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LAY ABSTRACT 

Obesity is a complex disease with a genetic basis. Obesity is associated with several 

metabolic complications. Currently the genetic basis of obesity is incompletely understood and 

low-grade inflammation is debated as a cause of metabolic complications. This thesis aims to (1) 

discuss ethnic differences in the genetics of obesity, including comparing heritability estimates 

of body mass index (BMI), (2) examine the effects of genetic variants on type 2 diabetes-related 

traits, (3) investigate the contribution of genetic variants in inflammatory genes on metabolic 

traits and (4) determine the effects of genetic variation in the insulin sensitizing protein, 

adiponectin on metabolic traits. The major findings are (1) there is no difference between 

heritability estimates for BMI among different ethnic groups, (2) circulating lipids interact with 

genetic variants to modulate insulin resistance, (3) there is no association between inflammation-

related genes and metabolic traits, and (4) adiponectin levels are strongly associated with 

metabolic traits. 
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ABSTRACT 

Obesity is a complex, multifactorial disease associated with several metabolic 

complications including type 2 diabetes (T2D) and cardiovascular disease. Obesity is also 

characterized by a state of chronic low-grade inflammation due to dysregulated adipokine 

secretion and macrophage infiltration, which is believed to be the pathophysiological link 

between obesity and other metabolic complications. It is currently unclear if inflammation is a 

cause of obesity and metabolic complications, or merely a consequence of it. Moreover, some 

ethnic groups are disproportionately affected by obesity and its metabolic complications, 

suggesting underlying genetic differences in the susceptibility to obesity.  

This thesis aims to (1) to provide a comprehensive discussion of the ethnic differences in 

the genetic architecture of obesity, including a meta-analysis of heritability estimates of body 

mass index (BMI) from various ethnic groups, (2) examine the effects of the PPARγ Pro12Ala 

polymorphism on T2D-related traits, (3) investigate the contribution of genetic variants in 

inflammation-related genes on metabolic traits, and (4) determine the effects of genetic variation 

in the insulin sensitizing adipokine adiponectin and cardio-metabolic traits, aims (2), (3) and (4) 

being investigated in a high-risk population of Mexican children. 

The major findings are (1) there is no difference between heritability estimates for BMI 

among African, admixed American and Asian populations, relative to Europeans, and in 

Mexican children: (2) circulating lipids can interact with PPARγ Pro12Ala to modulate markers 

of insulin resistance, (3) there is no association between inflammation-related genes and 

metabolic traits, and (4) circulating adiponectin concentration is strongly associated with 

metabolic traits. 
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Together this thesis provides insight into the biological mechanisms involved in obesity 

and its metabolic complications. With a better understanding of the molecular mechanisms 

involved, more effective prediction of high-risk individuals, preventions and treatments and can 

be developed. 
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CHAPTER 1: INTRODUCTION 

The burden of obesity and its comorbidities 

With an estimated 650 million adults worldwide classified as obese in 2016 (Body Mass 

Index, BMI ≥ 30 kg/m2, http://www.who.int/), obesity is a global health concern. Worldwide, the 

prevalence of overweight and obesity is higher in developed than developing countries1. In 

parallel to the rise of obesity in adults, the worldwide prevalence of childhood overweight and 

obesity has increased from 4.2% in 1990 to 6.7% in 2010 and is expected to reach 9.1% by 

20202. Two countries with an exceptionally high prevalence of obesity include the United States 

and Mexico with an estimated prevalence of 38.9% and 32.8%, respectively3,4. Within the United 

States 30% of Caucasians, 45% of African Americans, and 36.8% of Mexican American adults 

were obese, compared to 4.8% of Asian Americans, demonstrating notable differences across 

ethnic groups5,6. According to recent national representative studies, approximately 17% and 

34% of children in the United States and Mexico, respectively were obese7,8. This is especially 

problematic given that childhood obesity is the main predictor of adult obesity9. 

Obesity is accompanied by several co-morbidities including depression, sleep apnea, 

osteoarthritis, non-alcoholic fatty liver disease, hypertension, cardiovascular disease, and some 

forms of cancer10. Obesity is also the main risk factor for type 2 diabetes (T2D), with 80% of 

individuals with T2D being overweight or obese at the time of diagnosis11. According to the 

American Diabetes Association, the prevalence of diagnosed T2D in 2016 was 8.6%. When the 

prevalence was examined by ethnicity, 7.4% of Caucasians, 8.0% of Asians, 12.1% of Hispanics, 

12.7% of African Americans and 15.1% of Native Americans had diabetes in 2015 in the United 

States. In contrast, East and South Asians tend to develop T2D at an earlier age and at a lower 
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BMI than Europeans, highlighting the complex associations between obesity and its 

complications12. The prevalence of T2D in Mexico is estimated to be as high as 14.4%13. 

Ultimately, obesity in its more severe forms decreases life expectancy by 13 and 8 years for men 

and women, respectively14.  

Due to the high costs incurred through complications, obesity is one of the costliest and 

burdensome chronic diseases of our time. Treating those with obesity places a substantial burden 

on the health care system; in 2008, the estimated direct costs (e.g., hospitalizations, medications, 

physician and emergency room visits) attributable to overweight and obesity were $114 billion, 

representing 4.8% of the total health expenditures in the United States15.  

In order to mitigate further health and economic consequences of obesity, several 

treatment options have emerged including bariatric surgery, pharmacological treatments, lifestyle 

and behavioural interventions16. To date, bariatric surgery is the most effective procedure for 

managing weight and comorbidities in those with morbid obesity (BMI ≥ 40 or ≥ 35 kg / m2 with 

comorbidities). On average, weight loss of 60-70% of excess body weight can be achieved 

within 1-2 years post-operatively and many comorbidities such as T2D, hypertension and sleep 

apnea can be improved or reversed17. Canada has experienced a rapid increase in the number of 

bariatric surgeries over the past decade. Approximately 8, 583 procedures were performed in 

2015 – 2016, representing a 400% increase from 2006 – 200718. However, this procedure is 

highly invasive and associated with serious complications including bowel obstruction, 

ulceration, nutrient malabsorption and the need for reoperation and approximately 25% of 

patients regain significant amounts of weight 1 year post-operatively18,19. Furthermore, only 1% 

of those who could qualify for bariatric surgery in the United States underwent a procedure, 

possibly due to insurance coverage, limited access to bariatric centres and misconceptions 
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surrounding the effectiveness and risks associated with bariatric surgery18. Access to bariatric 

surgery is also a challenge in Canada where distance and access to bariatric surgery centers, and 

limited funding, resources and patient prioritization has resulted in lengthy wait-times, with some 

patients seeking privately funded strategies18. Pharmacological treatments for obesity provide 

modest weight loss and are associated with serious side effects including hypertension, 

steatorrhea, malabsorption of fat-soluble vitamins, cognitive impairments, and cardiovascular 

events20. Due to the adverse risks of anti-obesity drugs, the Food and Drug Administration in the 

United States has been extremely cautious to approve pharmacological treatments for obesity and 

only one new anti-obesity drug has gained approval in the past decade21,22. In Canada, three 

prescription medications are available for the treatment of obesity: orlistat, liraglutide, and 

bupropion / naltrexone combination23. Orlistat inhibits lipase activity, preventing dietary fat from 

being absorbed in the intestines. This mechanism of action is likely responsible for the gastro-

intestinal side effects including oily stools and fecal incontinence, resulting in the 

discontinuation of orlistat23. Patients taking liraglutide in addition to lifestyle interventions lose 

approximately 4 – 9 kg more than those taking placebo and 3 kg more than those prescribed 

orlistat23. The greater weight loss observed in those taking liraglutide may be explained by its 

mechanism of action; liraglutide is a glucagon-like peptide-1 receptor agonist which promotes 

appetite suppression and reductions in gastric emptying23. Burpropion and naltrexone were 

initially approved in Canada for depression / smoking cessation and the treatment of opioid / 

alcohol dependence, respectively. Bupropion / naltrexone combination results in a 8.1% total 

weight loss, with minor side-effects reported23. This combination therapy is thought to aid in 

weight loss by promoting the release of anorexic hormones in the hypothalamus while 

simultaneously inhibiting the release of hormones which counteract these effects23.  
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Therefore, lifestyle interventions such as dietary changes to reduce caloric intake and 

increased physical activity have become valuable alternative. When coupled with caloric 

restriction, exercise can induce an additional 1- 1.5 kg weight loss over 1 year in addition to a 

dietary intervention alone24. Behavioral therapies including goal setting, self-monitoring (i.e. 

recording caloric intake, physical activity, hunger level, mood, place of eating etc.), addressing 

barriers, problem-solving, positive reinforcement, and ongoing support also provide favorable 

weight-loss results25. For example, the randomized DiRECT Clinical Trial involved obese 

individuals diagnosed with T2D who were randomized to a weight-loss intervention (total diet 

replacement with a formula diet for 3-5 months) or best-practice care guidelines26. At 12 months, 

24% of participants in the weight-loss intervention group achieved a weight loss of 15 kg or 

more and 46% remission of T2D in addition to improvements in hepatic and / or pancreatic 

ectopic lipid deposition26. 

Despite these well-established interventions, less is known about how to effectively 

prevent weight gain and obesity and currently no country has reversed its obesity epidemic in the 

past 30 years, emphasizing the difficulty of treating and managing obesity1,27. Consequently, the 

treatment and prevention of obesity and its complications are important public health priorities. 

The etiology of obesity and type 2 diabetes 
 While a detailed description of the etiology of obesity and T2D is beyond the scope of 

this thesis, a brief overview is warranted. Historically, obesity was thought to be the result of an 

energy imbalance between a sedentary lifestyle and increased caloric intake. However, it soon 

became apparent that this is an oversimplification as the global number of overweight and obese 

individuals has surpassed the number of those who are underweight28. Over the last 50 years, 

investigation into the causes and etiology of obesity has generated a large body of knowledge 
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and we can now appreciate that obesity is a complex, multifactorial disease29; traits contributing 

to the etiology of obesity include demographics, behaviour, energy metabolism, hormone 

signalling, central regulation of energy, adipose tissue biology, skeletal muscle biology, the gut 

microbiome, epigenetic and genetic factors29. 

 While homeostatic mechanisms work to maintain energy balance close to zero, a positive 

energy balance results in an increase in energy storage in the adipose tissue in the form of fat 

(triglycerides). This is accomplished by an increase in the number to adipocytes (hyperplasia) or 

an enlargement in adipocyte size (hypertrophy)30. Obesity is characterized by both larger 

adipocytes and an increase number of adipocytes, relative to lean individuals30. 

Obesity is the main risk factor for the development of T2D. While the molecular and 

physiological link between obesity and T2D is complex and not fully understood, it can be 

distilled to impairments in insulin sensitivity (i.e. insulin resistance) and corresponding β-cell 

failure due to increased demand for insulin to compensate for the decline in insulin sensitivity31. 

T2D is a heterogenous condition where patients can range from severe insulin resistance to those 

who require insulin early in the course of disease progression32. At the cellular level, insulin 

resistance is largely attributed to ectopic lipid accumulation in insulin-sensitive tissues including 

the adipose, the muscle and liver which impairs activation of the insulin signalling cascade. T2D 

also associated with impaired adipocyte metabolism resulting in excessive lipolysis and increase 

in plasma free fatty acid levels and the secretion of pro-inflammatory cytokines31. Chronic 

hyperglycemia and hyperlipidemia exert damaging effects on β-cells33. 

Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand activated transcription 

factor highly expressed in adipose tissue and is critical for the regulation of adipogenesis, 

glucose and lipid homeostasis and insulin sensitivity34. Polymorphisms and mutations in PPARγ 
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have been associated with adiposity in humans. The rare Pro115Gln gain of function substitution 

results in severe obesity and T2D heterozygous carriers35. Furthermore, rare dominant negative 

and heterozygous mutations are characterized by severe early onset insulin resistance, T2D, 

partial lipodystrophy, but a normal BMI36. Conversely, the common Pro12Ala substitution which 

will be described in subsequent chapters, is associated with a higher BMI and decreased risk of 

T2D37,38. Together these observations demonstrate the essential role of PPARγ for insulin 

sensitivity and body fat distribution.  

Genetic Predisposition to Obesity 

Once thought to be caused by an energy imbalance between a sedentary lifestyle and 

increased caloric intake, an ever-growing body of research now indicates that this is an 

oversimplification of the cause of overweight and obesity. It is now appreciated that obesity is a 

complex, multifactorial disease resulting from a combination of demographics, behavior, 

hormone signaling, central regulation of energy homeostasis, adipose tissue biology, skeletal 

muscle biology and the gut microbiome29. Although these factors play an important role in the 

development of obesity, only a subset of individuals will develop obesity in a shared obesogenic 

environment, suggesting underlying genetic differences in the susceptibility to obesity. Twin, 

family and adoption studies have played an important role in the understanding of the genetic 

epidemiology of obesity. Estimates of heritability of BMI from twin studies range between 40% 

- 70%, indicating that BMI is a heritable trait. Heritability estimates of twins raised apart and 

twins raised together found comparable estimates of heritability for BMI, providing evidence 

that genetic factors have a stronger influence on BMI than the environment39. 

The last two decades have seen significant advances in understanding the genetic 

architecture of obesity. The discovery of leptin in 1994 provided the first genetic evidence for 
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extreme obesity in rodents40. Shortly after, two severely obese children with leptin mutations 

were identified, demonstrating the importance of leptin in regulating energy balance in 

humans41,42. In subsequent years, family studies in those with severe forms of obesity have been 

highly successful in identifying other mutations in the leptin-melanocortin pathway. This 

pathway is expressed in the hypothalamus and is critical for regulating energy homeostasis thus 

homozygous/ heterozygous compound loss of function mutations in genes of the leptin-

melanocortin pathway results in severe hyperphagia and fully penetrant, early-onset obesity43. 

These cases of non-syndromic monogenic obesity are exceptionally rare, with a higher 

proportion of obesity (~10% of obesity cases) resulting from heterozygous deleterious coding 

mutations in genes in the leptin-melanocortin pathway44. Known as oligogenic obesity, carriers 

display non-fully penetrant obesity44. Obesity is also a defining characteristic of 79 distinct 

syndromes, characterized by mental retardation, dysmorphic features and organ-specific 

abnormalities45. While the genetic basis for syndromic monogenic obesity has not been fully 

elucidated, they provide further evidence for the role of genetics in the etiology of obesity45. 

Together, monogenic/ oligogenic forms of obesity have allowed for significant advances in 

understanding the genetic architecture of obesity and the role of the central nervous system in the 

development of obesity.  

The genetic predisposition to obesity for most, however, is polygenic in nature. Polygenic 

variants themselves have a small effect on the obese phenotype, but in combination with other 

predisposing variants, a sizeable effect emerges46. Perhaps the most significant contribution to 

the field of obesity genetics comes from genome-wide association studies (GWAS). This high-

throughput methodology allows geneticists to scan the entire human genome in an unbiased, 

hypothesis-free manner to identify genetic variants associated with a trait47. FTO (fat mass and 
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obesity associated gene) was the first obesity-susceptibility gene identified through GWAS in 

2007 by four independent groups48-51. Initially discovered through GWAS for T2D in Europeans, 

a cluster of variants in the first intron of FTO showed a significant association with T2D risk48. 

However, after adjusting for BMI, the association with T2D was lost, suggesting that it was 

mediated by FTO’s effect on BMI48. Shortly after, three independent groups confirmed the 

association with BMI and obesity risk49-51. The risk allele of FTO (rs9939609) is associated with 

a 0.36 kg/m2 increase in BMI and a 1.20-fold increased risk for obesity52.  While this effect size 

is not comparable to the rare variants associated with monogenic obesity, FTO is considered as 

the main contributor to polygenic obesity in Europeans due to the high frequency of the minor 

allele of rs9939609 which ranges from 38% - 44%47. The function of FTO and its role in obesity 

is still under investigation, with emerging data suggesting a role in nucleic acid demethylation, 

adipogenesis, browning of white adipocytes and regulating feeding behaviours53,54. Since 2007, 

large meta-analyses of GWAS in predominately European populations have identified around 

1,500 polygenic loci associated with BMI, WHR (adjusted for BMI), percent body fat, and/or 

obesity, though these loci have considerably smaller effects than FTO55,56. Pathway analysis of 

these loci show support for the role of the central nervous system, insulin secretion, energy 

metabolism and adipogenesis57. While these loci provide valuable insight into the genetic 

architecture of obesity, they only account for 4% and 6% of interindividual variation in waist-to-

hip ratio and BMI respectively, suggesting that more variants remain to be discovered57.  

Common genetic variants explain 30% of variance in BMI, suggesting a small missing 

heritability58. Missing heritability is largely due to low frequency / rare variants with medium / 

large effect sizes or is attributable to common variants with very small effect sizes58. Low 

frequency (~1-5%) and rare (<1%) variants contributing to obesity are not frequent enough to be 
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captured by current genome-wide association approaches, yet they could explain part of the 

missing heritability of disease risk59-61. For example, a rare heterozygous 16p11.2 deletion was 

associated with severe early-onset obesity62. In a recent meta-analysis, Turcot et al identified 14 

rare and low frequency coding variants (including MC4R and KSR2) associated with BMI where 

the effect sizes were 10-times larger than those of common variants63. An investigation of the 

role of pathogenic mutations in MC4R on common obesity determined that the gain of function 

mutations Ile251Leu and Val103Ile may be responsible for 2% of the population-protective 

fraction against obesity, mirroring the prevalence of monogenic obesity due to MC4R 

hapoloinsufficiency64. Furthermore, a genome-wide polygenic risk score comprised of 2.1 

million common variants identified those with a BMI increase similar to those with a monogenic 

mutation65. Lastly, the recently proposed ‘omnigenic’ model suggests that gene regulatory 

networks are sufficiently interconnected such that all genes expressed in disease-relevant cells 

are liable to affect the functions of core disease-related genes and that most of the heritability can 

be explained by the effects of genes outside core pathways66. 

Obesity and Inflammation 

Historically, the adipose was considered as a passive, long-term energy storage organ, but 

it is now appreciated for its dynamic role in systemic metabolism through the secretion of 

numerous proteins, collectively referred to as adipokines67. Currently over 100 adipokines have 

been identified including proinflammatory mediators such as tumor-necrosis factor-α (TNF- α) 

and interleukin-6 (IL-6), the insulin sensitizing adipokine, adiponectin which is protective 

against the development of obesity-associated complications and leptin which controls appetite 

through the central nervous system67. 
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Obesity-associated systemic inflammation is believed to originate predominantly from 

the adipose tissue due to  changes in adipokine secretion and macrophage inflitration67. Under 

the control of the master regulator of adipocyte differentiation and metabolism, peroxisome 

proliferator-activated receptor-γ (PPARγ), initially the adipose expands in size through adipocyte 

hypertrophy to store excess energy68. As adipocytes become saturated, blood flow to the adipose 

is compromised resulting in a hypoxia and eventual cell death69. In an attempt to restore blood 

flow, an inflammatory response is initiated by the adipose, characterized by an increased 

secretion of proinflammatory adipokines and macrophage recruitment to scavenge cellular 

debris69. Macrophage accumulations is proportional to both adipocyte size and adiposity and is 

associated with a phenotypic switch from an anti-inflammatory M2 polarization to a 

proinflammatory M1 polarization70,71. M1 macrophages have been shown to promote the 

secretion of proinflammatory adipokines including TNF- α and IL-6 and chemokines while M2 

macrophages are associated with adipose tissue remodeling and clearing of apoptotic 

adipocytes72. Macrophage accumulation in adipose of lean mice express markers of M2 

macrophages while obesity induces the expression of genes associated with the M1 macrophage 

phenotype71. In humans, macrophage accumulation is greater in visceral adipose than 

subcutaneous adipose tissue, characterized by a unique inflammatory profile, consistent with the 

associations with visceral fat and deleterious metabolic complications73. 

The dysregulation of adipokine secretion and macrophage infiltration results in a chronic 

state of low-grade inflammation which has been suggested as one of the pathophysiological 

mechanisms linking obesity to other metabolic complications. For example, obesity-induced 

insulin resistance is associated with increase cytokine secretion from the adipose and adipose 

macrophages.  The expression of the proinflammatory cytokine TNF- α is increased in the 
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adipose of rodent models of obesity and T2D74. TNF- α levels are also increased in the adipose 

and plasma of obese individuals while weight loss is associated with decreased TNF- α 

expression75. Blood levels of TNF- α also positively correlate with markers of insulin 

resistance76. Mechanistically, TNF- α attenuates tyrosine phosphorylation of the insulin receptor 

in muscle and adipose tissues, thereby promoting insulin resistance77. The proinflammatory 

adipokine IL-6 also plays an important role in the development of obesity-induced insulin 

resistance. Plasma concentrations of IL-6 are increased in obese individuals and weight loss is 

associated with reduced IL-6 concentrations78 . Elevated plasma concentrations of IL-6 are also 

observed in those with T2D and are predictive of the development of T2D79. Adiponectin is one 

of the most well-characterized adipokines, known for its insulin-sensitizing effects. Genetic 

mouse models have shown that deficiency of adiponectin contributes to insulin resistance, while 

its overexpression in obese mice encourages adipocyte hypertrophy and improves insulin 

sensitivity80,81. In lean humans, adiponectin has a strong anti-inflammatory effect82; adiponectin 

inhibits the activation of TLR4/ NF-κβ proinflammatory signalling pathway and promotes the 

production of the anti-inflammatory cytokine, IL-10 by macrophages82. In humans, low 

adiponectin concentrations have been associated with obesity, insulin resistance and T2D83. 

Consistent with this, adiponectin secretion is impaired by TNF- α, IL-6 and hypoxia67. Similar 

patterns of adipokine dysregulation are reported for other obesity-induced complications 

including dyslipidemia, nonalcoholic fatty liver disease, hypertension and cardiovascular 

disease72.  

Influence of genetic variants on obesity associated inflammation and complications 

Currently it is unclear if inflammation is a cause of obesity and other metabolic 

complications, or merely a consequence of it. Consistent with the contribution of genetic variants 
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to the development of obesity, evidence from genetic epidemiology suggests a link between 

genetics and the development of obesity associated complications. For example, a recent GWAS 

identified a variant in TLR4 associated with BMI57. Furthermore, the Pro12Ala (rs1801282) 

polymorphism in PPARγ is associated with a 30-50% decreased binding affinity and ability to 

stimulate transcription of PPARγ target genes84. Carriers of the Ala12 allele are reported to have 

a greater BMI and 12% decreased risk of T2D63,85. PPARγ Pro12Ala knock-in mice on a high fat 

diet display overexpression of adiponectin receptors in adipose tissue and muscle and plasma 

adiponectin in Ala/Ala mice, suggesting that the Ala12 allele sensitizes the transcriptional 

activity of PPARγ in adipose and muscle to adiponectin signalling86. Given that adiponectin 

expression is under the transcriptional control of PPARγ, it is possible that altered adiponectin 

signalling contributes to the improvement of insulin sensitivity in Ala/Ala mice. Candidate gene 

studies, and more recently GWAS studies have identified numerous common and rare variants 

associated with serum inflammatory markers and metabolic traits87,88. Because observational 

epidemiology is susceptible to bias, confounding and reverse causation, the question of whether 

chronic inflammation is a cause of obesity and other metabolic complications, or a consequence 

of it, cannot be answered89. Combining genetic epidemiology with classic observational 

epidemiology is one way to strengthen causality and understand the direction of these 

associations. For example, the common adiponectin variant, rs266729 alters adiponectin gene 

expression and has consistently been associated with lower serum adiponectin concentrations 

and increased risk of IR and T2D19,50,71. However, other studies employing Mendelian 

randomization and genetic variants in inflammatory pathways failed to show the directional link 

between inflammation, adiposity and T2D90,91. Therefore, more research is needed to understand 
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the contribution of systemic, low grade inflammation in the development of obesity and obesity-

associated complication, particularly in at risk, non-European populations.  
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RATIONALE 

Obesity is a multifactorial disease resulting from complex interactions between genetic, 

demographic, environmental and behavioral factors. Individuals with obesity are at greater risk 

for numerous metabolic complications including T2D and cardiovascular disease and place a 

substantial burden on the health care system. Moreover, some ethnic groups are 

disproportionately affected by obesity and its complication, suggesting underlying genetic 

differences in the susceptibility to obesity. Substantial evidence now points towards a link 

between genetics and obesity and is evidenced by loss of function mutations in the leptin-

melanocortin pathway resulting in monogenic obesity. Furthermore, common variants in 

polygenic genes such as FTO have consistently been shown to increase obesity risk in 

predominately European population. Studying the genetic architecture of obesity and its 

complications in multiple ethnic groups will provide insight into the genetic causes of these 

conditions. Examining these associations in non-European populations will improve the 

generalizability of the results. Obesity is also associated with a state of chronic low-grade 

inflammation characterized by dysregulated adipokine secretion, which has been associated with 

the development of several metabolic complications. However, it is unclear if inflammation is a 

cause of obesity and other metabolic complications, or merely a consequence of it. It is also 

unknown if these effects are present early in life. As observational epidemiology is subject to 

bias and confounding, causality is difficult to assess. However, genetic epidemiology can 

strengthen causality and provide insight into the direction of these associations.  Together this 

thesis will provide insight into the biological mechanisms involved in obesity and its metabolic 

complications. With a better understanding of the molecular mechanisms involved, at risk 
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individuals can be identified sooner and more effective treatments and preventions can be 

developed. 

 

OVERALL OBJECTIVE 

 The overall objective of this thesis was to investigate the contribution of genetic variants 

on the development of obesity and its metabolic complications in a multi-ethnic context. The 

specific objectives were to (1) to provide a comprehensive discussion of the ethnic differences in 

the genetic architecture of obesity, including a meta-analysis of heritability estimates of BMI 

from various ethnic groups, (2) examine the effects of the PPARγ Pro12Ala polymorphism on 

T2D-related traits in at-risk individuals, (3) investigate the contribution of genetic variants in 

inflammation-related genes on metabolic traits in the Mexican population, and (4) determine the 

effects of genetic variation in the insulin sensitizing adipokine adiponectin and cardio-metabolic 

traits. 
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CHAPTER OUTLINES 

The objective of Chapter 2 was to provide a comprehensive examination of the ethnic 

differences in the genetic architecture of obesity, characterized by BMI. A meta-analysis of 

heritability estimates of BMI from 19 twin and 20 family studies from various ethnic groups was 

performed. The debate over definitions of race and ethnicity are summarized, possible 

explanations for ethnic differences in the prevalence of obesity are provided and heritability and 

admixture studies of obesity-related traits are described. Ethnic differences in monogenic 

syndromic, non-syndromic and polygenic forms of obesity are outlined. A thorough discussion 

of the advantages and limitations of using multi-ethnic study designs to better understand ethnic 

differences and the genetic etiology of obesity, follows. This manuscript has been published in 

Obes Rev. 2018 Jan;19(1):62-80. 

The effects of the PPARγ Pro12Ala polymorphism and T2D risk on at-risk individuals 

are further investigated in Chapter 3. Using a pediatric population from Mexico, the association 

between the PPARγ Pro12Ala polymorphism and obesity and T2D-realted traits is examined in 

this at-risk population. For the first time, significant gene-environment interaction between 

PPARγ Pro12Ala, circulating lipids (as an indirect estimator of high-fat diet) and markers of 

insulin resistance are reported. These results show that genetic predisposition can alter metabolic 

traits early in life in presence of an obesogenic environment presents childhood as a critical 

period of opportunity for prevention and intervention strategies. This manuscript has been 

published in Sci Rep. 2016 Apr 14;6:24472. 

Chapters 4 and 5 moves from the genetics of obesity and T2D to the inflammatory 

mechanisms of obesity. Chapter 4 investigates the contribution of genetic variants in 

inflammation-related genes on metabolic traits in the Mexican population. Although the results 
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fail to show significant associations, the findings are consistent with previous work in European 

populations. This manuscript has been published in PeerJ. 2016 Jun 23;4:e2090. In chapter 5, the 

effects of genetic variation in the insulin sensitizing adipokine adiponectin and cardio-metabolic 

traits are more thoroughly investigated. Working in the Mexican population, this is the first study 

to investigate the association of genetic variation in adiponectin and its receptors, adiponectin 

concentrations and cardio-metabolic traits and provides insight into the early biological 

determinants of obesity and cardio-metabolic complications. This manuscript has been accepted 

for publication at Scientific Reports. 
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ABSTRACT: Obesity rates have escalated to the point of a global pandemic with varying 
prevalence across ethnic groups. These differences are partially explained by lifestyle factors in 
addition to genetic predisposition to obesity. This review provides a comprehensive examination 
of the ethnic differences in the genetic architecture of obesity. Using examples from evolution, 
heritability, admixture, monogenic and polygenic studies of obesity, we provide explanations for 
ethnic differences in the prevalence of obesity. The debate over definitions of race and ethnicity, 
the advantages and limitations of multi-ethnic studies and future directions of research are also 
discussed. Multi-ethnic studies have great potential to provide a better understanding of ethnic 
differences in the prevalence of obesity that may result in more targeted and personalized obesity 
treatments. 
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INTRODUCTION 

Obesity rates have escalated to the point of a global epidemic over the last three decades.  

