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Abstract

Recent advances in energy harvesting techniques have enabled the development of self-

sustainable systems that are powered by renewable energy sources in the environment.

In this field, designing power control policies that can achieve high throughput is a

significant problem. In this thesis, we analyze the long-term average throughput of

Best Effort Policy in energy harvesting communications under a Bernoulli energy

arrival process. We provide a limit and an order’s upper bound of the difference

between throughput induced by limited battery and throughput induced by unlimited

battery for two Bernoulli cases respectively when battery capacity approaches infinity.

Besides, some other energy harvesting processes are considered, their characteristics

of throughput are discussed by numerical simulation.
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Chapter 1

Introduction

Recent advances in energy harvesting techniques have enabled the development of self-

sustainable systems that are powered by renewable energy sources in the environment,

such as solar energy, wind energy, thermal energy and so on. This technology makes

it possible to reduce the dependence of battery and it has received a lot of attention.

Unlike conventional communication systems, the power supply of energy harvesting

systems is not fixed due to the nature of renewable energy sources, for example, the

solar and wind energy are related to weather condition and geographic situation,

which indicates that the problems in this field will be challenging.

In the past several years, a lot of work on energy harvesting communications has

been done, including the research of energy sources, usage protocol, power control

policy and other aspects [10], [27].

For energy sources, mainly, there are four types as solar or light, motion, ther-

moelectric effect, and electromagnetic radiation. The amount of harvested energy

and whether it is controllable or not base on each energy source’s own characteris-

tics [9, 18,20,21,24,30].
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Two significant schemes of energy harvesting systems are studied widely as harvest-

store-use (HSU) scheme and harvest-use-store (HUS) scheme [19]. The harvest-store-

use scheme harvests energy and stores it into the equipped battery before transferring

power to the receiver, which is shown in Figure 1.1. On the other side, harvest-use-

store scheme use the obtained energy firstly and then store the remaining power into

the battery, which is shown in Figure 1.2. Generally, HUS architecture can have a

better performance than HSU architecture if the transmitter is equipped with a finite-

sized battery because it can reduce the amount of wasted energy caused by overflow

in the battery. In our thesis, only the HSU scheme is considered.

Figure 1.1: Energy Harvesting Communications (HSU)

Figure 1.2: Energy Harvesting Communications (HUS)

Power control policy is the energy allocation strategy of energy harvesting system,
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which determines the energy consumption Yt at current time slot based on the avail-

able knowledge of energy level in the battery Bt and energy arrival Et. Bt contains

past and current information of energy arrivals, we can have a simple expression for

HSU scheme like

Bt = min (Bt−1 − Yt+1 + Et, m) . (1.0.1)

There are two classes of power control policy, one is offline policy and the other one is

online policy. In offline policy, the transmitter is assumed to know the information of

all future energy arrivals, in other words, the time slots and amounts of future energy

arrivals can be predicted. The energy used from buffer depends on all harvested

energy and current energy stored in the battery as

Yt = ft(Bt, E
∞
t+1). (1.0.2)

In the offline case, finding the optimal power control policy can be looked like a

convex optimization problem whose objective functions and constraint functions can

include the information of known future energy arrivals. However, in online policy,

future energy arrivals are random and uncertain, so, the transmitter only has causal

knowledge of energy arrivals, which can be described by stochastic processes including

time-unrelated model as statistical distribution and time-related model as Markov

Chain. Here is the formulation of energy consumption in the online case at time slot

t

Yt = ft (Bt) . (1.0.3)

Due to the uncertainty of future energy arrivals, neither consuming energy too fast

nor too slow is wise. If energy consumption is fast, it is possible that an outage

3
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occurs. On the other side, saving too much energy for the future is not always a

good choice, an overflow should be considered. Designing a power control policy

for the online case can be looked like a Markov Decision Process. Besides, the goal

of power control varies, maximizing long-term averaged throughput, minimizing the

probability of outage and other objectives will lead to totally different power control

policies [2, 5–8,12–16,22,28,29,32,34]. Several examples are summarized as follows.

In [16], An offline energy scheduling is proposed by solving a convex optimization

problem that focuses on the maximum throughput associated with a deadline. [34]

finds two offline power allocation strategies that can minimize completion time for two

cases, where no packet arrival occurs during transmission and packet arrivals exist

after the starting of transmission. In [29], authors discuss the offline policies can

achieve maximum throughput and minimum mean delay for a point-to-point system

equipped with an infinite battery. With a linear reward function, the policy which

spends the smaller one of two energy amounts, all available energy in the buffer and

required power of data transfer, at every time slot is considered throughput and mean

delay optimal. A numerical online optimal policy solved by dynamic programming

method is shown in [5], its target is to reach the maximum throughput over a finite

time horizon for a limited battery. [5] also uses a numerical method to obtain the

offline optimal policy that can maximize throughput for both limited and unlimited

buffer over a finite horizon. In [22], authors represent the Fixed Fraction Policy

using a fixed proportional p to the energy level in battery. Besides, the throughput

optimal policy under the Bernoulli energy harvesting process is obtained by a precise

mathematical expression.

