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Lay Abstract

Impaired visual experience early in life can cause lasting visual deficits in animals and
humans. Even after correcting ocular impairment, poor vision often remains, which suggests
early experience instills lifelong changes in the area of the brain that processes vision, called the
visual cortex. Changes that take place in visual cortex affect the function of cortical cells. Most
of these changes are executed by proteins that sit at the junction between cells. By inflicting
visual impairments in young animals, and examining changes in protein expression in visual
cortex cells, we can relate protein expression to experience-dependent changes. I examined
expression of proteins in visually impaired kittens to investigate why some treatments might be
more effective than others. I also examined protein levels in human brains to investigate why

treatment during certain periods of development produce suboptimal recovery.



Abstract

When the visual system is confronted with adverse early-life experiences, maladaptive
plasticity permits development of poor vision in a disorder called amblyopia. Patch therapy is the
common treatment for amblyopia, by which occluding the good eye manipulates residual
plasticity to improve acuity in the poor eye. Unfortunately patch therapy does not work for
everyone and improvements are often transient. Animal models of amblyopia have highlighted
the neurobiology after the initial insult, but little is known about the response to treatment. Since
synaptic proteins are the interface between neuronal structure and function, it is imperative that
neuroscientists study the amblyopic synaptic proteome to better map intervention strategies in
humans.

In the first part of this thesis I modernize 3 approaches for examining central visual
pathway. First I combine neuroanatomical tracing with modern tissue clearing to examine central
visual pathway connectivity. Next, I improved a manual fractionation protocol for enriching
synaptic protein expression in cortical tissues. Third, I present a series of analytical techniques
for multi-dimensional statistics to interpret protein expression in cortical tissue samples.

In the second part of this thesis I used these techniques to examine a set of commonly
studied synaptic plasticity mechanisms in a cat model of amblyopia. I identified the
neurobiological plasticity phenotype of patch therapy and treatment alternatives. I then examined
expression of 23 synaptic and non-neuronal proteins in post-mortem tissue samples from human
visual cortex across development to identify neuroplasticity states.

These chapters identify options for improved or augmented therapies by identifying the
plasticity phenotypes in animal models of amblyopia, and across human development. Together
these tools identify potential successes and failures of existing behavioural interventions, such as
binocular vision, as well as the causes of suboptimal treatments in human development, such as

early periods of protein heterogeneity.
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Chapter 1. General Introduction
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Preamble

Vision is the most heavily relied upon sensory system for humans navigating the world
around us. The quality of our vision changes, however, depending on early visual experience.
Abnormal visual experience in childhood can result in permanent visual impairments, including
visual disorders like amblyopia. Those visual impairments have significant socioeconomic
impacts as kids with amblyopia have difficulties with tasks such as reading or making eye-
contact with peers, that is likely to affect self-esteem, the ability to learn and to perform
academically (Nelson et al., 2008). Children with uncorrected visual impairments are therefore
less likely to pursue post-secondary school education or careers that rely on those abilities, in
addition to experiencing an overall decrease in quality-of-life (van de Graaf et al., 2007; McBain
et al., 2014). Although many treatments for childhood vision disorders like amblyopia have been
explored through visual manipulation, perceptual training and pharmacological intervention,
there is little consensus as to what treatment leads to lasting visual recovery.

Over the past fifty years, researchers have used animal models to investigate the underlying
causes of amblyopia along the visual pathway. Together these studies point to a collection of
neurobiological mechanisms in the primary visual cortex (V1) that underlie those experience-
dependent visual impairments. Little is known however, about how therapies for visual
impairments impact those neurobiological mechanisms in V1. Even less is known about how to
translate those neurobiological mechanisms for use in human therapies.

This thesis addresses these gaps in the field by answering questions about how treatment
for amblyopia affects plasticity mechanisms in V1, and how to begin to translate those findings
in animal models onto normal human development. In this introduction I will discuss the
maladaptive cortical response to early visual impairments and classic treatments for amblyopia. I
will then explain how animal models have been instrumental in our understanding of experience
dependent plasticity mechanisms as they pertain to amblyopia, and how we can take advantage of
this knowledge to reinstate plasticity and treat amblyopia. Finally, I will outline current treatment
therapies in animal models and explain how we can translate these findings for interpreting

persistent amblyopia in humans.
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1.1 Amblyopia
Quality of life

Amblyopia, more commonly known as lazy-eye, is a visual disorder that typically presents
in young children, and negatively impacts both visual function and quality of life. The clinical
diagnosis for amblyopia includes the presence of a visual deficit that impacts the acuity of either
one, or both eyes, even after correcting the original visual insult. This disorder afflicts ~2-5% of
children (Wu and Hunter, 2006; Friedman et al., 2009; Maurer and McKee, 2018), and
constitutes the leading cause of monocular visual impairment in children and young adults
worldwide (Gunton, 2013). Monocular acuity deficits affect a multitude of visual tasks, including
contrast sensitivity, accommodation, binocular vision, and higher-order motor and visual tasks
(Birch, 2013). These deficits are more pronounced in central than peripheral vision (Tytla et al.,
1988; Bowering et al., 1993; 1997), and lead to poor performance on real-world visuomotor tasks
(Grant and Moseley, 2011) and day-to-day activities such as reading (Kelly et al., 2015). Aside
from the visual deficits, the psychological and social tolls of untreated amblyopia range from
peer discrimination to poor image of the self, and poor school performance (Packwood et al.,
1999; Choong et al., 2004; Chua and Mitchell, 2004; Webber and Wood, 2005; Rahi et al., 2006;
Webber et al., 2008; Horwood:2005gc; O'Connor et al., 2010).

Susceptibility

The exact cause of amblyopia is unknown, however it is clear that this disorder stems from
inadequate visual experience during the first years of life, and risk factors for amblyopia include
misalignment of retinal images (strabismus), unequal refractive power between the two eyes
(anisometropia), or visual deprivation (e.g. cataracts) (Ellemberg et al., 2000; Maurer and Lewis,
2001; Birch, 2013). The period of susceptibility to amblyopia is restricted to a developmental
window that extends to around 8 years of age (Daw, 1998; Mitchell and MacKinnon, 2002;
Simons, 2005), and reversal of the effects of amblyopia becomes more difficult outside this
window (Birch, 2013).

Human development has long been characterized by a series of stages (Piaget 1952,

Erikson, 1959), and the development of vision is no exception (Lewis and Maurer, 2005; Siu &
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Murphy 2018, 2018). Even studies investigating the development of visual cortex use
developmental stages (Pinto et al., 2010; Williams et al., 2010; Siu et al., 2015; 2017). One of
these developmental stages is defined by the increased susceptibility to amblyopia (Lewis and
Maurer, 2005). Other stages are marked by the development of visual perceptual abilities, which
progress through a series of stages that extend well into the fourth decade of life (Kovacs et al.,
1999; Owsley, 2011; Hartshorne and Germine, 2015). Modern interventions for amblyopia are
inspired by the protracted time course of development of human visual abilities, and have
produced varying degrees of success in treating both young children within the window of
susceptibility to plasticity, as well as older adult amblyopes.

Standard treatment

For over 200 years the best treatment for amblyopia has been patching therapy: applying a
patch over the good eye to eliminate the suppressive action, and permit experience-induced
recovery of acuity in the open amblyopic eye. If amblyopia is diagnosed early and treatment is
provided, patching therapy can be an effective intervention strategy for recovering lost acuity
(Wallace et al., 2006). There are several challenges with patching therapy. First, not all children
are receptive to patching therapy, and many fail to show improvements despite even the most
aggressive patching therapy (Woodruff et al., 1994; Repka et al., 2003; Birch et al., 2004; Repka
et al., 2004; Stewart et al., 2004; Repka et al., 2005; Birch and Stager, 2006; Wallace et al.,
2006). Second, even if treatment starts on time and compliance is monitored, children can still
present with persistent visual deficits, implying that even the best amblyopia treatments fail to
provide optimal recovery (Birch, 2013). Third, most amblyopic children that actually succeed in
recovering acuity are prone to regression, whereby the recovered acuity is lost within the first
year after treatment (Holmes et al., 2004; Bhola et al., 2006).

Over the last 50 years our knowledge of the anatomy and function of the visual system has
grown, and with it so has our understanding of the causes of visual acuity deficits such as the
ones found in amblyopia. The prolonged development of human visual cortex, measured through
anatomical and neurobiological markers as well as visual milestones, would suggest that various
forms of plasticity persist well into adulthood. The visual systems of animals like cats and non-

human primates share homologies with visual systems of humans, and that makes them good
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models for identifying biological changes that might explain the poor acuity after amblyopia
treatment. This includes our understanding of how neural circuits of the central visual pathway
are shaped or molded by experience, called neural plasticity. Unfortunately the translation of
effective treatments for amblyopia is lagging, in part due to the slow translation of neural
plasticity in animal models into effective human therapies. This introduction will present an
overview of animal models for amblyopia, our understanding of the causes of amblyopia, and

how intervention for human amblyopes might be improved.
1.2 Cortical Plasticity - Animal models
Central Visual Pathway - Retina

Light signals are processed in the eye, where photons get converted into electrochemical
signals that travel along the central visual pathway to the brain (Figure 1A). There the signals are
used to interpret physical characteristics of real world objects, such as size, shape, color, texture,
location and motion information. However the only neural portion of the eye directly connected
to the central nervous system is the retina. After light passes through the cornea, it is filtered
through the aqueous humor (anterior chamber), the lens and the vitreous humor (posterior
chamber), before contacting the various layers of the retina (Figure 1B). Light photons enter the
retina through the ganglion cell layer and strike two classes of photoreceptor cells, rods and
cones. In a process called photo-transduction, both classes of photoreceptor convert light signals
into neural signals(Kuffler, 1953) that are passed between the 5 cell types spread across the
layers of the retina (Polyak, 1941; 1957)(Fig 1B). In the outer plexiform layer, photoreceptors
synapse onto bipolar cells, and in the inner plexiform layer, the bipolar cells in turn synapse onto
retinal ganglion cells (RGCs). Finally, RGCs bring the visual signal out of the retina through the
optic disk and along the optic nerve (reviewed in Masland, 2012; Seung and Siimbiil, 2014;
Spillmann, 2014).
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Figure 1. Representation of common organizational schemes along the central visual pathway.

A. Overview of the central visual pathway depicting retinal afferents that innervate the ipsilateral (pink) or
contralateral (blue) hemispheres. B. The layers of the retina and associated cell types, arranged with photoreceptors
at the top and ganglion cells at the bottom. Note that light (yellow arrows) first enters the retina through the ganglion
cell layer, but is only photo-transduced into an electrical signal by the photoreceptors at the back of the retina.
Neurons in the optic nerve project to the superior colliculus (C) and lateral geniculate nucleus (LGN) (D,E). The
LGN primarily projects to layer 4 (IV) of the primary visual cortex (V1) (F,G). LGN is divided into 3 types of
layers: parvocellular, magnocellular and koniocellular (D), which remain segregated as they project to the different
layers of V1 (F). Similarly the pattern of contralateral and ipsilateral afferents in the LGN (E) is preserved as
columns of ocular dominance in V1 (G). Figure 1 is modified from (Solomon and Lennie, 2007).

Though the retina contains more than 60 different cell types the major classes include the
photoreceptors, bipolar cells and ganglion cells, as well as horizontal and amacrine cells, which
have cell bodies located in the inner nuclear layer, but synapse in the outer and inner plexiform

layers, respectively (Masland, 2012). Horizontal and amacrine cells create lateral connections
between photoreceptors and bipolar cells.

The spatial arrangement of photoreceptors, bipolar cells and ganglion cells are not
uniformly distributed across the retina, and because of this the degree of convergence from
photoreceptor to ganglion cell differs depending on retinal eccentricity. In non-human primates

and humans, the center of vision is focused by the eye onto the fovea, an area of the retina known



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

for processing high visual acuity. In animals with fovea-like vision, including cats that have an
area centralis (Kuffler, 1953; Curcio et al., 1990; Roorda and Williams, 1999; Roorda et al.,
2001), the fovea is marked by a low degree of convergence from the many cone photoreceptors
(Steinberg et al., 1973) to the high density of retinal ganglion cells (Stone, 1978). Low
convergence from one cell type to another maintains small receptive field sizes and high visual
acuity (Cleland et al., 1979; Wissle et al., 1990; Sjostrand et al., 1999). As retinal eccentricity
increases, densely packed cones are exchanged for sparsely packed rods, and higher convergence
from photoreceptor to RGC results in poorer visual acuity in visual periphery.

Regardless of retinal eccentricity, neighbouring ganglion cells share neighbouring receptive
fields, and the degree of convergence from photoreceptor to ganglion cell establishes the size of
these receptive fields. While not all mammals have a fovea-centralis like human and non-human
primates, carnivores like the cat possess a similar fovea-like retinal area centralis with a high
density of photoreceptors with low convergence on ganglion cells. This topographic arrangement
of neighbouring receptive fields innervating neighbouring RGCs is referred to as retinotopy, and
is maintained at all stages of the central visual pathway.

Central Visual Pathway - Connections to midbrain and thalamus

Retinal ganglion cells exit the retina through the optic disk in a nerve bundle called the
optic nerve, that projects to the superior colliculus of the midbrain (SC, Figure 1C) or along the
optic tract to the lateral geniculate nucleus of the thalamus (LGN, Figure 1D,E), as well as other
sites. The SC controls oculomotor responses (reviewed in (Wurtz et al., 1980; Gandhi and
Katnani, 2011) and early anatomical lesion studies in tree shrews concluded that superficial SC
layers were responsible for visual processing (Casagrande et al., 1972; Harting et al., 1973;
Casagrande and Diamond, 1974), while deeper layers guide orientation/movement of the eyes
and head toward stimuli (Harting et al., 1973). Tracer studies in primates and cats further
revealed that most cells across the surface of the SC are innervated by the contralateral eye
(Figure 1C- blue), and receive few ipsilateral connections (Lane et al., 1971; Cynader and
Berman, 1972; Kaas et al., 1974). Curiously, labelling RGC projections to SC revealed labelling
in superficial layers of both hemispheres of the SC (Hendrickson et al., 1970; Tigges and Tigges,
1970; Lund, 1972a; 1972b; Tigges and O'Steen, 1974; Hubel et al., 1975), with superficial label
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density highest in the contralateral hemisphere (Graybiel 1975) and only small islands of label in
the ipsilateral hemisphere (Graybiel 1975; Wissle and Illing, 1980; Illing, 1989). The same
superficial layers of SC receive feedback projections from layer V of V1 (Lund et al., 1975).

In the LGN, RGC afferents terminate in alternating, eye-specific laminae in both cats,
(Guillery and Kaas, 1971; Shatz, 1983; Anderson et al., 1988) and primates (Kaas et al., 1978).
The number and patterning of laminae differs across species, but the anatomical and functional
mapping of retinal output to LGN inputs is highly conserved from cats (Cleland et al., 1971;
Hamos et al., 1987) to primates (Lee et al., 1983; Conley and Fitzpatrick, 1989). Cats have 3
major LGN subdivisions: A, Al and C that process stimulation from contralateral, ipsilateral then
contralateral retinae, respectively (Guillery and Kaas, 1971). Meanwhile, humans and non-
human primates have 6 LGN laminae: the contralateral eye innervates layers 1, 4 and 6, and the
ipsilateral eye layers 2, 3 and 5 (Figure 1E). LGN laminae in humans and non-human primates
are also divided by function. The outermost laminae (3-6) are parvocellular layers containing
cells with smaller receptive fields, that process medium wavelength colour information, while the
innermost laminae (1 and 2) are magnocellular layers containing cells with larger receptive
fields, that process contrast and motion, but are achromatic (Wiesel and Hubel, 1966; Derrington
et al., 1984; Kaplan and Shapley, 1986; Michael, 1988; Jacobs, 2008) (Figure 1D). In between
each magno- and parvocellular layer exists a third type of layer called koniocellular (Kaas et al.,
1978; Casagrande, 1994; Hendry and Yoshioka, 1994). The koniocellular layers are believed to
process information from short wavelength cones (blue light) (Martin et al., 1997; Hendry and
Reid, 2000; Tailby et al., 2008a; 2008b). All layers of the LGN project to primary visual cortex,
and in turn the LGN receives feedback from V1 (Guillery and Sherman, 2002; Briggs et al.,
2016).

Anatomical Organization of Visual Cortex - Cortical Layers

The visual cortex itself is divided into 6 layers. The supragranular layers (I-II) are the
layers where inter-cortical connections occur between visual association and other areas. Layer I
does not contain many neurons, but does contain cell neuropil, and is called the molecular layer.

Layers II and III, the external granular and external pyramidal layer, contain mostly pyramidal
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cells. Layer II/III contains most of the connections with other cortical areas (cortico-cortical
areas).

The internal granular layer (IV), or the input layer, is where most afferents from LGN
axons terminate (Figure 1F). Layer IV is divided into A, B and C. Layer IVC is further
subdivided into IVCa and IVCP, where the magnocellular and parvocellular LGN laminae
terminate, respectively (Chatterjee and Callaway, 2003)(Figure 1F). The koniocellular neurons
primarily terminate in layer IVA(Casagrande et al., 2007; Klein et al., 2016). The koniocellular
neurons project not only to layer IVA, but also to supragranular “blobs” or “puffs”. In layer V
and VI, pyramidal cells receive the information from layer IV and supra granular layers, and send
information out of the cortex. Most of these neurons are excitatory, but modulatory inhibitory
circuits govern their behaviour as well. For example in layer IV there is a thick neuropil of
inhibitory parvalbumin-positive (PV+) inhibitory interneurons (del Rio and DeFelipe, 1994), that
are exquisitely positioned to modulate feedforward responses in the visual cortex (Pouille and
Scanziani, 2001; Self et al., 2012) and across cortical networks (Agetsuma et al., 2018). Beyond
the input layer IV, the streams of visual processing intermingle extensively.

In mammals with a region of specialized vision, such as the fovea (primate) or area
centralis (cat), the largest amount of V1 cortical area is reserved for processing the central field
of vision (Tusa et al., 1978), and the small receptive field sizes are maintained in neurons in the
central visual field representation of V1. This preserves high visual acuity for central vision
(Hubel & Wiesel, 1962). Since monocular deprivation (MD) affects central visual processing the
most (Dews and Wiesel, 1970), the cortical deficits present in amblyopia are likely located in this
cortical region.

Functional Organization of Visual Cortex - Cortical Columns

Much of what is known about the structure and function of the visual cortex, from its
organization to the impact of early experience on visual function, comes from the work of David
Hubel and Torsten Wiesel. By projecting bars of moving light onto a screen while simultaneously
recording the extracellular responses of neurons in cat V1, Hubel and Wiesel were able to map
receptive field properties of V1 neurons (Hubel & Wiesel, 1962). They discovered that the cells

they were recording from responded preferentially to stimuli of a particular orientation (0-180°),
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called the orientation selectivity, and preferred one eye over another, called ocular dominance
(OD). Neighbouring V1 neurons were likely to have similar orientation and ocular preference,
and later it was confirmed that neighbouring cells in the input layer IVC of visual cortex in both
cats (LeVay et al., 1978) and primates (Wiesel et al., 1974) extend as columns throughout cortical
layers (Figure 1G). The sudden transitions between these OD columns take place more gradually
outside layer IVC of V1, where binocular information begins to intermingle.

Ocular dominance plasticity and neuronal morphology

Visual experience alters the response properties of V1 cells in cats (Wiesel and Hubel,
1963). The OD columns were already present in the cortex of very young, visually inexperienced
animals and OD columns formed even in the absence of visual stimulation. However, the quality
of vision is important for maintenance of OD columns across development, since cats that were
monocularly deprived (MD) of visual stimulation shifted OD preference in favour of the non-
deprived eye (Wiesel and Hubel, 1965). The capacity for this OD shift, called OD plasticity, was
greatest in younger animals, while mature animals were more resistant to experience-dependent
changes (Hubel and Wiesel, 1970). The window for ocular dominance plasticity was outlined in
cats from as early as 3 weeks of age, peaks by 5 weeks, and steadily declines past 8 weeks of age
and into adulthood (Olson and Freeman, 1980). It was possible to induce the ocular dominance
shift in adult animals, but it was harder to initiate and required longer periods of deprivation
(Jones et al., 1984). The physiological shift in OD preference following early MD (Movshon and
Diirsteler, 1977; Shatz et al., 1978; Crair et al., 1997) was accompanied by visual acuity deficits
(Dews and Wiesel, 1970; Mitchell et al., 1977; Giffin & Mitchell, 1978), and the more severe the
deprivation, the worse the acuity deficit. Therefore, the acuity deficits that arise after early MD
are directly related to the physiological response property known as OD plasticity.

The physiological changes that occur after MD during the critical period (CP) proceed
through two stages; first a weakening of responses from the deprived eye (Gordon & Stryker
1996; Hensch et al., 1998; Trachtenberg et al., 2000; Frenkel & Bear, 2004), followed closely by
a slow strengthening of non-deprived eye response (Sawtell et al., 2003; Frenkel & Bear, 2004;
Kaneko et al., 2008). The structural changes that accompany MD-induced OD shifts occur in a

similar cascade of events, beginning with an early mobilization and diminished density of
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dendritic spines (Mataga et al., 2004; Oray et al., 2004; Tropea et al., 2010; Yu et al., 2011,
Djurisic et al., 2013). After these early spine changes, there follows a loss of neuronal afferents
from the deprived eye (Antonini and Stryker, 1993; 1996), and then a later expansion of afferents
from non-deprived eye (Antonini et al., 1999). Even short periods of deprivation, on the scale of
hours, are sufficient to cause rapid physiological (Freeman and Olson, 1982; Trachtenberg et al.,
2000; Schwarzkopf et al., 2007), proteomic (Williams et al., 2015) and anatomical changes
(Antonini and Stryker, 1996). Sensory deprivation experiments such as these have become the
preeminent model for studying CP plasticity and understanding the physiological and anatomical
basis for juvenile plasticity is a goal of modern neuroscience.

Animal models of amblyopia

Visual impairments in animal models of amblyopia are typically administered by MD.
These animal models recapitulate the physiological and anatomical changes that accompany
early adverse experiences in humans, including the transient recovery of acuity following
patching therapy. In an extreme form of behavioural intervention, cats that received MD to the
peak of the CP were reverse occluded by suturing shut the non-deprived eye and re-opening the
initially deprived eye (Movshon, 1976a). This reverse occlusion (RO) treatment demonstrates
some recovery of vision in the initially deprived eye (Movshon, 1976a; Giffin and Mitchell,
1978). However, like in humans, this recovered vision is lost soon after treatment stops and
binocular vision (BV) is restored (Mitchell et al., 1984). The challenges of patching therapy are
further complicated in that vision of the initially non-deprived eye may also be affected, resulting
in bilateral amblyopia after patching therapy (Murphy and Mitchell, 1986; 1987).

The loss of recovered acuity after patching therapy remains a mystery. RO restores much of
the anatomical and physiological changes of MD. Indeed 18 days of RO shifts the physiological
response back to normal, while longer lengths of RO have little effect (Blakemore and Van
Sluyters, 1974; Movshon, 1976b; Mitchell et al., 1977; Giffin and Mitchell, 1978; Mitchell,
1988; Mitchell and Gingras, 1998). RO even rescues some anatomical changes, namely restoring
the size of axonal branches from the initially deprived eye (Antonini et al., 1998). If anatomical
and physiological changes cannot fully explain the loss of acuity after RO, then what are the

neurobiological changes that lead to bilateral amblyopia?

11
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1.3 Synaptic plasticity - animal models
Glutamatergic plasticity mechanisms

Visual information first reaches visual cortex by means of excitatory thalamocortical axons
terminating in layer [Vc of V1. Here neurotransmission begins through the release of glutamate,
which binds to alpha-amino-3-hydroxy-5-methyl-4-isoxazole receptors (AMPAR) and N-methyl-
d-aspartate receptors (NMDAR). This glutamatergic binding to either AMPARs or NMDARSs
triggers an early ~2ms (AMPAR) (Kleppe & Robinson, 1999) or later ~190-380ms (NMDAR)
(Monyer et al., 1992) phase of excitatory post-synaptic currents (EPSC). The subunit
composition of glutamatergic receptors modulates receptor kinetics, and by extension, the ease
with which synaptic plasticity can occur. For example, most AMPARs contain the GluA2
subunit, which makes the AMPAR impermeable to calcium, restricting calcium-dependent LTP
(Hollmann et al., 1991). GluA2-containing AMPAR expression increases with experience
(Herrmann, 1996) and after blocking cell activity using TTX (Gainey et al., 2009). This fast
acting glutamatergic receptor is associated with rapid signal processing in the visual system and
homeostatic plasticity, so changes in AMPAR expression after MD explain some of the system
resistance to recovery.

Similar to AMPA receptors, NMDA receptors are considered a functional unit controlling
synaptic plasticity. Pharmacological inactivation of NMDARSs prevents the ocular dominance
shift in young kittens (Bear et al., 1990). NMDARs are tetrameric glutamate receptors that
contain two obligatory GluN1 subunits paired with two GluN2 (A-D) and/or GluN3 subunits
(Monyer et al., 1994). The contribution of NMDAR activity to synaptic plasticity is tightly
regulated by NMDAR subunit composition. There is a well-documented experience-dependent
shift in NMDAR currents in visual cortex, that shortens the duration of EPSCs across
development (Flint et al., 1997). This shift in the receptor currents is delayed by visual
deprivation (Carmignoto & Vicini, 1992), and is directly regulated by changes in the NMDAR
composition (Quinlan et al., 1999b). Only recently has the effect of including more 2A subunits
in NMDAR been suitably quantified as a shift in NMDAR decay kinetics away from the slow
333ms contributed by dihetereomeric 2B NMDAR (2B:2B) to the faster decay kinetics from

12
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trihetereomeric NMDAR (2A:2B) (50ms) or the dihetereomeric NMDAR (2A:2A) (36ms)
(Tovar et al., 2013; Sun et al., 2017). Shifting to faster NMDAR kinetics reduces the window for
coincidence detection in LTP (Erreger et al., 2005), but indicates classic Hebbian plasticity has
strengthened connections between neurons. Furthermore, the change in NMDAR currents is
bidirectional, and environmental manipulations such as dark rearing and light exposure can
adjust synaptic transmission. Dark rearing prolongs the length of EPSCs while light exposure
shortens them (Philpot et al., 2001). Similarly, the shift in receptor subunit composition can be
manipulated by experience: dark rearing increases the relative contribution of GluN2B, and light
exposure increases the GIuN2A (Quinlan et al., 1999a).

Aside from classic Hebbian forms of plasticity, AMPAR and NMDAR are also involved in
homeostatic plasticity mechanisms. One example of this is the insertion of AMPAR to synaptic
membranes of silent (dormant) synapses (Rumpel et al., 1998). Once synapses are activated the
strength of the signal required to effect further change through LTP or LTD is gated by the
balance between 2A and 2B, a synaptic property dubbed the 'sliding modification threshold’ of a
synapse, also referred to as metaplasticity (Quinlan et al., 1999a; Philpot et al., 2001). With
increased 2B expression in juvenile visual cortex, the likelihood of LTP is higher because of the
prolonged decay kinetics of 2B-dominated NMDAR and increased calcium entry(Jones et al.,
1999), leading to more calcium-dependent LTP processes (Philpot et al., 2001). After MD the
delicate synaptic environment becomes skewed in subunit compositions of AMPA and NMDAR
subunits. The weakened deprived eye response is mediated by decreased GluA2 (Heynen et al.,
2003; Lambo and Turrigiano, 2013) and increased GluN2B (Chen and Bear, 2007), and the
strengthened non-deprived eye response is driven by increased GluA2 (Lambo and Turrigiano,
2013) and decreased GIuN2B (Smith et al., 2009). The weakening of deprived eye responses via
AMPAR internalization (Yoon et al., 2009) can be prevented by pharmacologically blocking
NMDAR activity , and reducing OD plasticity (Kleinschmidt et al., 1987; Gu et al., 1989; Bear et
al., 1990).

The balance between NMDAR and AMPAR is important for visual processing. First,
NMDARSs are necessary for establishing orientation selectivity (Ramoa et al., 2001), and the

timing of the developmental shift from 2B to 2A coincides with the CP for OD plasticity
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(Fagiolini et al., 2003). Furthermore, the rapid response properties of AMPARs imbue synapses
with stimulus-driven feedforward visual processing abilities, while the slower NMDAR are
involved in feedback stimulus modulation (Self et al., 2012).

In human visual cortex development, the timing of these receptor subunit shifts are very
prolonged, for example, the NMDAR subunits continue to shift from 2B to 2A into adulthood
(~40years) (Siu et al., 2017), well after the window of susceptibility for amblyopia (Lewis and
Maurer, 2005). Our lab has characterized two aspects of these subunit shifts in MD cats, and
classified the changes as an early homeostatic unsilencing of synapses (Beston et al., 2010). This
can occur after reduced activity in cortical cells, which increases GluA2 relative to GluN1
(Gainey et al., 2009), or after MD, which delayed the shift from more 2B to more 2A (Beston et
al., 2010).