According to the World Health Organization, approximately 600 million adults worldwide were 

classified as obese in 2014 (Body Mass Index, BMI ≥ 30 kg/m2) while, in parallel, the worldwide 

prevalence of childhood overweight and obesity has increased from 4.2% in 1990 to 6.7% in 

2010 and is expected to reach 9.1% by 20201. Obesity is associated with several comorbidities 

including type 2 diabetes (T2D), cardiovascular disease and some forms of cancer2. Furthermore, 

childhood obesity is associated with more serious health outcomes later in life3. Ultimately, 

severe forms of obesity reduce life expectancy by 13 and 8 years for men and women, 

respectively4.  

Notable differences in the prevalence of obesity have been observed across diverse ethnic 

groups. In the United States alone, 21.8% of Caucasians, 34.8% of African Americans, 28.3% of 

Hispanics, 34.3% of Native Americans, and 33.0% of Pacific Islanders over the age of 30 were 

considered to be obese between 2001-20025; in contrast, only 4.8% of Asian Americans 

(individuals of Chinese, Filipina, Asian Indian, Vietnamese, Korean, Japanese and other Asian 

ancestry) were found to be obese5. More recently, the National Health and Nutrition Examination 

Survey (NHANES) found 30% of Caucasians, 45% of African Americans, and 36.8% of 

Mexican American adults over the age of 20 to be obese in the United States between 2009-

20106. These data clearly demonstrate ethnic disparities in the prevalence of obesity despite 

living in the same country. These disparities may be due to differences in lifestyle, 

socioeconomic status, access to health care, social marginalization, or discrimination; however, 

these differences may also reflect ethnic differences in biological susceptibility for obesity7. The 

Oslo Immigrant Health Study, for example, found the highest prevalence of obesity among Turks 
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(51%) and the lowest prevalence among the Vietnamese (2.7%) with differences in BMI 

remaining despite adjusting for socio-demographic and lifestyle factors8.  

Currently a growing body of evidence demonstrates ethnic differences in the genetic 

predisposition to obesity however, many of the genetic variants responsible for these differences 

remain unidentified. This review provides a comprehensive examination of the ethnic differences 

in the genetics of obesity, characterized by BMI. We summarize the debate over the definitions 

of race and ethnicity, offer possible explanations for ethnic differences in the prevalence of 

obesity and describe heritability and admixture studies of obesity-related traits. We outline ethnic 

differences in monogenic syndromic, non-syndromic and polygenic forms of obesity followed by 

a discussion of the advantages and limitations of using multi-ethnic study designs to better 

understand ethnic differences in the prevalence of obesity and the genetic etiology of this 

disease. We also propose several innovative research strategies. 

I. How do we define ethnicity? 

“Race” and “ethnicity” are controversial and misunderstood terms within the scientific 

community9. Historically race has been used to classify populations based on shared biological 

characteristics such as skin color while ethnicity generally takes into account cultural 

characteristics10,11. However, both terms are complex, multifactorial concepts reflecting religion, 

history, and ancestral geographic origins11,12. 

Indeed, 99.9% of the human genome is identical in every individual however 

evolutionary forces including genetic drift, natural selection, and de novo mutations have led to 

slight genetic differences among populations13. With the completion of the Human Genome 

Project, genetic variants associated with disease susceptibility have been identified with varying 

frequencies across populations14. Genetic variants can now be used with a high degree of 
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precision to differentiate individuals from various ethnic groups, providing further evidence for 

the link between race, ethnicity and biology15. Yet this link is often blurry due to i) numerous 

non-genetic connotations of race and ethnicity, ii) the high degree of genetic diversity and the 

presence of population isolates within a given ethnic group, iii) the lack of defined boundaries 

between populations, iv) the admixed composition of certain populations (e.g. the Mexican 

population), and v) the fact that many people have ancestors from diverse regions of the 

world12,16.   

The lack of clear definitions poses serious problems for geneticists as definitions can vary 

between studies. To bypass the definition debate, some suggest using geographical location and 

ancestry rather than race as genetic variation does not support the existence of race per se; 

however, this practise is highly debated12,13. Researchers are in need of guidelines to properly 

describe diverse populations that accounts for both ethnicity and geographical location to 

improve generalizability and protect against spurious associations17. Self-reported ethnicity is a 

practical way to adjust for ethnicity in genetic association studies however as Serre et al 

demonstrated, it is not sufficient to protect against population stratification15. Instead, principal 

components analyses (PCA) methods including EIGENSTRAT have been developed to correct 

for population stratification and geographical differences between and within ethnic groups 

(Figure 1)18. PCA is so precise that Karakachoff et al accurately determined one’s geographic 

origin within a few hundred kilometers by in a sample of 1,684 individuals from Western 

France19. 

II. Origins of the ethnic differences in the prevalence of obesity 

Mankind has historically been exposed to prolonged periods of starvation where abilities 

to effectively store energy in times of abundance would grant one a survival and reproductive 
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advantages. This is the essence of the thrifty genotype hypothesis proposed by James Neel in 

196220. Neel suggests the human genome is enriched with metabolically thrifty genes that 

provide a survival advantage during times of food shortage20. However, these thrifty genes have 

been rendered detrimental by progress. Though highly controversial, this hypothesis can be 

applied today to explain the high and ethnic-dependent prevalence of obesity21. Human ingenuity 

has mechanized many formerly labour-intensive processes resulting in a sedentary population 

reliant on automation. Food is no longer scarce, resulting in increased energy consumption. 

Today’s industrialized countries see an improved quality of life at the expense of an evolutionary 

disadvantageous obesogenic environment22.  

The Pima Indians of Arizona, who have the highest reported prevalence of obesity (64% 

and 75% in men and women, respectively) are a living example of the transition from a 

traditional to a modern, sedentary lifestyle23. The Pima Indians were traditionally farmers but 

today, live a rural American lifestyle23. It is believed that the migration of Pima Indian ancestors 

across the Bering land bridge and settling in the desert for 1000’s of years may have selected for 

thrifty genes23. These genes however, no longer provide a survival advantage against starvation 

and may make this population more susceptible to obesity. In contrast, Europeans have benefited 

from a stable food supply and the availability of labour-saving devices for at least 300 years24. 

Because they have reached food stability for centuries, Gerstein suggests Europeans have 

“purged” their thrifty genes because of their negative impact on cardio-metabolic health24. It is 

possible that Europeans have been selected for an ability to thrive in a food-secure environment 

while other more recently exposed populations have little resistance to obesity because they have 

not had enough time to genetically adapt24.  
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Studies of rare and common variants predisposing to obesity have been done to test the 

validity of the thrifty genotype hypothesis. Analysis of several validated obesity variants provide 

some evidence of positive natural selection at the FTO, NEGR1, SH2B1, and FAIM2 loci in 

accordance with the thrifty genotype hypothesis25,26. Recently, Wang et al. found that nine out of 

115 BMI single nucleotide polymorphisms (SNPs) were positively selected; however, five of 

these involved positive selection for the obesity protective allele27. The lack of consistent signals 

for positive selection does not support the notion that genetically driven adiposity provided a 

survival or selective advantage27.  

A recent genome wide association study (GWAS) in 3,072 Samoans discovered a private 

mutation in CREBRF (rs12513649) strongly associated with BMI28. The Samoans are a founder 

population with an extremely high prevalence of obesity. The CREBRF variant is common in 

Samoans (frequency of 0.30) but almost absent from other populations, demonstrating that rare 

variants can be highly prevalent in isolate populations28. While CREBRF is presented as a 

“thrifty” variant, the high frequency of this variant may be explained by a founder effect and a 

lack of natural selection pressures. Rare mutations in the melanocortin 4 receptor (MC4R) are the 

most common cause of monogenic obesity. Evolutionary analysis of non-synonymous deletions 

in MC4R in both humans and primates suggests a strong negative or purifying selection on 

MC4R to remove deleterious mutations from the population, which is in contrast to the thrifty 

genotype hypothesis29. Analysis of common variants associated with obesity indicate either an 

absence of positive selection, positive selection for leanness promoting variants, or positive 

selection for tall and slender stature among Europeans, providing further evidence that the thrifty 

genotype hypothesis, if true, may be context-dependent25-27,30.  
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Beyond the thrifty genotype hypothesis, the “predation release,” “drifty gene” and 

“thrifty epigenotype” hypotheses may explain ethnic differences in the prevalence of obesity31-33. 

The “drifty gene” or “predation release” hypotheses were put forward by John Speakman as an 

alternative to the long-standing thrifty genotype hypothesis31,32. Speakman argues that when 

ancestral humans acquired the ability to use fire and tools and form organized societies, they 

subsequently removed the threat of predatory danger31,32. In the absence of the predation 

selection pressure, genes promoting energy storage were allowed to drift31,32.  The “thrifty 

epigenotype” hypothesis builds upon the thrifty genotype and phenotype hypotheses, arguing 

that all human posses a thrifty genome, but phenotypic expression can vary due to inherited 

epigenetic changes33. Strӧger argues that individuals born during times of famine carry 

epigenetic changes allowing for more efficient energy storage33. Conversely, individuals born 

during times of food abundance will be less prone to obesity33. 

Societal conventions such as the practice of consanguineous marriages has resulted in a 

high prevalence of monogenic obesity in Pakistani children with 30% of the severe cases of 

obesity being due to genetic mutations in the genes encoding leptin and MC4R34. The practise of 

intra-caste marriages in India may also increase the average degree of homozygosity in the 

genome resulting in an increased incidence of autosomal recessive disorders including recessive 

forms of Mendelian obesity35. Assortative marriages for BMI confer a higher genetic 

predisposition to obesity in the offspring generation; 50% of parents of extremely obese 

offspring had a BMI in the top 10% themselves36. Consanguineous marriages and assortative 

marriages may therefore lead to genetic differences between countries with a divergent 

prevalence in obesity within a few generations.  
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III. Heritability and ethnic background 

The familial aggregation of one’s body size is not a recent concept. The strongest risk 

factor for childhood obesity is parental obesity where a child’s risk of obesity is 2.5-4.0-fold 

higher if one parent is obese and 10-fold higher if both parents are obese, compared to having 

both parents of normal weight37. Knowing that familial resemblance can be explained by both 

shared environments and genetic factors, milestone twin and family studies have emerged over 

the past 35 years. Because monozygotic twins share all genetic makeup while dizygotic twins 

share only half, one would expect monozygotic twins to be more similar in terms of weight than 

dizygotic twins if body weight is influenced by genetic factors38. In fact, estimates of heritability 

(defined as the proportion of phenotypic variation of a trait attributed to genetic variation) from 

twin and family studies range between 40% and 70%39. Studies of twins reared apart and twins 

raised together found similar estimates of heritability for BMI, providing evidence that genetics 

have a stronger impact on weight than the environment40. 

We performed a random-effect meta-analysis of heritability estimates of BMI from 19 

twin and 20 family studies from various ethnic groups. Heritability estimates were pooled on the 

logit scale and standard errors were derived using the delta-method (Figures 2 and 3). Our meta-

analysis includes only studies involving adults as the genetic influences on BMI have been 

shown to increase in strength during childhood40. Overall, heritability estimates in twin studies 

(h2= 0.72, [0.69-0.75]) were higher than those from family studies (h2= 0.46, [0.40-0.52]). Due to 

the limited number of twin studies from non-European populations, we were unable to assess 

ethnic differences in the heritability of BMI. Heritability estimates for BMI obtained from family 

studies were not significantly different in African (h2= 0.53, [0.46-0.60]), admixed (h2= 0.49 
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[0.42-0.56]) and Asian (h2= 0.41, [0.25-0.59]) populations, relative to Europeans (h2= 0.43, 

[0.33-0.54]). 

IV. Admixture studies and obesity-related traits. 

Most American ethnic groups present today are the result of the intermixing of European, 

African, and Native American populations during the colonization of the New World41; genetic 

variants from previously isolated populations were brought together in new combinations to 

establish the contemporary European, African, Hispanic, and Native American gene pools. 

Consequently, populations may have inherited ethnic specific disease susceptibility genetic 

variants, affecting the likelihood of acquiring diseases42,43.  

Genetic admixture studies have been valuable in identifying differences in ethnicities that 

cannot be explained by environmental factors alone. Data from the 2003-2004 NHANES found 

African Americans to be 1.5 times more likely to be obese than European Americans despite 

homogenous socio-economic status, suggesting that differences in genetic background may 

account for ethnic differences in obesity risk5. Using genome-wide admixture mapping in 15, 

280 African Americans, Cheng et al identified inverse negative correlation with BMI and 

percentage of European ancestry44. Similar associations with BMI and Native American 

admixture have been reported, suggesting that the European genome may contain fewer obesity 

risk alleles and/or may be enriched in obesity protective genetic factors45.  

V. Monogenic syndromic forms of obesity and ethnic diversity 

Currently, obesity is a defining characteristic of 79 distinct Mendelian syndromes, 

providing further evidence for the role of genetics in the etiology of obesity46. Ethnic differences 

in the prevalence of these diseases and syndromic obesity are well documented for Alström 
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syndrome, Bardet-Biedl syndrome (BBS), Cohen syndrome and Prader-Willi syndrome (PWS) 

and are outlined below.  

Alström Syndrome 

Alström syndrome is a rare autosomal recessive disease affecting less than one in one 

million people in the general population47. Clinical symptoms of Alström syndrome include 

childhood obesity, severe insulin resistance, hyperinsulinemia, impaired glucose tolerance and 

T2D, independent of the degree of obesity47. Alström syndrome is the result of mutations in 

exons 8, 10 and 16 in the ALMS1 gene on chromosome 2p1347. To date, 109 different mutations 

in ALMS1 have been identified, mostly frameshift and nonsense mutations resulting in the 

premature truncation of ALMS147.   

Founder mutations for Alström syndrome have been observed in families of French 

Acadian and English descent. Genealogical analysis of large Acadian kindred including 8 

individuals with Alström syndrome confirmed that the affected individuals are from a common 

founder. In the early 17th century, the first Acadians migrated from France to Acadia, now 

known as Nova Scotia where they lived in relative isolation48. The ancestry of the affected 

individuals was traced back to a small group of 17th century Acadians who emigrated from 

Northern France to Acadia48. One ancestral pair common to both maternal and paternal lineages 

of all affected individuals was found, suggesting a founder effect for Alström syndrome in this 

population48. Historical records also confirm the presence of Alström syndrome in this lineage; 

two half-sisters were reported to have been blind, hearing impaired, obese and chronically 

hyperglycemic48. Further investigation identified a 19-base pair insertion in exon 16 of affected 

individuals, causing a frameshift and early termination at codon 353049. Among 12 unrelated 

patients with Alström syndrome in the United Kingdom, a deletion in exon 16 was identified in 5 
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affected individuals. These individuals either resided or originated from Yorkshire, United 

Kingdom, suggesting the possibility of a founder effect50. Founder effects for Alström syndrome 

have also been identified in Pakistani and Turkish families51,52. 

Lastly, four novel mutations in ALMS1 were identified among six Saudi Arabian patients 

with Alström syndrome. These mutations are believed to have arisen independently at a rate 

similar to that of other populations due to the high prevalence of consanguinity in the Saudi 

population. Thus, the high degree of homozygosity in this population has led to the expression of 

this disease and provides evidence for the powerful effect of consanguinity in shaping the genetic 

landscape53. 

Bardet-Biedl Syndrome  

Bardet-Biedl syndrome is a rare autosomal recessive disease characterized by six cardinal 

manifestations: obesity, retinitis pigmentosa, renal anomalies, polydactyly, learning disabilities, 

and urogenital tract defects54. The prevalence of obesity among individuals with BBS is between 

72-86%54.  

To date, 21 genes involved in BBS have been identified through various gene 

identification strategies55-57. The majority of pathogenic mutations are found in BBS1 and 

BBS1054. The BBS proteins form a complex (BBSome) essential for ciliary function; this 

complex associates with the ciliary membrane and sorts and directs protein and vesicle 

trafficking58. Interestingly, heterozygous carriers of BBS mutations have an increased risk of 

developing obesity than non-carriers despite not exhibiting other BBS phenotypes59. 

Furthermore, associations between four common genetic variants in three BBS genes (BBS2, 

BBS4, BBS6) and common obesity have been identified in French-Caucasian populations 

suggesting that BBS genes may be associated with polygenic obesity risk59. The association of 
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SNPs at the BBS4 locus and polygenic adult obesity has been recently confirmed by a large-scale 

GWAS60. 

Some BBS genes appear to have a greater ethnic specific frequency than others although 

no genes are found exclusively in one ethnic group. In northern Europeans, mutations in BBS1 

and BBS10 are common while mutations in BBS4, BBS5, and BBS8 are commonly seen in 

individuals of Middle Eastern and North African descent54. The prevalence of BBS has also been 

found to vary between populations from 1 in 160 000 in Northern Europe to 1 in 13 500 and 1 in 

180 000 in isolated communities in Kuwait and Newfoundland respectively61,62. In 

Newfoundland, at least six BBS loci and eight different BBS mutations have been found in 

affected individuals, suggesting that the high prevalence of BBS cannot be due to a single 

founder54. It is possible that consanguinity, large sibship sizes and a survival advantage for 

heterozygotes who have an enhanced ability to store fat, may contribute to the high prevalence of 

BBS in Newfoundland62. In Tunisia, the prevalence of BBS was estimated to be 1 in 156 000 

while the frequency in the North of the country was estimated to be 1 in 87 00063. The high 

prevalence of BBS in the Tunisian population may be due to the high rate of consanguinity 

(31%)63. 

Cohen Syndrome 

Cohen syndrome is a rare autosomal recessive disorder characterized by mental 

retardation, motor clumsiness, microcephaly, severe myopia, distinct facial features, childhood 

hypotonia and joint laxity64. Truncal obesity is present but is not always a ubiquitous feature of 

this disease. Cohen syndrome is caused by a mutation in the COH1 gene on chromosome 8q22. 

This gene encodes a protein of unknown function however domain structure and homologies 

suggest a role in vesicle-mediated sorting and intracellular protein transport64. A recent study 
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found COH1 to code for a Golgi-associated matrix protein which is required for Golgi 

integrity65.  

To date, about 100 mutations in COH1 have been identified with the majority resulting in 

a null allele; missense and frameshift mutations have also been identified but are less common66. 

The best characterized mutation is the c.3348_3349delCT which causes a frameshift at codon 

1117, resulting in protein truncation at codon 112467. This mutation is found in high frequencies 

in the Finnish population where Cohen syndrome is overrepresented and may explain the high 

levels of clinical homogeneity within this population68. Overrepresentation of this allele in the 

Finnish population provides evidence for a founder effect with a common ancestral mutation 

being responsible for most cases66.  

Other mutations in COH1 in populations with a known founder effect have been 

identified. Cohen syndrome is frequently observed among Irish travellers (estimated 0.5 per 1000 

Irish traveller children) where the c.4471G->T results in a null mutation69. The c.11564delA 

deletion results in the deletion of exons 6-16 and was identified in 14 Greek patients originating 

from two small neighboring islands where the incidence of Cohen syndrome is 1 in 11070. The 

c.11564delA has also been identified in two families from Central Italy and one in Southern 

Italy. The c.8459T->C variant among a population of Ohio Amish results in a null mutation 

where the prevalence of Cohen syndrome is as high as 1 in 50067. These findings suggest that 

extensive allelic heterogeneity is responsible for this disease68. The prevalence of obesity among 

affected individuals shows ethnic variation with a prevalence of 80% among Irish travellers, 53% 

among Greek/ Mediterranean individuals, 37.5% among the Amish, and 17% among Finnish 

children67.  
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Prader-Willi Syndrome 

Prader-Willi syndrome is characterized by short stature, small hands and feet, 

hypogonadism, mental retardation, obsessive-compulsive behaviours, early childhood-onset 

hyperphagia and obesity71. Most morbidities and mortalities in PWS are the result of being 

severely obese72. The majority of PWS cases (70-75%) are caused by a deletion of imprinted 

genes within the paternally inherited locus 15q11-q1373. Ten known paternally expressed loci are 

involved in PWS features and include MKRN3, MAGEL2, NDN, NPAP1, SNURF-SNRPN and 5 

small nucleolar RNAs (snoRNAs)58. A microdeletion in the HBII-85 snoRNA cluster in a child 

with PWS provides conclusive evidence for the role of snoRNAs in the etiology of PWS74. Other 

case of PWS are the result of maternal uniparental disomy (~30%), imprinting defects (>5%), or 

balanced translocations on 15q11-q13 (>1%)72.  

PWS cases have been reported worldwide and generally occur in about 1 in 15 000 births. 

In the United States, the prevalence of PWS has been reported between 1 in 16, 000 to 1 in 25, 

000 75,76. Elsewhere, the prevalence of PWS ranges from 1 in 8, 000 in rural Sweden,  to 1 in 16, 

000 in the San-in district of western Japan, 1 in 15, 830 in Australia and 1 in 26, 676 in Flanders 

Belgium 77-80. In the United Kingdom, the proposed true prevalence of PWS is 1 in 45, 00081. 

Given that most cases of PWS (~70%) are the result of de novo deletions and epigenetic effects, 

the prevalence of PWS is not influenced by consanguinity or founder effects. 

VI. Monogenic/oligogenic Non-Syndromic Forms of Obesity and Ethnic Diversity 

Obesity can show Mendelian patterns of inheritance due to homozygous / heterozygous 

compound loss of function mutations in five genes which are part of the leptin melanocortin 

pathway: leptin (LEP), leptin receptor (LEPR), pro-opiomelanocortin (POMC), 

proprotein/prohormone convertase 1 (PCSK1), and MC4R82. This pathway is critical for 
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regulating food intake and body weight thus complete inactivation of these genes results in 

severe hyperphagia and fully penetrant early-onset obesity82. Loss-of-function mutations display 

recessive inheritance and as will be shown below, monogenic forms of obesity have been 

identified mainly in ethnic groups practising consanguinity and founder populations34. Partial 

inactivation of these genes results in oligogenic forms of obesity58. 

LEP and LEPR 

Leptin is produced by adipose tissue and plays an essential role in regulating food intake 

and body weight83. Cases of complete leptin deficiency are very rare with only 34 cases being 

reported worldwide and results in severe hyperphagia and early-onset obesity83,84. The first cases 

of complete leptin deficiency were identified in Pakistani cousins from a highly consanguineous 

pedigree with severe obesity and since then, other cases of leptin deficiency have been identified 

in this population. In a cohort of Pakistani children with early-onset severe obesity, 16.1% were 

found to have homozygous mutations in LEP85. Of these, 9 children were homozygous for the 

∆G133 frameshift mutation and one child was homozygous for a 3-base pair deletion85. Pakistani 

individuals with obesity heterozygous for the ∆G133 frameshift mutation have also been 

identified83. The ∆G133 mutation is frequently identified in the Pakistani population, suggesting 

a possible founder mutation85. Other mutations in LEP have been identified in individuals from 

Pakistan (n=27), Turkey (n=5), Turkmenistan (n=2), Egypt (n=1), Austria (n=1) and China 

(n=1), suggesting they are ethnic-specific86.  

Mutations in LEPR result in a leptin receptor lacking transmembrane and intracellular 

domains due to abnormal transcript splicing87. Like LEP mutations, mutations in LEPR cause 

extreme hyperphagia and early-onset obesity. The first LEPR mutations were identified in three 

Algerian siblings from a consanguineous family and to date, only 13 cases of complete LEPR 
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deficiency have been identified82,87. Among those with hyperphagia and severe early-onset 

obesity, the prevalence of LEPR mutations was 3%87. In a multi-ethnic cohort, homozygous 

frameshifts were found in Bangladeshi, Turkish, and Iranian subjects, homozygous nonsense 

mutations in Southern European subjects, and homozygous missense mutations were found in 

subjects of Turkish, Norwegian, or British descent87. Mutations in LEPR have also been 

identified in Pakistani, Turkmenian and Egyptian children and may be due to the high rate of 

consanguineous marriages34,88,89. Recently a LEPR frameshift mutation (p.P166CfsX7) was 

identified in six individuals with morbid obesity from Reunion Island and is suggestive of a 

founder effect90.  

POMC 

POMC is expressed in the pituitary gland and sequential cleavage of POMC produces the 

melanocortin peptides adrenocorticotropin (ACTH), alpha-melanocyte-stimulating hormone (α-

MSH), β-MSH and β-endorphin. Obesity is thought to be due to deficiency of α-MSH signaling 

at MC4R, resulting in a lack of appetite suppression91. Humans homozygous for loss of function 

mutations in POMC develop severe obesity, adrenal dysfunction, and red hair pigmentation92. 

Heterozygous loss-of-function mutations in POMC result in a non-fully penetrant/ oligogenic 

form of obesity93. The most frequent mutation in POMC is R236G which alters POMC 

processing and reduces its ability to activate MC4R91. The frequency of the R236G mutation was 

found to be 0.6% among Danish individuals, 0.76% in British individuals, and 1.65% among 

French individuals; R236G was also associated with early-onset obesity in British and French 

individuals91. POMC mutations were found in 1.5% of Italian adults with obesity but were not 

associated with early-onset obesity91. Other POMC mutations have been identified in children 

with severe obesity of German, UK Caucasian, French, Egyptian and Indian origin94-97. Two 
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children with obesity of Turkish and North African ancestry with POMC deficiency have been 

described despite lacking the characteristic red hair phenotype, suggesting an ethnic dependent 

clinical presentation98,99. It can be assumed that other genetic variants act epistatically in 

populations practising consanguinity to maintain pigmentation while pigmentation is more 

dependent on the presence of POMC-derived ligands in European populations93. 

PCSK1 

PCSK1 is expressed in the brain, enteroendocrine cells, and the neuroendocrine system 

and is responsible for processing precursor proteins100. Mutations in PCSK1 cause early-onset 

obesity, hyperphagia, postprandial hypoglycemia, diabetes insipidus, intestinal and endocrine 

dysfunctions100. Nineteen patients with homozygous or compound heterozygous mutations in 

PCSK1 have been identified. Two carriers of homozygous PCSK1 mutations with obesity were 

identified in a North-African consanguineous family and in a Turkish family with possible 

consanguinity101-103. An additional thirteen carriers of homozygous PCSK1 mutations have been 

reported from a multi-ethnic cohort with consanguineous families101,104. Three carriers of PCSK1 

compound heterozygous mutations were identified in non-consanguineous Caucasian families105-

108. Haploinsufficient heterozygous PCSK1 mutations result in non-fully penetrant obesity, with 

an estimated prevalence of 0.83% among European children and adults with severe obesity100.  

MC4R 

MC4R is expressed mainly in the central nervous system where it regulates energy 

metabolism85,109; roles of MC4R in controlling food intake and food choices have also been 

suggested109. In humans, MC4R haploinsufficiency due to loss of function mutations is the most 

common cause of monogenic obesity109. At the population level, only 20 individuals with a 

complete MC4R deficiency have been identified82.  
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The prevalence of MC4R heterozygous, heterozygous compound and homozygous loss-

of-function mutations reported in children and adults with obesity from various ethnic groups 

ranges from 0.5-5.8%110,111. A study from the United Kingdom reported a prevalence of 5.8% in 

a sample of 500 individuals with severe early onset obesity and a frequency of 4% was reported 

in a French study of adults with severe obesity112,113. In contrast, low frequencies of MC4R 

mutations have been reported in German (1.9%), Greek (0.2%) and Italian (< 0.5%) 

populations114-116. To date, only two individuals of Japanese descent with mutations in MC4R 

have been identified117,118. In two small studies of Chinese adults and children with obesity, 

mutations in MC4R were identified in less than 1.5% of the cohort119,120. A subsequent study of 

Chinese, Malay and Indian children and adolescents with severe obesity identified three 

individuals (1.3%) with MC4R mutations, suggesting that mutations in MC4R are not a major 

cause of obesity in Asian populations121. A high frequency of homozygous loss of function 

mutations (3.2%) has been identified among Pakistanis, likely due to the high rate of 

consanguineous marriages (60-70%, one the highest rates in the world) in this population85. 

