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Abstract

The classical field theory of Schwinger pair creation can be described using an effective
Schrödinger equation with an inverted harmonic oscillator Hamiltonian [1, 2]. It is a well
known fact that the inverted harmonic oscillator admits a canonical transformation to a Q.P
type Berry-Keating Hamiltonian [3]. In this thesis we demonstrate that the classical field
theory of Schwinger pair creation has a hidden scale invariance described by the quantum me-
chanics of an attractive inverse square potential in the canonically rotated (Q,P ) coordinates
of the inverted harmonic oscillator. The quantum mechanics of the inverse square potential
is well known because of the problem of fall to the center and the associated ambiguities in
the boundary condition. It is also well known as a description of the physics of pair creation
in the presence of an event horizon [2] and black hole decay. We use point particle effective
field theory (PPEFT) to derive the boundary condition which describes pair creation. This
leads to the addition of an inevitable Dirac delta function with imaginary coupling to the
inverse square potential, describing the physics of the source. This non-hermitian physics
leads to the Klein paradox. The conservation loss is due to the charged pairs being produced
during tunneling.
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V (ξ) = −ξ2, Ẽ = 6 which falls off to infinity. . . . . . . . . . . . . . . . . . . . . 6

2.2 (a). Classical phase space of IHO. The classical hyperbolic orbits are given by
P = P0 exp(−t) and Q = Q0 exp(t), with Q0P0 = −Ẽ. At early times t → −∞,
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1
Introduction

The instability of the vacuum of quantum field theory in the presence of a static electric
field that creates charged pairs is termed as Schwinger pair production. Dirac proposed
that the negative energy solutions be identified with antiparticle (positron) in 1931. After
Dirac’s work on relativistic theory of electron, Euler and Heisenberg initiated the study of
quantum fluctuations in the Dirac sea picture of the vacuum of quantum field theory [4, 5].
Feynman-Stückelberg further proposed a physical picture in which antiparticles propagate
backward in time :

“ the negative energy states appear in a form which may be pictured (as by Stückelberg)
in space-time as waves travelling away from the external potential backward in time ” [6].

Related to this is Yoichiro Nambu’s famous remark on pair creation [8] :

“ the eventual creation and annihilation of pairs that may occur now and then is no cre-
ation or annihilation, but only a change of direction of moving particles, from the past to the
future, or from the future to the past”

In 1951, Julian Schwinger, reformulated Heisenberg and Euler’s work in a paper “On
gauge invariance and vacuum polarization”which deals with study of Green’s functions, renor-
malization and gauge invariance [7]. Schwinger pair production has a long history of close
to 80 years [8]. In the classical field theory of Schwinger pair production, over-reflection
of charged particles (the well known Klein paradox [9]) from a barrier formed from an in-
homogeneous electric field is reconciled by pair creation. Probability conservation is then
reinterpreted as charge conservation. Even though there has recently been a proposal for
experimentally realizing analog to pair creation [10], it has not yet been realized.
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Figure 1.1: Zener breakdown - The picture depicts a reverse biased, heavily doped pn-
junction diode whose width of the depletion region increases with the increase in the reverse
bias voltage. The resulting electric field when strong enough knocks out charged particles
from the crystals and it tunnels through the depletion region which results in a huge rush of
current through the circuit and the diode breaks down.

The classical field theory of Schwinger pair creation can be described using an effective
Schrödinger equation with an inverted harmonic oscillator (IHO) [1] potential which illus-
trates an unstable equilibrium. The quantum mechanics of the IHO as a simple description
of unstable equilibrium has been studied extensively since Barton [11]. The IHO gives a fall
to infinity where a particle rolls down to infinity from the top of the parabolic barrier. The
particle production happens during the tunneling of charged particles when the external field
is strong enough [1]. The Zener breakdown of a heavily doped reverse biased pn-junction
diode is an example where tunneling of charged particles occurs through the junction in the
presence of a static electric field [see Figure 1.1]. The energy eigenfunctions of the IHO are
the parabolic cylinder functions [11] whose properties and asymptotics are well known. It
is considered as a well-posed self-adjoint problem but it is physically pathological because
it has infinitely negative energy states. Self-adjointness is usually not distinguished from
hermiticity of an operator. Self-adjointness requires the domain of the operator and its ad-
joint to be the same, i.e D(A) = D(A†). The mathematical recipe used to test whether
an hermitian operator is self-adjoint is von Neumann’s test using deficiency indices [12] (for
details see Appendix A). For non-self adjoint operators, usually the suggested remedy is to
implement a self-adjoint extension, which is however, not unique [13,14].

Canonical transformations are well known tools used in classical and quantum physics [15]
to bring out the hidden symmetries of the system [16]. The form of the equations of motion
are invariant under a canonical transformation, so the dynamics is equivalent. The quantum
version started gaining attention with the introduction of the quantum Hamilton-Jacobi
formalism [17–19] (for details, see Appendix C). It is a well known fact that the inverted
harmonic oscillator admits a canonical transformation to H(Q,P ) = Q.P type Hamiltonian
[3]. The classical phase space portrait of the inverted harmonic oscillator, or equivalently

2
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H(Q,P ) = Q.P , is hyperbolic in nature. The quantum mechanics of H(Q,P ) = Q.P type
Hamiltonian gained huge attention after the paper by Berry and Keating [20], proposing it as
a candidate which generates Riemann zeros, but it is still a debated issue. For this reason,
H = Q.P is sometimes termed as the Berry-Keating operator in the literature. In this
thesis we refer to H = Q.P as the Berry-Keating Hamiltonian. Pair production is usually
described as tunneling process between the Rindler like disconnected space time sectors [2].
Interestingly, apart from the mapping to a Q.P type Hamiltonian, recently the inverted
harmonic oscillator has been mapped under a time dependent canonical transformation to a
particle in a box with moving walls [21].

Bertrand’s theorem states that among central force potentials with bound orbits, the only
two central potentials that admit closed orbits are simple harmonic oscillator and the Kepler
potential. Unlike these, the inverse square potential is well known for the physics of fall to
the center where the particle spirals onto the origin [22]. The relationship between the simple
harmonic oscillator and Kepler potential have been the subject of investigation since Newton,
Hooke and Bertrand (for references see : [23]). It is a known fact that the Kepler problem
can be mapped to a simple harmonic oscillator and is still a subject of extensive study
in quantum physics [24]. However, the mapping between the inverted harmonic oscillator
Hamiltonian and the inverse square Hamiltonian is not been studied as far as we know.

The quantum mechanics of the inverse square potential has been a subject of investigation
since reference [25]. It appears in the physics of gravitating systems, black holes [26], charged
wire [27] etc. It is known to have a hidden SU(1,1) spectrum generating symmetry, which is
often termed as Pitaevskii-Rosch symmetry [28]. The Schrödinger equation with an inverse
square potential exhibits scale invariance in contrast to other well known potentials like the
simple harmonic oscillator, the inverted harmonic oscillator, the coulomb potential etc. The
quantum mechanics of inverse square potentials is well known for the ambiguity in choosing
the right boundary condition and renormalization effects [29]. It appears that the inverse
square potential by itself is not a fully specified eigenvalue problem as one needs to specify
a boundary condition at the origin to make the quantum problem well posed. Infact, one is
inevitably led to add a Dirac delta function at the origin to make the inverse-square problem
fully specified [30].

In this thesis we demonstrate that the classical field theory of Schwinger pair creation
has a hidden scale invariance. In the first chapter we obtain the quantum inverted har-
monic oscillator in an effective Schrödinger equation. A canonical transformation to a scale
invariant Schrödinger equation with an attractive inverse square potential using a squared
Berry-Keating operator is then shown. One needs to specify a boundary condition at the
origin to make the quantum problem of an inverse square potential well posed. In the fol-
lowing chapter, point particle effective field theory (PPEFT) is used to systematically derive
the boundary condition. We then illustrate the non-hermitian physics (which leads to the
Klein paradox) using the inevitable Dirac delta function with imaginary coupling describing
the physics at the source (Q = 0), of the attractive inverse square potential.