GABAergic plasticity mechanisms

Regulation of excitatory transmission occurs in part through GABAergic activation of
ionotropic GABAA receptors, which hyperpolarize the neuronal membrane. The GABAA
receptor is the most abundant inotropic GABAR in the visual cortex, and the subunit composition
affects the duration and intensity of hyperpolarization. GABAA subunits have a large number of
possible combinations of subunits, each grouped into families of a (1-6), B (1-3), y (1-3),

0,6 ,m ,0 or 6 (Bonnert et al., 1999; Whiting et al., 1999). The most abundant of these hetero-
pentameric GABAA receptors contain 1 y subunit, 2 B subunits and 2 o subunits. There is a
developmental shift in the expression of the o subunits like the shift that occurs for GluN2
subunits. Early in development there are more GABAA 03 (a3) then a transition to more
GABAAaal (al) during the CP in rats (Bosman et al., 2002) cats (Chen et al., 2001) macaque
monkeys (Hendrickson et al., 1994) and humans (Pinto et al., 2010). Functionally, the
developmental shift speeds up the receptor kinetics (Gingrich et al., 1995), and the relative
abundance of each subunit alters the speed from more diheteromeric a3 (a3:03 -129ms) to more
diheteromeric al (al: al - 42ms) (Eyre et al., 2012).

The timing of the GABAA subunit shift is especially important as it overlaps with the end
of the CP in cats, monkeys and humans (Hendrickson et al., 1994; Chen et al., 2001; Pinto et al.,

2010). The transition to the faster al subunit is necessary for ocular dominance plasticity
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(Hensch et al., 1998; Fagiolini et al., 2004), regulates gamma oscillations and controls long-range
cortical signalling (Cardin et al., 2009). The CP can even be induced in rodents through
modulation of GABAA agonists (Fagiolini & Hensch, 2000). Expression of GABAA receptors is
mediated by visual experience (Hendry et al., 1994), and in our lab, we demonstrated an
accelerated transition from a3 to al in V1 of MD cats, suggesting premature development of the
inhibitory system following early abnormal visual experience (Beston et al., 2010). Some of this
inhibitory regulation of critical period has been traced to inputs from the LGN. For example,
mice lacking the GABAA al subunit failed to demonstrate an OD shift after MD, suggesting that
thalamocortical neurons containing the GABAa al subunit are involved in consolidating the
ocular dominance shift in visual cortex (Sommeijer et al. 2017). Expression of both excitatory
and inhibitory mechanisms are necessary for onset and closure of the CP.

Excitatory:Inhibitory Balance

Together these excitatory and inhibitory molecular mechanisms govern long term
potentiation (LTP), long term depression (LTD), synaptic scaling, and changes in the
excitatory:inhibitory (E:I) balance (Kirkwood and Bear, 1994a; 1994b; Hensch et al., 1998;
Heynen et al., 2003; Fagiolini et al., 2004; Turrigiano and Nelson, 2004) that contribute to
experience dependent changes in amblyopia (Hess and Pointer, 1985; Li et al., 2007; Hensch and
Quinlan, 2018). Critically, GABAergic inhibition is essential for both the opening and close of
the critical period (Hensch et al., 1998; Fagiolini & Hensch, 2000) and there is ample evidence to
suggest that the balance between excitation and inhibition regulates the amount of available
plasticity across development (Fagiolini et al., 2004, reviewed in Hensch 2005). Manipulating
either mechanism can increase or decrease the amount of experience-dependent plasticity in the
cortex.

Other plasticity mechanisms

There are hundreds of pre-synaptic proteins, and thousands of post-synaptic proteins, and
many, but not all of the synaptic proteins are involved in regulating experience-dependent
plasticity. In fact, the list of proteins regulating plasticity has extended beyond the classic view of
the synapse. The experience dependent changes that shape neural connections are typically

consolidated by extra-synaptic brakes on plasticity that increase at the close of the CP (e.g.
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Dityatev et al., 2010). For example, increased electrical activity in cortical neurons increases
oligodendrocyte-mediated myelination around active synapses, compacting the myelin sheath
and restricting motility (Wake et al., 2011). A receptor for the myelin signaling molecule NogoA,
the Nogo-66 receptor (NgR), couples with neurotrophin receptor-75 to form a complex, which
prevents neurite growth (Hu and Strittmatter, 2004) . Interfering with this complex restores
juvenile-like plasticity by permitting OD shifts in cortex of adult animals (McGee et al., 2005),
but does not rescue visual acuity (Stephany et al., 2018).

Another extra-cellular factor that both permits plasticity and consolidates the fast electrical
signals are peri-neuronal nets (PNNs). These multi-protein complexes initially are degraded by a
brief upregulation of proteases at the beginning of MD in the mouse animal model (Mataga et al.,
2004; Oray et al., 2004). As the CP draws to a close, PNNs form around the fast spiking PV+
inhibitory interneurons in the cortex (Cabungcal et al., 2013a), increase in expression at the close
of the CP (Cabungcal et al., 2013b), and increase expression of Otx2 (Bernard 2016) and when
PNN are pharmacologically degraded, even in adult rats, juvenile-like plasticity is restored
(Pizzorusso, 2002; Pizzorusso et al, 2006; Carulli et al., 2010). This restoration of plasticity has
been linked with increased spine motility (Mataga et al., 2004; Oray et al., 2004).

However, extra-synaptic factors such as astrocytes can still play a role in experience-
dependent plasticity. Tumor necrotic factor-a (TNF-a), a cytokine produced by glial cells and
released on glutamate stimulation (Sawada et al., 1989), is involved in synaptic plasticity
(Stellwagen and Malenka, 2006). TNF-a causes AMPA receptor insertion on the membrane of
the post-synaptic neuron, while the absence of TNF-a causes endocytosis of AMPA receptors
(Beattie et al., 2002). The astrocytic release of TNF-a also regulates experience dependent visual
plasticity (Kaneko et al., 2008).

These are just some examples of extra-synaptic mechanisms that control plasticity within
cortical neurons. There are many other neurochemicals involved in regulating synaptic plasticity,
including monoamines, CaMKII, ERK1/2 and Otx2. In fact, many of the plasticity mechanisms
outlined in this section are further regulated by post-translational modifications (e.g.
phosphorylation state) to synaptic and extra-synaptic proteins. Many of the changes in these

proteins and neurochemicals have been quantified in the classic model of monocular deprivation.
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For example, there is a larger impact of amblyopia on central visual acuity in amblyopes, it is not
surprising that the greatest impact of MD on these molecular plasticity mechanisms in V1 occurs
in the cortical representation of central visual field (Murphy et al., 2004; Beston et al., 2010). The
field lacks a complementary understanding of the molecular changes following treatment for
amblyopia.

1.4 Translating plasticity - From animal models to amblyopia
treatments

Persistent amblyopia is challenging to treat because diagnosis and treatment typically begin
near the close of the CP for human vision when visual cortex is less susceptible to experience-
dependent change and there are more molecular brakes on plasticity. Two targets for amblyopia
therapies have emerged and focus on experimentally reinstating a critical-period-like state of
plasticity (reviewed in Bavelier et al., 2010; Sengpiel, 2014) by either reinstating the excitatory-
inhibitory balance that triggers the onset of the CP or reducing the brakes on plasticity that
emerge in adulthood. These two primary targets have been addressed through pharmacological
and behavioural interventions.

Pharmacological interventions to manipulate plasticity

Pharmacological interventions have been successful in targeting CP-like plasticity in
animal models by reducing the plasticity-limiting factors, or ‘brakes’. These brakes tend to be
located outside the synapse, for example, in myelin sheaths or PNNs, both of which restrict
neural and dendritic motility and limit plasticity (eg. McGee et al., 2005; Pizzorusso et al, 2006;
Syken et al., 2006; Carulli et al., 2010)). Interfering with the myelin-binding Nogo-R(McGee et
al., 2005) or degrading PNNs with chondroitin-sulphate proteoglycans (Pizzorusso et al, 2006)
restores juvenile-like plasticity. Alternatively, pharmacological interventions can reinstate
conditions that initiate CP-like plasticity by increasing plasticity-promoting factors, such as
synaptic expression of GABA (Hensch et al., 1998; Fagiolini & Hensch, 2000). Drugs that
modulate or mimic GABA can fine-tune the balance between excitation and inhibition to restore

juvenile-like plasticity in adult animals (Maya-Vetencourt et al., 2008).
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Another approach targets bidirectional regulators of plasticity, like the GluN2A:GluN2B
ratio of NMDAR subunits (Quinlan et al., 1999a; Philpot et al., 2001; 2003; Fagiolini et al.,
2004). This approach is more difficult to address pharmacologically because of the high degree
of similarity between these two receptor subunits, but drugs are being developed that selectively
target one subunit over the other (Lind et al., 2017).

Since multiple plasticity mechanisms are affected after MD, treatments should not focus on
targeting a single plasticity mechanism. Instead, treatments that regulate multiple plasticity
mechanisms are more likely to be effective in restoring good vision. For example, modulating
visual experience as a means of treating amblyopia not only targets multiple plasticity
mechanisms, but it is relatively noninvasive. The latter consideration is especially important
when considering the clinical population of children where invasive therapies are avoided.

Behavioural interventions to manipulate plasticity

Patching therapy remains the most common behavioural treatment for amblyopia despite
the transient nature of recovery. The intervention itself is relatively non-invasive, with as little as
2 hours of patching therapy a day providing effective treatment for moderate cases of amblyopia
(Repka et al., 2003), and more aggressive treatments (>6 hours/day) are no more effective than
patching full-time (Holmes et al., 2003a; 2003b). Patching therapy such as this is the basis of RO
in animal models, which restores some of the physiological and anatomical hallmarks of MD
(Blakemore and Van Sluyters, 1974; Movshon, 1976b; Mitchell et al., 1977; Blakemore et al.,
1978; Giffin and Mitchell, 1978; Swindale et al., 1981; Mitchell, 1988; Antonini et al., 1998;
Mitchell and Gingras, 1998). The labile nature of recovered acuity in amblyopia animal models
still cannot be explained (Mitchell et al., 1984; Murphy and Mitchell, 1986; 1987), which has
prompted clinicians and researchers to begin searching for other behavioural interventions.

Manipulating visual experience by raising animals in enriched environments with increased
visual, social and physical stimuli prolongs the window of plasticity in rats and mice (Sale et al.,
2009; Greifzu et al., 2014) and promotes OD plasticity into adulthood. This environmental
manipulation is a great example of a single manipulation that both attenuates a molecular brake
on plasticity, by decreasing both the density of PNNs (CP-brake) and GABAergic inhibition (CP-

trigger) in the visual cortex (Sale et al., 2009; Greifzu et al., 2014). However, there are concerns
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regarding the difficulty in mapping such a treatment onto a therapeutic intervention for humans
since we already exist in a very enriched, visually stimulating world.

On the other extreme lies dark rearing (DR) and dark exposure (DE), wherein exposing
animals to complete darkness at various stages of development has proven equally effective in
restoring cortical plasticity (He et al., 2006; Duffy and Mitchell, 2013). Like environmental
enrichment, it is difficult to map dark rearing onto an effective treatment for human amblyopes.
However, short periods of darkness have proven effective in reinstating CP-like plasticity into
adulthood. DE has shown recent promise as a treatment to reinstate plasticity outside the CP in
MD rats (Montey & Quinlan, 2011) and cats (Duffy et al., 2013; Mitchell et al., 2016).
Manipulations such as dark exposure, or even binocular deprivation (BD), are based the premise
that correlated binocular information reduces inter-ocular acuity differences and enables the good
eye to better teach the deprived eye. Decreased activity in both eyes should remove the
suppressive action from the non-deprived eye while enhancing plasticity in the deprived eye
(Cooper and Bear, 2012). Indeed there is an increase in the juvenile subunit of the NMDA
receptor (2B) with DE (Yashiro et al., 2005; He et al., 2006). BD also restores the physiological
response and spine density on thalamocortical axons in rodents (He et al., 2006; Montey &
Quinlan, 2011; Stodieck et al., 2014) and rescues thalamic soma size and neurofilament density
in cats (Duffy et al., 2015; 2018), thereby reversing decreased spine density and shrunken LGN
soma size observed with MD. Despite the seemingly juvenile-like plasticity state, this treatment
fails to promote good recovery of visual acuity by itself, and must be combined with training
(Montey et al., 2013; Eaton et al., 2016). Further examination of the synaptic mechanisms
underlying recovery of vision in DE and BD animals is still necessary.

Studies such as these that target both eyes have shifted the theory behind the causes and
treatments for amblyopia away from monocular impairment toward a new understanding of the
importance of binocular interactions (Birch, 2013). Perhaps the most important example of this is
the work of Kind et al., who demonstrated that coordinated BV provides optimal restoration of
physiological responses after MD, as well as recovers good acuity (Kind et al., 2002). Just a few
hours of intermittent BV during MD have been proven to prevent the physiological effects of MD
(Schwarzkopf et al., 2007), results in some recovered acuity after MD (Mitchell, 1991), and helps
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improve the recovery after RO (Faulkner et al., 2006). Indeed, our lab has found that BV
provides good recovery of visual acuity in MD cats following a range of deprivation lengths
throughout the CP (Murphy et al., 2015).

Therefore, binocular interactions are an important consideration for behavioural
interventions to yield proper recovery after MD. Pharmacological and behavioural alternatives to
treat amblyopia will continue to emerge, but until the molecular mechanisms regulating the
successes and failures of each intervention are understood, progress toward effective therapies
for humans will be slow.

Biologically inspired human interventions

The success of perceptual learning in animal models have made their way into human
trials. Perceptual learning has shown marked improvement in visual abilities of the amblyopic
eye (reviewed in Levi and Li, 2009), many of which transfer outside the testing environment (eg.
Levi et al., 1997; Li and Levi, 2004; Levi and Polat, 2005). Importantly, these improvements
appear to last, demonstrating retained acuity improvements as long as 12 (Polat et al., 2004) or
even 18 months after treatment (Zhou et al., 2006). When perceptual learning is combined with
patching therapy this improvement is greater still (Li et al., 2005).

Alternative approaches to treating amblyopia as a binocular disorder have emerged, and
initially showed great promise for improving treatment outcome (Li et al., 2013; Tsirlin et al.,
2015). Special displays permit video game play through the dichoptic presentation of visual
stimuli that use active perceptual learning to implement a modern approach to training (reviewed
in Hess and Thompson, 2015). These displays re-balance the contrast of an image such that the
visual stimulus is matched between each eye, and have transported training opportunities outside
the doctor’s office into the iPhone and iPad (Hess et al., 2011; Birch et al., 2015; Vedamurthy et
al., 2015; Webber et al., 2016). Unfortunately, these techniques were no more effective than a
few hours of patching therapy (Holmes et al., 2016; Kelly et al., 2016), and poor outcomes were
attributed to low compliance. The recent failure of the BRAVO technique (Gao et al., 2018) has
some clinicians questioning binocular treatments for amblyopia (Holmes, 2018). Nevertheless,
binocular treatments continue to emerge, and benefits include improved amblyopic eye acuity,

but also binocular abilities such as stereoacuity and depth of suppression (Kelly et al., 2018).
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1.5 Human development- Challenges and Opportunities

The average age of diagnosis for amblyopia is less than 3 years of age (Birch and Holmes,
2010), and patching therapy remains the number one treatment prescribed for amblyopes. When
patching therapy fails to promote recovery, there is no consensus on how to proceed with
treatment. This is in part because there is a gap between animal findings of CP plasticity and
translating those findings into effective human treatments. Understanding development of human
visual cortex, and how it is affected by adverse early life experiences, like amblyopia, is
challenging due to the limitations in studying human brain development.

The longstanding view of human visual cortex development is that synaptic maturity is
reached in the first few years of life, based on anatomical milestones including synapse counts
(Huttenlocher et al., 1982) and development of intra-cortical horizontal connections (Burkhalter
et al., 1993). That view has been difficult to reconcile with the protracted development of visual
abilities that continue developing well past adulthood and into aging. Just like our understanding
of the neural basis of amblyopia, our understanding of development of human visual cortex has
progressed dramatically in recent years. Studies by our lab and others have begun to investigate
the expression of the same cellular processes that govern animal CP plasticity across the course
of human development (Pinto et al., 2010; Williams et al., 2010; Siu et al., 2015; 2017). These
studies highlight the variability in early human stages of development and the protracted
development of plasticity mechanisms.

The glutamatergic, GABAergic and extra-synaptic environment is involved in regulating
susceptibility to early life adversity in animal visual cortex, and major changes in these systems
tend to occur during the CP in animal models (Fagiolini et al., 2003; 2004). In our
investigations, we have found the timing of some important functional shifts, including those
inhibitory mechanisms that initiate the CP, occur precisely as predicted. For example, the shift
from immature a3 to mature al occurs at the beginning of the visual CP (Pinto et al., 2010).
Extra-synaptic brakes on plasticity, such as the increase in intracortical myelin (Siu et al., 2015),
and the expression of ubiquitin ligase Ube3 A (Williams et al., 2010) both continue developing
until the mid-30s. Even more surprisingly, transitions in NMDAR subunit expression from more

2B to more 2A are protracted and extend well beyond 40 years of age (Siu et al., 2017). In fact,
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measuring the expression of a set of 4 proteins that mark the presence of synapses (synapsin I,
synaptophysin, PSD95 and gephyrin) we were able to align the development of rat visual cortex
with the development of human visual cortex (Pinto et al., 2015). This age alignment perfectly
identified matching sets of visual milestones between the two species. These major visual
milestones in human visual cortex development correspond to a host of anatomical and
neurobiological changes (for review Siu & Murphy, 2018).

Aside from the few studies listed here, little effort has been made to synthesize the
development of these proteins across the human lifespan. Investigation of the development of
multiple synaptic protein systems in human visual cortex, including glutamatergic, GABAergic
and extra-synaptic proteins, would undoubtedly provide valuable information for mapping

animal models onto human stages of development to improve therapy.
1.6 Summary of my contributions

This thesis presents an analysis of both classic and modern amblyopia treatments, and the
effect that these treatments have on synaptic proteins in V1 of an animal model for amblyopia. I
also present a data-driven approach to quantifying states of human V1 development using a
subset of the synaptic proteome. In chapters 2 and 3 I present two techniques that modernize the
study of central visual pathway in the cat animal model for amblyopia. First, I combined
traditional neural tracing techniques with modern tissue clearing (Chapter 2), and second, |
introduced semi-automated homogenization and filtration steps to the classic fractionation of
synaptosomes (Chapter 3). My modern synaptosome approach is amenable for use on animal and
human tissues and enables probing tissue multiple times for high-throughput analyses of the
synaptic proteome. Next, I designed a modern, high-dimensional analysis workflow that can be
used to compare multiple treatment conditions or investigate trends across stages of development
(Chapter 4). This analysis workflow includes techniques such as principal component analysis
(PCA), t-distributed stochastic neighbour embedding (tSNE) analysis, and sparse clustering
(Sparcl). Using this workflow, I identified unique treatment effects on protein expression patterns
after RO, BD and BV in cat V1 (Chapter 5). I also used this workflow to identify 6 overlapping
stages of human visual cortex development across 23 synaptic proteins and multiple plasticity

mechanisms (Chapter 6). These innovations in my approach have immense utility for clinical
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neuroscience as amblyopia research progress toward newer treatments. This thesis also highlights
the importance of understanding development from a data-driven perspective while shifting our

understanding of the human visual cortical development away from discrete developmental

stages toward overlapping states of plasticity.
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Preamble Chapter 2

Amblyopia has the greatest effect on acuity in the central visual field of humans and
animals. Even after the original deficits are corrected (e.g. cataract), impaired acuity persists.
The changes following amblyopia are not restricted to the optics of the eye, and are found all
along the central visual pathway. Indeed, the anatomical effects of early MD in animal models
range from shrunken soma size in the lateral geniculate nucleus of the thalamus (Movshon,
1976b), to shrunken arbors of axons that terminate in layer I'V of the visual cortex (Antonini et
al., 1996). The expansion of afferents serving the non-deprived eye is perhaps the most well
studied anatomical effect of MD. This effect is most easily viewed when visual cortex is
unfolded and flattened because this presents ocular dominance columns in a single, unbroken
sheet of cortical tissue.

Early studies of visual cortex anatomy traced the pattern of connections from retina to V1
using anterograde tracers (Grafstein 1971; Wiesel et al., 1974; Anderson et al., 1988). Since then,
many different labels have been used to study this pattern of connections, but all suffer from the
same curse; ultimately tissues must be sectioned to investigate fine details like axonal
arborization or the spatial arrangement of ocular dominance columns. Despite costly
advancements in microscopes that improve cellular resolution and imaging depth, imaging
multiple tissue sections remains quite laborious, is notoriously difficult, and is prone to errors
aligning adjacent sections. Because of these limitations, tissue clearing to remove optical
obstruction and increase light penetration into tissue has seen a resurgence of interest
(Richardson & Lichtman, 2015).

These techniques might prove useful for studying the arrangement of ocular dominance in
the visual cortex of animal models for amblyopia. It remains to be seen whether these modern
tissue clearing techniques are compatible with classical anterograde tracers. Furthermore, many
tissue clearing papers still resort to tissue sectioning in order to expedite the clearing process. It
seems logical that using common techniques like unfolding and flattening the visual cortex
(Anderson et al., 1988) that have proven useful in originally identifying ocular dominance

columns (Murphy et al., 1995) could benefit tissue clearing. The question remained whether
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cleared tissue would maintain modern fluorescent tracers, and if these could be used in
conjunction with tissue unfolding and flattening.

To test this we combined eye injection with fluorescent tracers neural (WGA CF dyes®),
cortical unfolding and flattening, and the modern Passive clarity technique (PACT), to label and
image the central visual pathway of the cat. This approach would be beneficial for examining
macroscopic patterns in cleared tissue in MD animals to better understand the changes that take

place during recovery from amblyopia.
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Preamble Chapter 3

The molecular mechanisms of synaptic plasticity that are affected by early monocular
deprivation (e.g., Beston et al., 2010), are likely the same mechanisms that recover following
treatment for amblyopia. These include NMDAR and GABAAR receptor subunits, which present
in very low abundance in synapses of the visual cortex. It is therefore difficult to accurately
quantify the expression of these subunits in our tissue samples. One technique to address this
issue is a tissue preparation that enriches tissue samples for synaptic entities, called
synaptosomes (Quinlan et al., 1999). These tissue preparations are based on the premise that
receptor proteins are embedded in cell membranes, and thus have greater weight than other
synaptic entities. Therefore, there are a variety of techniques to procure synaptosomes, and some
are more effective than others.

The cortical tissue examined in our lab is our most precious resource. Whether these
samples come from frozen human visual cortex or animal samples obtained after complicated
rearing paradigms, the tissue cannot be used frivolously. I therefore sought to create a technique
that maximizes experimenter resources. [ improved on the crude fractionation approach
developed by (Hollingsworth et al., 1985), and used in my lab for many years (Pinto et al., 2010;
Beston et al., 2010; Williams et al., 2010). My goals were to decrease the amount of time spent
performing the tissue preparation while increasing reliability in the procedure and increase

sample yield and protein enrichment.
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Preamble Chapter 4

When investigating normal development or the effect of rearing conditions on plasticity
mechanisms, the common approach is to measure only a few variables in a single experiment.
However, plasticity mechanisms rarely change in isolation, and typically these changes affect the
entire system. Standard analyses such as ANOVA and t-tests report significant differences among
groups, but begin to fail as the number of comparisons increases. This is because it gets
exponentially more difficult to keep track of the myriad of changes after analyzing only a few
variables, and it is even more difficult to make sense of the effect of multiple changes on a
system.

This is not a new challenge faced by systems neuroscientists, and just as the methods for
acquiring large amounts of data have improved (eg. genetic assays, large scale western blot
assays), so too have data analysis techniques to make sense of these large data sets. In order to
make large data sets easier to handle, a common approach is to reduce the number of variables.
There are two approaches to variable reduction. The first approach is to select only the most
important variables and ignore the remaining variables that do not pass a threshold criteria
(feature selection). The second approach is to transform the data set into a new set of features
based on the high-dimensional relationships across multiple variables (feature transformation). In
fact, it is more common to perform some combination of these two approaches. After the number
of variables have been reduced, the next step is to group similar samples together based on the
variables within a group.

There are many different techniques to consider for feature selection, feature
transformation, and clustering of data. Most of these techniques are typically used to explore
genetic data in animals and humans so that subsequent experiments can be performed after the
most important features have been identified. These techniques are rarely used in neuroscience
for analyzing the entire system response to experimental manipulation or to track changes across
development. In Chapters 5 of this thesis I present an analysis of 5 different rearing conditions in
cats, measuring expression of 7 different synaptic proteins across 3 cortical areas. In chapter 6 of
this thesis I present an analysis of human development across 31 individuals, measuring

expression of 23 different synaptic proteins. Both of these investigations of plasticity
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mechanisms in visual cortex were not amenable to standard tests of significance, and when
considering high-dimensional analyses, | was faced with many options to consider for feature
selection, feature transformation and sample clustering. This chapter presents the considerations |

employed in the course of creating my analysis workflow that was used in Chapters 5 and 6.
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Preamble Chapter 5

This chapter is the successor to Beston et al., 2010, which quantified changes across a
panel of glutamatergic and GABAergic proteins in cat visual cortex across normal development
and in response to various lengths of monocular deprivation. This project was motivated by the
alarming lack of information surrounding the molecular changes in glutamatergic or GABAergic
mechanisms following classic treatments for amblyopia like reverse occlusion. The timeliness of
this chapter comes from a spike in interest surrounding modern amblyopia treatments, including
dark exposure and binocular experience. Dark exposure was implemented in my study by
binocularly depriving the animals of visual input through bilateral lid suture, while binocular
experience was reinstated by simply removing the sutures from the initially MD eye.

The greatest innovation that I contributed in this chapter was my implementation of
modern statistical analyses to process the wealth of data that was produced (see Chapter 4).
Across just 9 of the animals included in the bulk of the analyses (5wk Normal, Swk MD, reverse
occlusion, binocular deprivation and binocular vision), measuring the 7 proteins across three
cortical areas caused the data to grow exponentially to include ~1,510 data points. In order to
identify system changes, I used principal component analysis (PCA) to convert protein
expression into biologically relevant indices representing synaptic function (feature
transformation). Then I used the popular dimensionality reduction technique t-stochastic
neighbour embedding (tSNE) to reduce the data to two dimensions. Finally, using hierarchical
clustering I identified 6 clusters that parse treatment effects into 13 groups. By correlating
system changes across all biologically relevant indices I identified those treatments that
reinstated the entire system closest to a 5 week normal animal since this represented the peak of
the critical period. My creation of plasticity phenotypes enabled visualization, at a glance, of the
state of plasticity for each treatment condition, which simplified comparisons with normal

development.
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Preamble Chapter 6

This chapter complements the characterization of a collection of GABAergic (Pinto et al.,
2010) and glutamatergic (Siu et al., 2017) proteins expression in human V1 across development.
The motivation for this chapter was to map the approach developed and implemented in Chapters
4 and 5 onto normal human development in an attempt to better understand the changes in
synaptic plasticity mechanisms across development.

Investigation of human development takes one of two approaches to classifying data. The
canonical theory of human development proceeds according to successive stages, first proposed
by cognitive psychologists like Jean Piaget and Erik Erikson. These theories were based on the
developmental progression along a series of behavioural milestones. Approaches like this have
been used in mapping development of visual sensitive periods based on the appearance of visual
abilities (Lewis & Maurer, 2005). Conversely, advancements in EEG and fMRI technologies
allow repeated investigations of in-vivo structural and functional cortex, which has blurred the
lines between stages and instead proposes continuous development. Either of these a priori
assumptions about the development of human visual cortex hinders analysis of the true nature of
human development because they restrict interpretations of the data.

As the number of proteins analyzed by our lab has grown past 20 synaptic and non-
neuronal proteins, it has become more and more challenging to reconcile the different courses of
protein development with one another, especially when attempting to infer function from protein
expression. Therefore I turned to modern, high-dimensional data analysis techniques to take a
data-driven approach to investigating the course of human development. Using this approach I
was able to identify the proteins that set the course for development define 6 states of human V1
development. Approaches such as this are the first step toward truly effective translation of
animal findings to humans. By taking a systems-level approach to understanding the series of
protein changes across the human lifespan we can synthesize the ever-growing repository of data
that exists for experience-dependent changes in visual cortex and design effective, biologically

inspired therapies for amblyopia.
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Chapter 2. Anatomical labeling of the central visual pathway
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Abstract

Background: The pattern of connections from the retina to the visual cortex are typically
studied by injecting anterograde tracers to the eye, and physically sectioning tissues along the
central visual pathway. Super bright fluorescent dyes conjugated to lectins have recently been
used to study the central visual pathway, but have failed to label the primary visual cortex. The
creation of near-infrared, small, bright, water-soluble fluorescent probes conjugated to wheat-
germ agglutinin (WGA CF® dyes (Biotium Inc)) are compatible with widely available laboratory
scanners. It was unknown whether these dyes would label all stages of the central visual pathway,
or if they could be easily visualized after physical tissue sectioning or optical tissue clearing.