Among Pima Indians, three private mutations in MC4R have been identified which are not found 

in other populations122. Of particular interest is the R165Q variant which was found in 3% of 

Pima individuals with severe obesity and is one of the highest reported frequency for any MC4R 

variant123.  

While MC4R loss of function homozygous / heterozygous compound mutations lead to a 

fully penetrant form of early-onset morbid obesity, heterozygous individuals have a milder, non-

fully penetrant form82; among European heterozygotes the penetrance of obesity ranges from 40 

- 100%124. In a Greek population, the penetrance of obesity was found to be 6.3% which is 

relatively low in relation to the high penetrance seen in other European populations. This is of 
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interest as the prevalence of obesity in the Greek population is 18%, one of the highest in 

Europe115. It is possible that variants in other genes directly or indirectly involved in the 

melanocortin pathway may antagonistically interact with the loss-of-function mutations or the 

Mediterranean diet can attenuate the effects of MC4R loss of function, minimizing the 

penetrance of obesity115. Similarly, Pakistani heterozygous carriers were found to have a normal 

weight, suggesting that a rural environment may mitigate the penetrance of MC4R mutations85. 

Together, these results suggest that the penetrance of obesity due to MC4R heterozygous 

mutations may to a certain extent be dependent on the environment and lifestyle choices.  

VII. Polygenic forms of obesity and ethnic diversity 

GWAS for obesity in European and non-European populations  

Genetic predisposition to obesity is polygenic in nature in most cases and is attributed to 

the simultaneous presence of risk polymorphisms in multiple genes. Independently, polygenic 

variants have small to modest effects on the obese phenotype but together, give rise to a sizeable 

effect82. Until recently, the genetic determinants of obesity were largely unknown until the 

emergence of statistically powerful GWAS which have revolutionized the search for genetic 

determinants of complex traits. GWAS searches the genome for several hundred-thousand SNPs 

and identifies SNPs that occur more frequently in individuals with a particular disease than in 

those without the disease82. In 2007, common variation in intron 1 of FTO was associated with 

obesity in Europeans by four independent groups125-128. To date, FTO is viewed as the main 

contributor to polygenic obesity in Europeans. Since 2007, the association of FTO on obesity has 

been extended to diverse ethnic groups including African-American, Hispanic, Pacific Islander 

and East Asian populations129. Subsequent large meta-analyses of GWAS in predominately 

European populations have identified 142 polygenic loci associated with BMI and/or obesity58. 

Although these loci have considerably smaller effects than FTO, they provide valuable insight 
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into the genetic architecture of obesity. Pathway analysis of genes associated with BMI provide 

strong support for a role of the central nervous system, adipose tissue, the musculoskeletal 

system and digestive tract, highlighting the complex etiology of obesity that encompasses 

biological pathways in multiple organ systems58. Meta-analysis of GWAS of BMI in 

predominantly European children identified 12 loci previously associated with BMI in adults, 

demonstrating the shared genetic background between childhood and adult BMI130. 

In recent years, several GWAS for obesity traits have been conducted in non-European 

populations such as East Asians and Africans. GWAS in non-Europeans have been critical in 

confirming European obesity loci and identifying novel, ethnic-specific loci. In a recent meta-

analysis of 86, 757 individuals of Asian ancestry, Wen et al confirmed seven previously reported 

BMI-associated loci in European populations (FTO, SEC16B, MC4R, GIPR-QPCTL, ADCY3-

DNAJC27, BDNF, and MAP2K5) and identified three novel loci associated with BMI 

(CDKAL1, PCSK1, and GP2)131. Another study of East Asians also confirmed CDKAL1 as a 

novel BMI-susceptibility locus, with KLF9 as an additional locus132. In 2011, the first GWAS 

in a Filipino population (n ~ 1,7000 women) replicated GWAS signals for MC4R, FTO and 

BDNF133. Among Asian Indians, Been et al confirmed the association of MC4R (rs12970134) 

with BMI134. Genome-wide heterogeneity of variance analysis in 14, 131 Pakistani individuals 

identified an interaction with smoking status and a novel obesity variant in FLJ33534 

(rs140133294) on BMI135. Meta-analysis of 9, 881 African-Americans has demonstrated an 

association between FTO (rs3751812 and rs9941349) and obesity while two smaller GWAS 

with individuals of African ancestry provide some evidence of replication of the association 

between MC4R (rs6567160 and rs17782313) and BMI136,137. More recently, a large meta-

analysis in over 30,000 individuals of African ancestry identified one new locus associated 
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with BMI (GALNT10) and five previously identified European BMI loci (MC4R, FTO, 

GNPDA2, ADCY3 and SEC16B,) reached genome-wide significance138. GWAS in Samoans 

identified a private variant in CREBRF (rs12513649), common in this population (frequency: 

25.9%) and strongly associated with BMI28. Taken together, GWAS in non-European 

populations are suggestive of a partial genetic overlap between obesity loci across various ethnic 

groups (Figure 4).  

Filling in the gaps of missing heritability 

Despite the surge in GWAS and meta-analyses, most of the genetic variability in obesity 

remains unexplained. In a large meta-analysis by the GIANT consortium, 97 BMI-associated loci 

only explain 2.7% of the variance in BMI, suggesting that numerous additional variants 

associated with obesity remain unidentified60. Possible explanations for this “missing” 

heritability include lack of power to detect common variants with subtle effects and causal 

variants, poor coverage of rare variants, genetic heterogeneity, structural variants, epigenetics, 

and gene-gene and gene-environment interactions. The majority (> 80%) of identified variants 

are located in non-coding regions and are thought to be non-causal139. GWAS index SNPs are 

assumed to be in linkage disequilibrium (LD) with the causal variant, making it difficult to 

distinguish the causal variant and elucidate its role in the development of obesity. Furthermore, if 

index SNPs are tested in a population with different ancestry, the LD between the index SNP and 

causal SNP may be weaker. This results in a weak, none, or inverse association with the trait in 

the replication cohort and a wrongful conclusion that the SNP does not transfer across 

ancestries140. Such is the case with FTO rs3751812 (a perfect surrogate for the previously 

reported FTO rs9939609) which replicates in both European and African American populations, 

unlike FTO rs9939609 which only replicates in Europeans141. 
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In evolutionary terms, populations of African ancestry are the most ancestral and have 

experienced more generations of LD decay, relative to European- and Asian-ancestry 

populations. Due to the accumulation of more recombination events, the African population has 

smaller regions of LD. Out-of-Africa migrations and genetic bottlenecks have reduced haplotype 

diversity in European- and Asian-ancestry populations, resulting in larger regions of LD. The 

weak LD in African populations can be leveraged for fine-mapping studies to pinpoint the causal 

variant136. To date, most fine-mapping efforts have focused on the FTO locus due to its strong 

association with obesity-related traits140. Recent mechanistic work suggest that the FTO 

rs1421085 variant may be a functional variant involved in white adipocyte browning and 

thermogenesis by disrupting ARID5B repression of IRK3/5, resulting in increased lipid storage 

and weight gain142,143. However, initial attempts to fine-map the causal variant(s) in FTO in 

populations of African ancestry have yielded inconsistent results. As described above, Grant et al 

determined that the rs3751812 variant was a better surrogate for the causal variant then 

rs9939609 in African-American children141; these results were further confirmed by Hassanein et 

al who fine-mapped the association between variation at the FTO locus and BMI in 9, 881 

African adults136. In a large study of over 20, 000 African Americans, Peters et al densely fine-

mapped the entire FTO gene and the adjacent RPGRIP1L gene to narrow down the functional 

variant144. While they significantly reduced the number of functional candidates, they were 

unable to narrow in on the functional variant. More recently, Gong et al fine mapped 21 BMI-

related loci in African Americans and found eight of the 21 associated with BMI in this 

population145. These examples demonstrate the utility of fine-mapping in non-European 

populations to narrow down on the causal variant. 

Admixture mapping in recently admixed populations is a powerful way to identify 
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disease-causing variants and is well suited for the genetic investigation of  complex diseases such 

as obesity146. Knowing that the prevalence of certain diseases and complex traits varies with 

ethnicity, admixture studies scan the genome for regions where the proportion of one ethnicity is 

significantly different than average. Admixture mapping has greater statistical power to identify 

variants with modest effects and have successfully reported associations between risk of obesity 

or increased BMI in West African and Native American populations45. Furthermore, individuals 

of mixed ethnicities (Asian/white, Hawaiian/white, Hawaiian/Asian, Latina/white, and 

Hawaiian/Asian/white) have been found to have an above average BMI than their parental ethnic 

groups, suggesting that differences in ancestral background may partially explain ethnic 

differences in the prevalence of obesity45. Admixture mapping in African Americans has 

identified several chromosomal regions associated with BMI, including regions on chromosomes 

X (Xq25 and Xq13.1)44, 1 (1q23.2 and 1q25.1)41, 2 (2p23.3)42, 3 (3q29)147, 5 (5q14 and 

5q13.3)44,147, 11 (11q23.2)41, 12 (12p13.31)41, and 15 (15q26)147. A fine mapping study of four 

genomic regions reported in previous admixture analyses identified an association between SNP 

rs631465 in F2RL1 and BMI in an African-American population148. 

The risk allele frequencies (RAF) of obesity loci identified through GWAS are generally 

high (allele frequency > 10%) but RAF can vary across populations149. For example, the RAF of 

FTO rs3751812 in the 1000 Genomes Project demonstrates considerable ethnic differences, 

ranging from 0.05 in African, 0.17 in East Asian, 0.29 in South Asian and 0.41 in European 

populations. 

Low frequency (~1-5%) and rare (<1%) variants contributing to polygenic obesity are not 

frequent enough to be captured by current genome-wide association approaches, nor are they 

penetrant enough to be identified through traditional linkage studies, yet they could explain part 
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of the missing heritability of disease risk150-152. Candidate gene approaches in populations of 

European descent have identified low-frequency loss-of-function coding non-synonymous 

variants in GPR120 (R270H/rs116454156), and PCSK1 (N221D/rs6232) associated with 

increased risk of obesity, and low-frequency coding gain-of-function non-synonymous variants 

in MC4R (V103I/rs2229616 and I251L/rs52820871) associated with protection from obesity153-

155. No well-established association between low frequency / rare variants and obesity traits has 

been reported in non-European populations to date.    

Genomic rearrangement due to deletions or duplications of chromosomal regions can 

give rise to copy number variants (CNV). Studies of CNV and obesity have been performed in 

predominately European populations in attempt to further explain the missing heritability of 

obesity. The rare heterozygous 16p11.2 deletion of at least 593 kb is well studied and is 

associated with severe early-onset obesity in Europeans156. Genome-wide association meta-

analyses of individuals of European ancestry identified deletions in regions near NEGR1and 

GPRC5B associated with BMI157,158. A GWAS for early-onset extreme obesity in individuals of 

German ancestry identified a CNV near 11q11 associated with early-onset obesity159. A GWAS 

for BMI in a small Chinese population also identified a region near 10q11.22 associated with 

BMI160. Subsequent studies in European populations confirmed this association, demonstrating 

the utility of screening for CNV in non-European populations to identify novel variants 

implicated in obesity161. Currently the role of rare and common CNV in obesity remains 

relatively unexplored, however it is unlikely the CNV explain a significant portion of the missing 

heritability of obesity162. 

Convincing evidence for gene x gene (G x G) interactions has emerged for several 

obesity loci. A study in East Asians identified a significant G x G interaction between two new 
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BMI associated SNPs in the CDKAL1 and GDF8 loci132. Recent data indicate that obesity-

predisposing variants interact with a variety of environmental, lifestyle and therapeutic 

treatments163. Consistent gene x environment (G x E) interactions between FTO, level of 

physical activity and BMI or obesity have been described in 16 cross-sectional and intervention 

studies in European, East Asian and African populations164; this was confirmed by a large meta-

analysis  of  218, 166 adults predominately of European descent where physical activity reduced 

the risk of obesity by 27%165. Using a quantitative measure of energy expenditure (Metabolic 

Equivalent Score) to provide a more comprehensive assessment of physical activity, Reddon et 

al demonstrated that physical activity can blunt the effects of FTO on adiposity (measured by 

BMI and body adiposity index) by 36-75% in a longitudinal multi-ethnic cohort164. Populations 

in low- and middle- income countries are undergoing rapid transitions from traditional to 

Western lifestyles. Taylor et al investigated the influence of living in rural versus urban India on 

the role of FTO on obesity related traits166. When genetic variants in these genes were analyzed 

with regards to environment, a stronger association between FTO, weight, and living in an urban 

environment was found in comparison with those living in a rural environment166,167. A novel 

interaction between smoking status and the FLJ33534 locus on BMI has recently been reported 

in a Pakistani population135. G x G and G x E interaction remain largely unexplored due to 

statistical challenges associated with inadequate sample sizes but may explain some of the 

missing heritability164. 

Lastly, epigenetic changes may explain the missing heritability in obesity. Epigenetics is 

defined as changes in gene transcription and expression that do not involve changes to the 

underlying DNA sequence168. Epigenetic modifications include DNA methylation, histone post-

translational modifications and chromatin remodelling or the inheritance of mRNAs that regulate 
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gene expression58. DNA methylation consists of the addition of methyl groups to cytosine 

residues and are typically associated with gene silencing168. Candidate gene approaches and 

more recently, epigenome-wide association studies have identified changes in DNA methylation 

patterns in genes associated with BMI and obesity169,170. After analyzing 450 million CpG sites 

and subsequent validation in two replication cohorts, Dick et al found an association with 

increased BMI and DNA methylation at the HIF-3α locus171. More recently, methylation within 

a variably methylated region in POMC has been strongly associated with BMI in a multi-ethnic 

cohort172. Higher methylation of sites within intron 1 of FTO and differential methylation of 

other genes has been observed, suggesting that FTO can influence methylation patterns of other 

genes173. Of the 52-known obesity-associated SNPs, 28 have been associated with DNA 

methylation levels at 107 proximal CpG sites, suggesting they affect multiple genes174. Using an 

epigenome-wide association study, Wahl et al recently found an association with BMI and 

changes in DNA methylation in 187 loci involved in lipid and lipoprotein metabolism, adipose 

tissue biology and insulin resistance170. Replication has been problematic for epigenetic studies; 

except for HIF-3α where the association between HIF-3α methylation and BMI has been 

replicated in subsequent studies, many associations have not been successfully replicated in 

independent cohorts175,176. Furthermore, it is unclear if changes in DNA methylation are a 

consequence of obesity rather than the cause177. Overall, the field of epigenetics has provided 

novel insight into the complex genetic architecture of obesity but is unlikely to fully explain the 

missing heritability of obesity. Further studies, especially in non-European populations are 

needed.     

To conclude, GWAS and meta-analyses have made significant advances in identifying 

genetic variants associated with BMI and obesity, however they have explained very little in the 
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variance of BMI60. Part of the missing heritability is hypothesized to be due to rare genetic 

variants with large effect sizes which are not captured by GWAS, multiple common genetic 

variants with small effect sizes cannot be detected in very large GWAS or heritability is 

overestimated due to environmental effects or genetic interactions178,179. New methods of 

estimating heritability suggest that the heritability of BMI is likely 30 – 40%, therefore there is 

little missing heritability180. In order to fully understand the missing heritability, large sample 

sizes and new technologies are needed to discover more obesity-associated loci. 

 
VIII. Advantages, limitations and future directions for multi-ethnic designs in obesity genetics 

Advantages 

While over 90% of obesity-susceptibility loci have been identified in European 

populations (Figure 4), a growing number of GWAS are now being performed in populations of 

non-European ancestry in addition to replication and transferability studies140. The inherent 

advantage of using multi-ethnic studies is identifying which genetic signals are shared across 

populations with distinct genetic ancestries or are ethnic specific (Table 1)140. Multi-ethnic 

studies are also advantageous for identifying ethnic specific disease predisposing variants and 

private mutations. Moving beyond GWAS, other methods including whole-exome and whole-

genome sequencing are better suited to assess rare variants and copy number variants and can be 

applied to multi-ethnic cohorts to reveal novel loci implicated in obesity. 

As ethnic differences are observed in obesity predisposing genes, it is essential to 

assemble multi-ethnic designs to assess the ethnic-specific contribution of these genes181. This 

study design is also a pre-requisite for identifying causal variations using trans-ethnic fine-

mapping approaches through candidate gene/locus resequencing or genotyping of custom arrays 

(i.e. metabochips)144,182. Future large-scale trans-ethnic designs combining data from diverse 
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ethnic groups with differences in LD structure can provide better resolution to identify causal 

variants for functional follow-up studies140. The use of dense genome-wide SNP arrays (5 

million SNPs) in combination with whole-genome sequencing and imputation in multi-ethnic 

populations may lead to the identification of additional independent signals within GWAS loci 

and likely causal obesity predisposing variants for functional follow-up studies in one step in a 

near future145,183,184. 

Studying genetic differences in diverse ethnic groups is critical for reconstructing the 

evolutive and non-evolutive forces (i.e. genetic drift, migration and founder effect) that have 

shaped the genetic predisposition or protection from obesity in modern human populations185. 

Interestingly, it may be advantageous to use small and historically isolated founder populations 

in genetic association studies due to their increased statistical power and high allele frequency of 

deleterious variants28.  

Multi-ethnic designs aid in the understanding of the impact of societal practises (i.e. 

intra-caste marriages, preferred consanguineous marriages, polygamy, and assortative marriages) 

on the present and future genetic susceptibility to obesity35. To overcome problems of limited 

statistical power, populations practising consanguinity can be used as this practise leads to an 

exceptionally high prevalence of rare homozygous mutations85. 

 Multi-ethnic populations are also highly relevant for identifying G x G and G x E 

interactions. G x G interactions may be identified in certain ethnic groups due to the frequent co-

occurrence of the interacting genetic variants186. Similarly, novel G x E interactions may emerge 

when ethnic groups are exposed to unique combinations of lifestyle and environment115.  

Limitations 
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Early replication efforts aimed to directly replicate European candidate SNPs in 

independent cohorts reveal significant challenges as some disease-associated SNPs reaching 

genome-wide significance do not directly replicate in populations of different ancestries. Lack of 

replication across multiple ethnic groups can be attributed to several factors187.  

 Limited statistical power due to relatively small sample sizes of non-European cohorts is 

a major challenge for replication studies (Table 1). Statistical power to detect an association is a 

function of sample size, the effect size and minor allele frequency (MAF). Often, replication 

cohorts are substantially smaller than the discovery population and ethnic minorities are under-

represented in multi-ethnic studies. Variants identified in European GWAS generally have larger 

effect sizes and/or MAF, making them easier to discover140. It is often unclear if the lack of 

significance in the replication cohort is the result of limited power/ sample size or truly an 

absence of genetic association, thus authors need to report power calculations when discussing 

the presence/ absence of an association188. The formation of large, international genomic 

consortia for replication in various ethnic groups may alleviate the problem of inadequate sample 

size189.  

Transferability may also be limited due to differences in genetic architecture. If the 

GWAS index SNP is tested in a population with different ancestry, the LD between the index 

SNP and causal SNP may be weaker than in the discovery population. The result is a weak, no or 

inverse (flip-flop) association with the trait in the replication cohort and a wrongful conclusion 

that the SNP does not transfer across ancestries140. New methods are needed to assess differences 

in population allele frequencies and LD in order to determine which SNPs are expected (or not) 

to be replicated in other populations to avoid conducting replication studies in populations where 
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the variant is too rare188. For example, transferability studies in other ethnic groups may use a 

dense set of variants rather than testing the GWAS hit alone141. 

G x G and G x E interactions also challenge replication and transferability. Adequate 

statistical power is critical for interaction studies and meta-analyses are recommended to reach 

sufficient power. Care must also be taken when selecting study design to adequately capture 

interactions with population based or nested case-control studies having a greater ability to detect 

interactions190.  

Population stratification and admixture must also be considered as polymorphism 

frequency may vary by ancestral origin. Using self-reported ethnicity is the simplest and most 

economical approach but does not adequately control for population stratification15. Genetic 

classification of ancestry through ancestry informative markers provides a more objective and 

accurate method of defining ethnicity. Other methods including PCA using EIGENSOFT can 

precisely identify national and local ancestry19. These corrections are required in genetic 

association studies to account for population stratification to minimize spurious associations 

without compromising power to detect true associations191. 

Lastly, BMI thresholds for obesity (BMI ≥ 30 kg/m2) have been derived from European 

populations and correspond with an elevated risk for morbidity and mortality192. The use of a 

single, universal threshold for obesity for non-European populations has been questioned with 

evidence suggesting that Asian populations suffer from a greater risk of type 2 diabetes, 

hypertension and dyslipidemia despite a low BMI (< 25 kg/m2)193. Despite no formal 

recommendation for ethnic-specific thresholds by the World Health Organization, the use of 

ethnic-specific thresholds has been proposed193,194. Care must be taken when using multi-ethnic 
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cohorts to avoid misclassifying non-European individuals for accurate estimates of the 

prevalence of obesity. 

VIX. Conclusions 

This review demonstrates the importance of a multi-ethnic perspective in the genetic 

elucidation of obesity. Identifying obesity predisposing genes in European populations has been 

undeniably successful but non-European and multi-ethnic populations have been under-

investigated so far. Multi-ethnic study designs have great potential to reconstruct the 

evolutionary history of genetic predisposition to obesity, isolate disease-causing variants, and 

distinguish global from local G x G and G x E interactions. Novel epidemiological approaches 

including Mendelian randomization have been conducted predominately in European 

populations to determine the causal role of obesity loci in the pathology of obesity195. While the 

results from Mendelian randomization studies in Europeans are considered universally valid, it is 

uncertain if these results hold true in different ethnic groups. Funding initiatives expanding gene 

identification efforts in non-European or isolated populations should be encouraged, especially in 

populations at high or low risk for obesity. Undoubtedly such studies will enhance our 

understanding of the biological bases of obesity susceptibility and protection and encourage 

innovative prevention and treatment strategies. The observed unique ethnic patterns of genetic 

predisposition to obesity stress the limitations of a ‘one size fits all’ approach and emphasize the 

importance of ethnicity as we transition from big genetic data to precision medicine for all196. 
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Table 1: Summary of advantages and limitations of using multi-ethnic study designs in 
obesity genetics. 

 

Advantages Limitations 
Identify genetic variants shared across multiple 
ancestries, ethnic specific variants and private 
mutations 

Definitions of ethnicity can vary between 
studies, limiting the generalizability of results  

Differences in LD structure across diverse ethnic 
groups can be leveraged to pin-point causal 
variants 

Weak LD structure in ancestral populations 
may result in weak, null or inverse 
associations, limiting transferability and 
replication 

Reconstruct evolutive and non-evolutive forces 
(i.e. founder effect) that have shaped the genetic 
architecture of obesity susceptibility 

Spurious results arise when population 
stratification and admixture are not 
considered and accounted for  

Increased statistical power due to high 
frequencies of rare and deleterious variants in 
isolated populations or populations practising 
consanguinity   

Small sample size of non-European 
replication cohorts and under-representation 
of ethnic minorities in multi-ethnic studies 
limits statistical power and the ability to 
detect associations 

Identify novel G x G and G x E interactions due 
to the co-occurrence of interacting variants and 
unique environments  

Achieving adequate statistical power to detect 
G x G and G x E interactions is difficult in 
multi-ethnic studies 

Understanding of how societal practises (i.e. 
consanguineous marriages) influence genetic 
susceptibility for obesity 

Unique societal practises can be population 
specific, limiting generalizability of results  
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Figure 1: 3D principle component analysis of different ethnic groups of the 1000 Genomes 
Project. 
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Figure 2: Meta-analysis of BMI heritability estimates in twin studies. 
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Figure 3: Meta- analysis of BMI heritability estimates in family studies. 
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Figure 4: Obesity loci discovered through genome-wide association studies in European 
and non-European populations. 
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ABSTRACT: The Pro12Ala (rs1801282) polymorphism in peroxisome proliferator-activated 
receptor-γ (PPARγ) has been convincingly associated with insulin resistance (IR) and type 2 
diabetes (T2D) among Europeans, in interaction with a high-fat diet. Mexico is disproportionally 
affected by obesity and T2D however, whether the Pro12Ala polymorphism is associated with 
early metabolic complications in this population is unknown. We assessed the association of 
PPARγ Pro12Ala with metabolic traits in 1457 Mexican children using linear regression models. 
Interactions between PPARγ Pro12Ala and circulating lipids on metabolic traits were determined 
by adding an interaction term to regression models. We observed a high prevalence of 
overweight/obesity (49.2%), dyslipidemia (34.9%) and IR (11.1%). We detected nominally 
significant/significant interactions between lipids (total cholesterol, HDL-cholesterol, LDL-
cholesterol), the PPARγ Pro12Ala genotype and waist-to-hip ratio, fasting insulin, HOMA-IR 
and IR (9.30 × 10(-4)  ≤ Pinteraction ≤ 0.04). Post-hoc subgroup analyses evidenced that the 
association between the PPARγ Pro12Ala genotype and fasting insulin, HOMA-IR and IR was 
restricted to children with total cholesterol or LDL-cholesterol values higher than the median 
(0.02 ≤ P ≤ 0.03). Our data support an association of the Pro12Ala polymorphism with IR in 
Mexican children and suggest that this relationship is modified by dyslipidemia. 
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INTRODUCTION 

Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand activated transcription 

factor highly expressed in adipose tissue and is intimately involved in the regulation of 

adipogenesis, glucose and lipid homeostasis and insulin sensitivity1. PPARγ is the molecular 

target of the anti-diabetic drug thiazolidinedione (TZD)1. A missense coding variant in PPARγ 

resulting in a proline to alanine substitution (Pro12Ala, rs1801282) has been associated with a 

30-50% decrease in ligand-induced activity2.  

The association of PPARγ Pro12Ala polymorphism with type 2 diabetes (T2D) is well 

established. A recent literature-based candidate gene meta-analysis by Gouda et al in 32,849 

T2D cases and 47,456 controls from Europe, North America and East Asia determined that the 

deleterious Pro allele is associated with a 16% increased risk of T2D3. More recently, a large-

scale association study combining the data from GWAS and from the custom array Metabochip 

in 34,840 T2D cases and 114,981 controls predominantly of European descent confirmed that the 

deleterious Pro12 allele was associated with a 13% increased risk of T2D4. The association of 

PPARγ Pro12Ala polymorphism with body mass index (BMI) has been long debated in 

literature, but a recent meta-analysis of 49,092 subjects from diverse ethnic backgrounds 

demonstrated that the PPARγ Pro12 allele was associated with a lower BMI5. The authors also 

evidence a trend for a stronger effect of the Pro12 allele in Caucasians5.  

Dietary fats are known ligands for PPARγ and have been shown to interact with the 

Pro12Ala polymorphism to modulate obesity-related traits in six independent studies6-11. Similar 

gene x diet interactions have been described between dietary fat intake and Pro12Ala 

polymorphism for insulin resistance (IR) and T2D-related traits12,13. These results are suggestive 

of a diet-dependent interaction between the Pro12Ala polymorphism, body weight and T2D that 
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can possibly explain the conflicting results regarding the influence of this variant on metabolic 

traits in individual studies. 

The Mexican population is disproportionately affected by both obesity and T2D. In 2008, 

the United Nations Food and Agricultural Organization estimated the prevalence of obesity in 

Mexico to be 32.8%, surpassing that of the United States14; the prevalence of T2D in Mexico is 

estimated to be as high as 14.4%15. According to the Mexican National Institute of Public Health, 

34.4% of children between 5 and 11 years of age were overweight or obese in 201116. This is 

especially problematic given that childhood obesity is the main predictor of adult obesity17.  

