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Abstract

The present dissertation details a sequence of studies in mild traumatic brain in-

jury, the progression of its effects on the human brain as recorded by event-related

electroencephalography, and potential applications of machine learning algorithms in

detecting such effects. The work investigated data collected from two populations

(in addition to healthy controls): 1) a recently-concussed adolescent group, and 2)

a group of retired football athletes who sustained head trauma a number of years

prior to testing. Neurophysiological effects of concussion were assessed across both

groups with the same experimental design using a multi-deviant auditory oddball

paradigm designed to elicit the P300 and other earlier components. Explainable ma-

chine learning models were trained to classify concussed individuals from healthy

controls. Cross-validation performance accuracies on the recently-concussed (chap-

ter 4) and retired athletes (chapter 3) were ≈80% and ≈85%, respectively. Features

showed to be most useful in the two studies were different, motivating a study of po-

tential differences between the different injury-stage/age groups (chapter 5). Results

showed event-related functional connectivity to modulate differentially between the

two groups compared to healthy controls. Leveraging results from the presented work

a theoretical model of mild traumatic brain injury progression was proposed to form

a framework for synthesizing hypotheses in future research.
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Notation and abbreviations

CNN: Convolutional Neural Network

DAI: Diffuse Axonal Injury

DL: Deep Learning

EEG: Electroencephalography

ERP: Event-Related Potentials

fMRI: Functional Magnetic Resonance Imaging

ICA: Independent Component Analysis

ML: Machine Learning

mTBI: Mild Traumatic Brain Injury

MRI: Magnetic Resonance Imaging

NN: Neural Network

RS: Resting State

SHAP: SHapley Additive exPlanations

SVM: Support Vector Machine

TBI: Traumatic Brain Injury
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CHAPTER

1 Introduction and Background

The brain is the most complex organ in the human body. Its intertwined networks

of neurons give rise to the spectacular spectrum of human abilities from fine motor

control to logical reasoning and creative thought. Neuroscience, an entire domain of

science dedicated to the study of the nervous system and its main hub, continues to

explore the brain and its ailments at varying sizes of granularity. While the brain’s

anatomy and structure are extremely complex, it is of the functioning brain that

our understanding begins to pale in comparison with the breadth of the unknown.

These gaps in the current knowledge form massive barriers to developing clinical

interventions to resolve the direly expansive brain-related disorders and conditions.

The present dissertation is an investigation of the phenomenon termed mild trau-

matic brain injury (mTBI) in the literature. Particularly, the work builds on a sub-

stantial body of work describing an unrealized utility of electrophysiology in clinical

standards of mTBI identification, management, and tracking. Utilizing a comprehen-

sive tool-set of machine learning techniques, the presented work extends previously

identified neurophysiological markers of mTBI to prototype a single-subject tool for

mTBI identification. In doing so, multiple facets of machine learning are explored

in the context of mTBI and electrophysiology. In turn, that gave rise to a realized
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theoretical model supported by a multitude of modalities that is intended to act as a

framework for formulating future lines of research that aim to better our understand-

ing of the phenomenon.

This chapter acts as the necessary introduction and background of topics and

themes discussed in the dissertation. A total of five sections follow, containing, in

order, a high-level modern view of brain injury and mTBI as one of its subcategories;

the current clinical standards of mTBI management as well as gaps in the literature;

a brief introduction to electrophysiology, event-related potentials, and their utility in

clinical practice; an introduction to machine learning and its potential in EEG and

other clinical applications; and lastly, a detailed description of the present disserta-

tion’s primary hypotheses and an outline of the following chapters.

1.1 Severe Implications of the Mild

The brain’s exposure to trauma is one ailment that upsets normally functioning mech-

anisms, causing a wide variety of sequelae. Contact forces and biomechanics of trau-

matic impact have been seen to cause both focal and more diffuse effects (Raghupathi,

2004). Diffuse axonal injury (DAI) is the prime mechanism of brain-wide affliction

after trauma and is seen in 40% to 50% of injuries requiring hospital admissions

(Meythaler et al., 2001). DAI describes a brain injury understood to be caused by

rotational forces rather than direct contact to the head (Raghupathi, 2004). DAI-

related loss of membrane integrity and axonal degeneration in the white-matter is

on the microscopic level and is commonly unobservable using computed tomography

(CT) or magnetic resonance imaging (MRI). Severe DAI has been associated with

coma, postulating the injury to impact tracts to the hypothalamus and the pituitary
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stalk (Meythaler et al., 2001). In fact, any form of traumatic brain injury (TBI)

causing unconsciousness is believed to co-occur with DAI (Meythaler et al., 2001).

TBI is a wide-spread affliction with 2.8 million annually reported cases in the United

States, as documented by the Centres for Disease Control and Prevention (CDC;

Taylor et al., 2017). Despite its impact and the continuous research into its mech-

anisms, TBI remains a burden on both the patient and the clinical system. In the

United states alone, an estimated 26,000 deaths occur annually due to DAI, with

surviving patients suffering a wide range of functional and neurobehavioural losses

causing upwards of 25$ billion annually (Meythaler et al., 2001).

The term TBI typically encompasses all forms of brain trauma covering both se-

vere and milder impacts. Mild TBI (mTBI) has been gaining significant traction and

exposure in the last few decades. This subset of TBI cases are identified as having

closed-head injuries with no detectable brain lesioning or hemorrhaging. Despite the

afflicted suffering from a multitude of symptoms and a common deterioration in cog-

nitive ability, mTBI’s effects were often seen as transient, with symptoms commonly

subsiding less than a month after insult (McCrory et al., 2013, 2017). However, recent

work on post-mortem professional athletes in high-impact sports showed the critical

link between mTBI and what is termed Chronic Traumatic Encephalopathy (CTE;

Omalu et al., 2005). Although the work remains polarizing, it has since been explored

in a larger population with replication linking repeated head injuries to the neurode-

generation observable in CTE (McKee et al., 2009; Gavett et al., 2011). Primarily,

work into direct links of CTE is restricted to post-mortem autopsies of the brain, in-

hibiting both the intervention to help the afflicted and the ability to monitor CTE’s

progression. Consequently, CTE and the primary drivers into its development remain
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an open question; however, CTE presents perhaps the most ubiquitous example of

mTBI’s non-mild consequences.

Anatomical aberrations due to mTBI convey the severity of the condition. How-

ever, it is the functional consequences that mark the condition’s uniqueness. Fol-

lowing concussion (henceforth used interchangeably with mTBI; see McCrory et al.,

2013), several reports presented a spectrum of neuropsychological and cognitive ab-

normalities observable through many modalities of assessments (c.f., McAllister et al.,

2001; De Beaumont et al., 2007; Heitger et al., 2009; Baillargeon et al., 2012). Work

has shown concussion to cause a variety of symptoms directly after insult, including

headaches, fogginess, irritability, and insomnia (McCrory et al., 2013). Additionally,

cognitive impairments are typically observable. Studies have reported individuals

with concussion to have afflicted reaction times, memory, executive functioning, at-

tention, and inhibition (McCrory et al., 2013, 2017; Broglio et al., 2017; De Beaumont

et al., 2013). Notably, the literature reports 80%-90% of concussion symptoms to re-

solve briefly after injury – typically 7-10 days, longer for children and adolescents –

where persisting symptoms are identified as developing Post Concussion Syndrome

(PCS; McCrory et al., 2013; Gaetz et al., 2000). Despite the apparent transient nature

of behaviourally manifesting sequelae, many studies have showed long-lasting alter-

ations in neurophysiological responses in asymptomatic patients (e.g., Broglio et al.,

2011; Ruiter et al., 2019; De Beaumont et al., 2007). These results were significantly

emphasized by a resurgence of symptoms in previously concussed individuals later in

life (Tremblay et al., 2013; Ruiter et al., 2019).

A common theory has been proposed to try and explain the return of symptoms

in individuals with concussion history, as well as the discrepancy often found between
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behavioural assessments and neurological measurements such as electrophysiological

measures (Ruiter et al., 2019; De Beaumont et al., 2012, 2009) and functional hemody-

namics (McAllister et al., 2001; Hocke et al., 2018). It is now viewed that the brain is

able to allocate additional resources after injury to try and accomplish complex tasks

with performance not dissimilar to healthy controls. Further, the notion of a cogni-

tive reserve (see Stern, 2009; Kesler et al., 2003) has been hypothesized to explain the

overall neurocognitive decline of previously concussed individuals through aging (De

Beaumont et al., 2009, 2012). According to cognitive reserve, a previously-injured

brain loses the ability to sustain its compensatory mechanisms with age, resulting in

an abnormal aging process with a resurgence of symptoms and other cognitive deficits

(De Beaumont et al., 2009, 2012). While there is broad consensus that brain function

is altered following concussion, there has been little work clarifying the progression

of post-concussive effects throughout aging, the relationship between those effects to

observable symptomatology, and the linkage between results from different imaging

methods.

1.2 Current Management Guidelines and Remain-

ing Gaps

With the growing prominence of concussion in the public and scientific scenes alike,

numerous efforts and resources have been targeted at evolving the condition’s man-

agement and clinical care standards (McCrory et al., 2009, 2013, 2017). Due to the

integral nature of impact in several popular sports, sports related concussions (SRC)

specifically have been the target of several key protocol refinements – which tended
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to inform management of concussion from other causes such as motor vehicle acci-

dents (MVA). Prior to these changes, sideline evaluation of athletes after a hit was

constrained to simple questions such as: “how many fingers are these?”, “where are

you now?”, or “what is your name?.” Other tests examined a player’s balance by

either closing their eyes or lifting one foot off the ground. Particularly, these assess-

ments have been described as rudimentary, subjective to the person administering

them, and were associated with mediocre performance (Broglio et al., 2017, 2007;

Maddocks et al., 1995).

As of the date of writing, the latest consensus on concussion in sports defines

sidelines evaluation of cognitive function as an essential component in concussion

identification (McCrory et al., 2017). Neuropsychological batteries and tests are rec-

ommended to assess injury-related deficits after a hit, with the most well-known

being the Sports Concussion Assessment Tool version 5 (SCAT5). It has been ac-

knowledged, however, that the SCAT5’s utility diminishes significantly 3-5 days after

injury (McCrory et al., 2017). Further, the consensus stated that the utility of any

single tool is only adequate when used in conjunction with a variety of other neurologi-

cal assessments that target mental cognition, oculomotor function, gait, coordination,

balance, and others. Moreover, while there are several advancements in computerized

neuropsychological assessment and a tendency to prescribe baseline tests that serve

as a subject-specific comparison point, the consensus viewed them as not required.

In regards to residual effects and sequelae, most prominently targeted in the present

dissertation, the consensus stated that the literature is inconsistent, but that “Clin-

icians need to be mindful of the potential for long-term problems such as cognitive

impairment, depression, etc. ...” (McCrory et al., 2017). While many studies have
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argued for the linkage between repeated concussions and CTE, the consensus remains

that the causality of the two is not confirmed.

Based on the latest consensus, it is clear that despite a more formal approach to-

wards the injury and its management strategies, there remains a multitude of gaps in

the knowledge scientifically and, subsequently, clinically. First, while the dependency

on a multitude of clinical assessment modalities has been argued as more accurate

in concussion, the specifics of such assessments can vary widely across institutions,

and/or clinical providers. That variance gives rise to inconsistent management stan-

dards and may cause unsound clinical decisions. Moreover, the nature of persistent

symptoms remains largely unknown, particularly due to the complexity of disentan-

gling pre-existing, co-morbid, and trauma-specific clinical symptoms (McCrory et al.,

2017). Lastly, cognitive recovery has been shown to occasionally not overlap with

clinical symptom resolution, an added layer of complexity when considering clinical

decisions such as return-to-play and return-to-work (McCrory et al., 2017; Broglio

et al., 2009; Cao et al., 2008). More refined methods are evidently needed to address

all the previous points, providing more objective clinical measures of concussion de-

tection, severity, and recovery.

1.3 Neurophysiological Indexing of Brain Function

Electroencephalography (EEG) is a method by which brain electrophysiological sig-

nals, mostly postsynaptic potentials in cortical layers, can be monitored non-invasively

from the scalp. EEG is characterized by its high temporal resolution that is able to

capture brain oscillations and cognitive brain responses as they unfold in time (see
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below; Luck, 2014). In contrast, spatial resolution of EEG is poor, with limited in-

formation on the neural origin of electrophysiological signals captured from the scalp.

Since its inception, EEG has been purposed to cover several utilities that range from

clinical applications to basic science research (Ebersole and Pedley, 2003). A routine,

clinical, EEG typically describes what is referred to in the literature as resting-state

(RS) EEG – the monitoring of EEG signals as a continuous signal over time, as op-

posed to event-related EEG (see below). In modern-day hospitals, EEG is rather

underutilized. Epilepsy and seizure foci localization form the dominant portion of

clinical EEG application. Routine EEG are also commonly utilized in assessing se-

vere cases of brain injury, where some events can be diagnostically valuable (e.g.,

flat-line or isoelectric EEG, slow-waves, and wake-sleep cycles; see Ebersole and Ped-

ley, 2003).

Beyond RS, EEG has also demonstrated both clinical and research viability us-

ing event-related methods – describing the time-locking of EEG signals to particular

events of interest and in essence indexing the brain’s response to those events (Luck,

2014). Of particular importance in the clinical setting, somatosensory evoked poten-

tials (SEP) utilized in spinal cord surgery and involves continuous stimulation of the

medial nerve while actively monitoring the responses on the brain. Auditory brain-

stem responses (ABR) and auditory evoked potentials (EP) are two other clinical

applications of EEG that leverage continuous stimulation of the brain to investigate

auditory cortex functioning and diagnose cases of brain death in severe brain injury

and anoxia (Lütschg et al., 1983).

The above event-related responses index exogenous responses by the brain – cou-

pled with direct stimulus processing and are affected by stimulus characteristics.
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These responses are evoked at small latencies, ranging 0-100 ms after stimulus onset

(Lütschg et al., 1983). EEG research has expanded on these responses using intricate

presentations of stimulus patterns. Longer-latency responses, termed event-related

potentials (ERP), are typically endogenous, elicited to high level cognitive function

that is downstream from simple stimulus processing (Näätänen et al., 2007). The

most common ERPs fall in the 100-500 ms range after stimulus onset and are often

named after their polarity (positive or negative; P and N) and latency – for instance an

N400, a negative response maximal 400 ms after stimulus onset. ERPs are commonly

identified by five characteristics: polarity, latency after stimulus, waveform morphol-

ogy, scalp topography, and context for elicitation (e.g., stimulus type, pattern, and

frequency). Particularly, ERPs have been utilized in cognitive neuroscience research

to investigate an expansive list of topics in cognition including language, memory,

and emotion (e.g., Connolly and Phillips, 1994; Harker and Connolly, 2007; Cahn

and Polich, 2006). ERPs have also seen extensive utility in research of consciousness

and its disorders (Duncan et al., 2009). A large body of work showed the mismatch

negativity (MMN) to be a sensitive marker for emergence from coma, surpassing all

current clinical tools (Fischer et al., 2006, 1999; Qin et al., 2008; Duncan et al., 2009).

The extensive work strengthens the view that ERPs are a powerful and reliable tool

in both research and clinical endeavours; however, it remains true that their utility

today is typically restricted to research studies.

The ERP literature is expansive, offering a wide range of common responses and

their utilization in a variety of research applications as briefly overviewed above.

Despite the dynamic nature of ERPs and their modulation by a variety of nuanced

changes to experimental designs, there exist a number of canonical ERPs that are
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considered field standards. For the purposes of the present thesis and its topic of

concussion, only the N1/P2 complex, the N2b, the MMN, and the P300 are elaborated

on here.

• The N1/P2 complex is the earliest of the components listed above and is com-

posed of two consecutive peaks: the N1 (N100) and the P2 (P200). The two are

closely linked with low-level processing of stimuli and are evoked to both visual

and auditory stimulation – although only the auditory response is considered

here for relevance to the current dissertation (Näätänen and Picton, 1987). The

N1 is predominantly a frontocentral negative response peaking at 100 ms after

the presentation of a sound. The P2 is a positive response, topographically

similar to the N1, and peaks after the N1 at 200 ms post-stimulus onset. The

complex is modulated directly by stimulus characteristics such as frequency and

loudness, categorizing it as an exogenous response (Näätänen and Picton, 1987).

Moreover, the complex can be subjected to habituation effects in experimen-

tal designs with repeating stimuli, where the amplitudes tend to attenuate the

longer the experiment duration (Näätänen and Picton, 1987). While the N1

is a consistent response, seen even under sedation in some cases (Blain-Moraes

et al., 2016), the P2 overlaps with negative components after the N1 in some

ERP designs and is often difficult to observe (see MMN and N2b below).

• The MMN is a heavily studied endogenous brain response, dating back to the

late 1970s, and is typically elicited to stimulus pattern deviations (Näätänen

et al., 1978; Näätänen et al., 1982; Näätänen et al., 2007). Of most impor-

tance, the MMN is elicited without the requirement of actively attending to the
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stimuli; however, the MMN can also be observed in attentiveness, albeit over-

lapping with the N2b (see below; Folstein and Van Petten, 2008). The MMN

is a frontocentral negative response peaking 175-250 ms after stimulus onset.

Particularly, the MMN is observed only in trials when a constant repeating

pattern is interrupted by an unexpected (deviant) sound. While the MMN has

seen numerous debates on its mechanism and its implications on consciousness

and awareness, that is not addressed here (Näätänen et al., 2007); however, it

is widely agreed that the ERP is a tool of great importance in clinical research

(Todd et al., 2008; Fischer et al., 2006, 1999).

• The N2b is the temporal successor to the MMN (historically was called the

N2a). The N2b signifies a negative peak, sharper and later than the MMN,

and has been reported to require attention for elicitation (Folstein and Van

Petten, 2008). The N2b is reported to have a frontocentral distribution in the

auditory modality. While there are several reports of an additional component

termed the N2c, its temporal and topographical overlap makes it difficult to

disambiguate from the N2b (and the MMN) in the auditory modality. Thus,

for the purposes of the current dissertation, the N2b denotes the response to

infrequent stimuli in active oddball tasks, indexing aspects of cognitive control

and executive functioning (Folstein and Van Petten, 2008). Moreover, the N2b

will be used synonymously to indicate the N2 (N200) response seen in visual

flanker and switch tasks (Folstein and Van Petten, 2008; Moore et al., 2014).

• The P300 is the most studied ERP with a span of applications from clinical re-

search to brain-computer interfacing (Polich, 2007; Farwell and Donchin, 1988;
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Fischer et al., 2006; Sellers et al., 2006). The ERP is characterized as a posi-

tive deflection peaking around 300 ms after stimulus onset. The P300 is often

divided into two subcomponents: the P3a and the P3b. The P3a is a fronto-

central component that peaks in the 250-300 ms window and is often linked

to orienting and early attention processing (Polich, 2007). Conversely, the P3b

peaks later, in the 300-500 ms window, and is predominantly centro-parietal.

The P3b corresponds to late processing and reflects activities involving working

memory (Polich, 2007). While the two components have been dissociated in the

literature, common paradigms typically elicit a combination of the two. The

most common ERP design to elicit the P300 is the oddball paradigm, showing

a P300 when a target stimulus is observed by the participant. Further, the P3a

is elicited to non-target infrequent stimuli in oddball designs (Polich, 2007).

Lastly, the P300 is typically regarded as a response requiring an active task;

however, passive designs were also found to elicit P300s, albeit with typically

smaller amplitudes (Polich, 2007).

Specific to mTBI, ERPs have been extensively explored in the literature to extract

potential markers for the condition’s identification as well as to examine underlying

cognitive deficits it leaves the afflicted. Early work by Segalowitz et al. (1997) demon-

strated the neurophysiological implications of concussion as seen on ERPs. This line

of ERP work has since expanded and numerously replicated, showing concussion-

related effects in a multitude of ERPs tied to multiple facets of cognitive dysfunction

known to follow concussion. In brief, the P300 (or P3b) has been reported as delayed

and/or attenuated following concussion (Ruiter et al., 2019; De Beaumont et al., 2009;

Gaetz et al., 2000; Baillargeon et al., 2012; Gosselin et al., 2012; Broglio et al., 2009).
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The N2b has shown more varying patterns, but has been typically altered after con-

cussion (Ledwidge and Molfese, 2016; De Beaumont et al., 2009; Brush et al., 2018;

discussed at length in chapter 5). Recent reports have found significant changes in

the MMN and the N1/P2 complex (Ruiter et al., 2019; Boshra et al., 2019). Further,

a study by Fickling et al. (2019) found an attenuation of the N400 after concussion,

representing the only reported effect of language-related electrophysiological change.

