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Chapter 1

Introduction and the model

We analyze a simplified mathematical model of the complete degradation of monochlorophe-
nol. This is a biological process in which chlorophenol is reduced to more simple com-
pounds by populations of microorganisms. In our case we will focus on hydrogen, since
we assume that all the other products do not affect the dynamics of the process. The
process is anaerobic, which means it occurs without the presence of oxygen. It is also
one of the subprocesses of the complete anaerobic digestion process, which describes the
degradation of organic matter in the absence of oxygen. Conventional anaerobic digestion
processes (i.e., those converting organic material from typical sources such as agriculture
and post-wastewater treatment solids) have been modelled with the highly structured
Anaerobic Digestion Model No. 1 [1], which contains a large number of parameters, state
variables, and algebraic expressions. These complications make its deep theoretical anal-
ysis extremely limited, although numerical investigations have been conducted (see for
example [2]). For this reason, we study a simplified model. We try to maintain as much
generality as possible so that the results can be applied to other phenomena, such as
benzene degradation, which naturally occurs in crude oil. Understanding this process is
especially important from the applications point of view. For example, chlorophenol is
an extremely toxic compound, used extensively in the agricultural industry. Chlorophe-
nols are not typically included in the ADM1 for standard anaerobic digestion studies,
however, the model’s inherent flexibility allows for their inclusion and an adapted model
has previously highlighted the inhibitory effect of chlorophenol on the methanogenesis
step of the process [13]. Therefore, the use of a reduced and simplified model based
on ADM1 for studying the ecological interactions in a three-tiered food-web describing
cholorophenol mineralisation is valid.
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Chlorophenol Chlorophenol
degrader Phenol

Hydrogen
Phenol
degrader

MethanogenHydrogen
inhibition

Figure 1.1: Schematic representation of the three-tier chlorophenol
degradation. Reproduced with permission from the authors of [14].

In our work, a population of microorganisms is introduced that breaks down chlorophe-
nol into phenol. The question of existence of such an microorganism is currently a focus
of many biologists, see [6], or [8]. Another population of microorganisms then degrades
phenol into hydrogen (for specific species, see [12]). Actually, phenol degrades to many
other chemical compounds, however in our case we consider only hydrogen, as it is a re-
source for the chlorophenol degrader, which also inhibits growth of the phenol degrader.
Finally, hydrogen is a resource for a population of methanogens. The entire process is
presented in the Figure 1.1. This form of the interaction between microorganisms is
called a food web, that is, an interconnection of food chains. The entire process is as-
sumed to happen in a laboratory controlled environment, in a bioreactor (a chemostat)
supplied by a steady flow of nutrients, from which the liquid containing the mixture
of microorganisms and chemical compounds is removed at the same rate, to keep the
volume constant. Although anaerobic digestion occurs freely in nature, the laboratory
settings allow us to manipulate the parameters and guarantee a better control over the
process. The model developed in [16] consists of six differential equations (three biomass
and three substrates variables). Using the same notation as in [16], it has the following

2
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form:

dXch
dτ

= −DXch + Ychf0 (Sch, SH2)Xch − kdec,chXch, (1.1)

dXph
dτ

= −DXph + Yphf1 (Sph, SH2)Xph − kdec,phXph, (1.2)

dXH2

dτ
= −DXH2 + YH2f2 (SH2)XH2 − kdec,H2XH2 , (1.3)

dSch
dτ

= D (Sch,in − Sch)− f0 (Sch, SH2)Xch, (1.4)

dSph
dτ

= D (Sph,in − Sph) + 224
208 (1− Ych) f0 (Sch, SH2)Xch − f1 (Sph, SH2)Xph, (1.5)

dSH2

dτ
= D (SH2, in − SH2) + 32

224 (1− Yph) f1 (Sph, SH2)Xch − f2 (SH2)XH2 (1.6)

− 16
208f0 (Sch, SH2)Xch,

where Xch, Xph, and XH2 denote concentrations of chlorophenol (Sch), phenol (Sph),
and hydrogen (SH2) degraders respectively, Sch,in, Sph,in, and SH2,in are concentrations
of the substrates inflow (chlorophenol, phenol, and hydrogen respectively), Ych, Yph, and
YH2 are the corresponding yield coefficients, kdec,ch, kdec,ph, kdec,H2 represent the corre-
sponding death rates, and D is the dilution rate. The quantity 224

208 (1− Ych) represents
the part of chlorophenol degraded to phenol, 32

224 (1− Yph) represents the part of phenol
degraded to hydrogen, and 16

208 is the fraction of phenol consumed as hydrogen by Xch.
The functions f0, f1, and f2 are the growth functions, usually taking Monod forms [11].
For the purpose of numerical simulations, we choose the test functions to be given as

f0 (Sch, SH2) = km,chSH2

KS,H2,c + SH2

Sch
KS,ch + Sch

, (1.7)

f1 (Sph, SH2) = km,phSph
KS,ph + Sph

I2, (1.8)

f2 (SH2) = km,H2SH2

KS,H2 + SH2

, (1.9)

where km,ch, km,ph, km,H2 are the maximum specific growth rates pertaining to the
chlorophenol, phenol, and hydrogen degraders respectively, and KS,H2,c, KS,ch, KS,ph,
KS,H2 are the half saturation coefficients, respectively, for each species.

Following the approach in [16] we introduce the dimensionless scaling

t = km,chYchτ, (1.10)

s0 = Sch
KS,ch

, s1 = Sph
KS,ph

,
SH2

KS,H2

, (1.11)

x0 = Xch
KS,chYch

, x1 = Xph
KS,phYph

, x2 = XH2

KS,H2YH2

, (1.12)

3
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which transforms the system into the following form:



x′0 = −αx0 + µ0 (s0, s2)x0 − kAx0,

x′1 = −αx1 + µ1 (s1, s2)x1 − kBx1,

x′2 = −αx2 + µ2 (s2)x2 − kCx2,

s′0 = α (uf − s0)− µ0 (s0, s2)x0,

s′1 = α(ug − s1) + ω0µ0 (s0, s2)x0 − µ1 (s1, s2)x1,

s′2 = α(uh − s2)− ω2µ0 (s0, s2)x0 + ω1µ1 (s1, s2)x1 − µ2 (s2)x2,

(1.13)

where

α = D

km,chYch
, (1.14)

uf = Sch,in
KS,ch

, ug = Sph,in
KS,ph

, uh = SH2,in
KS,H2

, (1.15)

ω0 = KS,ch
KS,ph

224
208 (1− Ych) , ω1 = KS,ph

KS,H2

32
224 (1− Yph) , ω2 = 16

208
KS,ch
KS,H2

,

(1.16)

φ1 = km,phYph
km,chYch

, φ2 = km,H2YH2

km,chYch
, (1.17)

KP = KS,H2,c
KS,H2

, KI = KS,H2

KI,H2

, (1.18)

kA = kdec,ch
km,chYch

, kB = kdec,ph
km,chYch

, kC = kdec,H2

km,chYch
, (1.19)

µ0 (s0, s2) = s0
1 + s0

s2
KP + s2

, µ1 (s1, s2) = φ1s1
1 + s1

1
1 +KIs2

, µ2 (s2) = φ2s2
1 + s2

.

(1.20)

For the purpose of numerical simulations, we assume that the dimensionless parame-
ters have the values given in the Table 1.1, (the full derivation of these values is presented
in [16]). Notice that we do not list α, uf , ug, and uh, since we treat them as bifurcation
parameters and thus their values will change.

In the previous work [14], it was assumed that ug = uh = 0. Here we study the
qualitative behaviour of the system without this limiting assumption. We will show that
this leads to much more complex dynamics (for example, new equilibria appear). In our
analysis we also assume that

kA = kB = kC = 0. (1.21)

4
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Parameters Value
ω0 0.1854
ω1 1656.69
ω2 163.08
φ1 1.8875
φ2 3.8113
KP 0.04
KI 7.1429

Table 1.1: Parameter regimes for the system (1.13).

This is not a very limiting assumption, since usually the death rates are insignificant
compared to the dilution rate. We will see that this allows us to find conservation laws
and consequently reduce the system to a simpler form.

In the next chapters we begin by listing all the possible equilibria of the system,
followed by conditions for their existence and uniqueness. We then analyze the system
on the parts of the invariant set for which one of the variables x0, x1, or x2 is zero.
This helps us derive alternative conditions for existence and uniqueness of the equilibria
(which sometimes might be more useful than the more general, implicit ones). We
conclude our work by discussing possible bifurcations that occur in the system, focusing
mainly on the Hopf bifurcation, followed by finding conditions that guarantee uniform
persistence, i.e., conditions that guarantee that all of the microbial populations survive.
We illustrate the theoretical results obtained with numerical examples. We conclude
with a discussion of the ramifications of our results for applications and discuss future
directions.

5
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Chapter 2

Reduction of the model

We are able to obtain many theoretical results assuming general forms of the growth
functions provided we assume the death rates of the microbial populations are insignif-
icant compared to the dilution rate. We thus consider the following system that is
identical to system (1.13), except that we assume ki = 0, i ∈ {A,B,C}:

x′0 = −αx0 + µ0 (s0, s2)x0,

x′1 = −αx1 + µ1 (s1, s2)x1,

x′2 = −αx2 + µ2 (s2)x2,

s′0 = α (uf − s0)− µ0 (s0, s2)x0,

s′1 = α(ug − s1) + ω0µ0 (s0, s2)x0 − µ1 (s1, s2)x1,

s′2 = α(uh − s2)− ω2µ0 (s0, s2)x0 + ω1µ1 (s1, s2)x1 − µ2 (s2)x2,

(2.1)

xi (0) ≥ 0, si (0) ≥ 0, i ∈ {1, 2, 3} .

We assume that µ0 (s0, s2), µ1 (s1, s2), µ2 (s2) are C1 functions that satisfy the following
general conditions:

• For all s0 ≥ 0 and s2 ≥ 0, µ0 (0, s2) = 0, µ0 (s0, 0) = 0. As a consequence,
∂s0µ0 (s0, 0) = 0, ∂s2µ0 (0, s2) = 0. Thus we assume that the chlorophenol degrader
cannot grow in the absence of either chlorophenol or hydrogen.

• For all s0 > 0 and s2 > 0, ∂s0µ0 (s0, s2) > 0, ∂s2µ0 (s0, s2) > 0. Thus we assume
that the chlorophenol degrader grows on both chlorophenol and hydrogen.

• For all s2 ≥ 0 and s1 ≥ 0, µ1 (0, s2) = 0, ∂s2µ1 (0, s2) = 0. Thus we assume that
the phenol degrader cannot grow in the absence of phenol.

• For all s1 > 0 and s2 > 0, ∂s1µ1 (s1, s2) > 0, ∂s2µ1 (s1, s2) < 0. Thus we as-
sume that the supply of phenol results in growth of the phenol degrader, and that
hydrogen inhibits its growth.

• µ2 (0) = 0 and µ′2 (s2) > 0 for all s2 > 0. Thus we assume that the mathanogen
cannot grow without the presence of hydrogen, and that increasing the supply of
hydrogen results in faster growth of the methanogen.

6
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We use the prototypes µ0, µ1, and µ2 defined in (1.20), which satisfy these conditions,
when we are able to prove results in general, and when providing numerical simulations
or bifurcation diagrams. We now prove a lemma that we will use to show global well-
posedness of system (2.1).
Lemma 2.0.1. All solutions of system (2.1) with positive initial conditions remain pos-
itive and bounded for all positive times.

If xi (0) = 0, i ∈ {1, 2, 3}, then xi (t) = 0 for all t ≥ 0.

Proof. Consider any solution ~ϕ (t) with positive initial conditions. By existence and
uniqueness theory, there cannot be a time t̄ > 0, such that xi

(
t̄
)

= 0 for some i ∈ {1, 2, 3},
since then xi (t) ≡ 0 for all t ∈ R, contradicting xi (0) > 0. Hence xi (t) > 0 for all t ≥ 0.
Also, if xi (0) = 0 for some i ∈ {1, 2, 3}, then there is a solution of system (2.1) with
xi (t) ≡ 0 for all t ∈ R. By existence and uniqueness theory, this is the only solution.

Now, consider ~ϕ (t), and suppose that there is some t̄ > 0, such that s0 (t) > 0 for
t ∈

[
0, t̄
)
, s0

(
t̄
)

= 0, and s1 (t) , s2 (t) ≥ 0 for t ∈
[
0, t̄
]
. Then s′0

(
t̄
)
≤ 0. However,

from system (2.1), s′0
(
t̄
)

= αuf . If uf > 0, then s′0
(
t̄
)
> 0, a contradiction. If uf = 0,

then there is a solution of system (2.1) with s0 (t) ≡ 0, which contradicts uniqueness of
solutions. It follows that s0 (t) > 0 for all t ≥ 0.

Next, consider ~ϕ (t), and suppose that there is some t̄ > 0, such that s2 (t) > 0
for t ∈

[
0, t̄
)
, s2

(
t̄
)

= 0, and s1 (t) ≥ 0 for t ∈
[
0, t̄
]
. Then s′2

(
t̄
)
≤ 0. However,

from system (2.1), s′2
(
t̄
)

= αuh + ω1µ1
(
s1
(
t̄
)
, 0
)
x1. If uh > 0, or s1

(
t̄
)
> 0, then

s′2
(
t̄
)
> 0, a contradiction. If both uh = 0, and s1

(
t̄
)

= 0, then s′2
(
t̄
)

= 0, and there
is another solution with s2 (t) ≡ 0, which contradicts uniqueness of solutions to initial
value problems. It follows that s2 (t) > 0 for all t ≥ 0.

Finally, consider ~ϕ (t), and suppose that there is some t̄ > 0, such that s1 (t) > 0
for t ∈

[
0, t̄
)
, s1

(
t̄
)

= 0. Then s′1
(
t̄
)
≤ 0. However, from system (2.1), s′1

(
t̄
)

=
αug + ω0µ0

(
s0
(
t̄
)
, s2

(
t̄
))
x0, so s′1

(
t̄
)
> 0, a contradiction. It follows that s1 (t) > 0 for

all t ≥ 0.

We have thus proved the positivity of solutions and move on to showing the bound-
edness of solutions.

By adding the first and the fourth equations of (2.1), we obtain

x′0 + s′0 = −α (x0 + s0 − uf ) ,

hence
(x0 + s0 − uf )′ = −α (x0 + s0 − uf ) ,

which implies that

x0(t) + s0(t) = uf + (x0(0) + s0(0)− uf ) e−αt. (2.2)
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Similarly, we obtain

x1(t) +ω0s0(t) + s1(t) = ω0uf + ug + (x1(0) + ω0s0(0) + s1(0)− ω0uf − ug) e−αt, (2.3)

and

ω2x0(t) + x2(t) + ω0ω1s0(t) + ω1s1(t) + s2(t) = ω0ω1uf + ω1ug + uh+
(ω0x0(0) + x2(0) + ω0ω1s0(0) + ω1s1(0) + s2(0)− ω0ω1uf − ω1ug − uh) e−αt. (2.4)

Since all terms of the sums in (2.2), (2.3) and (2.4) are positive for all positive initial
conditions, the solutions of (2.1) are bounded. Also, taking the limit as t → ∞ in
equations (2.2), (2.3), and (2.4) we obtain that

lim
t→∞

(x0 (t) + s0 (t)) = uf , (2.5)

lim
t→∞

(x1 (t) + ω0s0 (t) + s1 (t)) = ω0uf + ug, (2.6)

lim
t→∞

(ω2x0 (t) + x2 (t) + ω0ω1s0 (t) + ω1s1 (t) + s2 (t)) = ω0ω1uf + ω1ug + uh. (2.7)

Starting with any positive initial conditions, the solutions of system (2.1) eventually
satisfy

x0 + s0 = uf , (2.8)
x1 + ω0s0 + s1 = ω0uf + ug, (2.9)

ω2x0 + x2 + ω0ω1s0 + ω1s1 + s2 = ω0ω1uf + ω1ug + uh. (2.10)

We call relations (2.8)-(2.10) "conservation principles". In other words, system (2.1)
admits a positively invariant attracting set Ω ⊂ R6, such that

Ω = {(x0, x1, x2, s0, s1, s2) ∈ R6 : xi, si ≥ 0, i = 0, 1, 2;
x0 + s0 = uf ,

x1 + ω0s0 + s1 = ω0uf + ug,

ω2x0 + x2 + ω0ω1s0 + ω1s1 + s2 = ω0ω1uf + ω1ug + uh}.

(2.11)

Using the conservation principles we can compute s0, s1, and s2 as functions of x0, x1,
x2

s0 = −x0 + uf ,

s1 = ω0x0 − x1 + ug,

s2 = −ω2x0 + ω1x1 − x2 + uh.

(2.12)

8

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


MSc thesis– Szymon Sobieszek; McMaster University– Department of Math and Stats

Now, we can reduce the analysis of the original system (2.1) to the analysis of the
following equivalent three-dimensional system on the invariant set Ω

x′0 = −αx0 + µ0 (−x0 + uf ,−ω2x0 + ω1x1 − x2 + uh)x0,
x′1 = −αx1 + µ1 (ω0x0 − x1 + ug,−ω2x0 + ω1x1 − x2 + uh)x1,
x′2 = −αx2 + µ2 (−ω2x0 + ω1x1 − x2 + uh)x2.

(2.13)

From now on, we will study the reduced system (2.13). We begin by analyzing all
the possible equilibria.

2.1 Equilibria of the reduced system and their local sta-
bility

The equilibria are found by setting the right hand sides of equations in (2.13) equal
to zero. Below, we list all the possibilities obtained this way. Since equations (2.12)
give a one-to-one correspondence of the equilibria of system (2.13) with the equilibria
of system (2.1), we also list the corresponding steady states (x0, x1, x2, s0, s1, s2) of the
six-dimensional system in each case.

Types of equilibria of system (2.13):

• Zero equilibrium (000)E = (0, 0, 0). The corresponding equilibrium (000)E in the
six-dimensional system:

(000)E = (0, 0, 0, uf , ug, uh) . (2.14)

In this case, all the populations die, hence the only source for the substrates comes
from the inflow rates uf , ug, and uh.

• Boundary equilibria:

◦ (100)E =
(

(100)x0, 0, 0
)
, where x0 = (100)x0 > 0 is a solution (if it exists) of

µ0(−x0 + uf ,−ω2x0 + uh) = α. (2.15)

The corresponding equilibrium (100)E in the six-dimensional system:

(100)E =
(

(100)x0, 0, 0,− (100)x0 + uf , ω0 (100)x0 + ug,−ω2 (100)x0 + uh
)
.

