ·
[
cos(θ̂(i))−Dθ(i) · (K− K̂) · sin(θ̂(i))

]
i = 0, 1, ..., N − 1

(7.24a)
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y(i+ 1) =y(i) + ∆s(i) ·
[
sin(θ̂(i)) + Dθ(i) · (K− K̂) · cos(θ̂(i))

]
i = 0, 1, ..., N − 1

(7.24b)

(x(i)− xd(i))2 + (y(i)− yd(i))2 ≤ ε(i)2 i = 0, 1, ..., N (7.24c)

7.2.3 Results

Starting from different points on the circuit with given initial coordinates and the
orientation, we can solve the optimization problem to get the optimal optimization
parameters of, K∗. As we discussed before, the discrete path is just a function of the
initial state and the curvature, so given the K∗, we can find the optimal path. While
Hd remains a hyper-parameter which changes depending on the condition, for the
following cases, we consider that desired path which is the central line of the track
is available as a set of {(xd(i), yd(i)) | i = 0, 1, .., N} where s(N) ≤ 200. This means
vehicle plans for the route ahead up to the horizon of Hd = 200 meters. We also
consider that {ε[i] = 5 | i = 0, 1, ..., N} where 5 meters is the approximation of the
distance between the central line and the peripheral boundaries of the circuit. We use
CVX [93] with SDPT3 solver [99] to solve the optimal control problem on a personal
computer with 3.40 GHz Intel Core i7 processor. The CPU time for each iteration of
solving the optimization problem is about 0.02 second.

We have shown result of two cases in Fig. 7.7 and Fig. 7.8 for two extreme values
of λ. The initial state is chosen arbitrarily in the circuit and path is planned up to the
observable horizon. Planned path related to λ = 0 considers J1 as the optimization
objective and corresponds to the most comfortable path, discarding the path travel
time. On the other hand, λ = inf emphasizes just on the J2 and corresponds to the
potential fastest path.

We observe that the scheduled path for λ = inf resembles to what is called as the
racing line in motorsport. Racing drivers prefer to follow the racing line since this
path provides near-optimal cornering time. This is due to taking advantage of entire
track length to increase the turn radius and hence the maximum cornering and exiting
speed.

Moreover, Fig. 7.9 and Fig. 7.10 show how changing λ can influence the optimal
policy of K∗ in more details. For smaller values of the λ, the trade-off is mostly toward
the comfort, which is acquired by minimizing the (7.18). In discrete form, this implies
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Figure 7.7: Layout of trun 11, the hairpin, in the Suzuka circuit, in a slanted view,
with chosen path for two extreme values of λ. Path in each case is calculated using
accurate nonlinear equations with the optimal optimization values of K∗ which is the
output of the optimizer.

Figure 7.8: Layout of turn 13, the spoon curve, in the Suzuka circuit, in a slanted
view, with chosen path for two extreme values of λ. Path in each case is calculated
using accurate nonlinear equations with the optimal optimization values of K∗ which
is the output of the optimizer.

the least possible breakpoints in the K∗ profile. On the other hand, moving toward
bigger λ would emphasize more on minimizing the (7.20). This results in penalizing
the large values of κ and trying to keep K∗ profile around the κ = 0 axis.
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Figure 7.9: Optimal control policy of K for different regularizer values of λ for the
case of Fig. 7.7.
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Figure 7.10: Optimal control policy of K for different regularizer values of λ for the
case of Fig. 7.8.

7.2.4 Improving Accuracy of the Linear Model

In the previous section, we proposed using linear equations for obtaining the path
for a given curvature, K. We obtained linear equations using the Taylor expansion
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of the actual nonlinear model around an initial guess, K̂. For the K̂, we used the
local curvature of the circumscribed circle. Since we will use this path planner
iteratively in a real-time application, another practice for choosing K̂ is to use the
optimal curvature parameters, K∗, from the previous iteration. Let’s assume path
planning occurs iteratively for the vehicle. Moving from the current iteration to
the next, vehicle state (position and orientation) and the route in the observable
horizon is updated. Imagine we have obtained the current optimal curvature values,
K∗M = [κ∗M (0) κ∗M (1) ... κ∗M (N − 1)]T . Moving to the next iteration, we should obtain
K∗M+1 = [κ∗M+1(0) κ∗M+1(1) ... κ∗M+1(N − 1)]T . This time, rather than the method
used previously, we can use the K∗M and consider the guess of

K̂M+1 = [κ∗M(1) κ∗M(2) ... κ∗M(N − 1) 0]T (7.25)

Using this, we can also eliminate the need for calculating the local curvature with
(7.15) and (7.16) and hence, reducing the total processing time. Using the previously
calculated optimal solution to initialize the current optimization problem is well-known
technique of warm start. To illustrate the advantage of this approach, we have solved
the optimization problem for both cases of using K̂ and K̂ to find the optimal value of
J(K̂) and J(K̂) for 582 different points on the Suzuka circuit with value of λ = 0.5.
Results are summarized in Table 7.1. This table clearly shows that using K̂ yields in

Table 7.1: Optimal value comparison

Condition Number of % in total Mean of %
cases improvement in J

J(K̂) ≤ J(K̂) 333 57.22% 38.89%

J(K̂) > J(K̂) 249 42.78% 29.15%
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smaller J in most of the cases. We find percentage of improvement in J as following

J(K̂)− J(K̂)
J(K̂)

× 100 if J(K̂) ≤ J(K̂)

J(K)− J(K̂)
J(K̂)

× 100 if J(K̂) > J(K̂)
(7.26)

Mean value of (7.26) over all the points is reported in the fourth column of the table.
As it can be inferred, in those cases that using K̂ is better, the gap between J(K̂) and
J(K̂) is more considerable. This means not only using K̂ is preferable in most of the
cases, but also improvement is more considerable in each case compared with using K̂.
We will use the initial guess of K̂ for the rest of this work, for linearizing the model.

