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Abstract

In recent years, we have seen the applications of distributed autonomous mobile robots

(DAMRs) in a broad spectrum of areas like search and rescue, disaster management,

warehouse, and delivery systems. Although each type of systems employing DAMRs

has its specific challenges, they are all limited by energy since the robots are powered

by batteries which have not advanced in decades. This motivates the development of

energy efficiency for such systems.

Although there has been research on optimizing energy for robotic systems, their

approaches are from low-level (e.g., mechanic, system control, or avionic) perspectives.

They, therefore, are limited to a specific type of robots and not easily adjusted to

apply for different types of robots. Moreover, there is a lack of work studying the

problem from a software perspective and abstraction.

In this thesis, we tackle the problem from a software perspective and are partic-

ularly interested in DAMR systems in which a team of networked robots navigating

in a physical environment and acting in concert to accomplish a common goal. Also,

the primary focus of our work is to design schedules (or plans) for the robots so that

they can achieve their goal while spending as little energy as possible. To this end,

we study the problem in three different contexts:
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• Managing reliability and energy consumption tradeoff. That is, we propose that

robots verify computational results of one another to increase the corroboration

of outputs of our DAMR systems. However, this new feature requires robots

to do additional tasks and consume more energy. Thus, we propose approaches

to reach a balance between energy consumption and the reliability of results

obtained by our DAMR systems.

• Extending the operational time of robots. We first propose that our DAMR

systems should employ charging stations where robots can come to recharge

their batteries. Then, we aim to design schedules for the robots so that they

can finish all their tasks while consuming as little energy and time (including

the time spent for recharging) as possible. Moreover, we model the working

space by a connected (possibly incomplete) graph to make the problem more

practical.

• Coping with environmental changes. This path planning problem takes into ac-

count not only energy limits but also changes in the physical environment, which

may result in overheads (i.e., additional time and energy) that robots incur while

doing their tasks. To tackle the problem from a software perspective, we first

utilize Gaussian Process and Polynomial Regression to model disturbances and

energy consumption, respectively, then proposed techniques to generate plans

and adjust them when robots detect environmental changes.

For each problem, we give a formal description, a transformation to integer (linear)

programming, offline algorithms, and an online algorithm. Moreover, we also rigor-

ously analyze the proposed techniques by conducting simulations and experiments in

a real network of unmanned aerial vehicles (UAVs).
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Chapter 1

Introduction

Although distributed autonomous mobile robotics is a young field, it offers the possi-

bility of fundamentally changing a myriad of areas like exploration (Burgard et al.,

2000; Rekleitis et al., 2001; Simmons et al., 2000; Burgard et al., 2005), surveil-

lance (Kolling and Carpin, 2008, 2006; Parker, 1999; Ahmadi and Stone, 2006), search

and rescue (Baxter et al., 2007; Calisi et al., 2007; Macwan et al., 2015), transporta-

tion (Donald et al., 2000; Rus et al., 1995; Stilwell and Bay, 1993; Wang et al.,

2000; Khatib et al., 1996; Sugar and Kumar, 2000), and delivery systems (DHL In-

ternational GmbH, 2016; McFarland, 2016; Amazon.com, Inc., 2016; Gatteschi et al.,

2015; Wing LLC, 2019). The most remarkable successes can be seen in the case of

autonomous vehicles (particularly in self-driving cars) where automobile manufactur-

ers like Tesla (Tesla, Inc., 2008), transportation network companies like Uber (Uber

Technologies, Inc., 2009), technology companies like Waymo (Waymo LLC, 2009)

(formerly the Google self-driving car project) have demonstrated fully autonomous

prototypes. These extraordinary applications and demonstrations have motivated

research and fueled excitement about the bright future of Distributed Autonomous
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Mobile Robots (DAMRs).

In this thesis, we tackle the problem of optimizing the energy consumption of

DAMR systems from a software perspective. We target a class of DAMR systems

where a team of battery-powered and networked robots is navigating in a physical

environment and acting in concert to accomplish a common goal. Moreover, we aim

to design schedules (aka. plans) for the robots so that they can optimally spend their

energy to achieve the goal. To this end, we propose three new problems:

• Reliability-Energy Tradeoff (RET). In this problem, we first propose that

robots verify computational results of one another. By doing this, we can in-

crease the corroboration of outputs of our DAMR systems. However, this new

feature requires robots to do additional tasks and thus consume more energy.

We then propose approaches to reach a balance between energy consumption

and the reliability of results obtained by our DAMR systems.

• Optimal Recharging (OR). This problem proposes that our DAMR systems

should employ charging station and aims to design schedules for the robots so

that they can achieve their goals while consuming as little energy and time

(including the time spent for recharging) as possible. Moreover, we model the

working area by a connected (possibly incomplete) graph that makes the prob-

lem more practical.

• Optimal Path Planning in the Presence of Disturbances (OPPD).

This path planning problem does not only take into account energy limits but

also changes in the physical environment, which may result in overheads (i.e.,

additional time and energy) that robots incur while doing their tasks. In or-

der to tackle the problem from a software perspective, we propose the use of

2
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Gaussian Process and Polynomial Regression to model disturbances and energy

consumption, respectively.

In the rest of this chapter, first, we give some insight into the RET, OR, and

OPPD problems in Section 1.1, Section 1.2, and Section 1.3, respectively. Second,

we present a review of work related to our research in Section 1.4. Third, we state

the contributions of the thesis in Section 1.5. Finally, we describe the outline of the

thesis in Section 1.6.

1.1 Reliability-Energy Tradeoff (RET)

Consider a fleet of unmanned aerial vehicles (UAVs) that carry out a joint mission,

such as search and rescue. The fleet is obviously constrained by energy limits, and

a successful completion of the mission depends on rigorous path planning as well as

accurate on-the-fly reporting of observations by the individual UAVs. Now, if one

of the UAVs is compromised and makes false positive or true negative reports, it

may either cause premature completion of the mission or make it unnecessarily long,

possibly beyond the current energy limits of the fleet.

Hence the verification feature of DAMR systems (i.e., verifying results obtained

from robots) has to be an integral requirement in modern network-connected deploy-

ments, especially when they are safety- or mission-critical. Moreover, battery-powered

robots usually impose constraints on energy consumption that could potentially affect

the level of reliability maintained while executing functional tasks. Hence, DAMR

systems should be designed to maximize the level of confidence in task results in the

presence of cyberattacks, while reducing energy consumption to extend operational

3



A-D. Vu McMaster University – Computer Science

time.

Currently, in most DAMR systems, robots are set to use a certain level of ver-

ification at a predefined frequency. Such decisions do not account for the different

physical environments where the robots can be deployed, different time-and-space-

varying risks, and different threat/vulnerability-levels that call for different measures

for reliability. Moreover, most current robotic systems treat verification as a non-

functional property and an add-on for the main functional behavior of the robot, and

do not account for how verification decisions could affect the control path that the

robot takes.

In order to tackle this problem from a software perspective, we introduces a no-

tion of peer-verification, where different robots in the system verify the output of

each other to gain an acceptable global level of confidence. Obviously, providing

more verification results in resource consumption (e.g., energy and communication

bandwidth) at higher rates. Thus, one has to reach a balance between resource con-

sumption and the level of reliability guarantees. We propose a general-purpose model

that captures the reliability vs. energy tradeoff in DAMR systems and allows system

designers to parameterize the tradeoffs in their system. In particular, we consider a

global task dependency graph partially executed by mobile robots. Then, we aug-

ment the task graph with verification tasks. These tasks can be intermittently and

arbitrarily inserted into the computation task graph. When the robots execute more

verification tasks, a higher reliability is gained and, in turn, more energy is consumed.

Thus, our optimization objective is twofold: maximizing the number of verification

tasks executed, and (2) maximizing the number of peers partaking in these tasks. In

other words, we need to determine (1) when to schedule verification and (2) which

4
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robots should be involved such that we reach a desired global termination state while

operating under per-robot energy constraints.

To better explain the idea of optimal peer-verification, consider a multi-UAV

search and rescue application. Let us assume that searching each grid cell is a com-

putation task and UAVs in same cells can verify observations of their peers (i.e., doing

peer-verifications). Figure 1.1a shows a 4× 4 grid area divided to four separate areas

and each UAV operates in one of the independent areas with no peer-verification. In

this scenario, each UAV has to do four tasks, and the total number of tasks is 16. On

the contrary, in Figure 1.1b, extreme verification is enforced by flying two UAVs over

each grid cell at all times in two different altitudes. That is, one UAV always verifies

the observations of the other one. In this case, the number of tasks done by each UAV

is eight, and the total number of tasks is 32. Now, let assume that each all UAVs

have equal energy bound, and each is able to do at most six (computation and veri-

fication) tasks. This new assumption makes the extreme scenario (i.e., Figure 1.1b)

impossible. Figure 1.1c illustrates one of the best plans in which we can have four

verification tasks (which is the maximum number of verification tasks that the system

can provide, given the UAVs’ energy capacity.) In this scenario, UAV 1 (red) and

2 (blue) cover cells 1 – 4 and 5 – 8, respectively, and perform peer-verifications at

cells 2 and 8. Likewise, UAV 3 (black) and 4 (green) cover cells 9 – 12 and 13 – 16,

respectively, and perform peer-verifications at cells 10 and 15. The total number of

tasks done by the four UAVs is 24, and each UAV executes six tasks.
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Figure 1.1: Three peer-verification scenarios in a multi-UAV network.
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1.2 Optimal Recharging

The impressive advances in theory, design, and deployment of mobile robots and

autonomous vehicles in the past decade have brought a wide range of DAMR ap-

plications. Delivery companies (DHL International GmbH, 2016; McFarland, 2016;

Amazon.com, Inc., 2016; Gatteschi et al., 2015; Wing LLC, 2019), the New York City

Police Department (NYPD) (Simon, 2018), military units, agriculture companies,

border patrol agencies, etc, now employ DAMR to accomplish various tasks faster

and more efficient than humans. However, a shortcoming of DAMR that live on bat-

teries is their severe energy limits. For example, the battery life of state-of-the-art

operating UAVs does not go beyond 20 minutes on average. This energy constraint

seriously limits the scope of projects and applications that battery-based UAVs can

achieve. Furthermore, given the relatively slow progress and lack of breakthroughs

in the lithium battery technology, we are in pressing need to design other ways and

means to solve the energy restrictions of mobile robots.

One of the plausible approaches proposed to address the energy problem in the

context of smart cities is to build infrastructure that hosts charging stations, where

operating mobile robots can recharge their batteries when needed. In the case where

a team of robots carry out a joint mission, the underlying research problem can be

formulated as a variant of the well-known vehicle routing problem (VRP) (Dantzig

and Ramser, 1959). VRP is an NP-complete combinatorial optimization problem

and is generally concerned with the optimal design of routes by a fleet of vehicles to

service a set of customers by minimizing the overall cost, usually the travel distance

or energy for the whole set of routes in a weighted directed graph. Although VRP is

a widely studied problem, we are only aware of little previous work on VRP, in which
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the input graph is augmented with charging stations. Moreover, this line of work

lacks the combination of the three key features that need to be addressed to realize

sustainable teams of mobile robots in practice: (1) incomplete route graph, (2) multi-

objective (i.e., time and energy) optimization, and (3) interaction with a dynamic

environment. Specifically, the work in (Conrad and Figliozzi, 2011) allows vehicles to

recharge at customer locations instead of designated charging stations, which is an

over-simplification in a real infrastructure. Green VRP (GVRP) (Erdoğan and Miller-

Hooks, 2012) and electric VRP (EVRP) (Schneider et al., 2014) introduce charging

stations, where vehicles can visit multiple times, but their solutions require to know

the number of visits to each stations in advance to eliminate subtours. This is also

not practical. The variant of VRP with the aforementioned three conditions poses

significant new challenges that to our knowledge have not yet been addressed.

With this motivation, we propose an approach to extend the operational time

of teams of battery-powered robots by employing charging stations provided by the

infrastructure. Our problem setting consists of (1) a team of heterogeneous mobile

robots that have different energy limits and can carry out different types of tasks,

and (2) a directed connected graph, where the nodes are either a set of goals (or

customers) that the team should visit and service a task, or charging stations. We

assume that all robots have access to the graph. Since recharging at a charging

station takes considerable time, our goal is to design a routing plan that minimizes

both energy and time use to complete all the tasks in all nodes, including the time

spent for recharging.

Although our problem presented in Chapter 4 could alternatively be cast as a

variant of the VRP, it has four distinctive features: (1) our route graph is incomplete,

8
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(2) the vehicles are heterogeneous, (3) the number of times that vehicles visit inter-

mediate nodes and charging stations is not required, (4) and the customers of each

vehicle can be reassigned due to the changes of physical environment. To the best of

our knowledge, we are the first to consider this version of the problem.

1.3 Optimal Path Planning with the Presence of

Disturbances

Another critical challenge in designing a DAMR system is to take into account changes

in the physical environment in which robots are deployed. For example, wind velocity

and direction vary over time, which may not conform with the initial assumption, and

possibly cause UAVs to spend more energy and time to follow the pre-computed opti-

mal plans. Although there is a large body of work on the problem (e.g., (Bezzo et al.,

2016; Morbidi et al., 2016; Zeng and Zhang, 2017)), most of the existing approaches

are from perspectives of system control and avionic, which target to specific types of

robots and are difficult to adjust to different types of DAMR. Moreover, there is a

lack of work studying the problem from a software perspective.

Path planning problem for DAMR systems has been studied from a software

perspective. One of the plausible approaches is to solve extensions of the original

VRP which may or may not consider the presence of stationary or mobile obstacles

in the working space (e.g., (Krishnan et al., 2017; Pavone et al., 2010; Bullo et al.,

2011)). In this line of research, the authors utilize fixed cost functions essentially

abstracting away the impact of physical disturbances, which, in reality, can have a

profound impact on the local and global energy efficiency of robots.
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To address this from a software perspective, we first propose to utilize Gaussian

Process and Polynomial Regression to model changes in the physical environment

and energy consumption, respectively. Then, we formulate the optimal path planning

in the presence of disturbances (OPPD) problem, which consists of two fundamental

interrelated problems: energy consumption prediction based on disturbances, and

path planning.

1.4 Related Work

1.4.1 Reliability of Cyber Physical Systems (CPS)

As our DAMR systems considered in this thesis can be viewed as CPS, we focus on

work in increasing the reliability of CPS which has been an increasingly important

topic in the last several years. The work in (Cardenas et al., 2009; Sha et al., 2008;

Humayed et al., 2017) gives insight into the type of attacks that CPS will be sub-

ject to. In order to improve the reliability of CPS, most of the controls discussed

in the literature focus on adapting state-of-the-art security techniques to fit within

CPS constraints. The work in (Mitchell and Chen, 2014) covers time critical in-

trusion detection mechanisms usable in a CPS setting. The work in (Fovino et al.,

2009) focuses on proposing security-aware alternatives to traditional CPS insecure

communication. Out of band authentication was introduced in the scope of medical

devices (Rushanan et al., 2014). The work in (Escherich et al., 2009; Wolf and Gen-

drullis, 2011) introduces hardware-based cryptography solutions specifically designed

for smart cars.

One approach relative to the work in this thesis is frequently adding message

10
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authentication codes (MACs) to results obtained by systems. The work in (Lesi

et al., 2017; Jovanov and Pajic, 2019, 2017) targets the problem of determining when

to inject cryptographic checks without interfering with control tasks; they propose

an approach that tries to maximize reliability checks while maintaining a predefined

level of control quality. Similarly, the work in (Xia et al., 2008) proposes a feedback

scheduling technique for maintaining network QoS in wireless sensor networks.

Comparison to our work. The primary difference between our RET problem,

presented in Chapter 3, from work mentioned above is that we tackle the problem

from a scheduling perspective. That is, we consider the verification feature of CPS as

optional verification tasks (having robots verify results of one another), incorporate

them within the existing task graph, and manage to assign all compulsory tasks and

as many optional verification tasks as possible to robots under energy constraints.

This approach is more flexible than the existing ones because the reliability level of

the system (i.e., the number of executed verification tasks and the number of peers

partaking these tasks) is determined at the deployment time and adjusted regarding

the physical environment where robots are deployed.

1.4.2 Task Scheduling

One of the major challenges in the RET problem proposed in this thesis is concerned

with the optimal schedule of tasks for the team of robots such that they can finish

all computation tasks, which are compulsory, and execute as many as possible of the

optional verification tasks. In other words, if the computation and verification tasks

are simply viewed as compulsory and optional ones, respectively, then the problem

can be reduced to the task scheduling problem, in parallel and distributed computing

11
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systems. That is, given such a system, a set of dependent or independent tasks and a

set of constraints, the ultimate goal of the problem is to find the assignment of tasks

to processors that will let the system complete the tasks and satisfy all the constraints

in the shortest time. The problem is shown to be NP-complete in (El-Rewini et al.,

1995). The work in (Wu et al., 2004; Wu and Gajski, 1990; Ahmad and Kwok,

1998) considers homogeneous parallel and distributed systems (i.e., the processors are

identical) and proposes various heuristic algorithms to solve the problem. It becomes

more challenge if the systems are heterogeneous (i.e., they have various processors.)

Therefore, the authors in (Wang et al., 1997; Kwok and Ahmad, 1996; Sih and Lee,

1993; El-Rewini and Lewis, 1990; Kruatrachue and Lewis, 1988; Hwang et al., 1989)

propose two-phase heuristic algorithms to solve the problem for such systems. First,

tasks are ordered and selected based on their priorities. Then the ordered tasks are

allotted to the most suitable processor to minimize the execution time.

Comparison to our work. A shortcoming of the aforementioned work is not to

take into account the cost of transition between the given tasks. For example, there

are two tasks t1 and t2, and t2 needs the results from t1. This means, t2 can only be

started when t1 is done, and it takes time to transfer data from the processor doing t1

to the one executing t2 if the tasks are run on two different processors. This cost will

be negligible if the system under scrutiny is not very large (e.g., multiple processors

within a single server, multiple servers within a local network.) Otherwise, it will be

significant, especially when the processors are geographically distant and connected

by a wide area network. To rigorously address this, in our RET problem, we consider

both execution and transition costs.