In addition, there are some other problems studied in the energy harvesting field,

4
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including energy harvesting models, imperfect battery [3,26,33] and so on. However,

Among existing researches, energy scheduling is a significant key task and throughput

is an important evaluation criteria [1, 4, 11, 17, 25, 31]. Therefore, having an under-

standing and view of the energy harvesting system’s long-term average throughput is

beneficial for designing power control policies in future work.

In this thesis, we will discuss the characteristics of the long-term average through-

put of the Best Effort Policy.

5



Chapter 2

Problem Statement

2.1 Problem Statement

For power control problem, at time slot t, energy arrival is denoted by Et, energy

stored in battery is Bt and energy consumed for data transmission is Yt. The battery

capacity is described as m. A simple sketch of the system model is given by Figure

2.1.

Figure 2.1: Energy Harvesting Communication System Model

Here we consider Et as i.i.d and system as harvest-store-use (HSU) architecture,

6
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which means that at each time slot, we always have Bt ≤ m and Yt ≤ Bt. The energy

harvesting system is capacity-achieving for Additive White Gaussian Noise (AWGN)

channel at all signal to noise ratios, in other words, the reward function is Gaussian

Channel Capacity formula. We consider the Best Effort Policy, which is an online

policy consuming all available energy if Bt is less than the mean of energy arrival µ,

otherwise, consuming µ at each time slot. In fact, it can be looked like a combination

of the Greedy Policy and the Constant Policy. The Greedy Policy is an online policy

that uses up all energy in the battery every time, and it performs well when battery

capacity is small. While the Constant Policy keeps a constant consumption as long

as the power storage is enough, which is optimal when battery capacity approaches

infinity. The Best Effort Policy can combine these two policies to make up their

shortfall in different ranges of battery capacity. For transmitter with finite battery,

the long-term average throughput is given as

Θ = lim sup
n→∞

1

n
E

[
n∑
t=1

1

2
log (1 + γYt)

]
. (2.1.1)

For energy harvesting system equipped with infinite battery, if online energy alloca-

tion strategy for consumption is µ at each time slot, the long-term average throughput

can achieve [23]

Θ∞ =
1

2
log (1 + γµ) . (2.1.2)

Here γ is signal to noise ratio and γ is set as 1 in following discussion.

In this thesis, we analyze the difference between throughput induced by an un-

limited battery and a limited battery for the Best Effort Policy if the energy arrival

process follows i.i.d Bernoulli distribution. And then, we extend to other distributions

7
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by numerical simulation.

2.2 Thesis Structure

This thesis is organized as follows. In the first chapter, introduction and background

information of energy harvesting communications are provided. Then, the second

chapter includes a statement of the problem and a structure of this thesis. The

main results and rough proofs are given in the third chapter. The final chapter is a

conclusion. Appendix A and B give detailed proofs of our main results.

8



Chapter 3

Main Results and Proofs

3.1 Throughput of Bernoulli Energy Arrival Pro-

cess

In this section, we use Markov Chain to show that if Et follows i.i.d Bernoulli distri-

bution, when battery capacity approaches infinity, the long-term average throughput

of the Best Effort Policy will go to (2.1.2). We provide the limit of Θ∞−Θ when the

mean of Bernoulli energy arrival is one and the upper bound of the order of Θ∞ −Θ

in the large m limit when mean of Bernoulli energy arrival is an arbitrary integer.

3.1.1 The Mean of Bernoulli Energy Arrival Process is 1

Firstly, we will prove that under the condition of µ = 1, when m goes to infinity, the

probability of no energy in the battery, written as P (0), has

lim
m→+∞

P (0)
1
m

=
k − 1

2
,

9
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which indicates that

lim
m→+∞

Θ∞ −Θ
1
m

=
k − 1

4
log 2. (3.1.1)

3.1.1.1 Theorem 1

If energy arrival is assumed as Bernoulli distribution, whose mathematical expression

is

P (Et = k) =
1

k
P (Et = 0) = 1− 1

k
, (3.1.2)

where k is integer and k ≥ 2.

We can have

lim
m→+∞

P (0)
1
m

=
k − 1

2
,

where P (0) is the probability that energy level in the battery is 0.

3.1.1.2 Proof

Figure 3.1 shows the Markov Decision Process of energy in the battery Bt under

Bernoulli energy arrival as (3.1.2). The Best Effort Policy is considered as if B ≥ µ

at the current time slot, µ amount of energy can be used; otherwise, all energy in the

battery will be spent. In this condition, µ equals to 1, therefore, the policy can be

simply looked as energy consumption Yt is 1 at each time as long as Bt 6= 0.

According to the similar process under buffer capacity m, several equations about

probabilities of energy level in the battery, from P (0) to P (m), can be obtained, and

these equations are related to parameter k. Here P (i) represents the probability of

energy amount in the battery is i. After simple calculation, the following equations

10
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Figure 3.1: Markov Chain of Energy Level in Battery (k = 3, m = 7)

are gotten:

P (k + 1) =
1

k

(
P (2) + . . .+ P (k + 1)

)
(3.1.3)

P (k + 2) =
1

k

(
P (3) + . . .+ P (k + 2)

)
(3.1.4)

. . .

