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Lay Abstract 

Impaired visual experience early in life can cause lasting visual deficits in animals and 

humans. Even after correcting ocular impairment, poor vision often remains, which suggests 

early experience instills lifelong changes in the area of the brain that processes vision, called the 

visual cortex. Changes that take place in visual cortex affect the function of cortical cells. Most 

of these changes are executed by proteins that sit at the junction between cells. By inflicting 

visual impairments in young animals, and examining changes in protein expression in visual 

cortex cells, we can relate protein expression to experience-dependent changes. I examined 

expression of proteins in visually impaired kittens to investigate why some treatments might be 

more effective than others. I also examined protein levels in human brains to investigate why 

treatment during certain periods of development produce suboptimal recovery. 
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Abstract 

When the visual system is confronted with adverse early-life experiences, maladaptive 

plasticity permits development of poor vision in a disorder called amblyopia. Patch therapy is the 

common treatment for amblyopia, by which occluding the good eye manipulates residual 

plasticity to improve acuity in the poor eye. Unfortunately patch therapy does not work for 

everyone and improvements are often transient. Animal models of amblyopia have highlighted 

the neurobiology after the initial insult, but little is known about the response to treatment. Since 

synaptic proteins are the interface between neuronal structure and function, it is imperative that 

neuroscientists study the amblyopic synaptic proteome to better map intervention strategies in 

humans.  

In the first part of this thesis I modernize 3 approaches for examining central visual 

pathway. First I combine neuroanatomical tracing with modern tissue clearing to examine central 

visual pathway connectivity. Next, I improved a manual fractionation protocol for enriching 

synaptic protein expression in cortical tissues. Third, I present a series of analytical techniques 

for multi-dimensional statistics to interpret protein expression in cortical tissue samples. 

In the second part of this thesis I used these techniques to examine a set of commonly 

studied synaptic plasticity mechanisms in a cat model of amblyopia.  I identified the 

neurobiological plasticity phenotype of patch therapy and treatment alternatives. I then examined 

expression of 23 synaptic and non-neuronal proteins in post-mortem tissue samples from human 

visual cortex across development to identify neuroplasticity states.  

These chapters identify options for improved or augmented therapies by identifying the 

plasticity phenotypes in animal models of amblyopia, and across human development. Together 

these tools identify potential successes and failures of existing behavioural interventions, such as 

binocular vision, as well as the causes of suboptimal treatments in human development, such as 

early periods of protein heterogeneity.  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Preamble 
Vision is the most heavily relied upon sensory system for humans navigating the world 

around us. The quality of our vision changes, however, depending on early visual experience. 

Abnormal visual experience in childhood can result in permanent visual impairments, including 

visual disorders like amblyopia. Those visual impairments have significant socioeconomic 

impacts as kids with amblyopia have difficulties with tasks such as reading or making eye-

contact with peers, that is likely to affect self-esteem, the ability to learn and to perform 

academically (Nelson et al., 2008). Children with uncorrected visual impairments are therefore 

less likely to pursue post-secondary school education or careers that rely on those abilities, in 

addition to experiencing an overall decrease in quality-of-life (van de Graaf et al., 2007; McBain 

et al., 2014). Although many treatments for childhood vision disorders like amblyopia have been 

explored through visual manipulation, perceptual training and pharmacological intervention, 

there is little consensus as to what treatment leads to lasting visual recovery. 

Over the past fifty years, researchers have used animal models to investigate the underlying 

causes of amblyopia along the visual pathway. Together these studies point to a collection of 

neurobiological mechanisms in the primary visual cortex (V1) that underlie those experience-

dependent visual impairments. Little is known however, about how therapies for visual 

impairments impact those neurobiological mechanisms in V1. Even less is known about how to 

translate those neurobiological mechanisms for use in human therapies. 

This thesis addresses these gaps in the field by answering questions about how treatment 

for amblyopia affects plasticity mechanisms in V1, and how to begin to translate those findings 

in animal models onto normal human development. In this introduction I will discuss the 

maladaptive cortical response to early visual impairments and classic treatments for amblyopia. I 

will then explain how animal models have been instrumental in our understanding of experience 

dependent plasticity mechanisms as they pertain to amblyopia, and how we can take advantage of 

this knowledge to reinstate plasticity and treat amblyopia. Finally, I will outline current treatment 

therapies in animal models and explain how we can translate these findings for interpreting 

persistent amblyopia in humans.  
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1.1 Amblyopia 
Quality of life 

Amblyopia, more commonly known as lazy-eye, is a visual disorder that typically presents 

in young children, and negatively impacts both visual function and quality of life. The clinical 

diagnosis for amblyopia includes the presence of a visual deficit that impacts the acuity of either 

one, or both eyes, even after correcting the original visual insult. This disorder afflicts ~2-5% of 

children (Wu and Hunter, 2006; Friedman et al., 2009; Maurer and McKee, 2018), and 

constitutes the leading cause of monocular visual impairment in children and young adults 

worldwide (Gunton, 2013). Monocular acuity deficits affect a multitude of visual tasks, including 

contrast sensitivity, accommodation, binocular vision, and higher-order motor and visual tasks 

(Birch, 2013). These deficits are more pronounced in central than peripheral vision (Tytla et al.,

1988; Bowering et al., 1993; 1997), and lead to poor performance on real-world visuomotor tasks 

(Grant and Moseley, 2011) and day-to-day activities such as reading (Kelly et al., 2015). Aside 

from the visual deficits, the psychological and social tolls of untreated amblyopia range from 

peer discrimination to poor image of the self, and poor school performance (Packwood et al., 

1999; Choong et al., 2004; Chua and Mitchell, 2004; Webber and Wood, 2005; Rahi et al., 2006; 

Webber et al., 2008; Horwood:2005gc; O'Connor et al., 2010). 

Susceptibility  

The exact cause of amblyopia is unknown, however it is clear that this disorder stems from 

inadequate visual experience during the first years of life, and risk factors for amblyopia include 

misalignment of retinal images (strabismus), unequal refractive power between the two eyes 

(anisometropia), or visual deprivation (e.g. cataracts) (Ellemberg et al., 2000; Maurer and Lewis, 

2001; Birch, 2013). The period of susceptibility to amblyopia is restricted to a developmental 

window that extends to around 8 years of age (Daw, 1998; Mitchell and MacKinnon, 2002; 

Simons, 2005), and reversal of the effects of amblyopia becomes more difficult outside this 

window (Birch, 2013). 

Human development has long been characterized by a series of stages (Piaget 1952, 

Erikson, 1959), and the development of vision is no exception (Lewis and Maurer, 2005; Siu & 
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Murphy 2018, 2018). Even studies investigating the development of visual cortex use 

developmental stages (Pinto et al., 2010; Williams et al., 2010; Siu et al., 2015; 2017). One of 

these developmental stages is defined by the increased susceptibility to amblyopia (Lewis and 

Maurer, 2005). Other stages are marked by the development of visual perceptual abilities, which 

progress through a series of stages that extend well into the fourth decade of life (Kovács et al., 

1999; Owsley, 2011; Hartshorne and Germine, 2015). Modern interventions for amblyopia are 

inspired by the protracted time course of development of human visual abilities, and have 

produced varying degrees of success in treating both young children within the window of 

susceptibility to plasticity, as well as older adult amblyopes. 

Standard treatment  

For over 200 years the best treatment for amblyopia has been patching therapy: applying a 

patch over the good eye to eliminate the suppressive action, and permit experience-induced 

recovery of acuity in the open amblyopic eye. If amblyopia is diagnosed early and treatment is 

provided, patching therapy can be an effective intervention strategy for recovering lost acuity 

(Wallace et al., 2006). There are several challenges with patching therapy. First, not all children 

are receptive to patching therapy, and many fail to show improvements despite even the most 

aggressive patching therapy (Woodruff et al., 1994; Repka et al., 2003; Birch et al., 2004; Repka 

et al., 2004; Stewart et al., 2004; Repka et al., 2005; Birch and Stager, 2006; Wallace et al., 

2006). Second, even if treatment starts on time and compliance is monitored, children can still 

present with persistent visual deficits, implying that even the best amblyopia treatments fail to 

provide optimal recovery (Birch, 2013). Third, most amblyopic children that actually succeed in 

recovering acuity are prone to regression, whereby the recovered acuity is lost within the first 

year after treatment (Holmes et al., 2004; Bhola et al., 2006).  

Over the last 50 years our knowledge of the anatomy and function of the visual system has 

grown, and with it so has our understanding of the causes of visual acuity deficits such as the 

ones found in amblyopia. The prolonged development of human visual cortex, measured through 

anatomical and neurobiological markers as well as visual milestones, would suggest that various 

forms of plasticity persist well into adulthood. The visual systems of animals like cats and non-

human primates share homologies with visual systems of humans, and that makes them good 
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models for identifying biological changes that might explain the poor acuity after amblyopia 

treatment. This includes our understanding of how neural circuits of the central visual pathway 

are shaped or molded by experience, called neural plasticity. Unfortunately the translation of 

effective treatments for amblyopia is lagging, in part due to the slow translation of neural 

plasticity in animal models into effective human therapies. This introduction will present an 

overview of animal models for amblyopia, our understanding of the causes of amblyopia, and 

how intervention for human amblyopes might be improved. 

1.2 Cortical Plasticity -  Animal models 
Central Visual Pathway - Retina 

Light signals are processed in the eye, where photons get converted into electrochemical 

signals that travel along the central visual pathway to the brain (Figure 1A). There the signals are 

used to interpret physical characteristics of real world objects, such as size, shape, color, texture, 

location and motion information. However the only neural portion of the eye directly connected 

to the central nervous system is the retina. After light passes through the cornea, it is filtered 

through the aqueous humor (anterior chamber), the lens and the vitreous humor (posterior 

chamber), before contacting the various layers of the retina (Figure 1B). Light photons enter the 

retina through the ganglion cell layer and strike two classes of photoreceptor cells, rods and 

cones.  In a process called photo-transduction, both classes of photoreceptor convert light signals 

into neural signals(Kuffler, 1953) that are passed between the 5 cell types spread across the 

layers of the retina (Polyak, 1941; 1957)(Fig 1B). In the outer plexiform layer, photoreceptors 

synapse onto bipolar cells, and in the inner plexiform layer, the bipolar cells in turn synapse onto 

retinal ganglion cells (RGCs). Finally, RGCs bring the visual signal out of the retina through the 

optic disk and along the optic nerve (reviewed in Masland, 2012; Seung and Sümbül, 2014; 

Spillmann, 2014).  
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Figure 1. Representation of common organizational schemes along the central visual pathway.  

A. Overview of the central visual pathway depicting retinal afferents that innervate the ipsilateral (pink) or 
contralateral (blue) hemispheres. B. The layers of the retina and associated cell types, arranged with photoreceptors 
at the top and ganglion cells at the bottom. Note that light (yellow arrows) first enters the retina through the ganglion 
cell layer, but is only photo-transduced into an electrical signal by the photoreceptors at the back of the retina. 
Neurons in the optic nerve project to the superior colliculus (C) and lateral geniculate nucleus (LGN) (D,E). The 
LGN primarily projects to layer 4 (IV) of the primary visual cortex (V1) (F,G). LGN is divided into 3 types of 
layers: parvocellular, magnocellular and koniocellular (D), which remain segregated as they project to the different 
layers of V1 (F). Similarly the pattern of contralateral and ipsilateral afferents in the LGN (E) is preserved as 
columns of ocular dominance in V1 (G). Figure 1 is modified from (Solomon and Lennie, 2007). 

Though the retina contains more than 60 different cell types the major classes include the 

photoreceptors, bipolar cells and ganglion cells, as well as horizontal and amacrine cells, which 

have cell bodies located in the inner nuclear layer, but synapse in the outer and inner plexiform 

layers, respectively (Masland, 2012). Horizontal and amacrine cells create lateral connections 

between photoreceptors and bipolar cells.   

The spatial arrangement of photoreceptors, bipolar cells and ganglion cells are not 

uniformly distributed across the retina, and because of this the degree of convergence from 

photoreceptor to ganglion cell differs depending on retinal eccentricity. In non-human primates 

and humans, the center of vision is focused by the eye onto the fovea, an area of the retina known 
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for processing high visual acuity. In animals with fovea-like vision, including cats that have an 

area centralis (Kuffler, 1953; Curcio et al., 1990; Roorda and Williams, 1999; Roorda et al., 

2001), the fovea is marked by a low degree of convergence from the many cone photoreceptors 

(Steinberg et al., 1973) to the high density of retinal ganglion cells (Stone, 1978). Low 

convergence from one cell type to another maintains small receptive field sizes and high visual 

acuity (Cleland et al., 1979; Wässle et al., 1990; Sjöstrand et al., 1999). As retinal eccentricity 

increases, densely packed cones are exchanged for sparsely packed rods, and higher convergence 

from photoreceptor to RGC results in poorer visual acuity in visual periphery.  

Regardless of retinal eccentricity, neighbouring ganglion cells share neighbouring receptive 

fields, and the degree of convergence from photoreceptor to ganglion cell establishes the size of 

these receptive fields. While not all mammals have a fovea-centralis like human and non-human 

primates, carnivores like the cat possess a similar fovea-like retinal area centralis with a high 

density of photoreceptors with low convergence on ganglion cells. This topographic arrangement 

of neighbouring receptive fields innervating neighbouring RGCs is referred to as retinotopy, and 

is maintained at all stages of the central visual pathway. 

Central Visual Pathway - Connections to midbrain and thalamus 

Retinal ganglion cells exit the retina through the optic disk in a nerve bundle called the 

optic nerve, that projects to the superior colliculus of the midbrain (SC, Figure 1C) or along the 

optic tract to the lateral geniculate nucleus of the thalamus (LGN, Figure 1D,E), as well as other 

sites. The SC controls oculomotor responses (reviewed in (Wurtz et al., 1980; Gandhi and 

Katnani, 2011) and early anatomical lesion studies in tree shrews concluded that superficial SC 

layers were responsible for visual processing (Casagrande et al., 1972; Harting et al., 1973; 

Casagrande and Diamond, 1974), while deeper layers guide orientation/movement of the eyes 

and head toward stimuli (Harting et al., 1973). Tracer studies in primates and cats further 

revealed that most cells across the surface of the SC are innervated by the contralateral eye 

(Figure 1C- blue), and receive few ipsilateral connections (Lane et al., 1971; Cynader and 

Berman, 1972; Kaas et al., 1974). Curiously, labelling RGC projections to SC revealed labelling 

in superficial layers of both hemispheres of the SC (Hendrickson et al., 1970; Tigges and Tigges, 

1970; Lund, 1972a; 1972b; Tigges and O'Steen, 1974; Hubel et al., 1975), with superficial label 
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density highest in the contralateral hemisphere (Graybiel 1975) and only small islands of label in 

the ipsilateral hemisphere (Graybiel 1975; Wässle and Illing, 1980; Illing, 1989). The same 

superficial layers of SC receive feedback projections from layer V of V1 (Lund et al., 1975). 

In the LGN, RGC afferents terminate in alternating, eye-specific laminae in both cats, 

(Guillery and Kaas, 1971; Shatz, 1983; Anderson et al., 1988) and primates (Kaas et al., 1978). 

The number and patterning of laminae differs across species, but the anatomical and functional 

mapping of retinal output to LGN inputs is highly conserved from cats (Cleland et al., 1971; 

Hamos et al., 1987) to primates (Lee et al., 1983; Conley and Fitzpatrick, 1989). Cats have 3 

major LGN subdivisions: A, A1 and C that process stimulation from contralateral, ipsilateral then 

contralateral retinae, respectively (Guillery and Kaas, 1971). Meanwhile, humans and non-

human primates have 6 LGN laminae: the contralateral eye innervates layers 1, 4 and 6, and the 

ipsilateral eye layers 2, 3 and 5 (Figure 1E). LGN laminae in humans and non-human primates 

are also divided by function. The outermost laminae (3-6) are parvocellular layers containing 

cells with smaller receptive fields, that process medium wavelength colour information, while the 

innermost laminae (1 and 2) are magnocellular layers containing cells with larger receptive 

fields, that process contrast and motion, but are achromatic (Wiesel and Hubel, 1966; Derrington 

et al., 1984; Kaplan and Shapley, 1986; Michael, 1988; Jacobs, 2008) (Figure 1D). In between 

each magno- and parvocellular layer exists a third type of layer called koniocellular (Kaas et al., 

1978; Casagrande, 1994; Hendry and Yoshioka, 1994). The koniocellular layers are believed to 

process information from short wavelength cones (blue light)  (Martin et al., 1997; Hendry and 

Reid, 2000; Tailby et al., 2008a; 2008b). All layers of the LGN project to primary visual cortex, 

and in turn the LGN receives feedback from V1 (Guillery and Sherman, 2002; Briggs et al., 

2016).  

Anatomical Organization of Visual Cortex - Cortical Layers 

The visual cortex itself is divided into 6 layers. The supragranular layers (I-III) are the 

layers where inter-cortical connections occur between visual association and other areas. Layer I 

does not contain many neurons, but does contain cell neuropil, and is called the molecular layer. 

Layers II and III, the external granular and external pyramidal layer, contain mostly pyramidal 
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cells. Layer II/III contains most of the connections with other cortical areas (cortico-cortical 

areas). 

The internal granular layer (IV), or the input layer, is where most afferents from LGN 

axons terminate (Figure 1F). Layer IV is divided into A, B and C. Layer IVC is further 

subdivided into IVCα and IVCβ, where the magnocellular and parvocellular LGN laminae 

terminate, respectively (Chatterjee and Callaway, 2003)(Figure 1F).  The koniocellular neurons 

primarily terminate in layer IVA(Casagrande et al., 2007; Klein et al., 2016). The koniocellular 

neurons project not only to layer IVA, but also to supragranular “blobs” or “puffs”. In layer V 

and VI, pyramidal cells receive the information from layer IV and supra granular layers, and send 

information out of the cortex.  Most of these neurons are excitatory, but modulatory inhibitory 

circuits govern their behaviour as well. For example in layer IV there is a thick neuropil of 

inhibitory parvalbumin-positive (PV+) inhibitory interneurons (del Río and DeFelipe, 1994), that 

are exquisitely positioned to modulate feedforward responses in the visual cortex (Pouille and 

Scanziani, 2001; Self et al., 2012) and across cortical networks (Agetsuma et al., 2018). Beyond 

the input layer IV,  the streams of visual processing intermingle extensively.  

In mammals with a region of specialized vision, such as the fovea (primate) or area 

centralis (cat), the largest amount of V1 cortical area is reserved for processing the central field 

of vision (Tusa et al., 1978), and the small receptive field sizes are maintained in neurons in the 

central visual field representation of V1. This preserves high visual acuity for central vision 

(Hubel & Wiesel, 1962). Since monocular deprivation (MD) affects central visual processing the 

most (Dews and Wiesel, 1970), the cortical deficits present in amblyopia are likely located in this 

cortical region. 

Functional Organization of Visual Cortex - Cortical Columns 

Much of what is known about the structure and function of the visual cortex, from its 

organization to the impact of early experience on visual function, comes from the work of David 

Hubel and Torsten Wiesel. By projecting bars of moving light onto a screen while simultaneously 

recording the extracellular responses of neurons in cat V1, Hubel and Wiesel were able to map 

receptive field properties of V1 neurons (Hubel & Wiesel, 1962). They discovered that the cells 

they were recording from responded preferentially to stimuli of a particular orientation (0-180°), 
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called the orientation selectivity, and preferred one eye over another, called ocular dominance 

(OD). Neighbouring V1 neurons were likely to have similar orientation and ocular preference, 

and later it was confirmed that neighbouring cells in the input layer IVC of visual cortex in both 

cats (LeVay et al., 1978) and primates (Wiesel et al., 1974) extend as columns throughout cortical 

layers (Figure 1G). The sudden transitions between these OD columns take place more gradually 

outside layer IVC of V1, where binocular information begins to intermingle. 

Ocular dominance plasticity and neuronal morphology 

Visual experience alters the response properties of V1 cells in cats (Wiesel and Hubel, 

1963). The OD columns were already present in the cortex of very young, visually inexperienced 

animals and OD columns formed even in the absence of visual stimulation. However, the quality 

of vision is important for maintenance of OD columns across development, since cats that were 

monocularly deprived (MD) of visual stimulation shifted OD preference in favour of the non-

deprived eye (Wiesel and Hubel, 1965). The capacity for this OD shift, called OD plasticity, was 

greatest in younger animals, while mature animals were more resistant to experience-dependent 

changes (Hubel and Wiesel, 1970). The window for ocular dominance plasticity was outlined in 

cats from as early as 3 weeks of age, peaks by 5 weeks, and steadily declines past 8 weeks of age 

and into adulthood (Olson and Freeman, 1980). It was possible to induce the ocular dominance 

shift in adult animals, but it was harder to initiate and required longer periods of deprivation 

(Jones et al., 1984). The physiological shift in OD preference following early MD (Movshon and 

Dürsteler, 1977; Shatz et al., 1978; Crair et al., 1997) was accompanied by visual acuity deficits 

(Dews and Wiesel, 1970; Mitchell et al., 1977; Giffin & Mitchell, 1978), and the more severe the 

deprivation, the worse the acuity deficit. Therefore, the acuity deficits that arise after early MD 

are directly related to the physiological response property known as OD plasticity. 

The physiological changes that occur after MD during the critical period (CP) proceed 

through two stages; first a weakening of responses from the deprived eye (Gordon & Stryker 

1996; Hensch et al., 1998; Trachtenberg et al., 2000; Frenkel & Bear, 2004), followed closely by 

a slow strengthening of non-deprived eye response (Sawtell et al., 2003; Frenkel & Bear, 2004; 

Kaneko et al., 2008). The structural changes that accompany MD-induced OD shifts occur in a 

similar cascade of events, beginning with an early mobilization and diminished density of 
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dendritic spines (Mataga et al., 2004; Oray et al., 2004; Tropea et al., 2010; Yu et al., 2011; 

Djurisic et al., 2013). After these early spine changes, there follows a loss of neuronal afferents 

from the deprived eye (Antonini and Stryker, 1993; 1996), and then a later expansion of afferents 

from non-deprived eye (Antonini et al., 1999). Even short periods of deprivation, on the scale of 

hours, are sufficient to cause rapid physiological (Freeman and Olson, 1982; Trachtenberg et al., 

2000; Schwarzkopf et al., 2007),  proteomic (Williams et al., 2015) and anatomical changes 

(Antonini and Stryker, 1996). Sensory deprivation experiments such as these have become the 

preeminent model for studying CP plasticity and understanding the physiological and anatomical 

basis for juvenile plasticity is a goal of modern neuroscience.  

Animal models of amblyopia  

Visual impairments in animal models of amblyopia are typically administered by MD. 

These animal models recapitulate the physiological and anatomical changes that accompany 

early adverse experiences in humans, including the transient recovery of acuity following 

patching therapy. In an extreme form of behavioural intervention, cats that received MD to the 

peak of the CP were reverse occluded by suturing shut the non-deprived eye and re-opening the 

initially deprived eye (Movshon, 1976a). This reverse occlusion (RO) treatment demonstrates 

some recovery of vision in the initially deprived eye (Movshon, 1976a; Giffin and Mitchell, 

1978). However, like in humans, this recovered vision is lost soon after treatment stops and 

binocular vision (BV) is restored (Mitchell et al., 1984). The challenges of patching therapy are 

further complicated in that vision of the initially non-deprived eye may also be affected, resulting 

in bilateral amblyopia after patching therapy (Murphy and Mitchell, 1986; 1987). 

The loss of recovered acuity after patching therapy remains a mystery. RO restores much of 

the anatomical and physiological changes of MD. Indeed 18 days of RO shifts the physiological 

response back to normal, while longer lengths of RO have little effect (Blakemore and Van 

Sluyters, 1974; Movshon, 1976b; Mitchell et al., 1977; Giffin and Mitchell, 1978; Mitchell, 

1988; Mitchell and Gingras, 1998). RO even rescues some anatomical changes, namely restoring 

the size of axonal branches from the initially deprived eye (Antonini et al., 1998). If anatomical 

and physiological changes cannot fully explain the loss of acuity after RO, then what are the 

neurobiological changes that lead to bilateral amblyopia? 
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1.3 Synaptic plasticity - animal models 
Glutamatergic plasticity mechanisms  

Visual information first reaches visual cortex by means of excitatory thalamocortical axons 

terminating in layer IVc of V1. Here neurotransmission begins through the release of glutamate, 

which binds to alpha-amino-3-hydroxy-5-methyl-4-isoxazole receptors (AMPAR) and N-methyl-

d-aspartate receptors (NMDAR). This glutamatergic binding to either AMPARs or NMDARs 

triggers an early ~2ms (AMPAR) (Kleppe & Robinson, 1999) or later ~190-380ms (NMDAR) 

(Monyer et al., 1992) phase of excitatory post-synaptic currents (EPSC). The subunit 

composition of glutamatergic receptors modulates receptor kinetics, and by extension, the ease 

with which synaptic plasticity can occur. For example, most AMPARs contain the GluA2 

subunit, which makes the AMPAR impermeable to calcium, restricting calcium-dependent LTP 

(Hollmann et al., 1991). GluA2-containing AMPAR expression increases with experience 

(Herrmann, 1996) and after blocking cell activity using TTX (Gainey et al., 2009). This fast 

acting glutamatergic receptor is associated with rapid signal processing in the visual system and 

homeostatic plasticity, so changes in AMPAR expression after MD explain some of the system 

resistance to recovery.  

Similar to AMPA receptors, NMDA receptors are considered a functional unit controlling 

synaptic plasticity. Pharmacological inactivation of NMDARs prevents the ocular dominance 

shift in young kittens (Bear et al., 1990). NMDARs are tetrameric glutamate receptors that 

contain two obligatory GluN1 subunits paired with two GluN2 (A-D) and/or GluN3 subunits 

(Monyer et al., 1994). The contribution of NMDAR activity to synaptic plasticity is tightly 

regulated by NMDAR subunit composition. There is a well-documented experience-dependent 

shift in NMDAR currents in visual cortex, that shortens the duration of EPSCs across 

development (Flint et al., 1997). This shift in the receptor currents is delayed by visual 

deprivation (Carmignoto & Vicini, 1992), and is directly regulated by changes in the NMDAR 

composition (Quinlan et al., 1999b). Only recently has the effect of including more 2A subunits 

in NMDAR been suitably quantified as a shift in NMDAR decay kinetics away from the slow 

333ms contributed by dihetereomeric 2B NMDAR (2B:2B) to the faster decay kinetics from 
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trihetereomeric NMDAR (2A:2B) (50ms) or the dihetereomeric NMDAR (2A:2A) (36ms) 

(Tovar et al., 2013; Sun et al., 2017). Shifting to faster NMDAR kinetics reduces the window for 

coincidence detection in LTP (Erreger et al., 2005), but indicates classic Hebbian plasticity has 

strengthened connections between neurons. Furthermore, the change in NMDAR currents is 

bidirectional, and environmental manipulations such as dark rearing and light exposure can 

adjust synaptic transmission. Dark rearing prolongs the length of EPSCs while light exposure 

shortens them (Philpot et al., 2001). Similarly, the shift in receptor subunit composition can be 

manipulated by experience: dark rearing increases the relative contribution of GluN2B, and light 

exposure increases the GluN2A (Quinlan et al., 1999a). 

Aside from classic Hebbian forms of plasticity, AMPAR and NMDAR are also involved in 

homeostatic plasticity mechanisms. One example of this is the insertion of AMPAR to synaptic 

membranes of silent (dormant) synapses (Rumpel et al., 1998). Once synapses are activated the 

strength of the signal required to effect further change through LTP or LTD is gated by the 

balance between 2A and 2B, a synaptic property dubbed the 'sliding modification threshold’ of a 

synapse, also referred to as metaplasticity (Quinlan et al., 1999a; Philpot et al., 2001). With 

increased 2B expression in juvenile visual cortex, the likelihood of LTP is higher because of the 

prolonged decay kinetics of 2B-dominated NMDAR and increased calcium entry(Jones et al., 

1999), leading to more calcium-dependent LTP processes (Philpot et al., 2001). After MD the 

delicate synaptic environment becomes skewed in subunit compositions of AMPA and NMDAR 

subunits. The weakened deprived eye response is mediated by decreased GluA2 (Heynen et al., 

2003; Lambo and Turrigiano, 2013) and increased GluN2B (Chen and Bear, 2007), and the 

strengthened non-deprived eye response is driven by increased GluA2 (Lambo and Turrigiano, 

2013) and decreased GluN2B (Smith et al., 2009). The weakening of deprived eye responses via 

AMPAR internalization (Yoon et al., 2009) can be prevented by pharmacologically blocking 

NMDAR activity , and reducing OD plasticity (Kleinschmidt et al., 1987; Gu et al., 1989; Bear et 

al., 1990).  

The balance between NMDAR and AMPAR is important for visual processing. First, 

NMDARs are necessary for establishing orientation selectivity (Ramoa et al., 2001), and the 

timing of the developmental shift from 2B to 2A coincides with the CP for OD plasticity 
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(Fagiolini et al., 2003). Furthermore, the rapid response properties of AMPARs imbue synapses 

with stimulus-driven feedforward visual processing abilities, while the slower NMDAR are 

involved in feedback stimulus modulation (Self et al., 2012). 

In human visual cortex development, the timing of these receptor subunit shifts are very 

prolonged, for example, the NMDAR subunits continue to shift from 2B to 2A into adulthood 

(~40years) (Siu et al., 2017), well after the window of susceptibility for amblyopia (Lewis and 

Maurer, 2005). Our lab has characterized two aspects of these subunit shifts in MD cats, and 

classified the changes as an early homeostatic unsilencing of synapses (Beston et al., 2010). This 

can occur after reduced activity in cortical cells, which increases GluA2 relative to GluN1 

(Gainey et al., 2009), or after MD, which delayed the shift from more 2B to more 2A (Beston et 

al., 2010).  

GABAergic plasticity mechanisms  

Regulation of excitatory transmission occurs in part through GABAergic activation of 

ionotropic GABAA receptors, which hyperpolarize the neuronal membrane. The GABAA 

receptor is the most abundant inotropic GABAR in the visual cortex, and the subunit composition 

affects the duration and intensity of hyperpolarization. GABAA subunits have a large number of 

possible combinations of subunits, each grouped into families of α (1–6), β (1–3), γ (1–3), 

δ,ε ,π ,θ or σ (Bonnert et al., 1999; Whiting et al., 1999). The most abundant of these hetero-

pentameric GABAA receptors contain 1 γ subunit, 2 β subunits and 2 α subunits. There is a 

developmental shift in the expression of the α subunits like the shift that occurs for GluN2 

subunits. Early in development there are more GABAA α3 (α3) then a transition to more 

GABAAα1 (α1) during the CP in rats (Bosman et al., 2002) cats (Chen et al., 2001) macaque 

monkeys (Hendrickson et al., 1994) and humans (Pinto et al., 2010). Functionally, the 

developmental shift speeds up the receptor kinetics (Gingrich et al., 1995), and the relative 

abundance of each subunit alters the speed from more diheteromeric α3 (α3:α3 -129ms) to more 

diheteromeric α1 (α1: α1 - 42ms) (Eyre et al., 2012).  

The timing of the GABAA subunit shift is especially important as it overlaps with the end 

of the CP in cats, monkeys and humans (Hendrickson et al., 1994; Chen et al., 2001; Pinto et al., 

2010). The transition to the faster α1 subunit is necessary for ocular dominance plasticity 
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(Hensch et al., 1998; Fagiolini et al., 2004), regulates gamma oscillations and controls long-range 

cortical signalling (Cardin et al., 2009). The CP can even be induced in rodents through 

modulation of GABAA agonists (Fagiolini & Hensch, 2000). Expression of GABAA receptors is 

mediated by visual experience (Hendry et al., 1994), and in our lab, we demonstrated an 

accelerated transition from α3 to α1 in V1 of MD cats, suggesting premature development of the 

inhibitory system following early abnormal visual experience (Beston et al., 2010). Some of this 

inhibitory regulation of critical period has been traced to inputs from the LGN. For example, 

mice lacking the GABAA α1 subunit failed to demonstrate an OD shift after MD, suggesting that 

thalamocortical neurons containing the GABAA α1 subunit are involved in consolidating the 

ocular dominance shift in visual cortex (Sommeijer et al. 2017). Expression of both excitatory 

and inhibitory mechanisms are necessary for onset and closure of the CP. 

Excitatory:Inhibitory Balance 

Together these excitatory and inhibitory molecular mechanisms govern long term 

potentiation (LTP), long term depression (LTD), synaptic scaling, and changes in the 

excitatory:inhibitory (E:I) balance (Kirkwood and Bear, 1994a; 1994b; Hensch et al., 1998; 

Heynen et al., 2003; Fagiolini et al., 2004; Turrigiano and Nelson, 2004) that contribute to 

experience dependent changes in amblyopia (Hess and Pointer, 1985; Li et al., 2007; Hensch and 

Quinlan, 2018). Critically, GABAergic inhibition is essential for both the opening and close of 

the critical period (Hensch et al., 1998; Fagiolini & Hensch, 2000) and there is ample evidence to 

suggest that the balance between excitation and inhibition regulates the amount of available 

plasticity across development (Fagiolini et al., 2004, reviewed in Hensch 2005). Manipulating 

either mechanism can increase or decrease the amount of experience-dependent plasticity in the 

cortex. 

Other plasticity mechanisms 

There are hundreds of pre-synaptic proteins, and thousands of post-synaptic proteins, and 

many, but not all of the synaptic proteins are involved in regulating experience-dependent 

plasticity. In fact, the list of proteins regulating plasticity has extended beyond the classic view of 

the synapse.  The experience dependent changes that shape neural connections are typically 

consolidated by extra-synaptic brakes on plasticity that increase at the close of the CP (e.g. 
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Dityatev et al., 2010). For example, increased electrical activity in cortical neurons increases 

oligodendrocyte-mediated myelination around active synapses, compacting the myelin sheath 

and restricting motility (Wake et al., 2011). A receptor for the myelin signaling molecule NogoA, 

the Nogo-66 receptor (NgR), couples with neurotrophin receptor-75 to form a complex, which 

prevents neurite growth (Hu and Strittmatter, 2004) . Interfering with this complex restores 

juvenile-like plasticity by permitting OD shifts in cortex of adult animals (McGee et al., 2005), 

but does not rescue visual acuity (Stephany et al., 2018). 

Another extra-cellular factor that both permits plasticity and consolidates the fast electrical 

signals are peri-neuronal nets (PNNs). These multi-protein complexes initially are degraded by a 

brief upregulation of proteases at the beginning of MD in the mouse animal model (Mataga et al., 

2004; Oray et al., 2004). As the CP draws to a close, PNNs form around the fast spiking PV+ 

inhibitory interneurons in the cortex (Cabungcal et al., 2013a), increase in expression at the close 

of the CP (Cabungcal et al., 2013b), and increase expression of Otx2 (Bernard 2016) and when 

PNN are pharmacologically degraded, even in adult rats,  juvenile-like plasticity is restored 

(Pizzorusso, 2002; Pizzorusso et al, 2006; Carulli et al., 2010). This restoration of plasticity has 

been linked with increased spine motility (Mataga et al., 2004; Oray et al., 2004). 

However, extra-synaptic factors such as astrocytes can still play a role in experience-

dependent plasticity. Tumor necrotic factor-α (TNF-α), a cytokine produced by glial cells and 

released on glutamate stimulation (Sawada et al., 1989), is involved in synaptic plasticity 

(Stellwagen and Malenka, 2006). TNF-α causes AMPA receptor insertion on the membrane of 

the post-synaptic neuron, while the absence of TNF-α causes endocytosis of AMPA receptors 

(Beattie et al., 2002). The astrocytic release of TNF-α also regulates experience dependent visual 

plasticity (Kaneko et al., 2008).  

These are just some examples of extra-synaptic mechanisms that control plasticity within 

cortical neurons. There are many other neurochemicals involved in regulating synaptic plasticity, 

including monoamines, CaMKII, ERK1/2 and Otx2. In fact, many of the plasticity mechanisms 

outlined in this section are further regulated by post-translational modifications (e.g. 

phosphorylation state) to synaptic and extra-synaptic proteins. Many of the changes in these 

proteins and neurochemicals have been quantified in the classic model of monocular deprivation. 
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For example, there is a larger impact of amblyopia on central visual acuity in amblyopes, it is not 

surprising that the greatest impact of MD on these molecular plasticity mechanisms in V1 occurs 

in the cortical representation of central visual field (Murphy et al., 2004; Beston et al., 2010). The 

field lacks a complementary understanding of the molecular changes following treatment for 

amblyopia. 

1.4 Translating plasticity - From animal models to amblyopia 
treatments 

Persistent amblyopia is challenging to treat because diagnosis and treatment typically begin 

near the close of the CP for human vision when visual cortex is less susceptible to experience-

dependent change and there are more molecular brakes on plasticity.  Two targets for amblyopia 

therapies have emerged and focus on experimentally reinstating a critical-period-like state of 

plasticity (reviewed in Bavelier et al., 2010; Sengpiel, 2014) by either reinstating the excitatory-

inhibitory balance that triggers the onset of the CP or reducing the brakes on plasticity that 

emerge in adulthood. These two primary targets have been addressed through pharmacological 

and behavioural interventions. 

Pharmacological interventions to manipulate plasticity 

Pharmacological interventions have been successful in targeting CP-like plasticity in 

animal models by reducing the plasticity-limiting factors, or ‘brakes’. These brakes tend to be 

located outside the synapse, for example, in myelin sheaths or PNNs, both of which restrict 

neural and dendritic motility and limit plasticity (eg. McGee et al., 2005; Pizzorusso et al, 2006; 

Syken et al., 2006; Carulli et al., 2010)). Interfering with the myelin-binding Nogo-R(McGee et 

al., 2005) or degrading PNNs with chondroitin-sulphate proteoglycans (Pizzorusso et al, 2006) 

restores juvenile-like plasticity. Alternatively, pharmacological interventions can reinstate 

conditions that initiate CP-like plasticity by increasing plasticity-promoting factors, such as 

synaptic expression of GABA (Hensch et al., 1998; Fagiolini & Hensch, 2000). Drugs that 

modulate or mimic GABA can fine-tune the balance between excitation and inhibition to restore 

juvenile-like plasticity in adult animals (Maya-Vetencourt et al., 2008).  
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Another approach targets bidirectional regulators of plasticity, like the GluN2A:GluN2B 

ratio of NMDAR subunits (Quinlan et al., 1999a; Philpot et al., 2001; 2003; Fagiolini et al., 

2004). This approach is more difficult to address pharmacologically because of the high degree 

of similarity between these two receptor subunits, but drugs are being developed that selectively 

target one subunit over the other (Lind et al., 2017). 

Since multiple plasticity mechanisms are affected after MD, treatments should not focus on 

targeting a single plasticity mechanism. Instead, treatments that regulate multiple plasticity 

mechanisms are more likely to be effective in restoring good vision. For example, modulating 

visual experience as a means of treating amblyopia not only targets multiple plasticity 

mechanisms, but it is relatively noninvasive. The latter consideration is especially important 

when considering the clinical population of children where invasive therapies are avoided.    

Behavioural interventions to manipulate plasticity 

Patching therapy remains the most common behavioural treatment for amblyopia despite 

the transient nature of recovery. The intervention itself is relatively non-invasive, with as little as 

2 hours of patching therapy a day providing effective treatment for moderate cases of amblyopia 

(Repka et al., 2003), and more aggressive treatments (>6 hours/day) are no more effective than 

patching full-time (Holmes et al., 2003a; 2003b). Patching therapy such as this is the basis of RO 

in animal models, which restores some of the physiological and anatomical hallmarks of MD 

(Blakemore and Van Sluyters, 1974; Movshon, 1976b; Mitchell et al., 1977; Blakemore et al., 

1978; Giffin and Mitchell, 1978; Swindale et al., 1981; Mitchell, 1988; Antonini et al., 1998; 

Mitchell and Gingras, 1998). The labile nature of recovered acuity in amblyopia animal models 

still cannot be explained (Mitchell et al., 1984; Murphy and Mitchell, 1986; 1987), which has 

prompted clinicians and researchers to begin searching for other behavioural interventions. 

Manipulating visual experience by raising animals in enriched environments with increased 

visual, social and physical stimuli prolongs the window of plasticity in rats and mice (Sale et al., 

2009;  Greifzu et al., 2014) and promotes OD plasticity into adulthood. This environmental 

manipulation is a great example of a single manipulation that both attenuates a molecular brake 

on plasticity, by decreasing both the density of PNNs (CP-brake) and GABAergic inhibition (CP-

trigger) in the visual cortex (Sale et al., 2009;  Greifzu et al., 2014). However, there are concerns 
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regarding the difficulty in mapping such a treatment onto a therapeutic intervention for humans 

since we already exist in a very enriched, visually stimulating world.  

On the other extreme lies dark rearing (DR) and dark exposure (DE), wherein exposing 

animals to complete darkness at various stages of development has proven equally effective in 

restoring cortical plasticity (He et al., 2006; Duffy and Mitchell, 2013). Like environmental 

enrichment, it is difficult to map dark rearing onto an effective treatment for human amblyopes. 

However, short periods of darkness have proven effective in reinstating CP-like plasticity into 

adulthood. DE has shown recent promise as a treatment to reinstate plasticity outside the CP in 

MD rats (Montey & Quinlan, 2011) and cats (Duffy et al., 2013; Mitchell et al., 2016). 

Manipulations such as dark exposure, or even binocular deprivation (BD), are based the premise 

that correlated binocular information reduces inter-ocular acuity differences and enables the good 

eye to better teach the deprived eye. Decreased activity in both eyes should remove the 

suppressive action from the non-deprived eye while enhancing plasticity in the deprived eye 

(Cooper and Bear, 2012). Indeed there is an increase in the juvenile subunit of the NMDA 

receptor (2B) with DE (Yashiro et al., 2005; He et al., 2006). BD also restores the physiological 

response and spine density on thalamocortical axons in rodents (He et al., 2006; Montey & 

Quinlan, 2011; Stodieck et al., 2014) and rescues thalamic soma size and neurofilament density 

in cats (Duffy et al., 2015; 2018), thereby reversing decreased spine density and shrunken LGN 

soma size observed with MD. Despite the seemingly juvenile-like plasticity state, this treatment 

fails to promote good recovery of visual acuity by itself, and must be combined with training 

(Montey et al., 2013; Eaton et al., 2016). Further examination of the synaptic mechanisms 

underlying recovery of vision in DE and BD animals is still necessary. 

Studies such as these that target both eyes have shifted the theory behind the causes and 

treatments for amblyopia away from monocular impairment toward a new understanding of the 

importance of binocular interactions (Birch, 2013). Perhaps the most important example of this is 

the work of Kind et al., who demonstrated that coordinated BV provides optimal restoration of 

physiological responses after MD, as well as recovers good acuity (Kind et al., 2002). Just a few 

hours of intermittent BV during MD have been proven to prevent the physiological effects of MD 

(Schwarzkopf et al., 2007), results in some recovered acuity after MD (Mitchell, 1991), and helps 
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improve the recovery after RO (Faulkner et al., 2006). Indeed, our lab has found that BV 

provides good recovery of visual acuity in MD cats following a range of deprivation lengths 

throughout the CP (Murphy et al., 2015).  

Therefore, binocular interactions are an important consideration for behavioural 

interventions to yield proper recovery after MD. Pharmacological and behavioural alternatives to 

treat amblyopia will continue to emerge, but until the molecular mechanisms regulating the 

successes and failures of each intervention are understood, progress toward effective therapies 

for humans will be slow.   

Biologically inspired human interventions  

The success of perceptual learning in animal models have made their way into human 

trials. Perceptual learning has shown marked improvement in visual abilities of the amblyopic 

eye (reviewed in Levi and Li, 2009), many of which transfer outside the testing environment (eg. 

Levi et al., 1997; Li and Levi, 2004; Levi and Polat, 2005). Importantly, these improvements 

appear to last, demonstrating retained acuity improvements as long as 12 (Polat et al., 2004) or 

even 18 months after treatment (Zhou et al., 2006). When perceptual learning is combined with 

patching therapy this improvement is greater still (Li et al., 2005). 

Alternative approaches to treating amblyopia as a binocular disorder have emerged, and 

initially showed great promise for improving treatment outcome (Li et al., 2013; Tsirlin et al., 

2015). Special displays permit video game play through the dichoptic presentation of visual 

stimuli that use active perceptual learning to implement a modern approach to training (reviewed 

in Hess and Thompson, 2015). These displays re-balance the contrast of an image such that the 

visual stimulus is matched between each eye, and have transported training opportunities outside 

the doctor’s office into the iPhone and iPad (Hess et al., 2011; Birch et al., 2015; Vedamurthy et 

al., 2015; Webber et al., 2016). Unfortunately, these techniques were no more effective than a 

few hours of patching therapy (Holmes et al., 2016; Kelly et al., 2016), and poor outcomes were 

attributed to low compliance. The recent failure of the BRAVO technique (Gao et al., 2018) has 

some clinicians questioning binocular treatments for amblyopia (Holmes, 2018). Nevertheless, 

binocular treatments continue to emerge, and benefits include improved amblyopic eye acuity, 

but also binocular abilities such as stereoacuity and depth of suppression (Kelly et al., 2018). 
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1.5 Human development- Challenges and Opportunities 
The average age of diagnosis for amblyopia is less than 3 years of age (Birch and Holmes, 

2010), and patching therapy remains the number one treatment prescribed for amblyopes. When 

patching therapy fails to promote recovery, there is no consensus on how to proceed with 

treatment. This is in part because there is a gap between animal findings of CP plasticity and 

translating those findings into effective human treatments. Understanding development of human 

visual cortex, and how it is affected by adverse early life experiences, like amblyopia, is 

challenging due to the limitations in studying human brain development.  

The longstanding view of human visual cortex development is that synaptic maturity is 

reached in the first few years of life, based on anatomical milestones including synapse counts 

(Huttenlocher et al., 1982) and development of intra-cortical horizontal connections (Burkhalter 

et al., 1993).  That view has been difficult to reconcile with the protracted development of visual 

abilities that continue developing well past adulthood and into aging. Just like our understanding 

of the neural basis of amblyopia, our understanding of development of human visual cortex has 

progressed dramatically in recent years. Studies by our lab and others have begun to investigate 

the expression of the same cellular processes that govern animal CP plasticity across the course 

of human development (Pinto et al., 2010; Williams et al., 2010; Siu et al., 2015; 2017). These 

studies highlight the variability in early human stages of development and the protracted 

development of plasticity mechanisms. 

The glutamatergic, GABAergic and extra-synaptic environment is involved in regulating 

susceptibility to early life adversity in animal visual cortex, and major changes in these systems 

tend to occur during the CP in animal models (Fagiolini et al., 2003; 2004).  In our 

investigations, we have found the timing of some important functional shifts, including those 

inhibitory mechanisms that initiate the CP, occur precisely as predicted. For example, the shift 

from immature α3 to mature α1 occurs at the beginning of the visual CP (Pinto et al., 2010). 

Extra-synaptic brakes on plasticity, such as the increase in intracortical myelin (Siu et al., 2015), 

and the expression of ubiquitin ligase Ube3A (Williams et al., 2010) both continue developing 

until the mid-30s.  Even more surprisingly, transitions in NMDAR subunit expression from more 

2B to more 2A are protracted and extend well beyond 40 years of age (Siu et al., 2017). In fact, 
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measuring the expression of a set of 4 proteins that mark the presence of synapses (synapsin I, 

synaptophysin, PSD95 and gephyrin) we were able to align the development of rat visual cortex 

with the development of human visual cortex (Pinto et al., 2015). This age alignment perfectly 

identified matching sets of visual milestones between the two species. These major visual 

milestones in human visual cortex development correspond to a host of anatomical and 

neurobiological changes (for review Siu & Murphy, 2018). 