3
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At the end, we also explore the su(1,1) Lie algebra generated by the inverted harmonic
oscillator, simple harmonic oscillator and Berry-Keating operator, which gives the hint that
pair creation can be considered as squeezing of the vacuum. In the branch of quantum optics,
the parabolic cylinder functions are known to be squeezed states constructed out of mixed
excitation and deexcitation operators of SU(1,1) group as discussed in [31]. We explicitly
show that the energy eigenvalue problem of the inverted harmonic oscillator Hamiltonian
can itself be naturally identified as the eigenvalue problem for determining squeezed states.
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2
Inverted harmonic oscillator

and hidden scale invariance

2.1 Inverted harmonic oscillator
and the Berry-Keating Hamiltonian

Consider a classical scalar field φ(x, t) of charge q, which satisfies Klein-Gordon equation in
1+1 dimension in the presence of a static electric field of strength E, with the gauge choice
A0 = −Ex, Ax = 0 [1, 32] :(

~2 ∂
2

∂x2
−
(
~
c

∂

∂t
+

iqEx

c

)2
)
φ(x, t) = m2c2φ(x, t) (2.1)

For a given mode φω(x, t) = exp(−iωt)fω(x), fω(x) = 〈x|φ〉, satisfies a Schrödinger equation
with an inverted harmonic oscillator (IHO) potential :(

−~2

2m

∂2

∂x2
− 1

2
m

(
qE

mc

)2(
x− ~ω

qE

)2
)
〈x|φ〉 =

−mc2

2
〈x|φ〉 (2.2)

Redefining the variable, ξ =

√
|q|E
~c

(
x− ~ω

qE

)
,

Ĥ(π, ξ)〈ξ|φ〉 =
π2 − ξ2

2
〈ξ|φ〉 = −Ẽ〈ξ|φ〉 (2.3)

where1, π = −i ∂∂ξ with [π, ξ] = −i and Ẽ = m2c3

|q|E~ . The IHO gives a fall to infinity. By
contrast, in this thesis we intend to show the mapping of this model of instability to a fall to

1Beware : changing E → −E (equivalently : q → −q) does not change Ẽ → −Ẽ as seems to be implied
by Eq. (2.3), so the quantum problem is still a “tunneling problem”. Also Eq. (2.2) is invariant under q → −q
and x→ −x, i.e. CP symmetry.
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Figure 2.1: (a). Constant electric field of strength E = 3, with the arrow indicating the
direction of the electric field. (b). Inverted harmonic oscillator potential, with V (ξ) = −ξ2,
Ẽ = 6 which falls off to infinity.

the center. The energy eigenstates of the IHO Hamiltonian are well known to be parabolic
cylinder functions (φ(ξ) = αW (Ẽ, ξ) + βW (Ẽ,−ξ), α, β are constants). [11]. However, to
describe the physics of pair creation one needs to include both positive and negative energy
states. Using the standard scattering description of the IHO, its not trivial, at least at first
sight, as to which parabolic cylinder function corresponds to the particle and anti-particle
states. It seems that one needs more information (boundary conditions) to describe the
physics of pair creation. In this thesis we set up the boundary condition in the canonically
rotated coordinates. The IHO Hamiltonian admits a canonical transformation [3] :

Q =
π + ξ√

2
, P =

π − ξ√
2
, (2.4)

which preserves the classical Poisson bracket, {Q,P} = 1, and hence [Q̂, P̂ ] = i. Note that,
unlike in the related case of the simple harmonic oscillator, the operators Q and P are
Hermitian. The Hamiltonian with an IHO potential can now be written in terms of the new
coordinates as :

Ĥ(Q̂, P̂ ) =
Q̂.P̂ + P̂ .Q̂

2
(2.5)

This Berry-Keating type Hamiltonian admits classical orbits given by, P =
√
Ẽ exp(−t) and

Q = −
√
Ẽ exp(t). The classical phase space for H(Q,P ) = Q.P has disconnected sectors

similar to dynamics in Rindler coordinates [see Figure 2.2 (a)]. In the Q-representation, with
Q̂ |Q〉 = Q |Q〉 and P̂ = −i ∂∂Q , the Schrödinger equation for the IHO [Eq. (2.3)] takes the
form :

Q
∂

∂Q
〈Q|φ〉 =

(
−iẼ − 1

2

)
〈Q|φ〉 (2.6)

which is scale invariant, i.e. is invariant under Q → λQ, unlike the Schrödinger equation
with IHO potential.

6
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2.1. INVERTED HARMONIC OSCILLATOR

AND THE BERRY-KEATING HAMILTONIAN

Inc

Refl

Trans

Q=0 P=0

-3 -2 -1 0 1 2 3
-3

-2

-1
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2

3

x

p

(a)
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Im f
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Q

-2

-1

1

2

fHQL

(b)

Figure 2.2: (a). Classical phase space of IHO. The classical hyperbolic orbits are given by
P = P0 exp(−t) and Q = Q0 exp(t), with Q0P0 = −Ẽ. At early times t → −∞, with
P = −

√
Ẽe−t and Q =

√
Ẽet, orbits near P → −∞ and Q → 0+,incoming wave (from

ξ = +∞) is then described by C = 0 in Eq. (2.9) (Inc branch in the figure) and as t→∞,
Q → ∞ and P → 0 (reflected, Refl branch in the figure). However, in quantum mechanics
we also have transmitted wave corresponding to P → 0 and Q → −∞ (transmitted, Trans
branch with Q = −

√
Ẽet and P =

√
Ẽe−t in the figure). (b). Wavefunction of the H(Q,P )

in the Q-representation which exhibit both amplitude and logarithmic phase singularity at
Q = 0. The phase singularity is due to the term exp(iẼ ln(Q)) that appears in the Eq. (2.7)
.

The wavefunction in the Q-representation is :

〈Q|φ〉 = AΘ(Q)Q−iẼ− 1
2 +BΘ(−Q) (−Q)−iẼ− 1

2 (2.7)

where Θ(Q) is the Heaviside step function. The step function Θ(Q) is required in writing the
wavefunction because the Berry-Keating Hamiltonian is essentially self-adjoint in the half
real line (R±) and not on the full real line (R) [see Appendix A for the details] [33]. Waves
of the form Qiν = exp(iν ln[Q]) with Re(ν) 6= 0 exhibit a logarithmic phase singularity and
are signatures of quantum catastrophes [34]. The above wavefunction exhibits a logarithmic
phase singularity [see Figure 2.2 (b)]. Such singularities also appear in waves near the event
horizon of a black hole, in accelerated frames, etc. Similarly, the Schrödinger equation in
the P-representation is given by :

P
∂

∂P
〈P |φ〉 =

(
iẼ − 1

2

)
〈P |φ〉 (2.8)

The Berry-Keating Hamiltonian is symmetric under the exchange of Q and P , like the
simple harmonic oscillator Hamiltonian. The Schrödinger equation in the Q-representation
then only differs from the P-representation in i → −i, i.e. time reversal. Hence, one rep-
resentation describes the particle states and the other the anti-particle states in accordance
with the Feynman-Stückelberg interpretation. One can construct the wavefunction in the

7
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P-representation from Eq. (2.8) as :

〈P |φ〉 = C Θ(P )P iẼ− 1
2 +DΘ(−P ) (−P )iẼ− 1

2 (2.9)

We have to choose either C = 0 or D = 0 to identify this wavefunction as an incident
wave [see the classical phase space portrait Figure 2.2 (a) which shows the incident, reflected
and transmitted branches]. Computing the Fourier transform of the wavefunction in the
P-representation by doing a continuation across the singularity at Q = 0, we can get the
wavefunction in the Q-representation Eq. (2.7) with the ratio of reflection and transmission
coefficient satisfying,

∣∣A
B

∣∣ = eẼπ [1].
One can choose to work with the above two first-order differential equations to describe

the problem, which is usually preferred as discussed in [1,32]. However, here we describe the
Schwinger pair creation problem using a single second order differential equation by map-
ping it to a Schrödinger equation with an inverse square potential and we implement the
boundary condition using point particle effective field theory. Squaring allows one to combine
both the positive and negative energy solutions in a single second order differential equation.

