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Chapter 1
Introduction

The age old question of how statistical mechanics emerges from the microscopic laws of na-
ture has recently seen a resurgence of interest due to novel experiments with ultra-cold atomic
gases and analytic ideas from quantum information theory [[1H6]. Traditionally, statistical me-
chanics was studied in the context of a small sub-system coupled to a thermal bath [2,7-11].
Coupling to a bath guarantees the subsystem relaxes to the thermal state with identical tem-
perature to the bath [12-15]. Although the composite system must evolve in time according
to the Schrodinger equation, the sub-system itself does not demonstrate unitary dynamics and
flows towards a mixed state. This strong assumption on the initial state along with the cou-
pling to the bath is not always possible. So-called pure state statistical mechanics in systems
isolated from an environment has recently become a topic of interest [2,7,/8]. Such isolated
systems can be simulated with novel experiments involving optical lattices and trapped ions
allowing the creation of quantum systems decoupled from the outside environment, making
them closed systems with unitary time evolution [1,/16-30]. Such experimental control allows
the direct experimental investigation into foundational questions of quantum statistical me-
chanics, namely, how does unitary dynamics lead to its emergence [21,[2331-33]]? Suppose
we prepare a d-level system with [V lattice sites with a time independent local Hamiltonian
Hina pure state 1)) where the state is normalized (¢[1)) = 1. We could similarly use the
density matrix formalism and write p = [¢)(1|. This state is said to be pure due to a single
outer-product defining the density matrix. A mixed state would instead be a weighted sum of
pure states Pmixed = . Ps|¥s)(¥s|, where Y p, = 1. Let the Hamiltonian have eigenvec-
tors/eigenvalues H|E,,) = E,,|E,,). Time evolving our pure state with the Hamiltonian is

written as,
dN
(1) =) eme™ P Ey), (1.1)
m=1
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where ¢, = (E,,|1). We then fix the energy density as the quantity, %(Wﬁ |t)) = u. Due to
unitary time evolution the purity of a pure state is conserved in time, that is,

if p(t) = [(O) ()], tr(p(r) = tr (p()%) = 1, (1.2)

meaning evolution towards a mixed state (ex. microcanonical or Gibbs sate) is impossible
due to the initial conditions. However the expectation value of some observable A could
evolve to be similar to that of a mixed state. To begin the quest of recovering statistical
mechanics we then need to justify the equilibration of the expectation value of the observable.
If equilibration occurs, the equilibrated value of the observable would need to be that of the

infinite time average. We may write the time evolution as,

(A1) =Y A€ P =N e P A + Y AP TEE(13)

m m#n

where A,,,, = (En|A|E,). The last equality features two sums, one of which is a constant
of motion, and the other a dephasing term. To proceed, we need to now make assumptions on
the energy eigenvalues. If the Hamiltonian His quantum chaotic, the level statistics usually
obey Wigner-Dyson statistics implying level propulsion [[7]. So we may make the assumption
that, for a chaotic Hamiltonian,

E, =E, < m==%F. (1.4)
Then the infinite time average is,
. 1 T )
(At — o)) = Jim = [ (At - S lenf* A (1.5)

There has been work done to study when and how equilibration like this occurs [2,34-4 1]
A seemingly strong bound for this form of operator equilibration is given in [37]. First we
define the infinite time average state (regularly called the diagonal ensemble),

T—o00

T
o= Jim / P01 =3 e P Ew) (. (1.6)

Then we may investigate the average distance between the state and the diagonal ensemble
over an infinitely long time window and bound it [37]],

2 1 ’
A=

(1.7)
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where ||A||? is the 2-norm and,
1

tr(w?)

It is argued from equation that the difference between the late time state and w would

(1.8)

deff -

be beyond experimental precision to detect due to the tightness of this bound [37,40]. Note
however, that this is an infinite time average. Attempts have been made to extend these argu-
ments to finite time, providing a stronger statement about equilibration [2,42-55]]. Despite
these efforts no generic proof of finite time equilibration for local Hamiltonians under reason-
able assumptions is known. Most bounds scale poorly with system sizes or are applicable in
few scenarios. For an integrable, non-interacting model, namely free fermions, equilibration
in finite time for a general class of initial states and operators was recently proven [56]. A

free fermionic Hamiltonian in one dimension is written as,

H=>"M;flf; (1.9)
1,

where {fi, fi} = {fi, f1} = 0and {f], fi} = 0, are fermionic operators. If the Hamilto-
nian in equation|1.9|is local, then from [56]],

Dy —TE| < 7, (1.10)

where ['; ; are two point expectation values of the form, ( f;r fj> + h.c, the superscript (eq)
implies an infinite time average value, C' is some reasonable constant and v > (. This result
is true for a generally large class of initial states, requiring only exponentially decaying cor-
relations. This also covers all operators due to the Hamiltonian preserving Gaussian statistics
of the initial state, or evolving towards them in time [57]]. If we instead investigate an inter-
acting system which is simply quenched away from a thermal ensemble, one may track this
equilibration with certain operators using dynamical correlation functions [58,(59]],

C(t) = (A(t)A). (1.11)

Then for general systems, a rigorous proof of equilibration in finite time has been found [60],
1 (T]C(t) — Cxl? (a(e) 1 )
= ————dt <A4An | —=+d(€) |, 1.12
T /o (C(0))* oc T (€ (112

where a(€), o are numbers that are on the order of one, d(¢€) is very small and the average is

over a thermal state.
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Once in equilibrium, one needs to justify why the diagonal ensemble (equation [I.5)) en-
codes the same physics as a thermal state. If we again use the ansatz of quantum chaos and
formulated our Hamiltonian as simply a random matrix, then one finds that in the eigenbasis

of such a Hamiltonian, the observable looks like [7],

A2

: nt DR : (1.13)

where D is the dimension of the Hilbert space, A = A, = 5>, Apm and R, , is a
random variable with zero mean and unit variance. Using this result we find that equation

at equilibrium reads [7]],

> e Amm ~ AN el = 4, (1.14)
m m
meaning that this result is independent of temperature, energy density, and other thermo-
dynamic quantities. We know however that such equilibrium values are dependent on these
quantities, so this line of reasoning needs to be extended. One success of this ansatz is that the
off diagonal elements of our observable shrink with the size of the Hilbert space, meaning the
dephasing term in equation[I.3]is a summation over quite small numbers. This then suggests
equilibrium can be reached quickly in generic situations. Despite this, the approach needs
to be extended in order to predict the emergence of statistical mechanics. It is then insight-
ful to compare the expectation values of statistical ensembles to equation [[.5] Let us define
the microcanonical ensemble in the following way (taking the definitions from [41,61]); the

microcanonical subspace is defined as,

R 1)
T, 5 = span{|E}) : H|Ey) = Ex|Ep) Au—0 < Wk < u}, (1.15)
then the microcanonical ensemble is defined as the uniform mixture of these states,

1
Tus = 37 Tus: (1.16)

where 7, 5 is the projector onto the space spanned by T, s and M = dimT,, 5. Writing this

more conventionally,
1
Tus =57 > E)(ER. (1.17)

k:‘Ek>eTu,5

The expectation value of the observable A in the microcanonical average is,

A 1
tr(TuﬁA):M Z App. (1.18)

k| Eg)eT, s
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Alternatively we can define the Gibbs (thermal) ensemble as,

1 | ;
ps= e M=~ Xk:eﬁEk\Ek)(Eky, Z=tr (aﬁH) . (1.19)
where [ is determined by, %tr(pgﬁ ) = u. The thermal average of the observable is then
given by,
- 1
(A)s =D e P Ak (1.20)

k

Then how could our equilibrated value given in equation [I.5]be equal to the values found in
equation [I.18|or[T.20P It is useful to note that, if the observable is local and the model is lo-
cal then the expectation values of equation and are identical in the thermodynamic
limit, constituting equivalence of ensembles in closed systems [41,61]. A potential answer to
the question of reproducing the expectation values is the Eigenstate Thermalizaton Hypoth-
esis (ETH) where the matrix elements of relevant observables in the energy eigenbasis are
conjectured to obey [[7,/62-66],

Amn = A(E)pp + e 5B f(E )R . (1.21)

Where £ = (E,, + E,) /2, a = (E,, — E,) /2, A(E), f(E,«) are smooth functions of
E and o, and S(E) is the thermodynamic entropy. There exist a large body of numerical
evidence supporting this conjecture in non-integrable systems. Evidence has been compiled
for its support in hardcore boson, spin and fermionic systems [7,/67-80]. There is however
no known analytical proof [2,/7,81]]. Likewise there is no accepted or rigorous definition of
what a relevant observable is. It is believed local observables are the most likely candidates to
obey the ETH [7,67]. However, it is also argued by Garrison and Grover that observables with
support on up to one half of the system size could satisfy the ETH [82]. Progress has been
made to analytically show similar statements hold. Equation [I.21] can be commonly referred
to as the strong ETH, requiring that all eigenstates obey it. This gives rise to the notion of
the so-called eigenstate ensemble, since the physics of the microncanonical ensemble can be
captured by the eigenstate with similar energy. This is seen through, for example, the Von
Neumann entropy S = —tr (pln p). Let us partition our closed system into two subsystems
A, B such that A encompasses less lattice sites than B. Then let py = trgp and V4 be the
volume of the subsystem A. If we take p = | E};)(E}| then the systems obeying equation[1.21]
observe a volume law in Sy = —tr (palnps) ~ V), for the energy eigenvectors [7,(81} /83,
84]. ETH models out of equilibrium have entanglement entropy increase linearly with time

between subsystems and dephasing and dissipation occurs [81]].

5
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Progress has been made with the so called weak ETH where equation [I.21]is relaxed to
most eigenstates. The following statement has been rigorously proved by Alhambra et al [60]
(see lemma 1, this result is an extension of previous results [85,86]). There exists a con-
stant 0 < o < 1/(D + 1) such that the following holds. Let H be a translation-invariant,
non-degenerate Hamiltonian with N sites on a D-dimensional lattice, p an equilibrium en-
semble [p, H| = 0 with finite correlation length £, and A some observable with support on a

connected region of at most N sites. Then, for any o > 0,
Prig,ep (| (Ex| Al Er) — trpA| > 8) < exp (—cSN P& per), (1.22)

where ¢ > 0 is a constant, and |F}) € p indicates that the eigenstates are sampled from the
equilibrium distribution p.

Equation [I1.22]tells us that, with large system sizes, the probability that any given eigen-
state generated randomly from an ensemble differs from the average of such an ensemble
by an amount ¢ is exponentially suppressed by both § and system size. This statement still
leaves room for the so-called quantum scars, eigenstates which violate equation which
have been recently investigated [[87-89]. These eigenstates, despite making up a vanishing
fraction of the total number of eigenstates, do not appear locally thermal, and are important
for physically relevant dynamics in several systems [87-89]. Quantum scars are evidence
that, even in systems believed to obey ETH, there exist eigenstates that do not obey equation
[[.21] In equation[I.21]the off-diagonal elements of these observables in the energy eigenbasis
are also predicted to be quite small. Although such a statement is not completely recovered
rigorously, it is possible to bound these elements for local observables. The following state-
ment proved by Arad et al. and separately by Oliveira et al. captures the smallness of the
off-diagonal elements for a large portion of the spectrum, using [90,91],

B = Ey| _scmn

(Ei|AE;)| < , (1.23)

where R, g, k are constants related to the structure of the Hamiltonian and lattice. Although
equation does not cover the entire spectrum, if the difference in energy is either small or
large, the eigenstate thermalization argument does not seem very far fetched. The intermedi-
ate region is however still an open question.

A notable counter examples to the ETH are the so called many body localized (MBL)
systems [67,92]. Localization can be induced in many ways, however a random or quasi-
periodic field are the usual mechanisms to induce this phase in spin models. The usual model

to study this phenomena is written (here with periodic boundaries) [67],

L
H=17) S 54 +\S7, (1.24)

i=1
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where S; = (5,5, 57) is a vector of spin 1/2 matrices, and )\; is a random field generated
from a uniform distribution on the interval [—A, A]. When A > J the model undergoes a
transition from an ETH to an MBL phase [[67,[81,92,93]]. The entanglement entropy observed
in the eigenstates of MBL models obey area laws between subsystems, growing like the area
of contact [[67,[81,92,93]]. They also do not equilibrate to the usual ensembles of statistical
mechanics, due to the lack of dissipation [[67,81,92,93]]. Arguably one of the most interesting
facets of the MBL phase is that out of equilibrium states build up entanglement entropy
between their subsystems like S4 ~ logt [94-98]].

Free models, namely quasi-free fermions are integrable and non-interacting, which re-
quires slightly different notions of thermalization and localization. Unsurprisingly, models
which fall into the category of equation have had much more progress in understanding
thermalization and localization properties. If the model is translationally invariant then a gen-
eralized form of the weak ETH holds [99,/100]. If selected randomly, eigenstates are locally

identical to generalized Gibbs ensembles of the form,

1 r 9
p= Ze_ Zj:l Bij’ (125)

where r is intensive in the number of lattice sites, 3; are determined by fixing the expectation

value of Qj and Qj is a conserved quantity. The Qj need to be of the form,
Q; =Y _ q;(k)ili, (1.26)
k

where ﬁ,i are fermionic operators which diagonalize equation and ¢; (k) is Lipschitz con-
tinuous at all but a sub-extensive number of points. Lipschitz continuity requires that there

exists some constant ¢ such that,
|q;(k1) — q;(k2)| < clky — kal. (1.27)

This is remarkably equivalent to the ensemble that free fermions were proved to equilibrate
to in [56]. The parameter r is then fixed by the correlation length of the initial state, and the

Qj are current operators of the form (in one dimension with L lattice sites),

L

A 1 2mlz\ 4.
0. = - ;cos <T> A, (1.28)

Equation [[.28] gives observables proposed by [56] which connects the generalized ETH
(gETH) proved in [[100]. Entanglement entropy scaling of the eigenstates has similarly been

7
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studied in these free models, finding that eigenstates experience maximal entanglement en-
tropy only on subsystems of vanishing fractions of the system size and obey volume laws
throughout the spectrum [101-103]].

If instead we investigate a free fermionic Hamiltonian with onsite disorder by filling the
co-efficient matrix M from equation with M;; = \;, where )\; are drawn from a uniform
distribution on the interval of \; € [—\, A] one can induce Anderson localization (AL) at any
A > 0 [81,83,/]104-106]. AL is the free model counterpart to MBL, similar to having gETH
to ETH. The AL single particle eigenstates are exponentially localized in real space which is
characterized by a localization length [[104,|107,/108]. The entanglement entropy also obeys
an area law for its subsystems [[104, 107-109]]. AL systems have exponentially suppressed
particle and matter transport. The easiest way to see this is through the AL version of the Lieb
Robinson bound. For generic models, one may write a Lieb-Robinson bound of the form,

(i=Fk|=vt)

14,0, B)lll < CIIANIBlle™ <, (1.29)

where Aj, By are operators on lattice sites j, k respectively, C' is some positive constant,
¢ > 0 and v is an upper bound for the maximal group velocity [104,|110]. For AL models,

equation becomes,

li=Fkl

114, (), Bu)lll < CIA|[[Blle™ <, (1.30)

and we refer to £ > 0 as the localization length [[104]]. With equation we may view AL
in the fermionic model as an insulator which lacks particle and energy transport. This lack of
transport suppresses generalized thermalization.

Now that we have summarized the two largest classes of models and their properties in
the processes of equilibration and thermalization (or lack of thermalization) understanding
this process from an information spreading perspective has recently become a popular topic.
During the process of equilibration, unitary dynamics must take the local information of our
initial state, and scramble or smear it to recover a state resembling a thermal ensemble [67]].
This may be concretely seen in the following way. Suppose we prepare two states pq, po
such that these two states have nearly identical energy, tr (f[ p1) = tr <]3[ p2 ). However we
prepare these states such that they disagree on the initial condition of some local observable
A, tr <121,01> # tr (flpg) Then if H satisfies the strong ETH, the two states are expected to
equilibrate to the same thermal state, where the inverse temperature 5 is determined uniquely
by the energy. This then implies both states after reaching equilibrium agree on the expecta-
tion value of A and the information of the initial conditions is lost. This process is referred to

as the scrambling of information. Understanding this process of scrambling is crucial in the

8
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pursuit of our understanding of equilibration and thermalization. To study this we first need
a function that could track this phenomena. A recently proposed correlation function called
the out of time ordered correlator (OTOC) is such a quantity [[111,{112],

C(a,t) = ([A®t), BI'[A(1), B)). (1.31)

where /1 B are local observables which commute at ¢ = 0. If the operators are both hermitian

and unitary the OTOC can be re-expressed as,

Oz, 1) = 2 — 2R[F(x,1)], (1.32)

where,

F(x,t) = (A(t)BA(t)B). (1.33)

From the perspective of condensed matter systems, the OTOC tracks the local operator Aas
it spreads its influence over the lattice through the degree of non-communitivity of the two
operators at different times. If C'(x,?) remains non-zero for late times, the system is said
to have scrambled its information. F(x,t) can be understood from a different perspective,
namely as a series of measurements. First acting on a state with operator B and allowing the
system to evolve for a time ¢ and then measuring A. The function F(z,t) is then the overlap
of this state and the state where these operations are reversed. The time it takes C'(z,t) ~ 1
defines the so called scrambling time. The early time approach to scrambling for some models
is expected to be of the form, C'(0,t) ~ e**! with a conjectured bound A\, < 27kpT /A [112].
Systems where this bound is tight are known as fast scramblers [113H118]]. There are however
arange of models that do not exhibit such growth [83.96,/119H123]]. The OTOC is filled with
rich dynamics, it has four dynamical regimes of interest that have various forms. These
regimes include two purely quantum mechanical regimes, early time and the wave-front, and
then the late time relaxation and infinite time values.

The early time growth is largely an artifact of the local nature of the Hamiltonian. Using
the Hadamard formula (see ref. [124]] lemma 5.3) one can conclude that the OTOC initially

grows with a power law that precedes the classical wave-front,

C(xz,t) ~ '@, (1.34)

where [(z) is some linear function of distance. This power law is independent of the in-
tegrability of the model and has been predicted and verified for a variety of models [109,
119,{125-129]. This growth is also known to be independent of disorder and has been found

numerically in localized regimes [[109, 128]].
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Following this early growth is the wavefront, the front at which classical information
travels. A universal form for the OTOC has been proposed [[130}/131]],

(1.35)

C(2,t) ~ exp (-AM> ,

tp

where )y is a Lyapunov exponent, v is the butterfly velocity and p is a constant. The wave-
front has received considerable interest and has been confirmed analytically and numerically
in a variety of cases and has even been used to track an ETH to MBL transition [[130-141].
Especially interesting is in a free model (equation with nearest neighbour hopping), a
standard saddle point approximation reveals the butterfly velocity to be equivalent to the
maximal group velocity with p = 1/2 [1304|131].

To rigorously define a scrambling time, and to claim whether the system does or does
not scramble, one needs to make arguments for late time values of the OTOC. Due to the
complicated nature of equation [I.3T] rigorous universal results in finite time are rare. Despite
this, some model dependent analytic results and many numerical results exist. For example,

in the XY spin chain an inverse power law is known to hold [127,{129]],

C(z,t) ~ tla +7, (1.36)

where o > 0 and the exact value of o depends on the choices of spin operators and the
anisotropy co-efficient while -y is the equilibrium value of the OTOC. Inverse power laws are
also known to hold for interacting models in both ETH and localized phases, while exponen-
tial decay has been observed for Floquet systems [121}|122]. Much less is known on what
conditions the OTOC actually goes to equilibrium, and how finite size effects might affect
this process. The infinite time average is usually studied using F'(z, t) where a decay to zero
would imply scrambling and returning to unity would mean an absence of scrambling. It
has been shown that 7, the infinite time value of the OTOC, is generally non-zero for in-
teracting models, localized models (neck-tie light-cone or the light-cone which spreads like
logt), or in free-models where non-local string operators are used [[83}106}/109,|120-122,
1274129, 1424146]. In the case of local operators in free models, v = 0, thus no scrambling
occurs [|109,]127,129].