7.3 Trajectory Planning

In the previous section, we considered a path planning problem with overall travel time
and comfort as the main objectives. The obtained path consists of the information of
vehicle coordinates x, y, vehicle orientation θ, and path curvature κ, as the function of
the spatial parameter of the arc length s. Given the path, the crucial step is defining
the trajectory. The trajectory can be simply seen as obtaining the arc length as a
function of the time. As a result, velocity, acceleration, and the jerk will be accurately
known for the given path. In this section, we consider the governing equations of
trajectory planning and the constraints to formulate an optimization problem. Later,
we will show the results of formulated optimization-based trajectory planning for a
few cases.

7.3.1 Discrete Trajectory Planning

In the first step, we re-sample the obtained path using M linearly spaced points in arc
length, s. So the given path is

{(x(i), y(i), θ(i), κ(i)) | i = 1, 2, ...,M} (7.27)

and
∆s(i) = s(i+ 1)− s(i) = Hd

M − 1 i = 1, 2, ...,M − 1 (7.28)
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Constraints on tangential (longitudinal) acceleration, at, are due to propulsion/braking
limits, no-slip tire condition, and comfort. The governing limit would be the minimum of
these values in the absolute value. Similarly, for the lateral acceleration, al, constraints
should guarantee a comfortable cornering while having no lateral tire slip. Taking
into account all the mentioned criteria, we consider the following constraints on the
longitudinal and lateral acceleration

at,min ≤ at(i) ≤ at,max (7.29)

al,min ≤ al(i) ≤ al,max (7.30)

While at,min, at,max, al,min, and al,max can be arc-length (s) dependent and can be
calculated as part of the pre-processing, we consider constant values in this work. Since
there is no difference in our case for left and right hand turns, we consider that

al,min = −al,max (7.31)

As we discussed before, lateral speed along the path is zero which means

vl(i) = 0 (7.32)

The main equation governing the spatial domain trajectory planning is

v(s) dv(s) = a(s)ds (7.33)

Considering a constant at(i) for s(i) up to s(i+ 1), integration of mentioned equation
would yield in

vt(i+ 1)2 − vt(i)2 = 2at(i)∆s(i) (7.34)

For the lateral acceleration, it is well known to use the following equation

al(i) = vt(i)2 · κ(i) (7.35)

We should note that the velocity is always tangential to the path and there is no lateral
slip along the path for the vehicle. Also for this tangential speed, we consider

0 m

s
≤ vt(i) ≤ vt,max (7.36)
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We decide on this constraint considering both powertrain capabilities in total produced
power and existing regulations regarding the allowed top speed.

Final equation in this context is simply the travel time for each ∆s as

∆t(i) = t(i+ 1)− t(i) = ∆s(i)
vt(i)

(7.37)

7.3.2 Optimization Problem

Similar to path planning, we try to address the trajectory planning problem using
an optimization-based approach. We consider similar objectives as path planning for
trajectory planning as well. For the overall travel time, we simply consider

J1 =

M−1∑
i=1

∆t(i)

Hd

(7.38)

Note that we have usedHd which is the observable horizon distance, in the denominator.
Since we will use regularizer to form the final objective function, this will help mitigate
the effect of chosen Hd on the calibration of the regularizer.

Drive comfort has a substantial effect on overall driving experience from an AV.
Social acceptance of AVs is directly linked to the driving impression of passengers and
how comfort is comparable to human-operated driving. There exist numerous criteria
for quantifying comfort. In this article, we use constraints on longitudinal and lateral
acceleration/deceleration as well as following objective function

J2 =

√√√√√ M∑
i=1

at(i)2

M
(7.39)

J2 penalizes the rms error of the acceleration/deceleration compared to constant speed.
Again, using M in the denominator of J2 formulation will help us to separate the effect
of chosen M on the regularizer.

For the final objective function, we use a regularization of these two objective
functions as

J = J1 + αJ2 (7.40)

α is the hyper-parameters, which should be determined before optimization. This
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tuning parameter depends on the desired trade-off between the explained objectives.

In order to formulate a convex optimization problem, we choose a new variable of

u = v2
t (7.41)

We also note that for the path planning, the initial value of the tangential speed, vt(1),
is known.

As a result, the overall optimization problem for trajectory planning for a given
path is

minimize
M−1∑
i=1

∆t(i)

Hd

+ α ·

√√√√√ M∑
i=1

at(i)2

M
(7.42)

subject to
u(i+ 1)− u(i) = 2at(i)∆s(i) i = 1, 2, ...,M − 1 (7.43a)

u(1) = vt(1)2 (7.43b)

0 ≤ u(i) ≤ v2
t,max i = 1, 2, ...,M (7.43c)

at,min ≤ at(i) ≤ at,max i = 1, 2, ...,M (7.43d)

al(i) = u(i) · κ(i) i = 1, 2, ...,M (7.43e)

− al,max ≤ al(i) ≤ al,max i = 1, 2, ...,M (7.43f)

∆t(i) ≥ ∆s(i)√
u(i)

i = 1, 2, ...,M − 1 (7.43g)

Note that in these equations, we have differentiated all the optimization parameters
using a bold non-italic math style. The objective function of (7.42) is a convex function
of optimization parameters since it is the sum of an affine term with a normalized
Euclidean norm of a vector. (7.43a), (7.43b), and (7.43e) are affine linear constraints.
Furthermore, (7.43g), the relaxed version of (7.37), is convex since the right hand side
is a inverse of a positive parameter. Obviously, for the case of the optimal solution,
this constraint holds tight to avoid an unnecessary increase in J1. As the final result,
the optimization problem is convex.
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7.3.3 Results

We use CVX [93] with SDPT3 [99] or MOSEK [94] solvers to solve the optimization
problem on a personal computer with 3.40 GHz Intel Core i7 processor. We choose
the hyper-parameter of M in a way to achieve accurate results within a reasonable
time. The CPU time for each iteration of solving the optimization problem is about
0.01 second.