Aside from the few studies listed here, little effort has been made to synthesize the 

development of these proteins across the human lifespan. Investigation of the development of 

multiple synaptic protein systems in human visual cortex, including glutamatergic, GABAergic 

and extra-synaptic proteins, would undoubtedly provide valuable information for mapping 

animal models onto human stages of development to improve therapy. 

1.6 Summary of my contributions 
This thesis presents an analysis of both classic and modern amblyopia treatments, and the 

effect that these treatments have on synaptic proteins in V1 of an animal model for amblyopia. I 

also present a data-driven approach to quantifying states of human V1 development using a 

subset of the synaptic proteome. In chapters 2 and 3 I present two techniques that modernize the 

study of central visual pathway in the cat animal model for amblyopia. First, I combined 

traditional neural tracing techniques with modern tissue clearing (Chapter 2), and second, I 

introduced semi-automated homogenization and filtration steps to the classic fractionation of 

synaptosomes (Chapter 3). My modern synaptosome approach is amenable for use on animal and 

human tissues and enables probing tissue multiple times for high-throughput analyses of the 

synaptic proteome. Next, I designed a modern, high-dimensional analysis workflow that can be 

used to compare multiple treatment conditions or investigate trends across stages of development 

(Chapter 4). This analysis workflow includes techniques such as principal component analysis 

(PCA), t-distributed stochastic neighbour embedding (tSNE) analysis, and sparse clustering 

(Sparcl). Using this workflow, I identified unique treatment effects on protein expression patterns 

after RO, BD and BV in cat V1 (Chapter 5). I also used this workflow to identify 6 overlapping 

stages of human visual cortex development across 23 synaptic proteins and multiple plasticity 

mechanisms (Chapter 6). These innovations in my approach have immense utility for clinical 
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neuroscience as amblyopia research progress toward newer treatments. This thesis also highlights 

the importance of understanding development from a data-driven perspective while shifting our 

understanding of the human visual cortical development away from discrete developmental 

stages toward overlapping states of plasticity.  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Preamble Chapter 2 
Amblyopia has the greatest effect on acuity in the central visual field of humans and 

animals. Even after the original deficits are corrected (e.g. cataract), impaired acuity persists.  

The changes following amblyopia are not restricted to the optics of the eye, and are found all 

along the central visual pathway. Indeed, the anatomical effects of early MD in animal models 

range from shrunken soma size in the lateral geniculate nucleus of the thalamus (Movshon, 

1976b), to shrunken arbors of axons that terminate in layer IV of the visual cortex (Antonini et 

al., 1996). The expansion of afferents serving the non-deprived eye is perhaps the most well 

studied anatomical effect of MD. This effect is most easily viewed when visual cortex is 

unfolded and flattened because this presents ocular dominance columns in a single, unbroken 

sheet of cortical tissue. 

Early studies of visual cortex anatomy traced the pattern of connections from retina to V1 

using anterograde tracers (Grafstein 1971; Wiesel et al., 1974; Anderson et al., 1988). Since then, 

many different labels have been used to study this pattern of connections, but all suffer from the 

same curse; ultimately tissues must be sectioned to investigate fine details like axonal 

arborization or the spatial arrangement of ocular dominance columns. Despite costly 

advancements in microscopes that improve cellular resolution and imaging depth, imaging 

multiple tissue sections remains quite laborious, is notoriously difficult, and is prone to errors 

aligning adjacent sections. Because of these limitations, tissue clearing to remove optical 

obstruction and increase light penetration into tissue has seen a resurgence of interest 

(Richardson & Lichtman, 2015). 

These techniques might prove useful for studying the arrangement of ocular dominance in 

the visual cortex of animal models for amblyopia. It remains to be seen whether these modern 

tissue clearing techniques are compatible with classical anterograde tracers. Furthermore, many 

tissue clearing papers still resort to tissue sectioning in order to expedite the clearing process. It 

seems logical that using common techniques like unfolding and flattening the visual cortex 

(Anderson et al., 1988) that have proven useful in originally identifying ocular dominance 

columns (Murphy et al., 1995) could benefit tissue clearing. The question remained whether 
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cleared tissue would maintain modern fluorescent tracers, and if these could be used in 

conjunction with tissue unfolding and flattening.  

To test this we combined eye injection with fluorescent tracers neural (WGA CF dyes®), 

cortical unfolding and flattening, and the modern Passive clarity technique (PACT), to label and 

image the central visual pathway of the cat. This approach would be beneficial for examining 

macroscopic patterns in cleared tissue in MD animals to better understand the changes that take 

place during recovery from amblyopia.  
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Preamble Chapter 3 
The molecular mechanisms of synaptic plasticity that are affected by early monocular 

deprivation (e.g., Beston et al., 2010), are likely the same mechanisms that recover following 

treatment for amblyopia. These include NMDAR and GABAAR receptor subunits, which present 

in very low abundance in synapses of the visual cortex. It is therefore difficult to accurately 

quantify the expression of these subunits in our tissue samples. One technique to address this 

issue is a tissue preparation that enriches tissue samples for synaptic entities, called 

synaptosomes (Quinlan et al., 1999). These tissue preparations are based on the premise that 

receptor proteins are embedded in cell membranes, and thus have greater weight than other 

synaptic entities. Therefore, there are a variety of techniques to procure synaptosomes, and some 

are more effective than others.  

The cortical tissue examined in our lab is our most precious resource. Whether these 

samples come from frozen human visual cortex or animal samples obtained after complicated 

rearing paradigms, the tissue cannot be used frivolously. I therefore sought to create a technique 

that maximizes experimenter resources. I improved on the crude fractionation approach 

developed by (Hollingsworth et al., 1985), and used in my lab for many years (Pinto et al., 2010; 

Beston et al., 2010; Williams et al., 2010). My goals were to decrease the amount of time spent 

performing the tissue preparation while increasing reliability in the procedure and increase 

sample yield and protein enrichment.  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Preamble Chapter 4 
When investigating normal development or the effect of rearing conditions on plasticity 

mechanisms, the common approach is to measure only a few variables in a single experiment. 

However, plasticity mechanisms rarely change in isolation, and typically these changes affect the 

entire system. Standard analyses such as ANOVA and t-tests report significant differences among 

groups, but begin to fail as the number of comparisons increases. This is because it gets 

exponentially more difficult to keep track of the myriad of changes after analyzing only a few 

variables, and it is even more difficult to make sense of the effect of multiple changes on a 

system. 

This is not a new challenge faced by systems neuroscientists, and just as the methods for 

acquiring large amounts of data have improved (eg. genetic assays, large scale western blot 

assays), so too have data analysis techniques to make sense of these large data sets. In order to 

make large data sets easier to handle, a common approach is to reduce the number of variables. 

There are two approaches to variable reduction. The first approach is to select only the most 

important variables and ignore the remaining variables that do not pass a threshold criteria 

(feature selection). The second approach is to transform the data set into a new set of features 

based on the high-dimensional relationships across multiple variables (feature transformation). In 

fact, it is more common to perform some combination of these two approaches. After the number 

of variables have been reduced, the next step is to group similar samples together based on the 

variables within a group.  

There are many different techniques to consider for feature selection, feature 

transformation, and clustering of data. Most of these techniques are typically used to explore 

genetic data in animals and humans so that subsequent experiments can be performed after the 

most important features have been identified. These techniques are rarely used in neuroscience 

for analyzing the entire system response to experimental manipulation or to track changes across 

development. In Chapters 5 of this thesis I present an analysis of 5 different rearing conditions in 

cats, measuring expression of 7 different synaptic proteins across 3 cortical areas. In chapter 6 of 

this thesis I present an analysis of human development across 31 individuals, measuring 

expression of 23 different synaptic proteins. Both of these investigations of plasticity 
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mechanisms in visual cortex were not amenable to standard tests of significance, and when 

considering high-dimensional analyses, I was faced with many options to consider for feature 

selection, feature transformation and sample clustering. This chapter presents the considerations I 

employed in the course of creating my analysis workflow that was used in Chapters 5 and 6.  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Preamble Chapter 5 
This chapter is the successor to Beston et al., 2010, which quantified changes across a 

panel of glutamatergic and GABAergic proteins in cat visual cortex across normal development 

and in response to various lengths of monocular deprivation. This project was motivated by the 

alarming lack of information surrounding the molecular changes in glutamatergic or GABAergic 

mechanisms following classic treatments for amblyopia like reverse occlusion.  The timeliness of 

this chapter comes from a spike in interest surrounding modern amblyopia treatments, including 

dark exposure and binocular experience. Dark exposure was implemented in my study by 

binocularly depriving the animals of visual input through bilateral lid suture, while binocular 

experience was reinstated by simply removing the sutures from the initially MD eye.  

The greatest innovation that I contributed in this chapter was my implementation of 

modern statistical analyses to process the wealth of data that was produced (see Chapter 4). 

Across just 9 of the animals included in the bulk of the analyses (5wk Normal, 5wk MD, reverse 

occlusion, binocular deprivation and binocular vision), measuring the 7 proteins across three 

cortical areas caused the data to grow exponentially to include ~1,510 data points. In order to 

identify system changes, I used principal component analysis (PCA) to convert protein 

expression into biologically relevant indices representing synaptic function (feature 

transformation). Then I used the popular dimensionality reduction technique t-stochastic 

neighbour embedding (tSNE) to reduce the data to two dimensions. Finally, using hierarchical 

clustering I identified 6 clusters that parse treatment effects into 13 groups.  By correlating 

system changes across all biologically relevant indices I identified those treatments that 

reinstated the entire system closest to a 5 week normal animal since this represented the peak of 

the critical period. My creation of plasticity phenotypes enabled visualization, at a glance, of the 

state of plasticity for each treatment condition, which simplified comparisons with normal 

development. 
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Preamble Chapter 6 
This chapter complements the characterization of a collection of GABAergic (Pinto et al., 

2010) and glutamatergic (Siu et al., 2017) proteins expression in human V1 across development. 

The motivation for this chapter was to map the approach developed and implemented in Chapters 

4 and 5 onto normal human development in an attempt to better understand the changes in 

synaptic plasticity mechanisms across development. 

Investigation of human development takes one of two approaches to classifying data. The 

canonical theory of human development proceeds according to successive stages, first proposed 

by cognitive psychologists like Jean Piaget and Erik Erikson. These theories were based on the 

developmental progression along a series of behavioural milestones. Approaches like this have 

been used in mapping development of visual sensitive periods based on the appearance of visual 

abilities (Lewis & Maurer, 2005). Conversely, advancements in EEG and fMRI technologies 

allow repeated investigations of in-vivo structural and functional cortex, which has blurred the 

lines between stages and instead proposes continuous development. Either of these a priori 

assumptions about the development of human visual cortex hinders analysis of the true nature of 

human development because they restrict interpretations of the data. 

As the number of proteins analyzed by our lab has grown past 20 synaptic and non-

neuronal proteins, it has become more and more challenging to reconcile the different courses of 

protein development with one another, especially when attempting to infer function from protein 

expression. Therefore I turned to modern, high-dimensional data analysis techniques to take a 

data-driven approach to investigating the course of human development. Using this approach I 

was able to identify the proteins that set the course for development define 6 states of human V1 

development. Approaches such as this are the first step toward truly effective translation of 

animal findings to humans. By taking a systems-level approach to understanding the series of 

protein changes across the human lifespan we can synthesize the ever-growing repository of data 

that exists for experience-dependent changes in visual cortex and design effective, biologically 

inspired therapies for amblyopia.  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Chapter 2. Anatomical labeling of the central visual pathway  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Abstract 

Background: The pattern of connections from the retina to the visual cortex are typically 

studied by injecting anterograde tracers to the eye, and physically sectioning tissues along the 

central visual pathway. Super bright fluorescent dyes conjugated to lectins have recently been 

used to study the central visual pathway, but have failed to label the primary visual cortex. The 

creation of near-infrared, small, bright, water-soluble fluorescent probes conjugated to wheat-

germ agglutinin (WGA CF® dyes (Biotium Inc)) are compatible with widely available laboratory 

scanners. It was unknown whether these dyes would label all stages of the central visual pathway, 

or if they could be easily visualized after physical tissue sectioning or optical tissue clearing. 

New Method: We implemented a simple and reliable protocol that combines eye injection 

of a new anterograde tracer (WGA CF® dyes), cortical unfolding and flattening, physical tissue 

sectioning and PACT optical tissue clearing (Yang et al. 2014) to visualize the central visual 

pathway in the cat. 

Results: Following an eye injection with WGA CF® dyes we found label in retinal 

ganglion cells, anterograde transport of label to the LGN and superior colliculus. Importantly, we 

provide evidence of bright label remained in the cleared LGN and SC, as well as trace amounts 

of transneuronal transport to V1 in cleared cortical tissue. 

Comparison with existing methods: The bright WGA CF® dye labeling was easily 

imaged in cat cortex using both the low magnification fluorescent scanner and confocal 

microscopy. Furthermore, resecting tissues and using the unfolded and flattened cortex reduced 

the clearing time for PACT from weeks (whole rodent brains) to just a few days (unfolded rodent 

cortex). 

Conclusions: This modern protocol labels the central visual pathway quickly, plus the  

WGA CF® dye remains in cleared tissues, and is compatible with cutting-edge techniques 

(super-resolution). These advantages make this protocol ideal for studies about development and 

plasticity of the visual system that span questions from macro- to nano-scales. 
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2.1 Introduction  

The anatomical features of the central visual pathway are readily visualized after an eye 

injection of an anterograde tracer, including subcortical projections to the LGN and SC, and 

geniculocortical projections when the tracer is transported transneuronally (Mesulam and Mufson 

1980; Itaya and Van Hoesen 1982; Williams and Chalupa 1982; Anderson et al. 1988).  Wheat-

germ agglutinin (WGA) conjugated with horseradish peroxidase (HRP) has been used to label 

the visual pathway because WGA is selectively taken up by neurons and packaged into vesicles 

for active anterograde and transneuronal transport (Gonatas 1979; Itaya and Van Hoesen 1982).  

For example, injection of WGA-HRP in the posterior chamber of the eye labels the details of the 

retinogeniculate projection and the stripe-like pattern of eye-specific inputs to the visual cortex of 

the cat (Anderson et al. 1988).  Although WGA-HRP labels fine details, only one eye’s 

connections can be labeled making it hard to compare the arrangement of ipsilateral and 

contralateral eye projections in the same structure. 

Recent studies have taken advantage of bright, fade resistant, multi-color fluorescent dyes 

conjugated with WGA (e.g., WGA-Alexa Fluor® dyes) to label the projections from the eye to 

the LGN or SC (Kuwajima et al. 2013; Renier et al. 2014) but have not observed label in the 

visual cortex.  Furthermore, the dyes used in those studies were from the visible spectrum 

because near-infrared (NIR) Alexa Fluor® dyes need an additional negative charge to improve 

solubility and quantum yield, but that charge leads to higher non-specific binding.  A different 

class of fluorescent dyes based on rhodamine chemistry, CF® dyes (Biotium Inc), has been 

developed and includes NIR dyes that are small, water-soluble, bright and photostable.  

Furthermore, the NIR dyes are readily imaged with standard laboratory scanners (e.g., LI-COR 

Odyssey) that can quickly scan a large number of anatomical slides at one time. 

Here we describe a protocol that uses eye injection with NIR WGA CF® dyes to label the 

central visual pathway and a laboratory NIR scanner to visualize the pattern of labeling in the 

LGN, SC and visual cortex.  Also, we show that the WGA CF® dye can be combined with a 

passive tissue-clearing technique (PACT - Yang et al. 2014) to take advantage of the NIR dyes 

for visualizing labeled pathways in full thickness tissue samples from the LGN, SC or visual 

cortex. 
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2.2 Methods 

2.2.1 Materials and Equipment List 

Reagents 

 PPC Vet Isofluorane (1-chloro-2,2,2-trifluoroethyl difluoro-methyl ether)  

 WGA CF® dye: 5% Fluorescent Wheat Germ Agglutinin (WGA)  

  WGA CF®680 Wheat Germ Agglutinin (Biotium, CA, USA, #29029) 

  WGA CF®770 Wheat Germ Agglutinin (Biotium, CA, USA, #29029) 

  1M PBS  

 Fixative: 2% Paraformaldehyde (PFA) 

  16% PFA (Electron Microscopy Sciences, PA, USA, #15710) 

  1M PBS 

 Acrylamide Hydrogel Solution: 4% Acrylamide with 0.25% photoinitiator 

  40% Acrylamide Solution (BIORAD, ON, CAN, #1610140) 

  Photoinitiator 2,20 -Azobis[2-(2-imidazolin-2-yl) propane]dihydrochloride   

(Wako Chemicals, USA,  #VA-044)  

  1M PBS 

 Clearing Solution: 8% SDS Detergent 

  Sodium dodecyl Sulfate (SDS) (BIOSHOP, ON, CAN, #SDS001 ) 

  0.1M PBS  

  NaOH (as required to adjust pH to 7.5) 

 Sorbitol-based Refractive Index Matching Solution (sRIMS (Yang et al. 2014)):   

70% sorbitol (w/v) with 0.01% sodium azide  

  D-Sorbitol (Sigma Aldrich, MO, USA, #S1876) 

  Sodium Azide (Sigma Aldrich, MO, USA,#S2002) 

  0.02 M PBS 

  NaOH (as required to adjust pH to 7.5) 

 PBS-T: PBS with 0.1% TritonX 

  Triton™X-100 (Sigma Aldrich, MO, USA, X100) 
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Tools 

 50µL Microsyringe (Hamilton Co., #1705) 

 BD Syringe with Luer Lock (1ml) 

 BD Syringe with Luer Lock (3ml) 

 BD Needle Tip (21G) 

 Razor Blade (#22) 

 Beaker (500ml) 

 Large Petri Dish 

 Cotton Swabs 

 Glass Slides (4"x3" 2 per sample for flattening) 

 Slide spacers (can use broken glass slide pieces; 1mm thick ) 

 Binder Clips (1-1/4"; 2 per sample) 

 Extra large plastic vial (must accommodate width of glass slides) 

 Glass Mason Jars 

 Fine paint brushes 

 PVDF-P Immobilon Membranes (Sigma Aldrich, MO, USA, #IPVH00010) 

 Fluoroshield Mounting Medium (Sigma Aldrich, MO, USA, #F6182-20ML) 

 Imaging Chamber 

  Rubber Gasket Material (1/16" thick)   

  Ultra Blue ® Silicone Gasket Maker (Permatex) 

  Glass slides (4"x3"; x2) 

  Freezing Mounting Medium (TissueTek, Ted Pella Inc, CA, USA, #27209) 

Equipment 

 ScanMaker i900 flatbed scanner (Microtek, CA, USA) 

 Odyssey Infrared Scanner (LiCor Biosciences, Lincoln, NE) 

 Zeiss Confocal 680  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2.2.2 Protocol 

1.    Animals 

We used two adult cats to develop the protocol for using eye injections with WGA CF® 

dyes to label the central visual pathway (2.2.ii) and adult rats (n=2 cortical hemispheres) to test 

the tissue clearing on unfolded and flattened cortical tissue.  All procedures were approved by 

McMaster Animal Research Ethics Board. 

    2.    WGA Injection (0.5 Hr per injection)  

The WGA CF® dye was injected into the posterior chamber of the cat eye (Figure 1A).  

One cat received an injection into one eye, and the tissue was cleared using the modified PACT 

protocol (Yang et al. 2014) described in sections 2.2.vi-2.2.vii, while the other cat had a different 

WGA CF® dye injected into each eye and the tissue was sectioned (Fig. 1). 

Before starting surgery, 25µl of 5% WGA CF® dye was loaded into a 50µl Hamilton 

microsyringe. It is helpful to pre-wet the Hamilton syringe to facilitate dye loading by removing 

the plunger, dipping the end of the plunger into distilled water, putting it back into the syringe, 

and moving it up and down a few times to improve suction for loading 25µl. We ensured that 

25µl was reliably loaded by testing the calibration of the syringe beforehand.  

We injected 25µl of 5% WGA CF® dye (WGA CF® 680R or  WGA CF® 770) in PBS into 

the posterior chamber of the cat eye using the same steps as previous studies (Anderson et al. 

1988; Murphy et al. 1995).  Each eye received two injections, the first one on day 1 and the 

second one on day 3 of the protocol. Briefly, gaseous anesthetic (isofluorane, 1.5–5%, in oxygen) 

was used to induce and maintain anesthesia. The eye was stabilized and rotated nasally by 

placing a temporary suture through the conjunctiva at the lateral edge of the eye-opening, 

clipping the two ends of the suture with a hemostat, and gently pulling the hemostat nasally to 

access the sclera. Next, the sclera was exposed by blunt dissection of the conjunctiva to visualize 

the whiter band of the ora serrata, just anterior to the retina. A guide hole was made onto the ora 

serrata with a 26 gauge needle by rotating the needle and applying gentle pressure. A drop or two 

of vitreous will come out the end of the needle. The guide needle was removed, and the Hamilton 

microsyringe needle was inserted ~5mm into the hole, pointing towards the back of the eye and 

angled away from the lens. The WGA CF® dye was injected slowly over about 4 minutes, using 
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a series of 5µl steps, and waiting for about 45 seconds between steps, including waiting 45 

seconds after the last step before removing the needle. The needle remained in the eye for the full 

duration of the injection. The eye injection was repeated two days later, inserting the Hamilton 

microsyringe through the existing guide hole. Animals survived for two more days and then were 

perfused on day 5 of the protocol.  

    3.    Perfusion and Cortical Flattening (5.5 Hrs) 

All animals were euthanized with Euthanyl (120 mg/kg rat IP,165 mg/kg cat IV) and 

perfused transcardially with 0.1M PBS (4°C) until circulating fluid was clear (~4 mins). The 

brain was removed from the skull, and the cerebral hemispheres were resected and placed in 

0.1M PBS (4°C) before flattening. The rat cortex was unfolded and flattened by removing the 

basal ganglia from under the cortex, making 3 cuts to relieve the intrinsic curvature (1 anterior 

and 2 posterior), then flattening the sheet of cortex by sandwiching it between 2 glass slides with 

1mm glass spacers placed at either end (Olavarria and Van Sluyters 1985) (Figure 1C).   

The visual cortex from the cat was unfolded and flattened using procedures that have been 

described previously (Anderson et al. 1988; Murphy et al. 1995; Olavarria and Van Sluyters 

2014). First, the white matter was wiped away using cotton swabs wetted with PBS. Next two 

cuts were made in the sheet of cortical tissue, a medial and a lateral cut, to relieve the intrinsic 

curvature of the cortex (Figure 1C asterisks). Because we were focusing on the visual cortex, the 

frontal cortex was trimmed (Figure 1C-dashed lines), and the visual cortex was gently flattened 

by placing it between two large glass slides with 1mm spacers at either end (Anderson et al. 

1988) (Figure 1D). The slides and flattened cortex were held together with two binder clips, and 

placed in cold fixative for 30 minutes (2% PFA, 25°C).  Also, tissue samples containing the 

superior colliculus and lateral geniculate nuclei (LGN) were removed from the perfused cat 

brains.  The colliculi were gently flattened between 2 glass slides while the LGNs were left free 

floating in 2% PFA (4°C).  After 30 minutes in 2% PFA, flattened tissues were floated off the 

slides, and left free-floating in cold 2% PFA (4°C) for 5 hrs. Tissue that was going to be 

sectioned was placed in 30% sucrose overnight (4°C) which was long enough for the samples to 

sink and then be sectioned that following day.  
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4.   Tissue Sectioning and Imaging 

Tissue samples from the cat injected with two WGA CF© dyes were sectioned on a 

freezing microtome at a thickness of 50µm (Figure 1E). The cortex and superior colliculus were 

sectioned tangential to the surface while the LGN was sectioned coronally.  All sectioned 

samples were collected in PBS, mounted onto subbed slides and coverslipped using fluoroshield 

mounting medium (Sigma-Aldrich, MO, USA) (Figure 1F).  Once the mounting medium was dry 

the slides were on the LI-COR Odyssey Infrared Scanner (LI-COR Biosciences; Lincoln, NE) 

with the coverslip side down and scanned at the maximum resolution (21µm/pixel) and the laser 

focus was offset to 0.1mm to account for the thickness of the coverslip.  All slides from a site 

were scanned at the same time and both the red (700nm) and green (800nm) laser channels 

scanned.  The scan intensity was kept at the default settings. 

5. Retinal Whole Mounts and Imaging (0.5 Hr) 

Whole mounts of the cat retinae were done to assess if the retinal ganglion cells were 

labeled.  The anterior chamber of the eye, including cornea, iris, and lens, was removed, the 

vitreous humor was wiped out, and four cuts were made through the full thickness of the sclera 

and retina to allow the tissue to lie flat.  A few drops of PBS were applied to keep the retina wet, 

and the retina was gently separated from the pigment epithelium using fine paint brushes, then a 

cut was made through the back of the optic disk to free the retina and float it out of the eyecup. 

The retinae were floated onto a hydrophobic membrane (e.g., PVDF-P Immobilon), and covered 

with a second piece of the membrane. That sandwich was placed between two glass slides and 

retinae were flattened using the weight of the top slide. Slides were left for 15 minutes in 2% 

PFA.  The flattened retinae were rinsed, free-floating, in cold PBS (4°C) for 30 minutes. Then the 

retinae were mounted onto subbed slides, allowed to air dry, and coverslipped with Fluoroshield 

mounting medium. Finally, the retinal whole mounts were imaged using the Odyssey Infrared 

Scanner (LI-COR Biosciences; Lincoln, NE). 

�38



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

Figure 1. Schematic overview of the steps from eye injection to imaging the cleared unfolded and 
flattened cortex.  

(A) Either one (red) or both (red right, green left) cat eyes were injected with fluorescent 5% WGA-CF™ dye 
(25µl) on days 1 and 3. (B) Resected LGN and Colliculus (cartoon ovals) as well as the cortical hemispheres were 
rinsed in cool PBS before unfolding cortex (C). Unfolding and flattening cat cortex with visual areas 17, 18,19 and 
SSYL (suprasylvian sulcus) indicated. Two cuts were made (asterisks) to relieve the intrinsic curvature so the cortex 
can be flattened and extra tissue outside V1 (dashed lines) was cut away. (D) Cortical hemispheres and LGN were 
fixed in 2%PFA while being pressed between two glass slides, assembled with 1mm spacers and held together by 
clips. Colliculi were free floated in fixative. Flattened tissues were removed from glass slides and left to free float in 
PFA for an additional 5 hrs at 4°C. The tissue from the cat that received injections of two different dyes, one in each 
eye, progressed to tissue sectioning (E,F). The tissue from the cat that received a single injection in a single eye 
progressed to tissue clearing (G-I). (E) Tissues were sectioned on a freezing microtome at 50um thickness before (F) 
applying mounting medium, slide-mounting and coverslipping. (G) Flattened cortex was placed in hydrogel to 
incubate for 2 days at 4°C, and hydrogel polymerized by placing in 37°C for 5 hours. (H) Clearing took place in 
SDS 8% at 37°C over the course of 4-10 days, depending on the size of cortical sheet being cleared. (I) After 
clearing and PBS-T washes (not pictured), samples incubated in sRIMS for 20 min - 2 hrs (until transparent). Tissues 
were then transferred to imaging apparatus (see Methods) for scanning with an Odyssey Infrared Scanner (Li-cor 
Biosciences; Lincoln, NE) .  

    6.    Tissue Clearing -- Hydrogel Incubation and Polymerization (2 Days + 5 Hrs) 

The clearing protocol was adapted from the passive clarity technique (PACT) developed by 

Yang et al., 2014.  Post-fixed samples were transferred to glass jars containing acrylamide 

hydrogel solution and protected from light to preserve tracer fluorescence. Samples were left to 

incubate in cool acrylamide hydrogel solution for two days at 4°C to ensure sufficient tissue 

penetration. Tissue can incubate for a few hours longer, but the cool temperature is imperative to 
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avoid premature polymerization. Next, all oxygen must be displaced from the containers to allow 

sufficient polymerization of the hydrogel monomer solution. Instead of degassing the samples 

before polymerization, as in the original PACT protocol describes (Yang et al. 2014), we 

displaced oxygen by overfilling the glass container with hydrogel solution, similar to the use of 

gelatin capsules for the polymerization of the resin during tissue embedding (e.g., Micheva and 

Smith 2007). Polymerization of the hydrogel monomer solution was done by transferring the 

filled tissue containers to a hot water bath (37°C, 5 hrs, Figure 1G). Polymers were drained from 

glass containers, and tissues were briefly rinsed in PBS-T (5 min) to remove the visible 

polymerized solution.  

    7.     Tissue Clearing -- Detergent steps (4-14 days, depending on tissue) 

Tissue was submerged in clearing solution and transferred to a warm water-bath (37°C, 

slight agitation, Figure 1H). The clearing solution was refreshed every day until samples were 

transparent (4 days for rat cortex, ten days for cat cortex). Tissue should be inspected daily to 

avoid over-clearing, which can damage the tissue. After tissue clearing, excess SDS micelles 

were removed by rinsing samples in PBS-T over the course of one day (2-3 wash changes). 

    8.    Tissue Clearing -- Analysis of Cortical Clearing Rate 

To assess the uniformity and rate of clearing for the cortical sheet we started with unfolded 

rat cortex and scanned the samples every 4-8 hours to assess the optical density (OD) (Fig. 2). A 

chamber was made to hold the flattened cortex in the imaging medium (e.g. sRIMS). The 

chamber was made out of a 1/16” thick rubber gasket (e.g. Gasket Material, Moen, M6158, 

Oakville, ON) adhered to a glass slide with Ultra Blue ® Silicone Gasket Maker (Figure 1F). To 

avoid interrupting the clearing process, the flattened cortical sheet was placed into the imaging 

chamber filled with SDS (8%) and sealed by outlining the top surface of the gasket with a 

temporary sealant (eg. TissueTek mounting medium, Ted Pella Inc, CA, USA), a second glass 

slide gently placed on top to serve as the coverslip. A stepped neutral density filter was scanned 

with the tissue on a flatbed scanner (ScanMaker i900, Microtek, CA, USA) using VueScan 

imaging software (Hamrick Software, FL, USA) version 9.0.96. All images were converted into 

grey levels using the green color channel in Photoshop (Adobe, Inc., San Jose, CA). Mean gray 

values were obtained for each step of the neutral density filter using the measure tool, and those 
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values were used to create optical density calibration curves. The cortices were aligned in register 

to facilitate comparisons between clearing time points. Alignments were done using a template of 

the flatted rat cortex that outlined the frontal, somatosensory and visual areas. The mean gray 

values were taken for each area and aligned with the optical density calibration curve to 

determine the mean optical density of each regions 

9.   Tissue Clearing -- Imaging Tissue (1.5-3 Hrs per piece) 

Before imaging the cleared tissue, each section was incubated in sorbitol-based refractive 

index matching solution (sRIMS) until transparent (30 min-2 hrs, depending on tissue size). 

Tissues can be incubated in sRIMS for a few hours after transparency is achieved, enabling more 

extended imaging sessions, but storage in sRIMS is not advised as a precipitate will form inside 

the tissue. If short-term storage is required, we recommend storing samples at room temperature 

in PBS.  The tissue samples were individually loaded into the imaging chamber filled with 

sRIMS and sealed as described previously. To visualize the fluorescent WGA CF™ dye at low 

magnification, the tissue sample was scanned in the imaging chamber on the flatbed of the 

Odyssey Infrared Scanner (LI-COR Biosciences; Lincoln, NE). Cleared tissue were imaged using 

similar parameters as the sectioned tissue (2.2.iv), only the offset was adjusted to accommodate 

thickness of the slides (1mm) and cleared tissue (~0.5mm). To visualize the fluorescent WGA 

CF™ dye at high magnification, whole cleared LGN was transferred to sRIMS and imaged using 

the Zeiss 680 confocal imager and the CLARITY imaging objective. 

10.   Analysis of Label Intensity 

All samples were analyzed using Adobe Photoshop and ImageJ (Schindelin et al. 2012). 

Images were converted to greyscale to measure the intensity of label and analyzed using the 3D 

surface plot plugin. For analyzing label intensity in ROIs, surface plots were created for each 

channel. Sometimes images were slightly shifted in the x-y plane between 700nm and 800nm 

channels,  so minor transformations were made in Adobe Photoshop, and aligned using blood 

vessels.  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2.3 Results 

2.3.1 WGA CF® Dye Eye Injection Labels Retinal Ganglion Cells 

To determine the efficacy of WGA CF® dye as a tracer for visualizing the visual pathway, 

we injected the dye into the posterior chamber of the cat eye and evaluated the appearance of 

tracer in multiple structures from the retina to visual cortex. First, we made a whole mount of 

each cat retina and scanned them using the appropriate wavelength on the LI-COR Odyssey NIR 

scanner. Those rapid, low magnification scans showed a pattern of labeling indicative of labeled 

retinal ganglion cells (Figure 2). The labeled cells were apparent across each retina, with the area 

centralis appearing brighter than the surrounding regions in both cases. Even areas of the retina 

with fainter labeling had a clear mosaic pattern of fluorescently-labeled cells (Figure 2 insets), 

the size and arrangement of which were in agreement with the previously documented density of 

RGC in the cat retina (Schall and Leventhal 1987). Thus, WGA CF® dye injected into the 

posterior chamber of the cat eye was taken up by retinal ganglion cells. 

Figure 2. WGA CF® dye labeling in flat-mounted cat retina.  

Low magnification fluorescent scans of flat-mounted cat retina following intra-vitreal injections of a green (A) 
and red (B) WGA CF® dye. Label is visible across the left (A, green) and right (B, red) retinae. Throughout the 
retina there is a hexagonal mosaic pattern of labeled retinal ganglion cells (inset). Scale bars for A,B= 5mm, for 
regions of interest in C =500µm. 
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2.3.2 Rapid Low Magnification Imaging of Anterogradely Transported WGA 
CF® Dye to the LGN and SC 

WGA CF® Dye Labeling of LGN Features and the Medial Interlaminar 
Nucleus 

To identify the pattern of labeling in the LGN, we imaged the sectioned tissue in the animal 

injected with a different dye into each eye. The large scan area of the LI-COR Odyssey (LI-COR 

Biosciences; Lincoln, NE) enabled all of the LGN sections to be imaged at once. That rapid and 

simultaneous image acquisition eliminated variation that can occur after multiple separate scans 

and improved consistency during batch processing of images. 

The pattern of labeling from the left (Figure 3A) and right eye injections (Figure 3B)  

throughout the anterior (top) to posterior (bottom) extent of the LGN is shown in Figure 3.  LGN 

laminae were identified in sectioned tissue by the labeling pattern from the ipsilateral (uncrossed) 

versus contralateral (crossed) eye. Ipsilateral fibers appeared to be slightly darker than 

contralateral fibers in both hemispheres, and that intensity seemed slightly darker laterally. The 

laminae of cat LGN A, A1, and C are easily distinguished as early as 300µm A-P and remain 

well-defined until 1400 µm A-P.  The C laminae (C, C1, and C2) were most distinct at ~1000µm 

A-P as well-defined, alternating layers in the merged image (Figure 3C). A band of a vertically 

oriented label was also present from 650µm to 1400µm A-P, representing the medial interlaminar 

nucleus (MIN). 

The LGN labeling was shown for a single section to illustrate the fine details that were 

apparent with the WGA CF® dye (Figure 4). The segregated pattern matched previous 

observations of LGN laminae (Anderson et al., 1988; Polley and Guillery 1980). Importantly, 

scanned images to reveal retinal inputs from both eyes were taken of the same section at the same 

time. Studying both inputs in the same section removed the need to react adjacent sections for 

different tracers (e.g., H3 proline versus HRP) and instead allowed visualization of inputs from 

both eyes in all sections, thereby eliminating waste tissue and effectively doubling tissue utility. 
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)  

Figure 3. WGA CF® dye labeling in LGN coronal series of sectioned tissue.  

Tissue was sectioned coronally and anterior tissue are at the top of the figure, posterior at the bottom and the 
section depth of the tissue section is presented on the left (µm). Presented sections are ~200 µm apart. Low 
magnification fluorescent scans of the cat LGN sectioned showing label from an injection into the left eye (A) or 
right eye (B), and the merged (C) images of left (green) and right (red) eye injections. Fluorescent scans for the left 
eye injection were imaged using 800 nm light, and right eye injection using 700 nm light. Merged images were 
pseudo-coloured (C) and minor adjustments were made to align channels using blood vessels. Importantly, scans 
were taken in the same section, not adjacent sections, to reveal truly interleaved layers. Scale bar for all sections is 
1mm. 
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Figure 4. WGA CF® dye labeling in single LGN section at 1200µm.  

 Low magnification fluorescent scans reveal the right-eye injected tracer (red -700nm) (A) and left-eye injected 
tracer (green- 800nm) (B). Images were overlaid and merged (C) to demonstrate interdigitation of layers in cat LGN. 
Dark labelling was observed for contralateral “crossed” layers A, C and C2 (A left, B right) as well as ipsilateral 
“uncrossed” layers  A1 and C1 (A right, B left), which matches previous observations (Guillery et al. 1980; 
Anderson et al. 1988). Black arrow indicates the gap in labelling caused by the optic disk. Merged images were 
pseudo-colour coded and aligned using blood vessels to demonstrate interdigitation of LGN layers. Scale bar is 
1mm. 

Heatmap analysis of label intensity confirmed the presence of the laminar boundaries 

(Figure 5). The grey level images were converted into heatmaps representing the fluorescent 
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label intensities (blue - background, red to yellow - label color-coded for intensity) and here even 

fine details such as the gap for the optic disk representation (yellow arrows Figure 5B, F) were 

visible. The analysis also confirmed the presence of stronger label intensity throughout the 

ipsilateral layers of LGN since the lateral portion (Figure 5D left, 7H right) had more intense 

label than medial portion (Figure 5D right, Figure 5H left). 

Figure 5. Analysis of WGA CF® dye labeling in single LGN section.  

Identical sections as presented in Figure 5. Yellow line (A,C,E,G) outlines the ROI that was converted to a heat 
map of label intensity (B,D,F,H). Cool colours (blue) represent light label intensity, while warm colours (red) 
represent more intense labelling. This analysis was useful in identifying the gap in Layer A (yellow arrows) that 
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represented the optic disk (B,F). There is also a more intense label presence in ipsilateral labeling of the outer 
segments of layer A1 indicated by bright yellows in D and H. Scale bar is 1mm. 

WGA CF® Dye Labeling of Contralateral and Ipsilateral Inputs to the SC 

The superior colliculus is typically sectioned in the same A-P plane as LGN, and this was 

how Ann Graybiel first identified the small 'islands' of ipsilateral fibers (Graybiel 1976). These 

islands or patches were later identified when superior colliculus was sectioned in the dorsal-

ventral (D-V) plane by Illing in 1989 (Illing 1989). In practice, only a few sections demonstrate 

this patchiness, which is in agreement with the depth of label observed in sections of SC 

spanning just a few hundred microns (Graybiel 1976).   

Here we present a montage of 2 superficial sections (100-200µm) used to create the 

overlaid image in Figure 6. The SC receives most of its input from the contralateral hemisphere, 

and this was clear when considering the vast amount of green label observed in the right superior 

colliculus (Figure 6A). The opposite situation was observed in the left hemisphere with the red 

label (Figure 6B).  There was, however, labeling in the ipsilateral hemisphere that appeared as a 

series of small, irregularly sized but regularly spaced patches. Yellow boxes in each image were 

drawn around an ROI containing some of this patchy label distribution (Figure 6A left, Figure 6B 

right) with arrows pointing at three neighboring patches within the ROI. Similarly, two boxes 

were drawn around ROI in each panel around an area that appears to have complementary lack of 

label from the contralateral hemisphere and are devoid of labeling (Figure 6A right, Figure 6B 

left). When the two ROI panels within a hemisphere were overlaid, the label from the ipsilateral 

hemisphere indeed appeared to nicely fill the voids left in the contralateral hemisphere (Figure 

6C). 
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Figure 6. WGA CF® dye labeling in sectioned superior colliculus.  

Low magnification fluorescent scans of colliculus (100-200µm D-V) imaged to reveal left-eye injected tracer 
(green- 800nm) (A) and right-eye injected tracer (red -700nm) (B). Images were overlaid and merged (C) to 
demonstrate interdigitation of patches in ipsilateral, uncrossed fibres of cat superior colliculus (A-left, B, right) fill 
the gaps in label of the contralateral, crossed fibers (A-right, B-left). Minor adjustments were made to align channels 
using blood vessels. Importantly, scans were taken in the same section, not adjacent sections, to reveal truly 
interleaved layers. Scale bar is 1mm. 

To analyze the intervening patterning of crossed and uncrossed afferents in SC, we 

compared the intensity of label in matching ROIs for both channels (Figure 7A). The yellow box 

marked the same ROI on the right-hand side of Figure 6A and 6B. The three yellow arrowheads 

in Figure 7D match the arrowheads from Figure 6B (right) used to denote intense patches of 

labeling. Grayscale images were converted to heat maps demonstrating areas of high (yellow) 
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and low (blue) label intensity (Figure 7 B, E). It was difficult to discern changes in label intensity 

from the contralateral label (Figure 7 B), but waxing and waning of the ipsilateral label were 

easily identified (Figure 7E). The image view was rotated ~ 90deg into the plane of the image, 

and 35 degrees CCW around the X-Y axis (Figure 7C, F) to help visualize maxima and minima 

in label intensity. These two panels were vertically aligned using the blood vessel (Figure 7G, 

white arrow). Each of the local maxima in the ipsilateral hemisphere (Figure 7D yellow arrows, 

Figure 7G bottom, peaks) aligned with the local minima in the contralateral hemisphere (Figure 

7G top, troughs), as indicated by double-headed yellow arrows.  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Figure 7. Aligning WGA CF® dye labeling in right superior colliculus.  

Yellow boxes represent the same ROIs from contralateral(A-C) and ipsilateral (D-F) injections to superior 
colliculus. White arrow represents blood vessel with no label in either channel, which was used to align ROIs. 
Grayscale images were converted to heat maps, with the same conventions as Figure 5 (B,E). Heatmaps were rotated 
so that label intensities were also plotted in the vertical z-dimension, and aligned with x-y coordinates (C,F). The 
contralateral superior colliculus (G-top) was aligned above the ipsilateral colliculus (G-bottom), and the peaks in 
ipsilateral label aligned with the troughs in contralateral label. Blood vessel (white arrow) is the same as in A, D, and 
recognizes zero label in either channel. Scale bar is 1mm. 
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2.3.3. Investigation of WGA CF® Dye Labeling in PACT Cleared Tissue 

Measurement of flattened cortical clearing rate using PACT 

To test the PACT protocol for use with unfolded and flattened cortex, we began by 

assessing if the rate of tissue clearing and if the clearing was uniform across the unfolded tissue 

sample. During clearing, we measured the optical density in 3 cortical regions in the unfolded 

and flattened rat cortex by repeatedly scanning the tissue on a flatbed scanner (ScanMaker i900, 

Microtek Inc). This imaging was done in the clearing solution (8% SDS) to avoid interrupting 

tissue clearing. The change in optical density reflected the rate of lipid removal. Figure 8 shows 

the optical densities in visual, somatosensory and frontal cortex measured repeatedly over the 4 

days of tissue clearing (Figure 8A) and illustrates the change in optical density from opaque 

(black) at the start of clearing (Figure 8B top) to translucent (whitish) (Figure 8B middle), to 

transparent at the end (clear) (Figure 8B bottom). The average optical density and standard error 

of the mean (SEM) for each region were plotted for each time point, and an exponential decay 

was fit to these data (y= a + b*exp (-x/T)). The decay functions provided excellent fits: visual 

(black; y= 0.15 + 1.22*exp(-x/12.09; r(250)= 0.99, p< 0.0001), frontal, (red; y= 0.16 + 

1.17*exp(-x/10.05); r(250)= 0.99, p< 0.0001), and somatosensory (grey, y= 0.16 + 1.26*exp(-x/

15.04); r(250)= 0.99, p< 0.0001). This decay function served as a measure of the rate of clearing.  

First, we noticed that after 96 hours of clearing, all cortical regions reached the same level of 

transparency (~0.1 OD, ANOVA (F92,9)= 2.6487, p>0.05). Next, we used τ from the decay 

function to quantify when the tissue had reached 87.5% of the maximum transparency (3τ). We 

found that the three cortical regions took slightly different lengths of time to reach the same level 

of transparency: visual 30.2 hrs, frontal 36.3 hrs, and somatosensory 45.1 hrs.  The rate of PACT 

clearing for the flattened rat cortex was similar to or faster than previously identified times to 

clear 2mm thick sagittal sections of rodent brains (48 hours- (Yang et al. 2014)). The current 

results suggest that somatosensory cortex might take about 10-15 hours longer to clear than the 

other regions (ANOVA (F(2,9) = 7.7911, p< 0.05; Tukey HSD p<0.05). The basal ganglia, 

however, is tightly adhered under the somatosensory cortex and is difficult to remove completely 

during the unfolding process. As a result, some of the basal ganglia remained after unfolding and 
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flattening, which was visible as a honeycomb-like matrix (Figure 8B middle-outline). The results 

showed that although rates of clearing in unfolded and flattened rat cortex can vary slightly 

among cortical areas, ultimately all regions achieve a similar level of transparency. 

Figure 8. Analysis of clearing rates in flattened rat cortex. 

(A) The optical densities of three cortical areas measured repeatedly over 4 days. Exponential decay curves were fit 
to the data for frontal (red), visual (black) and somatosensory (grey) cortex. (B) Sample images showing the 
amount of light transmitted through the unfolded and flattened rat hemisphere at different points in the PACT 
process. Arrows point to the corresponding optical density measured for the tissue. The top image shows very 
little light transmission through the tissue prior to starting the clearing (~1.4 O.D.), the middle image shows the 
translucent appearance after 36 hrs of clearing, and the bottom images show the transparent appearance after 96 
hrs of clearing.  The basal ganglia was still visible under the somatosensory cortex at 36 hrs but most of the 
other regions (frontal and visual) were almost transparent. 

The unfolded and flattened adult cat visual cortex took ~10 days to become clear. Visual 

inspections were performed multiple times a day to determine when tissue has reached the 

appropriate level of transparency.  Interestingly, clearing the subcortical visual areas, including 

separate pieces of the LGN and SC took a few days longer (14 and 21 days respectively). 

Packets of WGA CF® Dye Remain Inside Retinogeniculate Axons in PACT 
Cleared LGN  

To evaluate the anterograde transport of WGA CF® dye, we obtained high magnification 

images from a small piece of PACT cleared LGN tissue (~3mm x 2mm x 1mm) using confocal 

imaging and the CLARITY immersion lens (Methods). We visualized multiple packets of bright 
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fluorescent labeling (Figure 9A) and then determined the location of the label. First, we looked in 

blood vessels and did not find any fluorescent label (Figure 9B, Black Arrow) indicating that the 

WGA injection to the eye did not leak into the bloodstream. Second, we looked at the label in 

large axons of retinal ganglion cells.  We saw label visible as strings along the axon wall, 

presumably being actively transported by actin filaments (Figure 9B). Finally, we looked at the 

appearance of label in fine processes of retinal ganglion cell axons and observed patterns of 

labeling that included synapse-like processes (Figure 9C). Those synapse-like structures 

appeared as very bright, small (~15nm) accumulations of the fluorescent label (Figure 9C). The 

high magnification confocal imaging confirmed that WGA CF® dye remained inside the axons 

of post-fixed neuronal tissue even after extended lipid removal with mild detergents.  