F(x,t) is argued using equation to have a specific late time factorization, which is a
strong criteria for genuine scrambling [120,/147]], particularly at infinite temperature we have,

~ A

F(x,t = 00) = lim : ?M(t)f)’/l(t)f?)dt: (A%(B)2 + (A)2(B%) — (A)*(B)2. (1.37)
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To arrive at equation one needs to assume the strong ETH is true, making it a potential
marker of chaotic Hamiltonians. Such a factorization does not appear to be possible using
equation (weak ETH), meaning late time values of the OTOC should be able to distin-
guish strong and weak ETH regimes. This is contrary to the time correlation functions of the
form,

O(t) = tr (pA(t)B) , (1.38)

where the equation has a late time factorization theorem proved using only the weak ETH
in [|60], restated here for convenience.

Let H be a local, translation-invariant, non-degenerate Hamiltonian on a D-dimensional
Euclidean lattice of N sites, and let [p, H] = 0 be an equilibrium ensemble (such as a thermal
state) of finite correlation length & > 0. Let A, B be local observables with support on at
most N sites, where « is fixed and such that 0 < o < 1/(D + 1). Then,

: 4 di A A 2D 2
lim [ O(t)= = tr(pA)tr(pB) + O (@m log?(N)N D+1) . (1.39)

T—o00 0 T

Equation [1.39shows a dissipation that is present in weak and strong ETH systems. This
further suggests using the OTOC, which is equivalent to a four point correlator in time, is
necessary to capture physics traditional dynamical correlation functions cannot. The OTOC
is known to have an intimate relation with entanglement entropy, namely the second Rényi
entropy [[83]]. Again consider a system split into two sub-systems A, B. The second Rényi
entropy of the subsystem A is written as, Sf) = —log tr(p%). This entropy is then related to
the OTOC by [83]],

eS8 = N (VLT ) o, (1.40)
M;eB
such that the M/, operators are a complete basis in the subspace B and V = OO such that
the initial state was quenched with 0. Equation can be generalized to finite temperature
and presents a deep connection between the function F'(x,t) and the entanglement entropy
of the system.

Finally, the OTOC has also received attention from the experimental community as well.
The primary difficulty for measuring such quantities is the need to reverse time. Recent
proposals outline how one might probe the OTOC [[148-151]. The OTOC has been recently
experimentally realized on small quantum computers, directly probing scrambling [[152}153]].

Equilibration, thermalization and scrambling appear to be intimately related, however
their exact relation is unknown. As presented above, these fields are at their current stages

still quite popular and new directions are appearing regularly. Now that we have put the field

11
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into focus, the following chapters present three manuscripts as my contributions to these fields
during my Master of Science project. Further introductions and background are presented in

the manuscripts and my contributions are summarized at the beginning of each chapter.

12



Chapter 2

Out of Time Ordered Correlators and
Entanglement Growth in the Random
Field XX Spin Chain

In this chapter we present the article [109] which can be found published in Physical Re-
view B with DOI:10.1103/PhysRevB.99.054205. The work can also be found on arXiv as
arXiv:1810.00038. I am the primary author and contributor of this work. All numerics, plots
and original equations present in the article are created by myself, with helpful guidance from
my supervisor, Erik S. Sgrensen.

In this article we investigate the OTOC in the random field XX spin chain which exhibits
an extended (generalized ETH phase) and an Anderson localized phase. The Hamiltonian of
the model is written as,

L-2 L-1

H =0 (S7Sf+S!Sha) + ) Miss, @.1)
‘ i=0

where S7,SY and S7 are the spin-1/2 operators at site ¢, L is the number of sites. J is
our coupling co-efficient and the onsite fields \; are generated randomly from a uniform
distribution [—A, A\]. With A > 0 this model is an Anderson insulator and enters the AL
phase [104,|154]]. This model can be transformed into a free fermionic model with a Jordan

Wigner transformation [155]]. Using S = (S¥ +iSY)/2,
i—1 ) i—1 A
sto= TI(v-271f) f. sc =TI (1 =2715) J:

j=1 j=1

a1
s = fifi—5 2.2)
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which recovers,

g2 o L-1 o
H = 5 Z (fZTfiﬂ + sz»lfi) + Z)\j (f;fj - §> , (2.3)
i=0 o

which is a free fermionic Hamiltonian of the form given in equation[I.9] We study the OTOC
with operators which are strictly local in the Jordan-Wigner transformation ,

Cla,t) = (67 (t), 651 [67 (1), 3), (2.4)

A t\") 7y

where 67 = 257 are chosen because they are unitary.

The universal power law and wave-front form from equations and are investi-
gated. We find the power law [(z) = 2|x| for the model. We also find a discrepancy in the
description of the wave-front, finding that at the wave-front moving at the maximal group
velocity, the OTOC is better described by a Gaussian,

O(ZE, t) ~ ea(x,)\)t2+b(;t,)\)’ (2.5)

where a(x, \) is in general a negative and b(x, \) is positive. We also investigate the entan-
glement entropy in the AL phase and find slow entanglement growth for weak disorders.
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We study out-of-time ordered correlations C(x, t) and entanglement growth in the random-field XX model
with open boundary conditions using the exact Jordan-Wigner transformation to a fermionic Hamiltonian.
For any nonzero strength of the random field, this model describes an Anderson insulator. Two scenarios are
considered: a global quench with the initial state corresponding to a product state of the Néel form, and the
behavior in a typical thermal state at § = 1. As a result of the presence of disorder, the information spreading as
described by the out-of-time correlations stops beyond a typical length scale £qroc. For x| < &oroc, information
spreading occurs at the maximal velocity vm.x = J and we confirm predictions for the early-time behavior of
C(x, 1) ~ t*, For the case of the quench starting from the Néel product state, we also study the growth of the
bipartite entanglement, focusing on the late- and infinite-time behavior. The approach to a bounded entanglement

is observed to be slow for the disorder strengths we study.

DOI: 10.1103/PhysRevB.99.054205

I. INTRODUCTION

A recent conjecture [1] establishing a bound for the rate of
growth of chaos in quantum systems has spurred interest in
the study correlators of the form [2]

C(x, 1) = (W (x, 1), V(OI'W (x, 1), V(0)]), ey

where W and V are local nonoverlapping operators separated
by a displacement x, [W (x, 0), V(0)] = 0, and (-) is a thermal
average. If W, V are both Hermitian and unitary, it follows that

C(x,t) =2(1 —Re[F(x,1)])

with F(x,t) = (W(x, )V (0O)W (x, 1)V (0)) and F is therefore
referred to as an out-of-time ordered correlator (OTOC).
While W and V commute at t = 0, this may no longer be the
case at a later time giving rise to the notion of a growing “op-
erator radius” [3] defined as the distance Ry (¢), where F (x, )
significantly deviates from 1 for all |x| < Ry (¢). C(x,t) can
then be seen as a measure of the degree of noncommutativity
of W(x,t)and V(0) for t > 0, and if C(x, t) remain large for
an extended period of time the system is said to be scrambled.
From a state perspective the function F(x,t) describes the
process of acting with the local operator V on the state, time
evolving to some time ¢ and acting on the state with W some
displacement x away, and the overlap it has with the state
where these operations are inverted. In a chaotic system, this
overlap should decay in time to zero [4].

The time where C(x, t) becomes O(1) defines a “scram-
bling” time ¢, and for the early-time approach to scram-
bling it is expected that for some models C(0,t) ~ e
with the conjectured [1] bound A, < 2wkgT /h. Systems that
approach this bound are known as fast scramblers [5-10].
This is in contrast to a range of models that do not ex-
hibit this early-time exponential growth [3,4,11-15] and are
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therefore known as slow scramblers. In particular, OTOCs in
many-body localized systems [16,17] (MBL) have been stud-
ied [3,4,12-14,18-21] and early-time power-law growth of
C(x, t)is expected [3,4,12,14] in such systems. distinguishing
them from Anderson localized (AL) models where C(x, 1) is
expected to be a constant [14], at least for very strong disorder.
The behavior of the correlator C(x, t) is therefore capable of
distinguishing different phases.

More generally, if the spatial dependence is taken into
account, C(x,t) exhibits the butterfly effect [22-24] with
certain models exhibiting the behavior C ~ e*-¢~¥/v#) Here,
vp is the butterfly velocity that can be viewed as the velocity
of information in a strongly correlated systems. Perturbative
weak coupling calculations [24,25] recover similar exponen-
tial behavior, whereas random circuit models [26—28] show
a diffusively spreading C ~ ¢~*0=%0"/ and for noninter-
acting translationally invariant systems it can be shown that
[19,20] C ~ e~ &=w’/t" " A yniversal form has also been
proposed [20]:

@)

_ 1+
C(x,t) ~exp (—ALM)

tP

It should be noted that these different forms are only expected
to be valid close to the “wave front,” where x — vt is small.
We also note that, in general, vg can be different from vg [29],
the rate at which entanglement spreads, but for the models we
shall consider here vg = vg [30].

Recent studies [14,30] have also shown that C(x,t) can
be directly related to the second Rényi entropy S of an ap-
propriately defined subsystem, and scrambling in a quantum
channel can be defined in terms of the tripartite information
of a subsystem [30]. The quasiprobability behind the OTOC
[31-33] has also been studied.

The closely related concept of the growth of entanglement
after a quench has been intensely studied with the observation
of a logarithmic growth with time [15,34-37] as one of the
hallmark features of MBL. In contrast, a thermal phase should

©2019 American Physical Society
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exhibit linear growth of the entanglement and in the AL phase
a bounding constant entanglement is expected [14,38-42].

The relationship between scrambling, the OTOC, and ther-
malization has also been considered [43—45]. Models which
can be mapped to a quasi-free-fermionic model with de-
localizing dynamics have been studied showing that local
two-point correlation functions equilibrate to a generalized
Gibbs ensemble [46,47]. An interesting question is then as
follows: What signatures of generalized thermalization appear
in an OTOC? We address how our results contribute to this
discussion in the Conclusion.

There are therefore many aspects that make the OTOC an
object of considerable current interest, and exact numerical
results are of significant interest in particular in the presence
of disorder. Previous studies [14,18] have in particular focused
on MBL systems where both disorder and interactions play an
important role and severely limit the sizes that can be reached
in numerical calculations. If interactions are neglected, the
Jordan-Wigner transformation can be used to study OTOCs.
In the absence of disorder, such studies have been performed
on the quantum Ising chain [48], quadratic fermions [49],
and hard-core boson models [50]. In [48] scrambling was
observed at the critical point of the quantum Ising model in the
OTOC for operators nonlocal in the Jordan-Wigner fermions.

Here, we turn the attention to the one-dimensional XX spin
chain with a random field (RFXX):

L2 L1

H=7) (SIS5+S/S)+ ) st 0
i=0 i=0
where S7, S7, and S} are the spin-% operators at site i, L is
the number of sites, J is the interaction coefficient, and the
A; are the onsite fields applied to the z axis. The A; are taken
uniformly from the interval A; € [—A, A] and we set i = 1.
We shall refer to A as the disorder parameter and we shall
mainly be concerned with the weak disorder regime A < J.
This model describes a typical Anderson insulator and is in
the AL phase for any nonzero A. This model is known to be
dynamically localized [51] in the sense that it satisfies a zero-
velocity Lieb-Robinson bound. Furthermore, entanglement is
bounded at all times for this model [38]. However, relatively
little is known about the early-time behavior in the model
which is the focus of this paper. As we detail below, the
Jordan-Wigner transformation is applicable to the random-
field XX spin chain also in the presence of disorder and
sizable systems can be treated. To simplify the calculation,
we exclusively consider open boundary conditions (OBC).
We focus on two different scenarios: a quench from a simple
Néel-type product state with no entanglement of the following
form:

i =T151D, )

leS

where S = {/ € N :/ mod 2 = 0}. The second scenario cor-
responds to a typical thermal state

&)

with 8 = 1 and Z = tr exp(—BH ). Expectation values for the
two scenarios are then determined as

(O)neet = (¥[O[Y) and (O)y, = tr(p0). (6)

Our principal findings are the following. The propaga-
tion of the OTOCs essentially stops beyond a length &groc
that depends on the strength of the disorder A. For |x| >
Eortoc C(x,t) is essentially a constant, C(x, t) in agreement
with previous studies [14] performed at strong disorder and
very small £Egroc. However, for |x| < &groc the OTOC prop-
agates information with the maximal group velocity vy, = J
in the thermodynamic limit. This is the case for both the
product and thermal state. For modest A, £groc can be sizable.
For |x| < &oroc, the early-time regime of C(x, ) is shown to
behave as M in accordance with a recent proposal [48], even
in the presence of disorder, A # 0. For A # 0, the light cone
therefore has the shape of a necktie with a v-shaped tip. While
the bipartite entanglement in the RFXX model is bounded at
all times [38] we find that the approach to this bound at small
A is rather slow.

The plan of the paper is as follows. In Sec. II we out-
line some technical aspects of applying the Jordan-Wigner
transformation. Section III presents our results for the OTOCs
for the two different scenarios detailed above and in Sec. IV
discuss our results for the evolution of the entanglement after
a quench from the Néel product state. Finally, in Sec. V
we attempt to extract a localization length from the bipartite
entanglement entropy.

II. JORDAN-WIGNER TRANSFORMATION

In order to study the model (3), we employ the Jordan-
Wigner transformation [52]. Using S* = (S¥ £ iS))/2,

i—1 i—1
st=Tla-27m5. so=[]a -2/

Jj=1 j=1
Si=Ff-1 )

we recover a Hamiltonian

L2 -1
. J kA i A nin 1
H=33 (FFir+ Il + 34 (fjf,- - 5), ®)
i=0 j=0
which is a quasi-free-fermionic Hamiltonian with anticom-
mutation relations {fi, i} = {7, £/} = 0and {7, i} = 814
We adjust the spectrum to get rid of the constant term and
write

H=3 M} ©)
ij

where M is the effective Hamiltonian with entries M;; = A;
and M; ; = % if [i — j| = 1. All other entries are zero. This
model can be used to study differences between a thermal
phase, with no disorder A = 0, and the localized phase with
A # 0. When L =0 and we restrict ourselves to the case
of (N) = ZlL (ﬁj‘,«) = % a regime where the eigenstates of
this model typically look locally identical to the Gibbs state
[53,54]. However when X > 0 the eigenstates are localized
and have exponentially decaying correlations characterized by
some localization length [38,55,56].
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Since M is real symmetric, for a given field realization
we can always diagonalize M = ADAT where AA” =1 and
D is a diagonal matrix with entries Dy ; = €. Defining new
fermionic operators

de = "Ajif (10)
J

ot >t
di =Y " Ajf]. an
J
we can then write the Hamiltonian as

A=Y edld. (12)
k

where the €, are the eigenmodes. A simple reorganization and
applications of Wick’s theorem when appropriate allows us to
express out-of-time ordered correlators in terms of two-point
correlations. More details on evaluating the time evolution of
this model are presented in Appendix A.

The problem of locality should be addressed. The Jordan-
Wigner transformation does not completely conserve locality,
the jth pair of fermionic operators are built from the 1, ... j
site spin operators, making it quasilocal. However, the S’f
spin operators are mapped locally to fermions, so we use
these operators in the OTOC. Similarly, for the entanglement
entropy we consider subregions A = {1, ...|A|} which are
blocks of spin sites preserved by the transformation. We
have not considered OTOCs that are not local in the fermion
representation as was considered for the quantum Ising model
in Ref. [48].

In the following, we mainly focus on the disorder strength
A =0,0.3,0.8 and we always fix J =1 and & = 1. We ex-
clusively consider open boundary conditions. For the results
presented in the following sections, we typically use a system
size of L = 400 and, unless otherwise noted, 1000 disorder
realizations of the Hamiltonian are considered and averaged
over. We use a simple average to extract mean values over the
disorder, leaving a study of the complete distribution over the
disorder for further study. When presenting results for several
time slices of C(x, t), each value of C(x, ¢) is shifted vertically
by a value of 0.25¢ for visualization purposes.

III. OUT-OF-TIME ORDERED CORRELATIONS

In this section we investigate the out-of-time ordered cor-
relations of the form

Clx.1) = ([67(0), 631 [67(0). 67)), (13)

where x = i — j is understood to be the displacement between
sites i and j. Since 67 is unitary, we may write

C(x,t) = 2(1 — Re[F (x, 1)]). (14)

‘We note that with this definition of C(x, ¢) the maximum value
it can reach is 2. Here,

F(x,t) = (67(1)6767(1)67). (15)

We will fix the position of the time-evolved operator as

i= % Varying j allows us to observe the operator radius

spreading over the lattice. As described above, we consider

two scenarios: a product state generated by a set of creation
operators where S = {/ € N : [ mod 2 = 0},

) =[181 0 =]]70), (16)

leS leS

where | |) and |0) are the all spin down and the vacuum state,
respectively. This state is a classical Néel state which has the
advantage of yielding essentially symmetric initial conditions
for spins surrounding the middle lattice point i = %, allowing
us to restrict our studies to one directional displacement on
the lattice and having initial fermions distributed evenly in
real space. For the second scenario of a thermal state, we
construct the Gibbs state with an inverse temperature § = 1.
More details on how these initial conditions are handled and
how C(x, t) is calculated can be found in Appendix B.

Before a more detailed discussion of our results for the two
different scenarios, we discuss general features of the results
for the OTOC and compare the two scenarios in Fig. 1 (solid
lines represent results for the product state, dashed lines for
the thermal state). Here, Fig. 1(a) show results C(x, t = 64) at
a fixed time r = 64 versus x. For both the thermal and product
states the effects of the disorder are immediately noticeable in
the smoothening of C(x, ¢) that is characteristically oscillating
with x in the absence of disorder. For A # 0, C(x, ¢) is sharply
peaked around x = 0 and a clear signature of a wave front
where C(x, t) first becomes nonzero is starting to disappear
for A = 0.8 for this time slice. Figure 1(b) show results for
C(x=17,t) at a fixed separation x = 7 versus time. Clear
differences between the results for the thermal state and the
product state are visible. Most notably, additional structures
appear in the peaks of C(x = 7, t) for the product state while
the thermal state yields a much smoother oscillation. The
long-time behavior of C(x = 7, t) is shown in Fig. 1(c). While
C(x =17,1t) clearly goes to zero for A = 0 for both scenarios,
indicating absence of scrambling, it appears plausible that it
attains a finite value in the long-time limit for A = 0.3, 0.8
for both scenarios. Since C(x = 7,t) does not saturate for
x =7 one could consider this weak (partial) scrambling for
A =0.3,0.8. We note that there is a rather large variation
in C(x = xp,t) with xy and as we discuss below C(]x| >
Eotoc, t) is essentially zero for all t when A # 0 indicating
the absence of scrambling beyond this length scale.

We now turn to a more specific discussion of our results for
the Néel product state and thermal state.