2.2 Squared Berry-Keating operator and
Hamiltonian with an inverse square potential

Consider the second order differential equation :(
Q̂.P̂ + P̂ .Q̂

2

)2

|φ〉 = Ẽ2 |φ〉 (2.10)

Taking the square root of the above Hamiltonian, naturally gives the Berry-Keating Hamil-
tonian, H(Q,P ) = Q.P+P.Q

2 , with positive or negative energy eigenvalue. The Berry-Keating
Hamiltonian H(Q,P ) = Q.P+P.Q

2 is not time reversal invariant because P → −P under time
reversal. Hence, this squared Berry-Keating Hamiltonian has the information of both parti-
cles and antiparticles. In the Q-representation the Schrödinger equation Eq. (2.10), can be
written as : (

Q2 d2

dQ2
+ 2Q

d

dQ
+ (Ẽ2 + 1/4)

)
φ(Q) = 0 (2.11)

This differential equation is scale invariant which gives us a hint about a hidden inverse square
potential present. Transforming the above differential equation by putting φ(Q) = Q−1χ(Q),
we get

−d
2χ(Q)

dQ2
− (Ẽ2 + 1/4)

Q2
χ(Q) = 0 (2.12)

we add Eχ(Q) to make a strict analogy to the Schrödinger equation with an attractive inverse
square potential,

−d
2χ(Q)

dQ2
− (Ẽ2 + 1/4)

Q2
χ(Q) = Eχ(Q) (2.13)

8
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2.2. SQUARED BERRY-KEATING OPERATOR AND

HAMILTONIAN WITH AN INVERSE SQUARE POTENTIAL
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Q

-800

-600

-400

-200

V HQL

Figure 2.3: Plot of attractive inverse square potential in the canonically rotated Q coordinate
: V (Q) ∝ − 1

Q2

The small Q limit of the above Schrödinger equation [Eq. (2.13)] will amount to neglecting
the energy eigenvalue E , compared to the potential energy, leading to Eq. (2.12) with zero
energy eigenvalue. Here, we have demonstrated that the classical field theory of Schwinger
pair production has a hidden quantum mechanics of an attractive inverse square poten-
tial. The above Schrödinger equation is well known for its scale invariance, i.e. under
the scale transformation Q → λQ, and the ambiguity in choosing the boundary condition.
The wavefunction for small Q exhibits a logarithmic phase singularity, like Eq. (2.7) for
H(Q,P ) = Q.P+P.Q

2 , which we will make explicit in the next section. This is a quantum
manifestation of fall to the center, where one needs to specify a boundary condition at the
origin Q = 0, to choose the coefficients of the linearly independent wavefunctions. The
ambiguity in determining the boundary condition arises from the fact that the Hamiltonian
fails to be self-adjoint (see Appendix A). The usual prescription to surmount this problem
is to impose self adjoint extensions. However, self-adjoint extensions are not unique and
furthermore would not describe particle production. This is where point particle effective
action which describes the physics of the source comes to the rescue, as illustrated by Burgess
et. al [30]. In the next chapter of the thesis, we show that Schwinger pair creation due to
an electric field can also be described using the above attractive inverse square potential in
the framework of point particle effective field theory, developed by Burgess et. al [30].
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3
Point particle effective field theory

and inverse square potential

Effective field theory describes physical phenomenon occurring at a chosen length scale or
energy scale including the appropriate degrees of freedom while ignoring the substructures
and degrees of freedom at shorter distances (or high energies). Effective field theory has
found applications in various disciplines such as the standard model of particle physics and
also in non-relativistic quantum mechanics. Effective field theory works well when there is
a relatively large separation between the length scale of interest and the length scale of the
microscopic physics. For example, to describe the motion of electrons around the nucleus of
an atom (of radius a, say), it is natural to neglect the internal structure of the nucleus (of
radius r, see Figure 3.1) and instead focus on their motion about a point-like nucleus whose
internal structure is described by a multipole expansion. When r/a << 1, one can largely
be ignorant about the structure of the nucleus (source).
The effective action will have the form S = SB+Sb, where SB describes the action of the bulk
field while Sb is the point particle action of the source. Effects of particle substructures can
be incorporated by additional interactions in Sb which is a generalized multipole expansion
for the source. Such expansions have been studied in the context of gravity (see references
in [30]). Burgess et al. in [30], using PPEFT for an attractive inverse square potential,
provide a systematic algorithm that relates the properties of the effective action at the
origin, Q = 0 to the boundary condition at Q = 0. Before implementing PPEFT to the
problem of Schwinger pair creation, we explain briefly the conceptual benefits of applying
PPEFT to the inverse square problem. Since it is cast in terms of an effective action, it
removes the guesswork that is otherwise required in implementing the boundary conditions.
Casting it in terms of an action provides a physical basis for determining the right choice of
source action that is required. An added advantage of using a PPEFT is the transparency as

11
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ar

Figure 3.1: Picture depicting hierarchy of scales present when deriving boundary condition
from the source action. Here, r denotes the size of the source (eg : size of a proton/nucleus)
and a denotes the physical length scale of the problem (eg: size of the atom). Size of the
source is assumed to be very small compared to physical scale, a. PPEFT uses action of
point source to derive boundary condition at the hypothetical surface of radius ε, which is
arbitrary. Renormalization group flow describes how the effective coupling within PPEFT
action must change for different values of ε in order to keep physical quantities remain
unchanged.

to which quantity is renormalized. From the point particle effective action, it is the effective
contact coupling that is renormalized, which usually turns out in the simplest situations to
describe the physics via a Dirac delta function. In the end it boils down to the fact that
the attractive inverse square potential doesn’t exist in isolation, and one is led inevitably to
add a Dirac delta function, whose coupling runs in the sense of renormalization group flow.
Many otherwise not so clear features of the system become transparent once we have a Dirac
delta function included, as we will see, for example : in this case the non-hermitian physics
of pair creation comes in clearly through the imaginary coupling of the Dirac delta function.

3.1 Effective action and boundary condition

The effective action for the PPEFT for fall to the center in an attractive inverse square
potential is, S = SB + Sb, where SB is the action for the Schrödinger bulk field, given by :

SB =

∫
dt dQ

[
−
(

1

2m
|∇|ψ|2 + V (Q)|ψ|2

)]
(3.1)

with V (Q) = − Ẽ2+1/4
Q2 and the action for the microscopic physics of the source at Q = 0 is

given by :

Sb =

∫
dt dQL(ψ∗, ψ)δ(Q) (3.2)

12
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At lowest order one can put, Lb(ψ∗, ψ) = −λψ∗ψ. The field equations can be obtained by
extremizing the action δS = 0, to obtain the Schrödinger equation(

d2

dQ2
− U(Q)

)
ψ = −k2ψ (3.3)

with U(Q) = −(Ẽ2+1/4)
Q2 + λδ(Q), −k2 = −2mE . The boundedness of the wavefunction

at Q = 0 can’t be the right boundary condition to use because, as we will see in the next
section, for small Q, both linearly independent wavefunction diverge as Q→ 0 similar to the
wavefunction for H(Q,P ) = Q.P+P.Q

2 [see Figure : 2 (b)], so we cannot necessarily choose
one unambiguously. The weaker criteria of normalizability also turns out to be insufficient
as demonstrated by Burgess et. al in [30]. Hence, one is led to derive the boundary condition
from the properties of the source action, Sb.

The boundary condition as derived in [30] is obtained by integrating the above Schrödinger
equation at the boundary in the limit −ε ≤ Q ≤ ε giving :

λ =

[
∂ ln(ψ)

∂Q

]Q=ε

Q=−ε
(3.4)

The boundary condition is evaluated at Q = ±ε because the description of PPEFT action
breaks down at smaller distances compared to the actual radius of the source, r = ε. The
dependence of physical quantities on ε can be absorbed into an appropriate renormalization
of the couping λ, which will be discussed in upcoming sections. This is where the story of
renormalization comes in.

3.2 Scattering in 1D

Th Schrödinger equation for an attractive inverse square potential :(
− d2

dQ2
− (1/4 + Ẽ2)

Q2

)
χ(Q) = Eχ(Q) (3.5)

can be transformed to an Hankel type differential equation as illustrated in [30], with χ(Q) =
√
zu(z) and z = kQ :

z2u′′ + zu′ + (z2 − σ2)u = 0 (3.6)

where σ2 = −Ẽ2. The Hankel function of second kind, H(2)
σ (kQ) asymptotes at large Q to a

left moving wave and the Hankel function of first kind H(1)
σ (kQ) asymptotes for large Q to

a right moving wave (see Appendix B for properties of Hankel functions). The wavefunction
of the above attractive inverse square potential is then given by :

χ+(Q) =
√
kQ
(
H

(2)
σ (kQ) +RH

(1)
σ (kQ)

)
for Q ≥ ε (3.7)

χ−(Q) = T
√
kQH

(2)
σ (kQ) for Q ≤ −ε (3.8)
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where, R and T are the reflection and transmission coefficients to be determined by boundary
condition at Q = ±ε. The energy eigenfunction of the scale invariant squared Berry-Keating
operator, φ(Q) will be small Q limit of χ(Q) (note that : φ(Q) = Q−1χ(Q)) :

φIn+Ref(Q) =

−( kQ2 )
iẼ

Γ(1+iẼ)
+

exp(πẼ)( kQ2 )
−iẼ

Γ(1−iẼ)

+R

( kQ2 )
iẼ

Γ(1+iẼ)
−

exp(−πẼ)( kQ2 )
−iẼ

Γ(1−iẼ)


sinh(πẼ)

√
kQ

, Q ≥ ε (3.9)

φTrans(Q) = T
sinh(πẼ)

√
kQ

(
−1

Γ(1+iẼ)

(
kQ
2

)iẼ
+ exp(πẼ)

Γ(1−iẼ)

(
kQ
2

)−iẼ)
for Q ≤ −ε (3.10)

Note that σ = ±iẼ, is imaginary in this case unlike discussed for the 1D case in [30]. We
have chosen σ = −iẼ for the analysis.