Figure 9. Confocal image of WGA CF® dye in PACT cleared LGN.  

 High magnification confocal image of tissue mounted in sRIMS (A). Packets of  WGA CF® dye (red) are 
found throughout the axonal process in the sample that are visible on the light green background. (B) No , WGA 
CF® dye was found inside blood vessels (arrow points to a large circular opening cut across a blood vessel).  In 
contrast, axonal processes were lined with lots of WGA CF® dye packets, especially along the edges of large retinal 
ganglion cell axons (small black arrowheads). (C) WGA CF® dye appeared as strings of label along the axon wall in 
large diameter (small black arrowhead) and more isolated packets of label in the finer processes. In addition, there 
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were sites with accumulation of label that were presumably gathering near synapses (~15 nm wide) (C, large 
arrowhead). 

Imaging the Whole Cleared LGN After an Eye Injection with a WGA CF® 
dye 

After the high magnification imaging had confirmed that the WGA CF® dye transported to 

the LGN remained inside the axons after PACT tissue clearing we wanted to examine low 

magnification imaging of the whole LGN.  We wished to determine if there was sufficient label 

in the LGN for the LI-COR near-infrared scanner to image it and identify any details of the 

laminar pattern of labeling.  Additional high resolution imaging could be done with a light sheet 

microscope, however, it is an expensive piece of equipment requiring specialized training to 

operate and many universities do not have one.  For those reasons we wanted to test the quality 

of low magnification imaging of cleared tissue from the central visual pathway.  

Different patterns of fluorescent label were observed when the cleared ipsilateral (left) and 

contralateral (right) LGNs were imaged at low magnification (Figure 10). The ipsilateral LGN 

had most of the label restricted to the more ventral region of the LGN, where we expected to find 

layer A1 (Figure 10 Left- layer A1), while labeling in the contralateral hemisphere was confined 

to the dorsal region of the LGN, where we expected to find layer A (Figure 10 right- layer A). 

Thus, the WGA CF® could be imaged at low magnification in the whole cleared LGN, however, 

the lamination was far less detailed than found in the sectioned tissue. In addition, the anterior 

sections of the LGN are dominated by contralateral inputs that cover the entire surface of the 

LGN (Figure 5 A, B, C 100µm), and that pattern of contralateral dominance does not segregate 

into distinct layers until more posterior sections. Thus, we expected that imaging the whole LGN 

would obscure the finer details of the retinogeniculate projection such as the C laminae.  
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Figure 10. WGA CF® dye labeling in the whole cleared LGN after left-eye injection.  

Low magnification scan of the whole LGN mounted in sRIMS. The bright label in left and right LGN reveals 
the larger layers of uncrossed (left A1) and crossed (right A) fibres from the injected eye. Thinner layers C, C1, and 
C2 appear to be obscured by tissue thickness. Inset depicts the major layers of the right LGN, stacked vertically as A, 
A1 and C laminae. Scale bar is 5mm. 

Imaging the Whole Cleared SC After an Eye Injection with a WGA CF® dye 

After confirming that WGA label transported to the SC, and identifying a pattern of 

interdigitated labeling from the the ipsilateral and contralateral eye, we tested whether that label 

remained after clearing the flattened SC tissue. As was the case for the LGN, label stayed in the 

cleared SC, with more label observed in the contralateral (Figure 11A-left ROI) than the 

ipsilateral hemisphere (Figure 11A-right ROI).  The pattern of labeling in the cleared 

contralateral SC, was marked by a large swathe of label across the entirety of SC.  In contrast, 

there was a faint pattern of waxing and waning of fluorescence in the contralateral hemisphere 

(Figure 11A, left ROI) evident by faint patches of weaker label expression (Figure 11A- yellow 

arrows) surrounded by the swathe of darker label. That pattern matches what was seen in the 

superficial layers of the sectioned SC.  
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Figure 11. Analysis of WGA CF® dye labeling in whole cleared superior colliculus. 

 A. Low magnification image of the flattened left and right hemispheres from a cleared superior colliculus. 
Yellow boxes outline two regions of interest in the contralateral (B-D) and ipsilateral (E-G) hemispheres of superior 
colliculus. Higher magnification images of the left (B) and right (E)  regions of interest outlined in A. Grayscale 
images were converted to heat maps (C,F), where areas of high label intensity are colored white, and low intensity 
are colored red. Heatmaps were rotated so that label intensities were visualized in the vertical z-dimension in D and 
G. White arrows in D denote valleys of low label intensity, and white arrows in G denote peaks of high label 
intensity. 

Closer inspection of the ROIs identified some small fluctuations in label intensity with 

fainter patches of reduced label in the contralateral SC (Figure 11B-D) and darker patches with 

more label in the ipsilateral SC (Figure 11 E-F). When the grayscale images of the contralateral 

SC were converted to heat maps and rotated to highlight the label intensity, the patches of 

reduced label intensity appeared as valleys (Figure 11D-white arrows). When the same approach 

was applied to the ipsilateral SC, patches of intense label appeared as small peaks in label 

intensity (Figure 11G- white arrows). However, the change in fluorescence amplitude between 
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regions of low label to regions with greater label were much smaller than observed in the 

sectioned tissue (see Figure 9). Similarly, the range of grey levels in the entire cleared SC was 

much smaller than observed in sectioned tissue. Thus, similar to the low magnification imaging 

the cleared LGN, the WGA CF® dye was readily imaged through the cleared SC but the fine 

details of the ipsilateral and contralateral projections could not be visualized. 

2.3.4. Investigating Transneuronal Transport of WGA CF® Dye  

Figure 12. Grey level analysis of retinae, sectioned SC and LGN, sectioned cortex and cleared cortex. 

 Histograms of grey levels in the retinae (A,B) and across all sections of the SC (B,C), LGN (E,F), and Cortex 
(G,H). Histograms were also plotted for the single image of cleared cortex (I). The y-axis of all plots were matched 
and set to 100 pixels in order to demonstrate the differences in the number of pixels (visible fluorescence) found in 
sectioned cortex (G,H) relative to cleared cortex (I). 
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To determine the extent of label transport to the retinae, LGN and SC, we performed an 

analysis of the grey level histograms contained in the unprocessed, raw images for these tissues. 

The right retinae, which was injected with 700nm wavelength tracer, had far more grey levels (0- 

to 225 grey levels) than the left retina, which was injected with 800nm wavelength tracer (0 to 50 

grey levels, Figure 12 A,B). The difference was likely due to the brightness of each tracer, since 

near-infrared wavelength light is much less bright than light in the visible spectrum. The 

difference in brightness was not an issue for the sectioned SC which had a wide range of grey 

levels in both the left SC (700nm - 0 to 75 grey levels) and the right SC (800nm - 0 to 75nm) 

hemispheres (Figure 12 C,D) . Similarly, the sectioned LGN tissue had a wide range of grey 

levels for laminae with projections contralateral to the right eye (700nm - 0 to 225 grey levels) 

and contralateral to the left eye (800nm - 0 to 225 grey levels; Figure 12 E,F).  

We investigated the extent of transneuronal WGA CF® dyes by performing the same grey 

level analysis in sectioned unfolded and flattened cat V1 (Figure 12 G,H) and in cleared tissue 

(Figure 12 I). The intensity of visible label in sectioned visual cortex was very low, and did not 

match that of previous reports using other anterograde tracers (e.g. Murphy et al. 1995). 

Furthermore, the range of grey levels after fluorescent imaging of the sectioned cortex (~0 to 75 

grey levels, Figure 12 G,H) was much lower than that observed after imaging the sectioned 

retina, SC or LGN, supporting the notion that little label was transported to the cortical tissue. A 

major difference between the current tracer (WGA CF® dyes) and classic tracers (WGA-HRP) is 

the ability to convert the HRP into a chromogenic substance to amplify reportability and 

visibility of the tracer (for example TMB, DAB, ABTS). Such techniques that might increase the 

visibility of WGA CF® dyes are not yet available, as they are for other amplifiers of fluorescent 

reporters (anti-GFP). Therefore, the sectioned visual cortex was not included in further analyses. 

We wondered whether WGA CF® dyes might be visible in cleared tissue, even if they were 

not visible in thin sections. We imaged cleared tissue in the hopes that the alignment of ocular 

dominance columns could serve to amplify the underlying fluorescent signal of trace amounts of 

WGA CF® dye. The cleared unfolded and flattened V1 was prepared for scanning at low 

magnification by incubating the samples in refractive index matching solution (sRIMS) until 

optically clear. Next, the cleared tissue was placed in an imaging chamber (Methods) and the 
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chamber was filled with sRIMS. Lids were carefully sealed with Freezing Mounting Medium 

(TissueTek, Ted Pella Inc, CA, USA, #27209), and sealed imaging chambers were placed on the 

fluorescent flatbed Odyssey Scanner (LI-COR Inc).  The scan intensity of the 700nm channel 

was left at the default intensity, while the resolution was set to 21µm and the offset was adjusted 

to 1.25mm to account for the thickness of the slides and tissue (scan area outlined in Figure 

13A). When we looked more closely at the pattern of the fluorescent label, we saw an alternating 

pattern of similarly sized bright and dark patches (Figure 13 B&C). A regular pattern of waxing 

and waning of the fluorescent intensity was found in the cleared V1. The patch-like organization 

of fluorescent labeling was similar to the pattern of cat ocular dominance patterns visualized with 

WGA-HRP (Anderson et al. 1988). The range of grey levels in cleared tissue ranged from 0 to 

255 (Figure 12 I), and this was a much wider range of grey levels than observed after imaging the 

physically sectioned visual cortex. The likely reason for more visible tracer, and thus more grey 

levels in cleared tissue, was the alignment of tracer within ocular dominance columns, which 

were aligned with the vertical imaging plane of the fluorescent flatbed scanner.  
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Figure 13. WGA CF® dye labeling in cleared unfolded and flattened cat cortex. 

  (A) Low magnification image of the large piece of transparent flattened cortex scanned on a ScanMaker i900 
(Microtek Inc) to identify V1 (dotted line). M, medial, L, lateral, A, anterior, P, posterior. Scale bar =1cm.  (B & C) A 
slightly higher magnification image scanned through the full thickness of the cleared V1 on an Odyssey infrared 
fluorescent scanner (LI-COR Biosciences; Lincoln, NE). Brighter patches represent WGA CF® dye labeled inputs 
from the injected eye (C, white arrows), while the interdigitated darker patches (C, black arrows) are presumably 
areas with inputs from the other eye. Scale bar is 5mm. 

2.4 Discussion

We developed a protocol for tracing the central visual pathway of both eyes using WGA 

CF® dyes that was fast, simple, affordable, and compatible with passive tissue clearing (PACT, 

(Yang et al. 2014)).  We showed that the features of the visual pathway could be imaged with a 

standard NIR fluorescent flatbed scanner because of the bright and photostable properties of the 

dyes.  Furthermore, we showed that WGA CF® dye remained inside axons in cleared tissue, and 
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even low magnification imaging of cleared tissue identified some of the eye-specific features of 

projections to the LGN, SC and visual cortex.  

WGA CF® dye labeling of the central visual pathway 

We showed that the WGA CF® dyes were taken up by retinal ganglion cells, and that it 

was easy to visualize the hexagonal arrangement of labeled cells in retinal whole mounts, with 

notably stronger intensity of label in the area centralis.  In the LGN, the WGA CF® dyes labeled 

the eye-specific laminae along the full anterior-posterior extent of the nucleus. Low-

magnification analysis of the LGN confirmed that the protocol could label fine details including 

the pattern of A and C layers, as well as the gap in labelling for the representation of the optic 

disk, and the eye-specific segments of the medial interlaminary nucleus (Figures 4 and 5) 

(Guillery and Kaas 1971; Guillery et al. 1980; Sretavan and Shatz 1986; Anderson et al. 1988). In 

addition, the appearance of WGA CF® dye at high magnification as packets along the inside 

edge of retinal ganglion cell axons was similar to previous studies that used the dyes to study 

axonal transport in live neurons (Pesaresi et al. 2015) suggesting active and specific anterograde 

transport of WGA CF® dye from the retina to LGN. The pattern of transported dye in the SC was 

visible as strong contralateral labeling with regular waxing and waning to create a patch-like 

pattern.  That contralateral pattern was interdigitated by the distinct puffs arising from ipsilateral 

eye afferents (Figures 6 and 7), similar to previous reports of islands of label (Graybiel 1976; 

Illing 1989). Tangential sectioning and analysis of the double-labeled SC showed that the 

ipsilateral puffs fell in the less intensely labeled contralateral patches suggesting an ocular 

dominance-like pattern of inputs to the SC.  The new protocol is therefore suitable for rapidly 

visualizing the pattern of retinal projections to the LGN and SC. 

WGA CF® dye remained after clearing 

The expression of fluorescent WGA CF® dyes in sectioned LGN and SC tissues confirmed 

transport of the dye from retinal ganglion cells to terminals.  It was unclear, however, if the WGA 

CF® dye would remain after tissue was cleared because previous studies using other dyes have 

had variable success after clearing tissue (Kuwajima et al., 2013). In this case, we were unsure 

whether label would remain because PACT is a gentle tissue clearing protocol that preserves 
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structural integrity of cleared tissue by crosslinking a hydrogel matrix between acrylamide 

polymers and fixed tissue contents, before washing out unfixed cell components such as lipids, 

which are a large component of neural membranes (LeVine et al. 1972; Nicolson 1974; Mesulam 

1982; Yang et al. 2014)  before forming crosslinks with the N-acetyl-D-glucosamine and N-

acetylneuraminic acid residue in neural membranes (Mesulam 1982). Therefore it was unclear 

whether crosslinked WGA molecules would be removed via lipid extraction (SDS washing). 

The efficacy of WGA for neuronal tracing is often increased through conjugation with 

other molecules (eg. HRP, Alexa-fluor), yet whether those molecules remain in membranes after 

tissue clearing has not been evaluated.  Here we have shown that WGA CF dye indeed remains 

inside the axons of retinal ganglion cells after PACT clearing (Figures 9, 10 and 11). 

Furthermore, imaging with the LiCOR Odyssey scanner detected WGA CF® dye throughout all 

layers of cleared tissue. The low magnification full thickness scanning of the dye obscured finer 

details of the LGN, such as the alternating C1 and C2 layers (Figure 10), and also obscured finer 

features of the SC, such as the pattern of islands in the SC (Figure 11). Nevertheless, there was 

still good evidence for preserved label in more robust features, such as the alternating A and A1 

laminae of the LGN, and the intense swathe of contralateral label in the SC. 

Transneuronal Transport of WGA CF® dye 

Here we assessed transneuronal transport of the WGA CF® dyes by examining unfolded 

and flattened V1 sections but did not find evidence of neural labeling. The range of available 

grey levels supported the notion that little label transported to visual cortex. Classic studies using 

WGA-HRP or CTB require additional steps to increase tracer visibility in a single tissue section 

(Matteau et al., 2003). For example, the protocols to visualize HRP amplify the signal and with 

the TMB reaction a birefringent crystal is formed that can be further amplified by using cross-

polarized darkfield illumination. The current sections were imaged by scanning with a laboratory 

NIR scanner without any additional steps to amplify the fluorescent signal. It is possible that the 

signal intensity could be increased by using a type of antigen retrieval or fluorescent signal 

amplification, similar to how anti-GFP directly targets the fluorescent molecule in order to 

amplify fluorescence. Unfortunately, antigens that might detect the fluorescent component of 

WGA CF® dyes do not exist. 
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On the other hand, examination of cleared cortical tissue after a single eye-injection  

revealed similarly spaced blobs as previous reports (e.g., Wiesel et al. 1974; Murphy et al. 1995). 

This was surprising, since the fluorescent images were taken by imaging throughout the entire 

thickness of cleared tissue. Unlike our examination of LGN and SC, where fine details were 

obscured by out-of focus fluorescence, here the intensity of the WGA CF® dye appears to be 

amplified by out of focus fluorescence. This was likely a byproduct of aligning ocular dominance 

columns through the tissue thickness, which might explain why blobs were visible in cleared V1 

and not in sectioned V1. Nevertheless, the range of grey levels in this tissue was less than that 

observed in any of the other sectioned or cleared tissue samples, suggesting that very little tracer 

was transported to V1 in the first place.  

Conclusions 

 The protocol outlined here combines anterograde transneuronal pathway tracing using a 

bright WGA CF™ dye, cortical unfolding and flattening, and passive tissue clearing (PACT).  

This provided a simple, inexpensive method to take advantage of modern neuroanatomical 

techniques, including tissue clearing for studying development and plasticity of axonal 

projections along the central visual pathway. Here we showed that the WGA CF® dyes are 

transported along the visual pathway so that fine details of the LGN and SC are easily visualized, 

even at low magnification. The current study extends the repertoire of fluorescent labeled WGA 

dyes for tracing the central visual pathway by showing the specificity of the anterograde labeling 

with the WGA CF® dyes and the compatibility of the dyes with PACT clearing. The WGA label 

used here transports quickly, is not toxic, does not kill labeled neurons or the animal, and does 

not require the implementation of biosafety protocols. Thus, the WGA CF® dye is a simple 

alternative for labeling the projections from the eye to subcortical sites and V1. 
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Chapter 3. Protocol for a high-throughput semi-automated 
preparation for filtered synaptosomes   
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Abstract 

One of the simplest techniques for the isolation and application of synaptosomes involves 

fractionation of synaptoneurosomes through filtration and low speed centrifugation1. This 

approach however, is limited by two essential stages of the synaptoneurosome tissue preparation: 

the manual homogenization and filtrations are both laborious and slow. We have updated this 

traditional technique to include modern bench-top homogenizers and centrifugal filter units to 

simplify these labor intensive stages, to make each stage faster  and to reduce the variability 

between samples. Here we outline our protocol to produce filtered synaptoneurosomes that 

reduces sample preparation time, increase the amount of tissue recovered and most importantly, 

increases protein enrichment.  

Keywords: Synaptoneurosomes, synaptic proteins, high-throughput, centrifugal filtration  
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3.1 Introduction  

3.1.1 General Introduction 

Synaptosome preparations enrich brain tissue samples for synaptic proteins, making it an 

important tool for studying proteins involved in synaptic development and plasticity2-8. Two 

types of protocols are used to enrich for the synaptic fraction; the use of a sucrose or Percoll 

gradient to make synaptosomes9,10, or filtration procedures to make synaptoneurosomes1,11. What 

makes these synaptosome or synaptoneurosome preparations useful for studying synaptic 

development and plasticity is the approximate twofold enrichment of synaptic proteins1,12. That 

enrichment improves the signal-to-noise so that synaptic proteins can be accurately quantified 

even when the synaptosome or synaptoneurosome is prepared from a small brain sample (e.g. 

~30 mg). Furthermore, low abundance synaptic proteins (eg. PICK and GRIP) that are difficult to 

reliably quantify in homogenate samples can be routinely studied with synaptoneurosomes13.  

Our research uses filtered synaptoneurosomes to study synaptic development and plasticity 

in visual cortex of animals and humans. We have also developed a high-throughput, semi-

automated protocol for preparing synaptoneurosomes because many aspects of synaptic function 

can be studied with this preparation. For example, we have examined both pre- and post-synaptic 

proteins involved in establishing nascent synapses and mediating experience dependent 

strengthening or weakening of connections13-21. Our studies, as well as ones from other labs have 

found that using a synaptoneurosome preparation can uncover synapse-specific aspects of 

neurodevelopment and plasticity12,14. Indeed, our lab has used synaptoneurosomes to highlight 

similarities and differences between the total pool of synaptic proteins found in homogenate 

samples and the amount concentrated at the synapse by the synaptoneurosome14,19,21.   

This chapter will focus on describing the protocol we developed for high-throughput and 

semi-automated preparation of synaptoneurosomes that is ideal to process large numbers of 

samples quickly, inexpensively, and with high reliability18.  

3.1.2 Synaptoneurosome Steps 

All filtered synaptoneurosome preparations are made using two steps: tissue 

homogenization and fractionation (Chapter 1 of Springer Methods book). The simple protocol 
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described by Hollingsworth et al. (1985) helped to popularize the use of filtered 

synaptoneurosomes. That method describes manual homogenization with a glass-glass Dounce 

tissue grinder, followed by 5µm filtration and low speed centrifugations. Two challenges emerge 

when trying to scale up any of the manual protocols for making synaptoneurosomes. First, these 

protocols are very slow because each sample is prepared by hand, one at a time. Second, 

substantial sample-to-sample variability can be introduced because both homogenization and 

filtration steps are done by hand. Many groups have tried to improve the quality of the 

synaptoneurosome preparation by introducing new methods for tissue lysing22-24, fractionation25, 

or adjusting the filter pore size11,25. Yet, all of those protocols still use hand processing for tissue 

lysing and/or filtering, so they continue to have sample-to-sample variability and are not easily 

scaled up for large projects. We have addressed these problems by developing a new high-

throughput, semi-automated protocol to prepare filtered synaptoneurosomes18. 

3.1.3 Tissue Homogenization 

Synaptoneurosome protocols with manual steps for tissue homogenization (e.g. glass-glass 

Dounce tissue grinders) use qualitative descriptions to explain how to lyse the sample. In 

practice, these protocols are difficult to reproduce since only the number of strokes is quantified, 

and most other aspects of the tissue lysing, such as how fast or how much pressure to use with 

each stroke, are difficult to describe. New protocols however, use modern bench-top 

homogenizers to grind, homogenize and lyse tissue samples18. These homogenizers can prepare 

multiple samples at a time, using built-in programmable steps that lead to highly reproducible 

preparation of many samples.  

3.1.4 Sample Fractionation 

Tissue fractionation protocols typically include syringe filtration steps to remove larger 

extra-synaptic components from the homogenate. These are followed by low speed 

centrifugations to further separate heavier synaptic fractions from the lighter supernatant. The 

manual syringe filtrations vary according to the number of filtrations, the size of the filter pores, 

and the qualitative description of how to carry out the steps. In addition, syringe filters such as 

Swinnex holders, have about 1ml of dead space, so at least 1.5ml of sample has to be loaded to 

�69



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

recover enough filtrate to continue the protocol. This loss of sample is problematic when using 

small, valuable samples that do not generate enough homogenate for subsequent filtration. We 

eliminated these problems by replacing the manual filtration steps with centrifugal filtration 

units, where even a small volume of homogenate is reliably filtered. Each centrifugal filtration 

unit is loaded with up to 500µl of homogenate, and then spun with a known g-force in a 

centrifuge to collect the filtered sample needed to prepare the synaptoneurosome. There is no 

dead space where sample volume can be lost, and many samples can be filtered at once, leading 

to reliable high-throughput filtration. 

 Here we detail the steps to prepare filtered synaptoneurosomes using our new  protocol18. 

The protocol explains how to implement our semi-automated, high-throughput procedure and 

compares samples prepared with this new protocol versus older manual protocols to illustrate the 

optimizations that lead to improved reliability, enhanced protein yield, greater synaptic 

enrichment, and faster preparation of synaptoneurosomes.  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3.2 Materials and Equipment List 

3.2.1 Laboratory Equipment 

Peristaltic Pump 

Biosafety cabinet (equipped with drain) 

1.5 ml Micro centrifuge vial (7x tissue piece) 

 1 on crushed dry ice 

 6 on wet ice 

-80℃ freezer 

Weigh boats 

Scale 

Scoopula 

2 ml Lysing Matrix-D tube (1x tissue piece, MP Biomedical, Cat. #116913050) 

Bench-top Homogenizer (FastPrep 24 Tissue and Cell homogenizer, MP Biomedicals, Cat.  

#116004500 ) 

2 ml Ultrafree-MC SV Centrifugal Filter Units with Microporous Membrane (1x tissue  

piece, Millipore, Cat # UFC30SV00) 

Centrifuge (e.g. Sorvall legend Micro 21R) 

96 well sample assay plate 

Pipettor (volumes between 0.5µl and 200µl) 

Biological Incubator (capable of 45℃) 

Absorbance Reader (e.g. iMark Plate reader, BioRad) 

Heating Block 

3.2.2 Chemicals and Reagents for Synaptoneurosome Tissue Preparation 

Animal Perfusion and Tissue Collection 

PO4 Solution (0.2M): Make stock ahead of time 

 4L dH2O 

 30.8g NaOH 

 117.1g Monobasic NaH2PO4 
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PBS: Make fresh, store at 4°C 

 50ml 10x saline 

 450ml dH2O 

 500ml PO4 Solution (0.2M) 

Euthanyl (sodium pentobarbital) (150 mg/kg rat, 165 mg/kg cat) 

Synaptoneurosome Preparation 

Homogenization Buffer Recipe yields 50 ml  (3ml x tissue piece) 

 5ml HEPES (10mM) 

 5ml EDTA (2mM) 

 5ml EGTA (2mM) 

 125µl DTT (0.5mM) 

 500µl Leupeptin (10mg/L) 

 500µl Soybean Trypsin Inhibitor (50mg/L) 

 50µl Microcystin (100nM)  

 33.825 ml H2O 

i. Check the pH level of the combined ingredients, and adjust to pH 7.5 

ii. Add 50µl PMSF 

iii. Put solution on wet ice until added to frozen tissue. Can be frozen at -20℃ for later use. 

Stock HEPES (10mM): 

 100 ml dH20 

 2.38g HEPES powder (N-2-Hydroxyethylpiperazine-N'-2-Ethanesulfonic Acid,   

Bishop, Cat #Hep 001) 

 Stir until powder is dissolved. Aqueous HEPES can be aliquoted and frozen at 

  -20°C, and thawed for use in Homogenization Buffer. 

Stock EDTA (2mM): 

 100 ml dH20 

 0.5844g EDTA powder (Ethylenediaminetetraacetic acid disodium salt dihydrate,   

Sigma, Cat# E-1644) 
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 Stir until powder is dissolved. Aqueous EDTA can be aliquoted and frozen at 

  -20°C, and thawed for use in Homogenization Buffer. 

Stock EGTA (2mM): 

 90 ml dH20 

 10 ml NaOH  

 Stir until powder is dissolved.  

 To the above solution, add 0.768g EGTA powder (Ethylene-

bis(oxyethylenenitrilo)tetraacetic acid, Sigma, Cat #E4378). Stir until powder is dissolved. 

Aqueous EGTA can be aliquoted and frozen at -20°C, and thawed for use in Homogenization 

Buffer. 

Stock SDS solution (10%): (20µl x tissue piece) 

 10 grams of SDS Powder (Sodium Dodecyl Sulfate, Bioshop, Cat#SDS001) 

 100ml dH2O  

Stock SDS solution (1%): (boiling, 100µl x tissue piece) 

 100ml of Stock SDS solution (10%) (see above) 

 Add 900ml of dH20 

BCA Assay and preparing tissue for Western blotting 

Albumin Standards  

Dilute stock albumin (2 µg/ml) to the following concentrations using saline/dH2O: 

 1 µg/ml, 0.5 µg/ml, 0.25 µg/ml 

BCA working solution 

 50 ml Reagent A (Pierce™ BCA protein Assay Reagent A, Thermo Fisher   

Scientific, Cat# 23223) 

 1 ml Reagent B (Pierce™ BCA protein Assay Reagent B, Thermo Fisher   

Scientific, Cat#23224) 

Sample loading buffer (M260 NextGel® Sample loading buffer 4x, Amresco LLC, Solon,  

OH, USA) 

Laemmli buffer (Cayman chemical company, Ann Arbor, MI, USA)  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3.3 Protocol & Main Findings 

Animal Perfusion and Tissue Collection 

Here we describe the perfusion and tissue collection protocols that we use for our studies of 

visual cortex.  If perfusion is not a suitable option for your experiment we provide an alternative 

protocol with modified filtration steps in a subsequent chapter (Siu Chapter of Springer Methods 

book).  

3.3.1 Animal Perfusion 

1. Euthanize the animal using the protocol approved by your institutional animal ethics 

committee.  

2. Use transcardial perfusion to clear blood from the animal.  Insert the needle from the 

peristaltic pump into the left ventricle of the heart, cut the right atrium with scissors and 

begin the perfusion with cold 0.1 M phosphate buffered saline (PBS) at a rate of 50-100 ml/

min, for about 4 minutes, or until circulating fluid becomes clear.  

3. Quickly remove the brain from the skull and immerse in cold PBS. 

3.3.2 Tissue Collection 

1. Cut samples from the desired location with sharp iris scissors or a surgical blade. For 

example, the samples we cut from rat cortex are typically 3x3x1 mm to yield ~500mg of 

tissue that is ready for synaptoneurosome preparation. 

2. Quickly transfer tissue pieces to pre-cooled centrifuge vials. Label the vial with the 

needed identifiers, and place vial back on dry ice to rapidly freeze the sample. 

3. Then store the frozen samples at −80°C, or begin with the synaptoneurosome 

preparation.  

3.3.3 Synaptoneurosome Preparation  

In this chapter, we describe our published protocol18 for the high-throughput and semi-

automated preparation of filtered synaptoneurosomes, and compare this protocol with the manual 

hand preparation popularized by Hollingsworth et al., 1985 (Fig. 1). The primary steps needed to 

make filtered synaptoneurosomes, homogenization and filtration, as well as a set of low speed 

centrifugations, are outlined in Fig 1. An approximation of how long it takes to prepare a single 
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sample at each of these 3 steps is also outlined in Fig 1. Homogenization and filtration following 

the manual hand preparation each took about 5 minutes to prepare just one sample, and when 

scaling to 24 samples, just these 2 steps add a minimum of 4 hours to a tissue preparation 

protocol. Furthermore, the manual hand preparation requires at least 2 experimenters, because 

while one person is homogenizing and filtering tissue, the other is needed to clean the glass-glass 

Dounce homogenizers, as well as clean and assemble the Swinnex filter holders between 

samples. In contrast, one experimenter can easily perform the new high throughput, semi- 

automated steps, in under 10 minutes and the single experimenter is able to homogenize and 

filter all 24 samples at once.  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Fig 1.Overview of process for preparing synaptoneurosomes using either the manual hand or new high-
throughput, semi-automated protocol, including a comparison of the primary steps in the processes from 
homogenization to filtration, and low speed centrifugation.  

(A) The hand preparation began with two experimenters working together to homogenize samples one at a time 
using glass-glass Dounce homogenizers. (B) The resultant homogenate was then filtered by applying hand-pressure 
to a syringe, and forcing homogenate through hydrophobic membranes held in place by the Swinnex filter holder. 
(D) The high-throughput preparation began with one experimenter placing samples in lysing matrix tubes, and 
running samples in the Fast-Prep® -24 Tissue and Cell Homogenizer for 40 s. (E) The resultant homogenate was 
then transferred to centrifugal filter units, and centrifuged for 4 minutes. The filter component of the centrifugal filter 
unit was removed before low speed centrifugation. (C and F) In both the hand and high-throughput preparations, 
samples were centrifuged at low speed for 30 minutes. To prepare 24 samples with the hand preparation, the total 
time require was 4.5 hours and two experimenters were required. To prepare 24 samples with the high-throughput 
preparation, the total time require was 35 minutes, and only one experimenter was required. 

3.3.4 Synaptoneurosome Preparation - Preliminary Steps 

Our protocol significantly speeds up the process and decreases the number of 

experimenters required to make synaptoneurosomes from fresh frozen tissue, but it is still 
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important to work quickly to prevent tissue thawing. Therefore, we include these steps to reduce 

the likelihood of tissue thawing before samples are introduced to homogenization buffer. [Note 

1].   

1. Thaw homogenization buffer on ice. Homogenization buffer can be made ahead of 

time, and it can now be taken out to thaw, but homogenization buffer must remain cold when 

adding to tissue pieces.Turn on the centrifuge ahead of time, and allow sufficient time to cool 

to operating temperature of 4°C. 

2. Label all 1.5 ml centrifuge vials. 3 vials are required for each sample, with separate 

vials designated for ‘Homogenate’, ‘Supernatant’ and ‘Synaptoneurosome’, respectively. (e.g. 

for sample R123, one vial each is labelled as R123 HOM, R123 SUP and R123 SYN). Place 

these on ice. 

3. Pipette 10µl of 10% SDS solution into each 'Homogenate' and 'Supernatant' vial. Place 

these vials on ice. [Note 2] 

4. Label 1 Lysing Matrix-D tube for each sample. (e.g. for sample R123, write ‘R123’ 

clearly on both tube side and cap). Place on ice. 

5. Label 1 Ultrafree-MC SV Centrifugal Filter Unit for each sample.  

6. Obtain either freshly sectioned tissue samples, or fresh frozen tissue samples, and place 

vials containing the tissue samples on crushed dry ice.  

3.3.5 Synaptoneurosome Preparation - Homogenization 

Modern bench-top homogenizers lyse tissue samples using built-in programmable steps. 

For example, in this protocol, tissues are homogenized at n angular velocity of 6m/s for a 

duration of 40 s. Furthermore, the Lysing Matrix-D described in this protocol is specifically 

designed by MP Biomedicals for use with soft brain tissues. Controlling the lysing matrix and the 

lysing intensity results in a highly reproducible preparation of many samples.  

1. Remove the tissue section from the original vial, weigh the sample on a balance, and 

record the weight. Quickly transfer the sample to the labeled Lysing Matrix-D tube and add 

cold homogenization buffer to the Lysing Matrix-D tubes. The amount of homogenization 

buffer required in each vial depends on sample size. Use a ratio of 1ml of homogenization 

buffer to 0.05g of tissue to determine the volume of homogenization buffer required for each 
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sample. Record the amount of homogenization buffer added. Cap tubes, and place on ice. 

[Note 3]. 

2. Secure Lysing Matrix-D tubes in FastPrep-24 Tissue and Cell Homogenizer. Set the 

FastPrep-24 to a speed of 6m/s, set the duration to 40 s, and run the FastPrep-24. 

3. Inspect vials to ensure samples are completely homogenized. Check for visible chunks 

of tissue resuspended in the homogenization buffer. If the tissue is not fully homogenized, run 

all samples for a second time at 6m/s for a duration of 40 s. 

4. Remove 90µl of homogenized tissue from lysing matrix tubes and transfer it to the 

labelled ‘Homogenate’ vial. Gently vortex the sample, and place vial on ice. 

3.3.6 Synaptoneurosome Preparation - Micro-MC Spin Tube Filtration 

The syringe filtration component of tissue fractionation is replaced with centrifugal filter 

units in our protocol. The product description for Ultrafree-MC SV Centrifugal Filter Units 

outlines a range of allowable parameters that can be used with these filter units. First, the 

recommended speed of 12,000 x g is a qualitative description of the force applied to pass 

homogenate tissue through the microporous membranes. We optimized the filtration time by 

measuring the amount of filtrate collected across the range of minutes recommended by 

Millipore (1-4min). We determined that 4 minutes yields a significantly higher recovery 334 µl 

(SEM 22µl, n = 4) (Fig 2) of the total original homogenate (500µl) than 1 (average 183µl, SEM 

62µl, n=4) or 2 minutes (average 180µl, SEM 59µl, n=4) (p<0.05). Here we describe our 

protocol for filtering the homogenate tissue through these filter units.  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Fig 2. Volume of filtered homogenate tissue collected using Ultrafree-MC SV centrifuge tubes.  

Identical amounts of homogenate tissue (500µl) were loaded into filter units of the centrifuge filter units 
(Millipore) and the percent volume of filtrate was compared across one minute filtration intervals (1-4 min). 
Centrifugal filtration for 4 minutes yielded greater sample recovery (average 335µl, SEM 22µl, n = 23) than either 1 
(average 183µl, SEM 62µl, n=4) (p<0.05) or 2min (average 180µl, SEM 59µl, n=4) (p<0.05). 

1. Using a 3 ml syringe equipped with an 18 5/8 G needle tip, take up the remaining 

homogenate from the Lysing Matrix D-tube and transfer to Ultrafree-MC SV Centrifugal 

Filter Units. [Note 4] 

2. Place the newly filled filter spin tubes in the centrifuge. Set the centrifuge speed to 

12,000 x g, the duration for 4 minutes, and run the centrifuge. 

3. When complete, remove and inspect the filters to ensure no visible tears occurred. Be 

sure to note any relevant details pertaining to the condition of the filters. Dispose of empty 

filter units. 

4. Gently vortex all samples. 

5. Place the filter spin tubes (now without filters) in the centrifuge. Set the centrifuge 

speed to 1,000 x g, set the duration for 20 minutes and run the centrifuge. 

3.3.7 Synaptoneurosome Preparation - Supernatant 

The following sections describe the set of low speed centrifugations that separate heavier 

synaptic fractions from the lighter supernatant. For the following steps it is imperative that the 
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remaining tissue in the centrifuged vials is not disturbed since this concentrated pellet now 

contains all resealed synaptoneurosome entities. 

Fig 3. Total protein concentration for the hand or high-throughput techniques measured in (A) 
homogenate and (B) synaptoneurosome tissue fractions prepared from cat and rat cortical tissues. 

 (A) There was no difference between total protein concentration measured by BCA assay in the homogenate 
samples prepared using either the hand (3.34µg/ml, SEM 0.16 µg/ml, n = 50) or high throughput technique (3.43 µg/
ml, SEM 0.24 µg/ml,+ n = 24). (B) There was greater total protein concentration in the synaptoneurosome samples 
prepared using the high-throughput technique (2.4µg/ml, SEM 0.18µg/ml, n=23) than in the hand preparation (1.88 
µg/ml SEM 0.13µg/ml, n=88; p<0.05). 
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1. Transfer 90µl of supernatant tissue from the top of the centrifuged filter vial into the 

respective ‘Supernatant’ vial. Vortex the supernatant vial and place the sample on ice. 

2. Carefully take up the remaining supernatant material surrounding the pellet with a 

pipette and expel it into a waste beaker. 

3.3.8 Synaptoneurosome Preparation - Synaptoneurosome 

1. Turn on the heating block, place vial containing 25 ml of SDS solution (1%) inside the 

heating block, and bring to a boil. 

2. Add 1 ml cold homogenization buffer to 'Synaptoneurosome' vial to re-suspend each 

pellet and vortex each sample until the pellet has dissolved entirely. Place the vials on ice 

until ready to proceed to the next step. 

3. Place 'Synaptoneurosome' vials in the centrifuge in a counterbalanced fashion. Set the 

centrifuge speed to 1,000 x g, set the duration for 10 minutes and run the centrifuge. 

4. A pellet should once again be collected in the bottom of the vial. Use a pipette to 

discard the remaining supernatant, being careful not to disturb the pellet. 

5. The ‘Synaptoneurosome’ vials should contain little more than a pellet at this point. 

Using a pipette, add 100 µl of boiling SDS solution (1%) to each of the ‘Synaptoneurosome’ 

vials, and gently vortex until the pellet is resuspended. 

6. 'Homogenate', 'Supernatant' and 'Synaptoneurosome' samples are now prepped. Place 

all vials in the heating block for a duration of 10 minutes, then store at -20℃.  

3.4 BCA Assay and preparing tissue for Western blotting 

The total protein concentration from both homogenate and synaptoneurosome tissue can be 

obtained following bicinchoninic acid (BCA) assay guidelines (Pierce, Rockford, IL, USA). This 

provides a highly accurate measurement of the total protein available in a tissue preparation 

before investing in Western blotting. We measured the total protein by performing BCA assays of 

whole homogenates and synaptoneurosomes prepared from rat cortex. We compared total protein 

concentration between samples prepared following traditional hand preparation using glass-glass 

Dounce homogenizers or with the new high-throughput FastPrep-24 Tissue and cell 

homogenizer. We found similar total protein concentrations in whole homogenates prepared by 
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hand (average = 3.34 µg/ml, SEM 0.16 µg/ml, n = 50) as those prepared using the high 

throughput preparation (3.43 µg/ml, SEM 0.24 µg/ml, n=24) (Fig 3A). The total protein 

concentration was greater (p<0.05) when synaptoneurosomes were centrifuged using the 

Ultrafree-MC centrifugal filtration units (2.37 µg/ml, SEM 0.18 µg/ml, n = 23) than when 

samples were pressure filtered by hand (1.88 µg/ml, SEM 0.13 µg/ml, n = 88) (Fig 3B).  

We briefly describe here the BCA protocol to compare total protein concentration between 

the semi-automated and manual tissue preparations at either the whole homogenate stage or after 

creating synaptoneurosome.  

1. Leaving one column of wells blank, pipette 3 µl each of the 4 different albumin protein 

standards (e.g. 0.25, 0.5, 1, 2) in order to establish the profile for experimenter pipetting 

variability. Do this 3 times for each standard. Since multiple samples are loaded multiple 

times, create a map of your assay plate by assigning samples to specific wells. 

2. Gently vortex samples once more before pipetting 3 µl each of 'Homogenate', 

'Supernatant' and 'Synaptoneurosome' for each sample. Do this 3 times for each sample. 

3. In all wells, add 300 µl of the BCA solution. Place the lid on the protein assay plate, 

and place the plate in the incubator at 45℃ for 45 minutes.  

4. Quantify the colorimetric change in the samples by scanning the plate in the  iMark 

Microplate Absorbance Reader (Bio-Rad Laboratories, Hercules, CA, USA). Use the 

information obtained from this assay to determine total protein concentration in each sample. 

In an excel spreadsheet, first plot the protein concentration of the 4 pipetted albumin standard 

(i.e., 0.25 µg/ml, 0.5 µg/ml, 1 µg/ml, and 2 µg/ml) against the net light absorbance at the 

designated wavelength of your spectrophotometer (e.g., 562nm). Plotting a line of best fit 

will determine the strength of the relationship between protein concentration and absorbance 

with the function y=mx+b. We have stringent guidelines for this step in the protocol and 

require a minimum correlation of r2=0.99 between the values for these two variables for all 

protein standards. If r2=0.99 is not achieved, the assay must be re-done.  

5. Next, obtain the average absorbance (nm) from the three runs of each sample, and 

identify total protein concentration (µg/ml) by dividing this average by the slope of the 

function, and adding any linear shift in the function (y-intercept). In this protocol an ideal 
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final concentration for diluted tissue samples is 1µg/µl. Use the information about the 

average protein concentration obtained from the plate reader to dilute samples down to 1µg/

µl. It helps to start with a common volume of tissue (eg. 80µl) from each 'Homogenate', 

'Supernatant' and 'Synaptoneurosome' vial, and transfer this to new vials for use with Western 

blotting. Dilute samples with Sample loading buffer (4x) and then with laemmli buffer (1x) to 

weigh samples down for loading into the wells on SDS-PAGE gels, and to equate protein 

volume across samples. 

3.5 Check for synaptic enrichment 

We quantified the expression of a specific post-synaptic anchoring protein for 

glutamatergic receptors, post-synaptic density 95 (PSD95),  in both whole homogenate and 

synaptoneurosomes for each sample. We then performed a typical enrichment check by dividing 

the expression of PSD95 in the synaptoneurosome fraction by the PSD95 expression in the 

homogenized fraction (Synaptoneurosome/Homogenate). We calculated the amount of 

enrichment after 1,2,3, and 4 minutes of centrifugal filtration, and found the best enrichment after 

4 minutes (Fig 4A). Since 4 minutes of centrifugation produced the greatest amount of synaptic  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Fig 4. Synaptoneurosome enrichment of PSD95 expression comparing across (A) different lengths of 
filtration or (B) hand versus new high-throughput preparation. 

(A) Centrifugal filtration for 4min led to better enrichment for PSD95 than 1, 2, or 3 mins (average for 1–3 min 
was 1.8 X’s enrichment, SEM 0.3, n = 12; average for 4 min was 2.7 X’s enrichment, SEM 0.3, n = 23) (p < 0.05). 
(B) There was significantly greater enrichment of the synaptoneurosomes prepared using the high-throughput (2.7 
X’s enrichment, SEM 0.3, n=23) than the hand preparation (1.6 X’s enrichment, SEM 0.2, n=24) (p < 0.01).  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filtrate (Fig 2A) as well as the greatest enrichment, we compared PSD95 enrichment in this 

subset of samples versus those prepared through traditional manual preparations. We found less 

than two-fold enrichment (Fig 2B, average 1.6, SEM 0.2, n = 24) in the manual preparation but 

an average of 2.7-fold enrichment (SEM 0.3, n = 23) using the new high-throughput preparation, 

with some samples having up to 5 times greater PSD95 expression in the synaptoneurosome than 

the homogenate. Importantly, these high enrichment values were obtained using very small tissue 

samples (25mg) that were orders of magnitude smaller than tissue samples required for the 

traditional preparation (1000mg)1. 

The synaptoneurosome fraction is dominated by synaptic proteins, since cytosolic proteins 

are removed as supernatant at each successive stage of the tissue fractionation protocol. 

Therefore it is imperative that protein expression is not normalized against classic housekeeping 

proteins typically used as loading controls in Western blotting experiments, since these proteins 

are expected to be depleted by the synaptoneurosome preparation. To demonstrate this, we 

compared the expression of a classic housekeeping protein, β-tubulin, against PSD95 expression 

in a subset of homogenate and synaptoneurosome samples prepared through both the hand and 

high-throughput techniques (Fig 5). We found greater average β-tubulin expression in the 

homogenate fraction (1.12) than the synaptoneurosome (0.06; p<0.001 Fig 5A. light gray), while 

the opposite is true for PSD95 expression, which again demonstrates higher protein expression in 

the synaptoneurosome (0.155) versus the homogenate (0.11; p<0.05 Fig 5A dark grey). This 

confirms the low expression of β-tubulin in homogenate versus synaptoneurosome reported by 

others12. In fact, an enrichment check performed for β-tubulin produces an anti-enrichment for β-

tubulin, while standard enrichment is demonstrated for PSD95 (Fig 5B). It is vital that loading 

controls are used properly when analyzing a synaptoneurosome preparation, since normalizing 

protein expression against a house-keeping proteins that demonstrates anti-enrichment (i.e. 

enrichment values less than 1) will lead to artificially inflated measurements of expression for 

proteins of interest.  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 Fig 5. Comparison of β-tubulin and PSD95 expression in whole homogenate and synaptoneurosomes 
(A) with matching enrichment (B). 

(A) There was less β-tubulin expression in the synaptoneurosome (0.06, SEM= 0.01) than in the whole 
homogenate sample (0.12 , SEM= 0.02; p<0.001), while PSD95 had greater expression in the synaptoneurosome 
(0.16 , SEM=0.04 ) than in the homogenate (0.11 , SEM=0.03 ) sample. This lead to protein enrichment (>1 X) for 
PSD95 (1.9X , SEM=0.48) and protein depletion of β-tubulin (0.58 X, SEM=0.10, p<0.05) in the synaptoneurosome 
fractions.  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3.4 Notes 

1. One purpose of the homogenization buffer is to slow the process of protein denaturing. 

There are a variety of homogenization buffers available for purchase, but here we include our in-

house design since this combination of calcium chelators and protease inhibitors has proven 

successful for our Western blotting purposes. Be sure to modify this recipe to suit your own 

needs. 

2. After applying heat, SDS solution coats proteins with an even electric charge, so that 

electrophoretic separation of proteins is based primarily on size of unfolded proteins. If this is 

undesirable for your synaptoneurosome preparation, skip this step.  

3. Be aware of the total volume of homogenization buffer being added to each Lysing 

Matrix-D Tube. The current protocol uses smaller pieces of tissue, and the maximum volume 

these tubes accommodate is 2ml. If you are sectioning larger pieces that require more 

homogenization buffer, MP Biomedicals make larger lysing matrix tubes that can be used with a 

larger shaker unit for the Fast-Prep 24 Tissue and cell homogenizer. Ensure you have the proper 

lysing matrix (Lysing Matrix-D) that is specifically designed for use on soft tissues like cortical 

tissue, since all parameters in this protocol were designed for use with soft tissue. 