A. Product states

In Fig. 2 we show different time slices of C(x, t) versus x.
This shell-like structure is expected and parallels the results
seen in Ref. [48] for the quantum Ising chain when con-
structing the OTOC with two operators which are local in the
fermionic representation. However, key differences emerge
when disorder is introduced by increasing A. When A = 0,
we are in a thermal phase and we observe operator spreading
over the lattice in the sense that C(x, t) eventually becomes
becomes nonzero for any x for large enough ¢. The operator
spreads over the lattice at the maximal group velocity vpmax =
J as expected. For an individual x, the C(x, ¢) grows initially
in time, peaks, and returns to zero with some rebounding with
weaker peaks [see Figs. 1(b) and 1(c)]. Thus, A = 0 does not
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~0.8

64
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(x,t

0 0.4

10t 102

FIG. 1. Results for C(x, t) for three different disorder strengths
A =0,0.3,0.8. Comparing the product state and thermal state. The
labeling A refers to C(x, t) calculated in the thermal state with the
specified disorder strength. Solid lines are results for the product
state, dashed lines refer to the thermal state at § = 1. (a) C(x, t = 64)
versus x for a fixed + = 64, shown as green line in Figs. 2 and 5.
(b) Early-time behavior of C(x = 7,¢) at x = 7, shown as the solid
red line in Figs. 2 and 5. (c) Late-time behavior of C(x = 7, 1).

scramble. For A = 0.3 and 0.8 we observe operator spread-
ing at the maximal group velocity for |x| < &groc [Where
&ortoc characterizes a length sufficiently large compared to
the localization length such that the commutation relation
bound is sufficiently small as seen in Eq. (17)]. However,
for values of |x| > &oroc, C(x,t) = 0 for all times. Egroc 1S
shown in Figs. 2(b) and 2(c) as the dashed vertical red lines
and indicated the length scale beyond which C(x, ) < 1073
for all times. Hence, the operator radius is bounded by &groc
and does not spread into regions beyond &£proc. As expected,
&oroc shrinks with increasing A, as seen in Figs. 2(b) and 2(c).
For |x| < &oroc, C(x, t) initially grows with ¢ until it peaks
and then decreases to weakly oscillate around a nonzero
value, and never returns to zero. This is a fundamentally

A=0 Vmax =/ t
a max
10 (a) 80
70
8
60
6 50
=
Z<, 40
(@]
4
30
20
2
10
0 0
b A=0.3 Vmax=J 't
-
70
gl —— ——
I 60
R .50
T“: 6 J— I
Ko — ——— 0
G I — —
4 — 30
20
2
i —
0 ! ! 0
© J\ ; Vmax=J t
= i i ‘max =
10/ A=08 | | i w0
— 0
8 —
— 60
= — 50
><‘ 6 ™
(] = “
) = = *
1 1 10
0 ! ! 0

-100 -75 -50 -25 0 25 50 75 100

FIG. 2. Wave propagation plot of C(x, t) for the XX spin model
at disorder strength (a) A =0, (b) A =0.3, and (c¢) A = 0.8. For
visualization, each value of C(x,t) is shifted vertically by a value
of 0.25¢, demonstrating the operators radius spreading. The x axis
is the displacement from the center of the chain i = % The two y
axes are the values C(x, t) and the corresponding time. The maximal
group velocity vp,x = J is also shown (solid blue line). In (b) and
(c), the vertical dashed red line indicates £groc, the x value beyond
which C(x,t) < 1073 for any x. Egroc = 18 for A = 0.8 and 75 for
A=0.3.

different behavior than the no-disorder case. This long-time
limit of C(x, t) for |x| < &groc increases weakly with A while
it decreases with x. The light cone has therefore the shape
of a necktie with a v-shaped tip. This behavior is markedly
different from results in MBL systems where a much different
logarithmic light cone has been observed [15,18,21].

In Refs. [12,51] it has been noted that the Anderson lo-
calized states do exhibit a nonexpanding light cone with the
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commutator between two operators being bounded in time by
kil

II[A0, 0), B(x,1)]|| < Ce™ ¢, 17)
where A(0, 0) and B(x, t) are operators with local support and
x is the displacement in-between them. This result implies
that C(x, ¢) should have the same exponential behavior and
we have verified that the results in Fig. 1(a) for A = 0.8 and
for |x| < 8 are well described by

C(x,t = 64) ~ e, (18)

with a ~ 0.33. In Ref. [48] it was proposed that a universal

power law applies to all lattice systems where the Hamiltonian

is constructed from local interactions. For the quantum Ising

model this was shown to be [48] C(x,t) ~ t2*%~D_ This is

seen by considering the Hadamard formula, and an operator A

(see Ref. [57], Lemma 5.3):
o . . o s . R & s
eMAe™" = A+ s[H, A1+ [, [H.A])-- =) =L,

2! —n!

(19)

For the RFXX spin chain considered here we arrive at a

slightly modified power law by repeating the argument of

Ref. [48]. This is done by considering A = 67 and s =it

and determining the smallest n of the above suzm, such that
[L,, O"f=x] # 0. This corresponds to successively evaluating
the commutator between the Hamiltonian and the string
of operators that grows until it reaches j = x. The strings
which appear at the smallest order of ¢ for odd n look like

cpes . . .. AXAZAZ A7 AY
(shifting the indexes for simplicity) 656765 ...67 6; and
AVAZAZ A7 AXx . AXAZAZ A7 AX
636165 ...6;_ 167y while for n even, 656165 ...6° 67 and
AYAZAZ A2 AY 3 : —_ ] = 1
63665 ...6,_,6;_,, yielding n = j = x. At least for regions

inside the light cone we expect this behavior to be independent
of L. With C(x, t) the square of the commutator, we then find
for the RFXX model at early times

C(x,t) ~ 1M, (20)

with a power law that is independent of A and is therefore
not modified by the presence of disorder. This is purely a
quantum mechanical phenomenon occurring before the wave
front hits and is not a signature of scrambling. This phe-
nomenon is captured in Fig. 3 where results are shown for
A = 0 [Fig. 3(a)], A = 0.3 [Fig. 3(b)], and X = 0.8 [Fig. 3(c)]
where results are shown for a range of values of x confirming
the above power-law dependence. For |x| = 2, 4 we include
the next leading term in the fits: r2"*1. The power-law
growth in this model is thus universal for A = 0 as well as
in the the localized phase (A # 0), assuming we are inside
the light cone. Interestingly, outside of the light cone, despite
the derivation for the power law being independent of A, the
power law breaks down, signifying localization suppressing
quantum effects as well. Precisely, how localization effects
will start to dominate is not clear, although the clear presence
of correction terms for |x| < &proc is an indication that such
corrections eventually become dominant.

Finally, we study the behavior of C(x,t) at the wave
front which moves at a velocity vy.x = J = 1. Here, we use
(following Ref. [48]) the function

_amWmCex,n) 1

Gl 1) = 8C(x,t).

ot T C(x,t) ot

ey

10°
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FIG. 3. Early time C(x, t) at different values of x for each studied
A. The dotted lines for x = 1,3, 5, 6 are the power laws #?*! with
appropriate constants in front while the solid lines are the actual data.
For x = 2, 4 the next leading order power >**1 is required to fit the
data for every value of A.

Since we know the expression for C(x, t) exactly G(x, t) can
be calculated without resorting to evaluating the derivatives
numerically. Our results for this function are plotted in Fig. 4.
The wave front hits when ¢ — § = 0, and we again see the
initial purely quantum mechanical growth of C(x, t) before
the front hits. After the wave front hits G(x,¢) in all cases
becomes negative after a short time, and then an oscillatory
behavior about 0 is observed. For A = 0, the repeating pattern
appears to have a discontinuous change when going from
negative to positive values of G(x,t), however, this is most
likely an artifact of C(x,¢) returning to zero and bouncing
back upward as seen in Fig. 2. Because this behavior is
observed for extremely large values of ¢+ and large accessible
system sizes, we cannot conclude exactly how C(x,t) goes
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-2 0 2 4 6 8
t—x/

FIG. 4. G(x,t) graphed against ¢ — 7. This simulation required
5000 realizations of the random Hamiltonian to get reasonable error
bars. All averages were taken over the function G(x, ¢) itself.

to zero as t — oo for A = 0. For A ## 0 the behavior is
different since C(x,t) does not go back to zero, but instead
oscillates around a nonzero value. However, we see that as A
is increased, G(x, t) varies much less rapidly. Both A = 0.3
and 0.8 show oscillatory behavior in G(x, t) after the wave
front reaches but the amplitudes are suppressed with larger A.
Interestingly, we do not observe monotonic behavior on any
meaningful interval.

B. Thermal states

Next, we repeat these calculations, but with a thermal state
with 8 =1 instead of the product state considered in the
previous section. 8 =1 is an arbitrary choice because the
dynamics will overall depend primarily on the anticommu-
tator in time (which is B independent), for both disorder and
nondisorder. Hence, the variation with g is relatively minor,
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FIG. 5. Wave propagation plot of C(x,t) for the RFXX spin
chain at disorder strength (a) A =0, (b) A =0.3, and (c) A = 0.8
in a thermal state with 8 = 1. The x axis is the displacement from
the center of the chain i = % symmetry about the position i the wave
propagates symmetrically. The two y axes are the values C(x, t) and
the corresponding time. The maximal group velocity vm,x = J is also
shown as the solid blue line. In (b) and (c) the vertical dashed red line
indicates £oroc, the x value beyond which C(x, 1) < 1073 for any x.
EOTOC = 18 for A = 0.8 and 75 for A = 0.3.

in particular in the presence of disorder. This state is already
in equilibrium and exhibits a significantly different expression
for C(x, t) as detailed in Eq. (B8). In Fig. 5 we show C(x, t)
at different time slices. Although this plot looks similar to
the product state version, Fig. 2, differences emerge. First,
the peaks of the C(x,t) are smaller than was the case for
the product state, and the C(x, t) is much smoother as seen
in Fig. 1, traveling simply as a smooth parabolalike curve
in space. However, the oscillatory behavior occurs also in
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FIG. 6. Early-time C(x, t) thermal correlations at different values
of x for L =0, 0.3, 0.8. The dotted lines for x =1, 2, 3,4, 5, 6 are
the power laws #2/! with appropriate constants in front while the solid
lines are the actual data.

this case, and we again do not expect to be able to find a
description for how C(x, t) approaches zero in late time. For
this value of 8 = 1 we find the same values for Egroc as was
determined for the Néel product state.

We also see in Fig. 6 that the thermal states obey the power
law discussed in Eq. (20). For the thermal state the agreement
with the power-law behavior is better than for the product
state and no higher-order terms are included in the fits shown
in Fig. 6. This is most likely due to the absence of noise,
which indicates modeling the wave front will be easier with
this initial condition.

Finally, in Fig. 7, we show the wave front as described by
G(x, t) evaluated using the thermal state with 8 = 1. Unlike
the product state we observe monotonic behavior for the
approximate region t — 7 € [—2,2] and we observe strong

-2 0 2 4 6 8
t—x/

FIG. 7. G(x,t) as a function of t — 7 calculated in the thermal
state with 8 = 1. This simulation required 5000 realizations of the
random Hamiltonian to get reasonable error bars.

x and A dependence. Once again, the 1 = 0 diverges when
C(x,t) goes to zero, and the A # 0 cases do not exhibit this
behavior due to C(x,?) never returning to zero. Similarly,
we observe oscillatory behavior after the wave front passes.
At the wave front which we define as ¢ — § € [0, 2] we can
effectively approximate G(x, ¢) by a linear equation G(x, t) ~
m(t —x/J) 4+ c = at + b, due to the shapes of the functions
we expecta = a(x, A) and b = b(x, A). Interestingly, this form
suggests that at the wave front

a(er?
Clx, 1) ~ ™5 Hhehr, (22)
To follow the universal form of Eq. (2) one must have
Gr, ) ~ L 4 23
(0, 1) ~ o (¢ = vgt)" (vt + px). (23)

However, the form of Eq. (23) does not permit a linear
equation. Thus, we conclude that our results in Eq. (22) do
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TABLE I. Results of fitting the function G(x, ) ~ m(t — x/J) +
¢ = at + b where on the interval t — ’j—‘ € [0, 2] for different values
of A and x. The errors reported are one standard deviation on the

parameter.

A=0 m c

x=2 —0.72948875 £ 0.002 0.94258389 + 0.002
x=4 —0.59368064 + 0.001 0.88059725 £ 0.001
x=06 —0.5040499 4 0.0009 0.82791869 =+ 0.001
x=10 —0.44021805 £ 0.0008 0.78445194 £ 0.0009

A=0.3 m c

x=2 —0.73975833 £+ 0.002 0.92284197 + 0.002
x=4 —0.60431888 £ 0.001 0.85326093 + 0.001
x=06 —0.51342755 4+ 0.001 0.7949133 + 0.001
x=10 —0.44742463 £ 0.0009 0.74793077 £ 0.001

2 =0.8 m c

x=2 —0.81713901 =+ 0.002 0.74741784 +£ 0.003
x=4 —0.63429921 £ 0.002 0.60081936 + 0.003
x=06 —0.52336579 £ 0.003 0.4942889 + 0.003
x=10 —0.40722873 £ 0.003 0.40339502 +£ 0.004

not follow the proposed universal form (2). We currently do
not know an exact expression for a(x, A) and b(x, A), however,
for completeness we provide a table of the fitted values in
Table 1. The values for @ = m are necessarily negative and
¢ positive. The errors reported are one standard derivation.
The small errors indicate that the form given in Eq. (22) is
a reasonable description.

IV. BIPARTITE ENTANGLEMENT ENTROPY

We now turn to a discussion of the growth of entanglement
in the RFXX starting from the Néel product state which, due
to its product form, has zero entanglement. The entanglement
entropy between two subsystems A, B is defined with the
reduced density matrices py = trgp and pg = tryp,

Sap = —tr(paln pa) = —tr(ppIn pp), 24

where the equality is taken because regardless of the partition
pa and pp have identical nonzero eigenvalues [58]. For the
remainder of this section we partition the lattice into halves
and denote this quantity as S L.

Rigorous bounds for the entanglement entropy in the
RFXX model in the Anderson localized phase have been
derived and it is expected to obey an area law in one dimension
[38,55,59]. In particular, it has been shown that the growth
of entanglement remains bounded for all times [38]. This
means entanglement entropy even for arbitrarily small disor-
der strengths will be bounded by a constant in the late-time
limit. The approach to this limiting value is relatively less
explored and that is our focus here. Exact diagonalization
results on small systems have been discussed in Ref. [34]
where for relatively strong disorder the entanglement entropy
reached a constant at very short times.

In order to study the time-dependent entanglement, we
time evolve our state, Eq. (16), and calculate the entangle-
ment entropy at late times. We expect that at sufficiently
large system sizes we will not observe an increase in en-
tanglement entropy as the system grows since we will be

O NG W e

=

PO
wononnonn

50 100 150 200 250 300
L2

FIG. 8. Infinite-time average S. plotted against system size.
Each point is an average over 5000 random-field realizations and the
error shown is the standard error on the calculated mean. System
sizes are taken from L = 20 to 600. For these results the approxima-
tion yielding the infinite-time average is not valid and the resulting
volume law is incorrect.

close to the theoretical maximum. In Ref. [34] the authors
did a similar calculation for both Anderson and many-body
localized phases. However, comparing many-body localized
systems to Anderson localized systems restricts the system
sizes; here we do not have this restriction, focusing entirely
on the Anderson localization regime. Using the method in
[60] we can efficiently calculate the entanglement entropy
from the occupation matrix defined in Eq. (A12). Since we
are interested in late-time entanglement entropy, it is tempting
to consider the infinite-time average of the occupation matrix.
That is, for each element, we define (similar to [61])

T 1y s
Ny = fim [ a3 00

A

T
1 , n

= lim dt? Ze'(sk_ﬂ)’At,kAj,z( 11d1>
&l

T—o0 Jo

=Y AiAjcldldy), (25)
k

which amounts to a “dephasing” of the off-diagonal contribu-
tions. Note that we used the fact that the ¢; are expected to
be nondegenerate [56]. The infinite-time average occupation
matrix corresponds to a generalized Gibbs ensemble

1 A
— o 2Bk 26
p=e ; (26)

where Qk = El,jflk

However in Fig. 8 we see that the infinite-time average
occupation matrix predicts volume laws despite large disor-
der; the disorder only changes the slope, but the entangle-
ment entropy still grows linearly with system size. This is
most likely due to the infinite-time average being a valid
approximation for the equilibrated occupation matrix only on
small subsystems, where the difference disappears with the
system size. However, here we are focusing on subsystems
which are a constant fraction of the system we are growing.
Thus, the errors that disappear on a small scale add up on
the macroscopic scale and we lose the ability to effectively
describe the equilibrated state with the infinite-time average.
The above approximation is therefore not valid in the present
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FIG.9. S plotted against time for a system size of L = 400.
Results are shown for A = 0.3,0.4,0.5,0.6,0.7,0.8, 1, 2, 3. Each
point is an average over 1000 field realizations and the error shown
is the standard error on the calculated mean. The black dots pictured
are the maximum values observed for times up to ¢t = 10% for
A=0.38,1,2.

case. Instead, we must pick an arbitrary late time to calculate
the entanglement entropy which we here take to be r = 10'!.

In Fig. 9 we show results for the growth of the average
entanglement entropy with time for the range of disorders we
are interested in. It has been proposed that the saturation time
for entanglement entropy log(#sa) ~ L [34]. Intuitively, for the
Anderson insulator, taking a localization value § (1) <« L we
would expect the time it takes for the entanglement entropy to
get close to this saturated value to be much smaller, as only
small subsystems become entangled with each other. This is
indeed what we see in Fig. 9, by t = 500 all but A = 0.3 have
little to no growth, and A = 0.3 has slowed significantly com-
pared to its initial rise. However, the approach to a constant
value could involve logarithmic factors and for subsequent
analysis we therefore chose to study the entanglement at
t = 10" Three black dots are also included to indicate the
maximum value observed at ¢ = 10%. The three dots show the
entanglement entropy at the disorder strengths A = 0.8, 1, 2.
It was recently reported that other localized systems which can
be mapped to free fermions show logs growth at late times
[42]. The authors observed this intriguing behavior beginning
at around ¢ = 10° and we confirm here this is not observed
in the Anderson insulator up to the times considered. The
entanglement entropy behavior only marginally changes from
t = 10° to 108,

In Fig. 10 we show results for the entanglement entropy
versus L/2 att = 10'! as we vary the system size. We observe
that as the system size is increased, the slope of S L (t — 00)
is not constant. Instead, S% (t — o0) is indeed approaching
a constant value as we increase system size. This means
the system is approaching an area law as the system size
significantly exceeds the localization length consistent with
other studies [38,55]. However, as is particularly evident for
A = 0.3, there can be an extended range of system sizes for
which S is linear in log(L).

V. LOCALIZATION LENGTH

In this section we use the data from Fig. 10 to define
a quantity & which is a measure of the localization length

A=03
A=04
A=05
A=0.6
A=0.7
A=0.8

101 102
L2

FIG. 10. S. plotted against system size at# = 10'!. Each point is
an average over 5000 random-field realizations and the error shown
is the standard error on the calculated mean. System sizes are taken
from L = 20 to 600. Note the logarithmic x axis.

in the RFXX. We say the system is completely localized
when the entanglement entropy between our two subsystems
does not grow as we increase the system. When L is small,
unless disorder is extremely large, we expect the entanglement
entropy to grow sublinearly in L but it will still grow. So, by
adding one site to each subsystem, we grow the lattice and
determine the slope of S% with L/2. We can then define the
rate of growth:

m(L/2) = S% —St_y. (27)
In the localized regime we expect that

Jlim m(L/2) =0. (28)

The data, however, are not strictly increasing due to noise, so
to improve the fitting we use a Savitzky-Golay filter to smooth
the data and compute m(L/2) with the smoothed version of
the data. Defining a tolerance €, such that m(L/2) < €, we
can then define £ (1) = % by the first L for which this occurs.
We choose € to be reasonably small since it indicates that the
function m(L/2) is approaching the area law. Our results are
shown in Fig. 11 clearly indicating a diverging & as A — O.
The fitted function takes the form a./x + b with standard
deviations on the variables smaller than 3 x 1073, The value
of b was found to be b = —0.008 663 31 and we expect this
value to approach zero as values closer to A = 0 are probed. It

0.006

0.005
0.004

l$1‘0.003

0.002

0.001

00005555 0.060 0.065 0070 0075 0.080 0.085 0.090
A

FIG. 11. sl plotted against A. The data from S% were smoothed
out using a Savitzky-Golay filter with a polynomial of degree 2 and
a window of 11, and a tolerance € = 0.37. Each value of §. was
computed with over 20 000 realizations of the Hamiltonian.
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is at present not clear how reliable the above analysis is for a
precise determination of the critical exponents, but the results
strongly suggest a diverging length scale as A — 0.