Despite the well-established association between the PPARγ Pro12Ala variant, obesity 

and T2D in populations of European ancestry and the high prevalence of these conditions in 

Mexicans, only a few studies have examined these associations in a Mexican population. The 

PPARγ Ala12 allele has been associated with a higher risk of overweight / obesity in adult 

Mexican Mestizo subjects and in five Mexican Amerindian groups18. This trend was confirmed 

in 921 Mexican-American adults from the San Antonio Family Heart Study, where carriers of at 

least one Ala allele had a higher BMI and waist circumference19. No associations between the 

PPARγ Pro12Ala polymorphism and T2D were observed in three modestly powered studies of 

Mexican adults20-22. In 473 adult individuals from 89 Mexican-American families, the PPARγ 

Pro12Ala polymorphism was not associated with IR measured by oral and intravenous glucose 

tolerance tests23. To our knowledge, the association of Pro12Ala with obesity / T2D related traits 

has never been examined in Mexican children. Thus, we aimed to determine the association 

between the PPARγ Pro12Ala variant and metabolic parameters in 1457 Mexican children and its 

interaction with circulating lipids used as stable surrogate of a high-fat diet.  
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METHODS 
 
Study population 

A total of 1457 unrelated children aged 6-14 were randomly selected to participate in a 

cross-sectional study from four areas in Mexico City at the Primary Care Unit of the National 

Mexican Social Security Institute (Cuauhtémoc West, Independencia South, Nezahualcóyotl Est 

and Morelos North area). Recruitment was done in collaboration with local public schools. The 

study started in July 2011 and is still ongoing. Children who had diagnosis of infectious disease, 

gastrointestinal disorders, administration of antimicrobial agents (within 6 months previous to 

study), incomplete questionnaires or biological samples were excluded. The study protocol was 

approved by the Mexican Social Security Institute National Committee and the Ethical 

Committee Board and informed consent was obtained from both parents and the child, in 

accordance with the Declaration of Helsinki.  

Phenotyping 

All participants were weighed using a digital scale (Seca, Hamburg, Germany) and height 

was measured with a portable stadiometer (Seca 225, Hamburg, Germany). Waist circumference 

was measured at the midpoint between the lowest rib and the iliac crest after a normal exhalation 

with children in the standing position. Hip circumference was measured at the level of the greater 

trochanters. Body mass index was calculated as weight (kg) / height (m)2 and classified 

(underweight, normal weight, overweight, obese) according to the Centers for Disease Control 

and Prevention CDC 2000 references. Blood samples were obtained following an 8-12 hour fast 

and were analyzed for fasting glucose, total cholesterol (TC), high-density lipoprotein 

cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG) 

using the ILab 350 Clinical Chemistry System (Instrumentation Laboratory IL. Barcelona 
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Spain). Insulin (IU) was measured by chemiluminescence (IMMULITE, Siemens, USA) and 

homeostatic model assessment of insulin resistance (HOMA-IR) was calculated using the 

equation by Matthews et al 24. Due to the risk of blood hemolysis, fasting insulin values ˂ 

1 µU/mL were discarded from the study. Insulin resistance was defined as HOMA-IR ≥ 3.4 (the 

90th percentile of HOMA-IR in a population of healthy Mexican children)25. Hypertension was 

defined as average measured blood pressure above the American Heart Association’s 

recommendations (systolic ≥ 140 mmHg or diastolic ≥ 90 mmHg). Dyslipidemia was defined as 

fasting TG ≥ 100 mg/dL (0-9 years of age) or TG ≥ 130 mg/dL (10-19 years of age) and/or 

HDL-C < 35 mg/dL and/or LDL-C ≥ 130 mg/dL, according to current recommendations26,27. 

Genotyping 
Genomic DNA was isolated from peripheral blood using a standard extraction protocol 

on an Autogen FLEX STAR (Holliston, Massachusetts USA). Genotyping of the Pro12Ala 

polymorphism was performed using the TaqMan Open Array Real-Time PCR System (Life 

Technologies, Carlsbad, USA), following the manufacturer’s instructions. The Open Array 

experiment involved 64 polymorphisms. From the initial sample of 1559 participants, 102 were 

excluded from the current analysis because i) no blood sample was collected for DNA extraction; 

ii) DNA extraction was unsuccessful; iii) the genotyping success rate of the Open Array 

experiment based on the 64 polymorphisms was < 90.6% (≥ 6 genotypes missing). The current 

analysis included 1457 children. The Pro12Ala genotyping call rate was 99.1%. Deviation from 

Hardy-Weinberg equilibrium (HWE) for Pro12Ala was tested using a chi-square test and no 

deviation from HWE was observed (p = 0.30). 

Statistical analysis 

The normal distribution of continuous variables was tested using the Shapiro-Wilk test. 

All traits of interest deviated significantly from normality. Inverse normal transformations 
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corrected the lack of normality for BMI, WHR, insulin, HOMA-IR, and TG (Supplementary 

Figure S1). Non-biological outlier data were discarded. The effect of the rs1801282 variant on 

metabolic traits (BMI, WHR, fasting glucose, fasting insulin, HOMA-IR, TC, TG, HDL-C and 

LDL-C) was determined under an additive genetic model using linear regression adjusted for 

age, sex and recruitment center. The minor allele Ala12 was considered as the effect allele. 

Interactions between plasma lipids (as continuous traits) and Pro12Ala on metabolic traits were 

investigated by adding an interaction term to the linear regression model. To investigate further 

significant interactions, genetic association tests in subgroups were performed using the median 

of the interacting factor to classify the population into high and low groups. Differences between 

recruitment centers were determined using a one-way ANOVA and a Tukey post-hoc test. After 

adjusting for multiple testing using Bonferroni correction (6 metabolic traits in interaction with 4 

lipid traits), a p-value below 2.08 x 10-3 (0.05/24) was considered statistically significant and a p-

value between 0.05 and 2.08 x 10-3 was considered nominally significant.  All statistical analyses 

were performed using SPSS software (version 20.0). We assessed the power of our sample using 

QUANTO software version 1.2.4 (University of Southern California, Los Angeles, CA, USA). 

 

RESULTS 

Phenotypic characteristics of the studied population 

Anthropometric and biochemical characteristics of the study population are presented in 

Table 1.  Of the 1457 children sampled (between 6 and 14 years old, average age 9.24 ± 2.07), 

1.4% of the children in the population were underweight, 49.4% were a normal weight, 21.3% 

were overweight and 27.9% were obese. Insulin resistance was identified in 11.1% of children. 

3.1% of children had IFG and only one child was diabetic. Hypertension was present in 22 
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children (1.5%). Dyslipidemia was identified in 34.9% of the population. Children displayed a 

significantly higher BMI in the Cuauhtémoc area (20.71 ± 4.34) than in the other areas 

(Independencia: 19.60 ± 4.15; Nezahualcóyotl: 19.15 ± 4.07; Morelos: 19.32 ± 4.11) using a 

one-way ANOVA and a Tukey post-hoc test (P between 2.1 x 10-6 and 4.3 x 10-3, data not 

shown). The genotype distribution of PPARγ Pro12Ala in the study population was 73.9% (n = 

1067), 24.5% (n = 354) and 1.6% (n = 23) for the Pro/Pro, Pro/Ala and Ala/Ala genotypes, 

respectively. Thirteen individuals were not successfully genotyped (Pro12Ala genotyping call 

rate: 99.1%.). 

Associations / interactions between PPARγ Pro12Ala and metabolic quantitative traits  

Knowing that previous reports provide evidence for interactions between PPARγ 

Pro12Ala and dietary exposures to alter metabolic traits and that PPARγ is activated by dietary 

lipids, we tested the interaction between PPARγ Pro12Ala and fasting plasma lipid 

concentrations on metabolic traits28,29. Circulating plasma lipids were used as stable surrogate of 

a high-fat diet30. A nominally significant interaction between PPARγ Pro12Ala and HDL-C was 

found to modulate WHR (main genotype effect: β = -0.57 ± 0.20, p = 4.89 x 10-3; interaction: β = 

1.14 x 10-2 ± 3.81 x 10-3, p = 2.91 x 10-3) (Table 3). Nominally significant interactions between 

PPARγ Pro12Ala and TC on fasting insulin levels (main genotype effect: β = 0.55 ± 0.26, p = 

0.04; interaction: β = -3.79 x 10-3 ± 1.62 x 10-3, p = 0.02) and HOMA-IR (main genotype effect: 

β = 0.49 ± 0.26, p = 0.06; interaction: β = -3.38 x 10-3 ± 1.61 x 10-3, p = 0.04) were also 

identified. Given the interactions between plasma lipids, insulin and HOMA-IR, we subsequently 

tested the interaction between circulating lipids on the presence of IR (Table 4). Both TC and 

plasma LDL-C concentrations were found to interact with PPARγ Pro12Ala to influence the 

presence of IR (OR main genetic effect = 18.39, 95% CI 2.57 – 131.79, OR interaction = 0.98, 95% CI 
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0.97 - 0.99, p main genetic effect = 9.54 x 10-4, p interaction = 9.30 x 10-4; OR main genetic effect = 8.70, 95% 

CI 1.62 – 46.87, OR interaction = 0.98, 95% CI 0.96 - 0.99, p main genetic effect = 0.01, p interaction = 8.09 x 

10-3, respectively). 

We further investigated the direction of the genetic effects of the PPARγ Pro12Ala 

polymorphism on adiposity and insulin resistance parameters showing interaction with lipids. 

Genetic association tests in subgroups were performed using the median of plasma lipids to 

classify the population into high and low groups (Table 5). Despite a nominally significant 

interaction between PPARγ Pro12Ala and HDL-C on WHR, the results failed to reach 

significance in the subgroup analyses. In the high TC subgroup, the carriers of Ala12 displayed 

nominally significant lower fasting insulin levels / HOMA-IR values (β = -0.19 ± 0.08, p = 0.02 

and β = -0.17 ± 0.08, p = 0.03, respectively). No evidence of association between PPARγ 

Pro12Ala, fasting insulin levels and HOMA-IR was observed in the low TC subgroup (p = 0.24 

for both).  When LDL-C and TC levels were high, Ala12 carriers were also found to have a 

nominally significant reduced risk of developing IR (OR = 0.44, 95% CI 0.27 – 0.87, p = 0.02 

and OR = 0.41, 95% 0.20 – 0.84, p = 0.02, respectively). No association between PPARγ 

Pro12Ala and IR was found in the low LDL-C and TC groups (p = 0.07 for both).  

 

DISCUSSION 

In the present study we examined the association of the Pro12Ala variant in PPARγ with 

metabolic traits and identified nominally significant or significant evidence for gene-

environment interactions involving PPARγ genotype and high circulating concentrations of TC, 

HDL-C and LDL-C influencing WHR, plasma insulin, HOMA-IR and IR.  
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We observed a high prevalence of obesity, IR and dyslipidemia in our sample of 1457 

Mexican children. Mexico is experiencing significant epidemiological transitions. Reduced 

physical activity due to urbanization and technological innovations and shifts in dietary patterns 

away from traditional high-fiber foods to the increased consumption of processed foods laden 

with fat, refined carbohydrates and added sugar have resulted in a rise in non-communicable 

chronic diseases among all age groups31. Indeed, the prevalence of overweight and obesity in 

Mexican children reached 34.4% in 2011, representing one of the highest rates of pediatric 

obesity in the world16. Our sample exceeds the national average with a prevalence of overweight 

/ obesity of 49.2%, which may be partly explained by our strategy to recruit children within an 

urban setting.  

Pediatric obesity is accompanied by an early onset of a number of co-morbidities 

including T2D, hypertension, dyslipidemia, and non-alcoholic fatty liver disease32. The 

prevalence of dyslipidemia in our sample was an outstanding 34.9%, much higher than 

previously reported. The high prevalence of dyslipidemia may be attributed to a diet rich in 

refined carbohydrates and animal fats but limited in fiber33. Furthermore, we cannot exclude the 

possibility that the prevalence of dyslipidemia reported in this study may stem from the 

employed definition. Abnormal concentrations of one or two lipids are routinely used to identify 

dyslipidemia. However, the use of three lipids in our study may have artificially increased the 

prevalence of dyslipidemia in our sample. The prevalence of IR in our sample (11%) is lower 

than previously reported. In a cross-sectional study of Mexican children aged 7-18, the 

prevalence of IR was estimated at 20.3% while the National Health and Nutrition Examination 

Survey found 52.1% of obese Mexican-Americans aged 12-19 to have IR (compared to 23.4% of 

obese children in our sample, data not shown)34,35. This discrepancy may be attributed to the 
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younger age of our sample given that insulin and glucose concentrations gradually increase with 

age36. We also observed a very low prevalence of hypertension in our sample (1.5%). Previous 

reports show the prevalence of hypertension among Mexican children varying from 4.7% to 

14%37-39. These studies however classified hypertension using percentiles rather than a threshold, 

making comparisons challenging.   

Since its discovery, the PPARγ Pro12Ala polymorphism has garnered considerable 

interest due to its ability to modulate both T2D and obesity risk. Results from GWAS in diverse 

ethnic groups have established the protective role of the Ala12 allele against T2D despite it being 

an obesity-risk allele, as suggested by a recent large-scale meta-analysis4,5. Allele frequencies of 

the Pro12Ala polymorphism vary among ethnic groups with the highest Ala12 allele frequencies 

generally reported in Caucasian, South Asian and South American (all 12%) populations in the 

1000 Genomes Project. The lowest frequencies are found among East Asian (3%) or African 

(0.5%) populations. In our sample, the frequency of the Ala12 allele was similar to the allele 

frequencies reported in the 1000 Genomes Project for Mexican-American adults (14% vs 13%, 

respectively). In addition to many other genetic variants, the varying frequency of the Pro12Ala 

polymorphism among ethnic groups contributes to the contrasting patterns of predisposition to 

obesity and T2D among populations. 

Fatty acids, in particular unsaturated fatty acids, serve as ligands for PPARγ. Therefore, 

we examined the interaction between circulating lipids as a surrogate for a high-fat diet and 

PPARγ genotype on metabolic traits40. Previous studies have shown diet-gene interactions 

between total, saturated or polyunsaturated fat intake on obesity and T2D related traits, however 

to our knowledge, ours is the first study to report significant interactions between PPARγ 

genotype and circulating lipids on IR. IR is driven by dyslipidemia (elevated concentrations of 



90 
 

TC and LDL-C and decreased concentrations of HDL-C) and is a strong predictor of T2D41. A 

nominal association towards lower fasting insulin concentration and lower HOMA-IR was 

observed among carriers of the Ala12 allele when TC levels were high. Carriers of the Ala12 

allele were found to have a decreased risk for IR despite high circulating LDL-C, further 

suggesting the protective role of the Ala12 allele against the development of IR amid 

dyslipidemia42. In our population, a nominally significant interaction between PPARγ genotype 

and HDL-C on WHR was identified with a trend towards low WHR in carriers of the Ala12 

allele. The well-established inverse relationship between circulating HDL-C and abdominal 

obesity was not observed in the subgroup of carriers of the Ala12 allele with high HDL-C 

concentrations43. This finding warrants further replication in another independent population of 

Mexican children. 

These results must be interpreted with consideration for the acknowledged limitations. 

Firstly, our population cannot be considered representative of the Mexican pediatric population 

as a whole as the prevalence of overweight and obesity in Mexico is higher in urban areas with 

greater economic development (i.e. northern Mexico and Mexico City)44. Therefore, our 

population is representative of the urban population of central Mexico as the recruitment was 

random. The Mexican population is admixed with Native American (65%), European (30%), and 

West African ancestries (5%) with proportions being affected by geographic, demographic and 

historical factors45. As such, genetic heterogeneity exists between and within different regions of 

Mexico. Although all of the children in our study reside in Mexico City, we did not have access 

to ancestry-informative markers and thus could not adjust for genetic admixture Circulating lipid 

levels were used as a surrogate for a high- fat diet, however this assumption could not be 

confirmed as dietary intake was not directly measured. We acknowledge that our power was 
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modest, especially considering the Ala12Ala genotype (N = 23) and therefore our findings 

deserve further investigation. Due to our modest sample size, most of our results did not reach 

statistical significance after adjusting for multiple testing with Bonferroni correction (P < 2.08 x 

10-3) and warrant replication in independent Mexican pediatric populations (Supplementary 

Table 1). Lastly, due to the cross-sectional nature of this study, causality cannot be inferred.  

The results of the current study are noteworthy because the association between PPARγ 

Pro12Ala and obesity and T2D-related traits has never been examined in Mexican children. This 

is the first study to our knowledge to report a significant gene-environment interaction between 

PPARγ Pro12Ala, circulating lipids and markers of IR in a pediatric Mexican population. 

Mexican children are a high-risk population for obesity and metabolic complications and the 

prevalence of these conditions will likely dramatically increase in this population as they age. 

Our results also show that genetic predisposition can alter metabolic traits early in life in 

presence of an obesogenic environment. Taken together, the present study demonstrates the 

urgency of preventing and treating obesity and T2D and presents childhood as a critical period of 

opportunity for prevention and intervention strategies. These results also highlight the need for a 

comprehensive understanding of the genetics of obesity and T2D in diverse ethnic groups in 

order to establish personalized/ stratified intervention strategies.  

In conclusion, the present results show an association of the Pro12Ala allele with IR in a 

sample of 1457 Mexican children. Our results also suggest an interaction between PPARγ 

Pro12Ala genotype and circulating lipids on IR. Knowing that Mexican children are at high risk 

for obesity and T2D, PPARγ genotype could be used in conjunction with other known obesity 

and T2D genes to guide early prevention strategies in the management of these diseases. 
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Table 2: General characteristics of the studied population of Mexican children by PPARγ Pro12Ala genotype. 

Characteristics N=1457 Pro12Pro (N=1067) Pro12Ala (N=354) Ala12Ala (N=23) 
Male/ Female, N 771/686 565/502 190/164 8/15 
Age 9.24 ± 2.07 9.27 ± 2.05 9.19 ± 2.15 8.91 ± 1.73 
Waist Circumference (cm) 66.47 ± 11.78 66.57 ± 11.71 66.67 ± 12.11 62.51 ± 8.84 
WHR 0.85 ± 0.06 0.85 ± 0.06 0.85 ± 0.06 0.85 ± 0.05 
BMI (kg/m2) 19.65 ± 4.20 19.67 ± 4.17 19.76 ± 4.34 18.33 ± 3.37 
Systolic blood pressure (mmHg) 98.57 ± 10.86 98.45 ± 11.03 99.00 ± 10.51 97.70 ± 8.83 
Diastolic blood pressure (mmHg) 66.24 ± 8.80 66.03 ± 8.96 66.96 ± 8.23 65.09 ± 9.53 
Glucose (mmol/L) 4.57 ± 0.53 4.56 ± 0.53 4.57 ± 0.51 4.65 ± 0.61 
Insulin (µU/mL) 8.68 ± 7.10 9.15 ± 7.06 9.12 ± 7.18 7.08 ± 4.05 
HOMA-IR 1.87 ± 1.52 1.88 ± 1.52 1.88 ± 1.55 1.42 ± 0.78 
TG (mg/dL) 93.62 ± 49.70 94.77 ± 50.37 90.72 ± 48.00 90.78 ± 45.62 
TC (mg/dL) 157.25 ± 33.56 157.21 ± 33.98 156.91 ± 31.87 166.43 ± 42.27 
HDL-C (mg/dL) 50.60 ± 12.82 50.25 ± 12.59 51.41 ± 13.42 52.65 ± 15.25 
LDL-C (mg/dL) 102.39 ± 26.42 102.78 ± 27.22 101.35 ± 23.93 102.30 ± 28.51 
Insulin Resistance, N (%) 127 (11.1%) 97 (11.4%) 28 (10.5%) 1 (6.7%) 
Dyslipidemia, N (%) 509 (34.9%) 385 (36.1%) 113 (31.9%) 9 (39.1%) 
Hypertension, N (%) 22 (1.5%) 19 (1.8%) 3 (0.9%) 0 (0%) 
Hyperglycemia, N (%) 45 (3.1%) 35 (3.3%) 8 (2.3%) 1 (4.3%) 

 

Abbreviations: BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment of 
insulin resistance; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; T2D, type 2 diabetes; WHR, 
waist-to-hip ratio 

Data are means ± standard deviation. 
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Table 3: Interactions between circulating lipids, PPARγ Pro12Ala and metabolic quantitative traits. 

 Pro12Ala x TC Pro12Ala x TGa Pro12Ala x HDL-C Pro12Ala x LDL-C 
Outcome Main Genetic 

Effect 
Interaction Main Genetic 

Effect 
Interaction Main Genetic 

Effect 
Interaction Main Genetic 

Effect 
Interaction 

BMIa 0.16 ± 0.23 
(0.49) 

-1.13 x 10-3 ± 1.42 x 
10-3 (0.42) 

0.01 ± 0.04  
(0.85) 

0.01 ± 0.05 
(0.85) 

-0.21 ± 0.18 
(0.27) 

 

4.10 x 10-3 ± 
3.48 x 10-3 

(0.24) 

0.08 ± 0.20 
(0.68) 

 

-8.94 x 10-4 ± 
1.90 x 10-3 

(0.64) 

WHRa -0.05 ± 0.24 
(0.85) 

2.77 x 10-4 ± 1.50 x 
10-3 (0.85) 

0.02 ± 0.05  
(0.70) 

 

0.01 ± 0.05 
(0.84) 

 

-0.57 ± 0.20 
(4.89 x 10-3) 

 

1.14 x 10-2 ± 
3.81 x 10-3  

(2.91 x 10-3) 

0.08 ± 0.21 
(0.69) 

-7.22 x 10-4 ± 
2.03 x 10-3 

(0.72) 

Glucose -0.03 ± 0.12 
(0.83) 

2.51 x 10-4 ± 7.44 x 
10-4 (0.74) 

0.02 ± 0.03  
(0.37) 

 

0.03 ± 0.03 
(0.20) 

 

0.03 ± 0.10 
(0.78) 

 

-3.85 x 10-4 ± 
1.97 x 10-3 

(0.84) 

0.02 ± 0.11 
(0.86) 

 

3.65 x 10-5 ± 
1.03 x 10-3 

(0.97) 

Insulina 0.55 ± 0.26 
(0.04) 

-3.79 x 10-3 ± 1.62 x 
10-3 (0.02) 

-0.04 ± 0.05 (0.45) -0.05 ± 0.05 
(0.36) 

 

-0.06 ± 0.21 
(0.77) 

 

6.51 x 10-4 ± 
3.91 x 10-3 

(0.77) 

0.25 ± 0.23 
(0.27) 

 

-2.93 x 10-3 ± 
2.16 x 10-3 

(0.18) 

HOMA-IRa 0.49 ± 0.26 
(0.06) 

-3.38 x 10-3 ± 1.61 x 
10-3 (0.04) 

-0.03 ± 0.05 (0.58) -0.04 ± 0.05 
(0.50) 

-0.04 ± 0.21 
(0.86) 

3.59 x 10-4 ± 
3.94 x 10-3 

(0.93) 

0.21 ± 0.23 
(0.36) 

-2.40 x 10-3 ± 
2.15 x 10-3 

(0.26) 
 

Abbreviations: BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment of 
insulin resistance; LDL-C, low-density lipoprotein cholesterol; SE, standard error; TC, total cholesterol; TG, triglycerides; WC, waist 
circumference; WHR, waist-to-hip ratio 
ainverse normal transformed variables 

Data presented are β ± SE (p value). All models were adjusted for age, sex, and recruitment center. Values in bold indicate nominally 
significant or significant main genetic effects and interactions (p < 0.05). 
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Table 4: Interactions between circulating lipids, PPARγ Pro12Ala and the presence of insulin resistance. 

 OR interaction (95% CI) P interaction OR main genetic effect (95% CI) P main genetic effect 
PPARγ x TC 0.98 (0.97 – 0.99) 9.30 x 10-4 18.39 (2.57 – 131.79) 9.54 x 10-4 
PPARγ x TGa 1.06 (0.61 – 1.85) 0.84 0.87 (0.47 – 1.61) 0.66 
PPARγ x HDL-C 0.98 (0.94 – 1.02) 0.28 2.52 (0.39 – 16.43) 0.33 
PPARγ x LDL-C 0.98 (0.96 – 0.99) 8.09 x 10-3 8.70 (1.62 – 46.87) 0.01 
 

Abbreviations: CI, confidence interval; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; 
OR, odds ratio; TC, total cholesterol; TG, triglycerides 
ainverse normal transformed variables 

Data presented are OR (95% CI). All models were adjusted for age, sex, and recruitment center. Values in bold indicate nominally 
significant or significant main genetic effects and interactions (p < 0.05). 
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Table 5: Circulating lipid subgroup analysis for significant interactions between PPARγ Pro12Ala and metabolic traits 

 WHRa 
 β ± SE p value 
Low HDL-C -0.10 ± 0.08 0.17 
High HDL-C 0.09 ± 0.07 0.20 
 Insulina 
Low TC 0.09 ± 0.08 0.24 
High TC -0.19 ± 0.08 0.02 
 HOMA-IRa 
Low TC 0.10 ± 0.08 0.24 
High TC -0.17 ± 0.08 0.03 
 Insulin Resistance 
 OR (95% CI) p value 
Low TC 1.69 (0.92 – 2.96) 0.07 
High TC 0.41 (0.20 – 0.84) 0.02 
Low LDL-C 1.72 (0.97 – 3.04) 0.07 
High LDL-C 0.44 (0.27 – 0.87) 0.02 
 

Abbreviations: CI, confidence interval; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; 
OR, odds ratio; TC, total cholesterol; WHR, waist-to-hip ratio 
ainverse normal transformed variables 

Data presented are β ± SE (p value) or OR (95% CI). All models were adjusted for age, sex, and recruitment center. Values in bold 
indicate nominally significant or significant interactions (p < 0.05). 
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Supplementary Table 1: Power calculation for the main effect of PPARγ rs1801282 on BMI 

MAF Beta Sample Size 
(unadjusted)a 

Sample Size 
(adjusted)b 

Interaction Sample 
Size (unadjusted)a 

Interaction 
Sample Size 
(adjusted)b 

0.14 0.50 2296 4495 118 230 
 0.60 1596 3119 79 155 
 0.70 1169 2290 56 109 
 0.80 894 1751 41 80 
 0.90 706 1382 31 60 

 

Abbreviations: MAF, minor allele frequency  
a power calculation unadjusted for multiple testing (2 sided p-value = 0.05, 80% power) 
b power calculation adjusted for multiple testing (2 sided p-value = 2.08 x 10-3, 80% power)
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CHAPTER 4: Genetic markers of inflammation may not contribute to metabolic traits 
in Mexican children 

PeerJ. 2016 Jun 23;4:e2090 

Vashi N, Stryjecki C, Peralta-Romero J, Suarez F, Gomez-Zamudio J, Burguete-Garcia AI, Cruz 
M, Meyre D. 

ABSTRACT: 

BACKGROUND: Low-grade chronic inflammation is a common feature of obesity and its 
cardio-metabolic complications. However, little is known about a possible causal role of 
inflammation in metabolic disorders. Mexico is among the countries with the highest obesity 
rates in the world and the admixed Mexican population is a relevant sample due to high levels of 
genetic diversity. 

METHODS: Here, we studied 1,462 Mexican children recruited from Mexico City. Six genetic 
variants in five inflammation-related genes were genotyped: rs1137101 (leptin receptor (LEPR)), 
rs7305618 (hepatocyte nuclear factor 1 alpha (HNF1A)), rs1800629 (tumor necrosis factor alpha 
(TNFA)), rs1800896, rs1800871 (interleukin-10 (IL-10)), rs1862513 (resistin (RETN)). Ten 
continuous and eight binary traits were assessed. Linear and logistic regression models were used 
adjusting for age, sex, and recruitment centre. 

RESULTS: We found that one SNP displayed a nominal evidence of association with a 
continuous trait: rs1800871 (IL-10) with LDL (beta = -0.068 ± 1.006, P = 0.01). Subsequently, 
we found one nominal association with a binary trait: rs7305618 (HNF1A) with family history of 
hypertension (odds-ratio = 1.389 [1.054-1.829], P = 0.02). However, no P-value passed the 
Bonferroni correction for multiple testing. 

DISCUSSION: Our data in a Mexican children population are consistent with previous reports 
in European adults in failing to demonstrate an association between inflammation-associated 
single nucleotide polymorphisms (SNPs) and metabolic traits. 
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INTRODUCTION 

Obesity has increased rapidly in prevalence over the last 30 years causing a growing 

public health burden at the worldwide level1. Obesity is no longer only a concern for high 

income countries, but is escalating in developing countries as well2. Even more concerning are 

the increasing rates of childhood obesity which have tripled over the last 30 years1.  In 2011-

2012, the age-adjusted prevalence of obesity in adults from the United States of America was 

47.8%, 42.5%, 32.6% and 10.8% in non-Hispanic Blacks, Hispanics, non-Hispanic White 

Americans, and non-Hispanic Asians, respectively3. These discrepancies may be due to 

differences in diet, lifestyle, socioeconomic status and access to health care across ethnic groups. 