(2.16)
In this case, the only microorganism surviving is the chlorophenol degrader.
It consumes the chlorophenol, hence the value of s0 is given as the balance
between this consumption, and the supply inflow uf . Since x0 produces phenol
this value is added to ug in the total phenol amount s1. Since x0 consumes

9

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


MSc thesis– Szymon Sobieszek; McMaster University– Department of Math and Stats

hydrogen as well, the value ω2 (100)x0 is subtracted from s2 as well. This
steady state is not desirable because of the phenol build-up in the system.

◦ (010)E =
(
0, (010)x1, 0

)
, where x1 = (010)x1 > 0 is a solution (if it exists) of

µ1(−x1 + ug, ω1x1 + uh) = α. (2.17)

The corresponding equilibrium (010)E in the six-dimensional system:

(010)E =
(
0, (010)x1, 0, uf ,− (010)x1 + ug, ω1 (010)x1 + uh

)
. (2.18)

In this case, only the phenol degrader survives, and hence the value of s1 at
the equilibrium is equal to the balance between its consumption and inflow
ug. Chlorophenol is not being consumed, hence its total amount equals the
inflow uf . Hydrogen is being produced by the phenol degrader, and also its
value is increased by the inflow uh.

◦ (001)E =
(
0, 0, (001)x2

)
, where x2 = (001)x2 > 0 is a solution (if it exists) of

µ2(−x2 + uh) = α. (2.19)

The corresponding equilibrium (001)E in the six-dimensional system:

(001)E =
(
0, 0, (001)x2, uf , ug,− (001)x2 + uh

)
. (2.20)

Here, only the methanogen is present, hence the values of chlotophenol and
phenol are equal the inflow rates uf and ug respectively.

◦ (101)E =
(

(101)x0, 0,−ω2 (101)x0 + uh − µ−1
2 (α)

)
, where x0 = (101)x0 > 0 is a

solution (if it exists) of

µ0(−x0 + uf , µ
−1
2 (α)) = α. (2.21)

The corresponding equilibrium (101)E in the six-dimensional system:

(101)E =
(

(101)x0, 0,−ω2 (101)x0 + uh − µ−1
2 (α) ,

− (101)x0 + uf , ω0 (101)x0 + ug, µ
(−1)
2 (α)

)
. (2.22)

In this case, both chlorophenol degrader and methanogen are present. The
lack of phenol degrader results in phenol build-up. We can also observe com-
petition for hydrogen between the phenol degrader and methanogen.
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◦ (011)E =
(
0, (011)x1, ω1 (011)x1 + uh − µ−1

2 (α)
)
, where x1 = (011)x1 > 0 is a

solution (if it exists) of

µ1
(
−x1 + ug, µ

−1
2 (α)

)
= α. (2.23)

The corresponding equilibrium (011)E in the six-dimensional system:

(011)E =
(
0, (011)x1, ω1 (011)x1 + uh − µ−1

2 (α) , uf ,− (011)x1 + ug, µ
−1
2 (α)

)
.

(2.24)
This steady state represents a two-tiered food chain, with the phenol degrader
and methanogen present. Hydrogen has an inhibiting effect on the phenol
degrader.

◦ (110)E =
(

(110)x0, (110)x1, 0
)
, where x0 = (110)x0 > 0 and x1 = (110)x1 > 0 are

solutions of

µ0 (−x0 + uf ,−ω2x0 + ω1x1 + uh) = α,

µ1 (ω0x0 − x1 + ug,−ω2x0 + ω1x1 + uh) = α.
(2.25)

The corresponding equilibrium (110)E in the six-dimensional system:

(110)E =
(

(110)x0, (110)x1, 0,− (110)x0 + uf ,

ω0 (110)x0 − (110)x1 + ug,−ω2 (110)x0 + ω1 (110)x1 + uh
)
. (2.26)

In this case, both the chlorophenol and phenol degraders are present, how-
ever the methanogen is washed out. Thus full mineralisation to methane
is not possible, and hence the hydrogen amount might accumulate to some
maximum value.

• Positive (interior) equilibrium (111)E =
(∗
x0,
∗
x1,
∗
x2
)
, where x0 = ∗

x0 > 0, x1 = ∗
x1 >

0, and x2 = ∗
x2 > 0 are solutions of

µ0 (−x0 + uf ,−ω2x0 + ω1x1 − x2 + uh) = α,

µ1 (ω0x0 − x1 + ug,−ω2x0 + ω1x1 − x2 + uh) = α,

µ2 (−ω2x0 + ω1x1 − x2 + uh) = α.

(2.27)

The corresponding equilibrium (111)E in the six-dimensional system:

(111)E =
(∗
x0,
∗
x1,
∗
x2,−

∗
x0 + uf , ω0

∗
x0 −

∗
x1 + ug, µ

(−1)
2 (α)

)
. (2.28)

Here, all species are present and thus we observe full chlorophenol mineralisation.
For this reason, asymptotic stability of this equilibrium is the most desirable situ-
ation.
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Since it is not clear whether the listed equations have solutions, and if the solutions
are unique, we now derive conditions on the parameters that answer these questions.

2.1.1 Existence and uniqueness

Since there are many parameters in system (2.13), it was not possible to obtain explicit
expressions for some of the equilibria. We did however simplify the computations by
only looking for equilibria in the invariant set Ω. This assumption is reasonable, since
the dynamics of the original system reduces to the dynamics on the set Ω.

• (000)E = (0, 0, 0) equilibrium always exists.

• (100)E =
(

(100)x0, 0, 0
)
. As we mentioned in the beginning of subsection 2.1.1,

we are looking for the equilibria in feasible set Ω, i.e., where all of the com-
ponents in corresponding six-dimensional equilibria are nonnegative. Thus, we
want x0 = (100)x0 to satisfy (100)x0 ∈ (0, uf ], and (100)x0 ≤ uh

ω2
; hence we con-

sider only x0 ∈
(
0,min

(
uf ,

uh
ω2

)]
. For such x0 the differentiable mapping x0 7→

µ0 (uf − x0,−ω2x0 + uh) is decreasing, and thus (100)E exists in Ω if and only if
α ∈ [0, µ0(uf , uh)), and when it exists, it is unique.

• (010)E =
(
0, (010)x1, 0

)
. By a similar argument, we consider x1 ∈ (0, ug]. The

differentiable mapping x1 7→ µ1(ug − x1, ω1x1 + uh) is decreasing, so (010)E exists
in Ω if and only if α ∈ [0, µ1(ug, uh)), and when it exists, it is unique.

• (001)E =
(
0, 0, (001)x2

)
. Once again, we consider only x2 ∈ (0, uh], for which the

differentiable mapping x2 7→ µ2(−x2 +uh) is decreasing, so (001)E exists in Ω if and
only if α ∈ [0, µ2(uh)), and when it exists, it is unique (notice that if µ2(s2) = φ2s2

1+s2
,

we have (001)x2 = uh − α
φ2−α).

• (101)E =
(

(101)x0, 0,−ω2 (101)x0 + uh − µ−1
2 (α)

)
. For (101)x2 = −ω2 (101)x0 + uh −

µ−1
2 (α), the restriction (101)x2 > 0 gives us the condition (101)x0 <

uh−µ−1
2 (α)
ω2

(notice that this already implies that (101)x0 ≤ uh
ω2

is satisfied), and thus the
requirement (101)x0 > 0 results in the first condition on α, i.e., α < µ2 (uh).
We also require that (101)x0 ≤ uf . We therefore only consider the mapping

x0 7→ µ0(−x0 +uf , µ
−1
2 (α)) for x0 ∈

(
0,min

(
uf ,

uh−µ−1
2 (α)
ω2

))
. This differentiable

mapping is decreasing, so (101)E exists in Ω if and only if

α ∈
(
µ0

(
uf −min

(
uf ,

uh − µ−1
2 (α)

ω2

)
, µ−1

2 (α)
)
, µ0

(
uf , µ

−1
2 (α)

))
, (2.29)

and α < µ2 (uh), and when it exists, it is unique.
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By solving the equation

µ0(−x0 + uf , µ
−1
2 (α)) = α, (2.30)

we obtain the following explicit formulas for (101)x0 and (101)x2 with our test pro-
totypes µ0, µ1, and µ2:

(101)x0 =
α (1 + uf )

(
KP + µ−1

2 (α)
)
− ufµ−1

2 (α)

α
(
KP + µ−1

2 (α)
)
− µ−1

2 (α)
, (2.31)

(101)x2 = ω2
ufµ

−1
2 (α)− α (1 + uf )

(
KP + µ−1

2 (α)
)

α
(
KP + µ−1

2 (α)
)
− µ−1

2 (α)
+ uh − µ−1

2 (α) . (2.32)

• (011)E =
(
0, (011)x1, ω1 (011)x1 + uh − µ−1

2 (α)
)
. For x2 = ω1 (011)x1 + uh − µ−1

2 (α)

the restriction (011)x2 > 0 gives the condition x1 >
µ−1

2 (α)−uh

ω1
, so the requirement

(011)x1 ≤ ug results in the first condition on α, i.e., α < µ2 (ω1ug + uh) (notice
that this already implies that ω1 (011)x1 + uh ≥ 0 is satisfied). We therefore only

consider the mapping x1 7→ µ1
(
−x1 + ug, µ

−1
2 (α)

)
for

(
max

(
0, µ

−1
2 (α)−uh

ω1

)
, ug

]
.

For such x1, this differentiable mapping is decreasing, so (011)E exists in Ω if and

only if α ∈
[
0, µ1

(
ug −max

(
0, µ

−1
2 (α)−uh

ω1

)
, µ−1

2 (α)
))

and α < µ2 (ω1ug + uh),
and when it exists, it is unique. By solving the equation

µ1
(
−x1 + ug, µ

−1
2 (α)

)
= α, (2.33)

for the prototypes given by (1.20), we obtain the following explicit formulas for
(011)x1 and (011)x2

(011)x1 =
α (1 + ug)

(
1 +KIµ

−1
2 (α)

)
− ugφ1

α
(
1 +KIµ

−1
2 (α)

)
− φ1

, (2.34)

(011)x2 = ω1
α (1 + ug)

(
1 +KIµ

−1
2 (α)

)
− ugφ1

α
(
1 +KIµ

−1
2 (α)

)
− φ1

+ uh − µ−1
2 (α) . (2.35)

• (110)E =
(

(110)x0, (110)x1, 0
)
. This case is much more complicated since we cannot

explicitly compute x0 as a function of x1, or x1 as a function of x0 in the same way
as in the previous cases. In this case more than one equilibrium of the form (110)E
can exist. In the case of the growth functions defined in (1.20), it was proved in
[14] that if ug = uh = 0, then there exist at most two equilibria of this form. By
using the specific growth functions (1.20), the equilibria, given as positive solutions
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of the following system of equations

−x0 + uf
1− x0 + uf

−ω2x0 + ω1x1 + uh
KP − ω2x0 + ω1x1 + uh

= α,

φ1
ω0x0 − x1 + ug

1 + ω0x0 − x1 + ug

1
1 +KIω0x0 − x1 + ug

= α,
(2.36)

must also satisfy x0 < uf and max
(
0, ω2x0−uh

ω1

)
< x1 < ug + ω0x0. Notice that

the first equation in (2.36) is linear in x1, hence we can compute it as a function
of x0, and substitute this expression into the second equation of (2.36), obtaining
a fourth order polynomial in x0. Each zero of this polynomial, together with
the corresponding value of x1, which satisfies the aforementioned conditions, will
constitute an equilibrium (110)E of system (2.13). Since the polynomial in x0 is of
order four, and x1 is given as a function of x0, we can have at most four equilibria
of the form (110)E .

• (111)E =
(∗
x0,
∗
x1,
∗
x2
)
. For the interior equilibrium, we have to consider two cases,

depending on the sign of ω2uf − uh, since the bounds on the values of x1 are
different in each case. We are looking for solutions of system (2.27), for which x0,
x1, and x2 satisfy

x0 ∈ (0, uf ] ,

x1 ∈
(

max
(

0, ω2x0 − uh
ω1

)
, ω0x0 + ug

]
,

x2 ∈ (0,−ω2x0 + ω1x1 + uh] ,

(2.37)

if ω2uf − uh > 0, and

x0 ∈ (0, uf ] ,
x1 ∈ (0, ω0x0 + ug] ,
x2 ∈ (0,−ω2x0 + ω1x1 + uh] ,

(2.38)

if ω2uf − uh < 0. In both cases, if we let x2 = −ω2x0 + ω1x1 + uh − µ−1
2 (α)

(which immediately gives us a necessary condition α < sup
s2≥0

µ2 (α)), we obtain the

following system for x0 and x1

µ0
(
−x0 + uf , µ

−1
2 (α)

)
= α,

µ1
(
ω0x0 − x1 + ug, µ

−1
2 (α)

)
= α.

(2.39)
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For x0 ∈ (0, uf ] the differentiable mapping x0 7→ µ0
(
−x0 + uf , µ

−1
2 (α)

)
is de-

creasing, so x0 = ∗
x0 exists if and only if α ∈

[
0, µ0

(
uf , µ

−1
2 (α)

))
and when this

value exists, it is unique. Now consider

µ1
(
ω0
∗
x0 − x1 + ug, µ

−1
2 (α)

)
= α. (2.40)

We have two cases

◦ ω2uf − uh > 0. For x1 ∈
(

max
(

0, ω2
∗
x0−uh
ω1

)
, ω0

∗
x0 + ug

]
the differentiable

mapping x1 7→ µ1
(
ω0
∗
x0 − x1 + ug, µ

−1
2 (α)

)
is decreasing, so x1 = ∗

x1 exists if

and only if α ∈
[
0, µ1

(
ω0
∗
x0 −max

(
0, ω2

∗
x0−uh
ω1

)
+ ug, µ

−1
2 (α)

))
and when

this value exists, it is unique.

◦ ω2uf − uh < 0. Similarly, by considering x1 ∈
(
0, ω0

∗
x0 + ug

]
it follows that

x1 = ∗
x1 exists if and only if α ∈

[
0, µ1

(
ω0
∗
x0 + ug, µ

−1
2 (α)

))
.

Having ∗x0 and ∗x1 defined, we let ∗x2 = −ω2
∗
x0 + ω1

∗
x1 + uh − µ−1

2 (α). In order to
have ∗x2 > 0 we need α < µ2

(
−ω2

∗
x0 + ω1

∗
x1 + uh

)
; hence (111)E exists in Ω if and

only if

α ∈
[
0,min

(
µ0
(
uf , µ

−1
2 (α)

)
,

µ1

(
ω0
∗
x0 −max

(
0, ω2

∗
x0 − uh
ω1

)
+ ug, µ

−1
2 (α)

)
,

µ2
(
−ω2

∗
x0 + ω1

∗
x1 + uh

)))
, (2.41)

in the ω2uf − uh > 0 case, and

α ∈
[
0,min

(
µ0
(
uf , µ

−1
2 (α)

)
, µ1

(
ω0
∗
x0 + ug, µ

−1
2 (α)

)
,

µ2
(
−ω2

∗
x0 + ω1

∗
x1 + uh

) ))
, (2.42)

in the ω2uf − uh < 0 case. Although the conditions on α are implicit and very
complicated, we now know that if (111)E exists, it is unique. With the growth
functions defined in (1.20), we can solve the equations (2.27) explicitly and obtain
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the following formulas for the interior equilibrium

∗
x0 = 1 + uf + 1

KP (φ2 − α) + α− 1 , (2.43)

∗
x1 = ω0

∗
x0 + ug + 1 + φ1

α
(
1 +KI

α
φ2−α

)
− φ1

, (2.44)

∗
x2 = −ω2

∗
x0 + ω1

∗
x1 + uh −

α

φ2 − α
. (2.45)

2.1.2 Local stability results

We now study the local stability of the equilibria by considering the eigenvalues of the
Jacobian evaluated at each equilibrium. These results will be summarized in section 2.2,
table 2.1.

The Jacobian J for system (2.13) evaluated at (x0, x1, x2) has the following form

J =


µ0 − α+ x0

(
−∂µ0
∂s0
− ω2

∂µ0
∂s2

)
ω1x0

∂µ0
∂s2

−x0
∂µ0
∂s2

x1
(
ω0

∂µ1
∂s1
− ω2

∂µ1
∂s2

)
µ1 − α+ x1

(
−∂µ1
∂s1

+ ω1
∂µ1
∂s2

)
−x1

∂µ1
∂s2

−ω2x2µ
′
2 ω1x2µ

′
2 µ2 − α− x2µ

′
2

 .
(2.46)

• For the zero equilibrium (000)E , the corresponding Jacobian (000)J has the following
form

(000)J =

µ0 − α 0 0
0 µ1 − α 0
0 0 µ2 − α

 , (2.47)

and its eigenvalues are λ1 = µ0 (uf , uh)−α, λ2 = µ1 (ug, uh)−α, λ3 = µ2 (uh)−α.
This implies that if

◦ α > max (µ0 (uf , uh) , µ1 (ug, uh) , µ2 (uh)), then (000)E is a stable node,

◦ min (µ0 (uf , uh) , µ1 (ug, uh) , µ2 (uh)) < α < max (µ0 (uf , uh) , µ1 (ug, uh) , µ2 (uh)),
then (000)E is a saddle point,

◦ α < min (µ0 (uf , uh) , µ1 (ug, uh) , µ2 (uh)), then (000)E is an unstable node.

• For the boundary equilibrium (100)E , the corresponding Jacobian (100)J has the
following form

(100)J =

(100)x0
(
−∂µ0
∂s0
− ω2

∂µ0
∂s2

)
ω1 (100)x0

∂µ0
∂s2

− (100)x0
∂µ0
∂s2

0 µ1 − α 0
0 0 µ2 − α

 , (2.48)
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and its eigenvalues are λ1 = (100)x0
(
−∂µ0
∂s0
− ω2

∂µ0
∂s2

)
< 0,

λ2 = µ1
(
ω0 (100)x0 + ug,−ω2 (100)x0 + uh

)
− α, and λ3 = µ2

(
−ω2 (100)x0 + uh

)
−

α. Hence if

◦ α > max
(
µ1
(
ω0 (100)x0 + ug,−ω2 (100)x0 + uh

)
, µ2

(
−ω2 (100)x0 + uh

))
, then

(100)E is a stable node,

◦ α < max
(
µ1
(
ω0 (100)x0 + ug,−ω2 (100)x0 + uh

)
, µ2

(
−ω2 (100)x0 + uh

))
, then

(100)E is a saddle point.