VI. CONCLUSION

The presence of disorder in the RFXX has been shown
to significantly alter the behavior of the OTOCs. At a finite
disorder-dependent £groc information propagation stops and
the OTOCs are essentially zero beyond this length scale.
However, for |x| < §oroc we find propagation at the maxi-
mal speed v = J and confirm a power-law behavior for the
early-time regime of C(x, t) ~ t** with a position-dependent
exponent. An analysis of the behavior of C(x,?) close to
the wave front shows a behavior that is not consistent with
recent predictions. The growth of the entanglement starting
from an unentangled product state shows saturation at suf-
ficiently large times. We have not been able to isolate any
specific temperature-dependent effects and, in the light of a
temperature-dependent maximal bound on the Lyaponov ex-
ponents Ay < 2mwkgT /B, further studies would be of interest.

Finally, our results shed some light on the connection
between thermalization and scrambling. We observed weak
scrambling in the localized phase (A # 0) of the RFXX. From
the results of Ref. [62] it is known that relaxation in a closely
related model is described by a generalized Gibbs ensemble
with an extensive number of conserved quantities. We also
observe an absence of scrambling in the nondisordered (A =
0) case which requires an infensive number of conserved
quantities in the corresponding generalized Gibbs ensemble
[47]. Hence, the absence of scrambling does not imply the
absence of a generalized form of thermalization and a sign
of “weak” scrambling does not imply thermalization in the
traditional sense.
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APPENDIX A: TIME-EVOLVING FREE FERMIONS

In this Appendix we review how to time evolve free
fermions. A similar treatment can be found in [61]. Starting
from the Hamiltonian

=Y MJ

iJ

(AD)

where M is a real L x L symmetric matrix and for generality
we do not make any other assumption. This model represents
a one-dimensional system of quasi-free fermions hopping
on a lattice. The fermionic operators f‘f and f; obey the
anticommutation relations

{JACJ‘T’}k} = ks {JAC;v}kT} ={f, fi} =0.

Since M is real symmetric we can always diagonalize it
as M = ADA”T where AAT =1 is real orthogonal transfor-
mation and D is a diagonal matrix with entries Dy = €

(A2)

which are (real) energy eigenmodes. Defining new fermion
operators

de =) Ajif;, (A3)
J
4= At (Ad)
J
we can write the Hamiltonian as
(AS)

ﬂ = Z ékc,\l]jgik.
k

The above operators can be referred to as reciprocal space
or normal mode operators. These operators inherit fermionic
anticommutation relations due to the unitary property
of A:

{didfy =" AnAjdf. Y = b

iJj

(A6)

Due to the definition of the annihilation operators, it is easy to
see that |0) y = |0),4. Thus, all eigenstates can be constructed
by applying creation operators Ellj . These states are Gaus-
sian, meaning they are completely described by their second
moments. Gaussian states can be completely described by
the occupation matrix A{f = (ﬁj‘j) or, in eigenmode space,
AZ P = (c}’lelk). All time-evolved properties of this model can
similarly be deduced by time evolving the occupation ma-
trix. It is simple to time evolve the operators in eigenmode
space,

%(a?k) = ilH. ], (A7)
where

A=Y edd. (A8)

k

Using {dy, d,} = 8,4 and d? = 0, one finds that

di(t) = e~ dy, (A9)
similarly for the creation operators

di()" = edf, (A10)
this then implies

Al(t) = P Ade P! (Al1)

which means if we know A?(0) = A? we can compute A%(t),
giving us all two-point correlators taken at identical times. Be-
cause we want to extract local statistics, we need to transform
back to the local fermion space. We see this is done by the
following transformation:

A (1) = AeP' Ade™ AT, (A12)
where AY = AT AfA. Now, since we will also be interested
in out-of-time correlations, it becomes important to consider
two-point correlations which are taken at different times. For
this we introduce the following notation AT (z,t), where the
left ¢+ argument indicates that the creation operators El,j are
at a time ¢ and the right for the annihilation operators. Thus,

054205-10



OUT-OF-TIME ORDERED CORRELATORS AND ...

PHYSICAL REVIEW B 99, 054205 (2019)

Eq. (A12)is A7 (1) = A/ (¢, t) and the out-of-time two-point
correlators are given by

A (t,1) = AeP' Ale™PIAT (A13)
A (1,0) = AP AYAT, (A14)
A(0,1) = ANYe™™PIAT . (A15)

With Egs. (A13)-(A15) we can calculate any two-point cor-
relator that might be expressed in the OTOC. Next, it is
important to see how the anticommutation rule behaves as we
consider creation and annihilation operators at different times.
In local space, consider the case where one operator in the
Heisenberg picture is taken at# = 0 and the other att = ¢:

B, 1 =D AniAnie ™ @df +djdf) =0. (A16)
kil

Similarly, {f‘m(t), f,,} = 0, however, the anticommutation be-
tween out-of-time creation and annihilation operators is non-
trivial:

Fn @ 1) =D AnsAnse™ = apn(0). (A17)
k

At t =0 we see ay,,(0) = 6., but time evolution removes
this nice behavior. We also see that

(1) = {Fn0), [T} =D AmsAnxe ™. (AI)
k

With these tools in place, it is convenient to write the correla-
tions exactly which will be featured in the OTOC. Consider
two sites on the lattice labeled by i and j at r = and O,
respectively, then the time-dependent correlations are taken
from entries of Eqs. (A13)-(A15):

A, 0= (FTOF0) =Y DA A (dld)),
ol

(A19)

A, 0y = (FTOF) =) eV AixA;(did),  (A20)
k.l

A1) = (FIH@®) =D e A Adld).  (A21)
k,l

A (0,0);; = (FT1)) =D AjAjdld). (A22)

k,l

With this we have all the ingredients we require to compute
an OTOC. In the case of a thermal state or an eigenstate, the
expressions in Eqs. (A19)-(A22) are greatly simplified since
the occupation matrix in eigenmode space is diagonal. We
consider a Gibbs state of the form

e Pl

Z

o= (A23)

For thermal states we label the correlations with an addi-
tional B. The correlations in eigenmode space are well known
with different sites decoupled and the occupation numbers

following a Fermi-Dirac statistic with zero chemical potential

1 —
A A TrePas k=1

) (A24)
0, otherwise.

In the next Appendix we describe how to use these expres-
sions to compute the OTOC between two S° operators on
different sites.

APPENDIX B: OUT-OF-TIME ORDERED CORRELATIONS

The OTOC we compute in Sec. III relies on the computa-
tion of Eq. (15), or rewriting it here,
F@)= (6}(t)6f&f(t)&j), (B1)

where we have dropped the x = |i — j| term in favor of
expressing it as only a function of time. Evaluating this
expression is the same as evaluating Eq. (13). For the follow-
ing, it is easy to represent 71;(t) = ﬁ(r)}‘i(z‘). Substituting the
Jordan-Wigner transformation definition,

. 1\/. 1\ /. 1\ /. 1
F(t)=16 n,-(t)—E l”l]—E l’li(l‘)—z nj_i .
(B2)
Expanding this and simplifying this using 7;(t)*> = n;(t) and
the anticommutation rules shown in Eq. (A17), we can write
F@)= 16<ﬁi(l‘)ﬁji”\l,‘(l)ﬂ_,' — %(fl,(l‘)fl]fll(t) + i”\ljl”\l,‘(l‘)i’\lj)
+ H[Ahi() — (O] + ). (B3)
Using Eq. (B3), we can now use the definitions of our

initial conditions on A“ to derive exact expressions for the
OTOCs.

1. Product states

We consider our initial state as one constructed from the
vacuum state such that

\w) =[]0, (B4)
JjeS

where the cardinality of the set S represents the conserved
number of fermions on the lattice, (N) = > i fjI fi) =1SI.
This gives us an initial local occupation matrix of the
form

1, i=jAie€esS

AL O) = (FTF) = { (BS)

0, otherwise.
First consider the case that 6; is selected such that j € S.
Then, using JA‘;W) = 0 and Eq. (A17) we get
F(1) = 8la; j()* (1)) — 8lai j()* + 1. (B6)

Similarly if we assume j ¢ S such that }fj|¢> =0, then we
recover

F(t) =1 = 8la; ;()I (1)) B7)

Equations (B6) and (B7) reveal that the fundamental be-
havior of the OTOC relies on |a; j(t)|2 and (i;(t)). The
product state OTOC will have two effects coming together:
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equilibration of (7;(¢)) and the out-of-time anticommuta-
tion relation |a;, j(t)|2. This extra equilibration is expected
to contribute to extra structure not present in the thermal
case.

2. Thermal states

The thermal OTOC is computed similarly to the product
state, but we exploit its simple structure in eigenmode space as
seen in Eqs. (A24). Here, we exploit the fact that ﬁz = f;z =
0 and use Wicks theorem for thermal states [63]. This gives us

the following form:

F(t) = 16]a; ;)P (T 1) s T 1) e = (T Fde + (Fi Fidg)
+ai j(OF OF) =TT OF) s FTHO)g)+1, (BB)

where we have used the fact that same time two-point correla-

tors are stationary, (f; (1)fi(1))p = ( fl’ /i) Equation (B8) is

quite a bit more complicated than Eq. (B6), but the defining

behavior is still reliant on |a; ; (¢)|*> while the quantity (7;(t))

is now time independent. Instead, we see out-of-time correla-
tions in the form of (f j fi(®)) g, for example, play a role.
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Chapter 3

Out of Time Order Correlations in the
Quasi-Periodic Aubry-André model

In this chapter we present the article [156] which will be submitted to Physical Review B.
The article can be found at arXiv:1908.03292. I am the primary author and contributor of this
work. All numerics, plots and original equations present in the article are created by myself
with helpful guidance from my supervisor, Erik S. Sgrensen.

In this chapter we investigate OTOCs again, this time in a different model. In this case
we study the Aubry-André (AA) model [157,158]:

H— —% TG + 1 +he) + 43 cos(zra) 1)l (3.1)

J J

Where o = (/5 — 1)/2 is taken as the golden ratio, an irrational number making the model
quasi-periodic. This model features a transition from an extended phase to a localized phase
at A = J. Interestingly it is possible to simulate this model effectively in experiment 159~

164]]. For convenience we formulate this model in terms of free fermions,
H=>Y"M;flf; (32)
1,7

where if |i — j| = 1, M, ; = —.J/2, the diagonal reads M, = A cos(2mcj) and all other terms
are zero. We fix the system size to L. We study the OTOC with operators which are local in
both the spin and fermionic operators,

~ A~

C(a,t) = ([A(t), BI'[A(1), B], (3.3)

Aty =2fLt)fe(t) =1, B=2ff;—1. (3.4)
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We investigate all four usual time regimes and propose a fifth time regime of interest. First
we investigate the early time growth and confirm the findings of [[109], that the early time

regime is independent of disorder and follows the power law,

C(x,t) ~ 2. (3.5)

Next we investigate the wave-front and resolve the discrepancy between the universal form
of equation [I.35]and the Gaussian form found in the previous chapter, equation[2.5] We find
that both forms are equally true but correspond to different dynamical regimes. The universal
form corresponds, to times such that { < %, where vp is the velocity at which the wave-
front propagates. We also find that the prediction of p = 1/2 and vg = J to be true for the
non-disordered case of this model. We re-express the Gaussian form as,

Clx = 20, 1) ~ e—m(z,)\)(t—%) +b(z,)\)t’ (3.6)

where m(z, A) = a(x, \)/2. The position dependence of m(z, A) and b(z, ) is then inves-
tigated and we find that the functions approach a fixed value in the large = limit. This form
appears to be universal and is valid for the interval surrounding x = vgt. Our main result is
the proof of equilibration of the OTOC. To simplify the proof we switch to the OTOC,

Cla,t) = tr ({70 FuHIn(®). J}) = lama(®) (3.7
We then prove for the extended regime that the OTOC equilibrates to its infinite time average
as,
1 T 2 212 2 CL(E)
7 L Nl = oot < 172 (25 +560)). 68

where |wp,,|” is the infinite time average of |a,, ,|”, a(€), Q* and o are order unity con-
stants and d(e€) is very small. We also show that the infinite time average disappears in the
thermodynamic limit signifying no scrambling,

1

mn2N_- 3.9
fnl? ~ & 39)

We also bound the infinite time average of the distance between the OTOC and its infinite

time average,
A

5 (3.10)

lim l/THa ) = |w |2|2dt <
T . m,n m,n >

where c is a constant independent of the system size.
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We study out of time ordered correlators (OTOC) in a free fermionic model with a quasi-periodic potential.
This model is equivalent to the Aubry-André model and features a phase transition from an extended phase
to a localized phase at a non-zero value of the strength of the quasi-periodic potential. We investigate five
different time-regimes of interest for out of time ordered correlators; early, wavefront, x = vpt, late time
equilibration and infinite time. For the early time regime we observe a power law for all potential strengths. For
the time regime preceding the wavefront we confirm a recently proposed universal form and use it to extract
the characteristic velocity of the wavefront for the present model. A Gaussian waveform is observed to work
well in the time regime surrounding = vpt. Our main result is for the late time equilibration regime where
we derive a finite time equilibration bound for the OTOC, bounding the correlator’s distance from its late time
value. The bound impose strict limits on equilibration of the OTOC in the extended regime and is valid not only
for the Aubry-André model but for any quadratic model. Finally, momentum out of time ordered correlators for
the Aubry-André model are studied where large values of the OTOC are observed at late times at the critical

point.

I. INTRODUCTION

Recently out of time ordered correlators (OTOCs) have
experienced a resurgence of interest from different fields of
physics ranging from the black hole information problem [1]
to information propagation in condensed matter systems [2—
9]. The OTOC is of particular interest due to its role in wit-
nessing the spreading or“‘scrambling” of locally stored quan-
tum information across all degrees of freedom of the system,
something traditional dynamical correlation functions of the
form (A(t)B) cannot. Thus, thermalization must have in-
formation scrambling as a precursor since the thermal state
necessarily will have lost information about any initial state,
although thermalization typically occurs at a significantly
longer time-scale [10]. An upper bound for the initial expo-
nential growth, e*-¢, of the OTOC, with A\;, < 2wkpT/h has
been conjectured [1]. Models approaching or saturating this
bound are known as fast scramblers, in contrast to many con-
densed matter systems which exhibit a much slower growth
and are therefore known as slow scramblers. The introduc-
tion of disorder significantly alters the information spreading,
restricting it within a localization length in Anderson insu-
lators [11] and partially halting the growth of the OTOC in
many-body localized states [3]. The OTOC is directly related
to the Loschmidt Echo [5] and is has been established that
the second Renyi entropy can be expressed in terms of a sum
over appropriately defined OTOCs [12]. Any bound that can
be established on the growth of the OTOC therefore implies a
related bound on the entanglement. A further understanding
of the dynamics of quantum information in models with both
extended and localized states is therefore of considerable in-
terest and our focus here is on understanding how this arises in
the quasi-periodic Aubry-André (AA) model where a critical
potential strength separates an extended and localized phase.

An OTOC is generally written in the form,

C(a,t) = ([A(t), BI'[A(1), B]), ey

where 121, B are local observables which commute at ¢+ = 0. If

the observables are both hermitian and unitary the OTOC can
be re-expressed as,

Clx,t) = 2 — 2R[F(x,t)], 2)
where,
F(z,t) = (A(t)BA(t)B). 3)

Often one refers to both F' and C' as the OTOC. From a con-
densed matter perspective the OTOC is a measure of an op-
erator spreading its influence over a lattice, and quantifies the
degree of non-commutativity between two operators at differ-
ent times. If the initially zero C'(z,t) remains non-zero for
an extended period of time we say the system has scrambled.
A closely analogous diagnostic tool, capable of detecting in-
formation scrambling, can be defined in terms of the mutual
information between two distant intervals [13].

From a measurement perspective F'(x, t) can be understood
as a series of measurements. First acting on the state with op-
erator Batt = 0 and evolving in time to ¢ > 0, then acting on
the state with operator A, then evolving for time —¢ < 0. The
OTOC is then obtained by calculating the overlap between
the resulting state and the state that is first evolved by ¢, then
acted upon by A, then evolved by —¢ and finally acted upon
by B. Typically in the context of the OTOC one uses (... )
as the thermal average, often at infinite temperature, but stud-
ies in a non-equilibrium setting starting from product states
have also been done [11, 14, 15]. Out of time correlators have
also sparked experimental interest and significant progress has
been made to reliably measure these quantities [16-20]. The
correlators have even been reliably simulated on a small quan-
tum computer [21] and recently on an ion trap quantum com-
puter [22].

The dynamics of the OTOC has five important regimes;
early time, the wavefront, x = wvpt, late time dynamics and
the infinite time limit. The early time growth of OTOCs has
been of interest as an initial growth of the OTOC that precedes
classical information. If the Hamiltonian is local in interac-
tions then use of the Hadamard formula (see ref. [23] lemma



5.3) allows one to conclude that in the early time regime the
OTOC grows with a power law in time,

Oz, t) ~ t1@), “4)

where ¢ is small and [(x) is a linearly increasing function of
the distance. The early power law growth in time occurs be-
fore the wavefront hits and is known to be independent of the
integrability of the model [11, 14, 24-28]. This polynomial
form is also known to be independent of disorder strength and
has been observed to hold in localized regimes [11, 14].

More interestingly, the wavefront tracks the passage of clas-
sical information in the system. A universal wavefront form
has been proposed [29, 30], valid for t < z/vp,

(x — vBt)HP) ,

- (5)

C(z,t) ~ exp (—)\L

where A, is the Lyapunov exponent and v s is the butterfly ve-
locity. Several other forms have been proposed, for a review
see Ref. [29]. The above wavefront form, Eq. (5), has been
confirmed in several cases, and even used to show a chaotic
to many body localization transition [29—40]. For free models
one can show with a saddle point approximation that the form
from Eq. (5) takes p = % and vp is the maximal group veloc-
ity of the model [29, 30, 35]. A particular appealing feature of
Eq. (5) is the appearance of a well-defined Butterfly velocity,
vp for a large range of models. A recent numerical study fo-
cusing on the random field XX-model suggested that for this
disordered model a different form could be made to fit better
over an extended region [11] surrounding * = vpt. This re-
sult suggests further studies are important for understanding
how quantum information is spreading through the system.

The late time dynamics of OTOCs are a similarly rich
regime of interest. Understanding how the function g(t) =
|C(x,t) — C(x,t — o0)|? decays in time has received atten-
tion in many models. In the case of the anisotropic XY model
the decay of the OTOC to its equilibrium value is an inverse
power law [27, 28],

1
C(J?,t) ~ th‘ + Y, (6)

where a¢ > 0 depending on the choices of spin operators
and the anisotropy, and 7 is the equilibrium value. Other
work has been done on interacting systems where both in-
verse power laws were observed for chaotic and many body
localized phases, and even an exponential decay in time for
Floquet systems [3, 15]. However, these results are mostly
numerical, and do not give rigorous bounds or arguments as to
whether or not the OTOC reaches equilibrium and if it does,
to what resolution. Another aspect of the late time regime,
the quantity C(z,t — o0) in it self, is naturally of consid-
erable interest. In this setting F'(x,t — o00) is often chosen
as the quantity to study. In the presence of chaos we expect
F to equilibrate to zero, and in other cases settle at a finite
value between zero and one [3, 11, 12, 14, 15, 27, 28, 41-47].
A particularly important case for our purposes are the non-
interacting models where the observables defining the OTOC

are both local in fermionic and spin representations on the lat-
tice. Here F'(z,t) is expected to initially decay towards zero,
but eventually return to F(x,t) = 1 and in the presence of
disorder need not decay back to its initial value or even equi-
librate [11, 27, 28, 42, 47]. Of course, C' is then predicted to
follow the opposite behaviour, starting at zero then reaching
a maximum. It is also noteworthy that, in the proximity of a
quantum critical point the OTOC has been shown to follow
dynamical scaling laws [48].