Additionally, the major goal of our RET problem is to increase the sanity of the

12
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system under energy constraints. That is, our optimization is not to minimize the

global cost to finish all the given tasks but to maximize the number of verification

tasks as well as peer-verification while remaining in the system energy bounds.

1.4.3 Mobile Robots Planning

There is an extensive line of work on the paths and trajectories planning problem

for multiple mobile robots in both centralized and decentralized manners. Regarding

to the former approach, the work in (Erdmann and Lozano-Perez, 1987; Saha et al.,

2014, 2016; Van Den Berg and Overmars, 2005) proposes a solution requiring a central

server to compute the collision-free trajectories for a fleet of homogeneous robots

with the presence of stationary obstacles in the workspace. The work in (Kim et al.,

2013; Kim and Morrison, 2014; Song et al., 2014a,b) introduces a new variant of the

problem in which mobile robots can visits charging station to recharges their batteries

in order to extend their operational time and pursuit long-term task. However, the

authors require that each task must be split-able into smaller jobs, which is not always

achievable.

There is also a line of research addressing the problem in a decentralized manner.

The authors in (Turpin et al., 2014) propose two different algorithms to solve the

problem in both centralized and distributed manners. However, the decentralized

version requires that the number of task must be equal to the number of robots and

there does not exist any obstacle in the working environment. Although the work

in (Cáp et al., 2013; Guo and Parker, 2002; Velagapudi et al., 2010) proposes only

decentralized solutions, the algorithms allow the presence of stationary obstacle in

the environment under scrutiny. The work in (Desai et al., 2017; Zimmerman, 2013;
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Lin and Mitra, 2015) provides provably correct distributed path planning for mobile

robots.

Comparison to our work. In our work, we propose a novel formulation of a task

assignment and path planning problem for a team of heterogeneous robots that aims

at optimizing energy consumption as well as the time needed to complete the tasks

under energy limitations. Moreover, in Chapter 4 and 5, we assume that our working

environment can be modeled by a connected but not complete graph whose nodes are

customers, where the robots have to arrive to do some tasks, or charging stations,

where they can recharge their batteries, and arcs denote the possibility of traveling

recharging. With this assumption, our proposed system is more practical and easily

applied to real-world scenarios.

1.4.4 Path Planning

One of the major challenges in our research is concerned with the optimal design of

paths used by the fleet of the robots to perform their tasks located different locations.

This problem can be reduced to the Traveling Salesman Problem (TSP) that aims

to find the cheapest route for a salesman so that he can visit all his customers, and

return home (aka. the depot.) The TSP is one of the most studied combinatorial

optimization problems and has many variants. In the scope of this thesis, we focus

on two specific variants:

• Multiple TSP (mTSP). In this variant, there are multiple identical salesmen,

and the goal is to find the routes for them to minimize the global traveling

cost. Applications of the problem in DAMR can be found in (Hartuv et al.,
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2018; Park and Morrison, 2014) in which the authors design a set of routes for

a team of homogeneous UAVs to monitor different parts of an area. Moreover,

the route for each UAV must not exceed the energy bound of the UAV.

• TSP for road network (R-TSP). Although this variant considers only a single

salesman, the transitional capability between his customers is modeled by a

sparse (connected but incomplete) graph. That is, there may not be a direct

connection between a pair of customers, and the salesman inevitably visits one

or more intermediate places while going from one to the other. This problem

was first introduced in (Fleischmann, 1985) and (Cornuéjols et al., 1985). The

work in (Letchford et al., 2013) and (Interian and Ribeiro, 2017) proposes a

polynominal size mixed integer linear programming formulation of the problem

and a heuristic algorithm, respectively.

Another approach to solving the path planning problem is to reduce it to the

VRP (Dantzig and Ramser, 1959). The problem takes as input a set of vehicles and

a set of customers who need to be serviced by the vehicles, and the goal is to design

routes for the vehicles such that all the customers are serviced, and the global cost is

minimized. The VRP is also one of the extensively studied combinatorial optimization

problems. A survey of the problem and its variants can be found in (Kumar and

Panneerselvam, 2012). However, the literature on the problem with charging stations

is still relatively thin. The work in (Conrad and Figliozzi, 2011), to the best of our

knowledge, was the first to consider a variant of VRP in which vehicles are allowed

to optionally recharge at customer locations. Due to the fact that (1) the problem is

modeled by a complete graph, (2) each customer is visited once, and (3) vehicles can

be recharged at any customers, the solution of the problem does not contain any cycle
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(so it is relatively easier to solve than ours.) Erdogan and Miller-Hooks (Erdoğan and

Miller-Hooks, 2012) propose the green VRP (G-VRP) in which vehicles run on fuel

and can be refueled at fuel stations (i.e., charging stations). Although the problem,

similar to other variants of VRP, is modeled by a complete graph, each fuel station

may be visited more than once or not at all. This means that routes assigned to

the vehicles may have cycles, but the authors require to know the number of times

nf that each fuel station vf is visited in advance. Unfortunately, determining nf ’s is

not trivial because they should be set as small as possible to reduce the network size

but large enough not to restrict multiple beneficial visits. The work in (Schneider

et al., 2014) proposes Electric VRP (EVRP) which is an extension of G-VRP focusing

on electric vehicles (EVs) and with time windows (i.e., customers must be serviced

within a given time interval.) The authors also require to know the number of times

that a charging station is visited to eliminate subtours.

Comparison to our work. Our work also tackles the path planning problem, but

our problem differs from the aforementioned problems in the following two aspects:

• In Chapter 4, our OR problem is a generalization of the aforementioned prob-

lems. That is, our OR problem aims to design a set of optimal routes for

multiple heterogeneous vehicles in a sparse (i.e., connected but not complete)

graph. Additionally, our vehicles have limited traveling resource (i.e., energy)

which can be replenished at some specific nodes (i.e., charging station.) More-

over, our proposed integer programming transformation and algorithms do not

require nf as input parameters (i.e., the number of times that each charging

station vf is visited).
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• In Chapter 5, our OPPD problem takes into account changes in the physical

environment which cause the traveling and service costs (i.e., energy and time)

vary over the time.

1.5 Contributions

Our research goal is to show that exclusively software-based approaches can provide

an effective energy-optimization for DAMR systems. By effective, we mean that

our systems can be actually implemented and deployed in real-world scenarios. To

this end, we study a class of DAMR systems where the team of battery-powered

and networked robots navigating in a physical environment and acting in concert to

accomplish a common goal. Our main contributions are the following:

• We introduce a notion of peer-verification, where different robots in the system

verify the output of each other to gain acceptable global confidence. Obviously,

providing more reliability results in higher energy consumption, and one has to

reach a balance between energy consumption and the level of reliability guaran-

tees. Thus, we propose a general-purpose model that captures the interactions

of the reliability vs. energy tradeoff in the DAMR systems, and allows system

designers to parameterize the tradeoffs in their systems. To the best of our

knowledge, this is the first work doing this.

• We propose an approach to extend the operational time of the DAMR by de-

ploying charging stations where the robots can come to recharge their batteries.

Moreover, we constrain the robots to follow specific routes to move from one

point to another in the a priori known working environment. Technically, the
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working environment is modeled as a directed, connected, and finite graph whose

nodes are charging stations or customers (where the robots have to come to do

some tasks), and arcs denote the possibility of traveling. We propose a novel

problem combining task assignment and path planning aiming at optimizing

energy consumption as well as the time needed to complete the tasks, including

the time spent for recharging.

• We propose an approach to plan missions for a team of robots working in the

presence of disturbances. The problem is a combination of two fundamental

interrelated problems: (1) predicting energy consumption, and (2) and path

planning for a team of robots with the presence of disturbances in their working

environment. Remind that our proposed algorithms also deal with the energy

limitation of each robot. To address the problem from a software perspective,

we propose the use of Gaussian Process and Polynomial Regression to model

disturbance dynamics and energy consumption, respectively. Moreover, we also

propose a decentralized algorithm based on negotiation to solve the problem

online.

• We fully implemented our algorithms and report results of not only simulation

but also experiments on a real network of UAVs. Moreover, we would like

to emphasize that in our experiments, when a UAV flew below another one, it

consumed 12% additional energy to resist the spiral airflow caused by the higher

UAV. These overheads are obscure and are ignored by our offline algorithms but

not our online algorithms.
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• In order to conduct the experiments, we developed a Robot Operation Sys-

tem (ROS) package (i.e., ROS application) which was executed on each UAV,

allowed UAVs to extract their location information from our motion capture

system, and let them stably fly in our lab space.

1.6 Thesis organization

This thesis consists of six chapters and tackles three different aspects of optimizing

energy for the DAMR systems:

• Chapter 1 informally describes our problems and contributions.

• In Chapter 2, the preliminary concepts related to this thesis is introduced.

• Chapter 3 formally defines the Reliability-Energy Tradeoff (RET) problem. The

problem is formulated as an integer linear program (ILP) which can be utilized

to obtain optimal solution for relatively small size problems. Thus, we also

proposes other heuristic techniques to address the practical problems in both

offline and online manners. The experimental results of our proposed algorithm

are presented at the end of the chapter.

• In Chapter 4, we formally define the Optimal Recharging (OR) problem that

aims to utilize charging stations to extend operational time of robots and formu-

lated it as a multi-objective integer programming (MIP). Additional, we propose

heuristic algorithms to solve the problem in both offline and online manners.

The experimental results of our proposed algorithm are presented at the end of

the chapter.
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• Chapter 5 tackles the path planning with the presence of disturbances which

involves both the problems of predicting energy consumption and path plan-

ning. and propose techniques to address it. In this chapter, we propose the use

of Gaussian Process, and Polynomial Regression to model disturbances dynam-

ics and energy consumption, respectively. With these tools, we formulate the

problem as a multi-graph and an ILP. We also propose heuristic algorithms to

solve the problem in both offline and online manners. The experimental results

of our proposed algorithm are presented at the end of the chapter.

• Finally, in Chapter 6, we conclude and present possible future work.
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Chapter 2

Preliminary Concepts

In this chapter, we present the preliminary concepts including our notion of verificable

task graphs.

2.1 Task Graph

To represent a set of tasks, which will be assigned and executed by the robots, and

their partial order, we utilize a directed acyclic graph (DAG). Formally,

Definition 1. A task graph is a DAG G = (V,E), where each vertex t ∈ V is a

task, and each arc (t, t′) in E specifies an order, where task t′ depends on t (that is,

task t must be finished before task t′ can be executed.)

In a task graph G = (V,E), we denote the set of predecessors (respectively, suc-

cessors) of a task t by Pt (respectively, St.) Formally,

Pt =
{
t′ | (t′, t) ∈ E

}
St =

{
t′ | (t, t′) ∈ E

}
(2.1.1)
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An entry point is a task with no incoming edges, and a termination point is a task

with no outgoing edges. For example, Figure 2.1 demonstrates a task graph of seven

tasks, where t1 and t2 are entry points, and t6 and t7 are termination points.

t1

t3

t4

t2

t5

t6

t7

Figure 2.1: Task graph.

2.2 Verificable Task Graph

We expand Definition 1 by augmenting task graphs with means for verification. We

define two equal-size sets of correlated tasks:

• Computation tasks (denoted VT = {t1, . . . , tk}) that represent the actual work

to be done. These are the tasks in Definition 1.

• Verification tasks (denoted VA = {α1, . . . , αk}) associated with computational

tasks. An verification task optionally follows the actual work and verifies the

output of a computational task.
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Definition 2. Let G = (V,E) be a task graph as defined in Definition 1. The corre-

sponding verificable task graph is a DAG G = (V , E), where

V = VT ∪ VA

is the set of all tasks. The directed edges in the graph are as follows:

• For each edge (vi, vj) ∈ E, we include an edge (ti, tj) in E to retain the depen-

dency.

• There is an edge from a computation task to its corresponding verification task.

That is,

∀ti ∈ VT : (ti, αi) ∈ E (2.2.1)

Figure 2.2 illustrates the verificable version of the task graph in Figure 2.1. As can

be seen in the figure, for every task ti, there is a corresponding verification task αi.

The dashed arrows represent the edges from computation tasks to their corresponding

verification tasks.

2.2.1 Route graph

In real-world environments, an autonomous mobile robot (such as a self-driving car)

is not always possible to move directly from one place to another but has to follow

specific paths (or streets) and inevitably visit one or more intermediate places (cities)
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t1

t3

t4

t2

t5

t6

t7

α1

α2

α3

α4

α5

α6

α7

Computation

task
Verification task

Figure 2.2: The verificable task graph of the task graph in Figure 2.1.

before reaching its destination. In an effort to mimic the original environment, we

employ a directed, connected, and finite graph named route graph. Formally,

Definition 3. A route graph is a directed, connected, and finite graph G = (V,E),

where:

• V = {v0} ∪ VC ∪ VB is the set of all vertices, where v0 is the depot, VC is the

set of customers where a robot have to come to do a task, and VB is the set of

(battery) charging stations where a robot can come to recharge its battery, such

that v0 6∈ VC ∪ VB, and VC ∩ VB = ∅ (i.e., each vertex can play only a single

role, being either the depot, a customer, or a charging station.)

• E is a set of arcs, where an arc (v, v′) ∈ E denotes the possibility of traveling

from node v to v′.

24



A-D. Vu McMaster University – Computer Science

Figure 2.3 illustrates an example of a route graph. For simplicity, we utilize an

undirected edge (v, v′) to replace two arcs (v, v′) and (v′, v). As can be seen in the

figure, (1) the graph is connected but incomplete, (2) the depot v0 locates at the

bottom left of the graph, (3) and there are six customers (i.e., c1, c2, c3, c4, c5, and c6)

and two charging stations (i.e., b1 and b2).

v0

c1 c2 c3

c4c5c6

b1

b2

Depot Customer
Charging

station

Figure 2.3: route graph

2.3 Execution unit

We view each robot as an execution unit that is able to execute the tasks and is

constrained by its energy capacity. For example, UAVs are able to perform certain

tasks within their energy limits and they consume some minimal energy when they

are idle.

Definition 4. An execution unit u = 〈Au,Bu, Iu〉 is a tuple of three elements:

• The affinity set Au is a set of tasks that u is allowed to execute;
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• Energy bound Bu is a non-negative real number indicating the upper bound on

the energy of u;

• Idle energy consumption rate Iu is a non-negative real number indicating the

amount of energy consumed every second when the execution unit is idle, i.e.

not executing any task.

We denote the set of all execution units by U. An execution unit consumes time

and energy when executing a task. There is also cost associated with transitioning

from one task to another. For instance, in the case of UAVs, there may be geographical

separation between tasks and so the order of tasks determines the flight distance and

consequently the required amount of time and energy to execute the tasks.
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Chapter 3

Reliability-Energy Tradeoff

In this chapter, we deal with the RET problem which aims to control energy con-

sumption in order to improve reliability of our DAMR systems (a brief introduction

of the problem was presented in Section 1.1). To this end, we first formalize the

problem as a task scheduling problem. Unlike existing task scheduling problems, our

task graph, called verificable task graph (see Section 2.2), contains not only compul-

sory computation tasks but also optional verification task. Then, in order to find

optimal peer-verification strategies, in which all compulsory tasks and as many as

possible of optional verification tasks are executed, we investigate four offline and

online techniques:

• First, we propose an offline optimization method that produces a schedule of

computation tasks intermittent with verification tasks. This method is based on

transforming our problem into integer linear programming (ILP). This technique

produces the optimal result, though is limited to small problem sizes.
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• Next, we introduce two scalable offline algorithms that find sub-optimal solu-

tions. The first algorithm is a non-trivial greedy technique, where execution

units run and authenticate the tasks with the least energy requirements. To

ensure that we complete all mandatory tasks in the graph, the algorithm checks

to see if there is sufficient energy to execute all remaining computation tasks

(which are compulsory) without verification. At the cutoff point, the algorithm

will abandon verification and execute all remaining computation tasks only.

We also propose a genetic algorithm that generates a random population (i.e.,

sequence of task executions). The population is then evolved by mating, mu-

tating, selecting its individuals. Upon reaching the terminating condition, the

best individual in the population is selected as the final solution to the problem.

• Since physical environments inherently bring uncertainties in our DAMR sys-

tems, offline solutions are often not able to react properly to new energy and/or

reliability conditions on the ground. Thus, we propose an online algorithm that

schedules tasks dynamically according to current energy limits of execution units

by using backtracking to the last feasible step and resolving the optimization

problem.

We have fully implemented our algorithms and report results of simulation as well

as experiments on a real network of UAVs. Our simulations show that our genetic

algorithm consistently outperforms the greedy algorithm in terms of executing more

verification tasks and better utilizing the remaining energy of execution units, while

the ILP-based technique clearly finds the optimal solutions. We also develop a proof

of concept by deploying our algorithms in a real network of UAVs that carry out

a joint search mission. We also present the results of experiments for our online
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algorithm in a scenario, where UAVs consume more energy than predicted, and how

the algorithm successfully navigates them to complete their mission within their real

limits, while maintaining the best reliability.

The rest of this chapter is organized as follows. Section 3.1 is to introduce the

formal statement of the RET problem. Next, in Section 3.2, we transform our problem

into ILP. Then, in Sections 3.3, 3.4, and 3.5 we present our greedy, genetic, and online

algorithms, respectively. Finally, we report our simulation and experimental results

in Section 3.6

3.1 Problem Statement

In this section, we formally state our RET problem. To this end, we start by consid-

ering costs of an execution unit, and then identify constraints and objectives of the

problem.

3.1.1 Cost Functions

To determine the costs of an execution unit u ∈ U executing tasks in an verificable

task graph G, we define the following cost functions:

• Execution cost ξ : U× V → R2
≥0 maps an execution unit u and a (computation

or verification) task v to a pair of real numbers (τ, ε), where τ and ε are the

amount of time and energy consumed by the unit executing v.

• Transition cost T : U× V2 → R2
≥0 is a function that maps an execution unit u

and a pair of tasks v, v′ to a pair of real numbers (τ, ε), where τ and ε are the

amount of time and energy consumed by the unit transitioning from v to v′.
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3.1.2 Schedule

A schedule S is a function that determines which execution units run a task and when

they start executing it. It is defined as follows:

S : V → 2U × R≥0

Thus, S maps a task in the set of vertices V in verificable graph G to a set of execution

units U and a start time s ∈ R≥0.