• For the boundary equilibrium (010)E , the corresponding Jacobian (010)J has the
following form

(010)J =

 µ0 − α 0 0

(010)x1
(
ω0

∂µ1
∂s1
− ω2

∂µ1
∂s2

)
(010)x1

(
−∂µ1
∂s1

+ ω1
∂µ1
∂s2

)
− (010)x1

∂µ1
∂s2

0 0 µ2 − α

 ,
(2.49)

and its eigenvalues are λ1 = µ0
(
uf , ω1 (010)x1 + uh

)
−α, λ2 = (010)x1

(
−∂µ1
∂s1

+ ω1
∂µ1
∂s2

)
<

0, and λ3 = µ2
(
ω1 (010)x1 + uh

)
− α. Hence if

◦ α > max
(
µ0
(
uf , ω1 (010)x1 + uh

)
, µ2

(
ω1 (010)x1 + uh

))
, then (010)E is a sta-

ble node,

◦ α < max
(
µ0
(
uf , ω1 (010)x1 + uh

)
, µ2

(
ω1 (010)x1 + uh

))
, then (010)E is a sad-

dle point.

• For the boundary equilibrium (001)E , the corresponding Jacobian (001)J has the
following form

(001)J =

 µ0 − α 0 0
0 µ1 − α 0

−ω2 (001)x2µ
′
2 ω1 (001)x2µ

′
2 µ2 − α− (001)x2µ

′
2

 , (2.50)

and its eigenvalues are λ1 = µ0
(
uf ,− (001)x2 + uh

)
−α, λ2 = µ1

(
ug,− (001)x2 + uh

)
−

α, and λ3 = − (001)x2µ
′
2

(
− (001)x2 + uh

)
< 0. Hence if

◦ α > max
(
µ0
(
uf ,− (001)x2 + uh

)
, µ1

(
ug,− (001)x2 + uh

))
, then (001)E is a

stable node,

◦ α < max
(
µ0
(
uf ,− (001)x2 + uh

)
, µ1

(
ug,− (001)x2 + uh

))
, then (001)E is a

saddle point.
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• For the boundary equilibrium (101)E , the corresponding Jacobian (101)J has the
following form

(101)J =

(101)x0
(
−∂µ0
∂s0
− ω2

∂µ0
∂s2

)
ω1 (101)x0

∂µ0
∂s2

− (101)x0
∂µ0
∂s2

0 µ1 − α 0
−ω2 (101)x2µ

′
2 ω1 (101)x2µ

′
2 − (101)x2µ

′
2

 , (2.51)

where (101)x2 = −ω2 (101)x0 + uh − µ−1
2 (α). We immediately obtain one of the

eigenvalues λ1 = µ1
(
ω0 (101)x0 + ug, µ

−1
2 (α)

)
− α. The other two eigenvalues are

given as the solutions of the following quadratic equation

λ2 + a1λ+ a0 = 0, (2.52)

where

a1 = (101)x0

(
∂µ0
∂s0

+ ω2
∂µ0
∂s2

)
+ (101)x2µ

′
2 (2.53)

a0 = (101)x0 (101)x2
∂µ0
∂s0

µ′2. (2.54)

Since both a1 > 0, and a0 > 0, by the Routh-Hurwitz criterion, all roots of the
equation (2.52) have negative real parts. Hence if

◦ α > µ1
(
ω0 (101)x0 + ug, µ

−1
2 (α)

)
, then (101)E is asymptotically stable,

◦ α < µ1
(
ω0 (101)x0 + ug, µ

−1
2 (α)

)
, then (101)E is a saddle point.

• For the boundary equilibrium (011)E , the corresponding Jacobian (011)J has the
following form

(011)J =


µ0 − α 0 0

(011)x1
(
ω0

∂µ1
∂s1
− ω2

∂µ1
∂s2

)
(011)x1

(
−∂µ1
∂s1

+ ω1
∂µ1
∂s2

)
− (011)x1

∂µ1
∂s2

−ω2 (011)x2µ
′
2 ω1 (011)x2µ

′
2 − (011)x2µ

′
2

 ,
(2.55)

where (011)x2 = ω1 (011)x1 + uh − µ−1
2 (α). We immediately obtain one of the

eigenvalues λ1 = µ0
(
uf , µ

−1
2 (α)

)
− α. The other two eigenvalues are given as the

solutions of the following quadratic equation

λ2 + a1λ+ a0 = 0, (2.56)
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where

a1 = (011)x1

(
∂µ1
∂s1
− ω1

∂µ1
∂s2

)
+ (011)x2µ

′
2, (2.57)

a0 = (011)x1 (011)x2
∂µ1
∂s1

µ′2. (2.58)

Since both a1 > 0, and a0 > 0, by the Routh-Hurwitz criterion, all roots of the
equation (2.56) have negative real parts. Hence if

◦ α > µ0
(
uf , µ

−1
2 (α)

)
, then (011)E is asymptotically stable,

◦ α < µ0
(
uf , µ

−1
2 (α)

)
, then (011)E is a saddle point.

• For the boundary equilibrium (110)E , the corresponding Jacobian (110)J has the
following form

(110)J =

 (110)x0
(
−∂µ0
∂s0
− ω2

∂µ0
∂s2

)
ω1 (110)x0

∂µ0
∂s2

− (110)x0
∂µ0
∂s2

(110)x1
(
ω0

∂µ1
∂s1
− ω2

∂µ1
∂s2

)
(110)x1

(
−∂µ1
∂s1

+ ω1
∂µ1
∂s2

)
− (110)x1

∂µ1
∂s2

0 0 µ2 − α

 .
(2.59)

We immediately obtain one eigenvalue λ1 = µ2−α. The other two eigenvalues are
solutions of the following quadratic equation

λ2 + a1λ+ a0 = 0, (2.60)

where

a1 = (110)x0

(
∂µ0
∂s0

+ ω2
∂µ0
∂s2

)
+ (110)x1

(
∂µ1
∂s1
− ω1

∂µ1
∂s2

)
, (2.61)

a0 = (110)x0 (110)x1

(
∂µ0
∂s0

+ ω2
∂µ0
∂s2

)(
∂µ1
∂s1
− ω1

∂µ1
∂s2

)
(2.62)

− ω1 (110)x0 (110)x1
∂µ0
∂s2

(
ω0
∂µ1
∂s1
− ω2

∂µ1
∂s2

)
.

We have a1 > 0, and

a0 > 0 ⇐⇒ ∂µ0
∂s0

∂µ1
∂s1
− ω1

∂µ0
∂s0

∂µ1
∂s2

+ (ω2 − ω0ω1) ∂µ0
∂s2

∂µ1
∂s1

> 0. (2.63)

Hence if

◦ α > µ2 and ∂µ0
∂s0

∂µ1
∂s1
− ω1

∂µ0
∂s0

∂µ1
∂s2

+ (ω2 − ω0ω1) ∂µ0
∂s2

∂µ1
∂s1

> 0 (where all the
functions are evaluated at the steady state), then (110)E is asymptotically
stable,

◦ α < µ2 or ∂µ0
∂s0

∂µ1
∂s1
−ω1

∂µ0
∂s0

∂µ1
∂s2

+(ω2 − ω0ω1) ∂µ0
∂s2

∂µ1
∂s1

< 0, then (110)E is unstable.
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• For the interior equilibrium (111)E , the corresponding Jacobian (111)J has the fol-
lowing form

(111)J =


∗
x0
(
−∂µ0
∂s0
− ω2

∂µ0
∂s2

)
ω1
∗
x0

∂µ0
∂s2

−∗x0
∂µ0
∂s2

∗
x1
(
ω0

∂µ1
∂s1
− ω2

∂µ1
∂s2

) ∗
x1
(
−∂µ1
∂s1

+ ω1
∂µ1
∂s2

)
−∗x1

∂µ1
∂s2

−ω2
∗
x2µ

′
2 ω1

∗
x2µ

′
2 −∗x2µ

′
2

 , (2.64)

and its eigenvalues are solutions of the following cubic equation

λ3 + a2λ
2 + a1λ+ a0 = 0, (2.65)

where

a2 = −∗x0

(
−∂µ0
∂s0
− ω2

∂µ0
∂s2

)
− ∗x1

(
−∂µ1
∂s1

+ ω1
∂µ1
∂s2

)
+ ∗
x2µ

′
2, (2.66)

a1 = ∗
x1
∂µ1
∂s1

(
∗
x0
∂µ0
∂s0
− (ω0ω1 − ω2) ∗x0

∂µ0
∂s2

+ ∗
x2µ

′
2

)
+ ∗
x0
∂µ0
∂s0

(
−ω1

∗
x1
∂µ1
∂s2

+ ∗
x2µ

′
2

)
,

(2.67)

a0 = ∗
x0
∗
x1
∗
x2
∂µ0
∂s0

∂µ1
∂s1

µ′2. (2.68)

By the Routh-Hurwitz criterion, all eigenvalues have negative real parts if and only if
a2 > 0, a0 > 0, and a2a1 > a0. We have a2 > 0, and a0 > 0 always, and

a2a1 > a0 ⇐⇒
[
−∗x0

(
−∂µ0
∂s0
− ω2

∂µ0
∂s2

)
− ∗x1

(
−∂µ1
∂s1

+ ω1
∂µ1
∂s2

)
+ ∗
x2µ

′
2

]
·[

∗
x1
∂µ1
∂s1

(
∗
x0
∂µ0
∂s0
− (ω0ω1 − ω2) ∗x0

∂µ0
∂s2

+ ∗
x2µ

′
2

)
+ ∗
x0
∂µ0
∂s0

(
−ω1

∗
x1
∂µ1
∂s2

+ ∗
x2µ

′
2

)]
−∗x0

∗
x1
∗
x2
∂µ0
∂s0

∂µ1
∂s1

µ′2 > 0.

(2.69)

Thus (111)E is asymptotically stable if a2a1 > a0, and is unstable if a2a1 < a0.

2.2 Analysis on the faces

We will now study the behaviour of system (2.13) on the faces of the positively invariant
set Ω, i.e., on the regions where one of the variables x0, x1, or x2 equals zero. Notice
that by lemma 2.0.1 these faces are invariant. The systems obtained this way are two-
dimensional, which will simplify their analysis and rule out periodic orbits coming inside
the invariant set through the faces. In the following analysis, we will often use the fact
that

ω2 − ω0ω1 < 0. (2.70)
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This crucial assumption comes from biology and will be used to determine the domains
of the analyzed systems. It means that yield coefficients Ych and Yph have to be less
than 0.5, or solutions become negative.

We also introduce a notation to differentiate between the faces, endpoints of null-
clines and the equilibrium points. Specifically, we will use the left lower subscript to
differentiate between faces and to indicate to which nullcline does the point belong to.
For example,

(
11̂0

)
means that we are referring to the x0x1 face and the x1-nullcline.

Also, the space above the variable will be used to indicate if the point is an equilibrium
point (denoted by ∗), or just an endpoint of a nullcline (denoted bŷ). In particular, a
point

x0 =(̂101)
∗
x0, (2.71)

denotes the value of x0 at an equilibrium point on the x0x2 face.

2.2.1 Face with x0 = 0

We have the following reduced system:{
x′1 = (−α+ µ1 (−x1 + ug, ω1x1 − x2 + uh))x1,
x′2 = (−α+ µ2 (ω1x1 − x2 + uh))x2.

(2.72)

Thus the entire food web is reduced to a food chain, having only the phenol degrader
and methanogen present. Since the chlorophenol degrader is absent, we anticipate that
phenol has to be supplied to the system in order to sustain existence of the phenol
degrader.

The domain for system (2.72) is given by the following set Ω12:

Ω12 =
{

(x1, x2) ∈ R2 : 0 ≤ x1 ≤ ug, 0 ≤ x2 ≤ uh + ω1x1
}
. (2.73)

This region is sketched in Figure 2.1 using the Ipe software [5].
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0
x1

x2

x2 = ω1x1 + uh

ug

uh

Figure 2.1: Domain Ω12 of system (2.72).

In order to determine the behaviour of the solutions, we need to consider different
cases for the values of the parameter α.

• α > µ1 (ug, 0), α > µ2 (ω1ug + uh).
In that case only the zero equilibrium exists, which is globally asymptotically
stable.

0
x1

x2

x2 = ω1x1 + uh

ug

uh

Figure 2.2: Sketch of the phase portrait of system (2.72) with α >
µ1 (ug, 0), α > µ2 (ω1ug + uh).
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• α > µ1 (ug, 0), µ2 (uh) < α < µ2 (ω1ug + uh).
We have an additional x2-nullcline, given by the equation x2 = ω1x1+uh−µ−1

2 (α),
intersecting the x1-axis. Again, the zero equilibrium is globally asymptotically
stable, and it is the only equilibrium of the system.

0
x1

x2

x2 = ω1x1 + uh

ug

uh

x2 = ω1x1 + uh − µ−1
2 (α)

(011̂)x̂1

Figure 2.3: Sketch of the phase portrait of system (2.72) with α >
µ1 (ug, 0), µ2 (uh) < α < µ2 (ω1ug + uh).

• α > µ1 (ug, 0), 0 < α < µ2 (uh).
Here, we still have the x2-nullcline given by the equation x2 = ω1x1 +uh−µ−1

2 (α),
but this time it intersects the x2-axis at some some point x2 =(01̂1)

∗
x2. This results

in another equilibrium (001)E =
(

0, 0,(01̂1)
∗
x2

)
appearing. The zero equilibrium is

unstable, and the (001)E equilibrium is globally asymptotically stable with respect
to the interior of the region Ω12.
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0
x1

x2

x2 = ω1x1 + uh

ug

uh

(011̂)x
∗
2

x2 = ω1x1 + uh − µ−1
2 (α)

Figure 2.4: Sketch of the phase portrait of system (2.72) with α >
µ1 (ug, 0), 0 < α < µ2 (uh).

• µ1 (ug, uh) < α < µ1 (ug, 0), α > µ2 (ω1ug + uh).

We have some unique x2 =(0̂11) x̂2, such that µ1

(
ug,−(0̂11)x̂2 + uh

)
= α, and

also since

∂

∂x2
[µ1 (−x1 + ug, ω1x1 − x2 + uh)] = −∂s2µ1 (−x1 + ug, ω1x1 − x2 + uh) > 0

inside the admissible region Ω12, we can use the Implicit Function Theorem to
obtain existence of the function x2 =(0̂11) λ (x1), such that

µ1
(
−x1 + ug, ω1x1 −(01̄1) λ (x1) + uh

)
= α. (2.74)

This function (which is the x1-nullcline) is defined for x1 ∈
[
0,(0̂11) x̂1

]
, where

x1 =(0̂11) x̂1 < ug is the unique point of the nullcline lying on the x2 = ω1x1 + uh

line (i.e., (0̂11)λ((0̂11)x̂1) = ω1(0̂11)x̂1 + uh). We also know that the derivative of
this function is given by

(0̂11)λ
′ (x1) = −

∂s1µ1
(
−x1 + ug, ω1x1 −(01̄1) λ (x1) + uh

)
∂s2µ1

(
−x1 + ug, ω1x1 −(01̄1) λ (x1) + uh

) + ω1. (2.75)

The only equilibrium present is the zero equilibrium, which is globally asymptoti-
cally stable.
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0
x1

x2

x2 = ω1x1 + uh

ug

uh
x2 =(01̂1) λ (x1)

(01̂1)x̂2

Figure 2.5: Sketch of the phase portrait of system (2.72) with
µ1 (ug, uh) < α < µ1 (ug, 0), α > µ2 (ω1ug + uh).

• 0 < α < µ1 (ug, uh), α > µ2 (ω1ug + uh).
Analogously to the previous case, we have a x1-nullcline given by the function
x2 =(0̂11) λ (x1), but this time the function starts on the x1-axis, i.e., there is the

unique x1 =(0̂11)
∗
x1 with (0̂11)λ (0) =(0̂11)

∗
x1. This results in another equilibrium

(010)E =
(

0,(0̂11)
∗
x1, 0

)
. The x1-nullcline ends on the line x2 = ω1x1 + uh at

some x1 =(0̂11) x̂1. In this case, the zero equilibrium is unstable, and the (010)E
equilibrium is globally asymptotically stable with respect to the interior of Ω12.
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0
x1

x2

x2 = ω1x1 + uh

ug

uh

(01̂1)x
∗
1

x2 =(01̂1) λ (x1)

Figure 2.6: Sketch of the phase portrait of system (2.72) with 0 < α <
µ1 (ug, uh), α > µ2 (ω1ug + uh).

• µ1 (ug, uh) < α < µ1 (ug, 0), µ2 (uh) < α < µ2 (ω1ug + uh).
In that case we have both x1 and x2 nullclines. The x2-nullcline x2 = ω1x1 +
uh − µ−1

2 (α) intersects the x1-axis, and the x1-nullcline intersects the x2-axis. By
(2.75), the slope of the x1-nullcline is larger than the slope of the x2-nullcline,
so they don’t intersect. We have only the zero equilibrium, which is globally
asymptotically stable.

0
x1

x2

x2 = ω1x1 + uh

ug

uh

x2 =(01̂1) λ (x1)

x2 = ω1x1 + uh − µ2 (α)
(01̂1)x̂2

(011̂)x̂1

Figure 2.7: Sketch of the phase portrait of system (2.72) with
µ1 (ug, uh) < α < µ1 (ug, 0), µ2 (uh) < α < µ2 (ω1ug + uh).
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• µ1 (ug, uh) < α < µ1 (ug, 0), 0 < α < µ2 (uh).
We have the x1-nullcline starting on the x2-axis at some point x2 =(0̂11) x̂2 and
we also have the x2-nullcline x2 = ω1x1 + uh which intersects the x2-axis at some
x2 =(01̂1)

∗
x2. We have two cases to consider:

◦ (0̂11)x̂2 >(01̂1)
∗
x2. By (2.75) the slope of the x1-nullcline is greater than the

slope of the x2-nullcline, so the x1-nullcline lies entirely above the x2-nullcline.
Hence there is no interior equilibrium. The zero equilibrium is unstable and
the (001)E equilibrium is globally asymptotically stable with respect to the
interior of the admissible region Ω12.

0
x1

x2

x2 = ω1x1 + uh

ug

uh

x2 = ω1x1 + uh − µ−1
2 (x1)

x2 =(01̂1) λ (x1)

(01̂1)x̂2

(011̂)x
∗
2

Figure 2.8: Sketch of the phase portrait of system (2.72) with
µ1 (ug, uh) < α < µ1 (ug, 0), 0 < α < µ2 (uh), and (0̂11

)x̂2 >(01̂1
) ∗
x2.