The introduction of disorder, with the potential of lead-
ing to localization, significantly changes the behaviour of
the OTOC and propagation of quantum information as a
whole. Naturally, quantum information dynamics is expected
to be dramatically different between localized and extended
phases. We therefore focus on the one-dimensional quasiperi-
odic Aubry-André (AA) model [49, 50]:

H == S () G+ +he) A Y cos2rof) 1) Gl (1)
J J

Here, J is the hopping strength and A the strength of the quasi-
periodic potential. This model has been extensively stud-
ied [51-60] and since it is quadratic large-scale exact numer-
ical results can be obtained from the exact solution. In par-
ticular quench dynamics has recently been studied [61]. Cru-
cially, it is well established that a critical potential strength
Ac. = J separates an extended and localized regime if o is
chosen to be the golden mean ¢ = (v/5 — 1)/2. For finite
lattices this strictly only holds if the system size is chosen
as L = F;, with F; a Fibonacci number, and 0 = F;_;/F;
approaching the golden mean as ¢ — oo. A dual model
can then be formulated [49, 51] by introducing the dual ba-
sis |[k) = L7123 exp(i2nkoj)|j). A = J is then the
self-dual point. The extended phase is characterized by bal-
listic transport as opposed to diffusive [49]. The nature of
the quasi-periodic potential is also special since no rare re-
gions exists and it has recently been argued that localization in
the AA model is fundamentally more classical than disorder-
induced Anderson localization [54]. It is possible to realize
this model quite closely in optical lattices and studies of both
bosonic and fermionic experimental realizations have been
pursued using °K bosons [62-64], 8"Rb bosons [65], and “°K
fermions [66—68].

The AA model has also recently been studied in the pres-
ence of an interaction term [69, 70]. While no longer exactly
solvable, a many-body localized phase can be identified in
studies of small chains [69, 70] and by analyzing the OTOC
it has been suggested that an intermediate ’S’ phase occurs
between the extended and many-body localized phases with a
power-law like causal lightcone [70].

The structure of this paper is as follows, in section II we
discuss our formulation of the Aubry-André model and de-
scribe the quench protocol we use. In section III we investi-
gate the dynamics of an out of time ordered correlator in real
space and break the section into three subsections dedicated
to three dynamical regions of interest. In subsection III A we
show that when quenching into either the extended, localized,
or critical phase a power-law growth is observed in the early
time regime. In III B we investigate the discrepancies between



[29, 30] and [11] for times closer to the wave-front. Section
IIIC contains a proof that, in the extended phase of a free
model, we expect the out of time ordered correlator to equili-
brate even in the presence of the quasi-periodic potential. The
infinite time value is also shown to be zero regardless of the
strength of the quasi-periodic potential indicating a lack of
scrambling regardless of disorder in the extended phase. Fi-
nally in section IV we investigate OTOCs constructed from
momentum occupation operators and find that they obey a
simple waveform.

II. THE MODEL AND OTOCS

As outlined, we focus on the quasi-periodic AA model. We
chose a fermionic representation and write the Hamiltonian as
follows:

H=Y M,flj; ®)

.3

where the effective elements of the Hamiltonian matrix M
is filled by, M;; = —2if [i —j| = 1 and M;; =
Acos(2moj). The operators are fermionic so we have
(Fu i} = {F5 £y = 0.and {f, f} = 611 All other en-
tries of the effective Hamiltonian are zero. Note that this cor-
responds to open boundary conditions with nearest neighbour
hopping which is the most convenient for the calculations.
The constant o is the inverse golden ratio, ¢ = (v/5 — 1)/2.
For the very large system sizes we use we have not been
able to observe any numerical difference between using L =
F;, 0 = F;_1/L and using a large L with 0 = (/5 — 1)/2
even though the model is strictly no longer self-dual. For con-
venience we therefore use the latter approach. Since the in-
verse golden ratio is irrational, this creates a quasi-periodic
potential controlled by the value of A\. For the rest of our dis-
cussion we set J = 1 and & = 1. This model is identical
to the Aubry-André model as can be seen through a series
of transformations [49, 71]. One can easily diagonalize and
time evolve states in this model, the details of which are pre-
sented in the Appendix A. As described above, this model
is known to have a localization transition at a critical point
Ae = J. For A < )\, all states are extended, and A > A,
all states are localized with localization length £ = ﬁ [49].
Relaxation and thermalization following a quench into both
extended and localized phases has recently been investigated
in this model [61]. While most one-body observables ther-
malize to a generalized Gibbs ensemble in the extended state,
and some in the localized, special dynamics was observed for
a quench to the critical points where the observables inves-
tigated did not reach a clear stationary value in the time in-
tervals investigated. Similar quadratic fermionic models have
been used to investigate OTOC:s at large system sizes, showing
non-trivial behaviour of both non-disordered and disordered
OTOC investigations in integrable models [11, 27, 72].

The OTOCs we will be interested in are written in the form
Eq. (1) where we choose A and B such that they commute
at t = 0 and are unitary. The operators being hermitian and

unitary then obey Eq. (2), (3). In general we choose our oper-
ators such that at ¢ = 0 [A, B] = 0, making C(,0) = 0 in
all cases. This gives us a convenient reference point in time.
Because we are talking about fermionic operators, it makes
sense to only consider operators which are quadratic, and fur-
ther, we choose to restrict ourselves to operators that can be
expressed as number operators in real or momentum space. In
momentum space the operators we consider are :

- i ikj §. 9
E ¢Z%} £ )

1 ki
%:ﬁ;ewi (10)

Where, k& € 2nrm/L with m = 1,2... L. These operators
are extremely non-local in the real space operators, and for
the case of A = 0 and periodic boundary conditions, are the
operators which diagonalize M (strictly speaking only when
periodic boundary conditions are used). It has been observed
previously that operators not local in the fermionic represen-
tation show fundamentally different behaviour than the local
ones [27]. These however were spin operators, which were
non-local in the Jordan-Wigner transform, so investigating
OTOCs with momentum number operators is not entirely an
exact analogue.

III. REAL SPACE OTOCS

We start by considering OTOCs based on operators defined
in real space. To be specific we study the following operators,

Aty =2fLOfr () -1 . B=2ff;-1 A1

Where we have fixed the location of A in space at the middle
point of the lattice, and we will vary the location of B, so we
see can observe the effect of A spreading over the lattice. The
operators are written with a factor of 2 and a subtraction of 1
to make them unitary. The dynamics and calculations of the
OTOC in this setting is presented in Appendix A, B and C.

A. Early time

In this section we explore the early time behavior of the real
space OTOCs. As seen in Eq. C33 the dynamics of the OTOC
are dominated by the squared anti-commutator relation of the
fermionic operators in time, a,, ,(t) (defined in Eq. A8). If
one sets A = (0 and assumes periodic boundary conditions, one
finds that in the thermodynamic limit that the squared anti-
commuter behaves as the square of a Bessel function in time
(see for example Appendix C of[29]),

C(z,t) ~ |amn(t)* ~ T2 (8), (12)
then in the limit of small ¢ one finds that,

C(x,t) ~ 217, (13)
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Figure 1. Early time behavior of C'(z, t) at different distances. The solid curve is the power law and the dotted curved is the data collected for
the OTOC. The system size is L = 1200. Results are shown for quenches to four different values of A starting from the ground state of the

model at A = 0.

For our purposes the derivation sketched above is too re-
strictive as we are also interested in non-translationally invari-
ant models and our OTOC features more dynamical terms than
just the squared anti-commuter. However, the result, Eq. (13)
still remains correct even in the presence of non-zero quasi-
periodic potential. This can be seen through the use of the
Hadamard formula as shown in [11].

We study this prediction in the most dynamically rich way
possible, by quenching from the half-filled ground-state at
A=0to A =0.5,1,1.5,2. Our results are shown in Fig. 1.
For a detailed discussion of the starting state see Appendix B.
The results here do not significantly change if the quench is to
the localized phase (A = 1.5, 2), critical (A = 1) or extended
phase (A = 0.5). For all strengths of the quasi-periodic po-
tential is a power-law behaviour observed following Eq. (13).
This results agree with [11] which found that in an Anderson
localized model regardless of the strength of the localization,
if the OTOC significantly grows, then the polynomial early
time growth Eq. (13) is observed to be hold. This follows
naturally from the fact that Eq. (13) is independent of the po-
tential strength, the first contributing dynamics to the OTOC
are unaffected by the potential term and come solely from the
hopping terms. The early time behaviour can therefore be ob-

tained by studying the A = 0 case.

B. Wavefront

In this section we study the wavefront at different potential
strengths and address discrepancies from the results shown in
[29, 30] and [11]. Recently, the universal form was claimed
to be confirmed in the XX spin chain, contradictory to earlier
claims [28]. Here we discuss these seemingly contradictory
claims. The universal wave form predicted for the out of time
ordered correlator in free theories by means of a standard sad-
dle point approximation scheme is given by Eq. (5) in terms of
the Lyapunov exponent, Az, and the Butterfly velocity, vg. Of-
ten this form is applied at surprisingly early times [70] where
—50 < log(C) < —10. For the AA model with A = 0,
corresponding to free fermions, we expect the vp = J as
the maximal group velocity, and p = % The universal form,
Eq. (5), cannot be re-expressed in a form equivalent to the
’Gaussian’ form characterized by two spatial and disorder de-
pendent functions a(x, A), b(x, \) proposed in Ref. 11, for



times surrounding z = vpt, for a fixed x = zq:

2 at z
C(x = o, t) ~ e_a(z’)‘)(T_”B)—H;( N (14)

We can rewrite Eq. 14 as,

2
C(z = xg,t) ~ e~ (1-5%) TNt (g5

where m(z, \) = a(z, \)/2.

We expect that the discrepancy is most likely due the ex-
istence two unique time regimes that are close together. To
eliminate noise in our OTOC we drop all of the dynamical
terms except the squared anti-commutator. which is equiva-
lent to instead studying the OTOC,

Ca,t) =t ({50l {Fn(®). J1}) = lamn (2. (16)
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Figure 2. |am,n(t)]? for A = 0 (a) and A = 0.1 (b) plotted with the
fitting functions of the early time form, Eq. (13), the proposed uni-
versal wave form, Eq. (5) and the Gaussian form, Eq. (15). Results
are for a fixed x = 6 with L = 1600 and A = 0. The vertical solid
line in both panels corresponds the arrival of the classical wave front
att = x/vp using the fitted vp.

To further facilitate the analysis we include a phase, ¢, in
the potential A cos(27oj + ¢) and smooth our data by averag-
ing over ¢. Our results are shown in Fig. 2 where we follow an
analysis similar to [36]. By varying both time and space we fit
the OTOC for A = 0 in the region such that log (|am»|*) €
[—-10, —6]. With this fit we find vg = 0.9950 + 0.0002,
p=0.50£0.08 and A\, = 1.78 £0.03 for the universal form,
Eq. (5). Where the errors reported are one standard deviation
of the parameter estimate. These values are in close agreement

with the expected values of vg = 1 and p = % Similarly we

investigated the A = 0.1 case for log (|am,n|*) € [-12,—8]
and found vp = 0.9783 £ 0.0003, p = 0.647 + 0.03 and
Ar = 2.153 4 0.09 for the universal form, Eq. (5). However,
these fits correspond to times that significantly precede the
classical wavefront. For larger values of the potential strength,
A, we have found it more difficult to obtain good fits to the
universal form, Eq. (5).

At later times the OTOC enters a dynamical regime where
the Gaussian form of Eq. 15 is valid. Fixing x = 6 and
using the vp found for the universal form we find that for
A =0m(xz,\) = 0.3027 £+ 0.0001 and b(x, \) = 0.9470 +
0.0001. For A = 0.1 we find m(x, \) = 0.3052 £ 0.0001 and
b(x, A) = 0.8597 £ 0.0002.

200 y 0
175 ' 10

Vmax = 0.9783

tPIn(C(x, t))

0 25 50 75 100125150175200
t

Figure 3. Density plot of t* log(C), with C' an appropriately normal-
ized OTOC from Eqn. 16 and p = 0.6470. Results are shown for
A = 0.1and L = 1600. Contour lines are plotted as solid blue lines.
The dashed green line indicates z = vpt with v, = 0.9783 which
appear closely parallel to the contour lines.

To further illustrate the universal form, Eq. (5), we show
in Fig. 3 results for the entire C(x,t) over a large range of
z and t for A = 0.1. As above we have smoothened the data
over the phase ¢. We first appropriately normalize C'to obtain
C' and then plot t? log(C') using the fitted p = 0.6470. We
then expect that contour lines should be straight lines defined
by x = wut. This is clearly observed in Fig. 3 although we
note that it is only contour lines for extremely small values
of t? log(C) (of the order of —40 to —50) that are completely
parallel to the determined vpt. Although the universal form
of Eq. 5 seems to work well, it is only applicable at times
<

Let us return to the Gaussian form of Eq. 15, expected to
be valid close to * = vpt. We consider the behaviour of
the functions m(x, \) and b(x, \) by varying z and fixing vp
as the velocities found fitting the universal waveform. These
functions appear to asymptotically approach a fixed value in
the large « limit. For large z and A = 0 m(z,A\) ~ 0.01
and b(z, \) = 0.2. For A = 0.1 we see the values m(z, \) ~
0.008 and b(x, A) = 0.1. This result is shown in Fig. 4. Errors
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Figure 4. Functions m(x, \) (a) and b(z, A) (b) behaviour for fixed A
at different . Results are shown for no ¢ averaging and L = 1600.
The dashed green horizontal line corresponds to the observed value
of the function at z = 650 for A = 0 and the dashed black line to the
value for A = 0.1.

on this parameters are on the order of 10~* or smaller. This
means that taking large values of distance between the two
observables A and B, we may write,

C(z,t) ~ eim(tf“g)ert, (17

where m and b are positive constants. Intuitively this cor-
responds to a Gaussian wave travelling at velocity vp, aug-
mented by e’*. This form is expected to be valid on the inter-
val surrounding the passage of classical information around
x = vgt. Hence, this form for works rather close to x = vpt.
It seems likely that in interacting systems this might be appar-
ent for much smaller values of z.

If we instead of using the OTOC defined from the anti-
commutator, Eq. (16), use the full C(x,t) with a thermal av-
erage where we fixed the inverse temperature S = 1 we find
typical results as shown in Fig. 5 for A = 0.5. In this case, as is
this case for the remainder of our results we do not smoothen
the data using the phase ¢. From Fig. 5 we see that the ve-
locity predicted from the universal fit, Eq. (5), of vp = 0.838
seems to be a good fit for predicting the spread of classical in-
formation. For larger values of A\ we have not found it possible
to use the universal form Eq. (16) in contrast to recent results
by Xu et al [70]. A possible explanation for this is that Xu et
al [70] study the behaviour of the OTOC in a thermal state
at infinite temperature in an interacting model, a somewhat
different setting.

" Vmax=0.838

-80 -60 -40 -20

Figure 5. Wavefront spreading in both x and ¢ for A = 0.5, the center
being taken as % System size L = 1200.

C. Late time

It is also interesting to investigate the late time dynam-
ics of the OTOC. In prior studies it was pointed out that a
C(z,t) ~ 1 behaviour was expected in late time [27, 28].
These results however are for disorder-free models and do not
in general hold for our discussion. So instead we look to ana-
lytically show that these OTOCs indeed go to an equilibrium
value in the late time regime in the extended phase, regard-
less of strength of the quasi-periodic potential. To bound this
behaviour and prove equilibration we again focus on studying
the OTOC defined in terms of the squared anti-commutator,

Eq. (16). From Eq. (A8) this can be written as:

Cla,t) =t ({F,0), FuH 0, F1}) = lamn (O

= ZAm,kAn,kAm,lAn,lei(Ek7El)t- (18)
Kl

The infinite time average is defined as,

|wm,n

2 17 2
= Jim /0 (2, (19)

using the fact that e, = ¢; < k =1,

wimn|? =Y A2, A%, (20)
k

From Eq. (20) we can come to the intuitive conclusion that
when the system is extended, in the thermodynamic limit L —
00, we expect the infinite time average to go to zero. The
argument for this is as follows. In the extended phase, the
values of A,, j will go like A,  ~ % Which leads to,

5 1
mmn| ™ T 21
wmnl ~ 7 @D
approaching zero in the thermodynamic limit. This is opposed
to the localized phase where we expect, A,, j ~ e~ F=mI/€
with ¢ the localization length and £ = 1,...L [73] (see
lemma 8.1). This makes the infinite time average go like,

|wm n‘Q ~ maxe—(\k—mH\k—n\)/ﬁ. (22)
’ k



Hence, the infinite time average of the OTOC is in this case
non-zero within a distance of the order of the localization
length.

Next we focus on bounding the relaxation process in time,
following [74-76]. To study the relaxation we define the pos-
itive function,

2 2|2
gm,n(t) = |am,n(t)| - |Wm7n| . (23)

Eq. (23) can be interpreted as the distance the OTOC is from
its late time value, assuming such a value exists. To be precise
we will work with the time average of the function,

2

1 [T .
<gm,n(t)>T = T/ ZAm,kAn,kAm,lAn,leZ(Ek 0t dt;
0 |kt

(24
to make notation easier let & = (k, () and,

Vo = Am,kAn,kAm,lAn,l» Goz = € — €. (25)

This allows us to instead write the expression as,

1" > :
<g7n7n(t)>T — T/ vavﬁel(Ga*Gﬁ)tdt’ (26)
0
a#fB

Since Eq. (23) is a positive function we can use the so-called
Lorenztian profile trick [74],

us m,n T us
(G () < 2 [ oz QT dt = B2 (g, (1)) £2T)

Next using the identity, | (e!(Ca=Ca)t) | = e=ICa=CslT we
arrive at,

oT e
<gm7n(t)>T < T Z VaUge |Ga=Gp|T (28)
aF#B

We make use of the triangle inequality to make all elements of
the sum positive, and then normalize, defining, Q@ = >_ | |val,

2
()7 < TS papaeIGa=GT. (29)
o8
It is important to consider how big ) might be. Trivially,
Q < >, max, |vs|. Since this sum over « is quadratic in L
and since from Eq. (25) may write max,, |va| ~ % it then
follows that @ = O(1).
‘We now introduce the function,

@) =max > pa (30)

a:GgG[Gg,Gﬁ—‘rm]

a(©) = Do 56 = 600, 31)

€

where o = \/Za PaG2 — (paGla)® is the standard devia-
tion of our distribution of frequencies. From here on we as-
sume a(e) and §(e) are implicitly dependent on m, n. It can
be shown that [74, 75]:

a(e)

&p(z) < et 5(€). (32)
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0.00950 0.02 0.04 0.06 0.08 0.10

Figure 6. Numerical example of d(€) (panel (a)) and a(e) (panel
(b)) at different system sizes and potential strength for m = %, n =
L +6, for L = 800.

Using this result along with proposition 5 of [75] (for a similar
statement see theorem 6) we finally arrive at:

1
(a0} < 47Q%, (7). 63)
Using Eq. (32) we can rewrite this as:
<gm,n(t)>T < 477622 (CL(E) + 6(6)) . (34)
ocT

Eq. 34 allows us to upper bound the time scale at which the

OTOC equilibrates as T,., = %();QQ Now all that is left to
numerically show that ¢ is quite small. In Fig. 6 we show our
results for a(e) and 6(e) at different system sizes and potential
strength. From these results we can conclude that the bound
perform poorly in the localized regime, and at the critical point
of the model, while in the extended regime the bound appears
to perform quite well. For the extended regime it appears we
may pick an a(e) O(1) while picking ¢ ~ 0, meaning in these
cases we expect the OTOC to equilibrate to its infinite time
average.

Next we illustrate the bound, Eq. (33), by numerically eval-
uating (g, »(t))7 and £(7). Our results are shown in Fig. 7
where we see that, as predicted, the time average defined in
Eq. (24) is not only upper bounded by Eq. (33), but as the
time interval 7' is increase this upper bound decays to zero in
the extended region. Thus, this constitutes equilibration of an
OTOC in both a translationally invariant case (A = 0), and a
case with a non-zero quasi-periodic potential (A = 0.5). This
result is expected to hold for A € [0, Agitica) Where for the
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Figure 7. Bound from Eq. (33) for potential strengths A\ = 0 (panel
(a)) and A = 0.5 (panel (b)). Both results were computed with L =
1600 and used m = £, n = £ + 6, L = 1600.

present numerics we have, Aiicas = 1. Furthermore, we stress
that this result should be applicable to all quadratic models in
their extended phases.