Following figures show the results of the presented optimization-based path and
trajectory planning for few cases. For each case, used parameters are summarized in
Table 7.2.

Table 7.2: Parameters

Path planning Trajectory planning
Hd ε N λ M α vt,max at,max at,min al,max

Case 1.1 200m 5m 100 inf 150 0 30m/s 3m/s2 −10m/s2 2m/s2

Case 1.2 200m 5m 100 inf 150 0 30m/s 5m/s2 −10m/s2 4m/s2

Case 1.3 200m 5m 100 0.1 150 0.01 30m/s 3m/s2 −10m/s2 2m/s2

Case 1.4 200m 5m 100 0 150 0.1 30m/s 3m/s2 −10m/s2 2m/s2

Case 2.1 300m 8m 200 inf 300 0 30m/s 5m/s2 −10m/s2 4m/s2

Case 2.2 300m 8m 200 1e− 3 300 0 30m/s 5m/s2 −10m/s2 4m/s2

Case 2.3 300m 8m 200 0.1 300 0.01 30m/s 3m/s2 −10m/s2 2m/s2

Case 2.4 300m 8m 200 0 300 0.1 30m/s 3m/s2 −10m/s2 2m/s2

Case 3.1 100m 5m 50 0.1 100 0 30m/s 3m/s2 −10m/s2 2m/s2

Case 3.2 100m 5m 50 0.1 100 0.003 30m/s 3m/s2 −10m/s2 2m/s2

Case 3.3 100m 5m 50 0.1 100 0.01 30m/s 3m/s2 −10m/s2 2m/s2

Case 3.4 100m 5m 50 0.1 100 0.1 30m/s 3m/s2 −10m/s2 2m/s2

Case 4.1 500m 6m 300 inf 500 0 50m/s 10m/s2 −20m/s2 10m/s2

Case 4.2 500m 6m 300 0 500 0 50m/s 10m/s2 −20m/s2 10m/s2

Case 4.3 500m 6m 300 inf 500 inf 50m/s 10m/s2 −20m/s2 10m/s2

Case 4.4 500m 6m 300 0 500 inf 50m/s 10m/s2 −20m/s2 10m/s2

Starting from Figure 7.11, Case 1.2 is capable of performing harsher lateral and
tangential acceleration compared to Case 1.1. Parameters of λ and α are tuned for
both of these cases to achieve the fastest possible path and trajectory. Consequently,
this leads to a higher speed profile for Case 1.2 and less travel time as a result. Tuning
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Figure 7.11: Optimal path and trajectory planning for Case 1, the hairpin of Suzuka
circuit, for different parameters.

Figure 7.12: Optimal path and trajectory planning for Case 2, the S curves of Suzuka
circuit, for different parameters.

of λ and α parameters differ from Case 1.3 to Case 1.4, in a way that Case 1.4 is tuned
to have a more comfortable path and trajectory. As it can be seen in this figure, Case
1.4 path resembles more to a clothoid, and the speed profile is smoother. These come
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Figure 7.13: Optimal path and trajectory planning for Case 3, the turns 13 and 14
(Wall of Champions) of Gilles Villeneuve circuit, for different parameters.

Figure 7.14: Optimal path and trajectory planning for Case 4, the turns 10 and 11
(L’Epingle) of Gilles Villeneuve circuit, for different parameters.

with a significant increase in travel time.
Figure 7.12 show a wider segment of the track for a longer observable horizon.

Moving from the first to the last case, parameter tuning changes in benefit of comfort.
From Case 2.1 to Case 2.2, comfort is gained from the path planning side, while moving
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from Case 2.3 to Case 2.4 , comfort is the result of both comfortable path planning
and trajectory planning.

Figure 7.13 analyzes the effect of tuning α individually on the trajectory by
keeping λ constant which means the path is the same for all cases of Case 3.1 to
Case 3.4. It is interesting to see how increasing the α results in avoiding harsh
acceleration/deceleration for a long period of times in the speed profile, to provide
smoother drive experience. This in turn significantly increases the overall travel time.

Finally, Figure 7.14 considers a special case. We have assumed a greater allowable
top speed, tangential acceleration, and tolerable lateral acceleration to make a similar
case to a racing scenario. For Case 4.1 and Case 4.2, α is tuned in the same way to
achieve the fastest trajectory. However, λ is chosen to obtain the fastest potential path
for Case 4.1 and the most comfortable path for Case 4.2. The results of comparing
the trajectory for these two cases is truly fascinating. For the speed profile, the
main constraint is the lateral acceleration. We also discussed that the path curvature
determines the fastest allowable speed, given the maximum lateral acceleration. Since
Case 4.1 have tuned to obtain the fastest potential path, by avoiding large curvature
values, the maximum allowable speed is higher for the Case 4.1 compared to Case 4.2.
Travel time of Case 4.1 is clearly less than Case 4.2. This confirms the fact that for
the case of achieving the fastest travel time between two given points, this objective
should be considered both in path planning and trajectory planning. For Case 4.3
and Case 4.4, the speed profiles are almost similar, since the merely constant speed
profile has the best comfort. However, there is a bottleneck for the speed in s ≈ 200m.
This is the apex of the corner and the maximum speed should not exceed ≈ 15m/s
to be in the safe margin of lateral acceleration. This pushes the speed profiles for
Case 4.3 and Case 4.4 to uniformly decrease up to this point and stay constant since
after. Although the speed profiles are the same, planned path for these two cases
are different. Since Case 4.4 tries to connect initial and the end point mostly using
segments of Euler spirals, which is the results of setting λ = 0, the overall driving
experience for this case is more comfortable, compared to Case 4.3.