◦ (0̂11)x̂2 <(01̂1)
∗
x2. In that case the x1-nullcline starts under the x2-nullcline,

so by the similar argument the nullclines intersect exactly once inside the
region Ω12, which results in the (011)E appearing. Analysis of the phase plane
shows that this equilibrium is globally asymptotically stable with respect to
the interior of the admissible region Ω12. The zero equilibrium and the (001)E
equilibrium are both unstable.
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0
x1

x2

x2 = ω1x1 + uh

ug

uh

x2 = ω1x1 + uh − µ−1
2 (α)

(01̂1)x̂2

(011̂)x
∗
2

x2 =(01̂1) λ (x1)

Figure 2.9: Sketch of the phase portrait of system (2.72) with
µ1 (ug, uh) < α < µ1 (ug, 0), 0 < α < µ2 (uh), and (0̂11

)x̂2 <(01̂1
) ∗
x2.

• 0 < α < µ1 (ug, uh), µ2 (uh) < α < µ2 (ω1ug + uh).
Both the x1 and x2 nullclines are present. The x1-nullcline intersects the x1-axis at
some x1 =(0̂11)

∗
x1, and the x2-nullcline intersects the x1-axis at some x1 =(01̂1) x̂1.

Again, we have to consider two cases:

◦ (01̂1)x̂1 <(0̂11)
∗
x1. By a similar argument, the nullclines intersect exactly

once, which results in the interior equilibrium (011)E appearing. Analysis of
the phase plane shows that this equilibrium is globally asymptotically stable
with respect to the interior of the admissible region Ω12. The zero equilibrium
and the (010)E equilibrium are both unstable.

28

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


MSc thesis– Szymon Sobieszek; McMaster University– Department of Math and Stats

0
x1

x2

x2 = ω1x1 + uh

ug

uh

x2 = ω1x1 + uh − µ−1
2 (α)

(011̂)x̂1 (01̂1)x
∗
1

x2 =(01̂1) λ (x1)

Figure 2.10: Sketch of the phase portrait of system (2.72) with 0 < α <

µ1 (ug, uh), µ2 (uh) < α < µ2 (ω1ug + uh), and (01̂1
)x̂1 <(0̂11

) ∗
x1.

◦ (01̂1)x̂1 >(0̂11)
∗
x1. Since the slope of the x1-nullcline is greater than the slope

of the x2-nullcline, the x1-nullcline lies entirely above the x2-nullcline. Hence
there is no interior equilibrium. Analysis of the phase plane shows that the
(010)E equilibrium is globally asymptotically stable with respect to the interior
of the admissible region Ω12, and the zero equilibrium is unstable.
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0
x1

x2

x2 = ω1x1 + uh

ug

uh

x2 =(01̂1) λ (x1)

x2 = ω1x1 + uh − µ−1
2 (α)

(01̂1)x
∗
1 (011̂)x̂

Figure 2.11: Sketch of the phase portrait of system (2.72) with 0 < α <

µ1 (ug, uh), µ2 (uh) < α < µ2 (ω1ug + uh), and (01̂1
)x̂1 >(0̂11

) ∗
x1.

• 0 < α < µ1 (ug, uh), 0 < α < µ2 (uh).
Here, we have both the x1 and x2 nullclines. The x2-nullcline x2 = ω1x1 + uh −
µ−1

2 (α) intersects the x2-axis, and the x1-nullcline starts at the x1-axis and ends
at the x2 = ω1x1 + uh line, hence they intersect at some interior point of the
admissible region Ω12, which results in the (011)E equilibrium appearing. We also
know that the nullclines intersect exactly once, since by (2.75), the slope of the
x1-nullcline is greater than the slope of the x2-nullcline. We also have the (010)E
equilibrium at the point x1 =(0̂11)

∗
x1 of intersection of the x1-nullcline and the

x1-axis, and the (001)E equilibrium at the point of intersection of the x2-nullcline
with x2-axis. The interior equilibrium (011)E is globally asymptotically stable with
respect to the interior of the admissible region Ω12, and the (010)E , (001)E equilibria
and the zero equilibrium are unstable.
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0
x1

x2

x2 = ω1x1 + uh

ug

uh

x2 =(01̂1) λ (x1)

x2 = ω1x1 + uh − µ−1
2 (α)

(01̂1)x
∗
1

(011̂)x
∗
2

Figure 2.12: Sketch of the phase portrait of system (2.72) with 0 < α <
µ1 (ug, uh), 0 < α < µ2 (uh).

2.2.2 Face with x1 = 0

We have the following reduced system:{
x′0 = (−α+ µ0 (−x0 + uf ,−ω2x0 − x2 + uh))x0,
x′2 = (−α+ µ2 (−ω2x0 − x2 + uh))x2.

(2.76)

System (2.76) represents a food chain, with the chlorophenol degrader and methanogen
present. Since the phenol degrader is absent, we anticipate that in order to both popu-
lation survive, we need to suply both chlorophenol and hydrogen to the system.

We have two possible cases for our admissible region, depending on the sign of the
uh−ω2uf expression. Here, we consider uh−ω2uf < 0, since this is the usual case from
the biological point of view. Thus, the domain for our system is given by the following
set Ω02:

Ω02 =
{

(x0, x2) ∈ R2 : 0 ≤ x2 ≤ uh, 0 ≤ x0 ≤
uh − x2
ω2

}
. (2.77)

This region is sketched in Figure 2.13.
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x2 = uh − ω2x0

uh

ω2

uh

x0

x2

0

Figure 2.13: Domain Ω02 of system (2.76).

Again, the behaviour of the solutions depends on the value of the parameter α. We
have the following cases to consider.

• α > µ0 (uf , uh), α > µ2 (uh). In that case only the zero equilibrium exists, which
is globally asymptotically stable.

x2 = uh − ω2x0

uh

ω2

uh

x0

x2

0

Figure 2.14: Sketch of the phase portrait of system (2.76) with α >
µ0 (uf , uh), α > µ2 (uh).
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• α > µ0 (uf , uh), 0 < α < µ2 (uh). We have an additional x2-nullcline given
by the equation x2 = −ω2x0 + uh − µ−1

2 (α). It intersects the x2-axis at some
x2 =(10̂1)

∗
x2 and x0-axis at some x0 =(10̂1) x̂0 (in fact, (10̂1)

∗
x2 = uh − µ−1

2 (α)

and (10̂1)x̂0 = uh
ω2
− µ−1

2 (α)
ω2

). We have the boundary equilibrium (001)E which is
globally asymptotically stable with respect to the interior of the admissible region
Ω02. The zero equilibrium is unstable.

x2 = uh − ω2x0

uh

ω2

uh

x0

x2

0

x2 = uh − ω2x0 − µ−1
2 (α)

(101̂)x
∗
2

Figure 2.15: Sketch of the phase portrait of system (2.76) with α >
µ0 (uf , uh), 0 < α < µ2 (uh).

• 0 < α < µ0 (uf , uh), α > µ2 (uh). We have some unique point x2 =(̂101) x̂2, such

that µ0

(
uf ,−(̂101)x̂2 + uh

)
= α, and some unique x0 =(̂101)

∗
x0, such that

µ0

(
−(̂101)

∗
x0 + uf ,−ω2(̂101)

∗
x0 + uh

)
= α. (2.78)

Also, since

∂

∂x2
[µ0 (−x0 + uf ,−ω2x0 − x2 + uh)] = −∂s2µ0 (−x0 + uf ,−ω2x0 − x2 + uh) < 0

(2.79)
inside the admissible region Ω02, the Implicit Function Theorem implies existence
of the function x2 =(̂101) λ (x0), such that

µ0

(
−x0 + uf ,−ω2x0 −(̂101) λ (x0) + uh

)
= α. (2.80)
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This function (which is the x0-nullcline) is defined for x0 ∈
[
0,(̂101)

∗
x0

]
and it

connects the points
(

0,(̂101) x̂2

)
and

(
(̂101)

∗
x0, 0

)
. We also know that the derivative

of this function is given by

(̂101)λ
′ (x0) = −

∂s0µ0

(
−x0 + uf ,−ω2x0 −(̂101) λ (x0) + uh

)
∂s2µ0

(
−x0 + uf ,−ω2x0 −(̂101) λ (x0) + uh

) − ω2. (2.81)

We have the (100)E =
(

(̂101)
∗
x0, 0, 0

)
equilibrium and the phase portrait analysis

shows that it is globally asymptotically stable with respect to the interior of the
admissible region Ω02. The zero equilibrium is unstable.

x2 = uh − ω2x0

uh
ω2

uh

x0

x2

0

(1̂01)x̂2

x2 =(1̂01) λ (x0)

(1̂01)x
∗
0

Figure 2.16: Sketch of the phase portrait of system (2.76) with 0 < α <
µ0 (uf , uh), α > µ2 (uh).

• 0 < α < µ0 (uf , uh), 0 < α < µ2 (uh). Here, both the x0-nullcline and the x2-
nullcline are present. The x0-nullcline x2 =(̂100) λ (x0) intersects the x2-axis at

x2 =(̂101) x̂2, and the x0-axis at x0 =(̂101)
∗
x0. The x2 nullcline x2 = −ω2x0 +uh−

µ−1
2 (α) intersects the x2-axis at x2 =(10̂1)

∗
x2 = uh − µ−1

2 (α), and the x0-axis at
x0 =(10̂1) x̂0. We have to consider four cases.

◦ (̂101)
∗
x0 <(10̂1) x̂0, (̂101)x̂2 <(10̂1)

∗
x2.

Here, since by equation (2.81), the slope of the x0-nullcline is less than the
slope of the x2-nullcline (which equals −ω2), the two curves don’t intersect.
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We have three equilibria present: (001)E (globally asymptotically stable with
respect to the interior of the admissible region Ω02), (100)E (unstable), and
the zero equilibrium (unstable).

x2 = uh − ω2x0

uh
ω2

uh

x0

x2

0

(1̂01)x̂2 x2 =(1̂01) λ (x0)

(1̂01)x
∗
0 (101̂)x̂0

(101̂)x
∗
2

x2 = uh − ω2x0 − µ−1
2 (α)

Figure 2.17: Sketch of the phase portrait of system (2.76) with 0 < α <

µ0 (uf , uh), 0 < α < µ2 (uh), and (̂101
) ∗
x0 <(10̂1

) x̂0, (̂101
)x̂2 <

(
10̂1
) ∗
x2.

◦ (̂101)
∗
x0 <(10̂1) x̂0, (̂101)x̂2 >(10̂1)

∗
x2.

In that case the curves intersect at some interior equilibrium (101)E , and the
intersection is unique, since the slope of the x0-nullcline is smaller than the
slope of the x2-nullcline. The analysis of the phase plane shows that the (101)E
equilibrium is globally asymptotically stable with respect to the interior of
the admissible region Ω02, and (001)E , (100)E , and the zero equilibrium are all
unstable.
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x2 = uh − ω2x0

uh
ω2

uh

x0
0

x2 =(1̂01) λ (x0)

(1̂01)x
∗
0 (101̂)x̂0

x2 = uh − ω2x0 − µ−1
2 (α)

x2

(101̂)x̂2

(1̂01)x̂2

Figure 2.18: Sketch of the phase portrait of system (2.76) with 0 < α <

µ0 (uf , uh), 0 < α < µ2 (uh), and (̂101
) ∗
x0 <(10̂1

) x̂0, (̂101
)x̂2 >

(
10̂1
) ∗
x2.

◦ (̂101)
∗
x0 >(10̂1) x̂0, (̂101)x̂2 <(10̂1)

∗
x2.

This situation is impossible, since if the x0-nullcline starts below the x2-
nullcline, and because its slope is smaller than the slope of the x2-nullcline,
it has to lie entirely under it.

◦ (̂101)
∗
x0 >(10̂1) x̂0, (̂101)x̂2 >(10̂1)

∗
x2.

In the last case, using a similar argument we can show that the x0-nullcline
lies entirely above the x2-nullcline. Hence they do not intersect and we have
only three equilibria present. Using the phase plane argument we can see that
(001)E is unstable, (100)E is globally asymptotically stable with respect to the
interior of the admissible region Ω02, and the zero equilibrium is unstable.
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x2 = uh − ω2x0

uh
ω2

uh

x0
0

x2 =(1̂01) λ (x0)

(1̂01)x
∗
0(101̂)x̂0

x2 = uh − ω2x0 − µ−1
2 (α)

x2

(101̂)x̂2

(1̂01)x̂2

Figure 2.19: Sketch of the phase portrait of system (2.76) with 0 < α <

µ0 (uf , uh), 0 < α < µ2 (uh), and (̂101
) ∗
x0 >(10̂1

) x̂0, (̂101
)x̂2 >

(
10̂1
) ∗
x2.

2.2.3 Face with x2 = 0

We have the following reduced system:{
x′0 = (−α+ µ0 (−x0 + uf ,−ω2x0 + ω1x1 + uh))x0,
x′1 = (−α+ µ1 (ω0x0 − x1 + ug,−ω2x0 + ω1x1 + uh))x1.

(2.82)

System (2.82) represents a food chain, with the chlorophenol degrader and phenol de-
grader present. The relationship between the microorganisms is more complicated than
in the cases of x0x2, and x1x2 faces, since now hydrogen acts not only as a substrate
for the chlorophenol degrader, but it also inhibits growth of the phenol degrader. We
thus might expect both populations surviving without the need of supplying hydrogen
externally, i.e., with uh = 0.

System (2.82) is considered on the following admissible region Ω01:

Ω01 =
{

(x0, x1) ∈ R2 : 0 ≤ x0 ≤ uf ,max
(

0, ω2x0 − uh
ω1

)
≤ x1 ≤ ug + ω0x0

}
. (2.83)

Thus, we have two cases to consider: either ω2uf − uh > 0, or ω2uf − uh < 0. Here,
we assume that ω2uf − uh > 0, since this is the more plausible case from the biological
point of view. As in the previous analysis, the behaviour of the solutions of the system
depends on the value of parameter α. The admissible region Ω01 is represented in Figure
2.20.
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x0
0

x1

ug

uh

ω2
uf

x1 =
ω2

ω1
x0 − uh

ω1

x1 = ω0x0 + ug

Figure 2.20: Domain Ω01 of the system (2.82) in the case ω2uf−uh > 0.

• α > µ0 (uf , ω1ug + uh), α > µ1
((
ω0 − ω2

ω1

)
uf + uh

ω1
+ ug, 0

)
.

Here, only the zero equilibrium is present, and it is globally asymptotically stable.

x0
0

x1

ug

uh

ω2
uf

x1 =
ω2

ω1
x0 − uh

ω1

x1 = ω0x0 + ug

Figure 2.21: Sketch of the phase portrait of system (2.82) with α >

µ0 (uf , ω1ug + uh), α > µ1

((
ω0 − ω2

ω1

)
uf + uh

ω1
+ ug, 0

)
.

• µ0 (uf , uh) < α < µ0 (uf , ω1ug + uh), α > µ1
((
ω0 − ω2

ω1

)
uf + uh

ω1
+ ug, 0

)
.

We have only the zero equilibrium, and we have an additional x0-nullcline. We can
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find some unique x1 =(̂110) x̂1, such that µ0

(
uf , ω1(̂110)x̂1 + uh

)
= α, and since

∂

∂x1
[µ0 (−x0 + uf ,−ω2x0 + ω1x1 + uh)]

= ω1∂s2µ0 (−x0 + uf ,−ω2x0 + ω1x1 + uh) ≥ 0, (2.84)

and the above expression equals 0 only for x0 = uf , for which µ0 = 0. Hence
we can use the Implicit Function Theorem to obtain existence of the function
x1 =(̂110) λ (x0), such that

µ0

(
−x0 + uf ,−ω2x0 + ω1(̂110)λ (x0) + uh

)
= α, (2.85)

and which derivative is given by

(̂110)λ
′ (x0) = −−∂s0µ0 − ω2∂s2µ0

ω1∂s2µ0
= 1
ω1

∂s0µ0
∂s2µ0︸ ︷︷ ︸
> 0

+ω2
ω1

>
ω2
ω1
. (2.86)

The function intersects the line x1 = ω0x0 + ug. However, notice that on this line
we have

∂

∂x0
[µ0 (−x0 + uf , (ω0ω1 − ω2)x0 + ω1ug + uh)] =

= −∂s0µ0︸ ︷︷ ︸
< 0

+ (ω0ω1 − ω2) ∂s2µ0︸ ︷︷ ︸
> 0

, (2.87)

hence (since the sign of the above expression is not determined) we don’t know
if the x0-nullcline hits that line only once. In fact, it has been shown in [14]
that we can have two such points, which results in two equilibria appearing when
the x1-nullcline is also present. Without the x1-nullcline we have only the zero
equilibrium, which is globally asymptotically stable with respect to the interior of
the admissible region Ω01. In Figure 2.22 we can see a possible phase portrait of
the system.
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x0
0

x1

ug

uh
ω2

uf

x1 =
ω2

ω1
x0 − uh

ω1

x1 = ω0x0 + ug

(1̂10)x̂1

x1 =(1̂10) λ (x0)

Figure 2.22: Sketch of the possible phase portrait of sys-
tem (2.82) with µ0 (uf , uh) < α < µ0 (uf , ω1ug + uh), α >

µ1

((
ω0 − ω2

ω1

)
uf + uh

ω1
+ ug, 0

)
.

• 0 < α < µ0 (uf , uh), α > µ1
((
ω0 − ω2

ω1

)
uf + uh

ω1
+ ug, 0

)
.

Here, the x0-nullcline x1 =(̂110) λ (x0) is present again, but this time it starts at

some x0 =(̂110)
∗
x0, i.e., x1 =(̂110) λ

(
(̂110)

∗
x0

)
= 0. The nullcline hits this line

x1 = ω0x0 + ug, but again, we do not know if it hits the line only once. We have

another equilibrium (100)E =
(

(̂110)
∗
x0, 0, 0

)
. Analysis of the phase plane shows

that (100)E is globally asymptotically stable with respect to the interior of the
admissible region Ω01, and the zero equilibrium is unstable.

40

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


MSc thesis– Szymon Sobieszek; McMaster University– Department of Math and Stats

x0
0

x1

ug

uh
ω2

uf

x1 =
ω2

ω1
x0 − uh

ω1

x1 = ω0x0 + ug

x1 =(1̂10) λ (x0)

(1̂10)x
∗
0

Figure 2.23: Sketch of the possible phase portrait of system (2.82) with
0 < α < µ0 (uf , uh), α > µ1

((
ω0 − ω2

ω1

)
uf + uh

ω1
+ ug, 0

)
.

• α > µ0 (uf , ω1ug + uh), µ1 (ug, uh, ) < α < µ1
((
ω0 − ω2

ω1

)
uf + uh

ω1
+ ug, 0

)
.