New Method: We implemented a simple and reliable protocol that combines eye injection
of a new anterograde tracer (WGA CF® dyes), cortical unfolding and flattening, physical tissue
sectioning and PACT optical tissue clearing (Yang et al. 2014) to visualize the central visual
pathway in the cat.

Results: Following an eye injection with WGA CF® dyes we found label in retinal
ganglion cells, anterograde transport of label to the LGN and superior colliculus. Importantly, we
provide evidence of bright label remained in the cleared LGN and SC, as well as trace amounts
of transneuronal transport to V1 in cleared cortical tissue.

Comparison with existing methods: The bright WGA CF® dye labeling was easily
imaged in cat cortex using both the low magnification fluorescent scanner and confocal
microscopy. Furthermore, resecting tissues and using the unfolded and flattened cortex reduced
the clearing time for PACT from weeks (whole rodent brains) to just a few days (unfolded rodent
cortex).

Conclusions: This modern protocol labels the central visual pathway quickly, plus the
WGA CF® dye remains in cleared tissues, and is compatible with cutting-edge techniques
(super-resolution). These advantages make this protocol ideal for studies about development and

plasticity of the visual system that span questions from macro- to nano-scales.
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2.1 Introduction

The anatomical features of the central visual pathway are readily visualized after an eye
injection of an anterograde tracer, including subcortical projections to the LGN and SC, and
geniculocortical projections when the tracer is transported transneuronally (Mesulam and Mufson
1980; Itaya and Van Hoesen 1982; Williams and Chalupa 1982; Anderson et al. 1988). Wheat-
germ agglutinin (WGA) conjugated with horseradish peroxidase (HRP) has been used to label
the visual pathway because WGA is selectively taken up by neurons and packaged into vesicles
for active anterograde and transneuronal transport (Gonatas 1979; Itaya and Van Hoesen 1982).
For example, injection of WGA-HRP in the posterior chamber of the eye labels the details of the
retinogeniculate projection and the stripe-like pattern of eye-specific inputs to the visual cortex of
the cat (Anderson et al. 1988). Although WGA-HRP labels fine details, only one eye’s
connections can be labeled making it hard to compare the arrangement of ipsilateral and
contralateral eye projections in the same structure.

Recent studies have taken advantage of bright, fade resistant, multi-color fluorescent dyes
conjugated with WGA (e.g., WGA-Alexa Fluor® dyes) to label the projections from the eye to
the LGN or SC (Kuwajima et al. 2013; Renier et al. 2014) but have not observed label in the
visual cortex. Furthermore, the dyes used in those studies were from the visible spectrum
because near-infrared (NIR) Alexa Fluor® dyes need an additional negative charge to improve
solubility and quantum yield, but that charge leads to higher non-specific binding. A different
class of fluorescent dyes based on rhodamine chemistry, CF® dyes (Biotium Inc), has been
developed and includes NIR dyes that are small, water-soluble, bright and photostable.
Furthermore, the NIR dyes are readily imaged with standard laboratory scanners (e.g., LI-COR
Odyssey) that can quickly scan a large number of anatomical slides at one time.

Here we describe a protocol that uses eye injection with NIR WGA CF® dyes to label the
central visual pathway and a laboratory NIR scanner to visualize the pattern of labeling in the
LGN, SC and visual cortex. Also, we show that the WGA CF® dye can be combined with a
passive tissue-clearing technique (PACT - Yang et al. 2014) to take advantage of the NIR dyes
for visualizing labeled pathways in full thickness tissue samples from the LGN, SC or visual

cortex.
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2.2 Methods
2.2.1 Materials and Equipment List

Reagents
PPC Vet Isofluorane (1-chloro-2,2,2-trifluoroethyl difluoro-methyl ether)
WGA CF® dye: 5% Fluorescent Wheat Germ Agglutinin (WGA)
WGA CF®680 Wheat Germ Agglutinin (Biotium, CA, USA, #29029)
WGA CF®770 Wheat Germ Agglutinin (Biotium, CA, USA, #29029)
IM PBS
Fixative: 2% Paraformaldehyde (PFA)
16% PFA (Electron Microscopy Sciences, PA, USA, #15710)
IM PBS
Acrylamide Hydrogel Solution: 4% Acrylamide with 0.25% photoinitiator
40% Acrylamide Solution (BIORAD, ON, CAN, #1610140)
Photoinitiator 2,20 -Azobis[2-(2-imidazolin-2-yl) propane]dihydrochloride
(Wako Chemicals, USA, #VA-044)
IM PBS
Clearing Solution: 8% SDS Detergent
Sodium dodecyl Sulfate (SDS) (BIOSHOP, ON, CAN, #SDS001 )
0.IM PBS
NaOH (as required to adjust pH to 7.5)
Sorbitol-based Refractive Index Matching Solution (SRIMS (Yang et al. 2014)):
70% sorbitol (w/v) with 0.01% sodium azide
D-Sorbitol (Sigma Aldrich, MO, USA, #S1876)
Sodium Azide (Sigma Aldrich, MO, USA,#S2002)
0.02 M PBS
NaOH (as required to adjust pH to 7.5)
PBS-T: PBS with 0.1% TritonX
Triton™X-100 (Sigma Aldrich, MO, USA, X100)
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Tools
50uL Microsyringe (Hamilton Co., #1705)
BD Syringe with Luer Lock (1ml)
BD Syringe with Luer Lock (3ml)
BD Needle Tip (21G)
Razor Blade (#22)
Beaker (500ml)
Large Petri Dish
Cotton Swabs
Glass Slides (4"x3" 2 per sample for flattening)
Slide spacers (can use broken glass slide pieces; Imm thick )
Binder Clips (1-1/4"; 2 per sample)
Extra large plastic vial (must accommodate width of glass slides)
Glass Mason Jars
Fine paint brushes
PVDF-P Immobilon Membranes (Sigma Aldrich, MO, USA, #IPVH00010)
Fluoroshield Mounting Medium (Sigma Aldrich, MO, USA, #F6182-20ML)
Imaging Chamber
Rubber Gasket Material (1/16" thick)
Ultra Blue ® Silicone Gasket Maker (Permatex)
Glass slides (4"x3"; x2)
Freezing Mounting Medium (TissueTek, Ted Pella Inc, CA, USA, #27209)
Equipment
ScanMaker 1900 flatbed scanner (Microtek, CA, USA)
Odyssey Infrared Scanner (LiCor Biosciences, Lincoln, NE)

Zeiss Confocal 680
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2.2.2 Protocol

1. Animals

We used two adult cats to develop the protocol for using eye injections with WGA CF®
dyes to label the central visual pathway (2.2.i1) and adult rats (n=2 cortical hemispheres) to test
the tissue clearing on unfolded and flattened cortical tissue. All procedures were approved by
McMaster Animal Research Ethics Board.

2. WGA Injection (0.5 Hr per injection)

The WGA CF® dye was injected into the posterior chamber of the cat eye (Figure 1A).
One cat received an injection into one eye, and the tissue was cleared using the modified PACT
protocol (Yang et al. 2014) described in sections 2.2.vi-2.2.vii, while the other cat had a different
WGA CF® dye injected into each eye and the tissue was sectioned (Fig. 1).

Before starting surgery, 25l of 5% WGA CF® dye was loaded into a 50ul Hamilton
microsyringe. It is helpful to pre-wet the Hamilton syringe to facilitate dye loading by removing
the plunger, dipping the end of the plunger into distilled water, putting it back into the syringe,
and moving it up and down a few times to improve suction for loading 25ul. We ensured that
25ul was reliably loaded by testing the calibration of the syringe beforehand.

We injected 25ul of 5% WGA CF® dye (WGA CF® 680R or WGA CF® 770) in PBS into
the posterior chamber of the cat eye using the same steps as previous studies (Anderson et al.
1988; Murphy et al. 1995). Each eye received two injections, the first one on day 1 and the
second one on day 3 of the protocol. Briefly, gaseous anesthetic (isofluorane, 1.5-5%, in oxygen)
was used to induce and maintain anesthesia. The eye was stabilized and rotated nasally by
placing a temporary suture through the conjunctiva at the lateral edge of the eye-opening,
clipping the two ends of the suture with a hemostat, and gently pulling the hemostat nasally to
access the sclera. Next, the sclera was exposed by blunt dissection of the conjunctiva to visualize
the whiter band of the ora serrata, just anterior to the retina. A guide hole was made onto the ora
serrata with a 26 gauge needle by rotating the needle and applying gentle pressure. A drop or two
of vitreous will come out the end of the needle. The guide needle was removed, and the Hamilton
microsyringe needle was inserted ~Smm into the hole, pointing towards the back of the eye and

angled away from the lens. The WGA CF® dye was injected slowly over about 4 minutes, using
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a series of Sul steps, and waiting for about 45 seconds between steps, including waiting 45
seconds after the last step before removing the needle. The needle remained in the eye for the full
duration of the injection. The eye injection was repeated two days later, inserting the Hamilton
microsyringe through the existing guide hole. Animals survived for two more days and then were
perfused on day 5 of the protocol.

3. Perfusion and Cortical Flattening (5.5 Hrs)

All animals were euthanized with Euthanyl (120 mg/kg rat IP,165 mg/kg cat IV) and
perfused transcardially with 0.1M PBS (4°C) until circulating fluid was clear (~4 mins). The
brain was removed from the skull, and the cerebral hemispheres were resected and placed in
0.1M PBS (4°C) before flattening. The rat cortex was unfolded and flattened by removing the
basal ganglia from under the cortex, making 3 cuts to relieve the intrinsic curvature (1 anterior
and 2 posterior), then flattening the sheet of cortex by sandwiching it between 2 glass slides with
Imm glass spacers placed at either end (Olavarria and Van Sluyters 1985) (Figure 1C).

The visual cortex from the cat was unfolded and flattened using procedures that have been
described previously (Anderson et al. 1988; Murphy et al. 1995; Olavarria and Van Sluyters
2014). First, the white matter was wiped away using cotton swabs wetted with PBS. Next two
cuts were made in the sheet of cortical tissue, a medial and a lateral cut, to relieve the intrinsic
curvature of the cortex (Figure 1C asterisks). Because we were focusing on the visual cortex, the
frontal cortex was trimmed (Figure 1C-dashed lines), and the visual cortex was gently flattened
by placing it between two large glass slides with 1mm spacers at either end (Anderson et al.
1988) (Figure 1D). The slides and flattened cortex were held together with two binder clips, and
placed in cold fixative for 30 minutes (2% PFA, 25°C). Also, tissue samples containing the
superior colliculus and lateral geniculate nuclei (LGN) were removed from the perfused cat
brains. The colliculi were gently flattened between 2 glass slides while the LGNs were left free
floating in 2% PFA (4°C). After 30 minutes in 2% PFA, flattened tissues were floated off the
slides, and left free-floating in cold 2% PFA (4°C) for 5 hrs. Tissue that was going to be
sectioned was placed in 30% sucrose overnight (4°C) which was long enough for the samples to

sink and then be sectioned that following day.
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4. Tissue Sectioning and Imaging

Tissue samples from the cat injected with two WGA CF© dyes were sectioned on a
freezing microtome at a thickness of 50um (Figure 1E). The cortex and superior colliculus were
sectioned tangential to the surface while the LGN was sectioned coronally. All sectioned
samples were collected in PBS, mounted onto subbed slides and coverslipped using fluoroshield
mounting medium (Sigma-Aldrich, MO, USA) (Figure 1F). Once the mounting medium was dry
the slides were on the LI-COR Odyssey Infrared Scanner (LI-COR Biosciences; Lincoln, NE)
with the coverslip side down and scanned at the maximum resolution (21pum/pixel) and the laser
focus was offset to 0.1mm to account for the thickness of the coverslip. All slides from a site
were scanned at the same time and both the red (700nm) and green (800nm) laser channels
scanned. The scan intensity was kept at the default settings.

5. Retinal Whole Mounts and Imaging (0.5 Hr)

Whole mounts of the cat retinae were done to assess if the retinal ganglion cells were
labeled. The anterior chamber of the eye, including cornea, iris, and lens, was removed, the
vitreous humor was wiped out, and four cuts were made through the full thickness of the sclera
and retina to allow the tissue to lie flat. A few drops of PBS were applied to keep the retina wet,
and the retina was gently separated from the pigment epithelium using fine paint brushes, then a
cut was made through the back of the optic disk to free the retina and float it out of the eyecup.
The retinae were floated onto a hydrophobic membrane (e.g., PVDF-P Immobilon), and covered
with a second piece of the membrane. That sandwich was placed between two glass slides and
retinae were flattened using the weight of the top slide. Slides were left for 15 minutes in 2%
PFA. The flattened retinae were rinsed, free-floating, in cold PBS (4°C) for 30 minutes. Then the
retinae were mounted onto subbed slides, allowed to air dry, and coverslipped with Fluoroshield
mounting medium. Finally, the retinal whole mounts were imaged using the Odyssey Infrared

Scanner (LI-COR Biosciences; Lincoln, NE).
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Figure 1. Schematic overview of the steps from eye injection to imaging the cleared unfolded and
flattened cortex.

(A) Either one (red) or both (red right, green left) cat eyes were injected with fluorescent 5% WGA-CF™ dye
(25pl) on days 1 and 3. (B) Resected LGN and Colliculus (cartoon ovals) as well as the cortical hemispheres were
rinsed in cool PBS before unfolding cortex (C). Unfolding and flattening cat cortex with visual areas 17, 18,19 and
SSYL (suprasylvian sulcus) indicated. Two cuts were made (asterisks) to relieve the intrinsic curvature so the cortex
can be flattened and extra tissue outside V1 (dashed lines) was cut away. (D) Cortical hemispheres and LGN were
fixed in 2%PFA while being pressed between two glass slides, assembled with 1mm spacers and held together by
clips. Colliculi were free floated in fixative. Flattened tissues were removed from glass slides and left to free float in
PFA for an additional 5 hrs at 4°C. The tissue from the cat that received injections of two different dyes, one in each
eye, progressed to tissue sectioning (E,F). The tissue from the cat that received a single injection in a single eye
progressed to tissue clearing (G-I). (E) Tissues were sectioned on a freezing microtome at 50um thickness before (F)
applying mounting medium, slide-mounting and coverslipping. (G) Flattened cortex was placed in hydrogel to
incubate for 2 days at 4°C, and hydrogel polymerized by placing in 37°C for 5 hours. (H) Clearing took place in
SDS 8% at 37°C over the course of 4-10 days, depending on the size of cortical sheet being cleared. (I) After
clearing and PBS-T washes (not pictured), samples incubated in sSRIMS for 20 min - 2 hrs (until transparent). Tissues
were then transferred to imaging apparatus (see Methods) for scanning with an Odyssey Infrared Scanner (Li-cor
Biosciences; Lincoln, NE) .

6. Tissue Clearing -- Hydrogel Incubation and Polymerization (2 Days + 5 Hrs)
The clearing protocol was adapted from the passive clarity technique (PACT) developed by
Yang et al., 2014. Post-fixed samples were transferred to glass jars containing acrylamide
hydrogel solution and protected from light to preserve tracer fluorescence. Samples were left to
incubate in cool acrylamide hydrogel solution for two days at 4°C to ensure sufficient tissue

penetration. Tissue can incubate for a few hours longer, but the cool temperature is imperative to
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avoid premature polymerization. Next, all oxygen must be displaced from the containers to allow
sufficient polymerization of the hydrogel monomer solution. Instead of degassing the samples
before polymerization, as in the original PACT protocol describes (Yang et al. 2014), we
displaced oxygen by overfilling the glass container with hydrogel solution, similar to the use of
gelatin capsules for the polymerization of the resin during tissue embedding (e.g., Micheva and
Smith 2007). Polymerization of the hydrogel monomer solution was done by transferring the
filled tissue containers to a hot water bath (37°C, 5 hrs, Figure 1G). Polymers were drained from
glass containers, and tissues were briefly rinsed in PBS-T (5 min) to remove the visible
polymerized solution.

7. Tissue Clearing -- Detergent steps (4-14 days, depending on tissue)

Tissue was submerged in clearing solution and transferred to a warm water-bath (37°C,
slight agitation, Figure 1H). The clearing solution was refreshed every day until samples were
transparent (4 days for rat cortex, ten days for cat cortex). Tissue should be inspected daily to
avoid over-clearing, which can damage the tissue. After tissue clearing, excess SDS micelles
were removed by rinsing samples in PBS-T over the course of one day (2-3 wash changes).

8. Tissue Clearing -- Analysis of Cortical Clearing Rate

To assess the uniformity and rate of clearing for the cortical sheet we started with unfolded
rat cortex and scanned the samples every 4-8 hours to assess the optical density (OD) (Fig. 2). A
chamber was made to hold the flattened cortex in the imaging medium (e.g. sSRIMS). The
chamber was made out of a 1/16” thick rubber gasket (e.g. Gasket Material, Moen, M6158,
Oakville, ON) adhered to a glass slide with Ultra Blue ® Silicone Gasket Maker (Figure 1F). To
avoid interrupting the clearing process, the flattened cortical sheet was placed into the imaging
chamber filled with SDS (8%) and sealed by outlining the top surface of the gasket with a
temporary sealant (eg. TissueTek mounting medium, Ted Pella Inc, CA, USA), a second glass
slide gently placed on top to serve as the coverslip. A stepped neutral density filter was scanned
with the tissue on a flatbed scanner (ScanMaker 1900, Microtek, CA, USA) using VueScan
imaging software (Hamrick Software, FL, USA) version 9.0.96. All images were converted into
grey levels using the green color channel in Photoshop (Adobe, Inc., San Jose, CA). Mean gray

values were obtained for each step of the neutral density filter using the measure tool, and those
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values were used to create optical density calibration curves. The cortices were aligned in register
to facilitate comparisons between clearing time points. Alignments were done using a template of
the flatted rat cortex that outlined the frontal, somatosensory and visual areas. The mean gray
values were taken for each area and aligned with the optical density calibration curve to
determine the mean optical density of each regions

9. Tissue Clearing -- Imaging Tissue (1.5-3 Hrs per piece)

Before imaging the cleared tissue, each section was incubated in sorbitol-based refractive
index matching solution (sRIMS) until transparent (30 min-2 hrs, depending on tissue size).
Tissues can be incubated in SRIMS for a few hours after transparency is achieved, enabling more
extended imaging sessions, but storage in SRIMS is not advised as a precipitate will form inside
the tissue. If short-term storage is required, we recommend storing samples at room temperature
in PBS. The tissue samples were individually loaded into the imaging chamber filled with
sRIMS and sealed as described previously. To visualize the fluorescent WGA CF™ dye at low
magnification, the tissue sample was scanned in the imaging chamber on the flatbed of the
Odyssey Infrared Scanner (LI-COR Biosciences; Lincoln, NE). Cleared tissue were imaged using
similar parameters as the sectioned tissue (2.2.iv), only the offset was adjusted to accommodate
thickness of the slides (1mm) and cleared tissue (~0.5mm). To visualize the fluorescent WGA
CF™ dye at high magnification, whole cleared LGN was transferred to SRIMS and imaged using
the Zeiss 680 confocal imager and the CLARITY imaging objective.

10. Analysis of Label Intensity

All samples were analyzed using Adobe Photoshop and ImageJ (Schindelin et al. 2012).
Images were converted to greyscale to measure the intensity of label and analyzed using the 3D
surface plot plugin. For analyzing label intensity in ROIs, surface plots were created for each
channel. Sometimes images were slightly shifted in the x-y plane between 700nm and 800nm
channels, so minor transformations were made in Adobe Photoshop, and aligned using blood

vessels.
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2.3 Results
2.3.1 WGA CF® Dye Eye Injection Labels Retinal Ganglion Cells

To determine the efficacy of WGA CF® dye as a tracer for visualizing the visual pathway,
we injected the dye into the posterior chamber of the cat eye and evaluated the appearance of
tracer in multiple structures from the retina to visual cortex. First, we made a whole mount of
each cat retina and scanned them using the appropriate wavelength on the LI-COR Odyssey NIR
scanner. Those rapid, low magnification scans showed a pattern of labeling indicative of labeled
retinal ganglion cells (Figure 2). The labeled cells were apparent across each retina, with the area
centralis appearing brighter than the surrounding regions in both cases. Even areas of the retina
with fainter labeling had a clear mosaic pattern of fluorescently-labeled cells (Figure 2 insets),
the size and arrangement of which were in agreement with the previously documented density of
RGC in the cat retina (Schall and Leventhal 1987). Thus, WGA CF® dye injected into the

posterior chamber of the cat eye was taken up by retinal ganglion cells.

Figure 2. WGA CF® dye labeling in flat-mounted cat retina.

Low magnification fluorescent scans of flat-mounted cat retina following intra-vitreal injections of a green (A)
and red (B) WGA CF® dye. Label is visible across the left (A, green) and right (B, red) retinae. Throughout the
retina there is a hexagonal mosaic pattern of labeled retinal ganglion cells (inset). Scale bars for A,B= 5mm, for
regions of interest in C =500um.
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2.3.2 Rapid Low Magnification Imaging of Anterogradely Transported WGA
CF® Dye to the LGN and SC

WGA CF® Dye Labeling of LGN Features and the Medial Interlaminar
Nucleus

To identify the pattern of labeling in the LGN, we imaged the sectioned tissue in the animal
injected with a different dye into each eye. The large scan area of the LI-COR Odyssey (LI-COR
Biosciences; Lincoln, NE) enabled all of the LGN sections to be imaged at once. That rapid and
simultaneous image acquisition eliminated variation that can occur after multiple separate scans
and improved consistency during batch processing of images.

The pattern of labeling from the left (Figure 3A) and right eye injections (Figure 3B)
throughout the anterior (top) to posterior (bottom) extent of the LGN is shown in Figure 3. LGN
laminae were identified in sectioned tissue by the labeling pattern from the ipsilateral (uncrossed)
versus contralateral (crossed) eye. Ipsilateral fibers appeared to be slightly darker than
contralateral fibers in both hemispheres, and that intensity seemed slightly darker laterally. The
laminae of cat LGN A, A1, and C are easily distinguished as early as 300um A-P and remain
well-defined until 1400 um A-P. The C laminae (C, C1, and C2) were most distinct at ~1000um
A-P as well-defined, alternating layers in the merged image (Figure 3C). A band of a vertically
oriented label was also present from 650um to 1400um A-P, representing the medial interlaminar
nucleus (MIN).

The LGN labeling was shown for a single section to illustrate the fine details that were
apparent with the WGA CF® dye (Figure 4). The segregated pattern matched previous
observations of LGN laminae (Anderson et al., 1988; Polley and Guillery 1980). Importantly,
scanned images to reveal retinal inputs from both eyes were taken of the same section at the same
time. Studying both inputs in the same section removed the need to react adjacent sections for
different tracers (e.g., H3 proline versus HRP) and instead allowed visualization of inputs from

both eyes in all sections, thereby eliminating waste tissue and effectively doubling tissue utility.
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Figure 3. WGA CF® dye labeling in LGN coronal series of sectioned tissue.

Tissue was sectioned coronally and anterior tissue are at the top of the figure, posterior at the bottom and the
section depth of the tissue section is presented on the left (um). Presented sections are ~200 um apart. Low
magnification fluorescent scans of the cat LGN sectioned showing label from an injection into the left eye (A) or
right eye (B), and the merged (C) images of left (green) and right (red) eye injections. Fluorescent scans for the left
eye injection were imaged using 800 nm light, and right eye injection using 700 nm light. Merged images were
pseudo-coloured (C) and minor adjustments were made to align channels using blood vessels. Importantly, scans
were taken in the same section, not adjacent sections, to reveal truly interleaved layers. Scale bar for all sections is
Imm.

44



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

Figure 4. WGA CF® dye labeling in single LGN section at 1200pm.

Low magnification fluorescent scans reveal the right-eye injected tracer (red -700nm) (A) and left-eye injected
tracer (green- 800nm) (B). Images were overlaid and merged (C) to demonstrate interdigitation of layers in cat LGN.
Dark labelling was observed for contralateral “crossed” layers A, C and C2 (A left, B right) as well as ipsilateral
“uncrossed” layers Al and C1 (A right, B left), which matches previous observations (Guillery et al. 1980;
Anderson et al. 1988). Black arrow indicates the gap in labelling caused by the optic disk. Merged images were
pseudo-colour coded and aligned using blood vessels to demonstrate interdigitation of LGN layers. Scale bar is
Imm.

Heatmap analysis of label intensity confirmed the presence of the laminar boundaries

(Figure 5). The grey level images were converted into heatmaps representing the fluorescent
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label intensities (blue - background, red to yellow - label color-coded for intensity) and here even
fine details such as the gap for the optic disk representation (yellow arrows Figure 5B, F) were
visible. The analysis also confirmed the presence of stronger label intensity throughout the
ipsilateral layers of LGN since the lateral portion (Figure 5D left, 7H right) had more intense
label than medial portion (Figure 5D right, Figure SH left).

H

I
1 mm $

Figure 5. Analysis of WGA CF® dye labeling in single LGN section.

Identical sections as presented in Figure 5. Yellow line (A,C,E,G) outlines the ROI that was converted to a heat
map of label intensity (B,D,F,H). Cool colours (blue) represent light label intensity, while warm colours (red)
represent more intense labelling. This analysis was useful in identifying the gap in Layer A (yellow arrows) that
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represented the optic disk (B,F). There is also a more intense label presence in ipsilateral labeling of the outer
segments of layer A1l indicated by bright yellows in D and H. Scale bar is Imm.

WGA CF® Dye Labeling of Contralateral and Ipsilateral Inputs to the SC

The superior colliculus is typically sectioned in the same A-P plane as LGN, and this was
how Ann Graybiel first identified the small 'islands' of ipsilateral fibers (Graybiel 1976). These
islands or patches were later identified when superior colliculus was sectioned in the dorsal-
ventral (D-V) plane by Illing in 1989 (Illing 1989). In practice, only a few sections demonstrate
this patchiness, which is in agreement with the depth of label observed in sections of SC
spanning just a few hundred microns (Graybiel 1976).

Here we present a montage of 2 superficial sections (100-200pum) used to create the
overlaid image in Figure 6. The SC receives most of its input from the contralateral hemisphere,
and this was clear when considering the vast amount of green label observed in the right superior
colliculus (Figure 6A). The opposite situation was observed in the left hemisphere with the red
label (Figure 6B). There was, however, labeling in the ipsilateral hemisphere that appeared as a
series of small, irregularly sized but regularly spaced patches. Yellow boxes in each image were
drawn around an ROI containing some of this patchy label distribution (Figure 6A left, Figure 6B
right) with arrows pointing at three neighboring patches within the ROI. Similarly, two boxes
were drawn around ROI in each panel around an area that appears to have complementary lack of
label from the contralateral hemisphere and are devoid of labeling (Figure 6A right, Figure 6B
left). When the two ROI panels within a hemisphere were overlaid, the label from the ipsilateral

hemisphere indeed appeared to nicely fill the voids left in the contralateral hemisphere (Figure

6C).
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Figure 6. WGA CF® dye labeling in sectioned superior colliculus.

Low magnification fluorescent scans of colliculus (100-200um D-V) imaged to reveal left-eye injected tracer
(green- 800nm) (A) and right-eye injected tracer (red -700nm) (B). Images were overlaid and merged (C) to
demonstrate interdigitation of patches in ipsilateral, uncrossed fibres of cat superior colliculus (A-left, B, right) fill
the gaps in label of the contralateral, crossed fibers (A-right, B-left). Minor adjustments were made to align channels
using blood vessels. Importantly, scans were taken in the same section, not adjacent sections, to reveal truly
interleaved layers. Scale bar is Imm.

To analyze the intervening patterning of crossed and uncrossed afferents in SC, we
compared the intensity of label in matching ROIs for both channels (Figure 7A). The yellow box
marked the same ROI on the right-hand side of Figure 6A and 6B. The three yellow arrowheads
in Figure 7D match the arrowheads from Figure 6B (right) used to denote intense patches of

labeling. Grayscale images were converted to heat maps demonstrating areas of high (yellow)
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and low (blue) label intensity (Figure 7 B, E). It was difficult to discern changes in label intensity
from the contralateral label (Figure 7 B), but waxing and waning of the ipsilateral label were
easily identified (Figure 7E). The image view was rotated ~ 90deg into the plane of the image,
and 35 degrees CCW around the X-Y axis (Figure 7C, F) to help visualize maxima and minima
in label intensity. These two panels were vertically aligned using the blood vessel (Figure 7G,
white arrow). Each of the local maxima in the ipsilateral hemisphere (Figure 7D yellow arrows,
Figure 7G bottom, peaks) aligned with the local minima in the contralateral hemisphere (Figure

7G top, troughs), as indicated by double-headed yellow arrows.
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Figure 7. Aligning WGA CF® dye labeling in right superior colliculus.