4. We advise having extra filter spin tubes ready in case there is excess homogenized tissue. 

Again be aware of the total volume that these filtration units can accommodate to avoid 

overfilling vials. These particular units accommodate 500µl in the filter unit.  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Chapter 4. A primer on high-dimensional data analysis 
workflows for studying visual cortex development and 
plasticity 
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Abstract 

New techniques for quantifying large numbers of proteins or genes are transforming the 

study of plasticity mechanisms in visual cortex (V1) into the era of big data. With those changes 

comes the challenge of applying new analytical methods designed for high-dimensional data.  

Studies of V1 can take advantage of the known functions of many proteins for regulating 

experience-dependent plasticity to link high-dimensional analyses with neurobiological 

functions.  Here we discuss two workflows and provide example R code for analyzing high-

dimensional changes in a group of proteins using two data sets. The first data set includes 

measurements for 7 synaptic proteins from an animal model for amblyopia. The second data set 

includes 23 neural proteins and 31 ages (20d-80yrs) from human post-mortem samples of V1.  

Each data set presents different challenges, and we describe using PCA, tSNE, and various 

clustering algorithms including sparse high-dimensional clustering (RSKC). Also, we describe a 

new approach for identifying high-dimensional features and using them to construct a plasticity 

phenotype that identifies neurobiological differences among clusters.  We include an R package 

“v1hdexplorer” that aggregates the various coding packages and custom visualization scripts 

written in R Studio. 
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4.1 Introduction  

More than 30 years ago, Artola & Singer (Artola and Singer 1987) introduced the field of 

visual neuroscience to the central roles that NMDA and GABAA receptors play in regulating 

plasticity in the visual cortex (V1) and Tsumoto et al. (Tsumoto et al. 1987) showed the enhanced 

contribution of NMDARs during the critical period (CP).  Thousands of experiments followed 

those studies, targeting specific pre- and post-synaptic proteins and providing an in-depth 

understanding of how neural proteins enhance or reduce experience-dependent development and 

plasticity in V1.  More recently, proteomic and genomic studies are surveying thousands of 

proteins and genes to explore novel mechanisms regulating development and plasticity in V1 

(Carlyle et al. 2017; Nowakowski et al. 2017). 

The shift from studying a few proteins to quantifying tens to thousands of proteins is 

changing our understanding of visual cortical development and plasticity but it also poses new 

challenges for data analysis.  Here we describe two workflows for using high-dimensional 

analyses to study the development and plasticity of neural proteins (or genes) in V1. We take 

advantage of insights gained from previous studies about the role of different proteins in 

development and plasticity to select a set of proteins to study.  Furthermore, working at the level 

of proteins, we can apply the same techniques to studying V1 in animal models (section 4.3) and 

humans (section 4.4).  

Our aim is to describe the workflows and provide examples for applying high-dimensional 

analysis of protein (or gene) data using the statistical software R.  The examples address how to 

use the workflow to discover experience-dependent or lifespan changes in plasticity mechanisms.  

Also, we describe a novel approach for exploring and comparing the neurobiological features 

that characterize different rearing conditions or age groups that we call the plasticity phenotype.  

The goal of building the plasticity phenotype is to connect the high-dimensional analyses with 

biologically meaningful insights into V1 plasticity. 

Getting started 

The first challenge in developing the workflows was to determine which high-dimensional 

analyses were appropriate for the experimental designs of our studies.  Our experiments include 

many proteins with known roles in neuroplasticity, and often the tissue samples come from 
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multiple cortical regions.  That experimental design has more variables (p) than conditions (n), so 

the data sets are p>n and are by definition high-dimensional.  The data sets are also described as 

sparse because the data points do not fill the space and thus the distance between samples in the 

high-dimensional space is uneven.  This sparse structure means that special consideration is 

needed in selecting methods for data analysis.  First, the methods must support the discovery of 

clusters that differ on only a few proteins or combinations of proteins (features).  Second, those 

discoveries need to guide meaningful insights into how V1 develops and changes with different 

forms of visual experience.  To this end, we developed workflows that lead to the construction of 

plasticity phenotypes using features identified by high-dimensional analyses.  Also, we 

implemented a visualization for the plasticity phenotype that facilitates the intuitive exploration 

of the data. 

Here we describe and compare two approaches suitable for analyzing a set of plasticity 

proteins (or genes) (p) and comparing among rearing conditions (n) or developmental stages (n).  

The intent of this paper is not to review high-dimensional analyses or to determine the 

“best” analysis, but rather to demonstrate and discuss two workflows appropriate for high-

dimensional clustering of the data and classifying plasticity phenotypes in the developing visual 

cortex. 

Contributions of this paper: 

1) We provide two workflows with examples for identifying clusters in a sparse data set 

(p≅n or p>n).  With each workflow we discuss selection of the analysis steps.  

2) We explore different techniques and discuss selecting a clustering method that is 

appropriate for the data set and research questions.  

3) We combine tools for partitioning data into clusters and identifying features.  The 

features are then used to create the plasticity phenotype which aids in discovering biologically 

meaningful interpretations of the data. 

4) We aggregated the various packages and custom visualization code used in this paper 

into an R package “v1hdexplorer” that is available for download using the function 

install_github("balsorjl/ v1hdexplorer").  
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The rest of this paper is organized as follows. In section 4.2, we review some of the high-

dimensional data analysis methods that have been used in recent papers studying cortical 

development. In sections 4.3 and 4.4, we present the workflows with examples using PCA and 

tSNE, or sparse high-dimensional clustering, and describe how to build and use the plasticity 

phenotypes.  Section 4.5 provides a brief summary and discussion. 

 4.2 Past work using high-dimensional analysis 

Principal Component Analysis: The most commonly used high-dimensional analysis for 

exploring gene or protein expression in the brain has been principal component analysis (PCA) 

(Hotelling 1933, Jolliffe and Cadima 2016).  PCA transforms the gene or protein data, which is 

likely to include correlated genes or proteins, into a linear set of uncorrelated principal 

components that capture successively less of the variance in the data.  Thus, individual cases can 

be visualized and analyzed within the transformed lower-dimensional space and that is often 

helpful for identifying clusters in the data (Figure 1).  For example, a recent survey of human 

brain development using RNA and protein expression used PCA to reduce the dimensionality of 

the data and identify differences among brain regions (Carlyle et al. 2017).  That analysis 

highlighted the separation of cerebellar samples from the other brain regions, but it was 

challenging to interpret the biological significance of the components that differentiate the 

regions. 

The unitless dimensions of PCA components make it hard to identify the biological 

correlates when thousands of genes or proteins have been quantified and this often leads to the 

use of pseudo-units (e.g. pseudoage).  In contrast, when a targeted set of genes or proteins with 

known functions are studied then the basis vectors for each component (the weights for each 

protein) can be used to attach biological significance to otherwise unitless dimensions.   For 

example, after applying PCA to the expression of 7 synaptic proteins from animals reared with 

normal vision or monocular deprivation (MD), we used the basis vectors to infer that PC1 

reflected the sum of the proteins, PC2 an aspect of the excitatory:inhibitory balance, and PC3 the 

maturational state of the subunit expression (Beston et al. 2010, Balsor et al. 2019; Figure 1B).  

In section 4.3, we describe a two-step process for using PCA; first, the typical step for 

dimension reduction, and second, a new step that expands each dimension using the basis vectors 
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to identify the biologically relevant features that account for variance in the data.  Those features 

become the building blocks for the plasticity phenotype and facilitate interpretation by linking the 

features with known functions for regulating experience-dependent plasticity.  Also, the overall 

pattern of features can be used to provide robust phenotypic information about the biological 

correlates that identify clusters in the data.  Thus, the plasticity phenotypes help to discover 

meaningful insights into how V1 matures during normal development or is changed by abnormal 

visual experience. 

Figure 1. Interpreting PCA dimensions with either thousands or tens of genes or proteins:  

(A) Scatter plots for the first two dimensions from a PCA analysis of RNA (5141 genes) or protein (6529 
proteins) expression for postmortem tissue samples from 7 regions of the human brain. The plots show a clear 
separation of cerebellum samples (CBC) from the other brain regions. It is challenging, however, to interpret the 
biological correlates that differentiate among the regions because the very large number of genes or proteins were 
reduced to just 2 unitless components. Reprinted with permission from Becky C. Carlyle et al: Springer Nature, 
Nature Neuroscience, A multiregional proteomic survey of the postnatal human brain, Carlyle et al., 2017  (B) A plot 
of the first 3 dimensions from a PCA analysis of 7 proteins and 3 regions for normally developing (yellow spheres) 
or monocularly deprived animals (red spheres).  The shadows projected on the three walls help to visualize 
differences between normal (circles) and deprived (squares) animals. Age (in weeks) is displayed beside each 
symbol and the connecting lines link the points by age. The biological correlates for each dimension were 
determined using the basis vectors -- PCA 1 reflects the sum of the protein expression, PCA 2 reflects an aspect of 
the E:I balance, and PCA 3 reflects the maturation of receptor composition. Reprinted from Beston et al., 2010. 

t-Distributed Stochastic Neighbor Embedding:  Another popular method for 

transforming and visualizing high-dimensional data is t-Distributed Stochastic Neighbor 

Embedding (t-SNE, (Maaten and Hinton 2008)). tSNE measures the shortest distance between 

pairs of data points, then calculates pairwise probability estimates of similarity across all 

dimensions. Often, these estimates are mapped onto 2-dimensional (2D) space by scaling the 

distance between data points and positioning similar data points closer together. The new 

mapping preserves local and global patterns thereby representing the relationships among data 
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points that may highlight clusters in the data. The artificial scaling makes it easier to identify 

clusters by either color-coding points based on a known attribute (e.g. cortical area), or by 

applying a clustering method to the tSNE XY coordinates.  Furthermore, the unsupervised nature 

of tSNE is particularly useful when exploring data without strong a priori knowledge of the 

expression patterns that may differ among the conditions. 

For example, a combination of PCA and tSNE was used to analyze the data from a recent 

study of single-cell mRNA expression in the developing human brain ((Nowakowski et al. 2017), 

Figure 2A). In this example, PCA was used to reduce the dimensionality of the data and then 

tSNE to further reduce the dimensions and visualize clusters (colour-coded dots) of samples 

(Figure 2B-D).  Next, the tSNE plots were used to show clustering by lineage (e.g. CP or GZ)

(Figure 2C) and cell type (e.g. DLX1 for MGE derived cells) (Figure 2D).   

Figure 2.  Applying tSNE to human brain cells identifies cell type clusters. 

(A) Schematic illustrating sample collection over time, region, and lamina. (B to D) Scatterplot of 4261 cells 
after principal components analysis and t-stochastic neighbor embedding (tSNE), coloured by (B) cluster, (C) 
cortical lamina source, and (D) maker gene expression. From Nowakowski, T. J., Bhaduri, A., Pollen, A. A., 
Alvarado, B., Mostajo-Radji, M. A., Di Lullo, E., ... & Ounadjela, J. R. (2017). Spatiotemporal gene expression 
trajectories reveal developmental hierarchies of the human cortex. Science, 358(6368), 1318-1323. Reprinted with 
permission from AAAS. 

This is a powerful workflow for analyzing and visualizing complex gene or protein data. It 

is a good illustration of a common approach that starts by reducing the dimensions down to 1-5 

components and using those eigenvalues as input to the cluster analysis.  However, care is needed 

when using dimension reduced data as input to clustering because the orthogonal components 

from PCA may not contain the features need to partition the data into clusters (Chang 1983).    
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In section 4.3, we describe a modified workflow that uses tSNE to visualize clusters and 

PCA to select features for constructing plasticity phenotypes but does not use the transformed 

eigenproteins as the input to the tSNE analysis. We demonstrate this workflow using a data set 

comparing protein expression in V1 among a set of rearing conditions where animals had either 

normal visual experience, monocular deprivation (MD) or MD plus a subsequent treatment.  We 

present the steps for this new workflow (section 4.3) and explain how it can be used to explore 

and interpret cluster composition based on rebranding each sample by their plasticity phenotype.  

Other clustering approaches:  In addition to PCA and tSNE, there are many other 

algorithms that can be used to discover the natural clustering of samples based on similar patterns 

of features. These techniques often employ partitional or hierarchical methods to separate data 

points into clusters. Partitional clustering refers to an immediate division of data points into non-

overlapping clusters, while hierarchical clustering nests closely related samples into a tree-like 

structure to identify clusters. Hierarchical clusters are built through a top-down (divisive) or 

bottom-up (agglomerative) approach: top-down begins with all the data in a single cluster that is 

recursively divided into smaller clusters, or bottom-up begins with each data point in individual 

clusters that are recursively merged.  Hierarchical clustering continues until a designated 

threshold is met, usually the number of clusters (k).  One of the strengths of that approach is the 

use of a dendrogram to graphically represent clusters by ordering samples with similar features 

nearby in a tree structure.  For example, the matrix in Figure 3B used hierarchical clustering to 

order the strength of pairwise correlations between brain areas for a set of 123 proteins that are 

differentially expressed across human development (Figure 3B; (Carlyle et al. 2017)).  The 

strength of the correlations was colour-coded, and the hierarchical ordering made it easy to see 

the clustering of cerebellar samples based on their poor correlations (blue) with the other areas.  

It can be difficult, however, to see more subtle differences in the pattern of correlations among 

the other areas and to select a height in the tree to define more subtle clustering. 

The other major class of clustering algorithms, partitional, does not impose hierarchical 

structure to the data and instead finds all of the clusters at the same time as a partition of the data.  

K-means is the best known and most widely used partitional clustering method.  It starts by 

partitioning samples into k clusters where the number of clusters is chosen using the gap statistic 
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to estimate the number of clusters in the data set (Tibshirani et al. 2001).  The data are then 

iteratively repartitioned into different clusters to minimize the within-cluster sum of squares.  

Since this method is not hierarchical, the clusters cannot be represented in a dendrogram, so K-

means or other partitional clustering methods (e.g. Louvain, Infomap, etc) are often visualized 

using tSNE.  For example, in the workflow diagram from Nowakowski et al. (2018) the color-

coded clusters in the tSNE plot were identified using Louvain partitional clustering. 

Many clustering approaches work well when there is good separation among the features in 

the protein or gene data set.  In contrast, when samples differ on a small fraction of the features 

or there are more subtle changes in protein expression the typical clustering methods begin to fail 

and other approaches such as sparse clustering algorithms are needed.  The advantage of sparse 

clustering is that it uses an adaptive selection of a subset of features within hierarchical or K-

means clustering and the selection of features is iteratively optimized using a regression-style 

analysis (e.g. lasso) (Witten et al. 2009). 

Finally, whether clustering is done with hierarchical, partitional, or sparse algorithms the 

same challenge remains -- how to link the holistic exploration of the data with the biological 

features that differentiate the groups.  In previous studies, the task of pinning down those features 

was often done by sorting through the clusters using a series of plots and univariate analyses 

aimed at finding proteins or genes that are over- or under-represented in a group (Carlyle et al. 

2017; Luo et al. 2017).  That approach, however, focuses on measurements from just one variable 

per sample and thereby loses sight of differences that arise from higher order combinations of 

protein or gene expression. That problem prompted us to develop a method for discovering 

combinations of proteins that represent high-dimensional features and then use those features to 

construct the plasticity phenotype.  While the idea of a phenotype is not new, our approach to 

extracting features from the protein data and using them to analyze and visualize the plasticity 

phenotypes is a novel application in this field of study.  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Figure 3. Hierarchical clustering of samples in a correlation matrix. 

 a. Venn diagram showing the number of genes that were significantly and differentially expressed across 
developmental periods (left, blue) or brain regions (right, green). b. Hierarchical clustering revealed major divisions 
between brain regions, but less distinct classification based on developmental period. c-d, Exploring clusters by 
region (c) reveals region-specific enrichment or depletion and exploring across developmental periods (d) reveals 
developmentally enriched period of protein expression shortly after birth (period 8). Each data point is shown as a 
dot. Reprinted with permission from Becky C. Carlyle et al: Springer Nature, Nature Neuroscience, A multiregional 
proteomic survey of the postnatal human brain, Carlyle et al., 2017. 

Example data sets and preparation of the data 

In this paper, we used two data sets of neural protein expression in V1 obtained using 

Western blotting and quantification with densitometry.  Each data set was organized into a matrix 

with n rows of observations (e.g. cases, cortical regions, and number of Western blot runs) and p 

columns of variables (e.g. # of proteins).  The first data set included results from animal studies 

examining changes in glutamatergic and GABAergic receptor subunit expression during normal 

development, monocular deprivation (MD), or treatment after MD (Beston et al. 2010, Balsor et 

al, 2019).  The second data set was from a series of studies examining the development of human 

V1 by measuring expression of a collection of neural plasticity proteins in postmortem tissue 

samples from cases that range in age from neonates to older adults (Murphy et al. 2005; Pinto et 

al. 2010; Williams et al. 2010; Pinto et al. 2015; Siu et al. 2015; 2017). 
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Prior to beginning the high-dimensional analyses described in this paper it is important to 

inspect and organize the raw data set.  First, if using Western blotting ensure that the 

quantification of the bands did not include artifacts (e.g. bubbles, spots) or poorly labeled bands 

that could skew the results.  Those data points should be omitted, and the missing data can be 

filled by imputation.  A variety of imputation functions have been implemented in R and a 

package impute was developed for microarray data that imputes missing gene or protein 

expression data using a nearest-neighbor analysis (Hastie et al. 2001). 

4.3. Using PCA & tSNE to study experience-dependent changes in visual 
cortex: Data reduction, feature identification, clustering, plasticity phenotypes 

The first workflow describes using PCA to identify features and then clustering of the 

features with tSNE.  A novel aspect of this approach is using the features to construct plasticity 

phenotypes and applying those phenotypes to rebrand and compare the clusters. 

The data set comes from two animal studies of visual cortical development and plasticity 

(Beston et al. 2010; Balsor et al. 2019) with an nxp matrix comprised of n=567 rows of 

observations and p=7 columns of protein variables (Tables 1&2). The final matrix had 3,969 cells 

of data and after omitting 602 cells with poor labelling, the final number of data points was 

3,367.  

Table 1. Observations (n)

Table 2. Variables (p)

Categories Specific Total

Rearing 
Condition

Normal (9), MD (8), Reverse Occlusion (1), 
Binocular Deprivation (1), Binocular Vision (5)

24

Regions Central (2), Peripheral (8 or 10), Monocular (2) 12 or 14

WB Runs 1,2 2

Sum 567

Categories Specific Total

Protein Synapsin I (Syn), GluN1, GluN2A, GluN2B, 
GluA2, GABAAɑ1, GABAAɑ3

7
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Figure 4. Protein analysis workflow for  p<10 and p≅n.  

a. Protein expression was collected across 7 proteins using immunoblotting (N=4232). b.Standard univariate 
analyses to identify significant differences among the 9 rearing conditions. c. Network analyses calculated using 
Pearson’s R between the 7 proteins in each rearing condition. d. PCA to explore and e. transform features. f. tSNE to 
represent the data in low-dimensional space (2D), then clustering algorithms were applied to the low-dimensional 
representation of the data. Clusters were annotated and subclusters identified (coloured dots) using known 
information about the tissue samples (rearing conditions). g. Network effects assessed using Pearson’s R correlations 
between clusters & subclusters h. Plasticity phenotypes to visualize similarities/differences among subclusters. 

4.3.i) Quantification and analysis 

The natural first step in the analysis workflow is to find extremes in protein expression that 

identify significant differences between conditions.  Using a series of univariate analyses, 

however, becomes overwhelming very quickly as the number of genes or proteins quantified 

increases (Figure 4B). Furthermore, such an approach does not realize the potential of the high-

dimensional data set since it is not inclusive of the full repertoire of proteins available. Instead, 

holistic approaches that examine all proteins can identify patterns in the data that suggest how the 

biological functions might have changed. 

Next, we describe using pairwise correlations and hierarchical clustering to visualize 

patterns in the data using a 2D correlation heatmap.  The organization of positive and negative 
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correlations provides insight into the network of protein expression in visual cortex and how 

different visual rearing conditions changed the pattern. 

 4.3.ii) Network analysis 

Visualizing pairwise correlations between proteins was the first step to beginning a holistic 

analysis of the data.  The order of the proteins was sorted by hierarchical clustering so that 

proteins with similar patterns of correlations were nearby.  A dendrogram was used to visualize 

the tree of protein clusters in the data (Figure 4C).  

The analysis was done in R Studio using a series of packages available for download at the 

Comprehensive R Archive Network (CRAN). These packages include: Harell Miscellaneous, 

stats, dendextend, seriation, and gplots. 

First, the data file was read in to an object called my.data. 

my.data <- read.csv (file="data.csv", header=TRUE, fill=TRUE, blank.lines.skip=FALSE)        (1)
Then the data were parsed into subsets representing each of the rearing conditions. The 

following R coding example (2) demonstrates how to parse the data for the Normal rearing 

condition (Normal):  

#Subset protein expression for normal animals:         (2) 
Normal <- as.matrix(subset(my.data, Rearing Condition== “Normal", 
select=c(GluN1,GluN2A,GluN2B,Gabaa1,Gabaa3,GluA2,Syn)))
#Repeat for all rearing conditions

A correlation matrix was calculated for each subset of data. There are many packages in R 

that can calculate Pearson’s R correlations. We used the rcorr function in the Harell 

Miscellaneous package (Hmisc, (Harrell and Dupont 2008)) since it computes a matrix of 

Pearson's R or Spearman's Rho rank correlation coefficients for all possible pairs of columns of a 

matrix. The following coding example (3) calculates the Pearson’s R for the Normal subset of 

data: 

#Compute the Pearson’s R for all columns p for the subset ‘Normal’                   (3)
NormalCor<-rcorr(Normal, type =c("pearson"))
#Save the Normal correlation matrix values as a data matrix called ‘NormalCorMat’
NormalCorMat<-as.matrix(NormalCor$r)

The matrix of Pearson’s R correlations was then converted into distance values since those 

values will be used for the hierarchical clustering.  The distance matrix is the inverse of the 

correlation matrix, so that values represent dissimilarity rather than similarity.  This step is 

necessary for generating the dendrograms that will represent cluster hierarchies. The conversion 
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from a correlation matrix into a distance matrix was done in R using the dist function in the stats 

package (Team 2015).  

This coding example (4) converts the correlation matrix for Normal animals 

(NormalCorMat) to a distance matrix: 

Normal.distance <- dist(as.matrix(NormalCorMat), method = "euclidean")                   (4)
The distance matrix for the proteins was used for hierarchical clustering with the hclust 

function in the stats package. Clusters were visualized using a dendrogram to show the branching 

pattern and distances between proteins. Proteins with similar patterns of correlations were 

separated by shorter branch distances (y-axis) and fewer branch points. 

This coding example (5) calculated the hierarchical clustering of the Normal.distance matrix 

and generated the dendrogram in Figure 5: 

#Compute hierarchical clusters using the ward.D2 method                   (5) 
Normal.cluster = hclust(Normal.distance, method = "ward.D2")

#Compute dendrogram without reordering branches
Normal.Dendrogram<-as.dendrogram(Normal.cluster) #converts clusters to dendrogram 
plot(Normal.dd)
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Figure 5. Initial output of hierarchical clustering the Normal distance matrix of proteins.  

The distance (y-axis) represents how closely related proteins are, with smaller values indicating a smaller 
distance and therefore a higher correlation. In this dendrogram, GluN2A is the most dissimilar to all other proteins. 
Depending on the height of the cut level, this dendrogram can be parse into any number of clusters (k). 

The last step was to create the colour-coded correlation matrix with surrounding 

dendrogram in Figure 6 using the heatmap.2 function from the gplots package (Warnes et al. 

2016). The correlation matrix (NormalCorMat) and dendrogram (NormalDendrogram) were the 

inputs for this example code (6). The colour scheme of the correlation matrix was adjusted by 

selecting an appropriate colour palette using the ‘col’ parameter, and the limits of the correlation 

matrix were adjusted to represent the range of Pearson’s R correlations using the ‘breaks’ 

parameter. 

heatmap.2(NormalCorMat,                    (6) 
Colv=NormalDendrogram, Rowv=NormalDendrogram, 
          revC=TRUE, breaks=seq(-1,1,length.out=51),
          margins =c(6,6), cexRow=1.5, cexCol=1.5, col=redbluecolours,      
          dendrogram="both", trace="none", density.info='histogram',
          key.xlab=NA, key.ylab=NA, key.title="Pearsons' R",
          lhei=c(1.75,8), lwid=c(3,8), keysize=.75, par(cex.main=10), srtCol = 65,
          key.xtickfun=function() {
          breaks <- parent.frame()$breaks
          return(list(
          at=parent.frame()$scale01(c(breaks[1],0,
          breaks[length(breaks)])),
          labels=c(as.character(breaks[1]),0,
          as.character(breaks[length(breaks)]))
            ))
            } 
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Figure 6. Correlation matrices for protein expression in Normal and MD animals.  

a. The output of the coding example for the Normal animals reveals most proteins have positive correlations 
with each other.  b. The same code was used on the subset of MD data to create a correlation matrix, distance matrix 
and dendrogram. The MD plot shows that the excitatory proteins are positively correlated with one another, the 
inhibitory are positively correlated with one another, but excitatory proteins are negatively correlated with inhibitory 
proteins.  

The examples above illustrate the information that can be readily visualized in a 2D 

correlation heatmaps.  This analysis helped to identify the pairs of proteins (e.g., GluN1 and 

GABAAα1) that had different relationships after abnormal visual experience. 

A final note: the dendrogram package dendextend (Galili 2015) provides additional control 

for dendrogram attributes such as line style, thickness, and colour.  Also, the seriation package 

(Hahsler et al. 2008) allows rotation of child branches to improve visualization. For example, in 

the MD heatmap above the first branch separates positive and negative correlations and using the 

seriation package that branch could be rotated so the blue cells are on the top left and the red 

cells on the top right.  This control can be helpful for highlighting the pattern of correlations for 

particular proteins in the study.  
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4.3.iii) Dimension reduction 

The next part of the analysis workflow uses PCA to explore the high-dimensional nature of 

the data.  We have implemented a two-step procedure that starts by reducing the dimensionality 

of the data and then uses the basis vectors for those dimensions to identify candidate biological 

features that capture the variance in the data. 

A note of caution: many implementations of PCA do not work well when there are empty 

cells in the matrix.  There are a variety of approaches that can be used, including imputation to 

fill in the empty cells, removing runs where data are missing for one or more proteins, or 

averaging across runs.  In this example, we averaged protein expression across runs. 

This section is not an overview of PCA and we encourage readers to go to the online 

tutorials to learn more about applying PCA to biological data.  It is important, however, to 

emphasize that our use of PCA is a data-driven approach to protein analysis because the variables 

(p) were only protein expression and did not include any of the categorical information such as 

treatment condition, cortical area or age.  

This coding example (7) starts by extracting the columns (3-9) from my.data that contained 

protein expression.   

Protein<- my.data[,3:9]                 (7) 
#Column 1 and 3 contain the Condition and cortical area; here we select proteins 1-7 by calling
#columns 3:9

The first step for performing PCA was to center and scale the data so that proteins with 

abundant expression did not obscure proteins with smaller but still significant variations in 

expression.  Each protein was scaled and centered producing a standard deviation of  ±1, and a 

mean of zero. Scaling data in R was done using the following example (8) of the base function 

scale: 

data.scaled <- scale(Protein, center = TRUE, scale = TRUE)            (8) 
There are a variety of packages in R to do PCA, and here we used the PCA function in the 

FactoMineR package (Lê et al. 2008).  That package produces eigenvalues and comes with 

excellent visualization tools to aid exploration of the relationships between principal components 

and features in the data set.  

First, we ran PCA on the scaled data set data.scaled and saved the result as the object pca. 
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pca <- PCA(data.scaled, ncp=m, scale.unit=FALSE, graph = FALSE)                     (9) 
#scale.unit can be set to TRUE if data set was not scaled in earlier steps
#graph can be set to TRUE to visualize the data set in the new PCA dimensions 

Principal components (PC) returned by this function are the set of orthogonal vectors in the 

object pca identifying the variance in data.scaled.  The eigenvalues represent the magnitude of 

the variance captured by each PC vector, and the eigenvalue is largest for PC1 and successively 

less for each subsequent PC.  An in-depth explanation of PCA and eigenvectors can be found 

here (Jolliffe and Cadima 2016). 

The eigenvalues for each PC were identified by consulting the pca object as follows: 

eig.val <- get_eigenvalue(pca)                  (10) 
The first step of dimension reduction was to identify how much variance was captured by 

each PC, then rank the PCs from largest to smallest, and lastly, retain the set of PCs that capture a 

significant amount of the variance.  Start with a Scree plot (Figure 7) showing the amount of 

variance explained by each of the PC dimensions. The following coding example (11) 

demonstrates how to consult the pca object to create a scree plot. 

fviz_eig(pca, addlabels = FALSE, ylim = c(0, 60),xlim=c(0.5,7.5),ncp=7, barfill="grey",       (11) 
barcolor="grey",geom="bar")+
scale_y_continuous(expand =c(0,0))+scale_x_discrete(expand =c(0,0))+
theme(axis.line.y=element_line(),axis.line.x=element_line(),panel.grid=element_blank())

Figure 7. Scree plot of the percentage of explained variance captured by each principal component.  

The amount of cumulative explained variance over the first 3 dimensions is >80%. Typically, the first 3 
dimensions are used at the cutoff value for reducing dimensionality. The remaining 4 dimensions each contain <7% 
variance. 

The Scree plot (Figure 7) shows the decreasing magnitude for the variance explained by the 

7 PC vectors.  A variety of methods have been used to identify the significant dimensions (Minka 
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2001; Hoyle 2008) and here we used the simple rule to retain successive dimensions until the 

amount of variance explained was ≧ 80%.  In this example, Dim1-3 explained 82% of the 

variance.  

Once the significant dimensions were identified they were used to select candidate 

plasticity features driving the variance of each dimension.  The 3 significant PC vectors can be 

represented by the weighted contribution from each the 7 proteins that together make up the basis 

vectors (Figure 8).  Those were used to understand which proteins drove the variance in the data.  

That information was stored as XY coordinates in the pca object and it was called with the 

following coding example (12). 

 #Identify the amplitudes of protein features relative to PCA 1                  (12) 
VarCoordDim1<-data.frame(pca$var$coord[,1])
setDT(VarCoordDim1, keep.rownames = TRUE)[]

 #Plot the amplitudes of protein features relative to PCA 1 in a histogram
ggplot(data=VarCoordDim1,aes(rn,pca.var.coord...1.))+
  geom_col(colour="black")+
  scale_y_continuous(expand =c(0,0),name="Amplitude (Basis Vector 1)",lim=c(0,0.75), 
breaks=c(0,0.25,0.5,0.75))+
  scale_x_discrete(limits=VarCoordDim1$rn)+
  theme(axis.line.y=element_line(),axis.line.x=element_line(),panel.grid=element_blank(),
        axis.text.x = element_text(angle=45,hjust =1,size=12),axis.text.y = 
element_text(angle=0,vjust=0.5,size=12),
        axis.title.x=element_text(size=14,face="bold"), axis.title.y=element_text(size=14,face="bold"),
        panel.grid.major = element_blank(), panel.grid.minor = element_blank()) 
# Run the same code for PCA 2 and 3 to produce histograms of protein amplitude about the remaining 2 
dimensions 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Figure 8. The basis vectors for dimensions 1-3 showing the protein vector amplitudes.   

The vectors were used to identify candidate plasticity features. For example, the basis vector for PCA 1 showed 
that all proteins move in the same direction suggesting that this dimension reflects protein sums (top). The basis 
vector for PCA2 showed that GluN2A and GABAAα1 contribute in opposite directions, suggesting that this 
dimension reflects a balance between those proteins (middle). The basis vector for PCA3 reflected a balance between 
GluN2B and GluA2 (bottom).

We used multiple steps to identify candidate plasticity features from each of the basis 

vectors.  Starting with PC1, we noticed that the weights for all the proteins were positive, so 3 
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candidate features were made using the sum of all proteins, the sum of the glutamatergic 

proteins, and the sum of the GABAergic proteins.  Next PC2 and PC3 were inspected, these basis 

vectors had both positive and negative weights suggesting that along these dimensions the 

expression of some proteins increased while others decreased.  This inspection revealed some 

pairs of proteins (e.g., GluN2A:GluN2B) that are known to change in opposite directions with 

different forms of visual experience.  This step also identified novel pairings (e.g., 

GABAAα1:GluN2A) that were also included as candidate features.  Continuing this approach, we 

identified 9 candidate features from the 3 basis vectors, and it is important to note that all were 

combinations of proteins rather than individual proteins.  Thus, this approach to using PCA can 

be described as an initial dimension reduction followed by expansion into candidate plasticity 

features.  Importantly, the expansion steps will identify both novel features and ones that have 

been well studied thereby facilitating interpretation of the results within a biologically relevant 

framework.

4.3.iv) Feature selection

The features were validated by determining the correlation between each of the 9 candidate 

features and the 3 dimensions.  This was done by calculating the 9 candidate features for all of 

the samples using the protein expression data and correlating those with the eigenvalues for the 3 

dimensions.  Bonferroni correction was done to adjust the significance level for the multiple 

correlations and features that were significantly correlated with a dimension became the plasticity 

features used in subsequent stages of the workflow.

The validation of candidate features was done in R, by storing the new features in a matrix 

NewFeatures, centering and scaling those data, then correlating the eigenvalues with the 

NewFeatures matrix. The function corr.test from the psych package (Revelle 2011) was used for 

that step.  The strength of the significant correlations was visualized with a custom 2D matrix 

created using the geom_tile function from the gplots package (Warnes et al. 2016). 

The new features were centered, scaled and stored as a new data matrix:
NewFeatures <- scale(NewFeatures, center = TRUE, scale = TRUE)                    (13)

Next, the coordinates for all data points in PCA space were stored in another matrix by 

consulting the pca object as follows:

PCA.scores<-pca$ind$coord                 (14)
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Finally, the correlations between the two matrices PCA.scores and NewFeatures were 

determined and visualized using the following R coding example (15):

Corr.scores<-corr.test(PCA.scores[,1:3],NewFeatures,use="pairwise",                    (15)
method="pearson",adjust="none")

#produce Pearson’s R correlations for only the first 3 dimensions
Corr.scores$p[1:3,]

#Run a bonferroni correction on the correlation matrix: Corr.scores.bf<-corr.test(PCA.scores[,
1:3],NewFeatures,use="pairwise",method="pearson",adjust="bonferroni")
Corr.scores.Rval<-Corr.scores.bf$r      #Pearson’s R values between PCs 1-3 & New features 
Corr.scores.bfpval<-Corr.scores.bf$p  #Bonferroni corrected p-values

#Before creating the following plot, consult the table of bonferroni corrected p-values (Corr.scores.bfpval), 
and omit corresponding cells in the table of R values (Corr.scores.Rval) for which the p-value falls below 
significance. The line in the code na.value=”grey” will fill leave these cells empty.

ggplot(Corr.scores.Rval, aes(x = variable, y = Dimension)) +
  geom_tile(data = Corr.scores.Rval, aes(fill = value,width=0.95, height=0.95))+ 
  scale_fill_continuous(low="red",high="darkgreen",limits=c(-1, 1), 
breaks=c(-1,0,1),labels=c(-1,0,1),na.value="grey",name="Correlation")+
  theme(panel.background = element_rect(fill = 'gray95'),
        axis.text.x = element_text(angle=65,hjust=1),panel.grid.major = element_blank(), panel.grid.minor = 
element_blank())+
  scale_x_discrete(expand=c(0,0),name="Protein Indices",labels=index.ord
  )+scale_y_discrete(expand=c(0,0),limits = rev(unique(sort(j$Dimension))))+coord_fixed(ratio=1)

Figure 9. Correlation between the plasticity features (columns) identified using the basis vectors for PCA 
dimensions 1-3.  

Coloured cells are significant, grey cells are non-significant. Bonferroni corrected correlations (green = positive, 
red = negative).  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The plot of correlations between the 3 significant PCA dimensions and the candidate 

features was used to validate the selection of features for input to the next stage of the analysis 

workflow (tSNE and clustering).  In the example above, all of the candidate features except a 

measure of the E:I balance was significantly correlated with at least one of the dimensions.  

Interestingly, none of the features were correlated with all 3 dimensions demonstrating that 

multiple plasticity features are necessary to capture the variance in the data. 

The whole collection of plasticity features was combined to form the plasticity phenotype 

that became the input to the next step in the analysis workflow. 

A final note: the new plasticity features can be analyzed using univariate statistics to 

determine if there are significant differences among rearing conditions.  That analysis is 

particularly important when feature selection identifies combinations of proteins that are not 

typically studied since they may provide new insights into the neurobiological mechanisms that 

differentiate among groups reared with various forms of visual experience. 

4.3.v) tSNE and clustering 

This step used tSNE analysis to preserve both the global and local arrangement of  the 

plasticity features. Also, tSNE is a good way to visualize clusters because it artificially scales the 

distance between data points with similar patterns of features. 

In this example, the inputs to tSNE were the validated plasticity features (NewFeatures) 

without the information that identified the source of the sample (e.g., cortical region, rearing 

condition, or age). 

The following coding example (16) demonstrates how to perform a tSNE analysis using the 

tsne function from the tsne package (Donaldson and Donaldson 2010). 

tsne <- Rtsne(NewFeatures, dims = 2, perplexity=25, verbose=TRUE, max_iter = 5000)      (16)

## plotting the results without clustering
d_tsne_1 = as.data.frame(tsne$Y)
#append the condition information to the tsne coordinates
d_tsne_1 = data.frame(d_tsne_1,Labels)

plot_t<-ggplot(d_tsne_1, aes(x=V1, y=V2, color=”black”)) +  
  geom_point(size=4) + guides(colour=guide_legend(override.aes=list(size=4))) +
  xlab("tSNE2") + ylab("tSNE1") +
  theme_light(base_size=20) +
  theme(axis.text.x=element_blank(),
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        axis.text.y=element_blank()) +   
  theme(panel.background = element_rect(fill="white", colour="lightgrey"
       ,size=1,linetype="solid")) +
  theme(legend.position = "bottom")
plot_t

 

Figure 10. tSNE output when run on NewFeatures identified by PCA.  

The dimensions for X and Y in tSNE have no units, but the distance between objects is scaled to position similar 
samples nearest to one another.  

The first step in the tSNE analysis reduced the plasticity features from each sample to tSNE 

XY coordinates (Figure 10).  Those coordinates were used as the input to K-means clustering 

analysis to identify and then visualize clusters in the data set. 

Both K-means and hierarchical clustering algorithms require the number of clusters k as a 

parameter.  A good method for choosing the number of clusters is to measure the within groups 

sum of squares (WSS) for a range of k, plot that information and then determine the inflection 

point. 

In the example data set there were 9 rearing conditions (e.g. normal, monocular deprivation 

etc) so we chose a range for k of 2 to 15 clusters, which encompassed the number of conditions. 

The following coding example (17) determined the WSS and plotted it for the k clusters: 
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wss <- (nrow(d_tsne_1)-1)*sum(apply(d_tsne_1,2,var))              (17)
for (i in 2:15) wss[i] <- sum(kmeans(d_tsne_1, 
                                     centers=i)$withinss)
plot(1:15, wss, type="b", xlab="Number of Clusters",
     ylab="Within groups sum of squares")

Figure 11. Within group sum of squares for hierarchical clustering of tSNE coordinates in Figure 10.  

Sum of squares decreases as cluster number (k) increases. Increasing k has little effect on sum of squares after a 
certain threshold is met. In this plot it appears that 6 or 7 clusters represents that threshold point. To accurately 
identify optimal cluster number using this “elbow method” we apply an exponential decay function to the curve and 
identify the 3τ, the point where 85% of the change has occurred. 

The optimal number of clusters was selected by fitting an exponential decay curve to the 

WSS data the finding the number of clusters corresponding to point where the curve plateaued 

(4τ) (k=6).  This approach is called the “elbow method”, where 4τ is the point of inflection, or 

elbow, of the curve.  

Next, K-means clustering for k=6 was done on the output from the tSNE analysis (Figure 

12a).  The clusters were assigned different colours to visualize the samples in each cluster.  Some 

clusters (green and yellow) were spatially separated on the tSNE plot, while others (e.g., orange 

and blue) were adjacent. The following coding example (18) plots the clusters identified in the 

tSNE representation of the data as different colors, but these colors can be manipulated to 

represent other characteristics of the data (e.g. cortical area, treatment condition). 
kmeans.clusters=kmeans(d_tsne_1[,-1],6)                   (18) 
kmeans.clusters <- as.factor(kmeans.clusters$cluster) 
ggplot(d_tsne_1, aes(d_tsne_1$V1, d_tsne_1$V2, color = kmeans.clusters)) + geom_point() 

�114



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

Figure 12. K-means clustering applied to tSNE reduced data.  

a. The clusters were colour-coded to visualize the 6 clusters identified in the data. b. Samples were annotated for 
cortical region (black circles=central, grey triangles=peripheral, white squares=monocular) and dashed lines were 
drawn around the clusters identified in a. c. Samples were colour-coded according to the rearing condition, the 
shapes were the same as in b. 

The number of samples in each cluster ranged from 5 (magenta) to 38 samples (orange).  

We annotated each sample based on the visual cortical region (central, peripheral, or monocular) 

(Figure 12b) and rearing condition (Figure 12c) to analyze cluster composition and determine if 

the clustering reflected one of those parameters.  For example, cluster 2 contained samples from 
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only one rearing condition (reverse occlusion) and cluster 1 contained almost all of the normally 

reared cases but it also had samples from other rearing conditions.  Thus, this step identified 

clusters and provided some evidence that the rearing condition was driving changes in the 

plasticity phenotypes.  The tSNE clustering, however, did not reveal which features from the 

phenotypes were separating the samples into different clusters or grouping them into the same 

cluster. 

Annotating each sample by the cluster, visual cortical region, and rearing condition was an 

essential first step for using the plasticity phenotypes to identify and explore subclusters in the 

data.  That process identified 13 subclusters in the example data set (Table 3). 

Table 3. Subclusters identified from the tSNE plot 

A final note: In this workflow, dimensionality reduction and feature selection were 

performed before tSNE analysis and clustering.  Although this is a common approach for 

analyzing high-dimensional data in neuroscience it is important to remember that PCA preserves 

the features with variance that is aligned with the orthogonal dimensions.   Thus, features with 

more subtle but important variance away from the PCA dimensions will not be included in 

Subcluster Rearing Condition tSNE Cluster
Region

C P M

Normal 1C,P,M Normal 1 X X X

LTBV1C,P,M Long term BV recovery 1 X X X

MD1P,M Monocular deprivation 1 X X

STBV1C,P,M Short term BV recovery 1 X X X

RO2C,P,M Reverse occlusion 2 X X X

STBV3C,P,M Short term BV recovery 3 X X X
MD3C,P Monocular deprivation 3 X X

BD3C,P,M Binocular deprivation 3 X X X

LTBV4P,M Long term BV recovery 4 X X

LTBV5P,M Long term BV recovery 5 X X
STBV5P Short term BV recovery 5 X

LTBV6P Long term BV recovery 6 X
BD6P Binocular deprivation 6 X
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subsequent clustering (Chang 1983).  We will return to this issue in section 4.4 where we present 

a second analysis workflow to handle data with more subtle differences in the features. 

4.3.vi) Identifying and exploring subclusters 

In this section, we describe how to analyze and visualize subclusters using the features that 

comprise the plasticity phenotypes. 

First, the features and tSNE results were combined in R by appending the object containing 

the tSNE dimensions and clusters (d_tsne_1) to the plasticity features (NewFeatures).  Now each 

sample had both the clustering information from the tSNE analysis and the feature data from 

PCA.  Next, the data were organized into subsets according to the subclusters.  For example, all 

of the data points for Normal samples in cluster 1 were subset as follows: 

Sub.Normal1<- subset(Feature, group=="Normal 1")              (19)
mean.Norm1  <- mean(Sub.Normal1)
N.Norm1 <- length(Sub.Normal1)
# repeat for the remaining subclusters of data

Next, univariate analyses were done to compare plasticity features between subclusters. 

Boxplots were made with the boxplot function in the vioplot package (Adler 2005) and bootstrap 

tests were used to determine which subclusters were significantly different from the normal 

subcluster (Supplemental Information). 

The significant deviations from normal were colour-coded in the boxplot to facilitate 

visualizing subclusters where a feature had above (red) or below (blue) normal expression.  To 

include the colour-coding of boxes a column with the information from the significance tests was 

added to the subset data (e.g., Sub.Normal1).  For example, clusters that were significantly greater 

than mean.Norm1 were identified with the label ‘red’, clusters that were significantly less than 

mean.Norm1 with the label ‘blue’, and those that were not significantly different than mean.Norm1 

with the label ‘grey’. That updated collection of subset data were stored in an object called 

Clusters.Subsetted, and the original cluster designation was stored as Subset.Names. The 

following coding example (20) was used to create boxplots of the subsetted data for the feature 

GABAAα3:GABAAα1. 

boxplot(Clusters.Subsetted.GluN2A.GABAa1, names=Subset.Names)                  (20)
,col=c("grey",Bootstrap.Colour) ,ylim=limits ,las=2, pchMed=15, colMed="black", rectCol="white", 
outline=FALSE)
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stripchart(Clusters.Subsetted ~ Cluster.ID, vertical = TRUE, data = data,  method = "jitter", add = TRUE, 
pch=20, col=rgb(0,0,0,0.5),opacity=0.5,cex=0.75)

Figure 13. Boxplot for the GABAAα3:GABAAα1 feature that identified subclusters with expression 
different from normal.  

The original 6 clusters were divided into 13 subclusters, annotated by the original conditions. Boxplots were 
drawn around the mean expression on the GABAAα3:GABAAα1 balance. Boxes were coloured relative to normal 
(red for significantly above, and blue for significantly below). Scatterplots were drawn on top of each boxplot 
showing the observations within each cluster. 

The boxplots were useful for highlighting significantly different subclusters for individual 

features. For example, the plot above identified 8 subclusters that were significantly greater than 

normal (red).  However, it is daunting trying to synthesize all of the significant differences for 9 

features and 13 subclusters using just that approach.  Instead, we calculated the pairwise 

correlations between subclusters using the plasticity phenotypes, ordered the subclusters using 

hierarchical clustering and visualized these in a 2D heatmap.  The steps were the same as 

explained in coding examples (2)-(6), except the input data for the plasticity phenotypes was 

NewFeatures and the 13 subclusters identified in Clusters.Subsetted. 
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Figure 14. Correlation matrix for plasticity phenotypes between the subclusters of the data.  

Matrix of Pearson’s R correlations between the means across 8 plasticity features in each subcluster. Clusters 
were reordered according to the surrounding dendrogram. The dendrogram positioned similar clusters close together, 
and moved dissimilar samples to the periphery. Inset demonstrates counts across the range of Pearson’s correlations, 
while the color gradient ranges from low positive correlations (blue) to high positive correlations (red). 

The correlation matrix for the plasticity phenotypes showed the strength of similarity or 

dissimilarity among the subclusters.  Here, the surrounding dendrogram ordered subclusters for 

some rearing conditions (e.g., LTBV) on the same branch as the Normal subcluster, while other 

conditions (e.g., BD) were far from the Normal branch. This analysis revealed which subclusters 

had similar plasticity phenotypes but did not clarify if that was based on the entire pattern of the 

features in the phenotype or if a smaller number of features drove the clustering. 