However they may also reflect differences in the genetic susceptibility to obesity and metabolic 

disorders as evidenced by admixture studies4. Twin studies have reported heritability estimates 

between 47-90% for body mass index (BMI)5.  Eleven monogenic genes and more than 140 

polygenic loci have been identified to date, accounting for a modest fraction of the heritability of 

obesity6,7. Obesity is associated with cardio-metabolic complications (insulin resistance, type 2 

diabetes, hypertension, dyslipidemia, cardiovascular disease) that cluster into the so-called 

metabolic syndrome8. However, the relationship between obesity and associated complications is 

complex as obesity does not always convert into a metabolic syndrome 9,10. Consistent with the 

phenotypic correlations seen in observational epidemiology, shared genetic contributions 

between the components of the metabolic syndrome suggest that shared molecular roots may be 

involved in the development of the metabolic syndrome11-13.  

Inflammation has recently been advocated as one of the pathophysiological mechanisms 

linking obesity to other metabolic complications14. Inflammation can be defined as a protective 

response of an organism to infection and injury. This operates through initiating a healing 

process of pathogen killing and tissue repair to restore homeostasis at the infected and/or 



103 
 

damaged sites14. Normally, the inflammatory response to harmful stimuli is short-lived and once 

the damage is removed or neutralized, the inflammation is resolved through negative feedback 

mechanisms14. However, inflammatory response that fails to regulate itself becomes chronic and 

is believed to set the stage for a broad range of diseases14. Obesity and its cardio-metabolic 

complications are associated with low-grade chronic inflammation, characterized by abnormal 

cytokine production, activation of a network of inflammatory signal pathways, and new 

connective tissue formation15.  

Genome-wide association and in a lesser extent candidate gene studies identified around 

fifty common genetic variants associated with serum inflammatory biomarker levels (e.g. C-

reactive protein (CRP), soluble Intercellular Adhesion Molecule 1 (sICAM-1), interleukin-6 (IL-

6) or soluble P-selectin)16. Researchers then used these recently discovered genetic variants to 

determine whether this chronic inflammation is a cause of obesity and other metabolic disorders, 

or a consequence of it. Overall, Mendelian randomization experiments including gene variants in 

inflammation pathways did not evidence a causal role of inflammation in obesity or type 2 

diabetes17-19 and conflicting results about a causal link between inflammation and cardiovascular 

disease have been reported16,19-21. At this stage, more research is needed to understand the role of 

inflammation in the development of obesity and cardio-metabolic complications, particularly in 

non-European populations.  

Metabolic syndrome is observed in childhood obesity, but can also develop in lean 

children, suggesting that obesity is a marker for the syndrome, not a cause22.  Since obesity and 

its complications are associated with atherogenesis starting in childhood and early adulthood23,24, 

a better understanding of the molecular mechanisms involved in the clustering of cardio-
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metabolic factors early in life may help to develop more efficient programs to prevent the 

development of metabolic syndrome. 

The Mexican population is characterized by a high prevalence of obesity and metabolic 

complications. The 2012 National Health and Nutrition Survey indicates that 34.4% and 71.2% 

of the Mexican children and adults respectively are overweight or obese24,25. This ranks Mexico 

among the countries with the highest obesity rates in the world25,26. The prevalence of metabolic 

syndrome (ATP III criteria) in children and adolescents living in Mexico was estimated to be 

20% in 200626,27. Depending on the definitions used (American Heart Association/ National 

Heart, Lung, and Blood Institute or the International Diabetes Federation), the prevalence of 

metabolic syndrome among Mexican adults ranges from 59.7 to 68.7%27. This exceptionally 

high burden of obesity and metabolic syndrome in the Mexican population is largely due to the 

rapid transition towards an ‘obesogenic’ environment characterized by a sedentary lifestyle, an 

increase in the consumption of sugar-sweetened beverages coupled with the recent proliferation 

of fast food restaurants28. However, the tremendous genetic variety and unique genetic 

architecture of the admixed Mexican population may partly account for a higher susceptibility to 

obesity and metabolic disturbances than in other populations29. Mexican populations consist of 

Native individuals as well as individuals of European or African descent29.  The distributions and 

proportions of these three groups vary with the region studied however evidence shows very few 

true Natives remain as virtually all native groups show some degree of admixture, mainly with 

Europeans30. Thus studying the Mexican population gives insight into the disease mechanisms of 

a variety of races due to the genetic diversity present in the population30,31.   

In this study, we assessed the association of 6 common genetic single nucleotide 

polymorphisms (SNPs) in 5 inflammation-related genes with 10 continuous and 8 binary 
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metabolic traits in 1462 children from the Mexican population. Our data do not favor an 

association between inflammatory processes and the development of metabolic complications. 

 

METHODS 

Study Participants 

A total of 1462 unrelated children aged 6-14 having both genetic and phenotypic data 

available were included in this study. Children were randomly selected to participate in a cross-

sectional study from four schools in Mexico City between July 2011 and July 2012. 

Anthropometric traits were assessed by a trained pediatrician. Blood samples were collected for 

biochemical measurements and DNA extraction. Information regarding family history of type 2 

diabetes, obesity and hypertension was obtained via questionnaires. The study protocol was 

approved by the Mexican Social Security Institute National Committee and the Ethical 

Committee Board and all experiments were performed in accordance with relevant guidelines 

and regulations. Informed consent was obtained from both parents and the child. 

Genotyping 

Genomic DNA was extracted from peripheral blood using the FLEX STAR Autogen 

platform (Holliston, Massachusetts US). The genotyping was performed using the TaqMan 

OpenArray Real-Time PCR System (Life Technologies, Carlsbad, US), following the 

manufacturer’s instructions.  We selected 6 SNPs in or near 5 genes that displayed redundant 

associations with inflammation-related traits in literature: rs1137101 (leptin receptor (LEPR)), 

rs7305618 (hepatocyte nuclear factor 1 alpha (HNF1A)), rs1800629 (tumor necrosis factor alpha 

(TNFA)), rs1800896, rs1800871 (interleukin-10 (IL-10)), rs1862513 (resistin (RETN))16,32-34. The 

6 SNPs showed no deviation from Hardy-Weinberg Equilibrium (0.22 ≤ P ≤ 0.76). The call rate 
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for each of the 6 SNPs was comprised between 94.6 and 100 % (Supplementary Table 2). The 

two SNPs rs1800896 and rs1800871 in IL-10 display modest linkage disequilibrium in the 

Mexican children study sample (r2 value = 0.239). 

Phenotyping 

All participants were weighed using a digital scale (Seca, Hamburg, Germany). Height 

was measured with a portable stadiometer (Seca 225, Hamburg, Germany). Body mass index 

was calculated as weight (kg) / (height (m)2) and classified as underweight, normal weight, 

overweight, obese according to the Centers for Disease Control and Prevention CDC 2000 

references. Waist circumference (WC) and hip circumference (HC) were measured at the 

midpoint between the lowest rib and the iliac crest at the top of the iliac crest respectively, after a 

normal exhalation with children in the standing position. Systolic and diastolic blood pressure 

(SBP and DBP) were measured using a mercurial sphygmomanometer (ALPK2, Tokyo, Japan). 

Blood pressure readings were taken for each participant twice on the right arm in a sitting 

position with a 5 minute rest between each measurement and the mean of the two readings was 

determined. Hypertension was defined as average measured blood pressure above the American 

Heart Association’s recommendations (systolic ≥ 140 mmHg or diastolic ≥ 90 mmHg). Blood 

samples were obtained following a 12 hour fast and were analyzed for fasting glucose, total 

cholesterol (TC), HDL-cholesterol (HDL), LDL-cholesterol (LDL) and triglycerides (TG) using 

the ILab 350 Clinical Chemistry System (Instrumentation Laboratory IL. Barcelona Spain). 

Insulin (IU) was measured by chemiluminescence (IMMULITE, Siemens, USA). The 2003 

ADA criteria for fasting plasma glucose (FPG) were used to classify children as normal (FPG < 

5.6 mmol/L), as having impaired fasting glucose (IFG; FPG 5.6- 6.9 mmol/L), or as having T2D 

(FPG > 7.0 mmol/L)35. Subjects with IFG or T2D were considered as having hyperglycemia. 

Dyslipidemia was defined as fasting triglycerides ≥ 100 mg/dL (0-9 years of age) or triglycerides 
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≥ 130 mg/dL (10-19 years of age) and/or HDL-C < 35 mg/dL and/or LDL-C ≥ 130 mg/dL, 

according to current recommendations36. Information regarding family history of type 2 diabetes, 

overweight / obesity, and hypertension was obtained via questionnaires.  

Statistical Analyses 

  Statistical analyses were performed using SPSS (version 20). We assessed the power of 

our sample using QUANTO software version 1.2.4 (University of Southern California, Los 

Angeles, CA, USA). Non-biological outlier data were discarded. Due to the risk of blood 

hemolysis, fasting insulin values ˂ 1 mIU/l were discarded from the study. The normal 

distribution of continuous variables was tested using the Kolmogorov-Smirnov test. All traits of 

interest deviated significantly from normality. Logarithmic transformations corrected the lack of 

normality for fasting insulin, improved the distribution of six traits (BMI, waist and hip 

circumference, waist to hip ratio, total cholesterol, triglycerides,) despite still deviating from 

normality, and did not improve the distribution of fasting glucose, HDL and LDL cholesterol. 

Linear regression models were used to examine the association between the SNPs and metabolic 

traits. These tests were adjusted for sex, age and the recruitment centre. Genetic association 

studies were performed under an additive mode of inheritance for 5 out of 6 SNPs and the effect 

allele was the minor allele. Because only one AA homozygous carrier was identified for 

rs1800629 (TNFA), we used a dominant model instead. Two-sided P <0.05 before Bonferroni 

correction were considered as nominally significant. After applying a Bonferroni’s correction for 

multiple testing (18 binary / continuous traits x 6 SNPs), P-values < 4.6 x 10-4 (0.05/108) was 

considered as significant. 
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RESULTS 

Characteristics of the Mexican children population 

The main anthropometric and biological characteristics of the 1462 Mexican children are 

summarized in Table 6. Fifty-three percent of the population were males. Children exhibited an 

average age and BMI of 9.24 ± 2.07 years and 19.65 ± 4.20 kg/m2, respectively. Using the 

Centers for Disease Control and Prevention 2000 references, 1.4% of the children were 

underweight, 49.4% were normal weight, 21.3% were overweight and 27.9% were obese. 

Additionally, 1.5, 3.1 and 34.9% of children displayed hypertension, hyperglycemia, and 

dyslipidemia, respectively. A family history of overweight / obesity, type 2 diabetes or 

hypertension was reported for 53.0, 12.0 and 16.3 % of children, respectively (Table 6). The 

sample size was similar for all traits except fasting insulin (data available in 78.5% of subjects) 

due to the phenomenon of blood hemolysis.  

Association between genetic markers of inflammation and continuous metabolic traits 

The associations between the 6 genetic variants of inflammation and 10 continuous 

metabolic traits are reported in Table 7. Only one SNP displayed a nominal evidence of 

association: rs1800871 (IL-10) with LDL (β = -0.068 ± 1.006, P = 0.010).  

Association between genetic markers of inflammation and binary metabolic traits 

The associations between the 6 genetic markers of inflammation and 8 binary metabolic 

traits are reported in Table 8. One nominally significant association was found: rs7305618 

(HNF1A) with family history of hypertension (1.389 [1.054-1.829] p=0.020). No P-value was 

significant after Bonferroni correction for multiple testing. 
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DISCUSSION 

In the present study, we assessed the association of 6 common genetic variants in 5 

inflammation-related genes with 10 continuous and 8 binary metabolic traits in 1462 children 

from the Mexican population. We found one nominal associations between a genetic variant and 

the continuous traits. Subsequently, we only found two nominal associations between genetic 

variants and continuous / binary metabolic traits. No P-value resisted to a Bonferroni correction 

for multiple testing (P < 4.6 x 10-4). The number of significant P-values obtained in this 

experiment at the 0.05 alpha level was less than the number of associations expected by chance 

(~ 5). Overall, our negative results do not suggest an association between inflammation-

associated SNPs and metabolic traits in Mexican children. This is in line with previous reports 

from literature, that at best suggest a possible association between inflammation and 

cardiovascular events16-18,20,22,37,38. Our findings are also supported by the discoveries of 

hypothesis-free genome-wide association studies for metabolic traits that show a limited overlap 

with genetic markers of inflammation to date16,39-42. 

Power calculations on the standard trait BMI indicate that we only have a fair likelihood 

to identify associations at the nominal and Bonferroni corrected levels (Supplementary Figures 1 

and 2). Therefore, we cannot totally exclude that the nominal associations reported here are 

actually true subtle positive results. For instance, we found that the rs7305618 SNP near HNF1A 

was nominally associated with a family history of hypertension. The HNF1A gene encodes 

hepatic nuclear factor 1 alpha (HNF1a), a transcription factor expressed in the liver, pancreas, 

gut and kidney43. Mutations in the HNF1A gene account for approximately 70% of cases of 

maturity onset diabetes of the young (MODY)44. HNF1A mutation carriers display a distinct 

hypertension status45. HNF-1a is an essential transcription factor in nephron development and 
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rare coding loss-of-function mutations in HNF1A lead to renal malformations and renal 

dysfunction in mice and humans46-48. Testing the associations of the HNF1A rs7305618 SNP 

with adult hypertension in independent studies may therefore be relevant. Similarly, the 

association of rs1800871 (IL-10) with LDL is indirectly supported by previous reports in 

literature. While the adenovirus-mediated gene transfer of interleukin-10 in an hyperlipidemic 

LDLr knock-out mouse model results in lowering of cholesterol levels and attenuation of 

atherogenesis, interleukin-10 deficiency in a distinct hyperlipidemic apolipoprotein E knock-out 

mouse model leads to an increase of LDL and atherosclerosis49,50. However, further studies in 

independent Mexican children populations are needed to confirm these nominal associations. No 

study in children has assessed the association of genetic markers of inflammation with metabolic 

traits, making any comparisons to our data difficult. 

Our study has several strengths. It is the first to explore the associations of a 

representative list of genetic variants related to inflammation with metabolic traits in children 

and in the Mexican population. Additionally, we assessed diverse metabolic traits including both 

continuous and binary variables. Limitations of the study include an under-optimal statistical 

power to identify even substantial genetic effects, especially after corrections for multiple tests 

(Supplementary Figures 1 and 2). Additionally, the list of SNPs related to inflammation that we 

assessed did not include the more recent GWAS discoveries for inflammation traits16. We did not 

assess the association of these SNPs with intermediate inflammatory serum markers (e.g. CRP, 

sICAM-1, IL-6, soluble P-selectin). Finally, using ancestry informative markers to adjust for 

potential population stratification was not performed in this study. 

In conclusion, the association study of 6 SNPs in 5 inflammation-related genes with 10 

continuous and 8 binary cardio-metabolic traits in 1462 Mexican children does not suggest an 
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association between inflammation-associated SNPs, obesity and its metabolic complications. 

Additional studies with larger sample sizes, a more exhaustive panel of SNPs and the availability 

of both inflammatory serum biomarkers and clinical traits in Mexican and other populations will 

provide a more definitive answer to this important research topic.  
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Table 6: Characteristics of the Mexican children population. 

Trait Mean ± Standard 
Deviation Sample Size 

Sex (% Male/Female) 53.0/47.0 775/687 
Age (Years) 9.24 ± 2.07 1462 
BMI (Kg/m2) 19.65 ± 4.20 1461 
Waist to hip ratio 0.85 ± 0.06 1417 
Systolic blood pressure (mmHg) 98.58 ± 10.88 1457 
Diastolic blood pressure (mmHg) 66.25 ± 8.80 1458 
Low density lipoprotein-cholesterol (mg/dl) 102.43 ± 26.43 1462 
High density lipoprotein-cholesterol (mg/dl) 50.58 ± 12.82 1462 
Total cholesterol (mg/dl) 157.27 ± 33.53 1462 
Triglycerides (mg/dl) 93.67 ± 49.69 1462 
Fasting glucose (mmol/l) 4.57 ± 0.53 1461 
Fasting insulin (mIU/l) 9.10 ± 7.05 1148 
Underweight (%) 1.40 1462 
Normal weight (%) 49.40 1462 
Overweight (%) 21.30 1462 
Obese (%) 27.90 1462 
Hypertension (%) 1.50 1452 
Hyperglycemia (%) 3.10 1456 
Dyslipidemia (%) 34.90 1457 
Type 2 diabetes family history (%) 11.98 1461 
Hypertension family history (%) 16.29 1461 
Overweight / obesity family history (%) 53.05 1461 
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Table 7: Characteristics of the Mexican children population. 

Trait Mean ± Standard 
Deviation Sample Size 

Sex (% Male/Female) 53.0/47.0 775/687 
Age (Years) 9.24 ± 2.07 1462 
BMI (Kg/m2) 19.65 ± 4.20 1461 
Waist to hip ratio 0.85 ± 0.06 1417 
Systolic blood pressure (mmHg) 98.58 ± 10.88 1457 
Diastolic blood pressure (mmHg) 66.25 ± 8.80 1458 
Low density lipoprotein-cholesterol (mg/dl) 102.43 ± 26.43 1462 
High density lipoprotein-cholesterol (mg/dl) 50.58 ± 12.82 1462 
Total cholesterol (mg/dl) 157.27 ± 33.53 1462 
Triglycerides (mg/dl) 93.67 ± 49.69 1462 
Fasting glucose (mmol/l) 4.57 ± 0.53 1461 
Fasting insulin (mIU/l) 9.10 ± 7.05 1148 
Underweight (%) 1.40 1462 
Normal weight (%) 49.40 1462 
Overweight (%) 21.30 1462 
Obese (%) 27.90 1462 
Hypertension (%) 1.50 1452 
Hyperglycemia (%) 3.10 1456 
Dyslipidemia (%) 34.90 1457 
Type 2 diabetes family history (%) 11.98 1461 
Hypertension family history (%) 16.29 1461 
Overweight / obesity family history (%) 53.05 1461 
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Table 8: Association between 6 genetic markers of inflammation and 10 continuous metabolic traits. 

  BMIa    WHRa SBPa DBPa LDL HDL TCa TGa FG FIa 

rs1137101 
(LEPR) 

0.002 ± 
0.007 
(0.83) 

-0.003 ± 
0.002 
(0.19) 

-0.001 ± 
0.004 
(0.83) 

0.003 ± 
0.005 
(0.50) 

-0.023 ± 
0.980 
(0.38) 

-0.009 ± 
0.477 
(0.73) 

-0.008 ± 
0.007 
(0.27) 

-0.007 ± 
0.017 
(0.66) 

-0.019 ± 
0.020 
(0.47) 

-0.008 ± 
0.026 
(0.78) 

rs7305618 
(HNF1A) 

-0.003 ± 
0.010 
(0.76) 

-0.004 ± 
0.004 
(0.319) 

-0.006 ± 
0.006 
(0.31) 

-0.010 ± 
0.007 
(0.15) 

0.011 ± 
1.478 
(0.69) 

0.006 ± 
0.717 
(0.83) 

-0.006 ± 
0.011 
(0.57) 

-0.016 ± 
0.025 
(0.53) 

0.010 ± 
0.029 
(0.71) 

0.029 ± 
0.040 
(0.46) 

rs1800629 
(TNFA)b 

0.002 ± 
0.017 
(0.93) 

0.008 ± 
0.006 
(0.75) 

0.022 ± 
0.010 
(0.37) 

0.005 ± 
0.012 
(0.85)  

0.002 ± 
2.394 
(0.93) 

0.037 ± 
1.156 
(0.14) 

0.006 ± 
0.019 
(0.81) 

0.021 ± 
0.043 
(0.42) 

0.031 ± 
4.619 
(0.24) 

0.000 ± 
0.066 
(0.99) 

rs1800896 
(IL-10) 

-0.001 ± 
0.008 
(0.94) 

-0.003 ± 
0.003 
(0.38) 

0.005 ± 
0.004 
(0.28) 

0.004 ± 
0.006 
(0.53) 

-0.006 ± 
1.158 
(0.84) 

0.012 ± 
0.566 
(0.65) 

-0.001 ± 
0.009 
(0.92) 

-0.018 ± 
0.020 
(0.37) 

0.034 ± 
0.023 
(0.21) 

3.89x10-5± 
0.031 
(0.99) 

rs1800871 
(IL-10) 

-0.005 ± 
0.007 
(0.49) 

-0.001 ± 
0.003 
(0.57) 

-0.004 ± 
0.004 
(0.33) 

-0.005 ± 
0.005 
(0.31) 

-0.068 ± 
1.006 
(0.01) 

-0.011 ± 
0.489 
(0.67) 

-0.010 ± 
0.008 
(0.19) 

0.010 ± 
0.017 
(0.56)  

-0.006 ± 
0.020 
(0.82) 

-0.024 ± 
0.027 
(0.37) 

rs1862513 
(RETN) 

-0.020 ± 
0.011 
(0.08) 

-0.005 ± 
0.004 
(0.17) 

-0.005 ± 
0.006 
(0.39) 

0.002 ± 
0.008 
(0.82) 

0.022 ± 
1.570 
(0.41) 

0.35 ± 
0.765 
(0.19) 

0.014 ± 
0.012 
(0.24) 

-0.017 ± 
0.027 
(0.54)  

0.010 ± 
0.032 
(0.71)  

-0.070 ± 
0.042 
(0.09) 

Values in bold indicate P value < 0.05; data are presented as beta ± standard error (P-value). a Natural logarithmic transformation 
applied. b SNP analyzed under the dominant model. 
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Table 9: Association between 6 genetic markers of inflammation and 8 binary metabolic traits 

  
Normal 
weight vs. 
obese 

Normal weight 
vs. overweight 
and obese 

Hypertension Hyperglycemia Dyslipidemia Type 2 diabetes 
family history 

Hypertension 
family history 

Overweight / 
obesity family 
history 

rs1137101 
(LEPR) 

0.052 [0.886-
1.253] (0.56) 

1.004 [0.867-
1.162] (0.96) 

1.415 [0.782-
2.562] (0.25) 

0.774 [0.505-
1.186] (0.24) 

0.995 [0.853-
1.161] (0.95) 

0.883 [0.706-
1.105] (0.28) 

0.861 [0.707-
1.049] (0.14) 

0.925 [0.799-
1.072] (0.30)  

rs7305618 
(HNF1A) 

0.849 [0.652-
1.106] (0.23) 

0.879 [0.704-
1.097] (0.25) 

0.732 [0.263-
2.038] (0.55) 

0.938 [0.485-
1.816] (0.85) 

0.871 [0.688-
1.102] (0.25) 

1.347 [0.988-
1.837] (0.06) 

1.389 [1.054-
1.829] (0.02) 

1.050 [0.841-
1.311] (0.67) 

rs1800629 
(TNFA)a 

1.175 [0.767-
1.799] (0.46) 

1.111 [0.767-
1.609] (0.58) 

1.110 [0.260-
4.736] (0.89) 

0.793 [0.244-
2.576] (0.70) 

1.084 [0.738-
1.592] (0.68) 

0.652 [0.336-
1.266] (0.21) 

0.553 [0.300-
1.018] (0.06) 

1.020 [0.702-
1.482] (0.92) 

rs1800896      
(IL-10) 

1.011 [0.825-
1.239] (0.92) 

1.050 [0.883-
1.249] (0.58) 

0.827 [0.393-
1.743] (0.62) 

1.348 [0.834-
2.180] (0.22) 

1.041 [0.868-
1.238] (0.67) 

1.060 [0.813-
1.383] (0.67) 

0.991 [0.785-
1.253] (0.94) 

1.104 [0.927-
1.314] (0.27) 

rs1800871     
(IL-10) 

0.929 [0.778-
1.108] (0.41)  

0.962 [0.827-
1.118] (0.61) 

0.851 [0.457-
1.584] (0.61) 

1.152 [0.750-
1.769] (0.52) 

0.944 [0.805-
1.107] (0.48) 

1.015 [0.807-
1.277] (0.90) 

0.876 [0.714-
1.075] (0.20) 

0.906 [0.779-
1.054] (0.20) 

rs1862513 
(RETN) 

0.785 [0.585-
1.052] (0.11) 

0.932 [0.736-
1.180] (0.56) 

1.065 [0.416-
2.726] (0.90) 

0.677 [0.310-
1.477] (0.33) 

0.941 [0.733-
1.209] (0.64) 

1.135 [0.801-
1.609] (0.48)  

0.981 [0.713-
1.350] (0.91) 

0.984 [0.777-
1.246] (0.89)  

Values in bold indicate P value < 0.05; data are presented as beta [confidence interval] (P-value). a SNP analyzed under the dominant 
mode. 
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Supplementary Table 2: Description of the 6 SNPs studied. 

Gene 
Name 

Chromosomal 
Physical 
Location 

SNP  Major 
Allele 

Minor 
Allele 

Genotype 
Count 

Call Rate 
(%) 

HWE P-
value 

LEPR 1q31.3 rs1137101 A G 423 712 312 98.97 0.70 
HNF1A 12q24.31 rs7305618 C T 1083 300 27 96.44 0.25 
TNFA 6p21.3 rs1800629 G A 1343 118 1 100 0.33 
IL-10 1q31-32 rs1800896 T C 791 527 84 95.90 0.76 

rs1800871 G A 473 732 248 99.38 0.22 
RETN 19p13.2 rs1862513 C G 1089 275 19 94.60 0.73 
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Supplementary Figure 1: Power calculation for the main effect of the SNPs on BMI, two-
sided P-value of 0.05, 80%. 
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Supplementary Figure 2: Power calculation for the main effect of SNPs on BMI at a 
significant level (P=3.1 x 10-4). 
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ABSTRACT: The adipocyte-derived adiponectin hormone bridges obesity and its cardio-
metabolic complications. Genetic variants at the ADIPOQ locus, in ADIPOR1, and ADIPOR2 
have been associated with adiponectin concentrations and cardio-metabolic complications in 
diverse ethnicities. However, no studies have examined these associations in Mexican children. 
We recruited 1 457 Mexican children from Mexico City. Six genetic variants in or near ADIPOQ 
(rs182052, rs2241766, rs266729, rs822393), ADIPOR1 (rs10920533), and ADIPOR2 
(rs11061971) were genotyped. Associations between serum adiponectin, genetic variants, and 
cardio-metabolic traits were assessed using linear and logistic regressions adjusted for age, sex, 
and recruitment center. Serum adiponectin concentration was negatively associated with body 
mass index, waist to hip ratio, low-density lipoprotein cholesterol, total cholesterol, triglycerides, 
fasting glucose, fasting insulin, homeostatic model assessment of insulin resistance, dyslipidemia 
and overweight/obesity status (7.76 x 10-40 ≤ p ≤ 3.00 x 10-3). No significant associations 
between genetic variants in ADIPOQ, ADIPOR1, and ADIPOR2 and serum adiponectin 
concentration were identified (all p ≥ 0.30). No significant associations between the six genetic 
variants and cardio-metabolic traits were observed after Bonferroni correction (all p < 6.9 x 10-
4). Our study suggests strong associations between circulating adiponectin concentration and 
cardio-metabolic traits in Mexican children. 
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INTRODUCTION 

In 2016, the World Health Organization reported that 1.9 billion adults and 381 million 

children were overweight/obese, resulting in an important global health concern. Obesity is 

associated with the development of comorbidities (insulin resistance (IR), type 2 diabetes (T2D), 

dyslipidemia, hypertension), collectively known as the metabolic syndrome1. Several therapeutic 

options are available, however controlling the development of obesity and its resulting 

complications has proven challenging2. Chronic obesity in its more severe forms leads to major 

reductions in life expectancy, with most of the excess deaths due to heart disease, cancer, and 

T2D3. As a result, obesity imposes a heavy socio-economic burden in both high-income and 

developing countries4.  

The Mexican population is a group at high risk for developing obesity and the metabolic 

syndrome, especially in childhood5. The prevalence of obesity in Mexican school-aged children 

was 11.8% in girls and 17.4% in boys in 20125.  The metabolic syndrome prevalence was 9.4% 

in Mexican adolescents in 20106. The rise of childhood obesity in Mexico is largely explained by 

a ‘nutritional transition’ which reflects changes in dietary patterns characterized by increased 

consumption of foods that are high in fat and/or sugar, as well as reduced physical activity7. 

Beyond modifiable factors, the elucidation of biological determinants of obesity and its cardio-

metabolic complications is expected to improve prediction, prevention and care, including novel 

treatments adapted to genetic profiles of high-risk populations8.  