Yellow boxes represent the same ROIs from contralateral(A-C) and ipsilateral (D-F) injections to superior
colliculus. White arrow represents blood vessel with no label in either channel, which was used to align ROls.
Grayscale images were converted to heat maps, with the same conventions as Figure 5 (B,E). Heatmaps were rotated
so that label intensities were also plotted in the vertical z-dimension, and aligned with x-y coordinates (C,F). The
contralateral superior colliculus (G-top) was aligned above the ipsilateral colliculus (G-bottom), and the peaks in
ipsilateral label aligned with the troughs in contralateral label. Blood vessel (white arrow) is the same as in A, D, and
recognizes zero label in either channel. Scale bar is 1mm.
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2.3.3. Investigation of WGA CF® Dye Labeling in PACT Cleared Tissue
Measurement of flattened cortical clearing rate using PACT

To test the PACT protocol for use with unfolded and flattened cortex, we began by
assessing if the rate of tissue clearing and if the clearing was uniform across the unfolded tissue
sample. During clearing, we measured the optical density in 3 cortical regions in the unfolded
and flattened rat cortex by repeatedly scanning the tissue on a flatbed scanner (ScanMaker 1900,
Microtek Inc). This imaging was done in the clearing solution (8% SDS) to avoid interrupting
tissue clearing. The change in optical density reflected the rate of lipid removal. Figure 8 shows
the optical densities in visual, somatosensory and frontal cortex measured repeatedly over the 4
days of tissue clearing (Figure 8A) and illustrates the change in optical density from opaque
(black) at the start of clearing (Figure 8B top) to translucent (whitish) (Figure 8B middle), to
transparent at the end (clear) (Figure 8B bottom). The average optical density and standard error
of the mean (SEM) for each region were plotted for each time point, and an exponential decay
was fit to these data (y=a + b*exp (-x/T)). The decay functions provided excellent fits: visual
(black; y=0.15 + 1.22*exp(-x/12.09; r(250)= 0.99, p< 0.0001), frontal, (red; y=0.16 +
1.17*exp(-x/10.05); r(250)= 0.99, p< 0.0001), and somatosensory (grey, y=0.16 + 1.26*exp(-x/
15.04); r(250)= 0.99, p< 0.0001). This decay function served as a measure of the rate of clearing.
First, we noticed that after 96 hours of clearing, all cortical regions reached the same level of
transparency (~0.1 OD, ANOVA (F92,9)=2.6487, p>0.05). Next, we used 1 from the decay
function to quantify when the tissue had reached 87.5% of the maximum transparency (3t). We
found that the three cortical regions took slightly different lengths of time to reach the same level
of transparency: visual 30.2 hrs, frontal 36.3 hrs, and somatosensory 45.1 hrs. The rate of PACT
clearing for the flattened rat cortex was similar to or faster than previously identified times to
clear 2mm thick sagittal sections of rodent brains (48 hours- (Yang et al. 2014)). The current
results suggest that somatosensory cortex might take about 10-15 hours longer to clear than the
other regions (ANOVA (F(2,9) = 7.7911, p< 0.05; Tukey HSD p<0.05). The basal ganglia,
however, is tightly adhered under the somatosensory cortex and is difficult to remove completely

during the unfolding process. As a result, some of the basal ganglia remained after unfolding and
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flattening, which was visible as a honeycomb-like matrix (Figure 8B middle-outline). The results
showed that although rates of clearing in unfolded and flattened rat cortex can vary slightly

among cortical areas, ultimately all regions achieve a similar level of transparency.
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Figure 8. Analysis of clearing rates in flattened rat cortex.

(A) The optical densities of three cortical areas measured repeatedly over 4 days. Exponential decay curves were fit
to the data for frontal (red), visual (black) and somatosensory (grey) cortex. (B) Sample images showing the
amount of light transmitted through the unfolded and flattened rat hemisphere at different points in the PACT
process. Arrows point to the corresponding optical density measured for the tissue. The top image shows very
little light transmission through the tissue prior to starting the clearing (~1.4 O.D.), the middle image shows the
translucent appearance after 36 hrs of clearing, and the bottom images show the transparent appearance after 96
hrs of clearing. The basal ganglia was still visible under the somatosensory cortex at 36 hrs but most of the
other regions (frontal and visual) were almost transparent.

The unfolded and flattened adult cat visual cortex took ~10 days to become clear. Visual
inspections were performed multiple times a day to determine when tissue has reached the
appropriate level of transparency. Interestingly, clearing the subcortical visual areas, including
separate pieces of the LGN and SC took a few days longer (14 and 21 days respectively).
Packets of WGA CF® Dye Remain Inside Retinogeniculate Axons in PACT
Cleared LGN

To evaluate the anterograde transport of WGA CF® dye, we obtained high magnification
images from a small piece of PACT cleared LGN tissue (~3mm x 2mm x 1mm) using confocal

imaging and the CLARITY immersion lens (Methods). We visualized multiple packets of bright
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fluorescent labeling (Figure 9A) and then determined the location of the label. First, we looked in
blood vessels and did not find any fluorescent label (Figure 9B, Black Arrow) indicating that the
WGA injection to the eye did not leak into the bloodstream. Second, we looked at the label in
large axons of retinal ganglion cells. We saw label visible as strings along the axon wall,
presumably being actively transported by actin filaments (Figure 9B). Finally, we looked at the
appearance of label in fine processes of retinal ganglion cell axons and observed patterns of
labeling that included synapse-like processes (Figure 9C). Those synapse-like structures
appeared as very bright, small (~15nm) accumulations of the fluorescent label (Figure 9C). The

high magnification confocal imaging confirmed that WGA CF® dye remained inside the axons

of post-fixed neuronal tissue even after extended lipid removal with mild detergents.

Figure 9. Confocal image of WGA CF® dye in PACT cleared LGN.

High magnification confocal image of tissue mounted in sSRIMS (A). Packets of WGA CF® dye (red) are
found throughout the axonal process in the sample that are visible on the light green background. (B) No , WGA
CF® dye was found inside blood vessels (arrow points to a large circular opening cut across a blood vessel). In
contrast, axonal processes were lined with lots of WGA CF® dye packets, especially along the edges of large retinal
ganglion cell axons (small black arrowheads). (C) WGA CF® dye appeared as strings of label along the axon wall in
large diameter (small black arrowhead) and more isolated packets of label in the finer processes. In addition, there
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were sites with accumulation of label that were presumably gathering near synapses (~15 nm wide) (C, large
arrowhead).

Imaging the Whole Cleared LGN After an Eye Injection with a WGA CF®
dye

After the high magnification imaging had confirmed that the WGA CF® dye transported to
the LGN remained inside the axons after PACT tissue clearing we wanted to examine low
magnification imaging of the whole LGN. We wished to determine if there was sufficient label
in the LGN for the LI-COR near-infrared scanner to image it and identify any details of the
laminar pattern of labeling. Additional high resolution imaging could be done with a light sheet
microscope, however, it is an expensive piece of equipment requiring specialized training to
operate and many universities do not have one. For those reasons we wanted to test the quality
of low magnification imaging of cleared tissue from the central visual pathway.

Different patterns of fluorescent label were observed when the cleared ipsilateral (left) and
contralateral (right) LGNs were imaged at low magnification (Figure 10). The ipsilateral LGN
had most of the label restricted to the more ventral region of the LGN, where we expected to find
layer A1 (Figure 10 Left- layer A1), while labeling in the contralateral hemisphere was confined
to the dorsal region of the LGN, where we expected to find layer A (Figure 10 right- layer A).
Thus, the WGA CF® could be imaged at low magnification in the whole cleared LGN, however,
the lamination was far less detailed than found in the sectioned tissue. In addition, the anterior
sections of the LGN are dominated by contralateral inputs that cover the entire surface of the
LGN (Figure 5 A, B, C 100um), and that pattern of contralateral dominance does not segregate
into distinct layers until more posterior sections. Thus, we expected that imaging the whole LGN

would obscure the finer details of the retinogeniculate projection such as the C laminae.
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Figure 10. WGA CF® dye labeling in the whole cleared LGN after left-eye injection.

Low magnification scan of the whole LGN mounted in SRIMS. The bright label in left and right LGN reveals
the larger layers of uncrossed (left A1) and crossed (right A) fibres from the injected eye. Thinner layers C, C1, and
C2 appear to be obscured by tissue thickness. Inset depicts the major layers of the right LGN, stacked vertically as A,
Al and C laminae. Scale bar is Smm.

Imaging the Whole Cleared SC After an Eye Injection with a WGA CF® dye

After confirming that WGA label transported to the SC, and identifying a pattern of
interdigitated labeling from the the ipsilateral and contralateral eye, we tested whether that label
remained after clearing the flattened SC tissue. As was the case for the LGN, label stayed in the
cleared SC, with more label observed in the contralateral (Figure 11A-left ROI) than the
ipsilateral hemisphere (Figure 11A-right ROI). The pattern of labeling in the cleared
contralateral SC, was marked by a large swathe of label across the entirety of SC. In contrast,
there was a faint pattern of waxing and waning of fluorescence in the contralateral hemisphere
(Figure 11A, left ROI) evident by faint patches of weaker label expression (Figure 11A- yellow
arrows) surrounded by the swathe of darker label. That pattern matches what was seen in the

superficial layers of the sectioned SC.
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A. Low magnification image of the flattened left and right hemispheres from a cleared superior colliculus.
Yellow boxes outline two regions of interest in the contralateral (B-D) and ipsilateral (E-G) hemispheres of superior
colliculus. Higher magnification images of the left (B) and right (E) regions of interest outlined in A. Grayscale
images were converted to heat maps (C,F), where areas of high label intensity are colored white, and low intensity
are colored red. Heatmaps were rotated so that label intensities were visualized in the vertical z-dimension in D and
G. White arrows in D denote valleys of low label intensity, and white arrows in G denote peaks of high label
intensity.

Closer inspection of the ROIs identified some small fluctuations in label intensity with
fainter patches of reduced label in the contralateral SC (Figure 11B-D) and darker patches with
more label in the ipsilateral SC (Figure 11 E-F). When the grayscale images of the contralateral
SC were converted to heat maps and rotated to highlight the label intensity, the patches of
reduced label intensity appeared as valleys (Figure 11D-white arrows). When the same approach
was applied to the ipsilateral SC, patches of intense label appeared as small peaks in label

intensity (Figure 11G- white arrows). However, the change in fluorescence amplitude between
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regions of low label to regions with greater label were much smaller than observed in the
sectioned tissue (see Figure 9). Similarly, the range of grey levels in the entire cleared SC was
much smaller than observed in sectioned tissue. Thus, similar to the low magnification imaging

the cleared LGN, the WGA CF® dye was readily imaged through the cleared SC but the fine

details of the ipsilateral and contralateral projections could not be visualized.

2.3.4. Investigating Transneuronal Transport of WGA CF® Dye
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Figure 12. Grey level analysis of retinae, sectioned SC and LGN, sectioned cortex and cleared cortex.

Histograms of grey levels in the retinae (A,B) and across all sections of the SC (B,C), LGN (E,F), and Cortex
(G,H). Histograms were also plotted for the single image of cleared cortex (I). The y-axis of all plots were matched
and set to 100 pixels in order to demonstrate the differences in the number of pixels (visible fluorescence) found in
sectioned cortex (G,H) relative to cleared cortex (I).
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To determine the extent of label transport to the retinae, LGN and SC, we performed an
analysis of the grey level histograms contained in the unprocessed, raw images for these tissues.
The right retinae, which was injected with 700nm wavelength tracer, had far more grey levels (0-
to 225 grey levels) than the left retina, which was injected with 800nm wavelength tracer (0 to 50
grey levels, Figure 12 A,B). The difference was likely due to the brightness of each tracer, since
near-infrared wavelength light is much less bright than light in the visible spectrum. The
difference in brightness was not an issue for the sectioned SC which had a wide range of grey
levels in both the left SC (700nm - 0 to 75 grey levels) and the right SC (800nm - 0 to 75nm)
hemispheres (Figure 12 C,D) . Similarly, the sectioned LGN tissue had a wide range of grey
levels for laminae with projections contralateral to the right eye (700nm - 0 to 225 grey levels)
and contralateral to the left eye (800nm - 0 to 225 grey levels; Figure 12 E,F).

We investigated the extent of transneuronal WGA CF® dyes by performing the same grey
level analysis in sectioned unfolded and flattened cat V1 (Figure 12 G,H) and in cleared tissue
(Figure 12 I). The intensity of visible label in sectioned visual cortex was very low, and did not
match that of previous reports using other anterograde tracers (e.g. Murphy et al. 1995).
Furthermore, the range of grey levels after fluorescent imaging of the sectioned cortex (~0 to 75
grey levels, Figure 12 G,H) was much lower than that observed after imaging the sectioned
retina, SC or LGN, supporting the notion that little label was transported to the cortical tissue. A
major difference between the current tracer (WGA CF® dyes) and classic tracers (WGA-HRP) is
the ability to convert the HRP into a chromogenic substance to amplify reportability and
visibility of the tracer (for example TMB, DAB, ABTS). Such techniques that might increase the
visibility of WGA CF® dyes are not yet available, as they are for other amplifiers of fluorescent
reporters (anti-GFP). Therefore, the sectioned visual cortex was not included in further analyses.

We wondered whether WGA CF® dyes might be visible in cleared tissue, even if they were
not visible in thin sections. We imaged cleared tissue in the hopes that the alignment of ocular
dominance columns could serve to amplify the underlying fluorescent signal of trace amounts of
WGA CF® dye. The cleared unfolded and flattened V1 was prepared for scanning at low
magnification by incubating the samples in refractive index matching solution (sSRIMS) until

optically clear. Next, the cleared tissue was placed in an imaging chamber (Methods) and the
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chamber was filled with sSRIMS. Lids were carefully sealed with Freezing Mounting Medium
(TissueTek, Ted Pella Inc, CA, USA, #27209), and sealed imaging chambers were placed on the
fluorescent flatbed Odyssey Scanner (LI-COR Inc). The scan intensity of the 700nm channel
was left at the default intensity, while the resolution was set to 21um and the offset was adjusted
to 1.25mm to account for the thickness of the slides and tissue (scan area outlined in Figure

13A). When we looked more closely at the pattern of the fluorescent label, we saw an alternating
pattern of similarly sized bright and dark patches (Figure 13 B&C). A regular pattern of waxing
and waning of the fluorescent intensity was found in the cleared V1. The patch-like organization
of fluorescent labeling was similar to the pattern of cat ocular dominance patterns visualized with
WGA-HRP (Anderson et al. 1988). The range of grey levels in cleared tissue ranged from 0 to
255 (Figure 12 1), and this was a much wider range of grey levels than observed after imaging the
physically sectioned visual cortex. The likely reason for more visible tracer, and thus more grey
levels in cleared tissue, was the alignment of tracer within ocular dominance columns, which

were aligned with the vertical imaging plane of the fluorescent flatbed scanner.
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Figure 13. WGA CF® dye labeling in cleared unfolded and flattened cat cortex.

(A) Low magnification image of the large piece of transparent flattened cortex scanned on a ScanMaker 1900
(Microtek Inc) to identify V1 (dotted line). M, medial, L, lateral, A, anterior, P, posterior. Scale bar =lcm. (B & C) A
slightly higher magnification image scanned through the full thickness of the cleared V1 on an Odyssey infrared
fluorescent scanner (LI-COR Biosciences; Lincoln, NE). Brighter patches represent WGA CF® dye labeled inputs
from the injected eye (C, white arrows), while the interdigitated darker patches (C, black arrows) are presumably
areas with inputs from the other eye. Scale bar is Smm.

2.4 Discussion

We developed a protocol for tracing the central visual pathway of both eyes using WGA
CF® dyes that was fast, simple, affordable, and compatible with passive tissue clearing (PACT,
(Yang et al. 2014)). We showed that the features of the visual pathway could be imaged with a
standard NIR fluorescent flatbed scanner because of the bright and photostable properties of the

dyes. Furthermore, we showed that WGA CF® dye remained inside axons in cleared tissue, and
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even low magnification imaging of cleared tissue identified some of the eye-specific features of
projections to the LGN, SC and visual cortex.
WGA CF® dye labeling of the central visual pathway

We showed that the WGA CF® dyes were taken up by retinal ganglion cells, and that it
was easy to visualize the hexagonal arrangement of labeled cells in retinal whole mounts, with
notably stronger intensity of label in the area centralis. In the LGN, the WGA CF® dyes labeled
the eye-specific laminae along the full anterior-posterior extent of the nucleus. Low-
magnification analysis of the LGN confirmed that the protocol could label fine details including
the pattern of A and C layers, as well as the gap in labelling for the representation of the optic
disk, and the eye-specific segments of the medial interlaminary nucleus (Figures 4 and 5)
(Guillery and Kaas 1971; Guillery et al. 1980; Sretavan and Shatz 1986; Anderson et al. 1988). In
addition, the appearance of WGA CF® dye at high magnification as packets along the inside
edge of retinal ganglion cell axons was similar to previous studies that used the dyes to study
axonal transport in live neurons (Pesaresi et al. 2015) suggesting active and specific anterograde
transport of WGA CF® dye from the retina to LGN. The pattern of transported dye in the SC was
visible as strong contralateral labeling with regular waxing and waning to create a patch-like
pattern. That contralateral pattern was interdigitated by the distinct puffs arising from ipsilateral
eye afferents (Figures 6 and 7), similar to previous reports of islands of label (Graybiel 1976;
Illing 1989). Tangential sectioning and analysis of the double-labeled SC showed that the
ipsilateral puffs fell in the less intensely labeled contralateral patches suggesting an ocular
dominance-like pattern of inputs to the SC. The new protocol is therefore suitable for rapidly
visualizing the pattern of retinal projections to the LGN and SC.

WGA CF® dye remained after clearing

The expression of fluorescent WGA CF® dyes in sectioned LGN and SC tissues confirmed
transport of the dye from retinal ganglion cells to terminals. It was unclear, however, if the WGA
CF® dye would remain after tissue was cleared because previous studies using other dyes have
had variable success after clearing tissue (Kuwajima et al., 2013). In this case, we were unsure

whether label would remain because PACT is a gentle tissue clearing protocol that preserves

61



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

structural integrity of cleared tissue by crosslinking a hydrogel matrix between acrylamide
polymers and fixed tissue contents, before washing out unfixed cell components such as lipids,
which are a large component of neural membranes (LeVine et al. 1972; Nicolson 1974; Mesulam
1982; Yang et al. 2014) before forming crosslinks with the N-acetyl-D-glucosamine and N-
acetylneuraminic acid residue in neural membranes (Mesulam 1982). Therefore it was unclear
whether crosslinked WGA molecules would be removed via lipid extraction (SDS washing).
The efficacy of WGA for neuronal tracing is often increased through conjugation with
other molecules (eg. HRP, Alexa-fluor), yet whether those molecules remain in membranes after
tissue clearing has not been evaluated. Here we have shown that WGA CF dye indeed remains
inside the axons of retinal ganglion cells after PACT clearing (Figures 9, 10 and 11).
Furthermore, imaging with the LiCOR Odyssey scanner detected WGA CF® dye throughout all
layers of cleared tissue. The low magnification full thickness scanning of the dye obscured finer
details of the LGN, such as the alternating C1 and C2 layers (Figure 10), and also obscured finer
features of the SC, such as the pattern of islands in the SC (Figure 11). Nevertheless, there was
still good evidence for preserved label in more robust features, such as the alternating A and A1l

laminae of the LGN, and the intense swathe of contralateral label in the SC.

Transneuronal Transport of WGA CF® dye

Here we assessed transneuronal transport of the WGA CF® dyes by examining unfolded
and flattened V1 sections but did not find evidence of neural labeling. The range of available
grey levels supported the notion that little label transported to visual cortex. Classic studies using
WGA-HRP or CTB require additional steps to increase tracer visibility in a single tissue section
(Matteau et al., 2003). For example, the protocols to visualize HRP amplify the signal and with
the TMB reaction a birefringent crystal is formed that can be further amplified by using cross-
polarized darkfield illumination. The current sections were imaged by scanning with a laboratory
NIR scanner without any additional steps to amplify the fluorescent signal. It is possible that the
signal intensity could be increased by using a type of antigen retrieval or fluorescent signal
amplification, similar to how anti-GFP directly targets the fluorescent molecule in order to
amplify fluorescence. Unfortunately, antigens that might detect the fluorescent component of

WGA CF® dyes do not exist.
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On the other hand, examination of cleared cortical tissue after a single eye-injection
revealed similarly spaced blobs as previous reports (e.g., Wiesel et al. 1974; Murphy et al. 1995).
This was surprising, since the fluorescent images were taken by imaging throughout the entire
thickness of cleared tissue. Unlike our examination of LGN and SC, where fine details were
obscured by out-of focus fluorescence, here the intensity of the WGA CF® dye appears to be
amplified by out of focus fluorescence. This was likely a byproduct of aligning ocular dominance
columns through the tissue thickness, which might explain why blobs were visible in cleared V1
and not in sectioned V1. Nevertheless, the range of grey levels in this tissue was less than that
observed in any of the other sectioned or cleared tissue samples, suggesting that very little tracer
was transported to V1 in the first place.

Conclusions

The protocol outlined here combines anterograde transneuronal pathway tracing using a
bright WGA CF™ dye, cortical unfolding and flattening, and passive tissue clearing (PACT).
This provided a simple, inexpensive method to take advantage of modern neuroanatomical
techniques, including tissue clearing for studying development and plasticity of axonal
projections along the central visual pathway. Here we showed that the WGA CF® dyes are
transported along the visual pathway so that fine details of the LGN and SC are easily visualized,
even at low magnification. The current study extends the repertoire of fluorescent labeled WGA
dyes for tracing the central visual pathway by showing the specificity of the anterograde labeling
with the WGA CF® dyes and the compatibility of the dyes with PACT clearing. The WGA label
used here transports quickly, is not toxic, does not kill labeled neurons or the animal, and does
not require the implementation of biosafety protocols. Thus, the WGA CF® dye is a simple

alternative for labeling the projections from the eye to subcortical sites and V1.
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Chapter 3. Protocol for a high-throughput semi-automated
preparation for filtered synaptosomes
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Abstract

One of the simplest techniques for the isolation and application of synaptosomes involves
fractionation of synaptoneurosomes through filtration and low speed centrifugation!. This
approach however, is limited by two essential stages of the synaptoneurosome tissue preparation:
the manual homogenization and filtrations are both laborious and slow. We have updated this
traditional technique to include modern bench-top homogenizers and centrifugal filter units to
simplify these labor intensive stages, to make each stage faster and to reduce the variability
between samples. Here we outline our protocol to produce filtered synaptoneurosomes that
reduces sample preparation time, increase the amount of tissue recovered and most importantly,
increases protein enrichment.

Keywords: Synaptoneurosomes, synaptic proteins, high-throughput, centrifugal filtration

67



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

3.1 Introduction

3.1.1 General Introduction

Synaptosome preparations enrich brain tissue samples for synaptic proteins, making it an
important tool for studying proteins involved in synaptic development and plasticity?-8. Two
types of protocols are used to enrich for the synaptic fraction; the use of a sucrose or Percoll
gradient to make synaptosomes?-10, or filtration procedures to make synaptoneurosomes!-!!. What
makes these synaptosome or synaptoneurosome preparations useful for studying synaptic
development and plasticity is the approximate twofold enrichment of synaptic proteins!-12. That
enrichment improves the signal-to-noise so that synaptic proteins can be accurately quantified
even when the synaptosome or synaptoneurosome is prepared from a small brain sample (e.g.
~30 mg). Furthermore, low abundance synaptic proteins (eg. PICK and GRIP) that are difficult to
reliably quantify in homogenate samples can be routinely studied with synaptoneurosomes!3.

Our research uses filtered synaptoneurosomes to study synaptic development and plasticity
in visual cortex of animals and humans. We have also developed a high-throughput, semi-
automated protocol for preparing synaptoneurosomes because many aspects of synaptic function
can be studied with this preparation. For example, we have examined both pre- and post-synaptic
proteins involved in establishing nascent synapses and mediating experience dependent
strengthening or weakening of connections!3-21. Our studies, as well as ones from other labs have
found that using a synaptoneurosome preparation can uncover synapse-specific aspects of
neurodevelopment and plasticity!214. Indeed, our lab has used synaptoneurosomes to highlight
similarities and differences between the total pool of synaptic proteins found in homogenate
samples and the amount concentrated at the synapse by the synaptoneurosome!4.19:21,

This chapter will focus on describing the protocol we developed for high-throughput and
semi-automated preparation of synaptoneurosomes that is ideal to process large numbers of
samples quickly, inexpensively, and with high reliability!8.

3.1.2 Synaptoneurosome Steps

All filtered synaptoneurosome preparations are made using two steps: tissue

homogenization and fractionation (Chapter 1 of Springer Methods book). The simple protocol
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described by Hollingsworth et al. (1985) helped to popularize the use of filtered
synaptoneurosomes. That method describes manual homogenization with a glass-glass Dounce
tissue grinder, followed by Sum filtration and low speed centrifugations. Two challenges emerge
when trying to scale up any of the manual protocols for making synaptoneurosomes. First, these
protocols are very slow because each sample is prepared by hand, one at a time. Second,
substantial sample-to-sample variability can be introduced because both homogenization and
filtration steps are done by hand. Many groups have tried to improve the quality of the
synaptoneurosome preparation by introducing new methods for tissue lysing?2-24, fractionation?s,
or adjusting the filter pore size!l.25. Yet, all of those protocols still use hand processing for tissue
lysing and/or filtering, so they continue to have sample-to-sample variability and are not easily
scaled up for large projects. We have addressed these problems by developing a new high-
throughput, semi-automated protocol to prepare filtered synaptoneurosomes!s.

3.1.3 Tissue Homogenization

Synaptoneurosome protocols with manual steps for tissue homogenization (e.g. glass-glass
Dounce tissue grinders) use qualitative descriptions to explain how to lyse the sample. In
practice, these protocols are difficult to reproduce since only the number of strokes is quantified,
and most other aspects of the tissue lysing, such as how fast or how much pressure to use with
each stroke, are difficult to describe. New protocols however, use modern bench-top
homogenizers to grind, homogenize and lyse tissue samples!$. These homogenizers can prepare
multiple samples at a time, using built-in programmable steps that lead to highly reproducible
preparation of many samples.

3.1.4 Sample Fractionation

Tissue fractionation protocols typically include syringe filtration steps to remove larger
extra-synaptic components from the homogenate. These are followed by low speed
centrifugations to further separate heavier synaptic fractions from the lighter supernatant. The
manual syringe filtrations vary according to the number of filtrations, the size of the filter pores,
and the qualitative description of how to carry out the steps. In addition, syringe filters such as

Swinnex holders, have about 1ml of dead space, so at least 1.5ml of sample has to be loaded to
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recover enough filtrate to continue the protocol. This loss of sample is problematic when using
small, valuable samples that do not generate enough homogenate for subsequent filtration. We
eliminated these problems by replacing the manual filtration steps with centrifugal filtration
units, where even a small volume of homogenate is reliably filtered. Each centrifugal filtration
unit is loaded with up to 500ul of homogenate, and then spun with a known g-force in a
centrifuge to collect the filtered sample needed to prepare the synaptoneurosome. There is no
dead space where sample volume can be lost, and many samples can be filtered at once, leading
to reliable high-throughput filtration.

Here we detail the steps to prepare filtered synaptoneurosomes using our new protocol!s.
The protocol explains how to implement our semi-automated, high-throughput procedure and
compares samples prepared with this new protocol versus older manual protocols to illustrate the
optimizations that lead to improved reliability, enhanced protein yield, greater synaptic

enrichment, and faster preparation of synaptoneurosomes.
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3.2 Materials and Equipment List
3.2.1 Laboratory Equipment

Peristaltic Pump

Biosafety cabinet (equipped with drain)

1.5 ml Micro centrifuge vial (7x tissue piece)

1 on crushed dry ice
6 on wet ice

-80°C freezer

Weigh boats

Scale

Scoopula

2 ml Lysing Matrix-D tube (1x tissue piece, MP Biomedical, Cat. #116913050)

Bench-top Homogenizer (FastPrep 24 Tissue and Cell homogenizer, MP Biomedicals, Cat.
#116004500 )

2 ml Ultrafree-MC SV Centrifugal Filter Units with Microporous Membrane (1x tissue
piece, Millipore, Cat # UFC30SV00)

Centrifuge (e.g. Sorvall legend Micro 21R)

96 well sample assay plate

Pipettor (volumes between 0.5ul and 200ul)

Biological Incubator (capable of 45°C)

Absorbance Reader (e.g. iMark Plate reader, BioRad)

Heating Block

3.2.2 Chemicals and Reagents for Synaptoneurosome Tissue Preparation
Animal Perfusion and Tissue Collection

PO4 Solution (0.2M): Make stock ahead of time
4L dH20
30.8g NaOH
117.1g Monobasic NaH2PO4
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PBS: Make fresh, store at 4°C
50ml 10x saline
450ml dH20
500ml PO4 Solution (0.2M)
Euthanyl (sodium pentobarbital) (150 mg/kg rat, 165 mg/kg cat)

Synaptoneurosome Preparation

Homogenization Buffer Recipe yields 50 ml (3ml x tissue piece)
5ml HEPES (10mM)
5ml EDTA (2mM)
5ml EGTA 2mM)
125ul DTT (0.5mM)
500ul Leupeptin (10mg/L)
500ul Soybean Trypsin Inhibitor (50mg/L)
50ul Microcystin (100nM)
33.825 ml H20
1. Check the pH level of the combined ingredients, and adjust to pH 7.5
ii. Add 50u1 PMSF
iii. Put solution on wet ice until added to frozen tissue. Can be frozen at -20°C for later use.
Stock HEPES (10mM):
100 ml dH20
2.38g HEPES powder (N-2-Hydroxyethylpiperazine-N'-2-Ethanesulfonic Acid,
Bishop, Cat #Hep 001)
Stir until powder is dissolved. Aqueous HEPES can be aliquoted and frozen at
-20°C, and thawed for use in Homogenization Buffer.
Stock EDTA (2mM):
100 ml dH20
0.5844g EDTA powder (Ethylenediaminetetraacetic acid disodium salt dihydrate,
Sigma, Cat# E-1644)
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Stir until powder is dissolved. Aqueous EDTA can be aliquoted and frozen at
-20°C, and thawed for use in Homogenization Buffer.
Stock EGTA (2mM):

90 ml dH20

10 ml NaOH

Stir until powder is dissolved.