To get one relation between R and T, we demand χ+(ε) = χ−(−ε), to get

R− iT exp(πẼ) = −
H

(2)

−iẼ(kε)

H
(1)

−iẼ(kε)
(3.11)

For small kε << 1, the above relation can be written down as :

R− iT exp(πẼ) =
1−X exp(πẼ)

1−X exp(−πẼ)
(3.12)

where

X =
Γ(1− σ)

Γ(1 + σ)

(
kε

2

)2σ

(3.13)

We now calculate the coupling of the Dirac delta function using logarithmic derivative of
the wavefunction at Q = ±ε as given in Eq. (3.4) :

λ =
∂ ln(φ+(ε))

∂x
− ∂ ln(φ−(−ε))

∂x
(3.14)

where φ+(ε) and φ−(ε) are the wavefunction in Eq. (3.9) and Eq. (3.10) evaluated at Q = ±ε
:

λ =
1

ε

(
1 + iẼ

[
1 +X exp(πẼ)−R(1 +X exp(−πẼ))

1−X exp(πẼ)−R(1−X exp(−πẼ))
+

1 +X exp(−πẼ)

1−X exp(−πẼ)

])
(3.15)

The coupling diverges as ε → 0, and therefore has to be renormalized. We must choose λ
also to diverge in such a way that the observables, i.e reflection and transmission coefficients
are ε- independent.
Redefining λ by :

λ̂ = 2λε− 1 (3.16)

and expanding Eq. (3.15) in powers of X in small kε regime we obtain :

λ̂ = 2iẼ

[
1 +X exp(πẼ)

(
1−R exp(−2πẼ)

1−R

)
+X exp(−πẼ) +O(X2)

]
(3.17)

Before, proceeding to calculate the reflection and transmission coefficients, we now pause to
see how conservation loss depends on the nature of the Dirac delta function coupling.
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3.2.0.1 Probability current

The probability flux is given by the expression :

J =
i~
2m

(φ∂xφ
∗ − φ∗∂xφ) (3.18)

where ψ(x) is the energy eigenfunction. We use the boundary condition Eq. (3.4) to calculate
the probability flux :

J(ε)− J(−ε) =
i~
2m

(λ∗ − λ)φ∗(ε)φ(ε) (3.19)

It is clear from the above expression that, probability is conserved at the source if λ is real,
i.e when λ∗ = λ or when probability of finding the particle is zero at the source. Otherwise,
we have conservation loss at the source as is expected when pair creation occurs. As we will
later see, it will be a source at the origin if =(λ) > 0 or a sink if =(λ) < 0.

3.2.0.2 Renormalization

In order to determine how the coupling λ must depend on ε to renormalize any divergences,
we write down the renormalization evolution equation for the coupling of the Dirac delta
potential, which can be calculated by taking the derivative with respect to ε keeping other
physical quantities fixed, as given in [30] :

ε
d

dε

(
λ̂

2σ

)
= σ

1−

(
λ̂

2σ

)2
 (3.20)

The renormalization group flow describes how the effective coupling within the point particle
action must change for different values of ε in order to keep the physical quantities unchanged.
The concept of renormalization is associated with studying the beta function whose zeros
corresponds to the fixed points of the theory.

In this case the fixed points for the above equation for which the coupling λ̂ does not
evolve is given by : λ̂ = ±2σ = ±2iẼ. The renormalization group running of the param-
eter λ can have interesting consequences. The coupling of the Dirac delta function λ = 0

corresponds to λ̂ = −1, which is not a fixed point unless Ẽ = − i
2 , but this value of Ẽ,

corresponds to zero coupling of the attractive inverse square potential (note : the strength
of the inverse square potential is Ẽ2 + 1/4). Thus the Dirac delta function is inevitable for
a non-zero attractive inverse square potential. Here, in this case of Schwinger pair creation
problem, this inevitable Dirac delta function accounts for the non-hermitian physics that
arises from pair creation. RG evolution for σ being imaginary is dealt with in detail in [27].
Integrating the above RG evolution equation using the initial condition λ(ε0) = λ0, we get :

λ̂

2σ
=

λ0
2σ + tanh(σ ln(ε/ε0))

1 + λ0
2σ tanh(σ ln(ε/ε0))

(3.21)
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Figure 3.2: The plot for the real and imaginary parts of the renormalization group flow
Eq. (3.21) for σ = −iẼ.

The Figure 3.2 portray this RG flow of the coupling λ̂ as a function of ε. The flow picks a
scale ε∗ when <(λ̂) = 0. Hence, it breaks the continuous scale invariance of the inverse square
potential. The RG flow has different topology depending upon whether σ is real or imaginary
as discussed in [27]. The Figure 3.3 shows the solution in the complex λ̂ plane when σ is
imaginary. The fixed points are isolated on the imaginary axis of the complex plane. As
demonstrated in [27] these fixed points correspond to the scenarios of perfect absorber when
=(λ) < 0 and a perfect emitter when =(λ) > 0. The connection of the fixed points to perfect
absorption/emission comes from the fact that these amounts to choosing the coefficients C+

or C− of the wavefunction : C+Q
−1/2 exp(iẼ ln[Q])+C−Q

−1/2 exp(−iẼ ln[Q]) to vanish [27].
The choice of C+ = 0 would correspond to only an in-falling wave and C− = 0 would
correspond to an out-going wave. The fact that the boundary conditions are related to the
fixed points of the RG evolution, means that the process of emission/absorption is invariant
under varying the position Q = ε.

To calculate the reflection coefficient, we now use small ε expansion of the above equation
[Eq. (3.21)] :

λ̂

2σ
= −1− 2

(
ε

ε∗

)2σ

, (ε << ε∗) (3.22)

Reflection coefficient can then be computed by substituting the above expression of λ̂ in
Eq. (3.17) to obtain :

R =
X∗ cosh(πẼ)− 1

X∗ exp(−πẼ)− 1
(3.23)

where ,

X∗ =
Γ(1− σ)

Γ(1 + σ)

(
kε∗
2

)2σ

(3.24)

16



MSc. Thesis - S. Sundaram

Dept. of Physics - McMaster University 3.2. SCATTERING IN 1D

Figure 3.3: Phase portrait of the RG evolution given in Eq. (3.20) depicting the RG flow of
λ̂, which is related to the coupling of the Dirac delta function at the source. Arrows indicate
the direction of the flow.

and using small kε limit in Eq. (3.12) to get :

T = i exp(−πẼ)(1−R) =
−iX∗ exp(−πẼ) sinh(πẼ)

X∗ exp(−πẼ)− 1
(3.25)

It is clear from Eq. (3.25) that the unitarity condition is violated by an amount exp(−Ẽπ),
unless Ẽ = 0. This is a signature of the Klein paradox. The paradox is reconciled by arguing
that charged pairs are created at the origin. Probability conservation has to be recasted in
terms of charge conservation.
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4
Eigenstates of

quantum inverted harmonic oscillator

4.1 Energy eigenstates of the quantum inverted harmonic
oscillator using a quantum canonical transformation

The incident and reflected wavefunction of IHO in the right hand side of the barrier in
the ξ space can be obtained from the incident and reflected wavefunction of the inverse
square potential in the Q representation [Eq. (3.9)] using the quantum generating function
〈ξ|Q〉 = exp[iF (Q, ξ)] [15,35], where F (Q, ξ) = −ξ2

2 +
√

2ξQ− Q2

2 is the classical generating
function corresponding to the canonical transformation [Eq. (2.4)] (for details about quantum
canonical transformation, see Appendix C) :

〈ξ|φ〉Inc+Refl =

∫
dQ 〈ξ|Q〉〈Q|φ〉Inc+Refl (4.1)

=

∫
dQ 〈Q|φ〉Inc+Refl exp

(
i

[
−ξ2

2
+
√

2ξQ− Q2

2

])
(4.2)

=
e−

Ẽπ
4

sinh(πẼ)

[
W (Ẽ, e−iπ/4

√
2ξ) +RW (Ẽ, eiπ/4

√
2ξ)
]

The integral in the Eq. (4.2) with the wavefunction of the inverse square potential in the
Q-representation given in Eq. (3.9), can be identified with the integral representation of the
parabolic cylinder function [36]. The eigenfunction W (Ẽ, ξ) is satisfied by the Schrödinger
equation with an IHO potential [36]. The wavefunction in the ξ space is smooth in contrary
to the wavefunction in the Q-representation [see Figure 4.1 and Figure 2.2 (b)]. Similarly one
can obtain the transmitted wavefunction in the left hand side of the IHO barrier in the ξ space
using the transmitted wavefunction of the inverse square potential in the Q-representation
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Figure 4.1: The energy eigenfunction of inverted harmonic oscillator in the ξ space : parabolic
cylinder function W (Ẽ,−x) with Ẽ = 3.

