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Abstract

We propose an end-to-end trainable Convolutional Neural Network (CNN), named Grid-

DehazeNet, for single image dehazing. The GridDehazeNet consists of three modules: pre-

processing, backbone, and post-processing. The trainable pre-processing module can gen-

erate learned inputs with better diversity and more pertinent features as compared to those

derived inputs produced by hand-selected pre-processing methods. The backbone module

implements a novel attention-based multi-scale estimation on a grid network, which can

effectively alleviate the bottleneck issue often encountered in the conventional multi-scale

approach. The post-processing module helps to reduce the artifacts in the final output.

Experimental results indicate that the GridDehazeNet outperforms the state-of-the-art on

both synthetic and real-world images. The proposed hazing method does not rely on the

atmosphere scattering model, and we provide an explanation as to why it is not necessarily

beneficial to take advantage of the dimension reduction offered by the atmosphere scatter-

ing model for image dehazing, even if only the dehazing results on synthetic images are

concerned.
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Notation and abbreviations

A Global Atmospheric Light

ASM Atmosphere Scattering Model

CE Contrast Enhancement

CNN Convolutional Neural Network

DCP Dark Channel Prior

GC Gamma Correction

GPU Graphics Processing Unit

MSCNN Multi-Scale Convolutional Neural Network

MSE Mean Square Error

PPDN Multi-scale Single Image Dehazing using Perceptual Pyramid Deep

Network

ReLu Rectified Linear unit

SVM Support Vector Machine
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SSIM Structural Similarity Index

t(x) Transmission Map

ReLU Rectified Linear Unit

RESIDE REalistic Single Image DEhazing dataset

WB White Balance
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Chapter 1

Introduction and Problem Statement

1.1 Introduction

The image dehazing problem has received significant attention in the computer vision com-

munity over the past two decades. Image dahazing aims to recover the clear version of a

hazy image. It helps mitigate the impact of image distortion induced by the environmental

conditions on various visual analysis tasks, which is essential for the development of robust

intelligent surveillance systems.

The Atmosphere Scattering Model (ASM) McCartney (1976); Narasimhan and Nayar

(2000, 2002) provides a simple approximation of the haze effect. Specifically, it assumes

that

Ii(x) = Ji(x)t(x) + A(1− t(x)), i = 1, 2, 3, (1.1)

where Ii(x) (Ji(x)) is the intensity of the ith color channel of pixel x in the hazy (clear)
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(a) Hazy input (b) GridDehazeNet

Figure 1.1: Qualitative comparisons of the hazy input and our dehazed image.

image, t(x) is the transmission map, and A is the global atmospheric light intensity; more-

over, t(x) = e−βd(x) with β and d(x) being the atmosphere scattering parameter and the

scene depth, respectively. This model indicates that image dehazing is in general an under-

determined problem without the knowledge of A and t(x).

As a canonical example of image restoration, the dehazing problem can be tackled

using a variety of techniques that are generic in nature. Moreover, many misconceptions

and difficulties encountered in image dehazing manifest in other restoration problems as

well. Therefore, it is instructive to examine the relevant issues in a broader context, three

of which are highlighted below.

1. Role of physical model: Many data-driven approaches to image restoration require

synthetic datasets for training. To create such datasets, it is necessary to have a physical

model of the relevant image degradation process (e.g., the atmosphere scattering model for

the haze effect). A natural question arises whether the design of the image restoration algo-

rithm itself should rely on this physical model. Apparently a model-dependent algorithm

may suffer inherent performance loss on natural images due to model mismatch. How-

ever, it is often taken for granted that such an algorithm must have advantages on synthetic

2
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images created using the same physical model.

2. Selection of pre-processing method: Pre-processing is widely used in image prepa-

ration to facilitate follow-up operations Tong et al. (2017); Ren et al. (2018). It can also

be used to generate several variants of the given image, providing a certain form of di-

versity that can be harnessed via proper fusion. However, the pre-processing methods are

often selected based on heuristics, thus are not necessarily best suited to the problem under

consideration.

3. Bottleneck of multi-scale estimation: Image restoration requires an explicit/implicit

knowledge of the statistical relationship between the distorted image and the original clear

image. The statistical model needed to capture this relationship often has a huge number

of parameters, comparable or even more than the available training data. As such, directly

estimating these parameters based on the training data is often unreliable. Multi-scale es-

timation Shen et al. (2018); Chen et al. (2018) tackles this problem by i) approximating

the high-dimensional statistical model by a low-dimensional one, ii) estimating the pa-

rameters of the low-dimensional model based on the training data, ii) parameterizing the

neighborhood of the estimated low-dimensional model, performing a refined estimation,

and repeating this procedure if needed. It is clear that the estimation accuracy on one scale

will affect that on the next scale. Since multi-scale estimation is commonly done in a

successive manner, its performance is often limited by a certain bottleneck.

The main contribution of this work is an end-to-end trainable CNN, named GridDe-

hazeNet, for single image dehazing. This network can be viewed as a product of our

attempt to address the aforementioned generic issues in image restoration. Firstly, the

proposed GridDehazeNet does not rely on the ASM in Eq. (1.1) for haze removal, yet

3
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capable of outperforming the existing model-dependent dehazing methods even on syn-

thetic images; a possible explanation, together with some supporting experimental results,

is provided for this puzzling phenomenon. Secondly, the pre-processing module of Grid-

DehazeNet is fully trainable; the learned preprocessor can offer more flexible and pertinent

image enhancement as compared to hand-selected pre-processing methods. Lastly, the im-

plementation of attention-based multi-scale estimation on a grid network allows efficient

information exchange across different scales and alleviate the bottleneck issue. It will be

shown that the proposed dehazing method achieves superior performance in comparison

with the-state-of-the-art.

1.2 Thesis Structure

To clearly introduce the advantages of the proposed GridDehazeNet, the outline of this

thesis is as follow: First and foremost, Chapter 2 will make a quick review of the exist-

ing haze removal approaches; Then, Chapter 3 will introduce the proposed GridDehazeNet

in detail including the model architecture, channel-wise attention and the loss function;

Furthermore, Chapter 4 will make both visual and numeric comparisons between the Grid-

DehazeNet and other state-of-the-art; Finally, Chapter 5 will make a conclusion.