P (m) =
1

k

(
P (m− k + 1) + . . .+ P (m)

)
. (3.1.5)

By equations from (3.1.3) to (3.1.5), P (2), . . . , P (m) can be looked as a linear

recurrence and solved by Characteristic Roots Method. P (2), . . . , P (m) can be

written as

P (n+ 1) = C1 + C2x2
n + . . .+ Ck−1xk−1

n,

11
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where C1 = 2
k−1

P (0) and C2, . . . , Ck−1 = 1
k−1

P (0). Here x are roots of

(k − 1)xk−1 − xk−2 − xk−3 − . . .− x− 1 = 0.

Through discussion, the absolute values or modulus of x2, . . . , xk−1 must be strictly

smaller than 1. Since
∑m

i=0 P (i) = 1, we have

(1− 1

k − 1
)P (0) +

m−1∑
q=1

2

k − 1
P (0) + C2x2

q + . . .+ Ck−1xk−1
q = 1, (3.1.6)

Due to |x2| < 1, . . . , |xk−1| < 1, we can get a result that P (0) converges to zero when

m approaches infinity as

lim
m→+∞

P (0)
1
m

=
1
2

k−1

.

The detailed proof is shown in Appendix A.

3.1.2 The Mean of Bernoulli Energy Arrival Process is j

Secondly, if µ is an arbitrary positive integer, the probability that Bt = 0 is denoted

by P (0). For the Best Effort Policy, it can be proved that there is a positive and finite

number β such that Θ∞ −Θ ≤ 1
βm

for m is sufficiently high by following Theorem 2.

Here β is unrelated to battery capacity m.

3.1.2.1 Theorem 2

If energy arrival is assumed as Bernoulli distribution, whose mathematical expression

is

P (Et = k) =
j

k
P (Et = 0) = 1− j

k
, (3.1.7)

12
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where k, j are integer and k > j > 0.

There is a positive and finite number α such that P (0) ≤ 1
αm

for m is sufficiently

high. Here α is unrelated to battery capacity m.

3.1.2.2 Proof

Battery level state Bt studied by Markov Chain under (3.1.7) is shown in Figure 3.2.

Also, the Best Effort Policy is studied in this case.

Figure 3.2: Markov Chain of Energy Level in Battery (k = 5, j=2, m = 10)

Similarly, we have some equations of probabilities of battery energy level, P (i),

until m as

(
1− j

k

)
P (k + j) =

j

k

(
P (j + 1) + . . .+ P (k)

)
−
(

1− j

k

)(
P (k + 1) + . . .+ P (k + j − 1)

)
(3.1.8)

13
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(
1− j

k

)
P (k + j + 1) =

j

k

(
P (j + 2) + . . .+ P (k + 1)

)
−
(

1− j

k

)(
P (k + 2) + . . .+ P (k + j)

)
(3.1.9)

. . .

(
1− j

k

)
P (m) =

j

k

(
P (m− k + 1) + . . .+ P (m− j)

)
−
(

1− j

k

)(
P (m− j + 1) + . . .+ P (m− 1)

)
. (3.1.10)

According to the above equations, through the Characteristic Roots Method, we can

also find the general term formula from P (1 + j) to P (m) as

P (n+ j) = C1 + C2x2
n + . . .+ Ck−1xk−1

n

or

P (n+ j) = C1 + C2x2
n + . . .+ Clxl

n +
(
Cl+1 + . . .+ nu1−1Cl+ul

)
xl+1

n

+ . . .+
(
Ck−uw + . . .+ nuw−1Ck−1

)
xl+w

n

which correspond to the conditions of only k − 1 number of single roots exist or w

number of repeated roots exist for (3.1.11) respectively. Here Ci is independent of m

and all x are roots of

(
1− j

k

)(
xk−1 + · · ·+ xk−j

)
− j

k

(
1 + x+ · · ·+ xk−j−1

)
= 0. (3.1.11)

Also, because of
∑m

i=0 P (i) = 1, by calculation, when m approaches infinity, we can

14
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obtain that

k

k − j
P (0) + C1 (m− j) +H

(
a cos (mθ)− b sin (mθ)

)
tmP (0) = 1

or

k

k − j
P (0) + C1 (m− j) +H

(
a cos (mθ)− b sin (mθ)

)
mctmP (0) = 1,

where C1 ≥ 2
k−jP (0) and H, t, c are real finite numbers. By discussing all possible

values of c and t, for large m, we can get the result that

0 ≤ P (0) ≤ 1

αm
,

where α is a positive and finite number that is independent of m.

The detailed proof is shown in Appendix B.

3.2 Extension

In this section, we do some numerical simulations of other distributions for the Best

Effort Policy.

Figure 3.3 to Figure 3.6 show the simulation results for several different kinds of

energy arrival process with different means and variances. Here Xt follows i.i.d. In all

cases, it is clear that with the increase of battery size m, the throughput of a system

equipped with a finite-sized battery converges to optimal throughput induced by an

infinite-sized battery. The maximum long-term averaged throughput of the unlimited

buffer system is given by (2.1.2), which is independent of battery size.

We also consider the influence of energy arrival distribution moments on long-term

15
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average throughput curve.

We can find that throughput with limited battery is related to mean and variance.

In Figure 3.7, we keep variance is 5. From this figure, there is a positive relationship

between µ and the point m that the convergence rate starts decreasing. Then, from

Figure 3.8, there is a negative relationship between variance and convergence rate for

normal distribution. When σ2 = 20, the point that Θ∞ approaches Θ is larger than

the one when σ2 = 5. In addition, the throughput curve is smoother if the variance

is large, which indicates the rate of convergence is lower.