given in Eq. (3.10) :

〈ξ|φ〉Trans =

∫
dQ 〈ξ|Q〉〈Q|φ〉Trans

=

∫
dQ 〈Q|φ〉Trans exp

(
i

[
−ξ2

2
+
√

2ξQ− Q2

2

])
(4.3)

=
T exp(−πẼ)e−

Ẽπ
4

sinh(πẼ)
W ∗(Ẽ, ei3π/4

√
2ξ) (4.4)

Note that the transmitted wavefunction is complex conjugated with respect to the refelected.
The ratio of the reflection and the transmission coefficients for the IHO barrier follows :∣∣∣∣RT

∣∣∣∣ = eẼπ (4.5)

which is the amplitude of produced pairs during tunneling through the barrier. In the next
chapter we describe the Klein paradox.
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5
Klein paradox and pair production

Klein paradox is associated with the over reflection of charged particles from the barrier
formed from an inhomogeneous electric field. We started off the problem with a relativis-
tic dispersion relation and then mapped it onto an effective non-relativistic IHO problem.
Klein paradox for Schwinger pair creation is demonstrated by constructing the asymptotic
scattering branches of inverted harmonic oscillator with incident wave coming from the right
side of the barrier and reflected wave going back to +∞ and transmitted wave going to −∞

Figure 5.1: Klein paradox - over reflection of charged particles from a barrier formed from an
inhomogeneous electric field. The figure shows incident and over reflected positively charged
particles and transmitted anti-particles with negative charge.
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given by :

1√√
qE
~c

(
x+ ~ω

qE

) exp

(
i

(
qE

~c

)2(
x+

~ω
qE

)2

− iẼ ln

(√
qE

~c

(
x+

~ω
qE

)))
(x→ +∞)

(5.1)

R√√
qE
~c

(
x+ ~ω

qE

) exp

(
−i

(
qE

~c

)2(
x+

~ω
qE

)2

+ iẼ ln

(√
qE

~c

(
x+

~ω
qE

)))
(x→ +∞)

(5.2)

Te−Ẽπ√√
qE
~c

(
x+ ~ω

qE

) exp

(
i

(
qE

~c

)2(
x+

~ω
qE

)2

− iẼ ln

(√
qE

~c

(
x+

~ω
qE

)))
(x→ −∞)

(5.3)

as described in [32]. In the chapter 3, we saw that the unitarity condition is violated [see
Eq. (3.25)] due to the imaginary coupling of the Dirac delta function. Incident particles
from the right side of the IHO barrier are overreflected from the barrier and particles are
transmitted to the left side of the barrier. This is a clear signature of the Klein paradox [9].
In this thesis, instead of describing the physics at asymptotically large x, we also describe
pair creation using the small Q physics of an attractive inverse square potential. The charge
density then gives the proper charge assignments :

J0 = (ω + Ex)φ∗φ (5.4)

For large negative x, we have anti-particles and for large positive x, we have particles.
The statement of probability conservation |R|2 + |T |2 = 1, has to be interpreted as charge
conservation :

1

|R|2
− |T |

2

|R|2
= 1 (5.5)

The above equation can be viewed as |α|2 − |β|2 = 1, with |α|2 = 1
|R|2 and |β|2 = |T |2

|R|2 .The
RHS of Eq. [5.5] represents incident unit positive charge (particle) coming from the right side
of the IHO barrier and |β|2 = |T |2

|R|2 represents transmitted negative charge (anti-particle) to
+∞ and |α|2−1 is the increased flux of reflected wave necessary for charge conservation. The
true resolution of Klein paradox would require a quantum field theory treatment because the
effective single particle formalism is used to describe a multi particle phenomenon. Second
quantized study of pair creation will be pursued as a separate work in the near future. Hence,
constant electric field pair production is described as tunneling through the IHO barrier or
as particles being produced at the origin of the inverse square potential.
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6
Parabolic cylinder functions

as squeezed states

6.1 Generalized coherent states

There are three guiding characteristics for identifying a coherent state of the harmonic os-
cillator :

1. Coherent state (|α〉) is an eigenstate of the harmonic oscillator annihilation operator

2. It is generated by the harmonic oscillator unitary group transformation on the vacuum
state.

3. It is a minimum uncertainty state.

There are coherent states in other quantum systems, but they do not in general obey all the
above three characteristics possessed by harmonic oscillator coherent states. In particular
these methods, though equivalent for constructing harmonic oscillator coherent states, are
not so, for other quantum systems. The defining property of a coherent state is a debatable
issue.
Generalization based on (i) consists in defining a coherent state as an eigenstate of the
annihilation operator of the underlying algebra. Coherent states so constructed are called
Barut-Girardello coherent states in the literature. This approach is, however, restrictive
as not all algebras contain an operator whose eigenvalue problem is solved by continuously
labeled states.

Perelomov’s definition of a coherent state [37] is clearly a generalization of property
(ii). It holds for any algebra but ignores property (iii). In a given system, say if the
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operators X̂, Ŷ , Ẑ form a closed Lie algebra, then the Perelomov coherent states can be
straightforwardly constructed. From the state |y〉 which is an eigenstate of Y : Y |y〉 = y|y〉,
the coherent state |c, d〉 can be constructed as :

|c, d〉 = exp(cX + dZ)|y〉 (6.1)

One can also construct coherent states from the eigenstates of other operators which will
lead to different coherent states. As an example : consider the case of the so(3) Lie algebra
generated by orbital angular momentum operators, L1, L2 and L3 given by the commutation
relation [Li, Lj ] = i~εijkLk where i, j, k = 1, 2, 3. Perelomov coherent state constructed from
the eigenstate of L3 : L3|m〉 = m|m〉,

|φ1, φ2〉 = exp(i(φ1L1 + φ2L2))|m〉 (6.2)

The initial state from which one constructs the coherent state by applying the unitary
operator is called the fiducial state in the literature, which needs to be an eigenstate of
an operator which forms the Lie algebra. For example, in the harmonic oscillator case,
the vacuum state |0〉 is the fiducial state and in the above example of the so(3) algebra,
the state |m〉 is the fiducial state. In short, Perelomov’s construction of coherent states
gives a group theoretic generalization of the harmonic oscillator coherent states. Note that
mathematically it amounts to constructing a group element from the underlying Lie algebra
by exponentiation. For mathematical details and a justification about constructing Lie group
elements from Lie algebra, see : [37,38].There have been attempts to come up with a bridge
between two of these methods of constructing coherent states [39].

6.2 Squeezed states
and su(1,1) algebra

The su(1,1), non compact Lie algebra is of great interest in quantum optics. The su(1,1)
algebra generated by the operators Kx, Ky and Kz is given by :

[Kx,Ky] = −iKz, [Ky,Kz] = iKx, [Kz,Kx] = iKy (6.3)

These commutation relation can be expressed in terms of K± = Kx ± iKy and Kz as

[K+,K−] = −2Kz, [Kz,K±] = ±K± (6.4)

Now consider,

K+ =
(a†)2

2
, K− =

a2

2
, Kz =

1

2
(a†a+

1

2
) (6.5)

where a and a† are the usual creation and annihilation operators of the harmonic oscillator,
satisfying [a, a†] = I. It can be clearly shown that they form a closed su(1,1) algebra
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6.2. SQUEEZED STATES

AND SU(1,1) ALGEBRA

[Eq. (6.4)], using the commutation relations of the harmonic oscillator algebra [â, â†] = Î.
The unitary operator in the Perelomov sense discussed in the previous section, given by
Eq. (6.1), can be constructed to act on the eigenstate of Kz = 1

2

(
a†a+ 1

2

)
as,

|η〉 = exp(η(a†)2 − η∗a2)|0〉 (6.6)

It is interesting to note that this unitary operator in the Perelomov sense is the squeezing
operator S(η) and the state |η〉 is called the squeezed state [40]. The displacement operator
which generates the coherent state from the vacuum state was constructed from harmonic
oscillator algebra and the squeezing operator is not a part of the Heisenberg-Weyl group,
but is constructed from the su(1,1) algebra formed by the operators given in Eq. (6.5) [40].
Interestingly, the following generators also form a closed su(1, 1) Lie algebra :

K1 =
1

2
(p2 − x2), K2 =

1

2
(p2 + x2), K3 =

1

2
(x.p+ p.x) (6.7)

where K1 is the IHO Hamiltonian, K2 is the simple harmonic oscillator (SHO) Hamiltonian
and K3 is the Berry-Keating operator. The eigenvalue problem of the IHO Hamiltonian
which generates the parabolic cylinder functions are well known to be su(1, 1) squeezed
states as discussed in [31]. Equivalently, the integral representation of the wavefunction of
IHO,