4



Chapter 2

Background and Previous Work

2.1 Multi-image Dehazing

Early works on image dehazing either require multiple images of the same scene taken

under different conditions Schechner et al. (2001); Shwartz et al. (2006); Narasimhan and

Nayar (2000, 2003a); Nayar and Narasimhan (1999) or side information acquired from

other sources Narasimhan and Nayar (2003b); Kopf et al. (2008).

2.2 Single Image Dehazing

Single image dehazing with no side information is considerably more difficult. Many meth-

ods have been proposed to address this challenge, which could be simply grouped into two

categories: Prior-based Approaches and Deep Learning-based Approaches.

5
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2.2.1 Prior-based Approaches

A conventional strategy to solve the single image haze removal problem is to estimate

the transmission map t(x) and the global atmospheric light A (or their variants) based on

certain assumptions or priors then invert Eq. 1.1 as follow:

J (x) =
1

t (x)
I (x)− A 1

t (x)
+ A, (2.1)

to obtain the dehazed image. Representative works along this line of research include Tan

(2008); Fattal (2008); He et al. (2011); Tang et al. (2014); Zhu et al. (2015).

Specifically, Tan (2008) proposes a local contrast maximization method for dehazing

based on the observation that clear images tend to have higher contrast as compared to their

hazy counterparts; in Fattal (2008) haze removal is realized via the analysis of albedo under

the assumption that the transmission map and surface shading are locally uncorrelated.

Moreover, the dehazing method introduced in He et al. (2011) makes use of the Dark

Channel Prior (DCP), which asserts that pixels in non-haze patches have low intensity in at

least one color channel. Formally, the DCP of an image J is defined by:

Jdark (x) = min
c∈{r,g,b}

(
min
y∈Ω(x)

(J c (y))

)
, (2.2)

where the Jdark denotes the intensity of DCP, J c is the color channel of J and Ω (x) is a

local patch centered at x. And then, the transmission map t (x) is estimated under math-

ematical deduction based on assumptions, where A is assumed to be given and t (x) is

6
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supposed to be constant for a local patch Ω (x). Taking the min of Eq. 1.1, we can obtain:

min
y∈Ω(x)

(Ic (y)) = t̂ (x) min
y∈Ω(x)

(J c (y)) + (1− t̂ (x))Ac. (2.3)

Ac is the color channel of A and is always supposed to be a positive number, as a result,

the Eq. 2.3 is equivalent to:

min
y∈Ω(x)

(
Ic (y)

Ac

)
= t̂ (x) min

y∈Ω(x)

(
J c (y)

Ac

)
+ (1− t̂ (x)). (2.4)

Then the min operation is exerted to Eq. 2.4 and we can obtain:

min
c

(
min
y∈Ω(x)

(
Ic (y)

Ac

))
= t̂ (x) min

c

(
min
y∈Ω(x)

(
J c (y)

Ac

))
+
(
1− t̂ (x)

)
. (2.5)

Notice that the intensity of DCP of haze-free patches are close to 0, which means:

Jdark (x) = min
c

(
min
y∈Ω(x)

(J c (x))

)
= 0. (2.6)

By putting Eq. 2.6 back to Eq. 2.5, the t (x) can be estimated through:

t̂ (x) = 1−min
c

(
min
y∈Ω(x)

(
Ic (y)

Ac

))
, (2.7)

notice minc

(
miny∈Ω(x)

(
Ic(y)
Ac

))
is actually the DCP intensity of normalized hazy image.

To estimateA, top 0.001 brightest pixels in the dark channel are selected and then the pixels

with highest intensity of I is chosen to be A. This strategy adopts information obtained

from DCP, and generates a more reasonable A estimation.

Tang et al. (2014) suggests a machine learning approach that exploits four haze-related

7
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features using a random forest regressor. The author finds that with the change of patch

size for generating haze-related features, the extracted information would also be varied

(as shown in Fig 2.1). Based on this, multi-scale DCP, multi-scale local max contrast and

multi-scale local saturation are adopted to fully extract image information, where the local

max contrast Cr (x; I) and local saturation Sr (x; I) are defined as follow:

Cr (x; I) = max
y∈Ωr(x)

√
1

3Ωs (y)

∑
z∈Ωs(y)

‖I (z)− I (y) ‖2, (2.8)

Sr (x; I) = max
y∈Ωr(x)

(
1−

minc∈{r,g,b} I
c

maxc∈{r,g,b} Ic

)
. (2.9)

For here, Ωr (y) denotes r × r neighbors of y, while Ωs (y) and |Ωs (y) | denote a s × s

region and cardinality of the local neighborhood of Ωs (y). Moreover, another prior named

Hue Disparity H (I) is also employed to detect haze, which could be expressed as:

H (I) = |Ihsi − Ih|, (2.10)

where the h indicates the hue channel of the color space ”Lch”, and Ihsi is:

Icsi = max [Ic (x) , 1− Ic (x)] , c ∈ {r, g, b}. (2.11)

Tang et al. (2014) does not only provide a better transmission estimation by using random

forest regressor with more abundant haze-related information, but also generate a more

accurate A estimation. The mean of the intensity of I among pixels with top 0.001 largest

dark channel values is leveraged to reduce the influence of noise.

8
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Figure 2.1: Different feature maps for the input hazy “wall” image. (a). hazy input; (b,
c). dark channel feature D1 and D10; (d). hue disparity feature; (e, f). local max contrast
feature C1 and C10; (g, h) local max saturation feature S1 and S10. The subscription de-
notes the window size to compute the corresponding priors, like D10 denotes dark channel
computed by 10 × 10 neighbors while D1 for only the pixel itself. (Image originally used
in Tang et al. (2014).)