Note that the schedule allows assigning a task to multiple execution units and

only one start time. The purpose of this is to support verification tasks. An verifi-

cation task is performed by two or more units concurrently. This allows us to model

communication as part of the peer-verification process such as key exchange. That is,

peer-verification should take place at the same time among peers. It also allows us to

model corroboration of a task output such as partial replication of the computation

or verification of digests. A computation task on the other hand can only be executed

by one execution unit. We enforce these constraints in the next subsection.

An assignment pSu is the ordered sequence of tasks executed by u as determined

in schedule S. It is defined as pSu = (υ0, υ1, · · · ) such that

∀υ ∈ pSu : u ∈ S(υi).U

∀υi, υi+1 ∈ pSu : S(υi).s < S(υi+1).s

(3.1.1)

where υi ∈ V , and S(υ).U and S(υ).s denote the set of units and start time mapped

to υ.
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Given an verificable task graph G = (V , E) and a set of execution units U. The

goal of the RET problem is to design a schedule S whose constraints and objectives

are as follows:

3.1.3 Problem Constraints and Optimization Objectives

Dependency. A schedule obeys the dependency encoded in G, such that the follow-

ing holds:

∀(v, v′) ∈ E : S(v′).s ≥ S(v).s+ max{ξ(u, v).τ |u ∈ S(v).U} (3.1.2)

That is, for every pair of tasks v and v′, where v′ depends on v, the start time

of v′ is greater or equal to the termination time of v. The termination time of v is

calculated as the start time of v plus the execution time of v spent by its assigned

execution unit as determined by the schedule.

Transition time. A schedule assigning a sequence of tasks to an execution unit

must account for the transition time:

∀u ∈ U :∀(υi, υi+1) ∈ pSu :

S(υi+1).s ≥ S(υi).s+ ξ(u, υi).τ + T (u, υi, υi+1).τ (3.1.3)

Affinity. Every task is run by an execution unit allowed to run the task as determined

by its affinity set Au:

∀v ∈ V : v ∈ AS(v).U (3.1.4)

where AS(v).u is the affinity set of the execution unit assigned to run v as determined
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by the schedule S.

Completion. All computation tasks must be executed exactly once.

∀t ∈ T : |S(t).U | = 1 (3.1.5)

Energy bound. Each execution unit should obey its energy bound. That is, for every

execution unit, the total amount of energy consumed while executing an assignment

is less than or equal to its bound. First, note that an execution unit can also be idle

between tasks. For an assignment pSu , let ι(pSu , i) denote the idle time spent before

executing the ith task in the assignment:

ι(pSu , i) = S(υi).s− S(υi−1).s− ξ(u, υi−1).τ − T (u, υi−1, υi).τ (3.1.6)

Thus, the following constraint enforces that an execution unit obeys its energy bound:

∀u :

|pSu |−1∑
i=0

ξ(u, υi).ε+ T (u, υi, υi+1).ε+ Iu(ι(pSu , i+ 1)) ≤ Bu (3.1.7)

Peer verification. As mentioned earlier, an verification task is performed by two

or more units concurrently. First, we enforce that two or more units participate in

every verification task as follows:

∀α ∈ A : |S(α).U | = 0 ∨ |S(α).U | ≥ 2 (3.1.8)

That is, if an verification task is ever executed, it must be executed by at least two

peers. Second, we enforce that one of the execution units participating in verification

is the unit that performed the respective computation task. This allows us to model
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verification that depends on the task’s output, which is expected when corroborating

the output or reaching consensus:

∀αi ∈
{
α | |S(α).U | 6= 0

}
: S(ti).U ⊂ S(αi).U (3.1.9)

where ti is the respective computation task of αi. That is, for all verification tasks

that were executed per the schedule, the set of execution units that executed their

respective computation tasks (which is only one unit as per Constraint (3.1.5)) is a

subset of the verification peers.

3.1.4 Optimization Objectives

More verification tasks implies higher confidence in task results. Our optimization

objective is twofold:

• Maximize verifications. Our first objective is to maximize the number of verifi-

cation tasks executed by any execution unit. That is:

max
∣∣∣{α ∣∣ |S(α).U | 6= 0

}∣∣∣ (3.1.10)

In this formula, every verification task is counted once regardless of how many

peers participated in verification.

• Maximize peers. A higher number of peers participating in verification also

increases confidence and resilience to attacks. Thus, our second objective is to
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maximize the average number of peers per verification task:

max

∑
α∈A |S(α).U |∣∣∣{α ∣∣ |S(α).U | 6= 0

}∣∣∣ (3.1.11)

3.2 Integer Linear Program Transformation

As the first step to solve the optimization problem presented in Section 3.1, we trans-

form it into a ILP.

3.2.1 Decision Variables

Let G = (V , E) be an verificable task graph, T be the cost function, and U be the set

of all execution units. The following are decision variables in our ILP instance:

• xui ∈ {0, 1} indicates whether an execution unit u ∈ U executes task i, where

i ∈ V .

• yi ∈ {0, 1} indicates whether multiple execution units execute verification task

i, where i ∈ VA.

• xuij ∈ {0, 1} indicates whether an execution unit u ∈ U transitions from task i

to j, where i, j ∈ V .

• si ∈ R≥0 is the start time of task i, for i ∈ V . Note that since there is only one

start time for each task, if an verification task is executed by multiple units, it

will be executed concurrently.

• fu ∈ R≥0 indicates the time when execution unit u ∈ U finishes the last task in

its assignment, for i ∈ V .
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• lu ∈ R≥0 indicates the total amount of idle time spent by execution unit u ∈ U

when processing its assignment.

3.2.2 Constraints

This subsection details the constraints of the ILP instance based on the ones identified

in Section 3.1.3.

Affinity. An execution unit can only execute tasks in its affinity set:

∑
i 6∈Au

xui = 0 for all u ∈ U (3.2.1)

Completion. Every computation task in the graph must be executed once:

∑
u∈U

xui = 1 for all i ∈ VT (3.2.2)

Dependency. First, we assume a dummy task ds which is utilized to connect all

entry points in G. Formally,

∀v ∈ {v | |Pv| = 0} : (ds, v) ∈ E ′ ∧
∑
u∈U

T (u, ds, v) = (0, 0)

where E ′ ⊃ E . Moreover, every execution unit has to initially execute ds with no time

or energy cost. That is,

sds = 0

xuds = 1 for all u ∈ U

ξ(u, ds).τ = ξ(u, ds).ε = 0 for all u ∈ U
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Now we constrain a task’s start time to enforce dependency:

sj ≥ si +
∑
u

xui × ξ(u, i).τ for all (i, j) ∈ E ′

Consecutiveness. We constrain that an assignment is a consecutive sequence which

starts from ds, goes through adjacent tasks and does not return to ds. That is,

∑
j∈V

xudsj = 1 for all u ∈ U

0 ≤
∑

i∈V∪{ds}

xuij −
∑
k∈V

xujk ≤ 1 for all u ∈ U, j ∈ V

∑
i∈V

xuids = 0 for all u ∈ U

Transition time. Next, we ensure that the start time of tasks accounts for the

transition time from the previous task:

sj ≥M(xuij − 1) + si + xuij×((ξ(u, i).τ + T (u, i, j).τ)

for all i, j ∈ V , u ∈ U (3.2.3)

where M is a large constant (larger than maximum possible start time) to cancel the

constraint if unit u does not execute i then j.

Energy bound. Every execution unit honors its energy bound. To constrain energy

consumption, we first add constraints to bound the finish time of execution units:

fu ≥M(xui − 1) + si + ξ(u, i).τ for all u ∈ U, i ∈ V (3.2.4)
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Thus, fu is greater than or equal to the finish time of the last task that execution

unit u runs. Next, lu is the idle time spent by unit u:

lu = fu −
∑
i∈V

xui × ξ(u, i).τ −
∑

(i,j)∈V2

xuij × T (u, i, j).τ

Finally, we constrain the energy consumption of execution unit u as follows:

∑
i∈V

xui × ξ(u, i).ε+
∑

(i,j)∈V2

xuij × T (u, i, j).ε+ lu × Iu ≤ Bu

for all u ∈ U

Peer Verification. An verification task must be executed by two or more execution

units.

∑
u∈U

xui ≤ 0 + yiM

∑
u∈U

xui ≥ 2 + (yi − 1)M

for all i ∈ A (3.2.5)

where M > |U|.

Verification after computation. An verification task must follow its respective

computation task in order to verify the output of the computation. Essentially, we

want to ensure that the arc from a computation task to its respective verification task

in the verificable graph is visited by a unit participating in the verification.

∑
u∈U

xuij ≥ yj for all (i, j) ∈ E ∧ j ∈ VA (3.2.6)
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3.2.3 Objective Functions

As mentioned in Subsection 3.1.4, our problem requires optimizing multiple objec-

tives. First of all, our main objective is to maximize the number of executed verifica-

tion tasks, regardless of the number of units participating in verification. Hence, our

first objective is as follows:

max
∑
i∈VA

yi (3.2.7)

Upon solving the ILP given Objective (3.2.7), we add a constraint as follows:

∑
i∈VA

yi = M (3.2.8)

where M is the solution of the ILP with Objective (3.2.7). Based on the new con-

straint, we set the objective of the new ILP to the following:

max
∑
u∈U

∑
i∈VA

xui (3.2.9)

Thus, the new ILP maximizes the number of participants in verification tasks given

the number of executed verification tasks is M.

3.3 Greedy Algorithm

In this section, we introduce our greedy algorithm ( Algorithm 1). The greedy choice

in the algorithm is running and authenticating the tasks with the least energy re-

quirements. To ensure that we complete all tasks in the graph, the algorithm checks
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to see if there is available energy to execute all remaining computation tasks without

verification. At the cutoff point, the greedy algorithm will abandon verification and

execute all remaining computation tasks only.

Our algorithm implements the Nearest Neighbor Heuristic (NNH) (i.e., computa-

tion tasks are sequentially chosen according to their energy requirements) to check

whether there are feasible assignments to execution units that result in the comple-

tion of all remaining tasks. It takes as input an verificable task graph G, a set of

execution units U, and the partially built assignments to the units Λ̃. The algorithm

works as follows:

1. Determine the set of available computation tasks T̄ (i.e., the set of computa-

tion tasks that have not been executed, and whose all predecessors have been

completed) (Line 1).

2. Utilize a loop to sequentially extend the assignment of each unit (Lines 2 -14).

At each iteration,

(a) choose the cheapest task to execute (Line 8)

(b) if the unit has enough energy to do the task, append the task to the end of

the unit’s assignment (Line 10) which potentially unlock other tasks that

were waiting for their precedents to complete. These tasks can now be

added to T̄ (Line12)

(c) otherwise, switch to the next execution unit (Line 14).

3. If at the end of the loop there are still unexecuted tasks, this indicates a failure

to explore the graph with the available energy. Otherwise, succeed.

39



A-D. Vu McMaster University – Computer Science

Algorithm 1: GreedilyExplore

Input: G = (V , E), U, Λ̃
Output: True or False

1 T̄ ← set of available computation tasks derived from Λ̃
2 foreach u ∈ U do
3 finished ← False
4 Eu

T̄
← ∅

5 while finished = False do
6 tu ← the last task in Λ[u]
7 Eu

T̄
[t]← T (u, tu, t).ε+ ξ(u, t).ε∀t ∈ T̄

8 t← argmin(Eu
T̄

)
9 if remaining energy of u ≥ Eu

T̄
[t] then

10 insert t into the end of Λ[u]
11 remove t from T̄
12 put new available computation tasks into T̄

13 else
14 finished ← True

15 if T̄ 6= ∅ then
16 return False

17 return True

Next, we introduce Algorithm 2, which is the main algorithm that greedily max-

imizes the number of M -peered verification tasks, where M ≥ 2 is an input. The

algorithm works as follows:

1. Initialize the assignments of execution units with ds (Line 1). Recall that ds is

the dummy start task introduced in Section 3.2.

2. Initialize the set of available tasks, T̄ , with the set of entry points in the given

G (Line 2.)

3. Utilize NNH to pick the cheapest computation task t for an execution unit

(Line 9), which is similar to what is done in Algorithm 1.
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4. Greedily pick the cheapest peer to participate in the verification of t (Line 19).

Check whether there are feasible assignments to the remaining tasks using Al-

gorithm 1 (Line 21): If there is enough energy, we commit the peer (Line 22),

update the assignments (Line 23), and try to add another peer. If there are no

more peers to add or we have reached the maximum number of peers, go back

to step 3.

3.4 Genetic Algorithm

A genetic algorithm (GA) requires a solution to the problem to be encoded by a string

(aka. chromosome, gene or individual), and a set of chromosomes is referred to as

a population. At initialization, a population is generated by some random method.

Throughout the time, the population is evolved by mating, mutating, selecting its

individuals. Upon reaching the terminating condition, the best individual in the

population is selected as the final solution to the problem.

In this section, we present our proposed genetic algorithm (GA). The challenge

in designing a GA to solve our problem is twofold: (1) verification tasks not only are

optional but also require two or more execution units to start executing concurrently,

and (2) the problem has two competing objectives which significantly reduce the con-

vergence rate. To address these challenges, we first utilize a 3-part-string chromosome

to encode a solution and propose the corresponding mating, mutating and selecting

methods.
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Algorithm 2: GreedilyVerification

Input: G = (V , E), U, M
Output: Λ /* The set of assignments */

1 Λ[u] = {ds}, for u ∈ U
2 T̄ ← set of entry points in G
3 while T̄ 6= ∅ do
4 foreach u ∈ U do
5 tu ← the last task in Λ[u]
6 ET̄ [t]← T (u, tu, t).ε+ ξ(u, t).ε, for t ∈ T̄
7 t← argmin(ET̄ )
8 if remaining energy of u ≥ min(ET̄ ) then
9 insert t to the end of Λ[u]

10 remove t from T̄
11 put new available computation tasks into T̄
12 break

13 αt ← the respective verification task of t
14 p← {u}
15 Λ̃← Λ

16 append αt to the end of Λ̃[u]
17 while |p| < M do
18 Eαt [u

′]← energy required by u′ to participate in the verification, for
u′ ∈ U \ p

19 up ← argmin(Eαt)

20 append αt to the end of Λ̃[up]

21 if GreedilyExplore(G,U, Λ̃) = True then
22 append up to p

23 Λ← Λ̃

24 else
25 break

26 return Λ
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3.4.1 Representation of Solution

Each chromosome consists of:

• The Selected Verification Tasks (SVT ) string contains |U| substrings. Each

denoted by SVT u, for each u ∈ U, is a binary vector of length |VA|, such that

SVT u(i) = 1 indicates that execution unit u participates in verification task αi.

• The Computation Task Assignment (CTA) string is a vector of length |VT |, such

that CTA(i) = j, where 0 ≤ i ≤ |VT |, and 0 ≤ j ≤ |U |; i.e., computation task

ti is assigned to unit uj.

• The Schedule String (SS ) is a vector of length |V|, such that SS (i) = (t, st),

where 0 ≤ i ≤ |V|, t ∈ V , and st is the start time of task t. Moreover, the vector

is also a topological sort (Cormen et al., 2009) of the verificable graph (i.e., the

total ordering of tasks in the vector satisfies the precedence constraints.)

A chromosome is represented by a tuple 〈SVT ,CTA, SS 〉. Figure 3.1 illustrates a

chromosome for the verificable task graph in Figure 2.2 and 2 execution units. For

simplicity, we only show tasks in SS and omit their start times. In this example, (1)

only verification tasks α1, α4, and α6, are selected to be done by both execution units;

(2) computation tasks t2, t4, and t7 are assigned to execution unit u2 while the others

are assigned to u1; and (3) the assignments for u1 and u2 are

λ1 = (t1, st1)(α1, sα1)(t3, st3)(α4, sα4)(t5, st5)(t6, st6)(α6, sα6)

λ2 = (α1, sα1)(t2, st2)(t4, st4)(α4, sα4)(α6, sα6)(t7, st7)
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SVT 1 SVT 2

SVT 1 0 0 1 0 1 0 1 0 0 1 0 1 0

CTA 1 2 1 2 1 1 2

SS t1 α1 t3 α3 t2 t4 α4 t5 α5 t6 α6 t7 α2 α7

Figure 3.1: A sample chromosome.

3.4.2 Generation of Initial Population

Each part of a chromosome in the initial population is randomly generated as follows:

• SVT. First, a random binary string of length |VA| is generated for each execu-

tion unit u ∈ U. Recall that SVT u(i) = 1 means that execution unit u partakes

in verification task αi. When finishing the generation, only verification tasks

done by 2 or more execution units will be retained. This enforces that SVT

satisfies Constraint (3.1.8).

• CTA. First, computation tasks are randomly assigned to execution units wrt.

their affinity. Next, we check every selected verification task if one of the execu-

tion units partaking in the verification task performs the respective computation

task. If not, we randomly assign the computation task to one of the execution

units wrt. their affinity. This enforcement makes the assignment partially

satisfy Constraint (3.1.9), which additionally requires that an verification task

must be executed right after its respective computation task. Moreover, CTA

satisfies Constraints (3.1.4) and (3.1.5).

• SS. First, we utilize a modification of Kahn’s algorithm (Kahn, 1962) to topo-

logically sort the verificable graph and to enforce that an verification task must

be done right after its corresponding computation task (Constraint (3.1.9)).
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Another challenge in adapting the Kahn’s algorithm is to concurrently assign

multiple execution units to a single verification task which may create a dead-

lock (i.e., one execution unit waits for one other to authenticate computation

tasks that they have just concurrently completed). For example, unit u1 fin-

ished task t1 and is waiting for u2 to perform verification task α1, while unit

u2 concurrently finished computation task t2 and is also waiting for u1 to per-

form verification task α2. If such situation happens, we will cancel one of the

verification tasks in the cycle and update the SVT . After obtaining the totally

ordered sequence, we calculate the start time of each task and form the final

SS .

Each newly generated chromosome is checked against those in the population.

Two chromosomes are said to be the same if they have the same SVT , CTA, and

sequence of tasks in SS . If a new chromosome is identical to any in the population,

it is discarded, and the generation process is repeated. Otherwise, it will be put into

the population. The rationale of obtaining only individual chromosomes is to increase

both the diversity and convergence rate.