〈ξ|φ〉Trans =

∫
dQ 〈ξ|Q〉〈Q|φ〉Trans

=

∫
dQ 〈Q|φ〉Trans exp

(
i

[
−ξ2

2
+
√

2ξQ− Q2

2

])
(6.8)

=
T exp(−πẼ)e−

Ẽπ
4

sinh(πẼ)
W ∗(Ẽ, ei3π/4

√
2ξ) (6.9)

can be seen as the Perelomov construction of SU(1,1) squeezed state. The quantum gener-
ating function exp[iF (ξ,Q)] = exp

[
i
(
−ξ2

2 +
√

2ξQ− Q2

2

)]
, can be seen as a group element

generated by the generators of the above su(1, 1) Lie algebra. Hence pair creation under a
static electric field can be viewed as being due to squeezing of the vacuum.
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7
Conclusion

In conclusion, we have demonstrated that the classical field theory of Schwinger pair creation
with a static electric field can be described using an effective Schrödinger equation with an
attractive inverse square potential constructed using the squared Berry-Keating operator,
in the canonically rotated coordinates of the inverted harmonic oscillator. The large ξ
physics of the inverted harmonic oscillator is equivalently described by small Q physics
of the attractive inverse square potential. It appears that the inverse square potential by
itself is not a fully specified eigenvalue problem. We use PPEFT to systematically derive
the boundary condition using the source action which leads to an inevitable addition of
Dirac delta function at the origin Q = 0, with imaginary coupling. The non-hermitian
physics leads to conservation loss. Probability conservation is then reinterpreted as charge
conservation. The su(1,1) Lie algebra generated by IHO Hamiltonian, SHO Hamiltonian
and Berry-Keating operator gives us a hint that pair creation can be seen as arising due to
squeezing of the vacuum.
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8
Future works

8.1 Pair creation and quantum caustics

8.1.1 Introduction to catastrophe theory

For this introductory section on singularities, caustics and its description using catastrophe
theory, we follow the thesis by Wyatt Kirkby [41] and the book by Poston and Stewart [42].
A point u = (u1, u2, .., un) is said to be a critical point of a function f(x1, x2, .., xn)εR if

∂f

∂x1

∣∣∣∣
u

=
∂f

∂x2

∣∣∣∣
u

= ... = 0 (8.1)

It is a degenerate critical point if the Hessian is a singular matrix :

det

(
∂2f

∂x1∂x2

)
= 0 (8.2)

If Hessian matrix is non singular then the critical point u is called non-degenerate critical
point. A critical point for which there exist no critical point within any deleted neighbor-
hood of this point is called isolated critical point [41]. Control parameters are those tunable
parameters that determine the global behavior of the function f(x).

Theorem (Morse Lemma) :

For some isolated non-degenerate critical point uεR of the function f : Rn → R, there
exists a smooth transformation to some coordinate y = (y1, y2, ...., yn) in a neighborhood of
u and for yi(u) = 0 such that f = f(u)− y2

1 − y2
2 − ...− y2

l + y2
l+1 + ...+ y2

n
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Rank Co-dimension (K) Catastrophe function (ΦK)
1 1 s3 + a1s

1 2 s4 + a2s
2 + a1s

1 3 s5 + a3s
3 + a2s

2 + a1s

2 3 s2
1s2 + s3

2 + a3s
2
1 + a2s2 + a1s1

Table 8.1: The classification of catastrophe functions

c>0

c<0

c=0

-1.0 -0.5 0.5 1.0
x

-2

-1
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2

f Hx;cL

(a)

-1.0 -0.5 0.5 1.0
c_82<

-0.4

-0.2

0.2

0.4

c_81<

(b)

Figure 8.1: (a). Geometry of Fold catastrophe. The figure in (a) shows the disappearance
(coalescence) of the critical points as we change c from negative to positive (b). Control
space of cusp catastrophe

In the neighborhood of a degenerate critical point u, the function

f(y; c) =
k∑
i=1

λi(c)y
2
i + fNM (yk+1, ..., yn; c) (8.3)

In the neighborhood of (u; c) with fNM taking the form of the so-called catastrophe func-
tions or catastrophe [41]. Classification of such catastrophes are given by Arnold based on
the number of state variables and its rank.

Theorem(Thom’s theorem) :

Local to a neighborhood of an isolated critical point of the function f , can be locally
described by catastrophe function with the appropriate number of state variables and rank.

Eg : (1). The Fold catastrophe with single control parameter c is defined as

f(x; c) = x3 + cx (8.4)

Critical points lie in x2 = −c/3. There exists a bifurcation at c = 0, where the number of
critical points change from 2 to 0 [see Figure 8.1 (a)].
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2.) The Cusp catastrophe with two control parameters c1, c2 is defined by :

C(x; c1, c2) = x4 + c2x
2 + c1x (8.5)

The critical points are determined by : 4x3 + 2c2x + c1 = 0. Solving dC
dx = 0 and d2C

dx2 = 0,
we get the cusp curve [see Figure : 8.1 (b)] :

c1 = ±
√

8

27
(−c2)3/2 (8.6)

In the context of studying the nature and properties and dynamics of light, geometric
ray theory describe light propagation in terms of rays. When light rays focus at a particular
point, the regions of focusing are called ray caustics. Examples of ray caustics include many
natural phenomenon like : rainbow, whirls under swimming pool [43], cusp structure inside
a coffee mug etc.

Optics of Rainbow : It is an excellent example of ray caustic. Caustics, which are enve-
lope of family of rays, are singularities of the geometric ray theory. As described in [43], the
intensity of light in the geometric ray theory is given by :

I ∝

∣∣∣∣∣ x

sin(D)

(
dD

dx

)−1
∣∣∣∣∣ (8.7)

where D is the angle of deviation of a ray incident on the rain drop with impact parameter
x. Deviation of indent ray on the drop is given by :

D = π − 4r + 2i = π − 4 arcsin(x/n) + 2 arcsin(x) (8.8)

The above intensity diverges at the rainbow angle D(xmin), i.e where dD
dx = 0. But, in reality

we don’t see infinite intensity in the nature. Hence, some feature not in the domain of ray
theory should be responsible for smoothening of this singularity. Interference and diffraction
of light are not in the domain of ray theory and hence incomplete. We must resort to wave
theory of light to describe these effects.

8.1.2 Wave/Diffraction catastrophes

Diffraction integral is given by :

ΨK(a) =

∫
dseiΦ(s,a) (8.9)

ΨK results in the smoothing of the singularities associated with the ray catastrophes, ΦK .
Eg: Fold catastrophe (Φ1) is associated with Airy function (Ψ1) [see Table 8.2].
Another class of catastrophes, called logged caustics, recently proposed has the form :

I(k, a, a0) =

∫
C
dt exp (ikf(t, a, a0))) (8.10)
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Catastrophe function, Φ(s, a) Diffraction catastrophe, ΨK Diffraction integral
s3 + a1s

∫
ds exp(i[s3 + a1s]) Airy function

s4 + a2s
2 + a1s

∫
ds exp(i[s4 + a2s

2 + a1s]) Pearcey function
s2 + a0 ln(s)

∫
ds exp(i[s2 + a0 ln(s)]) Logged gaussian integral

s3 + a1s+ a0 ln(s)
∫
ds exp(i[s3 + a1s+ a0 ln(s)]) Logged Airy integral

Table 8.2: Examples of some diffraction catastrophes and its integral representation

where f(t, a, a0) = tK+2 +
∑K

m=L amt
m + a0 ln (t) are called logged caustics.

One can identify these wave catastrophes or diffraction integrals as wavefunctions in
quantum mechanics. Airy and Pearcey function are known to appear in quantum many body
physics [41]. Interestingly these diffraction integrals takes the form analogous to Feynman’s
path integral

Ψ(x, t) =

∫
Dx exp(iS/~)ψ0(x) (8.11)

The diffraction integral corresponding to the fold caustic is an Airy function. By scaling the
catastrophe function by

y3 = −s
3

3
, z = −31/3a1 (8.12)

one can write the wavefunction upto a smooth change of variables at a fold caustic as :

Ψ(z) =
1

2π

∫ ∞
−∞

ds exp

(
i

[
zs− s3

3

])
= Ai[z] (8.13)

where Ai[z] is the Airy function of first kind. It is well known that Airy function satisfies
the following second order differential equation :

d2ψ

dz2
− zψ = 0 (8.14)

The caustic divides the wavefunction to two regions, with z < 0 where amplitude oscillates
and z > 0 where it decays exponentially [see Figure 8.2].
We saw that geometric ray theory of a rainbow exhibits singularities. In the wave theory

the intensity of light for the rainbow is given by an Airy function :

Ai(x) =

∫ ∞
0

ds cos

(
s3

3
+ xs

)
(8.15)

where, x is the rainbow crossing variable. The ray caustic is smoothened by wave effects.
Airy further realized that this diffraction integral describes the wave close to any caustic, not
just a rainbow. Corresponding to a fold caustic, the diffraction integral is an Airy function.