To the above solution, add 0.768g EGTA powder (Ethylene-
bis(oxyethylenenitrilo)tetraacetic acid, Sigma, Cat #E4378). Stir until powder is dissolved.
Aqueous EGTA can be aliquoted and frozen at -20°C, and thawed for use in Homogenization
Buffer.

Stock SDS solution (10%): (20ul x tissue piece)

10 grams of SDS Powder (Sodium Dodecyl Sulfate, Bioshop, Cat#SDS001)

100ml dH20
Stock SDS solution (1%): (boiling, 100ul x tissue piece)

100ml of Stock SDS solution (10%) (see above)

Add 900ml of dH20
BCA Assay and preparing tissue for Western blotting

Albumin Standards
Dilute stock albumin (2 pg/ml) to the following concentrations using saline/dH20:
1 pg/ml, 0.5 pg/ml, 0.25 pg/ml
BCA working solution
50 ml Reagent A (Pierce™ BCA protein Assay Reagent A, Thermo Fisher
Scientific, Cat# 23223)
1 ml Reagent B (Pierce™ BCA protein Assay Reagent B, Thermo Fisher
Scientific, Cat#23224)
Sample loading buffer (M260 NextGel® Sample loading buffer 4x, Amresco LLC, Solon,
OH, USA)
Laemmli buffer (Cayman chemical company, Ann Arbor, MI, USA)
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3.3 Protocol & Main Findings

Animal Perfusion and Tissue Collection

Here we describe the perfusion and tissue collection protocols that we use for our studies of
visual cortex. If perfusion is not a suitable option for your experiment we provide an alternative
protocol with modified filtration steps in a subsequent chapter (Siu Chapter of Springer Methods
book).

3.3.1 Animal Perfusion

1. Euthanize the animal using the protocol approved by your institutional animal ethics
committee.

2. Use transcardial perfusion to clear blood from the animal. Insert the needle from the
peristaltic pump into the left ventricle of the heart, cut the right atrium with scissors and
begin the perfusion with cold 0.1 M phosphate buffered saline (PBS) at a rate of 50-100 ml/
min, for about 4 minutes, or until circulating fluid becomes clear.

3. Quickly remove the brain from the skull and immerse in cold PBS.

3.3.2 Tissue Collection

1. Cut samples from the desired location with sharp iris scissors or a surgical blade. For
example, the samples we cut from rat cortex are typically 3x3x1 mm to yield ~500mg of
tissue that is ready for synaptoneurosome preparation.

2. Quickly transfer tissue pieces to pre-cooled centrifuge vials. Label the vial with the
needed identifiers, and place vial back on dry ice to rapidly freeze the sample.

3. Then store the frozen samples at —80°C, or begin with the synaptoneurosome
preparation.

3.3.3 Synaptoneurosome Preparation

In this chapter, we describe our published protocol!8 for the high-throughput and semi-
automated preparation of filtered synaptoneurosomes, and compare this protocol with the manual
hand preparation popularized by Hollingsworth et al., 1985 (Fig. 1). The primary steps needed to
make filtered synaptoneurosomes, homogenization and filtration, as well as a set of low speed

centrifugations, are outlined in Fig 1. An approximation of how long it takes to prepare a single
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sample at each of these 3 steps is also outlined in Fig 1. Homogenization and filtration following
the manual hand preparation each took about 5 minutes to prepare just one sample, and when
scaling to 24 samples, just these 2 steps add a minimum of 4 hours to a tissue preparation
protocol. Furthermore, the manual hand preparation requires at least 2 experimenters, because
while one person is homogenizing and filtering tissue, the other is needed to clean the glass-glass
Dounce homogenizers, as well as clean and assemble the Swinnex filter holders between
samples. In contrast, one experimenter can easily perform the new high throughput, semi-
automated steps, in under 10 minutes and the single experimenter is able to homogenize and

filter all 24 samples at once.
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Fig 1.0verview of process for preparing synaptoneurosomes using either the manual hand or new high-
throughput, semi-automated protocol, including a comparison of the primary steps in the processes from
homogenization to filtration, and low speed centrifugation.

(A) The hand preparation began with two experimenters working together to homogenize samples one at a time
using glass-glass Dounce homogenizers. (B) The resultant homogenate was then filtered by applying hand-pressure
to a syringe, and forcing homogenate through hydrophobic membranes held in place by the Swinnex filter holder.
(D) The high-throughput preparation began with one experimenter placing samples in lysing matrix tubes, and
running samples in the Fast-Prep® -24 Tissue and Cell Homogenizer for 40 s. (E) The resultant homogenate was
then transferred to centrifugal filter units, and centrifuged for 4 minutes. The filter component of the centrifugal filter
unit was removed before low speed centrifugation. (C and F) In both the hand and high-throughput preparations,
samples were centrifuged at low speed for 30 minutes. To prepare 24 samples with the hand preparation, the total
time require was 4.5 hours and two experimenters were required. To prepare 24 samples with the high-throughput
preparation, the total time require was 35 minutes, and only one experimenter was required.

3.3.4 Synaptoneurosome Preparation - Preliminary Steps

Our protocol significantly speeds up the process and decreases the number of

experimenters required to make synaptoneurosomes from fresh frozen tissue, but it is still
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important to work quickly to prevent tissue thawing. Therefore, we include these steps to reduce
the likelihood of tissue thawing before samples are introduced to homogenization buffer. [Note
1].

1. Thaw homogenization buffer on ice. Homogenization buffer can be made ahead of
time, and it can now be taken out to thaw, but homogenization buffer must remain cold when
adding to tissue pieces.Turn on the centrifuge ahead of time, and allow sufficient time to cool
to operating temperature of 4°C.

2. Label all 1.5 ml centrifuge vials. 3 vials are required for each sample, with separate
vials designated for ‘Homogenate’, ‘Supernatant’ and ‘Synaptoneurosome’, respectively. (e.g.
for sample R123, one vial each is labelled as R123 HOM, R123 SUP and R123 SYN). Place
these on ice.

3. Pipette 10ul of 10% SDS solution into each 'Homogenate' and 'Supernatant' vial. Place
these vials on ice. [Note 2]

4. Label 1 Lysing Matrix-D tube for each sample. (e.g. for sample R123, write ‘R123’
clearly on both tube side and cap). Place on ice.

5. Label 1 Ultrafree-MC SV Centrifugal Filter Unit for each sample.

6. Obtain either freshly sectioned tissue samples, or fresh frozen tissue samples, and place
vials containing the tissue samples on crushed dry ice.

3.3.5 Synaptoneurosome Preparation - Homogenization

Modern bench-top homogenizers lyse tissue samples using built-in programmable steps.
For example, in this protocol, tissues are homogenized at n angular velocity of 6m/s for a
duration of 40 s. Furthermore, the Lysing Matrix-D described in this protocol is specifically
designed by MP Biomedicals for use with soft brain tissues. Controlling the lysing matrix and the
lysing intensity results in a highly reproducible preparation of many samples.

1. Remove the tissue section from the original vial, weigh the sample on a balance, and
record the weight. Quickly transfer the sample to the labeled Lysing Matrix-D tube and add
cold homogenization buffer to the Lysing Matrix-D tubes. The amount of homogenization
buffer required in each vial depends on sample size. Use a ratio of 1ml of homogenization

buffer to 0.05g of tissue to determine the volume of homogenization buffer required for each
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sample. Record the amount of homogenization buffer added. Cap tubes, and place on ice.
[Note 3].

2. Secure Lysing Matrix-D tubes in FastPrep-24 Tissue and Cell Homogenizer. Set the
FastPrep-24 to a speed of 6m/s, set the duration to 40 s, and run the FastPrep-24.

3. Inspect vials to ensure samples are completely homogenized. Check for visible chunks
of tissue resuspended in the homogenization buffer. If the tissue is not fully homogenized, run
all samples for a second time at 6m/s for a duration of 40 s.

4. Remove 90ul of homogenized tissue from lysing matrix tubes and transfer it to the
labelled ‘Homogenate’ vial. Gently vortex the sample, and place vial on ice.

3.3.6 Synaptoneurosome Preparation - Micro-MC Spin Tube Filtration

The syringe filtration component of tissue fractionation is replaced with centrifugal filter
units in our protocol. The product description for Ultrafree-MC SV Centrifugal Filter Units
outlines a range of allowable parameters that can be used with these filter units. First, the
recommended speed of 12,000 x g is a qualitative description of the force applied to pass
homogenate tissue through the microporous membranes. We optimized the filtration time by
measuring the amount of filtrate collected across the range of minutes recommended by
Millipore (1-4min). We determined that 4 minutes yields a significantly higher recovery 334 ul
(SEM 22ul, n = 4) (Fig 2) of the total original homogenate (500ul) than 1 (average 183ul, SEM
62ul, n=4) or 2 minutes (average 180ul, SEM 59ul, n=4) (p<0.05). Here we describe our

protocol for filtering the homogenate tissue through these filter units.
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Fig 2. Volume of filtered homogenate tissue collected using Ultrafree-MC SV centrifuge tubes.

Identical amounts of homogenate tissue (500ul) were loaded into filter units of the centrifuge filter units
(Millipore) and the percent volume of filtrate was compared across one minute filtration intervals (1-4 min).
Centrifugal filtration for 4 minutes yielded greater sample recovery (average 335ul, SEM 22pul, n = 23) than either 1
(average 183ul, SEM 62ul, n=4) (p<0.05) or 2min (average 180ul, SEM 59ul, n=4) (p<0.05).

1. Using a 3 ml syringe equipped with an 18 5/8 G needle tip, take up the remaining
homogenate from the Lysing Matrix D-tube and transfer to Ultrafree-MC SV Centrifugal
Filter Units. [Note 4]

2. Place the newly filled filter spin tubes in the centrifuge. Set the centrifuge speed to
12,000 x g, the duration for 4 minutes, and run the centrifuge.

3. When complete, remove and inspect the filters to ensure no visible tears occurred. Be
sure to note any relevant details pertaining to the condition of the filters. Dispose of empty
filter units.

4. Gently vortex all samples.

5. Place the filter spin tubes (now without filters) in the centrifuge. Set the centrifuge

speed to 1,000 x g, set the duration for 20 minutes and run the centrifuge.

3.3.7 Synaptoneurosome Preparation - Supernatant

The following sections describe the set of low speed centrifugations that separate heavier

synaptic fractions from the lighter supernatant. For the following steps it is imperative that the
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remaining tissue in the centrifuged vials is not disturbed since this concentrated pellet now

contains all resealed synaptoneurosome entities.
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Fig 3. Total protein concentration for the hand or high-throughput techniques measured in (A)
homogenate and (B) synaptoneurosome tissue fractions prepared from cat and rat cortical tissues.

(A) There was no difference between total protein concentration measured by BCA assay in the homogenate
samples prepared using either the hand (3.34pg/ml, SEM 0.16 pg/ml, n = 50) or high throughput technique (3.43 pg/
ml, SEM 0.24 pg/ml,+ n = 24). (B) There was greater total protein concentration in the synaptoneurosome samples
prepared using the high-throughput technique (2.4pg/ml, SEM 0.18pug/ml, n=23) than in the hand preparation (1.88
pg/ml SEM 0.13pg/ml, n=88; p<0.05).
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1. Transfer 90ul of supernatant tissue from the top of the centrifuged filter vial into the
respective ‘Supernatant’ vial. Vortex the supernatant vial and place the sample on ice.

2. Carefully take up the remaining supernatant material surrounding the pellet with a
pipette and expel it into a waste beaker.

3.3.8 Synaptoneurosome Preparation - Synaptoneurosome

1. Turn on the heating block, place vial containing 25 ml of SDS solution (1%) inside the
heating block, and bring to a boil.

2. Add 1 ml cold homogenization buffer to 'Synaptoneurosome' vial to re-suspend each
pellet and vortex each sample until the pellet has dissolved entirely. Place the vials on ice
until ready to proceed to the next step.

3. Place 'Synaptoneurosome' vials in the centrifuge in a counterbalanced fashion. Set the
centrifuge speed to 1,000 x g, set the duration for 10 minutes and run the centrifuge.

4. A pellet should once again be collected in the bottom of the vial. Use a pipette to
discard the remaining supernatant, being careful not to disturb the pellet.

5. The ‘Synaptoneurosome’ vials should contain little more than a pellet at this point.
Using a pipette, add 100 pl of boiling SDS solution (1%) to each of the ‘Synaptoneurosome’
vials, and gently vortex until the pellet is resuspended.

6. 'Homogenate', 'Supernatant' and 'Synaptoneurosome' samples are now prepped. Place

all vials in the heating block for a duration of 10 minutes, then store at -20°C.

3.4 BCA Assay and preparing tissue for Western blotting

The total protein concentration from both homogenate and synaptoneurosome tissue can be
obtained following bicinchoninic acid (BCA) assay guidelines (Pierce, Rockford, IL, USA). This
provides a highly accurate measurement of the total protein available in a tissue preparation
before investing in Western blotting. We measured the total protein by performing BCA assays of
whole homogenates and synaptoneurosomes prepared from rat cortex. We compared total protein
concentration between samples prepared following traditional hand preparation using glass-glass
Dounce homogenizers or with the new high-throughput FastPrep-24 Tissue and cell

homogenizer. We found similar total protein concentrations in whole homogenates prepared by
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hand (average = 3.34 pg/ml, SEM 0.16 ng/ml, n = 50) as those prepared using the high
throughput preparation (3.43 pg/ml, SEM 0.24 pg/ml, n=24) (Fig 3A). The total protein
concentration was greater (p<0.05) when synaptoneurosomes were centrifuged using the
Ultrafree-MC centrifugal filtration units (2.37 pg/ml, SEM 0.18 pg/ml, n = 23) than when
samples were pressure filtered by hand (1.88 pg/ml, SEM 0.13 pg/ml, n = 88) (Fig 3B).

We briefly describe here the BCA protocol to compare total protein concentration between
the semi-automated and manual tissue preparations at either the whole homogenate stage or after
creating synaptoneurosome.

1. Leaving one column of wells blank, pipette 3 pul each of the 4 different albumin protein
standards (e.g. 0.25, 0.5, 1, 2) in order to establish the profile for experimenter pipetting
variability. Do this 3 times for each standard. Since multiple samples are loaded multiple
times, create a map of your assay plate by assigning samples to specific wells.

2. Gently vortex samples once more before pipetting 3 pl each of 'Homogenate',
'Supernatant' and 'Synaptoneurosome' for each sample. Do this 3 times for each sample.

3. Inall wells, add 300 pl of the BCA solution. Place the lid on the protein assay plate,
and place the plate in the incubator at 45°C for 45 minutes.

4. Quantify the colorimetric change in the samples by scanning the plate in the iMark
Microplate Absorbance Reader (Bio-Rad Laboratories, Hercules, CA, USA). Use the
information obtained from this assay to determine total protein concentration in each sample.
In an excel spreadsheet, first plot the protein concentration of the 4 pipetted albumin standard
(i.e., 0.25 pg/ml, 0.5 pg/ml, 1 pg/ml, and 2 pg/ml) against the net light absorbance at the
designated wavelength of your spectrophotometer (e.g., 562nm). Plotting a line of best fit
will determine the strength of the relationship between protein concentration and absorbance
with the function y=mx+b. We have stringent guidelines for this step in the protocol and
require a minimum correlation of 12=0.99 between the values for these two variables for all
protein standards. If r2=0.99 is not achieved, the assay must be re-done.

5. Next, obtain the average absorbance (nm) from the three runs of each sample, and
identify total protein concentration (pg/ml) by dividing this average by the slope of the

function, and adding any linear shift in the function (y-intercept). In this protocol an ideal
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final concentration for diluted tissue samples is 1pg/pl. Use the information about the
average protein concentration obtained from the plate reader to dilute samples down to 1pg/
ul. It helps to start with a common volume of tissue (eg. 80ul) from each 'Homogenate',
'Supernatant' and 'Synaptoneurosome' vial, and transfer this to new vials for use with Western
blotting. Dilute samples with Sample loading buffer (4x) and then with laemmli buffer (1x) to
weigh samples down for loading into the wells on SDS-PAGE gels, and to equate protein
volume across samples.

3.5 Check for synaptic enrichment

We quantified the expression of a specific post-synaptic anchoring protein for
glutamatergic receptors, post-synaptic density 95 (PSD95), in both whole homogenate and
synaptoneurosomes for each sample. We then performed a typical enrichment check by dividing
the expression of PSD95 in the synaptoneurosome fraction by the PSD95 expression in the
homogenized fraction (Synaptoneurosome/Homogenate). We calculated the amount of
enrichment after 1,2,3, and 4 minutes of centrifugal filtration, and found the best enrichment after

4 minutes (Fig 4A). Since 4 minutes of centrifugation produced the greatest amount of synaptic
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Fig 4. Synaptoneurosome enrichment of PSD95 expression comparing across (A) different lengths of
filtration or (B) hand versus new high-throughput preparation.

(A) Centrifugal filtration for 4min led to better enrichment for PSD95 than 1, 2, or 3 mins (average for 1-3 min
was 1.8 X’s enrichment, SEM 0.3, n = 12; average for 4 min was 2.7 X’s enrichment, SEM 0.3, n =23) (p < 0.05).
(B) There was significantly greater enrichment of the synaptoneurosomes prepared using the high-throughput (2.7
X’s enrichment, SEM 0.3, n=23) than the hand preparation (1.6 X’s enrichment, SEM 0.2, n=24) (p < 0.01).
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filtrate (Fig 2A) as well as the greatest enrichment, we compared PSD95 enrichment in this
subset of samples versus those prepared through traditional manual preparations. We found less
than two-fold enrichment (Fig 2B, average 1.6, SEM 0.2, n = 24) in the manual preparation but
an average of 2.7-fold enrichment (SEM 0.3, n = 23) using the new high-throughput preparation,
with some samples having up to 5 times greater PSD95 expression in the synaptoneurosome than
the homogenate. Importantly, these high enrichment values were obtained using very small tissue
samples (25mg) that were orders of magnitude smaller than tissue samples required for the
traditional preparation (1000mg)!.

The synaptoneurosome fraction is dominated by synaptic proteins, since cytosolic proteins
are removed as supernatant at each successive stage of the tissue fractionation protocol.
Therefore it is imperative that protein expression is not normalized against classic housekeeping
proteins typically used as loading controls in Western blotting experiments, since these proteins
are expected to be depleted by the synaptoneurosome preparation. To demonstrate this, we
compared the expression of a classic housekeeping protein, B-tubulin, against PSD95 expression
in a subset of homogenate and synaptoneurosome samples prepared through both the hand and
high-throughput techniques (Fig 5). We found greater average -tubulin expression in the
homogenate fraction (1.12) than the synaptoneurosome (0.06; p<0.001 Fig 5A. light gray), while
the opposite is true for PSD95 expression, which again demonstrates higher protein expression in
the synaptoneurosome (0.155) versus the homogenate (0.11; p<0.05 Fig 5A dark grey). This
confirms the low expression of B-tubulin in homogenate versus synaptoneurosome reported by
others!2. In fact, an enrichment check performed for -tubulin produces an anti-enrichment for -
tubulin, while standard enrichment is demonstrated for PSD95 (Fig 5B). It is vital that loading
controls are used properly when analyzing a synaptoneurosome preparation, since normalizing
protein expression against a house-keeping proteins that demonstrates anti-enrichment (i.e.
enrichment values less than 1) will lead to artificially inflated measurements of expression for

proteins of interest.
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Fig 5. Comparison of B-tubulin and PSD9S expression in whole homogenate and synaptoneurosomes
(A) with matching enrichment (B).

(A) There was less B-tubulin expression in the synaptoneurosome (0.06, SEM= 0.01) than in the whole
homogenate sample (0.12 , SEM= 0.02; p<0.001), while PSD95 had greater expression in the synaptoneurosome
(0.16 , SEM=0.04 ) than in the homogenate (0.11 , SEM=0.03 ) sample. This lead to protein enrichment (>1 X) for
PSD95 (1.9X, SEM=0.48) and protein depletion of B-tubulin (0.58 X, SEM=0.10, p<0.05) in the synaptoneurosome
fractions.
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3.4 Notes

1. One purpose of the homogenization buffer is to slow the process of protein denaturing.
There are a variety of homogenization buffers available for purchase, but here we include our in-
house design since this combination of calcium chelators and protease inhibitors has proven
successful for our Western blotting purposes. Be sure to modify this recipe to suit your own
needs.

2. After applying heat, SDS solution coats proteins with an even electric charge, so that
electrophoretic separation of proteins is based primarily on size of unfolded proteins. If this is
undesirable for your synaptoneurosome preparation, skip this step.

3. Be aware of the total volume of homogenization buffer being added to each Lysing
Matrix-D Tube. The current protocol uses smaller pieces of tissue, and the maximum volume
these tubes accommodate is 2ml. If you are sectioning larger pieces that require more
homogenization buffer, MP Biomedicals make larger lysing matrix tubes that can be used with a
larger shaker unit for the Fast-Prep 24 Tissue and cell homogenizer. Ensure you have the proper
lysing matrix (Lysing Matrix-D) that is specifically designed for use on soft tissues like cortical
tissue, since all parameters in this protocol were designed for use with soft tissue.

4. We advise having extra filter spin tubes ready in case there is excess homogenized tissue.
Again be aware of the total volume that these filtration units can accommodate to avoid

overfilling vials. These particular units accommodate 500ul in the filter unit.
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Chapter 4. A primer on high-dimensional data analysis
workflows for studying visual cortex development and
plasticity
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Abstract

New techniques for quantifying large numbers of proteins or genes are transforming the
study of plasticity mechanisms in visual cortex (V1) into the era of big data. With those changes
comes the challenge of applying new analytical methods designed for high-dimensional data.
Studies of V1 can take advantage of the known functions of many proteins for regulating
experience-dependent plasticity to link high-dimensional analyses with neurobiological
functions. Here we discuss two workflows and provide example R code for analyzing high-
dimensional changes in a group of proteins using two data sets. The first data set includes
measurements for 7 synaptic proteins from an animal model for amblyopia. The second data set
includes 23 neural proteins and 31 ages (20d-80yrs) from human post-mortem samples of V1.
Each data set presents different challenges, and we describe using PCA, tSNE, and various
clustering algorithms including sparse high-dimensional clustering (RSKC). Also, we describe a
new approach for identifying high-dimensional features and using them to construct a plasticity
phenotype that identifies neurobiological differences among clusters. We include an R package
“vlhdexplorer” that aggregates the various coding packages and custom visualization scripts

written in R Studio.
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4.1 Introduction

More than 30 years ago, Artola & Singer (Artola and Singer 1987) introduced the field of
visual neuroscience to the central roles that NMDA and GABAAa receptors play in regulating
plasticity in the visual cortex (V1) and Tsumoto et al. (Tsumoto et al. 1987) showed the enhanced
contribution of NMDARSs during the critical period (CP). Thousands of experiments followed
those studies, targeting specific pre- and post-synaptic proteins and providing an in-depth
understanding of how neural proteins enhance or reduce experience-dependent development and
plasticity in V1. More recently, proteomic and genomic studies are surveying thousands of
proteins and genes to explore novel mechanisms regulating development and plasticity in V1
(Carlyle et al. 2017; Nowakowski et al. 2017).

The shift from studying a few proteins to quantifying tens to thousands of proteins is
changing our understanding of visual cortical development and plasticity but it also poses new
challenges for data analysis. Here we describe two workflows for using high-dimensional
analyses to study the development and plasticity of neural proteins (or genes) in V1. We take
advantage of insights gained from previous studies about the role of different proteins in
development and plasticity to select a set of proteins to study. Furthermore, working at the level
of proteins, we can apply the same techniques to studying V1 in animal models (section 4.3) and
humans (section 4.4).

Our aim is to describe the workflows and provide examples for applying high-dimensional
analysis of protein (or gene) data using the statistical software R. The examples address how to
use the workflow to discover experience-dependent or lifespan changes in plasticity mechanisms.
Also, we describe a novel approach for exploring and comparing the neurobiological features
that characterize different rearing conditions or age groups that we call the plasticity phenotype.
The goal of building the plasticity phenotype is to connect the high-dimensional analyses with
biologically meaningful insights into V1 plasticity.

Getting started

The first challenge in developing the workflows was to determine which high-dimensional
analyses were appropriate for the experimental designs of our studies. Our experiments include

many proteins with known roles in neuroplasticity, and often the tissue samples come from

92



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

multiple cortical regions. That experimental design has more variables (p) than conditions (), so
the data sets are p>n and are by definition high-dimensional. The data sets are also described as
sparse because the data points do not fill the space and thus the distance between samples in the
high-dimensional space is uneven. This sparse structure means that special consideration is
needed in selecting methods for data analysis. First, the methods must support the discovery of
clusters that differ on only a few proteins or combinations of proteins (features). Second, those
discoveries need to guide meaningful insights into how V1 develops and changes with different
forms of visual experience. To this end, we developed workflows that lead to the construction of
plasticity phenotypes using features identified by high-dimensional analyses. Also, we
implemented a visualization for the plasticity phenotype that facilitates the intuitive exploration
of the data.

Here we describe and compare two approaches suitable for analyzing a set of plasticity
proteins (or genes) (p) and comparing among rearing conditions () or developmental stages (n).

The intent of this paper is not to review high-dimensional analyses or to determine the
“best” analysis, but rather to demonstrate and discuss two workflows appropriate for high-
dimensional clustering of the data and classifying plasticity phenotypes in the developing visual
cortex.

Contributions of this paper:

1) We provide two workflows with examples for identifying clusters in a sparse data set
(p=n or p>n). With each workflow we discuss selection of the analysis steps.

2) We explore different techniques and discuss selecting a clustering method that is
appropriate for the data set and research questions.

3) We combine tools for partitioning data into clusters and identifying features. The
features are then used to create the plasticity phenotype which aids in discovering biologically
meaningful interpretations of the data.

4) We aggregated the various packages and custom visualization code used in this paper
into an R package “vlhdexplorer” that is available for download using the function

install github("balsorjl/ vlhdexplorer").
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The rest of this paper is organized as follows. In section 4.2, we review some of the high-
dimensional data analysis methods that have been used in recent papers studying cortical
development. In sections 4.3 and 4.4, we present the workflows with examples using PCA and
tSNE, or sparse high-dimensional clustering, and describe how to build and use the plasticity
phenotypes. Section 4.5 provides a brief summary and discussion.

4.2 Past work using high-dimensional analysis

Principal Component Analysis: The most commonly used high-dimensional analysis for
exploring gene or protein expression in the brain has been principal component analysis (PCA)
(Hotelling 1933, Jolliffe and Cadima 2016). PCA transforms the gene or protein data, which is
likely to include correlated genes or proteins, into a linear set of uncorrelated principal
components that capture successively less of the variance in the data. Thus, individual cases can
be visualized and analyzed within the transformed lower-dimensional space and that is often
helpful for identifying clusters in the data (Figure 1). For example, a recent survey of human
brain development using RNA and protein expression used PCA to reduce the dimensionality of
the data and identify differences among brain regions (Carlyle et al. 2017). That analysis
highlighted the separation of cerebellar samples from the other brain regions, but it was
challenging to interpret the biological significance of the components that differentiate the
regions.

The unitless dimensions of PCA components make it hard to identify the biological
correlates when thousands of genes or proteins have been quantified and this often leads to the
use of pseudo-units (e.g. pseudoage). In contrast, when a targeted set of genes or proteins with
known functions are studied then the basis vectors for each component (the weights for each
protein) can be used to attach biological significance to otherwise unitless dimensions. For
example, after applying PCA to the expression of 7 synaptic proteins from animals reared with
normal vision or monocular deprivation (MD), we used the basis vectors to infer that PC1
reflected the sum of the proteins, PC2 an aspect of the excitatory:inhibitory balance, and PC3 the
maturational state of the subunit expression (Beston et al. 2010, Balsor et al. 2019; Figure 1B).