7.4 Iterative Motion Planning

In previous sections, we have shown the result of the developed optimization-based
path and trajectory planning for few cases. Motion planning can be seen as performing
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both path and trajectory planning. In this section, we will discuss the iterative motion
planning for an AV in a racing track. This process gets the racing track geometrical
information as well as the vehicle initial states (e.g., spatial coordinates, orientation,
and speed) plus all required parameters (e.g., speed/acceleration constraints, tuning
parameters, observable horizon) as the input. In the next step, the path planner would
obtain the optimal path up to the observable horizon. Next, we provide the planned
path as an input to the trajectory planner to obtain the optimal trajectory accordingly.
Then, we will apply the planned trajectory up to the time of ∆tstep and obtain the next
vehicle states. We update the initial vehicle state and move to the next iteration to
repeat the procedure again. The frequency of this procedure is 1/∆tstep. As discussed
before, the average CPU time for path and trajectory planning combined is about
0.03 s, which means that the highest feasible frequency is ≤ 33Hz. We have shown
the schematic of the explained procedure in Figure 7.15. As discussed in 7.2.4, the
iterative approach has a significant effect on increasing the accuracy of the linearized
path planning equations. In this context, we use the optimal curvature planning of the
previous step, K∗, as the K̂ for the current step. Note that nonlinear path equations
have been linearized around K̂ using the Taylor expansion.

We have also presented the results of applying the iterative approach to obtain the
overall path and trajectory around the circuit for a few cases of parameter initialization
in Figure 7.16 to 7.23. We have shown the parameters in each case in Table 7.3.

Table 7.3: Parameters

Path planning Trajectory planning Iteration
Hd ε N λ M α vt,max at,max at,min al,max ∆tstep

Case 1 100m 5m 100 0.1 150 0.005 30m/s 3m/s2 −10m/s2 2m/s2 0.05
Case 2 200m 5m 300 inf 500 0 80m/s 10m/s2 −30m/s2 20m/s2 0.1

We have tuned the parameters for Case 1 of iterative motion planning to emphasize
more on the drive comfort. This case can be attributed to a passenger vehicle in the
track. Both λ and α hyper-parameters, as well as the constraints on the acceleration
and velocity, are initialized reasonably to provide comfort both in path and trajectory
planning. This case tries to express the path mostly using Euler spirals and avoids
harsh accelerations while driving. On the other hand, Case 2 resembles a motion
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Figure 7.15: Schematic of the iterative motion planning approach for a AV in a racing
track.

planning for a racing car in the track. λ→ inf and α = 0 to emphasize only on the
travel time discarding the comfort. Constraints on the maximum tangential speed,
lateral acceleration, and tangential acceleration/deceleration are reasonably affordable
by a racing car. This significantly changes the path and the trajectory, to achieve the
fastest motion in the track. The vehicle initial speed for both of these cases, as seen
in the velocity profile, is set to 10m/s. Lap time for the Case 1 is tlap = 361.6 s and
tlap = 284.95 s for Suzuka and Gilles Villeneuve race tracks respectively, compared to
the tlap = 112.6 s and tlap = 96.7 s for the Case 2. Note that even the Case 2 setting is
inferior to the Formula 1 car in terms of the performance. Formula 1 cars can achieve
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Figure 7.16: Iterative path planning for the Suzuka racing track, using the parameters
of Case 1.

even higher braking deceleration and lateral acceleration. To have a comparison, note
that in the time of writing this article, lap records during racing for these two circuits
are tlap = 91.540 s and tlap = 73.078 s, respectively.
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Figure 7.17: Iterative trajectory planning for the Suzuka racing track, using the
parameters of Case 1.

Figure 7.18: Iterative path planning for the Gilles Villeneuve racing track, using the
parameters of Case 1.
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Figure 7.19: Iterative trajectory planning for the Gilles Villeneuve racing track, using
the parameters of Case 1.

Figure 7.20: Iterative path planning for the Suzuka racing track, using the parameters
of Case 2.
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Figure 7.21: Iterative trajectory planning for the Suzuka racing track, using the
parameters of Case 2.

Figure 7.22: Iterative path planning for the Gilles Villeneuve racing track, using the
parameters of Case 2.
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Figure 7.23: Iterative trajectory planning for the Gilles Villeneuve racing track, using
the parameters of Case 2.
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7.5 Real-time Energy Management

In the previous section, we discussed an optimization-based approach to perform the
iterative motion planning for an A-HEV in a racing track. In the final part of this
chapter, we slightly modify the introduced energy management strategy in chapter 6,
to be able to integrate a real-time EMS with motion planning.

As mentioned, we will use the convex representation in chapter 6 for the real-time
EMS combined with a receding horizon approach. We should note that derived convex
representation is global and does not depend on the instantaneous operating condition.
While we could use linearization or other approaches such as dynamic matrix control
(DMC) to obtain a local abstract vehicle model to feed into the model predictive control,
this leads to increased processing time and does not guarantee a better performance.

Our final goal of this integration is to develop an ASEMS (autonomous-specific
energy management strategy) for the hybrid electric powertrain explained in Chapter
5 using the optimization-based approach introduced in chapter 6.

7.5.1 Optimization Problem

As a result of performing the motion planning algorithm for the initialized parameters,
we obtain the vehicle trajectory up to the observable horizon. This time, we resample
the provided motion planning data using Ne number of points in time, t, rather
than the spatial variable, s. Again, the choice of Ne influences the accuracy and the
computational burden. Given the initial and the target battery state of the charge,
we calculate the initial and the target battery state of energy as Einitial

b and Etarget
b .