1.4 Machine Learning and Brain Signal Decoding

Machine learning (ML) defines a thriving field of computer science that focuses on the

design of general tools to simulate artificial intelligence (AI). While AI is a general

term, ML primarily denotes the design and application of the algorithms to facilitate,

improve, and automate a broad range of problems (Obermeyer and Emanuel, 2016;

Rajkomar et al., 2019). Supervised ML denotes the most common form in the field. It

defines leveraging pre-labeled data to build a system that is able to classify (or regress)

unseen data points. Although unsupervised learning and reinforcement learning are

on the rise as established methodologies in the current scene, pure supervised learning

remains the main component of the unprecedented utilization of ML in commercial

and clinical applications (LeCun et al., 2015).

A typical (supervised) ML pipeline is dependent on labeled data. Observations,

each with values known as features, are collected and labeled either at the point of

collection or post-hoc using domain experts. The labeled data are split into three

sets: training, validation, and testing. It is important to note that these names

change depending on discipline and author; thus, we define them here in details. The

training set contains a number of observations that comprise a subset of the original
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dataset used strictly to train a ML model. The validation set is used to optimize

model hyperparameters and is used to maintain a divide between development and

generalization testing in order to mitigate potential knowledge leakage, which inflates

model performance. The testing set refers to data held out from all training and

hyperparameter tuning and is only used to test the generalization performance of a

fully trained model.

In practice, and especially with smaller datasets, a single split can be susceptible

to statistical instability or idiosyncratic results based on random split configurations.

This is partially mitigated by enforcing multiple splits (termed folds) of the data

where the generalization performance is estimated as the mean performance of all

individual folds (Combrisson and Jerbi, 2015). Briefly, data are split k unique ways

where the split defines training tri and testing tei sets where i ∈ 1 . . . k. Moreover,

in cases when hyperparameter tuning or feature selection (see below) is required, a

nested split is performed in every fold i to generate further training and validation

splits.

Typical machine learning tools are able to automatically derive functions to best

fit the data provided, with support vector machines (SVM) a most common tradi-

tional tool of ML (Cortes and Vapnik, 1995). For complex data, “shallow” ML tools

require a degree of feature engineering, where a field expert is tasked with synthesiz-

ing and optimizing features that best describe the data. This process is commonly

termed feature extraction or calculation. In cases where the number of observations

outnumber the features, an additional feature selection procedure is executed, where

a number of features are identified as most useful for the present provided dataset

(Peng et al., 2005). Note that a valid execution of ML limits feature selection to the
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training and/or validation sets.

With the advent of deep learning tools, feature extraction (and selection) can be

regarded as an inelegant solution to a given ML problem. Particularly, while ex-

pert knowledge and feature engineering are often a necessity, a purely data-driven

extraction of features can outperform those practices as well as identify features not

easily characterized by a human expert (LeCun et al., 2015); however, deep learning’s

need for large datasets and architecture tuning necessitates the use of shallow ML

tools in many cases. Deep learning is defined as using multiple processing layers to

automatically learn abstract hierarchical representations of the data. With minimal

expert feature-engineering, deep learning currently holds the benchmark for many

state-of-the-art applications (see LeCun et al., 2015 for review). Particularly, combi-

nations of simple feed-forward (FF) and convolutional layers have been revolutional in

convolutional neural networks’ (CNN) extensive utility in speech recognition, image

processing, and object recognition.

In recent years, ML has gained significant traction in the clinical field, with po-

tential venues in offering a cost-efficient way of replicating expert judgements and de-

cisions in a setting overloaded with data (Obermeyer and Emanuel, 2016; Rajkomar

et al., 2019). ML enables expert-systems that are able to process high-dimensional

clinical data and learn complex patterns that might also be difficult to detect or vi-

sualize for a human expert (Obermeyer and Emanuel, 2016; Rajkomar et al., 2019).

A commonly cited downside of ML in healthcare and diagnostic applications is that

most ML models are difficult to interpret Miotto et al. (2017). The tendency of

viewing trained models as black boxes poses difficulties in a clinical setting since ML

decisions cannot be checked against the body of available clinical knowledge. Several
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solutions have been proposed to provide insight on how a trained model makes its

judgments (Ribeiro et al., 2016; Lundberg and Lee, 2017). Despite some scrutiny due

to black-box solutions and susceptibility to bias in misapplication, machine learning

remains a great tool for exploiting resources to improve clinical standards (Miotto

et al., 2017; Chen and Asch, 2017; Miotto et al., 2017; Obermeyer and Emanuel,

2016; Lundberg et al., 2018).

EEG/ERP data are characterized by their rich high-dimensionality that requires

certain degrees of aggregation to simplify to a human observer. That complexity was

often exploited by the application of ML tools. Primarily, ML is the engine for all

EEG-based brain computer interfacing (BCI), serving to train real-time, automated

decoders that create a communications link with a computer strictly guided by the

brain (Lotte et al., 2018; Blankertz et al., 2016; Dal Seno et al., 2010). Beyond BCI

applications, ML has also demonstrated its clinical utility as a valuable method in

EEG analysis (Tzovara et al., 2013; Cao et al., 2008; Lawhern et al., 2018; Schirrmeis-

ter et al., 2017; Cecotti and Gräser, 2011; Opa lka et al., 2018; Sturm et al., 2016).

1.5 Dissertation Overview

Several studies have been conducted (a few with shared datasets) as part of the

present PhD degree, four of which are included as separate chapters here. Each

chapter targets a set of different hypotheses; however, all studies share three main

goals that form the critical contribution of the studies. This dissertation’s work was

conducted to:

• Qualify and support the hypothesis that EEG/ERP effects can be leveraged

for single-subject identification of mTBI, be that in acute or chronic stages of
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injury.

• Address whether a single model is capable of capturing the heterogeneity of

different injuries and their respective variations. This is juxtaposed against

current EEG and EEG/ERP analysis standards.

• Enforce the need for explainable, transparent models in targeting clinical ML

applications in mTBI, as well as formulate falsifiable and clear theoretical frame-

work for sources of detected variance.

The next four chapters detail independent studies investigating the dissertation’s

different hypotheses and research questions. An overview of each chapter is presented

below:

• Chapter 2: The second chapter includes a pilot study on the feasibility of us-

ing significant group-level effects to visually assess single-subject averages for

concussion. Two EEG/ERP experts were presented with subject-averages that

were either from a chronically concussed group, or an age-matched control. Re-

sults showed that even for domain experts, identification of effects observed on

groups is susceptible to confusion with subject variability. The chapter pro-

vides motivation for using systematic, data-driven, machine learning methods

for EEG/ERP concussion assessment.

• Chapter 3: The chapter details a thorough investigation of machine learning’s

application in detecting long-lasting effects of concussion in retired athletes

with a history of repeated concussions. The findings of the chapter support

the utilization of ML to infer the state of a single individual’s brain responses.

Despite promising results, the chapter indicates that making clinical judgements
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on the individual level requires more insight from data beyond what is typically

investigated in group-level studies.

• Chapter 4: The fourth chapter expands on the previous one, exploring a fully

realized deep learning architecture for a finer-grained analysis of concussion

effects. The data utilized in this chapter were recorded from a younger popula-

tion in a more acute stage of injury. Results demonstrated the effectiveness of

the presented architecture in the classification of multi-deviant oddball data in

detecting neurophysiological ERP changes after concussion. The chapter also

takes a deeper look at the progression of a subset of concussed subjects, as they

recover from their injury, to investigate whether the trained model is capable

of directly capturing that progression.

• Chapter 5: As a conclusion from the previous two chapters, it was apparent that

chronic and acute effects of concussions are speciously treated alike. This chap-

ter attempts to clarify that difference by investigating event-related functional

brain connectivity and its change from acute to chronic stages of concussion.

The chapter reports a significant hyperconnectivity in the acute stages of con-

cussion, a unique finding in the EEG/ERP literature that replicates a large body

of functional MRI work. Strikingly, the effect was found to be reversed later

in age as retired athletes demonstrated a significant decrease in connectivity.

Results indicate a complex interaction of injury and compensatory mechanisms

that require further investigation in longitudinal studies as well as single-subject

exploration for clinical utilization.
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• Chapter 6: The last chapter discusses the overall conclusions from the differ-

ent studies, their impact on the literature, and their clinical implications. The

work introduces several valuable tools for potential adaptation in concussion

management and assessment; however, there are a number of limitations that

stand barrier to direct implementation. These are discussed in detail. Lastly,

a non-exhaustive list of future directions that maximize the impact of this dis-

sertation is presented.
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CHAPTER

2 Visual Inspection: Insight on

Effectiveness in Modulated ERP

Responses

Clinically, visual inspection of EEG waveforms is considered the standard of analy-

sis (Ebersole and Pedley, 2003). Several studies have argued the subjectivity of such

practice, citing a multitude of variables introducing variance between clinicians’ opin-

ion both within- and across-clinician Little and Raffel (1962); Nuwer et al. (2005).

Analogously in EEG/ERP work, the literature has employed a number of statisti-

cal methods to both validate and standardize reported results (Tzovara et al., 2013;

Naccache et al., 2016; Gabriel et al., 2016). Despite such efforts, visual inspection of

waveforms remains the de-facto standard in the field, often providing better results in

comparison to more structured analysis methods (Fischer et al., 1999; Gabriel et al.,

2016). While advancements in signal-processing techniques continues to improve the

available tools for ERP identification, reports show visual-inspection to be adequate

for identification and diagnosis in patients with DOC (Naccache et al., 2016; Gabriel

et al., 2016). Provided the nature of ERP application in severe cases, a clinician’s

goal is to identify whether an ERP was elicited or not. Less severe cases, however,

show more nuanced differences in their ERPs and require a more precise identification
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of subtle modulations in ERP topography, morphology, or both.

The present chapter is a preliminary investigation into the effectiveness of vi-

sual inspection for the identification of non-catastrophic brain injury. We collected

judgements from EEG/ERP experts on the identification of post-concussive effects as

exhibited in subjects’ waveforms. Our hypothesis predicted the ability of an expert’s

ability to detect between typical and aberrant responses. However, we expected that

visual-inspection performance to be lower in comparison to DOC applications. We

argued this reduction to be caused by the inherent complexity of identifying ERP

modulations due to an overlap of inter-subject variability and inter-group differences.

2.1 Methods

2.1.1 EEG Data

Two EEG/ERP experts were asked to rate responses to an active multi-deviant odd-

ball protocol visually presented in a survey format. The EEG/ERP protocol was

split to four conditions: Standard tones (Std), Frequency Deviants (FDev), Duration

Deviants (DDev), and Intensity Deviants (IDev). The details of the protocol stimuli,

presentation parameters, and procedure can be found in more detail in an earlier

publication by our group (Ruiter et al., 2019). EEG data were collected from 39

consenting male adults. 19 of the participants were retired Canadian football league

athletes with a history of self-reported concussions. The other 20 participants formed

a control group with no reported history of head trauma. Statistical analysis on the

data yielded a range of effects. Particularly, main effects were found in the amplitudes

of the N1, N2b, P3a, and P3b responses, indicating an attenuated peak for concussed
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individuals (Ruiter et al., 2019).

2.1.2 Survey Stimuli

The survey contained a total of 117 question groups each targeting a single-subject’s

averaged response. A plot of a subject’s averaged response to a single deviant type

was overlaid on the response to Std as recorded from the Fz, Cz, and Pz electrodes.

Grand-averages for both experimental groups (controls and concussed athletes) were

displayed on both sides of the single-subject’s responses (see figure 2.1). Note that

the grand-averages displayed for each question were from to same deviant-type as the

single-subject plot.

Each question group was comprised of two multiple-choice questions regarding the

single-subject’s averaged responses. Question 1 asked the expert to select one of five

options to describe the single-subject average: “very similar to controls,” “somewhat

similar to controls,” “undecided,” “somewhat similar to concussed population,” or

“very similar to concussed population.” The second question asked about the expert’s

confidence in his/her answer on the previous question where the answer was on a 5-

point Likert scale spanning from “not confident at all” to “very confident.”

2.1.3 Expert Visual Inspection

Four volunteer EEG/ERP experts were asked to complete the survey. Two of the

experts did not complete the survey in full and were discarded from further analyses.

All experts considered for the present experiment had a doctoral degree with demon-

strable history of peer-reviewed publications using the EEG/ERP methodology. The

survey was hosted and completed online using the LimeSurvey platform (Schmitz,
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2012). Experts were provided unlimited time to complete the survey.

2.1.4 Statistical Analysis

Responses were exported in full from LimeSurvey and imported for analysis using

R statistical software (version 3.5.3). Multiple logistic regression was conducted to

examine predictability of Group (control vs. concussed) provided the effect of Deviant

(3 levels: FDev, DDev, and IDev), in addition to judgement from expert 1, judgment

from expert 2, and their interaction. Additionally, an overall estimate of sensitivity

and specificity for each expert (with respect to concussion identification) was reported

such that all answers of “undecided” were discarded, and answers suggesting either

side were reduced to a binary decision. Sensitivity was defined for the concussed

class as TP
TP+FN

where TP is true positive predictions as concussed and FN is falsely

predicting a control where the true label was concussed. Specificity was defined as

TN
TN+FP

such that TN (true negative) was the number of controls correctly identified

as such and FP (false positive) was the number of controls misidentified as concussed.

Lastly, a correlation analysis was conducted to examine the agreement between the

two experts using spearman’s correlation.

2.2 Results

There was a positive correlation between the two experts’ judgements (ρ = 0.71, N =

114, p < 0.01). Logistic regression results showed a significant effect of judgements

from both expert 1 (β = −0.85, z = −1.98, p < 0.05) and expert 2 (β = −1.32, z =

−2.31, p < 0.05). These findings were in accordance with the hypothesis that visual
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Accuracy Sensitivity Specificity

Expert 1
DDev 57.9 52.6 63.2
FDev 63.2 68.4 57.9
IDev 63.2 63.2 63.2
Total 61.1 61.4 61.4

Expert 2
DDev 60.6 43.8 76.5
FDev 65.5 61.5 68.8
IDev 60.0 38.5 76.5
Total 62.0 47.6 74.0

Combined
DDev 59.2 48.6 69.4
FDev 64.2 65.6 62.9
IDev 61.8 53.1 69.4
Total 61.7 55.6 67.3

Table 2.1: Performance (as measured by accuracy, sensitivity, and specificity) of the
experts identifying a history of concussion in single-subject averages using each of the
deviant types. Aggregate performance across the two experts is also shown.

inspection was able to predict a single-subject’s group, where an increase on the scale –

indicating similarity to the concussed grand-average – corresponded with an increased

prediction of belonging to the concussed group. No reliable effects of condition or the

interaction between the two judgments were found.

Computation of binary classification metrics showed slightly varying results be-

tween the two experts (see table 2.1). Expert 1 had an overall higher sensitivity

(61.4%), whereas expert 2 had a higher specificity (74.0%). Both had comparable ac-

curacies with 61.1% and 62.0% for expert 1 and 2, respectively. Insight on individual

deviant types could be drawn from table 2.1, showing a capability for high sensitivity

in FDev responses and high specificity in the DDev and IDev. Note that these ob-

servations were not supported by statistical results, which we argue are attributable

to the low number of observations and insufficient statistical power.
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2.3 Discussion

This pilot study provided a clear demonstration of apparent difficulty in assessing

complexly modulated responses in an application such as concussion identification.

While EEG/ERP experts provided judgments that were statistically predictive of a

subject’s experimental group (control vs. concussed), metrics of more clinical utility

conveyed a need for more elaborate analytics (table 2.1.

Particularly, it is noted that one expert was primarily focused on minimizing

type II errors (higher sensitivity), whereas the other had more inclination towards

more conservative judgements that prioritized high specificity. Critically, while this

promotes a layer of subjectivity based on the expert’s view of the correct approach,

identifying a correct strategy is not trivial. For instance, an expert that prioritizes

the reduction of false negatives may do so in an effort to maximize patient access to

clinical help; in exchange, this strategy is more susceptible to false-positives which

may put an extra load on the clinical system or the patient, if treatment was not

required. In contrast, the expert that did not skew their judgement towards higher

sensitivity had a marginally higher overall accuracy; however, there were more missed

positives, which, in a real clinical scenario, would be detrimental to the well-being of

a patient. In essence, an EEG/ERP expert forced to make a clinical decision with

what could be argued as limited information does not necessarily have an optimal

strategy to follow when dealing with a complex problem with a large number of

unknown variables. Notably, while results conveyed relatively poor performance,

visual inspection remained a better discriminatory tool than a number of behavioural

measurements used by clinicians to assess concussions today (Broglio et al., 2007,
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2017).

Despite a simple design and a limited number of expert judgements, we argue that

findings from this pilot study correspond with and support the primary motivation

and hypothesis question of the investigation: modulatory effects on ERPs due to

mTBI are drastically harder to quantify and predict for a human expert than typical

cases of clinical ERP applications in the literature. Perhaps the most established

clinical application of ERPs to date is using the MMN to predict coma emergence,

with some studies reporting a 100% positive predictive value for awakening (Fischer

et al., 2006; Duncan et al., 2009). Several reports have attempted to automate the

ERP detection procedures in this application either statistically or using methods

of ML (Fischer et al., 2006; Naccache et al., 2016; Tzovara et al., 2013; Qin et al.,

2008; Armanfard et al., 2018); however, the standard largely remains visual inspection

by a human expert (Gabriel et al., 2016; Naccache et al., 2016). The current results

suggest more complex requirements for clinically utilizing ERPs when the pathological

effect involves a gradation effect, as opposed to an all-or-nothing effect in MMN

detection. Specific to concussion, ERPs have been reported to be smaller, larger, or

delayed (Moore et al., 2014; De Beaumont et al., 2009; Ruiter et al., 2019), which

can be difficult to observe using typical ERP visualization (see figure 2.1). Thus,

our findings point towards the applicability of fine-grained machine learning methods

that can assist a human expert in processing datapoints with dimensions difficult to

visualize by traditional tools (Shrikumar et al., 2017; Obermeyer and Emanuel, 2016;

Rajkomar et al., 2019).

The current pilot exhibits several limitations that require further work to formal-

ize and support the presented findings. Primarily, the number of judgements was
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limited to only two due to limited access to EEG/ERP experts available to com-

plete the expansive survey. While this limits our ability to draw strong conclusions

from our results, the consistency between the two experts’ opinions in terms of per-

formance suggests a trend. Secondly, in an effort to simplify the experiment, only

static waveforms were provided as extracted from a small subset of the total recorded

channels (three out of 64 total). Provided that visual inspection in the literature is

traditionally based on the midline, we argue that our approach minimally affected

our results.

2.4 Conclusions

Findings from the presented pilot study motivate stepping beyond visual inspection in

application of ERPs for concussion assessment. Results convey the relative variability

and subjectivity of the practice when information provided, and full understanding of

the pathology and its effects, are limited. In the next two chapters, the applicability

of ML to ERP data for concussion assessment is thoroughly investigated.
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Figure 2.1: A sample plot as seen by an expert during survey completion. Rows
from top to bottom indicate responses as recorded from the the Fz, Cz, and Pz
electrodes, respectively. The columns from left to right are responses of: control
group, single-subject, and concussed group, respectively. Shaded regions represent
standard deviation across the respective group’s responses. Ordinate and absicca for
each plot correspond to amplitude (in µVolt) and time (in seconds) where 0 indicates
stimulus onset. Red waveform indicate the response to standard tones whereas the
red waveforms indicate the responses to one of the three deviants (FDev, DDev, or
IDev).
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CHAPTER

3 From Group-Level Statistics to

Single-Subject Prediction:

Machine Learning Detection of

Concussion in Retired Athletes

Preface

This study utilizes data that have been traditionally analyzed, supporting a persis-

tent effect of concussions decades after injury in retired athletes (Ruiter et al., 2019).

The study serves as the first of the two ML studies presented in the dissertation to

attempt and demonstrate the transfer of group effects in EEG/ERP to a clinically

applicable single-subject tool. The study focused on validating the ML design by rig-

orous validation to counteract a limited dataset size and reported promising findings.