The color attenuation prior is adopted in Zhu et al. (2015) for the development of a su-

pervised learning method for image dehazing. Unlike all aforementioned approaches, Zhu

et al. (2015) starts from the scene depth estimation. A, t (x) and dehazed image are then

generated based on estimated depth. As shown in Fig 2.2, the difference between bright-

ness and saturation increases along the concentration of haze in an hazy image. Intuitively,

this difference could be employed to estimate scene depth. Based on this, a linear model is

created as follow:

d (x) = θ0 + θ1v (x) + θ2s (x) + ε (x) , (2.12)

9
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while v and s are brightness and saturation component of the hazy image, θ0, θ1, θ2 repre-

sents corresponding unknown coefficients and ε is regarded as a random variable represent-

ing the random error of the model. The coefficients of the linear model are learnt through

supervised learning. What is worth mentioning is that this model has edge-preserving prop-

erty as the gradient of d in Eq. 2.12 is:

Od = θ1Ov + θ2Os+ Oε. (2.13)

Figure 2.2: Difference between brightness and saturation increases along with the concen-
tration of the haze. (a) A hazy image. (b) Difference between brightness and saturation.
(Image originally used in Zhu et al. (2015).)

Although these methods have enjoyed varying degrees of success, their performances

10
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are inherently limited by the accuracy of the adopted assumptions/priors with respect to the

target scenes.

2.2.2 Deep Learning-based Approaches

With the advance in deep learning technologies and the availability of large synthetic

datasets Tang et al. (2014), recent years have witnessed the increasing popularity of data-

driven methods for image dehazing. These methods largely follow the conventional strat-

egy mentioned above but with reduced reliance on hand-crafted priors. For example, the

dehazing method, DehazeNet, proposed in Cai et al. (2016) uses a three-layer CNN (as

shown in Fig 2.3) to directly estimate the transmission map from a given hazy image; Ren

et al. (2016) employs a Multi-Scale CNN (MSCNN) (as shown in Fig 2.4) that is able to

perform refined transmission estimation.

Figure 2.3: The architecture of DehazeNet. DehazeNet conceptually consists of four
sequential operations (feature extraction, multi-scale mapping, local extremum and non-
linear regression), which is constructed by 3 convolution layers, a max-pooling, a Maxout
unit and a BReLU activation function. (Image originally used in Cai et al. (2016))

The AOD-Net Li et al. (2017) represents a departure from the conventional strategy.

11
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Figure 2.4: (a) Main steps of the proposed single-image dehazing algorithm. For training
the multi-scale network, we synthesize hazy images and the corresponding transmission
maps based on depth image dataset. In the test stage, we estimate the transmission map
of the input hazy image based on the trained model, and then generate the dehazed image
using the estimated atmospheric light and computed transmission map. (b) Proposed multi-
scale convolutional neural network. Given a hazy image, the coarsescale network (the
green dashed rectangle) predicts a holistic transmission map and feeds it to the fine-scale
network (the orange dashed rectangle) in order to generate a refined transmission map.
(Image originally used in Ren et al. (2016))

Specifically, a reformulation of Eq. 1.1 is introduced to bypass the estimation of the trans-

mission map and the atmospheric light. To this end, the Eq. 2.1 is reformulated as:

J (x) = K (x) I (x)−K (x) + b, (2.14)

where

K (x) =

1
t(x)

(I (x)− A) + (A− b)
I (x)− 1

. (2.15)

In that way, both t (x) and A can be integrated into K (x), and b is a constant bias. As

a result, the network shown in Fig 2.5 can be divided into two parts for K (x) estimation

and dehazed image generation based on K (x). However, a close inspection reveals that

12



M.A.Sc. Thesis - Yongrui Ma McMaster - Electrical Engineering

this reformulation in fact renders the ASM completely superfluous (though this point is

not recognized in Li et al. (2017)). Ren et al. (2018) goes one step further by explicitly

abandoning the ASM in algorithm design.

(a). The diagram of AOD-Net.

(b). K-estimation module of AOD-Net.

Figure 2.5: The diagram and configuration of AOD-Net. (Image originally used in Li et al.
(2017))

The Gated Fusion Network (GFN) proposed in Ren et al. (2018) leverages hand-selected

pre-processing methods (as shown in Fig 2.6) and multi-scale estimation, which are generic

in nature and are subject to improvement. The selection of pre-processing approaches are

observation based. The first one is that atmospheric light always changes colors of hazy

image, and the second one is that the visibility of distant objects of the image might be

attenuated due to scattering phenomenon. Based on these, White Balance (WB) approach

is adopted to recover the latent color of the scene, while Contrast Enhancement (CE) and
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Gamma Correction (GC) are employed to extract visible information. The final dehazed

image is generated through weighted sum of the derived inputs, with the confidence map

learnt from a multi-scale CNN shown in Fig 2.8.

Figure 2.6: Input of GFN. WB, CE and GC denote White Balance, Contrast Enhancement
and Gamma Correction respectively. (Image originally used in Ren et al. (2018))

Figure 2.7: The coarsest level of GFN. The network contains layers of symmetric encoder
and decoder. To expand the receptive field and extract more contextual information, di-
lation convolution is leveraged in the encoder block. Skip shortcuts are connected from
convolutional feature maps to deconvolutional feature maps. Three enhanced versions are
derived from the hazy input, and then the three inputs are weighted by three confidence
maps generated by the network, respectively. (Image originally used in Ren et al. (2018))
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Figure 2.8: The structure of the multi-scale GFN. For each scale, the model input is the
concatenation of hazy image and corresponding WB, CE and GC images. For each scale,
they have a really similar structure where the coarsest level can be found in Fig 2.7. Input
and corresponding ground truth are resized to fit the need of training for different scales.
(Image originally used in Ren et al. (2018))
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Chapter 3

GridDehazeNet

The proposed GridDehazeNet has three important features.