In this case with have an additional x1-nullcline. There exists some unique point(
(1̂10)x̂0,(1̂10) x̂1

)
on the line

Γ :


x1 = 0, x0 ∈

(
0, uh
ω2

)
,

x1 = ω2
ω1
x0 −

uh
ω1
, x0 ∈

[
uh
ω2
, uf

)
,

(2.88)

such that µ1

(
ω0(1̂10)x̂0 −(1̂10) x̂1 + ug,−ω2(1̂10)x̂0 + ω1(1̂10)x̂1 + uh

)
= α. Since

∂

∂x1
[µ1 (ω0x0 − x1 + ug,−ω2x0 + ω1x1 + uh)] =

− ∂s1µ1 (ω0x0 − x1 + ug,−ω2x0 + ω1x1 + uh) +
ω1∂s2µ1 (ω0x0 − x1 + ug,−ω2x0 + ω1x1 + uh) < 0 (2.89)

inside the admissible region Ω01, we can use the Implicit Function Theorem to
obtain existence of the function (1̂10)λ (x0) such that

µ1

(
ω0x0 −(1̂10) λ (x0) + ug,−ω2x0 + ω1(1̂10)λ (x0) + uh

)
= α. (2.90)

This function is defined for x0 ∈
[
(1̂10)x̂0, uf

]
with 1̂10λ (uf ) =(1̂10) x̂

(2)
1 , where
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x1 =(1̂10) x̂
(2)
1 is the x1-coordinate of the unique point on the line x0 = uf such

that

µ1

(
ω0uf −(1̂10) x̂

(2)
1 + ug,−ω2uf + ω1(1̂10)x̂

(2)
1 + uh

)
= α. (2.91)

We also know that

(1̂10)λ
′ (x0) = ω0M1 (x0)− ω2M2 (x0)

M1 (x0)− ω1M2 (x0) , (2.92)

where

M1 (x0) = ∂s1µ1

(
ω0x0 −(1̂10) λ (x0) + ug,−ω2x0 + ω1(1̂10)λ (x0) + uh

)
, (2.93)

M2 (x0) = ∂s2µ1

(
ω0x0 −(1̂10) λ (x0) + ug,−ω2x0 + ω1(1̂10)λ (x0) + uh

)
. (2.94)

We have only the zero equilibrium and analysis of the phase plane shows that it is
globally asymptotically stable with respect to the interior of the admissible region
Ω01.

x0
0

x1

ug

uh

ω2
uf

x1 =
ω2

ω1
x0 − uh

ω1

x1 = ω0x0 + ug

(11̂0)x̂0

x1 =(11̂0) λ (x0)

Figure 2.24: Sketch of the phase portrait of system (2.82) with α >

µ0 (uf , ω1ug + uh), µ1 (ug, uh, ) < α < µ1

((
ω0 − ω2

ω1

)
uf + uh

ω1
+ ug, 0

)
.

• α > µ0 (uf , ω1ug + uh), 0 < α < µ1 (ug, uh).
Again, we have the x1-nullcline given by the function x1 =(1̂10) λ (x0). This

nullcline is defined for x0 ∈ [0, uf ] with (1̂10)λ (0) =(1̂10)
∗
x1
(
where x1 =(1̂10)

∗
x1 is
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the unique point on the x1-axis, such that µ1

(
−(1̂10)

∗
x1 + ug, ω1(1̂10)

∗
x1 + uh

)
=

α
)
, and (1̂10)λ (uf ) =(1̂10) x̂1

(
where x1 =(1̂10) x̂1 is the unique point on the line

x1 = uf , such that µ1

(
ω0uf −(1̂10) x̂1 + ug,−ω2uf + ω1(1̂10)x̂1 + uh

)
= α

)
. We

have another equilibrium (010)E =
(

0,(1̂10)
∗
x1, 0

)
present. Analysis of the phase

plane shows that (010)E equilibrium is globally asymptotically stable with respect
to the interior of the admissible region Ω01, and the zero equilibrium is unstable.

x0
0

x1

ug

uh

ω2
uf

x1 =
ω2

ω1
x0 − uh

ω1

x1 = ω0x0 + ug

x1 =(11̂0) λ (x0)

(11̂0)x
∗
1

Figure 2.25: Sketch of the phase portrait of system (2.82) with α >
µ0 (uf , ω1ug + uh), 0 < α < µ1 (ug, uh).

The following four cases

• µ0 (uf , uh) < α < µ0 (uf , ω1ug + uh), µ1 (ug, uh, ) < α < µ1
((
ω0 − ω2

ω1

)
uf + uh

ω1
+ ug, 0

)
,

• µ0 (uf , uh) < α < µ0 (uf , ω1ug + uh), 0 < α < µ1 (ug, uh),

• 0 < α < µ0 (uf , uh), µ1 (ug, uh, ) < α < µ1
((
ω0 − ω2

ω1

)
uf + uh

ω1
+ ug, 0

)
,

• 0 < α < µ0 (uf , uh), 0 < α < µ1 (ug, uh),

are too complicated to be dealt with in the general class of the prototypes µ0 and µ1.
The additional assumptions that might be considered are on the signs of the second
partial derivatives of the functions µ0 and µ1 (which might result in the convexity or
concavity of the implicitly defined nullclines (̂110)λ and (1̂10)λ). We can however rule
out periodic orbits on that face using the Dulac’s Criterion [7]. First, notice that no
periodic orbit can intersect the axes x0 = 0 or x1 = 0, since they are invariant. Now, let
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us define an auxiliary function

ϕ (x0, x1) = 1
x0x1

, (x0, x1) ∈ Ω01 \ ({x0 = 0} ∪ {x1 = 0}) . (2.95)

Then

∇ · (ϕ (−α+ µ0)x0, ϕ (−α+ µ1)x1) = −∂s0µ0 − ω2∂s2µ0
x1

+ −∂s1µ1 + ω1∂s2µ1
x0

< 0
(2.96)

for all (x0, x1) in the domain of ϕ. Thus, by the Dulac’s Criterion, there are no periodic
orbits in the x0x1 face.

We gather the results concerning the existence and local stability of the equilibria of
(2.13) in table 2.1. The symbol ” ? ” refers to the conditions for existence obtained in
subsection 2.1.1, and the symbol ”†” refers to the conditions derived from the phase plane
analysis in section 2.2. Moreover, all the functions in the "Local stability" column are
evaluated at the corresponding steady states, and all the symbols are given by equations
(2.97)-(2.107). The conditions for existence of the (110)E equilibrium are discussed in
subsection 2.1.1.

Equilibrium Existence Local stability
(000)E Always α > max(µ0, µ1, µ2)

(100)E α < µ0 (uf , uh) α > max (µ1, µ2)

(010)E α < µ1 (ug, uh) α > max (µ0, µ2)

(001)E α < µ2 (uh) α > max (µ0, µ1)

(101)E (101)? or (101)† α > µ1

(011)E (011)? or (011)†(1) or (011)†(2)

or (011)†(3) α > µ0

(110)E - α > µ2 and (110)a0 > 0

(111)E (111)? (111)a2 (111)a1 − (111)a0 > 0,

Table 2.1: Equilibria of system (2.13) together with their local stability.
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(101)? = α ∈
(
µ0

(
uf −min

(
uf ,

uh − µ−1
2 (α)

ω2

)
, µ−1

2 (α)
)
, µ0

(
uf , µ

−1
2 (α)

))
,

(2.97)
and α < µ2 (uh) ,

(101)† = α < min (µ0 (uf , uh) , µ2 (uh)) , and (̂101)
∗
x0 <(10̂1) x̂0,(̂101) x̂2 >(10̂1)

∗
x2,

(2.98)

(011)? = α ∈
[
0, µ1

(
ug −max

(
0, µ

−1
2 (α)− uh

ω1

)
, µ−1

2 (α)
))

, (2.99)

and α < µ2 (ω1ug + uh) ,

(011)†(1) = µ1 (ug, uh) < α < µ1 (ug, 0) , 0 < α < µ2 (uh) , and (0̂11)x̂2 <(01̂1)
∗
x2,

(2.100)

(011)†(2) = α < µ1 (ug, uh) , µ2 (uh) < α < µ2 (ω1ug + uh) , and (01̂1)x̂1 <(0̂11)
∗
x1,

(2.101)

(011)†(3) = α < µ1 (ug, uh) , and α < µ2 (uh) , (2.102)

(110)a0 = ∂µ0
∂s0

∂µ1
∂s1
− ω1

∂µ0
∂s0

∂µ1
∂s2

+ (ω2 − ω0ω1) ∂µ0
∂s2

∂µ1
∂s1

, (2.103)

(111)? = α ∈
[
0,min

(
µ0
(
uf , µ

−1
2 (α)

)
, µ1

(
ω0
∗
x0 −max

(
0, ω2

∗
x0 − uh
ω1

)
(2.104)

+ ug, µ
−1
2 (α)

)
, µ2

(
−ω2

∗
x0 + ω1

∗
x1 + uh

)))
,

(111)a2 = −∗x0

(
−∂µ0
∂s0
− ω2

∂µ0
∂s2

)
− ∗x1

(
−∂µ1
∂s1

+ ω1
∂µ1
∂s2

)
+ ∗
x2µ

′
2, (2.105)

(111)a1 = ∗
x1
∂µ1
∂s1

(
∗
x0
∂µ0
∂s0
− (ω0ω1 − ω2) ∗x0

∂µ0
∂s2

+ ∗
x2µ

′
2

)
(2.106)

+ ∗
x0
∂µ0
∂s0

(
−ω1

∗
x1
∂µ1
∂s2

+ ∗
x2µ

′
2

)
,

(111)a0 = ∗
x0
∗
x1
∗
x2
∂µ0
∂s0

∂µ1
∂s1

µ′2. (2.107)
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Chapter 3

Analysis of the full system

3.1 Hopf Bifurcation

In this work we are especially interested in developing a more systematic approach
to studying the Hopf bifurcation of the interior equilibrium. That Hopf bifurcation
occurs in this model was previously observed numerically [14]. Occurrence of a stable
periodic orbit in system (2.13) represents a situation in which all three populations
of microorganisms oscillate indefinitely, and as a consequence, the concentrations of
substrates fluctuates. The characteristic polynomial of the Jacobian (111)J corresponding
to the interior equilibrium is given by

λ3 + a2λ
2 + a1λ+ a0 = 0, (3.1)

where

a2 = −∗x0

(
−∂µ0
∂s0
− ω2

∂µ0
∂s2

)
− ∗x1

(
−∂µ1
∂s1

+ ω1
∂µ1
∂s2

)
+ ∗
x2µ

′
2, (3.2)

a1 = ∗
x1
∂µ1
∂s1

(
∗
x0
∂µ0
∂s0
− (ω0ω1 − ω2) ∗x0

∂µ0
∂s2

+ ∗
x2µ

′
2

)
+ ∗
x0
∂µ0
∂s0

(
−ω1

∗
x1
∂µ1
∂s2

+ ∗
x2µ

′
2

)
,

(3.3)

a0 = ∗
x0
∗
x1
∗
x2
∂µ0
∂s0

∂µ1
∂s1

µ′2, (3.4)

and the coefficients a2, a1, and a0 depend on the parameters uf , ug, uh, and α. The
coefficients a2 and a0 are sign-definite (they are both positive), and a1 might possibly
change sign. Let us first notice that since the polynomial has order three, a real eigen-
value always exists. By the Routh-Hurwitz criterion, the above polynomial has a pair
of purely imaginary eigenvalues if and only if

a2a1 = a0 (which implies a1 > 0). (3.5)

In that case we also have

λ3 + a2λ
2 + a1λ+ a0 = λ3 + a2λ

2 + a1λ+ a2a1 = (λ+ a2)
(
λ2 + a1

)
. (3.6)
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Hence the eigenvalues are λ1 = −a2 and λ2,3 = ±√a1i. Since eigenvalues are con-
tinuous functions of the parameters, we can see that if there is some (uf , ug, uh, α) =(
u∗f , u

∗
g, u
∗
h, α

∗
)
such that a2a1 = a0, then if we denote by λ1 the always present real

eigenvalue, there is some δ > 0 such that for
∥∥∥(uf , ug, uh, α)−

(
u∗f , u

∗
g, u
∗
h, α

∗
)∥∥∥ < δ

we always have λ1 < 0. By lemma 5.1, section 5.2 in [7], this implies the exis-
tence of a parameter-dependent, smooth, attracting, two dimensional, center manifold
W c

(uf ,ug ,uh,α). In the following analysis, we consider only parameters that are in the δ-
neighborhood of (uf , ug, uh, α) in order to ensure that the real eigenvalue λ1 is negative.

By the Routh-Hurwitz criterion (since we just showed that when (111)E exists that
a0 and a2 are always positive), a Hopf bifurcation occurs when the expression a2a1− a0
changes sign as a parameter varies. This ensures that the real part of a pair of complex
eigenvalues with nonzero imaginary part passes through 0 and hence changes sign. This
is related to the transversality condition: the derivative of the real part of the eigenvalue
with respect to the bifurcation parameter evaluated at the critical value when the real
parts are zero is non-zero. We check this condition for specific forms of the functions µ0,
µ1, and µ2. For the prototypes proposed in (1.20), and with the values of parameters
from table 1.1 fixed, the function

f (uf , ug, uh, α) = a2a1 − a0 (3.7)

is an algebraic function in uf , ug, uh, and α. Hence fixing all the parameters except one
makes the function f a polynomial, the order of which depends on the choice of the free
parameter. Specifically if we choose:

• α - free parameter =⇒ f has order 27,

• uf - free parameter =⇒ f has order 3,

• ug - free parameter =⇒ f has order 3,

• uh - free parameter =⇒ f has order 2.

We do bifurcation diagrams to explore the possibility of Hopf bifurcations as α varies in
section 3.3, and begin our theoretical analysis by choosing uf as the free parameter. We
have

fuf
(uf ) = a2a1 − a0 = b3u

3
f + b2u

2
f + b1uf + b0, (3.8)

and we assume that there is a value uf = u∗f such that fuf
(u∗f ) = 0. We want to find

conditions on the coefficients of fuf
that guarantee that the derivative of a2a1− a0 with

respect to uf is not equal to zero when a2a1−a0 = 0, i.e., that u∗f is not a local extremum
of fuf

. We have
f ′uf

(uf ) = 3b3u2
f + 2b2uf + b1. (3.9)
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The necessary condition for u∗f to be a local extremum for fuf
is f ′uf

(u∗f ) = 0, that is

u∗f =
−b2 ±

√
b22 − 3b1b3

3b3
. (3.10)

We can derive sufficient conditions for u∗f to be an extremum (for example by computing
the second derivative of fuf

), but the condition (3.10) is already very restrictive and
will be sufficient for our work. We have thus obtained a sufficient condition for a Hopf
bifurcation.

If we choose ug as the free parameter, we have

fug (uh) = c3u
3
g + c2u

2
g + c1ug + c0, (3.11)

and with the assumption that fug

(
u∗g

)
= 0, by a similar analysis as in the previous case,

we obtain an analogous sufficient condition for a Hopf bifurcation in ug.

Finally, if we choose uh as the free parameter, we have

fuh
(uh) = d2u

2
h + d1uh + d0. (3.12)

Once again, we assume that fuh
(u∗h) = 0, that is

u∗h =
−d1 ±

√
d2

1 − 4d2d0

2d2
. (3.13)

Here, u∗h is the local extremum if and only if the discriminant of equation (3.12) is zero,
i.e., if d2

1 − 4d2d0 = 0.

We summarize our results in the following theorem.
Theorem 1. Consider system (2.13) with the prototypes given by (1.20) and with the val-
ues of parameters from table 1.1 fixed. Assume that there exists a point (uf , ug, uh, α) =(
u∗f , u

∗
g, u
∗
h, α

∗
)
such that f

(
u∗f , u

∗
g, u
∗
h, α

∗
)

= 0 for f defined in (3.7). Then fuf
(uf ) =

f
(
uf , u

∗
g, u
∗
h, α

∗
)
, fug (ug) = f

(
u∗f , ug, u

∗
h, α

∗
)
, and f (uh) = f

(
u∗f , u

∗
g, uh, α

∗
)
are given

by the equations (3.8), (3.11), and (3.12), respectively. Also, there exists δ > 0 such that
if
∥∥∥(uf , ug, uh, α)−

(
u∗f , u

∗
g, u
∗
h, α

∗
)∥∥∥ < δ, then

I. if

u∗f 6=
−b2 ±

√
b22 − 3b1b3

3b3
, (3.14)

then there is a Hopf bifurcation in uf at uf = u∗f ,

II. if

u∗g 6=
−c2 ±

√
c2

2 − 3c1c3

3c3
, (3.15)
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then there is a Hopf bifurcation in ug at ug = u∗g,

III. if
d2

1 − 4d2d0 6= 0, (3.16)

then there is a Hopf bifurcation in uh at uh = u∗h.

We now illustrate the theoretical results with the numerical simulations. To approx-
imate values of the equilibria we used Maple software [9], rounding all the values to 6
significant digits. For the choice of parameters given in Table 1.1 and

α = 0.01, ug = 0, uh = 0.1, (3.17)

it follows that the only zero of (3.8) occurs for uf = 0.538725. In Figure 3.1 we plot the
phase space for uf = 0.538 (just before the Hopf bifurcation) using the ode15s solver
from [10]. For this set of parameters, we have the following approximate values of the
equilibria

(000)E = (0, 0, 0) (unstable),

(100)E = (0.000605984, 0, 0) (stable),

(001)E = (0, 0, 0.0973693) (unstable),

(110)E
(1) = (0.0611201, 0.00595680, 0) (unstable),

(110)E
(2) = (0.527493, 0.0524709, 0) (unstable),

(111)E = (0.344611, 0.0584659, 40.7588) (unstable).

(3.18)
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Figure 3.1: Phase space of system (2.13) with α = 0.01, uf = 0.538,
ug = 0, and uh = 0.1.

We can see that there exists a stable periodic orbit in the system, but depending
on the initial conditions, the solution might also converge to the boundary equilibrium
(100)E . Thus in this case we observe bistability.

We now repeat the simulations for uf = 0.6 (after the predicted Hopf bifurcation),
presented in Figure 3.2. With all the other parameters set to the same values as in the
previous case, we have the following equilibria

(000)E = (0, 0, 0) (unstable),

(100)E = (0.000606483, 0, 0) (stable),

(001)E = (0, 0, 0.0973693) (unstable),

(110)E
(1) = (0.0610742, 0.00595223, 0) (unstable),

(110)E
(2) = (0.589539, 0.0586557, 0) (unstable),

(111)E = (0.406611, 0.0699610, 49.6919) (stable).