The skewness and kurtosis of energy arrival distribution affect throughput. How-

ever, their effect is relatively small. In Figure 3.3 and Figure 3.9, we assume that

mean and variance are same but the skewness and kurosis are different, which shows

a similar result in the figures, which shows that these two moments of energy arrival

distribution have small influence on performance.

Generally, the shape of p.d.f will affect the curve of throughput, which is related

to the four moments in our above discussion. From Figure 3.3a to Figure 3.6a,

we can simply say that if p.d.f is monotonically decreasing, the convergence rate of

throughput will become highest. While if p.d.f increases firstly and then decreases,

the convergence rate will be lowest. For Uniform distribution whose p.d.f is flat, the

convergence rate will between those two types. Similar result is shown in Figure 3.3b

to Figure 3.6b.

In fact, these results are natural because if the probability of small energy arrival

is high, it will be more possible that the energy stored battery is below mean and all

energy is used, which indicates the throughput will be lower under a fixed battery

capacity.

16
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(a) µ = 5 (b) µ = 10

Figure 3.3: Poisson Energy Arrival Process

(a) µ = 5 (b) µ = 10

Figure 3.4: Geometric Energy Arrival Process

17
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(a) µ = 5 (b) µ = 10

Figure 3.5: Uniform Energy Arrival Process

(a) µ = 5 (b) µ = 10

Figure 3.6: Exponential Energy Arrival Process

18
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(a) µ = 5 (b) µ = 50

Figure 3.7: Normal Energy Arrival Process with different Means

(a) σ2 = 5 (b) σ2 = 20

Figure 3.8: Normal Energy Arrival Process with Different Variances
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(a) µ = 5 (b) µ = 10

Figure 3.9: Gamma Energy Arrival Process

20



Chapter 4

Conclusion

In this thesis, we study the performance of the Best Effort Policy in energy harvest-

ing communications. For the Bernoulli energy arrival process, the difference between

throughput values induced by an unlimited battery and large limited battery is cal-

culated. The limit and upper bound of this difference corresponding to two Bernoulli

cases are given. Under Bernoulli energy harvesting condition with mean equals to

one, we prove that limm→+∞
Θ∞−Θ

1
m

= 1
4

k−1

log 2, while under Bernoulli energy harvest-

ing condition with mean is an arbitrary positive integer, we can obtain that Θ∞ −Θ

is no greater than 1
αm

when m is sufficiently high. Here α is a positive and finite

number that is independent of battery capacity m. Besides, we also provide some

numerical throughput results of other energy arrival distributions and discuss their

characterizations.

21



Appendix A

Proof of Theorem 1

According to Markov Chain of Bt, the following equations can be obtained.

1

k
P (0) =

(
1− 1

k

)
P (1) (A.0.1)

P (1) =

(
1− 1

k

)
P (2) (A.0.2)

. . .

P (k − 1) =

(
1− 1

k

)
P (k) (A.0.3)

P (k) =
1

k
P (0) +

1

k
P (1) +

(
1− 1

k

)
P (k + 1) (A.0.4)

P (k + 1) =
1

k
P (2) +

(
1− 1

k

)
P (k + 2) (A.0.5)

22
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. . .

P (m− 1) =
1

k
P (m− k) +

(
1− 1

k

)
P (m) (A.0.6)

P (m) =
1

k

(
P (m− k + 1) + . . .+ P (m)

)
. (A.0.7)

The equations (A.0.5), . . . , (A.0.7) can be written as

P (k + 1) =
1

k

(
P (2) + . . .+ P (k + 1)

)
(A.0.8)

P (k + 2) =
1

k

(
P (3) + . . .+ P (k + 2)

)
(A.0.9)

. . .

P (m) =
1

k

(
P (m− k + 1) + . . .+ P (m)

)
. (A.0.10)

Then P (2), . . . , P (m) can be regarded as linear recurrence, and be expressed by

Characteristic Roots Method as

P (j) = C1x1
j + C2x2

j + . . .+ Ck−1xk−1
j

if the solutions x1, . . . , xk−1 of equation

(k − 1)xk−1 − xk−2 − xk−3 − . . .− x− 1 = 0 (A.0.11)
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are all single roots. For (A.0.11), there will be one solution as 1 and couples of

solutions as conjugate complex pair, besides, in some conditions, other real solutions

probably exist. Let the left side of (A.0.11) as f (x), we have

f (x) = (x− 1)
(

(k − 1)xk−2 + (k − 2)xk−3 + . . .+ 2x+ 1
)

and

f ′ (x) = (k − 1)2 xk−2 − (k − 2)xk−3 − . . .− 2x− 1.

If f (x) and f ′ (x) are relatively prime for k ≥ 2, all solutions of (A.0.11) will not be

repeated. Therefore, we need to check whether same roots of f (x) = 0 and f ′ (x) = 0

exist or not. Obviously, x = 1 must not satisfy f ′ (x) = 0 with k 6= 1 or 2. Now, the

problem is converted to finding whether

(k − 1)xk−2 + (k − 2)xk−3 + . . .+ 2x+ 1 = 0 (A.0.12)

and

(k − 1)2 xk−2 − (k − 2)xk−3 − . . .− 2x− 1 = 0 (A.0.13)

have same solution.