Furthermore, for the given trajectory at each step, we do the pre-processing to obtain
the power and torque load on the powertrain as Pps(k) and Tps(k), respectively. For
k = 1, 2, ..., Ne, we solve the following convex optimization problem, introduced in
Chapter 6, to obtain the fuel-optimal strategy for a given trajectory.

minimize
Ne∑

k=1
Pf (k) ·∆t (7.44)

subject to
Pe(k) + Pmg1(k) + Pmg2(k) ≥ Pps(k) (7.45a)
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r1

1 + r1
·Te(k) + r2 ·Tmg2(k) ≥ Tps(k) (7.45b)

Pf (k) ≥ [Pe(k) Te(k)] · A ·
Pe(k)
Te(k)

+ bT ·

Pe(k)
Te(k)

 (7.45c)

0 ≤ Pe(k) ≤ Pe,max (7.45d)

0 ≤ Te(k) ≤ Te,max (7.45e)

Pmg2,dc(k) ≥ p2(k) ·Tmg2(k)2 + p1(k) ·Tmg2(k) (7.45f)

Pmg2(k) = Tmg2(k) · ωmg2(k) (7.45g)

Tmg2,min(k) ≤ Tmg2(k) ≤ Tmg2,max(k) (7.45h)

Pmg1(k) = −Pe(k) +
(

r1 · rd

(1 + r1) · rw

·Te(k) · v(k)
)

(7.45i)

Tmg1(k) = −Te(k)/(1 + r1) (7.45j)

Pmg1,dc(k) ≥ q2 ·Pmg1(k)2 + q1 ·Pmg1(k) (7.45k)

Pmg1,min ≤ Pmg1(k) ≤ Pmg1,max (7.45l)

Tmg1,min ≤ Tmg1(k) ≤ Tmg1,max (7.45m)

Pb(k) = Paux + Pmg1,dc(k) + Pmg2,dc(k) (7.45n)

Eb(k + 1) ≤ Eb(k)

− ∆t
RC̃

[
Eb(k) + E0 −

√
(Eb(k) + E0)

(
Eb(k) + E0 − 2RC̃Pb(k)

)]
(7.45o)

Pb,min ≤ Pb(k) ≤ Pb,max (7.45p)

Eb,min ≤ Eb(k) ≤ Eb,max (7.45q)

Eb(1) = Einitial
b (7.45r)

Eb(Ne + 1) = Etarget
b (7.45s)

These equations with the required parameters are discussed in Chapter 6 in a great
detail.
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7.5.2 Iterative Motion Planning and EMS

In this part, we discuss a procedure to integrate the EMS with the motion planning
to form the ASEMS. For the given route up to the observable horizon, path and
trajectory planning are performed initially to obtain the input velocity profile for the
EMS. For the EMS, we use both the introduced optimization-based approach here
and the obtained rule-based controller in Chapter 5. To have a better comparison,
we use these two approaches simultaneously to find the power and torque split for
any given trajectory at each step to obtain the control inputs for the components.
These inputs are torque/speed for the ICE, MG1, and MG2. It is crucial to note the
hierarchy of the procedure which starts with path planning and moves to trajectory
planning and finally ends in EMS. This results in solving three consecutive convex
optimization problems at each time step. While combining these problems to obtain a
comprehensive optimization problem which generates path, trajectory, and powertrain
control inputs at a same time might be feasible, but this leads to an unnecessarily
complex and difficult to handle optimization problem with increased number of tuning
parameters. Hence, we have considered the hierarchy shown in Figure 7.24.

We then proceed forward and apply these inputs for the time duration of ∆tstep

on the developed high-fidelity model in chapter 5. As we move to the next time step,
we update the vehicle states, velocity and SOC, and we re-calculate the procedure
again. The optimization-based controller finds the control input for the plant at each
step by solving an optimization problem which has the predictions of convex model
inside. Hence, this approach is a model predictive control approach and we will call
this controller the MPC-based controller. Figure 7.24 shows an illustration of the
explained procedure in a graphical format.
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Figure 7.24: Schematic of the iterative motion planning integrated with EMS for an
AV in a racing track.
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7.5.3 Results

In the results of this section, our main focus is on performance evaluation of the
real-time MPC-based EMS. Hence, except the observable horizon, we tune and fix
the other motion planning parameters to replicate a case of a passenger vehicle in the
track, with more concentration on the drive comfort. These parameters are shown in
Table 7.4. We use dHde for N and M to ensure that path and trajectory planning

Table 7.4: Fixed Motion Planning Parameters

Path planning Trajectory planning
ε N λ M α vt,max at,max at,min al,max

5m dHde 0.05 dHde 0.005 25m/s 3m/s2 −8m/s2 1.5m/s2

happens with intervals of at most one meter. λ and α are tuned to shift the trade-off
toward comfort. The maximum speed of 25m/s is equivalent to 90 kph which is a
typical high speed for roads. Moreover, maximum threshold of 1.5m/s2 for the lateral
acceleration provides a comfortable drive in the turns [106].

For the Ne, we use Ne = dtf − tie, where tf and ti are the final and the initial
time of the given trajectory, respectively. This ensures that the optimization problem
for EMS is solved with time intervals of at most one second. Solving three described
optimization problems takes about 0.05 s CPU time, so we choose ∆tstep = 0.1 s to
perform the iterative procedure with a frequency of 10Hz.