(3.19)
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Figure 3.2: Phase space of system (2.13) with α = 0.01, uf = 0.6,
ug = 0, and uh = 0.1.

We can see that the Hopf bifurcation occurs between uf = 0.538 and uf = 0.6. The
stable periodic orbit is no longer present, and the interior equilibrium is stable. Once
again, the boundary equilibrium (100)E is stable, and thus we observe bistability in the
system.

To illustrate a Hopf bifurcation in ug, we fix the following parameters

α = 0.01, uf = 0.5, uh = 0.1. (3.20)

Then, the only zero of (3.11) occurs at ug = 0.000601604. For ug = 0.0006 we have the
following equilibria

(000)E = (0, 0, 0) (unstable),

(100)E = (0.000605615, 0, 0) (stable),

(001)E = (0, 0, 0.0973693) (unstable),

(110)E
(1) = (0.0542490, 0.00528049, 0) (unstable),

(110)E
(2) = (0.489465, 0.0486886, 0) (unstable),

(111)E = (0.306611, 0.0520205, 36.2777) (unstable).

(3.21)
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The phase space of the system is presented in Figure 3.3.

Figure 3.3: Phase space of system (2.13) with α = 0.01, uf = 0.5,
ug = 0.0006, and uh = 0.1.

Similar to the previous case, there is a stable periodic orbit surrounding an unstable
equilibrium point. The (100)E equilibrium is also stable.

For ug = 0.0008 (after the predicted Hopf bifurcation) we have the following equilibria

(000)E = (0, 0, 0) (unstable),

(100)E = (0.000605615, 0, 0) (stable),

(001)E = (0, 0, 0.0973693) (unstable),

(110)E
(1) = (0.0519472, 0.00505390, 0) (unstable),

(110)E
(2) = (0.489467, 0.0486917, 0) (unstable),

(111)E = (0.306611, 0.0522205, 36.6091) (stable),

(3.22)

and the corresponding phase space is presented in Figure 3.4.
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Figure 3.4: Phase space of system (2.13) with α = 0.01, uf = 0.5,
ug = 0.0008, and uh = 0.1.

As expected, the periodic orbit disappears through a Hopf bifurcation, and the inte-
rior equilibrium becomes stable. The (100)E equilibrium is also stable.

Finally, to illustrate the last result of theorem 1, we fix the following parameters

α = 0.01, uf = 0.5, ug = 0.0006. (3.23)

The predicted Hopf bifurcation occurs for uh = 0.102520. For uh = 0.05 we have the
following equilibria

(000)E = (0, 0, 0) (unstable),

(100)E = (0.000299015, 0, 0) (stable),

(001)E = (0, 0, 0.0473693) (unstable),

(110)E
(1) = (0.0545964, 0.00534486, 0) (unstable),

(110)E
(2) = (0.489465, 0.0487183, 0) (unstable),

(111)E = (0.306611, 0.0520205, 36.2277) (unstable),

(3.24)

and the corresponding phase space is presented in Figure 3.5.
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Figure 3.5: Phase space of system (2.13) with α = 0.01, uf = 0.5,
ug = 0.0006, and uh = 0.05.

For uh = 0.3 (after the predicted Hopf bifurcation) we have

(000)E = (0, 0, 0) (unstable),

(100)E = (0.00183202, 0, 0) (stable),

(001)E = (0, 0, 0.297369) (unstable),

(110)E
(1) = (0.0528596, 0.00502299, 0) (unstable),

(110)E
(2) = (0.489467, 0.0485697, 0) (unstable),

(111)E = (0.306611, 0.0520205, 36.4777) (stable).

(3.25)
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Figure 3.6: Phase space of system (2.13) with α = 0.01, uf = 0.5,
ug = 0.0006, and uh = 0.3.

As expected, the dynamics of the system follows the same pattern as in the previous
cases. The stable periodic orbit surrounding the unstable interior equilibrium disappears,
and the interior equilibrium becomes unstable.

It is worth to notice, that in all three cases, the increase of the bifurcation parameter
had a stabilizing effect on the system. This result is especially important in the con-
text of the modeled phenomenon, since the most desirable situation happens when the
production of methane is not fluctuating. Variable rates of gas production can result in
decreased productivity of the biogas plant.

3.2 Persistence

The notion of persistence is particularly important in modeling biological phenomena.
Roughly speaking, we say that a system is persistent if all the species with positive initial
populations survive. The formal definition is as follows.
Definition 3.2.1. The system

x′i = xifi (x1, x2, . . . , xn) ,
xi (0) = xi0 ≥ 0, i = 1, 2, . . . , n,

(3.26)
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is said to be weakly persistent if

lim sup
t→∞

xi (t) > 0, i = 1, 2, . . . , n (3.27)

for every trajectory with positive initial conditions, and is said to be persistent if

lim inf
t→∞

xi (t) > 0, i = 1, 2, . . . , n (3.28)

for every trajectory with positive initial conditions. This system is said to be uniformly
persistent if there exists a positive number ε such that

lim inf
t→∞

xi (t) ≥ ε, i = 1, 2, . . . , n (3.29)

for every trajectory with positive initial conditions.

To prove that system (2.13) is persistent, we will use the Butler-McGehee lemma [15]
repeatedly.
Lemma 3.2.1. Suppose that x∗ is a hyperbolic equilibrium point of the system

x′ = f(x),
x (0) = x0,

(3.30)

with x ∈ Rn and f : Rn → Rn, where f is continuously differentiable. Suppose also that
x∗ is in ω (x0), the omega limit set of γ+ (x0) (the positive semi-orbit through x0), but
is not the entire omega limit set. Then ω (x0) has nontrivial (i.e., different from x∗)
intersection with the stable and unstable manifolds of x∗.

As we already noticed in section 3.1, there are values of the parameters where one of
the boundary equilibria and the interior equilibrium are both asymptotically stable, and
hence system (2.13) is not persistent, even though an interior equilibrium point exists.
We will thus focus on the cases for which no boundary equilibrium point of system (2.13)
is stable.
Theorem 2. Let system (2.13) have the following equilibria configuration (as represented
schematically in Figure 3.7):

Equilibrium Number of eigenvalues with positive
real part

Number of eigenvalues with
negative real part

(000)E 2 1
(100)E 1 2
(001)E 1 2
(110)E 1 2

Then system (2.13) is persistent.
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Figure 3.7: Schematic representation of the equilibria configuration oc-
curring in the hypothesis of theorem 2. Black arrows represent stable
and unstable manifolds of each of the equilibrium (marked by the orange
dots). In the example for the parameters we select in model (2.13) to
illustrate this theorem (see (3.31)), there is an asymptotically stable inte-
rior equilibrium (as shown). However, this is not necessary for the proof
of theorem 2.

Proof. By the phase plane analysis in section 2.2 we know where the stable and unstable
manifolds of the boundary equilibria lie. This is represented in a schematic way in
Figure 3.7. Keeping this picture in mind should make the following argument much
more transparent. Assume that a solution ~x (t) = (x0 (t) , x1 (t) , x2 (t)) with an initial
condition ~x(0) =

(
x

(0)
0 , x

(0)
1 , x

(0)
2

)
, where x(0)

i > 0, i = 1, 2, 3, is given. First, suppose

that (000)E belongs to ω
(
γ+
(
~x(0)

))
, the omega limit set of γ+

(
~x(0)

)
. Since (000)E is a

saddle point with one-dimensional stable manifold restricted to the x1-axis, it is not the
entire omega limit set ω

(
γ+
(
~x(0)

))
. Hence, by lemma 3.2.1, there is a point x∗ 6= (000)E

in both ω
(
γ+
(
~x(0)

))
and W s

(
(000)E

)
, the stable manifold of (000)E . The entire orbit

through any point in an omega limit set is also in the omega limit set. The stable
manifold of (000)E is the x1-axis, and the x1-axis is unbounded. We have already proven
in chapter 2 that all orbits of system (2.13) are bounded, and hence the omega limit set
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of any orbit of (2.13) is bounded. This contradicts the existence of such an x∗ and thus
(000)E /∈ ω

(
γ+
(
~x(0)

))
.

Now, suppose that (001)E ∈ ω
(
γ+
(
~x(0)

))
. Since (001)E is a saddle point with two-

dimensional stable manifold restricted to the x0x1-plane,
{

(001)E
}
is not the entire omega

limit set ω
(
γ+
(
~x(0)

))
. Thus, using lemma 3.2.1, there is a point x∗ ∈ ω

(
γ+
(
~x(0)

))
∩

W s
(

(001)E
)
\
{

(001)E
}
. Since the stable manifold W s

(
(001)E

)
lies entirely in the x1x2-

plane, and the entire orbit through x∗ is in ω
(
γ+
(
~x(0)

))
, by the analysis in subsection

2.2.1, this orbit becomes unbounded in backward time. This contradiction shows that
(001)E /∈ ω

(
γ+
(
~x(0)

))
.

Now, suppose that (100)E ∈ ω
(
γ+
(
~x(0)

))
. Similarly as in the previous cases, this

implies that there exists a point x∗ ∈ ω
(
γ+
(
~x(0)

))
∩ W s

(
(100)E

)
\
{

(100)E
}
. This

time the stable manifold W s
(

(100)E
)
is two-dimensional and lies entirely in the x0x2-

plane. By the analysis in subsection 2.2.2, the entire orbit through x∗
(
which belongs

to ω
(
γ+
(
~x(0)

)))
becomes unbounded in backward time or its closure contains (001)E .

This contradiction proves that (100)E /∈ ω
(
γ+
(
~x(0)

))
.

Now, suppose that (110)E ∈ ω
(
γ+
(
~x(0)

))
. Again,

{
(110)E

}
is not the entire omega

limit set ω
(
γ+
(
~x(0)

))
, so there exists a point x∗ ∈ ω

(
γ+
(
~x(0)

))
∩W s

(
(110)E

)
\
{

(110)E
}
.

This point lies in the x0x1-plane, since W s
(

(110)E
)
is two-dimensional and is entirely

contained in this plane. As in the previous cases, the entire orbit through x∗ is in
ω
(
γ+
(
~x(0)

))
. Since there are no periodic orbits in the x0x1 face, and since

{
(100)E

}
/∈

ω
(
γ+
(
~x(0)

))
, the orbit becomes unbounded in backward time. This contradiction

proves that (110)E /∈ ω
(
γ+
(
~x(0)

))
.

Finally, consider any x̂ = (x̂0, x̂1, x̂2), such that x̂i = 0 for at least one i = 1, 2, 3, and
suppose that x̂ ∈ ω

(
γ+
(
~x(0)

))
. Then, the entire orbit through x̂ is in ω

(
γ+
(
~x(0)

))
.

But since this orbit lies entirely in either x0x1, x1x2, or x0x2 face, it converges to one of
the boundary equilibria. This implies that this boundary equilibrium is in ω

(
γ+
(
~x(0)

))
,

and this possibility has been eliminated in the previous part of the proof.

We have therefore proven that

lim inf
t→∞

xi (t) > 0, i = 1, 2, 3,

i.e., that system (2.13) is persistent.
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An example satisfying the assumptions of theorem 2 occurs for

α = 0.0002, uf = 0.6, ug = 0, uh = 0.1. (3.31)

Persistence can also be observed with the addition of phenol, i.e., with ug > 0.
Theorem 3. Let system (2.13) have the following equilibria configuration (as represented
schematically in Figure 3.8):

Equilibrium Number of eigenvalues with positive
real part

Number of eigenvalues with
negative real part

(000)E 2 1
(100)E 1 2
(001)E 1 2
(011)E 1 2
(110)E 1 2

Then system (2.13) is persistent.
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Figure 3.8: Schematic representation of the equilibria configuration oc-
curring in the hypothesis of theorem 3. Black arrows represent stable
and unstable manifolds of each of the equilibrium (marked by the orange
dots). In the example for the parameters we select in model (2.13) to
illustrate this theorem (see (3.32)), there is an asymptotically stable inte-
rior equilibrium (as shown). However, this is not necessary for the proof
of theorem 3.

Proof. The idea behind this proof is very similar to the method presented in the proof
of theorem 2. Let ~x (t) = (x0 (t) , x1 (t) , x2 (t)) be a solution of (2.13) with an initial
condition ~x(0) =

(
x

(0)
0 , x

(0)
1 , x

(0)
2

)
, where x(0)

i > 0, i = 1, 2, 3. Since the stable and
unstable manifolds of the all of the equilibria, except (001)E and (011)E , have the same
configuration as in the hypothesis of theorem 2, the argument eliminating them from
the omega limit set of γ+

(
~x(0)

)
is exactly the same and we only need to focus on (001)E

and (011)E equilibria.

Suppose that (001)E ∈ ω
(
γ+
(
~x(0)

))
. Since (001)E is a saddle point with one-dimensional

stable manifold restricted to the x2-axis, we have ω
(
γ+
(
~x(0)

))
\
{

(001)E
}
6= ∅. Hence, by

lemma 3.2.1, there is a point x∗ ∈ ω
(
γ+
(
~x(0)

))
∩W s

(
(001)E

)
\
{

(001)E
}
. The entire orbit

through x∗, which also belongs to ω
(
γ+
(
~x(0)

))
, either becomes unbounded in backward
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time, or converges to the (000)E equilibrium. Since all orbits of system (2.13) are bounded,
and (000)E /∈ ω

(
γ+
(
~x(0)

))
, we obtain a contradiction. Hence (001)E /∈ ω

(
γ+
(
~x(0)

))
.

Now, suppose that (011)E ∈ ω
(
γ+
(
~x(0)

))
. Since (011)E is a saddle point with two-

dimensional stable manifold restricted to the x1x2-plane (it is repelling into the interior),
we have ω

(
γ+
(
~x(0)

))
\
{

(011)E
}
6= ∅. By using lemma 3.2.1, there exists a point x∗ ∈

ω
(
γ+
(
~x(0)

))
∩W s

(
(011)E

)
\
{

(011)E
}
. The entire orbit through x∗, which also belongs

to ω
(
γ+
(
~x(0)

))
, either becomes unbounded in backward time, or converges to (000)E , or

(001)E (we have previously shown in subsection 2.2.1 that there are no periodic orbits in
the x1x2 face). Since we have already proven that (000)E /∈ ω

(
γ+
(
~x(0)

))
, and (001)E /∈

ω
(
γ+
(
~x(0)

))
, we obtain a contradiction, which proves that (011)E /∈ ω

(
γ+
(
~x(0)

))
.

Finally, consider any x̂ = (x̂0, x̂1, x̂2), such that x̂i = 0 for at least one i = 1, 2, 3, and
suppose that x̂ ∈ ω

(
γ+
(
~x(0)

))
. Then, the entire orbit through x̂ is in ω

(
γ+
(
~x(0)

))
.

But since this orbit lies entirely in either x0x1, x1x2, or x0x2 face, it converges to one of
the boundary equilibria. This implies that this boundary equilibrium is in ω

(
γ+
(
~x(0)

))
,

and this possibility has been eliminated in the previous part of the proof.

An example satisfying the assumptions of theorem 3 occurs for

α = 0.0002, uf = 0.6, ug = 0.00015, uh = 0.1. (3.32)

Remark 1. Interestingly enough, in many cases of models describing biological phenom-
ena, persistence already implies uniform persistence. The rigorous results were obtained
in [3]. In our context, the key theorem from [3] states that if F is a dynamical system
for which Rn+ and ∂Rn+ are invariant, then F is uniformly persistent provided that

1. F is dissipative (meaning that ∀x ∈ Rn+ ω (x) 6= ∅ and
⋃
x∈Rn

+
ω (x) has compact

closure),

2. F is weakly persistent,

3. ∂F (the restriction of F to the boundary ∂Rn+) is "isolated",

4. ∂F is "acyclic".

These results can be easily modified so that we consider the flow F on Ω defined in (2.11).
Although ∂Ω is not invariant, the theorem from [3], as explained in [4], can be modified
so that it applies in the case when ∂Ω is the union of two sets Ω1 and Ω2, for which F is
invariant on Ω1 and Ω2 is repelling into the interior of Ω, provided that conditions 3. and
4. are satisfied for the restriction of F to Ω1. In our case, the positively invariant set Ω,
on which we analyze system (2.13) is bounded, hence condition 1. is satisfied. Condition
2. holds by theorem 2 (persistence implies weak persistence). In our context condition 3.
is satisfied, because all the boundary equilibria are hyperbolic, and hence each one is the
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maximal invariant set in a neighbourhood of itself. Also, their union forms a covering
of the omega limit sets of Ω1. Condition 4. is satisfied because the boundary equilibria
are not cyclically linked, i.e., there is no cyclic chain of heteroclinic orbits joining them.
Thus, we have shown not only persistence, but also uniform persistence of system (2.13)
in the case of theorem 2 and theorem 3.

We have thus proven the following theorem:
Theorem 4. Under the hypotheses of theorems 2 and 3, system (2.13) is uniformly
persistent.

3.3 Bifurcation diagrams

As previously stated in section 3.1, we now study numerically effects on the qualitative
behaviour of system (2.13) when considering α as the bifurcation parameter. Throughout
this section, we assume that parameters ω0, ω1, ω2, φ1, φ2, KP , and KI are fixed at the
values given in table 1.1.

We now fix the following parameters

uf = 2, ug = 0, uh = 0, (3.33)

and plot a one-parameter bifurcation diagram in α, with x0 on the y-axis. All simulations
were performed using [17].
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Figure 3.9: One-parameter bifurcation diagram of system (2.13) with α
as the bifurcation parameter and uf = 2, ug = 0, uh = 0.
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Figure 3.10: Close-up of on the one-parameter bifurcation diagram rep-
resented in Figure 3.9.

We can see that as α decreases, there is a saddle-node bifurcation, resulting in two
equilibria (110)E(1) and (110)E(2) appearing (both unstable). Next, there is a transcritical
bifurcation with the (110)E(1) equilibrium, which results in the positive equilibrium com-
ing into the interior of the admissible region Ω. After that, a saddle-node of limit cycles
bifurcation occurs, which gives birth to a stable and unstable periodic orbits. The (111)E
equilibrium (unstable), undergoes a Hopf bifurcation, and as a consequence it becomes
asymptotically stable, and the stable periodic orbits disappears. Since these bifurcations
occur for a narrow range of α, a close-up is presented in Figure 3.10. Stable periodic
orbit represents a case in which all three populations oscillate indefinitely, and hence the
production of methane fluctuates. As already mentioned in section 3.1, this situation
is not a desirable one, because it might result it decreased productivity of the biogas
plant. The unstable periodic orbits acts as a separatrix, giving the border of the basin
of attraction of two asymptotically stable equilibria in the case of bistability.