Assuming a same root x0 for both above equations, by (A.0.13), we can get

(k − 1)2 x0
k−2 = (k − 2)x0

k−3 + . . .+ 2x0 + 1,

then plug this equation into

(k − 1)2 x0
k−2 − (k − 2)x0

k−3 − . . .− 2x− 0− 1 = 0,
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we can have

(k − 1)2 x0
k−2 + (k − 1)x0

k−2 = 0.

Above equation is satisfied if and only if k = 0, k = 1 or x0 = 0, which contradicts

k ≥ 2 and f ′ (x0) = 0. So, we have f (x) and f ′(x) are relatively prime, which

indicates that f (x) do not have repeated solutions.

Because (A.0.8) starts from P (2), P (2), . . . , P (m) can be represented as

P (n+ 1) = C1 + C2x2
n + . . .+ Ck−1xk−1

n,

where n = 1, . . . , m− 1 and x2, . . . , xk−1 are solutions except 1 for (A.0.11).

By following equations:

P (2) =
1

k − 1

k

k − 1
P (0) = C1 + C2x2 + . . .+ Ck−1xk−1

P (3) =
1

k − 1

(
k

k − 1

)2

P (0) = C1 + C2x2
2 + . . .+ Ck−1xk−1

2

. . .

P (k) =
1

k − 1

(
k

k − 1

)k−1

P (0) = C1 + C2x2
k−1 + . . .+ Ck−1xk−1

k−1,

we can get C1 = 2
k−1

P (0) and C2 = C3 = . . . = Ck−1 = 1
k−1

P (0).

Then, we will discuss the absolute values of x2, . . . , xk−1.

Firstly, real solutions are considered. For (A.0.11), obviously, any positive solu-

tions except 1 can satisfy it, therefore, all values of x2, . . . , xk−1 are negative. Besides,
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when xi ≤ −1 and i = 2, . . . , k − 1, if k − 2 is odd, we will have (k − 1)xk−2 +

(k − 2)xk−3 < 0 and by parity of reasoning, the left side of (A.0.11) must less than

0. On the other side, if k−2 is even, we will have (k − 1)xk−2 + (k − 2)xk−3 > 0 and

by parity of reasoning, the left side of (A.0.11) must larger than 0. These indicates

that the absolute values of x2, . . . , xk−1 should be strictly less than 1.

Secondly, we consider solutions as the conjugate complex pair. Complex roots

are assumed as r (cos θ + i sin θ) and cos θ 6= ±1, sin θ 6= 0, which satisfy (A.0.12).

Assuming

S = (k − 1)xk−2 + (k − 2)xk−3 + . . .+ 2x+ 1,

we will have

S =
xk−2 + xk−3 + . . . + x+ 1− (k − 1)xk−1

1− x

=
1− xk−1

(1− x)2 −
(k − 1)xk−1

1− x
.

(A.0.14)

Let (A.0.14) equals 0, we can obtain

kxk−1 = (k − 1)xk + 1,

because x = 0 is not a solution of (A.0.11),

1 =
k − 1

k
x+

1

k
x−(k−1)

1 =
k − 1

k
r (cos θ + i sin θ) +

1

k
r−(k−1)

[
cos
(
− (k − 1)

)
θ + i sin

(
− (k − 1)

)
θ
]
,

which indicates

1 =
k − 1

k
r cos θ +

1

k
r−(k−1) cos

(
− (k − 1)

)
θ (A.0.15)
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and

0 =
k − 1

k
r sin θ +

1

k
r−(k−1) sin

(
− (k − 1)

)
θ. (A.0.16)

By (A.0.16),

(k − 1) rk =
sin (k − 1) θ

sin θ

is gotten, and due to ∣∣∣∣sin (k − 1) θ

sin θ

∣∣∣∣ ≤ k − 1,

we can have

r ≤ 1.

Besides, r = 1 satisfies (A.0.16) only when sin θ = 0 or k = 2. sin θ = 0 is in

contradiction with our assumption and if k = 2, (A.0.11) will only have one solution

as 1. Therefore, for all complex solutions, the modulus will strictly less than 1.

Overall, |x2| < 1, . . . , |xk−1| < 1.

Because of P (0) + P (1) + . . . + P (m) = 1, we have

(
1− 1

k − 1

)
P (0) +

m−1∑
q=1

2

k − 1
P (0) + C2x2

q + . . .+ Ck−1xk−1
q = 1. (A.0.17)

For each couple of conjugate complex solutions, since their coefficients are same as

1
k−1

P (0), we have

1

k − 1
P (0)

(
xq + (x∗)q

)
=

2

k − 1
P (0) rq cos (qθ)
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with r < 1. Therefore, (A.0.17) can be rewritten as

(
1− 1

k − 1

)
P (0) +

2

k − 1
P (0) (m− 1) +

2

k − 1
P (0)

m−1∑
q=1

cos (qθ1) r1
q + . . . = 1

Obviously, we have

lim
m→+∞

P (0)
1
m

=
k − 1

2
.
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Appendix B

Proof of Theorem 2

According to Markov Chain of Bt, the following equations can be obtained.