1. No reliance on the atmosphere scattering model: Among the aforementioned single

image dehazing methods, only AOD-Net and GFN do not rely on the atmosphere scattering

model. However, no convincing reason has been provided why there is any advantage in

ignoring this model, as far as the dehazing results on synthetic images are concerned. The

argument put forward in Ren et al. (2018) is that estimating t(x) from a hazy image is

an ill-posed problem. Nevertheless, this is puzzling since estimating t(x) (which is color-

channel-independent) is presumably easier than Ji(x), i = 1, 2, 3. In Fig. ?? we offer a

possible explanation why it could be problematic if one blindly uses the fact that t(x) is

color-channel-independent to narrow down the search space and why it might be potentially

advantageous to relax this constraint in the search of the optimal t(x). However, with this

relaxation, the atmosphere scattering model offers no dimension reduction in the estimation

procedure. More fundamentally, it is known that the loss surface of a CNN is generally

well-behaved in the sense that the local minima are often almost as good as the global

minimum Choromanska et al. (2015); Draxler et al. (2018); Nguyen and Hein (2018).
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On the other hand, by incorporating the atmosphere scattering model into a CNN, one

basically introduces a nonlinear component that is heterogeneous in nature from the rest of

the network, which may create an undesirable loss surface. To support this explanation, we

provide some experimental results in Section 4.6.

(a) Loss surface (b) Constrained loss surface

Figure 3.1: On the potential detrimental effect of using the atmosphere scattering model
for image dehazing. For illustration purposes, we focus on two color channels of a single
pixel and denote the respective transmission maps by t1 and t2. Fig. 3.1(a) plots the loss
surface as a function of t1 and t2. It can be seen that the global minimum is attained a point
(see the green dot) satisfying t1 = t2, which agrees with the ASM. With the black dot as
the starting point, one can readily find this global minimum using gradient descent (see the
yellow path). However, a restricted search based on the ASM along the t1 = t2 direction
(see the red path) will get stuck at a point indicated by the purple dot (see Fig. 3.1(b)). Note
that this point is a local minimum in the constrained space but not in the original space, and
it becomes an obstruction simply due to the adoption of the ASM.

2. Trainable pre-processing module: The pre-processing module effectives converts the

single image dehazing problem to a multi-image dehazing problem by generating several

variants of the given hazy image, each highlighting a different aspect of this image and

making the relevant feature information more evidently exposed. In contrast to those hand-

selected pre-processing methods adopted in the existing works (e.g., Ren et al. (2018)), the

proposed pre-processing module is made fully trainable, which is in line with the general
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preference of data-driven methods over prior-based methods as shown by recent develop-

ments in image dehazing. Note that hand-selected processing methods typically aim to

enhance certain concrete features that are visually recognizable. The exclusion of abstract

features is not justifiable. Indeed, there might exist abstract transform domains that better

suit the follow-up operations than the image domain. A trainable pre-processing module

has the freedom to identify transform domains over which more diversity gain can be har-

nessed.

3. Attention-based multi-scale estimation: Inspired by Fourure et al. (2017), we imple-

ment multi-scale estimation on a grid network. The grid network has clear advantages over

the conventional encoder-decoder network extensively used in image restoration Milden-

hall et al. (2018); Zhang et al. (2018); Tao et al. (2018). In particular, the information flow

in the encoder-decoder network often suffers from the bottleneck effect due to the hierar-

chical architecture whereas the grid network circumvents this issue via dense connections

across different scales using up-sampling/down-sampling blocks. We further endow the

network with a channel-wise attention mechanism, which allows for more flexible infor-

mation exchange and aggregation. The attention mechanism also enables the network to

better harness the diversity created by the pre-processing module.

3.1 Network Architecture

The GridDehazeNet is an end-to-end trainable network that consists of three modules,

namely, the pre-processing module, the backbone module and the post-processing mod-

ule. Fig. 3.2 shows the overall architecture of the proposed network.

The pre-processing module consists of a convolutional layer (w/o activation function)

and a residual dense block (RDB) Zhang et al. (2018). It generates 16 feature maps, which
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Figure 3.2: The architecture of GridDehazeNet.

will be referred to as the learned inputs, from the given hazy image.

The backbone module is an enhanced version of GridNet Fourure et al. (2017) origi-

nally proposed for semantic segmentation. It performs attention-based multi-scale estima-

tion based on the learned inputs generated by the pre-processing module. In this paper,

we choose a grid network with three rows and six columns. Each row corresponds to

a different scale and consists of five RDB blocks that keep the number of feature maps

unchanged. Each column can be regarded as a bridge that connects different scales via up-

sampling/downsampling modules. In each upsampling (downsampling) module, the size

of feature maps is decreased (increased) by a factor of 2 while the number of feature maps

is increased (decreased) by the same factor. Here upsampling/downsampling is realized

using a convolutional layer instead of traditional methods such as bilinear or bicubic inter-

polation. Fig. 3.3 provides a detailed illustration of the RDB block, the upsampling module

and the downsampling module. Each RDB block consists of five convolutional layers: the
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Figure 3.3: Illustration of the dash block in Fig. 3.2

first four layers are used to increase the number of feature maps while the last layer fuses

these feature maps and its output is then combined with the input of this RDB block via

channel-wise addition. Following Zhang et al. (2018), the growth rate in RDB is set to 16.

The upsampling module and the downsampling module are structural the same except that

different convolutional layers are used to adjust the size of feature maps. In the proposed

GridDehazeNet, except for the first convolutional layer in the pre-processing module and

the 1× 1 convolutional layer in each RDB block, all convolutional layers employ ReLU as
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the activation function. To strike a balance between the output size and the computational

complexity, we set the number of feature maps at three different scales to 16, 32 and 64,

respectively.

The dehazed image reconstructed directly from the output of the backbone module

tends to contain artifacts. As such, we introduce a post-processing module to improve the

quality of the dehazed image. The structure of the post-processing module is symmetrical

to that of the pre-processing module.

It is worth mentioning that the proposed GridDehazeNet can be considered as a gen-

eralization of the classical encoder-decoder network. The red path in Fig. 3.2 illustrates

an encoder-decoder structure that can be obtained by pruning the network. Moreover, with

exchange branches, the proposed GridDehazeNet resembles the conventional multi-scale

network.