4.3.vii) Construct and visualize plasticity phenotypes to identify similar and 
different features among subclusters  

In the last step for this workflow we describe visualizing the plasticity phenotypes, 

ordering them using the dendrogram from the hierarchical clustering, and comparing phenotypes 

to identify differences among rearing conditions. 
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A display was created to show each of the feature and the whole pattern of the plasticity 

phenotype so that it was easy to compare the subclusters for similarities and differences visually 

(Figure 15).  The visualization had a series of colour-coded horizontal bands where each band 

represented a feature, and together the 9 bands represented the average plasticity phenotype for a 

subcluster. 

Figure 15. Legend for the features comprised in the plasticity phenotype and the colour-code.  

The top three bars (from protein amplitudes about PCA basis vector 1) represent protein sums and use greyscale 
(white to black) for zero to the maximum protein sum. The next 6 bars represent the feature indices identified with 
the basis vectors from PC2 and PC3 and use a colour-scale (red to yellow to green) for the shift from one protein to 
the other.  

The plasticity phenotypes were visualized in R, using the geom_tile function in the ggplot2 

package (Wickham 2010).  First, the feature mean was determined for each subcluster then the 

limits of the colour scales were set by finding the maximum and minimum expressions for a 

feature across all subclusters. Finally, the subcluster mean was converted to the corresponding 

RGB score. The following coding example (21) was used to map the mean for each feature in the 

Normal condition onto a color scale: 

GluN2A:GABAAa1.min<-min(subcluster.means)              (21)
GluN2A:GABAAa1.max<-max(subcluster.means)

GluN2A:GABAAa1.range<-(abs(GluN2A:GABAAa1.min)+GluN2A:GABAAa1.max)/2
GluN2A:GABAAa1.mid<- GluN2A:GABAAa1.max-GluN2A:GABAAa1.range

GluN2A:GABAAa1.col<-scale_colour_gradient2(low="green",mid="yellow",high="red",
                               midpoint=GluN2A:GABAAa1.mid,
                               breaks=c(GluN2A:GABAAa1.min,GluN2A:GABAAa1.mid, GluN2A:GABAAa1.max),
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                               labels=c("Below Normal","Normal","Above Normal"),
                               limits=c(GluN2A:GABAAa1.min,GluN2A:GABAAa1.max))

Mat.col.Norm<- Mat.col$map(Mat.mean.Norm)

That list of colour-codes for each subcluster was stored in a new matrix called Colour.Table. 

The matrix will be consulted in the code below (22) to call the correct colour for each horizontal 

bar in the plasticity phenotype.  

Normal1plot<-ggplot() +       (22)
  scale_x_continuous(name="Normal1") +
  scale_y_continuous(name=NULL) +
theme(axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.text.y=element_blank(),axis.ticks.y=e
lement_blank(),
        panel.background = element_rect(fill = "white", colour = "white"))+
  geom_rect(mapping=aes(xmin=x1, xmax=x2, ymin=y1, ymax=y2), color="white", alpha=0)+
  geom_rect(data=d,xmin = 1, xmax = 9, ymin = 18, ymax = 19.75, color="black", fill =Colour.Table[3,3])
  +geom_rect(data=d,xmin = 1, xmax = 9, ymin = 16, ymax = 17.75, color="black", fill) 
Normal1plot

#The coordinates must refer to the cell containing colour information for the #desired feature in a 
particular subset of data
#repeat the above code beginning at colour.table [,] to create as many features as desired.

Figure 16. Example plasticity phenotype for the Normal subcluster.  

The top three bars depict high levels for the protein sums, while the next 6 bars represent the balance between 
the protein pairs for that feature using a green-to-red colour scale. The greenish bars indicate features that are biased 
toward first protein (e.g., GABAAα1 versus GluN2A), reddish bars are biased toward the second protein (e.g., 
GluN2A versus GluA2) and yellow bars reflect roughly equal expression of the two proteins (e.g., GluN2B versus 
GluN2A).   
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The figure below (Figure 17) illustrates the power of this tool for visualizing the features 

and patterns in the plasticity phenotypes that group or separate subclusters. 

The subclusters in this example were ordered using the same hierarchical clustering 

dendrogram as in Figure 14, and the average plasticity phenotype for a subcluster was displayed 

at the end of its branch in the tree.  The figure provides a strong visual impression of the 

phenotypic similarity among subclusters located nearby in the tree (e.g., normal and LTBV) and 

differences for subclusters that are further away (e.g., normal and BD).  Thus, this tool supports 

linking the output of high-dimensional analyses with neurobiologically meaningful insights.  For 

the example data set, the visualization revealed the patterns of neural proteins changes driven by 

different forms of visual experience.   

Figure 17. Example of the orderly progression of plasticity phenotypes across subclusters.  

The subclusters are noted below the phenotypes, and are arranged according to the dendrogram 

Finally, features in a subcluster that are significantly different from normal can be easily 

visualized by color-coding each bar red for features that are above or blues for ones that are 
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below normal (Figure 18). We performed a Bootstrap analysis comparing expression of each 

feature to the Normal subcluster of data points and colored each bar with a mean expression 

significantly greater than the normal subcluster red, and each bar with a mean expression 

significantly less than the normal cluster blue. Features that did not significantly differ from 

Normal subcluster were left empty. The result of that analysis is below.  

Figure 18. Identifying features of the plasticity phenotypes in the subclusters that are different from 
normal.  

The subclusters are noted below the phenotypes, and are arranged according to the dendrogram. The features in 
each subcluster phenotype are color-coded to indicate if the feature is significantly greater than (red) or less than 
(blue) the 5wk normal condition (left most phenotype).  

Attaching significance to the color bars makes the visual inspection for cluster-defining 

features even easier. For example, bootstrap analysis reveals that for the subcluster labelled RO 

the top three factors were significantly greater than normal, while the bottom 4 factors were 

significantly less. In figure 17 this was represented as a collection of grey bars stacked above 

mostly green, but a quick inspection of the phenotype for RO in figure 18 reveals that the 

significant decreases were in total protein expression (top 3 blue bars) and the significant 

increases were in the plasticity indices (bottom 4 red bars). The most notable finding from this 
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new presentation of the phenotypes was that the feature most likely to be not significantly 

different from normal was the bottom most feature (GluN2A:GluA2 balance), which is formatted 

as a series of white boxes across the bottom of 7 of the different subclusters. 

4.4:  Using sparse high-dimensional clustering to study human visual cortical 
development: Clusters, features, and plasticity phenotypes 

The goal of testing sparse high-dimensional clustering methods was to determine if they 

reveal age-related clusters in the expression of proteins in human visual cortex that provide 

meaningful insights into the neurobiological development of human cortex. 

The second workflow describes the application of sparse high-dimensional clustering, 

transformation and identification of features using PCA, and exploration of cluster composition 

using plasticity phenotypes (Figure 19).  This workflow moved away from using tSNE and 

instead applies sparse high-dimensional clustering for analyzing the protein data.  In the first 

workflow (4.3), PCA was used to identify significant features in the data set, and those features 

were used as the input for the clustering algorithm. In the second workflow (4.4), clusters were 

first identified in a high-dimensional space, and then PCA was used to further explore significant 

relationships between the protein features. Importantly, PCA can be used either before or after 

clustering, provided that the features that are used as the input to the clustering algorithm are 

significantly correlated with the original data set (as in 4.3.iv). 

The data set used here was from a series of studies examining the development of synaptic 

and nonsynaptic proteins in human visual cortex (Murphy et al. 2005; Pinto et al. 2010; Williams 

et al. 2010; Pinto et al. 2015; Siu et al. 2015; 2017).  The data set created a nxp matrix comprised 

of n=403 rows of observations and p=23 columns of protein variables (Tables 4 & 5). The data 

were collected from the same tissue samples, across a series of different experiments, and each 

experimental data set was stacked vertically creating an initial matrix of 9,269 cells and an initial 

N= 1,831 data points. The empty cells created by stacking experimental data sets (7,438 empty 

cells) were reduced by converting protein expression across the 23 protein variables to a sample 

average for each of the 31 samples, creating a final matrix of 713 cells and a final N=651 data 

points.  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Table 4. Observations (n) 

Table 5. Variables (p)

Categories Specific Total

Age 2 days - 79 years 31

WB Runs 2-5 2-5

Categories Specific Total

Proteins Gad65 Gad67, VGAT, GABAAα1, GABAAα2, GABAAα3, CB1, 

Gephyrin, PSD95, Gephyrin from whole homogenate (Gephyrin.HOM), 

PSD95 from whole homogenate (PSD95.HOM), Synapsin I, 

Synaptophysin, GluA2, GluN1 (NR1), GluN2A (NR2A), GluN2B 

(NR2B), Classic-MBP, Golli-MBP, Integrinβ3, GFAP, Ube3A, Drebrin

23
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Figure 19. Protein analysis workflow for p>20 and p≅n. 

a. Protein expression was collected across 23 proteins using immunoblotting (Nfinal=651). b. Developmental 
trajectory of each protein visualized using scatterplots. c. We explored multiple high-dimensional clustering methods 
to identify underlying patterns across 23 proteins. A tSNE representation of the data was used to visualize the results 
of each clustering attempt (left), and boxplots of cluster median age were used to visualize developmental separation 
of clusters (right).  d. Cluster information was fed into the developmental trajectories to color clusters in scatterplots. 
e-f. The weights attached to each protein after high-dimensional clustering were used to order the protein variables 
and used to make a parallel coordinates plot of the average scaled protein expression for each cluster. g. Protein 
motifs of the same scaled data in f were created as a simple visual inspection tool to identify differences across 
clusters. h. Boxplots of clusters with significantly high  or low expression relative to the full course of development. 
i. Principal component analysis (PCA) was performed to  identify significant dimensions. j. Biplots of protein 

�126



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

vectors visualize variables with the greatest variance. k. Identify candidate features and transform the data using the 
results of PCA and biplot analysis. l-m. Correlation matrix of new plasticity features and the surrounding 
dendrogram (l) were used to order the presentation of neuroplasticity phenotypes (m).  

4.4.i) Challenges identifying clusters in a data set with many features  

Clustering of high-dimensional data is challenging because of sparsity in the data set, and 

for that reason, it is common to use dimension reduction (e.g., PCA) as the first step to identify a 

smaller number of features that are correlated among the points and drive variance in the data.  

Then the subsequent clustering focuses on those features.  That approach, however, breaks down 

when the features that differentiate clusters are not orthogonal (Chang 1983). For example, in the 

current data set, subtle developmental shifts were identified where some proteins are correlated 

with certain features, while other proteins are correlated with other, non-orthogonal features.  

These are important considerations when studying cortical development because even a small 

change in protein expression can have a significant impact on neurobiological function and those 

changes may be missed by some approaches to high dimensional data analysis. 

To overcome the problem that dimension reduction may prune off too much information, or 

miss more subtle changes in protein expression, we tested a set of sparse clustering algorithms 

using our human V1 development protein data set as the input.  Those algorithms were designed 

to cluster high-dimensional data with strong sparsity, and here we show that a recent application 

(RSKC- Kondo et al. 2016) based on the adaptive sparse clustering algorithm from Witten & 

Tibshirani (2010) performed best for clustering the developmental changes in protein expression.  

The Witten & Tibshirani algorithm was explicitly designed for sparse clustering of high-

dimensional data when the structure of the data set is either p ≈ n or p > n.  That is the structure 

of the data set used here (p=23, n=31) and that is generally the case for genomic or proteomic 

studies of human brain development where measurements are made for many genes or proteins 

(p) from a smaller number of cases (n). 

It is important to note that sparsity in the context of high-dimensional cluster analysis does 

not mean empty cells in the data set but rather that for any pair of points in a high-dimensional 

space there are probably a few dimensions that separate them.  Standard clustering algorithms 

like those used in section 4.3 work well for separating data points based on larger differences in 

feature expression, which exist along orthogonal sets of dimensions.  Information for identifying 
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clusters, however, can come from more subtle differences in feature expression, which exist 

along non-orthogonal sets of dimensions.  Those features are less likely to be captured by 

clustering algorithms suited for a low-dimensional space. Hence the need to use a clustering 

algorithm that can adaptively search all sets of dimensions for both the local, non-orthogonal sets 

of dimensions, as well as global, orthogonal sets of dimensions. 

4.4.ii) Sparse high-dimensional clustering to identify communities in the data 

Here we describe and compare four sparse high-dimensional clustering methods for 

analyzing the development of human visual cortex.  High-dimensional clustering is an active area 

of statistics research (e.g., Lakshmi et al. 2017) with many new algorithms and approaches 

published yearly but the more commonly used ones are reviewed in Parsons et al., 2004. 

The 4 clustering methods that we tested were selected because they were developed to find 

clusters in sparse high-dimensional data.  The first two methods, CLIQUE (Agrawal et al. 1998) 

and PROCLUS (Aggarwal et al. 1999), use projected clustering to discover dense regions, or 

subspaces of correlated points and find clusters in the corresponding subspace.  The CLIQUE 

algorithm is a bottom-up approach moving from lower to higher dimensionality subspace, but it 

does not strictly partition points into unique clusters so a data point may be assigned to more than 

one cluster.  CLIQUE is also prone to classifying points as outliers and excluding them from the 

analysis.  PROCLUS was developed to address the partitioning problem and uses a 3-step top-

down approach to projected clustering based on medoids.  The steps involve initializing the 

number of clusters (k) and the subspace search size (number of dimensions to consider), then 

iteratively assigning medoids to find the best clusters for the local dimensions, and a final pass to 

refine the clusters.  PROCLUS has better accuracy than CLIQUE in partitioning points into 

clusters but the a priori selection of cluster size is not easy and demands an iterative approach to 

finding clusters.  Furthermore, by restricting the subspace search size, some essential features 

may be omitted from the analysis. 

Both CLIQUE and PROCLUS were developed for large data sets, 2-3 orders of magnitude 

larger than the data set used here and that higher information content can lessen the partitioning, 

outlier, and feature omission problems.  For our purposes, we also needed to test sparse 
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clustering designed for smaller data sets where p ≈ n or p > n, but that also met the criteria 

introduced above: 

I. use as many features as possible to identify clusters 

II. group all of the samples into distinct clusters containing at least 3 samples 

III. do not exclude points as outliers  

The sparse hierarchical clustering method SPARCL was developed by Witten & Tibshirani 

(2010), and clusters data points using an application of the lasso regression method to select local 

subsets of features adaptively.  Those subsets are applied by scaling the weight of each variable, 

the proteins in our data set, to reflect the impact of each protein on the features and the 

reweighted proteins are the input to K-means hierarchical clustering.  In our application, all of the 

reweighted proteins were part of the clustering but it is possible to drop variables from the 

clustering component of this approach.  The adaptive feature selection of SPARCL focuses on the 

subset of proteins that underlie the differences among clusters and that process is similar to 

removing noise from the data.  Finally, SPARCL makes it easier to draw meaningful conclusions 

about why data points are in a cluster because clustering is determined using the subset of 

features responsible for differences among the data points. 

 The Witten & Tibshirani sparse clustering algorithm has many strengths for analyzing data 

sets with p ≈ n or p > n; however, it can form clusters containing just one observation (Witten and 

Tibshirani 2010).  A recent extension, Robust and Sparse K-means Clustering (RSKC), addresses 

the issue of small clusters by assuming that those are caused by outlier data points.  RSKC uses 

the same clustering framework as SPARCL, except that it is ‘robust’ to outliers (Kondo et al. 

2016).  RSKC iteratively identifies clusters in the data, then identifies clusters with a small 

number of data points (e.g., n=1) and flags these data points as potential outliers. The outliers are 

temporarily removed from the analysis, and clustering proceeds as outlined above for SPARCL. 

Once all clusters have been identified, the outliers are re-inserted in the high-dimensional space 

and grouped with the nearest neighbour cluster. Thus, RSKC identifies meaningful clusters in the 

data and includes all of the data points. 
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Applications 

Here we compare four high-dimensional clustering approaches (PROCLUS, CLIQUE, 

SPARCL, RSKC) using a subset of the proteins in the human visual cortex develop data set.  

Then describe the application of RSKC to the full set of proteins in the data set. 

First, we tested the two density projection clustering methods that use either top-down 

(PROCLUS) or bottom-up (CLIQUE) clustering methods with all of the observations (n=31) and 

7 of the proteins from the human visual cortex development data set. The outputs were plotted in 

2D using tSNE, and the data points were colour-coded according to the clusters identified by 

each method. Finally, to determine if the clusters represented developmental changes in the data 

set we plotted boxplots showing the median ages for each cluster. 

PROCLUS: The PROCLUS clustering method was implemented in RStudio using the 

ProClus function in the subspace package (Hassani et al. 2015). We explored clusters between 

k=2-9 and the example code below is for k=2 clusters.  

The data file was read into an object called my.data2 and the clustering function ProClus 

was called.  tSNE was run on my.data2 to visualize the data points in 2D and the points were 

color-coded using their cluster identification determined from ProClus.  The results were saved 

in my.proclus.tSNE and that object was used to create the tSNE plots. 

ProClus.clusters.k2 <- ProClus(my.data2,k=2)         (23)
#identify the row ID for samples in each cluster (e.g. ProClus2[[1]]$objects identifies cluster 1 rowIDs)
rows.2.1<-ProClus.clusters.k2[[1]]$objects 
rows.2.2<-ProClus.clusters.k2[[2]]$objects    

#subset the same rows from the original data file
proclus2.1<-cbind(my.data2[c(rows.2.1),c(1:4)],"Cluster"=1) 
proclus2.2<-cbind(my.data2[c(rows.2.2),c(1:4)],"Cluster"=2)

#create a new data.frame that contains the clusters
ProClus.2.df<- rbind(proclus2.1,proclus2.2)
ProClus.2.df$Cluster<-as.factor(ProClus.2.df$Cluster)

#Perform a tSNE analysis to create a 2D representation of the data
my.proclus.tSNE<-Rtsne(my.data2, dims = 2, perplexity=25, verbose=TRUE, max_iter = 5000)

#Plot the 2 Clusters and set each cluster to a different colour
colours.clus2<-c("#FF0000","#0000FF")
colours.clus2.all <- colours.clus2[as.numeric(ProClus.2.df$Cluster)]
cols2 <- c("1" = "#FF0000", "2" = "#0000FF")

#Visualize the clusters using the tSNE plot
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ggplot(my.proclus.tSNE, aes(V1, V2)) +
theme(axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.text.y=element_blank(),axis.ticks.y=e
lement_blank(),
        panel.background = element_rect(fill = NA, colour = "white"),panel.border = element_blank(), 
axis.line = element_line(),
        legend.direction="vertical",legend.position = c(0.1, 0.8),legend.background = element_rect(fill = NA, 
colour = NA), legend.title.align=0.5)+
  labs(x="V1",y="V2")+
  geom_point(data=proclus2.1,colour="#FF0000",size=8,aes(V1,V2))+
  geom_point(data=proclus2.2,colour="#0000FF",size=7,aes(V1,V2))+
  geom_point(size=1,shape=20,colour="black")
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Figure 20. Top-down, bottom-up and sparse subspace clustering.  

A-B. Top-down PROCLUS subspace method across range of cluster numbers (2,4,6,8). The clusters are 
visualized in tSNE representations of the data by color-coding each data point with its cluster identity (Ai-iv) and in 
histograms showing the median age of the samples in each cluster (Bi-iv). C-D. Bottom-up Clique subspace 
clustering method for a range of ‘intervals’. Different clusters are visualized as coloured dots in a tSNE 
representation of the data (Ci-iv) and as histograms depicting the mean age of the samples (Di-iv).  E-F. Sparse 
clustering after varying the inputted k cluster number (2,4,6,8). Different clusters are visualized as coloured dots in a 
tSNE representation of the data (Ei-iv) and as histograms depicting the mean age of the samples (Fi-iv). The colours 
in scatterplots and histograms represent the cluster designation for all plots.  

In this example, PROCLUS identified clusters but some observations (small grey dots) 

remained without a cluster designation and were interpreted as outliers (Figure 20A).  The 

outliers remained even after stepping through a range of cluster numbers (k=2-8) and some of the 

clusters had only one or two data points (Figure 20Ai-iii).  Furthermore, there was only a weak 

progression in the median age of the clusters (Figure 20Bi-iii).  Thus, the iterative top-down 

feature identification and cluster border adjustments of PROCLUS performed poorly for 

analyzing the human visual cortex development data set. 

CLIQUE:  Next, the bottom-up clustering method CLIQUE was tested to determine how 

well this iterative approach to building clusters performed with the developmental data. 

The CLIQUE function from the subspace package (Hassani et al. 2015) was used to test 

clustering with the same data set tested with PROCLUS (my.data2).  CLIQUE requires an input 

value for the interval setting (xi) because the intervals divide each dimension into equal width 

bins that are searched for dense regions of data points.  Here we tested a range of intervals 

(xi=2-8) that produced 4-9 clusters. 

The coding example below (24) used xi=2 as the input interval value and that produced 6 

clusters that were visualized in a tSNE plot using my.clique.tSNE object (Figure 20 C&D). 

Clique.intervals2 <- CLIQUE(my.data2,xi=2,tau=0.7)        (24)

#identify the rows in the data for each cluster
rows.2.1<-Clique.intervals2[[1]]$objects 
rows.2.2<-Clique.intervals2[[2]]$objects
rows.2.3<-Clique.intervals2[[3]]$objects
rows.2.4<-Clique.intervals2[[4]]$objects
rows.2.5<-Clique.intervals2[[5]]$objects
rows.2.6<-Clique.intervals2[[6]]$objects

#bind the cluster identity to my.data2
Clique2.1<-cbind(my.data2[c(rows.2.1),c(1:4)],"Cluster"=1) Clique2.2<-cbind(my.data2[c(rows.
2.2),c(1:4)],"Cluster"=2)
Clique2.3<-cbind(my.data2[c(rows.2.3),c(1:4)],"Cluster"=3)
Clique2.4<-cbind(my.data2[c(rows.2.4),c(1:4)],"Cluster"=4)
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Clique2.5<-cbind(my.data2[c(rows.2.5),c(1:4)],"Cluster"=5)
Clique2.6<-cbind(my.data2[c(rows.2.6),c(1:4)],"Cluster"=6) 

#Create a new data frame that contains the cluster information, and save the clusters as factor
Clique.2.df<- rbind(Clique2.1, Clique2.2, Clique2.3, Clique2.4, Clique2.5, Clique2.6)
Clique.2.df$Cluster<-as.factor(Clique.2.df$Cluster)

#Perform a tSNE analysis to create a 2D representation of the data
my.clique.tSNE<-Rtsne(my.data2, dims = 2, perplexity=25, verbose=TRUE, max_iter = 5000)    

#Visualize the clusters using the tSNE information
colours.clus2<-c("#FF0000","#0000FF", "#00FF00","#A020F0", "#FFA500", "#FFFF00")
colours.clus2.all <- colours.clus2[as.numeric(Clique.2.df$Cluster)]
cols2 <- c("1" = "#FF0000", "2" = "#0000FF", "3" = "#00FF00", "4" = "#A020F0","5" = "#FFA500", "6" = 
"#FFFF00")

ggplot(my.clique.tSNE, aes(V1, V2)) +
theme(axis.text.x=element_blank(),axis.ticks.x=element_blank(),axis.text.y=element_blank(),axis.ticks.y=e
lement_blank(), panel.background = element_rect(fill = NA, colour = "white"),panel.border = 
element_blank(), axis.line = element_line(), legend.direction="vertical",legend.position = c(0.1, 
0.8),legend.background = element_rect(fill = NA, colour = NA), legend.title.align=0.5)+ 
labs(x="V1",y="V2")+
  geom_point(data=Clique2.1,colour="#FF0000",size=8,aes(V1,V2))+
  geom_point(data=Clique2.2,colour="#0000FF",size=7,aes(V1,V2))+
  geom_point(data=Clique2.3,colour="#00FF00",size=6,aes(V1,V2))+
  geom_point(data=Clique2.4,colour="#A020F0",size=5,aes(V1,V2))+
  geom_point(data=Clique2.5,colour="#FFA500",size=4,aes(V1,V2))+
  geom_point(data=Clique2.6,colour="#FFFF00",size=3,aes(V1,V2))+
  geom_point(size=1,shape=20,colour="black")

CLIQUE allows data points to be in more than one cluster and to visualize the multi-cluster 

identities we plotted the data points using concentric color-coded rings.  CLIQUE placed all of 

the data in the developmental data set into multiple overlapping clusters for all of the interval 

settings (xi=2-8, Figure 20C). That poor partitioning of points resulted in no differences in the 

median cluster age (Figure 20D).  Thus the iterative bottom-up clustering of CLIQUE performed 

poorly for clustering the developmental data set and did not reveal age-related clustering.  

Comparing the top-down PROCLUS and bottom-up CLIQUE methods showed that neither 

approach was appropriate for analyzing the human visual cortex developmental data set.  

PROCLUS performed somewhat better because some of the parameters resulted in clusters with 

a progression in the median cluster age.  That better clustering may have been because 

PROCLUS used a subset of the proteins for each iteration; however, the number of data points 

treated as outliers was unacceptably high. 

�133



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

SPARCL: We tested a third algorithm, sparse K-means clustering SPACRL (Witten and 

Tibshirani 2010) that adaptively finds subsets of variables capturing the different dimensions and 

includes all samples in the clusters. SPARCL searches across multiple dimensions in the data and 

adjusts the weight of each variable based on their contribution to the clustering. The term ‘sparse’ 

here refers to the selection of different subsets of proteins to define each cluster, but all samples 

are assigned to a cluster.  

To implement sparse K-means clustering, we used the Kmeans.sparsecluster function in the 

sparcl package (Witten and Tibshirani 2013). We explored a range of k clusters between k=2-9.  

The sparcl package also includes a function to help determine other input variables such as the 

boundaries for reweighting the variables (wbounds) to produce optimal clustering.  

This coding example (25) identifies the optimal wbounds setting for k=2 clusters: 

sparcl2.perm<- KMeansSparseCluster.permute(my.data2, K=2, nperms = 50,      (25)
wbounds = NULL, silent = FALSE, nvals = 10, centers=NULL)sparcl2.w<-sparcl2.perm$bestw

The coding example below calculates sparse clustering for k=2 clusters with the wbounds 

found above:  

sparcl2<-KMeansSparseCluster(my.data2, K=2, wbounds = sparcl2.w,              (26)
 nstart = 20, silent =FALSE, maxiter=50, centers=NULL)

#Store the results of the clustering in a dataframe
sparcl2.clust<-sparcl2[[1]]$Cs
sparcl2.clust<-as.data.frame(sparcl2.clust)

#Store the rownames as a column for value lookup
setDT(sparcl2.clust, keep.rownames = TRUE)[] 
colnames(sparcl2.clust)[1] <- "Identifier"
colnames(sparcl2.clust)[2] <- "Cluster 2" 
sparcl2.clust[,2] <- lapply(sparcl2.clust[,2],as.factor)

#Perform a tSNE analysis to create a 2D representation of the data
my.sparcl.tSNE<-Rtsne(my.data2, dims = 2, perplexity=25, verbose=TRUE, max_iter = 5000)

#Merge the cluster information with the tSNE data frame for visualizing clusters
full.data<-merge(my.sparcl.tSNE[], sparcl2.clust, by="Identifier")

colours.clus2<-c("red","blue")
colours.clus2<-c("#FF0000","#0000FF")
colours.clus2.all <- colours.clus2[as.numeric(full.data$`Cluster 2`)]

ggplot(full.data, aes(V1, V2)) +
  theme(axis.text.x=element_blank(), axis.ticks.x=element_blank(), 
axis.text.y=element_blank(),axis.ticks.y=element_blank(),
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        panel.background = element_rect(fill = NA, colour = "white"),panel.border = element_blank(), 
axis.line = element_line(),
        legend.direction="vertical",legend.position = c(0.1, 0.8),
        legend.background = element_rect(fill = NA, colour = NA),legend.title.align=0.5)+
  scale_color_manual(name="Cluster",values=c(colours.clus2.all),labels=c("1","2"))+  labs(x="V1",y="V2")
+geom_point(size=4,shape=21,colour="black")+
geom_point(size=3.5,aes(colour = `Cluster 2`))

RSKC: The clusters found with SPARCL showed good partitioning of the data, and with 

4-8 clusters, there was a progression of the median cluster age (Figure 20 E, F). However, some 

clusters had a small number of data points (e.g. n=1).  To address that problem we turned to a 

modified version of the SPARCL algorithm called Robust and Sparse K-means clustering 

(RSKC) (Kondo et al. 2016).  The RSKC algorithm was designed to be robust to the influence of 

outliers that can drive other algorithms to create clusters of n=1.  RSKC operates by iteratively 

omitting outliers from cluster analysis, assigning all remaining samples to clusters, and then 

reinserting outliers to the analysis by grouping them into the nearest-neighbouring cluster. 

We used information from the SPARCL analysis to set the number of clusters to k=6 for 

testing the RSKC method.  The RSKC function in the RSKC package (Kondo et al. 2016) was 

implemented for this analysis and the code below was used to analyze my.data2. 

sparcl6.robustC<- RSKC(my.data2, 6, alpha=0.1, L1 = 500, nstart = 500, (27)
silent=FALSE, scaling = TRUE, correlation = FALSE)

#Save the identified clusters for mapping on the tSNE representation as before
robust6C<-sparcl6.robustC$labels
robust6C<- as.factor(robust6C)
sparcl6.robustC$oW
avg.data<-cbind(my.data2[], robust6C)

The test of RSKC on the subset of data (p=7) gave the best clustering so RSKC was rerun 

using the full set of 23 proteins.  To visualize the 6 clusters from RSKC we multiplied the protein 

values by the adjusted protein weights from the RSKC clustering algorithm (Figure 22) and used 

those data as the input to a 2D tSNE plot.  The samples were color-coded by the cluster ID to 

visualize the organization of the clusters (Figure 21A).  Next, we ordered the clusters by age 

from youngest to oldest and plotted those results as a boxplot showing the progression of median 

cluster age and overlapping ages between the clusters (Figure 21B). 
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RSKC used all of the data, partitioned all of the samples into a cluster, and none of the 

clusters had fewer than 3 samples (Figure 21).  Thus, RSKC clustering met the criteria we set for 

selecting a good approach to analyze the visual cortex development data set.  Importantly, we 

analyzed the age progression of the clusters by comparing the observed pattern with a Monte 

Carlo simulation that randomly assigned the samples into one of the 6 clusters.  The age of those 

randomly assigned clusters showed no progression and they were significantly different from the 

average age of the observed clusters, making it unlikely that the observed progression in median 

cluster age (Figure 21B) occurred by chance  

Figure 21. Robust and sparse k-means clustering (RSKC) applied to 23 proteins from the human data set. 

 A. tSNE plot of the scaled protein data. Sample averages are colored according to cluster results. B.. Boxplots 
of cluster age were ordered from youngest (red) to oldest (grey). In both A and B, sample ages were reduced to group 
averages to reduce crowding 

In section 4.4.iii we explain how to explore the RSKC clusters to identify neurobiological 

features that changed across development. 

It is important to note that the WSS metric used in the first workflow to assess the number 

and quality of the clusters cannot be used with the sparse clustering methods.  The lack of a 

cluster quality metric is because all the data are used with the 4 sparse high-dimensional 

clustering algorithms, so the number and quality of clusters vary depending on the number of 

dimensions that are considered. As a result, there is no suitable metric to assess the quality of 
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clusters in high-dimensions and the different sparse clustering methods must be compared by 

adjusting the input variables iteratively (Proclus=k, CLIQUE=xi, SPARCL=k, RSKC=k).  

4.4.iii) Exploring cluster content 

Cluster content was explored with two methods.  First, information from the RSKC 

clustering was used to color-code the samples by their cluster ID and the developmental 

trajectory was plotted for each protein (Figure 19b,d).  Next, the proteins were ordered by their 

adjusted weights from the RSKC clustering (Figure 22), and the normalized expression of each 

protein was plotted for the six clusters (Figure 23 & 24). 

The second method to study cluster content (Figure 19 i-k) started with identifying features 

using PCA as described in section 4.3.  Then hierarchical clustering was used to order the 

features and finally, plasticity phenotypes were constructed for each cluster to visualize the 

neuroplasticity features that change during development of human visual cortex. 

Together these approaches to exploring the cluster content provide an understanding of 

cortical development at the level of individual proteins and higher-level combinations of proteins 

that define features in the plasticity phenotype. 

The following code consults the RSKC object sparcl6.robustC to retrieve the weight for 

each protein and then graphs the proteins in descending order of the weights. 

#Identify the order of RSKC weights      (28)
RSKCvariables<-sparcl6.robustC$weights
RSKCvariables.order<-sort(RSKCvariables,decreasing=TRUE)
RSKCvariables.vector<-order(-RSKCvariables)

#Save the order of RSKC weights as a dataframe
RSKCvariables.order<-data.frame(keyName=names(RSKCvariables.order), value=RSKCvariables.order, 
row.names=NULL)

#Plot the weights as a histogram
ggplot(data=RSKCvariables.order,aes(keyName,value))+
  geom_col(colour="black")+
  scale_y_continuous(expand =c(0,0),name="Adjusted variable weights (from RSKC)",lim=c(0,0.3))+
  scale_x_discrete(limits=RSKCvariables.order[,1])+
  theme(axis.line.y=element_line(),axis.line.x=element_line(),panel.grid=element_blank(),
        axis.text.x = element_text(angle=45,hjust =1,size=12),axis.text.y = 
element_text(angle=0,vjust=0.5,size=12),
        axis.title.x=element_text(size=14,face="bold"), axis.title.y=element_text(size=14,face="bold"),
        panel.grid.major = element_blank(), panel.grid.minor = element_blank()) 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Figure 22. Adjusted weights for the proteins from RSKC.  

The proteins are ordered using the adjusted weights from RSKC.  

Visualizing the RSKC adjusted weights for the 23 proteins showed an almost 3-fold range 

in the weighting of the proteins with Ube3A having the maximum and GAD65 the minimum 

weight (Figure 22).  That ordering of the proteins was used along with 2 visualizations of protein 

expression to explore the influence of different proteins in the clusters.  First, we created a 

parallel coordinate plot for the 6 clusters and 23 proteins that scaled mean protein expression 

relative to the maximum and minimum cluster average using the ggparcoord function in ggplot2 

package (Wickham 2010). 

ggparcoord(Protein.means,columns=2:24,groupColumn = 1, scale="uniminmax"              (29)
,missing="min10",order=RSKCvariables.order,scaleSummary = "mean", 
showPoints=FALSE#,alphaLines = 0.25
           ,mapping=aes(color=as.factor(Group.1)))+
  geom_hline(yintercept = 0.5,linetype="dashed",alpha=0.25) + 
  geom_line(aes(group=factor(Group.1)),size=2) +#somehow works
  theme(axis.text.x = element_text(angle = 45,hjust=1),panel.grid.major = element_blank(), 
panel.grid.minor = element_blank())+
  scale_y_continuous(name="Protein Expression", breaks=c(0,1),labels = c("Min","Max"))+
  scale_colour_manual(name = "Cluster",values = ordered6.cols, 
breaks=cluster6.order,labels=c("A","B","C","D","E","F")) 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Figure 23. Parallel coordinates of the protein expression in each cluster.  

The expression is scaled to the average maximum and minimum expression across all 6 clusters. The colour of 
the lines is the same conventions for cluster identity as in Figure 21. Proteins were ordered from largest to smallest 
RSKC weights. 

The parallel coordinates plot in Figure 23 showed that the 6 clusters had unique patterns of 

peaks and valleys in protein expression, and most of the protein peaks were claimed by only one 

cluster. For example, Cluster D had peak expression for the first 6 proteins (Ube3A, PSD95, 

Synapsin I, Gephyrin, PSD95HOM and Synaptophysin), then cluster F peaked for Drebrin, 

cluster B for CB1, cluster A for VGAT and so on.  Interestingly, the 4 proteins that had peaks 

from multiple clusters included the 3 GABAAR subunits and Integrinβ3. 

The information from the parallel coordinates graph can be used to construct a list of 

protein peaks and valleys for each cluster where those patterns reflect the protein motif for each 

cluster.  Here we visualized the protein motifs for the 6 clusters using the geom_tile function in 

the gplots package.  The coding for the motif visualization was similar to the method outlined in 

coding examples (21) and (22) except here it was constructed using the average protein 

expression. 
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Figure 24. Protein expression motifs for the 6 clusters.   

The average protein expression across clusters was scaled from the minimum (blue) to the maximum (yellow). 
The proteins were ordered according to their RSKC adjusted weights. 

Exploring the cluster content with the protein motifs helped to differentiate the groups of 

clusters that shared protein peaks.  For example, the two youngest clusters A and B shared the 

GABAAα2 peak, but the older clusters D, E, and F shared the GABAAα1 peak.  The motifs 

visualization facilitated the comparison of protein expression within are across clusters since all 

of the 138 protein averages (6 clusters X 23 proteins) were represented in one figure. 

Next, we quantified protein expression in each cluster, plotted those in boxplots and used a 

bootstrap analysis to determine clusters that had expression significantly above (red boxes) or 
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below (blue boxes) the median protein expression level.  The boxplots for each protein were 

generated using the geom_boxplot function in the ggplot2 package (Wickham 2010).  

ggplot(Protein.means, aes(Protein.means,value,fill=robust6C))+      (30)
  geom_boxplot(outlier.colour = NA,aes(group = robust6C))+
  geom_jitter(shape=16, position=position_jitter(0.2),alpha=0.5)+
  scale_fill_manual(name="Cluster Order",values=ordered6.cols,labels=c("A","B","C","D","E","F"))+
  geom_hline(yintercept = 0,linetype="dashed",alpha=0.25) + 
  facet_wrap(~variable,scales = "free_y")+
  labs(list(x = paste("Age (Years)"), y = paste("Protein Expression")))  +
  theme_bw()+
  theme(panel.background = element_rect(fill = 'gray95'), axis.text.x = element_blank(),panel.grid.major = 
element_blank(), panel.grid.minor = element_blank())

Figure 25. Protein expression per cluster.   

Each boxplot represents a different cluster of data points, and the dashed line overlaps balance (0) between each 
protein. Blue boxes represent clusters with median expression below the lowest 25% of the data, red boxes represent 
clusters with median expression above the upper 75% of the data, and grey represent those with median expression 
within the middle 50% of the data. 

Using the protein motifs to visualize protein expression by cluster (Figure 24) and the 

color-coded boxplots to quantify protein expression (Figure 25) helped with efficiently exploring 

significant patterns in the clusters.  That approach, however, did not readily identify 

combinations of proteins that represent higher-dimensional features in the data set.  To explore if 

high-dimensional features identify age-related changes in the clusters we returned to the use of 

PCA.  

4.4.iv) Candidate high-dimensional feature selection  

To identify candidate high-dimensional features in the clusters we applied PCA to the 

human visual cortex developmental protein data set.  The PCA found the significant dimensions 

and we used those to explore the proteins contributing to those dimensions.  Also, we compared 
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the proteins correlated with PCA dimensions to their adjusted weight from RSKC to uncover the 

hidden features that supported better clustering with RSKC.  

The first step repeats the PCA described for the coding examples (8)-(11) in section 4.3.iii.  

We used the PCA function from the Factominer package to analyze and display the percentage of 

variance explained by each of the 23 dimensions (Figure 26). For this data set, the first 3 

dimensions captured >60% of the variance which is often used as a cutoff for identifying the 

important dimensions.  

Figure 26. Scree plot of the percentage of explained variance captured by each principal component.  

The variance captured by the each of the first 3 dimensions is large (>10%), while subsequent dimensions 
gradually becomes less. The cumulative variance of the first 3 dimensions is 62%. Typically,  a cumulative variance 
> 60% is an acceptable cutoff for identifying the important dimensions in PCA. 

To interpret the representation of each protein on the PC dimensions we calculated pairwise 

correlations between the vector for each protein and the vector for each of the PC dimensions 

(Pearson’s correlation)(Figure 27A).  Next, we determined the quality of representation for each 

protein on the dimension (cos2)(Figure 27B). The R code to calculate and plot those metrics is 

found in the FactoMineR package, and can be called by consulting the pca object: 

var <- get_pca_var(pca) (31)
corrplot(var$cor, is.corr=FALSE, cl.lim=c(-1,1)) #for Pearson’s R correlations
corrplot(var$cos2, is.corr=FALSE,cl.lim=c(0,1)) #for cos2

The figures showing the correlations and cos2 for each protein with the 23 dimensions used 

the size and saturation of a circle to represent the strength of the relationship, and the color of the 

circle indicated the direction for the correlations (Figure 27A, 27B).  Inspection of the plots 
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showed that most of the proteins contributed to the first 3 dimensions but also identified a few 

proteins that had their most substantial contribution to a higher order dimension.  This example 

helps to illustrate where PCA might lead to dropping variables from subsequent cluster analysis.  

It is important to note that the workflow described in this section ran PCA and sparse high-

dimensional clustering in parallel with each analysis using the full protein data set so that the 

results from the two approaches could be compared to unpack the higher order features in the 

data set. 

Figure 27. The correlation (A) and cos2 (B) matrix showing the relationship between each protein and the 
23 principal component dimensions. 

 (A) The circles in each matrix represent the strength (size and saturation) and direction (colour) of the 
correlation between proteins and dimensions. (B) The circles represent the goodness-of-fit, cos2 for the protein on 
PC dimensions.  Most of the proteins have the strongest correlation and best fit with at least one of the first 3 
dimensions (Dim.1, Dim.2, Dim.3). 

In this example, the first 3 dimensions were chosen because they captured >60% of the 

variance in the data (Figure 26), and most of the strong cos2 values and Pearson’s R correlations 

(Figure 27).  The quality of the representation for each protein on the first 3 dimensions was 

analyzed by summing up the cos2 values and plotting that information as a histogram ranking the 

protein from lowest to highest cos2 value (Figure 28).  The following code was used to visualize 

the sum of cos2 for the first 3 dimensions: 

fviz_cos2(pca, choice = "var", axes = 1:3, color="grey", fill="grey",sort.val="asc"+      (32) 
scale_y_continuous(expand =c(0,0), limits=c(0,1))+
geom_hline(yintercept = 0.5,linetype="dashed",alpha=0.25) +
theme(axis.line.y=element_line(), axis.line.x=element_line(), panel.grid=element_blank()) 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Figure 28. Sum of cos2 across the first 3 dimensions.  

Across all 23 dimensions, sum of cos2 for each protein is 1. Dashed line represents cos2 =0.5 cutoff, used for 
feature selection. 16 proteins fall above that cutoff and 7 fall below. The 7 that fall below can be removed from 
analysis (feature selection). 

The cos2 can be plotted for individual dimensions. The example code below (33) uses the 

parameter axes to select the cos2 data for dimension 1 (Figure 29). 

fviz_cos2(pca, choice = "var", axes = 1, color="grey", fill="grey",sort.val="asc"+       (33)
scale_y_continuous(expand =c(0,0), limits=c(0,1))+
geom_hline(yintercept = 0.5, linetype="dashed",alpha=0.25) +
theme(axis.line.y=element_line(), axis.line.x=element_line(), panel.grid=element_blank())
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Figure 29. Sum of cos2 across dimension 1.  

The sum of cos2 for each protein in Dimension 1. Dashed line represents cos2 =0.5 cutoff, used for feature 
selection. 

The cos2 value (e.g. 0.5) can be used as a cutoff to select a subset of proteins for further 

analysis but here were used the cos2 ranking (high to low) from the first 3 PCs (Figure 28) to 

compare with the ranking of each protein from the RSKC reweighting (Figure 22).  This step was 

used to identify proteins that RSKC adaptively increased or decreased the weighting (Figure 28) 

and showed that 5 proteins were increased (Synapsin I, Gephyrin.hom, Drebrin, Ube3A, 

Synaptophysin) while 4 proteins were decreased by RSKC (Golli-MBP, GFAP, Classic-MBP, 

GluN2A) (Figure 30).  Those differential rankings provided some insight into the proteins that 

were important for the RSKC clustering but less influential for the PCA.  It also illustrated the 

need for using multiple methods when studying high-dimensional cluster content. 
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Figure 30. Ranking of proteins using RSKC reweighted values relative to cos2 representation.  

Positive values on the y-axis indicate a higher ranking using the RSKC reweighted values than with cos2 
representation, and therefore have greater influence on clusters. Conversely, negative values indicate proteins that 
were ranked higher by cos2 representation than after RSKC reweighting.     

Biplots were also used as another approach to visualize the contribution of different 

proteins to the PC dimensions.  The example biplot (Figure 31) showed the vectors for select 

proteins (cos2>0.5) along dimensions 1 and 2. We used the fviz_pca_biplot function from the 

FactoMineR package to superimpose the protein vectors in PCA space.  

fviz_pca_biplot(invisible="ind",                         (34)
pca, geom.ind = "point",axes = c(1,2),
labelsize = 5, col.ind = "black",
pointshape = 21, pointsize = 3, addEllipses = FALSE,
col.var = variable.class, gradient.cols = cm.colors, repel=TRUE,
select.var=list(cos2=0.5), arrowsize=0.75,
legend.title = list(fill = expression(paste("Cluster \n Order”)),
color = "Feature"),title = "PCA - Biplot Dimensions 1 & 2")+
geom_label_repel(show.legend = FALSE, label.padding = 0.75,
point.padding=0.75, max.iter=5000, force=1000, nudge_x=50) +
theme(panel.background = element_rect(fill = 'gray95'),
legend.position = c(0.9, 0.82),
legend.box="horizontal",panel.grid=element_blank())+
scale_x_continuous(limits=c(-5,7.5),breaks=waiver())+
scale_y_continuous(limits=c(-5,5),breaks=waiver())

�146



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

Figure 31. Biplot shows the protein vectors along dimension 1 (horizontal axis) and dimension 2 (vertical 
axis).  

 Surrounding histograms depict cos2 values for the proteins along dimension 1 (top) and dimension 2 (left). 
Proteins with a summed cos2 above 0.5 (dashed line) across both dimensions are shown. Vector directions marked by 
arrowheads point in the direction of high protein expression, while low protein expression extends in the opposite 
direction through the point of origin (not shown). The length of the protein vectors indicates the variance of the 
protein along the dimension and the angle of the vector indicates the quality of the representation on a dimension. 
Parallel vectors indicate proteins with similar expression while perpendicular vectors have no relation. 

The pair of PC dimensions examined in a biplot can be changed using the values in ‘axes = 

c(1,2)’ parameter.  

The length and angle of the vectors in Figure 31 was informative for identifying the 

proteins that contribute to each of the PC dimensions. Groups of proteins with similar vectors 

were correlated while orthogonal vectors indicate little correlation between those proteins. That 

information was used to guide the selection of proteins for candidate feature.  
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We also plotted the individual samples onto the biplot by removing the line of code 

‘invisible="ind"’.  The samples were color-coded by their RSKC cluster ID to visualize those 

clusters in PCA space (Figure 32).  That biplot helped identify the relationship between the 6 

clusters PC dimensions 1 and 2.  For example, clusters C and D differed along dimension 1 while 

clusters A and F differed along dimension 2. 

Figure 32. Biplots demonstrate the relationship between proteins and samples.  

Biplot of dimension 1 and 2 that shows the individual samples (dots) colour-coded according to the six clusters 
(A-F) they are grouped in. The axes conventions are the same as in figure 31. 

In the next section we use the information gleaned from the cos2, differential RSKC-cos2 

rankings and biplots about proteins that contribute to high-dimensional features in the data set to 

help select plasticity features. 

4.4.v) Converting protein expression into candidate plasticity features 

Here we describe how the basis vectors from PCA and information from the previous 

section were used to select combinations of proteins for candidate plasticity features.  The steps 

for using the basis vectors to identify candidate features follow those presented in section 4.3.iv 

but we also included information from the differential RSKC-cos2 rankings to ensure that 
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proteins reweighted by RSKC were appropriately considered for candidate features.  Once 

candidate features were identified, they were validated by correlation with the first 3 PC 

dimensions.  