Next we consider relaxation in the infinite time limit 7' —
oco. Here, the quantity to bound (assuming non-degenerate
mode gaps, i.e excluding the localized phase) is,

Thinw@m,n(t))T = ZAzn,kA%,kAgn,lAi,l' (35)
K2l

From Eq. (35), using Afm PR %, we see that with four
such terms and only a quadratic summation over these terms
limy 06 (g, ())7 must go to zero in the extended region.
To put this into more rigorous terms we may define the con-
stant ¢ = Lmaxy{A?, ;, A2 ;. } such that,

m,k>

1 A
. 4
S (g o (8))7 < g 1< (36)

where c¢ is independent of system size due to the terms

\/ZAm,k = O(l)

IV. MOMENTUM OTOCS

In this section we study the out of time order correlators
with momentum number operators, and set,

A(t) =20l ()ie(t) —1 , B=2ili. —1. (37

The OTOC then corresponds to the £ = m momentum opera-
tor commuting with itself in time. We make this choice since,

although two momenta & and [ could be neighbours in mo-
mentum space, this distance isn’t physical and no wave front
can be defined. The choice of k = 7 is arbitrary but sits in
the "middle” of momentum space. To distinguish our results
from the previous sections, where real space OTOCs were dis-
cussed, we denote the OTOC C,,(t) in this section, suppress-
ing the x dependence of C. The system size throughout this
section is set to L = 400, no significant differences were ob-
served for systems sizes up to L = 1200.

A. Quenching

The momentum OTOCs are studied by quenching from the
ground state of the initial Hamiltonian. This is done in a man-
ner identically to section III. First we consider quenching from
an initial potential strength\; = 0.

gl M A=0-0.5
B A=0-1

2 W =015
7 B A=0-2

r“
‘ v A‘A!!L&« ,
30

40 50

Figure 8. Cp(t) plotted from the dynamics of a ground state of a
Hamiltonian characterized by A\; = 0 to various final Hamiltonians.
This corresponds to quenching from the extended region into the crit-
ical point at A = 1, extended phase A = 0.5 and two examples of the
localized phase A = 1.5, 2. Results are for L = 400.

Fig. 8 shows Cj(t) quenched from the ground state of the
Hamiltonian with A\; = 0 then quenched and time evolved
with new values of Ay = 0.5,1,1.5,2. Interestingly, the
OTOCs all attain a maximum, at quite early times ¢ < 4,
and then display a slow decay from the largest value. The lo-
calized phase dynamics for potential strengths of Ay = 1.5,2
clearly show that the momentum OTOC eventually decay to
zero, and oscillate near it. The extended phase oscillates away
from zero, but does not appear to reach it. At the critical
point, A, = 1 pronounced oscillations is observed exceeding
all other A;. The extended state is characterized by oscilla-
tions around a fixed non-zero with this value rising with A7 as
it approaches Ay = A..

As can be clearly seen from Fig. 8, the dynamics are quite
complex and it is desirable to understand the asymptotic be-
haviour at the wavefront, which we can tentatively define as
the first occurrence where C(t) decreases. Since the momen-
tum OTOCs are highly non-local in real space the proposed
universal form, Eq. (5), is not directly applicable and we there-
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Figure 9. log C,(¢) plotted from the dynamics of a ground state of a
Hamiltonian characterized by A; = 0 to various final Hamiltonians
characterized by different A\y. This data is then fitted to the function,
f(t) = Cexp(at + b/t + ¢/t*> + d/t*), which is then graphed.
Results are for L = 400

fore consider an ad-hoc form
f(z) = Cexp(at + b/t + c/t? +d/t3). (38)

Results by fitting to the form, Eq. (38) are shown in Fig. 9

for several different values of A\y. Extremely good fits are
obtained and we have verified that adding more terms does
not significantly improve the fits.

Figure 10. Cp(t) plotted from the dynamics of a ground state of a
Hamiltonian characterized by A = 4 to various final Hamiltonians.
This corresponds to quenching from the extended region into the crit-
ical point at A = 1, extended phase A = 0.5 and two examples of the
localized phase A = 1.5, 2. Results are for L = 400.

Next we consider a different quench where we instead start
from the localized phase with A; = 4 and evolve with the
four different Ay = 0.5,1, 1.5, 2. Our results for this case are
shown in Fig. 10. The oscillations in this case comparably to

quecnhing from A; = 0 shown in Fig. 8. However, their quasi-
periodicity is much smaller and less chaotic. Both examples,
A; = 0,4, are characterized by the same oscillations that ap-
pear to never dissipate. However, the wavefront for \; = 4
is near identical to the one shown in Fig. 9 for A; = 0. The
same function, Eq. (38), used to fit the results for A; = 0 can
be used to characterize the wavefront for A\; = 4 producing
extremely high quality fits almost indistinguishable from the
fits shown in Fig. 9. Thus we conclude that the initial rise of
the OTOC goes like Eq. (38) in both quench scenarios. The
form given in Eq. (A9) was also observed to hold for momen-
tum OTOCs defined in a thermal states, as well as for initial
states in the form of a product state:

) =[] #10). (39)

lesS

where S = {I € N : | mod 2 = 0}. This then allows us
to conclude that this form of the wavefront for momentum
OTOC:s is rather generic, and doesn’t depend on initial condi-
tions.

V. CONCLUSION

The AA model with a quasi-periodic potential represents
a unique opportunity to investigate quantum information dy-
namics in the presence of a phase transition between an ex-
tended localized phase using exact numerics. Here we have
explicitly demonstrated equilibration of the real-space OTOCs
to zero in the extended phase of the model, a result that gener-
alizes to any model with quadratic interactions in an extended
regime. The early time behavior of the real-space OTOCs are
largely independent of the strength of the quasi-periodic po-
tential and follow a simple power-law with position dependent
exponent even in the localized phase. The regime close to the
classical wavefront, x = vpt, has been shown to propagate
as a Gaussian (Eq. 15) with distance dependent parameters
which converge to constants in the large distance limit, signi-
fying a fifth time regime of interest for the OTOC. At earlier
times t < i it is possible to apply the universal waveform
Eq. 5 which is often applied to thermal OTOCSs at infinite tem-
perature. The spreading of information in momentum space as
obtained from analyzing momentum space OTOC:s is signif-
icantly more complex and a complete understanding is cur-
rently lacking. Here we propose an ad-hoc form for the early
time behaviour of the momentum OTOCsS that seem to work
exceedingly well.
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Appendix A: Time evolution

In this appendix entry we review time evolution of free fermions and present out the numerical method required to carry out
of quench protocol. For more detailed treatments of the time evolution of free fermions see [11],[77]. We are given in general a
Hamiltonian written in the form,

A=Y M (A1)
%]

Where we assume M is real symmetric and thus can be diagonilized with a real orthogonal matrix A such that M = ADAT.
This solves the model, and we recover new fermionic operators and a diagonal Hamiltonian,

H="Y"epd}dy, (A2)
k

where we refer to € as energy eigenmodes which are the entries of the diagonal matrix and the corresponding space, eigen-
mode space (normal modes is also regularly used). Since the states we are interested in are Gaussian (product states, thermal
states, ground states), we can completely deduce all statistics of the model with the occupation matrix. Defining arbitrary
fermionic operators as bt , by we define the matrix in b space as,
b ara
ALY = (b ). (A3)

Where the superscript denotes the space we are describing. In this document we refer to real space with f, eigenmode space
with d and momentum space with p superscripts. Time evolving individual eigenmodes is easily deduced from Eq. (A2),

dk(t) = e‘i"’“tczk. (A4)

For the creation operators simply take the Hermitian adjoint. As seen in Eq. (C33), we are interested in time evolving one or two
operators in the expectation value. Thus we see that evolving the whole matrix in real space we get,

AD (8, 1) = Ae?PEAD =D AT (A5)

Where the double time arguments signify we are time evolving both the creation and annihilation part. Similarly the out of
time correlations in real space can be calculated from,

AD(,0) = AePIADAT | AD(0,8) = AN DDt AT, (A6)

From here we can calculate the correlation functions of the momentum operators given by,
e DI/
= T
VL <
1 o
T —ikj £1
= Z e fj .
VL4
Then the correlations in momentum space are given by,
A](:l) — Z e—i(7rLk—7Ll)A£rJ:?n. (A7)
m,n

The time evolution is then found by time evolving A%)n in the desired way. Now all we need to describe is the out of time
anti-commutation relations. For the real space operators,

{fgm(t)a fn} = ZAm,kAn,keiskt = am,n(t)v (A8)
k
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simply taking the conjugate recovers the relationship where fn is time evolved. We also have, { fm(t), fn} ={ f;fn(t), f;} =0.
For the momentum operators ,

1 ‘ S 1 :
{U;t(t)aﬁp} =7 Zefz(kmfpn) (fjn(t)fn + fnfjn(t)> =7 Zefl(kmfpn)amm(t) = ugp(t). (A9)

Eq. (A9) is simply a discrete Fourier transform of Eq. (A8). With these pieces we can now calculate the necessary correlators
and out of time anti-commutators for the OTOC.

Appendix B: Quench protocol

We now turn to a discussion of the quench protocol. We define two Hamiltonians written identically to the one written in
Eq. (A1), with H® and H® . We first prepare the ground state of H® by diagonalizing M (1), let e,(:) be its eigenvalues, and
preparing the eigenmode state with,

d1) _ ot s 1 k=inel) <0
A](“l '= <d’1dl> B { 0 otherwi:e]? (B)

Note that in some cases we might have e,(cl) = 0 for some value of %k, making the ground state degenerate. We then choose to
construct the ground state which only has negative eigenmodes occupied and neglect the zero. We then transform the occupation
matrix to real space,

AD(0,0) = ADTAMED oD, (B2)

This gives us the initial correlation functions. Next we imagine suddenly changing the Hamiltonian to H® . We can now find
this states representation in the eigenmode of the new Hamiltonian by using its orthogonal transform, A(%2) = AT A(f) 4(2)
Thus the time evolution we are interested in is written as,

AD (1) = A(2)eiD(2)tA(d,2)e—iD(z)tA(Z)T) (B3)
AD(t,0) = AR PPN g@T (B4)
AD(0,1) = AR N@2) =Dt 4T (B5)

This representation allows us to compute statistic we could be interested in for a Gaussian state.

Appendix C: Calculating the OTOCs

Here we present the calculation of the OTOCs in terms of second moments. In all three cases we are interested in; product
states, thermal states and ground states, are Gaussian. Thus we can use Wick’s theorem to calculate the OTOC. This is done
similarly to [11]. Here we present the derivation for F,(x,t) for arbitrary lattice points and fermionic operators. Consider
arbitrary fermionic operators b; such that {by, b;} = {ZA)L, Ej} =0, {i);r, b} = 611 and @y, (t) = {b,, (), b, }, where we assume
{bm (t), by} = {bl (t),bl} = 0. Then we are interested in the real part of the function,

Fitent) = (B0 ~ 5 ) (300 - 5) (Bl - 5 ) (606 - 5 ) 1

Adopting the notation 71; = Bﬁu and using 7;(t)? = n;(t) we can write,

F(£) = 16(0u(0)2a(0)s — 5 (aa(0)tga(t) + Agia(t)iy) + 3 (hsialt) — ha(0)ing) + 1o

2 1 ) (e2))

Here we present the derivation for the thermal state, but since all states considered are Gaussian the end result will be equiv-

R N 2
alent. Throughout the derivation we abuse the fact that bf = (b:r) = 0, the out of time anti-commutation rules, and assuming



12

that each by, is a linear combination of d; terms only. Now we can focus on treating each term based on our initial conditions as
before. Let us deal with each term of F(¢) individually. First consider the fourth order correlations,

(e (t) — i (E)7y) 6. (C3)
Let us derive a rule to contract these fourth moments. Consider,

(i(t)ig)p = (B (b ()DTbs) g = D AjkAi i AjmAjne’ = dl did,dn) . (C4)

m,n,k,l

Using the fact that,

s L k=1
d,B = T = 1+efek ’
Al (i) { 0  otherwise. €5
g gt g - It d 7 at _ 7t g Jt
tr (dkdldmdnpg) = Spstr(dh dups) + Sxnte(didl, pg) — tr(didl,dndl ps). (C6)
Using e’ﬁf’mkd}t = efﬁfk’(f,tefﬁekﬁk we get,
(1 -+ ) tr (dLddlydps ) = Gt (dlydnps) + 8y ntr(didhyps). (€7)
= tr (cflttflcﬁﬂnpg) = <JLdAl>tr(CZInCanﬁ) + (cZLCZ,L)tr(cflci;fnp@) (C8)
This then gives,
(A (t)ii;)p = (O] (£)bi(0)) 5 (b1bj) 5 + (B (1)D1) 5 (bi(£)b]) 5. (€9)
Similarly,
(i ()5 = (1b3) (6] (1)bi(8))5 + (B1bi (1)) 5 ;b (1)) 5 (C10)

From here we see that,
( b1 (£)5 — (B (1)b) (bs(1)B]) 5. (C11)
= (b1bi(1)) s (%j(f) - <82T(t)bj>l3> — (bl (t)b;) 5 (ﬁi,j(t) - <l3}l3¢(t)>;a) = ai g ()O10i(1)) 5 — sy (1) (6] (1)b;) 5. (C12)

i () = Bib;b] (£)bi()blb;, (C13)
ai j(t) — bl ()b ) bi(t)blb;, (C14)

, )b;bi (t)blb;, (C15)
= i) (a5 (t) = Bibi 1)) By + BJB] ()b (1);010 (C16)
Jai 265, + BEBE (0)bi(2) (1 - A}éj) b, (C17)
= Jay,5[2B5; + BIb] (0)Di ()b, (C18)
Then applying the expectation value,
Jai 52 (B (0)0i(8)) s + (Bl (1)DIb;b:(2)) 5, (C19)
= lai (B (0)bi (1)) 5 + Xt Ak Aj1Ajm Ai e = 0(dl di ) 5, (C20)

= Jaig P LB + Lo AikAsi Ajin Ain =0 (<l dun) s dfdn)s + (dldualddn)s) . (€21)
= lai ;2L (1)bi (£)) 5 + (B1b;) 5 (bi(1)Tbs(t)) 5 — (BLbs (1)) 5 (BT (1)bs) 5 (C22)



Next we look at the other 6th moment,

The strategy here is identical, and we arrive at,

7 ()77, (t)

Applying the thermal expectation value,

()i ()5 = lai g P (0] (£)bi()) s + (L (¢

13

So we finally need the eighth order term which is made easier by knowing the results from the 6th order terms,

i ()R (t)ny; =

= Ja5 (£) 6] (£)bi (£)65b; + b] (£)bi (£)b15] (1)

T (£)Di (£)b10;b] (4)bi () (C23)

= [, [2b](£)bs(t) + b (£)b1b;bi(1). (C24)

)olb;bi(t)) s, (C25)

= la; ;2 (B (1)bi(£)) 5 + (B1bs) 5 (bi(£) b (1)) 5 — (B1by (1)) 5 (L (£)b)) 5. (C26)
bl ()b (1) (b*b BT ()b (£)b BJ) (C27)

= bl ()b (t) (| S(O2b1h; + BTBT (1)bi ()b, (C28)

b £)bi ()b, (C29)

e O B0, -+ 551 00, (C30)

Now, taking the thermal expectation value we can use previous results, (the first term is from the fourth moments, and second

from the sixth) ,

= lai,g (8) > (O] ()b (1)) 5(Bb;) 6 + (b1 (£)5;)5 (i (1)b]) 5) + (b1
b1bi(t))5) + <b1(t)5i(t )(blbi)s — (B (1)bj) 5 (bbi(1)) 5 (C32)

= laij(6)17 ((BF (0Di(1)) 5 (b}b;) + (B ()b a (1) —

Grouping everything together finally gives us,

Fy(at) = 16]a; (1) (< (1)b,
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~

Note in the case of product states this form is significantly reduced and in the case of the ground state, one can simply drop the
thermal expectation values. This form is general and recovers both cases used in [11].
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Chapter 4

Time evolution of correlation functions in
quantum many-body systems

In this chapter we present the article [60] which is currently under review by the journal
Physical Review letters. The article can be found at arXiv:1906.11280. I am a primary
author of this paper, contributing all numerical results, plots and the preliminary proof of
theorem 1.

We investigate universal properties of dynamical correlation functions of the form,
O(t) = tr (M(t)é) , @.1)

where p = 3, prx| Ex)(Ex| is a matrix diagonal in the energy eigenbasis and A, BB are ob-
servables with finite support on the lattice. The Hamiltonian is assumed to be translationally

invariant and local,

H=> h 4.2)
J

where /1; acts non-trivially on a finite region. We also assume that the spectrum of the Hamil-
tonian has non-degenerate energy gaps. The state p is assumed to have exponentially decay-
ing correlations of the form,

[trpX ® Y — trpXtrpY| _ dis((M,N)
max < g
cSex XY

4.3)

where M, N are regions on the lattice separated by a distance of at least dist()/, V) and
X,Y are operators. These mild assumptions leave us with a generic model away from a
phase transition. We rigorously prove the D dimensional statement of the weak ETH found
in equation and use it to prove the dissipation found in equation Following this

45



we show that the average distance between the correlator and its infinite time average over an
infinite interval is extremely small. This statement can be summarized as,

T qt
T (C(t) — Cx)* < ||| | B]] I?Qg{\Aijjkl}trﬂ (4.4)

lim
T—o0 0

We further prove the equilibration of correlation functions C'(t) = tr (pfl(t)/l) in finite

time. The rigorous statement can be found in equation|1.12
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Alvaro M. Alhambra,'** Jonathon Riddell, T and Luis Pedro Garcia-Pintos®: ¥
! Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada

2 Department of Physics € Astronomy, McMaster University 1280 Main St. W., Hamilton ON L8S 4M1, Canada.

3 Department of Physics, University of Massachusetts, Boston, MA 02125, USA
(Dated: September 2, 2019)

We give rigorous analytical results on the temporal behavior of two-point correlation functions
—also known as dynamical response functions or Green’s functions— in closed many-body quantum
systems. We show that in a large class of models the correlation functions factorize at late times
(A(t)B)s — (A)p(B)p, thus proving that dissipation emerges out of the unitary dynamics of the
system. We also show that the fluctuations around this late-time value are bounded by the purity of
the thermal ensemble, which generally decays exponentially with system size. For auto-correlation
functions we provide an upper bound on the timescale at which they reach the factorized late time
value. Remarkably, this bound is only a function of local expectation values, and does not increase
with system size. We give numerical examples that show that this bound is a good estimate in
non-integrable models, and argue that the timescale that appears can be understood in terms of
an emergent fluctuation-dissipation theorem. Our study extends to further classes of two point
functions such as the symmetrized ones and the Kubo function that appears in linear response

theory, for which we give analogous results.

Two-point correlation functions —or dynamical re-
sponse/Green’s functions— are the central object of the
theory of linear response [1], and appear in the character-
ization of a wide range of non-equilibrium and statistical
phenomena in the study of quantum many-body systems
and condensed matter physics [2]. This includes differ-
ent types of scattering and spectroscopy experiments [3],
quantum transport [4, 5], and fluctuation-dissipation re-
lations [6-8].

Here we study the time evolution of such correlation
functions in isolated systems evolving under unitary dy-
namics. More precisely, we focus on functions of the form

CAB(t) = (A(t)B)s = Tr (pA(1)B) , (1)

where the evolution is generated by a time-independent
Hamiltonian H, p = e PH/Z5 is a thermal state at
inverse temperature § with partition function Zs, and
A(t) = et Ae=i1t is the evolved observable in the
Heisenberg picture. Both A and B are usually taken
to be either local (such as a single-site spin) or extensive
operators (such as a global current or magnetization).
Two-point correlation functions have been widely stud-
ied before, mostly through numerical methods such as
exact diagonalization [9], QMC [10] and tensor networks
[11-17], and analytical results exist for specific models,
e.g. [18-23]). Also, a number of experimental schemes to
measure it directly have been proposed [24-28], which
manage to circumvent the obstacle of having to mea-
sure two non-commuting observables on a single sys-
tem. Here, we aim to give rigorous analytical results
on their dynamical behavior with as few assumptions on

* aalhambra@perimeterinstitute.ca

t riddeljp@mcmaster.ca
¥ Corresponding author; luis.garciapintos@umb.edu

the Hamiltonian as possible. Our results should apply in
particular to most non-integrable Hamiltonians, in which
the degeneracy of the energy spectrum is small.