The chapter is a reprint from an article submitted to IEEE Transactions on Neural

Systems and Rehabilitation Engineering in 2019 with the following authors:

Boshra, R., Dhindsa K. Boursallie, O., Ruiter, K. I., Sonnadara, R., Doyle, T.,

Samavi, R., Reilly, J. P., & Connolly, J. F.
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Abstract

There has been increased effort to understand the neurophysiological effects of con-

cussion aimed to move diagnosis and identification beyond current subjective be-

havioural assessments that suffer from poor sensitivity. Recent evidence suggests

that event-related potentials (ERPs) measured with electroencephalography (EEG)

are persistent neurophysiological markers of past concussions. However, as such evi-

dence is limited to group-level analyses, the extent to which they enable concussion

detection at the individual-level is unclear. One promising avenue of research is the

use of machine learning to create quantitative predictive models that can detect prior

concussions in individuals. In this study we translate the recent group-level findings

from ERP studies of concussed individuals into a machine learning framework for

performing single-subject prediction of past concussion. We found that a combina-

tion of statistics of single-subject ERPs and wavelet features yielded a classification

accuracy of 81% with a sensitivity of 82% and a specificity of 80%, improving on cur-

rent practice. Notably, the model was able to detect concussion effects in individuals

who sustained their last injury as much as 30 years earlier. However, failure to detect

past concussions in a subset of individuals suggests that the clear effects found in

group-level analyses may not provide us with a full picture of the neurophysiological

effects of concussion.
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3.1 Introduction and Related Work

Mild traumatic brain injury (mTBI), commonly referred to as concussion, has re-

cently received increased attention in the scientific community and the public alike

owing to recent studies demonstrating a link between mTBI and various detrimental

neurological conditions, such as chronic traumatic encephalopathy (see (Henry et al.,

2017) for a review). The subject of sports-related concussion has in particular un-

dergone significant advancement as our improved understanding of its cognitive and

neurophysiological impact has led to new clinical guidelines and management strate-

gies (McCrory et al., 2009, 2013, 2017). One key driver of this rise in interest is the

growing body of evidence suggesting that the effects of mTBI have long-term and cu-

mulative effects on cognitive and neurological health, potentially persisting over the

entire lifespan of an individual (Ruiter et al., 2019; Broglio et al., 2009; De Beaumont

et al., 2007b). Despite the ongoing efforts, however, as many as 50% of concussions

may still go undetected (Harmon et al., 2013).

Although recent evidence indicates that mTBI is more detrimental to health than

previously thought, there has been little advancement in our ability to detect con-

cussion in individual patients. Currently, concussion detection relies solely on the

observation of symptoms and behaviourally-manifesting cognitive deficits in memory,

attention and others (McCrory et al., 2017). Studies based on such measures suggest

that the symptoms of concussion are primarily short-term, typically resolving within

only one week, though an estimated 15% of patients may remain symptomatic for

months or years post-injury (McCrory et al., 2017). Behaviour-based approaches suf-

fer from inherent subjectivity and dependence on a multitude of factors unrelated to
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injury (Broglio et al., 2017). Further, behaviour alone has been shown to be unable

to identify all concussed individuals, nor track injury recovery (Broglio et al., 2007).

This has prompted researchers to search for neurophysiological markers of concussion

directly reflective of cognitive processes upstream of behavioural manifestations.

Early investigations into the presence of neurophysiological markers of concus-

sion were focused on the spectral characteristics of eyes-closed resting-state (RS)

electroencephalogram (EEG). While a decrease in alpha-band activity was found to

follow concussion in some cases, this marker was not sufficiently reliable for clinical

adoption (Nuwer et al., 2005). Particularly, Nuwer et al. argued that mTBI markers

in RS EEG were not consistently replicated across different studies. Additionally,

there is converging evidence that such markers in RS EEG are not observable six

months after injury (see (Nuwer et al., 2005) for review).

More recent investigations of potential neurophysiological markers of mTBI have

focused on event-related potentials (ERPs), which are canonical brain responses in-

duced by specific kinds of stimuli. ERPs are commonly identified by four character-

istics: polarity, latency after stimulus, scalp topography, and context for elicitation

(e.g., stimulus type, pattern, and frequency). Neurophysiological effects of concus-

sion in ERPs extended beyond acute injuries and were observable decades after in-

jury (Broglio et al., 2007; De Beaumont et al., 2007b,a; Fickling et al., 2019; Ruiter

et al., 2019). These findings persisted long after behaviourally-identified symptoms

had resolved, further demonstrating the inadequacy of assessing concussion using be-

havioural measures alone. Various ERPs were found to be affected by mTBI (Broglio

et al., 2009; Brush et al., 2018; Ruiter et al., 2019). In this study we investigated how

reliably the P300, a heavily studied ERP, and other precursor ERPs can be used as
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concussion identification markers for individuals who sustained their last injury years

prior.

The P300 is a positive component that typically peaks at around 300 ms post-

stimulus onset (Polich, 2007). This ERP has been shown to be attenuated and delayed

after mTBI, with the effect persisting after symptom resolution (De Beaumont et al.,

2012). The P300 can be subclassified into the P3a and the P3b, which were shown to

be both altered after concussion (Broglio et al., 2009; Brush et al., 2018; Ruiter et al.,

2019). The P3a is a fronto-central component associated with attention orienting

and is followed by the P3b, a centro-parietal component often linked to processes

related to memory and attention allocation (Polich, 2007). Moreover, two other

ERPs commonly elicited with the P300 were found to be affected by mTBI: the

N2b (associated with cognitive inhibition) and the N100 (associated with auditory

processing) (Brush et al., 2018). Provided these ERPs link to processes commonly

affected by concussion, they offer a valuable tool for directly tapping into mTBI-

related deficits.

The neuroscientific literature has provided a valuable understanding of how mTBI

affects brain activity. However, this knowledge has been derived on the basis of group-

level analysis. While neurophysiological markers of mTBI have been discovered in

group-averaged ERPs and are seen in many of the individuals who form part of the

group, these methods do not capture the full range of individual variability. As a

result, the specific degree to which such knowledge can be applied at the individual

level is uncertain. Notwithstanding the limitations in applying knowledge gained

on the basis of group-level statistics to individual patients, detection, diagnosis, and

assessment of mTBI in clinical settings require methods applicable at the individual
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level. It is therefore necessary to investigate the degree to which the group-level

neurophysiological markers of mTBI can be used to detect past concussion at the

single-subject level.

Machine learning (ML) provides us with a set of tools specialized for learning

patterns from samples of data to then classify individual cases. As such, ML pro-

vides us with a methodological foundation for translating what concussion research

has gleaned from group-level analysis into single-subject detection of mTBI. The ap-

plication of ML to EEG has been spearheaded within the field of brain-computer

interfacing (Blankertz et al., 2016; Dhindsa et al., 2017; Lotte et al., 2018), and has

recently been used to identify predictive features of the EEG in a variety of clinical

and non-clinical settings (Lin et al., 2010; Chan et al., 2011; Tzovara et al., 2013;

Dhindsa and Becker, 2017; Parvar et al., 2015; Sculthorpe-Petley et al., 2015; Ravan

et al., 2015; Armanfard et al., 2018).

In mTBI specifically, ML was explored for the identification of functional deficits

after symptom resolution (Cao et al., 2008). Support Vector Machines (SVMs)

(Cortes and Vapnik, 1995) were trained on band power features extracted from RS

data from 31 athletes at baseline, in addition to from 30 athletes after they had sus-

tained a concussion (Cao et al., 2008). Linear SVMs were reported to have a 77.1%

accuracy of correctly identifying the concussed (30) vs non-concussed recordings (31)

in a leave-one-out (LOO) cross-validation study. Notably, the 30 concussed athletes

reported complete symptom recovery at the point of testing 30 days after injury, fur-

ther supporting a subclinical effect of mTBI on brain activity. A later study targeted

classification between varying severities of TBI and reported high accuracies (Prichep

et al., 2012). However, the study’s results primarily support RS EEG’s utility in
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detecting more severe TBI, with anatomical damage observable using computerized

tomography (CT). Reported results for RS showed dramatically reduced accuracies

for classifying subjects exhibiting strictly functional deficits. Several studies have ex-

plored novel feature-extraction methods based on RS data with promising results for

acute injury detection (Munia et al., 2017; Cao and Slobounov, 2011, 2010). However,

no direct single-subject characteristics of the models were derived.

In this paper, we investigate the extent to which our present understanding of how

mTBI affects brain activity, based on group-level studies, can be used to detect past

concussions at the individual level. In addition, we investigate if we can retain the

same interpretation of how mTBI affects neural processing gained through traditional

neuroscientific studies when transitioning from group-level analysis to single-subject

classification of mTBI. The present study aims to expand on previous group-level

work employing ML to perform single-subject detection of mTBI. Specifically, we

use the findings and data from our group’s earlier study (Ruiter et al., 2019) on

the analysis of the effects of mTBI on ERPs as a basis for transitioning to single-

subject ML analysis. We do so by using features representative of the mTBI-induced

ERP changes to classify mTBI. We reported a classification accuracy of 81% with

a sensitivity of 82% and a specificity of 80%. Notably, this work illustrates that a

history of mTBI can be detected from an individual’s brain activity decades after

injury. Additionally, ML analysis with the added layer of interpretability provided

novel insights into how the brain is affected by concussion, revealing discriminative

features not previously reported in the neuroscientific literature.
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3.2 Data Collection and Preprocessing

3.2.1 Participants

Data were collected from thirty-nine consenting male adults. Nineteen of the subjects

were retired Canadian Football League (rCFL) athletes with mean age of 57.6. The

remaining 20 participants (mean age = 53.7) formed an age-, education-level-, and

sex-matched control group reporting no history of head trauma. All recruited par-

ticipants reported no auditory problems and were not on psychoactive medications.

The study was approved by the local research ethics board at McMaster University.

3.2.2 Behavioural Assessments

Participants completed a battery of self-reports including: 1) Post-Concussion Symp-

tom Scale (PCSS), 2) Beck Depression Inventory II (BDI-II), and 3) General Health

Questionnaire (SF-36). Additionally, demographic data were collected from rCFL

participants including: 1) date since last reported concussion, 2) number of reported

concussions, and 3) years of education. Notably, demographics were dependent on

self-reported values as no direct access to clinical history was attainable.

3.2.3 EEG Stimuli

Data were collected as part of a three-paradigm experiment (Ruiter et al., 2019).

The present study uses data from the paradigm designed to elicit a P300 response,

which revealed significant differences between individuals with prior mTBI and those

without. The P300 paradigm consisted of a modified auditory oddball task adapted
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from (Todd et al., 2008). The paradigm was composed of a total of 600 tone pre-

sentations including a standard tone (Std) and three deviants. The standard tone,

a pure 1000 Hz at 80 dB sound-pressure level (SPL) for 50 ms, was presented 82%

of the time (492 instances). Each deviant tone was presented 36 times (18% of the

total stimulus presentations altogether) and differed in a single way from the standard

tone. Duration deviant tones (DDev) were presented for 100 ms, frequency deviant

tones (FDev) were 1200Hz, and intensity deviant tones (IDev) were presented at 90

dB SPL. In the sequel we refer to four “conditions”; these are Std, DDev, FDev, and

IDev. Participants were tasked to respond to every standard tone by pressing one

button and another button for all deviant tones.

3.2.4 Procedure

After completion of self-report questionnaires and the demographics questionnaire,

participants were seated 90-cm away from a computer monitor in a sound-attenuated

room. All stimuli were delivered binaurally through sound-isolating earphones (Et-

ymotic II). After a practice trial, participants were asked to respond to stimuli as

explained above as accurately as possible.

3.2.5 EEG Recording and Preprocessing

Continuous EEG was collected from 64 Ag/AgCl electrodes placed according to the

extended 10/20 system using an elastic cap. Signals were digitized at 512 Hz using the

ActiveTwo BioSemi system with an online bandpass filter of 0.01-100Hz. Data were

referenced online to the driven right leg. Electrooculography (EOG) was recorded

using two external electrodes above and over the outer canthus of the left eye. Three
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additional external electrodes were placed on the two mastoid processes and on the

tip of the nose. All external electrodes were recorded with the settings mentioned

above. Identifying markers were automatically placed in the EEG signal at the onset

of each stimulus presentation.

Data were preprocessed offline using Brain Vision Analyzer 2.1 (Brain Products

Inc.). Non-ocular artifacts were manually removed followed by the application of a

0.1-30 Hz bandpass filter (24 dB/oct) and a 60 Hz notch filter. Data were then re-

referenced to the averaged mastoids and segmented according to the type of stimulus.

All segments spanned a duration of 1200 ms starting from 200 ms before stimulus

onset. Segments followed by an incorrect behavioural response (incorrect or absent

button-press) were discarded from further analyses. Grand averages across the two

experimental groups for each of the conditions can be observed in Fig. 3.1 showing

an attenuated P300 response in the rCFL compared to the age-matched controls.

Detailed description of data acquisition and a comprehensive investigation using tra-

ditional statistical analysis can be found in an earlier publication (Ruiter et al., 2019).

3.3 The Machine Learning Process

To evaluate how well group-level effects of mTBI on ERPs enable single-subject clas-

sification of concussed individuals, we begin our ML process by extracting a list of

candidate features from the single-subject averaged ERPs. The candidate features

are described in Section 3.3.1. In Section 3.3.2, we describe our process of selecting

an optimal feature set from the list of candidate features and training a classification

model with those features. We describe our process of evaluating our model in Section

3.3.3. Finally, we discuss our approach to interpreting the trained model in Section
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3.3.5. All analyses were done in Python using the MNE package for EEG signal

processing (Gramfort et al., 2013) and scikit-learn for machine learning (Pedregosa

et al., 2011).

3.3.1 Feature Extraction

To perform single-subject detection of past mTBI, we computed a list of features from

the single-subject averaged ERPs corresponding to our four stimulus conditions. We

investigated four types of features that could be used to characterize these single-

subject ERPs (a total of 472 features):

ERP Component Statistics

In traditional EEG/ERP analysis, one common way of characterizing an ERP is by

measuring the peak amplitude and latency after stimulus onset at which the ERP

occurs for each component. Here we followed our earlier work where we defined time

windows and EEG electrode sites to identify the peak amplitude and latency for

the following components (see (Ruiter et al., 2019)): N100 (negative peak at the Fz

electrode between 75 and 125 ms after stimulus onset), N2b (negative peak at the Fz

electrode between 170 and 270 ms), P3a (positive peak at the Cz electrode between

275 and 375 ms), and P3b (positive peak at the Pz electrode between 400 and 700

ms). A total of 32 candidate features (amplitude and latency for each of 4 ERP

components × 4 stimulus conditions) per subject were extracted using this method.
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Time-Domain features

In contrast to the ERP component statistics described above, we extracted time-

domain statistics that are not based on traditionally-defined ERP components. In-

stead, we segmented each subject’s averaged responses into ten equally-spaced, non-

overlapping time bins. With reference to Fig. 3.1, in order to capture only the interval

containing significant electrical activity, the first time bin started 50 ms after stimulus

onset, the last time bin ended at 600 ms, and each time bin was 55 ms long. In addi-

tion, we sought to capture information on the spatial distribution of the ERPs, which

we can see from Fig. 3.1 was altered in our concussed sample. Since the variation

of the waveforms between closely spaced electrodes is low, we reduced the number of

candidate features by defining clusters of electrodes proximate in location as regions

of interest (ROIs; (Frishkoff et al., 2011)). We defined five ROIs by averaging the

signals from the electrodes over the following locations: Midline-Central (M-C: Cz,

C1, C2, FCz, FC1, and FC2), Midline-Parietal (M-P: Pz, P1, P2, CPz, CP1, and

CP2), Midline-Occipital (M-O: Oz, POz, PO1, and PO2), Right-Parietal (R-P: P4,

P6, CP4, and CP6), and Left-Parietal (L-P: P3, P5, CP3, and CP5). We denote the

data from the nth subject within the jth window for a specific ROI r as the vector

xr(n, j) ∈ RW , n = 1, . . . , N, j = 1, . . . , J . The respective time domain features

were then formed by evaluating the mean of the data in each xr(n, j). A total of 10

(J) non-overlapping bins of size W were evaluated starting at 50 ms post stimulus

onset. W was selected to represent 55 ms of data (i.e., 28 samples). A total of 200

candidate features (5 ROIs × 10 windows × 4 stimulus conditions) were extracted

for each subject using this method.
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Global Field Power

Since ERPs are generated by highly synchronous brain activation that propagates

widely through the brain, one way to characterize its global activation pattern is

through its global field power (GFP). GFP(t) is the time series of the power averaged

over all channels, and is calculated as follows. Let the signal received from the ith

electrode at time t be xi(t). Then the GFP at time t is the spatially averaged root

mean square of xi(t). It is defined as (Lehmann and Skrandies, 1980)

GFP (t) =

√∑C
i=1 (xi(t)− x̄(t))

C

2

(3.1)

where C is the total number of electrodes and x̄(t) is the average value over the C

electrodes at time t. GFP was averaged for each of the 10 time bins as described

above. Previous work showed that the GFP can be used to characterize an ERP’s

general strength and latency, and that a high GFP can be interpreted as a large evoked

response (Lehmann and Skrandies, 1980). Moreover, since the GFP is calculated from

the spatial distribution of the EEG, it provided us with a relatively low dimensional

feature space for model training. A total of 40 candidate features per subject were

extracted using this method.

Wavelet Transform

The continuous wavelet transform (WT) has been used in previous work to charac-

terize the shape of ERPs (Demiralp et al., 2001; Quiroga et al., 2001). We used a

Morlet wavelet with a 3 Hz central frequency (to capture the overall ERP morphology)

and one cycle per window (allowing for a broader spread of frequency components)

56



Ph.D. Dissertation - Rober Boshra McMaster University - Engineering

to create a time-frequency representation of the ERPs. We then extracted averaged

wavelet power coefficients corresponding to the same ROIs and time bins as described

in Section 3.3.1. A total of 200 candidate features per subject were extracted using

this method.

3.3.2 Feature Selection, Classification, and Validation

We performed a two-stage feature selection process in a nested cross-validation loop

as presented in Fig. 3.2. The dataset of 39 subjects was randomly split into outer

training and test subsets which we denote as Tro and Tto, respectively. Tro contained

samples from 31 of the subjects, and Tto the remaining 8 subjects (drawn without

replacement). In each outer iteration, we performed 100 inner loop iterations in

which Tro were randomly partitioned in the same way to obtain a training set of 23

subjects Tri and a validation set of eight subjects Tti. We ensured that no two random

partitions of the data are the same across cross-validation loops. On each inner loop

iteration, we used the F-score univariate feature selection method (as implemented

in scikit-learn; (Pedregosa et al., 2011)) to select the top 75 features. We used those

75 features to train a linear SVM classifier on Tri. We aggregated a list of the

selected features for iterations which yielded a classification accuracy statistically

above chance on Tti (64.1% threshold based on a binomial test; described below).

After the 100 inner loop iterations were complete, we selected the top 50% of the

aggregated features and pass these to the outer loop. These features are used to train

a linear SVM on Tro. The last step of the outer loop involves testing the resulting

trained model using only Tto. This process was repeated for 100 outer loop iterations

(see Fig. 3.2). The linear SVM hyperparameter was set to its default value (C = 1)
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for all iterations. Note that this two-stage feature selection is valid as both stages

of feature selection were performed independently of the set Tto. The aggregated

feature selection process described here improves the statistical stability and reduces

the effect of overfitting with regard to the feature selection procedure.

Accuracy for the concussed class is assessed by evaluating the number of predicted

concussed subjects to the total number of concussed subjects in the training set.

Accuracy for the control class is evaluated in a corresponding manner.

With respect to the derivation of the 64.1% threshold used above, consider a

binary classification experiment where n1 and n2 are the numbers of training samples

in classes 1 and 2 respectively. Then if the labels corresponding to each subject are

randomly permuted, the classification accuracy becomes a random variable, with an

expected value for class 1 of n1/(n1 +n2)×100%, and correspondingly n2/(n1 +n2)×

100 % for class 2. In the present case where n = 39, the upper limit of the respective

95% interval is 64.1% (Combrisson and Jerbi, 2015).