3.4.3 Crossover Operator

The crossover operator first randomly pick 2 chromosomes from the population and

then processes their parts as follows:

• SAT. Recall that an SVT consists of |U| binary substrings of length |VA|. The

crossover operator randomly generates two cutoff points cs (start point) and

ce (end point), such that cs, ce ∈ [0, |VA|] and cs < ce. The points divide each

substring into three parts, and the middle part of each substring of a SVT will
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be swapped with the respective middle part of the other SVT . Note that all

substrings of a SVT are cut at the same points, so the new SVT s generated by

the cross operator still satisfy the Constraint (3.1.8).

• CTA. We first apply a similar process as handling SVT s with two cutoff points.

The swapping can never make the new individuals violate Constraints (3.1.4)

and (3.1.5), but can violate Constraint (3.1.9). Therefore, we need to post-

process the CTA to ensure that one of execution units partaking in an verifica-

tion task does the corresponding computation task.

• SS. We simply invoke our Kahn algorithm, described at the end of Section 3.4.2,

with the new SVT and CTA.

3.4.4 Mutate Operator

The mutate operator first arbitrarily selects a chromosome from the population and

then processes its parts as follows:

• SVT. The mutate operator first randomly generates two cutoff points cs and

ce as in the crossover operator to divide each substring into three parts. Next,

it flips all the bits in the middle part. Finally, it keeps only verification tasks

concurrently assigned to 2 or more execution units.

• CTA. We check every selected verification task α to enforce that one of the

execution units partaking in α performs the respective computation task of α

if necessary.

• SS. We simply invoke our Kahn algorithm, described at the end of Section 3.4.2,

with the new SVT and CTA.
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3.4.5 Selection

To identify which chromosomes are retained in or removed from the population, each

is evaluated by:

• Feasibility, a Boolean value indicating if the chromosome represents a feasible

solution or not. An individual is a feasible solution if it satisfies the energy

bound.

• CountSVT, an integer whose absolute value is the number of verification tasks

selected. CountSAT is a negative number if the chromosome is an infeasible

solution.

• CountPeers, an integer whose absolute value is the total number of peers par-

ticipating in all selected verification tasks. CountPeers is a negative number if

the chromosome is an infeasible solution.

In order words, (1) each chromosome in the population is associated with a tuple

〈feasibility ,CountSVT ,CountPeers〉; (2) chromosomes are sorted in descending order

wrt. the value of their associated tuples; and (3) only top P individuals will be selected

to proceed to the next generation, where P is the size of the population.

3.5 Online Algorithm

While the offline algorithms are assumed to be theoretically correct (i.e., execution

units should finish their assignments without running out of energy), the physical

environment is likely to vary from the expectation set in the energy consumption

parameters of tasks and execution units. For instance, weather conditions can affect
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the duration and energy consumption of a UAV task, and humidity can affect the

battery performance of a wireless sensor. Such changes may result in a reduction

of peer-verification tasks, or more critically, impact the feasibility of the solution

(see Constraint 3.1.5). We assume that a central entity controls execution units.

If an execution unit detects a change in the environment, it informs the central

controller which uses our proposed online algorithm to mitigate the change. We

propose Algorithm 3 which takes as input an verificable task graph, a set of functional

execution units, and a set of current assignments to the units. It operates in the

following three stages.

3.5.1 Simulation

In the simulation phase (Line 3 of Algorithm 3), the algorithm simulates assignments

Λ̃. Note that Λ̃ does not include assignments for execution units not in Ũ. Two

scenarios may impact the simulation outcome: (1) a unit may run out of energy

before finishing its assignment, and (2) peers participating in verification may be

delayed due to longer than expected computation or transition. Once simulation is

complete, we identify the set of computation tasks that were not completed by any

execution unit in Ũ. If this is an empty set, our algorithm returns success indicating

that the current set of assignments Λ̃ will result in a feasible solution. Otherwise, we

denote the set of incomplete computation tasks as T ′ and proceed to the next step.

3.5.2 Backtracking

In this step, our objective is to identify verification tasks to eliminate from assignments

Λ̃ to free up more energy for executing the remaining computation tasks in T ′. We
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Algorithm 3: RET online algorithm

Input: G = (V , E), Ũ, Λ̃
Output: Λ̃

1 state ← Infeasible
2 while state = Infeasible do

3 T ′ ← Simulate(G, Ũ, Λ̃)
4 if T ′ = ∅ then
5 state ← Feasible
6 else
7 requiredEnergy ←

∑
t∈T ′ ξ(u, t).ε

8 availableEnergy ← 0
9 V ′A ← ∅

10 while availableEnergy < requiredEnergy do

11 α← the last unexecuted verification task in Λ̃
12 if there is no such α then
13 break

14 V ′A ← V ′A ∪ {α}
15 Uα ← set of units participating in doing α
16 availableEnergy ← availableEnergy +|Uα| × ξ(u, α).ε

17 if availableEnergy < requiredEnergy then
18 break

19 T ′ ← the set of completed tasks up to current time
20 AT ′ ← the set of authenticate tasks whose respective computation

tasks are in T ′

21 G̃ ← G \ {V ′A ∪ T ′ ∪ AT ′}
22 Λ̃←GreedilyVerification(G̃, Ũ,M)

23 if state = Infeasible then
24 return Infeasible
25 else

26 return Λ̃
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propose a simple backtracking heuristic that works as follows:

1. Identify the minimum amount of energy required to execute the remaining tasks

(Line 7). This is simply the sum of energy consumption of all tasks in T ′. This

is a lower bound on the actual energy required to execute the remaining tasks

which could be higher due to transition costs. At this moment we do not know

which transitions will be taken and so we assume all transitions cost zero energy.

2. Backtrack from the last verification task in Λ̃, adding up freed up energy until it

is greater than or equal to the minimum amount of energy required to execute

the remaining tasks (Line 16).

The output of this step is a set of verification tasks V ′A which will be removed from

Λ̃. The current time refers to the time the central entity has received a notification

of a change in the environment and invoked the online algorithm to reevaluate the

current plan. If we cannot get enough freed up energy, this implies that there are no

more verification tasks to remove to improve coverage of computation tasks, possibly

because all other verification tasks have been executed already. In this case, we

terminate the online algorithm with a failure due to infeasibility.

3.5.3 Calibration

In this step, we modify assignments Λ̃ to optimize for coverage of computation tasks

by simply calling the greedy verification algorithm. In order to accelerate the algo-

rithm, we invoke the algorithm on the modified graph which contains only unexecuted

computation tasks and possibly executable verification tasks (Line 22).
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3.6 Evaluation

To rigorously analyze the techniques proposed in this thesis, we target the multi-UAV

exploration application discussed in Sections 1.1. That is, we employ set of UAVs

(i.e., execution units) autonomously flying and doing tasks in a working area. We

utilize the results of both simulations as well as experiments on a real network of

UAVs to evaluate our algorithms. In this section, we start by presenting how we

conduct simulations and experiments, then we compare the results in details.

3.6.1 Simulations

To do simulations, we first need to determine the service, transition and idle costs of

execution units (i.e., UAVs) which is not trivial. To address this, we carried out a

set of experiments on a Intel Aero Ready to Fly drone (Intel Aero RTF Drone, 2016)

(see Figure 3.2).

That is, we let the drone do the jobs (i.e., scanning an area, flying from a place to

another, staying idle for an amount of time) for a couple of dozens of times, measured

the costs, and considered the mean values as the final costs. Note that we also applied

the same strategy for simulations and experiments, which are represented latter (i.e.,

we repeated the simulation and experiments for couple of dozens of times, measured

the costs, and considered the mean values as the final costs.)

We also model the working environment as a square grid. For example, Fig-

ure 3.3 illustrates a example of verificable task graph of a 2 × 3 grid. Each grid

cell contains (1) a computation task (e.g., for scanning or detecting a certain type

of object or anomaly), and (2) an verification task performed by two or more UAVs
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Figure 3.2: Intel Aero Ready to Fly Drone.

(Formula (3.1.8)), which verifies the output of the computation task either by cor-

roborating the result or authenticating peers. The gray circle denotes the depot from

which all UAVs must take off and does not require a corresponding verification task

(i.e., the depot is the dummy start task ds introduced in Section 3.2). The solid

arrows represent transitions based on task dependencies. That is, all UAVs must

take off from the depot before flying to any cell, and the cells can be scanned in

any order. The dashed lines represent the transitions from computation tasks to the

corresponding verification task (Equation (2.2.1)).

It is evident that output of our algorithm is a flight paths for UAVs (i.e., execution

units u) that accomplished a sequence of computation as well as verification tasks.

Moreover, the assignment in pSu is identified such that the problem constraints identi-

fied in Section 3.1.3 are satisfied and the optimization objectives in Section 3.1.4 are
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maximized. This, in turn, means that by solving our optimization problem, we will

obtain a flight path for each UAV that maximizes the reliability of the output while

staying within the energy bounds of the UAV’s batteries.

Computation

task

Verification

task

Depot

Figure 3.3: Verificable task graph of UAVs exploring a 2× 3 grid map.

Moreover, there are also simulations for our online algorithm to evaluate how

well the algorithms respond if one or more UAVs become unavailable during the

execution. To this end, we created a multi-thread application in which one thread

mimics the center entity, while the others mimic UAVs. While the application is

running, we terminate a random UAV thread at an arbitrary time to simulate that

the corresponding UAV becomes unavailable or crashes. The online algorithms are

expected to be able to detect the issue and generate new flight paths for the remaining

UAVs. Note that these simulations do not take into account changes in the physical

environment which will be covered by the real experiments.
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Analysis of Offline Algorithms

Figure 3.4 and 3.5 show the results of our simulations of the UAV system. We ran the

ILP-based algorithm for the 3× 3 grid to serve as a reference for what an optimal set

of flight paths can achieve. For larger grids, ILP does not scale well. As expected, the

ILP outperforms the genetic algorithm (GA) and the greedy algorithm in terms of

number of verification tasks (see Figure 3.4a). The ILP also consumes more energy,

utilizing the battery almost fully to maximize verifications.

Our simulations show that the GA consistently outperforms the greedy algorithm.

The greedy algorithm always makes the cheapest choice which may not be beneficial in

the long run. This is the heart of the problem that our work tackles: how verification

decisions can non-immediately impact resource consumption and system objectives.

Figure 3.4b shows that the GA utilizes the battery more efficiently. Note that NA

refers to an algorithm that does not authenticate tasks at all. Figure 3.5b shows

that there is a case where the greedy algorithm uses more energy than the genetic

algorithm. This does not translate into more verifications (Figure 3.5a) since the

greedy algorithm is making choices that incur more travel time costs in the future.

Moreover, the genetic algorithm is more inclined to schedule verifications at ran-

dom points in time, further obscuring the verification process from an adversary.

In the next section, we discuss simulation details of the online algorithm which is

based on the genetic algorithm. Figures 3.4 and 3.5 demonstrate how verification

tasks are randomly placed. This is opposed to the greedy algorithm that performs all

verifications at the beginning.
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Figure 3.4: Simulation results for the RET problem on 3× 3 grid.
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Figure 3.5: Simulation results for the RET problem on 4× 4 grid.
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Analysis of the Online Algorithm

In order to analyze our online algorithm, we design the following scenarios. In the first

scenario, four UAVs explore a 5 × 5 grid (i.e., our multi-thread application consists

of five threads: one central entity and four UAVs). If the conditions during the

entire operation do not change, then the UAVs complete their mission in 381s and

accomplish 9 peer-verifications (see Figure3.6). This solution is obtained by the offline

genetic algorithm. Now, we take the same flight paths and inject a UAV crash at time

170s. The online algorithm realizes that the current flight paths are not feasible (due

to reduction in the current energy bound) and computes a new schedule, which results

in new flight paths and verification tasks for the remaining three UAVs. The new

flight paths results in a total of 5 peer-verifications. In the third scenario, we inject

an additional UAV crash at time 185s. The drop in the total energy bound results

in a situation where no further peer-verification can be achieved by the remaining to

UAVs after the second crash.
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Figure 3.6: Simulation scenarios for the RET online algorithm.

3.6.2 Experiments with Real Multi-UAV Network

Our goal is to demonstrate that our online algorithm can react effectively to uncer-

tainties caused by the physical environment. To this end, we employed two Intel
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Aero Ready to Fly drones and programmed the PX4 flight controller to let them

autonomously travel and do tasks in a 480-square-feet lab space which is modeled by

a 4 × 4 square grid of (see Figure 3.7). Additionally, the UAVs communicate with

each other and a ground station over a dedicated WiFi network. Note that, the UAVs

originally utilize global positioning system (GPS) information to determine its current

location and target. However, the GPS signal is not available indoor and is replaced

by local position information provided by a motion capture system (12 OptiTrack

motion capture cameras.) Note that for the safety reason, the two UAVs are flying

at two different altitudes.

Moreover, the most challenge task in doing the experiment is to determine changes

in costs at runtime which can only done by obtaining an energy model. To this end, we

carried out a set of experiments (see Section 5.5.2), and utilize Polynomial Regression

to derive the model.

Figure 3.7: Experimental platform.

In experiments, the two UAVs (flying at two different altitudes) are supposed
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to cover all 16 cells of the 4 × 4 grid. The genetic algorithm identifies flight paths

with 16 computation tasks and 16 peer-verifications within the 200kJ battery energy

bound of the UAVs. When the UAVs follow the flight paths prescribed by the genetic

algorithm, they end up completing only 11 computation and 11 verification tasks due

to reaching their energy limit too quickly, resulting in a pre-mature completion of the

mission. The reason for this is that the top UAV creates spiral air flow, causing the

lower UAV to spend about 12% more energy than predicted by the genetic algorithm.

Next, we ran our online algorithm initialized by the same flight paths as the ge-

netic algorithm. The online algorithm effectively conducted appropriate re-planning

and executed 16 computation tasks (i.e., covering the entire grid) and 9 verifica-

tion tasks. That is, the online algorithm successfully managed the reliability-energy

tradeoff within the energy limits of the UAVs.
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Chapter 4

Optimal Recharging

In this chapter, we propose the Optimal Recharging (OR) problem which aims to

extend the operational time of teams of battery-based robots by introducing a set of

charging stations (a brief introduction of the problem was given in Section 1.2). We

assume that the robots are heterogeneous (having different energy limits and being

able to service different types of customers) and have access to a priori known map

of the environment. The map is modeled as a directed, connected, and finite graph

whose nodes are charging stations or customers, and arcs denote the possibility of

traveling. Our ultimate goal is to find an optimal task assignment and path planning

for the robots that minimizes energy consumption as well as the time needed to

complete the tasks, including the time spent for recharging. To this end, we propose

four offline optimization techniques and one online algorithm:

• First, we transform our optimization problem into multi-objective integer pro-

gramming (MIP). This techniques produces the optimal result, though it is

offline and limited to small problem sizes.
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• Next, we introduce three scalable offline algorithms that find sub-optimal solu-

tions. The first is a semigreedy algorithm which is a combination of the Nearest

Neighbor Heuristic and an extension of the randomized A? algorithm. We also

propose two genetic algorithms (GAs) named Greedy GA and random GA. The

two algorithms have the same evolving (mating, mutating and selecting) op-

erations. For generating their initial population, the Greedy GA invokes the

semigreedy algorithm, while the Random GA randomly assigns customers to

robots.

• Finally, since offline solutions are often not suitable to deal with robots operat-

ing in real-life dynamic environments, we also propose an online algorithm to

dynamically adjust the plan according to the changes in the physical environ-

ment.

We have fully implemented our algorithms and report results of simulation as well

as experiments on a real network of UAVs. Our simulations show that while the

MIP-based technique clearly identifies the optimal solution for small-size problems,

for larger problems, our Greedy GA consistently outperforms both the semigreedy

algorithm and Random GA. We also evaluate our online algorithm under scenarios,

where a subset of the fleet of UAVs crash and the rest of the fleet has to adjust

their plans accordingly and possibly recharge to cope with the new constraints. Our

experiment shows how the online algorithm successfully distributes the remaining

work to the functional UAV(s). We have also deployed our online algorithms on a

real network of two UAVs that fly in two different altitudes and carry out a joint

search mission.

The rest of this chapter is organized as follows. In Section 4.1, we formally state
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the problem. Section 4.2 presents our transformation to MIP. Sections 4.3 and 4.4

introduce our offline heuristics, while Section 4.5 presents our online algorithm. Ex-

perimental results are analyzed in Section 4.6.

4.1 Problem Statement

In this section, we introduce the formal statement of the problem.

4.1.1 Cost Functions

To determine the costs of servicing customers in a route graph G for an execution

unit u ∈ U, we define the following cost functions:

• Service cost S : U × VC → R2
≥0 is a function that maps an execution unit

u ∈ U and a customer c ∈ VC to a pair of non-negative real numbers (τ, ε),

where τ and ε are the amount of time and energy, respectively, consumed by u

while servicing c. We also use S(u, c).τ (respectively, S(u, c).ε) to indicate the

service time (respectively, energy).

• Traveling cost T : U × E → R2
≥0 is a function that maps an execution unit

u ∈ U and an arc a = (u, v) ∈ E to a pair of non-negative real numbers (τ, ε),

where τ and varepsilon are the amount of time and energy consumed by u

while traveling from u to v. We also use T (u, a).τ (respectively, T (u, a).ε) to

indicate traveling time (respectively, energy).

• Charging cost R : U × VB → R≥0 is a function that maps an execution unit

u ∈ U and a charging station b ∈ VB to a non-negative real number τ denoting

the amount of time required to fully recharge u at b.
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4.1.2 Assumptions on Path Planning

First, we assume that:

• All execution units are initially fully charged to their capacity and located at

the depot v0.

• The depot and charging stations do not need to be serviced.

• For every pair of customers v, v′ ∈ VC , there is a path from v to v′ without

going through a charging station b ∈ VB or the depot v0 (i.e., visiting the depot

or a charging station is optional).

A walk of G is a sequence w = v0v1 · · · vn, where v0 is the depot (i.e., a walk must

start from the depot), vi ∈ V for all i ∈ [0, n], and (vi, vi+1) ∈ E for all i ∈ [0, n) (i.e.,

a walk must go through adjacent nodes in G.) We use w(i) and |w| to denote the ith

node and the length of the walk, respectively. Note that, a node v ∈ V can appear

multiple times in w. We denote the set of all possible walks by W .