3.2 Feature Fusion with Channel-Wise Attention

In view of the fact that feature maps from different scales may not be of the same impor-

tance, we propose a channel-wise attention mechanism, inspired by Vaswani et al. (2017),

to generate trainable weights for feature fusion. Let F i
r and F i

c denote the ith feature chan-

nel from the row stream and the column stream, respectively, and let air and aic denote their

associated attention weights. The channel-wise attention mechanism can be expressed as

F̃ i = airF
i
r + aicF

i
c , (3.1)
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where F̃ i stands for the fused feature in the ith channel. The attention mechanism enables

the GridDehazeNet to flexibly adjust the contributions from different scales in feature fu-

sion. Our experimental results indicate that the performance of the proposed network can

be greatly improved with the introduction of just a small number of trainable attention

weights.

3.3 Loss Function

To train the proposed network, the smooth L1 loss and the perceptual loss Johnson et al.

(2016) are employed. The smooth L1 loss provides a quantitative measure of the difference

between the dehazed image and the ground truth, which is less sensitive to outliers than

the MSE loss due to the fact that the L1 norm can prevent potential gradient explosions

Girshick (2015).

Smooth L1 Loss: Let Ĵi(x) denote the intensity of the ith color channel of pixel x in the

dehazed image, and N denote the total number of pixels. The smooth L1 Loss can be

expressed as

LS =
1

N

N∑
x=1

3∑
i=1

FS(Ĵi(x)− Ji(x)), (3.2)

where

FS(e) =


0.5e2, if |e| < 1,

|e| − 0.5, otherwise.
(3.3)

Perceptual Loss: Different from the per-pixel loss, the perceptual loss leverages multi-

scale features extracted from a pre-trained deep neural network to quantify the visual dif-

ference between the estimated image and the ground truth. In this paper, we use the VGG16

22



M.A.Sc. Thesis - Yongrui Ma McMaster - Electrical Engineering

Simonyan and Zisserman (2014) pre-trained on ImageNet Russakovsky et al. (2015) as the

loss network and extract the features from the last layer of each of the first three stages (i.e.,

Conv1-2, Conv2-2 and Conv3-3). The perceptual loss is defined as

LP =
3∑
j=1

1

CjHjWj

||φj(Ĵ)− φj(J)||22, (3.4)

where φj(Ĵ) (φj(J)), j = 1, 2, 3, denote the aforementioned three VGG16 feature maps

associated with the dehazed image Ĵ (the ground truth J), and Cj , Hj and Wj specify the

dimension of φj(Ĵ) (φj(J)), j = 1, 2, 3.

Total Loss: The total loss is defined by combining the smooth L1 loss and the perceptual

loss as follows:

L = LS + λLP , (3.5)

where λ is a parameter used to adjust the relative weights on the two loss components. In

this paper, λ is set to 0.04.
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Chapter 4

Experimental Results

We conduct extensive experiments to demonstrate that the proposed GridDehazeNet per-

forms favorably against the state-of-the-arts in terms of quantitative dehazing results and

qualitative visual effects on synthetic and real-world datasets. The experimental results

also provide useful insights into the constituent modules of GridDehazeNet and solid jus-

tifications for the overall design. The source code will be made publicly available.

4.1 Training and Testing Dataset

4.1.1 ASM-based Dataset

In general it is impossible to collect a large number of real-world hazy images and their

haze-free counterparts. Therefore, data-driven dehazing methods often need to rely on

synthetic hazy images, which can be generated from clear images based on the ASM via

proper choice of the scattering coefficient β and the atmospheric light A. In this paper, we

adopt a large-scale synthetic dataset, named RESIDE Li et al. (2019), to train and test the
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proposed GridDehazeNet. RESIDE contains synthetic hazy images in both indoor and out-

door scenarios. The Indoor Training Set (ITS) of RESIDE contains a total of 13990 hazy

indoor images, generated from 1399 clear images with β ∈ [0.6, 1.8] andA ∈ [0.7, 1.0]; the

depth maps d(x) are obtained from the NYU Depth V2 Silberman et al. (2012) and Mid-

dlebury Stereo datasets Scharstein and Szeliski (2003). After data cleaning, the Outdoor

Training Set (OTS) of RESIDE contains a total of 296695 hazy outdoor images, generated

from 8477 clear images with β ∈ [0.04, 0.2] and A ∈ [0.8, 1.0]; the depth maps of outdoor

images are estimated using the algorithm developed in Liu et al. (2016). For testing, the

Synthetic Objective Testing Set (SOTS) is adopted, which consists of 500 indoor hazy im-

ages and 500 outdoor ones. Moreover, for comparisons on real-world images, we use the

dataset from Fattal (2014).

4.1.2 Camera Generated Dataset

To better prove the effectiveness of our proposed GridDehazeNet in haze removal chal-

lenge, we also test our model with an additional dataset, i.e., the NTIRE 2018 challenge on

Image Dehazing Ancuti et al. (2018), where the hazy images are generated by adjusting the

camera parameters. The NTIRE 2018 dataset includes 35 indoor images (I-HAZE) and 45

outdoor images (O-HAZE). For I-HAZE, we split the dataset into two parts, 30 for training

and 5 for testing; for O-HAZE, there are 40 images in training set, and 5 in testing.

4.2 Implementation

The proposed GridDehazeNet is end-to-end trainable without the need of pre-training for

sub-modules. We train the network with RGB image patches of size 240 × 240. For
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accelerated training, the Adam optimizer Kingma and Ba (2014) is used with a batch size

of 24, where β1 and β2 follow the default settings of 0.9 and 0.999, respectively. The

initial learning rate is set to 0.001. For ITS, we train the network for 100 epochs in total

and reduce the learning rate by half every 20 epochs. As for OTS, the network is trained

only for 10 epochs and the learning rate is reduced by half every 2 epochs. The training is

carried out on a PC with two NVIDIA GeForce GTX 1080Ti, but only one GPU is used

for testing. When the training ends, the loss functions for ITS and OTS drop to 0.0005 and

0.0004, respectively, which we consider as a good indication of convergence.

4.3 Synthetic Dataset

The proposed network is tested on the synthetic dataset for qualitative and quantitative

comparisons with the state-of-the-arts that include DCP He et al. (2011), DehazeNet Cai

et al. (2016), MSCNN Ren et al. (2016), AOD-Net Li et al. (2017) and GFN Ren et al.