In section 4.3, we describe a two-step process for using PCA; first, the typical step for

dimension reduction, and second, a new step that expands each dimension using the basis vectors
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to identify the biologically relevant features that account for variance in the data. Those features

become the building blocks for the plasticity phenotype and facilitate interpretation by linking the

features with known functions for regulating experience-dependent plasticity. Also, the overall

pattern of features can be used to provide robust phenotypic information about the biological

correlates that identify clusters in the data. Thus, the plasticity phenotypes help to discover

meaningful insights into how V1 matures during normal development or is changed by abnormal

visual experience.
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Figure 1. Interpreting PCA dimensions with either thousands or tens of genes or proteins:

(A) Scatter plots for the first two dimensions from a PCA analysis of RNA (5141 genes) or protein (6529
proteins) expression for postmortem tissue samples from 7 regions of the human brain. The plots show a clear
separation of cerebellum samples (CBC) from the other brain regions. It is challenging, however, to interpret the
biological correlates that differentiate among the regions because the very large number of genes or proteins were
reduced to just 2 unitless components. Reprinted with permission from Becky C. Carlyle et al: Springer Nature,
Nature Neuroscience, A multiregional proteomic survey of the postnatal human brain, Carlyle et al., 2017 (B) A plot
of the first 3 dimensions from a PCA analysis of 7 proteins and 3 regions for normally developing (yellow spheres)
or monocularly deprived animals (red spheres). The shadows projected on the three walls help to visualize
differences between normal (circles) and deprived (squares) animals. Age (in weeks) is displayed beside each
symbol and the connecting lines link the points by age. The biological correlates for each dimension were
determined using the basis vectors -- PCA 1 reflects the sum of the protein expression, PCA 2 reflects an aspect of
the E:I balance, and PCA 3 reflects the maturation of receptor composition. Reprinted from Beston et al., 2010.

t-Distributed Stochastic Neighbor Embedding: Another popular method for

transforming and visualizing high-dimensional data is t-Distributed Stochastic Neighbor

Embedding (t-SNE, (Maaten and Hinton 2008)). tSNE measures the shortest distance between

pairs of data points, then calculates pairwise probability estimates of similarity across a/l

dimensions. Often, these estimates are mapped onto 2-dimensional (2D) space by scaling the

distance between data points and positioning similar data points closer together. The new

mapping preserves local and global patterns thereby representing the relationships among data

95



A

Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

points that may highlight clusters in the data. The artificial scaling makes it easier to identify
clusters by either color-coding points based on a known attribute (e.g. cortical area), or by
applying a clustering method to the tSNE XY coordinates. Furthermore, the unsupervised nature
of tSNE is particularly useful when exploring data without strong a priori knowledge of the
expression patterns that may differ among the conditions.

For example, a combination of PCA and tSNE was used to analyze the data from a recent
study of single-cell mRNA expression in the developing human brain ((Nowakowski et al. 2017),
Figure 2A). In this example, PCA was used to reduce the dimensionality of the data and then
tSNE to further reduce the dimensions and visualize clusters (colour-coded dots) of samples
(Figure 2B-D). Next, the tSNE plots were used to show clustering by lineage (e.g. CP or GZ)
(Figure 2C) and cell type (e.g. DLX1 for MGE derived cells) (Figure 2D).
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Figure 2. Applying tSNE to human brain cells identifies cell type clusters.

(A) Schematic illustrating sample collection over time, region, and lamina. (B to D) Scatterplot of 4261 cells
after principal components analysis and t-stochastic neighbor embedding (tSNE), coloured by (B) cluster, (C)
cortical lamina source, and (D) maker gene expression. From Nowakowski, T. J., Bhaduri, A., Pollen, A. A.,
Alvarado, B., Mostajo-Radji, M. A., Di Lullo, E., ... & Ounadjela, J. R. (2017). Spatiotemporal gene expression
trajectories reveal developmental hierarchies of the human cortex. Science, 358(6368), 1318-1323. Reprinted with
permission from AAAS.

This is a powerful workflow for analyzing and visualizing complex gene or protein data. It
is a good illustration of a common approach that starts by reducing the dimensions down to 1-5
components and using those eigenvalues as input to the cluster analysis. However, care is needed
when using dimension reduced data as input to clustering because the orthogonal components

from PCA may not contain the features need to partition the data into clusters (Chang 1983).
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In section 4.3, we describe a modified workflow that uses tSNE to visualize clusters and
PCA to select features for constructing plasticity phenotypes but does not use the transformed
eigenproteins as the input to the tSNE analysis. We demonstrate this workflow using a data set
comparing protein expression in V1 among a set of rearing conditions where animals had either
normal visual experience, monocular deprivation (MD) or MD plus a subsequent treatment. We
present the steps for this new workflow (section 4.3) and explain how it can be used to explore
and interpret cluster composition based on rebranding each sample by their plasticity phenotype.

Other clustering approaches: In addition to PCA and tSNE, there are many other
algorithms that can be used to discover the natural clustering of samples based on similar patterns
of features. These techniques often employ partitional or hierarchical methods to separate data
points into clusters. Partitional clustering refers to an immediate division of data points into non-
overlapping clusters, while hierarchical clustering nests closely related samples into a tree-like
structure to identify clusters. Hierarchical clusters are built through a top-down (divisive) or
bottom-up (agglomerative) approach: top-down begins with all the data in a single cluster that is
recursively divided into smaller clusters, or bottom-up begins with each data point in individual
clusters that are recursively merged. Hierarchical clustering continues until a designated
threshold is met, usually the number of clusters (k). One of the strengths of that approach is the
use of a dendrogram to graphically represent clusters by ordering samples with similar features
nearby in a tree structure. For example, the matrix in Figure 3B used hierarchical clustering to
order the strength of pairwise correlations between brain areas for a set of 123 proteins that are
differentially expressed across human development (Figure 3B; (Carlyle et al. 2017)). The
strength of the correlations was colour-coded, and the hierarchical ordering made it easy to see
the clustering of cerebellar samples based on their poor correlations (blue) with the other areas.
It can be difficult, however, to see more subtle differences in the pattern of correlations among
the other areas and to select a height in the tree to define more subtle clustering.

The other major class of clustering algorithms, partitional, does not impose hierarchical
structure to the data and instead finds all of the clusters at the same time as a partition of the data.
K-means is the best known and most widely used partitional clustering method. It starts by

partitioning samples into k clusters where the number of clusters is chosen using the gap statistic
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to estimate the number of clusters in the data set (Tibshirani et al. 2001). The data are then
iteratively repartitioned into different clusters to minimize the within-cluster sum of squares.
Since this method is not hierarchical, the clusters cannot be represented in a dendrogram, so K-
means or other partitional clustering methods (e.g. Louvain, Infomap, etc) are often visualized
using tSNE. For example, in the workflow diagram from Nowakowski et al. (2018) the color-
coded clusters in the tSNE plot were identified using Louvain partitional clustering.

Many clustering approaches work well when there is good separation among the features in
the protein or gene data set. In contrast, when samples differ on a small fraction of the features
or there are more subtle changes in protein expression the typical clustering methods begin to fail
and other approaches such as sparse clustering algorithms are needed. The advantage of sparse
clustering is that it uses an adaptive selection of a subset of features within hierarchical or K-
means clustering and the selection of features is iteratively optimized using a regression-style
analysis (e.g. lasso) (Witten et al. 2009).

Finally, whether clustering is done with hierarchical, partitional, or sparse algorithms the
same challenge remains -- how to link the holistic exploration of the data with the biological
features that differentiate the groups. In previous studies, the task of pinning down those features
was often done by sorting through the clusters using a series of plots and univariate analyses
aimed at finding proteins or genes that are over- or under-represented in a group (Carlyle et al.
2017; Luo et al. 2017). That approach, however, focuses on measurements from just one variable
per sample and thereby loses sight of differences that arise from higher order combinations of
protein or gene expression. That problem prompted us to develop a method for discovering
combinations of proteins that represent high-dimensional features and then use those features to
construct the plasticity phenotype. While the idea of a phenotype is not new, our approach to
extracting features from the protein data and using them to analyze and visualize the plasticity

phenotypes is a novel application in this field of study.
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Figure 3. Hierarchical clustering of samples in a correlation matrix.

a. Venn diagram showing the number of genes that were significantly and differentially expressed across
developmental periods (left, blue) or brain regions (right, green). b. Hierarchical clustering revealed major divisions
between brain regions, but less distinct classification based on developmental period. ¢-d, Exploring clusters by
region (c) reveals region-specific enrichment or depletion and exploring across developmental periods (d) reveals
developmentally enriched period of protein expression shortly after birth (period 8). Each data point is shown as a
dot. Reprinted with permission from Becky C. Carlyle et al: Springer Nature, Nature Neuroscience, A multiregional
proteomic survey of the postnatal human brain, Carlyle et al., 2017.

Example data sets and preparation of the data

In this paper, we used two data sets of neural protein expression in V1 obtained using
Western blotting and quantification with densitometry. Each data set was organized into a matrix
with n rows of observations (e.g. cases, cortical regions, and number of Western blot runs) and p
columns of variables (e.g. # of proteins). The first data set included results from animal studies
examining changes in glutamatergic and GABAergic receptor subunit expression during normal
development, monocular deprivation (MD), or treatment after MD (Beston et al. 2010, Balsor et
al, 2019). The second data set was from a series of studies examining the development of human
V1 by measuring expression of a collection of neural plasticity proteins in postmortem tissue
samples from cases that range in age from neonates to older adults (Murphy et al. 2005; Pinto et

al. 2010; Williams et al. 2010; Pinto et al. 2015; Siu et al. 2015; 2017).
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Prior to beginning the high-dimensional analyses described in this paper it is important to
inspect and organize the raw data set. First, if using Western blotting ensure that the
quantification of the bands did not include artifacts (e.g. bubbles, spots) or poorly labeled bands
that could skew the results. Those data points should be omitted, and the missing data can be
filled by imputation. A variety of imputation functions have been implemented in R and a
package impute was developed for microarray data that imputes missing gene or protein
expression data using a nearest-neighbor analysis (Hastie et al. 2001).

4.3. Using PCA & tSNE to study experience-dependent changes in visual
cortex: Data reduction, feature identification, clustering, plasticity phenotypes

The first workflow describes using PCA to identify features and then clustering of the
features with tSNE. A novel aspect of this approach is using the features to construct plasticity
phenotypes and applying those phenotypes to rebrand and compare the clusters.

The data set comes from two animal studies of visual cortical development and plasticity
(Beston et al. 2010; Balsor et al. 2019) with an nxp matrix comprised of #=567 rows of
observations and p=7 columns of protein variables (Tables 1&2). The final matrix had 3,969 cells
of data and after omitting 602 cells with poor labelling, the final number of data points was
3,367.

Table 1. Observations (n)

Categories Specific Total
Rearing Normal (9), MD (8), Reverse Occlusion (1), 24
Condition Binocular Deprivation (1), Binocular Vision (5)
Regions Central (2), Peripheral (8 or 10), Monocular (2) 12 or 14
WB Runs 1,2 2

Sum 567

Table 2. Variables (p)

Categories Specific Total

Protein Synapsin I (Syn), GluN1, GluN2A, GluN2B, 7
GluA2, GABAaal, GABAAa3
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Protein Analysis Workflow
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Figure 4. Protein analysis workflow for p<10 and p=n.

a. Protein expression was collected across 7 proteins using immunoblotting (N=4232). b.Standard univariate
analyses to identify significant differences among the 9 rearing conditions. ¢. Network analyses calculated using
Pearson’s R between the 7 proteins in each rearing condition. d. PCA to explore and e. transform features. f. tSNE to
represent the data in low-dimensional space (2D), then clustering algorithms were applied to the low-dimensional
representation of the data. Clusters were annotated and subclusters identified (coloured dots) using known
information about the tissue samples (rearing conditions). g. Network effects assessed using Pearson’s R correlations
between clusters & subclusters h. Plasticity phenotypes to visualize similarities/differences among subclusters.

4.3.i) Quantification and analysis

The natural first step in the analysis workflow is to find extremes in protein expression that
identify significant differences between conditions. Using a series of univariate analyses,
however, becomes overwhelming very quickly as the number of genes or proteins quantified
increases (Figure 4B). Furthermore, such an approach does not realize the potential of the high-
dimensional data set since it is not inclusive of the full repertoire of proteins available. Instead,
holistic approaches that examine all proteins can identify patterns in the data that suggest how the
biological functions might have changed.

Next, we describe using pairwise correlations and hierarchical clustering to visualize

patterns in the data using a 2D correlation heatmap. The organization of positive and negative
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correlations provides insight into the network of protein expression in visual cortex and how
different visual rearing conditions changed the pattern.

4.3.ii) Network analysis

Visualizing pairwise correlations between proteins was the first step to beginning a holistic
analysis of the data. The order of the proteins was sorted by hierarchical clustering so that
proteins with similar patterns of correlations were nearby. A dendrogram was used to visualize
the tree of protein clusters in the data (Figure 4C).

The analysis was done in R Studio using a series of packages available for download at the
Comprehensive R Archive Network (CRAN). These packages include: Harell Miscellaneous,
stats, dendextend, seriation, and gplots.

First, the data file was read in to an object called my.data.

my.data <- read.csv (file="data.csv", header=TRUE, fill=TRUE, blank.lines.skip=FALSE) (1)
Then the data were parsed into subsets representing each of the rearing conditions. The

following R coding example (2) demonstrates how to parse the data for the Normal rearing
condition (Normal):

#Subset protein expression for normal animals: 2)
Normal <- as.matrix(subset(my.data, Rearing Condition== “Normal",
select=c(GIuN1,GIuN2A,GluN2B,Gabaa1,Gabaa3,GluA2,Syn)))

#Repeat for all rearing conditions

A correlation matrix was calculated for each subset of data. There are many packages in R
that can calculate Pearson’s R correlations. We used the rcorr function in the Harell
Miscellaneous package (Hmisc, (Harrell and Dupont 2008)) since it computes a matrix of
Pearson's R or Spearman's Rho rank correlation coefficients for all possible pairs of columns of a
matrix. The following coding example (3) calculates the Pearson’s R for the Normal subset of

data:

#Compute the Pearson’s R for all columns p for the subset ‘Normal’ (3)
NormalCor<-rcorr(Normal, type =c("pearson"))

#Save the Normal correlation matrix values as a data matrix called ‘NormalCorMat’
NormalCorMat<-as.matrix(NormalCor$r)

The matrix of Pearson’s R correlations was then converted into distance values since those
values will be used for the hierarchical clustering. The distance matrix is the inverse of the
correlation matrix, so that values represent dissimilarity rather than similarity. This step is

necessary for generating the dendrograms that will represent cluster hierarchies. The conversion
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from a correlation matrix into a distance matrix was done in R using the dist function in the stats
package (Team 2015).
This coding example (4) converts the correlation matrix for Normal animals

(NormalCorMat) to a distance matrix:

Normal.distance <- dist(as.matrix(NormalCorMat), method = "euclidean") (4)
The distance matrix for the proteins was used for hierarchical clustering with the hclust

function in the stats package. Clusters were visualized using a dendrogram to show the branching
pattern and distances between proteins. Proteins with similar patterns of correlations were
separated by shorter branch distances (y-axis) and fewer branch points.

This coding example (5) calculated the hierarchical clustering of the Normal.distance matrix
and generated the dendrogram in Figure 5:

#Compute hierarchical clusters using the ward.D2 method 5)
Normal.cluster = hclust(Normal.distance, method = "ward.D2")

#Compute dendrogram without reordering branches

Normal.Dendrogram<-as.dendrogram(Normal.cluster) #converts clusters to dendrogram
plot(Normal.dd)
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Figure 5. Initial output of hierarchical clustering the Normal distance matrix of proteins.

The distance (y-axis) represents how closely related proteins are, with smaller values indicating a smaller
distance and therefore a higher correlation. In this dendrogram, GluN2A is the most dissimilar to all other proteins.
Depending on the height of the cut level, this dendrogram can be parse into any number of clusters (k).

The last step was to create the colour-coded correlation matrix with surrounding
dendrogram in Figure 6 using the heatmap.2 function from the gplots package (Warnes et al.
2016). The correlation matrix (NormalCorMat) and dendrogram (NormalDendrogram) were the
inputs for this example code (6). The colour scheme of the correlation matrix was adjusted by
selecting an appropriate colour palette using the ‘col’ parameter, and the limits of the correlation
matrix were adjusted to represent the range of Pearson’s R correlations using the ‘breaks’

parameter.

heatmap.2(NormalCorMat, (6)
Colv=NormalDendrogram, Rowv=NormalDendrogram,
revC=TRUE, breaks=seq(-1,1,length.out=51),
margins =c(6,6), cexRow=1.5, cexCol=1.5, col=redbluecolours,
dendrogram="both", trace="none", density.info='histogram’,
key.xlab=NA, key.ylab=NA, key.title="Pearsons' R",
Ihei=c(1.75,8), Iwid=c(3,8), keysize=.75, par(cex.main=10), srtCol = 65,
key.xtickfun=function() {
breaks <- parent.frame()$breaks
return(list(
at=parent.frame()$scale01(c(breaks[1],0,
breaks[length(breaks)])),
labels=c(as.character(breaks[1]),0,
as.character(breaks[length(breaks)]))
)
}
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a Pearsons'R Normal b Pearsons' R

GIuN2A — GABA,a3
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Figure 6. Correlation matrices for protein expression in Normal and MD animals.

a. The output of the coding example for the Normal animals reveals most proteins have positive correlations
with each other. b. The same code was used on the subset of MD data to create a correlation matrix, distance matrix
and dendrogram. The MD plot shows that the excitatory proteins are positively correlated with one another, the
inhibitory are positively correlated with one another, but excitatory proteins are negatively correlated with inhibitory
proteins.

The examples above illustrate the information that can be readily visualized in a 2D
correlation heatmaps. This analysis helped to identify the pairs of proteins (e.g., GluN1 and
GABAAal) that had different relationships after abnormal visual experience.

A final note: the dendrogram package dendextend (Galili 2015) provides additional control
for dendrogram attributes such as line style, thickness, and colour. Also, the seriation package
(Hahsler et al. 2008) allows rotation of child branches to improve visualization. For example, in
the MD heatmap above the first branch separates positive and negative correlations and using the
seriation package that branch could be rotated so the blue cells are on the top left and the red

cells on the top right. This control can be helpful for highlighting the pattern of correlations for

particular proteins in the study.
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4.3.iii) Dimension reduction

The next part of the analysis workflow uses PCA to explore the high-dimensional nature of
the data. We have implemented a two-step procedure that starts by reducing the dimensionality
of the data and then uses the basis vectors for those dimensions to identify candidate biological
features that capture the variance in the data.

A note of caution: many implementations of PCA do not work well when there are empty
cells in the matrix. There are a variety of approaches that can be used, including imputation to
fill in the empty cells, removing runs where data are missing for one or more proteins, or
averaging across runs. In this example, we averaged protein expression across runs.

This section is not an overview of PCA and we encourage readers to go to the online
tutorials to learn more about applying PCA to biological data. It is important, however, to
emphasize that our use of PCA is a data-driven approach to protein analysis because the variables
(p) were only protein expression and did not include any of the categorical information such as
treatment condition, cortical area or age.

This coding example (7) starts by extracting the columns (3-9) from my.data that contained
protein expression.

Protein<- my.data[,3:9] (7)

#Column 1 and 3 contain the Condition and cortical area; here we select proteins 1-7 by calling
#columns 3:9

The first step for performing PCA was to center and scale the data so that proteins with
abundant expression did not obscure proteins with smaller but still significant variations in
expression. Each protein was scaled and centered producing a standard deviation of +1, and a
mean of zero. Scaling data in R was done using the following example (8) of the base function
scale:

data.scaled <- scale(Protein, center = TRUE, scale = TRUE) (8)
There are a variety of packages in R to do PCA, and here we used the PCA function in the

FactoMineR package (L€ et al. 2008). That package produces eigenvalues and comes with
excellent visualization tools to aid exploration of the relationships between principal components
and features in the data set.

First, we ran PCA on the scaled data set data.scaled and saved the result as the object pca.
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pca <- PCA(data.scaled, ncp=m, scale.unit=FALSE, graph = FALSE) 9)
#scale.unit can be set to TRUE if data set was not scaled in earlier steps
#graph can be set to TRUE to visualize the data set in the new PCA dimensions

Principal components (PC) returned by this function are the set of orthogonal vectors in the
object pca identifying the variance in data.scaled. The eigenvalues represent the magnitude of
the variance captured by each PC vector, and the eigenvalue is largest for PC1 and successively
less for each subsequent PC. An in-depth explanation of PCA and eigenvectors can be found
here (Jolliffe and Cadima 2016).

The eigenvalues for each PC were identified by consulting the pca object as follows:

eig.val <- get_eigenvalue(pca) (10)
The first step of dimension reduction was to identify how much variance was captured by

each PC, then rank the PCs from largest to smallest, and lastly, retain the set of PCs that capture a
significant amount of the variance. Start with a Scree plot (Figure 7) showing the amount of
variance explained by each of the PC dimensions. The following coding example (11)
demonstrates how to consult the pca object to create a scree plot.

fviz_eig(pca, addlabels = FALSE, ylim = ¢(0, 60),xlim=c(0.5,7.5),ncp=7, barfill="grey", (11)
barcolor="grey",geom="bar")+

scale_y_continuous(expand =c(0,0))+scale_x_discrete(expand =c(0,0))+
theme(axis.line.y=element_line(),axis.line.x=element_line(),panel.grid=element_blank())

601
501
404
30

204

Percentage of explained variances

1 2 3 4 5 6 7
Dimensions

Figure 7. Scree plot of the percentage of explained variance captured by each principal component.

The amount of cumulative explained variance over the first 3 dimensions is >80%. Typically, the first 3
dimensions are used at the cutoff value for reducing dimensionality. The remaining 4 dimensions each contain <7%
variance.

The Scree plot (Figure 7) shows the decreasing magnitude for the variance explained by the

7 PC vectors. A variety of methods have been used to identify the significant dimensions (Minka
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2001; Hoyle 2008) and here we used the simple rule to retain successive dimensions until the
amount of variance explained was = 80%. In this example, Dim1-3 explained 82% of the
variance.

Once the significant dimensions were identified they were used to select candidate
plasticity features driving the variance of each dimension. The 3 significant PC vectors can be
represented by the weighted contribution from each the 7 proteins that together make up the basis
vectors (Figure 8). Those were used to understand which proteins drove the variance in the data.
That information was stored as XY coordinates in the pca object and it was called with the
following coding example (12).

#ldentify the amplitudes of protein features relative to PCA 1 (12)
VarCoordDim1<-data.frame(pca$var$coord[,1])
setDT(VarCoordDim1, keep.rownames = TRUE)][]

#Plot the amplitudes of protein features relative to PCA 1 in a histogram
ggplot(data=VarCoordDim1,aes(rn,pca.var.coord...1.))+
geom_col(colour="black")+
scale_y_continuous(expand =c(0,0),name="Amplitude (Basis Vector 1)",lim=c(0,0.75),
breaks=c(0,0.25,0.5,0.75))+
scale_x_discrete(limits=VarCoordDim1$rn)+
theme(axis.line.y=element_line(),axis.line.x=element_line(),panel.grid=element_blank(),
axis.text.x = element_text(angle=45,hjust =1,size=12),axis.text.y =
element_text(angle=0,vjust=0.5,size=12),
axis.title.x=element_text(size=14,face="bold"), axis.title.y=element_texi(size=14,face="bold"),
panel.grid.major = element_blank(), panel.grid.minor = element_blank())
# Run the same code for PCA 2 and 3 to produce histograms of protein amplitude about the remaining 2
dimensions
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Amplitude (Basis Vector 2)
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Figure 8. The basis vectors for dimensions 1-3 showing the protein vector amplitudes.

The vectors were used to identify candidate plasticity features. For example, the basis vector for PCA 1 showed
that all proteins move in the same direction suggesting that this dimension reflects protein sums (top). The basis

vector for PCA2 showed that GluN2A and GABAaa1 contribute in opposite directions, suggesting that this
dimension reflects a balance between those proteins (middle). The basis vector for PCA3 reflected a balance between
GIuN2B and GluA?2 (bottom).

We used multiple steps to identify candidate plasticity features from each of the basis

vectors. Starting with PC1, we noticed that the weights for all the proteins were positive, so 3
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candidate features were made using the sum of all proteins, the sum of the glutamatergic
proteins, and the sum of the GABAergic proteins. Next PC2 and PC3 were inspected, these basis
vectors had both positive and negative weights suggesting that along these dimensions the
expression of some proteins increased while others decreased. This inspection revealed some
pairs of proteins (e.g., GluN2A:GluN2B) that are known to change in opposite directions with
different forms of visual experience. This step also identified novel pairings (e.g.,
GABAAa1:GluN2A) that were also included as candidate features. Continuing this approach, we
identified 9 candidate features from the 3 basis vectors, and it is important to note that all were
combinations of proteins rather than individual proteins. Thus, this approach to using PCA can
be described as an initial dimension reduction followed by expansion into candidate plasticity
features. Importantly, the expansion steps will identify both novel features and ones that have
been well studied thereby facilitating interpretation of the results within a biologically relevant

framework.
4.3.iv) Feature selection

The features were validated by determining the correlation between each of the 9 candidate
features and the 3 dimensions. This was done by calculating the 9 candidate features for all of
the samples using the protein expression data and correlating those with the eigenvalues for the 3
dimensions. Bonferroni correction was done to adjust the significance level for the multiple
correlations and features that were significantly correlated with a dimension became the plasticity
features used in subsequent stages of the workflow.

The validation of candidate features was done in R, by storing the new features in a matrix
NewFeatures, centering and scaling those data, then correlating the eigenvalues with the
NewFeatures matrix. The function corr.test from the psych package (Revelle 2011) was used for
that step. The strength of the significant correlations was visualized with a custom 2D matrix
created using the geom_tile function from the gplots package (Warnes et al. 2016).

The new features were centered, scaled and stored as a new data matrix:

NewFeatures <- scale(NewFeatures, center = TRUE, scale = TRUE) (13)
Next, the coordinates for all data points in PCA space were stored in another matrix by

consulting the pca object as follows:

PCA.scores<-pca$ind$coord (14)
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Finally, the correlations between the two matrices PCA.scores and NewFeatures were
determined and visualized using the following R coding example (15):

Corr.scores<-corr.test(PCA.scores[,1:3],NewFeatures,use="pairwise", (15)
method="pearson",adjust="none")

#produce Pearson’s R correlations for only the first 3 dimensions
Corr.scores$p[1:3,]

#Run a bonferroni correction on the correlation matrix: Corr.scores.bf<-corr.test(PCA.scores|,
1:3],NewFeatures,use="pairwise",method="pearson",adjust="bonferroni")
Corr.scores.Rval<-Corr.scores.bfr  #Pearson’s R values between PCs 1-3 & New features
Corr.scores.bfpval<-Corr.scores.bf$p #Bonferroni corrected p-values

#Before creating the following plot, consult the table of bonferroni corrected p-values (Corr.scores.bfpval),
and omit corresponding cells in the table of R values (Corr.scores.Rval) for which the p-value falls below
significance. The line in the code na.value="grey” will fill leave these cells empty.

ggplot(Corr.scores.Rval, aes(x = variable, y = Dimension)) +

geom_tile(data = Corr.scores.Rval, aes(fill = value,width=0.95, height=0.95))+

scale_fill_continuous(low="red",;high="darkgreen",limits=c(-1, 1),
breaks=c(-1,0,1),labels=c(-1,0,1),na.value="grey",name="Correlation")+

theme(panel.background = element_rect(fill = 'gray95'),

axis.text.x = element_text(angle=65,hjust=1),panel.grid.major = element_blank(), panel.grid.minor =

element_blank())+

scale_x_discrete(expand=c(0,0),name="Protein Indices",labels=index.ord

)+scale_y_discrete(expand=c(0,0),limits = rev(unique(sort(j$Dimension))))+coord_fixed(ratio=1)

Dimension
uole[alion

Protein Indices

Figure 9. Correlation between the plasticity features (columns) identified using the basis vectors for PCA
dimensions 1-3.

Coloured cells are significant, grey cells are non-significant. Bonferroni corrected correlations (green = positive,
red = negative).
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The plot of correlations between the 3 significant PCA dimensions and the candidate
features was used to validate the selection of features for input to the next stage of the analysis
workflow (tSNE and clustering). In the example above, all of the candidate features except a
measure of the E:I balance was significantly correlated with at least one of the dimensions.
Interestingly, none of the features were correlated with all 3 dimensions demonstrating that
multiple plasticity features are necessary to capture the variance in the data.

The whole collection of plasticity features was combined to form the plasticity phenotype
that became the input to the next step in the analysis workflow.

A final note: the new plasticity features can be analyzed using univariate statistics to
determine if there are significant differences among rearing conditions. That analysis is
particularly important when feature selection identifies combinations of proteins that are not
typically studied since they may provide new insights into the neurobiological mechanisms that
differentiate among groups reared with various forms of visual experience.

4.3.v) tSNE and clustering

This step used tSNE analysis to preserve both the global and local arrangement of the
plasticity features. Also, tSNE is a good way to visualize clusters because it artificially scales the
distance between data points with similar patterns of features.

In this example, the inputs to tSNE were the validated plasticity features (NewFeatures)
without the information that identified the source of the sample (e.g., cortical region, rearing
condition, or age).