First, for arbitrary local observables A and B we give
a rigorous proof of the statement that, for late times, the
following signature of dissipation occurs in a large class
of models

(A(t)B)s =% (A)s(B)s. (2)

Moreover, we show that the fluctuations around the late-
time value are in fact bounded by the effective dimension
of the ensemble de_ff1 =Tr (p2), which decays quickly with
system size.

For the particular case of auto-correlation functions,
when A = B, we also derive an upper bound on the
timescale at which the factorization of Eq. (2) happens,
which, remarkably, is independent of the size of the sys-
tem. We provide numerical evidence showing that the
bound is in fact a good estimate even for moderate sys-
tem sizes, and becomes tighter as the size increases.

Our study can be extended to a large class of 2-point
correlation functions. For instance, for the symmetrized
correlation function, we find that its evolution is dom-

inated by a timescale which is at most of the order of

2 ~ %. We argue that this can be interpreted

in terms of a fluctuation-dissipation theorem that arises
from the unitary dynamics of the system. Finally, we
consider the timescales of evolution of the Kubo correla-
tion function that appears in linear response theory [1, 7],
which dictates the response of a system at equilibrium to
a perturbation in its Hamiltonian.

Late-time behaviour — We now show the rigorous formu-
lation of the late-time factorization of 2-point functions.
First, we need the following definition.



Definition 1 (Clustering of correlations). A state p on
a Euclidean lattice ZP has finite correlation length & > 0
if it holds that

| Tt (pX ©Y) = Tr (pX) Tr (V) |
XY =

_ dist(M,N)
max 3
XeM,YEN

(3)
where M, N are regions on the lattice separated by a dis-
tance of at least dist(M, N), defined on an Euclidean lat-
tice.

This condition is generic of thermal states at finite
temperature away from a phase transition. It has been
rigorously shown for 1D systems [29], fermionic [30] and
arbitrary models above a threshold temperature [31]. We
focus on states that obey it, and that are associated to
systems with k-local Hamiltonians, i.e. which can be
written as H = 3 h;, where h; couples at most k clos-

est neighbors in a D-dimensional Euclidean lattice ZP.
Given that the evolution is unitary and the system is
finite-dimensional, limits such as lim;_, ., C4Z(t) are not
well-defined. Instead, we consider the relevant definition
of late-time behaviour to be given by the infinite-time av-

erage of the correlation functions lim7_, o fOT %C’AB (t).
With these considerations, our first main result is the
following.

Theorem 1. Let H be a k-local, translation-invariant,
non-degenerate Hamiltonian on a D-dimensional Eu-
clidean lattice of N sites, and let [p, H] = 0 be an equi-
librium ensemble (such as a thermal state) of finite cor-
relation length & > 0. Let A, B be local observables with
support on at most N sites, where « is fized and such
that 0 < o < 1/(D + 1). Then

T
lim CAB(t) dat

Jim [ =T (pA) Tr (o)

+0 (55% 1og2(N)N*D%) (4)

The proof, found in Appendix A1, relies on a weak
form of the Eigenstate Thermalization Hypothesis (ETH)
shown in [32], which is itself based on previous works on
large deviation theory for lattice models [33, 34]. This
shows that, in fact, any model obeying the weak ETH
and without too many degeneracies will display identical
factorization of correlation functions at long times [35]
(even if it does not necessarily always thermalize).

Note that we assume that the energy spectrum is
non-degenerate, which is accurate for systems without
non-trivial symmetries or extensive number of conserved
quantities. In particular, non-integrable systems usu-
ally display Wigner-Dyson statistics in their fine-grained
spectrum, which imply level repulsion [8].

This factorization of the correlation function can be
thought of as a signature of the emergence of dissipation
due to the unitary dynamics, since the lack of correlations
at different times indicates the loss of information about
an initial perturbation of B at time ¢ = 0, as reflected in
the observable A at time ¢ [1].

Fluctuations around late-time value — For most times,
the 2-point correlation function is in fact close to its late-
time average, with small fluctuations around the equilib-
rium value. In order to prove this, one needs the extra as-
sumption that the energy gaps are non-degenerate, which
again is reasonable in non-integrable systems with con-
nected Hamiltonians [8], where it is generally expected
to hold as random perturbations are sufficient to lift de-
generacies in energy gaps [30].

Let us define CAP = limp_,o, [ ¥CAB(t), and the
average fluctuations around the late-time value as

ey —cary®. )

0% = lim
T— 00
0

The following result puts an upper bound on this quan-
tity.

Theorem 2. Let H be a Hamiltonian with non-
degenerate energy gaps, such that

Ej_Ek:Em_El <:>.j:mak:la (6)
and let [p, H] = 0. It holds that

ot <A 1B max{| A Bul} Tr (). (7

The proof can be found in Appendix A 2. It follows
the same steps as the main result in [37]. Here, we also
find that the purity Tr (p2), or effective dimension, of the
equilibrium ensemble plays a key role. For a microcanon-
ical ensemble Tr ((1/d)?) = 1/d, so the RHS of Eq. (7)
is expected to decay exponentially with system size in
most situations of interest. Also, notice that for a ther-

mal state Tr (p%) < 1/Zg. Moreover, the ETH predicts
that |Ak]B]k‘ ~ ]./d [38}

Timescales of equilibration — Theorems 1 and 2 com-
bined imply that correlation functions of the form
(A(t)B)g are, for most times ¢ € [0,00], close to the
uncorrelated average (A)z(B)g, for a wide class of sys-
tems. It is expected that the timescale at which this
happens may depend on a number of factors, such as
the distance between A and B. If the operators are far
apart on the lattice the correlations are limited by the
Lieb-Robinson bound [39, 40], and timescales associated
with ballistic (o N/P) or diffusive (oc N2/P) processes
may play a role. However, for the autocorrelation func-
tion CA(t) = (A(t)A)s, we can show that equilibration
to the late-time value occurs in a short timescale, inde-
pendent of system size. There may also be further effects
at larger timescales, such as the Thouless time [41, 42],
and for those effects our result limits their relative size.
Let us write the state and observable as

p= PGl A=Y Ap ikl (®)
J ik



where p;; and Ajj; are the respective matrix elements in
the energy basis. We can then write

At) pJJ|AJk| o—i(B—Ex)t — —iGat
O Z T ngae ) (9)

where we denote pairs of levels {i,j} by Greek indexes,
and the corresponding energy gaps by G, = F;—E),. The

. . A2
normalized distribution v, = 2 Jé‘A (JO’”)l

mation from state and observable, reflecting the energy
gaps that are more relevant to the dynamics of the auto-
correlation function, and is central to our proofs. Based
on it, we define the following functions.

incorporates infor-

Definition 2. Given a normalized distribution p, over
Go, we define §y(x) as the mazimum weight that fits an
interval of energy gaps with width x:

&la) = max Z Da- (10)
a:Go €[GN,Gr+x)

We also define

ale) = &) 5(e)

€

=& (), (11)

where o = \/Za PaG2 — (3, PaGa)? is the standard
deviation of py .

Our main result regarding the timescales of correlation
functions, proven in Appendix [B1], is

Theorem 3. For any Hamiltonian H and state p such
that [H,p] = 0, and any observable A, the time correla-
tion function CA( ) =Tr(pA(t)A) satisfies

7/ ICACA |2 it < 4 <“(6)1+5(6)>, (12)

(e T
where a(e) and d(€) are as in Definition 2 for the nor-

. T il A2 L
malized distribution v, = p’é‘A (JO’“)l , and og s given by

L  Tr (p[H, AJA)>
CA(O) T (p[A,H][H,A]) (CA(O))2

Theorem [3] provides an upper bound of Tpq = ==
on the timescales under which autocorrelation functions
approach their steady state value. To see this note that,
if for a given T the RHS of Eq. (12) is small, C(¢) must
have spent a significant amount of time in [0, 7] near the
late-time value C4 .

For distributions v, that are uniformly spread over
many values of the gaps G, one can always find an € such
that § < 1. In that case, the right hand side of Eq. (12)
becomes small on timescales O(Teq). As discussed in [43]
and Appendix B4, if one further assumes smooth uni-
modal distributions, one also finds that a ~ O(1), so
that the timescale is governed by 1/0g. Since og is a

. (13)

0% =

4 a(e)

combination of expectation values of local observables, it
does not change as one increases the size of the system.
In fact, a result of [44] shows that a timescale similar to
1/0¢ is a lower bound to the timescale of equilibration,
which strongly suggests that our upper bound is tight
when the conditions on a and § hold.

As a prime example, for local operators in non-
integrable lattice models, in which (as per the ETH) |A |
are uniformly distributed around a peak at zero energy
gap [45, 46], one should be able to choose € such that
a~ O(1) and 6 < 1. In Fig. 1 we numerically show that
this is indeed the case in a non-integrable Ising model.

Theorem 3 does not make assumptions on the specifics
of the Hamiltonian, the observable or the state, making
it completely general. However, we do not expect the
correlation functions to equilibrate well in all cases, as in
some scenarios a and § will be large —for instance, due to
degeneracies— in which case the RHS of Eq. (12) may
not become small within reasonable timescales. To illus-
trate this, in Appendix C 1 we compute these parameters
in an integrable model, where we see that the gap degen-
eracies of the model negatively affect the quantities a(e)
and d(e), making the estimated equilibration timescales
longer.

Symmetric correlation functions — The previous results
can be extended to other correlation functions, such as

A A *
T (p 4, Ay = SO )

Along the same lines of Theorem [3], in Appendix [B 2]
we prove the following.

CA®t) =

N =

Theorem 4. For any Hamiltonian H and state p such
that [H,p] = 0, and any observable A, the time correla-
tion function CA( ) =Tr (p{A, A(t)}) satisfies

1 (TICH() - CaP a(e) 1
T/o Gt < 4 (UGTM(G)), (15)

where a(e) and 6(€) are as in Definition [2] for the nor-

malized distribution vs = p’ﬁ%lfi%‘n nd
1
7 = gaggy TP HIEL A (19

Thus an upper bound for the equilibration timescale is

4m a(e) /C£(0)
VT (p[A, H|[H, A])’

(17)

€q —

where again a ~ O(1) for approximately unimodal dis-
tributions v,. The denominator in T¢, can be seen as an
“acceleration” of the symmetric autocorrelation function.
Eq. (17) can in fact be written as

4 A
1, — irald VCI0) a8)
d2C§‘(t>| ’
0

dt?




Such timescale turns out to be similar to that of a
short-time analysis. A Taylor expansion gives
1 d*CAt)

ci) =20 (1 g5

0t2> + O(%).
(19)

For early times, the above expression decays on a

W‘%Teq, identical to our upper bound
Eq. (18) up to a prefactor.

The timescale of Eq. (17) suggests an interpretation
in terms of an emergent fluctuation-dissipation theorem.
Consider ¢) Teq to be the timescale of dissipation of uni-
tary dynamics, meaning that (A(t)A)s — (A4)3(A)s oc-
curs, and 7i) C2(0) = Tr (pA?) as a measure of the fluc-
tuations of A. Then, Eq. (17) gives a proportionality
relation between the strength of the fluctuations and the
timescale of equilibration, in a similar spirit to what was
found in [47] using random matrix theory arguments.

timescale 7 =

Linear response and the Kubo correlation function — As
a further application of our methods, we study the evo-
lution of a quantum system under a perturbation of its
Hamiltonian. Let the system start in a thermal state,
such that p oc e #H+A) " Qubsequently, the Hamilto-
nian is slightly perturbed by AA, so that the evolved
state is py = e~ "H pettH

It was shown by Kubo [I] that, to leading or-
der in A, the expectation value of A satisfies
Tr (pA(t)) = Ckubo(t) Tr (pA), where for thermal states
the Kubo correlation function can be written as

—BEr _ o—BE
€ € J i L
Cicano(l) x 3 A2 B ED. (20)
oyt

E, — By,

Equilibration of Tr (pA(t)) is then equivalent to equili-
bration of the function Ckyno(t), for which we prove in
Appendix B 3 that the following holds

Theorem 5. For any Hamiltonian H, thermal state p
e PHTAA) " 4und any observable A, the Kubo correlation
Sfunction Ckupo satisfies

T o 2
1 / [Crcuvolt) = Creuvocol? 5y 4 (“(@7{ n 5(6)) ,
0

T CKubo(O)2 oG
(21)
where a(e) and 6(€) are as in Definition [2] for the nor-
_ _BE; T2
malized distribution w, = ¢ ﬁg;:%kw’ C‘Iijlj')l(o), and
1
2
0% = ——_Tr([A, pl[A, H]). 99
b= oo MAAAE). 2
4 a(e)

As before, this implies an upper bound Tp, = —

K . . G
on the equilibration timescale of Ckyupo, and therefore on
the time to return to thermal equilibrium after a pertur-
bation of the system Hamiltonian by A. Once more, if
the distribution w,, is smoothly distributed and unimodal
then a ~ O(1) and §(e) < 1 hold (see Appendix B4).

Simulations — We test Theorem [3] in a spin model gov-
erned by the Hamiltonian

H =

L
j=

L—1 L—2
b'e z zZ_Z z 7z
(*yaj +>\O'j)+JZO'j 054 +aZaj 071 a,
j=1 j=1

(23)
where ¢Z and ¢ are the Pauli spin operators along Z
and X directions for spin j, and we take open bound-
ary conditions. The field and interaction coefficients
(7, A\, J, @) characterize the model. We focus on a case
corresponding to a system satisfying ETH by choosing
(v, A, J, ) = (0.8,0.5,1,1) [48], and study the autocorre-
lation functions of the observable A = ¢% . For simplic-

1

ity we set § = 1 in our numerics, though2 no significant
changes were observed for 8 € [0.1,5]. Figure 1 depicts
the functions a(e) and d(e) that appear in Theorem 3,
showing that there exist regions of € such that § <« 1,
ensuring equilibration occurs, and a ~ 0.4. Importantly,
this is increasingly the case as the size of the system
grows.

In Fig. 2 we compare the two sides of bound (12),
where it can be seen that the upper bound is off by
roughly an order of magnitude, showing the accuracy of
estimating 7., as the timescale. Note how the estimate is
increasingly better with system size. Details of how the
functions required to plot Figs. 1 and 2 are computed
can be found in Appendix C.
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FIG. 1. Plots of §(€) (top) and a(e) (bottom) for distribution
vo in Theorem 3, obtained by exact diagonalization and a
Monte Carlo approximation of the function &, from Def. 2.
The plots were generated with 10,000 sampled frequency in-
tervals. Small values of § imply equilibration occurs for long
enough times, while the value of a controls the prefactor in
the equilibration timescale Eq. (12). For small € one can sat-
isfy both 6 < 1 and a ~ O(1), and this becomes increasingly
so for larger system sizes.

Discussion — We derived analytic results on the dynam-
ical behavior of 2-point correlation functions in quantum
systems. These include conditions that imply that time-
correlation functions factorize for long times, as well as
easy-to-estimate upper bounds on the timescales under
which such process occurs. Our numerical findings sug-
gest that the upper bounds on timescales we propose are
increasingly better estimates as the size of the system
grows, and are accurate to within an order of magni-
tude. This discrepancy could, however, be a finite-size
effect, which is also suggested by the bound in the other
direction of [44]. A further open problem is the charac-
terization of timescales for correlation functions C45(t)
between arbitrary observables.

We used techniques previously applied in the context of
equilibration of quenched quantum systems [43, 49, 50],
for which finding rigorous estimates on the timescales
is a largely open problem [51-54]. This connection is
not surprising, specially considering that previous works
[6, 55, 56] have argued that in some situations (that is, for
certain initial states, and assuming the ETH holds) one
can approximate the out of equilibrium dynamics with
the autocorrelation functions covered here.

Given the importance of time-correlation functions in
the analysis of a wide range of problems in many-body
physics —for instance, in transport phenomena— we an-
ticipate that our results will be useful in the description

T

FIG. 2. Comparison of the upper bound in Eq. 12 (RHS)
with the simulated evolution of the time-averaged correlation
function (LHS) as a function of time, for increasing number
of spins L. The evolution obtained from the upper bound
approaches the exact dynamics of the system for larger system
size.

of closed system dynamics, whose study has surged in
recent times due to enormous experimental advances in
settings such as cold atoms or ion traps [57, 58].
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Appendix A: Late time behaviour of two-point functions
1. Proof of late-time equilibration

First, we state the key result from [32] that we use. It says that expectation values for single eigenstates, of the
form (Ey| A|Ey), are close to the ensemble average (A)z with very high probability. In contrast, the strong form of
the ETH states that the above happens for all eigenstates within an energy window. We reproduce the proof of [32]
(which itself builds on [34]), with the difference that our version holds for lattices of dimension larger than 1.

Lemma 1 (Proposition 7 [32]). There exists a constant 0 < oo < 1/(D + 1) such that the following holds. Let H be a
translation-invariant, non-degenerate Hamiltonian with N sites on a D-dimensional lattice, p an equilibrium ensemble
[p, H] = 0 with finite correlation length &, and A some observable with support on a connected region of at most N
sites. Then, for any § > 0,

Priggen(| (el A|Ex) = Tr (pA) | 2 6) < exp (~cSN D& D), (A1)
where ¢ > 0 is a constant, and |Ey) € p indicates that the eigenstates are sampled from the equilibrium distribution p.

Proof. We show a bound Prig,yc,((Ex| A|Ex) — Tr(pA) > 6), and Prig,)c,(Tr (pA) — (Ex| A|E) > 0) will fol-
low analogous steps. Notice that since the Hamiltonian is translation-invariant and non-degenerate we can write
(Ex| A|Ey) = (Ex| A/N |Ey), where A = Y, A; is the extensive observable built out of translations of A. Define
A’ = A — (A)g. Then, using Markov’s inequality and e{YI41¥) < (1| e 1)) we can write

Priyep((Bx| A|Ex) — Tr (pA) > 8) = Prjg, e, (MBI < ANy (A2)
< ef)\éNZpkkeMEkMﬂEk) (A3)
k
< e MNTY (pe’\‘a/) . (A4)
Now let us decompose A’ = 3°, e’ 11}, and write the average as
Tr (pe)‘A/) = Z e Tr (pII;) + Z e M Ty (pIl)) (Ab)
a;<ON/2 a;>0N/2

The first term is upper bounded by e*/2. For the second, we write

S AT () = Y > T (Tl £ 3D AV T () . (A9
ar>6N/2 J ON/2+(j+1)2a>8N/2+] j

where IT>, denotes the projector on the subspace with a; > x. The main result of [33] states that

Tr (pHZSN/2+j) < PN fexp (—;lg (N(5/2 +j/N)2§)1/D+1> : (A7)

Since j is at most O(NN), we can choose some A = O ((N&)_DLH) such that, for some constants c1, ca > 0,

37 T (pIl) < poly(W)ePN/Eexp (—clND%lS_D%l) : (A8)
az>5N/2

This way, the dominant contribution of Eq. (A5) is the first term. Plugging the bounds back in Eq. (A4) results in
the following, for some constant ¢ > 0 and large enough N,

Pty cp (Bl A|Ep) = T (pA) 2 8) < e N/ (14 ¢ 20N 2oty (N)ePN eexp (e NDFTETHT) ) (A9)
< exp <705Nﬁ§7%ﬂ) . (A10)
]



With it, we are now ready to prove the result on late-time factorization of correlation functions.