Moreover, we set the initial and the target SOC to 40% and initial vehicle speed to
v0 ≈ 0. With these parameters being set, we run the integrated model for different
observable horizons of Hd, with both embedded MPC-based and rule-based controllers.
Figure 7.25 and 7.26 show the velocity, fuel power, and SOC results for the one with
rule-based controller. Furthermore, we show the speed profile results, as well as a few
powertrain component signals, for Hd = 100m in Figure 7.27 to Figure 7.28. Again
we emphasize on the fact that we apply the control inputs from both MPC-based
and rule-based approaches on the same high-fidelity vehicle model. This point is
crucial for our performance comparison and conclusions, later in this work. We should
also ensure that both approaches result in the comparable velocity profiles. This
would guarantee that powertrain is satisfying the same power and torque demand.
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Figure 7.25: Results of trajectory and powertrain component signals for the rule-based
approach, for a lap around Suzuka circuit.

We evaluate the integrated model for different values of the observable horizon of Hd.
Observable horizon does not affect the performance of the rule-based controller. Hence,
there is only a single velocity profile for all the cases. Figure 7.29 and 7.30 shows the
results for the velocity profile of the integrated model, using both the MPC-based
and rule-based controllers, for different values of Hd. These figures clearly illustrate
that velocity profiles and hence the power/torque demands are totally comparable.
Interestingly in these figures, it can be inferred that the integrated model with a
higher Hd achieves a slightly higher vehicle tangential speed. Longer horizon helps
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Figure 7.26: Results of trajectory and powertrain component signals for the rule-based
approach, for a lap around Gilles Villeneuve circuit.

the controller to plan more accurately to meet the motion planning objectives within
the powertrain limits such as the maximum battery power or ICE power. Besides,
using the high-fidelity model as a plant for both rule-based and MPC-based controller,
we have ensured that powertrain is providing similar power/torque for both the cases.
Therefore, our comparison for the fuel consumption results would be sensible. We
should also consider the final SOC while comparing fuel consumption results. The
final SOC for the MPC-based method is the same as the initial SOC, since this is one
of the constraints of the optimization problem, solved in each iteration. As a result of
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Figure 7.27: Results of trajectory and powertrain component signals for the MPC-based
approach, for a lap around Suzuka circuit with Hd = 100m.
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Figure 7.28: Results of trajectory and powertrain component signals for the MPC-based
approach, for a lap around Gilles Villeneuve circuit with Hd = 100m.
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Figure 7.29: Tangential velocity profiles for rule-based and MPC-based controllers
with different Hd, for Suzuka circuit.
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Figure 7.30: Tangential velocity profiles for rule-based and MPC-based controllers
with different Hd, for Gilles Villeneuve circuit.

perfect calibration of the rule-based controller, the final SOC for this case is also very
close to the initial SOC, as seen in the Figure 7.25 and 7.25. We also apply dynamic
programming on the high-fidelity model for the velocity profiles of the rule-based
controller, reported in Figure 7.29 and 7.30. DP results are the globally optimal
results that we use as benchmarks to evaluate the developed ASEMS using MPC-based
controller in the integrated model. We report the an exhaustive comparison of the fuel
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consumption in Table 7.5. where we find diff. 1 and diff. 2 using following equations

Table 7.5: Fuel Consumption Comparison

Method Suzuka Track Gilles Villeneuve Track

FC (g) diff. 1 (%) diff. 2 (%) FC (g) diff. 1 (%) diff. 2 (%)

Rule-based 381.42 0 25.08 335.47 0 22.62

DP 304.94 −20.05 0 273.58 −18.45 0

MPC-based with Hd = 100m 363.19 −4.78 19.01 328.68 −2.02 20.14

MPC-based with Hd = 200m 360.93 −5.37 18.36 324.81 −3.18 18.73

MPC-based with Hd = 300m 358.60 −5.98 17.60 322.08 −3.99 17.73

MPC-based with Hd = 400m 354.23 −7.13 16.16 318.65 −5.02 16.47

MPC-based with Hd = 500m 350.69 −8.06 15.00 314.87 −6.14 15.09

MPC-based with Hd = 600m 348.98 −8.50 14.44 312.20 −6.94 14.12

MPC-based with Hd = 700m 348.27 −8.69 14.21 309.11 −7.86 12.99

MPC-based with Hd = 800m 340.34 −10.77 11.61 302.90 −9.71 10.72

MPC-based with Hd = 900m 332.08 −12.94 8.90 298.55 −11.01 9.13

MPC-based with Hd = 1000m 327.59 −14.11 7.42 292.49 −12.81 6.91

diff. 1 = FC − FCRB

FCRB

× 100 (7.46)

diff. 2 = FC − FCDP

FCDP

× 100 (7.47)

Rule-based model is sub-optimal in total fuel consumption for a single lap with an
average of 23.85% for two racing tracks, compared to optimal results of DP. Also, we can
clearly see that even with an observable horizon of Hd = 100m, MPC-based controller
outperforms the rule-based controller with an average of 3.2% less FC. Interestingly,
as longer observable horizons are achievable, fuel consumption significantly getting
closer to the DP results. For the ultimate case of Hd = 1000m in our analysis, the
MPC-based controller is just sub-optimal by 7.17% on average, compared to DP results.
Figure 7.31 shows the trend in total fuel consumption and how the MPC-based method
lays between the rule-based and optimal DP results in terms of fuel consumption.