Since by the conservation principles (2.12), s0 = uf − x0, the bifurcation diagram in
α with s0 on the y-axis is similar to the one presented in Figure 3.9. The amount of
chlorophenol in the system is inversely proportional to the concentration of the phenol
degrader. As the dilution rate α decreases, concentration of the chlorophenol degrader
in the interior equilibrium increases, and as a consequence, the amount of chlorophenol
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decreases. It thus suggests, that operating on lower dilution rates results in the most de-
sirable dynamics, i.e., an asymptotically stable interior equilibrium and fast chlorophenol
removal.

To extend the previous analysis, we now fix the following parameters

ug = 0, uh = 0.1, (3.34)

and plot a two-parameter bifurcation diagram of system (2.13), choosing α and uf as
the bifurcation parameters. Each region of the diagram is labeled and the corresponding
dynamics are represented in Figures 3.14-3.25. Red curve corresponds to saddle-node
of equilibria bifurcation (LP), black curve represents saddle-node of limit cycles bifur-
cation (SNLC), blue curve denotes Hopf bifurcation (HB), and cyan curves represent
transcritical bifurcations (BP).

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

2

2.5

3

3.5

4

LP

SNLC

HB

BP

Figure 3.11: Two-parameter bifurcation diagram of system (2.13) with
ug = 0 and uh = 0.1.
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0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

0.4

0.45

0.5

0.55

0.6

0.65

LP

SNLC

HB

BP

Figure 3.12: Close-up on region I of Figure 3.11. The SNLC curve
intersects the HB curve at Bautin bifurcation. This results in the change
of criticality of the Hopf bifurcation from supercritical (on the left) to
subcritical (on the right).

0.1 0.10005 0.1001 0.10015 0.1002

0.3304

0.3306

0.3308

0.331

0.3312

0.3314

Figure 3.13: Close-up on region II of Figure 3.11.
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Figure 3.14: Schematic representation of the dynamics of system (2.13)
in region 1 of Figure (3.11).

Figure 3.15: Schematic representation of the dynamics of system (2.13)
in region 2 of Figure (3.11).
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Figure 3.16: Schematic representation of the dynamics of system (2.13)
in region 3 of Figure (3.11).

Figure 3.17: Schematic representation of the dynamics of system (2.13)
in region 4 of Figure (3.11).
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Figure 3.18: Schematic representation of the dynamics of system (2.13)
in region 5 of Figure (3.11).

Figure 3.19: Schematic representation of the dynamics of system (2.13)
in region 6 of Figure (3.11).
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Figure 3.20: Schematic representation of the dynamics of system (2.13)
in region 7 of Figure (3.11).

Figure 3.21: Schematic representation of the dynamics of system (2.13)
in region 8 of Figure (3.11).
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Figure 3.22: Schematic representation of the dynamics of system (2.13)
in region i of Figure (3.12).

Figure 3.23: Schematic representation of the dynamics of system (2.13)
in region ii of Figure (3.12).
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Figure 3.24: Schematic representation of the dynamics of system (2.13)
in region iii of Figure (3.12).
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Figure 3.25: Schematic representation of the dynamics of system (2.13)
in region a of Figure (3.13).

We can see that varying two parameters at the same time can lead to a much more
complicated dynamics than in the case of one-parameter bifurcations. There is a general-
ized Hopf bifurcation, at the point at which the Hopf curve intersects the saddle-node of
limit cycles curve. This is the point where the criticality of the Hopf bifurcation changes
from supercritical to subcritical, looking from left to right. The unstable periodic or-
bit disappears through a heteroclinic bifurcation, however the correspoing curve lies so
close to the Hopf curve (above it), that it is not included in the diagram. There are
two heteroclinic orbits that form a cycle that joins the two equilibria in the x0x1 face,
then passes into the interior, and then goes back to the boundary in the x0x1 face. The
point at which the Hopf, homoclinic, and saddle-node of limits cycles curves intersect,
represents the Bogdanov-Takens bifurcation.

From the biological viewpoint, the most interesting dynamics is occurs in regions 5
and iii. There, the interior equilibrium is asymptotically stable. In the case of region
5 we also observe bistability with the (100)E equilibrium. In region iii, there is uniform
persistence, and thus an interior compact attractor is present. As was previously an-
ticipated by the analysis of the one-parameter bifurcation diagram, operating at low
dilution rates is the most desirable approach. If α is small enough, it is possible to
remain in region iii, even for high inflow rate uf .
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Chapter 4

Conclusions

In this work we have generalised the approach presented in [14] by including multiple
substrate inflow into the chemostat, while maintaining generality (in most cases) with
respect to the exact form of the growth functions. We observed that allowing the inflow
of multiple substrates resulted in much more complex dynamics of the system. For ex-
ample, eight steady states are possible. Previously, the theoretical results were limited
to existence and uniqueness of up to three equilibria (when chlorophenol was the only
input substrate), and to numerical evidence suggesting that the model should be sub-
jected to a more detailed analysis. We also observed that external addition of substrates
can result in bistability - two equilibria can simultaneously be asymptotically stable.
As well, there can be an orbitally asymptotically stable periodic orbit with all of the
populations surviving and an asymptotically stable equilibrium with only chlorophenol
degrader population surviving.

We derived explicit conditions with respect to the parameters for the existence and
the number of equilibria of each possible form. The original conditions, presented in
subsection 2.1.1, had the disadvantage that they were given in implicit form. Since we
ignored the decay terms, this allowed us to reduce the original six dimensional system
to an equivalent three dimensional system. This made it possible to obtain alternative
conditions for the existence of equilibria by studying the system on parts of the invariant
set on which one of the variables x0, x1, or x2 is zero. This made the use of phase analysis
possible, together with many powerful theorems, like the Poincaré-Bendixson theorem,
or the Bendixson-Dulac theorem. These theorems were also used to obtain results on
the qualitative dynamics of the system on the x0x1 face with general forms of the growth
functions. However, we did have to resort to specific forms to determine the existence
and uniqueness of the equilibria on this face.

We have also confirmed the findings of the previous numerical analysis in [14], where
numerical evidence of the occurrence of a supercritical Hopf bifurcation was given. The-
oretical conditions for the existence of a Hopf bifurcation were provided in the case
of specific forms of the growth functions. Varying any one of the three parameters:
chlorophenol, phenol, and hydrogen inflow rates, was shown to result in a Hopf bifur-
cation. Theoretical results for varying the dilution rate as the bifurcation parameter
has been left for future work. However, we have observed numerically, that varying this
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parameter can result in a Hopf bifrucation and a saddle-node of limit cycles bifurcation.
Our numerical investigations also showed that increasing the inflow rate of the substrates
has a stabilizing effect on the entire system. This is usually the most desirable situation
from the application point of view, since fluctuating substrates can be troublesome.

Another result, particularly important from the applications point of view, concerns
the persistence of the system for various sets of parameters. Knowing that the microor-
ganism populations survive is crucial information and it is one of the main theoretical
results of this work. We have proven that in two configurations of equilibria (in both
cases all the boundary equilibria are saddle points) we observe not only persistence, but
also uniform persistence, a much stronger result. These situations occur not only when
there is an inflow of all the three substrates, but also when we do not consider phenol
addition (i.e., when ug = 0).

Although we now know much more about the dynamics of the system, it is not fully
understood. The evidence of that might be found in [16], where the authors present two-
parameter bifurcation diagrams. Their analysis reveals that varying the dilution rate,
and the chlorophenol inflow simultaneously, can lead to a Bogdanov-Takens, or Bautin
(generalized Hopf) bifurcation. Also, for the cases of bistability, where both a boundary
and the interior equilibrium are asymptotically stable, it is of great importance to biol-
ogists to have an estimation of the basins of attraction of these equilibria. This result
is usually difficult to obtain theoretically, however numerical estimations are possible.
Another factor that might be worth considering is including stochasticity in the model.
In real-life situations, it might happen that even if the interior equilibrium is globally
asymptotically stable, one of the microorganisms goes extinct. This might occur when
a population is very small, and the stochastic noise effects result in the solution curve
reaching one of the invariant faces of the admissible region.

Finally, it is worth noticing that although many results were obtained for a general
class of growth functions, some of the results depend on a specific (Monod) form. These
results include for example, existence and uniqueness of the equilibria on the x0x1 face,
and conditions for a Hopf bifurcation.
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Appendix A

Maple codes

Code for finding equilibria of system (2.1), together with their eigenvalues in the three-
dimensional system (2.13).

mu0 := ( s0 , s2 ) −> s0 ∗ s2 /((1+ s0 )∗ (Kp+s2 ) ) ;
mu1 := ( s1 , s2 ) −> phi1 ∗ s1 /((1+ s1 )∗(1+KI∗ s2 ) ) ;
mu2 := ( s2 ) −> phi2 ∗ s2 /(1+s2 ) ;

Y0 := 0 .19 e−1;
Y1 := 0 .4 e−1;
Y2 := 0 .6 e−1;
km0 := 29 ;
km1 := 26 ;
km2 := 35 ;
KS0 := 0 .53 e−1;
KS1 := . 3 0 2 ;
KS2 := 0 .25 e−4;
L0 := 0 .1 e−5;
KI := 0 .35 e−5;
om0 := KS0∗(224∗(1/208))∗(1−Y0)/KS1 ;
om1 := KS1∗(32∗(1/224))∗(1−Y1)/KS2 ;
om2 := (16∗ (1/208))∗KS0/KS2 ;
phi1 := km1∗Y1/(km0∗Y0 ) ;
phi2 := km2∗Y2/(km0∗Y0 ) ;
Kp := L0/KS2 ;
KI := KS2/KI ;
uf := . 5 3 8 ;
ug := 0 ;
uh := . 1 ;
alpha := 0 .1 e−1;

# The zero e qu i l i b r i um E0
x0_E0 := 0 ;
x1_E0 := 0 ;
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x2_E0 := 0 ;
s0_E0 := −x0_E0+uf ;
s1_E0 := om0∗x0_E0+ug−x1_E0 ;
s2_E0 := om1∗x1_E0−om2∗x0_E0+uh−x2_E0 ;
print (The∗ zero ∗ equ i l i b r i um ∗E0 ) ;
print ( [ x0_E0 , x1_E0 , x2_E0 , s0_E0 , s1_E0 , s2_E0 ] ) ;
print ( Eigenva lues ) ;
print ( [mu0( uf , uh)−alpha , mu1(ug , uh)−alpha , mu2(uh)−alpha ] )

# The E100 e qu i l i b r i um ( x0 , 0 , 0 ) ;
i f alpha > mu0( uf , uh ) then
print (E_100∗does ∗ ‘not ‘∗ e x i s t )
else
x0_E100 := so l v e ( (mu0( uf−x0 , −om2∗x0+uh) = alpha and
x0 < min( uf , uh/om2) ) and x0 > 0 , x0 ) ;
x1_E100 := 0 ;
x2_E100 := 0 ;
s0_E100 := −x0_E100+uf ;
s1_E100 := om0∗x0_E100+ug−x1_E100 ;
s2_E100 := om1∗x1_E100−om2∗x0_E100+uh−x2_E100 ;
lam1_E100 := x0_E100∗(−(eval ( d i f f (mu0( s0 , s2 ) , s0 ) ,
{ s0 = s0_E100 , s2 = s2_E100}))−om2∗( eval ( d i f f (mu0( s0 , s2 ) , s2 ) ,
{ s0 = s0_E100 , s2 = s2_E100 } ) ) ) ;
lam2_E100 := mu1( s1_E100 , s2_E100)−alpha ;
lam3_E100 := mu2( s2_E100)−alpha ;
print (The∗boundary∗ equ i l i b r i um ∗E100 ) ;
print ( [ x0_E100 , x1_E100 , x2_E100 , s0_E100 , s1_E100 , s2_E100 ] ) ;
print ( Eigenva lues ) ;
print ( [ lam1_E100 , lam2_E100 , lam3_E100 ] )
end i f

# The E010 e qu i l i b r i um (0 , x1 , 0 )
i f alpha>mu1(ug , uh ) then
print (E_010 does ‘not ‘ e x i s t ) ;
else
x0_E010 :=0:
x1_E010:= so l v e (mu1(ug−x1 , om1∗x1+uh)=alpha
and x1>0 and x1<ug , x1 ) :
x2_E010 :=0:
s0_E010:=−x0_E010+uf :
s1_E010:=om0∗x0_E010−x1_E010+ug :
s2_E010:=−om2∗x0_E010+om1∗x1_E010−x2_E010+uh :
lam1_E010:=mu0( s0_E010 , s2_E010)−alpha :
lam2_E010:=x1_E010∗(−eval ( d i f f (mu1( s1 , s2 ) , s1 ) ,

77

http://www.mcmaster.ca/
https://www.math.mcmaster.ca/


MSc thesis– Szymon Sobieszek; McMaster University– Department of Math and Stats

{ s1=s1_E010 , s2=s2_E010})+om1∗eval ( d i f f (mu1( s1 , s2 ) , s2 ) ,
{ s1=s1_E010 , s2=s2_E010 } ) ) :
lam3_E010:=mu2( s2_E010)−alpha :
print (The boundary equ i l i b r ium E010 ) ;
print ( [ x0_E010 , x1_E010 , x2_E010 , s0_E010 , s1_E010 , s2_E010 ] ) ;
print ( Eigenva lues ) ;
print ( [ lam1_E010 , lam2_E010 , lam3_E010 ] ) ;
end i f :

# The E001 e qu i l i b r i um (0 ,0 , x2 )
i f alpha>mu2(uh) then
print (E_001 does ‘not ‘ e x i s t ) ;
else
x0_E001 :=0;
x1_E001 :=0;
x2_E001:=uh−alpha /( phi2−alpha ) ;
s0_E001:=−x0_E001+uf :
s1_E001:=om0∗x0_E001−x1_E001+ug :
s2_E001:=−om2∗x0_E001+om1∗x1_E001−x2_E001+uh :
lam1_E001:=mu0( s0_E001 , s2_E001)−alpha :
lam2_E001:=mu1( s1_E001 , s2_E001)−alpha :
lam3_E001:=−x2_E001∗eval ( d i f f (mu2( s2 ) , s2 ) , { s2=s2_E001 } ) :
print (The boundary equ i l i b r ium E001 ) ;
print ( [ x0_E001 , x1_E001 , x2_E001 , s0_E001 , s1_E001 , s2_E001 ] ) ;
print ( Eigenva lues ) ;
print ( [ lam1_E001 , lam2_E001 , lam3_E001 ] ) ;
end i f :

# The E101 e qu i l i b r i um ( x0 ,0 , x2 )
i f alpha>mu0( uf−min( uf , ( uh−alpha /( phi2−alpha ) ) / (om2) ) ,
alpha /( phi2−alpha ) ) and alpha<mu0( uf , alpha /( phi2−alpha ) )
and alpha<mu2(uh) then
x0_E101:= so l v e (mu0(−x0+uf , alpha /( phi2−alpha ))=alpha and x0>0
and x0<min( uf , ( uh−alpha /( phi2−alpha ) ) / (om2) ) , x0 ) ;
x1_E101 :=0;
x2_E101:=−om2∗x0_E101+uh−alpha /( phi2−alpha ) ;
s0_E101:=−x0_E101+uf :
s1_E101:=om0∗x0_E101−x1_E101+ug :
s2_E101:=−om2∗x0_E101+om1∗x1_E101−x2_E101+uh :
lam1_E101:=mu1( s1_E101 , s2_E101)−alpha ;
# Quadratic equat ion f o r the o ther e i g enva l u e s
a1_E101:=x0_E101∗( eval ( d i f f (mu0( s0 , s2 ) , s0 ) ,
{ s0=s0_E101 , s2=s2_E101})+om2∗eval ( d i f f (mu0( s0 , s2 ) , s2 ) ,
{ s0=s0_E101 , s2=s2_E101}))+x2_E101∗eval ( d i f f (mu2( s2 ) , s2 ) ,
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{ s2=s2_E101 } ) :
a0_E101:=x0_E101∗( eval ( d i f f (mu0( s0 , s2 ) , s0 ) ,
{ s0=s0_E101 , s2=s2_E101})+om2∗eval ( d i f f (mu0( s0 , s2 ) , s2 ) ,
{ s0=s0_E101 , s2=s2_E101 }))∗x2_E101∗eval ( d i f f (mu2( s2 ) , s2 ) ,
{ s2=s2_E101})−om2∗x0_E101∗x2_E101∗eval ( d i f f (mu0( s0 , s2 ) , s0 ) ,
{ s0=s0_E101 , s2=s2_E101})∗ eval ( d i f f (mu2( s2 ) , s2 ) , { s2=s2_E101 } ) :
lam23_E101:= so l v e (lambda^(2)+a1_E101∗lambda+a0_E101=0,lambda ) ;
print (The boundary equ i l i b r ium E101 ) ;
print ( [ x0_E101 , x1_E101 , x2_E101 , s0_E101 , s1_E101 , s2_E101 ] ) ;
print ( Eigenva lues ) ;
print ( [ lam1_E101 , lam23_E101 ] ) ;
else
print (E_101 does ‘not ‘ e x i s t ) ;
end i f :