Adiponectin, an adipocyte-derived secretagogue, may be considered as one of the key 

hormones bridging obesity and its cardio-metabolic complications9. Genetic mouse models have 

shown that deficiency of adiponectin contributes to IR, while its overexpression in leptin-

deficient obese mice promotes adipose tissue expansion and improves insulin sensitivity10,11. 
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Adiponectin acts on two receptors (adiponectin receptors 1 and 2) encoded by ADIPOR1 and 

ADIPOR2 genes, both of which appear to show functional redundancy12. Simultaneous 

disruption of both AdipoR1 and AdipoR2 in the liver of leptin-deficient obese mice leads to IR 

and marked glucose intolerance12. In humans, adiponectin is abundantly found in the 

bloodstream where it makes up 0.01-0.05% of total plasma protein13. Low  serum  adiponectin  

has been associated  with  obesity,  IR, T2D, dyslipidemia, hypertension and coronary  heart  

disease in cross-sectional studies9. Adiponectin level was also negatively associated with 

incident development  of insulin  resistance,  T2D,  dyslipidemia,  hypertension,  and coronary  

artery  disease9. The relationship between adiponectin level and subsequent weight gain has been 

a topic of interest due to its paradoxical nature, where levels of adiponectin decrease with the 

development of obesity14. Adiponectin was positively associated with weight gain in children, 

but not in adults in prospective studies15,16.  

If serum adiponectin levels are influenced by modifiable factors such as physical activity 

and diet, genetic factors account for 30-93% of variation in adiponectin levels in humans17,18. 

Encoded by the ADIPOQ locus and found on chromosome 3q27, adiponectin is a 30 kDA 

protein with both a collagenous N and a globular C-terminus18. Candidate gene studies, and more 

recently genome-wide association studies (GWAS), fine-mapping or resequencing experiments 

have identified numerous common and rare variants at the ADIPOQ locus associated with serum 

adiponectin level and metabolic traits18-24. If common variants in the ADIPOR1 and ADIPOR2 

genes have not been associated with serum adiponectin levels, they contribute to IR, T2D and 

cardiovascular disease risk18,22,25,26.  

While serum adiponectin levels negatively correlate with obesity, T2D and the 

components of the metabolic syndrome in Mexican children, high adiponectin concentrations are 
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associated with a metabolically healthy but obese profile in Mexican adults27-29. A few studies 

investigated the association of SNPs in ADIPOQ ADIPOR1, and ADIPOR2 with serum 

adiponectin levels and cardio-metabolic traits in Mexican and Mexican-American adults30-33. 

However, to date, no study has investigated these genetic associations in Mexican children. This 

prompted us to analyze in 1 457 Mexican children 1) the association of adiponectin levels with 

cardio-metabolic traits, 2) the association of six SNPs in ADIPOQ, ADIPOR1, ADIPOR2, and 

serum adiponectin levels, and 3) the association of the same SNPs with cardio-metabolic traits.  

 

METHODS 
Study population  

A total of 1, 559 children between the ages of 5 and 17 were randomly selected to 

participate in a cross-sectional study from four areas in Mexico City at the Primary Care Unit of 

the National Mexican Social Security Institute (Cuauhtémoc West, Independencia South, 

Nezahualcóyotl Est and Morelos North area). Recruitment was done in collaboration with local 

public schools. The study started in July 2011 and is still ongoing. A trained pediatrician 

performed all the anthropometric measurements. Blood samples were collected for biochemical 

measurements and DNA extraction. Children who had diagnosis of infectious disease, 

gastrointestinal disorders, administration of antimicrobial agents (within 6 months prior to 

study), incomplete questionnaires or biological samples were excluded. The child’s assent and 

written informed consent from the parents/guardians was obtained prior to enrolment into the 

study. The study protocol was approved by the Mexican Social Security Institute National 

Committee and the Ethical Committee Board. All procedures were conducted in accordance with 

the relevant guidelines and regulations of the Declaration of Helsinki34. 
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Phenotyping 

All participants were weighed using a digital scale (Seca, Hamburg, Germany) and height 

was measured with a portable stadiometer (Seca 225, Hamburg, Germany). Height, weight and 

body mass index (BMI), calculated as weight (kg) / height (m)2, were converted to age- and 

gender- adjusted standard deviation scores (SDS-Height, SDS-Weight and SDS-BMI, 

respectively) using the LMS method according to guidelines from the Centers for Disease 

Control (CDC)35,36. Waist circumference (WC) was measured at the midpoint between the lowest 

rib and the iliac crest after a normal exhalation with children in the standing position. Hip 

circumference was measured at the level of the greater trochanters. The waist to hip ratio (WHR) 

was also converted to age- and gender- adjusted standard deviation scores (SDS-WHR) using the 

LMS method and growth charts based on US National Health and Nutrition Survey, cycle III 

(NHANES III)37 . BMI was used to classify children as underweight, normal weight, overweight, 

or obese, according to the Centers for Disease Control and Prevention CDC 2000 references. 

Systolic and diastolic blood pressure (SBP and DBP) were measured using a mercurial 

sphygmomanometer (ALPK2, Tokyo, Japan). Blood pressure readings were taken for each 

participant twice on the right arm in a sitting position with 5 minutes rest between each 

measurement and the mean of the two readings was determined. Age- and gender- adjusted 

standard deviations scores for SBP and DBP (SDS-SBP and SDS-DBP) were calculated using 

methods specified by the fourth report from the National High Blood Pressure Education 

Program (NHBPEP) in children and adolescents38. Hypertension was defined as average 

measured blood pressure above the American Heart Association’s recommendations (systolic ≥ 

140 mmHg or diastolic ≥ 90 mmHg). Blood samples were obtained following a 12 hour fast and 

were analyzed for glucose, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), 

low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) using the ILab 350 Clinical 
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Chemistry System (Instrumentation Laboratory IL. Barcelona Spain). Dyslipidemia was defined 

as fasting TG ≥ 100 mg/dL (0-9 years of age) or TG ≥ 130 mg/dL (10-19 years of age) and/or 

HDL-C < 35 mg/dL and/or LDL-C ≥ 130 mg/dL, according to current recommendations39,40. 

Insulin (IU) was measured by chemiluminescence (IMMULITE, Siemens, USA) and 

homeostatic model assessment of insulin resistance (HOMA-IR) and beta-cell function (HOMA-

B) were calculated using the equation by Matthews et al 41.  Due to the risk of blood hemolysis, 

fasting insulin values ˂ 1 µU/mL were discarded from the study. Insulin resistance was defined 

as HOMA-IR ≥ 3.4 (the 90th percentile of HOMA-IR in a population of healthy Mexican 

children)42. The 2003 ADA criteria for FPG were used to classify participants as having normal 

glucose tolerance (NGT), impaired fasting glucose (IFG), or T2D. In absence of oral glucose 

tolerance test (OGTT) 2-hour fasting plasma glucose value, we used the 2003 American Diabetes 

Association criteria to define normal fasting glucose (NFG, FPG ≤ 5.6 mmol/L), impaired fasting 

glucose (IFG, FPG of 5.6 to 6.9 mmol/L), and T2D (FPG ≥ 7.0 mmol/L), as previously 

described43,44. Hyperglycemia was defined as FPG > 5.6 mmol/L. Total adiponectin (µg/mL) was 

determined by ELISA (Human Adiponectin ELISA Kit, Millipore, St. Charles, MO, USA). 

DNA extraction, SNP selection, and genotyping 

Genomic DNA was isolated from peripheral blood using a standard extraction protocol 

on an Autogen FLEX STAR (Holliston, Massachusetts USA). We selected 10 SNPs in ADIPOQ 

(rs2241766, rs266729, rs822393, rs17366568, rs182052, rs4632532, rs7649121), ADIPOR1 

(rs10920533), and ADIPOR2 (rs11061971, rs16928751) associated with cardio-metabolic traits 

in literature and harboring minor allele frequencies ≥ 10% in the Mexican population according 

to the HapMap database. Genotyping of the SNPs was performed using the TaqMan Open Array 

Real-Time PCR System (Life Technologies, Carlsbad, USA), following the manufacturer’s 
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instructions. Three SNPs (rs4632532, rs7649121, rs16928751) did not reach valid Open Array 

assay scores. The Open Array experiment involved 64 polymorphisms in total. From the initial 

sample of 1 559 participants, 102 were excluded from the current analysis because i) no blood 

sample was collected for DNA extraction; ii) DNA extraction was unsuccessful; iii) the 

individual genotyping success rate of the Open Array experiment based on the 64 

polymorphisms was < 90.6% (≥ 6 genotypes missing). The current analysis included 1 457 

children with both genotypic and clinical data available. Only one SNP out of seven did not pass 

the quality control criteria (rs17366568). The six remaining SNPs harbored a genotyping call rate 

between 97 and 99%, and no deviation from Hardy-Weinberg equilibrium was observed (p 

between 0.35 and 0.97; Supplementary Table S1). For quality control purposes, we also 

compared allele frequencies in our sample with adult Mexican-American reference populations 

in the 1000 Genomes Project (1000G; Supplementary Table S1). Allele frequencies in our study 

were not significantly different from the reported frequencies in the 1000G for all SNPs 

(Supplementary Table 3). 

Statistical analyses 

The statistical analyses were conducted using the SPSS software (version 20.0) or R 

(version 3.1.2). We followed the strategy reported previously by Ronald J Feise and considered 

independent Bonferroni corrections for each question asked45. For associations of serum 

adiponectin with cardio-metabolic traits, two-tailed p-values < 4.2 x 10-3 after Bonferroni 

correction (0.05/12) were considered statistically significant. For association of SNPs in 

ADIPOQ, ADIPOR1, and ADIPOR2 with serum adiponectin concentration, p-values < 8.3 x 10-3 

(0.05/6) were considered statistically significant. For association of the same SNPs with 

quantitative traits, p-values < 6.9 x 10-4 (0.05/72) were considered statistically significant. 
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QUANTO software was used for statistical power calculations, assuming normal distribution of 

quantitative traits, 80% power, and using p-values adjusted for multiple comparisons. Non-

biological outlier data were discarded using a Cook’s distance test followed by an expert 

verification. Based on Shapiro-Wilk test (Supplementary Table S8), all the untransformed traits 

of interest deviated significantly from normality. Hence, rank based inverse normal 

transformations were applied wherever substantial deviations from normality were observed 

(Supplementary Figure S1). Differences in ADIPOQ, ADIPOR1, and ADIPOR2 SNP allele 

frequencies were determined by a Chi-square test. Multiple linear and logistic regressions were 

used to assess associations, while adjusting for covariates of age, sex, and recruitment center. 

Additional adjustments for BMI or serum adiponectin level were performed for associations with 

cardio-metabolic traits to investigate the mediation effect of these intermediate traits. An 

interaction term for Pearson’s correlation coefficients and associated p-values were found 

between all continuous cardio-metabolic traits (Supplementary Table 9). An additive model was 

used in all the genetic analyses. The minor allele was considered as the effect allele.  

 

RESULTS 

Descriptive characteristics of the population 

Anthropometric and biochemical characteristics of the 1 457 Mexican children (boys: 

52.9%; girls: 47.1%) are summarized in Table 9. The children were 9.24 ± 2.07 years-old and 

displayed a BMI of 19.65 ± 4.20 kg/m2 and a SDS-BMI of 0.71 ± 1.09. Within the sample, 

20.8% of children were overweight and 23.0% were obese. Insulin resistance was identified in 

11.1% of children, 3.1% had hyperglycemia including one child with T2D. Hypertension and 

dyslipidemia were present in 1.5% and 34.9% of the sample, respectively. The mean serum 

adiponectin concentration was 5.26 ± 1.23 µg/mL.  
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Association of serum adiponectin concentration with cardio-metabolic traits  

We investigated the association of serum adiponectin concentration with cardio-

metabolic traits adjusted for sex, age, and recruitment center (Table 10). Serum adiponectin 

concentration was negatively associated with BMI (β = -0.27 ± 0.02, p = 4.13 x 10-30), SDS-BMI 

(β = -0.33 ± 0.03, p = 6.50 x 10-32), WHR (β = -0.18 ± 0.02, p = 8.20 x 10-12), SDS-WHR (β = -

0.02 ± 3.80 x 10-3, p = 2.11 x 10-10), LDL cholesterol (β = -0.09 ± 0.02,  p= 2.70 x 10-4), total 

cholesterol (β = -0.10 ± 0.02, p = 5.00 x 10-5), triglycerides (β = -0.14 ± 0.03, p = 2.98x 10-8), 

fasting glucose (β = -0.12 ± 0.02, p = 2.00 x 10-6), fasting insulin (β = -0.08 ± 0.03, p = 3.00 x 

10-3), and HOMA-IR (β = -0.10 ± 0.03, p = 3.50 x 10-4). Nominal associations (p < 0.05) 

between serum adiponectin concentration and SBP, DBP, SDS-SBP, SDS-DBP and HOMA-B 

were observed, but did not reach statistical significance after Bonferroni correction (p > 4.2 x 10-

3; Table 10). No association between serum adiponectin concentration and HDL cholesterol was 

observed (p = 0.49).  

When metabolic traits were classified as binary traits (Table 10), serum adiponectin 

concentration was negatively associated with dyslipidemia (OR = 0.75, 95% CI = 0.67 - 0.84, p 

= 1.00 x 10-6), normal weight vs. overweight (OR = 0.39, 95% CI = 0.33 - 0.46, p = 2.40 x 10-26), 

normal weight vs. obese (OR = 0.40, 95% CI = 0.34 - 0.47, p = 4.84 x 10-29), normal weight vs. 

overweight and obese participants (OR = 0.41, 95% CI = 0.36 - 0.47, p = 7.76 x 10-40). 

Associations of serum adiponectin concentration with hypertension, hyperglycemia, and IR were 

not statistically significant (p ≥ 0.07). 

We then investigated the association of serum adiponectin concentration with continuous 

and binary cardio-metabolic traits adjusted for sex, age, recruitment center, and BMI (Table 10). 

Serum adiponectin concentration was positively associated with HOMA-B (β = 0.08 ± 0.02, p = 
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1.07 x 10-3) and negatively associated with fasting glucose (β = -0.10 ± 0.02, p = 4.30 x 10-5) and 

HDL cholesterol (β = -0.09 ± 0.03, p = 3.17 x 10-4). Nominal associations (p < 0.05) between 

serum adiponectin concentration and fasting insulin, total cholesterol and insulin resistance were 

observed, but did not reach statistical significance after Bonferroni correction (p > 4.2 x 10-3; 

Table 2). No association was observed for the other traits (p ≥ 0.08). 

Genotype frequency comparison in Mexican children and adults from 1000G for SNPs in/near 
ADIPOQ, ADIPOR1, and ADIPOR2  

Genotype distributions and allele frequencies of the six selected SNPs are presented in 

Supplementary Table 3. The MAF for ADIPOQ, ADIPOR1, and ADIPOR2 SNPs in Mexican 

children are as follows: 11% for rs10920533, 18% rs2241766, 36% for rs11061971, 38% for 

rs266729, 43% for rs822393, and 53% for rs182052. Allelic distributions for all selected SNPs 

were not significantly different from the reported frequencies in the 1000G reference Mexican 

adult population (p ≥ 0.07). 

Association of SNPs in/near ADIPOQ, ADIPOR1, and ADIPOR2 with serum adiponectin 
concentration 

We investigated the association of SNPs in ADIPOQ (rs182052, rs2241766, rs266729, 

rs822393), ADIPOR1 (rs10920533), and ADIPOR2 (rs11061971) with serum adiponectin 

concentration under an additive model, adjusted for sex, age, and recruitment center (Table 11). 

We did not identify any significant associations between these SNP and serum adiponectin 

concentrations (all p ≥ 0.30). 

Association of SNPs in/near ADIPOQ, ADIPOR1, and ADIPOR2 with cardio-metabolic traits 

 We subsequently tested the association of the aforementioned SNPs with cardio-

metabolic traits, adjusted for sex, age, and recruitment center and with and without adjustment 

for serum adiponectin concentration (Tables 12 and 13). We observed nominal (p < 0.05) 
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associations for ADIPOR1 rs10920533 with total cholesterol before and after adjusting for serum 

adiponectin. ADIPOR1 rs10920533 was also nominally associated with normal weight vs. obese 

before adjusting for serum adiponectin. We observed nominal associations for ADIPOR2 

rs11061971 with BMI, SDS-BMI, normal weight vs. overweight and obese, and normal weight 

vs. overweight before and after adjusting for serum adiponectin, and waist circumference before 

adjustment. ADIPOQ rs182052 was nominally associated with waist circumference and SBP 

before adjusting for serum adiponectin, with BMI and SDS-BMI both before and after 

adjustment, with normal weight vs. overweight before adjustment, and with normal weight vs. 

overweight and obese both before and after adjustment. ADIPOQ rs266729 was nominally 

associated with normal weight vs. overweight after adjustment for serum adiponectin. ADIPOQ 

rs822393 was nominally associated with normal weight vs. overweight and obese after 

adjustment for adiponectin. However, none of the results remained significant after correcting for 

multiple testing (p < 6.9 x 10-4). 

Statistical power calculations 

Statistical power calculations are summarized in Supplementary Tables 4-8. Using a 

sample of 1 457 participants, our study had at least 80% power to detect effect sizes/beta values 

of 0.2 or greater for associations between serum adiponectin and SNPs with MAF of 0.2 or 

greater for p-value = 8.3 x 10-3.  

For associations between serum adiponectin and continuous cardio-metabolic traits, we 

conducted an example statistical power calculation for the association of serum adiponectin and 

SBP, for which we had at least 80% power to detect beta values of 0.9 or greater for p-value = 

4.2 x 10-3. For associations between serum adiponectin and binary cardio-metabolic traits, we 

conducted an example statistical power calculation for the association of serum adiponectin and 
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insulin resistance. With 127 cases in a sample of 1 457 participants, we had at least 80% power 

to detect effect sizes/odds ratios of 1.40 or greater for p-value = 4.2 x 10-3.  

For associations between the six SNPs and continuous cardio-metabolic traits, we also 

examined the association between SNPs and SBP, for which we had at least 80% power to detect 

beta values of 2.5 or greater when MAF is 0.2 or greater for p-value = 6.9 x 10-4. For 

associations between the six SNPs and binary cardio-metabolic traits, we also examined the 

association between SNPs and insulin resistance, for which we had at least 80% power to detect 

effect sizes/odds ratios of 1.3 or greater when MAF is 0.1 or greater for p-value = 6.9 x 10-4.  

 

DISCUSSION 

In the present study, we assessed the relationship between serum adiponectin 

concentration and cardio-metabolic traits and the association of 6 SNPs in ADIPOQ, ADIPOR1, 

and ADIPOR2 with adiponectin serum levels and cardio-metabolic traits in Mexican children. 

We also compared the SNP genotypic distributions between Mexican children and adults from 

the 1000G. We found strong negative associations for adiponectin levels with BMI, WHR, LDL 

cholesterol, total cholesterol, triglycerides, fasting glucose, fasting insulin, and HOMA-IR, as 

well as dyslipidemia, overweight and obesity status. Further adjustment for BMI removed most 

of these associations, to the exception of fasting glucose. The same adjustment resulted in 

significant association between serum adiponectin concentration, HDL cholesterol and HOMA-

B. The 6 SNPs had similar genotypic distribution in Mexican children and adults. We did not 

find any association between these SNPs and serum adiponectin concentration. While nominal 

associations were found between ADIPOR1 rs10920533, ADIPOR2 rs11061971, and ADIPOQ 

rs182052 and cardio-metabolic traits, none remained significant after Bonferroni correction for 
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multiple testing. Based on our statistical power calculations, our study was only modestly 

powered (Supplementary Tables 4-8), and lack of associations may be confirmed in larger 

samples. 

The Mexican population is at high risk for developing obesity, IR, dyslipidemia and T2D 

due to genetic predisposition in combination with recent demographic, socioeconomic and 

nutrition transitions46-53. Reduced physical activity due to urbanization, together with shifts in 

dietary patterns away from traditional high-fiber foods in favor of processed foods have resulted 

in the rise of non-communicable chronic diseases among all age groups54. In 2011, the 

prevalence of overweight and obesity in Mexican children reached 34.4%, representing one of 

the highest rates in the world55. In our sample, the prevalence of overweight / obesity exceeded 

the national average (43.8%), possibly due to our strategy to recruit children within an urban 

setting. The prevalence of hypertension in our sample (1.5%) was lower than previously reported 

(4.7% to 14%)54,56,57; however, previous studies classify hypertension using percentiles rather 

than a threshold, making comparisons difficult. The prevalence of IR in our sample (11%) was 

also low. A cross-sectional study of Mexican children aged 7-18 estimated the prevalence of IR 

at 20.3%, while the National Health and Nutrition Examination Survey found 52.1% of obese 

Mexican-Americans aged 12-19 to have IR58. The gradual increase of insulin and glucose 

concentrations observed during adolescence may partially explain this discrepancy59,60. We 

report an exceptionally high prevalence of dyslipidemia in our sample (34.9%). While this high 

prevalence may be reflective of a diet rich in refined carbohydrates and animal fats but limited in 

fiber, we cannot exclude the possibility that it may stem from the employed definition of 

dyslipidemia within our study61. Dyslipidemia is routinely defined by abnormal concentrations of 

one or two lipids, however we used three lipids, thereby artificially increasing the prevalence of 
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dyslipidemia in our sample. The mean serum adiponectin concentration in our sample was lower 

than in previous reports in Mexican children27,29. Differences in the prevalence of obesity, blood 

samples (i.e. serum vs. plasma) and laboratory tests (i.e. radioimmunoassay vs enzyme 

immunoassay) can significantly affect measured adiponectin concentrations, making 

comparisons challenging. 

Adiponectin is an insulin-sensitizing hormone secreted from the adipose tissue and is 

negatively associated with obesity and T2D in epidemiological studies62. Adiponectin plays an 

important role in modulating glucose and lipid metabolism by activating AMP-dependent kinase 

signaling63. The relationship between low serum adiponectin and obesity, IR, T2D, dyslipidemia, 

hypertension, and cardio-vascular disease has been extensively studied in adults62. Adiponectin 

levels have been found to be lower in obese European and East Asian children64,65. Here, we 

extended the negative association between serum adiponectin level and childhood 

overweight/obesity status to the Mexican population. The associations between serum 

adiponectin and continuous cardio-metabolic traits have been previously investigated in Mexican 

children in modestly sized studies. Consistent with our results, Cruz et al determined negative 

associations with plasma adiponectin and BMI, insulin concentrations and HOMA-IR in an 

independent sample29. More recently, plasma adiponectin was inversely associated with insulin 

concentrations, TG, and HOMA-IR in obese Mexican children with the metabolic syndrome27. 

Our results evidenced an inverse association with adiponectin and WHR, LDL-C, total 

cholesterol, and fasting glucose, which has previously been shown in Latino and Hispanic youth, 

but not in a Mexican population66,67. We also observed an inverse association with adiponectin 

and dyslipidemia which is consistent with previous reports in a multiethnic adult population and 

European children68,69. Further adjustment for BMI substantially modified the pattern of 
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association between serum adiponectin and cardio-metabolic traits, confirming that adiponectin 

has an important role in the regulation of body weight22,70. Taken together, our results suggest 

that adiponectin levels may contribute to the link between obesity, IR, glucose homeostasis, and 

dyslipidemia at a young age.  

Several common and rare variants at the ADIPOQ locus appear to cause substantial 

changes in circulating adiponectin concentrations18,71. The most frequently studied ADIPOQ 

variants associated with altered adiponectin concentrations include rs17300539, rs266729, 

rs2241766, and rs150129918. The rs17300539 variant is strongly associated with increased 

circulating adiponectin due to enhanced ADIPOQ promoter activity72. Associations with 

rs266729 and serum adiponectin are inconsistent, however the general trend suggests a decrease 

in adiponectin concentration which is further evidenced by lower ADIPOQ promoter activity72. 

ADIPOQ rs2241766 is strongly associated with lower adiponectin levels, possibly due to 

differences in RNA splicing or stability and rs1501299 is mainly associated with lower 

adiponectin levels72. 

Associations with ADIPOQ variants and adiponectin levels have been investigated in 

various populations, however limited information exists in the Mexican population72. ADIPOQ 

rs17300539 was associated with higher adiponectin concentrations in a study of 1 153 Hispanic 

Americans from San Antonio73. In a cross-sectional study of 242 Mexican-Mestizo adults, a 

positive association with ADIPOQ rs1501299 and circulating adiponectin was observed31. In the 

present study, we did not identify any significant associations with the selected ADIPOQ SNPs 

and serum adiponectin concentration, possibly due to limited power, age- or ethnic-dependent 

effects. To our knowledge, this is the first study to examine the association of genetic variants in 
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ADIPOQ with serum adiponectin levels in a pediatric Mexican population. Further investigation 

with a more exhaustive SNP selection and larger sample sizes is warranted. 

We subsequently tested the associations of ADIPOQ SNPs and cardio-metabolic traits 

and found nominally significant inverse associations between rs182052 and BMI and obesity 

status. The association of ADIPOQ rs182052 with BMI is consistent with findings by Sutton et 

al who found the A allele of rs182052 associated with lower BMI in 811 Hispanic adults from 

San Antonio74. However, Richardson et al found a positive association with the G allele of 

ADIPOQ rs182052 and BMI in 439 Mexican American adults from San Antonio and a trend for 

increased obesity risk has been observed in a small sample of Mexican children33,75. Among 

Brazilians, the A allele of ADIPOQ rs182052 was associated with a greater BMI and risk of 

obesity76. However, studies in European adult populations were unable to identify associations 

with the A allele of ADIPOQ rs182052 and BMI77,78. These results suggest possible age-

dependent associations of ADIPOQ SNPs in children with BMI which may be considered in 

future replication studies in Mexican children. 

We did not observe an association between genetic variants in ADIPOR1 and ADIPOR2 

and serum adiponectin which is consistent with previous studies. GWAS in diverse ethnic groups 

did not identify ADIPOR1 or ADIPOR2 loci as important contributors to serum adiponectin level 

variation22,79,80. Cohen et al investigated the association of ADIPOR1 and ADIPOR2 with serum 

adiponectin levels in Caucasian and African-American women but failed to show an 

association81. Subsequently, Matther et al did not find associations with ADIPOR1 and 

ADIPOR2 and serum adiponectin levels in the Diabetes Prevention Program26. More recently, a 

meta-analysis of 2 355 European-Australians failed to find an association with serum adiponectin 

and genetic variants in adiponectin receptors82. We studied these associations in a Mexican 
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population for the first time and our results are in line with previous publications. We also 

identified nominally significant associations between ADIPOR1 rs10920533 and total cholesterol 

and ADIPOR2 rs11061971 and obesity risk. Very few studies have examined genetic variation in 

ADIPOR1 and ADIPOR2 in relation to these cardio-metabolic traits, making comparisons 

challenging. Previous work in adult European populations suggests associations with ADIPOR1 

rs10920533 and ADIPOR2 rs11061971 and IR, but we were unable to confirm these associations 

in the present pediatric Mexican population83. Further investigation is needed to determine the 

validity of these associations. 

Despite the strong association between adiponectin levels and cardio-metabolic traits, we 

failed to identify associations with the selected SNPs and cardio-metabolic traits after Bonferroni 

correction. A possible explanation is that the association between adiponectin and metabolic 

traits is not causal and can be explained by confounding. Observational epidemiology is prone to 

confounding, reverse causation, and other sources of bias, thus our results should be interpreted 

with caution. Adiponectin concentration is inversely associated with obesity and T2D, however it 

is not yet known whether altered adiponectin concentrations are causal or merely a disease 

marker. Combining genetic epidemiology with classic epidemiology is one way to strengthen 

causality. For example, the common ADIPOQ variant, rs266729 alters ADIPOQ gene expression 

and has consistently been associated with lower serum adiponectin concentrations and increased 

risk of IR and T2D19,62,84 . Future work in the Mexican population including GWAS for 

adiponectin levels and Mendelian randomization studies are needed to determine the causal links 

between this hormone and the development of cardio-metabolic diseases. 