The following coding example (16) demonstrates how to perform a tSNE analysis using the
tsne function from the #sne package (Donaldson and Donaldson 2010).

tsne <- Rtsne(NewFeatures, dims = 2, perplexity=25, verbose=TRUE, max_iter = 5000) (16)

## plotting the results without clustering

d_tsne_1 = as.data.frame(tsne$Y)

#append the condition information to the tsne coordinates
d_tsne_1 = data.frame(d_tsne_1,Labels)

plot_t<-ggplot(d_tsne_1, aes(x=V1, y=V2, color="black”)) +
geom_point(size=4) + guides(colour=guide_legend(override.aes=list(size=4))) +
xlab("tSNE2") + ylab("tSNE1") +
theme_light(base_size=20) +
theme(axis.text.x=element_blank(),
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axis.text.y=element_blank()) +
theme(panel.background = element_rect(fill="white", colour="lightgrey"
,Size=1 linetype="solid")) +
theme(legend.position = "bottom")
plot_t

tSNE Y

tSNE X

Figure 10. tSNE output when run on NewFeatures identified by PCA.

The dimensions for X and Y in tSNE have no units, but the distance between objects is scaled to position similar
samples nearest to one another.

The first step in the tSNE analysis reduced the plasticity features from each sample to tSNE
XY coordinates (Figure 10). Those coordinates were used as the input to K-means clustering
analysis to identify and then visualize clusters in the data set.

Both K-means and hierarchical clustering algorithms require the number of clusters £ as a
parameter. A good method for choosing the number of clusters is to measure the within groups
sum of squares (WSS) for a range of &, plot that information and then determine the inflection
point.

In the example data set there were 9 rearing conditions (e.g. normal, monocular deprivation
etc) so we chose a range for k of 2 to 15 clusters, which encompassed the number of conditions.

The following coding example (17) determined the WSS and plotted it for the & clusters:
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wss <- (nrow(d_tsne_1)-1)*sum(apply(d_tsne_1,2,var)) (17)
for (i in 2:15) wss[i] <- sum(kmeans(d_tsne_1,
centers=i)$withinss)
plot(1:15, wss, type="b", xlab="Number of Clusters",
ylab="Within groups sum of squares")
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Figure 11. Within group sum of squares for hierarchical clustering of tSNE coordinates in Figure 10.

Sum of squares decreases as cluster number (k) increases. Increasing k has little effect on sum of squares after a
certain threshold is met. In this plot it appears that 6 or 7 clusters represents that threshold point. To accurately
identify optimal cluster number using this “elbow method” we apply an exponential decay function to the curve and
identify the 37, the point where 85% of the change has occurred.

The optimal number of clusters was selected by fitting an exponential decay curve to the
WSS data the finding the number of clusters corresponding to point where the curve plateaued
(47) (k=6). This approach is called the “elbow method”, where 4t is the point of inflection, or
elbow, of the curve.

Next, K-means clustering for &=6 was done on the output from the tSNE analysis (Figure
12a). The clusters were assigned different colours to visualize the samples in each cluster. Some
clusters (green and yellow) were spatially separated on the tSNE plot, while others (e.g., orange
and blue) were adjacent. The following coding example (18) plots the clusters identified in the

tSNE representation of the data as different colors, but these colors can be manipulated to

represent other characteristics of the data (e.g. cortical area, treatment condition).

kmeans.clusters=kmeans(d_tsne 1[,-1],6) (18)
kmeans.clusters <- as.factor(kmeans.clusters$cluster)
geplot(d_tsne 1, aes(d_tsne 1$V1, d tsne 1$V2, color = kmeans.clusters)) + geom_point()
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a. The clusters were colour-coded to visualize the 6 clusters identified in the data. b. Samples were annotated for
cortical region (black circles=central, grey triangles=peripheral, white squares=monocular) and dashed lines were
drawn around the clusters identified in a. ¢. Samples were colour-coded according to the rearing condition, the

shapes were the same as in b.

The number of samples in each cluster ranged from 5 (magenta) to 38 samples (orange).

We annotated each sample based on the visual cortical region (central, peripheral, or monocular)

(Figure 12b) and rearing condition (Figure 12¢) to analyze cluster composition and determine if

the clustering reflected one of those parameters. For example, cluster 2 contained samples from
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only one rearing condition (reverse occlusion) and cluster 1 contained almost all of the normally
reared cases but it also had samples from other rearing conditions. Thus, this step identified
clusters and provided some evidence that the rearing condition was driving changes in the
plasticity phenotypes. The tSNE clustering, however, did not reveal which features from the
phenotypes were separating the samples into different clusters or grouping them into the same
cluster.

Annotating each sample by the cluster, visual cortical region, and rearing condition was an
essential first step for using the plasticity phenotypes to identify and explore subclusters in the
data. That process identified 13 subclusters in the example data set (Table 3).

Table 3. Subclusters identified from the tSNE plot

Subcluster Rearing Condition tSNE Cluster Region

C P M
Normal 1cpm [Normal 1 X X X
LTBVlcem |Long term BV recovery 1 X X X
MDIpm Monocular deprivation 1 X X
STBVIcpm [Short term BV recovery 1 X X X
RO2C,PM Reverse occlusion 2 X X X
STBV3cpm [Short term BV recovery 3 X X X
MD3cp Monocular deprivation 3 X X
BD3C,P.M Binocular deprivation 3 X X X
LTBV4pm Long term BV recovery 4 X X
LTBVS5pMm Long term BV recovery 5 X X
STBVS5p Short term BV recovery 5 X
LTBVé6p Long term BV recovery 6 X
BD6p Binocular deprivation 6 X

A final note: In this workflow, dimensionality reduction and feature selection were
performed before tSNE analysis and clustering. Although this is a common approach for
analyzing high-dimensional data in neuroscience it is important to remember that PCA preserves
the features with variance that is aligned with the orthogonal dimensions. Thus, features with

more subtle but important variance away from the PCA dimensions will not be included in
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subsequent clustering (Chang 1983). We will return to this issue in section 4.4 where we present
a second analysis workflow to handle data with more subtle differences in the features.

4.3.vi) Identifying and exploring subclusters

In this section, we describe how to analyze and visualize subclusters using the features that
comprise the plasticity phenotypes.

First, the features and tSNE results were combined in R by appending the object containing
the tSNE dimensions and clusters (d_tsne_1) to the plasticity features (NewFeatures). Now each
sample had both the clustering information from the tSNE analysis and the feature data from
PCA. Next, the data were organized into subsets according to the subclusters. For example, all

of the data points for Normal samples in cluster 1 were subset as follows:

Sub.Normal1<- subset(Feature, group=="Normal 1") (19)
mean.Norm1 <- mean(Sub.Normal1)

N.Norm1 <- length(Sub.Normal1)

# repeat for the remaining subclusters of data

Next, univariate analyses were done to compare plasticity features between subclusters.
Boxplots were made with the boxplot function in the vioplot package (Adler 2005) and bootstrap
tests were used to determine which subclusters were significantly different from the normal
subcluster (Supplemental Information).

The significant deviations from normal were colour-coded in the boxplot to facilitate
visualizing subclusters where a feature had above (red) or below (blue) normal expression. To
include the colour-coding of boxes a column with the information from the significance tests was
added to the subset data (e.g., Sub.Normal1). For example, clusters that were significantly greater
than mean.Norm1 were identified with the label ‘red’, clusters that were significantly less than
mean.Norm1 with the label ‘blue’, and those that were not significantly different than mean.Norm1
with the label ‘grey’. That updated collection of subset data were stored in an object called
Clusters.Subsetted, and the original cluster designation was stored as Subset.Names. The
following coding example (20) was used to create boxplots of the subsetted data for the feature

GABAA03:GABAaal.

boxplot(Clusters.Subsetted. GIuUN2A.GABAa1, names=Subset.Names) (20)
,col=c("grey",Bootstrap.Colour) ,ylim=limits ,las=2, pchMed=15, colMed="black", rectCol="white",
outline=FALSE)
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stripchart(Clusters.Subsetted ~ Cluster.ID, vertical = TRUE, data = data, method = "jitter", add = TRUE,
pch=20, col=rgb(0,0,0,0.5),0pacity=0.5,cex=0.75)
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Figure 13. Boxplot for the GABAA03:GABA 01 feature that identified subclusters with expression
different from normal.

The original 6 clusters were divided into 13 subclusters, annotated by the original conditions. Boxplots were
drawn around the mean expression on the GABAA03:GABAaal balance. Boxes were coloured relative to normal
(red for significantly above, and blue for significantly below). Scatterplots were drawn on top of each boxplot

showing the observations within each cluster.

The boxplots were useful for highlighting significantly different subclusters for individual
features. For example, the plot above identified 8 subclusters that were significantly greater than
normal (red). However, it is daunting trying to synthesize all of the significant differences for 9
features and 13 subclusters using just that approach. Instead, we calculated the pairwise
correlations between subclusters using the plasticity phenotypes, ordered the subclusters using
hierarchical clustering and visualized these in a 2D heatmap. The steps were the same as
explained in coding examples (2)-(6), except the input data for the plasticity phenotypes was

NewFeatures and the 13 subclusters identified in Clusters.Subsetted.
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Figure 14. Correlation matrix for plasticity phenotypes between the subclusters of the data.

Matrix of Pearson’s R correlations between the means across 8 plasticity features in each subcluster. Clusters
were reordered according to the surrounding dendrogram. The dendrogram positioned similar clusters close together,
and moved dissimilar samples to the periphery. Inset demonstrates counts across the range of Pearson’s correlations,
while the color gradient ranges from low positive correlations (blue) to high positive correlations (red).

The correlation matrix for the plasticity phenotypes showed the strength of similarity or
dissimilarity among the subclusters. Here, the surrounding dendrogram ordered subclusters for
some rearing conditions (e.g., LTBV) on the same branch as the Normal subcluster, while other
conditions (e.g., BD) were far from the Normal branch. This analysis revealed which subclusters
had similar plasticity phenotypes but did not clarify if that was based on the entire pattern of the
features in the phenotype or if a smaller number of features drove the clustering.

4.3.vii) Construct and visualize plasticity phenotypes to identify similar and
different features among subclusters

In the last step for this workflow we describe visualizing the plasticity phenotypes,

ordering them using the dendrogram from the hierarchical clustering, and comparing phenotypes

to identify differences among rearing conditions.
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A display was created to show each of the feature and the whole pattern of the plasticity
phenotype so that it was easy to compare the subclusters for similarities and differences visually
(Figure 15). The visualization had a series of colour-coded horizontal bands where each band
represented a feature, and together the 9 bands represented the average plasticity phenotype for a

subcluster.

Plasticity Features
zero protein - max protein sum
zero GlutR Wl max GlutR Sum
zero GABA,R Wl max GABA,R Sum

GABA,R Sum [ GlutR Sum
[ GABA a1 | 1 GluN2A
GluN2B |} GIluN2A
GABA,a1 B GABA,a3
" GluNzB | GluA2
1 Glun2a B GluA2
Colour Code E
for Feature Indices: -1 0 +1

Figure 15. Legend for the features comprised in the plasticity phenotype and the colour-code.

The top three bars (from protein amplitudes about PCA basis vector 1) represent protein sums and use greyscale
(white to black) for zero to the maximum protein sum. The next 6 bars represent the feature indices identified with
the basis vectors from PC2 and PC3 and use a colour-scale (red to yellow to green) for the shift from one protein to
the other.

The plasticity phenotypes were visualized in R, using the geom_tile function in the ggplot2
package (Wickham 2010). First, the feature mean was determined for each subcluster then the

limits of the colour scales were set by finding the maximum and minimum expressions for a
feature across all subclusters. Finally, the subcluster mean was converted to the corresponding
RGB score. The following coding example (21) was used to map the mean for each feature in the

Normal condition onto a color scale:

GIuN2A:GABAAa1.min<-min(subcluster.means) (21)
GIuN2A:GABAAa1.max<-max(subcluster.means)

GIluN2A:GABAAa1.range<-(abs(GIluN2A:GABAAa1.min)+GIluN2A:GABAAa1.max)/2
GluN2A:GABAAal.mid<- GIuN2A:GABAAa1.max-GluN2A:GABAAa1l.range

GluN2A:GABAAa1.col<-scale_colour_gradient2(low="green",mid="yellow",high="red",

midpoint=GluN2A:GABAAa1.mid,
breaks=c(GIuUN2A:GABAAa1.min,GIuN2A:GABAAa1.mid, GIuN2A:GABAAal.max),
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labels=c("Below Normal","Normal","Above Normal"),
limits=c(GIuN2A:GABAAa1.min,GluN2A:GABAAa1.max))

Mat.col.Norm<- Mat.col$map(Mat.mean.Norm)

That list of colour-codes for each subcluster was stored in a new matrix called Colour.Table.
The matrix will be consulted in the code below (22) to call the correct colour for each horizontal

bar in the plasticity phenotype.

Normaliplot<-ggplot() + (22)
scale_x_continuous(name="Normal1") +
scale_y_continuous(name=NULL) +
theme(axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.text.y=element_blank(),axis.ticks.y=e
lement_blank(),
panel.background = element_rect(fill = "white", colour = "white"))+
geom_rect(mapping=aes(xmin=x1, xmax=x2, ymin=y1, ymax=y2), color="white", alpha=0)+
geom_rect(data=d,xmin = 1, xmax = 9, ymin = 18, ymax = 19.75, color="black", fill =Colour.Table[3,3])
+geom_rect(data=d,xmin = 1, xmax = 9, ymin = 16, ymax = 17.75, color="black", fill)
Normaliplot

#The coordinates must refer to the cell containing colour information for the #desired feature in a
particular subset of data
#repeat the above code beginning at colour.table [,] to create as many features as desired.

Protein Sum -
GlutR Sum -
GABA,R sum [

GABA,R Sum - GlutR Sum
GABA a1 - GIuN2A
GIluN2B - GIuN2A
GABA, a1 - GABA a3
GIuN2B - GluA2

GIuN2A - GluA2

Cluster Name Normal
Cortical Region C,P,M

Figure 16. Example plasticity phenotype for the Normal subcluster.

The top three bars depict high levels for the protein sums, while the next 6 bars represent the balance between
the protein pairs for that feature using a green-to-red colour scale. The greenish bars indicate features that are biased
toward first protein (e.g., GABAaal versus GIluN2A), reddish bars are biased toward the second protein (e.g.,
GluN2A versus GluA2) and yellow bars reflect roughly equal expression of the two proteins (e.g., GluN2B versus
GIluN2A).
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The figure below (Figure 17) illustrates the power of this tool for visualizing the features
and patterns in the plasticity phenotypes that group or separate subclusters.

The subclusters in this example were ordered using the same hierarchical clustering
dendrogram as in Figure 14, and the average plasticity phenotype for a subcluster was displayed
at the end of its branch in the tree. The figure provides a strong visual impression of the
phenotypic similarity among subclusters located nearby in the tree (e.g., normal and LTBV) and
differences for subclusters that are further away (e.g., normal and BD). Thus, this tool supports
linking the output of high-dimensional analyses with neurobiologically meaningful insights. For
the example data set, the visualization revealed the patterns of neural proteins changes driven by

different forms of visual experience.

a. Plasticity Features
zero protein - max protein sum
zero GlutR Tl max GlutR Sum
zero GABA,R ] max GABA,R Sum
GABA,RSum [ GlutR Sum

Basis
Vector 1

GABA,al I T GluN2A e ———

Basis { GluN2B [l GluN2A

Veclor2 | gaBA,al [ ] GABAG3

Basis [ GuN2B [ Glua2
Vector3 | GluN2A [l GluA2

Colour Code - .
for Feature Indices: -1 0 +1
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Protein Sum - ]

aiutr sum I I

GABA,R Sum [
GABA,R Sum - GlutR Sum
GABA,a1 - GIuN2A
GIuN2B - GIuN2A
GABA,al - GABA,a3
GIuN2B - GIluA2

[
GIUN2A - GIUA2 [
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Figure 17. Example of the orderly progression of plasticity phenotypes across subclusters.

The subclusters are noted below the phenotypes, and are arranged according to the dendrogram
Finally, features in a subcluster that are significantly different from normal can be easily

visualized by color-coding each bar red for features that are above or blues for ones that are
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below normal (Figure 18). We performed a Bootstrap analysis comparing expression of each
feature to the Normal subcluster of data points and colored each bar with a mean expression
significantly greater than the normal subcluster red, and each bar with a mean expression

significantly less than the normal cluster blue. Features that did not significantly differ from

Normal subcluster were left empty. The result of that analysis is below.

a. Dendrogram for 5wk Normal &
Recovery Conditions (BV, RO, BD)

Significance Phenotype |I====== s
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Figure 18. Identifying features of the plasticity phenotypes in the subclusters that are different from
normal.

The subclusters are noted below the phenotypes, and are arranged according to the dendrogram. The features in
each subcluster phenotype are color-coded to indicate if the feature is significantly greater than (red) or less than
(blue) the Swk normal condition (left most phenotype).

Attaching significance to the color bars makes the visual inspection for cluster-defining
features even easier. For example, bootstrap analysis reveals that for the subcluster labelled RO
the top three factors were significantly greater than normal, while the bottom 4 factors were
significantly less. In figure 17 this was represented as a collection of grey bars stacked above
mostly green, but a quick inspection of the phenotype for RO in figure 18 reveals that the

significant decreases were in total protein expression (top 3 blue bars) and the significant

increases were in the plasticity indices (bottom 4 red bars). The most notable finding from this
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new presentation of the phenotypes was that the feature most likely to be not significantly
different from normal was the bottom most feature (GluN2A:GluA2 balance), which is formatted
as a series of white boxes across the bottom of 7 of the different subclusters.

4.4: Using sparse high-dimensional clustering to study human visual cortical
development: Clusters, features, and plasticity phenotypes

The goal of testing sparse high-dimensional clustering methods was to determine if they
reveal age-related clusters in the expression of proteins in human visual cortex that provide
meaningful insights into the neurobiological development of human cortex.

The second workflow describes the application of sparse high-dimensional clustering,
transformation and identification of features using PCA, and exploration of cluster composition
using plasticity phenotypes (Figure 19). This workflow moved away from using tSNE and
instead applies sparse high-dimensional clustering for analyzing the protein data. In the first
workflow (4.3), PCA was used to identify significant features in the data set, and those features
were used as the input for the clustering algorithm. In the second workflow (4.4), clusters were
first identified in a high-dimensional space, and then PCA was used to further explore significant
relationships between the protein features. Importantly, PCA can be used either before or after
clustering, provided that the features that are used as the input to the clustering algorithm are
significantly correlated with the original data set (as in 4.3.1v).

The data set used here was from a series of studies examining the development of synaptic
and nonsynaptic proteins in human visual cortex (Murphy et al. 2005; Pinto et al. 2010; Williams
et al. 2010; Pinto et al. 2015; Siu et al. 2015; 2017). The data set created a nxp matrix comprised
of =403 rows of observations and p=23 columns of protein variables (Tables 4 & 5). The data
were collected from the same tissue samples, across a series of different experiments, and each
experimental data set was stacked vertically creating an initial matrix of 9,269 cells and an initial
N= 1,831 data points. The empty cells created by stacking experimental data sets (7,438 empty
cells) were reduced by converting protein expression across the 23 protein variables to a sample
average for each of the 31 samples, creating a final matrix of 713 cells and a final N=651 data

points.
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Table 4. Observations (n)

Categories |[Specific Total
Age 2 days - 79 years 31
WB Runs 2-5 2-5
Table 5. Variables (p)
Categories |Specific Total
Proteins Gad65 Gad67, VGAT, GABAaal, GABAA02, GABAAa3,CB1, 23

Gephyrin, PSD95, Gephyrin from whole homogenate (Gephyrin. HOM),
PSD95 from whole homogenate (PSD95.HOM), Synapsin I,
Synaptophysin, GluA2, GIuN1 (NR1), GluN2A (NR2A), GluN2B
(NR2B), Classic-MBP, Golli-MBP, Integrinf33, GFAP, Ube3A, Drebrin
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a. Protein expression was collected across 23 proteins using immunoblotting (Nfinal=651). b. Developmental
trajectory of each protein visualized using scatterplots. ¢. We explored multiple high-dimensional clustering methods
to identify underlying patterns across 23 proteins. A tSNE representation of the data was used to visualize the results
of each clustering attempt (left), and boxplots of cluster median age were used to visualize developmental separation
of clusters (right). d. Cluster information was fed into the developmental trajectories to color clusters in scatterplots.
e-f. The weights attached to each protein after high-dimensional clustering were used to order the protein variables
and used to make a parallel coordinates plot of the average scaled protein expression for each cluster. g. Protein
motifs of the same scaled data in f were created as a simple visual inspection tool to identify differences across
clusters. h. Boxplots of clusters with significantly high or low expression relative to the full course of development.
i. Principal component analysis (PCA) was performed to identify significant dimensions. j. Biplots of protein
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vectors visualize variables with the greatest variance. k. Identify candidate features and transform the data using the
results of PCA and biplot analysis. I-m. Correlation matrix of new plasticity features and the surrounding
dendrogram (1) were used to order the presentation of neuroplasticity phenotypes (m).

4.4.i) Challenges identifying clusters in a data set with many features

Clustering of high-dimensional data is challenging because of sparsity in the data set, and
for that reason, it is common to use dimension reduction (e.g., PCA) as the first step to identify a
smaller number of features that are correlated among the points and drive variance in the data.
Then the subsequent clustering focuses on those features. That approach, however, breaks down
when the features that differentiate clusters are not orthogonal (Chang 1983). For example, in the
current data set, subtle developmental shifts were identified where some proteins are correlated
with certain features, while other proteins are correlated with other, non-orthogonal features.
These are important considerations when studying cortical development because even a small
change in protein expression can have a significant impact on neurobiological function and those
changes may be missed by some approaches to high dimensional data analysis.

To overcome the problem that dimension reduction may prune off too much information, or
miss more subtle changes in protein expression, we tested a set of sparse clustering algorithms
using our human V1 development protein data set as the input. Those algorithms were designed
to cluster high-dimensional data with strong sparsity, and here we show that a recent application
(RSKC- Kondo et al. 2016) based on the adaptive sparse clustering algorithm from Witten &
Tibshirani (2010) performed best for clustering the developmental changes in protein expression.
The Witten & Tibshirani algorithm was explicitly designed for sparse clustering of high-
dimensional data when the structure of the data set is either p = n or p > n. That is the structure
of the data set used here (p=23, n=31) and that is generally the case for genomic or proteomic
studies of human brain development where measurements are made for many genes or proteins
(p) from a smaller number of cases (n).

It is important to note that sparsity in the context of high-dimensional cluster analysis does
not mean empty cells in the data set but rather that for any pair of points in a high-dimensional
space there are probably a few dimensions that separate them. Standard clustering algorithms
like those used in section 4.3 work well for separating data points based on larger differences in

feature expression, which exist along orthogonal sets of dimensions. Information for identifying
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clusters, however, can come from more subtle differences in feature expression, which exist
along non-orthogonal sets of dimensions. Those features are less likely to be captured by
clustering algorithms suited for a low-dimensional space. Hence the need to use a clustering
algorithm that can adaptively search all sets of dimensions for both the local, non-orthogonal sets
of dimensions, as well as global, orthogonal sets of dimensions.

4.4.ii) Sparse high-dimensional clustering to identify communities in the data

Here we describe and compare four sparse high-dimensional clustering methods for
analyzing the development of human visual cortex. High-dimensional clustering is an active area
of statistics research (e.g., Lakshmi et al. 2017) with many new algorithms and approaches
published yearly but the more commonly used ones are reviewed in Parsons et al., 2004.

The 4 clustering methods that we tested were selected because they were developed to find
clusters in sparse high-dimensional data. The first two methods, CLIQUE (Agrawal et al. 1998)
and PROCLUS (Aggarwal et al. 1999), use projected clustering to discover dense regions, or
subspaces of correlated points and find clusters in the corresponding subspace. The CLIQUE
algorithm is a bottom-up approach moving from lower to higher dimensionality subspace, but it
does not strictly partition points into unique clusters so a data point may be assigned to more than
one cluster. CLIQUE is also prone to classifying points as outliers and excluding them from the
analysis. PROCLUS was developed to address the partitioning problem and uses a 3-step top-
down approach to projected clustering based on medoids. The steps involve initializing the
number of clusters (k) and the subspace search size (number of dimensions to consider), then
iteratively assigning medoids to find the best clusters for the local dimensions, and a final pass to
refine the clusters. PROCLUS has better accuracy than CLIQUE in partitioning points into
clusters but the a priori selection of cluster size is not easy and demands an iterative approach to
finding clusters. Furthermore, by restricting the subspace search size, some essential features
may be omitted from the analysis.

Both CLIQUE and PROCLUS were developed for large data sets, 2-3 orders of magnitude
larger than the data set used here and that higher information content can lessen the partitioning,

outlier, and feature omission problems. For our purposes, we also needed to test sparse
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clustering designed for smaller data sets where p = n or p > n, but that also met the criteria
introduced above:

I.  use as many features as possible to identify clusters

II.  group all of the samples into distinct clusters containing at least 3 samples

III. do not exclude points as outliers

The sparse hierarchical clustering method SPARCL was developed by Witten & Tibshirani
(2010), and clusters data points using an application of the lasso regression method to select local
subsets of features adaptively. Those subsets are applied by scaling the weight of each variable,
the proteins in our data set, to reflect the impact of each protein on the features and the
reweighted proteins are the input to K-means hierarchical clustering. In our application, all of the
reweighted proteins were part of the clustering but it is possible to drop variables from the
clustering component of this approach. The adaptive feature selection of SPARCL focuses on the
subset of proteins that underlie the differences among clusters and that process is similar to
removing noise from the data. Finally, SPARCL makes it easier to draw meaningful conclusions
about why data points are in a cluster because clustering is determined using the subset of
features responsible for differences among the data points.

The Witten & Tibshirani sparse clustering algorithm has many strengths for analyzing data
sets with p = n or p > n; however, it can form clusters containing just one observation (Witten and
Tibshirani 2010). A recent extension, Robust and Sparse K-means Clustering (RSKC), addresses
the issue of small clusters by assuming that those are caused by outlier data points. RSKC uses
the same clustering framework as SPARCL, except that it is ‘robust’ to outliers (Kondo et al.
2016). RSKC iteratively identifies clusters in the data, then identifies clusters with a small
number of data points (e.g., n=1) and flags these data points as potential outliers. The outliers are
temporarily removed from the analysis, and clustering proceeds as outlined above for SPARCL.
Once all clusters have been identified, the outliers are re-inserted in the high-dimensional space
and grouped with the nearest neighbour cluster. Thus, RSKC identifies meaningful clusters in the

data and includes all of the data points.
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Applications

Here we compare four high-dimensional clustering approaches (PROCLUS, CLIQUE,
SPARCL, RSKC) using a subset of the proteins in the human visual cortex develop data set.
Then describe the application of RSKC to the full set of proteins in the data set.

First, we tested the two density projection clustering methods that use either top-down
(PROCLUS) or bottom-up (CLIQUE) clustering methods with all of the observations (»=31) and
7 of the proteins from the human visual cortex development data set. The outputs were plotted in
2D using tSNE, and the data points were colour-coded according to the clusters identified by
each method. Finally, to determine if the clusters represented developmental changes in the data
set we plotted boxplots showing the median ages for each cluster.

PROCLUS: The PROCLUS clustering method was implemented in RStudio using the
ProClus function in the subspace package (Hassani et al. 2015). We explored clusters between
k=2-9 and the example code below is for k=2 clusters.

The data file was read into an object called my.data2 and the clustering function ProClus
was called. tSNE was run on my.data2 to visualize the data points in 2D and the points were
color-coded using their cluster identification determined from ProClus. The results were saved

in my.proclus.tSNE and that object was used to create the tSNE plots.

ProClus.clusters.k2 <- ProClus(my.data2,k=2) (23)
#identify the row ID for samples in each cluster (e.g. ProClus2[[1]]$objects identifies cluster 1 rowIDs)
rows.2.1<-ProClus.clusters.k2[[1]]$objects

rows.2.2<-ProClus.clusters.k2[[2]]$objects

#subset the same rows from the original data file
proclus2.1<-cbind(my.data2[c(rows.2.1),c(1:4)],"Cluster'=1)
proclus2.2<-cbind(my.data2[c(rows.2.2),c(1:4)],"Cluster'=2)

#create a new data.frame that contains the clusters
ProClus.2.df<- rbind(proclus2.1,proclus2.2)
ProClus.2.df$Cluster<-as.factor(ProClus.2.df$Cluster)

#Perform a tSNE analysis to create a 2D representation of the data
my.proclus.tSNE<-Rtsne(my.data2, dims = 2, perplexity=25, verbose=TRUE, max_iter = 5000)

#Plot the 2 Clusters and set each cluster to a different colour
colours.clus2<-c("#FF0000","#0000FF")

colours.clus2.all <- colours.clus2[as.numeric(ProClus.2.df$Cluster)]
cols2 <- c("1" = "#FF0000", "2" = "#0000FF")

#Visualize the clusters using the tSNE plot
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ggplot(my.proclus.tSNE, aes(V1, V2)) +
theme(axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.text.y=element_blank(),axis.ticks.y=e
lement_blank(),
panel.background = element_rect(fill = NA, colour = "white"),panel.border = element_blank(),
axis.line = element_line(),
legend.direction="vertical",legend.position = c(0.1, 0.8),legend.background = element_rect(fill = NA,
colour = NA), legend.title.align=0.5)+
labs(x="V1",y="V2")+
geom_point(data=proclus2.1,colour="#FF0000",size=8,aes(V1,V2))+
geom_point(data=proclus2.2,colour="#0000FF",size=7,aes(V1,V2))+
geom_point(size=1,shape=20,colour="black")
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Figure 20. Top-down, bottom-up and sparse subspace clustering.