A plan function F maps an execution unit to a walk. Formally:

F : U→ W.

4.1.3 Problem Constraints and Optimization Objectives

First, let wu = v0 · · · vn be a walk taken by an execution unit u ∈ U. We denote the

set of customers in wu serviced by execution unit u by C(wu), that is:

C(wu) =
{
wu(i) | i ∈ [0, n] ∧ wu(i) ∈ VC ∧ wu(i) is serviced by u

}
.
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Also, let B(wu) be the multiset of charging stations in wu visited by execution unit

u, that is:

B(wu) =
{
wu(i) | i ∈ [0, n] ∧ wu(i) ∈ VB

}
.

The total cost (time and energy consumption) of a walk w taken by an execution unit

u (denoted C(wu)) is

C(wu) =


∑

c∈C(wu)

S
(
u, c
)
.τ +

∑
b∈B(wu)

R
(
u, b
)

+
n−1∑
i=0

T (u, (vi, vi+1)).τ

∑
c∈C(wu)

S(u, c).ε+
n−1∑
i=0

T
(
u, (vi, vi+1)

)
.ε

 (4.1.1)

Recall that B(wu) is a multiset, which allows for multiple instances for each of its

elements.

We now detail the constraints or our proposed problem. Our goal is to compute

a plan function F subject to the following constraints.

Affinity. Every execution unit is only allowed to service customers as determined by

its affinity set Au:

∀u ∈ U : C(F(u)) ⊆ Au (4.1.2)

where C(F(u)) is the set of customers serviced by execution unit u when taking the

walk determined by the plan F .

Completion. All customers must be serviced exactly once.

⋃
u∈U

C(F(u)) = VC

C(F(u)) ∩ C(F(u′)) = ∅ for each distinct u, u′ ∈ U

(4.1.3)

Energy bound. Each execution unit should respect its energy bound. For a walk
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wu, let Ea(w
u, i) denote the remaining energy of u when it arrives at node w(i), and

Ed(w
u, i) denote the remaining energy of u when it departs from node wu(i). The

relations between Ea and Ed are as follows:

Ea(w
u, i+ 1) = Ed(w

u, i)− T (u, (w(i), w(i+ 1))).ε (4.1.4)

Ed(w
u, i) =



Ea(w
u, i)− S(u,wu(i)).ε

if wu(i) ∈ Cw
u ∧ wu(i) is serviced at i

Bu if wu(i) ∈ B(wu) ∨ i = 0

Ea(w
u, i) otherwise

(4.1.5)

where i ∈ [0, n).

Recall that G is only connected (not complete) so an execution unit u may have

to visit a node v several times but services it only once (if v ∈ C(wu).) Now, we

constrain the energy consumption of execution unit u as follows:

∀i ∈ [0, n] : Ea(w
u, i) ≥ 0 ∧ Ed(wu,, i) ≥ 0 (4.1.6)

Finally, our optimization objective is to to simultaneously minimize both time

and energy consumption. That is:

min

[∑
u∈U

C
(
F(u)

)]
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4.2 Multi-objective Integer Program Transforma-

tions

In this section, we transform our problem into multi-objective integer programming

(MIP). We start by identifying the challenges in the transformation:

• A route graph is incomplete. This means that an execution unit may have to

travel through some nodes multiple times to reach its targets, which creates

cycles in its walks and makes the transformation harder.

• To extend the operational time of execution units, we enforce them to visit

charging stations before draining out their batteries, which is non-trivial. This

also increases the possibility of having cycles in a walk.

• We intend to optimize both energy and time consumption to service all cus-

tomers, including the time for recharging.

From the above challenges, it is clear that the desired MIP instance must have vari-

ables associated with the arcs in the given route graph G. Moreover, the variables

must be integers to indicate how many times the arcs are used. However, this intro-

duces a new challenge of deriving optimal walks for execution units from the solu-

tion of the MIP instance. For example, let consider the graph shown in Figure 4.1

where every arc has an associated number indicating how many times the arc is

utilized. We can derive at least three different walks from the given graph: w1 =

· · · c2bc1bc3bc3c4bc4 · · · , w2 = · · · c2bc3bc1bc3c4bc4 · · · or w3 = · · · c2bc4bc1bc3bc3c4 · · · .

Additionally, even if we can obtain the correct optimal walk, it is not trivial to

determine when an execution unit should service a customer whom it visits more than
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...

c1

c2 b c3

c4 ...

1

11

1 2

1

11 1

1

Figure 4.1: An example of a complex walk

once. For example, let us consider w1 in which customer c4 is visited twice (from c3

and b), in which visit should an execution unit service c4?

To completely resolve the above challenges, we transform the problem into two

different MIP instances. The first one, presented in Section 4.2.1, is to identify the

number of visits to each node. Then, in Section 4.2.2, we introduce the concept of

visit graph and the second MIP instance to obtain optimal walks.

4.2.1 Obtaining Visits

Decision Variables

Let U be a finite set of execution units, G = (V,E) be a route graph, and S, T and

R be the cost functions as defined in Section 4.1. The following are decision variables

in our first MIP instance:

• xu(v,v′): non-negative integer variable indicating the number of times execution
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unit u travels from v to v′, for each (v, v′) ∈ E.

• yuv : Boolean variable indicating if execution unit u services node v, where v ∈

VC .

Constraints

This subsection details the constraints of the MIP instance based on the ones identified

in Section 4.1.

Affinity. An execution unit can only service customers in its affinity set:

∑
v 6∈Au

yuv = 0 for all u ∈ U, v ∈ VC (4.2.1)

Walk validity. An execution unit

• must leave from the depot (v0):

∑
(v0,v)∈E

xu(v0,v) ≤ 1 ∀u ∈ U (4.2.2)

• goes through adjacent nodes:

0 ≤
∑

(v,v′)∈E

xu(v,v′) −
∑

(v′,v′′)∈E

xu(v′,v′′) ≤ 1

∀u ∈ U,∀v′ ∈ V \ {v0}

(4.2.3)

δ
(∑
v∈W

yuv

)
· (

∑
(v,v′)∈α(W )

xu(v,v′) − 1) ≥ 0

∀u ∈ U, ∀W ⊆ V \ {v0} : VC ∩W 6= ∅

(4.2.4)
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where α(W ) = {(vi, vj) | (vi, vj) ∈ E ∧ vi 6∈ W ∧ vj ∈ W} (i.e., the set of

arcs that have only head ends in W ,) and δ(x) is the Kronecker delta function,

which returns 0 if x = 0, otherwise 1. Equation (4.2.3) is the flow constraint

enforcing that execution unit u can only leave a node only after having arrived

it. Equation (4.2.4) is called connectivity constraint and is adapted from the

one proposed by Fleishmann in (Fleischmann, 1985). In our adaption, the delta

function is utilized to cover both situations whether execution unit u services

any customers in W or not. In the former case, δ(
∑

v∈W yuv ) returns 1 enforcing

that execution unit u has to take at least an arc in α(W ) to go into W and

service the customers. In the latter case, δ(
∑

v∈W yuv ) returns 0 making the

constraint tautology regardless of value of x’s. Furthermore, Equation (4.2.4)

makes our instance non-linear and requires a non-linear multi-objective solver.

• does not return to the depot:

∑
(v,v0)∈E

xu(v,v0) = 0 ∀u ∈ U (4.2.5)

Completion. All customers must be serviced exactly once:

∑
u∈U

yuv = 1 ∀v ∈ VC (4.2.6)

The binary variable yuv depends on xu(v′,v) as follows:

∑
(v′,v)∈E

xu(v′,v) ≥ yuv ∀u ∈ U,∀v ∈ VC (4.2.7)

That is, if execution unit u services customer v, then it must travel to v.

69



A-D. Vu McMaster University – Computer Science

Energy bound. Every execution unit must operate within its energy bound. To

constrain energy consumption, we first calculate the amount of energy required by

execution unit u to travel and service a subset of customers W :

γu(W ) =
∑
v∈W

yuv · S(u, v).ε +
∑

(v,v′)∈β(W )

xu(v,v′) · T (u, (v, v′)).ε

∀W ⊆ VC

where β(W ) = {(v, v′) | (v, v′) ∈ E ∧ v, v′ ∈ W} (i.e., the set of arcs that have

both ends in W ). Next, ζu(W ) is the amount of energy spent by execution unit u to

travel in and out a subset of customers W :

ζu(W ) =
∑

(v,v′)∈α(W )

xu(v,v′) · T (u, (v, v′)).ε+

∑
(v,v′)∈ω(W )

xu(v,v′) · T (u, (v, v′)).ε

∀W ⊆ VC

where ω(W ) = {(v, v′)|(v, v′) ∈ E ∧ v ∈ W ∧ v′ 6∈ W}(i.e., the set of arcs that

have only tail ends in W ). Finally, we constrain the energy consumption of execution

unit u as follows:

δ
(∑
v∈W

yuv

)
· (

∑
(v,v′)∈α(W )

xu(v,v′) −
(γu(W ) + ζu(W ))

Bu
) ≥ 0

∀W ⊆ VC

(4.2.8)

Equation (4.2.8) is an adaption of Equation (4.2.4). Again, the delta function is

utilized to cover the both situations (whether execution unit u services any customers

in W or not.) In the latter case, the constraint is tautology and can be ignored. In
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the former case, the rightmost fraction returns the minimum number of times that u

has to be recharged. Thus, the combination of the equation with Equations (4.2.3),

(4.2.4), and (4.2.5) ensures that u will go out of W to a charging station and return

to W to continue its assignment when necessary.

Objective Function

As mentioned in Section 4.1, our problem requires optimizing both energy and time

consumption. Let EB = {(v, v′)|(v, v′) ∈ E ∧ v′ ∈ VB} (i.e., the set of arcs whose

head ends are recharge stations). Equation (4.2.9) is our objective function.

min


∑
u∈U

[ ∑
(vi,vj)∈E

xu(v,v′) · T (u, (v, v′)).τ +
∑

(v,v′)∈EB

xu(v,v′) · R(u, v′) +
∑
v∈VC

yuv · S(u, v).τ
]

∑
u∈U

[ ∑
(v,v′)∈E

xu(v,v′) · T (u, (v, v′)).ε+
∑
v∈VC

yuv · S(u, v).ε
]


(4.2.9)

4.2.2 Obtaining Optimal Walks

Visit graph

Let S? = (V ?, E?) be the directed graph encoding the optimal solution obtained from

the MIP proposed in Section 4.2.1, where:

E? =
{

(v, v′) | (v, v′) ∈ E ∧
∑
u∈U

xu(v,v′) > 0
}

V ? =
{
v, v′ | (v, v′) ∈ E?

}
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We associate each v ∈ V ? with a set of visits V ?
v = {v1, · · · , vmv}, where mv =∑

u∈U

∑
(v′,v)∈E?

xu(v′,v). Now, let

VC =
⋃
v∈VC

V ?
v

VB =
⋃

v∈V ?∩VB

V ?
v

V = VC ∪ VB ∪ {v0}

That is, the set of vertices V includes all visits to the customers and the charging

stations. Note that, unlike customers (all of which must be serviced and included

in V ?), there could exist charging stations that are never visited by any execution

unit in the optimal solution S?, and they will not be included in VB. Finally, the

corresponding visit graph is G = (V , E), where the set of directed edges E are as

follows:

E =
{

(vki , v
l
j) | (vi, vj) ∈ E? ∧ vki ∈ V ?

vi
∧ vlj ∈ V ?

vj

}
(4.2.10)

Example Figure 4.2 illustrates the visit graph of the problem in Figure 2.3 where

customers c1, c2, and c6 are visited twice. As can be seen in the figure, we introduce

three more nodes c2
1, c

2
2, and c2

6 which denotes the second visits to the customers,

respectively. We also include additional edges ((v0, c
2
1), (c2

1, c
1
2), · · · ) to retain the cor-

responding transition-ability between the nodes (see Equation (4.2.10).)

The second MIP instance

The input parameters for this transformation are (1) the visit graph G = (V , E), which

is constructed from the result of the first MIP instance, (2) the set of execution units
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v0

c1
1

c2
1

c1
2

c2
2

c1
3

c1
4c1

5c1
6

c2
6

b1
1

b1
2

Figure 4.2: An sample of visit graph

U, (3) and the cost functions S, T and R. Again, we utilize the two type of decision

variables as in previous transformation but they are both Booleans. That is:

• xu(v,v′): Boolean variable indicating if execution unit u visits v′ right after v,

where (v, v′) ∈ E .

• yuv : Boolean variable indicating if execution unit u services v, where vi ∈ VC.

Next, the objective function (4.2.9), and constraints (4.2.1), (4.2.2), (4.2.3), (4.2.4),

(4.2.5), (4.2.7) and (4.2.8) are reused after replacing V,E, VC and VB by V , E ,VC and

VB, respectively. Additionally, we introduce Constraints (4.2.11) and (4.2.12) to en-

force that each node in G is visited only once, and each customer is serviced only

once, respectively.
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∑
(v,v′)∈E

xu(v,v′) = 1 ∀u ∈ U, v′ 6= v0 (4.2.11)

∑
u∈U

∑
v∈V ?

v′

yuv = 1 ∀v′ ∈ VC (4.2.12)

4.3 Semigreedy Algorithm

In this section, we introduce our semigreedy algorithm (Algorithm 5) using Nearest

Neighbor Heuristic (NNH) (Bellmore and Nemhauser, 1968). The NNH utilizes a

loop to sequentially select a customer which has not been assigned to any execution

units and has the lowest insertion cost to assign to an execution unit. Recall that the

insertion cost of a customer includes both the traveling and servicing cost required

to append the customer to the end of the partially build walk of an execution unit.

Moreover, we also add randomization into the selection procedure making the ordi-

nary NNH into a semigreedy heuristic version. Before discussing the detail of the

Algorithm 5, let us first identify three specific properties that hold in every optimal

subwalk w
(i,j)
u = (vi, · · · , vj) assigned to execution unit u, such that vi and vj are

the only two customers serviced by u while the other nodes between them (if any)

are intermediate ones (i.e., due to the incompleteness of route graph, u may have to

visit intermediate nodes in order to reach vj). We use these properties to construct

subwalks in Algorithm 4, which is used by our semigreedy Algorithm 5:

• If execution unit u does not visit any charging station while executing w
(i,j)
u , then

it will visit every intermediate node once. This is true because if there exists

an intermediate node v which is visited more than once, then the subwalk has
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one ore more cycles which are associated with v and can be removed to obtain

a better subwalk which is a contradiction.

• If execution unit u visits a charging station vb while executing w
(i,j)
u , then vb

is visited only once. This is true because if vb is visited more than once, then

there exists one or more cycles which are associated with vb and can obviously

be removed to get a better subwalk which is a contradiction.

• If execution unit u has to visit one or more charging stations while executing

w
(i,j)
u , and let vb be the very first charging station that execution unit u visits

after vi, then every intermediate node v between vi and vb is visited only once.

This property also holds when vi is the depot or a charging station. This is

true because if there exists an intermediate node v which is between vi and vb

and is visited more than once, then there exists one or more cycles which are

associated with v and can be removed to obtain a better subwalk which is a

contradiction.

Therefore, it is possible to partition w
(i,j)
u into small (simple) paths (i.e., a sequence

does not include any repeated node) starting from vi to the very first charging station,

from this to the very next charging station, so on so forth until to vj.

Next, we explore a slight adaptation of the Multi-Objective A? (MOA?) algorithm

proposed in (Mandow et al., 2005) to find all shortest paths between two nodes. The

original algorithm takes as input a graph, a start node and a set of goal nodes, and

returns a directed acyclic graph (DAG) encoding all shortest paths between the start

and each goal. Moreover, MOA?, like any other variant of A? algorithm (Hart et al.,

1968), requires a heuristic function H : U × V × V → R2
≥0 that maps an execution
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unit u and 2 vertices v, v′ ∈ V to a pair of real numbers (t, e), where t and e are the

estimate time and energy consumed by execution unit u to travel from v to v′. In

this paper, we make the following changes to the MOA?:

• The set of goal nodes is replaced by a single target node vt.

• It takes two additional parameters: execution unit u and the amount of energy

r that u should reserve when reaching vt. Execution unit u will utilize this

energy to service vt and move to the closest charging station (if necessary).

• In the path expansion procedure, we add steps to update the remaining energy of

execution unit u according to Equations (4.1.4) and (4.1.5), and only neighbors

which do not violate Equation (4.1.6) (the energy constraint) will be selected

for further exploration.

Now, we discuss Algorithm 4, which constructs the aforementioned subwalk w
(i,j)
u

(i.e., vi and vj are the only two customers serviced by u, and the other nodes between

them (if any) are intermediate ones.) The algorithm takes as input the route graph

G, an execution unit u, a start node vi, a target node vj, and an amount of energy

r that u should reserve, and returns a shortest subwalk w between the two nodes. It

works as follows:

1. Initialize w by vi (Line 1).

2. Initialize the stack of final and intermediate stops (i.e., charging stations) with

vj (Line 2).

3. Utilize a loop (Lines 4 - 19) to construct paths. At each iteration,
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Algorithm 4: ConstructSubwalk

Input: G, u, vi, vj, r
Output: a shortest walk W from vi to vj

1 w ← [vi]
2 stops ← [vj]
3 s← vi
4 while True do
5 t← pop the last node from stops
6 r′ ← 0
7 if t = vj then
8 r′ ← r

9 Paths ←MOA?(G, u, s, t, r′)
10 if Paths 6= ∅ then
11 p← randomly pick one in Paths
12 extend w with p
13 if t = vj then
14 return w

15 s← t

16 else
17 push t back to stops
18 greedily choose an unvisited charging station b between s and t
19 push b to the end of stops

(a) invoke MOA? to find a shortest path between the corresponding start and

target nodes (Line 9),

(b) if there exists a path (Lines 10 - 15), we extend the current walk with the

newly found path and terminate if reaching the final destination,

(c) Otherwise (Lines 16 - 19), we utilize the heuristic function H to greedily

find a charging station, which is the nearest one between the two current

ends and has not been visited, and push to the stack of intermediate stops.