3.3.3 Secondary Model Validation

In order to confirm that the nested cross-validation process we utilized was robust to

overfitting, we conducted a simulation using random data. Performance was evaluated

on a 39-sample dataset of 1000 randomly generated features using the procedure in

Fig. 3.2. Our procedure on the random dataset yielded a classification accuracy of

51.9% (SD = 16.9). If overfitting was present, the accuracy would be higher than this

51.9% figure.

Due to the relatively small number of subjects in the present study, there may be
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some concern over the statistical stability of the results. Thus as an additional verifi-

cation measure, a secondary cross-validation procedure was performed independently

of the main performance evaluation cross-validation where class labels were randomly

permuted across all subjects, and accuracy was assessed. The probability that the

result from the evaluation cross-validation was drawn from the probability density

function of the secondary run where the labels were permuted, was assessed. Since

the distributions are approximately Gaussian given a large number of trials, this test

was performed using a two-tailed t-test with unequal variances. A low probability

indicated that the results produced by the main run were unlikely to be due to chance

alone. For a statistical validation of the permutation-test for validating classification

accuracies in low-sample settings, see (Ojala and Garriga, 2010). Results are reported

in section IV.

3.3.4 Subject Misclassification

During cross-validation, a model’s estimated probability of a subject belonging to the

concussed class is extracted for all subjects in the test set. Probabilities were tallied

when the model achieved above-chance accuracy (64.1%) where a probability of 1

signified certainty of an identified concussed subject and a 0 signified the certainty

of a control subject. A frequently misclassified concussed subject was defined as

having an aggregate probability below 0.5. Similarly, a misclassified control subject

scored an aggregate probability above 0.5. We performed post-hoc examination of

the demographics and behavioural data for frequently misclassified subjects to check

for the presence of any factors that may explain the model’s error.
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3.3.5 Model Interpretation

A commonly cited downside with the application of ML to healthcare and diagnostic

applications is that most ML models are difficult to interpret (Miotto et al., 2017).

The tendency of viewing trained models as black boxes poses difficulties in a clinical

setting since ML decisions cannot be checked against the body of available clinical

knowledge. Several solutions have been proposed to provide insight on how a trained

model makes its judgments (Ribeiro et al., 2016; Lundberg and Lee, 2017). SHap-

ley Additive exPlanations (SHAP) have been particularly successful, theoretically

unifying a number of previously established tools with demonstrated clarity and con-

sistency (Lundberg and Lee, 2017). The SHAP value of a particular feature indicates

the effect on the model’s prediction when that feature is omitted. SHAP has recently

been used in the clinical setting to provide online predictions on whether a patient

was at risk of a surgical complication (Lundberg et al., 2018). Particularly, the ap-

plication presented a detailed explanation of why it made its predictions by relating

them to input features.

To evaluate our SVM models, we utilized the kernel SHAP implementation. Ker-

nel SHAP is model-agnostic, and constructs simple, localized models using weighted

linear regression to evaluate local feature attribution of a trained model’s classifica-

tion decision (Lundberg and Lee, 2017). The outcome of the simple SHAP model

on a trained model is termed an explainer. Only the 25 most-selected features (Sec-

tion 3.3.2) were considered in the SHAP evaluation. To achieve the best approxima-

tion across our entire dataset, we trained 39 explainers in a LOO procedure where

data from 38 subjects were used for training to explain the remaining subject. Rank

and directionality were extracted from the averaged SHAP values over all explainers.
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Rank was determined by ordering the mean absolute SHAP values from each feature.

In addition, the sign (positive or negative) of a SHAP value was used to determine

the directionality of the respective feature. Directionality of a feature indicates which

class becomes more likely when that feature’s value is increased. Furthermore, to

investigate subjects from the commonly misclassified group, a subject’s explainer

(based on all but this subject’s own data) was used to infer the features’ influence

in the model’s incorrect classification. Note that SHAP was used here only as a tool

for interpreting the model’s behaviour after feature selection and model training were

complete.

3.4 Results

Our final model achieved an average accuracy of 81% (SD=11.5) with a sensitivity of

82% and specificity of 80%. Accuracy was significantly higher than chance based on

the permutation test (p < 0.001).

We varied the number of features selected by the F-score method in the inner cross-

validation loop to experimentally choose an optimal setting. Peak performance was

achieved when 75 features were selected on the first stage of feature selection. Model

performance with respect to number of features chosen in the inner cross-validation

loop is shown in Fig. 3.3.

The 25 most selected features are summarized using SHAP in Fig. 3.4. Most of the

top features were extracted from ERPs that occurred in response to all experimental

conditions (Std, FDev, DDev, and IDev), suggesting that each of these responses

are altered in concussed subjects. Wavelet features were most prominent forming

16 of the 25 features used for explanation. Low feature values tended to correlated
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with higher association with the concussed group (e.g., GFP 215-270 DDev and WT

380-435 from FDev at L-P). This finding is consistent with previous reports showing

attenuated ERP responses to deviants after concussion (Broglio et al., 2011; Ruiter

et al., 2019). Interestingly, several features had an opposite correlation. For instance,

larger feature values in the WT of the Std at 105-160 ms as seen in the M-P ROI

and the WT from FDev at 435-490 ms in the M-O ROI directed the model towards

a concussed group classification. This finding is unreported in the literature and is of

particular interest both due to its direction and the involvement of the responses to

Std as discriminatory features.

3.4.1 Misclassified Subjects

Five subjects were most commonly misclassified: three concussed (rCFL 1, 4, and 11)

and two controls (Control 5 and 20). Post-hoc inspection of the demographics and

symptomatology yielded no observable relationship indicative of the machine learning

results.

The subject averages for the misclassified subjects at the Pz electrode are shown in

Fig. 3.5. Aided by the grand–averaged waveforms (Fig. 3.1) and a priori knowledge

from the EEG/ERP literature, incorrect classification of rCFL 4 and Control 5 may

be attributable to responses atypical to their respective groups. However, results for

the other three subjects (rCFL 1, 11 and Control 20) were not visually explainable.

Next, we examined the SHAP feature estimates for all misclassified subjects. Note

that we trained the explainers using the 25 most common features (Fig. 3.4) only

instead of all selected features. Therefore, the explainers only represent estimates

of the main model’s results. The model decision for each misclassified patient was
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described by SHAP as follows:

rCFL 1 Subject’s SHAP explainer highlighted two main features for the incorrect

classification: the wavelet features in the Std condition between 160-215 ms for the

M-C and M-P regions. SHAP indicated that the features were larger than what is

commonly associated with the concussed group.

rCFL 4 SHAP highlighted the mean amplitudes from Std between 215-270 ms from

the M-O region as larger than expected in the concussed group. Additionally, the

mean response for the DDev condition between 380-435 at M-P was larger than the

concussed group’s.

rCFL 11 SHAP indicated that this subject’s wavelet feature from the Std condition

at 325-380 ms from the M-O region was larger than the group’s expected value.

Control 5 Incorrect classification was attributable to the mean feature from FDev

between 380-435 m at the L-P region and the wavelet feature from Std between

215-270 ms at the L-P region being smaller than expected in the control group.

Control 20 Two features influenced the explainer most towards an incorrect clas-

sification. Both the GFP of Std from 215-270 ms and wavelet feature of Std from

160-215 ms at the M-C region were smaller than the models’ definition of the control

group.
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3.5 Discussion

In this paper we demonstrated the use of ML as a methodological approach to utilizing

neurophysiological markers found in group-level studies for single-subject detection

of mTBI. Using our exploratory approach, we identified a set of features that enabled

accuracy in detecting past concussion of up to 81%. Interestingly, we were able

to correctly classify past concussion with high accuracy even though our concussed

individuals received their last injury up to 45 years ago (Mean = 28), far beyond

the suggested time-frame of a few months for symptom resolution (McCrory et al.,

2017). Additionally, we conducted an interpretability analysis using SHAP to gain

insight into our model’s decision-making, which can be used by health professionals

if machine learning tools like the one described here are adopted as diagnostic aids in

the future.

The present study is the first report of ML-based EEG/ERP analysis for the

assessment and identification of concussion history decades after injury. We reported

a higher accuracy than previous studies classifying mTBI using RS EEG (Cao et al.,

2008; Prichep et al., 2012). Notably, the two prior studies investigated acute and

post-acute effects of injury on RS EEG, which were previously argued to normalize

within six months after insult (Nuwer et al., 2005). A quantitative comparison with

clinical tools typically used in mTBI assessment is difficult when investigating chronic

effects due to a lack of consensus and standardization in the clinical literature (Broglio

et al., 2017; McCrory et al., 2017); however, in comparison to identification in acute

injury, the presented methods report a significant improvement on the sensitivity

of individual clinical tools such as self-reported symptoms (68.0%), postural control

64



Ph.D. Dissertation - Rober Boshra McMaster University - Engineering

evaluation (61.9%), and a brief pen-and-paper assessment (43.5%) (Broglio et al.,

2007).

Our feature extraction methods were primarily guided by domain knowledge,

which confirmed that group–level effects are transferable and indicative of under-

lying single–subject effects. However, our inspection of the most important features

using SHAP, as summarized in Fig. 3.4, provided additional insights that may not be

obvious to a domain expert. Interestingly, our results indicate that the responses to

the standard condition, particularly in the N100-P200 time span, carried substantial

discriminative information, making up 12 of the 25 top features. These responses

are commonly discarded or used strictly to calculate ERP difference waves (i.e., by

subtracting the standard condition from the averaged ERP generated by a deviant

condition; see (Ruiter et al., 2019; Broglio et al., 2009)).

Of particular interest, this study is the first to report an attenuated P200 response

in concussion to the standard tone. This is especially seen in the GFP at 215-270 ms

and in the grand-averages (see Fig. 3.4 and Fig. 3.1 respectively). This effect was

unobserved in the traditional group-level analysis previously conducted on the same

data (Ruiter et al., 2019). In addition, features from responses to all four experimen-

tal conditions were selected by the trained models, demonstrating the importance of

a multi-deviant design. Finally, the absence of traditionally-defined ERP amplitude

and latency values from the list of top selected features is noteworthy. This find-

ing suggests that traditional ERP analysis is insufficient to capture the individual

variability required for single-subject applications.

The coupling between neurophysiological deficits and results from behavioural as-

says has continuously been questioned in the literature (Broglio et al., 2017, 2007).
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Some studies show that neurophysiological changes were present despite the lack of

observable symptoms (Cao et al., 2008; De Beaumont et al., 2012), while other stud-

ies show a co–occurrence between the two (Ruiter et al., 2019; Gosselin et al., 2012).

A current prominent explanation for the persistence of anomalies in brain activity

despite symptom recovery is termed the “cognitive reserve” theory, stating that in-

dividuals with a history of concussive impacts recruit additional brain resources to

accomplish cognitive tasks (De Beaumont et al., 2012; McAllister et al., 2001). As the

individual ages, the brain becomes less able to sustain the re-allocation of resources to

compensate for the cognitive effects of mTBI, resulting in the decline often observed

in subjects with a history of concussion (De Beaumont et al., 2012). Our results fit

within a “cognitive reserve” explanation, although a lack of emerging patterns be-

tween the commonly misclassified subjects and their demographics, symptomatology

and neurophysiological signs suggest a complex relation that varies between subjects.

Our study exhibits some limitations. First, the small sample size in our study

(39 subjects) limits our ability to generalize to the broader population of concussed

individual. Our sample size is representative of the studies published in the field,

including for machine learning research (Cao and Slobounov, 2011); however, it is

particularly relevant in a machine learning context, since classification in a high di-

mensional space with only a few examples can reduce the generalizability of a model.

We minimized the risk of overfitting with significant two-stage dimensionality reduc-

tion prior to fitting the classification model, and by using robust statistical methods

to ensure that our classification accuracy was well above chance. In addition, we can

qualitatively assess that our model leveraged features that align with what is known

from the neuroscientific literature, lending confidence to its generalizability. Another
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limitation is the lack of a concrete ground truth, as the current understanding of mTBI

remains limited. As such, our labels were based on the very identification techniques

argued to be flawed (Broglio et al., 2017, 2007). Lastly, most of our subjects were

not clinically diagnosed at the time of injury and thus, we were dependent on self-

reporting – lack of diagnosis was expected given the date of injury for most subjects

was before concussion was regarded as a serious concern (Broglio et al., 2017). This

introduced a likelihood of incorrect labels and consequently a reduced performance

for our model. We argue that this confound puts a ceiling on attainable accuracy in

the present study.

3.6 Conclusion and Future Work

In the present study, we investigated how mTBI–induced ERP changes discovered

in group-level analyses translate to single-subject identification tools using machine

learning methodology. We demonstrated that features reflecting changes in the N100,

P200, N2b, and P300 ERPs following mTBI yield a classification accuracy of 81%

with a sensitivity of 82% and a specificity of 80% using a ML model. The features

found to be most discriminative for diagnosis of mTBI strongly resemble the long-

lasting changes in P300s typically found after mTBI (Ruiter et al., 2019; Broglio et al.,

2009, 2007; De Beaumont et al., 2007b,a). We thus demonstrate that what has been

discovered through group-level ERP analysis in the neuroscientific literature provides

some predictive power in the context of mTBI. However, we could not correctly

identify past mTBI in a particular subset of individuals on the basis of a priori

neuroscientific knowledge. Our results demonstrate the need go beyond what has

been discovered in group-level analyses in order to identify a complete set of features
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required to capture the heterogeneity observed in the mTBI population. Finally, we

emphasize the utility of explainable models in clinical applications, highlighting a

novel ERP finding that was unobservable using previous analyses. In sum, although

extensive future work is required to both validate and refine our results to enable

a realized application in the clinical setting, we have made a significant step in the

identification of chronic effects of concussion in single-subjects.
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Figure 3.1: Grand averages as recorded from the Cz electrode and relevant ERP
topographies across the two groups for the Frequency Deviant (FDev), Duration
Deviant (DDev), and Intensity Deviant (IDev). Dotted waveforms represent group
responses to standard tones (Std). Adapted with permission from (Ruiter et al.,
2019).
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Figure 3.2: A flowchart outlining the overall machine learning procedure used in this
study.
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Figure 3.3: Average classification accuracy vs. the number of selected features.
Shaded region indicates the standard error of the mean across the cross-validation
steps.
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Figure 3.4: The SHAP values of all subjects for the 25 most-used features. Features
are ranked top to bottom (top being the highest ranked). A single point represents
a subject’s SHAP value for a corresponding feature (ordinate). A positive (negative)
SHAP value indicates the feature’s impact towards classifying a subject as concussed
(control). Color indicates the true value of each feature, as opposed to the derived
SHAP value, from blue (low) to red (high; see color bar on the right). Combined with
the distribution on the abscissa, the feature values (color) for all subjects indicates
the directionality effect of a particular feature.
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Figure 3.5: Subject averages of responses to all experimental conditions of the five
commonly misclassified subjects. The averaged response for the two groups is pre-
sented in the first row. Waveforms represent data as recorded from the Pz electrode.
Figure legend presented in the bottom left corner.
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CHAPTER

4 Neurophysiological Correlates of

Concussion: Deep Learning for

Clinical Assessment

Preface

The chapter includes a follow-up study to the previous chapter’s, detailing a ML

investigation of ERP effects in participants with more recent injuries. Due to the

availability of a larger dataset, the previous ML tools were expanded to a more

fine-grained single-trial analysis utilizing an adapted CNN architecture. The study

presents a full automated extraction of features, as opposed to engineered ones in the

previous chapter, and achieved high accuracies. Further, analyses of a longitudinal

subset of concussed participants provided additional evidence for a dissociation be-

tween symptomatology and neurophysiological signs of concussion. The chapter is a

reformatted from a manuscript prepared for submission in Scientific Reports with the

following authors list:

Boshra, R., Ruiter, K. I., DeMatteo C., Reilly, J. P., & Connolly, J. F.
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Abstract

Concussion has been shown to leave the afflicted with significant cognitive and neu-

robehavioural deficits. The persistence of these deficits and their link to neurophys-

iological indices of cognition, as measured by event-related potentials (ERP) using

electroencephalography (EEG), remains restricted to population level analyses that

limit their utility in the clinical setting. In the present paper, a convolutional neu-

ral network is extended to capitalize on characteristics specific to EEG/ERP data

in order to assess for post-concussive effects. An aggregated measure of single-trial

performance was able to classify accurately (85%) between 26 acutely to post-acutely

concussed participants and 28 healthy controls in a stratified 10-fold cross-validation

design. Additionally, the model was evaluated in a longitudinal subsample of the

concussed group to indicate a dissociation between the progression of EEG/ERP and

that of self-reported inventories. Our results form a first-step towards the clinical

integration of neurophysiological results in concussion management and motivate a

multi-site validation study for a concussion assessment tool in acute and post-acute

cases.
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Introduction

Traumatic brain injury (TBI) impacts upwards of 2.8 million individuals annually

in the united states alone (Taylor et al., 2017). Concussions (henceforth used syn-

onymously with mild TBI; mTBI) form a considerable subset of that figure and are

defined as closed-head injuries that leave the affected with functional and cognitive

deficits (McCrory et al., 2017; Langlois et al., 2006). The current understanding of

underlying mechanisms in concussion remains lacking, with echoing concerns both in

the identification and management of the condition (Broglio et al., 2017). An expan-

sive body of work has targeted the multiple facets of concussion, offering different

means of elucidating the cognitive deficits caused by concussion and its co-morbid se-

quelae (Brush et al., 2018). Electrophysiology is one tool with promising applications

in concussions. Specifically, event-related potentials (ERPs) as recorded by electroen-

cephalography (EEG) have shown persistent changes in concussed individuals in the

post-acute stage and decades after insult (Gosselin et al., 2010, 2012; De Beaumont

et al., 2007; Broglio et al., 2011; Ruiter et al., 2019).

ERPs are non-invasively-recorded indices of cognitive function (Duncan et al.,

2009). The P300, a positive-deflecting response peaking approximately 300 ms after

stimulus onset, is a commonly studied component in neurophysiology that is asso-

ciated with attentional resource allocation, orientation, and memory (Polich, 2007).

The P300 was found to be impacted by concussion immediately after occurrence and

decades post injury (Fickling et al., 2019; Gosselin et al., 2010; De Beaumont et al.,

2007; Ruiter et al., 2019; Broglio et al., 2011). P300 effects were observable when

patients were symptomatic as well as after symptom resolution and were affected
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cumulatively following a series of concussive blows to the head in comparison to a

single hit (Gosselin et al., 2006; Gaetz et al., 2000). The N2b is an ERP often linked

to executive function manifesting as a fronto-central negative deflection 200 ms after

stimulus onset (Folstein and Van Petten, 2008). Similar to the P300, the N2b was

affected after sustaining hits to the head (Broglio et al., 2009; Gaetz et al., 2000; Gos-

selin et al., 2012; Moore et al., 2014; Ruiter et al., 2019). Research has demonstrated

the versatility and sensitivity of both the P300 and N2b to concussion; however, a

transition from controlled, group-level findings to individual assessment is required

before clinical adoption is made feasible.

Machine learning (ML) has gained significant traction in the clinical field, offer-

ing a cost-efficient way of replicating expert judgements and decisions in a setting

overloaded with data (Obermeyer and Emanuel, 2016; Rajkomar et al., 2019). ML

introduces a dynamic process that is able to ingest high-dimensional clinical data and

learn complex patterns that might also be difficult to detect or visualize for a human

expert (Obermeyer and Emanuel, 2016; Rajkomar et al., 2019). Despite some scrutiny

due to black-box solutions and susceptibility to bias in misapplication, machine learn-

ing remains a great tool for exploiting resources to improve clinical standards (Chen

and Asch, 2017; Miotto et al., 2017; Obermeyer and Emanuel, 2016; Lundberg et al.,

2018). EEG data are characterized by their rich high-dimensionality that requires

certain degrees of aggregation to simplify for a human observer – quite possibly at

the cost of losing critical information. That complexity has made ML a valuable

method in EEG analysis (Boshra et al., 2019; Tzovara et al., 2013; Cao et al., 2008;

Lawhern et al., 2018; Schirrmeister et al., 2017; Cecotti and Gräser, 2011; Opa lka

et al., 2018; Sturm et al., 2016; Connolly et al., 2019).
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In the present study, we developed the TRauma ODdball Net (TRODNet), a

deep learning network that uses convolutional layers in extracting information from

single-trial EEG/ERP data to identify signs of concussion. The network learns a set

of topographical maps that characterize different ERPs elicited in a multi-deviant

oddball paradigm designed to elicit both the P300 and the N2b responses. The

temporal activation of these maps form a set of automatically extracted features to

predict a single-trial’s label. TRODNet is trained and assessed using 10-fold class-

stratified cross-validation on a dataset of 54 participants (28 controls). All concussed

participants were clinically diagnosed and were symptomatic at the time of testing.