First, the basis vectors were plotted to show the amplitude of each protein about the PC 

dimension (example for PC2, Figure 33).  The code below plots the basis vector for the second 

PC: 

ggplot(data=pca$var$coord[,2], aes(rn, pca.var.coord...2.))+ geom_col(colour="black"+        (35) 
scale_y_continuous(expand=c(0,0),name="Amplitude(BasisVector2)",lim=c(-1,1))+
scale_x_discrete(limits=VarCoordDim1$rn)+
theme(axis.line.y=element_line(),axis.line.x=element_line(),panel.grid=element_blank() axis.text.x = 
element_text(angle=45,hjust =1,size=12), axis.text.y = 
element_text(angle=0,vjust=0.5,size=12), axis.title.x=element_text(size=14,face="bold"), 
axis.title.y=element_text(size=14,face="bold"), panel.grid.major 
= element_blank(), panel.grid.minor = element_blank()) 
 

Figure 33. Amplitude of each protein about the second principal component.  

Protein amplitudes are obtained from the vectors each protein creates in PCA space. The length of these vectors 
is plotted about the mean of the basis vector for each PCA dimensions, and the direction (positive or negative) is 
arbitrarily assigned. Here the basis vector being examined is basis vector 2, and proteins (x-axis) with greater 
variability about this vector have larger amplitudes, while proteins with less variability about basis vector 2 have 
smaller amplitudes. When bars move in the same direction, it means proteins change together, and when they move 
in opposite directions it means protein changes are in opposition. 

The basis vector plot illustrated the amplitude and direction that each protein contributed to 

the PC dimension.  We identified proteins with the largest amplitude and pointing in the same 

direction and summed them.  Next, we identified proteins with a large amplitude that were 

pointing in opposite directions and used them to calculate differential indices. Finally, we used a 
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targeted approach based on published information about functional pairs or groups of proteins 

such as the GluN2A:GluN2B balance that regulates NMDAR kinetics (Sun et al. 2017), and LTP 

(Philpot et al. 2001).  Those 3 steps identified combinations of proteins that we called candidate 

plasticity features. 

4.4.vi) Validating plasticity features 

 After identifying candidate plasticity features, they were calculated from the protein 

expression and correlated with the each of the 3 PC dimensions using the same the same steps 

described for the coding example (15). 

Figure 34. Examination of extracted feature correlation with PCA dimensions.  

Significant correlations between the first 3 principal components and protein sums / indices are represented as 
coloured cells. The colour indicates the magnitude (intensity) and direction (positive=green, negative=red) of 
significant correlations after Bonferroni correction. 

The matrix of correlations between the PC dimensions and candidate plasticity features was 

inspected paying close attention to features that included proteins differentially weighted by 

RSKC and PCA (Figure 34).  For example, although RSKC reduced the weights of the individual 

MBP proteins an index calculated using both proteins (Classic-MBP:Golli-MBP) was 

significantly correlated with PC2 (red).  In contrast, RSKC also reduced the weight of GluN2A, 

but the candidate feature (NR2A:NR2B index) was not correlated with any of the 3 PC 

dimensions (grey- Figure 34). These two examples demonstrate the importance of validating the 

candidate features; not all features had significant correlations with a PC dimension.   
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After exploring the data following the steps above 11 plasticity features were validated for 

this data set thereby reducing the dimensions from 23 proteins to 11 plasticity features. 

Furthermore, the steps transformed protein expression into features consistent with combinations 

of proteins known to regulate plasticity and change during development. 

The next step was to use hierarchical clustering with the validated plasticity features to 

identify the features that had similar patterns of lifespan changes. 

4.4.vii) Visualizing feature networks and building plasticity phenotypes 

To determine which features had similar patterns of changes across the lifespan we 

calculated the pairwise correlations between features, ordered those correlations using 

hierarchical clustering and visualizing the output in a 2D heatmap (Figure 35).  The R code used 

was similar to the heatmap coding example (2)-(6) explained in section 4.3.ii, except a new 

object called NewFeatures2 was made with the 11 plasticity features. 
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Figure 35. Heatmap of the significant features identified in Figure 34.   

Matrix of Pearson’s R correlations between the means across 11 plasticity features in each cluster. Clusters were 
reordered according to the surrounding dendrogram. The dendrogram positioned similar features close together, and 
moved dissimilar features to the periphery. Inset demonstrates counts across the range of Pearson’s correlations, 
while the color gradient ranges from low negative correlations (blue/black) to high positive correlations (red). 

The correlation heatmap identified 4 groups of plasticity features: first, the 3 protein sums 

were grouped; second, the astrocyte index Integrin:GFAP was on a separate branch; third, 

Classic:Golli MBP, GluA2:GluN1, Gad65:VGAT, and GABAAα1:GABAAα2 were grouped; 

finally, markers involved with GABAergic inhibition onto pyramidal neurons that included 

Ube3A:Drebrin, Ube3A:PGSS, CB1:GABAAα1 indices were separated from the other groups. 

The order of the plasticity features found above by hierarchical clustering was used for 

building the visualization of the plasticity phenotype (Figure 36).  The 11 features that create the 

plasticity phenotype were visualized using the same method described in section 4.3.vii with the 

R coding examples (21) and (22) except that the object NewFeatures2 with the 11 plasticity 

features was the input for this step.  Briefly, the code in (21) determines the color scale for each 

feature and the code in (22) uses those color-codes to create the visualization of the 11 features 

and 6 clusters.   

Figure 36. Average plasticity phenotype for each of the 6 clusters representing human visual cortical 
development.  

The order of features in the phenotypes was determined from the dendrogram in Figure 35. Most features 
transition gradually from an immature to mature state. The progression from light grey to dark grey in the top three 
bars, and from green to red in the last 8 bars indicate the pace of development. 
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The plasticity phenotype visualization conveys a substantial amount of information about 

the development of human visual cortex and helped to identify the features that partitioned 

samples into one cluster versus another (Figure 36).  For example, two features that separated 

clusters A and B were the Integrin:GFAP index and the sum of cos2 proteins.  Importantly, 

because some clusters had overlapping age ranges (e.g. B & C Figure 21), comparing features for 

those clusters can help to identify neurobiological mechanisms that contribute to heterogeneity 

during different stages of the lifespan. 

4.5 Extensions and Discussion 

Here we described two workflows and provided example R code for applying a data-driven 

approach that uses high-dimensional analyses to study development and plasticity of the visual 

cortex.  The workflows were developed to help with interpreting data sets that include multiple 

proteins (or genes) and ages or rearing conditions where there are complex patterns of results.  

Also, we extended previous work by developing steps to build, visualize, and compare plasticity 

phenotypes that capture the neurobiological features that characterize clusters in the visual cortex 

data sets.  

The workflow in section 4.3 is similar to current approaches applied to study visual cortex 

that used sequential steps beginning with dimension reduction (e.g. PCA, tSNE) and then cluster 

analysis (e.g. Carlyle et al. 2017; Luo et al. 2017).  We used this to study how different forms of 

visual experience changed protein expression in visual cortex and added the plasticity phenotype 

to determine the plasticity features that differentiated among the conditions.  The plasticity 

phenotype is a new way of analyzing visual cortex development and plasticity that can facilitate 

meaningful interpretation of complex patterns of protein (or gene) changes. 

The workflow in section 4.4 separated the cluster analysis and the steps for dimension 

reduction and feature identification into parallel streams.  That change was needed to address the 

challenges of analyzing the neurobiological development of human visual cortex.  Those studies 

typically use a small number of post-mortem tissue samples (n) but measure many proteins or 

genes (variables, p) resulting in a p~n or p>n data structure that is called sparse.  Here we 

compared a group of sparse high-dimensional cluster analysis methods and determined that a 
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recent approach, Robust Sparse K-Means Clustering, RSKC (Kondo et al. 2016), did the best job 

of partitioning the data into age-related clusters.  We also described how to use information from 

both the RSKC and PCA to identify features for constructing the plasticity phenotype to 

characterize the neurobiological development of human visual cortex. 

Both of our workflows build on established methods for high-dimensional data analysis, 

and each one describes the reasons for applying different approaches for analyzing the data sets.  

Since research on cluster analysis is a rapidly moving field, we anticipate that new methods, 

especially for adaptive clustering of sparse data, may perform better than RSKC.  The current 

workflows are flexible and can be adapted to use new algorithms by exchanging a few lines in 

the example R code.  For example, growth mixture models for cluster analysis are being 

developed that may be more suitable for handling the types of data structures common for studies 

of human cortical development (Wei et al. 2017). 

Identifying clusters and exploring cluster content performed well for the example data set 

but both workflows need to be tested with other data sets. In particular, extension of the feature 

selection steps (4.3.iv & 4.4.iv) should include unsupervised methods for identifying features and 

transforming data. Similarly, RSKC parameters in section 4.4.iii were selected with an 

exploratory process and manual inspection of cluster results that could be improved once 

unsupervised methods are developed.  

A valuable contribution from this primer is the development and implementation of 

plasticity phenotypes.  In particular, the plasticity phenotype visualization provides an elegant 

way to facilitate meaningful interpretation of the results in a single 2D plot.  It is not clear, 

however, how well the current method for selecting features for the phenotypes will scale up for 

studies using larger numbers of proteins or genes.  Perhaps additional methods for data reduction 

will need to be tested to optimize the selection of neurobiological features in larger data sets. 

The R package “v1hdexplorer” aggregates the various packages and custom visualization 

code used in this paper, and is available for download using the function install_github("balsorjl/ 

v1hdexplorer").  The custom visualization scripts are included in this document (e.g. coding 

examples (21) and (22)) for visualizing the plasticity phenotypes. 
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Supplemental Analysis- Bootstrap analysis using custom R code 

To examine the probability that observations in one group (e.g. reverse occlusion-RO) were 

statistically different from another group (e.g. Normal animals) we performed a one-way 

bootstrap analysis. First, the observed parameters of the experimental group (RO) were used to 

create a simulated data set with 1,000,000 points that had the same mean and standard deviation 

as the observed subset of data. The object sim.RO contains the simulated data set of RO samples. 

sim.RO <- rnorm(1000000, mean.RO, stdev.RO) 
Next, we modelled experimental data of the normal group by drawing, at random, from the 

simulated RO data set (sim.RO) the same number of samples as the observed subset of Normal 

animals (NNormal). We calculated the mean of this first experimental subset of data, and 

replaced all data points in sim.RO. This experiment was repeated 100,000 times, and stored in 

the object resamples.NormalRO. 

resamples.NormalRO <- lapply(1:100000 ,function(i) sample(sim.RO, NNormal, replace = T)) 
Each of these 100,000 experiments were reduced to the experimental mean. This subset of 

data represent a simulated population of comparisons between Normal and RO animals. We 

calculated the mean of this simulated population, and saved it as mean.resamples.NormalRO.  

mean.resamples.NormalRO <- sapply(resamples.NormalRO, mean) 
To determine the probability that the mean of the observed Normal subset of data 

(mean.Normal) came from the observed RO subset of data (mean.RO), we compared 

mean.Normal against the population in mean.resamples.NormalRO. To calculate the exact 

probability (p-value) that the observed Normal group (mean.Normal) came from the 

mean.resamples.NormalRO population, we calculated the percentage of data points that fall 

above or below mean.Normal in the distribution of data points in mean.resamples.NormalRO.  

Norm.v.RO.pval <- 1-(sum(mean.resamples.NormalRO<mean.Normal)/100000)
Norm.v.RO.pval<- if (mean.RO<mean.Normal){
  1-(sum(mean.resamples.NormalRO<mean.Normal)/100000)
} else if (mean.RO>mean.Normal) {
  1-(sum(mean.resamples.NormalRO>mean.Normal)/100000)
}

 In order to compare other conditions against the normal subset of data, adjust the subset of 

data that is called in place of RO (eg. BD versus Normal). In order to change the direction of the 

comparison against Normal to be against a different group (eg. MD), exchange the comparator 
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group for Normal in all of the above statements (eg. BD versus MD). The resultant data can be 

called into a text file and stored for later use when constructing histograms.  
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Chapter 5. Classification of visual cortex plasticity 
phenotypes following treatment for amblyopia 
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Abstract 

Monocular deprivation (MD) during the critical period (CP) has enduring effects on visual 

acuity and the functioning of the visual cortex (V1). This experience-dependent plasticity has 

become a model for studying the mechanisms, especially glutamatergic and GABAergic 

receptors, that regulate amblyopia. Less is known, however, about treatment-induced changes to 

those receptors and if those changes differentiate treatments that support the recovery of acuity 

versus persistent acuity deficits. Here we explored the effects of 3 visual treatments started 

during the CP (n=24, 10 male and 14 female); binocular vision (BV) that promotes good acuity 

versus reverse occlusion (RO) and binocular deprivation (BD) that causes persistent acuity 

deficits.  We measured recovery of a collection of glutamatergic and GABAergic receptor 

subunits in V1 and modeled recovery of kinetics for NMDAR and GABAAR.  There was a 

complex pattern of protein changes that prompted us to develop an unbiased data-driven 

approach for these high-dimensional data analyses to identify plasticity features and construct 

plasticity phenotypes. Cluster analysis of the plasticity phenotypes suggests that BV supports 

adaptive plasticity while RO and BD promote a maladaptive pattern.  The RO plasticity 

phenotype appeared more similar to adults with high expression of GluA2 and the BD 

phenotypes were dominated by GABAAα1, highlighting that multiple plasticity phenotypes can 

underlie persistent poor acuity.  After 2-4 days of BV the plasticity phenotypes resembled 

normals, but only one feature, the GluN2A:GluA2 balance, returned to normal levels. Perhaps, 

balancing Hebbian (GluN2A) and homeostatic (GluA2) mechanisms is necessary for the 

recovery of vision. 

Keywords: amblyopia, neuroplasticity, GABA, NMDA, AMPA, phenotype, high-

dimensional, treatment, recovery, binocular vision, reverse occlusion, binocular deprivation 
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5.1 Introduction 

Since the earliest demonstrations that monocular deprivation (MD) during a critical period 

(CP) cause ocular dominance plasticity and acuity loss[1]-[3] this model has been used to deepen 

our understanding of the neural changes associated with amblyopia.  There have been fewer 

studies, however, about cortical changes associated with the acuity deficits that often persist after 

treatment for amblyopia[4]-[8].  Here we classified the expression patterns (phenotypes) of a 

collection of synaptic proteins that regulate experience-dependent plasticity and explored if 

treatments that promote good versus poor acuity reinstate CP-like plasticity phenotypes in visual 

cortex (V1). 

Many animal studies have highlighted the role of glutamatergic and GABAergic 

mechanisms for regulating plasticity during the CP[9]-[15]. For example, the subunit 

composition of AMPA, NMDA, and GABAA receptors regulate the bidirectional nature of ocular 

dominance plasticity[16]-[21]. Some of the changes caused by MD include delaying the 

maturational shift to more GluN2A-containing NMDARs[22], [23], and accelerating the 

expression of GABAAα1-containing GABAARs[20], [23]. Together those changes likely decrease 

signal efficacy and dysregulate the spike-timing dependent plasticity that drives long-term 

depression (LTD) and weakens deprived eye response[24].  Furthermore, silencing activity 

engages homeostatic mechanisms that scale the responsiveness of V1 neurons by inserting 

GluA2-containing AMPAR into the synapse[25]. Importantly, many of the receptor changes have 

been linked with specific acuity deficits[26], [27] suggesting that visual outcomes may reflect 

changes to a collection of glutamatergic and GABAergic receptor subunits that together represent 

a plasticity phenotype for V1. 

Animal studies of amblyopia have also identified treatments that promote good versus poor 

recovery of acuity after MD. For example, reverse occlusion (RO) gives a competitive advantage 

to the deprived eye that promotes an ocular dominance shift but the acuity recovered by the 

deprived-eye is transient, and can be lost within hours of introducing binocular vision[6]-[8]. 

Similarly, closing both eyes after MD to test a form of binocular deprivation therapy (BD) leads 

to poor acuity in both eyes that does not recover even after months of binocular vision[28]. In 

contrast, just opening the deprived eye to give binocular vision (BV) after MD appears to engage 
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cooperative plasticity that promotes both physiological recovery[29] and long-lasting visual 

recovery in both eyes[27].  

Here we quantified expression of glutamatergic and GABAergic receptor subunits in V1 of 

animals reared with MD and then treated to promote either good visual recovery (BV) or 

persistent bilateral amblyopia (RO, BD). We compared subunit expression among the treatment 

groups and with normally developing or MDed animals. Next, we developed an unbiased high-

dimensional analysis approach to identify plasticity features in the pattern of subunit expression 

and to construct plasticity phenotypes. Finally, we used cluster analysis to classify plasticity 

phenotypes associated with good versus poor acuity and analyzed those to determine which 

features suggest the recovery of adaptive versus maladaptive plasticity mechanisms.  
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5.2 Experimental Procedure 

Animals & Rearing Conditions

All experimental procedures were approved by the McMaster University Animal Research 

Ethics Board. We quantified the expression of 7 glutamatergic and GABAergic synaptic proteins 

in V1 of cats reared with MD from eye opening until 5 weeks of age and then given one of 3 

treatments: RO for 18d, BD for 4d, or BV for either short-term ( ST-BV, 1hr, 6hrs) or long-term 

(LT-BV, 1d, 2d or 4d) (n=7, 4 male and 3 female) (Figure 1). The lengths of RO and BD were 

selected because they have well documented and consistent visual changes that result in  poor 

acuity in both eyes[7], [8], Murphy:1991td [30].  Also, the BV periods were selected to match the 

lengths used previously to study rapid and dynamic changes caused by MD in both cat and 

mouse V1 [27], [31], [32]. The raw data collected previously[23] from animals reared with 

normal binocular vision until 2, 3, 4, 5, 6, 8, 12, 16, or 32 wks of age (n=9 animals, 2 male and 7 

female), or MD from eye opening (6-11d) to 4, 5, 6, 9, or 32 wks (n=8 animals, 4 male and 4 

female) were used for comparison. 

MD was started at the time of eye-opening by suturing together the eyelid margins of one 

eye (5-0 Coated VICRYL Ethicon P-3) using surgical procedures described previously[8]. 

Sutures were inspected daily to ensure the eyelids remained closed. At 5 weeks of age, the period 

of MD was stopped and either BV was started by carefully parting the fused eyelid margins, RO 

was started by opening the closed eye and closing the open eye or BD was started by closing the 

open eye. All of these surgical procedures were done using gaseous anesthesia (isoflurane, 

1.5-5%, in oxygen) and aseptic surgical techniques. 

At the end of the rearing condition animals were euthanized using sodium pentobarbital 

injection (165mg/kg, IV), and transcardially perfused with cold 0.1M phosphate buffered saline 

(PBS) (4˚C; 80-100 ml/min) until the circulating fluid ran clear. The brain was removed from the 

skull and placed in cold PBS. A number of tissue samples (2 mm x 2 mm) were taken from the 

regions of V1 representing the central (C), peripheral (P) and monocular (M) visual fields (Figure 

1c). Each tissue sample was placed in a cold microcentrifuge tube, flash frozen on dry ice, and 

stored in a -80˚C freezer.  
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Figure 1. Study design diagram 

Timelines for the rearing conditions used in this studied. a. Normal visual experience and monocular deprivation 
(MD), b. treatment conditions (RO, BD, BV) after MD to 5wks. Filled bars indicate that an eye was closed. Black 
arrows indicate the age of animals used in the study. A timeline for the critical period (CP) in cat visual cortex[60] 
highlights the peak of the CP between 4-6 weeks of age. c. Map of the regions in V1 where tissue samples were 
taken from representing central (C, n=2), peripheral (P, n=8), and monocular (M, n=2) visual fields. d. 
Representative bands from the Western blots for the 7 proteins quantified in the study and the molecular weights 
(kDa). 
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Synaptoneurosome preparation 

Synaptoneurosomes were prepared according to a subcellular fractionation protocol[16], 

[33]. The tissue samples were suspended in 1 ml of cold homogenization buffer (10 mM HEPES, 

1 mM EDTA, 2 mM EGTA, 0.5 mM DTT, 10 mg/l leupeptin, 50 mg/l soybean trypsin inhibitor, 

100 nM microcystin and 0.1mM PMSF), and homogenized in a glass-glass Dounce tissue 

homogenizer (Kontes, Vineland, NJ, USA). Homogenized tissue was passed through a 5µm-pore 

hydrophobic mesh filter (Millipore, Billerica, MA), centrifuged at low-speed (1,000xg) for 20 

min, the supernatant was discarded, and the pellet was re-suspended in 1ml cold homogenization 

buffer. The sample was centrifuged for 10 min (1000xg), the supernatant was discarded, and the 

pellet was re-suspended in 100µl boiling 1% sodium-dodecyl-sulfate (SDS). Samples were 

heated for 10 min and then stored at -80˚C. 

Total protein concentrations were determined for each sample and a set of protein standards 

using the bicinchoninic acid (BCA) assay (Pierce, Rockford, IL, USA). A linear function was fit 

to the observed absorbance values of the protein standards relative to their expected protein 

concentrations. If the fit was less than R2=0.99, the assay was re-done. The slope and the offset 

of the linear function were used to determine the protein concentration of each sample and then 

the samples were diluted to 1 µg/µl with sample (M260 Next Gel Sample loading buffer 4x, 

Amresco) and Laemmli buffer (Cayman Chemical). A control sample was made by combining a 

small amount from each sample to create an average sample that was run on every gel. Each 

sample was run twice in the experiment. 

Immunoblotting 

Synaptoneurosome samples and a protein ladder were separated on 4-20% SDS-PAGE gels 

(Pierce, Rockford, IL) and transferred to polyvinyldenine fluoride (PVDF) membranes 

(Millipore, Billerica, MA). The blots were blocked in PBS containing 0.05% Triton-x (Sigma, St.  

Louis, MO) (PBS-T) and 5% skim milk (wt/vol) for 1 hour. Blots were then incubated overnight 

at 4˚C with constant agitation in one of the 7 primary antibodies (Table 1), and washed with PBS-

T (Sigma, St. Louis, MO) (3 x 10 min).  
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Table 1: List of primary antibody concentrations 

The appropriate secondary antibody conjugated to horseradish peroxidase (HRP) (1:2000; 

Cedarlane laboratories LTD, Hornby, ON) was applied to membranes for 1 hour at room 

temperature, then blots were washed in PBS (3 x 10 min). Bands were visualized using enhanced 

chemiluminescence (Amersham, Pharmacia Biotech, Piscataway, NJ) and exposed to 

autoradiographic film (X-Omat, Kodak, Rochester, NY). After each exposure blots were stripped 

(Blot Restore Membrane Rejuvenation kit (Chemicon International, Temecula, CA, USA)) and 

probed with the next antibody so each blot was probed for all 7 antibodies (Figure 1d). 

Analysis of Protein Expression 

The autoradiographic film and an optical density wedge (Oriel Corporation, Baltimore, 

MD) were scanned (16 bit, AFGA Arcus II, Agfa, Germany), and the bands were identified based 

on molecular weight. The bands were quantified using densitometry and the integrated grey-level 

of the band was converted into optical density units (OD) using custom software (MATLAB, The 

Mathworks, Inc., Natick, Massachusetts). The background density between the lanes was 

Antibody Concentration Company Lot Number Location RRID

anti-GluN1 1:2000
BD Biosciences 

Pharmingen
556308 San Diego, CA RRID:AB_396353

anti-GluN2A 1:2000 Millipore Sigma 24826 Burlington, MA RRID: AB_95169

anti-GluN2B 1:2000 Millipore Sigma 28629 Burlington, MA
RRID: 

AB_2112925

anti-GluA2 1:1000 Thermo Fisher Waltham, MA
RRID: 

AB_2533058

anti-

GABAAα1
1:500

Santa Cruz 

Biotechnology
L3102 Santa Cruz, CA RRID: n/a

anti-

GABAAα3
1:2000 Millipore Sigma Burlington, MA RRID: n/a

anti-Synapsin 1:2000 Thermo Fisher Waltham, MA RRID: n/a
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subtracted from each band and the density of each sample was normalized relative to the control 

sample run on each gel (sample band density/control band density).  

The data were normalized relative to the average expression of the 5wk normal cases and 

plotted either as histograms to compare expression levels among the 5wk Normal, 5wk MD, RO, 

and BD animals or as scatterplots to follow expression changes over the 5 different lengths of 

BV. Table 2 summarizes the number of tissue samples and replication of runs for the 5wk 

Normal, 5wk MD and recovery conditions across the 3 regions of V1, and 7 proteins that were 

studied. The data analysis study design is summarized in Figure 2. 

Figure 2. Analysis Workflow 

The analysis workflow for data in the study. a. Immunoblots were quantified using densitometry, b. Statistical 
comparisons were made using Monte Carlo simulation and bootstrap resampling. c. Pairwise correlations were 
calculated for the 7 proteins for each rearing condition. d. Next, a series of steps were done beginning with 
dimension reduction (PCA), e. Feature selection, f. Cluster visualization based on the features (tSNE), g. Correlation 
between features or the clusters and subclusters, h. Construction and visualization of the plasticity phenotypes for 
each subcluster. 

We analyzed heterogeneity in protein expression within a group by calculating an index of 

dispersion, the variance-to-mean ratio (VMR), for each protein and rearing condition. Proteins 

with VMR <1 were classified as under-dispersed, VMR=1 randomly dispersed, and VMR >1 

were over-dispersed. We used this measure to compare among groups and assess if a rearing 

condition changed the variability of protein expression to make the group more or less 

heterogeneous.  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Table 2: The number of animals, cortical tissue pieces, and WB measurements for 
each condition and V1 region.   

Rows summarize the number of runs from the Central (C), Peripheral (P), and Monocular (M) regions of V1 
within a rearing condition. The columns list each of the 7 proteins analyzed using Western blotting. Column sums 
detail the number of runs across rearing conditions and cortical areas. The information for Normal animals is in 
Table 2-1, and for MD animals is in Table 2-2. 

Protein Indices

To examine the balance between developmentally and functionally related pairs of 

glutamatergic and GABAergic receptor subunits, we calculated a set of 3 indices (difference 

ratios). The indices included: GluA2:GluN1, GluN2B:GluN2A, GABAAα3:GABAAα1, which 

Number of Western Blot measurements after 2 replications

Condition
Number 

of 
Animals

Region
Number 

of 
Cortical 
Pieces

GluN1 GluN2A GluN2B GABAAα1 GABAAα3 GluA2 Synapsin I

Normal 
(5wks)

C 2 4 4 4 4 4 4 4

1 P 8 16 16 16 15 16 16 16

M 2 4 4 4 4 4 4 4

MD 
(5wks)

C 3 6 6 6 6 6 6 4

2 P 9 18 18 18 18 18 18 12

M 3 5 5 5 5 5 5 4

RO 
(18d)

C 2 4 4 4 4 4 4 4

1 P 8 19 19 19 19 19 14 14

M 2 3 3 3 3 3 2 2

BD (4d)

C 3 6 6 5 6 5 6 5

1 P 9 18 18 17 16 18 18 17

M 2 4 4 3 4 4 4 3

ST-BV 
(1hr, 6hr)

C 4 8 8 8 8 8 8 8

2 P 16 32 32 32 32 32 32 32

M 4 8 8 8 8 8 8 7

LT-BV 
(1d, 2d, 

4d)

C 6 12 10 12 11 12 12 10

3 P 24 43 40 43 43 42 43 40

M 6 12 12 12 12 12 12 12

SUM 222 217 219 218 220 216 198
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ranged from -1 to 1. The mean and SEM for each index was plotted as either a histogram (5wk 

Normal, 5wk MD, BD, RO) or scattergram (BV).

Protein Network Analysis

A network analysis of protein expression was done for each rearing condition by 

calculating the pairwise Pearson’s R correlations among the 7 proteins using the rcorr function in 

the Hmisc package in R[34]. The networks were visualized as correlation matrices (heatmap2 

function in gplots[35]) and the proteins were ordered (dendextend package[36]) using the 

seriation package[37] to place proteins with similar patterns of correlations nearby in the 

dendrogram. Significant correlations were identified using Bonferroni corrected p-values and 

indicated by asterisks on the cell in the correlation matrix. 

Modeling Population Receptor Decay Kinetics for NMDARs and GABAARs

The subunit composition of NMDARs and GABAARs determines the decay kinetics of the 

receptor[36], [37] and so we used that information to build a model for the decay kinetics of a 

population of receptors for each of the rearing conditions. The decay kinetics of the most 

common NMDAR composition, triheteromeric receptors containing GluN2A and 2B is 

50ms±3ms, while diheteromers NMDARs containing only GluN2B are slower 

(2B=333ms±17ms) and those containing only GluN2A are faster (2A=36ms±1ms) [36]. The 

decay kinetics of GABAARs with both α1 and α3 subunits is 49ms±23ms while receptors with 

only the α3 subunit are slower (129.0ms±54.0ms) and only α1 are faster (42.2ms±20.5ms) [37]. 

We used the relative amounts of GluN2A and 2B, or GABAAα1 and α3, as inputs to the 

model. Receptors containing GluN2A and 2B or GABAAα1 and α3 are the most common in the 

cortex, so the model maximized the number of these pairs which was limited by the subunit with 

less expression. The remaining proportion of the highly expressed subunit was divided by 2 and 

used to model the number of pairs for those receptors (2A:2A or 2B:2B; α1:α1 or α3:α3) in the 

population. The population decay kinetics were then modeled by inserting the relative amounts of 

the subunits into these formulas: 

NMDAR kinetics (([2A:2B]×50ms)+([2A]×36ms)+([2B]×333ms))/ ([2A:2B]+[2A]+[2B]); 

GABAAR kinetics (([α1:α3]×49ms)+([α1]×42.2ms)+([α3]×129ms))/ ([α1:α3]+[α1]+[α3]). 
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For example, a sample where GluN2A was 35% and 2B was 65% of the total NMDAR 

subunit population and would have population kinetics of 135ms.  

(([(0.65-0.35)/2]×50ms)+([(0)/2]×36ms)+([0.35/2]×333ms)) / ([(0.65-0.35)]+[(0)/

2]+[0.35])= 135ms. 

First, we plotted scattergrams of the average NMDAR and GABAAR decay kinetics for 

normal animals and each treatment condition. The development of decay kinetics for normal 

animals was described using an exponential decay function, while changes in kinetics with 

increasing lengths of BV were fit by either exponential decay or sigmoidal curves. Next, we 

compared the relationship between NMDAR and GABAAR kinetics by plotting both on one 

graph. 

Principal component analysis

 We used principal component analysis (PCA) to reduce the dimensionality of the data, 

identify potential biological features, and create plasticity phenotypes. We applied PCA following 

procedures we used previously[23], [40], [41] and included data from all of the normal animals 

and MDs as well as the 3 recovery conditions. We assembled protein expression for GluA2, 

GluN1, GluN2A, GluN2B, GABAAα1, GABAAα3, and Synapsin I into an mxn matrix. The m 

columns represented the 7 proteins and the n rows were the average protein expression for each 

of the 12-14 samples from an animal. For a few of the rows data was missing from a single cell 

and so those samples were omitted for a total of n=279 rows in the matrix and 1,953 

observations.  

The data were centered by subtracting the mean column vector and applying a singular 

value decomposition (SVD) to calculate the principal components (R Studio). SVD represents 

the expression of all 7 proteins within a single tissue sample as a vector in high dimensional 

space and the PCA identifies variance captured by each dimension in that "protein expression 

space". The first 3 dimensions accounted for 82% of the total variance and were used for the next 

analyses. 

We plotted the basis vectors for the first 3 dimensions (Dim) and used the weight, quality 

(cos2) and directionality of each protein, as well as known protein interactions to help identify 

potential biological features accounting for the variance. We identified 9 potential features (7 
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new and 2 indices already analyzed), calculated those features for each sample and correlated 

each feature with Dim1, Dim2 and Dim3 to create a correlation matrix (see results). The p-values 

for the correlations were Bonferroni corrected and significant correlations were used to identify 

features that would be part of the plasticity phenotype. Eight of the features were significantly 

correlated with at least one of the first 3 dimensions. A measure associated with the E:I balance, 

was not significantly correlated with the dimensions and so it was not included in the tSNE or 

cluster analysis. The E:I measure, however, was used for analyzing the composition of the 

clusters and as a component of the plasticity phenotype because of the importance of the E:I 

balance for experience-dependent plasticity. 

tSNE dimension reduction and cluster analysis

The average expression for the 8 features (Table 3) was compiled into an mxn matrix, with 

m columns (m=8) representing the significant features and n rows representing each sample from 

the 3 V1 regions (central, peripheral, monocular) for 5wk Normal, 5wk MD, RO, BD and BV 

animals (n=109). t-distributed stochastic neighbor embedding (t-SNE) was used to reduce this 

matrix to 2-dimensions (2D). tSNE was implemented in R[42] and the tSNE output was sorted 

using k-means to assign each sample to a cluster. To determine the optimal number of clusters (k) 

we calculated the within-groups sum of squares for increasing values of k, fit a single-

exponential tau decay function to those data, found the "elbow point" at 4τ which was 6, and 

used that as the optimal number of clusters. The clusters were visualized by color-coding the dots 

in the tSNE plot and the composition of the clusters was analyzed. 
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Table 3: Formulas and Pearson’s R correlation between the features and principal 
components.  

The formulas for each identified feature (Fig 3a-c) and PCA identified features (Fig 6j), along with 
corresponding correlation (R2) values for each of the first 3 principal components. The GluN1:GluA2 and GABAAR 
Sum:GlutR Sum were not significantly correlated with any of these 3 components. 

To facilitate analysis of the tSNE clusters we grouped the BV cases into short-term BV (1hr 

& 6hr) (ST-BV) or long-term BV (1d, 2d, and 4d) (LT-BV), color-coded the samples by rearing 

condition and used different symbols to indicate the V1 region. For each cluster we annotated the 

composition based on the rearing condition of the samples to create ‘subclusters’ (e.g. LT-BV 1) 

that were used for the next analyses. 

We evaluated the similarity/dissimilarity among the subclusters by calculating the pairwise 

correlations (Pearson's R) between subclusters using the features identified by the PCA as input 

to the R package rcorr. The correlations were visualized in a matrix with the cells color-coded to 

indicate the strength of the correlation[35]. The order of the subcluster in the matrix was 

optimized using hierarchical clustering and a dendrogram was created based on the pattern of 

correlations (using R dendextend and seriation packages) so that subclusters with strong 

correlations were nearby in the dendrogram.

Feature Formula R2 Dim 1 R2 Dim 2 R2 Dim 3

GluN1:GluA2 (GluA2-GluN1)÷(GluA2 + GluN1) 0.002 0.075 -0.002

GluN2B: GluN2A (GluN2A - GluN2B)÷ (GluN2A + GluN2B) 0.044 -0.421 0.338

GABAAα3:GABAAα1 (GABAAα1 - GABAAα3) ÷ (GABAAα1 + 
GABAAα3)

-0.176 0.504 0.194

PCA identified 
Features

All Protein Sum (GluA2+ GluN1+ GluN2A + GluN2B + 
GABAAα1 + GABAAα3 + Synapsin I)÷7 0.983 0.134 0.039

GlutR sum (GluA2+ GluN1+ GluN2A + GluN2B)÷4 0.746 -0.160 0.573

GABAAR Sum (GABAAα1 + GABAAα3)÷ 2 0.478 0.819 -0.047

GABAAR Sum:GlutR 
Sum (EI Index)

(GlutR Sum-GABAAR Sum)÷(GlutR 
Sum+GABAAR Sum) 0.036 -0.064 0.012

GABAAα1: GluN2A 
index

(GluN2A-GABAAα1)÷(GluN2A+GABAAα1) 0.437 -0.743 -0.070

Glun2B:GluA2 (GluN2B - GluA2)÷(GluN2B + GluA2) 0.058 0.209 -0.798

GluN2A:GluA2 (GluN2A - GluA2) ÷ (GluN2A + GluA2) 0.113 -0.172 -0.643
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Visualization and comparison of plasticity phenotype

The features identified in the PCA analysis were used to indicate the plasticity phenotype 

for each of the subclusters. In addition to the 8 significant features, the E:I measure was included 

in the visualization of the plasticity phenotype. The features were color-coded using grey scale 

for the 3 protein sum features and a color gradient (red = -1, yellow = 0, green = +1) for the 6 

protein indices. The plasticity phenotypes were displayed as a stack of color-coded bars with one 

bar for each feature. For the subclusters, the plasticity phenotypes were ordered by the 

dendrogram to facilitate comparison among subclusters that were similar versus dissimilar. We 

also calculated the plasticity phenotypes for the full complement of normally reared and MD 

animals and displayed those in a developmental sequence to facilitate age-related comparisons 

with the recovery subclusters. Finally, we did a bootstrap analysis to determine which features of 

the plasticity phenotypes were different from 5wk normals and used Bonferroni correction to 

adjust the significance for the multiple comparisons. This analysis was displayed 2 ways: first, 

each of the 9 feature bands for the dendrogram ordered subclusters was color-coded white if it 

was not different, red if it was greater, and blue if it was less than 5wk normals; second, boxplots 

were made to show the value for each of the 9 features and to identify the subclusters that were 

different from 5wk normals. 

A detailed description of the network analysis, PCA, tSNE, clustering and phenotype 

construction, along with example code for each of these steps can be found in [43].

Statistical analyses

The mean and SEM for each protein and plasticity feature from the 3 regions of V1 was 

calculated for each rearing condition. We used the bootstrap resampling method because it is a 

conservative approach to analyzing small sample sizes when standard parametric or non-

parametric statistical tests are not appropriate. Here bootstrapping was used to estimate the 

confidence intervals (CI) for each of the recovery groups and a Monte Carlo simulation was run 

to determine if the 5wk Normal or 5wk MD groups fell outside those CIs. The statistical software 

package R was used to simulate normal distributions with 1,000,000 points using the mean and 

standard deviation from the recovery groups (RO, BD, BV). Next, a Monte Carlo simulation 
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randomly sampled with replacement from the simulated distribution n times, where n was the 

number of observations made from the normal or MD group (e.g., n = 4-19). The resampling 

procedure was repeated 100,000 times to determine the 95%, 99% and 99.9% CIs. The recovery 

group was considered significantly different (e.g., p<0.05, p<0.01 or p<0.001) from the normal 

and MD group if the mean of those groups fell outside the CI for the recovery group. 

Bootstrapping was also used to compare if the recovery subclusters identified by tSNE and 

k-means clustering were different from normal. When a subcluster was significantly greater than 

normal (p<0.05) the boxplot was colored red, when it was less than normal (p<0.05) the boxplot 

was colored blue, and if not it was not different from normal (p>0.05), the boxplot was colored 

grey. 

All of the bootstrap statistical comparisons between protein expression (Table 3-1) indices 

(Table 4-1) and plasticity features (Table 7-1) are presented in the Supplemental material. 

The p-values for the Pearson’s correlations were calculated using the rcorr package[34], 

and the significance levels were adjusted using the Bonferroni correction for multiple 

comparisons.  The Pearson’s Rs and p-values for the protein networks (Table 5-1), plasticity 

features with PCA dimensions (Table 6-1), and association between clusters (Tables 9-1, 9-2) are 

included in the Supplemental material. 

We tested if recovery during BV followed either an exponential decay or sigmoidal pattern 

by fitting curves to the data using Kaleidagraph (Synergy Software, Reading PA). Significant 

curve fits were plotted on the graphs to describe the trajectory of recovery. 
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5.3 Results 

Analyzing recovery of synaptic proteins: Synapsin I 

We began analyzing the effects of the 3 recovery treatments by comparing expression of a 

pre-synaptic marker, synapsin I, in the central, peripheral, and monocular regions of cat V1. As 

we reported previously[23], 5wks MD did not affect expression of synapsin I relative to normals, 

but RO caused synapsin I expression to double in all regions of V1 (C: 216%±25%, p<0.0001; P: 

197%±13%, p<0.0001; M: 241%±19%, p<0.0001) (Figure 3a). In contrast, there was only 

slightly less than normal synapsin I expression after BD (M: 82%±6%, p<0.0001) and 4d-BV (C: 

79%±8%, p<0.0029). 

Analyzing recovery of synaptic proteins: Glutamatergic receptor subunits 

Next, we quantified changes in GluA2 and GluN1 expression in V1. Here we found that 

RO promoted a small increase in GluA2 expression (C: 112%±8%, p<0.0001; P: 118%±2%, 

p=0.0691; M: 172%±16%, p<0.0001) but a loss of GluN1 (C: 73%±10%, p=0.0041; P:67%±3%, 

p<0.0001; M: 65%±14%, p=0.0019, Figure 3c). In contrast, after BD treatment GluA2 was 

reduced in the binocular regions of V1 (C: 40%±10%, p<0.0001; P: 58%±11%, p<0.0001).  

BV treatment had variable effects on GluA2 similar to the timing of changes seen when 

short-term (hours) vs long-term (days) MD is started at the peak of the CP [27]. GluA2 

expression fluctuated during BV but tended to be slightly below normal levels (Figure 3b). 

Interestingly, the timing of the fluctuations was the same but in the opposite direction to what we 

found previously with 1d of MD [27].  After 1d MD there was a decrease but here 1d BV had a 

transient increase in GluA2. 
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Figure 3. Expression of synaptic proteins in the different regions of visual cortex.  

Histograms showing the average expression relative to 5 wk normal animals for the 7 proteins (rows) and 3 
regions of V1 (columns), normal 5 wk animals (black bars), animals reared with MD to 5wks (grey bars), and 
animals treated with either RO (blue bars) or BD (green bars).  Scatter plots showing the average protein expression 
(red dots) after 1hr to 4d of BV treatment.  When the trajectory of protein changes during BV treatment was well-
defined by a function, curve fits were applied (red line). Error bars represent standard error of the mean (SEM).  
Black asterisks represent significant differences relative to 5wk normal, and grey asterisks represent significant 
differences relative to 5wk MD (*p<0.05,**p<0.01, ***p<0.001). The dotted black line on each graph represents 
5wk normal expression. For exact p-values, Pearson’s R, and equations for the curve-fits see Table 3-2. 
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BV treatment had region-specific changes in GluN1 expression with central recovery to 

above normal levels (y = 297.43-239.58*exp(-x/11.61), df=25, R2=0.618, p<0.0001) but below 

normal levels in the monocular region (71%±14%, p=0.0214). 

Next, we analyzed expression of the NMDAR subunits, GluN2A and GluN2B (Figure 

3d,e), because they regulate ocular dominance and bidirectional synaptic plasticity in V1[17], 

[21] as well as receptor kinetics[38]. Similar to our previous study[23], GluN2A expression was 

reduced after MD across all of V1 (C: 63%±4%, p<0.0001; P: 58%±6%, p<0.0001; M: 76%

±11% =0.0220). RO promoted modest recovery of GluN2A in the central region (89%±10%, 

p=0.1367) but BD treatment did not.  Instead after BD there was even less GluN2A than MDs in 

the peripheral (24%±2%, p<0.0001) and monocular regions (38%±8%, p<0.0001). BV promoted 

recovery of GluN2A in the central region (4d BV: 129%±23%, p=0.1022), but not in the other 

regions. 

GluN2B expression was similar to normals after MD [23] but declined after both RO (C: 

39%±1%, p<0.0001; P: 41%±3%, p<0.0001; M: 43%±2%, p<0.0001) and BD (C: 53%±20%, 

p=0.0085; P: 52%±8%, p<0.0001; M: 72%±18%, p=0.0354). BV, however, had little effect on 

GluN2B expression and after 4d it was similar to normal in the central region, and modestly 

reduced in peripheral (4dBV:77%±9%, p=0.0024) and monocular regions (4dBV: 53%±15%, 

p=0.0007). 

Analyzing recovery of synaptic proteins: GABAergic receptor subunits 

Previous studies have shown that GABAARs are necessary for opening the CP[44], that 

GABAAα1 regulates patterns of activity needed for ocular dominance plasticity[20] and that 

GABAAα3 and GABAAα1 regulate the kinetics of GABAARs[39], [45]. For these reasons, we 

examined how the treatments affected the expression of GABAAα1 and GABAAα3. We found 

that BD increased GABAAα1 expression (P: 297%±31%, p<0.0001; M:372%±45%, p<0.0001) 

but RO caused a slight decrease (C: 83%±8%, p=0.0239; P:85%±4%, p=0.0008; M: 85%±14%, 

p=0.0026).  After 4d of BV GABAAα1 expression was below normal levels (4d BV C: 40%±9%, 

p<0.0001; P:48%±8%, p<0.0001; M: 51%±4%, p<0.0001). There was, however, a transient 

increase in GABAAα1 outside the central region after 6hrs of BV (P: 181%±14%, p<0.0001; M:

242%±19%, p<0.0001). GABAAα3 expression remained below normal levels after both RO and 
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BV treatments while after BD it was reduced in central and peripheral regions (C: 38%±6%, 

p<0.0001; P: 59%±6%, p<0.0001). Thus, these results provided preliminary evidence that these 

treatments do not return normal levels of expression for all 7 proteins in all regions of V1. 

Instead, there was an intricate pattern of changes that did not clearly distinguish if a treatment 

shifted the overall pattern towards normal. 

Analyzing heterogeneity in protein expression and comparing among rearing 
conditions 

We were surprised by the complexity in the pattern of protein changes and wondered if 

there was an abnormally high degree of heterogeneity in the protein expression. To assess 

heterogeneity, we calculated an index of dispersion (variance-to-mean ratio, VMR) for each 

protein and condition and used it to determine if the distributions were under-dispersed (VMR < 

1), randomly-dispersed (VMR=1) or over-dispersed (VMR>1). For 5wk normal and RO 

conditions all proteins were under-dispersed with VMRs <0.3 (Supplemental figure 3-1). For the 

other conditions, the proteins were also under-dispersed except after MD. GluN2B was 

randomly-dispersed in the monocular region (Supplemental figure 3-1), and GABAAα1 was over-

dispersed centrally after BD and in the monocular region after 4d BV. This analysis did not find 

increased heterogeneity that might explain the complexity, so we continued to analyze patterns of 

protein expression starting with pairs of proteins known to have functional interactions. 

Analyzing the balance between functionally related pairs of receptor subunits 

We calculated a set of indices to assess the effects of recovery treatments on the balance 

between functionally related pairs of receptor subunits: GluA2:GluN1, GluN2A:GluN2B, and 

GABAAα1:GABAAα3. In normally developing cat V1 the AMPAR:NMDAR balance still favors 

GluN1 expression at 5wk[23]. MD, however, shifted the balance to favor GluA2 in central 

(0.06±0.09, p=0.044) but not in other regions (P: -0.20±0.07, p=0.078; M: -0.18±0.05, p=0.16, 

Figure 4a). RO shifted the balance to favour GluA2 across all of V1 (C: 0.12±0.06, p<0.0001; P: 

0.14±0.04, p<0.0001; M:0.29±0.06, p<0.0001) while BD had the opposite effect shifting to more 

GluN1 (C: -0.49±0.08, p=0.0002; P: -0.33±0.04, p<0.0001). Finally, after 4d of BV the 
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AMPAR:NMDAR favored GluN1 across all of V1 (C: -0.26±0.04, p=0.0004; P: -0.25±0.02, 

p<0.0001; M: -0.25±0.05, p=0.0078). 