Our study has several strengths. It is the first to investigate the association of genetic 

variation in ADIPOQ, ADIPOR1 and ADIPOR2, adiponectin concentrations, and cardio-
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metabolic traits in a pediatric Mexican population. Measures of serum adiponectin concentration 

were available, allowing us to investigate the effects of genetic variants on adiponectin levels in 

addition to diverse cardio-metabolic traits. Furthermore, our study combines classic and genetic 

epidemiology to strengthen our conclusions. Children represent a purer phenotype as they have 

less exposure duration to an obesogenic environment, relative to adults70. Studying these 

associations in children may therefore provide more insight into the early biological determinants 

of obesity and cardio-metabolic complications. Limitations include the selection of ADIPOQ, 

ADIPOR1, and ADIPOR2 SNPs which was not exhaustive and did not include more recent 

GWAS discoveries22,85. Our study is also modestly powered to identify genetic effects, especially 

after adjusting for multiple testing correction86. Study participants were randomly selected from 

Mexico City and is therefore representative of the urban population of central Mexico, not of the 

Mexican population as a whole. Furthermore, the Mexican population is admixed with Native 

American, European, and West African ancestries with proportions varying within different 

regions of the country. Because we did not have ancestry-informative markers, we could not 

adjust for potential population stratification. Also, due to the cross-sectional nature of this study, 

causality cannot be inferred from the associations between serum adiponectin level and cardio-

metabolic traits. Some cardio-metabolic traits are also correlated with each other (Supplementary 

Table 9), making it difficult to discern whether associations between serum adiponectin and 

cardio-metabolic traits are direct or indirect, and may be mediated by certain outcomes. 

However, past Mendelian randomization studies have shown that various cardio-metabolic traits, 

such as HOMA-IR, have a causal relationship with circulating adiponectin levels9. Furthermore, 

past studies have also identified cardio-metabolic traits, including BMI, WHR, fasting insulin, 

triglycerides, and HDL-cholesterol, that are affected by genetic determinants of adiponectin 
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levels87. These studies support the idea that these cardio-metabolic traits are largely and often 

found to be associated with adiponectin levels, thus the possibility of confounding is very 

difficult to accurately discern and control for. 

In conclusion, our study suggests strong associations between serum adiponectin level 

and cardio-metabolic traits in a young Mexican population. Further well-powered studies are 

needed to elucidate the causal relationship between genetic variation in ADIPOQ, ADIPOR1 and 

ADIPOR2, serum adiponectin level, and development of cardio-metabolic complications. 
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Table 10: General characteristics of the studied population of Mexican children 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abbreviations: BMI, body mass index; HDL, high density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment of insulin resistance; HOMA-B, 
homeostatic model assessment of beta cell function; LDL, low density lipoprotein cholesterol; SDS, standard deviation scores. Data are means ± standard 
deviation for continuous traits, and numbers and percentages for categorical traits. 

Trait Total N=1 457  
Boys/Girls, N (%) 771/686 (52.9/47.1) 
Age (years) 9.24 ± 2.07 
Adiponectin (µg/ml) 5.26 ± 1.23 
BMI (kg/m2) 19.65 ± 4.20 
SDS-BMI  0.71 ± 1.09 
Waist to hip ratio 0.85 ± 0.06 
SDS-Waist to hip ratio 2.95 ± 0.33 
Systolic blood pressure (mmHg) 98.57 ± 10.86 
SDS-Systolic blood pressure -0.32 ± 1.01 
Diastolic blood pressure (mmHg) 66.24 ± 8.80 
SDS-Diastolic blood pressure 0.59 ± 0.78 
LDL Cholesterol (mg/dL) 102.39 ± 26.42 
HDL Cholesterol (mg/dL) 50.60 ± 12.82 
Total cholesterol (mg/dL) 157.25 ± 33.56 
Triglycerides (mg/dL) 93.62 ± 49.70 
Fasting glucose (mmol/L) 4.57 ± 0.53 
Fasting insulin (mIU/L) 8.68 ± 7.10 
HOMA-IR 1.86 ± 1.52 
HOMA-B 36.36 ± 30.36 
Hypertension, N (%) 22 (1.5) 
Hyperglycemia, N (%) 45 (3.1) 
Insulin resistance, N (%) 127 (11.1) 
Dyslipidemia, N (%) 509 (34.9) 
Underweight, N (%) 30 (2.1) 
Normal weight, N (% ) 788 (54.1) 
Overweight, N (%) 303 (20.8) 
Obese, N (%) 335 (23.0) 
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Table 11: Association of serum adiponectin concentrations with cardio-metabolic traits 

 

Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; HDL, high density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment of 
insulin resistance; HOMA-B, homeostatic model assessment of beta cell function; LDL, low density lipoprotein cholesterol; SBP, systolic blood pressure; SDS, 

 No additional adjustments Additional adjustment for BMI 
Continuous Traits β ± SE (p-value) 
BMI (kg/m2)a -0.27 ± 0.02 (4.13 x 10-30) NA 
SDS-BMI -0.33 ± 0.03 (6.50 x 10-32) NA 
WHRa -0.18 ± 0.02 (8.20 x 10-12) -0.02 ± 0.02 (0.43) 
SDS-WHR -0.02 ± 3.80 x 10-3 (2.11 x 10-10) -4.45 x 10-3 ± 3.46 x 10-3 (0.20) 
SBP (mmHg)a -0.07 ± 0.02 (4.00 x 10-3) 0.02 ± 0.02 (0.47) 
SDS-SBP -0.06 ± 0.03 (0.03) 0.02 ± 0.03 (0.55) 
DBP (mmHg)a -0.07 ± 0.02 (8.00 x 10-3) 4.20 x 10-3 ± 0.03 (0.87) 
SDS-DBP -0.05 ± 0.02 (0.02) -8.24 x 10-3 ± 0.02 (0.71) 
LDL Cholesterol (mg/dL)a -0.09 ± 0.02 (2.70 x 10-4) -0.04 ± 0.03 (0.14) 
HDL Cholesterol (mg/dL)a 0.02 ± 0.02 (0.49) -0.09 ± 0.03 (3.17 x 10-4) 
Total cholesterol (mg/dL)a -0.10 ± 0.02 (5.00 x 10-5) -0.07 ± 0.03 (4.52 x 10-3) 
Triglycerides (mg/dL)a -0.14 ± 0.03 (2.98x 10-8) -0.02 ± 0.02 (0.47) 
Fasting glucose (mmol/L)a -0.12 ± 0.02 (2.00 x 10-6) -0.10 ± 0.02 (4.30 x 10-5) 
Fasting insulin (mIU/L)a -0.08 ± 0.03 (3.00 x 10-3) 0.06 ± 0.02 (0.01) 
HOMA-IRa -0.10 ± 0.03 (3.50 x 10-4) 0.04 ± 0.03 (0.08) 
HOMA-Ba -0.07 ± 0.03 (0.02) 0.08 ± 0.02 (1.07 x 10-3) 
Binary Traits OR [95% CI] (p-value) 
Hypertension 0.75 [0.50-1.13] (0.17) 0.80 [0.53-1.23] (0.31) 
Hyperglycemia 0.95 [0.69-1.32] (0.78) 1.03 [0.74-1.45] (0.85) 
Insulin resistance 0.83 [0.67-1.02] (0.07) 1.30 [1.01-1.66] (0.04) 
Dyslipidemia 0.75 [0.67-0.84] (1.00 x 10-6) 0.95 [0.94-1.08] (0.42) 
Normal weight vs. overweight 0.39 [0.33-0.46] (2.40 x 10-26) NA 
Normal weight vs. obese 0.40 [0.34-0.47] (4.84 x 10-29) NA 
Normal weight vs. overweight and obese 0.41 [0.36-0.47] (7.76 x 10-40) NA 
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standard deviation scores; WHR, waist-to-hip ratio. Continuous traits: Data presented are β ± SE (p value). Data was adjusted for age, sex, and recruitment center. 
Values in bold indicate significant associations after Bonferroni correction (p < 4.2 x 10-3). Binary traits: Data presented are OR [95% CI] (p value). Data was 
adjusted for age, sex, and recruitment center; additional adjustments are for BMI where NA denotes a non-applicable adjustment. Values in bold indicate 
significant associations after Bonferroni correction (p < 4.2 x 10-3). aInverse normal transformed variables. 
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Table 12: Association of SNPs in/near ADIPOQ, ADIPOR1, and ADIPOR2 with serum adiponectin concentrationa 

SNP β ± SE p-value 
ADIPOQ rs182052 0.02 ± 0.04 0.60 
 rs2241766 -0.01 ± 0.05 0.81 
 rs266729 0.01 ± 0.04 0.80 
 rs822393 0.03 ± 0.04 0.40 
ADIPOR1 rs10920533 -0.06 ± 0.60 0.30 
ADIPOR2 rs11061971 0.04 ± 0.04 0.33 
Data presented are β ± SE (p value). Data presented follow an additive model, adjusting for age, sex, and recruitment center. aInverse normal transformed variables 
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Table 13: Association of SNPs in/near ADIPOQ, ADIPOR1, and ADIPOR2 with continuous metabolic traits 

Continuous 
traits 

Additional 
adjustment 

β ± SE (p-value) 
rs10920533 rs11061971 rs182052 rs2241766 rs266729 rs822393 

BMI (kg/m2) None 0.10 ± 0.06 (0.08) -0.08 ± 0.04 (0.03) -0.08 ± 0.03 (0.02) -0.02 ± 0.0 (0.59) 0.08x10-1 ± 0.03 (0.82) 0.03 ± 0.03 (0.37) 
Adiponectin 0.08 ± 0.02 (0.14) -0.07 ± 0.03 (0.048) -0.07 ± 0.03 (0.02) -0.03 ± 0.04 (0.54) 0.01 ± 0.03 (0.77) 0.04 ± 0.03 (0.25) 

SDS-BMI None 0.12 ±0.07 (0.08) -0.11 ± 0.04 (0.01) -0.11 ± 0.04 (4.61 x 10-3) -0.03 ± 0.05 (0.64) 0.02 ± 0.04 (0.60) 004 ± 0.04 (0.28) 
Adiponectin 0.09 ± 0.06 (0.14) -0.10 ± 0.04 (0.02) -0.10 ± 0.04 (6.43 x 10-3) -0.03 ± 0.05 (0.58) 0.02 ± 0.04 (0.53) 0.05 ± 0.04 (0.16) 

WHR None 0.06 ± 0.06 (0.33) -0.03 ± 0.04 (0.48) -0.03 ± 0.04 (0.39) 0.04 ± 0.05 (0.44) -0.08 x 10-1 ± 0.04 (0.82) 0.02 ± 0.04 (0.54) 
Adiponectin 0.05 ± 0.06 (0.43) -0.02 ± 0.04 (0.62) -0.02 ± 0.04 (0.55) 0.03 ± 0.05 (0.50) -0.07 x 10-1 ± 0.04 (0.84) 0.03 ± 0.04 (0.44) 

SDS-WHR 
None 4.16x10-3±8.91x10-3 

(0.64) 
-5.67x10-3±5.70x10-3 

(0.32) 
-3.90x10-3±5.45x10-3 

(0.47) 
1.46x10-3±7.14x10-3 

(0.84) 
3.70x10-3±5.61x10-3 

(0.51) 
7.00x10-3±5.40x10-3 

(0.20) 

Adiponectin 2.27x10-3±8.81x10-3 
(0.80) 

-4.44x10-3±5.64x10-3 
(0.43) 

-2.74x10-4±5.39x10-3 

(0.61) 
9.79x10-4±7.05x10-3 

(0.89) 
4.005x10-3±5.54x10-3 

(0.46) 
8.00x10-3±5.33x10-3 

(0.13) 

SBP (mmHg) None 0.08 ± 0.06 (0.12) -0.06 ± 0.04 (0.10) -0.07 ± 0.03 (4.97 x 10-2) 0.03 ± 0.04 (0.54) -0.03 ± 0.04 (0.38) -0.01 ± 0.03 (0.71) 
Adiponectin 0.08 ± 0.06 (0.16) -0.06 ± 0.04 (0.12) -0.06 ± 0.03 (0.06) -0.03 ± 0.40 (0.55) -0.03 ± 0.04 (0.37) -0.01 ± 0.03 (0.75) 

SDS-SBP None 0.09 ± 0.06 (0.14) -0.04 ± 004 (0.29) -0.05 ± 0.04 (0.18) 0.04 ± 0.05 (0.46) -0.06 ± 0.04 (0.17) -0.02 ± 0.04 (0.67) 
Adiponectin 0.09 ± 0.06 (0.18) 0.04 ± 0.04 (0.33) -0.05 ± 0.04 (0.20) 0.04 ± 0.05 (0.47) -0.06 ± 0.04 (0.17) -0.01 ± 0.04 (0.71) 

DBP (mmHg) None 0.02 ± 0.06 (0.69) -0.04 x 10-1 ± 0.04 (0.92) -0.05 ± 0.04 (0.14) 0.03 x 10-1 ± 0.05 (0.94) 0.02 ± 0.04 (0.60) -0.02 ± 0.03 (0.63) 
Adiponectin 0.01 ± 0.06 (0.82) -0.01 x 10-1 ± 0.04 (0.98) -0.05 ± 0.04 (0.15) -0.03 x 10-1 ± 0.05 (0.94) 0.02 ± 0.04 (0.59) -0.01 ± 0.03 (0.68) 

SDS-SBP None -3.03x10-3 ± 0.05(0.95) 1.10 x 10-3 ± 0.03 (0.97) -0.05 ± 0.03 (0.13) 0.03 ± 0.04 (0.52) 0.01 ± 0.03 (0.78) -0.04 ± 0.03 (0.20) 
Adiponectin -0.01 ± 0.05 (0.84) 4.66 x 10-3 ± 0.03 (0.88) -0.05 ± 0.03 (0.14) 0.02 ± 0.04 (0.56) 0.01 ± 0.03 (0.74) -0.04 ± 0.03 (0.24) 

LDL cholesterol 
(mg/dL) 

None 0.11 ± 0.06 (0.05) 0.05 ± 0.04 (0.18) 0.03 x 10-1 ± 0.04 (0.93) 0.03 ± 0.05 (0.53) -0.01 ± 0.04 (0.71) 0.04 x 10-1 ± 0.04 (0.90) 
Adiponectin 0.11 ± 0.06 (0.07) 0.06 ± 0.04 (0.12) -0.01 ± 0.04 (0.79) 0.02 ± 0.05 (0.60) -0.01 ± 0.04 (0.72) 0.08x10-1 ± 0.04 (0.83) 

HDL cholesterol 
(mg/dL) 

None 0.04 ± 0.06 (0.54) -0.01 ± 0.04 (0.71) -0.02 x 10-1 ± 0.04 (0.96) 0.02 ± 0.05 (0.61) -0.06 ± 0.04 (0.10) -0.03 ± 0.03 (0.47) 
Adiponectin 0.04 ± 0.06 (0.48) -0.09 x 10-1 ± 0.04 (0.80) 0.02 x 10-1 ± 0.04 (0.95) 0.02 ± 0.05 (0.68) -0.06 ± 0.04 (0.09) -0.02 ± 0.03 (0.48) 

Total cholesterol 
(mg/dL) 

None 0.15 ± 0.06 (8.00 x 10-3) 0.03 ± 0.04 (0.35) -0.03 x 10-1 ± 0.04 (0.92) 0.04 ± 0.04 (0.39) -0.04 ± 0.04 (0.22) -0.01 ± 0.03 (0.72) 
Adiponectin 0.14 ± 0.06 (0.01) 0.04 ± 0.04 (0.23) 0.04 x 10-1 ± 0.03 (0.91) 0.03 ± 0.04 (0.46) -0.04 ± 0.04 (0.22) -0.09 x 10-1 ± 0.03 (0.80) 

Triglycerides 
(mg/dL) 

None 0.04 ± 0.06 (0.54) 0.02 ± 0.04 (0.65) -0.05 ± 0.04 (0.15) -0.03 ± 0.05 (0.50) -0.01 ± 0.04 (0.72) -0.04 x 10-1 ± 0.04 (0.90) 
Adiponectin 0.03 ± 0.06 (0.63) 0.02 ± 0.04 (0.55) -0.05 ± 0.04 (0.18) -0.03 ± 0.05 (0.52) -0.01 ± 0.04 (0.72) -0.02 x 10-1 ± 0.04 (0.96) 

Fasting glucose 
(mmol/L) 

None 0.04 ± 0.06 (0.49) 0.02 x 10-1 ± 0.04 (0.96) -0.03 ± 0.04 (0.44) -0.02 ± 0.04 (0.68) -0.06 ± 0.04 (0.10) 0.02 ± 0.03 (0.58) 
Adiponectin 0.04 ± 0.06 (0.50) 0.08 x 10-1 ± 0.04 (0.83) -0.02 ± 0.03 (0.57) -0.02 ± 0.04 (0.59) -0.06 ± 0.04 (0.08) 0.02 ± 0.03 (0.55) 

Fasting insulin 
(mIU/L) 

None 0.07 ± 0.06 (0.26) -0.06 ± 0.04 (0.12) -0.01 ± 0.04 (0.80) -0.03 ± 0.05 (0.53) 0.01 ± 0.04 (0.73) 0.05 ± 0.04 (0.21) 
Adiponectin 0.06 ± 0.06 (0.30) -0.06 ± 0.04 (0.13) -0.08 x 10-1 ± 0.04 (0.84) -0.04 ± 0.05 (0.47) 0.01 ± 0.04 (0.75) 0.05 ± 0.04 (0.19) 

HOMA-IR None 0.08 ± 0.06 (0.22) -0.07 ± 0.04 (0.09) -0.01 ± 0.04 (0.73) -0.04 ± 0.05 (0.44) 0.05 x 10-1 ± 0.04 (0.89) 0.05 ± 0.04 (0.19) 
Adiponectin 0.07 ± 0.06 (0.25) -0.07 ± 0.04 (0.10) -0.01 ± 0.04 (0.79) -0.04 ± 0.05 (0.38) 0.05 x 10-1 ± 0.04 (0.91) 0.05 ± 0.04 (0.17) 

HOMA-B None 0.06 ± 0.06 (0.32) -0.06 ± 0.04 (0.12) -0.05 x 10-1 ± 0.04 (0.90) -0.03 ± 0.05 (0.53) 0.02 ± 0.04 (0.60) 0.04 ± 0.04 (0.26) 
Adiponectin 0.06 ± 0.06 (0.36) -0.06 ± 0.04 (0.13) -0.03 x 10-1 ± 0.04 (0.93) -0.04 ± 0.05 (0.47) 0.02 ± 0.04 (0.62) 0.04 ± 0.04(0.24) 

Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; HDL, high density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment of 
insulin resistance; HOMA-B, homeostatic model assessment of beta cell function; LDL, low density lipoprotein cholesterol; SBP, systolic blood pressure; SDS, 
standard deviation scores; WHR, waist-to-hip ratio. Continuous traits: Data presented are β ± SE (p value). All models were adjusted for age, sex, and recruitment 
center. 



150 
 

Table 14: Association of SNPs in/near ADIPOQ, ADIPOR1, and ADIPOR2 with binary metabolic traits 

Binary traits Additional 
adjustment 

OR [95% CI] (p-value) 
rs10920533 rs11061971 rs182052 rs2241766 rs266729 rs822393 

Hypertension 
None 1.37 [0.54 - 3.50] 

(0.51) 
1.56 [0.83 - 2.92] 

(0.17) 
0.76 [0.42 - 1.40] 

(0.38) 
0.95 [0.43 - 2.10] 

(0.91) 
0.77 [0.40 - 1.46] 

(0.43) 
0.53 [0.28 - 1.03] 

(0.06) 

Adiponectin 1.35 [0.53 - 3.44] 
(0.53) 

1.57 [0.84 - 2.93] 
(0.16) 

0.77 [0.42 - 1.42] 
(0.40) 

0.98 [0.44 - 2.16] 
(0.95) 

0.77 [0.40 - 1.48] 
(0.44) 

0.54 [0.28 - 1.04] 
(0.07) 

Hyperglycemia 
None 1.04 [0.51 - 2.10] 

(0.92) 
0.77 [0.49 - 1.23] 

(0.28) 
1.02 [0.66 - 1.57] 

(0.93) 
0.92 [0.52 - 1.62] 

(0.76) 
0.67 [0.42 - 1.07] 

(0.09) 
0.94 [0.62 - 1.44] 

(0.79) 

Adiponectin 1.04 [0.52 - 2.12] 
(0.90) 

0.77 [0.48 - 1.22] 
(0.26) 

1.02 [0.66 - 1.57] 
(0.94) 

0.92 [0.52 - 1.62] 
(0.77) 

0.66 [0.41 - 1.06] 
(0.09) 

0.94 [0.62 - 1.43] 
(0.76) 

Insulin resistance 
None 1.28 [0.84 - 1.94] 

(0.24) 
0.94 [0.70 - 1.26] 

(0.68) 
0.94 [0.71 - 1.23] 

(0.64) 
0.85 [0.59 - 1.22] 

(0.38) 
1.04 [0.79 - 1.36] 

(0.80) 
1.09 [0.84 - 1.43] 

(0.52) 

Adiponectin 1.26 [0.83 - 1.91] 
(0.28) 

0.94 [0.70 - 1.26] 
(0.69) 

0.94 [0.72 - 1.24] 
(0.68) 

0.84 [0.59 - 1.21] 
(0.36) 

1.04 [0.79 - 1.37] 
(0.78) 

1.10 [0.84 - 1.44] 
(0.48) 

Dyslipidemia 
None 1.12 [0.87 - 1.44] 

(0.38) 
0.90 [0.77 - 1.06] 

(0.22) 
0.89 [0.76 - 1.04] 

(0.15) 
1.03 [0.84 - 1.26] 

(0.77) 
1.04 [0.89 - 1.22] 

(0.61) 
1.00 [0.86 - 1.17] 

(1.00) 

Adiponectin 1.10 [0.85 - 1.41] 
(0.47) 

0.92 [0.78 - 1.08] 
(0.31) 

0.90 [0.77 - 1.06] 
(0.21) 

1.02 [0.83 - 1.25] 
(0.84) 

1.04 [0.89 - 1.23] 
(0.60) 

1.01 [0.86 - 1.18] 
(0.92) 

Normal weight 
vs. Overweight 

None 0.91 [0.65 - 1.26] 
(0.57) 

0.75 [0.61 - 0.92] 
(6.00 x 10-3) 

0.77 [0.63 - 0.92] 
(6.00 x 10-3) 

1.03 [0.80 -1.31] 
(0.84) 

1.21 [0.99 - 1.48] 
(0.06) 

1.09 [0.90 - 1.32] 
(0.35) 

Adiponectin 0.92 [0.65 - 1.30] 
(0.64) 

0.74 [0.59 - 0.92] 
(7.00 x 10-3) 

0.78 [0.63 - 0.95] 
(0.01) 

0.97 [0.74 - 1.26] 
(0.80) 

1.25 [1.01 - 1.55] 
(0.04) 

1.13 [0.92 - 1.38] 
(0.24) 

Normal weight 
vs. Obese 

None 1.42 [1.08 - 1.87] 
(0.01) 

0.85 [0.71 - 1.02] 
(0.09) 

0.90 [0.75 - 1.07] 
(0.24) 

0.92 [0.73 - 1.15] 
(0.46) 

1.08 [0.90 - 1.28] 
(0.43) 

1.13 [0.95 - 1.34] 
(0.15) 

Adiponectin 1.27 [0.95 - 1.71] 
(0.10) 

0.87 [0.71 - 1.06] 
(0.15) 

0.90 [0.74 - 1.09] 
(0.27) 

0.91 [0.71 - 1.17] 
(0.47) 

1.10 [0.90 - 1.33] 
(0.35) 

1.20 [1.00 - 1.44] 
(0.05) 

Normal weight 
vs. Overweight 

and Obese 

None 1.17 [0.92 - 1.49] 
(0.19) 

0.80 [0.69 - 0.94] 
(6.00 x 10-3) 

0.84 [0.72 - 0.97] 
(0.02) 

0.96 [0.79 - 1.16] 
(0.68) 

1.14 [0.98 - 1.32] 
(0.10) 

1.12 [0.97 - 1.30] 
(0.13) 

Adiponectin 1.12 [0.86 - 1.45] 
(0.39) 

0.80 [0.68 -0.95] 
(9.00 x 10-3) 

0.83 [0.71 - 0.98] 
(0.02) 

0.94 [0.76 - 1.16] 
(0.57) 

1.16 [0.98 - 1.37] 
(0.08) 

1.17 [1.00 - 1.38] 
(4.60 x 10-2) 

Data presented are OR [95% CI] (p value). All models were adjusted for age, sex, and recruitment center. 
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Supplementary Table 3: Description of the six adiponectin SNPs studied 

 

Abbreviations: HWE, Hardy-Weinberg equilibrium; MAF, minor allele frequency; SNP, single nucleotide polymorphism. Pearson’s Chi2 test was used to 
compare the allele frequencies of our study with the reference frequencies from 1000G.  