Supplementary self-reports were collected to investigate concussive and depressive

symptomatology as captured by the post-concussion symptom scale (PCSS) and the

Children Depression Inventory 2 (CDI), respectively. Nineteen of the 26 concussed

subjects returned for a follow-up test, nine of which reported full symptom recovery

(PCSS of 0). Analyses on the longitudinal samples were run in parallel to assess

whether symptom resolution was identifiable by the trained model. Model interpre-

tation is a critical factor for integrating machine learning into the clinical setting

(Miotto et al., 2017). Thus, trained models were interpreted using the SHapley Ad-

ditive exPlanations (SHAP) method, a recent introduction to the field with demon-

strated success in clinical applications (Lundberg and Lee, 2017; Lundberg et al.,

2018; Boshra et al., 2019).

The study was designed to investigate two primary hypotheses. First, the study

examined whether single-trial classification can be aggregated for each subject to

provide a viable tool of detecting concussion-related neurophysiological effects using
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minimal feature engineering. Second, the model’s judgements on longitudinal data-

points were examined. It was postulated that performance would deteriorate after

symptom resolution due to a normalization of the recovered subjects’ neurophysio-

logical responses, as opposed to consistent performance in those who retained their

symptoms. Model interpretability was prioritized to ensure a transparent represen-

tation of learned information and to serve as a confirmatory step for the model’s

results.

Results

Concussion Identification

As the model was trained (and tested) on single trials, aggregation of the TROD-

Net output was performed to create a prediction on the subject-level (see Methods

for more details). As such, if more than 50% of a subject’s trials were classified

as concussed, the subject was predicted as belonging to the concussed group. The

TRODNet model was able to achieve a single-subject cross-validation accuracy of

85%. Specifically, four control subjects were misidentified as concussed while four

concussed subjects were misclassified as controls. This put the model’s sensitivity to

concussive effects at 84.6% and its specificity at 85.7%. Single-trial cross-validation

accuracy was recorded at 74.4%; however, this figure should be assessed with care

as discussed below. A detailed list of the model’s single-trial accuracies; PCSS and

CDI scores; demographics; and number of days since injury for each subject in the

concussed group, including the longitudinal results, is reported in table 4.1.
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Longitudinal Factors

Assessing the model’s single-trial accuracy for the concussed subgroup that partic-

ipated in the follow-up test yielded a significant drop in accuracy (F(1,17)=8.93, p

¡ 0.01) in the second test compared to the first. A significant main effect of Re-

covery (symptom resolution [SR] vs. no symptom resolution [NSR]) was also found

(F(1,17)=4.84, p = 0.04), indicating a lower accuracy for the NSR group. Lastly,

no significant Recovery × Testing Date interaction was observed (F(1,17)=0.17, p =

0.69). Overall, the model assessed 14 of the 19 subjects as concussed at the second

testing date. The interaction plot is presented in figure 4.1, showing a clear main

effect of Testing Date that is not influenced by Recovery. Additionally, it can be

observed that subjects that didn’t report symptom recovery had lower single-trial

accuracies overall.

Injury Acuteness and Correlation Analyses

The effect of days since injury on perceived results was inconclusive for the first day of

assessment (see figure 4.2 and table 4.1). For the second date, self-reported symptoms

seemed to increase as days since injury increased for the no symptom resolution (NSR)

group. This effect was equally observable in the PCSS and CDI scores. Although the

two measures are inherently confounded, this result proposes a layer of subjectivity

indicating a worsening of effects as an individual is subjected to symptom persistence.

Conversely, no clear effect of days since injury was noted on the EEG/ERP results

when accounting for symptom resolution.
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Insights from Model Explanations

Upon interpreting the model with SHAP, TRODNet highlighted areas of interest

overlapping with previously demonstrated effects in the literature (Baillargeon et al.,

2012; Ruiter et al., 2019). The mean absolute SHAP values, indicative of feature

importance, were reshaped for display on a 64-channel EEG plot for each condition

(see figure 4.3). The two deviants had the most prominent features with important

ones forming a bimodal distribution in the posterior regions, morphing into a uni-

modal shape in the frontal areas. The first and second peaks correspond in time

and topography to the P300 and N2b, respectively (Folstein and Van Petten, 2008;

Polich, 2007). Features tended to be uniformly important bilaterally, with slightly

higher importance for the right side. Responses to the standard condition showed

smaller and more dispersed distributions of feature importance, an unexpected find-

ing considering an earlier study on chronic effects of concussion that showed early

discernible effects to the standard tones (Boshra et al., 2019).

Discussion

Our results demonstrated the efficacy of an acute/post-acute automated system for

concussion identification. In contrast to earlier work in concussion, the utilization

of deep learning and convolutional networks enabled an end-to-end solution with

minimal feature-engineering (Boshra et al., 2019; Cao et al., 2008; Munia et al., 2017;

Prichep et al., 2012). Additionally, the hypothesis that single-trials offer a more

granular and effective method of assessing EEG/ERP data was supported.

Results relating symptomatology and neurophysiological effects were negative.
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Despite the misalignment between the present study’s hypothesis and the data, symp-

tomatology has been previously shown to have little correlation to EEG/ERP effects,

especially as neuropsychological measures completely return to baseline in most cases

(Gosselin et al., 2010; Ruiter et al., 2019; Baillargeon et al., 2012; Martini et al., 2017).

This disagreement extends to other assessment modalities such as quantitative EEG

(Nuwer et al., 2005; Munia et al., 2017). Lastly, it is noteworthy that the model’s

performance drop may be attributable to the time-elapsed since injury, a finding that

agrees with a regression study conducted in parallel to the present one (in prepara-

tion). These results highlight the need to examine the multiple stages of concussion

progression and their effects with care as some may potentially be observable strictly

at a particular stage of injury and/or recovery. Moreover, in the longitudinal subset,

the model predicted trials of subjects that exhibited symptom resolution as concussed

more than the subjects with persisting symptoms. Interestingly, that difference was

observed irrespective of Testing Date (1st vs. 2nd; figure 4.1). These results introduce

the possibility that a subject’s future recovery may be inferred from a participant’s

EEG/ERP results during their symptomatic stage; however, no strong evidence could

be drawn given the constraints of the present dataset.

The interpretability layer on our neural network model confirmed our results’ ori-

gins as pertaining to neurophysiological signals commonly affected by concussion.

Primarily, in the deviant conditions, TRODNet’s most important features, as ex-

tracted by SHAP, corresponded to the 100-500 ms window, encompassing both the

N2b and the P300 (see figure 4.3). Topographical examination of feature impor-

tance showed the effects to be predominantly central, with an earlier effect that is

marginally lateralized to the right. Examination of the standard condition showed
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a small parieto-occipital effect in the 100-300 ms range, likely related to the N1-P2

complex. While this finding agrees with previous work on chronic neurophysiologi-

cal effects of concussion observable in responses to the standard tones in an oddball

paradigm, the features show low and dispersed importance measures compared to

what was observed in the earlier study (Boshra et al., 2019). This is compatible with

a hypothesis that alterations in earlier responses (in the mismatch negativity or the

N1/P2 complex) may correspond to irreversible effects of concussion and are strictly

prominent in chronic cases (Ruiter et al., 2019; Boshra et al., 2019).

The study exhibits two primary limitations. First, the difference in age between

the two groups can be argued to contribute to the model’s ability to discern between

the two experimental groups. Although there have been several reports of age-related

differences in ERPs and resting-state EEG, the evidence supports little to no differ-

ences in the range of our two groups (15.04 and 19.3;Stevens et al., 2009; Johnstone

et al., 1996; Amenedo and Dıaz, 1998). Thus, we argue that an effect pertaining to

the presented age-range is minimal, if not unlikely. Secondly, as correlations between

model output and symptomatology was conducted post-hoc, further work is required

to confirm the relationships between time-elapsed since injury and ERP effects.

In sum, a strong case for the clinical utility of ERPs in individual assessment

of acute/post-acute concussion patients has been presented. The current findings

improve upon those from resting-state and quantitative EEG to establish a modality

that is able to capture the effects of concussion immediately after insult and years

post-injury (Munia et al., 2017; Prichep et al., 2012; Boshra et al., 2019). The intent

of this research was not directed at the mechanisms of progression and symptom

manifestation, which remain unclear. However, a major step in that direction has been
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achieved in the translation of a complex, multi-trial EEG signal that was successfully

able to provide an accurate identification of concussion incidence. The proposed

model, TRODNet, was able to capture distinguishing features without the need for

feature engineering, enabling further application to prospective different population

ages and pathologies.

Methods

Data Collection and EEG Recordings

Participants

Data were collected from 26 (7 male) adolescents (mean age = 15.04) with a recently

sustained and clinically diagnosed concussion (mean days since insult = 20.15). A

comparative group of 28 (5 male) participants (mean age = 19.3) acted as healthy

controls, reporting no previous head injuries. All participants reported no neurolog-

ical or auditory problems. The study was reviewed and approved by the Hamilton

Integrated Research Ethics Board (HiREB), Hamilton, Ontario, Canada. Prior to

study participation, all participants provided informed consent in accordance with

the ethical standards of the Declaration of Helsinki.

EEG Stimuli and Experimental Conditions

ERPs were collected to a multi-deviant auditory oddball paradigm (Ruiter et al.,

2019; Todd et al., 2008). A 600-tone sequence was presented across two blocks of 300

each. Three deviant tones were presented pseudo-randomly in a continuous stream of

standard tones. The standard tone was presented 492 times (82%) at 1000 Hz, 80 dB
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sound pressure level (SPL), and a duration of 50 ms. Each deviant was presented 36

times (6%) and differed from the standard tone in only one sound characteristic. The

frequency deviant was 1200 Hz, the duration deviant was 100 ms, and the intensity

deviant was 90 db SPL. Participants were tasked to respond using one button to the

standard and another button to all deviants. Due to technical issues, data from the

intensity deviant were discarded during analysis.

Procedure

Participants were seated facing a computer screen in a dimly-lit, sound-attenuated

room. Auditory stimuli were controlled and sequenced using Presentation software

(Neurobehavioural Inc.). Stimuli were presented using noise-cancelling insert ear-

phones (Etymotic ER-1). Participants were instructed to respond to the stimuli as

accurately as possible. The protocol was 10 minutes long and was the first of a series

of other protocols not pertinent to the present study.

EEG Recording and Preprocessing

Continuous EEG was recorded from 64 Ag/AgCl active electrodes (Biosemi Ac-

tiveTwo system) placed according to the extended 10/20 system using an elastic

cap. Data were passed through an online bandpass filter of 0.01-100 Hz and refer-

enced to the driven right leg. Data were digitized and saved at 512 Hz. Five external

electrodes were recorded with the same settings. Three were placed on the mastoid

processes and on the tip of the nose. The last two were placed above and over the

outer canthus of the left eye to record eye movements. Stimuli markers were recorded

and saved synchronously with the EEG data.
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Data were processed offline using a 60 Hz notch and a 0.1-30 Hz (24 dB/oct)

bandpass filters before re-referencing to the averaged mastoids. Artifacts were re-

jected manually using visual inspection followed by independent component analysis

(ICA) decomposition. The two components found to correlate with horizontal eye

movements and blinks were removed before recomputing sensor data. Trials with

correct behavioural responses were segmented to 1200 ms intervals starting 200 ms

before stimulus onset. Finally, segments were baseline corrected (-200 to 0 ms) and

grouped into their respective experimental conditions before exporting the single tri-

als. All EEG preprocessing was conducted using Brain Vision Analyzer (v2.01; Brain

Products GmbH).

Statistical Analyses

Mixed effects analysis of variance (ANOVA) was used to examine the effects of Testing

Date (2 levels: First and Second) and Recovery (2 levels: symptom resolution [SR]

and no symptom resolution [NSR]) on the accuracies reported by TRODNet.

Machine Learning Procedure

Input Structure

The number of trials tdi , such that the superscript d indicates condition, extracted

from each subject i was set to 36 to match the design’s maximum for each deviant

condition. In the standard condition, 36 trials were sampled without replacement

for each subject. In cases when rejected data reduced the number of a deviant’s

trials below 36, bootstrapping was conducted to ensure tdi = 36. The deep learning

classifier concurrently processed a single trial of data from each condition as input
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observation O ∈ RN×S where N was number of EEG channels (C) × the number of

conditions (D), and S was the number of samples in each segmented trial. Passed

samples were restricted to the 50-700 ms window such that S = 332. C was 64

channels and D was 3 conditions, yielding N = 192. Before dataset split, there were

Tmain = tdi ×#Subjects = 1944 unique observations across the two classes, as well as

Tlongitudinal = 684 longitudinal observations collected from concussed subjects on their

second day of testing. We denote the main dataset tensor as X ∈ RTmain×N×S. All

EEG data manipulation was conducted using the Python MNE package (Gramfort

et al., 2013).

Training and Validation

Stratified 10-fold cross-validation was applied to estimate the generalization accuracy

of the trained models. X was split into Xtrain and Xtest before standardizing both

sets based on Xtrain, removing the mean and scaling to unit variance for each feature.

Observations from one subject were contained exclusively in either Xtrain or Xtest to

ensure no performance inflation due to subject-specific idiosyncrasies. The learner was

batch-trained on Xtrain for 500 epochs where each epoch passed a batch of B = 160

randomly-picked observations from Xtrain. The resultant model predicted the labels

of each observation in Xtest to produce the trial accuracyt. A thresholded version of

accuracyt evaluated the accuracys of all trials from a single subject. If more than

50% was achieved, the accuracyis for subject i tallied as correct. In instances where

Xtest contained one or more subjects that have undergone a second day of testing,

the subjects’ second set of trials were evaluated in parallel to assess their follow-up

test’s accuracy similar to what’s described above. This procedure was done to ensure
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an identical training-set for both testing dates as well as eliminate the possibility of

within-subject bias.

Neural Network Architecture and Hyperparameters

Following the notion that a multi-channel EEG signal is the evolution of certain to-

pographies across time, TRODNet utilized convolutional layers to learn commonly oc-

curring topographical maps (Tzovara et al., 2013; Cecotti and Gräser, 2011; Schirrmeis-

ter et al., 2017; Lawhern et al., 2018). The present architecture, based on EEGNet

and an EEG ConvNet, expanded to account for multiple conditions in the same input

observation (Lawhern et al., 2018; Schirrmeister et al., 2017). The network had five

layers in total (in addition to input).

• Linput: This describes the input layer. The input tensor is of size B × N × S

and is reshaped to B ×N × S × 1 before passing to the next layer.

• L1: The input tensor was split across three separate convolutional filters such

that each was tasked with learning M = 5 maps that are specific to the con-

dition. Kernel size was set to (64, 1). The output from each of the three

sub-layers was of size B × 1 × S ×M . The outputs were concatenated across

the last dimension before passing to the next layer.

• L2: A maxpooling layer was applied with both a pool size and stride of (1, 10)

and (1, 5), respectively.

• L3 and L4: the next two layers were dense feed-forward layers of sizes 50 and

100, respectively.

96



Ph.D. Dissertation - Rober Boshra McMaster University - Engineering

• Loutput: The output layer acted as the label predictor with softmax activation

to separate classes concussed and control.

All layers but Loutput had a rectified linear activation unit (ReLU). L2 regulariza-

tion was applied on all weights with λ = 0.25. The Adam optimizer was used during

training with α = 5e−4. Training for a cross-validation iteration was stopped after

500 complete epochs. These hyperparameters were set to optimize a separate dataset

collected using the same EEG/ERP protocol and were not modified throughout train-

ing (Ruiter et al., 2019; Boshra et al., 2019).

Model Interpretation

The Deep Learning Important FeaTures (DeepLIFT) implementation using Shapley

values was applied post-hoc on a model trained on all data to explain a model’s deci-

sion on single-subject averages (Shrikumar et al., 2017; Lundberg and Lee, 2017). An

overall estimate of all features’ influence on classification was calculated as the mean

of the absolute SHAP values for all single-subject averages. The values were over-

laid across the head to represent a 64-channel plot as commonly used in EEG/ERP

studies. For visual clarity, each experimental condition was plotted independently.
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Figure 4.1: The interaction effect of Recovery and Testing Date on the TRODNet
results as seen on the longitudinal subgroup. While there were main effects of both
factors, no reliable interaction was found. Points represent mean prediction from
TRODNet’s result, where 0 (1) is a classification of control (concussed). Vertical
extended lines indicate the 95% confidence intervals.
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Figure 4.2: Interactions between days since injury and symptomatology (first row),
depressive symptoms (second row), and TRODNet single-trial results in the longi-
tudinal sample of our presented dataset (third row). The symptom resolution (SR)
subgroup conveyed no identifiable patterns both in the first (left column) and second
(right column) tests. The subgroup that did not have symptoms resolve (NSR) showed
an increase in symptomatology and depressive signs as days since injury increased for
the second test. Shaded regions signify the 95% confidence intervals.
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Figure 4.3: The mean of the absolute SHAP values for single-subject averages overlaid
on the head for each condition and electrode. The abscissa denote time where 0 is
the stimulus onset. The ordinate represents the mean absolute SHAP value at the
indicated electrode, time, and condition. The figure shows a robust identification of
ERPs of interest, particularly in the frequency (FDev) and Duration (DDev) deviants.
An interesting effect can be observed to the standard condition where the parieto-
occipital region has a widespread effect predominantly in the right hemisphere.
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ID Sex Age #Prev Concs #Days since injury PCSS CDI Accuracy

1 F 17 6 36 109 71 94.4
2 F 16 0 20 - 225 55-54 68-59 72.2 - 41.7
3 F 13 1 5 - 148 54-17 68-68 86.1 - 63.9
4* M 14 2 23 - 86 20-0 76-40 77.8 - 61.1
5 M 13 2 30 64 49 86.1
6 M 16 2 7 33 57 5.6
7* F 17 2 14 - 139 35-0 46-40 97.2 - 86.1
8 F 16 6 8 94 52 66.7
9 F 15 1 17 - 107 92-6 67-43 66.7 - 58.3
10* F 15 1 9 - 211 67-0 51-41 97.2 - 97.2
11* F 17 1 17 - 163 50-0 46-42 52.8 - 47.2
12 M 13 5 14 - 104 101-54 63-54 69.4 - 58.3
13 F 15 1 13 41 43 72.2
14 F 17 4 15 - 240 24-24 58-63 61.1 - 58.3
15 F 17 3 30 - 135 58-11 46-47 75.0 - 30.6
16* F 13 0 7 - 98 17-0 43-40 94.4 - 88.9
17* F 13 1 8 - 85 12-0 47-40 80.6 - 77.8
18 M 15 2 19 - 187 46-31 44-49 61.1 - 69.4
19 F 17 1 12 - 180 53-20 62-66 8.3 - 22.2
20 M 14 1 58 55 49 36.1
21 F 14 0 30 - 172 59-82 68-76 50.0 - 5.6
22 F 17 2 39 60 71 66.7
23 F 16 2 26 - 174 80-46 67-55 97.2 - 91.7
24* F 14 1 6 - 181 55-0 63-42 72.2 - 55.6
25* M 13 1 13 - 113 32-0 46-49 100 - 94.4
26 F 14 1 48 - 118 66-3 55-52 88.9 - 91.7

Table 4.1: Table detailing the symptomatology and depression scores for all concussed
participants. Bolded subject IDs (19) represent the ones who returned for a follow-up
EEG test. Where applicable, second testing (t2) values are presented after the first
(t1) values as in: t1, t2. Asterisks (*) on subject IDs denote the concussed subgroup
that reported full symptom recovery (PCSS of 0) by their second assessment.

102



Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-

mawat, S., Irving, G., Isard, M., and Others (2016). Tensorflow: A system for

large-scale machine learning. In 12th ${$USENIX$}$ Symposium on Operating

Systems Design and Implementation (${$OSDI$}$ 16), pages 265–283.

Amenedo, E. and Dıaz, F. (1998). Automatic and effortful processes in auditory mem-

ory reflected by event-related potentials. age-related findings. Electroencephalogra-

phy and Clinical Neurophysiology/Evoked Potentials Section, 108(4):361–369.