(2018). The DCP is a prior-based method and is regarded as the baseline in single image

dehazing. The others are data-driven methods. Moreover, except for AOD-Net and GFN,

these methods all follow the same strategy of first estimating the transmission map and

the atmosphere light then leveraging the ASM to compute the dehazed image. For fair

comparisons, the above-mentioned data-driven methods are trained in the same way as the

proposed one. The SOTS from RESIDE is employed as the testing dataset. We use peak

signal to noise ratio (PSNR) and structure similarity (SSIM) for quantitative assessment of

the dehazed outputs.

Fig. 4.1, 4.2 show the qualitative comparisons on both synthetic indoor and outdoor

images from SOTS. Due to the inaccurate estimation of the haze thickness, the results of

DCP are typically darker than the ground truth. Moreover, the DCP tend to cause severe

26



M.A.Sc. Thesis - Yongrui Ma McMaster - Electrical Engineering

color distortions, thereby jeopardizing the quality of its output (see, e.g., the tree and the

sky in Fig. 4.1, 4.2 (b)). For DehazeNet as well as MSCNN, a significant amount of haze

still remains unremoved and the output suffers color distortions. The AOD-Net largely

overcomes the color distortion problem, but it tends to cause halo artifacts around object

boundaries (see, e.g., the chair leg in Fig. 4.1, 4.2 (e)) and the removal of the hazy effect is

visibly incomplete. The GFN succeeds in suppressing the halo artifacts to a certain extent.

However, it has limited ability to remove thick haze (see, e.g., the area between two chairs

and the fireplace in Fig. 4.1, 4.2 (f)). Compared with the state-of-the-arts, the proposed

method has the best performance in terms of haze removal and artifact/distortion suppres-

sion (see, e.g., Fig. 4.1, 4.2 (g)). The dehazed images produced by GridDehazeNet are free

of major artifacts/distortions and are visually most similar to their haze-free counterparts.

Table 4.1 shows the quantitative comparisons in terms of average PSNR and SSIM

values. We note that the proposed method outperforms the state-of-the-arts by a wide

margin. We have also tested these dehazing methods (all pre-trained on the OTS dataset

except for the DCP) directly on a new synthetic dataset. The hazy images in this new

dataset are generated from 500 clear images (together with their depth maps) randomly

selected from the Sun RGB-D dataset Song et al. (2015) through the atmosphere scattering

model with β ∈ [0.04, 0.2] and A ∈ [0.8, 1.0]. As shown in Table 4.1, the proposed method

is fairly robust and continues to show highly competitive performance.

4.4 Real-World Dataset

We further compare the proposed method against the state-of-the-art on the real-world

dataset Fattal (2014). Here we shall only make qualitative comparisons since the haze-

free counterparts of the real-world hazy images in this dataset are not available. As shown
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(a) Hazy inputs (b) DCP (c) DehazeNet (d) MSCNN

(e) AOD-Net (f) GFN (g) GridDehazeNet (h) Ground truth

(a) Hazy inputs (b) DCP (c) DehazeNet (d) MSCNN

(e) AOD-Net (f) GFN (g) GridDehazeNet (h) Ground truth

(a) Hazy inputs (b) DCP (c) DehazeNet (d) MSCNN

(e) AOD-Net (f) GFN (g) GridDehazeNet (h) Ground truth

Figure 4.1: Qualitative comparisons on SOTS indoor dataset.
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(a) Hazy inputs (b) DCP (c) DehazeNet (d) MSCNN

(e) AOD-Net (f) GFN (g) GridDehazeNet (h) Ground truth

(a). Hazy inputs (b). DCP (c). DehazeNet (d). MSCNN

(e). AOD-Net (f). GFN (g). GridDehazeNet (h). Ground truths

(a) Hazy inputs (b) DCP (c) DehazeNet (d) MSCNN

(e) AOD-Net (f) GFN (g) GridDehazeNet (h) Ground truth

Figure 4.2: Qualitative comparisons on SOTS outdoor dataset.
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Table 4.1: Quantitative comparisons on SOTS for different methods.

Method Indoor Outdoor Sun RGB-D Song et al. (2015)
PSNR SSIM PSNR SSIM PSNR SSIM

DCP 16.61 0.8546 19.14 0.8605 15.81 0.8191
DehazeNet 19.74 0.8612 24.75 0.9424 23.04 0.9124
MSCNN 19.85 0.8647 22.09 0.9188 23.87 0.9262
AOD-Net 20.51 0.8516 24.14 0.9349 22.31 0.9167

GFN 24.91 0.9408 28.29 0.9731 25.35 0.9421
Proposed 30.47 0.9862 30.05 0.9850 27.88 0.9658

(a) Hazy input (b) DCP (c) DehazeNet (d) MSCNN (e) AOD-Net (f) GFN (g) Ours

Figure 4.3: Qualitative comparisons on the real-world dataset Fattal (2014).

by Fig 4.3, the results are largely consistent with those on the synthetic dataset. The DCP

again suffers severe color distortions (see, e.g., the sky and the girls’ face in Fig 4.3 (b)).

For DehazeNet, MSCNN and AOD-Net, haze removal is clearly incomplete. The GFN has

limited ability to deal with dense haze and causes color distortions in some cases (see, e.g.,

the sky and the piles in Fig 4.3 (f)). In comparison to the aforementioned methods, the

proposed GridDehazeNet is more effective in haze removal and distortion suppression.
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4.5 NTIRE 2018 Dataset

As shown in Table 4.2, the proposed method outperforms the state-of-the-art (note that

PPDN Ancuti et al. (2018) is the champion of this competition and we retrain all the other

methods using the same strategy adopted by PPDN).

Table 4.2: Quantitative comparisons on the NTIRE 2018 where I-HAZE (O-HAZE) stands
for the indoor (outdoor) hazy dataset.