8.1.3 Quantum catastrophe

In the previous section we saw that the singularities of ray theory are smoothened by wave
effects. Quantum caustics are singularities of the underlying wave theory, characterized
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Figure 8.2: Plot of Airy function showing oscillatory behavior for z < 0 and exponential
decay for z > 0.

by logarithmic phase singularities of the form F (Q) ≈ Qiν exp(−iωt) with <(ν) 6= 0 [34].
Quantum catastrophes may be responsible for quantum effects, for example, pair creation
from the quantum vacuum. Interestingly we saw that such singularities do appear in the
Schwinger pair creation problem in the canonically rotates (Q,P ) coordinates [see chapter
2. Eq. (2.7)]. Such logarithmic phase singularities are well known to appear in the waves
near an event horizon of a black hole, accelerated frames etc. It is still not known whether
these quantum caustics admits a classification similar to classical catastrophes.
The goal of this project would be to see if non-hermitian bifurcation occurs in the case of
Schwinger pair creation and to see if the quantum caustics admit a classification scheme
similar to diffraction catastrophes.

8.2 Superlenses and fall to the center

According to the Rayleigh criterion, the resolution of a standard lens is limited by the
wavelength of light. However, over the years there have been a number of ingenious proposals
for beating this limit. For example, the 2014 Nobel prize in Chemistry was awarded to Betzig,
Hell and Moerner, for the development of vortex beams of light for super-resolved fluorescence
microscopy which greatly improves the imaging of molecules inside living cells. Another
approach is provided by “superlenses”. These include Maxwell’s fish eye lens (MFEL), the
Luneburg lens and the Eaton lens [44]. MFEL is spherically symmetric and has a refractive
index n that varies as a function of radius r as n(r) ∝ 1/(1 + r2). It is not like a standard
lens because it does not magnify and both the source and image must be contained within
the lens but it has infinite resolution. This is possible because it has the special property
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that, in the words of Maxwell [45] “all the rays proceeding from any point in the medium will
meet accurately in another point”. To illustrate this property a water wave analogue was
recently proposed, called Maxwell’s fish eye pond [46], where the ripples from a stone thrown
anywhere into the pond are turned around to re-converge again and the process repeats. The
technological applications of such a lens include integrated optics on a chip for aberration
free imaging [47] and also perfect coupling of two atoms (qubits) that are imbedded in the
lens but on opposite sides [48]. There are number of proposals for how to build MFEL using
graded photonic crystals [49] and plasmon optics [48]. However, the theory behind MFEL is
subtle and controversial, with some researchers doubting that it can really provide perfect
focusing [50,51]. My goal in this project is to resolve this controversy by using point particle
effective field theory (PPEFT) [30].

My interest in superlenses comes from a seemingly unrelated problem, namely “fall to
the center” in quantum mechanics. This occurs when a quantum particle moves in an
inverse square potential of the form V (r) = −g/r2. When g > J2/2m, where J is the
angular momentum, the particle falls to the center of the potential. The main subject
of this thesis was mapping an inverted harmonic oscillator Hamiltonian to a Hamiltonian
with an inverse square potential [chapter 2]. As we saw, this problem is notorious because,
unlike the closely related Coulomb potential where V (r) = −g/r which can be put into the
Schrödinger equation and solved exactly (to describe the energy levels and stable orbitals
of the electron in a hydrogen atom), the 1/r2 problem is poorly defined and leads to non-
hermitian behavior where the particle is absorbed/produced at the origin. Hermiticity is
usually considered a fundamental requirement of probability conservation and indicates that
the inverse square potential problem is incomplete as stated and must be supplemented by
extra boundary conditions. However, in recent work [27], it was shown that PPEFT can
treat loss/gain systems where particles are lost or produced (such as occurs, e.g. near black
holes). Now, optics and quantum mechanics are closely related theories because they both
describe waves obeying a wave equation. It turns out that the MFEL refractive index profile
is equivalent to Schrödinger’s equation with an inverse square potential and thus the two
problems are fundamentally related.

The goal of this project will be to use PPEFT to analyze MFEL and related superlenses.
There are some hints that superlenses may have loss and gain as a fundamental part of their
operation: another way to realize superlenses is by using new artificial materials called meta-
materials that work by amplifying exponentially small signals that get lost in propagation
between source and lens [52]. The first phase of the project would be to develop a PPEFT
that provides a simple and systematic approach to deal with the gain and loss associated
with the MFEL and hence resolve the current controversy. Although theoretical in nature,
this project may contribute to the realization of a useful optical device. The second phase of
the project would be to test the theoretical results, using numerical ray tracing simulation
techniques. The ray tracing method is a powerful way of analyzing optical behavior in lenses
with varying refractive index and also absorption.
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ix A
Self-adjointness

and von-Neumann deficiency indices

Self-adjointness is often not distinguished from hermiticity in the physics literature. The
distinction is usually thought to be purely mathematical.

Definition (Self adjoint operator) : An operator A is said to be self-adjoint if it satisfies
the following :

1. A = A† : this is the usual symmetric or Hermitian condition.

2. The domain, D(A) = D(A†)

Theorem due to von-Neumann gives a recipe to check if an Hermitian operator is self-
adjoint or not. The von-Neumann deficiency indices (n+, n−) counts the number of square
integrable solution to the eigenvalue problem given by [12] :

Hψ± = ±iλψ± (A.1)

Theorem ( von- Neumann’s test) :

• Operator H is essentially self adjoint iff n+ = n− = 0

• Operator H has self adjoint extensions iff n+ = n− 6= 0

• Operator H is not self adjoint if n+ 6= n+
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We consider two examples to illustrate the calculation of the deficiency indices, i.e. particle
in a box and particle in half real line with standard momentum operator and Berry-Keating
operator.

A.1 Particle in a box

Let us consider the example of the particle in a box to illustrate the concept of self-adjoint
extension. Potential of the partice in a box is given by :

V (x) =

0, if − L < x < L

∞, otherwise

The Schrödinger equation is given by :

− ~2

2m

d2ψ

dx2
= Eψ, − L < x < L (A.2)

Let’s check if the momentum operator is self-adjoint in the finite interval :(
ψ,−i~ d

dx
φ

)
−
(
−i~dψ

dx
, φ

)
= −i~ (ψ∗(L)φ(L)− ψ∗(−L)φ(−L)) (A.3)

It implies that the momentum is a Hermitian (symmetric) operator, but not necessarily
self-adjoint. The adjoint, Pθ = −i~ d

dx acts on the subspace of L2[−L,L], with functions
following :

φ(L) = exp(iθ)φ(−L) (A.4)

As discussed above, deficiency indices are (n+, n−) = (1, 1) and hence von-Neumann’s test
says the momentum operator admits self-adjoint extensions. The θ = 0 corresponds to the
usual periodic boundary condition imposed for the particle in a box mentioned in textbooks.
The case of anti-periodic boundary condition corresponding to θ = π is dealt in detail with
signatures of spontaneous symmetry breaking proposed in [14]. Apart from these two cases,
in general momentum operator for particle in a box admits infinite self-adjoint extensions.

A.2 Particle in half real line

In this section we review the deficiency indices for the standard momentum operator and the
Berry-Keating operator in half real line (R+) and full real line (R). The deficiency indices
for the momentum operator are calculated by counting the number of normalizable solutions
to

pψ± = ±iλψ± (A.5)

, for real λ > 0. For the momentum operator, p = −i ddx , the solutions are

ψ± ≈ exp(±λx) (A.6)
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Hence, for x ∈ R+, the deficiency indices for the momentum operator, (n+, n−) = (0, 1).
It is in contrast to the momentum operator in a finite interval which admits self adjoint
extensions. Hence, the standard momentum operator is not physical in R+.
For the Berry-Keating operator

pBK =
x.p+ p.x

2
(A.7)

the solutions of the eigenvalue problem Eq. (A.1) are

ψ± ≈ x∓λ−
1
2 (A.8)

The Berry-Keating operator is then essentially self-adjoint in R+ with the deficiency indices
(n+, n−) = (0, 0). The Berry-Keating operator however is not self-adjoint in the full real line
(R) with deficiency indices (n+, n−) = (1, 0). Since the Berry-Keating operator is physical
on half line, we introduce Heaviside step function when writing the wavefunction in chapter
2 of the thesis [see Eq. (2.9 and Eq. (2.7)].
Hence, we can use the Euler operator which generates scale transformations (we have
[x, pBK ] = i~x) :

exp(iαpBK/~)x exp(−iαpBK/~) = x exp(α) (A.9)

as an effective momentum operator in the half real line [33]:

exp(iαpBK/~)xBK exp(−iαpBK/~) = xBK + α (A.10)

The Berry-Keating operator pBK = x.p+p.x
2 with new position operator xBK = ln(x),

satisfies Heisenberg algebra [xBK , pBK ] = i. The new momentum operator pBK with its
canonically conjugate position variable xBK generates a hyperbolic phase space.