Baillargeon, A., Lassonde, M., Leclerc, S., and Ellemberg, D. (2012). Neuropsycholog-

ical and neurophysiological assessment of sport concussion in children, adolescents

and adults. Brain Injury, 26(3):211–220.

Boshra, R., Dhindsa, K., Boursalie, O., Ruiter, K. I., Sonnadara, R., Samavi, R.,

Doyle, T. E., Reilly, J. P., and Connolly, J. F. (2019). From group-level statistics

to single-subject prediction: Machine learning detection of concussion in retired

athletes. IEEE Transactions on Neural Systems and Rehabilitation Engineering.

Broglio, S. P., Guskiewicz, K. M., and Norwig, J. (2017). If You’re Not Measuring,

103



Ph.D. Dissertation - Rober Boshra McMaster University - Engineering

You’re Guessing: The Advent of Objective Concussion Assessments. Journal of

Athletic Training, 52(3):160–166.

Broglio, S. P., Moore, R. D., and Hillman, C. H. (2011). A history of sport-related

concussion on event-related brain potential correlates of cognition. International

Journal of Psychophysiology, 82(1):16–23.

Broglio, S. P., Pontifex, M. B., O’Connor, P., and Hillman, C. H. (2009). The Per-

sistent Effects of Concussion on Neuroelectric Indices of Attention. Journal of

Neurotrauma, 26(9):1463–1470.

Brush, C. J., Ehmann, P. J., Olson, R. L., Bixby, W. R., and Alderman, B. L.

(2018). Do sport-related concussions result in long-term cognitive impairment? A

review of event-related potential research. International Journal of Psychophysiol-

ogy, 132(March 2017):124–134.

Cao, C., Tutwiler, R. L., and Slobounov, S. (2008). Automatic classification of athletes

with residual functional deficits following concussion by means of EEG signal using

support vector machine. IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 16(4):327–335.
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CHAPTER

5 On the Time-Course of

Functional Brain Connectivity:

Theory of the Dynamic

Progression of Concussion Effects

Preface

Throughout the analyses conducted in both the studies presented in chapters 4 and 5,

as well as parallel studies on the same datasets using traditional analysis techniques,

it became incrementally clearer that concussion’s influence on the human brain was

not as lucid as initially hypothesized. Despite the consistency of several key effects

– namely, those of the P300 – the variance of other co-occurring ERP effects was

not immediately explainable. The study presented in this chapter was the conducted

in an effort to clarify whether the inconsistencies of the previous results, analogous

to the literature, were due to idiosyncrasies manifesting in our particular datasets

and whether a more defined view of mTBI could be framed. To maximally reduce

any statistical biases inherent of reanalyzing the data, different measures of event-

related functional brain connectivity were utilized. In addition to addressing the

study’s primary question and finding patterns analogous to what is often seen in
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neuroimaging studies, the present chapter put forth a complete framework of mTBI

and its progression through different injury stages. The proposed model is believed

to be a valuable tool for hypothesis creation to maximize the impact of studies in

bettering the current understanding of the injury’s mechanisms.
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Abstract

The current literature presents a discordant view of mild traumatic brain injury and

its effects on the human brain. This dissonance has often been attributed to het-

erogeneities in study populations, etiology, acuteness, and/or testing modalities. To

investigate the progression of mTBI in the human brain, the present study used data

from 93 subjects (48 healthy controls) representing both acute and chronic stages of

mTBI. The effects of concussion across different stages of injury were measured using

two metrics of functional connectivity (FC) in segments of electroencephalography

(EEG) time-locked to an active oddball task. Results show an increase in FC in the

acute stage after mTBI, contrasted with significantly reduced FC in chronic stages of

injury. This finding indicates a non-linear time-dependent effect of injury. In order

to understand this pattern of changing FC in relation to prior evidence, we propose

a new model of the time-course of the effects of mTBI on the brain that brings to-

gether research from multiple neuroimaging modalities and unifies the various lines

of evidence that at first appear to be in conflict.
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5.1 Introduction

Concussions and mild traumatic brain injury (mTBI) are difficult to detect via com-

mon brain imaging methods due to their predominantly functional effects on the brain.

Work spanning a multitude of testing modalities supports a connection between con-

cussions and multiple forms of cognitive dysfunction (McCrory et al., 2017). With

increased awareness of the condition, concussion diagnosis is at an unprecedented

high; however, clinical practices for identification, treatment, and management re-

main inadequate (Broglio et al., 2017, 2007). Refinement in assessment tools has

targeted the disentanglement of concussion’s constellation of symptoms with several

methodologies showing promise such as: eye-movements (Johnson et al., 2012; Heit-

ger et al., 2009), balance assessments (Broglio et al., 2017), functional brain imaging

(McAllister et al., 2001), and electrophysiology (Broglio et al., 2009; De Beaumont

et al., 2009; Ruiter et al., 2019). Of the last category, event-related potentials (ERP)

as recorded with electroencephalography (EEG) were shown to be altered following

concussion (De Beaumont et al., 2007; Broglio et al., 2011; Gosselin et al., 2006;

Gaetz et al., 2000). The extent of these alterations was demonstrated to correlate

with number of hits to the head, severity of injury, and time elapsed since injury (De

Beaumont et al., 2007; Broglio et al., 2011). Most prominent in concussion research,

the N2b and the P300 have been shown to be particularly affected after insult, either

in response latency, amplitude, or both (Ruiter et al., 2019; De Beaumont et al., 2007;

Gosselin et al., 2006; Broglio et al., 2009; De Beaumont et al., 2013). The association

between these ERPs and specific cognitive processes has provided a valuable tool to

pinpoint the functional and cognitive effects of concussion that have been reported
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to linger after symptom resolution (Gosselin et al., 2006; De Beaumont et al., 2007;

Baillargeon et al., 2012). However, it remains unclear how the effects of concussion

progress over the years following injury.

Most findings on the neurophysiological effects of concussion to date describe an

attenuation or delaying of brain responses (Ruiter et al., 2019; De Beaumont et al.,

2007; Gosselin et al., 2006; Broglio et al., 2009; De Beaumont et al., 2013). Contrary

to these findings, several studies have reported hyperactivation post-injury during

mentally-taxing tasks (McAllister et al., 2001), making inadequate a simple explana-

tion that concussion leads to a static reduction in brain activity. Increase in activation

has since been posited to result from allocation of extra resources to compensate for

injury (McAllister et al., 2001; Iraji et al., 2016). This compensatory mechanism was

argued to reflect the discrepancy often found between behavioural assessments and

neurological measurements from electrophysiology (Ruiter et al., 2019; De Beaumont

et al., 2012, 2009) and functional hemodynamics (McAllister et al., 2001; Hocke et al.,

2018a). Subsequently, the notion of a cognitive reserve (see Stern, 2009; Kesler et al.,

2003) has been hypothesized to explain the overall neurocognitive decline of previously

concussed individuals through aging (De Beaumont et al., 2009, 2012). According to

the cognitive reserve theory, a previously-injured brain loses the ability to sustain its

compensatory mechanisms with age, resulting in an abnormal aging process with a

resurgence of symptoms and other cognitive deficits (De Beaumont et al., 2009, 2012).

For the purposes of the present study, we define three broad stages of concussion pro-

gression: a) acute, denoting the time directly after injury and extending to 3 weeks

after (21 days) wherein the primary symptoms of mTBI are most apparent, b) post-

acute, pertaining to the time after the acute stage to late-stage symptom resurgence
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that takes place with aging, during which the behaviourally-observable symptoms of

mTBI appear to be most resolved, and c) chronic, referring to the state of injury

decades after insult that is seen in late-adulthood.

While there is consensus that brain function is altered following concussion, there

has been little work clarifying the progression of post-concussive effects throughout

aging, the relationship between those effects to observable symptomatology, or to

consolidate the results from different imaging methods. The notion that neurophys-

iological sequelae of concussion progress in a non-linear fashion is not new. A study

by Zhu et al. (2015) reported increased functional connectivity (defined below) di-

rectly after a concussive episode followed by a return to normal levels 30 days after

injury. Similar findings were reported in the literature where tests in the acute phase

revealed a hyperconnected brain (Sours et al., 2015; Bernier et al., 2017; Shumskaya

et al., 2012; Bharath et al., 2015; Nakamura et al., 2009; Messé et al., 2013; Iraji et al.,

2016), whereas tests conducted after the acute stage of injury has elapsed showed re-

duced FC (Hocke et al., 2018a; Robinson et al., 2015), and one study reported no

effect of mTBI on FC (Churchill et al., 2017). Of note, these studies utilized a wide

array of brain imaging methodologies and experimental protocols, including record-

ing brain activity in resting-state designs or under active cognitive load induced by

different tasks.

Functional connectivity (FC), as opposed to structural connectivity, broadly de-

scribes statistically correlated activity and synchronization between brain regions

(Bastos and Schoffelen, 2016). This correlated activity can be due to information

transmission between communicating brain regions, or simply due to different brain

regions contributing to a common task. In EEG analysis, FC can be measured using a
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variety of methods, each contributing different information about how brain activity

is synchronized across regions (Vinck et al., 2011; Blain-Moraes et al., 2016; Bas-

tos and Schoffelen, 2016). These can be computed across EEG sensors or estimated

brain sources, and can describe temporally correlated changes in the power spectrum

or phase-coupling. Two complementary methods are used in this study: magnitude-

squared coherence, and the weighted phase-lag index (WPLI). Both of these methods

have been widely used in the literature to describe non-directed connections between

two signals (i.e., they do not specifically indicate which signal influences the other).

Magnitude-squared coherence, or simply coherence, is a measure of FC that de-

scribes the degree of linear similarity between two signals (in our case, two channels)

in terms of their power spectrum (Nolte et al., 2004; Murias et al., 2007; Kumar et al.,

2009). Specifically, it is the normalized magnitude-squared cross-spectral density of

two signals in a given frequency band f , and thus primarily describes amplitude-

related synchronization. Coherence is calculated as

Cxy(f) =
|Pxy(f)|2

Pxx(f)Pyy(f)
(5.1)

where Pxy is the cross-spectral density of two signals x and y, and Pxx and Pyy

are their respective power spectral densities. However, unlike WPLI, coherence is

susceptible to influence from volume-conduction and noise (Vinck et al., 2011; Bastos

and Schoffelen, 2016).

WPLI is a measure of FC that provides information primarily about phase-

synchronization, and is designed to be robust in the presence of volume-conduction

and noise (Vinck et al., 2011) – all features which are crucial to channel-space analysis

of EEG. WPLI is calculated using the imaginary component of the cross-spectrum,
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which we denote as ImCxy(f), and which gives the phase-synchronization between

two signals. It is then weighted by its sign, sign(ImCxy(f)), which indicates which

of the two signals leads or lags in phase-space. Putting these together, WPLI is

calculated as follows:

WPLI =
|E{ImCxy(f)}|
E{|ImCxy(f)|}

(5.2)

FC as measured using EEG has been investigated for application in mTBI with

several reports of deficits observed in resting state EEG after concussion (Cao and

Slobounov, 2010); although, the effects of post-acute mTBI on resting-state EEG

have been questioned in the literature (Nuwer et al., 2005). Related work on more

severe TBI showed a reduced FC effect that was unique to a working memory task,

as opposed to resting state (Kumar et al., 2009). This work raised the issue that

FC effects in mTBI might require an active cognitive load for the separation to be

observed, a hypothesis that is compatible with fMRI research on mTBI (McAllister

et al., 2001; Johnson et al., 2012, 2015). To date, no prior studies have been conducted

to investigate the progression of neurphysiological FC effects of mTBI using EEG

during active cognitive tasks. Moreover, there is limited work attempting to connect

the effects found in EEG/ERP measures to the neuroimaging literature, which places

a greater emphasis on FC. Here we show that functional brain connectivity observed

in EEG at different time-periods following concussion provides valuable information

on how concussion impacts brain activity over time.

In the present article, we investigate the effects of concussion on brain connectivity,

as well as the development of these effects from youth into late adulthood. The

study employed experiments designed to elicit canonical ERPs studied in concussion
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research (the N2b and P300) in order to examine a cognitively taxed brain using

event-related FC. The study examined two hypotheses. First, in accordance with

prior literature (Kumar et al., 2009), we expected a comparison between concussed

subjects and age-matched controls to reveal a difference in FC. Second, we postulated

that while some changes in connectivity would normalize after the acute stage, there

would remain differences in FC between concussed subjects in the chronic stage and

their age-matched controls. In addition to presenting our experimental findings, we

propose a new theory of the effects of concussion on the brain that integrates cognitive

reserve theory to explain how our data can be synthesized with the evidence found

within the existing neuroscientific literature on mTBI in order to understand how

concussion affects the brain over the lifespan.

5.2 Methods

5.2.1 Participants

To investigate the progression of FC changes from acute concussion to late after injury,

data were collected from a total of 93 participants (48 controls) split across two age-

groups in a cross-sectional manner. Data were collected as part of independent studies

conducted using the same set of EEG/ERP paradigms as defined below.

Acute (AC) Dataset The first group was comprised of 26 participants (19 female)

with an average age of 15.4 years that had sustained a head injury. All concussed

participants were clinically diagnosed with a concussion and were subsequently tested

an average of 20.15 days after injury. Data from 28 healthy participants (average 19.2
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years old; 22 female) acted as a control group for the AC population.

Chronic (CH) Dataset A total of nineteen male retired football athletes were

recruited with an average age of 57.6 years old. The retired athletes played an average

of 7.84 years in the Canadian Football League (CFL), self-reported an average of 4.05

previous concussions, and indicated an average of 28.11 years between day of testing

and the last reported head injury. A group of twenty healthy individuals (all male;

mean age = 53.7) acted as controls for this age group.

All control participants reported no history of neurological disorders or head in-

jury. All subjects reported normal hearing and provided written consent prior to

participating in the study. The study was approved by the Hamilton Integrated

Research Ethics Board (HiREB; Ontario, Canada) and was in accordance with the

ethical standards of the Declaration of Helsinki.

5.2.2 EEG Stimuli

Each subject completed two separate EEG/ERP protocols designed to examine brain

responses in both active and passive task conditions separated by a distractor task

(Ruiter et al., 2019). Only data from the active protocol, presented first, was used in

the present study. The protocol was a multi-deviant auditory-oddball task adapted

from Todd et al. (2008). The standard tone (Std) was a 1000 Hz pure-tone presented

at 80 dB sound pressure level (SPL). Three different tones, each similar to the Std

in all but one sound characteristic, were presented as deviants to the standard tone

sequence: frequency deviant (FDev; 1200 Hz), duration deviant (DDev; 100 ms),

and intensity deviant (90 dB SPL). Standard tones were presented 492 times (82%)

while each of the deviants was presented 36 (6%) times for a total of 600 stimulus
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presentations. Participants were tasked to actively attend to the tones and respond

by pressing one button to standards and another button for all deviants. All seg-

ments with incorrect responses were discarded from further analysis. Technical issues

rendered intensity deviants unusable in the AC recordings; thus, to facilitate compar-

isons between the two age-groups, responses to intensity deviants were discarded for

all further analysis.

5.2.3 EEG Procedure

Participants were seated in a dimly-lit and sound-attenuated room. Noise-cancelling

earphones (Etymotic ER-2) were used to deliver all binaural auditory stimuli. Partic-

ipants were instructed to fixate on a cross placed in the centre of a computer monitor

as they responded using two buttons to auditory stimulation as described above.

Buttons were counterbalanced between participants. Presentation of all stimuli and

respective EEG markers was done using Presentation software (NeuroBehavioral Sys-

tems; NBS). The protocol used for this study lasted a total of 10 mins in a addition to

a break halfway through presentation. Participants were instructed to switch buttons

for the second half of the protocol.

5.2.4 EEG Recording

Continuous EEG was recorded from 64 Ag/AgCl active electrodes using the Biosemi

ActiveTwo system. Electrodes were placed according to the extended 10-20 system

using an elastic cap and referenced online to the driven right leg circuit. Data from

five external electrodes were recorded: two electrodes were placed separately to record

eye movements placed above and over the outer canthus of the left eye, two electrodes
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on the mastoid processes, and one on the tip of the nose. Data from all electrodes

were digitized at 512 Hz and passed through a 0.01-100 Hz bandpass filter.

5.2.5 EEG Data Preprocessing

Offline, data were passed through a 0.1-30 Hz (24 dB/oct) filter in addition to a 60

Hz notch filter. Using visual inspection, all segments containing non-ocular artifacts

were marked for deletion. Independent component analysis was conducted on the

remaining continuous data and components correlated with either external electrode

placed around the left eye were removed. Following data cleaning, the EEG sig-

nals were re-referenced to the averaged mastoids and segmented for all experimental

conditions from 200 ms before stimulus onset to 1000 ms after. All segments were

baseline-corrected (-200 – 0 ms) before separating segments by condition and export-

ing to binary files for connectivity analysis. All the prior steps were conducted using

Brain Vision Analyzer (v2.1; Brain Products GmbH).

5.2.6 Connectivity Analysis

We assessed brain connectivity as measured in sensor-space by computing pairwise

FC for regions of interest that were defined similarly to Kumar et al. (2009). Fourteen

electrodes were clustered based on their topographical location: laterally on the right

(R) and left (L) hemispheres; and caudally at the frontal (F), temporal (T), and

parietal (P) regions (see Fig. 5.1). The six clusters of 2-3 electrodes each were L-F:

(F3, F5, and F1); R-F: (F4, F2, and F6); L-T: (T7 and CP5); R-T: (T8 and CP6);

L-P: (P3 and P1); and R-P: (P4 and P2). Using the six clusters, four categories of

connectivity were defined:
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• Interhemispheric: described connections between the left and right hemispheres

and was split to Frontal (between R-F and L-F), Temporal (between R-T and

L-T), and Parietal (between R-P and L-P).

• Intrahemispheric, long-range: defined connections that spanned from the frontal

region to the parietal region within the same hemisphere. In the right hemi-

sphere they were defined as all combinations between R-F and R-P, whereas in

the left hemisphere they were connections between L-F and L-P.

• Intrahemispheric, mid-range: described fronto-temporal and temporo-parietal

connections in both hemispheres. In the frontal region: left fronto-temporal

(between L-T and L-F) and right fronto-temporal (between R-T and R-F). In

the parietal region: left temporo-parietal (between L-T and L-P) and right

temporo-parietal (between R-T and R-P).

• Intrahemispheric, within-region: contained all pairwise comparisons within each

electrode cluster described above.

For each category of connectivity, WPLI and coherence were calculated between

each electrode-pair for each experimental condition using Python MNE (Gramfort

et al., 2013). Connectivity was assessed across five canonical EEG bands: delta (1-4

Hz), theta (4-8 Hz), alpha (8-14 Hz), and beta (14-23 Hz). The spectral densities

were estimated using the Morlet wavelet with central frequencies fi ∈ 1, 2, . . . 23 and

corresponding cycles ci = min(0.75×fi, 7). FC values were averaged for the duration

spanning between stimulus onset and 800 ms after.
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5.2.7 Statistical Analysis

Statistical analyses were adapted from Kumar et al. (2009) and modified to reduce the

number of multiple comparisons. Mixed-effects analysis of variance (ANOVA; α =

0.01) was used to examine whether concussion affected brain connectivity as measured

by the WPLI and coherence independently. Separate univariate ANOVAs were run

for each type of connectivity and spectral band such that the dependent variable was

the connectivity metric (WPLI or coherence) to investigate the effect of Group (2

levels: control and concussed), Condition (3 levels: Std, FDev, and DDev), Site (as

described above for each connectivity category), and Age (2 levels: young and old).

In cases of Sphericity violations (assessed using Mauchly’s Test), Greenhouse-Geisser

estimates of epsilon were used to correct for the degrees of freedom. In instances

of significant interactions, Bonferroni-corrected post-hoc analyses were conducted to

investigate the effect.

5.3 Results

5.3.1 Coherence

Coherence was heavily influenced by Age differences. This manifested as a significant

main effect of Age as well as a reliable effect of Age × Condition interaction in all

connectivity types across all bands when observing coherence (see table 5.1). These

effects are omitted for brevity from the detailed results below.

band (p < 0.01).
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5.3.2 Intrahemispheric, long-range

In coherence, a significant Age × Site interaction was observed in all bands (p <

0.01; table 1). Additionally, a significant 3-way interaction of Group × Age × Site

manifested in delta and theta (p < 0.01). WPLI analysis indicated a significant Group

× Age interaction in both delta and theta bands (p < 0.01; figure 5.2). Additionally

in theta, an Age × Site interaction was significant (p < 0.01). Post-hoc analysis in

both bands showed that in the CH age-group, FC was lower in the left hemisphere

than in the right hemisphere.