# The E011 e qu i l i b r i um
i f alpha<mu1(ug−max( 0 , ( alpha /( phi2−alpha)−uh )/(om1) ) ,
alpha /( phi2−alpha ) ) and alpha<mu2(om1∗ug+uh) then
x0_E011 :=0:
x1_E011:= so l v e (mu1(−x1+ug , alpha /( phi2−alpha ))=alpha and
x1>max( 0 , ( alpha /( phi2−alpha)−uh )/(om1) ) and x1<ug , x1 ) :
x2_E011:=om1∗x1_E011+uh−alpha /( phi2−alpha ) :
s0_E011:=−x0_E011+uf :
s1_E011:=om0∗x0_E011−x1_E011+ug :
s2_E011:=−om2∗x0_E011+om1∗x1_E011−x2_E011+uh :
lam1_E011:=mu0( uf , alpha /( phi2−alpha ))− alpha :
# Quadratic equat ion f o r the o ther e i g enva l u e s
a1_E011:=x1_E011∗( eval ( d i f f (mu1( s1 , s2 ) , s1 ) ,
{ s1=s1_E011 , s2=s2_E011})−om1∗eval ( d i f f (mu1( s1 , s2 ) , s2 ) ,
{ s1=s1_E011 , s2=s2_E011}))+x2_E011∗eval ( d i f f (mu2( s2 ) , s2 ) ,
{ s2=s2_E011 } ) :
a0_E011:=x1_E011∗( eval ( d i f f (mu1( s1 , s2 ) , s1 ) ,
{ s1=s1_E011 , s2=s2_E011})−om1∗eval ( d i f f (mu1( s1 , s2 ) , s2 ) ,
{ s1=s1_E011 , s2=s2_E011 }))∗x2_E011∗eval ( d i f f (mu2( s2 ) , s2 ) ,
{ s2=s2_E011})+x1_E011∗om1∗x2_E011∗eval ( d i f f (mu1( s1 , s2 ) , s2 ) ,
{ s1=s1_E011 , s2=s2_E011})∗ eval ( d i f f (mu2( s2 ) , s2 ) , { s2=s2_E011 } ) :
lam23_E011:= so l v e (lambda^(2)+a1_E011∗lambda+a0_E011=0,lambda ) ;
print (The boundary equ i l i b r ium E011 ) ;
print ( [ x0_E011 , x1_E011 , x2_E011 , s0_E011 , s1_E011 , s2_E011 ] ) ;
print ( Eigenva lues ) ;
print ( [ lam1_E011 , lam23_E011 ] ) ;
else
print (E_011 does ‘not ‘ e x i s t ) ;
end i f :
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# The E110 e q u i l i b r i a
unass ign ( ’x0_tmp ’ ) ;
unass ign ( ’x1_tmp ’ ) ;
unass ign ( ’E_110 ’ ) ;
E_110 := so l v e ({mu0(−x00+uf , om1∗x11−om2∗x00+uh) = alpha and
mu1(om0∗x00+ug−x11 and om1∗x11−om2∗x00+uh) = alpha and
x00 > 0 and x11 > 0 and x00 < uf and
x11 >= max(0 , (om2∗x00−uh)/om1) , x11 <= om0∗x00+ug} ,
[ x00 , x11 ] ) ;
x0_E110 := [ ] ;
x1_E110 := [ ] ;
x2_E110 := [ ] ;
s0_E110 := [ ] ;
s1_E110 := [ ] ;
s2_E110 := [ ] ;
lam1_E110 := [ ] ;
lam23_E110 := [ ] ;
for i to nops (E_110) do
x0_tmp := eval ( x00 , E_110 [ i , 1 ] ) ;
x1_tmp := eval ( x11 , E_110 [ i , 2 ] ) ;
x2_tmp := 0 ;
s0_tmp := −x0_tmp+uf ;
s1_tmp := om0∗x0_tmp+ug−x1_tmp ;
s2_tmp := om1∗x1_tmp−om2∗x0_tmp+uh ;
x0_E110 := [ op (x0_E110 ) , x0_tmp ] ;
x1_E110 := [ op (x1_E110 ) , x1_tmp ] ;
x2_E110 := [ op (x2_E110 ) , 0 ] ;
s0_E110 := [ op ( s0_E110 ) , s0_tmp ] ;
s1_E110 := [ op ( s1_E110 ) , s1_tmp ] ;
s2_E110 := [ op ( s2_E110 ) , s2_tmp ] ;
lam1_tmp := mu2(s2_tmp)−alpha ;
lam1_E110 := [ op ( lam1_E110 ) , lam1_tmp ] ;
a1_E110 := x0_tmp∗( eval ( d i f f (mu0( s0 , s2 ) , s0 ) ,
{ s0 = s0_tmp , s2 = s2_tmp})+om2∗( eval ( d i f f (mu0( s0 , s2 ) , s2 ) ,
{ s0 = s0_tmp , s2 = s2_tmp})))+
x1_tmp∗( eval ( d i f f (mu1( s1 , s2 ) , s1 ) , { s1 = s1_tmp , s2 = s2_tmp})
−om1∗( eval ( d i f f (mu1( s1 , s2 ) , s2 ) , { s1 = s1_tmp , s2 = s2_tmp } ) ) ) ;
a0_E110 := x0_tmp∗x1_tmp∗( eval ( d i f f (mu0( s0 , s2 ) , s0 ) ,
{ s0 = s0_tmp , s2 = s2_tmp})+om2∗( eval ( d i f f (mu0( s0 , s2 ) , s2 ) ,
{ s0 = s0_tmp , s2 = s2_tmp } ) ) )∗ ( eval ( d i f f (mu1( s1 , s2 ) , s1 ) ,
{ s1 = s1_tmp , s2 = s2_tmp})−om1∗( eval ( d i f f (mu1( s1 , s2 ) , s2 ) ,
{ s1 = s1_tmp , s2 = s2_tmp } ) ) )
−om1∗x0_tmp∗x1_tmp∗( eval ( d i f f (mu0( s0 , s2 ) , s2 ) ,
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{ s0 = s0_tmp , s2 = s2_tmp}) )∗ (om0∗( eval ( d i f f (mu1( s1 , s2 ) , s1 ) ,
{ s1 = s1_tmp , s2 = s2_tmp}))−om2∗( eval ( d i f f (mu1( s1 , s2 ) , s2 ) ,
{ s1 = s1_tmp , s2 = s2_tmp } ) ) ) ;
lam23_tmp := so l v e ( a1_E110∗lambda+lambda^2+a0_E110 = 0 ,
lambda ) ;
lam23_E110 := [ op ( lam23_E110 ) , lam23_tmp ] ;
print ( Equi l ibr ium ∗E110 ) ;
print ( [ x0_tmp , x1_tmp , x2_tmp , s0_tmp , s1_tmp , s2_tmp ] ) ;
print ( Eigenva lues ) ;
print ( [ lam1_tmp , lam23_tmp ] )
end do

# The E111 e qu i l i b r i um
x0_E111 := 1+uf+1/(Kp∗( phi2−alpha)+alpha −1);
x1_E111 := om0∗x0_E111+ug+1+
phi1 /( alpha∗(1+KI∗ alpha /( phi2−alpha ))−phi1 ) ;
x2_E111 := −om2∗x0_E111+om1∗x1_E111+uh−alpha /( phi2−alpha ) ;
s0_E111 := −x0_E111+uf ;
s1_E111 := om0∗x0_E111+ug−x1_E111 ;
s2_E111 := om1∗x1_E111−om2∗x0_E111+uh−x2_E111 ;
a2_E111 := −x0_E111∗(−(eval ( d i f f (mu0( s0 , s2 ) , s0 ) ,
{ s0 = s0_E111 , s2 = s2_E111 }) )
−om2∗( eval ( d i f f (mu0( s0 , s2 ) , s2 ) ,
{ s0 = s0_E111 , s2 = s2_E111 } ) ) )
−x1_E111∗(−(eval ( d i f f (mu1( s1 , s2 ) , s1 ) ,
{ s1 = s1_E111 , s2 = s2_E111 }) )
+om1∗( eval ( d i f f (mu1( s1 , s2 ) , s2 ) ,
{ s1 = s1_E111 , s2 = s2_E111 } ) ) )
+x2_E111∗( eval ( d i f f (mu2( s2 ) , s2 ) , { s2 = s2_E111 } ) ) ;
a1_E111 := x1_E111∗( eval ( d i f f (mu1( s1 , s2 ) , s1 ) ,
{ s1 = s1_E111 , s2 = s2_E111 }) )
∗(x0_E111∗( eval ( d i f f (mu0( s0 , s2 ) , s0 ) , { s0=s0_E111 , s2=s2_E111 }) )
−(om0∗om1−om2)∗x0_E111∗( eval ( d i f f (mu0( s0 , s2 ) , s2 ) ,
{ s0=s0_E111 , s2=s2_E111}))+x2_E111∗( eval ( d i f f (mu2( s2 ) , s2 ) ,
{ s2 = s2_E111})))+x0_E111∗( eval ( d i f f (mu0( s0 , s2 ) , s0 ) ,
{ s0=s0_E111 , s2=s2_E111}))∗(−om1∗x1_E111
∗( eval ( d i f f (mu1( s1 , s2 ) , s2 ) , { s1 = s1_E111 , s2 = s2_E111 }) )
+x2_E111∗( eval ( d i f f (mu2( s2 ) , s2 ) , { s2 = s2_E111 } ) ) ) ;
a0_E111 := x0_E111∗x1_E111∗x2_E111∗( eval ( d i f f (mu0( s0 , s2 ) , s0 ) ,
{ s0 = s0_E111 , s2 = s2_E111 } ) )∗ ( eval ( d i f f (mu1( s1 , s2 ) , s1 ) ,
{ s1 = s1_E111 , s2 = s2_E111 } ) )∗ ( eval ( d i f f (mu2( s2 ) , s2 ) ,
{ s2 = s2_E111 } ) ) ;
lam123_E111 := so l v e ( a2_E111∗lambda^2+lambda^3
+a1_E111∗lambda+a0_E111 = 0 , lambda ) ;
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i f min(x0_E111 , x1_E111 , x2_E111 , s0_E111 , s1_E111 ,
s2_E111 ) > 0 then
i f om2∗uf−uh > 0 then
i f alpha < min(mu0( uf , alpha /( phi2−alpha ) ) ,
mu1(om0∗x0_E111−max(0 , (om2∗x0_E111−uh)/om1)+ug ,
alpha /( phi2−alpha ) ) , mu2(om1∗x1_E111−om2∗x0_E111+uh ) ) then
print (The∗ i n t e r i o r ∗ equ i l i b r i um ∗E111 ) ;
print ( [ x0_E111 , x1_E111 , x2_E111 , s0_E111 , s1_E111 , s2_E111 ] ) ;
print ( Eigenva lues ) ;
print ( [ lam123_E111 ] )
else
print (E_111∗does ∗ ‘not ‘∗ e x i s t )
end i f
e lse
i f alpha < min(mu0( uf , alpha /( phi2−alpha ) ) , mu1(om0∗x0_E111+ug ,
alpha /( phi2−alpha ) ) , mu2(om1∗x1_E111−om2∗x0_E111+uh ) ) then
print (The∗ i n t e r i o r ∗ equ i l i b r i um ∗E111 ) ;
print ( [ x0_E111 , x1_E111 , x2_E111 , s0_E111 , s1_E111 , s2_E111 ] ) ;
print ( Eigenva lues ) ;
print ( [ lam123_E111 ] )
else
print (E_111∗does ∗ ‘not ‘∗ e x i s t )
end i f
end i f
e lse print (E_111∗does ∗ ‘not ‘∗ e x i s t )
end i f

Code for finding polynomial (3.7) when all expect one of the parameters are fixed.

mu0 := ( s0 , s2 ) −> s0 ∗ s2 /((1+ s0 )∗ (Kp+s2 ) ) ;
mu1 := ( s1 , s2 ) −> phi1 ∗ s1 /((1+ s1 )∗(1+KI∗ s2 ) ) ;
mu2 := ( s2 ) −> phi2 ∗ s2 /(1+s2 ) ;

Y0 := 0 .19 e−1;
Y1 := 0 .4 e−1;
Y2 := 0 .6 e−1;
km0 := 29 ;
km1 := 26 ;
km2 := 35 ;
KS0 := 0 .53 e−1;
KS1 := . 3 0 2 ;
KS2 := 0 .25 e−4;
L0 := 0 .1 e−5;
KI := 0 .35 e−5;
om0 := KS0∗(224∗(1/208))∗(1−Y0)/KS1 ;
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om1 := KS1∗(32∗(1/224))∗(1−Y1)/KS2 ;
om2 := (16∗ (1/208))∗KS0/KS2 ;
phi1 := km1∗Y1/(km0∗Y0 ) ;
phi2 := km2∗Y2/(km0∗Y0 ) ;
Kp := L0/KS2 ;
KI := KS2/KI ;

# I n t e r i o r equ i l i b r ium (x0 , x1 , x2 )
x0 := 1+uf+1/(Kp∗( phi2−alpha)+alpha −1);
x1 := om0∗x0+ug+1+phi1 /( alpha∗(1+KI∗ alpha /( phi2−alpha ))−phi1 ) ;
x2 := −om2∗x0+om1∗x1+uh−alpha /( phi2−alpha ) ;
s0_eq := −x0+uf ;
s1_eq := om0∗x0+ug−x1 ;
s2_eq := om1∗x1−om2∗x0+uh−x2 ;

a11 := x0∗(−( eva l ( d i f f (mu0( s0 , s2 ) , s0 ) ,
{ s0 = −x0+uf , s2 = om1∗x1−om2∗x0+uh−x2 }) )
−om2∗( eva l ( d i f f (mu0( s0 , s2 ) , s2 ) ,
{ s0 = −x0+uf , s2 = om1∗x1−om2∗x0+uh−x2 } ) ) ) ;
a12 := om1∗x0 ∗( eva l ( d i f f (mu0( s0 , s2 ) , s2 ) ,
{ s0 = −x0+uf , s2 = om1∗x1−om2∗x0+uh−x2 } ) ) ;
a13 := −x0 ∗( eva l ( d i f f (mu0( s0 , s2 ) , s2 ) ,
{ s0 = −x0+uf , s2 = om1∗x1−om2∗x0+uh−x2 } ) ) ;
a21 := x1 ∗(om0∗( eva l ( d i f f (mu1( s1 , s2 ) , s1 ) ,
{ s1 = om0∗x0+ug−x1 , s2 = om1∗x1−om2∗x0+uh−x2 }) )
−om2∗( eva l ( d i f f (mu1( s1 , s2 ) , s2 ) ,
{ s1 = om0∗x0+ug−x1 , s2 = om1∗x1−om2∗x0+uh−x2 } ) ) ) ;
a22 := x1∗(−( eva l ( d i f f (mu1( s1 , s2 ) , s1 ) ,
{ s1 = om0∗x0+ug−x1 , s2 = om1∗x1−om2∗x0+uh−x2 }) )
+om1∗( eva l ( d i f f (mu1( s1 , s2 ) , s2 ) ,
{ s1 = om0∗x0+ug−x1 , s2 = om1∗x1−om2∗x0+uh−x2 } ) ) ) ;
a23 := −x1 ∗( eva l ( d i f f (mu1( s1 , s2 ) , s2 ) ,
{ s1 = om0∗x0+ug−x1 , s2 = om1∗x1−om2∗x0+uh−x2 } ) ) ;
a31 := −om2∗x2 ∗( eva l ( d i f f (mu2( s2 ) , s2 ) ,
s2 = om1∗x1−om2∗x0+uh−x2 ) ) ;
a32 := om1∗x2 ∗( eva l ( d i f f (mu2( s2 ) , s2 ) ,
s2 = om1∗x1−om2∗x0+uh−x2 ) ) ;
a33 := −x2 ∗( eva l ( d i f f (mu2( s2 ) , s2 ) ,
s2 = om1∗x1−om2∗x0+uh−x2 ) ) ;

a2 := −a11−a22−a33 ;
a1 := x1 ∗( eva l ( d i f f (mu1( s1 , s2 ) , s1 ) ,
{ s1 = om0∗x0+ug−x1 , s2 = om1∗x1−om2∗x0+uh−x2 }) )
∗( x0 ∗( eva l ( d i f f (mu0( s0 , s2 ) , s0 ) , { s0 = −x0+uf ,
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s2 = om1∗x1−om2∗x0+uh−x2}))−(om0∗om1−om2)∗ x0
∗( eva l ( d i f f (mu0( s0 , s2 ) , s2 ) , { s0 = −x0+uf ,
s2 = om1∗x1−om2∗x0+uh−x2}))+x2 ∗( eva l ( d i f f (mu2( s2 ) , s2 ) ,
s2 = om1∗x1−om2∗x0+uh−x2 )))+x0 ∗( eva l ( d i f f (mu0( s0 , s2 ) , s0 ) ,
{ s0 = −x0+uf , s2 = om1∗x1−om2∗x0+uh−x2 }) )
∗(−om1∗x1 ∗( eva l ( d i f f (mu1( s1 , s2 ) , s2 ) ,
{ s1 = om0∗x0+ug−x1 , s2 = om1∗x1−om2∗x0+uh−x2 }) )
+x2 ∗( eva l ( d i f f (mu2( s2 ) , s2 ) , s2 = om1∗x1−om2∗x0+uh−x2 ) ) ) ;
a0 := x0∗x1∗x2 ∗( eva l ( d i f f (mu0( s0 , s2 ) , s0 ) ,
{ s0 = −x0+uf , s2 = om1∗x1−om2∗x0+uh−x2 }) )
∗( eva l ( d i f f (mu1( s1 , s2 ) , s1 ) , { s1 = om0∗x0+ug−x1 ,
s2 = om1∗x1−om2∗x0+uh−x2 } ) )∗ ( eva l ( d i f f (mu2( s2 ) , s2 ) ,
s2 = om1∗x1−om2∗x0+uh−x2 ) )

# Hopf in alpha
unass ign ( ’ alpha ’ ) ;
u f := . 6 ;
ug := 0 ;
uh := . 1 ;
s o l v e ( a2∗a1=a0 and alpha < mu0( uf , alpha /( phi2−alpha ) ) and
alpha < mu1(om0∗x0−max(0 , (om2∗x0−uh)/om1)+ug ,
alpha /( phi2−alpha ) ) and
alpha < mu2(om1∗x1−om2∗x0+uh) and alpha > 0 , alpha )

# Hopf in uf
unass ign ( ’ uf ’ ) ;
ug := 0 ;
uh := . 1 ;
alpha := 0 .1 e−1;
s o l v e ( a2∗a1 = a0 and alpha < mu0( uf , alpha /( phi2−alpha ) ) and
alpha < mu1(om0∗x0−max(0 , (om2∗x0−uh)/om1)+ug ,
alpha /( phi2−alpha ) ) and alpha < mu2(om1∗x1−om2∗x0+uh) and
uf > 0 , uf )

# Hopf in ug
unass ign ( ’ ug ’ ) ;
u f := . 6 ;
uh := . 1 ;
alpha := 0 .1 e−1;
s o l v e ( a2∗a1 = a0 and alpha < mu0( uf , alpha /( phi2−alpha ) ) and
alpha < mu1(om0∗x0−max(0 , (om2∗x0−uh)/om1)+ug ,
alpha /( phi2−alpha ) ) and alpha < mu2(om1∗x1−om2∗x0+uh) and
ug > 0 , ug )
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# Hopf in uh
unass ign ( ’ uh ’ ) ;
u f := . 6 ;
ug := 0 ;
alpha := 0 .1 e−1;
s o l v e ( a2∗a1 = a0 and alpha < mu0( uf , alpha /( phi2−alpha ) ) and
alpha < mu1(om0∗x0−max(0 , (om2∗x0−uh)/om1)+ug ,
alpha /( phi2−alpha ) ) and alpha < mu2(om1∗x1−om2∗x0+uh) and
uh > 0 , uh)
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