Note that as shown earlier, every charging station can be visited only once

in subwalk w
(i,j)
u so if there does not exist such station, the algorithm will
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Algorithm 5: OR semigreedy algorithm

Input: G, U
Output: Walks for the execution units

1 ṼC ← VC
2 W̃ [u]← [v0],∀u ∈ U
3 while ṼC 6= ∅ do

4 foreach (u, c) ∈ U× ṼC do
5 r ← S(u, c)
6 if c is not the last customer then
7 e← min{H(u, c, b)}, for all b ∈ VB
8 r ← S(u, c) + e

9 l← the last node in W̃ [u]
10 w ← ConstructSubwalk(G, u, l, c, r)
11 InsertCosts [u, c] = C(wu) + S(u, c)

12 S ← argmin(InsertCosts)
13 (u, c)← randomly pick one from S

14 update W̃ [u]

15 remove c from ṼC

16 return W̃

terminate immediately (i.e., it cannot find any path between vi and vj

without violating energy constraints.)

Finally, we introduce Algorithm 5 that greedily solves the proposed problem. It

takes as input a route graph G and the set of execution units U. The algorithm works

as follows:

1. Initialize the set of unserviced customers with all customers (Line 1).

2. Initialize the partially built walk of each execution units with the depot (Line 2).

3. Utilize a loop (Lines 3 - 15) to sequentially assign an unserviced customer to an

execution unit. At each iteration,
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(a) Determine the amount of energy that an execution unit has to reserve after

reaching a new customer (Lines 5 - 8). If there are two or more unserviced

customers, an execution unit has to reserve energy not only to service the

selected customer but also to move to the nearest charging station after

servicing the customer. By doing so, we can get rid of the premature com-

pletion (i.e., although there still exists unserviced customers, all execution

units have completely or nearly drained out their batteries at their last

customers and cannot go to any charging stations.)

(b) Utilize Algorithm 4 to determine a shortest subwalk to the next customer

(Line 10), and calculate the corresponding insertion cost (Line 11). Recall

that, C(wu) returns total cost of a walk w taken by execution unit u (see

Equation 4.1.1).

(c) Due to the competing of two objectives, there likely exists more than one

pair of a customer and an execution unit whose insertion costs are not

(Pareto) dominated. Let S be the set of such pairs (Line 12). Recall

that given two vectors y1 = (x1
1, x

1
2, · · · , x1

n) and y2 = (x2
1, x

2
2, · · · , x2

n),

y1 is said to (Pareto) dominate y2 (denoted by y1 ≺ y2) if and only if

∀i ∈ [1, n], x1
i ≤ x2

i (Deb, 2014).

(d) Randomly pick a pair from the set S, and update the corresponding par-

tially built walk of the selected execution unit. Note that, we does not

only append the selected customer to the end of the walk but also the

intermediate nodes. This randomization step makes the greedy algorithm

into a semigreedy algorithm.

(e) Update the set of unserviced customers by removing the newly selected
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customer.

4.4 Genetic Algorithm

4.4.1 Representation of Solution

Recall that, our problem has two competing objectives (optimizing both time and

energy consumption) which results in the existence of more than one shortest subwalks

between any two customers vi and vj. In other words, given a same set of customers

assigned to an execution unit, we can have multiple shortest walks which could be

assigned to an execution unit. In order to include all such walks in our population,

we utilize a 2-part string to encode an individual:

• The Customer Assignment String (CAS ) is a vector of length |VC |, such that

CAS (i) = j, where 1 ≤ i ≤ |VC | and 1 ≤ j ≤ |U| are IDs of a customer and an

execution unit, respectively. That is, customer ci ∈ VC is assigned to execution

unit uj ∈ U.

• The Walks String (WS ) contains |U| substrings each is denoted by WSu, for

each u ∈ U, and represents a walk executed by the associated execution unit.

Each individual is represented by a pair 〈CAS ,WS 〉. Figure 4.3 illustrates a

chromosome for the problem in Figure 2.3 and two execution units. In this example,

(1) customers c1, c2, and c3 are assigned to execution unit u1 while customers c4, c5,
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CAS 1 1 1 2 2 2

WS 1 WS 2

WS v0 c?1 c?2 b1 c2 c?3 v0 c1 c?6 b2 c6 c?5 c?4

Figure 4.3: A sample individual

and c6 are assigned to execution unit u2; (2) and the walks for u1 and u2 are:

wu1 = [v0, c
?
1, c

?
2, b1, c2, c

?
3]

wu2 = [v0, c1, c
?
6, b2, c6, c

?
5, c

?
4]

Note that, we utilize ? to indicate the visit during which the execution unit services

the corresponding customer.

Moreover, we want only distinctive individuals in our population. To this end, each

newly created chromosome (by random generation, crossover operation, or mutation)

is checked against those in the population. If the new chromosome is identical to

any in the population, it is discarded. Otherwise, it will be put into the population.

Two chromosomes are said to be the same if they have the same CAS and WS . The

rationale of obtaining only distinctive individuals is to increase both the diversity and

convergence rate.

4.4.2 Generation of Initial Population

Any GA algorithm requires a set of initial individuals from which the evolution begins.

However, our intuition is that the initial population can give an important contribu-

tion to enhance the final solution. To test this, we utilize two different methods for
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generating the initial population and compare their final results. In the first method,

named Greedy GA, we invoke Algorithm 5 to obtain customers and walks assigned to

each execution unit (i.e., CAS and WS , respectively). In the second method, named

Random GA, we first generate the CAS part by randomly assigning a customer to an

execution unit (that is, we generate a random integer number in the range of [1, |U|]

and assign it to a CAS (i) which represents customer vi ∈ VC). Then, we construct

a walk for every execution unit to visit its customers using Algorithm 6, which takes

as input the problem graph G, an execution unit u and the set of customers assigned

to u. The algorithm works as follows:

1. Initialize the set of unserviced customers with V u
C (Line 1).

2. Initialize the walk with the depot v0 (Line 2).

3. In the loop (Lines 3 - 15), utilize NNH to sequentially assign each customer to

the unit. At each iteration,

(a) evaluate the insertion cost of each customer (Lines 4 - 12),

(b) pick a customer with the lowest insertion cost (Line 13). If there exists

more than one (Pareto) nondominate customers, then randomly pick one

of them,

(c) update the currently built walk of the execution unit. Note that, we do

not simply append the selected customer to the end of the walk, but also

append the intermediate nodes (if any),

(d) remove the newly selected customer from the set of unserviced ones.
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Algorithm 6: ConstructWalk

Input: G, u, V u
C

Output: Walk for execution unit u
1 ṼC ← V u

C

2 w ← [v0]

3 while ṼC 6= ∅ do
4 InsertCosts ← []
5 l← the last node in w

6 foreach c ∈ ṼC do
7 r ← S(u, c)
8 if c is not the last customer then
9 e← min{H(u, c, b)}, for all b ∈ VB

10 r ← S(u, c) + e

11 p← ConstructSubwalk(G, u, l, c, r)
12 InsertCosts[c] ← C(pu) + S(u, c)

13 c← argmin(InsertCosts)
14 update w

15 remove c from ṼC

16 return w

4.4.3 Crossover Operator

Recall that an individual is a pair 〈CAS ,WS 〉, where CAS is the major component

encoding the set of customers assigned to an execution unit, and WS is the set of

walks for execution units. Our proposed crossover operator mainly targets to CAS

component and reproduces the corresponding WS . The detailed procedure is as

follows:

1. Randomly pick two individuals from the population.

2. Generate two cutoff points s (start point) and e (end point), such that s, e ∈

[1, |VC |] and s < e.

3. Utilize the points to divide the CAS of each individual into three pieces.
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4. Swap the middle piece of each individual.

5. Invoke Algorithm 6 to generate new WS and replace the existing one.

4.4.4 Mutate Operator

Mutation of a individual is implemented through a very simple procedure:

1. Randomly choose an individual.

2. Generate two cutoff points s (start point) and e (end point) for the CAS as in

crossover operator.

3. Apply a circular shift to the middle part. That is, replace CAS [s] with CAS [s+

1], CAS [s+ 1] with CAS [s+ 2], ..., CAS [e] with CAS [s].

4. Invoke Algorithm 6 to update the WS .

4.4.5 Select Operator

New individuals are introduced by crossover and mutation operators at every gener-

ation, and in order to maintain a fixed-size population, we have to remove some bad

individuals before proceeding to the next generation. To this end, first, each in the

population is associated with a pair including:

• Infeasibility, a Boolean value indicating if any execution units of the solution

violate the energy constraints (see Equation 4.1.6).

• Total cost, a pair of numbers indicating the total time and energy consumption

of all execution units.
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Then, all individuals in the population are sorted in ascending order wrt. the value of

their associated pair. Finally, we keep only top P individuals in the sorted population,

where P is the size of the population.

4.5 Online Algorithm

In the context of DAMR systems, the physical environment (e.g., weather conditions)

likely affects the parameters set in our offline algorithms. Such changes motivate the

need of an online algorithm which adjusts walks assigned to execution units when

necessary. We assume that (1) a central ground station (GS) controls execution units,

and (2) only traveling cost, servicing cost, and the set of execution units change over

the time. That is, while the depot, the set of customers, charging stations and route

graph remain unchanged. Let Ton and Son denote the online traveling and servicing

cost functions.

Next, we discuss the input of the proposed algorithm. First, when the GS receives

a notification of changes in the environment at time t, there could be some (or all)

customers which have been serviced and must be eliminated before invoking the

algorithm. Similarly, only functional execution units Ũ at time t are taken as input of

the online algorithm. Next, let us consider a walk w = v0v1 · · · vn assigned to execution

unit u. If u locates at vi at the time t (if it is traveling to vi, we still consider that u is

at vi), where i ∈ [0, n], then the partially executed walk of u is w̃ = [vi · · · , vn]. Let W̃

be the set of all partially executed walks of functional execution units and be the last

input of our proposed algorithm. Note that, on eliminating a serviced customer, we

do not truly remove it from G but only mark it as an intermediate node (recall that

our graph G is incomplete and we may need it to reach unserviced customers.) In
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other words, the vertices of G at time t can be separated into 3 disjoint sets: the set of

charging stations VB, the set of unserviced customers ṼC , and the set of intermediate

nodes VI . We denote the graph modeling the problem at time t by G̃. Finally, we

introduce Algorithm 7 which takes as input a graph G̃, a set of functional execution

units Ũ, and a set of partially executed walks W̃ . Our proposed online algorithm

operates in the following two phases:

4.5.1 Simulation

The major purpose of this phase (Line 1) is to identify the set of customers V̄C which

newly become unassigned because one or more execution units become unavailable

(e.g., because of crashes) or violate energy bound (i.e., the changes in the physical

environment make the execution units consume more energy than expected and be

unable to arrive a charging station before draining out their batteries.) To detect the

violation in the latter case, we utilize the online cost functions (i.e., Ton and Son) to

check the remaining energy of each execution unit at every node in the assignments

(see Equation 4.1.6).

4.5.2 Calibration

In this phase, we introduce two optimizing strategies.

Locally optimizing. This strategy is applied when V̄C is an empty set (i.e., there

does not exist any unassigned customer) (Lines 2 - 10). Although the current walks

can be still utilized, we can get a better solution by targeting intermediate nodes.

That is, if execution unit u has to travel through an intermediate node v which is
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also an unserviced customer, we try to assign v to u. If the assignment yields a better

result, then it is committed.

Resolving. This strategy is to assign customers in V̄C to functional execution units

(Lines 11 - 19). To this end, we apply NNH to assign each customer in V̄C to an

execution unit u which has the lowest insertion cost. Recall that, C(wu) is the cost

of walk w assigned to execution unit u (see Equation 4.1.1.)

Algorithm 7: OR online algorithm

Input: G̃, Ũ, W̃
Output: new walks for functional execution units Ũ

1 V̄C ← Simulate(G̃, Ũ, W̃ )
2 if V̄C = ∅ then

3 ṼC ← set of unserviced customers

4 while ṼC 6= ∅ do

5 foreach u ∈ Ũ do

6 Iu ← the set of intermediate node in W̃ [u]
7 foreach v ∈ {v′ | v′ ∈ Iu, v′ ∈ V̄C} do
8 if assigning v to u yields a better solution then

9 assign v to u and update W̃ [u]

10 remove v from ṼC

11 else
12 foreach c ∈ V̄C do

13 foreach u ∈ Ũ do
14 Cu ← set of customers assigned to u
15 Cu ← Cu ∪ {c}
16 wu ← ConstructWalk(G, u, Cu)
17 Costs[u]← C(wu)

18 u← argmin(Costs)

19 assign c to u and update W̃ [u]

20 return W̃
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4.6 Evaluation

To rigorously analyze the techniques proposed in the previous sections, we also target

the multi-UAV exploration application (see Section 1.1) and conduct both simulations

and experiment with real Intel Aero Ready to Fly drones. Thus, we utilize the same

setting as in Section 3.6.1 and 3.6.2 and make two adjustments as follows:

• The working environment is represented by a grid: some squares of the grid are

selected to be charging stations, and the others are customers. Additionally,

UAVs have to follow the grid’s edges to move from a place to another (see

Figure 4.4 for an example of a 4× 4 grid.)

• Although the UAVs are equipped with batteries of 200kJ , we constrain that

each of their flights (since taking off until landing) cannot consume more than

15kJ .

Recall that we repeated each simulation and experiment 20 times, measured the

costs (i.e., energy and time), and considered the mean values as the final costs.

4.6.1 Simulation Results

Analysis of Offline Algorithms

Figures 4.6a, 4.6b, 4.7a, and 4.7b show the results of our simulations of the UAV sys-

tem. We utilized the MIP solver tool named PolySCIP (Borndörfer et al., 2016) to

obtain the optimal solutions for the 3×3 grid (the depot is at (0, 0), the two charging

stations are at (2, 0) and (2, 2), and the remaining six nodes are customers) to serve

as a reference for what an optimal set of flight paths can achieve. As expected, the
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(0, 0) (0, 1) (0, 2) (0, 3)

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2) (2, 3)

(3, 0) (3, 1) (3, 2) (3, 3)

Depot Customer
Charging

station

Figure 4.4: Route graph of a 4× 4 grid.

plans obtained from MIP cost less energy and time than the genetic algorithms (GAs)

and the greedy algorithm (see Figures 4.5a and 4.5b). For larger grids, MIP does not

scale well, so we only run the semigreedy algorithm and GAs for the 6 × 6 (the de-

pot is at (0, 0), and the four charging stations are at (0, 5), (2, 2), (5, 0), and (5, 5))

and the 10 × 10 grids (the depot is at (0, 0), and the nine charging stations are at

(0, 1), (0, 5), (0, 9), (5, 2), (5, 6), (9, 0), (9, 4), (9, 7) and (9, 9)). Their results are shown

in Figures 4.6a, 4.6b, 4.7a, and 4.7b showing that the greedy GA consistently out-

performs the random GA (approximately 7%) and the semigreedy algorithm (about

20%) for both time and energy consumption. Our simulations for other grid sizes

show the same pattern, but are not presented for reasons of space.
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Figure 4.5: Simulation results for the OR problem on 3× 3 grid.
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Figure 4.6: Simulation results for the OR problem on 6× 6 grid.
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Figure 4.7: Simulation results for the OR problem on 10× 10 grid.
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Analysis of the Online Algorithm

In order to analyze our online algorithm, we design the following scenarios. In the

first scenario, three UAVs explore a 4 × 4 grid (see Figure 4.4). If the conditions

during the entire operation do not change, then the UAVs complete their mission in

95s and spend about total 96kJ for the entire fleet. (see Figure 4.8). This solution

is obtained by the offline greedy GA. Now, we take the same flight paths and inject

a UAV crash at time 19s. The online algorithm realizes that the current flight paths

are not feasible and computes a new plan for the remaining two UAVs. The new

flight paths take 114s and about total 115kJ to complete all the tasks. In the third

scenario, we inject an additional UAV crash at time 57s, and the online algorithm

once again computes a new plan which takes 181s and about total 190kJ to service

all the customers.

19 50 100 114 150 181 200

1

2

3

57 95

Crash 1

(96kJ)

Crash 2

(115kJ)

(190kJ)

Time (s)

N
u
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Figure 4.8: Simulation scenarios for the OR online algorithm
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4.6.2 Experiment Results

Recall that in our experiments, (1) we had to deploy the two UAVs flying at two

different altitudes due to the safety reasons, (2) when the two UAVs fly close together,

the lower UAV spends about 12% more energy to resist the air flow generated by the

higher UAVs, and (3) although the UAVs are equipped with batteries of 200kJ , we

constrain that each of their flights (since taking off until landing) cannot consume

more than 15kJ . In the first type of experiments, we disabled the online algorithm.

When the UAVs follow the flight paths prescribed by the greedy GA (see Figure 4.9a),

the UAV flying in a lower altitude cannot complete its first subwalks, resulting in a

pre-mature completion of the mission. The reason for this is that both the UAVs

leave from the same depots at the same time, so they are flying very close together

(one of top of the other) causing the lower UAV to spend more energy (i.e., to resist

the air flow generated by the higher UAVs) than predicted by the greedy GA and

reach its energy bound (15kJ) too quickly.

Next, we enabled the online algorithm initialized by the same flight paths. The

online algorithm effectively conducted appropriate re-planning and serviced the 13

customers (see Figure 4.9b). In another online experiment, we randomly select a

UAVs and force it landing to simulate a crash. The crashed UAV then sends a

message to the ground station announcing the issue. The online algorithm computed

a new plan which reassigns all remaining customers of the crashed drone to the the

alive one. Thus, the online algorithm successfully reacts to changes of the physical

system as we expected.
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(a) Offline solution for the OR problem on
4× 4 grid.

(b) Online solution for the OR problem on
4× 4 grid.

Figure 4.9: Experiment results of the OR problem.
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Chapter 5

Optimal Path Planning in the

Presence of Disturbances

In this chapter, we propose the Optimal Path Planning in the Presence of Disturbances

(OPPD) problem, which aims to design optimal paths for a team of mobile robots

in the presence of disturbances. (a brief introduction of the problem was given in

Section 1.3) We assume that the robots are homogeneous and have access to a priori

known map of the environment, which may contain obstacles. The map is then

modeled as an undirected, connected, and finite graph whose nodes are customers,

depots, and crossroads (which do not require any service from robots), and edges

denote the possibility of traveling. Our ultimate goal is to find an optimal task

assignment and path planning for the robots that minimizes energy consumption. To

this end, we propose techniques to model disturbance dynamics and execution units’

energy consumption, and three centralized and one decentralized planning algorithms:

• First, we transform our optimization problem into integer linear programming
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(ILP). This technique produces the optimal result, though it is offline and lim-

ited to small problem sizes.