5.3.3 Intrahemispheric, mid-range

Results indicated a significant Group × Age interaction in coherence for the delta

and theta bands (p < 0.01; see table 5.1). In WPLI, a main effect of Age was found

in delta (p < 0.01) and theta (p < 0.01). A significant Group × Age interaction

was found in delta and theta (p < 0.01; figure 5.2, B). An additional Age × Site

interaction was observed in delta and theta (p < 0.01). Post-hoc analysis in both

bands showed that FC in the AC group measured between at FT-L and FT-R was

higher than TP-L and TP-L. That effect was reversed in the older CH group. The two

3-way interactions (Group × Age × Condition and Group × Age × Site) were found

significant in the delta band (p < 0.01). Investigation of the first interaction showed

that the Group × Age interaction was not observable in Std. Post-hoc analysis of the

second interaction showed that FC observed from FT-L showed a significant effect of

Group as well as a reliable Group × Age interaction in TP-L and TP-R.
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5.3.4 Within-region

Analysis of coherence yielded significant Group × Age and Age × Site interactions

in all bands (p < 0.01). An additional Group × Condition was observed in delta

(p < 0.05). For WPLI, a main effect of Age was found in all but the beta band

(p < 0.01), whereas a Group × Age interaction was observed in all bands but alpha

(p < 0.01; figure 5.2). The Age × Site interaction was significant in the theta band

(p < 0.01). Post-hoc analysis showed FC to be larger in the AC group compared to

the CH group in all but the frontal sites (L-F and R-F).

5.4 Discussion

Our results introduce new evidence illustrating the evolution of the effects of mTBI

on the human brain over time. We show that while an increase in connectivity from

baseline may follow from concussion soon after injury, a reversal towards reduced

connectivity may in part characterize the long-term effects (see Figure 5.2). In light

of these findings, we argue for a critical component of our hypotheses: the effects of

mTBI on the brain are dynamic and must be contextualized by how long the brain

has been adapting to the effects of concussion. Concordantly, the interaction between

history of concussion and age group had a significant effect on FC, while the fact that

concussion had taken place in the past on its own did not.

Whether FC was measured with coherence, to capture power synchronization,

or WPLI, to capture phase synchronization, the chronically-concussed group in the

present study showed a widespread reduction in FC. While this result appears to

conflict with what was found by Kumar et al. (2009), the findings may in fact be
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complimentary. Notably, Kumar et al. found reduced FC in concussed individuals an

average of 2-3 months since last concussion. When comparing more recently concussed

individuals (an average of just 21 days post-injury) with controls, we instead found

increased levels of FC. One possible explanation is that there may be a sharp increase

in FC shortly after injury, followed by a decrease in FC below pre-injury levels, a

finding supported by longitudinal imaging studies (Zhu et al., 2015; Iraji et al., 2016).

However, another explanation is that Kumar et al.’s study included subjects who

suffered from more severe brain injuries than concussion that resulted in observable

anatomical abnormalities (12 out of 30 subjects), which have been linked to severe

decreases in FC (Davey et al., 2000).

5.4.1 A New Model of mTBI

We propose a nuanced view of the progressive effects of mTBI on the human brain.

Specifically, we posit a model of the dynamic effects of mTBI on event-related FC that

accounts for stage of injury (acute, post-acute, and chronic), age, and task-related

cognitive load. A diagram of the theorized model, its three stages, and corresponding

effects are illustrated in Fig. 5.3. We describe our model in terms of its three stages

below.

In the acute stage of the model, the brain enters a state of hyperactivity and

hyperconnectivity immediately after injury (though we acknowledge that the mech-

anism for this is not entirely understood) that is reflected in a number of studies

in the acute stage of concussion (Johnson et al., 2015; Iraji et al., 2016; Shumskaya

et al., 2012; Zhou et al., 2014; Zhu et al., 2015). The proposed model theorizes that

an increased recruitment of neuronal resources is particularly observable after injury,
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requires minimal task complexity, and can even be observed at rest (see Fig. 5.3,

red). Moreover, this stage is hypothesized to overlap with the period prior to clinical

symptom recovery, as well as cognitive deficits observed in neuropsychological and

other behavioural batteries (McCrory et al., 2017). Since the increase in activity

and FC observed in the acute stage can be observed in fMRI while the subject is at

rest, it might be unrelated to cognitive load, and may reflect the increased internal

rumination and arousal often seen in recently concussed individuals (Zhu et al., 2015;

Sours et al., 2015). Moreover, hyperactivity and hyperconnectivity has also been

shown in animal studies of concussion, where the effect is described as part of a post-

concussion metabolic cascade (Giza and Hovda, 2001). Our model instead suggests

that this brain response plays a functional role in the brain adaptation to compensate

for lost and impaired functionality. We posit this hyperactivity and hyperconnectivity

to facilitate a search for suitable ways of rerouting information processing to enable

optimal compensation for the reduced cognitive functioning that resulted from in-

jury, akin to the hyperconnected state observed in infants prior to neural pruning

and serving a similar purpose (Huttenlocher et al., 1987; Rakic et al., 1994).

In typical cases of concussion, the brain is able to adapt and progress past the

acute stage, signified by a relief of symptomatology and other observable cognitive

deficits (McCrory et al., 2017). Our model posits that this post-acute stage, and

thus behavioural symptom resolution, co-occurs with the re-normalization of resting-

state functional brain activation and connectivity. This is supported by a lack of

significant differences in resting-state FC between controls and subjects with past

concussion in the post-acute stage found in a number of fMRI and EEG studies

alike (McAllister et al., 2001; Bharath et al., 2015; Churchill et al., 2017; Nuwer
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et al., 2005). However, the brain’s solution to counteract mTBI-related cognitive

loss is not perfect. A high processing load enforced by a complex task requires the

injured brain to compensate, and thus activate more than the uninjured brain, in

order to maintain task performance (see Fig. 5.3, green) (McAllister et al., 2001).

Notably, we identify the mechanism of compensation as a likely explanation for the

apparent normalization of behaviourally-measured cognitive functions after symptom

resolution (Martini et al., 2017). As such, our model is in line with a previously

posited hypothesis that suggests that even though behaviourally-observed symptoms

of concussion appear to resolve, the brain does not truly recover from the injury (De

Beaumont et al., 2009).

Lastly, as part of a typical aging process, the brain progressively loses its ability

to sustain the compensatory strategy developed in the acute stage and maintained

throughout the post-acute stage (see Fig. 5.3, blue). This reduction and resurgence of

symptoms is posited to be strongly linked to the notion of a cognitive reserve (Kesler

et al., 2003; Stern, 2009). This chronic stage marks a downward trend in brain activity

and functional connectivity. As no fMRI FC research was found targeting the chronic

stage of injury (Henry et al., 2017), we base this stage of the model on previous ERP

studies conducted by our group and others (described below), the observed resur-

gence of behavioural and cognitive symptoms in old age, and the results presented in

this paper. Additionally, we posit this stage may coincide with reported findings of

tauopathy in retired athletes and potential link to chronic traumatic encephalopathy

(CTE; Stern et al., 2019).
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5.4.2 ERP-specific Implications

In addition to the neuroimaging research discussed above, there has been a consid-

erable amount of research on the effect of mTBI on ERPs. One challenge in under-

standing mTBI is to explain why some ERPs appear to be affected in consistent ways

across the different stages of injury, while the effects on other ERPs appear to change

over time. Our model provides a means to interpret these findings.

There is broad consensus regarding the effect of concussion on the P300, which is

manifest as an attenuated and often delayed peak (Brush et al., 2018). This effect is

demonstrably consistent across acute, post-acute, and chronic stages of injury (Ruiter

et al., 2019; Broglio et al., 2009; Baillargeon et al., 2012; inter alia). In contrast,

the effects are not consistent on earlier ERP components, such as the mismatch

negativity (Ruiter et al., 2019) and the N1/P2 complex (Boshra et al., 2019). These

responses were unaffected in acute and post-acute concussed subjects (Ruiter et al.,

submitted; Boshra et al., submitted), but were attenuated in individuals that had

sustained their concussions decades earlier (i.e., in the chronic stage of concussion).

Our model predicts that this ERP component would be enlarged in the acute stage

while at rest and in the post-acute stage while under cognitive load. Of note, it has

been argued that the emergence of deficits in these earlier ERP components may be

associated with an irreversible return of concussion-related cognitive decline (Ruiter

et al., submitted).

The N2b response is also reported to be affected in a way that changes through

the stages of concussion. This component was found to be unaffected in some cases

in the post-acute stage (Moore et al., 2014), amplified in other cases in the post-

acute stage (Ledwidge and Molfese, 2016; Moore et al., 2014, 2015), and attenuated
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in the chronic stage (De Beaumont et al., 2009; Ruiter et al., 2019; see Brush et al.,

2018 for a review). The apparent modulation of the N2b proves similar to results

from FC in fMRI. Our model predicts an enlarged N2b in the acute stage, as well as

in the post-acute stage when task-related cognitive load is sufficient to elicit neural

overcompensation (Ledwidge and Molfese, 2016; Moore et al., 2014, 2015). The model

expects an unobserved N2b response when the task is sufficiently simple (see oddball

task in Moore et al., 2014). Lastly, the model predicts an attenuated N2b in the

chronic stage, concordant with De Beaumont et al. (2009); Ruiter et al. (2019).

In summary, there is an indication that ERPs may be affected by mTBI in one

of three ways. For the P300, the effect appears to remain consistent throughout all

stages of concussion. For the MMN and the N1/P2 complex, the effects seem to

appear only in the chronic stage, possibly indicating more severe consequences of the

injury (Ruiter et al., submitted;Boshra et al., 2019). Finally, for the N2b, the effect

is more complex: the component appears to be affected in different ways depending

on the stage of concussion and the degree of cognitive load under which the EEG is

recorded. This makes the N2b a potential target for monitoring the progression of

concussion. Furthermore, the time-course of the effects of concussion on the N2b most

closely matches what has been observed in the fMRI literature and the FC findings

in the present study showing hyperconnectivity immediately after injury followed by

a tendency to normalize unless the participant is subjected to mentally-taxing task.

5.4.3 General Model Implications

To conserve simplicity, the model does not account for many of the factors argued

to influence the state of concussion, such as the number of previous concussions,

131



Ph.D. Dissertation - Rober Boshra McMaster University - Engineering

the severity and location of impact, age at the time of injury, and more. However,

while the model does not provide precise predictive power at this lower resolution,

it provides an overarching view of the brain’s response to concussion, and may even

extend to brain injury more broadly, depending on the severity and type of injury.

Moreover, we argue that the model provides, for the first time, a falsifiable explana-

tion of the time-course of the effects of concussion on the brain that directly relates

three primary modalities used in concussion research: behavioural assessments, fMRI,

and EEG/ERP. Our model also synthesizes some of the inconsistencies found in the

broader literature, particularly the seemingly contradictory findings between studies

exploring resting-state brain activity versus task-based studies that impose a high

processing load on the participants. The model also relates to the literature on post-

concussion syndrome (long-term persistence of symptoms of concussion) as well as of

more severe TBI. Both of these phenomena can be described as types of injuries in

which the post-acute phase is skipped; post-concussion syndrome because the brain

fails, for one reason or another, to compensate for the injury, and TBI because the

injury is too severe for the brain to compensate in principle. Instead, the brain pro-

gresses directly from the acute stage to the chronic stage, as evidenced by studies that

show reduced FC levels and clinical symptoms that are consistent with the chronic

stage of concussion as described in our model (Kumar et al., 2009; Hocke et al., 2018b;

Messé et al., 2013; Robinson et al., 2015).

While the present study sheds some light on both the early and late stages of

mTBI, there are important questions that require data from individuals across the

full spectrum of age groups representing a continuity of stages of injury (from acute
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to chronic and in between). Further data will enable an investigation of when hy-

perconnectivity subsides and clarify the interaction between normalizing resting-state

connectivity, symptom resolution, and processing loads. Additionally, it is pertinent

to identify what initiates the transition to a hypoconnected state later in life (time

elapsed since injury, biological disposition, age, etc.), and whether that deterioration

can be counteracted. This investigation is critical, as the decline into hypoconnec-

tivity late in adulthood has been linked to severe consequences in other pathologies

and was associated with more advanced forms of neurodegeneration (Hillary and

Grafman, 2017). Moreover, as argued in Boshra et al. (2019), experimental designs

that facilitate single-subject analyses are necessary in order to understand the inter-

subject variability of mTBI and its effects, as well as to build towards a clinical tool

leveraging these findings.

5.4.4 Limitations

One potential confound in our study was the vast difference in age between the CH

and the AC study groups, leaving open the possibility that differences in FC could be

naturally occurring due to age as opposed to injury stage. Indeed, when looking only

at spectral coherence, our less robust measure of FC, we found a significant effect of

Age. This effect was observable for both the control group and the patient group,

and thus appears to be dominantly age-related and not mTBI-specific. In contrast,

measuring WPLI revealed a clear pattern of changes in FC that was unique to the

concussed group as can be seen in Figure 5.2B. In almost all cases, there was no

change in WPLI-derived FC across age groups for the controls, while a pronounced

decrease was notable in almost all comparisons for the concussed group. The two

133



Ph.D. Dissertation - Rober Boshra McMaster University - Engineering

cases showing a main effect of Age in FC in the control group showed increases in FC

(mid-range intrahemispheric and within-region FC), where the same measures showed

an age-related decrease in FC. Altogether, this indicates that phase synchronization,

as measured by WPLI, may be significantly reduced through aging, specifically for

those with a history of concussion.

The present study was made possible by aggregating data from two studies using

the same methodology, the same equipment, and that were collected by the same

group. We note that combining two datasets as done in this study comes with the risk

that statistical differences found in the study are due to heterogeneities between the

datasets themselves. Specifically, the study samples differ by age, gender composition,

and profession. In our statistical analyses, we mitigated this risk by adapting analysis

procedures from earlier work to include a reduced number of comparisons, and by

adopting a more conservative significance threshold (Kumar et al., 2009). Moreover,

inclusion of data from both age-groups in the same models was done in an effort to

control for the potential confound of age, as discussed above.

Another limitation is the use of coherence as a measure of FC in channel-space,

which is sensitive to volume conductance. We validated the results with found with

coherence by using a complimentary measure of FC, WPLI, which is invariant to

volume conduction. WPLI was particularly useful in highlighting the changing effect

of concussion on FC across the age groups. In summary, we were not able to control

for potential confounds as mentioned above; however, we argue that if there was an

effect of these variables, it would be minimal given the strength of the reported results

(figure 5.2B).
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5.5 Conclusion

The present study introduces a novel model of the time course of mTBI that syn-

thesizes the neuroimaging and EEG literature, while generating targeted hypotheses

that direct future research towards a more coherent understanding of mTBI. We ar-

gue that several points of contention, and apparently conflicting data, with respect

to altered brain activity following concussion can be explained by a complex, dy-

namic, and non-linear response by the human brain that involves pathophysiological

reactions, healing mechanisms, and compensatory actions. The study reported event-

related FC as measured by the EEG during an active oddball task from 93 subjects.

Our results support previous work indicating that concussion alters brain functional

connectivity as measured by the WPLI and spectral coherence. Strikingly, our results

demonstrated a clear shift in connectivity as acute effects of concussion gave way to

chronic neurophysiological alterations, causing a salient switch from an increased to

decreased FC in concussed individuals relative to age-matched controls, respectively.

The study presents the first report linking established trends in fMRI and neuroimag-

ing literature to cognitive function manifesting in ERPs. We conclude that further

work to elucidate the dynamics of that trajectory towards failure to compensate is

critical to understanding the mechanisms behind late-adulthood symptom reemer-

gence, which are thought to be reflective of severe neuropathological consequences of

concussion.
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Table 5.1: ANOVA tables for the connectivity types and bands for the WPLI and
coherence values
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Figure 5.1: Different connectivity types and their respective electrode clusters as
defined and adapted from Kumar et al. (2009).
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Figure 5.2: Group × Age interaction over different connectivity types as seen across
the four bands in spectral coherence (A) and weighted phase-lag index (B). Error
bars represent the 95% confidence intervals.
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 Observable cognitive de�cits

Typical time: after acute stage is over. Progression to 
chronic is variable depending on age and cognitive 
reserve.
E�ects: 
 Reduced P300
 Increased N2b (only during high load)
 Hyperactivation (fMRI; only during high load)
 Hyperconnectivity (fMRI & EEG; only during 
 high load)

Typical time: after post-acute stage is over. 
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Figure 5.3: The theorized model with its three stages of injury progression: acute,
post-acute, and chronic. Note the overlap between the stages in time, signifying an
unclear transition point between them.
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Montreuil, M., Benali, H., and Lehéricy, S. (2013). Specific and Evolving Resting-

State Network Alterations in Post-Concussion Syndrome Following Mild Traumatic

Brain Injury. PLoS ONE, 8(6):1–10.

Moore, R. D., Broglio, S. P., and Hillman, C. H. (2014). Sport-related concussion

and sensory function in young adults. Journal of Athletic Training, 49(1):36–41.

Moore, R. D., Pindus, D. M., Drolette, E. S., Scudder, M. R., Raine, L. B., and

Hillman, C. H. (2015). The persistent influence of pediatric concussion on attention

and cognitive control during flanker performance. Biological Psychology, 109:93–

102.

Murias, M., Webb, S. J., Greenson, J., and Dawson, G. (2007). Resting state cor-

tical connectivity reflected in eeg coherence in individuals with autism. Biological

psychiatry, 62(3):270–273.

Nakamura, T., Hillary, F. G., and Biswal, B. B. (2009). Resting network plasticity

following brain injury. PLoS ONE, 4(12).

Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., and Hallett, M. (2004). Iden-

tifying true brain interaction from eeg data using the imaginary part of coherency.

Clinical neurophysiology, 115(10):2292–2307.

Nuwer, M. R., Hovda, D. A., Schrader, L. M., and Vespa, P. M. (2005). Routine

147



Ph.D. Dissertation - Rober Boshra McMaster University - Engineering

and quantitative EEG in mild traumatic brain injury. Clinical Neurophysiology,

116(9):2001–2025.

Rakic, P., Bourgeois, J.-P., and Goldman-Rakic, P. S. (1994). Synaptic development

of the cerebral cortex: implications for learning, memory, and mental illness. In

Progress in brain research, volume 102, pages 227–243. Elsevier.

Robinson, M. E., Lindemer, E. R., Fonda, J. R., Milberg, W. P., Mcglinchey, R. E.,

and Salat, D. H. (2015). Close-range blast exposure is associated with altered

functional connectivity in Veterans independent of concussion symptoms at time

of exposure. Human Brain Mapping, 36(3):911–922.

Ruiter, K. I., Boshra, R., Doughty, M., Noseworthy, M., and Connolly, J. F. (2019).

Disruption of function: Neurophysiological markers of cognitive deficits in retired

football players. Clinical Neurophysiology, 130(1):111–121.

Shumskaya, E., Andriessen, T. M., Norris, D. G., and Vos, P. E. (2012). Abnormal

whole-brain functional networks in homogeneous acute mild traumatic brain injury.

Neurology, pages 175–182.

Sours, C., George, E. O., Zhuo, J., Roys, S., and Gullapalli, R. P. (2015). Hyper-

connectivity of the thalamus during early stages following mild traumatic brain

injury. Brain Imaging and Behavior, 9(3):550–563.

Stern, R. A., Adler, C. H., Chen, K., Navitsky, M., Luo, J., Dodick, D. W., Alosco,

M. L., Tripodis, Y., Goradia, D. D., Martin, B., Mastroeni, D., Fritts, N. G.,

Jarnagin, J., Devous, M. D., Mintun, M. A., Pontecorvo, M. J., Shenton, M. E.,

148



Ph.D. Dissertation - Rober Boshra McMaster University - Engineering

and Reiman, E. M. (2019). Tau Positron-Emission Tomography in Former National

Football League Players. New England Journal of Medicine, 380(18):1716–1725.

Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10):2015–2028.