The composition of the NMDAR affects experience-dependent plasticity and more 

GluN2B facilitates, while more GluN2A reduces, plasticity. MD changed the 2A:2B balance to 

more GluN2B but RO flipped it to more GluN2A (C: 0.28±0.06, p<0.0001; P: 0.28±0.027, 

p<0.0001; M: 0.31±0.02, p<0.0001)(Figure 4b).  BD also shifted the 2A:2B balance to more 2A 

in the central region (0.14±0.13, p=0.0001) but not the other parts of V1 where it remained at 

levels similar to the MDs (P:-0.22±0.08, p=0.0008, M:-0.37±0.10).  The introduction of BV 

caused the 2A:2B balance to shift towards normal levels in all of V1 although after 4d of BV the 

central and peripheral regions were slightly different from normal (C: -0.01±0.05, p=0.0002; P: 

-0.02±0.04, p=0.0003). 

The subunit composition of the GABAAR also contributes to regulating experience-

dependent plasticity in V1 as the developmental addition of GABAAα1 is needed for ocular 

dominance plasticity[20].  Here we found that RO and BD promoted changes in the opposite 

direction from the 2A:2B balance shifts.  RO shifted the α1:α3 toward normal levels (C: 

0.07±0.14, p=0.3087; P: 0.08±0.04, p=0.0083; M: 0.10±0.04, p=0.0008) while BD shifted it 

towards even more GABAAα1 than found after MD (C: 0.50±0.13, p=0.0003 ; P: 0.63±0.03, 

p<0.0001; M: 0.60±0.02, p<0.0001).  After 4d of BV the α1:α3 balance had shifted back to 

normal levels in the central and peripheral regions (C: -0.01±0.14, p=0.5005, P: -0.13±0.08, 

p=0.1163)  Thus, both BV and RO shift the α1:α3 toward normal levels but only BV shifted the 

2A:2B balance toward normal. 

Together, the 3 balances highlight region- and treatment-specific changes suggesting that 

BV may recover closest to 5wk normal balances, however, BV did not simply reinstate normal 

balances for these pairs of receptor subunits. 
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Figure 4. Indices for pairs of receptor subunits and modeling of predicted decay kinetics for a population 
of NMDARs and GABAARs.   

Histograms and scatter plots showing the average expression of the 3 receptor subunit indices (a:GluN1:GluA2, 
b:GluN2B:GluN2A, c:GABAAα1:GABAAα3) and predicted population kinetics (d:NMDAR, e:GABAAR) for the 
regions of V1 (columns). f. The predicted population kinetics are plotted for both GABAARs (x-values) and 
NMDARs (y-values) for normally reared animals age range 2wks-adult with the curve representing the trajectory of 
the relationship between these features (black dots & line, see Figure 4-1 for normal data).  Also, the data are plotted 
for 5wk MD (grey dot), RO (blue dot), and BD (green dot). The relationship between NMDAR and GABAAR 
kinetics during BV treatment for 1hr (orange) to 4d (red) is plotted, and the line uses the functions fit to the data in d 
and e.  The conventions are the same as in Figure 3.  For exact p-values, Pearson’s R, and equations for the curve-fits 
see Table 4-2.a.  

�181



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

Modeling NMDAR and GABAAR population kinetics 

The subunit composition of NMDARs and GABAARs help to regulate the threshold for 

experience-dependent plasticity, in part by controlling the receptor kinetics[38], [39]. We used 

information about receptor kinetics with different subunit compositions to make a model that 

predicts the average population kinetics and applied it to the rearing conditions studied here. 

First, we transformed the 2A:2B and α1:α3 balances into predicted population kinetics (see 

Methods) and compared among the groups (Figure 4d,e). The pattern of results is necessarily 

similar to the balances presented above, however, the predicted kinetics suggests a compression 

of differences between conditions when the balances shift to favor the mature subunits (2A or α1) 

versus an accentuation of differences to much slower kinetics when the immature subunits (2B or 

α3) dominated. 

To address how treatment induced changes to NMDAR and GABAAR composition might 

change the relationship between glutamatergic and GABAergic transmission timing we made XY 

scatterplots using the predicted kinetics (Figure 4f, 4-2). In addition, we analyzed the normal 

development to identify the range of kinetics predicted for the peak of the CP (Figure 4-1). 

During normal development (black line) both balances progressed from slow kinetics at 2wks to 

faster kinetics through the peak of the CP (Figure 4f- yellow zone, 4-6wks) to reach adult levels. 

The NMDAR:GABAAR kinetics for MD, RO and BD fell outside the window predicted for the 

normal CP, but in different directions. MD had slower NMDAR (C: 135ms±16ms, p=0.0031; P: 

121ms±12ms, p<0.0001; M: 146ms±27ms, p=0.0007) but faster GABAAR kinetics (C: 

47ms±0.3ms, p<0.000l; P: 48ms±1ms, p=0.0004; M: 51ms±4ms, p=0.3795), RO had faster 

NMDAR (C: 46ms±0.8ms, p<0.0001; P: 46ms±0.4ms, p<0.0001; M: 46ms±0.2ms, p<0.0001) 

but normal CP range for GABAAR (C:54ms±6ms, p=0.3015; P:51ms±2ms, p=0.1586; M: 

48ms±0.2ms, p<0.0001), and BD had faster GABAAR (C: 46ms±0.9ms, p<0.0001; P: 

44ms±0.2ms, p<0.0001; M:45ms±0.2ms, p<0.0001) but normal CP range NMDAR kinetics in 

the central region only (C: 61ms±12ms, p=0.0836; P: 130ms±12ms, p<0.0001; M: 155ms±27ms, 

p<0.0001).  
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 The introduction of BV caused a progressive change in the predicted NMDAR:GABAAR 

kinetics suggesting an initial speeding up of the NMDAR kinetics over the first 1d to 2d followed 

by a slowing of the GABAAR kinetics, especially in the central region. 

Taken together, the predicted NMDAR:GABAAR kinetics suggest differences among the 

conditions with BV shifting towards a normal CP balance but none of the treatments reinstated 

normal kinetics. Furthermore, the complexity of the univariate analyses make it difficult to 

identified individual proteins or balances that differentiate BV treatment from RO and BD. To 

address this problem, we implemented a set of unbiased, high-dimensional analyses to assess 

network relationships among the proteins, identify plasticity features, and construct plasticity 

phenotypes. 

Analyzing the pairwise similarity between protein expression profiles 

First, we wanted to identify pairs of proteins with similar or opposing expression profiles 

and compare them among the rearing conditions. For each condition, we collapsed the data from 

the 3 regions of V1, calculated the matrix of pairwise correlations between the 7 proteins, 

ordered the protein correlations using a hierarchical dendrogram, and used 2D heatmaps to 

visualize the correlations (Figure 5). The order of proteins in the dendrogram indicated which 

ones had similar (e.g. on the same branch of the dendrogram) or different patterns of expression 

and the color of the cell illustrated the strength of the correlation. For 5wk normal animals 

(Figure 5a), there were strong positive correlations (red cells) among all proteins except GluN2A, 

which was weakly correlated and not clustered with the other proteins. A different pattern of 

correlations was found after MD (Figure 5b); here glutamatergic proteins were weakly, or even 

negatively correlated (blue cells) with GABAAα1, GABAAα3, and synapsin I. These results 

suggest that MD drives a decoupling of these excitatory and inhibitory mechanisms. RO also 

separated glutamatergic and GABAergic proteins into different clusters at the first branch (Figure 

5c); however, the correlations were weaker, suggesting that RO reduced the MD-driven 

decoupling of these mechanisms.  After BD the correlation matrix had mostly positive 

correlations (Figure 5d) except for synapsin I which was negatively correlated and not clustered 

with the other proteins. BV treatment highlighted the dynamic nature of this recovery (Figure 5e-

i). Just 1hr of BV was enough to change the correlation matrix from the MD pattern, but even 
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after 4d of BV the correlation matrix still appeared different from the normal 5wk pattern of 

correlations. 

These matrices suggest different patterns of correlations depending on the condition, but 

this analysis treats each comparison with the same weighting and it is likely that some proteins 

contribute more than others to the variance in the data. To assess this, we used PCA to identify 

individual proteins and combinations of proteins that capture the variance in the data and may 

represent plasticity features reflecting differences among the treatment conditions.  

Figure 5. Visualizing pairwise correlations between proteins.  

Correlation matrices are plotted showing the strength (saturation) and direction (blue:negative; red:positive) of 
the pairwise Pearson's R correlations between proteins for each condition a. 5wk Normal, b. 5wk MD, c. RO, d. BD, 
and e-i. BV.  The order of proteins was determined using hierarchical clustering so proteins with stronger 
correlations were nearby in the matrix. Significant correlations are denoted by an asterisk (*p<0.05, **p<0.01, 
***p<0.001). For table of Pearson’s R values and Bonferroni corrected p-values see Table 5-1. 

Using principal component analysis to reduce dimensionality and identify 
plasticity features 

We used PCA to reduce the dimensionality, transform the data and find features that define 

the covariance among the proteins. An mxn matrix was made using protein expression, where the 

m columns were the 7 proteins and the n rows (109) were the tissue samples from all the animals 

and regions of V1 used in this study. This matrix was analyzed using singular value 

decomposition (SVD), and the first 3 dimensions explained most of the variance (82%) in the 

data (Dim1: 54%, Dim2: 18%, Dim3: 10%) (Figure 6a). 
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To understand which proteins contributed to each dimension we addressed the quality of 

the representation for each protein using the cos2 metric and found that the glutamatergic proteins 

were well represented by Dim1, GABAAα1 by Dim2, and GluA2 and GluN2B by Dim3 but 

synapsin I and GABAAα3 were weakly represented in the first 3 dimensions (Figure 6 b,c). Next, 

we compared the vectors for each protein (Figure 6 d,f) and the PCA space occupied by the 

rearing conditions (Figure 6 e,g). The protein vectors show that GluN1, GluN2A, GluN2B, and 

GluA2 extended along Dim1, GABAAα1 along Dim2, and GluA2 and GluN2B were in different 

directions along Dim3. The PCA space occupied by the conditions suggest some differences: BD 

was separated on Dim 2 in the same direction as GABAAα1, but the center of gravity for the 

other conditions overlapped the space occupied by normal samples. 

The overlap among conditions raised the possibility that higher dimensions may separate 

the conditions. To begin to assess higher dimensional contributions we examined the basis 

vectors (Figure 6h) and the correlations between individual proteins and PCA dimensions (Figure 

6i) to identify combinations of proteins that might reflect higher dimension features. For 

example, all proteins had positive amplitudes for the Dim1 basis vector (Figure 6h) and positive 

correlations with Dim1 (Figure 6i) suggested that protein sums may be higher dimensional 

features. In addition, weights for GluN2A and GABAAα1 on Dim2 were opposite, suggesting 

that when one protein increased the other decreased and this could be a novel feature of these 

data. Continuing with this approach we identified 9 putative plasticity features; protein sums (all 

protein sum, GlutR sum, GABAAR sum) or indices (GlutR:GABAAR, GluN2A:GluN2B, 

GABAAα1:GABAAα3, GluN2A:GABAAα1, GluA2:GluN2B, GluN2A:GluA2). All of the protein 

sums and 4 of the indices were features not analyzed with the univariate statistics; however, each 

had a strong biological basis in previous research. For example, the new indices paired the 

mature GluN2A with the mature GABAAα1 or GluA2 subunit, and GluN2B with GluA2 which is 

known to regulate the development of AMPARs[46]. Finally, we calculated the 9 features and 

determined if at least one of the first 3 dimensions was correlated with the features (Figure 6j). 

Only the GlutR:GABAAR balance was not correlated with any of the first 3 dimensions, but 

because these mechanisms are related to the E:I balance[47] we included this measure in the next 

analysis. 
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Figure 6. Identifying plasticity features using principal component analysis  

 a.The percentage of variance captured by each principal component by singular value decomposition (SVD) 
applied using all of the protein expression data. The first 3 principal components capture 54%, 18% and 10% of the 
variance, respectively, totalling >80% and thus representing the significant dimensions. b. The quality of the 
representation, cos2, for the proteins is plotted for each dimension (small/white: low cos2; large/blue: high cos2) c. 
The sum of cos2 values for the first 3 dimensions for each protein. d,e. Biplots of PCA dimensions 1&2 and f,g. 1&3.  
These plots show the vector for each protein (d,f) and the data (small dots) plus the average (large dots) for each 
condition with the best-fitting ellipse (e,g). h. The basis vectors for dimensions 1-3 showing the amplitude of each 
protein in the vector. i. The strength (circle size) and direction (blue-positive, red-negative) of the correlation (R2) 
between each protein and the PCA dimensions. j. Correlation between the plasticity features (columns) identified 
using the basis vectors (see Results) and then PCA dimensions 1-3. Filled cells are significant, bonferroni corrected 
correlations (green = positive, red = negative). For table of Pearson’s R values and significant p-values for these 
associations see Table 6-1. 

We plotted the plasticity features and saw that the GlutR and GABAAR sums identified 

differences among the treatment conditions. For example, there was less GlutR in the central 

region after RO (77%±5%, p<0.0001) and BD (66%±14%, p=0.0078) but normal levels of GlutR 

after LT-BV (4dBV= 114%±10%, p=0.0671) (Figure 7b). In contrast, GABAAR decreased for 

both BV (44%±12, p<0.0001) and RO (80%±7%, p=0.0029) but after BD it either did not change 

or increased substantially (P: 175%±19, p<0.0001;  M: 240%±40, p<0.0001) (Figure 7c). BV 

caused a shift of the GlutR:GABAAR to favor GlutR (C: 0.51±0.12, p=0.0002; P: 0.33±0.04, 

p<0.0001) while BD shifted in the other direction to more GABAAR (C: -0.22±0.12, p=0.0072; 

P: -0.45±0.05, p<0.0001; Figure 7d). That pattern was mirrored by the GluN2A:GABAAα1 

index, with BV shifting to more GluN2A (4dBV C:0.51±0.14, p=0.0004; P: 0.28±0.10, 

p=0.0484; M:-0.22±0.18, p=0.0319) and BD to more GABAAα1 than normal (C: -0.41±0.13, 

p=0.0038; P: -0.77±0.03, p<0.0001; M: -0.78±0.03, p<0.0001) (Figure 7e). The GluN2B:GluA2 

index identified RO as different with substantially more GluA2 (C: 0.40±0.02, p<0.0001; P: 

0.43±0.04, p<0.0001; M: 0.55±0.01, p<0.0001; Figure 7f). Together, these features provide some 

evidence for  glutamatergic versus GABAergic differences among the treatment conditions. 
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Figure 7. Expression of plasticity features identified using principal component analysis.   

Histograms and scatter plots showing the plasticity features (rows)(except GluN2B:GluN2A shown in Fig. 4) 
that were identified using the PCA basis vectors (Fig. 6j) and plotted for each region of V1 (columns). The 
conventions are the same as in Figure 3. For exact p-values, Pearson’s R, and equations for the curve-fits see Table 
7-1. 
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Using t-SNE to transform and visualize clustering in the pattern of plasticity 
features 

We used t-SNE to transform the plasticity features and visualize them in 2D (Figure 8a), 

then k-means and the “elbow method” (Figure 8-1) to identify the number of clusters. For these 

analyses, the BV samples were collapsed into ST-BV (1-6hrs) and LT-BV (1-4d) groups, and the 

plasticity features were calculated for all samples from the 3 V1 regions.  

Six clusters were visualized with t-SNE (Figure 8) and the composition of the clusters was 

analyzed to determine the V1 regions and rearing conditions in each cluster. Cluster 1 was the 

largest with 39 samples (C=26%; P=54%; M=21%) and had the greatest number of samples from 

the central region (Figure 8b,d). Cluster 3 also had samples from central, peripheral and 

monocular regions while clusters 4, 5, and 6 were dominated by peripheral samples with few or 

no central region samples. Thus, there was some clustering by V1 region, but more apparent 

clustering emerged when the samples were color-coded by rearing condition (Figure 8c, d). All 

but one of the normal samples were in cluster 1, all of the RO samples were in cluster 2, most of 

the BD samples were in cluster 3 with a few in cluster 6, and most of the MD samples were in 

clusters 1 or 3. The BV samples, however, were found in 5 of the clusters with the greatest 

number of BV central samples (83%) grouped with normals in cluster 1. 

Further analysis of cluster 1 showed that the majority of LT-BV and ST-BV samples from 

the central region clustered with the normals (Figure 8d). Interestingly, some of the MD samples 

were also in cluster 1; however, those samples were from the peripheral and monocular regions 

which are known to be less affected by MD than the central region[48]. Together, these results 

show that the data are clustered and that the clustering was driven by both rearing condition and 

region of V1.  
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Figure 8. Clustering of samples with similar plasticity features identified using t-Distributed Stochastic 
Neighbor Embedding (t-SNE) and k-means clustering.  

a. Using tSNE to visualize clustering of samples (109 tissue samples from animals reared to 5wk normal, 5wk 
MD, RO, BD and BV) calculated from k-means analysis of the 8 plasticity features identified by PCA.  The optimal 
number of clusters (k=6) was identified by measuring the within groups sum of squares at intervals between 2 and 9 
clusters (Figure 8-1) b. The content of each cluster was visualized for the region (central, peripheral, monocular) c. 
or treatment condition. d. The table summarizes the percentage of samples for each region and condition in Cluster 
1-6. For example, 100% of the samples from the central region of V1 in Normal animals were in Cluster 1 while 
100% of the samples from all regions of RO were in Cluster 2.  This information was used to annotate subclusters 
based on the cluster membership (1-6), rearing condition, and region of V1. 
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Correlating plasticity features among subclusters 

We annotated the samples in each cluster using the rearing condition and V1 region and 

used that information to identify 13 subclusters where at least one region per condition had n ≥ 2 

and >20% of the samples in that cluster (Figure 8d, black font). A correlation matrix was 

calculated to assess the similarity between subclusters (see Table 9-1 for R values and 9-2 for 

Bonferroni adjusted p values) and the order of the subclusters in the correlation matrix was 

optimized by hierarchical clustering so subclusters with similar patterns of features were nearby 

in the dendrogram. Bonferroni adjusted p value was used to determine the significant correlations 

(0.05/78=0.0006) (Figure 9). This analysis showed that 3 of the 4 LT-BV subclusters (LT-BV 1: 

R=0.98; LT-BV 5: R=0.98; LT-BV 4: R=0.96) and the MD 1PM subcluster (R=0.98) were 

strongly correlated with normals. The other MD subcluster with central samples (MD 3CP) was 

on a separate branch of the dendrogram and was strongly correlated with the 3 ST-BV subclusters 

(ST-BV 1: R=0.98; ST-BV 3: R=0.99; ST-BV 5: R=0.98). The ST-BV subclusters were also 

correlated with normals (ST-BV 1: R=0.96; ST-BV 3: R=0.94; ST-BV 5: R=0.97), LT-BV 1 (ST-

BV 1: R=0.98; ST-BV 3: R=0.94; ST-BV 5: R=0.98), and MD1 (ST-BV 1: R=0.98; ST-BV 3: 

R=0.94; ST-BV 5: R=0.99) but weaker correlations with LT-BV 4 (ST-BV 1: R=0.94; ST-BV 5: 

R=0.95) and no significant correlations with LT-BV 5. RO was correlated with normal (R=0.96) 

but only one of the LT-BV subclusters (LT-BV 5: R=0.96) and none of the ST-BV subclusters. 

The two BD subclusters were correlated (R=0.94) but none of the other correlations were 

significant. The pattern of strong correlations in this matrix and the resulting dendrogram 

suggested that the subclusters might form 4 groups that have similar plasticity features (1: 

normal, LT-BV, MDP or M; 2: RO; 3: ST-BV, MDC; 4: BD). 
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Figure 9. Visualizing pairwise correlations between treatment subclusters.  

The matrix is showing the strength (0.6=blue; 1=red) of correlation between the subclusters identified in Fig. 7d 
and annotated here using the rearing condition, cluster (1-6), and region of V1. Hierarchical clustering was used to 
order the data so that subclusters with strong correlations were nearby in the matrix.  The subclusters formed 5 
groups using the height of the dendrogram that is denoted by a change in the color of the dendrogram.  The dotted 
black line in the dendrogram highlights the path to the normal subcluster.  The black lines in the matrix identify the 5 
groupings of the subclusters. For exact Bonferroni corrected p-values see Table 9-1 and for Pearson’s R values see 
Table 9-2. 
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Constructing plasticity phenotypes and comparing among the conditions 

To compare the pattern of plasticity features among the subclusters we visualized the 

average for each feature as a color-coded horizontal band, stacked the bands to illustrate the 

pattern that we called the plasticity phenotype (Figure 10a) and ordered the phenotypes using the 

same dendrogram as the correlation matrix (Figure 10b). In addition, we visualized the plasticity 

phenotypes for normal development and MD (using the data from [23]) to compare the treatment 

subclusters with a broad range of ages that had developed with either normal or abnormal visual 

experience (Figure 10 c,d). 

Inspection of the plasticity phenotypes identified some obvious and other subtler 

differences among the subclusters (Figure 10b). Indeed, the pattern of red and green bands in the 

BD phenotypes was different from 5wk normals (Figure 10) and showed the shift to more 

GABAAα1 and less GluN2A. For the RO subcluster, the light grey bands and number of green 

bands identified loss of protein expression and a shift to more GluN2A than 2B and more GluA2 

than 5wk normals. The RO pattern, however, appeared similar to an older (e.g. 12wk) normally 

reared animal suggesting that RO may accelerate maturation of these proteins. Thus, these BD 

and RO treatments led to distinct plasticity phenotypes. 

The pattern of red and green bands in the plasticity phenotype for LT-BV and some of the 

ST-BV subclusters (ST-BV1, ST-BV5) appeared similar to the 5wk normals (Figure 10b) but 

many of the features were still significantly different from the age-matched normals (Figure 11a, 

11-1). Nonetheless, these subclusters had some consistent differences with less GABAARs and 

more GluN2B than 5wk normals. Interestingly, one of the novel features found by PCA, the 

GluN2A:GluA2 balance, was the only measure where all of the LT-BV subclusters were not 

different from 5wk normals but both RO and BD were different. Thus, this visualization of the 

plasticity phenotypes illustrated that the pattern promoted by BV, and LT-BV in particular, was 

most similar to the normal CP phenotype. 

�193



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

Figure 10. Visualizing the plasticity features and phenotypes for each subclusters  

a. We visualized the plasticity features as a stack of color-coded horizontal bars that together comprise the 
plasticity phenotype. The 3 grey scale bars represent the protein sums and the 6 red-green color-coded bars represent 
the protein indices identified by the PCA. b. The plasticity phenotypes were calculated for each subcluster and 
ordered using the same dendrogram as described in Fig. 9. c. For comparison the plasticity phenotypes were 
calculated using previously published data[23] for normal development (2 - 32 wks) d. and animals MDed from eye 
open until either 4, 5, 6, 9 or 32 wks. 
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Figure 11. Significant plasticity features 

 a. We used bootstrap analysis to identify plasticity features that were significantly different from 5wk normal 
animals and color-coded the horizontal bars red if the feature was >normal and blue if it was <normal (p<0.05). b-j. 
The boxplots show the average protein sum (b-d) and an average index value (e-j) for each of the subclusters. Boxes 
were colored red if significantly greater than 5wk normals, blue if significantly less than 5wk normals and grey if not 
significantly different from 5wk normals. For exact Bonferroni corrected p-values see Table 11-1.  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5.4 Discussion 

Here we studied a set of glutamatergic and GABAergic receptor subunits in V1 that 

regulate plasticity and explored classifying the expression patterns for treatments that cause 

either persistent bilateral amblyopia (RO or BD) or good acuity in both eyes (BV). We found a 

complex pattern of changes that varied by treatment and region within V1.  Analyzing the 

balances between receptor subunits and modeling kinetics for NMDAR and GABAAR provided 

some evidence that BV returns CP-like balances, especially in the central region of V1. 

Furthermore, applying a new analysis approach using PCA and cluster analysis identified higher 

dimensional features and subclusters with different plasticity phenotypes for treatments that 

promote good versus poor recovery of acuity.  The LT-BV plasticity phenotypes were closest to 

the normal CP pattern while the RO phenotype appeared more similar to an older pattern 

dominated by GluA2.  In contrast, the BD phenotypes were dominated by GABAAα1 making it 

distinct from RO and illustrating that multiple plasticity phenotypes can underlie persistent 

bilateral amblyopia. Finally, the PCA analysis identified an understudied feature, the balance 

between mature glutamate receptor subunits (GluN2A:GluA2 balance), as a marker that might 

differentiate treatments supporting good acuity (BV), from those that lead to persistent bilateral 

amblyopia (RO, BD). 

Study design and limitations 

The exploratory nature of the design used here was limited because the small number of 

animals used leaves unanswered how much variation there is in response to the treatments.  The 

visual manipulations (MD, RO, BD, BV), however, are known to cause consistent changes in 

visual perception [7], [8], [49]-[52], physiology [7], [29], [31], [53], and molecular mechanisms 

[23], [27], [54]-[59] that have been reliably measured in a number of laboratories using the cat to 

study visual system plasticity.  Thus, this exploration of treatment-induced changes provides a 

preliminary understanding about the pattern of recovery.  These results will be useful for 

formulating new hypotheses about the links between these proteins and persistent amblyopia as 

discussed below for the GluN2A:GluA2 balance. 

The study design had some strengths including that (i) the animal model has excellent 

spatial vision, with a central visual field, so we could compare changes in regions of V1 that 

�196



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

represent different parts of the visual field[27], (ii) the treatments were initiated and completed 

within the CP[60], (iii) there is detailed information about the recovery of physiology for RO and 

BV[7], [29], [53], [61] and acuity for all 3 treatments[7], [8], [27], [29], [30], (iv) both RO and 

BD cause persistent bilateral amblyopia[8], [30], and (v) the treatments engage different forms of 

experience-dependent plasticity (RO: competitive; BD: cooperative with degraded visual input; 

BV: cooperative with normal visual input). 

We observed that only one feature (GluN2A:GluA2 balance) returned to normal after LT-

BV treatment raising the hypothesis that it is necessary for good recovery.  We were not able to 

test that question because the molecular tools are not available for manipulating proteins in cat 

cortex so it will be important to replicate that finding in the mouse and then test the question by 

directly manipulating those proteins.  In addition, a large number of other treatments have been 

tested to improve recovery after MD, including a brief period of dark-rearing[30], [62], 

fluoxetine administration[63], perceptual learning[27], [64], or targeting specific molecular 

mechanisms (e.g., perineuronal nets[65]). Undoubtedly, the timing, length, and type of treatment 

influences recovery but the conditions used here were necessarily limited because of the labor-

intensive nature of this study. Notwithstanding these limitations, the plasticity phenotypes 

identified RO and BD as different from each other and from normals, but the LT-BV subclusters 

were remarkably similar to the 5wk normal pattern. 

Finally, the design took advantage of the reliability and multiplexing capabilities of 

Western blotting to obtain a large dataset of plasticity proteins from multiple V1 regions and 

rearing conditions. Western blotting, however, does not provide information about the cell types, 

layers, cortical columns, or subcellular localization of these proteins that would reveal which 

circuits are involved in recovery or persistent amblyopia. Even without that information, the 

application of high dimensional analyses led to the characterization of features and treatment-

based clusters with unique plasticity phenotypes. The phenotyping approach developed here is 

scalable for studying more proteins or genes, cortical areas, and treatment conditions.  Taken 

together, we think that this approach can be used in other animal models where molecular tools 

can be combined with visual testing to identify the features and phenotypes necessary for optimal 

visual recovery. 
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BV promoted recovery of CP-like plasticity phenotype and identified 
GluA2:GluN2A as a balance that differentiated BV treatment 

We explored BV treatment because it promotes long-lasting recovery of good acuity in 

both eyes[27] and those findings are similar to promising results of binocular therapies for 

treating amblyopia in children[66].  Furthermore, there is good physiological recovery with 

BV[29], [61].  Thus, it was not surprising to find that LT-BV subclusters had the strongest 

correlations with normals, or that those subclusters had CP-like phenotypes. However, only one 

of the features, the GluA2:GluN2A balance, returned to normal levels. These findings suggest 

that it may not be necessary to recapitulate every detail of the normal phenotype to support good 

visual recovery and that the GluA2:GluN2A balance may be a characteristic feature for tracking 

functional recovery. Although that balance is not commonly quantified, both proteins are critical 

components of mechanisms regulating experience-dependent plasticity and that balance might 

signify the adaptive engagement of multiple plasticity mechanisms. For example, the delayed 

increase in visual responses during ocular dominance plasticity is part of a homeostatic plasticity 

mechanism regulated by trafficking GluA2-containing AMPARs into the synapse[67], [68]. 

Meanwhile, the initiation of ocular dominance plasticity requires GluN2A expression[22], and 

when GluN2A is deleted or reduced MD does not depress deprived eye responses but instead 

causes enhancement of activity driven by the open eye[21]. Our finding that LT-BV returned a 

CP-like GluA2:GluN2A balance suggests that BV may prime GluN2A-dependent Hebbian 

plasticity to consolidate deprived-eye connections while GluA2-dependent homeostatic plasticity 

enhances deprived-eye responsiveness without triggering runaway excitation[69]-[73]. Thus, the 

GluA2:GluN2A balance may reflect the idea that during BV treatment the non-deprived eye acts 

as a teacher guiding both cooperative and competitive plasticity mechanisms[29]. 

RO versus BD plasticity phenotypes 

Because RO and BD treatments cause persistent bilateral amblyopia[7], [8], [30] we 

expected these conditions to have abnormal phenotypes. We were surprised, however, to find 

very different phenotypes for these conditions, showing that more than one plasticity phenotype 

can account for persistent acuity deficits.  
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RO samples were in a single cluster dominated by an overabundance of GluA2 and more 

GluN2A than 2B.  Together those changes made the RO phenotype appear more similar to an 

adult than the CP pattern. The increase in GluA2 was in sharp contrast to the loss after BV 

treatment, and suggests that RO may scale up AMPAR-dependent homeostatic mechanisms to 

drive recovery[25] without engaging NMDAR-dependent mechanisms to consolidate those 

changes[74]. Since AMPAR-mediated homeostasis promotes rapid but transient gains in 

responsiveness [25], [67], [75]-[78] this might explain the labile acuity recovered with RO[7], 

[8].  Interestingly, the increase in GluA2 promoted by RO implicates the dense expression of 

GluA2-containing synapses at feedback connections onto parvalbumin-positive (PV+) 

neurons[79].  The feedforward connections onto PV+ neurons may also be involved in RO circuit 

abnormalities because the labile acuity and early shift to GluN2A after RO are similar to changes 

found in MeCP2 KOs where an abnormally early shift to GluN2A at synapses onto PV+ neurons 

that halts acuity development[80], [81]. Taken together, these findings provide preliminary 

evidence that RO may leave behind feedforward (GluN2A subunits) and feedback abnormalities 

(GluA2) in PV+ neuron circuits in V1. 

Although various models of neural plasticity predict that decreasing firing rates will 

enhance plasticity that idea has not translated to using BD treatment to improve recovery from 

MD[30]. BD for weeks or months during the CP has a range of effects on V1 including 

enhancing the appearance of cytochrome oxidase blobs[82], weakening stimulus evoked activity 

of PV+ neurons[83] and delaying the developmental increase in GAD65 expression [84].  Here 

we found that a few days of BD treatment caused an abnormal increase in the expression of 

GABAAα1 throughout V1 and a shift to more GluN2A in the central region.  GABAAα1 

receptors are found on pyramidal cell bodies where PV+ neurons synapse and they serve as 

regulators of ocular dominance plasticity[20] and the window for coincident spike-time 

dependent plasticity[24].  A recent study has shown that the loss of PV+ activity caused by BD 

depends on GABAAα1 mechanisms and that blocking this subunit increases BD-evoked activity 

allowing for LTP of PV+ neurons[85]. Our observation of increased GABAAα1 expression 

suggests that BD treatment may further reduce visually evoked activity in V1 that is compounded 
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by the shift to more GluN2A reducing the availability of NMDA-dependent mechanism needed 

to consolidate visual recovery.  

Modeling recovery of NMDAR and GABAAR kinetics 

Our modeling of population kinetics suggests that different physiological changes 

accompany the 3 treatments. During normal development the increases in NMDAR and 

GABAAR kinetics progress in concert. Physiological studies [86] and our modeling show that 

this fine balance is decoupled by MD because the delayed shift to GluN2A has slower NMDAR 

kinetics but the premature increase of GABAAα1 has faster GABAAR kinetics. Neither RO or 

BD treatment corrected that decoupling and the modeling suggests that those treatments 

accelerate the shift to faster adult-like kinetics for NMDARs after RO or GABAARs after BD.  

Modeling the kinetics for BV treatment identified 2 phases of recovery especially in the 

binocular regions of V1.  First, between 0-2 days of BV there was a rapid increase in the 

predicted NMDAR kinetics that was similar to changes that occur between 2 to 4 weeks of age in 

normal cats.  Second, between 2-4 days of BV there was a slowing of the predicted GABAAR 

kinetics and that was opposite to the normal developmental increase in kinetics.  These sequential 

phases of BV treatment do not recapitulate normal development.  These results raise the question 

of whether the BV-driven increase in NMDAR kinetics needs to reach a certain level before 

triggering the slowing of GABAAR kinetics to rebalance these mechanisms.  This modeling, 

however, was based on population data about the expression of the receptor subunits and cannot 

be extrapolated to individual receptors.  Nonetheless, the rapid changes with BV treatment 

suggest that some aspects of normal development may be missed and it will be important to 

determine what those are. 

How might these plasticity phenotypes be used for developing and testing 
treatments for persistent amblyopia? 

The distinct plasticity phenotypes classified for RO and BD treatments provide preliminary 

evidence that multiple neural changes can account for persistent amblyopia and highlight the 

need to know which mechanisms to target when trying to engage neuroplasticity mechanisms to 

improve acuity.  Whether the treatment should focus on AMPARs, NMDARs, GABAARs or 

some combination of those receptors will depend on the underlying plasticity phenotype.  
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Insights into those questions can be addressed in animal models using modern molecular tools 

and vision testing but translating those findings into treatments for humans will depend on non-

invasive ways to determine an individual’s plasticity phenotype.  For example, magnetic 

resonance spectroscopy has been used to measure changes in glutamate or GABA concentrations 

in human V1 after different types of visual experience (e.g. MD[87]) and receptor expression can 

be quantified by radioligands labeled for SPECT and PET [88].  New molecular imaging 

techniques hold the promise of greater detail with the ability to measure the concentration of 

receptor subunits[89]-[91].  That information may be comparable to protein analysis in animals 

models and suitable for constructing plasticity phenotypes for human V1 to facilitate the 

translation of new treatments.  Furthermore, behavioral paradigms linked with specific plasticity 

mechanisms (e.g. stimulus-selective response plasticity[92]) may further aid in characterizing 

human plasticity phenotypes.  Thus, selecting a treatment to prevent or correct persistent 

amblyopia may benefit from in vivo steps to classify an individual’s plasticity phenotype. 

Conclusions 

This exploration of glutamatergic and GABAergic receptor subunit changes in V1 after 

treatment that promotes either good (BV) or poor (RO, BD) recovery of vision provides a better 

understanding of the complexity of this problem.  Of the treatments studied here, only BV 

provided evidence for recovery of a CP-like plasticity phenotype in V1. However, only one 

feature, the GluA2:GluN2A balance, returned to normal levels after BV and that balance is 

noteworthy because the proteins are regulators of homeostatic and Hebbian plasticity, 

respectively.  The modeling of NMDAR and GABAAR kinetics suggests two stages for BV 

recovery: a rapid increase in NMDAR kinetics, followed by slowing of the predicted GABAAR 

kinetics which together move that balance into the CP range. We identified features of the 

plasticity phenotypes that may guide future studies on persistent amblyopia to look for high 

levels of GluA2 and GluN2A following RO, and high levels of GABAAα1 after BD treatment. 

Finally, the plasticity phenotyping is a good approach for uncovering novel neurobiological 

features that may be important for recovery of acuity and new treatment targets. 
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5.5 Supplemental Material 

Figure 3-1. Glutamatergic protein variance to mean ratios.  

Histograms depict the variance-to-mean ratio in each condition for individual proteins (rows) in each cortical 
area (columns). VMR >1 represent proteins that are highly-dispersed, VMR=1 are normally dispersed and VMR<1 
are under-dispersed.  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Figure 4-1. Predicted decay kinetics of NMDAR and GABAAR across normal cat V1 development  

Scatterplots of predicted population decay kinetics of each receptor type. Black circles represent the average 
predicted decay kinetics at each age. Top row of scatterplots show the average kinetics of NMDA receptors across 
V1 areas. Solid line represents the kinetics of a population of diheteromeric 2A:2B containing NMDARs (50ms). 
Bottom row shows predicted decay kinetics of GABA receptors across V1 areas. Solid line represents the kinetics of 
a population of diheteromeric α1:α3 containing GABAARs (49ms). All scatterplots were well defined by an 
exponential decay curve fit (all p<0.0001).  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Figure 8-1 Within group sum of squares with variable cluster sizes.  

Scatterplot of the within groups sum of squares was measured across a range of clusters between 2 and 15. An 
exponential decay fit was applied to the data, and 4τ was taken as the point at which changes in cluster number had 
little effect on the within groups sum of squares. The optimal number of clusters was identified as 6 (k=6). This 
value was used to assign the k-means clusters on tSNE reduced data (Figure 8a). 
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Table 2-1.  The number of Western blot measurements for each cortical region in 
Normal animals.   

Rows summarize the number of runs from the Central (C), Peripheral (P), and Monocular (M) regions of V1 
within each age of animal studied. The columns list each of the 7 proteins analyzed using Western blotting. Column 
sums detail the number of runs across ages and cortical areas. 

Weeks BV Region GluN1 GluN2A GluN2B GABAAα1 GABAAα3 GluA2 Syn

2 C 4 4 4 4 4 4 4

P 16 16 16 16 16 16 16

M 4 4 4 4 4 4 4

3 C 4 4 4 4 4 4 4

P 16 16 16 16 16 16 16

M 4 4 4 4 4 4 4

4 C 4 4 4 4 4 4 4

P 16 16 16 16 16 16 16

M 4 4 4 4 4 4 4

5 C 4 4 4 4 4 4 4

P 16 16 16 15 16 16 16

M 4 4 4 4 4 4 4

6 C 4 4 4 4 4 4 4

P 16 16 16 16 16 16 16

M 4 4 4 4 4 4 4

8 C 6 6 6 6 6 6 6

P 22 19 22 22 22 22 22

M 2 2 2 2 2 2 2

12 C 4 4 4 4 4 4 4

P 16 16 16 16 16 13 16

M 4 4 4 4 4 4 4

16 C 4 4 4 4 4 4 4

P 16 16 16 16 16 16 16

M 4 4 4 4 4 4 4

32 C 4 4 4 4 4 4 4

P 16 16 16 16 16 16 16

M 4 4 4 4 4 4 4

SUM 222 219 222 221 222 219 222
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Table 2-2.  The number of Western blot measurements for each cortical region in MD 
animals.  

Rows summarize the number of runs from the Central (C), Peripheral (P), and Monocular (M) regions of V1 
within each age of animal studied. The columns list each of the 7 proteins analyzed using Western blotting. Column 
sums detail the number of runs across ages and cortical areas. 

Weeks 
MD

Region GluN1 GluN2A GluN2B GABAAα1 GABAAα3 GluA2 Syn

4 C 4 4 4 4 4 4 4

P 16 16 16 16 16 11 16

M 4 4 4 4 4 2 4

5 C 6 6 6 6 6 6 4

P 18 18 18 18 18 18 11

M 4 4 4 4 4 4 4

6 C 8 8 8 8 8 8 8

P 32 32 32 32 32 32 32

M 6 6 6 6 6 6 6

9 C 8 8 8 8 8 8 8

P 36 36 34 34 36 36 31

M 8 8 8 6 8 8 6

32 C 4 4 4 4 4 4 4

P 16 16 16 16 16 16 16

M 2 2 2 2 2 2 2

SUM 172 172 170 168 172 165 156
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Table 3-1. Table of p-values comparing protein expression in each treatment condition 
against 5wk Normal animals and 5wk MD animals.  

P-values are presented for each cortical area (columns) and protein (rows). Cortical areas are broken up into 
comparisons against normal (left) and MD (right). Asterisk color coding matches Figure 3. When a curve fit was 
applied, the equation, degrees of freedom (df), R2 value and exact p-value are listed. 
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 Table 4-1. Table of p-values comparing the values for each plasticity feature in 
treatment conditions against 5wk Normal animals or 5wk MD animals.  

p-values are presented for each cortical area (columns) and plasticity feature (rows). Cortical areas are broken 
up into comparisons against normal (left) and MD (right). Asterisk color coding matches Figure 4. When a curve fit 
was applied, the equation, degrees of freedom (df), R2 value and exact p-value are listed. 
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Table 5-1. Pearson’s R values in each treatment condition comparing the strength of 
association between each protein.  

The correlation between each protein within a treatment condition was measured (left), and the observed R 
values are presented in a matrix. This matrix was reordered in Figure 5 to position high R values nearest one another. 
The Bonferroni corrected p-values (right) were used to identify the most significant correlations between proteins. P-
values <0.05 are colored red to simplify identification of significant correlations. 
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Table 6-1. Pearson’s R correlations between newly identified plasticity features and 
PCA dimensions.  

The correlation between the PCA scores across all animals, and the first 3 PCA dimensions are presented. P-
values of correlations that were significantly correlated after Bonferroni correction are colored red. 

Table 7-1 p-values comparing the each newly identified plasticity feature in treatment 
conditions against 5wk Normal animals and 5wk MD animals.  

p-values are presented for each cortical area (columns) and plasticity feature (rows). Cortical areas are broken 
up into comparisons against normal (left) and MD (right). Asterisk color coding matches Figure 4. When a curve fit 
was applied, the equation, degrees of freedom (df), R2 value and exact p-value are listed.  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Table 9-1 Pearson’s R values comparing the strength of association between each 
treatment subcluster.  

The correlation between each sub-cluster was measured and the observed R values are presented in a matrix. 
This matrix was reordered in Figure 9 to position high R values nearest one another. 

 

Table 9-2 Bonferroni corrected p-values between each treatment subcluster.  
The Bonferroni corrected p-values were used to identify the most significant correlations between proteins. P-

values less than the Bonferroni corrected level (0.0006) are colored red to simplify identification of significant 
correlations. 
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Table 11-1. p-values for each identified plasticity feature within subclusters compared 
against the Normal animals from cluster 1. 

p-values are presented for the Pearson’s R correlations between each plasticity phenotype and the Normal 
subcluster. The corresponding significance level is indicated by the text color red if the value was significantly above 
the normal subcluster, and blue if the value was significantly below, and white if not significantly different.  
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Chapter 6. Expression of synaptic and non-neuronal proteins 
reveal parallel plasticity states across human visual cortex 
development  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Abstract 

Perceptual and cognitive development is often described as a series of discrete stages, but 

recent brain imaging studies suggest continuous development of features such as cortical 

thickness, area, and volume. This discrepancy between function and structure raises questions 

about how to link human behaviour with brain development. We have been studying 

developmental changes in synaptic and non-neuronal proteins in human visual cortex and 

focusing on mechanisms that mediate experience-dependent plasticity. Typically, our lab and 

others have analyzed these features by either age-binning or making scatter plots of protein 

expression. However, both approaches assume an underlying pattern of development. Here we 

removed these a priori assumptions and applied a data-driven approach to characterize the 

pattern of development in the human visual cortex. 

We used robust and sparse k-means clustering algorithm (R package RSKC) to analyze 

expression of 23 synaptic and non-neuronal proteins in post-mortem tissue samples from human 

visual cortex (n=31, age range 20 days - 80 years, 13 female, 18 male). These proteins act as 

triggers or brakes on experience-dependent plasticity and include markers of pre-synaptic 

function, glutamatergic and GABAergic receptor subunits, receptor anchoring proteins, dendritic 

spines, myelin, and components of the extracellular matrix. A matrix of protein expression (23 

proteins x 403 total runs of Western blotting) was used for the cluster analysis. Importantly, age 

was not included as a variable in the matrix. PCA was also run on the protein matrix to identify 

features that captured the variance in the data. We visualized developmental changes in the 

clusters by plotting the balances between sets of proteins that govern synaptic plasticity, which 

we called ‘plasticity features’. Finally, we created plasticity phenotypes to visualize salient 

features in each cluster and arranged these phenotypes from youngest to oldest to model human 

V1 cortical development. 

Our analysis revealed a progression of cluster age, but some clusters had overlapping age 

samples.  This overlap between clusters identified a set of parallel "plasticity states" across 

neighbouring age bins. These findings suggest a new way of thinking about the development of 

human cortex. At the early and late stages of development, the underlying protein signatures are 

very homogeneous, and almost all individuals fall into the same cluster. During the middle stages 
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of development, the underlying protein signatures place individuals into one of a few overlapping 

states. Deviation into one of these overlapping states may set the course for the rest of cortical 

development.  
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6.1 Introduction 

 Early theories of human development were guided by behavioural observations made by 

cognitive psychologists, and divide human development into a series of stages (e.g. Piaget 1952, 

Erikson 1959). As modern technologies such as fMRI, EEG and MRS provided better windows 

into the living brain, longitudinal analyses of brain structure and function blurred the divisions 

between developmental stages and suggested that human developmental trajectories progressed 

along a continuum (Shaw et al., 2008; Grydeland et al., 2013; Mills et al., 2014; Fjell et al., 

2015). Unfortunately the resolution of these technologies is relatively poor, and is therefore 

restricted to analysis of large-scale anatomical changes (MRI) and population responses (EEG), 

however, a few attempts have been made to link fine neuronal processes with behaviour (Kadosh 

et al., 2015). More recently, molecular tools have become integrated with developmental 

neuroscience and an abundance of research is focused on mapping the genomic development of 

human cortex (eg. http://www.brainspan.org, Lister et al., 2013; Nowakowski et al., 2017). One 

step closer to understanding function, proteomic investigation of human circuits (Carlyle et al., 

2017) and systems can be guided by insights from animal models, where numerous examples 

relate excitatory and inhibitory synaptic proteins to normal function (Froemke and Dan, 2002; 

Fagiolini et al., 2003; 2004) and synaptic plasticity (Quinlan et al., 1999a; 1999b; Philpot et al., 

2001). However, the development of synaptic proteins in human visual cortex, either through 

discrete stages or continuous trajectories, remains to be elucidated.  

Our lab has been studying human brain development by quantifying expression of a 

collection of synaptic and other neural proteins using a library of postmortem tissue samples 

(n=31, age= 21 days - 79 years, male/female=18/13) (Siu et al., 2017, Pinto et al., 2010, Williams 

et al, 2010). The classical approach to interpreting developmental changes is to divide data into 

discrete age-bins and use either standard (e.g., ANOVA) or modern statistical tests (e.g., 

bootstrapping simulations) to identify developmental changes. It is becoming more common to 

plot data and use model-fitting to describe the trajectories of continuous changes (Shaw et al., 

2008). Using a combination of these approaches we identified a series of developmental stages in 

human visual cortex using GABAergic (Pinto et al., 2010), glutamatergic (Siu et al., 2017) and 
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other synaptic proteins (Pinto et al., 2015). Synthesizing our findings across all of these proteins 

proves challenging when using age-bins or when defining developmental trajectories. 

Here we address this issue by removing a priori assumptions about human brain 

development and applying modern, data-driven, high-dimensional cluster analysis on the 

expression profiles of 23 synaptic and non-neuronal proteins. The typical approach to high-

dimensional clusters is using subspace or projected clustering algorithms (reviewed in Parsons et 

al., 2004). However, our data set contains a large number of dimensions relative to the number of 

observations. Furthermore, we expect certain proteins to better predict the course of human 

cortical development than others. Therefore, we implemented robust and sparse k-means 

clustering developed by Witten and Tibshirani (2010: SparCl) and modified by Kondo et al. 