Longer observable horizon for the MPC-based approach results in less fuel con-
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sumption. However, this comes with an increased computational burden which would
undermine the real-time applicability. The final decision for the observable horizon
depends on the capabilities of perception modules as well as embedded hardware
computational power. This also depends on the trade-off between optimality and the
computational burden. As a result, allocation of significant processing resource for this
approach would result in better fuel economy. Furthermore, Figure 7.32 and 7.32 show

Figure 7.31: Comparison of total fuel consumption for a single lap around the (a)
Suzuka and (b) Gilles Villeneuve racing tracks.

the SOC profile for two extreme cases of analyzed MPC-based controllers, compared
with optimal SOC profile of DP. As observable horizon increases, tolerable SOC
difference also increases. Also note that overall trend of SOC trends are completely
comparable.
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Figure 7.32: Comparison of SOC profiles for a single lap around Suzuka racing track.
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Figure 7.33: Comparison of SOC profiles for a single lap around Gilles Villeneuve
racing track.
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Chapter 8

Conclusions and Future Work

The automotive industry is experiencing groundbreaking transformations as a result
of two mainstreams: electrification and autonomous driving. In addition to the
advantages of each field individually, we discussed how intersection and interaction of
them could provide new opportunities for further improvements in the vehicles of the
next generation. For the case of an autonomous hybrid electric vehicle (A-HEV), we
presented the idea of autonomous-specific energy management strategies (ASEMS) in
this work. We investigated the idea further and also provided a proof-of-concept.

In this chapter, we collect and discuss the main conclusions of our work. We also
present the potential improvements and next steps in the form of future work.

8.1 Conclusions

First, for our case study, Toyota Prius 2010, we developed a high-fidelity model using
online available data. We identified the model parameters by comparing model output
to the original dynamometer data. Our model is a system-level model with a focus
on power flow and energy consumption. In the absence of an actual A-HEV, we
used this as the plant model to make sensible judgments of different types of energy
management strategies. Driver, control unit, and the vehicle are the main subsystems
of the developed model, each including other subsystems. Evaluation of the high-fidelity
model shows acceptable conformity with the dynamometer data. For instance, for the
steady-state driving cycle, model and data engine fuel flow have an rms error of 0.091
g/s. As a result, we can ensure that any observed improvement in the results of the
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model due to a new energy management strategy can be similarly obtained in the
actual vehicle.

Second, we presented a novel convex model representation of the case study.
We developed the convex model by representing each component (e.g., engine, mo-
tor/generator, battery, power-split) using convex functions and constraints. This helped
us to reformulate the optimal control problem of energy-efficient energy management
strategy within the canonical convex optimization format. The main advantage of
facing a convex optimization problem (e.g., linear programming, quadratic program-
ming, conic optimization, semidefinite programming) is having access to advanced
dedicated numerical solvers. These solvers can achieve a globally optimal solution
in a considerably less amount of time compared to other alternatives for solving an
optimal control problem. For instance, on the convex model, results for dynamic
programming are 2.40% sub-optimal on average for a few driving cycles, compared
to the convex approach. Additionally, the convex approach needs 97.43% less time
on average, to obtain the optimal results. However, the result should be evaluated
finally on the high-fidelity model. At this point, we removed the driver and control
unit out of the loop of the high-fidelity model. We applied the extracted signals
from the convex approach to the vehicle model. These signals are the control inputs,
torque, and speed for the powertrain components. The results of convex approach just
slightly deteriorated (2.75% on average) on the nonlinear vehicle model, and showed
comparable results to the dynamic programming. This is mainly due to the presented
novel convex representation of the vehicle and powertrain.

Third, in the absence of having access to motion planning data of an actual self-
driving car in the typical driving scenarios, we perform the ASEMS proof-of-concept by
developing the optimization-based motion planning for the simplified driving scene of
a racing track. We considered Suzuka and Gilles Villeneuve racing tracks as examples.
We also considered that A-HEV is driving in the racing track with known boundaries
and constraints and having the ability to observe up to the observable/prediction
horizon. We considered comfort and travel time as our optimization objective while
addressing both path and trajectory planning problems. We provided the planned
path, precise geometrical coordinates (e.g., x-y coordinates, orientation, curvature)
expressed as a function of arc-length variable up to the observable horizon, to the
trajectory planner to obtain the velocity profile up to the observable horizon. Also, as
shown, we let the vehicle to perform a lap around the track by iteratively solving the
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optimization problems for the path and trajectory planning. We also analyzed the
dependence of the results on the tuning parameters. Calibrating tuning parameters to
emphasize on the travel time resulted in path and trajectories similar to those being
used in the motorsport. On the other hand, pushing the trade-off toward comfort gives
a smoother path by taking advantage of Euler spirals and comfortable trajectory due
to lateral and tangential acceleration/deceleration minimization.

Fourth, we integrated the developed energy management strategy using the convex
optimization approach with the motion planning module. We took a model predictive
control approach and solved the energy-efficient energy management optimization
problem at each step and applied the control inputs on the nonlinear vehicle model.
For the chosen set of hyper-parameters, solving path, trajectory, and the energy
management problem takes about 0.05s combined, at each step. Again, we let the
A-HEV with integrated EMS to perform a lap around the track. To get a better
comparison, we also tested the rule-based controller in the same condition. Even
with the short observable horizon of 100 m, MPC-based controller outperformed rule-
based controller by achieving 3.2% less fuel consumption on average for a lap. We
implemented dynamic programming on the same condition to get the benchmark
of minimum feasible fuel consumption per lap. We also observed that as a longer
observable horizon is achievable, results of MPC-based controller tend to converge to
the DP results, being only 7.17% sub-optimal for the observable horizon of 1000 m.
Even with the horizon of 100 m, improvements as a result of using ASEMS instead of
a conventional rule-based controller is extremely promising. With the conservative
promise of 3.2% reduction in fuel consumption, we anticipate that ASEMS can save
about 30,000,000 liters of fuel per year for the prospective Waymo (Chrysler Pacifica)
and Uber (Volvo XC90) A-HEV fleets combined.