Todd, J., Michie, P. T., Schall, U., Karayanidis, F., Yabe, H., and Näätänen, R.
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CHAPTER

6 Summary and Conclusions

The current dissertation presented a series of independent studies that aimed to bring

an expansive body of neurophysiology research another step towards a realized mTBI

assessment tool. This work established the need to develop an expert model to cap-

ture EEG/ERP characteristics not readily attainable even by neurophysiology experts

(Chapter 2). Motivated by these findings, the first ML study reported a successful ap-

plication of an automated classification mechanism that is transparent in its decisions

(Chapter 3). The learned model yielded promising performance and confirmed the hy-

pothesis that the significant group effects from Ruiter et al. (2019) can be transferred

to a more clinically-useful individualized assessment. The following study vastly ex-

panded on the first, with an increased sample-size that enabled a more elaborate

machine learning design. Results confirmed a definite divide between the concussed

participants and controls on the single-subject level and established a fully-realized

deep learning architecture, enabling an automated feature extraction procedure. The

added layer of longitudinal comparison enabled direct comparison to potential cor-

relations to symptomatology. Chapter 5 was a return to group-level statistics in an

effort to answer a question of a wider scope – whether concussion induces dynamic

or static effects on the human brain through time. The study found a critical change
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between immediate and long-lasting effects of mTBI. Further, a comprehensive view

of the modern concussion literature was incorporated into a theoretical model of con-

cussions. The model identifies a list of unknowns and offers a detailed framework for

future question formulation with concrete falsifiable claims.

6.1 Summary of Findings

Taken as a whole, the work detailed in the present dissertation served to fill a number

of gaps in the literature, replicate a number of findings, and create a preliminary

theoretical model of mTBI based on an agglomeration of research studies. These

findings are summarized here to address the dissertation’s main goals (see Chapter

1).

1. While concussion’s effect on ERPs is visually distinguishable on the group level,

a human expert cannot reliably detect that with visual inspection on a single-

subject basis. This is argued to result from a variety of factors that incre-

mentally obscure an interpretation. First, while an expert can be argued to

be the standard in detecting an all-or-nothing effect (per severe TBI cases),

classification of a modulated signal is a vastly more complex problem; this is

supported by the results in chapter 2. Second, given the non-static nature of

mTBI effects on EEG/ERP, an expert might require information beyond the

waveforms – e.g., age, time since injury, and medical history – to accurately

identify response aberrations. Third, a clear understanding of the progression

and its effects on EEG/ERPs is required, followed by a thorough transfer to

clinical neurophysiologists to maximize their performance. Lastly, presented
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results have shown that traditional practices in analyzing ERPs can be mis-

leading when targeting the identification of a specific pathology. For instance,

presented midline electrodes and single-deviant waveforms may simply not pro-

vide the necessary information to an expert observer (chapter 2). In essence,

the work does not discount the necessity of human experts in formulating the

parameters to maximize the performance of an EEG/ERP tool; however, an

argument is made for an alleviation of the complexity of the problem using

automated expert-systems especially designed for this application.

2. Explainable ML is of key importance in applications aimed at the clinical set-

ting. Relating a black-box’s output and input in a human-understandable for-

mat is essential for an expert’s validation of the model. Moreover, model trans-

parency enables the utilization of a trained model to identify features of interest.

Our results emphasize this statement by a key finding from chapter 3. Inves-

tigating the decisions made by the trained model to achieve high performance

indicated the implication of the N1/P2 complex, a low-level ERP, in long-lasting

manifestations of concussion. Critically, we argue that the lack of reports on

that effect is attributable to traditional ERP analysis’ inherent bias towards a

rigid set of ERPs investigated in concussion.

3. Identification of individual subjects afflicted with concussion is achievable using

EEG/ERP in combination with ML methods. The presented work initiated

and emphasized the utility of ML in ERP data in the detection of concussion

across two critical populations: the recently afflicted and those with a history of

repeated hits to the head. The promising performance across both groups urges

for further work to incorporate and adopt the presented tools beyond research
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studies, motivated by the potential critical benefit for the concussed population.

4. Responses to the same EEG/ERP designs alter dramatically at different states

(acute vs. chronic) of injury. This was tested and partially confirmed using

ML methods (unreported); however, a thorough examination of that inter-

action through event-related FC was detailed in chapter 5 and supported a

complex view of mTBI’s progression from the point of impact to ageing with

the injury. Concretely, immediate effects of mTBI on the brain induce sev-

eral layers of hyperconnectivity and hyperactivation whose mechanisms are not

completely understood. These immediate effects are observable equally on RS

EEG, EEG/ERP, neuroimaging, and behaviour. As the brain transitions into

a more stable state, adapting with a non-transient yet unobserved damage to

the brain, many of the previously mentioned effects fail to manifest unless the

brain is put under a considerable cognitive load. That stage is referred to as the

post-acute stage. Due to the consistent loss of cognitive capacity during aging,

strategies to manage the unobserved damage become unsustainable, causing

what is referred to as the chronic stage of mTBI. Thus, the author argues that

a complex model of mTBI is necessary, both for a comprehensive understanding

of the injury, as well as to guide future exploration of the problem-space using

single-subject analyses.

5. Chapter 5 detailed the first investigation of WPLI in 94 subjects to examine

the influence of concussion episodes on event-related FC. Results showed an

increased overall connectivity observable directly after concussion. In contrast,

subjects who had sustained their latest concussion an average of 28 years prior

to testing exhibited a significantly decreased FC. In addition to complementing
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the multiple facets of the proposed model in chapter 5, these results introduce

event-related FC as an important tool in concussion research.

6.2 Scientific and Clinical Implications

In the move towards quantitative measures of concussion assessment, EEG/ERPs

are one of the most promising, with studies observing concussion effects on ERPs

across the entire timeline of injury progression and even after symptom resolution

(Broglio et al., 2017; Ruiter et al., 2019; De Beaumont et al., 2009; Gosselin et al.,

2012; De Beaumont et al., 2012). The present dissertation leveraged these ERPs in

conjunction with ML to develop an accurate identification tool for concussion both in

the acute stage (chapter 4) and later in the chronic stage (chapter 3). In contrast to

previous work leveraging ML for concussion identification using RS, this methodology

was based on a neurophysiological measure shown to sustain long after injury date

(Nuwer et al., 2005; Rapp et al., 2015). Of interest, ERP results indicated higher

performance even in acute cases compared to earlier ML work on mTBI (Prichep

et al., 2012; Cao et al., 2008). This provides further evidence that the inherent

complexity in the design and acquisition of EEG/ERP compared to RS EEG data is

warranted and provides a significant benefit in mTBI identification.

Rapp and Curley (2012) have described the examination of ERPs in the context

of mTBI as limited to amplitude and latencies of the defined components, suggest-

ing that more intricate analysis of the waveforms may yield improvements in clinical

utility. The present dissertation forms the closest instance in the literature of that

exploration. Inspecting the waveforms beyond traditional analyses allowed for both a
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clearer view on the modulations of the ERPs to the pathology, as well as gave the mo-

tivation for an in-depth inspection of the progression of ERPs after injury and across

the lifespan. Based on work presented in the earlier chapters, a theoretical model

has been derived to represent the often incompatible reports from different mTBI

assessment modalities: behavioural assessments, ERPs, RS EEG, and neuroimaging

(primarily fMRI).

The model theorizes that immediately after concussion, the brain is in an unstable,

hyperactivated state that is attempting to reconfigure and adapt to the injury (Iraji

et al., 2016; Sours et al., 2015). In addition to the symptoms, cognitive deficits, and

balance problems associated with concussive injury (McCrea et al., 2003; McCrory

et al., 2017), most neuroimaging methods are able to observe this state of brain func-

tion as aberrant (Baillargeon et al., 2012; Ruiter et al., 2019a; chapter 4; chapter

5). Particularly, the brain is theorized to be in a general state of hyperactivity and

hyperconnectivity (chapter 5). Beyond the acute stage, the model provides a concrete

theory on the conflicting reports of behaviour vs. imaging, where numerous reports

have shown behavioural signs of injury to normalize within a few weeks (McCrea

et al., 2003; Martini et al., 2017; McCrory et al., 2017), while imaging has shown

a sustained difference in observable effects despite symptom resolution (Cao et al.,

2008; Guay et al., 2018; Broglio et al., 2011). The model attributes the normalization

of symptoms to the brain’s ability to reconfigure after the acute stage, enabling an

allocation of resources to counteract the injury’s damage. The ability of neuroimaging

to still observe the effect is argued to be a factor of processing strain on the concussed

brain (McAllister et al., 2001) – forcing the mechanism of allocation to execute and

thus, its manifestation on ERPs such as the N2b. In contrast, the P300 was posited
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to be a more static ERP, with an attenuated effect that manifests and does not typ-

ically normalize after injury. Lastly, the model identifies the MMN and the N1/P2

complex, lower-level processing ERPs, as indicators of the brain’s inability to sustain

the compensatory allocation of cognitive resources, typically observed in older con-

cussion cases (Ruiter et al., 2019; chapter 3). Despite the model’s contextualization

of several reports of disagreeing results, several points are acknowledged as unknown

and require further research to clarify (discussed in depth below).

Subjective assessment of concussion has been numerously identified as fallible and

inaccurate (Broglio et al., 2007). That is, a clinical judgment based on intangible

evidence that is not quantifiable and rigorously optimized can be more akin to guess-

ing the state of a patient (Broglio et al., 2017). Moreover, behavioural assessments,

symptomatlogy scales, and pencil-and-paper tests are also susceptible to a variety of

factors such as malingering, purposely scoring low on baselines, and a lingering degree

of subjectivity. While adapting several tests for computer presentation was shown to

improve sensitivity in some cases, there remains a degree of scrutiny regarding reli-

ability and false-positive findings (Broglio et al., 2017; Ruiter et al., 2019). All the

former issues notwithstanding, the detection of brain alterations despite symptom

resolution and typical neurocognitive performance remains a concern for the depen-

dence on behavioural measures (McAllister et al., 2001; Ruiter et al., 2019; Broglio

et al., 2009). The present dissertation provided a detailed investigation of a method-

ology argued to be clinically underutilized in mTBI. With respect to EEG/ERP in

general, the presented studies extend earlier reports of the cognitive responses’ alter-

ations after injury. Moreover, the extension of the results to single-subject analyses

was able to concretely define sensitivity and specificity measures with over 80% in
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both acute and chronic cases of concussion. While EEG/ERP specifically wasn’t the

target of criticism in Nuwer et al. (2005), the authors presented a valuable, systematic

analysis of how and why this methodology could be useful clinically. We argue that

in conjunction with the expansive literature of ERP effects – despite some inconsis-

tencies in the N2b, explainable by the theorized model – this dissertation provides

strong evidence that qualifies EEG/ERP methods for larger-scale, multi-site valida-

tion studies to facilitate clinical adoption. Specifically, the combination of ERPs and

state-of-the-art explainable machine learning models are argued to be a significant

improvement over clinical standards of concussion management and identification.

6.3 Limitations

The four studies detailed in the present dissertation exhibited a number of limitations

that warrant careful examination in light of the key implications highlighted above.

While each of the studies contained more in-depth account of these limitations specific

to the study, they are summarized here.

Due to logistical constraints commonly imposed on clinical research, the number

of subjects that took part in the the studies presented here were limited. While the

sample-size was sufficient for typical EEG/ERP studies, extending the methodology

to leverage ML was not straightforward. This was especially pronounced in chap-

ter 3 where a dataset of 39 observations (split across 2 classes) required rigorous

enforcement of validation measures. Notably, this is a common problem faced by

clinical application of ML (Combrisson and Jerbi, 2015; Miotto et al., 2017; Tzovara

et al., 2013), rendering many of ML’s state-of-the-art tools unusable and motivating

the design of TRODNet in chapter 4. Despite the efforts to mitigate the sample-set
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problem, there are many research questions that can only be addressed with a more

expansive dataset size.

Data heterogeneity was another factor limiting a lucid characterization of the

findings as was discussed in chapter 5. Specifically, gender was not controlled in

chapters 4 and 5; age varied between controls and the concussed group in chapter 4,

and subsequently chapter 5; and etiology of injury was not controlled in all studies.

While these are potential confounds with possible influence on the results, we have

argued the effects to be minor, if not unlikely.

It is important to acknowledge a primary assumption for all the presented work:

that group assignment (controls vs. concussed) was accurate. It can be argued that

wrong assignment was less probable in the younger population study (chapters 4 and

5) due to them being clinical diagnosed prior to participation; however, the assump-

tion that a professional football athlete had a history of concussion is equally plausible

(chapters 2, 3, and 5). This is more difficult to argue for the two populations’ respec-

tive control groups, where a participant’s assignment was solely based on their report

of not sustaining a head injury. Moreover, it is critical to acknowledge individual

variation in a pathology that is largely not well-understood. Clearly, dissecting indi-

viduals into a binary problem (concussed vs. controls) is an oversimplification that

is enforced to enable current work. With a lack of gold-standard for identifying and

characterizing concussion, there remains considerable work before such a gradation

can be realized (Broglio et al., 2017, 2007; McCrory et al., 2009, 2013, 2017).
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6.4 Future Directions

The two datasets captured and analyzed in the present dissertation offer a wide view

on the effects of concussion with a difference of more than 50 years in the participant

ages between the two. However, there are many intermediate points that require

further work to elucidate. In chapter 5, the theorized model leveraged previous work

and current findings to predict the trajectory of ERP, event-related connectivity, and

fMRI responses in the acute and post-acute stages broadly. However, it is critical to

identify what defines the end of the acute stage and an empirically defined progression

from that to the post-acute. Particularly, in addition to refining the proposed model

of mTBI, potential correspondence between symptom alleviation and objective brain

measurements can be invaluable in deciding concrete clinical guidelines of back-to-

play and back-to-work.

Findings reported in chapter 5 offer a novel view of potential correspondence

between EEG/ERP and fMRI results reported in the literature. The theorized model

was developed based on an overview of previous work that did not directly record

EEG/ERP and fMRI from the same set of participants. To confirm the posited

linkage, a future study is needed such that a processing load is kept constant and brain

responses are recorded, either simultaneously or sequentially from both modalities.

Particularly, a single multi-modal investigation in acute patients has the potential

to concretely establish a link between what is observed in individual ERPs, event-

related FC, RS EEG, fMRI-derived FC, and fMRI brain activation, in addition to

behavioural performance metrics and symptomatology scales.

The transition from post-acute to late-stage resurgence of adverse mTBI effects
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remains unclear. The theorized model predicts an unavoidable decline with aging;

however, given that aging itself is very inconsistent across individuals, the model’s

prediction can be argued as specious. A prospective study on a concussed group late

into adulthood is required to clarify the connection. We argue that studies such as

that conducted by Martini et al. (2017), prospectively examining acute-stage mTBI

to pre 40 year-old participants, can only observe behavioural effects once the timeline

shifts later into adulthood. The proposed study is a substantial undertaking, with

numerous variables that require capturing and proper statistical control; however, we

argue that it is necessary in order to reach a mature understanding of concussion.

Moreover, enabling long-term tracking beyond self-reports in chronic cases is critical

in a world with an unprecedented increase in its geriatric population (Martel and

Malenfant, 2010).

Irrespective of findings in intermediate stages between chronic and acute concus-

sion, machine learning modeling based on ERP features has shown promise as a direct

tool for a clinical application (see chapters 3 and 4). Rigorous validation and statis-

tical confirmation metrics notwithstanding, a large-scale application of the developed

models is necessary for a more accurate estimate of the models’ generalization to un-

seen data. Particularly, a multi-site, multi-group study is proposed such that a model

is applied to unseen data to measure accuracy, sensitivity, and specificity, deciding

whether implementation of the models is clinically useful (Nuwer et al., 2005). Essen-

tially, 3 factors should be assessed: 1) capacity for differential diagnosis/identification

based on commonly occurring co-morbidities in mTBI (specificity), 2) performance

reliability across different sites, and 3) improved sensitivity either compared to or in

conjunction with other clinical tools. Moreover, a large scale study would confirm
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the validity of results given different etiologies, age-groups, and education levels, as

well as provide insight on the impact of injury stage on model performance and most

implicated ERP features.

The datasets analyzed in the present dissertation contained multiple paradigms;

of which only one, the active multi-deviant oddball task, was used for all analyses

discussed here. Of interest, the datasets contain responses to a passive variant of the

oddball task with four times the number of trials. Previous work by our group has

shown distinguishable long-lasting effects of mTBI in the retired athletes in the passive

task (Ruiter et al., 2019). Moreover, the N1/P2 complex effects reported in the active

task may be observed passively due to their elicitation irrespective of participant

attentiveness (Näätänen and Picton, 1987). Future application of the present findings

and modeling techniques on data from the passive oddball may provide useful insight,

as well as improve performance when combined with data recorded actively. Further,

responses to language comprehension have also been recorded. Some work has shown

N400 effects following concussive hits to the head, motivating further investigation of

these data (Fickling et al., 2019).

No investigation of single-subject effects was conducted using event-related FC

differences found in chapter 5. An application of ML, as proposed in chapters 3 and

4, is warranted to investigate particular effects and potential clustering of FC effects

on the individual level. Moreover, the effects found in chapter 5 suggest a potential

improvement if FC features are to be added to candidate features for training, with

further implications on the overall utility of this methodology in concussion.

All reported results argued for adverse effects of concussion on neurophysiology

that are modulated by different injury stages. This hypothesis suggests a difficult
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generalization of a model trained on one group to apply to the other; however, as

more data are collected and incorporated into model training, ensemble approaches

can be invaluable in providing a comprehensive model that is applicable to a more

heterogeneous population. A follow-up study incorporating data from both datasets

is warranted, provided more data are collected to mitigate knowledge-leak bias, i.e.,

knowledge about the data as a whole additively and artificially increasing perfor-

mance.

All ML methods applied in the presented investigations were supervised. Super-

vised ML imposes strict labeling on the dataset, which has been argued to be inher-

ently inaccurate (see above). While supervised methods provide a simple framework

to facilitate analyses, we posit that unsupervised learning is critical for an appropri-

ate analysis of a pathology as complex as concussion. In brief, unsupervised methods

provide the flexibility to capture patterns in the data not directly observable in the

strict paradigm of supervised learning. For instance, cluster analyses can elucidate

effects on the features beyond a binary classification of concussion history. Observed

clustering patterns may relate to injury severity, injury location, biological disposi-

tion, age, and different co-morbidities – all important factors that add to concussion’s

complexity.

Information regarding prediction of outcome was limited provided the current

datasets. Nonetheless, results from chapter 4 provided an interesting finding of par-

ticipants that exhibited symptom resolution being distinguishable as such prior to that

taking place. While this can be regarded as a critical finding, the exploratory nature

of this result remains under scrutiny. Further, while identification of concussion at

different stages is critical, a potential predictive capability of ERP or event-related FC
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may have serious beneficial consequences on the current standard of concussion man-

agement. This is most pronounced in two key cases. First, if ERP or FC signatures

may indicate whether a concussion patient is on a good trajectory towards recovery,

minimal intervention, and resources, would be allocated to their management. In

contrast, early intervention for worse trajectories may prove beneficial to the patient.

Second, an early detection of a marker for symptom resurgence later in life, despite

the lack of symptoms at time of testing, may allow clinical intervention to either miti-

gate resurgence altogether or prolong the time of cognitive compensation. In essence,

work is required to establish a direct neurological point of reference, invisible through

behaviour, that enables empirical examination of intervention and rehabilitation ef-

forts. Future work is required that prioritizes prospective cohort designs to provide

the necessary data for such a seminal examination.

6.5 Concluding Note

The present dissertation provided the necessary groundwork to facilitate a viable

migration of EEG/ERP from research context to the clinical setting. That was ac-

complished by training explainable machine learning models on a comprehensive set

of datasets across two key injury stages: acute and chronic. Findings supported the

ability of ML to accurately identify neurophysiological effects of concussion, while

affirming the notion that concussion’s adverse effects dynamically change after in-

jury. The concluding study on the same data expanded the literature to encompass

event-related functional connectivity, showing a hyperconnected brain directly after

injury that diminishes to below-normal in the chronic stage. A theoretical, falsifiable

model of mTBI and its progression has been proposed, providing a firm framework
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to synthesize future hypotheses spanning a multitude of modalities. While the work

introduces a new set of unresolved questions and motivates a plethora of future stud-

ies, it provides a series of empirical, objective findings with the aim of revolutionizing

current management strategies for the silent epidemic.
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