Theorem 1. Let H be a k-local, translation-invariant and non-degenerate Hamiltonian on a D-dimensional Fuclidean
lattice of N sites, and let [p, H] = 0 be an equilibrium ensemble (such as a thermal state) of finite correlation length
&> 0. Let A, B be local observables with support on at most N sites. Then

T

Jim [ Tr(pA(t)B) % = Tr (pA) Tr (pB) + O(£ BT log?(N)N~P1) (Al1)
— 00 0
Proof. First let us write

p=> pri|Ex) (Bl . A= Agj|Ep) (Ej| , B=Y By;|Ex) (Ej, (A12)

k kj kj
from which we have
Tr (pA(t)B) = Y _ Ap;Bjrprre™ P4 (A13)
kj

Since the Hamiltonian is non-degenerate by assumption, it holds that

T
gt -m dt _ o

A ) T~ Ok (A14)
so that the limit becomes
li TT (pA(t)B) i _ > AwB (A15)
TE};OO r(p T = a kkDkkPkk-
Now let us define Ay — Tr (pA) = Ay 4 and By, — Tr (pB) = Ay p , so that [59]
Z Ak Brrprr = Tr (pA) Tr (pB) + Z Pk (Tr (pA) Ag g + Tr (pB) Ap a4 + Ag 4k B) (A16)
k k
=Tr (pA) Tr (pB) + > prxlr,ali n (A17)
k
Let us define A = Klog N/N ﬁ, and split the sum over energies of the error term as
ZpkkAk,AAk,B = Z Pk Ak AAL B + Z PrkAr AAL B. (A18)
k keS k¢S

where S = {k : |Ag,al, |Ak, 5] < A} (that is, the set of k for which both errors are small). Notice that the first term
is smaller than A? by definition. On the other hand, the second term can be bounded as

Z Prek AAE B < max Ap aAp B Z Pkk
k¢s k¢S

< max AV VAV § Prk + E Prk
[Ak, al>A Ak, B|>A

< 2max A 4D p exp (—cANDFTET D)

(A19)

- prT
1\ ke P
N )

g2||A|||B||<

The third line follows from Lemma 1, and the fourth from |Ay 4| < ||A]||,|Ak, 5| < ||B||- The constant K is arbitrary,
so we can choose it such that ch_DLH = DLH. In that case the dominant contribution to Eq. (A18) is that of the
first term, and hence Y, prrQk alk g = O(A?), so that

> AprBirprr = Tr (pA) Tr (pB) + O(A®), (A20)
k

completing the proof. O



2. Proof of fluctuations around late-time value

Theorem 2. Let H be a Hamiltonian with non-degenerate energy gaps, such that
E,—-E,=E,-E ©j=m,k=1 (A21)
Then, it holds that

o < AN Bl max{ e Byl Tr (o7) (A22)

Proof. Let us expand in the energy eigenbasis.

T

0% = lim (C(t)AB — C4AB)2 (A23)
T— 00 0 T
Tat —it(Bj—Ex+Ei—Em)

= Z Z pjjpllAjkBijlmBml/ T g Rk R Em (A24)
J#k l£m 0

=D pisprAjiAn; BB (A25)
i#k

<) pijork | AjkAr; Bjk Bij| (A26)
i#h

< I;O;,f{lAijij Z PjiPrk | AjkBij| (A27)

J#k

< max{|Ax; Bk} > pisonn |4l > pijore | Brgl® (A28)

J#k - :
Ji#k Ji#k
2 2
< I;O;,f{lAijij Zk P4 Pk | Ajl Zk P Prk | Bijl (A29)
Js Js

= max{|Ay; Bjrl}v/ Tt (0ApA) /Tt (pBpB) (A30)

< mgg{lAijjkl}\/Tr (A2p2)/Tr (Bp?) (A31)
J

< A[lIB]l rjf.lgg{lAijm} Tr (p) . (A32)

In the second to the third line we use the assumption of non-degenerate energy gaps. We use the Cauchy-Schwarz
inequality in the fifth to sixth line, and once again in going to the eighth line. The last one follows from the fact that
for positive operators Tr (PQ) < ||P|| Tr (Q).

O

Appendix B: Dynamics of two-time correlation functions
1. Proof of equilibration timescales of correlation functions

Theorem 3. For any Hamiltonian H and state p such that [H,p] = 0, and any observable A, the time correlation
function CA(t) = Tr (pA(t)A) satisfies

L [TloAw) —cal a(e) 1
= ——————dt <A4An | — =+ B1
v, e = (), .
where a(e) and 6(€) are as in [2] for the normalized distribution v, = %, and o can be readily calculated from
knowledge of the state, observable, and Hamiltonian:
1 Tr (p[H, A]A)?
0% = - Tv (ol A, H][H, 4]) - AL AAS (B2)
¢~ CA(0) (C4(0))?
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Proof. Following [43, 50], we get

‘CA |2 ~|Ga—Ga|T
= CA — e dt < 4 Z VaUge 6 (B3)
Ga#Gs

Note that the distribution v, is normalized:

PJJ|AJk| _ Tr(pA%)
Zv(, B Z - CA(0) =1 (B4)
Proposition 5 in [43] thus implies that
1 /T ‘Ct <>O| 1
7| Eagedt < dn (F)., B5
T J, (CA(0))2 (1) (B5)
with &, as defined in [2]. It was shown in [43] (Proposition 5) that the function &, (x) satisfies
al(e)
Ep(a) < ——a +6(e), (B6)
og

with a(e) = EP(E)O'G and d(e) = &, (€). Finally, the standard deviation of the distribution p, is

2
Ué = ZpaGi - (ZpaGa>

2
= p]J‘Ajk| (E; — Ey) p]J\Ajk| (B, - By)
-> 2 (52 k
. CAI(O) friotd A A= E[())]) (B7)
which completes the proof. ]

2. Proof of equilibration timescales of symmetric correlation functions

Theorem 4. For any Hamiltonian H and state p such that [H,p] = 0, and any observable A, the time correlation
function CA(t) = Tr (p{A, A(t)}) satisfies

G5 (1) oo|2 a(e) 1
- <dr | 2L B
/ C’A — = dt < 7T<UGT+6(6)>, (B8)
where a(€) and §(e) are as in Definition [2] for the normalized distribution vs = Wr% 'C“g’g(‘)) , and
1
&= =1~ Tr(p[Ao, H|[H, Ag)) . B9
7% = gy T (plAo, HI[H. Ao) (B9)

Proof. The symmetric correlation function is defined as

1 CA(t) + CA(t)*
A1) = S Tr(p {4, Ay = OO0 (B10)
The equivalent of Eq. (9) becomes
2t) pii + ok [Ajl® _i,—mo
j Bl1
4(0) Z 2 CA(0)° ’ (B11)
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The proof of Theorem [4] is identical as the previous proof, with the symmetrized distribution v W%MMF.

In this case the variance of the normalized distribution v5 becomes

2
ot = Z:pSG2 - (Zzﬁ%)

2

PijtPkk ‘A- |2 PiitPrE |A- |2
_ 2 ik (B; — E),)* — 2 (g~ E
- Z A J k) A ( j )
ik Cs (O) gk CS (0)
1
= Tr (p[A, H|[H, A]) . B12
g T (elA HH A) (B12)
O
Equilibration then occurs within a timescale
4 CA(0
o = 7 a(e) (0) (B13)
VT (p[A, H|[H, A])
The denominator in T¢, can be identified as an “acceleration” of the symmetric autocorrelation function. Indeed,
d>CA(t) Pjj + Prk —i(E;—
g =~ DBy = B R AP, (B14)
ik
Then, the equilibration timescale is
4 A
T,y = M_ (B15)
dch(t)’ ‘
dt? 0
a. Short-time evolution of symmetric correlation functions
The symmetric autocorrelation functions is given by
Pii + Prk 2, —i(B;—Ex)t
CA(t) LY " Bl
= 3 DT (B16)
ik
Taking the Taylor expansion of C4(t),
‘ Tha
C(t) = C0) = (i (B — B PE P 4,7 ) ¢
ik
i+ o 2
_ Z(EJ _ Ek)QpJJ : pkk|Ajk|2 5 + O(tg)
ik
d?c4| +2
=CH0) - —=| =+ 0@
0~ | 3 + O
1 d*cA
=CA0) (1 - = —2| 2) + O@t?). B17
40 (1- 5 | #) o) (B17)

For early times, the above expression decays on a timescale

V2VCI0) (B18)

d2CA(L)
dt?

\‘
Il

|
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3. Proof of equilibration timescales of Kubo correlation functions

Theorem 5. For any Hamiltonian H, thermal state p, and any observable A, the Kubo correlation function Ckupo
satisfies

it < 4n (‘L(E); + 5(6)) , (B19)

l /T |CKub0(t) - C’Kubo,ool2
0

T CVKubo (0) 2 el

_ _BE; 2
where a(€) and d(e) are as in Definition [2] for the normalized distribution wo, = < BZ’;:EkBE’ Clﬁﬁ‘(o)’ and

_
CKubo(())

Proof. The Kubo correlation function can be written as

o = Tr ([4, pl[A, H]). (B20)

—BEr _ o—BE; )
Ciubo(t) o< > ﬁmﬂpen(&—m)’ (B21)
#k ! '

with the proportionality constant defined by Ckubo(0) = 1. We can then write

“PEk e FEj 2 it(E;—E
CKubo(t) — CKubo(OO) . Zj;ék € Ej—i'jk . ‘Ajk| €Zt( 1 )

—BE _ 7BE_-
Ckubo(0) P g’;,;k L A2
Za;éo waefitGa

S aa— B22

S . (B22)

where we define w, = %Mﬂiﬁ > 0. Given that w, > 0, we can perform similar calculations as for
J

Theorem [3], albeit with a different probability distribution. Thus, we also have

< <cKubo(t> — Cubo ()

2 om
) >T < Meu(1/1). (323)

Defining the normalized distribution ¢, = wa/ Ckubo(0). The variance is

2
Ué‘ = ZQaGi - (Z QaGa>
« «
2
—BEr _ =B —BEr _ =B

D D e AP - B - [ AP Es - B
m Ckubo(0)  E; — Ey A ¥ m Ckubo(0)  E; — Ey AR F

1
S — E (e7PBx — e PEI) | A *(B; — Ey)
& (& jk g k
CKubo(O) ik
1

B CKubo (O)

completing the proof of Theorem [5]. O

Tr ([A, p][A, H]), (B24)

4. Scaling of ¢ and §

The proofs of Theorems 3-5 rely on the fact that the function &,(x), defined for any normalized distribution p, as
the maximum distribution that fits an interval z

&) = mémx Z Das (B25)

a:Gp€[Gg,Gp+x]
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satisfies

&) < o500, (B26)

= &n(e)

€

which was shown in [43] (Proposition 5). Here a(e) oc and §(e) = &,(€), where o¢ is the standard deviation

a9 - while

of the distribution p,. The function a(e) ends up in the bound of the equilibration timescales, as T.q =
d(e) governs the long time behavior in the bounds.

Given that &, (z) characterizes how much of the distribution p, fits an interval «, the value of a in Eq. (B26) depends
on how well 1/0¢ serves to characterize the region where the distribution p, is supported. Roughly speaking, whenever
1/0¢ is a good estimate of the width of such small region, then one expects a ~ O(1). This is well illustrated when
considering a unimodal distribution (e.g. a Gaussian). In such case, the fraction of the distribution that fits an
interval x is roughly « times the width 1/0¢ of the window where the distribution is supported, and &,(z) ~ z/oq,
so that @ ~ O(1). Multimodal distributions violate such condition, as for them the standard deviation does not
characterize the regions in which the distribution has considerable support. At the same time, ¢ in Eq. (B26) carries
information of the fine structure of p,, indicating the scale at which the distribution can no longer be coarse-grained
to a continuous distribution. The only way that § < 1 fails is for distributions that are not smooth, in which a small
region of width e is significantly populated. Thus, for distributions that are smooth in a coarse-grained sense, and
approximately unimodal, one expects to be able to find a small enough ¢ such that d(¢) < 1 and a(e) ~ O(1).

In summary, the problem of proving fast equilibration timescales in our approach can thus be linked to knowing
whether the relevant distribution p,, is ‘approximately unimodal’. We argue that for an strongly interacting many-body

system this will typically be the case. Consider for instance the case of Theorem 3, where the relevant distribution is

. _ piilA; 2
given by v, = %.

The large number of energy gaps present in a many-body system implies a dominance of small gaps over larger
ones, which favors that, on a coarse-grained sense, the distribution over gaps shows a decay as the size |G| of the gap
increases. This is reinforced by the tendency of off-diagonal matrix elements | A;| of local observables to decay as the
levels considered are further apart. Existing numerical results on off-diagonal matrix elements of local observables in
non-integrable models are consistent with all the requirements listed here [45, 46]. The present arguments suggest
distributions v, that decay for larger values of |G|, and are therefore unimodal, and also smoothly distributed. This
is confirmed in the simulations in Appendix C in a non-integrable model on Fig. 5 (left), and to a somewhat lesser
extent in an integrable model too on Fig. 5 (right).

Appendix C: Simulations

To calculate the function given in definition 2 exactly one needs to find the maximum sum of p, such that « :
Go € [Ga,Gx + z]. This calculation scales quite unfavourably with system size. If we have N energies, the number
of intervals one must probe is quadratic in N. For each x ~ O(10~!) the intervals near the center are quite dense,
making the entire algorithm for one choice of z approximately scale like O(N?). For this reason, we exactly diagonalize
the Hamiltonian given in equation 23, and numerically approximate £(x). This is done by means of a Monte Carlo
scheme where we randomly select intervals defined by G\ using a normal distribution defined by pug =" paGa and
o¢ given in definition 2.

Figure 3 (left) depicts the accuracy of this scheme. Unsurprisingly L = 6 is exactly calculated and is not visible
on the except at one location. The other cases show the approximation scheme performs better at larger system
sizes. Despite this improvement, the accuracy of the scheme roughly puts us accurate to the fourth digit in all cases,
making this scheme more than accurate enough. Quantities such as pg and og can be calculated exactly given the
exact diagonalization. However the left hand side of Eq. 12 has a time order complexity of O(N*), making it again
extremely difficult to calculate exactly. To get around this, we simply define a grid ¢, = Ak where £k =0,1,2... and
average over the values calculated of |C4(t;) — C4|? as,

k
g = g SICH () - CAP. (c1)
=0

Figure 3 (right) shows the forward error of this scheme, showing an expected first order accuracy in time. Since we
have an accuracy which is satisfactory for the scales we are comparing with the bound which tends have a roughly
10~ disagreement between the two sides of the bound. Finally to the optimal choice of a(e) and d(¢). For the plots
present in figure 2 we simply took the smallest d(e) available to minimize the resolution of our bound and picked the
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FIG. 3. (left) Forward error plot depicting the accuracy of the Monte Carlo scheme at different values of system size. {(e) is
exactly calculated and & (¢) is calculated using the Monte Carlo scheme with 10,000 samples per value of €. (right) Forward
error plot depicting the accuracy of the integral approximation in calculating the left hand side of equation B1 at various values
of time and system size. A step size in time of At = 0.001 was used.

corresponding a(e). This choice has an obvious issue in the L = 8 case but begins to be more favourable in the larger
system sizes. Looking at figure 1 we see the value a(e) can grow quite quickly due to finite size effects, making the
prefactor outside the 1/T term quite large.

1. Integrable models

Next, this section provide an example of showing how our bounds on timescales are affected in integrable models,
highlighting the negative effect of degeneracies. Suppose we choose to define our Hamiltonian of Eq. (23) in the main
text with parameters H = (—0.5,0,—0.5,0). This corresponds to an Ising model with a transverse field. The issue
in general with this model comes from investigating the behaviour of the corresponding d(¢) and the fact that the
frequencies G, are very degenerate, meaning this function will not necessarily decay to zero as we take € — 0.

o
=
IS

[l el et

LI
= = 00 0
N O
]L
[t sl
LI

= 2 oo
N O

a(e)

0.00 0.02 0.04 0.06 0.08 0.10
& &

0.06 0.08 0.10

FIG. 4. Plots of d(e) (top) and a(e) (bottom) for distribution v, in Theorem 3, obtained by exact diagonalization, and a
Monte Carlo approximation of the function from Definition 2. The plots share the same x-axis and were generated with 10,000
sampled frequency intervals. Small values of ¢ imply equilibration occurs for long enough times, while the value of a controls
the prefactor in the equilibration timescale Eq. (B1).

In Figure 4 we see the issue emerging with the bound found in Theorem 3. The degeneracy of the G, terms cause
the decrease in §(¢) to happen in discrete steps triggered by calculating §(¢) in a small enough region to differentiate
two degenerate values of G, which are close. Thus at small € we still expect our resolution of equilibrium to be quite
large. This slow decay of d(e) also causes a(e) to become quite large very quickly, as one needs d(¢) to be roughly
linear for a(e) to be reasonably small. This suggests that perhaps alternative approaches are required to bound the
equilibration of two point time correlation functions in integrable models.
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o e . Al
2. Distribution of v, = %

Finally, we show the distributions of v, = p“lc#’“‘ and comment on the differences between the integrable case

and the case that obeys the ETH. To proceed we define a coarse grained version p, of v, = M7 where we define

n bins and bins, by = [Gimin, Gmin + AG], by = [Gin + AG, Gin + 2AG], . .., where AG = Emaz=Cmin  The coarse
grained probability is then obtained by summing the associated probabilities, p, = ZGBE by VB

0.16 0.16
—o— L=6 —o— L=6
0.14 v L=8 0.14 —— L=8
0.12 —— L=10 0.12 —— L=10
—— =12 —— L=12
0.10 0.10
,&OAOB IQtix(),og
0.06 0.06
0.04 0.04
0.02 0.02
0.00 0.00
-15 -10 =5 0 5 10 15 -6 -4 -2 0 2 4 6
Ga Ga

A2
FIG. 5. Plot of p, obtained from coarse-graining v, = %#H against frequency, with n = 80 bins at various system sizes. The
case for which ETH is satisfied is featured on the left, while the integrable case is on the right. For the latter the distribution

is less uni-modal, which leads to larger values of a(e), as depicted on Fig. 4 (right).

The result is given in Figure 5. The ETH case approaches a unimodal distribution quicker than the integrable case,
however both distributions appear favorable in the coarse grained probabilities. Note, increasing the number of bins
significantly did not significantly affect the shape of the curve.
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Chapter 5
Conclusions

In this thesis we introduced the topics of equilibration, thermalization and scrambling. These
topics were discussed at length in the introduction and were addressed in three manuscripts
in chapters and[] In chapter 2] we addressed the OTOC in the standard AL model of free
fermions and found that the OTOC formed a neck-tie light-cone. The universal power law
of equation [I.34] was observed to hold regardless of disorder. Similarly, the wave-front was
discussed and it appeared that the universal waveform of equation seemed to fail for both
the non-disordered and disordered case. Instead we found that regardless of disorder, the form
in equation was more appropriate. This called into question the proposal of the univer-
sal wave-form which had an analytical prediction for equation [I.35] for non-disordered free
fermions. We also concluded that a form of weak scrambling existed for the localized phase
in late time, with the OTOC settling at a non-zero value in late time. The non-disordered
case appeared to relax to zero indicating lack of scrambling. In chapter |3| we continued the
discussion from [2] with a quasi-disordered model. The one dimensional AA model was stud-
ied, which features a localization transition at a non-zero disorder. The early time growth
found in chapter 2] was again observed to be independent of disorder. We added to the discus-
sion posed by 2| by confirming the universal wave form in both the non-disordered case and a
small disorder away from the localization transition in the time regime ¢ < =. The Gaussian
waveform was found again for this model, and had some overlap with the universal form, but
is valid surrounding the time ¢t = % We speculate that this might indicate a fifth time regime
of interest for the OTOC directly at the classical wave-front. We then rigorously proved the
OTOC equilibrates in finite time to zero for all disorder strengths in the extended region of
the model. This constitutes the first rigorous proof of OTOC equilibration that we are aware
of. It also implies a lack of scrambling in these models for local operators. In chapter 4 we

investigated dynamical correlation functions and their universal properties under reasonable
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assumptions. We rigorously proved the equilibration of these functions in the infinite time
average limit and in finite time. We similarly proved a late time factorization form given in
equation The bounds of equilibration were numerically calculated for a model known
to obey the strong ETH, and were shown to be reasonably tight. These results are expected to
be true for all Hamiltonians with non-degenerate energy values and which at least obey the
weak ETH.
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