• Next, we introduce two heuristic algorithms based on Nearest Neighbor Heuris-

tic to find sub-optimal solutions. In the first algorithm, assignments for execu-

tion units are sequentially constructed, so it will utilize less number execution

units if possible. We also propose the second heuristic that aims to construct

the missions simultaneously and is suitable for parallelism.

• Finally, we also propose a decentralized algorithm based on negotiation.

The rest of this chapter is organized as follows. In Section 5.1, we formally state

the problem. Section 5.2 presents our transformation to ILP. Sections 5.3 introduce

our two centralized heuristics, while Section 5.4 presents our online decentralized

algorithm. Experimental results are analyzed in Section 5.5.

5.1 Problem Statement

In this section, we formally state our OPPD problem. To this end, we start by how

to model the physical working environment of robots and identify constraints and

objectives of the problem.

5.1.1 Waypoint Graph

In order to model the transitional possibility of robots within a physical environment,

we first map the environment to a suitable (2-D or 3-D) square grid. For example,

if robots are rovers, a 2-D grid is good enough to model their working environment
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(see Figure 5.1a.) In the case of UAVs, we have to use a 3-D grid. Then, we utilize

a graph data structure to model transitions. Formally,

Definition 5. A waypoint graph is an undirected, connected, and finite graph G =

(V,E), where:

• V = VD∪VC∪VX is the set of all vertices, where VD, VC and VX are three disjoint

sets of depots (where robots are initially located), customers (where a robot have

to come to do a task), and crossroads (which do not require any service from

robot but may be passed by robots to reach their customers), respectively. This

means, each vertex can play only a single role, being either a depot, customer

or crossroad.

• E is the set of arcs, where an edge (v, v′) ∈ E denotes the possibility of traveling

between the nodes.

The procedure deriving the waypoint graph from a given working area is as follows:

1. Divide the area into a set of adjacent cells (i.e., squares or cubes for 2-D or 3-D

grid, respectively),

2. Eliminate cells that cover obstacles,

3. Represent the remaining cells by vertices,

4. Add an arc between a pair of nodes (v, v′) if their relative cells are adjacent

(i.e., having a common edge or surface in 2-D or 3-D plane, respectively).

5. Remove nodes that are not reachable from any depots (i.e., there is no path

from one of the depots to these nodes.)
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Figure 5.1: A flight area and its corresponding waypoint graph

For example, Figure 5.1a illustrates a working environment for rovers, where there

are two depots (d0 and d1), four customers (c0, c1, c2, and c3), and three obstacles

(o0, o1, and o2). The corresponding waypoint graph of the environment is shown in

Figure 5.1b, in which the obstacles have been removed.
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5.1.2 Disturbances Model

When an execution unit navigates to a customer, there are many unforeseen factors

which may expand the required energy of precomputed optimal paths and lead to a

need for replanning. In order to model and predict the disturbances dynamics from

a software perspective, we propose the use of Gaussian Process (GP) and denote it

by function D. That is, D takes as input time t and a node v from a waypoint graph

and then predicts the disturbances that happen at v at time t. For example, in the

case of wind disturbances, D(t, v) = [dvx d
v
y d

v
z] will returns a prediction of wind speed

in x−, y−, and z−directions at v.

5.1.3 Energy Model

Deriving a parametric energy model of robots is not a trivial task. For example, al-

though from the actuation perspective, UAVs can be distinguished in only two main

categories (i.e., fixed-wing and multi-rotor), there is a wide variety of UAVs, each

with different characteristics such as weights, dimensions, propellers, and types of

motors. Thus, their energy models are different. Though there is an extensive line of

research constructing energy model for different UAVs, and some have already taken

into account the wind disturbances (e.g., (Bezzo et al., 2016; Morbidi et al., 2016;

Zeng and Zhang, 2017)), most of the work is from a control-theoretic and avionics

perspectives. Only (Di Franco and Buttazzo, 2016), to our knowledge, proposes an

approach to derive the energy model of an IRIS quad-copter from a software perspec-

tive by conducting a series of experiments on the drone. The model is expressed as

a function of the drone’s speed under different simple flight conditions such as hor-

izontal flight, climbing, descending, and hovering but does not include any external
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disturbances (e.g., wind). In this research, we extend this approach with external

disturbance.

For generalization, we abstract the energy model of the execution units by two

functions:

• Traveling estimator T . This function takes as input a time t, an edge e =

(v, v′) ∈ E, and a disturbance model D and predicts an amount of energy and

time that an execution unit needs to move from v to v′. Formally,

(ε, τ) = T (t, e,D)

where ε and τ are the amount of energy and time possibly consumed by an

execution unit to travel from v to v′, respectively. We also use T (t, e,D).ε

(respectively, T (t, e,D).τ) to indicate traveling energy (respectively, time.)

• Execution estimator S. This function takes as input time t, a customer

c ∈ VC , and a disturbances model D and then returns an estimation of energy

and time that an execution unit needs to service a customer c. Formally,

(ε, τ) = S(t, c,D)

where ε and τ are the amount of energy and time possibly consumed by an

execution unit to service c, respectively. We also use S(t, c,D).ε (respectively,

S(t, c,D).τ) to indicate traveling energy (respectively, time.)

Now, we are interested in finding a planning function for minimizing the gloabl

energy consumption of execution units. First, let mu = (vu0 , t0)(v1, t1) · · · (vn, tn) be a
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mission assigned to execution unit u ∈ U, where vi ∈ V , ti is the time that u arrives

at vi for i ∈ [0, n], and (vi; vi+1) ∈ E for all i ∈ [0, n) (i.e., a unit must go through

adjacent nodes in G.) We use mu(i).v, mu(i).t, and |mu| to denote the vi, ti and the

length of mu, respectively. Note that a node v ∈ V can appear multiple times in mu.

Recall that vu0 is the node where execution unit u is initially located (the depot of

u.) We denote the set of all possible missions by M . Then, we aim to design a plan

function F : U→M , that maps an execution unit to a mission and is subject to the

following constraints:

5.1.4 Constraints

First, we denote the set of customers serviced by execution unit u taking mu by

C(mu). Formally,

C(mu) =
{
mu(i) | i ∈ [0, n] ∧ mu(i).v ∈ VC

}
.

We now detail the constraints or our proposed problem.

Affinity. Every execution unit is only allowed to service specific customers as deter-

mined by its affinity Au:

∀u ∈ U : C(F(u)) ⊆ Au (5.1.1)
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Completion. All customers must be serviced exactly once.

⋃
u∈U

C(F(u)) = VC

C(F(u)) ∩ C(F(u′)) = ∅ for each distinct u, u′ ∈ U

(5.1.2)

Energy bound. Each execution unit should respect its energy bound. First, let

C(mu) denote the total energy consumption of a mission m assigned to an execution

unit u:

C(mu) =
∑

c∈C(mu)

S
(
tc, c,D

)
.ε+

n−1∑
i=0

T
(
mu(i).τ, (mu(i).v,mu(i+ 1).v),D

)
.ε (5.1.3)

where tc is the time when u arrives c determined by mu. Thus, the following

constraint enforces that an execution unit obeys its energy bound:

C(F(u)) ≤ Bu for u ∈ U (5.1.4)

5.1.5 Optimization Objective

Our optimization objective is to to minimize the global energy consumption. That

is:

min

[∑
u∈U

C
(
F(u)

)]
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5.2 Integer Linear Program Transformation

In this section, we transform our problem into integer linear programming (ILP). We

start by identifying the challenges in the transformation:

• Incomplete waypoint graphs. This causes that an execution unit may have to

travel through some crossroad nodes multiple times to reach its customers,

which creates cycles in its walks and makes the transformation harder.

• Effects of disturbances. This cause that (1) traveling cost of an edge varies from

different directions, and (2) both traveling and service costs vary from time to

time.

From the above challenges and the problem’s constraints (see Section 5.1.4), it is

clear that in the optimal solution only crossroad nodes may be visited more than once.

Thus, we propose to utilize a graph data structure to abstract away crossroad nodes

(to eliminates cycles in the optimal solution). Additionally, we consider discrete time

with sampling time ts, divide the operational time into time intervals T = {t0 =

0, t1, · · · , tm}. In this way, the service and traveling estimators can be viewed as

known step functions of the intervals (i.e., the service and traveling costs are known

constants.)

Now, the problem can be formulated on a weighted directed multigraph, called

route graph whose nodes are the depots and customers from the corresponding way-

point graph, and edges (connecting these nodes) encode shortest paths. By shortest

paths, we mean paths that cost less traveling energy. Due to the presence of obsta-

cles and especially disturbances, these paths are likely not straight lines between the

nodes. In order to obtain the weight (i.e., the traveling energy and time) of an edge
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(v, v′), we can explore an adaption of existing shortest path algorithms (e.g., Dijk-

stra (Dijkstra, 1959), A? (Hart et al., 1968), RRT (Kuffner Jr and LaValle, 2000)) on

the corresponding waypoint graph. We denote this algorithm by function Shortest

taking as input an interval t ∈ T and a pair of distinct nodes v and v′, and then

returning an amount of energy and time that an execution unit needs to move from

v to v′. Formally,

(ε, τ) = Shortest(t, v, v′)

where ε and τ are the amount of energy and time possibly consumed by an execution

unit to travel from v to v′, respectively. We also use Shortest(t, v, v′).ε (respectively,

Shortest(t, v, v′).τ) to indicate traveling energy (respectively, time.) The formal defi-

nition of a route graph is as follows:

Definition 6. Let G = (V,E) be the waypoint graph as defined in Definition 5. The

corresponding route graph is a finite complete weighted directed multigraph G = (V , E),

where:

• The set of all vertices V is VC ∪ VD. Recall that VC and VD are the set of

customers and depots in G, respectively.

• The set of all directed edges is ∀v, v′ ∈ V , t ∈ T : (v, v′, t) ∈ E. Recall that T is

the set of all intervals, and the interval t denotes the time when execution unit

departs from v to v′.

• Finally, the weight we of edge e = (v, v′, t) ∈ E is a pair (ε, τ), where v, v′ ∈

V , t ∈ T, t′ = Shortest(v, v′, t).τ, ε = Shortest(v, v′, t).ε + S(t′, v′).ε, τ =

t′ + S(t′, v′).τ . That is, the weight includes both the traveling and service costs.
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Figure 5.2: A route graph

For example, Figure 5.2 illustrates a route graph of the waypoint graph in Fig-

ure 5.1b. For simplicity, we consider only a single interval t0 and utilize an undirected

edge (v, v′, t0) to represent two arcs (v, v′, t0) and (v′, v, t0).

Now, we detail our ILP. Let U be a finite set of execution units, G = (V , E) be a

given route graph, and T = {t0 = 0, t1, · · · , tm} be the set of all intervals. First, the

following are decision variables in our ILP instance:

5.2.1 Decision Variables

• xu(v,v′,t): Boolean variable indicating if execution unit u travels from v to v′, for

each (v, v′, t) ∈ E .

• tu(v,t): Non-negative integer variable indicating the time when execution unit u

arrives v, where v ∈ V and t ∈ T .

Second, the constrains are as follows:
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5.2.2 Constraints

Affinity. An execution unit can only do tasks in its affinity set:

∑
v 6∈Au

xu(v′,v,t) = 0 for all u ∈ U, v ∈ V , t ∈ T (5.2.1)

Recall that T is the set of all intervals.

Mission validity. An execution unit u

• must leave from its depot (vu0 ) at t0:

∑
(vu0 ,v,t)∈E

xu(vu0 ,v,t) ≤ 1 (5.2.2)

∑
(vu0 ,v,t)∈E

xu(vu0 ,v,t) = 0 ∀t ∈ T \ {t0} (5.2.3)

• continuously goes through adjacent nodes:

0 ≤
∑

(v,v′,t)∈E

xu(v,v′,t) −
∑

(v′,v′′,t′)∈E

xu(v′,v′′,t′) ≤ 1 ∀v′ ∈ V \ {vu0} (5.2.4)

tu(v,t) − tu(v′,t′) + tm · (xu(v,v′,t) − 1) ≤ −w(v,v′,t).τ ∀v, v′ ∈ VC , ∀t, t′ ∈ T (5.2.5)

tu(v,t) − tu(v′,t′) − tm · (xu(v,v′,t) − 1) ≥ −w(v,v′,t).τ ∀v, v′ ∈ VC , ∀t, t′ ∈ T (5.2.6)

tu(v,t) · xu(v,v′,tu
(v,t)

) − tu(v,t) ≥ 0 ∀v, v′ ∈ VC (5.2.7)

tu(v,t) ∈ T ∀v ∈ VC (5.2.8)

Recall that tm is the maximum interval (i.e., a constant), w(v′,v,t) is the weight of

edge e = (v′, v, t). Equation (5.2.4) is the flow constraint enforcing that execu-

tion unit u can only leave a node only after having arrived it. Equation (5.2.5)
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and (5.2.6) are called subtour elimination constraints which are adapted from

the ones proposed by Miller-Tucker-Zemlin in (Miller et al., 1960) and is uti-

lized to eliminate cycles (i.e., subtours). When they are combined with Equa-

tion 5.2.7, they ensure that only one of the outgoing arcs of v is selected, and

the arrival time tu(v′,t) at the new node v′ is equal to the traveling time. The

Equation 5.2.7 contains a product of two decision variables (tu(v,t) and xu(v,v′,tu
(v,t)

))

making our transform nonlinear. In order to linearize it, we replace the product

with a new variables yu(v,v′,tu
(v,t)

) and add the following constraints:

yu(v,v′,tu
(v,t)

)) ≤ tm · xu(v,v′,tu
(v,t)

) (5.2.9)

yu(v,v′,tu
(v,t)

)) ≤ tu(v,t) (5.2.10)

yu(v,v′,tu
(v,t)

)) ≥ tu(v,t) − tm · (1− xu(v,v′,tu
(v,t)

)) (5.2.11)

• does not return to the depot:

∑
(v,vu0 ,t)∈E

xu(v,vu0 ,t) = 0 ∀v ∈ V , t ∈ T (5.2.12)

Completion. All customers must be visited exactly once:

∑
u∈U

xu(v′,v,t) = 1 ∀v ∈ VC (5.2.13)

Energy bound. Every execution unit must operate within its energy bound. That
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is,

∑
(v′,v,t)∈E

w(v′,v,t).ε× xu(v′,v,t) ≤ Bu ∀u ∈ U (5.2.14)

5.2.3 Objective Function

As mentioned in Section 5.1, our problem requires optimizing energy consumption.

Formally,

min
∑
u∈U

∑
(v′,v,t)∈E

w(v′,v,t).ε× xu(v′,v,t) (5.2.15)

5.3 Heuristic Algorithm

In this section, we introduce our greedy algorithms based on the Nearest Neighbor

Heuristic (NNH) (Bellmore and Nemhauser, 1968). The NNH utilizes a loop to se-

quentially select a customer which has not been assigned to any execution units and

has the lowest insertion cost to assign to an execution unit. Recall that the insertion

cost of a customer includes both the traveling and servicing cost required to append

the customer to the end of the partially build mission of an execution unit.

5.3.1 Sequential Mission Construction Heuristic

In this heuristic (Algorithm 8), the mission of each execution unit is sequentially con-

structed, and a new execution unit is introduced only when the remaining unvisited

customers cannot be assigned to the current execution unit. Therefore, some exe-

cution unit may not be utilized if the total energy bound of execution units greatly

exceeds the needed energy. The algorithm takes as input a waypoint graph G and
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Algorithm 8: Sequential Mission Construction for OPPD

Input: G = (V , E), U
Output: True or False

1 mu ← (vu0 , 0)∀u ∈ U
2 T̄ ← VC
3 foreach u ∈ U do
4 finished ← False
5 while finished = False do
6 (v, t)← the last element in mu

7 Cu[v′]← w(v,v′,t).ε ∀v′ ∈ T̄
8 v′ ← argmin(Cu)
9 if remaining energy of u ≥ w(v,v′,t).ε then

10 t′ ← w(v,v′,t).τ
11 insert (v′, t′) into the end of mu

12 remove v′ from T̄

13 else
14 finished ← True

15 if T̄ 6= ∅ then
16 return ∅
17 return mu ∀u ∈ U

a set of execution units U, and then returns missions for the execution units. The

algorithm works as follows:

1. Initialize mission for each unit (i.e., each mission is started with the depot of

the execution unit at time 0.) (Line 1)

2. Initialize the set of unserviced customers T̄ (Line 2).

3. Utilize a loop to sequentially assign customers to each unit (Lines 5 -14). At

each iteration,

(a) Choose the cheapest customer to service (Line 8)
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(b) If the current unit has enough energy to service the customer, append the

customer to the end of the unit’s mission (Line 9)

(c) Otherwise, terminate the loop and switch to the next execution unit (Line 14).

4. Return the missions of execution units.

The heuristic may indicate insufficient energy (returning an empty set of missions)

when in fact a feasible solution does exist due to its myopia. However, it will always

find a feasible solution if the energy bound of execution units is much larger than the

total requirement of the customers.

5.3.2 Simultaneous Mission Construction Heuristic

In this heuristic (Algorithm 9), the missions of execution units are simultaneously

constructed, and a customer is assigned to an execution unit which has the lowest

insertion cost. This also means, all available execution units are likely utilized even

if the total energy bound of execution units greatly exceeds the needed energy. The

algorithm takes as input a waypoint graph G and a set of execution units U, and then

returns missions for the execution units. The algorithm works as follows:

1. Initialize mission for each unit (i.e., each mission is started with the depot of

the execution unit at time 0) (Line 1).