8.2 Future Work

In this section, we discuss the potential future work, as a sequel to this work, particularly
regarding further investigations on the ASEMS. In this context, we are eagerly
looking forward to collaborating with other researchers, engineers, tech companies,
and automotive manufacturers.
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8.2.1 Advanced High-Fidelity Model

High-fidelity model, presented in Chapter 5, considers mostly quasi-static equations for
the components. We want to expand the model to consider the higher-order dynamics,
particularly in the engine and power-split behavior. Also, we are looking to incorporate
the effects of the temperature on the subsystems, such as the battery. In the vehicle
subsystem, we only considered the longitudinal dynamics. Advanced 2-D or 3-D
vehicle dynamics would increase the fidelity of the model. While we are working on
improving the model, we are looking forward to collaborations to use already developed
vehicle and powertrain models to decrease the gap between simulation and the real-life
environment.

8.2.2 Convex Optimization Problem Complexity

As we achieve advanced high-fidelity models, we should also proceed to obtain more
accurate convex representation to keep the gap reasonably low. Meanwhile, we
would like to investigate and compare the results of different convex optimization
problem representations, both in offline and real-time applications. The developed
convex optimization problem in this work is in the form of semidefinite programming.
While including complex convex functions empowered us to obtain a more accurate
representation of the actual plant, solving the problem requires more processing time
compared to the linear programming and quadratic programming. We are working on
developing and testing different representations to find the trade-off between complexity
and processing time for both offline and real-time application.

8.2.3 Solving Convex Optimization Problem

We have used available solvers for convex optimization problems such as SDPT3,
Mosek, Gurobi, and SeDuMi. Performing a comprehensive study on the performance
of each solver in path, trajectory, and energy management optimization problems
would be extremely useful. We also want to consider the option of testing alternative
solvers. In the final implementation, we want to remove CVX as the optimization
modeling language out of the loop and interact directly with the solver’s interface
in C++, for instance. Ultimately, the specific numerical solver can be developed for
the optimization problem to decrease the solving time substantially. This can be a
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result of exploiting the particular KKT matrix structure to boost up the algebraic
calculations.

8.2.4 Motion Planning Data

In the absence of actual motion planning data for the A-HEV, we considered using
the optimization-based path-planner to tackle motion planning. However, it is truly
intriguing to investigate the performance of ASEMS on the high-fidelity model using
motion planning data from an actual A-HEV such as Chrysler Pacifica. In this context,
we have asked Fiat Chrysler Automobiles, as the industrial partner of McMaster
Automotive Resource Centre, and we are looking forward to collaborating with the
FCA.

8.2.5 Vehicle Path Controller

To evaluate ASEMS, in Chapter 7, we let the vehicle to go around the track, and
we executed the path planner at each step. However, we considered a perfect path
following for the vehicle. Practically, the vehicle path is primarily controlled by the
steering wheel angle. Also, we considered a simpler 2-D vehicle dynamics, basically a
rectangle with known coordinates and orientation. Hence, we plan to include more
complex dynamics model, bicycle model, for instance, and to use the steering controller
at the same time.

8.2.6 State Estimation

In Chapter 7, as the vehicle traveled around the track, we updated the vehicle initial
states (e.g., coordinates, orientation, speed, and SOC) using the open-loop model
predictions. In practice, this is not exactly the case since there are always model
uncertainties. We like to integrate state estimation methods such as Kalman Filtering
or Extended Kalman Filtering to update the states using both model predictions and
sensor outputs (e.g., GPS, battery voltage).

8.2.7 Testing on an A-HEV

Ultimate future work for us is repeating almost the same procedure and integrating the
EMS with motion planning module in an A-HEV. It is intriguing for us to implement
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the MPC-based ASEMS in the vehicle processing units and evaluate the results on an
actual vehicle. Regarding this, we are looking forward to collaborating with research
labs and self-driving car companies.
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Appendix A

Interactive Interface

To better illustrate the real-time performance of the ASEMS, we have developed an
interactive interface using App Designer in MATLAB. As shown in following figures,
this interface takes tunable initialization parameters as inputs and generates the
results of path planning, trajectory planning, and the MPC-based energy management
strategy. The initialization parameters we consider are

1. Observable Horizon (m): Portion of route (racing track) in front of the vehicle
which is perceivable by the vehicle modules.

2. Index 1-10000: A number between 1 to 10000 which indicates the initial position
of the vehicle in the racing track.

3. Initial Speed (m/s): Initial speed of the vehicle.

4. Max Speed (m/s): Maximum allowable speed of the vehicle.

5. Max Long Accel (m/s2): Maximum allowable longitudinal acceleration for the
vehicle. Mostly depends on the powertrain capability and drive comfort.

6. Min Long Accel (m/s2): Minimum allowable longitudinal acceleration for the
vehicle. Mostly depends on the braking capability and drive comfort.

7. Max Lat Accel (m/s2): Maximum allowable lateral acceleration. Mostly depends
on the drive comfort and tire limits.

8. Initial SOC: Initial state of charge of the battery pack.
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9. Target SOC: Reference battery state of charge for the controller.

Beside these parameters, two sliders control the trade-off between travel time and
comfort for path and trajectory planning. We can also select the operating racing track.
Two dials at the end show the instantaneous vehicle speed and fuel consumption.

There are six different plots in this interface. Track plot shows the area of the
track vehicle is operating at. Path plot shows the obtained path up to the observable
horizon. Trajectory plot shows the velocity profile for the given path. Finally, SOC,
Engine Power, and Battery Power plots are the results of MPC-based EMS for the
given velocity profile taking fuel consumption as the main objective. Below, we have
shown output of this interface for different conditions.
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Figure A.1: Example of interactive interface output.
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Figure A.2: Example of interactive interface output.
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Figure A.3: Example of interactive interface output.
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Figure A.4: Example of interactive interface output.
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Figure A.5: Example of interactive interface output.
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Figure A.6: Example of interactive interface output.
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