Method I-HAZE O-HAZE
PSNR SSIM PSNR SSIM

DCP 12.66 0.6592 16.34 0.7480
DehazeNet 14.06 0.7293 19.31 0.8199
MSCNN 15.29 0.8087 17.40 0.8148
AOD-Net 16.38 0.8061 19.77 0.8237

GFN 21.39 0.8827 23.49 0.8782
PPDN 24.97 0.8810 24.03 0.7750
Ours 25.85 0.9379 25.24 0.9352

4.6 Atmosphere Scattering Model

To gain a better understanding of the difference between the direct estimation strategy

adopted by the proposed method (where the ASM is completely bypassed) and the indi-

rect estimation strategy (where the transmission map and the atmospheric light are first

estimated, which are then leveraged to compute the dehazed image via the ASM), we re-

purpose the proposed GridDehazeNet for the estimation of the transmission map and the

atmospheric light. Specifically, we modify the convolutional layer at the output end (i.e.,

the rightmost convolutional layer in Fig. 3.2) so that it outputs two feature maps, one as the

estimated transmission map and the mean of the other as the estimated atmospheric light;

these two estimates are then substituted into Eq. 1.1 to determine the dehazed image. The

resulting network is trained in the same way as before and is tested on the SOTS. Although
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adopting the ASM leads to a significant reduction in the number of parameters that need to

be estimated, it in fact incurs performance degradation as shown in Table 4.3. This indi-

cates that incorporating the ASM into the proposed network does have a detrimental effect

on the loss surface.

Table 4.3: Comparisons on SOTS for different estimation strategies.

Estimation Indoor Outdoor
PSNR SSIM PSNR SSIM

Indirect 28.76 0.9804 29.81 0.9837
Direct 30.47 0.9862 30.05 0.9850

4.7 Learned Inputs

Fig. 4.4 illustrates four learned inputs (out of a total of 16 learned inputs) generated by

the pre-processing module. It can be seen that learned input enhances a certain aspect of

the input image. For instance, the learned input with index 9 highlights a specific texture,

which is not evidently shown in the given hazy image.

We conduct the following experiment to demonstrate the diversity gain offered by the

learned inputs. Specifically, we remove the pre-processing module and replace the first

three learned inputs by the RGB channels of the given hazy image and the rest by constant

feature maps. We also conduct an experiment to show the advantages of learned inputs over

those derived inputs produced by hand-selected pre-processing methods. In this case, we

replace the learned inputs by the same number of derived inputs (three from the given hazy

image, three from the white balanced (WB) image, three from the contrast enhanced (CE)

image, three from the gamma corrected (GC) image, three from the gamma corrected GC

image and one from the gray scale image). Here the use of WB, CE, GC images as derived

inputs is inspired by Ren et al. (2018). In both cases, the resulting networks are trained
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(a) Hazy image (c) Learned input (index 0) (e) Learned input (index 8)

(b) Dehazed image (d) Learned input (index 1) (f) Learned input (index 9)

Figure 4.4: Visualization of the hazy image, the dehazed image and several learned inputs.

in the same way as before and are tested on the SOTS. As shown in Table 4.4, the learned

inputs offer significant diversity gain and have clear advantages over the derived inputs.

Table 4.4: Comparisons on SOTS for different types of inputs.

Input Indoor Outdoor
PSNR SSIM PSNR SSIM

Original 28.93 0.9806 29.84 0.9846
Derived 29.12 0.9822 29.01 0.9790
Learned 30.47 0.9862 30.05 0.9850

4.8 Ablation Study

We perform ablation studies by considering different configurations of the backbone mod-

ule of the proposed GridDehazeNet. Note that each row in the backbone module corre-

sponds to a different scale, and the columns in the backbone module serve as bridges to
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facilitate the information exchange across different scales. Table 4.5 shows how the perfor-

mance and size of the proposed GridDehazeNet depends on the number of rows (denoted

by r) and the number of columns (denoted by c) in the backbone module. Moreover, we

also provide the qualitative comparisons for different configurations of the GridDehazeNet

from Fig. 4.5-4.6. It is clear that increasing r and c leads to higher average PSNR and

SSIM values. More specifically, the increase of r tends to trigger a more significant growth

of model performance compared with c, while the growth of r will lead to a more dramat-

ical increase of model size at the same time. Our full model and GFN are of of roughly

the same size (225.99k vs. 212k), but the former achieves significantly better performance

(see Table. 4.1). In fact, to achieve performance comparable (or even superior) to that of

GFN, it suffices to use the configuration with r = 2 and c = 6 (see Table. 4.5), for which

the total number of trainable weights is only 82.31k.

Table 4.5: Comparisons on SOTS for different configurations.

Configuration Indoor Outdoor # WeightsPSNR SSIM PSNR SSIM

r = 1
c = 2 22.33 0.9110 25.17 0.9475 25.35k
c = 4 24.11 0.9419 26.76 0.9668 25.41k
c = 6 24.63 0.9585 27.46 0.9726 25.48k

r = 2
c = 2 22.09 0.9075 25.30 0.9491 81.80k
c = 4 26.19 0.9695 27.88 0.9746 82.05k
c = 6 27.07 0.9756 28.08 0.9763 82.31k

r = 3
c = 2 22.10 0.9121 25.55 0.9523 224.45k
c = 4 28.74 0.9812 29.38 0.9831 225.22k
c = 6 30.47 0.9862 30.05 0.9850 225.99k

We perform further ablation studies by considering several variants of the proposed

GridDehazeNet, which include the original GridNet Fourure et al. (2017), the multi-scale

network resulted from removing the exchange branches (except for the first and the last
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(a) Hazy input (b) Ground truth

(c) r = 1, c = 2 (d) r = 2, c = 2 (e) r = 3, c = 2

(f) r = 1, c = 4 (g) r = 2, c = 4 (h) r = 3, c = 4

(i) r = 1, c = 6 (j) r = 2, c = 6 (k) r = 3, c = 6

Figure 4.5: Qualitative comparisons for different configurations of GridDehazeNet.
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(a) Hazy input (b) Ground truth

(c) r = 1, c = 2 (d) r = 2, c = 2 (e) r = 3, c = 2

(f) r = 1, c = 4 (g) r = 2, c = 4 (h) r = 3, c = 4

(i) r = 1, c = 6 (j) r = 2, c = 6 (k) r = 3, c = 6

Figure 4.6: Qualitative comparisons for different configurations of GridDehazeNet.
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ones that are needed to maintain the minimum connection), our model without attention-

based channel-wise feature fusion, without the post-processing module or without per-

ceptual loss, as well as the encoder-decoder network obtained by pruning the proposed

network. These variants are all trained in the same way as before and are tested on the

SOTS. As shown in Table 4.6 and Fig. 4.7-4.8, each component has its own contribution to

the performance of the full model, and the most significant improvement comes from the

introduction of exchange branches, which converts the conventional multi-scale network

structure to a grid network structure.