The list of some of the relevant operators and their deficiency indices discussed above :

• Hamiltonain of the free particle in full real line, R is essentially self adjoint with defi-
ciency indices (n+, n−) = (0, 0)

• Momentum of particle in the interval [−a, a] has deficiency indices (n+, n−) = (2, 2).
Hence it admits self adjoint extensions.

• The standard momentum operator −i ddx is non self adjoint in the half real line R+

with deficiency indices (n+, n−) = (0, 1)

• The Berry-Keating operator discussed in this thesis, x.p+p.x
2 is essentially self adjoint

in the half line with deficiency indices (n+, n−) = (0, 0).
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Hence, a symmetric differential operator acting on a given space of functions need not be
a self-adjoint operator, it might admit none or infinity of self-adjoint extensions. As demon-
strated in the above example of particle in a box, self-adjoint extension can be arbitrary.
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ix B
Properties of Hankel function

In this appendix we state some of the properties of the Hankel function that is used in the
main body of the thesis.

Hankel function are satisfied by the Bessel differential equation given by :

z2u′′ + zu′ + (z2 − σ2)u = 0 (B.1)

The Hankel function of first kind and second kind are definedd by :

H(1)
σ (z) = Jσ(z) + iNσ(z) (B.2)

and
H(2)
σ (z) = Jσ(z)− iNσ(z) (B.3)

where Jσ is the Bessel function and Nσ is the Neumann function. The Hankel function of
first kind, H(1)

σ (z) asymptotes at large z to :

H(1)
σ (z) u

√
2

πz
exp

[
i
(
z − πσ

2
− π

4

)]
(B.4)

The Hankel function of second kind H(2)
σ (z) asymptotes for large z to :

H(2)
σ (z) u

√
2

πz
exp

[
−i
(
z − πσ

2
− π

4

)]
(B.5)

The reflection properties of Hankel functions that are used in chapter 3 are :

H(1)
σ (exp(iπ)z) = − exp(−iπσ)H(2)

σ (z) (B.6)

and similarly,
H(2)
σ (exp(−iπ)z) = − exp(iπσ)H(1)

σ (z) (B.7)
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For small z Hankel functions reduces to :

H(1)
σ (z) u

1

i sin(π)σ

(
1

Γ(1− σ)

(z
2

)−σ
− exp(−iπσ)

Γ(1 + σ)

(z
2

)σ)
(B.8)

H(2)
σ (z) u

1

i sin(π)σ

(
− 1

Γ(1− σ)

(z
2

)−σ
+

exp(iπσ)

Γ(1 + σ)

(z
2

)σ)
(B.9)
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ix C
Theory of quantum

canonical transformation

In classical mechanics, canonical transformations are those change of variables which preserve
the Poisson bracket structure : {p, x} = 1, {p, p} = {q, q} = 0. The quantum canonical
transformation are those change of variables which preserves the quantum condition: [x, p] =

i~, [x, x] = [p, p] = 0. The quantum generating function analog of the classical generating
function is defined as [15] :

exp(iF1(ξ,Q, t)) ≡ 〈ξ|Q〉 (C.1)

Similarly one can define other types of generating functions exp(iF2(ξ, P, t)) = 〈ξ|P 〉, and
so on [35]. The generating functions in classical mechanics are related by Legendre trans-
formation whereas the quantum generating functions are related by Fourier transform. For
example :

exp(iF2(ξ, P )) = 〈ξ|P 〉 =

∫
dQ〈ξ|Q〉〈Q|P 〉 =

∫
dQ exp(iF1(ξ,Q)) exp(iQP ) (C.2)

Wavefunction in ξ representation of a state |φ〉 can be obtained from the wavefunction in Q
representation using the quantum generating function as :

〈ξ|φ〉 =

∫
dQ〈ξ|Q〉〈Q|φ〉 =

∫
dQ exp(iF1(ξ,Q))〈Q|φ〉 (C.3)

Interestingly, exp(iF1(ξ,Q)) satisfies a quantum Hamilton-Jacobi equation whose c-
number form for the Hamiltonian H = p2

2m + V (ξ) can be written as [35]:

1

2

(
∂F1

∂ξ

)2

− i~
2

∂2F1

∂ξ2
+ V (ξ) = −∂F1

∂t
(C.4)

where, the second term is called the quantum potential. Clearly, in the limit ~→ 0, the above
quantum Hamilton-Jacobi equation is reduced to the classical Hamilton-Jacobi equation. It
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has been a known fact that writing the wavefunciton as 〈ξ|φ〉 = exp(iS(ξ, t)), we can get
the Hamilton-Jacobi equation where S(ξ, t) is interpreted as a complex valued phase of the
wavefunction which generates trajectories, but here, in the theory of quantum canonical
transformation it acquires much more significance. The function F1(ξ,Q, t) which is used
to calculate the wavefunction using Eq. (C.3), is the quantum counterpart of the classical
generating function [35].

42



A
p

p
e

n
d

ix D
Sauter potential and

broken scale invariance

In this section we attempt to regularize the inverted harmonic oscillator which fall off to
infinity by introducing a length scale after which the electric field is turned off, i.e by using
a Sauter potential [53]. The Klein-Gordon equation [Eq. (2.1)], modified with the Sauter
potential, At = EL tanh

(
x
L

)
gets mapped onto an effective time independent Schrödinger

equation with Rosen-Morse barrier (See Figure D.1: ) :(
−~2

2m

∂2

∂x2
− 1

2
m

(
qEL

mc

)2(
tanh

(x
L

)
+

~ω
qEL

)2
)
〈x|ψ〉 =

−mc2

2
〈x|ψ〉 (D.1)

Under the coordinate transformation y = L tanh
(
x
L

)
, the above Schrödinger equation trans-

forms as :

(
−~2

2m

((
1−

( y
L

)2
)
d

dy

)2

− m

2

(
qE

mc

)2(
y +

~ω
qE

)2
)
〈y|Ψ〉 =

−mc2

2
〈y|Ψ〉 (D.2)

-30 -20 -10 10 20 30
x

-1.0

-0.5

0.5

1.0

A0@xD
-40 -20 20 40

x

-100

-80

-60

-40

-20

V'HxL

Figure D.1: Sauter potential and Rosen-Morse barrier with length scale L = 10.
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It is clear that the above Schrödinger equation has broken scale invariance. When L→
∞, the Sauter potential reduces to the standard Schwinger case (see Figure 1). The Rosen-
Morse barrier in the effective Schrödinger picture reduces to an IHO potential in the limit
L→∞. The above Schrödinger equation is written in terms of the new momentum operator
Πy = (1− y2)py which is self adjoint in the domain y ∈ (−1, 1) by von-Neumann’s theorem,
follows : [(1 − y2)py, tanh−1(y)] = −i. The above differential equation [Eq. (D.2)] can be
written as an effective Schrödinger (or Helmholtz equation) equation in the y coordinate
using the integrating factor with :

V RM
eff − ε̃ = − 1/L2

1− ( yL)2
−
y2(1/L4 + m

2 ( qEmc)
2)− ε

(1− ( yL)2)2
(D.3)

For L→∞, the effective potential reduces to IHO potential as expected. Doing an analytic
continuation L→ iL, and in the limit of large L and asymptotically large y, the Schrödinger
equation becomes : −d2

dy2
+

1

L
δ(y)−

(
1 + L4m

2

(
qE
mc

)2
)

y2

Ψ(y) = 0 (D.4)

Upon undoing the analytical continuation, the Schrödinger equation for the Schwinger case
becomes : −d2

dy2
+

i

L
δ(y)−

(
1 + L4m

2

(
qE
mc

)2
)

y2

Ψ(y) = 0 (D.5)

The above Helmholtz equation can be written as a Schrödinger equation with attractive
inverse square potential and Dirac delta barrier with imaginary coefficient as :−d2

dy2
+

i

L
δ(y)−

(
1 + L4m

2

(
qE
mc

)2
)

y2

Ψ(y) = ẼΨ(y), (D.6)

with Ẽ → 0. The above Schrödinger equation is also non-hermitian describing conservation
loss. Interestingly, this regularization of the Schwinger problem also gives rise to a Dirac delta
function with a imaginary coupling which has 1/L dependence. This choice of regularization
is one among many available choices.
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