SNP (Gene) 
Major / 
Minor 
Allele 

Mexican children 
allele count 

1000 Genomes 
allele count 

1000G 
MAF 

Study 
MAF 

Call 
Rate 

HWE P-
value 

Genotype count 
Chi2 (P-value) 

rs10920533 
(ADIOPR1) G / A G A G A 0.11 0.11 0.966 0.35 0.02 (0.89) 2519 297 114 14 
rs11061971 
(ADIPOR2) T / A T A T A 0.42 0.36 0.982 0.97 2.01 (0.16) 1831 1031 74 54 

rs182052 
(ADIPOQ) G / A G A G A 0.47 0.53 0.984 0.76 2.11 (0.15) 1336 1532 68 60 
rs2241766 
(ADIPOQ) T / G T G T G 0.14 0.18 0.972 0.67 1.61 (0.21) 2310 524 110 18 
rs266729 

(ADIPOQ) C / G C G C G 0.30 0.38 0.989 0.61 3.22 (0.07) 1776 1104 89 39 
rs822393 

(ADIPOQ) C / T C T C T 0.41 0.43 0.986 0.38 1.43 (0.23) 
1529 1345 75 53 
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Supplementary Table 4: Sample sizes needed to detect significant association between 
serum adiponectin and the six SNPs with a power of 80% and a two-sided p-value of 8.3 x 
10-3 (adjusted) by beta coefficient and allele frequency for risk allele 

Abbreviations: SBP, systolic blood pressure; SNP: single nucleotide polymorphism. Calculations are based on 
serum adiponectin mean 5.26 and standard deviation 1.23.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Minor allele frequency 
β 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

0.10 92594 19294 10180 5724 4359 3814 3661 
0.20 23144 4819 2540 1426 1085 949 911 
0.30 10283 2138 1126 631 479 418 401 
0.40 5781 1200 631 352 267 233 223 
0.50 3698 766 401 223 168 147 141 
0.60 2566 530 277 153 115 100 96 
0.70 1884 388 202 111 83 72 69 
0.80 1441 295 153 83 62 53 51 
0.90 1137 232 120 64 48 41 39 
1.00 920 187 96 51 37 32 30 
1.50 405 80 39 19 12 10 9 
2.00 225 42 19 6 < 1 < 1 < 1 
2.50 142 24 9 < 1 < 1 < 1 < 1 
3.00 97 15 < 1 < 1 < 1 < 1 < 1 
3.50 69 8 < 1 < 1 < 1 < 1 < 1 
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Supplementary Table 5: Sample sizes needed in a cohort design to detect significant 
association between serum adiponectin and SBP across a range of beta coefficients with 
statistical power of 80% and two-sided p-values of 0.05 (unadjusted) and 4.2 x 10-3 
(adjusted) 

β P=0.05 P=4.2 x 10-3 
0.10 61183 107112 
0.20 15293 26773 
0.30 6795 11895 
0.40 3820 6688 
0.50 2444 4278 
0.60 1696 2969 
0.70 1245 2179 
0.80 952 1667 
0.90 751 1316 
1.00 608 1064 
1.10 502 878 
1.20 421 737 
1.30 358 627 
1.40 308 540 
1.50 268 469 

Abbreviation: SBP, systolic blood pressure. Calculations are based on serum adiponectin standard deviation 1.23, 
SBP mean 98.57 and standard deviation 10.86. 
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Supplementary Table 6: Number of cases per 10 controls to detect significant association 
between serum adiponectin and IR across a range of odds ratios with statistical power of 
80% and two-sided p-values of 0.05 (unadjusted) and 4.2 x 10-3 (adjusted) 

OR P=0.05 P=4.2 x 10-3 
1.10 629 1102 
1.20 173 303 
1.30 84 147 
1.40 52 91 
1.50 36 63 
1.60 27 48 
1.70 22 38 
1.80 18 31 
1.90 15 27 
2.00 13 23 
2.10 12 21 
2.20 11 19 
2.30 10 17 
2.40 9 16 
2.50 8 15 

Abbreviation: IR, insulin resistance. Calculations are based on serum adiponectin standard deviation 1.23, and 11% 
baseline risk for IR. 
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Supplementary Table 7: Sample sizes needed in a cohort design to detect significant 
association between the six SNPs and SBP with statistical power of 80% and two-sided p-
values of 0.05 (unadjusted) and 6.9 x 10-4 (adjusted) 

 

β 
P=0.05 P=6.9 x 10-4 

Minor allele frequency Minor allele frequency 
0.05 0.10 0.20 0.40 0.50 0.05 0.10 0.20 0.40 0.50 

0.10 974411 514270 289275 192849 185135 >1000000 >1000000 660515 440340 422726 
0.20 243600 128565 72316 48209 46281 556222 293557 165122 110078 105675 
0.30 108264 57138 32138 21424 20567 247205 130465 73383 48919 46962 
0.40 60897 32138 18076 12049 11567 139049 73383 41274 27513 26412 
0.50 38973 20567 11567 7710 7402 88988 46962 26412 17605 16900 
0.60 27063 14281 8032 5353 5139 61794 32610 18339 12223 11734 
0.70 19882 10491 5900 3932 3774 45398 23956 13471 8978 8618 
0.80 15221 8032 4516 3009 2889 34755 18339 10312 6871 6596 
0.90 12026 6345 3567 2377 2282 27459 14488 8146 5427 5210 
1.00 9740 5139 2889 1925 1847 22240 11734 6596 4395 4218 
1.50 4327 2282 1282 853 819 9880 5210 2927 1948 1870 
2.00 2432 1282 719 478 459 5553 2927 1642 1092 1048 
2.50 1555 819 459 305 292 3551 1870 1048 696 667 
3.00 1079 567 317 210 202 2463 1296 725 480 461 
3.50 792 416 232 153 147 1807 950 530 350 336 

Abbreviation: SBP, systolic blood pressure; SNP, single nucleotide polymorphism. Calculations are based on SBP 
mean 98.57 and standard deviation 10.86. 
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Supplementary Table 8: Number of cases per 10 controls to detect significant association 
between the six SNPs and IR with statistical power of 80% and two-sided p-values of 0.05 
(unadjusted) and 6.9 x 10-4 (adjusted) 

OR 
P=0.05 P=6.9 x 10-4 

Minor allele frequency Minor allele frequency 
0.05 0.10 0.20 0.40 0.50 0.05 0.10 0.20 0.40 0.50 

1.10 9568 5076 2885 1963 1903 21865 11601 6593 4485 4345 
1.20 2513 1340 769 533 522 5743 3063 1758 1219 1191 
1.30 1171 628 364 257 253 2677 1435 832 586 578 
1.40 690 372 217 156 155 1576 849 497 356 353 
1.50 461 250 148 107 107 1055 571 337 245 245 
1.60 335 182 108 80 80 765 416 248 183 183 
1.70 256 140 84 63 63 586 320 193 144 145 
1.80 204 112 64 51 52 467 257 156 117 119 
1.90 168 93 57 43 44 384 212 130 99 100 
2.00 142 79 48 37 38 324 180 111 85 87 
2.10 122 68 42 33 33 278 155 96 75 76 
2.20 106 59 37 29 30 242 136 85 66 68 
2.30 94 53 33 26 27 214 121 76 60 61 
2.40 84 47 30 24 24 191 108 69 55 56 
2.50 76 43 27 22 22 173 98 63 50 51 
3.00 50 29 19 16 16 115 67 44 36 37 
3.50 37 22 15 12 13 85 51 34 29 29 

Abbreviation: IR, insulin resistance; SNP, single nucleotide polymorphism.  Calculations are based on 11% baseline 
risk for IR.  
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Supplementary Table 9: Correlation table for continuous cardio-metabolic traits showing 
Pearson’s correlation coefficient and associated p-values. 

 
Abbreviations: BMI, body mass index; FG, fasting glucose; FI, fasting insulin; HDL, high density lipoprotein 
cholesterol; HOMA-IR, homeostatic model assessment of insulin resistance; HOMA-B, homeostatic model 
assessment of beta cell function; LDL, low density lipoprotein cholesterol; SDS, standard deviation scores; TC, total 
cholesterol; TG, triglycerides. Data are Pearson’s correlation coefficient (p-value). P-values of 0.00 indicate that the 
value is < 1.00 x 10-36. 
 

 

 

 

 

 

 

 

 BMI SDS-BMI WHR SDS-WHR SBP SDS-SBP DBP SDS-DBP 
BMI 1 0.86 (0.00) 0.48 (0.00) -0.10 

(1.46x10-4) 
0.40 (0.00) 0.22 (0.00) 0.29 (0.00) 0.14 (0.00) 

SDS-
BMI 

0.86 (0.00) 1 0.54 (0.00) 0.17 (0.00) 0.28 (0.00) 0.22 (0.00) 0.20 (0.00) 0.15 (0.00) 

WHR 0.48 (0.00) 0.54 (0.00) 1 0.43 (0.00) 0.08 
(2.00x10-3) 

0.13 (0.00) 0.04 (0.09) 0.09 
(2.00x10-3) 

SDS-
WHR 

-0.10 
(1.46x10-4) 

0.17 (0.00) 0.43 (0.00) 1 -0.26 (0.00) 0.03 (0.28) -0.15 
(0.00) 

0.07 (0.01) 

SBP 0.40 (0.00) 0.28 (0.00) 0.08 
(2.00x10-3) 

-0.26 (0.00) 1 0.92 (0.00) 0.63 (0.00) 0.53 (0.00) 

SDS-
SBP 

0.22 (0.00) 0.22 (0.00) 0.13 
(3.00x10-6) 

0.03 (0.28) 0.92 (0.00) 1 0.57 (0.00) 0.62 (0.00) 

DBP 0.29 (0.00) 0.20 (0.00) 0.04 (0.09) -0.15 (0.00) 0.63 (0.00) 0.57 (0.00) 1 0.96 (0.00) 
SDS-
DBP 

0.14 (0.00) 0.15 (0.00) 0.09 
(2.00x10-3) 

0.07 (0.01) 0.53 (0.00) 0.62 (0.00) 0.96 (0.00) 1 

LDL 0.18 (0.00) 0.20 (0.00) 0.16 (0.00) 0.06 (0.03) 0.11 
(2.40x10-5) 

0.12 (0.00) 0.07 (0.01) 0.07 (0.01) 

HDL -0.36 (0.00) -0.30 
(0.00) 

-0.20 
(0.00) 

-0.07 (0.01) -0.08 
(2.00x10-3) 

-0.01 
(0.62) 

-0.05 
(0.07) 

1.00x10-3 

(0.97) 
TC 0.08 

(4.00x10-3) 
0.10 
(1.42x10-4) 

0.09 
(1.00x10-3) 

0.02 (0.40) 0.11 
(4.80x10-5) 

0.14 (0.00) 0.08 
(3.00x10-3) 

0.10 
(1.00x10-3) 

TG 0.46 (0.00) 0.40 (0.00) 0.27 (0.00) -0.02 (0.50) 0.22 (0.00) 0.16 (0.00) 0.13 (0.00) 0.07 
(9.00x10-3) 

FG 0.13 
(1.00x10-6) 

0.09 
(1.00x10-3) 

0.04 (0.11) -0.16 (0.00) 0.18 (0.00) 0.11 
(4.00x10-4) 

0.09 
(1.00x10-3) 

0.05 (0.09) 

FI 0.62 (0.00) 0.46 (0.00) 0.29 (0.00) -0.07 (0.02) 0.28 (0.00) 0.16 (0.00) 0.19 (0.00) 0.09 
(6.00x10-3) 

HOMA-
IR 

0.61 (0.00) 0.44 (0.00) 0.28 (0.00) -0.08 
(6.00x10-3) 

0.29 (0.00) 0.17 (0.00) 0.19 (0.00) 0.09 
(3.00x10-3) 

HOMA-
B 

0.56 (0.00) 0.40 (0.00) 0.25 (0.00) -0.05 (0.13) 0.23 (0.00) 0.13 
(2.70x10-5) 

0.15 (0.00) 0.06 (0.04) 



158 
 

Supplementary Table 10 Continued: Correlation table for continuous cardio-metabolic 
traits showing Pearson’s correlation coefficient and associated p-values. 

 LDL HDL TC TG FG FI HOMA-IR HOMA-B 

BMI 
0.18 

(1.75x10-

11) 

-0.36 
(1.00x10-13) 

0.08 
(4.00x10-3) 

0.46 
(1.00x10-13) 

0.13 
(1.00x10-6) 

0.62 
(1.00x10-13) 

0.61 
(1.00x10-13) 

0..53 
(1.00x10-13) 

SDS-
BMI 

0.20 
(1.25x10-

13) 

-0.30 
(1.00x10-13) 

0.10 
(1.42x10-4) 

0.40 
(1.00x10-13) 

0.09 
(1.00x10-3) 

0.46 
(1.00x10-13) 

0.44 
(1.00x10-13) 

0.40 
(1.00x10-13) 

WHR 
0.16 

(4.06x10-

10) 

-0.20 
(1.17x0-13) 

0.09 
(1.00x10-3) 

0.27 
(1.00x10-13) 0.04 (0.11) 0.29 

(1.00x10-13) 
0.28 

(1.00x10-13) 
0.25 

(1.00x10-13) 

SDS-
WHR 0.06 (0.03) -0.07 (0.01) 0.02 (0.40) -0.02 (0.50) -0.16 

(1.01x10-9) -0.07 (0.02) -0.08 
(6.00x10-3) -0.05 (0.13) 

SBP 0.11 
(2.40x10-5) 

-0.08 
(2.00x10-3) 

0.11 
(4.80x10-5) 

0.22 
(1.00x10-13) 

0.18 
(1.08x10-

11) 

0.28 
(1.00x10-13) 

0.29 
(1.00x10-13) 

0.23 
(1.00x10-13) 

SDS-
SBP 

0.12 
(1.00x10-5) -0.01 (0.62) 0.14 

(7.05x10-7) 
0.16 

(1.54x10-8) 
0.11 

(1.00x10-4) 
0.16 

(1.00x10-6) 
0.17 

(9.20x10-8) 
0.13 

(2.68x10-5) 

DBP 0.07 (0.01) -0.05 (0.07) 0.08 
(3.00x10-3) 

0.13 
(7.63x10-7) 

0.09 
(1.00x10-3) 

0.19 
(1.85x10-10) 

0.19 
(4.51x10-11) 

0.15 
(2.44x10-7) 

SDS-
DBP 0.07 (0.01) 1.00x10-3 

(0.97) 
0.10 

(1.00x10-3) 
0.07 

(9.00x10-3) 0.05 (0.09) 0.09 
(6.00x10-3) 

0.09 
(3.00x10-3) 0.06 (0.04) 

LDL 1 0.10 
(8.10x10-5) 0.89 (0.00) 0.42 

(1.00x10-13) 

0.28 
(1.00x10-

13) 

0.08 
(5.00x10-3) 

0.12 
(6.20x10-5) 0.03 (0.27) 

HDL 0.10 
(8.10x10-5) 1 

0.34 
(1.00x10-

13) 

-0.37 
(1.00x10-13) 

0.18 
(3.61x10-

12) 

-0.32 
(1.00x10-13) 

-0.28 
(1.00x10-13) 

-0.33 
(1.00x10-13) 

TC 0.89 (0.00) 0.34 
(1.00x10-13) 1 0.38 (0.00) 

0.34 
(1.00x10-

13) 
-0.02 (0.55) 0.03 (0.28) -0.08 

(6.00x10-3) 

TG 
0.42 

(1.00x10-

13) 

-0.37 
(1.00x10-13) 

0.38 
(1.00x10-

13) 
1 

0.20 
(1.03x10-

13) 

0.41 
(1.00x10-13) 

0.42 
(1.00x10-13) 

0.33 
(1.00x10-13) 

FG 
0.28 

(1.00x10-

13) 

0.18 
(3.61x10-12) 

0.34 
(1.00x10-

13) 

0.20 
(1.03x10-13) 1 0.16 

(6.49x10-8) 
0.29 

(1.00x10-13) 
4.00x10-4 

(0.99) 

FI 0.08 
(5.00x10-3) 

-0.32 
(1.00x10-13) -0.02 (0.55) 0.41 

(1.00x10-13) 
0.16 

(6.49x10-8) 1 0.98 (0.00) 0.98 (0.00) 

HOMA-
IR 

0.12 
(6.20x10-5) 

-0.28 
(1.00x10-13) 0.03 (0.28) 0.42 

(1.00x10-13) 

0.29 
(1.00x10-

13) 
0.98 (0.00) 1 0.94 (0.00) 

HOMA-
B 0.03 (0.27) -0.33 

(1.00x10-13) 
-0.08 

(6.00x10-3) 
0.33 

(1.00x10-13) 
4.00x10-4 

(0.99) 0.98 (0.00) 0.94 (0.00) 1 

 
Abbreviations: BMI, body mass index; FG, fasting glucose; FI, fasting insulin; HDL, high density lipoprotein 
cholesterol; HOMA-IR, homeostatic model assessment of insulin resistance; HOMA-B, homeostatic model 
assessment of beta cell function; LDL, low density lipoprotein cholesterol; SDS, standard deviation scores; TC, total 
cholesterol; TG, triglycerides. Data are Pearson’s correlation coefficient (p-value). P-values of 0.00 indicate that the 
value is < 1.00 x 10-36. 
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Supplementary Table 10: Shapiro-Wilk test for normality of continuous traits before and 
after inverse normal transformations 

Trait P-value before 
transformation 

P-value after 
transformation 

Adiponectin (µg/ml) 1.50 x 10-14 6.21 x 10-1 
BMI (kg/m2) 8.71 x 10-20 1.00 

WHR 2.92 x 10-7 1.00 
SBP (mmHg) 6.69 x 10-13 8.93 x 10-10 

DBP (mmHg) 7.20 x 10-17 8.43 x 10-14 

LDL Cholesterol (mg/dL) 5.66 x 10-12 1.00 
HDL Cholesterol (mg/dL) 6.67 x 10-8 7.55 x 10-1 

Total cholesterol (mg/dL) 3.76 x 10-8 1.00 
Triglycerides (mg/dL) 1.93 x 10-32 9.71 x 10-1 
Fasting glucose (mmol/L) 1.00 x 10-3 3.02 x 10-1 

Fasting insulin (mIU/L) 5.20 x 10-36 1.00 
HOMA-IR 6.67 x 10-37 1.00 
HOMA-B 1.14 x 10-35 1.00 
 
Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; HDL, high density lipoprotein cholesterol; 
HOMA-IR, homeostatic model assessment of insulin resistance; HOMA-B, homeostatic model assessment of beta 
cell function; LDL, low density lipoprotein cholesterol; SBP, systolic blood pressure; WHR, waist-to-hip ratio. 
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Supplementary Figure 3: Histograms illustrating raw distribution (panel A) and corrected distributions 
following inverse normal transformations (panel B) of variables of interest. 
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Supplementary Figure 3 Continued: Histograms illustrating raw distribution (panel A) and 
corrected distributions following inverse normal transformations (panel B) of variables of 
interest. 
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Supplementary Figure 3 Continued: Histograms illustrating raw distribution (panel A) and 
corrected distributions following inverse normal transformations (panel B) of variables of 
interest. 
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Supplementary Figure 3 Continued: Histograms illustrating raw distribution (panel A) and 
corrected distributions following inverse normal transformations (panel B) of variables of 
interest.
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CHAPTER 6: DISCUSSION 

This thesis addresses the contribution of genetic variants on the development of obesity 

and its metabolic complications in a multi-ethnic context and provides several novel 

contributions to the field of genetic epidemiology. Chapter 1 provides a comprehensive 

discussion of the ethnic differences in the genetic architecture of obesity and provides heritability 

estimates of BMI across various ethnic groups. The effects of the PPARγ Pro12Ala 

polymorphism on T2D related traits were investigated in a young, at-risk population in Chapter 

2. For the first time, significant gene-environment interaction between PPARγ Pro12Ala, 

circulating lipids and markers of insulin resistance are reported, showing that genetic 

predisposition can alter metabolic traits early in life in presence of an obesogenic environment. 

Subsequent chapters move from the genetics of obesity to understanding the inflammatory 

mechanisms of obesity. Strong associations between circulating adiponectin concentration and 

metabolic traits were observed in Mexican children. However, no significant associations 

between inflammation-related genes and metabolic traits were identified, consistent with 

previous work in pediatric European populations. How these results contribute to better 

understanding the underlying causes of obesity and associated complications in the context of 

genetic epidemiology are discussed below. Future directions are also described. 

Obesity rates have escalated globally, with varying prevalence across ethnic groups. 

Given that only a subset of individuals will develop obesity in a shared obesogenic environment, 

underlying genetic differences in the susceptibility to obesity have been suggested. For the first 

time, ethnic and population differences in the genetic architecture of obesity of obesity are 

discussed in a comprehensive review. A meta-analysis of heritability estimates of BMI from 19 

twin and 20 family studies from various ethnic groups was also performed. Heritability estimates 
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for BMI obtained from family studies were not significantly different in African, admixed and 

Asian populations, relative to Europeans. Due to the limited number of twin studies from non-

European populations, we were unable to assess ethnic differences in the heritability of BMI. 

This chapter highlights the strengths and challenges of multi-ethnic studies in 

understanding the genetics of obesity. Identifying obesity predisposing genes in European 

populations has been undeniably successful with over 90% of obesity-susceptibility loci having 

been identified in European populations1. Pathway analysis of genes associated with BMI 

provide strong support for a role of the central nervous system, adipose tissue, the 

musculoskeletal system and digestive tract, highlighting the complex etiology of obesity that 

encompasses biological pathways in multiple organ systems2. In recent years, more GWAS for 

obesity traits have been conducted in non-European populations and have been critical in 

confirming European obesity loci and identifying novel, ethnic-specific loci1. Moving beyond 

GWAS, whole-exome and whole-genome sequencing can be employed to assess rare variants 

and copy number variants to reveal novel loci implicated in obesity. Multi-ethnic studies allow 

researchers to identify which genetic signals are shared across diverse ethnic groups, identifying 

ethnic specific disease predisposing variants and private mutations, identifying gene – gene and 

gene – environment interactions, and understanding how a population’s history and societal 

practices have shaped the present genetic susceptibility to obesity. However, issues of 

reproducibility and transferability make the process challenging3. Ethnic-minorities are often 

under-represented in multi-ethnic studies and sample sizes of non-European cohorts are often 

much smaller, limiting statistical power. The effect sizes and minor allele frequencies of variants 

identified in European GWAS are generally larger than in non-European populations3. It is often 

unclear if the lack of significance in the replication cohort is the result of limited power/ sample 



166 
 

size or truly an absence of genetic association4. The formation of large, international genomic 

consortia for replication in various ethnic groups should be encouraged5. Funding initiatives 

expanding gene identification efforts in non-European or isolated populations should also be 

encouraged, especially in populations at high or low risk for obesity. Together the unique ethnic 

patterns of genetic predisposition to obesity stress the limitations of a ‘one size fits all’ approach 

for obesity treatment and emphasizes the importance of considering ethnicity in prevention 

strategies6.   

On the theme of multi-ethnic studies, subsequent analyses were performed in a pediatric 

Mexican cohort which is disproportionately affected by obesity and metabolic complications7. 

Associations with PPARγ Pro12Ala and BMI and T2D are well established in European 

populations, however few studies have examined these associations in the Mexican population8,9. 

The present work supports an association of the PPARγ Pro12Ala polymorphism with insulin 

resistance in Mexican children and suggests that this relationship is modified by circulating 

lipids. Previous studies have shown interactions between total, saturated or polyunsaturated fat 

intake on obesity and T2D related traits, however this is the first study to report significant 

interactions between PPARγ genotype and circulating lipids on IR. The use of circulating lipids 

as a surrogate for a high-fat diet strengthens the results and overcomes the limitations of food 

frequency questionnaires which are subject to bias and underestimate dietary intake10. However, 

it is important to acknowledge that circulating LDL is not a good marker of dietary intake as 

increased saturated fat intake is documented to increase LDL concentrations11. Circulating LDL 

levels are also strongly influenced by both monogenic and polygenic factors. Indeed, LDL 

lowering alleles in PCSK9, HMGCR, NPC1L1 are associated with increased risk of T2D, which 

can underestimate the effects of PPARγ interactions with LDL12. 
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Nonetheless, these findings suggest that diet and genetic background can significantly 

impact the development of metabolic complications. Gene - environment interactions with FTO 

and physical activity have been well established where physical activity reduced the risk of 

obesity by 27% in a predominately European population13. However, gene - environment 

interactions in the context of obesity and metabolic complications remain largely unexplored and 

should be investigated further. Once a more comprehensive understanding of gene – gene, gene – 

diet and gene – environment interactions is established, more effective interventions can be 

implemented to reduce the adverse health effects associated with obesity. 

Chapter 2 also suggests that polygenic variants have a more profound effect on obesity-

related complications. Rare cases of monogenic non-syndromic obesity have previously shown 

the importance of the central nervous system in the development of obesity, resulting in fully 

penetrant, early-onset obesity14. For example, when clinical and phenotypic characteristics of 

subjects with MC4R mutations were examined, all subjects were hyperphagic, euglycemic, and 

had serum lipid concentrations within normal ranges although they had significantly elevated 

insulin concentrations15. Those with MC4R mutations were also found to be protected from 

hypertension16. Conversely, a lack of adipose tissues, as seen in familial partial lipodystrophy 

syndrome can cause severe metabolic complications such as T2D, dyslipidemia and heart 

disease2. For most of the population, obesity is polygenic in nature with genetic variants involved 

in various biological pathways including adipocyte differentiation, insulin signaling, lipid 

metabolism, muscle and liver biology, gut microbiota having been identified. These diverse 

genetic variants demonstrate the obesity is a complex disease involving multiple, interconnected 

metabolic pathways which can have a profound effect on obesity-related complications. 
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 Obesity is characterized by a state of chronic low-grade inflammation due to dysregulated 

adipokine secretion and macrophage infiltration, which is one of the suggested 

pathophysiological mechanism linking obesity to other metabolic complications. Low 

concentrations of the anti-inflammatory adipokine, adiponectin have been associated with 

obesity, insulin resistance, T2D, dyslipidemia, hypertension and cardiovascular disease17. The 

present work extends this negative association between serum adiponectin level and childhood 

overweight/obesity status to the Mexican population. Inverse associations with serum 

adiponectin and WHR, LDL-C, total cholesterol, and fasting glucose were also observed, 

suggesting that low adiponectin concentrations may influence the development of metabolic 

complications and that this may begin at an early age.  

It is important to clarify that the pathogenesis of insulin resistance in the context of 

dyslipidemia is multifactorial, and the definition provided in Chapter 3 is an oversimplification. 

Dyslipidemia is commonly defined as high TG, low HDL and increased concentration of small 

dense LDL and is highly correlated with hyperinsulinemia18. This dyslipidemia is caused by an 

increase in free fatty acid flux into the liver which is secondary to insulin resistance and is 

worsened by increased concentrations inflammatory adipokines19. This is evidenced by genetic 

studies of those with insulin receptor mutations who do not develop dyslipidemia despite 

extreme insulin resistance18. 

Furthermore, those with insulin receptor mutations and severe insulin resistance were 

found to have elevated plasma adiponectin levels. Plasma adiponectin levels were not only 

higher than those reported in other states of severe IR, but were also significantly higher than in 

the normal population20. This challenges the assumption that low adiponectin concentrations 

result in insulin resistance and implies that the insulin receptor has a critical role in adiponectin 
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production and / or clearance, or that disruptions to the insulin receptor influence adiponectin 

levels21,22. While the precise mechanisms remain to be elucidated, rare adiponectin- lowering 

genetic variants have not been convincingly associated with insulin resistance, suggesting a 

complex relationship between adiponectin and insulin sensitivity21.  

Associations between inflammation-associated genes and metabolic traits were also 

investigated in the Mexican population and did not reach statistical significance, consistent with 

previous reports in European children. These are the first studies to explore the associations of a 

representative list of genetic variants related to inflammation with metabolic traits in a pediatric 

Mexican population. Further investigation with a more exhaustive SNP selection reflecting 

recent GWAS discoveries for inflammatory markers, larger sample sizes and the availability of 

serum inflammatory-markers, is warranted23. 

 These projects also establish divergent results between classic observational studies and 

genetic epidemiology in the context of obesity-associated inflammation and metabolic 

complications. Observational studies propose that obesity-associated inflammation is the 

suggested pathophysiological mechanism linking obesity to other metabolic complications. 

However, as observational epidemiology is subject to bias, confounding, and reverse causation, 

causality is difficult to assess24. This is particularly problematic when the results are 

disseminated and cannot be confirmed by costly, large-scale randomized trails25. Genetic studies 

are not confounded by environmental or lifestyle factors, thus combining genetic epidemiology 

with classic observational epidemiology can circumvent the limitations of traditional 

observational studies26. A further approach is Mendelian randomization which can be used to 

show the causal direction of associaitons26. Deemed “nature’s randomized trials” due to the 

random and independent assortment of genetic variation at conception, Mendelian randomization 
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can provide a better understanding of the etiology of a disease26. Both monogenic and polygenic 

variants can be used in Mendelian randomization studies27. Monogenic analyses provide the 

most reliable assessments of causal relationships as the gene region encodes either the risk factor 

itself or a biologically relevant risk factor in the causal pathway27. Loss – of – function mutations 

care possible candidate variants for monogenic Mendelian randomization studies27. Polygenic 

Mendelian randomization studies rely on genetic variants from multiple gene regions associated 

with a risk factor and can be summarized in a gene score. Polygenic gene scores account for a 

greater proportion of variance, thus increasing statistical  power and can avoid weak instrument 

bias28. Although Mendelian randomization studies are hampered by insufficient statistical power, 

lack of replication, genetic variants in linkage disequilibrium, and the use of surrogate tag-SNPs, 

they have already successfully identified causal associations with increased BMI and higher risk 

of metabolic and cardiovascular disease and lower adiponectin concentrations and increased 

insulin resistance17,29. Future studies combining classic and genetic epidemiology will have great 

utility in determining the direction of associations for obesity-associated inflammation and 

metabolic complications. 

 With more than 940 loci associated with BMI and / or obesity, there is considerable 

interest in using this information to predict one’s risk for developing obesity. Prevention and 

treatment strategies are rarely developed for the individual, but at-risk subgroups may be 

identified more effectively using genetic testing. This is the basis of precision medicine which 

many believed would emerge quickly after the Human Genome Project sequenced the human 

genome and revolutionize modern medicine30. For rare cases of monogenic obesity, where 

individuals are easily identified through genetic testing (direct sequencing of LEP, LEPR, 

PCSK1, POMC and MC4R), actionable interventions are available; subcutaneous injections of 
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leptin in those with LEP mutations results in weight loss and reduced food intake31. The MC4R 

agonist, setmelanotide also results in substantial weight loss and management of hyperphagia in 

those who are deficient in LEPR, POMC and MC4R32-34. For most however, obesity is polygenic 

meaning that each induvial will have a unique combination of risk and protective variants. Since 

the completion of the Human Genome Project, other high-throughput technologies have emerged 

and provide unique information about the contribution of the epigenome, transcriptome, 

proteome, metabolome, and microbiome on obesity susceptibility. While the human genome is 

largely static, various “-omes” (i.e. the epigenome, transcriptome, proteome etc) are dynamic 

systems, which will pose additional questions surrounding the use of dynamic predictors of 

obesity. Although each field provides insight into the etiology of obesity, understanding tissue-

specific regulation, cross-talk between tissues, and response to various environmental or 

physiological triggers, makes understanding the biological mechanisms of complex disease a 

difficult task35.  

It is now clear that after much excitement for precision medicine, much more work needs 

to be done before these results can be translated to clinical practice. The generation, 

management, integration, analysis and interpretation of omics data remains expensive and 

represents a major bottleneck6. Others argue that the utility of precision medicine for obesity is 

limited due to modest heritability and poor predictive ability that will never accurately predict 

common obestiy36. Despite these challenges, genetic epidemiology has made significant 

contributions to the understanding of the biology of obesity and this cannot be overlooked. 

Applying genomic medicine to designing clinical trails, guide the development of more effective 

treatments and identifying individuals who most likely respond to treatment has the potential to 

revolutionize modern medicine and should be pursued.  
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