P (0) =

(
1− j

k

)(
P (0) + P (1) + · · ·+ P (j)

)
(B.0.1)

P (1) =

(
1− j

k

)
P (j + 1) (B.0.2)

. . .

P (k − 1) =

(
1− j

k

)
P (j + k − 1) (B.0.3)

P (k) =
j

k

(
P (0) + P (1) + · · ·+ P (j)

)
+

(
1− j

k

)
P (k + j) (B.0.4)

P (k + 1) =
j

k
P (2) +

(
1− j

k

)
P (k + j + 1) (B.0.5)
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. . .

P (m− j) =
j

k
P (m− k) +

(
1− j

k

)
P (m) (B.0.6)

P (m− j + 1) =
j

k

(
P (m− k + 1)

)
(B.0.7)

. . .

P (m− 1) =
j

k
P (m− k + j − 1) (B.0.8)

P (m) =
j

k

(
P (m− k + j) + · · ·+ P (m)

)
(B.0.9)

(B.0.5), . . . , (B.0.9) can be rewritten as

(
1− j

k

)
P (k + j) =

j

k

(
P (j + 1) + · · ·+ P (k)

)
−
(

1− j

k

)(
P (k + 1) + · · ·+ P (k + j − 1)

)
(B.0.10)

(
1− j

k

)
P (k + j + 1) =

j

k

(
P (j + 2) + · · ·+ P (k + 1)

)
−
(

1− j

k

)(
P (k + 2) + · · ·+ P (k + j)

)
(B.0.11)
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. . .

(
1− j

k

)
P (m) =

j

k

(
P (m− k + 1) + · · ·+ P (m− j)

)
−
(

1− j

k

)(
P (m− j + 1) + · · ·+ P (m− 1)

)
. (B.0.12)

Similarly, P (k+ j), . . . , P (m) ca be solved as linear recurrence. According to the

characteristic equation:

(
1− j

k

)(
xk−1 + · · ·+ xk−j

)
− j

k

(
1 + x+ · · ·+ xk−j−1

)
= 0, (B.0.13)

we can find that x = 1 satisfies (B.0.13) as a single root and all complex solutions

should appear as conjugate couples. Two conditions are discussed: characteristic

equation only has single roots and has repeated roots.

Firstly, we consider the case that only single roots exist. Assuming x1 as 1, we

have

P (n+ j) = C1 + C2x2
n + · · ·+ Ck−1xk−1

n, (B.0.14)

where C1, . . . , Ck−1 are decided by following k − 1 equations

C1 + C2x2 + · · ·+ Ck−1xk−1 =
k

k − j
P (1)

. . .

C1 + C2x2
j + · · ·+ Ck−1xk−1

j =
k

k − j
P (j)
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C1 + C2x2
j+1 + · · ·+ Ck−1xk−1

j+1 =

(
k

k − j

)2

P (1)

. . .

C1 + C2x2
j+1 + · · ·+ Ck−1xk−1

j+1 =

(
k

k − j

)2

P (j) ,

. . .

where P (j) = j
k−jP (0) − P (1) − . . . − P (j − 1). It is clear that C1, . . . , Ck−1 are

functions of k, j, P (0), . . . , P (j − 1) as

Ci = Ai,0P (0) + Ai,1P (1) + · · ·+ Ai,j−1P (j − 1) . (B.0.15)

By calculation, we have

C1 =
2

k − j
P (0) +

j − 1

j

2

k − j
P (1) + · · ·+ 1

j

2

k − j
P (j − 1) . (B.0.16)

According to (B.0.7), . . . , (B.0.8), we can obtain

C1 + C2x2
m−2j+1 + · · ·+ Ck−1xk−1

m−2j+1 =

j

k

(
C1 + C2x2

m−k−j+1 + · · ·+ Ck−1xk−1
m−k−j+1

)

. . .

C1+C2x2
m−j−1+· · ·+Ck−1xk−1

m−j−1 =
j

k

(
C1 + C2x2

m−k−1 + · · ·+ Ck−1xk−1
m−k−1

)
,

which are still satisfied when m approaches infinity. Plugging (B.0.15) into above

32



M.A.Sc. Thesis – Y. Wang McMaster University – Electrical Engineering

equations and by Cramer’s Rule, P (1), . . . , P (j − 1) is related to P (0) as

P (n) =

∑z Nn
zx2

mhnz,2 · · ·xk−1
mhnz,k−1∑z Nzx2

mhz,2 · · ·xk−1
mhz,k−1

P (0) ,

where n = 1, 2, . . . , j − 1 and . Then, by (A.0.16), coefficients can be represented

as

Ci =

(
bi
T

)
P (0) , (B.0.17)

where

bi =
z∑
Ri,zx2

mhi,z,2 · · ·xk−1
mhi,z,k−1

and

T =
z∑
Nzx2

mhz,2 · · ·xk−1
mhz,k−1 .