2. Initialize the set of unserviced customers T̄ (Line 2).

3. Initialize the set of available execution units Ū (Line 3).

4. Utilize a loop to sequentially assign unvisited customers (Lines 4 -20). At each

iteration,
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Algorithm 9: Simultaneous Mission Construction for OPPD

Input: G = (V , E), U
Output: True or False

1 mu ← (vu0 , 0)∀u ∈ U
2 T̄ ← VC
3 Ū← U
4 while Ū 6= ∅ ∧ T̄ 6= ∅ do
5 C ← ∅
6 foreach u ∈ Ū do
7 (v, t)← the last element in mu

8 C[(u, v′)]← w(v,v′,t).ε∀v′ ∈ T̄
9 finished ← False

10 while finished = False ∧ Ū 6= ∅ do
11 (u, v′)← argmin(C)
12 (v, t)← the last element in mu

13 if remaining energy of u ≥ w(v,v′,t).ε then
14 t′ ← w(v,v′,t).τ
15 insert (v′, t′) into the end of mu

16 remove v′ from T̄
17 finished ← True

18 else
19 remove u from Ū
20 remove (u, v′′) from C, ∀v′′ ∈ T̄

21 if T̄ 6= ∅ then
22 return ∅
23 return mu ∀u ∈ U
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(a) Initialize a set C to store all the insertion costs (Line 5).

(b) Choose the cheapest pair of execution and customer that has the lowest

insertion cost (Line 11).

(c) If the selection yields a feasible solution (i.e., not violating energy bound),

then commit the selection (Line 17).

(d) Otherwise, repeat Step 4b until there is no available execution unit.

5. Return the missions of execution units.

The heuristic also may indicate insufficient energy (returning an empty set of

missions) when in fact a feasible solution does exist due to its myopia. Although

both aforementioned heuristics can find a solution in O(|U| · |V|) time in the worst

case, Algorithm 9 is more parallelizable. Recall that V is the set of vertices in the

given route graph G, and U is the set of all execution units.

5.4 Online Algorithm

In this section, we propose an online and decentralized algorithm. To this end, we

first assume that (1) each execution unit is equipped with a WiFi module allowing to

communicate with one another over a reliable network (i.e., no messages are altered or

spuriously introduced), (2) each execution unit has the unique integer ID which can

be utilized to determine the priority between execution units (i.e., the one with lower

ID has higher priority.), and (3) some execution units may leave the team during

execution time (because of crashes).

Next, we discuss the input of the proposed algorithm. First, when one of the exe-

cution units notices environmental changes that do not conform with its disturbances
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models at time t, there could be some (or all) customers which have been serviced

and must be eliminated before invoking the algorithm. We denote the route graph

modeling the problem at time t by G̃ (note that the weights of its edges are also

updated wrt. the currently observed disturbances). Final, let us consider a mission

mu = (vu0 , t0)(v1, t1) · · · (vn, tn) assigned to execution unit u. If u locates at vi at the

time t (if it is traveling to vi, we still consider that u is at vi), where i ∈ [0, n], then

the partially executed mission of u is m̃u = (vui , ti) · · · (vn, tn).

Now, we introduce Algorithm 10 which is executed by each unit u ∈ Ū and takes

as input a graph G̃, and its partially executed mission m̃u, and then produces its

missions after negotiating with other functional execution unit. The algorithm works

a follows:

1. Simulate the current mission to check if the execution unit has enough energy

to finish its mission. If it is still possible, T̄u is an empty set. Otherwise, T̄u

contains customers that are in m̃u and cannot be visited by u (Line 1).

2. Update the current mission of the execution unit w.r.t to T̄u. That is, we remove

every customer c ∈ T̄u from m̃u (Line 2).

3. Broadcast a message to detect the set of functional execution units Ū (Line 3).

4. Communicate with functional execution units to get all unassigned customers

T̄ (Line 4).

5. Utilize a loop to sequentially assign the customers to the units (Lines 5 -23).

At each iteration,

(a) Choose the cheapest customer as a candidate (Line 8)

114



A-D. Vu McMaster University – Computer Science

Algorithm 10: OPPD - Online decentralized algorithm for each unit u

Input: G̃, m̃u

Output: m̃u

1 T̄u ← Simulate(m̃u)
2 update m̃u

3 Ũ← the set of functional execution units
4 T̄ ←

⋃
u′∈Ũ T̄u′

5 while T̄ 6= ∅ do
6 (v, t)← last element in m̃u

7 Cu[v′]← w(v,v′,t).ε∀v′ ∈ T̄
8 v′ ← argmin(Cu)
9 if remaining energy of u ≥ Cu[v′] then

10 send (u, v′, Cu[v′])

11 Cv′ ←
⋃
u′∈Ũ\{u}{Cu′ [v′]}

12 if Cu[v′] < min(Cv′) then
13 t′ ← w(v,v′,t).τ
14 insert (v′, t′) into the end of m̃u

15 else if Cu[v′] = min(Cv′) then
16 Uv′ ← the set of units that has the same insertion cost of v′

17 if u has the highest priority among Uv′ then
18 t′ ← w(v,v′,t).τ
19 insert (v′, t′) into the end of m̃u

20 remove v′ from T̄

21 else
22 broadcast (u,NIL)
23 break

24 return m̃u
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(b) If the current unit has enough energy to service the customer, communicate

with other available to determine which execution unit will service the

selected customer (Line 10). The selected unit is the one with the lowest

insertion cost (Line 12), and execution units’ priorities will be utilized to

break any ties if necessary (Line 17).

(c) Otherwise, send a message informing that u has used up its energy and

will not accept any other mission (Line 22).

6. Return the missions of execution units.

5.5 Evaluation

To rigorously analyze techniques proposed in the previous sections, we, once again,

utilize simulations and experiments of the multi-UAV exploration application (see

Section 1.1). We also employ the same setting as in Section 3.6.1 and 3.6.2 and make

three adjustments as follows:

• The working environment is is represented by a 3-D square grid (see Figure 5.3

for an example of a 3×2 grid.) Additionally, the grid’s edges limit the maneuver

of a UAV to six directions: up, down, east, west, north, and south.

• The experiment platform includes a 20′′ box fan capable of generating wind

speed up to 3m/s and two cardboard boxes as stationary obstacles.

• Although the UAVs can fly up to 20m/s, we limit their speed down to 5m/s,

which greatly increases the impact of the wind (generated by the box fan) on

qualification of the pre-computed optimal paths of UAVs.
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Figure 5.3: Waypoint graph of a 3× 2 grid.

Recall that we repeated each simulation and experiment 20 times, measured the

costs (i.e., energy and time), and considered the mean values as the final costs.

5.5.1 Disturbances Model Construction

In our experiment, we considered wind as the only external disturbances and was

created through a 20′′ box fan capable of generating wind speed up to 3m/s. To

construct wind models, we carried a set of experiments:

• In the first experiment, we aimed to derive the wind dynamics as a function

of location. To this end, we had the fan generate wind at constant speed and

utilize a wind speed meter (see Figure 5.4) to measure the x− and y−direction

wind speed at each square of the working area. Then, we developed a Python

application utilizing Scikit-learn library (Pedregosa et al., 2011) to construct a

Gaussian Process modeling the wind. Figure 5.5a shows the real wind direction
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and one predicted by our model while the detail speeds in x− and y−direction

at each cell are shown in Figures 5.5b and 5.5c, respectively. For simplicity, we

utilize a 2-D grid instead of 3-D one. Note that this model is mainly used for

our simulation to compare the performance of our heuristic algorithms and the

ILP.

Figure 5.4: A wind speed meter.

• In the second experiment, we manage derive the the wind dynamics as a function

of time and location. That is, we had the fan generate wind at different speed at

different time interval. This model is mainly used for our empirical experiment

to evaluate how well our online algorithm responses to the real changes of the

environment.
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Figure 5.5: Wind measure and prediction.
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5.5.2 Energy Model Construction

In this research, we employed Intel Aero drones powered with a 3S LiPo battery

(11.1V 5Ah), and weighted approximately 1.5Kg in total. In order to derive the

energy model of the drone, we carried out a set of experiments:

• In the first experiment, we aim to derive the power consumption as a service

function (i.e., S). Thus, we programmed the drone to fly in different condi-

tions such as taking off, landing and hovering with and without the presence of

disturbances.

• In the second experiment, we manage to derive the power consumption as a

traveling function. Therefore, we programmed the drone to fly at the maximum

speed from one place to another with and without the presence of disturbances.

The consumed power was then derived for each type of transition (e.g., flying

vertically up and down, horizontally to different distances.)

5.5.3 Simulation Results

Figure 5.6 shows the results of our simulations of the proposed offline algorithms.

We utilized the CPLEX solver to obtain the optimal solutions for the 3× 3× 2 grid

(the depots is at (0, 0, 0) and (2, 2, 0), three customers are at (2, 0, 0), (1, 1, , 1), and

(0, 1, 1), and the remaining seven nodes are crossroads) to serve as a reference for

what an optimal set of flight paths can achieve. As expected, the plans obtained

from ILP cost less energy and time than the heuristic algorithms (see Figures 5.6a).

For larger grids, ILP does not scale well, so we only run the heuristics algorithm for

the 10 × 10 grid (there are two depots, and 20 customers. Their results are shown
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Figure 5.6: Simulation results for the OPPD problem on 3× 3, and 10× 10 grids.
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Figure 5.6: Simulation results for the OPPD problem on 3× 3, and 10× 10 grids
(cont.).

in Figures 5.6b. Because the both algorithms are based on the same heuristic, the

energy consumption of their plans approximately equal. However, Figure 5.6c shows

that Algorithm 9 is consistently faster than Algorithm 8 due to its parallelism.

Next, we design the following scenarios to evaluate our online algorithm. In the

first scenario, three UAVs explore a 4 × 4 × 2 grid (the depot is at (3, 3, 0), eight

customers are at (2, 0, 0), (1, 1, 1), (1, 1, 0), (3, 0, 1), (2, 2, 1), (0, 3, 1), (0, 2, 0), and

(3, 1, 0), two obstacles are at (1, 0, 0) and (2, 2, 0), and the remaining nodes are cross-

roads). If the conditions during the entire operation do not change, then the UAVs

complete their mission in 92s and spend about total 107kJ for the entire fleet. (see

Figure 5.7). This solution is obtained by Algorithm 9. Now, we take the same flight

paths and inject a UAV crash at time 25s. The online algorithm realizes that the

current flight paths are not feasible and computes a new plan for the remaining two

UAVs. The new flight paths take 141s and about total 132kJ to complete all the
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tasks. In the third scenario, we inject an additional UAV crash at time 67s, and the

online algorithm once again computes a new plan which takes 191s and about total

200kJ to service all the customers.
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Figure 5.7: Simulation scenarios for the OPPD problem online algorithm

5.5.4 Experiment Results

In the experiments, the lab is then modeled by a 3-D square gird of 4 × 4 × 2.

The grid consists of a single depot at (3, 3, 0), eight customers at (2, 0, 0), (1, 1, 1),

(1, 1, 0), (3, 0, 1), (2, 2, 1), (0, 3, 1), (0, 2, 0), and (3, 1, 0), and two obstacles at (1, 0, 0)

and (2, 2, 0) (the remaining nodes are crossroads) (see Figure 5.8a). We employed

the fan at the bottom left corner of the room to generate wind, and two Intel Aero

drones to do some tasks at the customers. The ultimate goal of our experiments is

to demonstrate the effectiveness of our offline and online algorithms. To this end, we

carried two types of experiments:

• The first type of experiment aims to measure how much energy our techniques
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can save. To this end, we need to measure and compare the real energy con-

sumption of the drone with and without taking account the presence of the

wind. In other words, we need to do three different experiments:

– In the first experiment, we disable the disturbance function (i.e., returning

(0, 0, 0)), run Algorithm 9, get the plan, have the drone execute it, and

measure the consumed energy. Figure 5.8a shows the flight path of the

drone in this scenario, and the total energy consumption from the real

experiment is 87kJ .

– In the second experiment, we also disable the disturbance function utilized

the same path, but deployed the fan at the bottom left corner of the room

to continually generate a wind of 1m/s. In this case, the drone consumed

102kJ (approximately 17% extra energy) to finish its mission.

– In the third one, we enable the disturbance function while calculating the

plan. Figure 5.8b shows the flight path of the drone in this scenario, and the

total energy consumption from the real experiment is 95kJ (approximately

9% extra energy). Note that we also actually employed the fan at the

bottom left corner of the room to continually generate a wind of 1m/s

during the real experiment.

• The second type of experiment is to show that our online algorithm can effec-

tively react to uncertainties caused by the physical environment. We deployed

two UAVs flying at two different altitudes in the working area. Due to safety

and collision avoidance, we set that the blue UAV can only service customers
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at the layer 0 (i.e., zc = 0, ∀c ∈ VC) while the green one can service only cus-

tomers at the layer 1 (i.e., zc = 1, ∀c ∈ VC .) Moreover, although the UAVs are

equipped with batteries of 200kJ , we constrain that each of their flights (since

taking off until landing) cannot consume more than 75kJ . When the UAVs

follow the flight paths prescribed by Algorithm 9 (see Figure 5.8c), the UAV

flying in a lower altitude cannot complete one of its flight due to reaching their

energy constraint (75kJ) too quickly, resulting in a pre-mature completion of

the mission. Recall that when the two UAVs fly close together, the lower UAV

has to spend about 12% more energy to resist the spiral air flow generated

by the higher UAV. Next, we ran our online algorithm initialized by the same

setting. The online algorithm effectively conducted appropriate planning and

serviced all customers (see Figure 5.8d).
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Figure 5.8: Experiments with Intel Aero UAVs.
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Figure 5.8: Experiments with Intel Aero UAVs (cont.).
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Chapter 6

Conclusion

This thesis has tackled the problem of optimizing energy for a team of autonomous

mobile robots. Our goal is to show that exclusively software-based approaches can

provide an effective energy-optimization for DAMR systems. By effective, we mean

that our systems can be actually implemented and deployed in real-world scenarios.

To this end, we studied a class of DAMR systems where the team of battery-powered

and networked robots navigating in a physical environment and acting in concert to

accomplish a common goal. In this chapter, we present summaries and contributions

of each chapter in Section 6.1 and the future work in Section 6.2

6.1 Summary

In Chapter 3, we proposed the Reliability-Energy Tradeoff problem which aims to

control energy consumption in order to improve the level of reliability of our DAMR

systems. To this end, we made the following contributions:

• We proposed a general-purpose model called verificable task graphs that capture
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the interactions of the reliability vs. energy and allow system designers to

parameterize the tradeoffs in their system. That is, verification tasks can be

intermittently and arbitrarily inserted into the computation task graph.

• We also introduced three different offline techniques that identify optimal and

near-optimal schedules for execution units to compute functional tasks as well

as peer-verification tasks, where units verify the sanity of the output of each

other to provide resilience against cyberattacks.

• We also introduced an online algorithm that reacts to situations, where the

physical environment invalidates some of the design, implementation, or opti-

mization assumptions.

• We reported results of simulations of all of our algorithms as well as a proof of

concept using a real network of UAVs that carry our a joint search mission.

In Chapter 4, we introduced the problem of extending operational time of team

of mobile robots by charging stations. We assume that the robots are heterogeneous

(having different energy limits and being able to service different types of customers)

and have access to a priori known map of the environment. The map is modeled as a

directed, connected, and finite graph whose nodes are charging stations or customers,

and arcs denote the possibility of traveling. Our ultimate goal is to find an optimal

task assignment and path planning for the robots that minimizes energy consump-

tion as well as the time needed to complete the tasks, including the time spent for

recharging. To this end, we made the following contributions:

• We transform our optimization problem into multi-objective integer program-

ming (MIP). This techniques produces the optimal result, though it is offline
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and limited to small problem sizes.

• We also introduce three scalable offline algorithms that find sub-optimal solu-

tions. The first is a semigreedy algorithm which is a combination of the Nearest

Neighbor Heuristic and an extension of the randomized A? algorithm. We also

propose two genetic algorithms (GAs) named Greedy GA and random GA. The

two algorithms have the same evolving (mating, mutating and selecting) op-

erations. For generating their initial population, the Greedy GA invokes the

semigreedy algorithm, while the Random GA randomly assigns customers to

robots.

• We also propose an online algorithm to dynamically adjust the plan according

to the changes in the physical environment.

• We reported results of simulations of all of our algorithms as well as a proof of

concept using a real network of UAVs that carry our a joint search mission.

In Chapter 5, we propose the Optimal Path Planning in the Present of Distur-

bances problem which aims to design optimal paths for a team of mobile robots in

the presence of disturbances. We assume that the robots are homogeneous and have

access to a priori known map of the environment, which may contain obstacles. The

map is then modeled as an undirected, connected, and finite graph whose nodes are

customers, depots, and crossroads (which do not require any service from robots), and

edges denote the possibility of traveling. Our ultimate goal is to find an optimal task

assignment and path planning for the robots that minimizes energy consumption. To

this end, we made the following contributions:
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• We transform our optimization problem into integer linear programming (ILP).

This technique produces the optimal result, though it is offline and limited to

small problem sizes.

• We introduce two heuristic algorithms based on Nearest Neighbor Heuristic to

find sub-optimal solutions. In the first algorithm, assignments for execution

units are sequentially constructed, so it will utilizes less number execution units

if possible. We also propose the second heuristic that aims to construct the

missions simultaneously and is good for parallelism.

• Finally, we also propose a online decentralized algorithm based on negotiation.

6.2 Future Work

The thesis has tackled the problem of optimizing energy consumption for a team of

autonomous mobile robots from three distinct aspects. It will be interesting to further

expand this study to:

• Dynamic number of robots. In our thesis, we had fixed the number of

mobile robots that initially take part in the problem. It would be interesting

to find the exact number of robots required to produce the optimal solution

to service a given graph. Moreover, although our online algorithms cover the

situation where one or more robots become unavailable (i.e., the number of

robots is reduced on the fly), it would be more practical if the algorithms also

allows new robots join the team on the fly.

131



A-D. Vu McMaster University – Computer Science

• Dynamic graph. We solved the problem for fixed graphs. In real life scenarios,

certain customers tend to have sudden demands which would be better served

in the present instance of the problem. In this case, the graphs are not known

fully and robots know new demands only after reaching a location. One can

design a probabilistic distributed algorithm to solve this problem.

• Fault-tolerance. We are interested in investigate a more complicated scenario

where execution units may become Byzantine, i.e., they non-intentionally or

maliciously misrepresent their observation or peer-verification results.
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