A-B. Top-down PROCLUS subspace method across range of cluster numbers (2,4,6,8). The clusters are
visualized in tSNE representations of the data by color-coding each data point with its cluster identity (Ai-iv) and in
histograms showing the median age of the samples in each cluster (Bi-iv). C-D. Bottom-up Clique subspace
clustering method for a range of ‘intervals’. Different clusters are visualized as coloured dots in a tSNE
representation of the data (Ci-iv) and as histograms depicting the mean age of the samples (Di-iv). E-F. Sparse
clustering after varying the inputted k cluster number (2,4,6,8). Different clusters are visualized as coloured dots in a
tSNE representation of the data (Ei-iv) and as histograms depicting the mean age of the samples (Fi-iv). The colours
in scatterplots and histograms represent the cluster designation for all plots.

In this example, PROCLUS identified clusters but some observations (small grey dots)
remained without a cluster designation and were interpreted as outliers (Figure 20A). The
outliers remained even after stepping through a range of cluster numbers (k=2-8) and some of the
clusters had only one or two data points (Figure 20Ai-ii1). Furthermore, there was only a weak
progression in the median age of the clusters (Figure 20Bi-iii). Thus, the iterative top-down
feature identification and cluster border adjustments of PROCLUS performed poorly for
analyzing the human visual cortex development data set.

CLIQUE: Next, the bottom-up clustering method CLIQUE was tested to determine how
well this iterative approach to building clusters performed with the developmental data.

The CLIQUE function from the subspace package (Hassani et al. 2015) was used to test
clustering with the same data set tested with PROCLUS (my.data2). CLIQUE requires an input
value for the interval setting (x1) because the intervals divide each dimension into equal width
bins that are searched for dense regions of data points. Here we tested a range of intervals
(xi=2-8) that produced 4-9 clusters.

The coding example below (24) used xi=2 as the input interval value and that produced 6

clusters that were visualized in a tSNE plot using my.clique.tSNE object (Figure 20 C&D).
Clique.intervals2 <- CLIQUE(my.data2,xi=2,tau=0.7) (24)

#identify the rows in the data for each cluster
rows.2.1<-Clique.intervals2[[1]]$objects
rows.2.2<-Clique.intervals2[[2]]$objects
rows.2.3<-Clique.intervals2[[3]]$objects
rows.2.4<-Clique.intervals2[[4]]$objects
rows.2.5<-Clique.intervals2[[5]]$objects
rows.2.6<-Clique.intervals2[[6]]$objects

#bind the cluster identity to my.data2
Clique2.1<-cbind(my.data2[c(rows.2.1),c(1:4)],"Cluster'=1) Clique2.2<-cbind(my.data2[c(rows.
2.2),c(1:4)],"Cluster"=2)

Clique2.3<-cbind(my.data2[c(rows.2.3),c(1:4)],"Cluster"=3)
Clique2.4<-cbind(my.data2[c(rows.2.4),c(1:4)],"Cluster'=4)
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Clique2.5<-cbind(my.data2[c(rows.2.5),c(1:4)],"Cluster"=5)
Clique2.6<-cbind(my.data2[c(rows.2.6),c(1:4)],"Cluster"=6)

#Create a new data frame that contains the cluster information, and save the clusters as factor
Clique.2.df<- rbind(Clique2.1, Clique2.2, Clique2.3, Clique2.4, Clique2.5, Clique2.6)
Clique.2.df$Cluster<-as.factor(Clique.2.df$Cluster)

#Perform a tSNE analysis to create a 2D representation of the data
my.clique.tSNE<-Rtsne(my.data2, dims = 2, perplexity=25, verbose=TRUE, max_iter = 5000)

#Visualize the clusters using the tSNE information

colours.clus2<-c("#FF0000","#0000FF", "#00FF00","#A020F0Q", "#FFA500", "#FFFF0Q")
colours.clus2.all <- colours.clus2[as.numeric(Clique.2.df$Cluster)]

cols2 <- c("1" = "#FF0000Q", "2" = "#0000FF", "3" = "#00FF00", "4" = "#A020F0","5" = "#FFA500", "6" =
"#FFFFO0")

ggplot(my.clique.tSNE, aes(V1, V2)) +
theme(axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.text.y=element_blank(),axis.ticks.y=e
lement_blank(), panel.background = element_rect(fill = NA, colour = "white"),panel.border =
element_blank(), axis.line = element_line(), legend.direction="vertical",legend.position = ¢(0.1,
0.8),legend.background = element_rect(fill = NA, colour = NA), legend.title.align=0.5)+
labs(x="V1",y="V2")+

geom_point(data=Clique2.1,colour="#FF0000",size=8,aes(V1,V2))+

geom_point(data=Clique2.2,colour="#0000FF",size=7,aes(V1,V2))+

geom_point(data=Clique2.3,colour="#00FF00",size=6,aes(V1,V2))+

geom_point(data=Clique2.4,colour="#A020F0",size=5,aes(V1,V2))+

geom_point(data=Clique2.5,colour="#FFA500",size=4,aes(V1,V2))+

geom_point(data=Clique2.6,colour="#FFFF00",size=3,aes(V1,V2))+
(

geom_point(size=1,shape=20,colour="black")

CLIQUE allows data points to be in more than one cluster and to visualize the multi-cluster
identities we plotted the data points using concentric color-coded rings. CLIQUE placed all of
the data in the developmental data set into multiple overlapping clusters for all of the interval
settings (xi=2-8, Figure 20C). That poor partitioning of points resulted in no differences in the
median cluster age (Figure 20D). Thus the iterative bottom-up clustering of CLIQUE performed
poorly for clustering the developmental data set and did not reveal age-related clustering.

Comparing the top-down PROCLUS and bottom-up CLIQUE methods showed that neither
approach was appropriate for analyzing the human visual cortex developmental data set.
PROCLUS performed somewhat better because some of the parameters resulted in clusters with
a progression in the median cluster age. That better clustering may have been because
PROCLUS used a subset of the proteins for each iteration; however, the number of data points

treated as outliers was unacceptably high.
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SPARCL: We tested a third algorithm, sparse K-means clustering SPACRL (Witten and
Tibshirani 2010) that adaptively finds subsets of variables capturing the different dimensions and
includes all samples in the clusters. SPARCL searches across multiple dimensions in the data and
adjusts the weight of each variable based on their contribution to the clustering. The term ‘sparse’
here refers to the selection of different subsets of proteins to define each cluster, but all samples
are assigned to a cluster.

To implement sparse K-means clustering, we used the Kmeans.sparsecluster function in the
sparcl package (Witten and Tibshirani 2013). We explored a range of & clusters between k=2-9.
The sparcl package also includes a function to help determine other input variables such as the
boundaries for reweighting the variables (wbounds) to produce optimal clustering.

This coding example (25) identifies the optimal wbhounds setting for k=2 clusters:

sparcl2.perm<- KMeansSparseCluster.permute(my.data2, K=2, nperms = 50, (25)
wbounds = NULL, silent = FALSE, nvals = 10, centers=NULL)sparcl2.w<-sparcl2.perm$bestw

The coding example below calculates sparse clustering for £&=2 clusters with the wbounds

found above:

sparcl2<-KMeansSparseCluster(my.data2, K=2, wbounds = sparcl2.w, (26)
nstart = 20, silent =FALSE, maxiter=50, centers=NULL)

#Store the results of the clustering in a dataframe
sparcl2.clust<-sparcl2[[1]]$Cs
sparcl2.clust<-as.data.frame(sparcl2.clust)

#Store the rownames as a column for value lookup
setDT(sparcl2.clust, keep.rownames = TRUE)[]
colnames(sparcl2.clust)[1] <- "ldentifier"
colnames(sparcl2.clust)[2] <- "Cluster 2"
sparcl2.clust[,2] <- lapply(sparcl2.clust[,2],as.factor)

#Perform a tSNE analysis to create a 2D representation of the data
my.sparcl.tSNE<-Rtsne(my.data2, dims = 2, perplexity=25, verbose=TRUE, max_iter = 5000)

#Merge the cluster information with the tSNE data frame for visualizing clusters
full.data<-merge(my.sparcl.tSNE[], sparcl2.clust, by="Identifier")

colours.clus2<-c("red","blue")
colours.clus2<-c("#FF0000","#0000FF")
colours.clus2.all <- colours.clus2[as.numeric(full.data$ Cluster 2')]

ggplot(full.data, aes(V1, V2)) +

theme(axis.text.x=element_blank(), axis.ticks.x=element_blank(),
axis.text.y=element_blank(),axis.ticks.y=element_blank(),
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panel.background = element_rect(fill = NA, colour = "white"),panel.border = element_blank(),
axis.line = element_line(),
legend.direction="vertical",legend.position = c(0.1, 0.8),
legend.background = element_rect(fill = NA, colour = NA),legend.title.align=0.5)+
scale_color_manual(name="Cluster",values=c(colours.clus2.all),labels=c("1","2"))+ labs(x="V1",y="V2")
+geom_point(size=4,shape=21,colour="black")+
geom_point(size=3.5,aes(colour = "Cluster 27))

RSKC: The clusters found with SPARCL showed good partitioning of the data, and with
4-8 clusters, there was a progression of the median cluster age (Figure 20 E, F). However, some
clusters had a small number of data points (e.g. n=1). To address that problem we turned to a
modified version of the SPARCL algorithm called Robust and Sparse K-means clustering
(RSKC) (Kondo et al. 2016). The RSKC algorithm was designed to be robust to the influence of
outliers that can drive other algorithms to create clusters of n=1. RSKC operates by iteratively
omitting outliers from cluster analysis, assigning all remaining samples to clusters, and then
reinserting outliers to the analysis by grouping them into the nearest-neighbouring cluster.

We used information from the SPARCL analysis to set the number of clusters to k=6 for
testing the RSKC method. The RSKC function in the RSKC package (Kondo et al. 2016) was

implemented for this analysis and the code below was used to analyze my.data2.

sparcl6.robustC<- RSKC(my.data2, 6, alpha=0.1, L1 = 500, nstart = 500, (27)
silent=FALSE, scaling = TRUE, correlation = FALSE)

#Save the identified clusters for mapping on the tSNE representation as before
robust6C<-sparcl6.robustC$labels

robust6C<- as.factor(robust6C)

sparcl6.robustC$oW

avg.data<-cbind(my.data2[], robust6C)

The test of RSKC on the subset of data (p=7) gave the best clustering so RSKC was rerun
using the full set of 23 proteins. To visualize the 6 clusters from RSKC we multiplied the protein
values by the adjusted protein weights from the RSKC clustering algorithm (Figure 22) and used
those data as the input to a 2D tSNE plot. The samples were color-coded by the cluster ID to
visualize the organization of the clusters (Figure 21A). Next, we ordered the clusters by age
from youngest to oldest and plotted those results as a boxplot showing the progression of median

cluster age and overlapping ages between the clusters (Figure 21B).
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RSKC used all of the data, partitioned all of the samples into a cluster, and none of the
clusters had fewer than 3 samples (Figure 21). Thus, RSKC clustering met the criteria we set for
selecting a good approach to analyze the visual cortex development data set. Importantly, we
analyzed the age progression of the clusters by comparing the observed pattern with a Monte
Carlo simulation that randomly assigned the samples into one of the 6 clusters. The age of those
randomly assigned clusters showed no progression and they were significantly different from the
average age of the observed clusters, making it unlikely that the observed progression in median

cluster age (Figure 21B) occurred by chance
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Figure 21. Robust and sparse k-means clustering (RSKC) applied to 23 proteins from the human data set.

A. tSNE plot of the scaled protein data. Sample averages are colored according to cluster results. B.. Boxplots
of cluster age were ordered from youngest (red) to oldest (grey). In both A and B, sample ages were reduced to group
averages to reduce crowding

In section 4.4.1i1 we explain how to explore the RSKC clusters to identify neurobiological
features that changed across development.

It is important to note that the WSS metric used in the first workflow to assess the number
and quality of the clusters cannot be used with the sparse clustering methods. The lack of a
cluster quality metric is because all the data are used with the 4 sparse high-dimensional

clustering algorithms, so the number and quality of clusters vary depending on the number of

dimensions that are considered. As a result, there is no suitable metric to assess the quality of
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clusters in high-dimensions and the different sparse clustering methods must be compared by
adjusting the input variables iteratively (Proclus=k, CLIQUE=xi, SPARCL=k, RSKC=k).

4.4.iii) Exploring cluster content

Cluster content was explored with two methods. First, information from the RSKC
clustering was used to color-code the samples by their cluster ID and the developmental
trajectory was plotted for each protein (Figure 19b,d). Next, the proteins were ordered by their
adjusted weights from the RSKC clustering (Figure 22), and the normalized expression of each
protein was plotted for the six clusters (Figure 23 & 24).

The second method to study cluster content (Figure 19 i-k) started with identifying features
using PCA as described in section 4.3. Then hierarchical clustering was used to order the
features and finally, plasticity phenotypes were constructed for each cluster to visualize the
neuroplasticity features that change during development of human visual cortex.

Together these approaches to exploring the cluster content provide an understanding of
cortical development at the level of individual proteins and higher-level combinations of proteins
that define features in the plasticity phenotype.

The following code consults the RSKC object sparcl6.robustC to retrieve the weight for

each protein and then graphs the proteins in descending order of the weights.

#ldentify the order of RSKC weights (28)
RSKCvariables<-sparcl6.robustC$weights
RSKCvariables.order<-sort(RSKCvariables,decreasing=TRUE)
RSKCvariables.vector<-order(-RSKCvariables)

#Save the order of RSKC weights as a dataframe
RSKCvariables.order<-data.frame(keyName=names(RSKCvariables.order), value=RSKCvariables.order,
row.names=NULL)

#Plot the weights as a histogram
ggplot(data=RSKCvariables.order,aes(keyName,value))+
geom_col(colour="black")+
scale_y_continuous(expand =c(0,0),name="Adjusted variable weights (from RSKC)",lim=c(0,0.3))+
scale_x_discrete(limits=RSKCvariables.order[,1])+
theme(axis.line.y=element_line(),axis.line.x=element_line(),panel.grid=element_blank(),
axis.text.x = element_text(angle=45,hjust =1,size=12),axis.text.y =
element_text(angle=0,vjust=0.5,size=12),
axis.title.x=element_text(size=14,face="bold"), axis.title.y=element_texi(size=14,face="bold"),
panel.grid.major = element_blank(), panel.grid.minor = element_blank())

137



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

o
N

Adjusted variable weights (from RSKC)
o

o
o

Figure 22. Adjusted weights for the proteins from RSKC.
The proteins are ordered using the adjusted weights from RSKC.

Visualizing the RSKC adjusted weights for the 23 proteins showed an almost 3-fold range
in the weighting of the proteins with Ube3 A having the maximum and GAD65 the minimum
weight (Figure 22). That ordering of the proteins was used along with 2 visualizations of protein
expression to explore the influence of different proteins in the clusters. First, we created a
parallel coordinate plot for the 6 clusters and 23 proteins that scaled mean protein expression

relative to the maximum and minimum cluster average using the ggparcoord function in ggplot2
package (Wickham 2010).

ggparcoord(Protein.means,columns=2:24,groupColumn = 1, scale="uniminmax" (29)
,missing="min10",order=RSKCvariables.order,scaleSummary = "mean",
showPoints=FALSE#,alphalLines = 0.25
,mapping=aes(color=as.factor(Group.1)))+

geom_hline(yintercept = 0.5,linetype="dashed",alpha=0.25) +

geom_line(aes(group=factor(Group.1)),size=2) +#somehow works

theme(axis.text.x = element_text(angle = 45,hjust=1),panel.grid.major = element_blank(),
panel.grid.minor = element_blank())+

scale_y_continuous(name="Protein Expression", breaks=c(0,1),labels = c¢("Min","Max"))+

scale_colour_manual(name = "Cluster",values = ordered6.cols,
breaks=cluster6.order,labels=c("A","B","C","D","E","F"))
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Cluster

- A

Protein Expression

Figure 23. Parallel coordinates of the protein expression in each cluster.

The expression is scaled to the average maximum and minimum expression across all 6 clusters. The colour of
the lines is the same conventions for cluster identity as in Figure 21. Proteins were ordered from largest to smallest
RSKC weights.

The parallel coordinates plot in Figure 23 showed that the 6 clusters had unique patterns of
peaks and valleys in protein expression, and most of the protein peaks were claimed by only one
cluster. For example, Cluster D had peak expression for the first 6 proteins (Ube3A, PSD95,
Synapsin I, Gephyrin, PSD9SHOM and Synaptophysin), then cluster F peaked for Drebrin,
cluster B for CBI1, cluster A for VGAT and so on. Interestingly, the 4 proteins that had peaks
from multiple clusters included the 3 GABAAR subunits and Integrinf33.

The information from the parallel coordinates graph can be used to construct a list of
protein peaks and valleys for each cluster where those patterns reflect the protein motif for each
cluster. Here we visualized the protein motifs for the 6 clusters using the geom _tile function in
the gplots package. The coding for the motif visualization was similar to the method outlined in
coding examples (21) and (22) except here it was constructed using the average protein

expression.
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Figure 24. Protein expression motifs for the 6 clusters.

The average protein expression across clusters was scaled from the minimum (blue) to the maximum (yellow).
The proteins were ordered according to their RSKC adjusted weights.

Exploring the cluster content with the protein motifs helped to differentiate the groups of
clusters that shared protein peaks. For example, the two youngest clusters A and B shared the
GABAAaa2 peak, but the older clusters D, E, and F shared the GABAaal peak. The motifs
visualization facilitated the comparison of protein expression within are across clusters since all
of the 138 protein averages (6 clusters X 23 proteins) were represented in one figure.

Next, we quantified protein expression in each cluster, plotted those in boxplots and used a

bootstrap analysis to determine clusters that had expression significantly above (red boxes) or
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below (blue boxes) the median protein expression level. The boxplots for each protein were

generated using the geom_boxplot function in the ggplot2 package (Wickham 2010).

ggplot(Protein.means, aes(Protein.means,value,fill=robust6C))+ (30)
geom_boxplot(outlier.colour = NA,aes(group = robust6C))+
geom_jitter(shape=16, position=position_jitter(0.2),alpha=0.5)+
scale_fil_manual(name="Cluster Order",values=ordered6.cols,labels=c("A","B","C","D","E","F"))+
geom_hline(yintercept = 0,linetype="dashed",alpha=0.25) +
facet_wrap(~variable,scales = "free_y")+
labs(list(x = paste("Age (Years)"), y = paste("Protein Expression"))) +
theme_bw()+
theme(panel.background = element_rect(fill = 'gray95'), axis.text.x = element_blank(),panel.grid.major =
element_blank(), panel.grid.minor = element_blank())
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Figure 25. Protein expression per cluster.

Each boxplot represents a different cluster of data points, and the dashed line overlaps balance (0) between each
protein. Blue boxes represent clusters with median expression below the lowest 25% of the data, red boxes represent
clusters with median expression above the upper 75% of the data, and grey represent those with median expression
within the middle 50% of the data.

Using the protein motifs to visualize protein expression by cluster (Figure 24) and the
color-coded boxplots to quantify protein expression (Figure 25) helped with efficiently exploring
significant patterns in the clusters. That approach, however, did not readily identify
combinations of proteins that represent higher-dimensional features in the data set. To explore if
high-dimensional features identify age-related changes in the clusters we returned to the use of
PCA.

4.4.iv) Candidate high-dimensional feature selection

To identify candidate high-dimensional features in the clusters we applied PCA to the
human visual cortex developmental protein data set. The PCA found the significant dimensions

and we used those to explore the proteins contributing to those dimensions. Also, we compared
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the proteins correlated with PCA dimensions to their adjusted weight from RSKC to uncover the
hidden features that supported better clustering with RSKC.

The first step repeats the PCA described for the coding examples (8)-(11) in section 4.3.1iii.
We used the PCA function from the Factominer package to analyze and display the percentage of
variance explained by each of the 23 dimensions (Figure 26). For this data set, the first 3
dimensions captured >60% of the variance which is often used as a cutoff for identifying the

important dimensions.

304

204

Percentage of explained variances

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Dimensions

Figure 26. Scree plot of the percentage of explained variance captured by each principal component.

The variance captured by the each of the first 3 dimensions is large (>10%), while subsequent dimensions
gradually becomes less. The cumulative variance of the first 3 dimensions is 62%. Typically, a cumulative variance
> 60% is an acceptable cutoff for identifying the important dimensions in PCA.

To interpret the representation of each protein on the PC dimensions we calculated pairwise
correlations between the vector for each protein and the vector for each of the PC dimensions
(Pearson’s correlation)(Figure 27A). Next, we determined the quality of representation for each

protein on the dimension (cos?)(Figure 27B). The R code to calculate and plot those metrics is

found in the FactoMineR package, and can be called by consulting the pca object:

var <- get_pca_var(pca) (31)
corrplot(var$cor, is.corr=FALSE, cl.lim=c(-1,1)) #for Pearson’s R correlations
corrplot(var$cos?2, is.corr=FALSE,cl.lim=c(0,1)) #for cos2

The figures showing the correlations and cos? for each protein with the 23 dimensions used
the size and saturation of a circle to represent the strength of the relationship, and the color of the

circle indicated the direction for the correlations (Figure 27A, 27B). Inspection of the plots
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showed that most of the proteins contributed to the first 3 dimensions but also identified a few
proteins that had their most substantial contribution to a higher order dimension. This example
helps to illustrate where PCA might lead to dropping variables from subsequent cluster analysis.
It is important to note that the workflow described in this section ran PCA and sparse high-
dimensional clustering in parallel with each analysis using the full protein data set so that the

results from the two approaches could be compared to unpack the higher order features in the

data set.
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Figure 27. The correlation (A) and cos? (B) matrix showing the relationship between each protein and the
23 principal component dimensions.

(A) The circles in each matrix represent the strength (size and saturation) and direction (colour) of the
correlation between proteins and dimensions. (B) The circles represent the goodness-of-fit, cos? for the protein on
PC dimensions. Most of the proteins have the strongest correlation and best fit with at least one of the first 3
dimensions (Dim.1, Dim.2, Dim.3).

In this example, the first 3 dimensions were chosen because they captured >60% of the
variance in the data (Figure 26), and most of the strong cos? values and Pearson’s R correlations
(Figure 27). The quality of the representation for each protein on the first 3 dimensions was
analyzed by summing up the cos? values and plotting that information as a histogram ranking the
protein from lowest to highest cos? value (Figure 28). The following code was used to visualize

the sum of cos? for the first 3 dimensions:

fviz_cos2(pca, choice = "var", axes = 1:3, color="grey", fill="grey",sort.val="asc"+ (32)
scale_y_continuous(expand =c(0,0), limits=c(0,1))+

geom_hline(yintercept = 0.5,linetype="dashed",alpha=0.25) +

theme(axis.line.y=element_line(), axis.line.x=element_line(), panel.grid=element_blank())
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Figure 28. Sum of cos? across the first 3 dimensions.

Across all 23 dimensions, sum of cos? for each protein is 1. Dashed line represents cos? =0.5 cutoff, used for
feature selection. 16 proteins fall above that cutoff and 7 fall below. The 7 that fall below can be removed from
analysis (feature selection).

The cos? can be plotted for individual dimensions. The example code below (33) uses the

parameter axes to select the cos? data for dimension 1 (Figure 29).

fviz_cos2(pca, choice = "var", axes = 1, color="grey", fill="grey",sort.val="asc"+ (33)
scale_y_continuous(expand =c(0,0), limits=c(0,1))+

geom_hline(yintercept = 0.5, linetype="dashed",alpha=0.25) +

theme(axis.line.y=element_line(), axis.line.x=element_line(), panel.grid=element_blank())
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Figure 29. Sum of cos? across dimension 1.

The sum of cos? for each protein in Dimension 1. Dashed line represents cos2 =0.5 cutoff, used for feature
selection.

The cos? value (e.g. 0.5) can be used as a cutoff to select a subset of proteins for further
analysis but here were used the cos? ranking (high to low) from the first 3 PCs (Figure 28) to
compare with the ranking of each protein from the RSKC reweighting (Figure 22). This step was
used to identify proteins that RSKC adaptively increased or decreased the weighting (Figure 28)
and showed that 5 proteins were increased (Synapsin I, Gephyrin.hom, Drebrin, Ube3A,
Synaptophysin) while 4 proteins were decreased by RSKC (Golli-MBP, GFAP, Classic-MBP,
GluN2A) (Figure 30). Those differential rankings provided some insight into the proteins that
were important for the RSKC clustering but less influential for the PCA. It also illustrated the

need for using multiple methods when studying high-dimensional cluster content.
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Figure 30. Ranking of proteins using RSKC reweighted values relative to cos2 representation.

Positive values on the y-axis indicate a higher ranking using the RSKC reweighted values than with cos?2
representation, and therefore have greater influence on clusters. Conversely, negative values indicate proteins that

were ranked higher by cos? representation than after RSKC reweighting.

Biplots were also used as another approach to visualize the contribution of different

proteins to the PC dimensions. The example biplot (Figure 31) showed the vectors for select

proteins (cos2>0.5) along dimensions 1 and 2. We used the fviz_pca_biplot function from the

FactoMineR package to superimpose the protein vectors in PCA space.

fviz_pca_biplot(invisible="ind",

pca, geom.ind = "point",axes = c(1,2),

labelsize = 5, col.ind = "black",

pointshape = 21, pointsize = 3, addEllipses = FALSE,

col.var = variable.class, gradient.cols = cm.colors, repel=TRUE,
select.var=list(cos2=0.5), arrowsize=0.75,

legend.title = list(fill = expression(paste("Cluster \n Order”)),
color = "Feature"),title = "PCA - Biplot Dimensions 1 & 2")+
geom_label_repel(show.legend = FALSE, label.padding = 0.75,
point.padding=0.75, max.iter=5000, force=1000, nudge_x=50) +
theme(panel.background = element_rect(fill = 'gray95'),
legend.position = ¢(0.9, 0.82),
legend.box="horizontal",panel.grid=element_blank())+
scale_x_continuous(limits=c(-5,7.5),breaks=waiver())+
scale_y_continuous(limits=c(-5,5),breaks=waiver())
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Figure 31. Biplot shows the protein vectors along dimension 1 (horizontal axis) and dimension 2 (vertical
axis).

Surrounding histograms depict cos? values for the proteins along dimension 1 (top) and dimension 2 (left).
Proteins with a summed cos? above 0.5 (dashed line) across both dimensions are shown. Vector directions marked by
arrowheads point in the direction of high protein expression, while low protein expression extends in the opposite
direction through the point of origin (not shown). The length of the protein vectors indicates the variance of the
protein along the dimension and the angle of the vector indicates the quality of the representation on a dimension.
Parallel vectors indicate proteins with similar expression while perpendicular vectors have no relation.

The pair of PC dimensions examined in a biplot can be changed using the values in ‘axes =
c(1,2)’ parameter.

The length and angle of the vectors in Figure 31 was informative for identifying the
proteins that contribute to each of the PC dimensions. Groups of proteins with similar vectors
were correlated while orthogonal vectors indicate little correlation between those proteins. That

information was used to guide the selection of proteins for candidate feature.
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We also plotted the individual samples onto the biplot by removing the line of code
‘invisible="ind"’. The samples were color-coded by their RSKC cluster ID to visualize those
clusters in PCA space (Figure 32). That biplot helped identify the relationship between the 6
clusters PC dimensions 1 and 2. For example, clusters C and D differed along dimension 1 while

clusters A and F differed along dimension 2.
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Figure 32. Biplots demonstrate the relationship between proteins and samples.

Biplot of dimension 1 and 2 that shows the individual samples (dots) colour-coded according to the six clusters
(A-F) they are grouped in. The axes conventions are the same as in figure 31.

In the next section we use the information gleaned from the cos?, differential RSKC-cos?
rankings and biplots about proteins that contribute to high-dimensional features in the data set to
help select plasticity features.

4.4.v) Converting protein expression into candidate plasticity features

Here we describe how the basis vectors from PCA and information from the previous
section were used to select combinations of proteins for candidate plasticity features. The steps
for using the basis vectors to identify candidate features follow those presented in section 4.3.iv

but we also included information from the differential RSKC-cos? rankings to ensure that
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proteins reweighted by RSKC were appropriately considered for candidate features. Once
candidate features were identified, they were validated by correlation with the first 3 PC
dimensions.

First, the basis vectors were plotted to show the amplitude of each protein about the PC
dimension (example for PC2, Figure 33). The code below plots the basis vector for the second

PC:

ggplot(data=pca$var$coord[,2], aes(rn, pca.var.coord...2.))+ geom_col(colour="black"+ (35)
scale_y_continuous(expand=c(0,0),name="Amplitude(BasisVector2)" lim=c(-1,1))+
scale_x_discrete(limits=VarCoordDim1$rn)+
theme(axis.