Here, hrz,2, . . . , h
r
z,k−1, hz,2, . . . , hz,k−1 ≥ 0 and hrz,2 + . . .+ hrz,k−1 + hz,2 + . . .+

hz,k−1 ≤ j−1, besides, Rr
z and Nz are probably equal to 0. From (B.0.16), it is clear

that

C1 ≥
2

k − j
P (0) (B.0.18)

Since the coefficients of conjugate roots are conjugate couples, for complex conjugate

solutions, we have

Cxn + C∗(x∗)n = rn
(
2a cos (nθ)− 2b sin (nθ)

)
, (B.0.19)
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where r is modulus of x and C = a+ b i. According to (B.0.1), we can get

P (j) =
j

k − j
P (0)− P (1)− · · · − P (j − 1),

which indicates that

P (0) + P (1) + · · ·+ P (j) =
k

k − j
P (0) .

Due to P (0) +P (1) + . . . +P (m) = 1 and (B.0.17), following equations are gotten:

1 =

(
k

k − j

)
P (0) +

m−j∑
q=1

C1 + C2x2
q + · · ·+ Ck−1xk−1

q

1 =

(
k

k − j
+
b1

T
(m− j) +

b2

T

x2

1− x2

− xi−j2

1− x2

b2x
m
2

T
+ · · ·

+
bk−1

T

xk−1

1− xk−1

−
xi−jk−1

1− xk−1

bk−1x
m
k−1

T

)
P (0) , (B.0.20)

where b2, . . . , bk−1 and T are exponential terms with m power as above discussion.

When m goes to infinity, it is easy to obtain that

lim
m→+∞

b2

T

x2

1− x2

− xi−j2

1− x2

b2x
m
2

T
+ · · ·+ bk−1

T

xk−1

1− xk−1

−
xi−jk−1

1− xk−1

bk−1x
m
k−1

T
=

H
(
a cos (mθ)− b sin (mθ)

)
tm (B.0.21)

where H, t are finite real number and cos (mθ), sin (mθ)∈ [−1, 1]. (B.0.20) will be
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converted to

(
k

k − j
+
b1

T
(m− j) +H

(
a cos (mθ)− b sin (mθ)

)
tm
)
P (0) = 1. (B.0.22)

By (B.0.16) and (B.0.1), we have

2

k − j
≤ b1

T
≤ 2 (k − 1)

(k − j)2 (B.0.23)

If 0 < |t| < 1 or H
(
a cos (mθ)− b sin (mθ)

)
= 0, obviously,

lim
m→+∞

H
(
a cos (mθ)− b sin (mθ)

)
tm = 0,

which indicates when m approaches infinity, we have

P (0) ≤ 1
k
k−j + 2

k−j (m− j) +H
(
a cos (mθ)− b sin (mθ)

)
tm

P (0) ≤ 1
2
k−jm

.

If |t| = 1, (B.0.22) will lead to

lim
x→+∞

P (0) = lim
m→+∞

1
k
k−j + b1

T
(m− j) +H

(
a cos (mθ)− b sin (mθ)

) .
also, we have

P (0) ≤ 1
2
k−jm

for m is sufficiently large.
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If |t| > 1, according to (B.0.23), b1
T
m should be linearly order of m, obviously, we have

lim
m→+∞

(
H
(
a cos (mθ)− b sin (mθ)

)
tm
)
P (0) = 1,

which tells us that

lim
m→+∞

(
H
(
a cos (mθ)− b sin (mθ)

)
tm
)
≥ 0.

Then

P (0) = lim
m→+∞

1
k
k−j + b1

T
(m− j) +H

(
a cos (mθ)− b sin (mθ)

)
and when m is sufficiently large,

P (0) ≤ 1
2
k−jm

.

In a word, for single root condition, we have

P (0) ≤ 1

αm

in the large m limit, here α is a positive and finite number that is unrelated to m.

Next, we consider the condition that repeated roots exist in (B.0.13). We assume

there are w repeated roots and their multiplicity is ui, then P (j), . . . , P (m) are

P (n+ j) = C1 + C2x2
n + · · ·+ Clxl

n +
(
Cl+1 + . . .+ nu1−1Cl+ul

)
xl+1

n

+ · · ·+
(
Ck−uw + . . .+ nuw−1Ck−1

)
xl+w

n (B.0.24)

where x2, . . . , xl+w are solutions of (B.0.13) and xl+1, . . . , xl+w are repeated solutions.
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C1, . . . , Ck−1 are decided by following k − 1 equations:

P (1 + j) =

(
k

k − j

)
P (1)

. . .

P (2j) =

(
k

k − j

)
P (j) =

k

k − j

(
j

k − j
P (0)− P (1)− · · · − P (j − 1)

)

P (2j + 1) =

(
k

k − j

)2

P (1)

. . .

P (3j) =

(
k

k − j

)
P (2j) =

(
k

k − j

)2(
j

k − j
P (0)− P (1)− · · · − P (j − 1)

)

. . .

Similarly, we can obtain that Ci = Ai,1P (0)+ · · ·+Ai,j−1P (j−1) and it is a function

independent of m. By (B.0.7) to (B.0.8), we can represent Ci as

Ci =

(
bi
T

)
P (0) , (B.0.25)

whose

bi =
z∑
Qi,z

(
Ni,z +Mi,zm+ · · ·

)hi,z,l · · · (Ui,z + Li,zm+ · · ·
)hi,z,l+w

x2
mhi,z,2 · · · xl+wmhi,z,l+w
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and

T =
z∑
Qz(Nz +Mzm+ · · · )hz,l · · · (Uz + Lzm+ · · · )hz,l+wx2

mhz,2 · · ·xl+wmhz,l+w .