Table 4.6: Comparisons on SOTS for different variants of GridDehazeNet.

Variant Indoor Outdoor
PSNR SSIM PSNR SSIM

Original GridNet Fourure et al. (2017) 27.37 0.9500 29.66 0.9824
w/o exchange branches 29.07 0.9672 29.65 0.9821

w/o attention 29.98 0.9784 29.82 0.9777
w/o post-processing 30.05 0.9849 29.98 0.9843
w/o perceptual loss 30.28 0.9850 29.87 0.9792

encoder-decoder 26.89 0.9725 27.99 0.9766
Our full model 30.47 0.9862 30.05 0.9850

4.9 Growth Rate

We conduct a experiment to study the influence of the growth rate in residual dense block

(RDB) on the performance of GridDehazeNet. The growth rate of a RDB denotes the

width of each convolutional layer of the block. The quantitative comparisons on indoor

and outdoor images from SOTS in terms of average PSNR and SSIM values are shown

in Table 4.7; the corresponding qualitative comparisons are demonstrated in Fig. 4.9 for

indoor images and in Fig. 4.10 for outdoor images. It can be seen that as the growth rate

increases, the performance of GridDehazeNet improves progressively.
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(a) Hazy input (b) Original GridNet (c) w/o exchange branches

(d) w/o attention (e) w/o post-processing (f) w/o perceptual loss

(g) encoder-decoder (h) GridDehazeNet (i) Ground truth

Figure 4.7: Qualitative comparisons for different variants of GridDehazeNet.
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(a) Hazy input (b) Original GridNet (c) w/o exchange branches

(d) w/o attention (e) w/o post-processing (f) w/o perceptual loss

(g) encoder-decoder (h) GridDehazeNet (i) Ground truth

Figure 4.8: Qualitative comparisons for different variants of GridDehazeNet.
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(a) Hazy input (b) growth rate = 4 (c) growth rate = 8

(d) GridDehazeNet (e) Ground truth

Figure 4.9: Qualitative comparisons for different growth rates.

(a) Hazy input (b) growth rate = 4 (c) growth rate = 8

(d) GridDehazeNet (e) Ground truth

Figure 4.10: Qualitative comparisons for different growth rates.
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Table 4.7: Quantitative comparisons for different growth rates in terms of average PSNR
and SSIM values.

Growth rate
4 8 16

PSNR SSIM PSNR SSIM PSNR SSIM
indoor 27.77 0.9766 28.20 0.9771 30.47 0.9862

outoodr 29.16 0.9791 29.35 0.9823 30.05 0.9850

4.10 GridDehazeNet+Mask-RCNN

We shall demonstrate that the proposed GridDehazeNet can be used to improve the classi-

fication and segmentation accuracy of Mask R-CNN He et al. (2017) on hazy images. The

experimental results are shown in Fig. 4.11-4.14. Note that more objects can be detected on

the dehazed images produced by GridDehazeNet as compared to the corresponding hazy

images (see, e.g., the far region in Fig. 4.11-4.14). Moreover, the use of GridDehazeNet

improves the confidence score of each detected object (e.g., in Fig. 4.14, the confidence

score of the green car in the hazy image is 0.877 whereas the corresponding score in the

dehazed image is 0.933). It also leads to more accurate localization (e.g., in Fig. 4.12, the

green bus in the hazy image is only partially captured by the bounding box whereas it is

well localized in the dehazed image) and alleviates the misclassification issue (e.g., in Fig.

4.14, the bus stop is misclassfied as a train in the hazy image but not so in the dehazed

image (as well as the clear image)).

4.11 Runtime Analysis

Our un-optimized code takes about 0.22s to dehaze one image from SOTS on average.

We have also evaluated the computational efficiency of the aforementioned state-of-the-art

methods and plot their average runtimes in Fig. 4.15. It can be seen that the proposed
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(a) Hazy input (b) GridDehazeNet (c) Clear image

(d) Hazy input+Mask R-CNN (e) GridDehazeNet+Mask R-CNN (f) Clear image+Mask R-CNN

Figure 4.11: Comparisons of Mask R-CNN results on hazy, dehazed and clear images.

(a) Hazy input (b) GridDehazeNet (c) Clear image

(d) Hazy input+Mask R-CNN (e) GridDehazeNet+Mask R-CNN (f) Clear image+Mask R-CNN

Figure 4.12: Comparisons of Mask R-CNN results on hazy, dehazed and clear images.
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(a) Hazy input (b) GridDehazeNet (c) Clear image

(d) Hazy input+Mask R-CNN (e) GridDehazeNet+Mask R-CNN (f) Clear image+Mask R-CNN

Figure 4.13: Comparisons of Mask R-CNN results on hazy, dehazed and clear images.

(a) Hazy input (b) GridDehazeNet (c) Clear image

(d) Hazy input+Mask R-CNN (e) GridDehazeNet+Mask R-CNN (f) Clear image+Mask R-CNN

Figure 4.14: Comparisons of Mask R-CNN results on hazy, dehazed and clear images.
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GridDehazeNet ranks second among the dehazing methods under comparison.

Figure 4.15: Runtime comparison of different dehazing methods.
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Chapter 5

Conclusion and Future Works

We have proposed an end-to-end trainable CNN, named GridDehazeNet, and demonstrated

its competitive performance for single image dehazing. Due to the generic nature of its

building components, the proposed GridDehazeNet is expected to be applicable to a wide

range of image restoration problems. Our work also sheds some light on the puzzling

phenomenon concerning the use of the atmosphere scattering model in image dehazing, and

suggests the need to rethink the role of physical model in the design of image restoration

algorithms.
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