It is clear that bi and T are exponential terms or power functions about m. Here

hi,z,2, . . . , hi,z,l+w, hz,2, . . . , hz,l+w ≥ 0, hi,z,2 + . . .+ hi,z,l+w ≤ j − 1 and hz,2 + . . .+

hz,l+w ≤ j − 1. Besides, all coefficients are possible to equal to 0. By calculation, we

also have

2

k − j
≤ b1

T
≤ 2 (k − 1)

(k − j)2 . (B.0.26)

And for xi as complex number, we still have (B.0.19). Therefore, according to∑m
i=0 P (i) = 1, we have

1 =

(
k

k − j

)
P (0) +

m−j∑
q=1

C1 + C2x2
q + · · ·+ Clxl

q +
(
Cl+1 + · · ·+ qu1−1Cl+u1

)
(xl+1)q

+ · · ·+
(
Ck−uw + · · ·+ quw−1Ck−1

)
(xl+w)q ,

which indicates

1 =

(
k

k − j
+
b1

T
(m− j) +

b2x2

(
1− x2

m−j)
T (1− x2)

+ · · ·+
bk−ul+w

xl+w
(
1− xl+wm−j

)
T (1− xl+w)

+

m−j∑
q=1

(
q
bl+2

T
+ · · ·+ qu1−1 bl+u1

T

)
(xl+1)q + · · ·

+

(
q
bk−uw
T

+ · · ·+ quw−1 bk − 1

T

)
(xl+w)q

)
P (0) (B.0.27)
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In fact, when m approaches infinity, there is

lim
x→+∞

b2x2

(
1− x2

m−j)
T (1− x2)

+ · · ·+
bk−ul+w

xl+w
(
1− xl+wm−j

)
T (1− xl+w)

+

m−j∑
q=1

(
q
bl+2

T
+ · · ·+ qu1−1 bl+u1

T

)
(xl+1)q + · · ·

+

(
q
bk−uw
T

+ · · ·+ quw−1 bk − 1

T

)
(xl+w)q

= H
(
a cos (mθ)− b sin (mθ)

)
mctm, (B.0.28)

where H is finite real number and cos (mθ), sin (mθ) ∈ [−1, 1]. Now, (B.0.27) is

converted to

(
k

k − j
+
b1

T
(m− j) +H

(
a cos (mθ)− b sin (mθ)

)
mctm

)
P (0) = 1. (B.0.29)

If 0 < |t| < 1 or H
(
a cos (mθ)− b sin (mθ)

)
= 0, it is easy to have

lim
x→+∞

H
(
a cos (mθ)− b sin (mθ)

)
mctm = 0.

From (B.0.29), we can obtain that

P (0) ≤ lim
x→+∞

1
k
k−j + 2

k−jm
,

when m approaches infinity, it is clear that

P (0) ≤ 1
2
k−jm

.
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If |t| > 1, it is clear that (B.0.29) leads to

lim
x→+∞

H
(
a cos (mθ)− b sin (mθ)

)
mctmP (0) = 1,

which indicates that limx→+∞H
(
a cos (mθ)− b sin (mθ)

)
mctm > 0 and

lim
m→+∞

P (0)
1
m

≤ 1
2
k−j

.

If |t| = 1 and c < 1, 2
k−jm dominates the limit and leads to a same result as condition

of 0 < |t| < 1.

If |t| = 1 and c > 1, due to

b1

T
m ∈

[
2

k − j
m,

2 (k − 1)

(k − j)2 m

]
,

the result is same as the condition that |t| > 1.

If |t| = 1 and c = 1, we consider two conditions.

Firstly, if b1
T
m + H

(
a cos (mθ)− b sin (mθ)

)
mctm = 0 in the large m limit. Since all

powers ofm in (B.0.28) is integer, and we assume thatH
(
a cos (mθ)− b sin (mθ)

)
mctm

is the largest term when m approaches infinity, which indicates that P (j + 1) + . . .+

P (m) approaches to zero with m or it is a constant independent of m. For the condi-

tion of limx→+∞ P (j + 1)+ . . .+P (m) = 0, it is same to condition |t| < 1. Then con-

sidering P (j + 1)+ . . .+P (m) will be a constant which is unrelated to m, by (B.0.1)

to (B.0.3) shows that if m = 2j, P (j + 1) + · · ·+ P (2j) = k
k−j

(
P (1) + . . .+ P (j)

)
.

While ifm = 3j, we have P (2j + 1)+· · ·+P (3j) = k
k−j

(
P (j + 1) + . . .+ P (2j)

)
6= 0

as long as any P (1), . . . , P (j) is nonzero. According to (B.0.1), this is obvious. So,
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P (j + 1) + . . .+ P (m) is not a constant independent of m and this condition is im-

possible.

Secondly, if b1
T
m+H

(
a cos (mθ)− b sin (mθ)

)
mctm 6= 0 in the large m limit. (B.0.29)

will be converted to (
k

k − j
+ αm

)
P (0) = 1,

and when m approaches infinite,

P (0) ≤ 1

αm
,

where α is a positive and finite number that is unrelated to battery capacity m.

In conclusion, Theorem 2 is proved.
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