(2016: RSKC). This high-dimensional clustering algorithm is intended for data sets with many 

variables (proteins) and uses an adaptive search technique that re-weights all variables according 

to their impact on cluster formation. After identifying developmental clusters and important 

proteins, we used a combination of principal component analysis (PCA) and the protein 

weightings to identify proteins that define each cluster. Finally, we extracted specific plasticity 

features to better relate protein changes with visual function.   

We found 6 clusters of human synaptic protein development stretched along a continuum 

whereby clusters were distinct and separable at infancy and late adulthood, but intermediate 

clusters developed in parallel and overlapped in age. Cluster formation was largely driven by a 

subset of synaptic proteins essential for establishing and maintaining synaptic function, including 

PSD95, gephyrin, synapsin I, synaptophysin, Ube3A and Drebrin. Surprisingly, intermediate 

clusters were easily identified by transitions from high to low protein expression, and vice versa. 

These clusters in the middle of human development therefore appear as a set of parallel 

"plasticity states". These findings suggest a new way of thinking about cortical development 

where individuals jump between a set of "plasticity states" through large and sudden changes in 

the expression of a few proteins. Early and late stages are marked by a combination of  factors 

related to establishing excitatory/inhibitory balance, structural integrity of neurons and regulating 

immune response. 
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6.2 Experimental Procedure 

The proteins presented in this paper summarize years of data collection in human cortical 

tissue. The proteins analyzed, as well as the antibody used, the concentration and supplier are 

listed in Table 1.  

Table 1: List of proteins included in this chapter.  
The antibody used, concentration and supplier are included, along with RRID where applicable. The citation 

that the data were originally presented in is also included.  

Protein Antibody concentration and supplier Citation

GAD65 (glutamic acid 
decarboxylase 65)

1:500 (Chemicon International,Temecula, CA, USA)

Pinto et al., 2010

GAD67 (glutamic acid 
decarboxylase 67)

1:1000 (Chemicon International,Temecula, CA, USA)

VGAT 1:1000 (Synaptic Systems, Göttingen, Germany)

GABAAα1 1:500 (Imgenex, San Diego, CA, USA)

GABAAα2 1:1000 (Imgenex, San Diego, CA, USA)

GABAAα3 1:1000 (Imgenex, San Diego, CA, USA)

CB1 1:1000 (Cayman, Ann Arbor, MI, USA)

Gephyrin 1:500 (Chemicon International, Temecula, CA, USA)

Gephyrin Homogenate 1:2000 (Millipore, Billerica, MA)

Pinto et al., 2015
PSD95 Homogenate 1:32000 (Millipore, Billerica, MA)

Synapsin I 1:8000 (Invitrogen, Carlsbad, CA)

Synaptophysin 1:2000 (Sigma-Aldrich, St. Louis, MO);

GluA2 1:1000 (RRID: AB_2533058, Invitrogen)

Siu et al., 2017 
GluN1/NR1 1:4000 (RRID: AB_396353, BD Biosciences PharMingen)

GluN2A/NR2A 1:1000 (RRID: AB_95169,EMDMillipore)

GluN2B/NR2B 1:1000 (RRID: AB_2112925, EMD Millipore)

PSD95 1:16000 (RRID: AB_94278,EMDMillipore)

Golli-MBP 1:4000 [AB62631] (Abcam, Cambridge, MA, USA).
Siu et al., 2015

Classic-MBP 1:4000 [AB62631] (Abcam, Cambridge, MA, USA).

Ube3A (E6AP) (E6AP), 1:1000; (Bethyl Laboratories, Montgomery, TX, USA), Williams et al., 2010

Integrinβ3 (1:1000 [AB2984], Millipore, Billerica, MA, USA),

UnpublishedGFAP 1:2000 [MAB360](Millipore, Billerica, MA, USA)

Drebrin 1:1000, [10R-D117A], Fitzgerald Industries International, Acton, MA, 
USA),
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Samples and Tissue 

Samples from all 31 humans used in this study were from the Brain and Tissue Bank for 

Developmental Disorders at the University of Maryland (Baltimore, MD, USA). Within 23h of 

death, human brains were removed and the left occipital lobe was dissected and sectioned into 

1cm-thick coronal sections, flash frozen (isopentane and dry ice mixture) and stored at -70°C by 

Brain and Tissue bank employees. At McMaster, the visual cortex tissue samples were resected 

on a cold workstation, and visual cortex was identified in the posterior pole of the left occipital 

lobe according to gyral and sulcal landmarks. Samples were obtained from the superior and 

inferior calcarine fissure from individuals ranging in age from 20 days to 79 years. The cases 

used in this study are presented in Table 2. 

The study was approved by the McMaster University Research Ethics Board. 

Tissue preparation 

Using the pattern of gyri and sulci to identify primary visual cortex, small pieces of tissue 

approximately 50–100 mg were broken off the frozen coronal sections of human cortex. To 

prepare cortical samples for Western blotting, tissues were transferred to a glass-glass Dounce 

hand homogenizer (Kontes), resuspended in homogenization buffer (1 ml buffer:50 mg tissue, 

0.5 mM DTT, 1 mM EDTA, 2 mM EGTA, 10 mM HEPES, 10 mg/ml leupeptin, 100 nM 

microcystin, 0.1 mM PMSF, 50 mg/ml soybean trypsin inhibitor), and homogenized until 

uniform. Due to typical low abundance of synaptic proteins, we performed a synaptosome 

preparation to enrich synaptic protein expression (Siu et al., 2018). A portion of the homogenate 

was taken off and set aside, and the remaining whole homogenate was passed through a coarse, 

100 µm-pore filter  to remove bulk cytosolic entities. The filtered human homogenate was then 

passed through a fine, 5 µm-pore hydrophilic mesh filter (Millipore). The exception to this was 

for the four proteins quantified in whole homogenate of human cortex (PSD95HOM, 

GephyrinHOM, Synapsin I and Synaptophysin). All filtrates were slowly centrifuged (1000xg) 

for 10 min to separate synaptic fractions into a synaptosome pellet. After removing the 

supernatant, synaptosome pellets were washed in cold homogenization buffer (1ml), gently 

vortexed, and slowly centrifuged a second time (1000xg) for 20 minutes.  The resultant 
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synaptosome pellets were resuspended in boiling SDS (1%), heated for 10min, and stored at 

-80°C. 

 

Table 2: Cases used in this study.  

Age Sex Cause of Death Post-mortem interval (Hours)

20 days M Asphyxia 9

20 days F Pneumonia 14

86 days F Unknown 23

96 days M Bronchopneumonia 12

98 days M Cardiovascular disorder 16

119 days M Bronchopneumonia 22

120 days M Pneumonia 23

133 days M Accident 16

136 days F Pneumonia 11

273 days M SIDS 10

1 year 123 days M Dehydration 21

2 years 57 days F Cardiovascular disorder 21

2 years 75 days F Meningitis 11

3 years 123 days F Accident 11

4 years 203 days M Accident 15

4 years 258 days M Accident 17

5 years 144 days M Accident 17

8 years 50 days F Compressional Asphyxia and Multiple Injuries 20

8 years 214 days F Surgical complications 20

9 years 46 days F Asthma 20

12 years 164 days M Cardiovascular disorder 22

13 years 99 days M Asphyxia 5

15 years 81 days M Multiple Injuries 16

19 years 76 days F Multiple Injuries 16

22 years 359 days M Multiple Injuries 4

32 years 223 days M Cardiovascular disorder 13

50 years 156 days M Cardiovascular disorder 8

53 years 330 days F Cardiovascular disorder 5

69 years 110 days M Cardiovascular disorder 12

71 years 333 days F Multiple medical disorders 9

79 years 181 days F Drug Overdose 14
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Protein measurement and equating protein expression 

We used BCA assay to measure total protein expression in all tissue samples, and after 

normalizing against a set of known standards, we adjust total protein expression across all 

samples.  Aliquots of protein standards (0.25, 0.5, 1.0, 2.0 mg/ml) (BSA protein standards, Bio-

Rad Laboratories) and tissue samples (3µl x3 wells per sample) were loaded into  a 96-well 

microplate, and each aliquot was suspended in 300µl of BCA assay solution. Micro-plates were 

covered and incubated at 45°C for 45 minutes in order to activate the colorimetric change. 

Microplates were then transferred to an iMark Microplate Absorbance Reader (Bio-Rad 

Laboratories), and the scan quantifies the absorbance in each well, which was copied into a 

Microsoft excel spreadsheet. To validate pipetting accuracy, the average absorbance for each of 

the 4 protein standards were plotted against known protein expression, and a line of best fit was 

applied to these data. Only plates with a correlation coefficient of R2 > 0.99 for this line could 

proceed, those with R2 < 0.99 had to be redone. The average of each tissue sample was 

normalized to this line of best-fit to determine total protein concentration in each sample, and 

samples were diluted to 1µg/µl first with  Laemmli buffer (Cayman Chemical) then sample 

buffer (M260 Next Gel Sample loading buffer 4, Amresco).  

Immunoblotting 

Protein expression was quantified by separating 20-30µg of synaptosome tissue samples on 

4%–20% SDS-PAGE, and transferred to PVDF membranes (Immobilon-FLPVDF, EMD 

Millipore). Between 2-5 runs were performed on samples in this study. Control samples were 

made by combining a small amount of prepared synaptosomes from each sample within a 

species, and were run on each gel to facilitate comparisons across membranes.   

Membranes were soaked in blocking buffer for 1 h (Odyssey Blocking Buffer 1:1 with 

PBS) (Li-Cor Biosciences), and transferred to primary antibody and kept cool (4°C) overnight. 

All antibodies were selected after testing on a multispecies blot that included samples from 

human, monkey, cat, and rat to ensure that the western blot profile was comparable across 

species. The blots were washed with PBS-Tween (0.05%PBS-T, Sigma) (3x10 min) and 

transferred to the appropriate secondary antibody for 1h (25°C), and were again rinsed in PBS-T 
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(3x10 min). After scanning membranes, antibodies were removed using a Blot Restore 

Membrane Rejuvenation Kit (EMD Millipore) and membranes were probed again with another 

antibody.  

6.3 Analysis 

Protein quantification 

All membranes were quantified using densitometry analysis. Membranes were scanned 

using the Odyssey scanner (Li-Cor Biosciences), the intensity of pixel values within the band 

were integrated, and the background pixel intensity was subtracted from each lane profile 

(Odyssey Software version 3.0; Li-Cor Biosciences).To adjust for variations in the width of the 

band, intensity values were divided by band width for all analyses. 

Data Setup 

Data was collected through a series of experiments for the following 23 proteins: Glutamic 

acid decarboxylase (Gad65 and Gad67), vesicular GABA transporter (VGAT), GABAAα1, 

GABAAα2, GABAAα3, CB1, Gephyrin, post-synaptic density protein 95kDa (PSD95), Gephyrin 

from homogenate tissue fraction (Gephyrin.HOM), PSD95 from homogenate tissue fraction 

(PSD95.HOM), Synapsin I, Synaptophysin, GluA2, NR1 (GluN1), GluN2A (NR2A), GluN2B 

(NR2B), Myelin Basic Protein isoforms (Classic-MBP and Golli-MBP), Integrinβ3 (Integrin), 

Glial fibrillary acidic protein (GFAP), E3 ubiquitin ligase (Ube3A), Drebrin. Some proteins were 

quantified more times than others (1-5 runs per protein), resulting in an incomplete mxn matrix 

of m=403 rows (31 human samples x 13 possible rounds of immunoblotting) x n=23 columns 

(proteins). Multiple rounds of immunoblotting for a given protein were collapsed into the sample 

average, which condensed the mxn matrix to m=31 rows of human samples x n=23 proteins.   

Clustering 

Data were centered and scaled by subtracting each entry from the column mean and 

dividing by the corresponding column standard deviation. Sparse k-means clustering was run on 

the centered data in R (RStudioTeam 2016) using the RSKC package (Kondo et al., 2016). The 

number of clusters was set to 6 (see results), the number of random initial starting cluster centers 
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was set to 500, and L1 was increased to allow adjusted weights > 0 for all proteins. Importantly, 

age was not included in this analysis so clusters were identified based only on protein expression. 

 The six clusters were ordered from youngest to oldest median age. Cluster ages were 

visualized using boxplots, and the samples in each cluster were superimposed as individual data 

points. Protein expression for each cluster were visualized using scatterplots with individual 

points colored to match the assigned cluster. To describe the trajectory of change in protein 

expression across developmental stages, scatterplots were fit with a general loess curve, as well 

as an upper and lower 95% confidence interval. Protein expression was also visualized using 

boxplots. To describe transitions between sequential clusters we color coded the boxplots. 

Clusters with a median score greater than 75% of the full range of the data (upper quantile) were 

coloured red and those with median score less than 25% of the full range of data (lower quartile) 

were coloured blue.   

Important Protein Identification 

To assess protein impact on cluster formation, we re-ordered proteins according to their 

RSKC weights, we converted protein expression to protein maximum and minimum across all 

proteins and plotted these together on a set of parallel coordinates. Similarly, we created 

plasticity profiles for each cluster. First color coded gradients were created using the 

color_scale_gradient function in the ggplot2 package (Wickham, H. 2016). We set the upper and 

lower limits to match the range of values for protein expression (blue=0 to yellow=maximum 

expression) and mapping group averages to this RGB space. These values were used to fill the 

rectangles made in R ggplots. 

To identify the most important proteins for forming clusters we performed Principal 

Component Analysis (PCA) on the same matrix of data. Again sample age was ignored in this 

analysis. Percentage of explained variance was calculated for each principal component, and the 

first 3 principal components have a cumulative explained variance >60%, so only these  

components were used for subsequent analyses. 

Cos2 is a measure of the goodness of fit to each dimension for the representation of a given 

object (Abdi and Williams, 2010). Cos2 was calculated for each protein across all 23 dimensions, 

summed across the first 3 principal components, and ordered from highest total cos2 to lowest. 
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Next, PCA biplots were made to demonstrate the impact of each protein on the first 3 

dimensions. Important proteins were identified by plotting only variables with cos2 >0.5 on each 

set of axes. Each human sample was superimposed on the same set of dimensions to visualize 

proteins that determine cluster formation. When high cos2 proteins overlapped with clusters, the 

protein was flagged for follow-up investigation. 

Feature Reduction 

The list of 23 proteins was reduced to functionally related sets of proteins. These protein 

sets were identified by examining the amplitudes of individual proteins about the basis vectors, 

and compared using indices or sums. We refer to these indices and protein sums as plasticity 

‘features’. Some of these features have been reported previously, as detailed below: 

From Pinto et al., 2010: 

 GAD65:VGAT:  ([GAD65-VGAT]/[Gad65+VAT]) 

GABAAα1:GABAAα2: ([GABAAα1-GABAAα2]/[GABAAα1+GABAAα2]) 

GABAAα1:GABAAα3 ([GABAAα1-GABAAα3]/[GABAAα1+GABAAα3])  

From Williams et al., 2010: 

Ube3A:PGSS Sum ([Ube3A- PGSS Sum]/[Ube3A+PGSS Sum])  

From Pinto et al., 2015:  

PGSS Sum ([PSD95HOM + GephyrinHOM + Synapsin I + Synaptophysin]/4) 

From Siu et al., 2015: 

Classic-MBP:Golli-MBP ([ClassicMBP-GolliMBP]/[ClassicMBP+GolliMBP]) 

From Siu et al., 2017:  

GluA2:GluN1 ([GluA2-GluN1]/[GluA2+GluN1]) 

NR2A:NR2B ([NR2A-NR2B]/[NR2A+NR2B] 

From multiple of Pinto et al., 2010, Williams et al., 2010 and Siu et al., 2017:  

Synapsin I:Synaptophysin ([Synapsin I-Synaptophysin]/[Synapsin I+Synaptophysin]) 

PSD95:Gephyrin ([PSD95HOM-GephyrinHOM]/[PSD95HOM+GephyrinHOM]) 

Novel indices include: 

 Sum of proteins with cos2 >0.5 (see figure 4D)  

PSD95 and Gephyrin Sum: (PSD95+Gephyrin)/2 
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Ube3A:Drebrin Index: [Ube3A-Drebrin]/[Ube3A+Drebrin] 

CB1:GABAAα1 Index: [CB1-GABAAα1]/[CB1+ GABAAα1] 

Integrin:GFAP Index: [Integrin-GFAP]/[Integrin+ GFAP].  

These indices were correlated with PCA results for all of the samples across the 23 

dimensions, and significant correlations for these indices were found for all but 4 indices 

(PSD95:Gephyrin Index, Synapsin I:Synaptophysin Index, NR2A:NR2B Index, and 

GABAAα1:GABAAα3 Index). Samples were plotted according to the 6 previously identified 

clusters in both scatterplots and box plots. Box plots were colored red or blue using the same 

analysis used to plot protein expression in each cluster. Clusters with a median score greater than 

75% of the full range of the data (upper quantile) were coloured red and those with median score 

less than 25% of the full range of data (lower quartile) were coloured blue.  

Correlation matrix was calculated in R using the corr function, and visualized using the 

heatmap package. Indices were ordered according to a surrounding dendrogram created using the 

dendextend package. The same dendrogram was used to order the presentation of the color coded 

indices in the plasticity phenotypes. These were created similar to the protein expression profiles, 

except the indices of plasticity were mapped such that the minimum side (immature) of an index 

(typically -1) was set to green, the zero point, where there is balance between proteins in the 

index, was set to yellow, and the maximum side (mature) of an index (typically +1) was set to 

red.   

Modeling Population Receptor Decay Kinetics for NMDARs and GABAARs 

In chapter 5, I described the model used to translate expression of receptor subunits into 

predicted decay kinetics for NMDARs and GABAARs. We based our model on population decay 

kinetics for NMDARs or GABAARs measured in two studies (Sun et al., 2017; Eyre et al., 2012). 

We modelled the decay kinetics for 3 combinations of NMDAR subunit pairings (NR2A only 

(2A), NR2B only (2B), or NR2A & NR2B (2A:2B)) and for 3 GABAARs subunit pairings 

(GABAAα1 only (α1), GABAAα3 only (α3) or GABAAα1 & GABAAα3 (α1:α3)). Observed 

decay kinetics of NMDARs are 2A=36±1 ms , 2B=333±17 ms, and 2A:2B=50±3 ms (Sun et al., 

2017), and decay kinetics for GABAARs are α1= 42.2±20.5 ms, α3 = 129.0±54.0 ms and α1:α3 = 

49±23 ms (Eyre et al., 2012). 
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The first assumption of our model is that the expression value from our western blotting is 

equal to the number of receptor subunits in a tissue sample. We then created a population with 

100 receptor subunits and calculated a  percentage of receptor subunits in our population. 

Subunits were assigned to receptors by matching as many pairs of single subunits as possible into 

triheteromers (2A:2B or α1:α3) until only one subunit type remained. The remaining subunit pool 

was paired off into NMDA diheteromers (2A only or 2B only) or GABAAR diheteromers (α1 

only or α3 only). 

The relative amounts of NMDAR receptor types (either 2A:2B , 2A only or 2B only) were 

converted into kinetics according to the formula:  

(([2A:2B]×50ms)+([2A]×36ms)+([2B]×333ms)) / ([2A:2B]+[2A]+[2B]). As an example 

calculation, take a population of receptor subunits containing 75% 2A subunits and 25% 2B 

subunits would pair off to have 25 x 2A:2B and 25 x 2A only receptors. This would be written: 

 (([0.25]×50ms)+([0.25]×36ms)+([0]×333ms))÷([0.25]+[0.25]+[0])=43 ms.  

The formula to calculate the expected GABAAR decay kinetics is:  

(([α1:α3]×49ms)+([α1]×42.2ms)+([α3]×129ms))÷([α1:α3]+[α1]+[α3]). 

We plotted the average predicted NMDAR and GABAAR decay kinetics for all 31 human 

samples. The changes in predicted decay kinetics were fit with a loess curve, surrounded by a 

95% CI band. To compare NMDA and GABAAR kinetics, both curves were plotted on a shared 

set of axes. Samples were color coded according to the original cluster designation.  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6.4 Results 

Sparse High-Dimensional analysis identified 6 clusters 

A standard approach to studying developmental data is to group samples into 

developmental age-bins. Here we applied a different approach to analyzing developmental 

changes in protein expression by applying robust and sparse k-means clustering (RSKC) across 

23 variables that represent the expression of 23 proteins quantified in the primary visual cortex. 

Importantly, clusters were not influenced by the age of the individuals since age information was 

omitted from the cluster analysis. Instead, clusters were identified on the basis of protein 

expression for the 23 protein variables.  

To visualize the result of this high-dimensional clustering, we used the adjusted protein 

values used by the RSKC clustering algorithm as the input data for creating a 2D tSNE plot 

(Figure 1A). The output from the RSKC method showed a clear progression in the median age of 

the 6 clusters from the youngest samples in Cluster A to the oldest samples in Cluster F (Figure 

1A,B). The 6 clusters identified by RSKC had median ages of 0.3±3.0 yrs, 0.75±2.3 yrs, 3.0±4.1 

yrs, 6.8±5.6 yrs, 16.2 ±10.40 yrs and 61.6 ±27.5 yrs (Figure 1A). Remarkably, these clusters 

displayed characteristics of discrete, non-overlapping stages of development in the youngest 

(Cluster A) and oldest (Cluster F) clusters. Conversely, the 4 intermediate clusters (Clusters B-E) 

demonstrated greater overlap between stages, suggesting continuous development. No cluster 

had fewer than 3 samples (Figure 1C), and the variance-to-mean ratio (VMR) of the ages in each 

cluster steadily declined as the median cluster age increased (Figure 1D). The PMI and sex 

(Figure 1E,F) did not influence clusters, however it should be noted that the smallest cluster, 

cluster B, was made entirely of male samples.  

We compared the standard binning approach with the results of this cluster analysis (Figure 

1G-J). Development can be parsed into any number of age bins, and we use a standard set of age 

bins (Law et al., 2003,  Duncan et al., 2010, Pinto et al., 2010; Williams et al., 2010; Pinto et al., 

2015; Siu et al., 2015; 2017): Neonates (<0.3 years), Infants (0.3–1 year), Young children (1–4 

years) Older Children(5–11 years), Teenagers (12–20 years), Young Adults (21–55 years) and 

Older Adults (>55 years) . The number of samples in each bin ranged as high as 6 (young 

children;1 to 4), but was never fewer than 3 (older adults; 55+), thus our library of tissue samples 
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were well distributed across these age bins (Figure 1G). The variability among ages in each age 

bin, as measured by the variance-to-mean ratio (VMR) was very low (Figure 1H). Other potential 

factors that could influence age-bin content included the post-mortem interval (PMI) (Figure 1I) 

and the sex(Figure 1J), but both of these factors were evenly distributed across the age bins. 

To demonstrate the differences between binning and clustering samples, the percentage of 

each cluster was plotted for each age bin (Figure 1K). The youngest two age bins (Neonates and 

Infants) were comprised mostly of samples that were grouped into Cluster A (red). The third age 

bin, young children (1 to 4 years) contained samples from 5 different clusters. This age group 

overlaps with the sensitive period for amblyopia (Epelbaum et al., 1993). The presence of 5 

distinct protein signatures in a single age bin highlights the large amount of variability at this 

stage in development. We have already reported this stage of high inter-individual variability in 

human V1 development (Pinto et al., 2010; 2015; Siu et al., 2015; 2017), and suspect that some 

of the susceptibility to amblyopia is due to large fluctuations in individual protein expression we 

have identified during this stage. For the first time, we report here that this period of high 

variability in expression creates multiple distinct and identifiable protein signatures that all 

coexist during this early stage of development.   

After this third age bin there were progressively fewer clusters represented within the 

standard developmental age bins (Figure 1K) from young children (5 to 11 years contains 3 

clusters), older children (12 to 20 years contains 2 clusters), young adults (21 to 55 years 

contains 2 clusters), and older adults (55+ years contains only 1 cluster). The benefit of this 

approach was highlighted by the sensitivity to different protein signatures across the intermediate 

levels of development, and in the identification of multiple overlapping protein signatures.  

�235



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

Figure 1. Comparison of samples grouped by RSKC cluster algorithm (A-F) or age bins (G-J).   

(A). tSNE plot of the scaled protein data after performing RSKC cluster analysis . Sample averages are colored 
according to cluster results. (B) Boxplots of cluster age were ordered from youngest (red) to oldest (grey). In both A 
and B, sample ages were reduced to group averages to reduce crowding. The minimum group size with each method 
is n=3, as demonstrated by the number of individuals in each cluster (C) and in each age bin (G). The variance to 
mean ratio of the ages for both clusters (D) and age bins (H) show a low dispersion of ages with both approaches. 
Groups do not appear to be influenced by the post-mortem intervals (PMI) before tissue collection (E,I) or sex (F,J). 
The percent distribution of clusters across age bins is shown as stacked bar plots (K). 
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Identifying protein trajectories within and between clusters 

To demonstrate changes in protein expression across the lifespan we plotted scatter plots 

and boxplots of protein expression for each of the identified clusters (Figure 2).  As indicated by 

analysis of samples in each cluster (Figure 1G-J) the youngest and oldest clusters had the most 

distinct spread of ages of samples, while the middle 4 clusters included samples that overlap in 

age. Protein expression from birth to adulthood was modelled by fitting loess curves to all of the 

data points (Figure 2A), which captured protein expression trajectories.  
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Figure 2. Protein development by age (A) and by cluster (B)   

A. Expression of 23 proteins across development, arranged according to similar trajectories. Points are coloured 
as per the original cluster in Figure 1 G-J. Black loess curves are applied to all of the data, with grey outlines 
marking 95%CI surrounding each curve. B. Boxplots show protein expression within each cluster. Boxplots are 
colored red when the median expression of a group is greater than the upper quantile of all the data, blue when the 
median expression of a group is less than the bottom quantile of all data, or grey when the median falls within the 
middle two quantiles. 
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Some proteins revealed single clusters that extend outside the 95%CI of a protein-

expression curve. Since the identified clusters were grouped by protein expression, and not the 

other way around, it was likely that identifying the proteins and clusters that ranked high or low 

relative to other clusters would identify proteins that were important for development. For 

example many of the proteins (CB1, GluN1, VGAT) had high expression in the youngest cluster 

(Cluster A- red). The same was true for Cluster D (green points), which identified over-

expression of other proteins (Gephyrin, PSD95, GluA2, etc.). 

To identify proteins that drove the formation of clusters we analyzed each protein to 

determine the clusters where the protein was over- (above the upper 75% of expression across all 

clusters = red) or under-represented (below the lower 25% of expression across all clusters 

=blue) (Figure 2B).  Next we analyzed how the over- versus under-representation of proteins 

changed between clusters by sorting if the representation of the protein (over vs under) matched 

the preceding cluster (“Same”),  changed from average (middle two quantiles -grey) to over- or 

under-represented (“Novel”) or “Switched” if clusters went from over-  to under-represented 

between clusters (or vice versa). For example, in the youngest cluster, GluN1, VGAT and 

GABAAα2 were over-represented, but only VGAT changed between the youngest to the second 

youngest cluster (cluster A to cluster B). Cluster A had under-representation of PSD95, 

GABAAα1, and Classic-MBP. A summary of these categorizations is found in Table 3.  

Moving across the remaining clusters from youngest to oldest, Cluster B was identified by 

over-representation of 7 novel proteins and under-representation of 3 novel proteins (Table 3). 

The third youngest cluster (C) was defined only by under-represented proteins (17 in total), and 

interestingly many of these proteins transitioned from over- to under-representation in this cluster 

(7 in total). The opposite case was true for Cluster D, which was defined by 10 over-represented 

proteins, many of which switched from a state of under-representation in Cluster C. Cluster C 

and D therefore were transition states, and despite having samples with large overlap in age, 

Cluster C and D could be differentiated on the basis of over- versus under-representation of 

protein. The oldest two clusters (Cluster E and F) were defined by only a few proteins. Cluster E 

was uniquely marked by over-representation of GABAAα1 and Gad65 and under-representation 
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of CB1 and Golli-MBP. Cluster F had under-representation of Ube3A, Gephyrin Homogenate 

and GABAAα2. 

Table 3: Comparison of protein expression levels against preceding cluster. 
 First, protein expression was flagged as important if expression was over- (above the upper 75% of expression 

across all clusters) or under-represented (below the lower 25% of expression) in any cluster. These cluster-
identifying proteins were sorted into the above table as “Same” if their expression state (over- vs under-represented) 
matched the preceding cluster. Clusters were “Novel” if protein expression emerged from a state of non-significance 
(middle two quantiles -grey) in the preceding cluster. Clusters were “Switched” if they transitioned from over-
represented in the preceding cluster to under-represented in the current cluster (or vice versa). The total number of 
identifying proteins are tallied in the Total column. 

RSKC protein weights are cluster-identifying during intermediate stages of 
development 

Classifying proteins into over- and under-represented was a good starting point for 

identifying the transitions that take place between clusters, but was not necessarily what defined 

cluster formation. Furthermore, we expected that some proteins should have a greater influence 

�240



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

on the course of development, and therefore should have greater influence on the developmental 

progression of clusters. One way to determine the proteins with the greatest influence on cluster 

formation was to inspect the adjusted weights for each protein from the RSKC analysis. The 

RSKC algorithm identified clusters by adjusting the protein weights so that proteins with a 

greater contribution to the sparse clustering were given an increased weight, and those that 

contributed little to clustering were given a reduced weight (Witten and Tibshirani, 2010).  

Typically, the sparse nature of this approach would set the least important protein weights to zero 

and removing them from the analysis. We adjusted the L1 parameter, however, so that all proteins 

had non-zero weight, thereby ensuring that all proteins were included in the analysis. The 

weights of all proteins were then ordered from largest to smallest (Figure 3A). This highlighted a 

sigmoidal trend of protein weights, whereby proteins with high and low weights were easily 

separated, but intermediate proteins remained more or less indistinguishable from one another. 

Indeed when protein scores were scaled to a local maximum and minimum, and plotted on a 

shared set of parallel coordinates, cluster-identifying proteins appeared to segregate at the 

extremes (Figure 3B).  

The 6 proteins with the greatest adjusted weights (Ube3A, PSD95, synapsin I, gephyrin, 

PSD95.Hom, and synaptophysin) easily identified the intermediate Cluster D by over-represented 

protein expression (Figure 3B- left). Incidentally, 4 of these 6 proteins  (PSD95, Synapsin I, 

Gephyrin ad Synaptophysin) were identified in our previous report as a set of structural synaptic 

proteins useful for mapping the trajectory of V1 synaptic development, and were useful for 

translating cortical development across species (Pinto et al., 2015). Meanwhile, Ube3A is 

necessary for experience-dependent maturation of visual cortex (Yashiro et al., 2009). 

Conversely, the proteins with the 5 lowest weights, Golli-MBP, GFAP, GABAAα3, NR2A, 

Gad67 and Gad65, identified Cluster C by its unique under-representation of these proteins 

(Figure3B- right). These proteins share either immune (Golli-MBP and GFAP) or inhibitory roles 

(Gad65, Gad67, GABAAα3) in cortical function. Neither of these findings were surprising since 

Cluster C and D were the lowest and highest expressing clusters for most proteins, respectively 

(Table 3).  
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This analysis confirmed that proteins were weighted based on protein expression and 

protein weights are a valuable tool for sorting through the ever-growing list of cluster-identifying 

proteins. However, since we already flagged those proteins as important, the approach can be 

employed in lieu of analyzing the relative protein expression (Figure 2B and Table 3). To 

highlight the pattern of protein expression in the clusters we created a heatmap representing the 

average expression for each protein (Figure 3C). That analysis demonstrated the contrast between 

Clusters C and D, and highlighted the many transitions between the clusters.  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Figure 3. Feature sorting according to sparse clustering.  

A. Ranked weightings of proteins assigned by sparse clustering. B. Parallel coordinates plot of the mean 
expression for each protein. Coloured lines indicate cluster. Data were scaled to match protein maximum and 
minimums across proteins. C. Protein phenotypes of the same scaled data. Mean protein expression for each cluster 
was mapped to a color scale, and maximum and minimum expression of each cluster was set to yellow and blue 
respectively. 

Principal component analysis reveals the remaining cluster-identifying 
proteins in early and late development 

To determine whether any other proteins or combinations of proteins could explain the 

clusters that formed at the lower and upper limits of human development, we used principal 

component analysis (PCA). PCA reduced the dimensionality of the data set and identified 

principal components that explain most of the variance in the data. This restricted the search 

window for proteins of interest to only a few dimensions. Using that approach we found that the 

first 3 components captured 28.5%, 19% and 12.4% of the total explained variance respectively, 

accounting for ~60% of the total cumulative variance (Figure 4A), indicating that these three 

dimensions contained most of the relevant information in the data set. 

We measured the representation of each protein across all 23 protein dimensions using both 

the correlation with the PCA dimensions (Figure 4B) and cos2 (Figure 4C). The correlation 

between a protein and a PCA dimension estimated the amount of shared information, while cos2 

estimated the quality of the representation for a protein on a PCA dimension. Since the majority 

of the large correlations and cos2 scores were contained in the first 3 dimensions, we were 

justified in limiting the search to these dimensions. Proteins with the largest correlations and cos2 

values on the first dimension included excitatory proteins (GluA2, NR2A, NR2B) as well as 

markers of synaptic structures (Gephyrin, PSD95, Gephyrin Homogenate, PSD95 homogenate, 

synapsin I and synaptophysin) and Ube3A. On the second dimension, inhibitory pre- and post-

synaptic proteins were well represented (VGAT, GABAAα2, CB1) as well as excitatory GluN1, 

and other support proteins including Golli-MBP, GFAP, Ube3A and Drebrin. The third dimension 

was mostly dominated by these same support proteins (Golli-MBP, Classic MBP, Integrin, GFAP 

and drebrin). The sum of the cos2 across the first 3 dimensions was plotted, from proteins with 

the smallest to those with the largest representation (Figure 4D). All but 6 of the proteins had cos2 

>0.5, confirming that most proteins were well represented on the first 3 dimensions.  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Figure 4. Principal component analysis identifies 3 dimensions of interest.  

A. Percent variance identified by all components after singular value decomposition of protein expression. The 
first 3 principal components capture >60% of the cumulative variance in the data set, and re-sampling the data set 
determines these three components to contain most of the variance in the system. B. Correlation matrix showing the 
strength (circle size / saturation) and direction (positive=blue, negative=red) of the Pearson’s R correlation of each 
protein represented with each of the principal component dimensions. C. Matrix showing the strength (circle size / 
saturation) and direction (positive=blue, zero=white) of the cos2 value of each protein represented on each of the 
principal component dimensions. Most of the proteins have good representation across the first 3 dimensions in both 
B and C. D. Sum of cos2 across the first 3 dimensions, where the sum of cos2 for each protein across all 23 
dimensions is 1. Dashed line represents cos2 =0.5 cutoff, used for reducing number of proteins displayed in 
subsequent analyses;16 proteins fall above that cutoff and 7 fall below.  
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Mapping protein vectors in PCA space highlighted the relative contribution of each protein 

to development (Figure 5A,C), and when individual samples were superimposed on the same 

dimensions as the protein vectors, the position of each cluster relative to the protein vectors 

revealed proteins with the greatest influence on the cluster (Figure 5 B,D). Feature reduction was 

performed by plotting only proteins with high cos2 (>0.5), thereby limiting investigation to only 

those proteins with a good representation on the most important dimensions (Figure 5 histograms 

surrounding each plot). On dimensions 1 and 2, which together explain 47.5% of the data, major 

protein classes of influence include excitatory post-synaptic receptor proteins, inhibitory post-

synaptic receptor proteins, inhibitory presynaptic proteins and Ube3a, a synaptic machinery 

maintenance protein (Figure 5A). The third dimension included more maintenance and structural 

proteins, including Classic and Golli-MBP, as well as GFAP (Figure 5C).  

The key difference with this approach compared with the summary in Table 3 was the 

sensitivity to small differences in protein expression that were otherwise ignored when data was 

analyzed on a protein-by-protein basis. The second difference was that importance could be 

ascribed to each protein vector based on the goodness of representation on a given subset of 

dimensions (instead of across all dimensions at once), which again increased sensitivity. In 

addition to the originally identified list of proteins from the first analysis, the PCA and cos2 

revealed additional proteins for each cluster. The complete list of cluster-identifying proteins is  

summarized in Table 4.  
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Figure 5. Examination of Principal Component Analysis for feature identification.  

A,B. Biplots show protein vectors and individual observations plotted on dimensions 1 and 2. A. Proteins are 
represented as vectors on both dimension1 (x-axis) and dimension 2 (y-axis). The length of the vector represents the 
strength (cos2) of the representation of each protein on this set of dimensions. Surrounding histograms depict cos2 
scores along dimension 1 (top) and dimension 2 (left).  Only proteins with a summed cos2 above 0.5 (dashed line) 
across both dimensions are drawn. Vector directions marked by arrowheads point in the direction of high protein 
expression, while low protein expression extends in the opposite direction through the point of origin. B. Individual 
observations are plotted as dots on the same dimensions and filled according to the original clusters in Figure 1. 
Observations near each other in space share similar attributes, observations that overlap with vector arrowheads have 
high expression of that protein, and observations in the opposite quadrant to a vector have low expression for that 
protein. C,D. Plots are the same as in A,B but for dimensions 1 (x-axis) and 3 (y-axis), and applicable histograms are 
for dimension 1 (top) and dimension 3 (left).  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Briefly, Cluster A (youngest median age) was marked by over-representation of CB1 

(Figure 5A,B) and under-representation of Classic-MBP, Golli-MBP, and GFAP (Figure 5 C,D).  

This suggested that early development was characterized by low expression of structural proteins 

like MBP and maintenance proteins like GFAP. Cluster B on the other hand was easily 

differentiated from Cluster A on the basis of dimension 3 (Figure 5 C,D), which added over-

representation of GFAP, Classic-MBP and Golli-MBP to the list of identifying proteins for 

Cluster B. This implicates infancy as a stage when non-synaptic, glial and astrocytic systems start 

to come online. Progression to Cluster C identified under-representation for GluA2, NR2B and 

Ube3A (Figure 5A,B). As suspected from our earlier analysis (Figure 3), development through 

Cluster D was accompanied by large increases in expression of many proteins. However, only 

some of the 17 proteins identified previously were well represented by the first 3 principal 

components. These include the set of 4 synaptic markers from Pinto et al.(2015)(PSD95, 

Gephyrin, synapsin I and synaptophysin), as well as the GluA2 subunit of AMPA receptors 

(Figure 5 B,D). This would suggest that pre-synaptic function (synapsin I, synaptophysin), 

postsynaptic receptor anchoring (PSD95, Gephyrin) and unsilencing of synapses (GluA2) are 

emergent factors in this stage. Finally in Cluster E, GFAP, Classic-MBP and Golli-MBP remain 

under-represented.  Curiously, these same 3 proteins increase again in the final Cluster F, at the 

same time that Ube3A, NR2B and GluA2 decline.  

This limited set of cluster-identifying proteins helps ascribe functional changes to each 

developmental state. Furthermore, it stresses the importance of early and late changes to 

structural proteins and maintenance proteins. This is in sharp contrast to the subtle increases and 

decreases that occur for most other synaptic proteins, whether they are excitatory or inhibitory 

postsynaptic receptors or markers of presynaptic function 
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Table 4: Summary of cluster-identifying proteins across the first 3 PCA dimensions.  
Samples in a cluster group together when their coordinates are plotted along principal component dimensions. 

When clusters align parallel to a protein vector, that protein is flagged as important for determining cluster contents. 
If the cluster is located at the vector head, then that cluster is reported with high values for that protein. Conversely, 
if the cluster is located at or behind the vector tail, then that cluster is reported with low values for that protein. High 
values are indicated in the Quality column, while the dimensions are listed as D1, D2 and D3. Proteins that identify a 
given cluster are listed in the table. 

Feature extraction reveals progressive development between the overlapping 
plasticity states 

To identify combinations of proteins that influenced the clustering we plotted the mean 

amplitude of each protein about the basis vector for dimensions 1-3 (Figure 6A-C). Across 

dimension 1, most proteins extend in the same direction, suggesting that the sum of the proteins 

was the main driver. To investigate if the sum of the proteins represented a meaningful feature, 
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we calculated a sum of all the well-represented proteins (Sum of Proteins (with cos2>0.5)), a sum 

of the four synapse markers (Pinto et al., 2015) called PGSS Sum (PSD95, Gephyrin, Synapsin I, 

Synaptophysin Sum) and a sum of PSD95 and Gephyrin (PSD95 and Gephyrin Sum). All of 

these sums were significantly correlated with basis vector 1 (Figure 6D), which suggested they 

were good measures of human V1 development.  

Many functionally related pairs of proteins opposed each other about the first 3 basis 

vectors. These pairs were further examined through the remaining indices that are presented in 

Figure 6C. Out of the complete list of 12 indices calculated, significant correlations with PCA 

basis vectors 2 and 3 included the following: Ube3A:PGSS Sum, GluA2:GluN1 Index, 

GABAAα1: GABAAα2 Index, Classic-MBP:Golli-MBP Index, GAD65:VGAT Index, 

Ube3A:Drebrin Index,  CB1: GABAAα1 Index and Integrin:GFAP Index (Figure 6D). An index 

of Ube3A to the PGSS set of proteins has been used successfully by our lab (Williams et al., 

2010) to model the decline in experience-dependent plasticity regulated by this E3 ubiquitin 

ligase (Yashiro et al., 2009). The GluA2:GluN1 Index is a proxy for the un-silencing of synapses 

when AMPAR (GluA2) is inserted into the synapses of otherwise nascent NMDAR-dominated 

synapses (Isaac et al., 1997; Rumpel et al., 1998), that gradually increases and then decreases 

across development of human V1 (Siu et al., 2017). The GABAAα1:GABAAα2 Index is 

informative of inhibitory control over synapses since the GABAAα1, GABAAα2 and GABAAα3 

subunit are all developmentally regulated (Hendrickson et al., 1994; Chen et al., 2001; Bosman et 

al., 2004; Pinto et al., 2010), and regulate GABAAR kinetics (Laurie et al., 1992; Gingrich et al., 

1995, Eyre et al., 2012). The roles of the two MBP isoforms (Classic-MBP and Golli-MBP) 

inform about the opposing roles for myelin formation (Jacobs et al., 2005; 2009), compaction 

(Wake et al., 2011) and the link between the neural and immune systems (Pribyl et al., 1993) 

across human V1 development (Siu et al., 2015). Finally, the GAD65:VGAT Index informs about 

the balance between pre-synaptic GABA production and GABA trafficking (Feldblum et al., 

1995; McIntire et al., 1997; Sagné et al., 1997). 
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Figure 6. Examination of Principal Component Analysis for feature extraction and reduction.  

The influence of each protein on the first A, second B and third C principal components is represented as the 
relative amplitude about each basis vector. D. Significant correlations between the first 3 principal components and 
protein sums or indices are represented as coloured cells. The color indicates the magnitude (intensity) and direction 
(positive=green, negative=red) of significant correlations after Bonferroni correction. 

Also, we calculated novel indices that were statistically significant, including the 

Ube3A:Drebrin Index, which indicates the balance between synaptic protein degradation 

(DiAntonio and Hicke, 2004) and dendritic spine formation and stability (Hayashi et al., 1996; 

Hayashi and Shirao, 1999). Ube3A is linked with experience-dependent ocular dominance 
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plasticity during development (Yashiro et al., 2009) while Drebrin had high expression that 

decreased toward the end of the critical period in animals (Imamura et al., 1992). To examine the 

activity-dependent, endocannabinoid regulated GABA release (Sjöström et al., 2003; Jiang et al., 

2010) versus mature post-synaptic GABAA receptors (Hendrickson et al., 1994) we calculated 

the CB1: GABAAα1 Index. Finally, the impact of extracellular matrix protein Integrin (Kramar et 

al., 2006) versus GFAP (Kaneko et al., 2008) was demonstrated with an Integrin:GFAP Index to 

address the crosstalk between these two mechanisms (Jones et al., 2011). This index is also 

informative because integrins regulate expression and function of GABAAR (Charrier et al., 

2010), AMPAR (Cingolani et al., 2008; Pozo et al., 2012) and NMDAR (Bernard-Trifilo et al., 

2005; Shi and Ethell, 2006; Michaluk et al., 2009). 

Novel biological markers of plasticity across cluster-identified stages  

After feature reduction, just like with the analysis of protein expression across clusters 

(Figure 2A,B) we plotted each index as a series of scatterplots and boxplots for each cluster 

(Figure 7A,B). The indices were arranged according to basis vector, with metrics correlated with 

basis vector 1 across the top row, basis vector 2 across the next 3 rows, and the single index from 

basis vector 3 in the bottom right corner (Figure 7A,B). Each scatterplot was fit with a loess 

curve to describe the trajectory of change in each index. 

All 3 protein sums (cos2 > 0.5, PGSS Sum and the PSD95 and Gephyrin Sum) started out 

low, increased until approximately 10 years of age, and then decreased into aging (Figure 7A, top 

row). The samples that had the highest total proteins were all clustered together in Cluster D 

(Figure 7B) which was significantly higher than the rest of the data. Conversely, the group that 

showed the lowest expression across all three of these measures was the oldest Cluster F.  These 

protein sums were reflective of the total available synaptic resources at each stage of 

development, and it is not surprising that these resources peaked during the period of 

susceptibility to amblyopia, and gradually declined into adulthood as the available plasticity 

lessens.  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Figure 7. Feature extraction identifies a set of biological features  

A. Scatterplots of protein sums and indices with conventions as in Figure 2A. B. Boxplots of each cluster are 
drawn and color coded according to the conventions as described in Figure 2B. Dashed line represents zero or 
‘balance’ between functionally related proteins. 
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The additional measures that were correlated with basis vectors were indices of 

functionally related sets of proteins. These indices typically transitioned from a juvenile or 

immature state to an adult, mature state. Cluster A was typically at either the mature or immature 

extreme of all indices, and was significantly different from the rest of development on multiple 

measures. Cluster A favoured synaptophysin over synapsin I, GluN1 over GluA2, the immature 

subunit in GABAAR (GABAAα1: GABAAα3, GABAAα1: GABAAα2), CB1 over GABAAα1, 

VGAT over Gad65, and had Ube3A over-representation (Ube3A:PGSS sum, Ube3A:Drebrin). 

Cluster B also had Ube3A over-representation(Ube3A:PGSS sum, Ube3A:Drebrin), favored CB1 

over GABAAα1 and GFAP over Integrin. Cluster C favored  NR2B over NR2A, and Integrin 

over GFAP.  

Aside from having the highest expression of protein sums, Cluster D also favored 

excitatory PSD95 over inhibitory gephyrin, and favored GluA2 over GluN1. The oldest two 

clusters, Cluster E and F, contained the extremes of many indices. Cluster E favored the markers 

of synapses (PSD95, Gephyrin, Synapsin I and Synaptophysin) over Ube3A, the mature NR2A 

subunit of NMDA receptors, the mature GABAAα1 subunit of GABAAαR receptors, Classic-

MBP over Golli-MBP, GAD65 over VGAT, and Integrin over GFAP. The oldest Cluster F 

demonstrated lower protein sums than other clusters across all three protein sums (cos2 > 0.5, 

PGSS Sum and then PSD95 and Gephyrin Sum). This cluster also favored PGSS and Drebrin 

over Ube3A, the mature GABAAα1 subunit of GABAA receptors, and GFAP over integrin.   

Systems level plasticity mechanisms are aligned in each cluster 

To examine how these features operate as a system, we calculated a correlation matrix 

between each of the significant features that were correlated with PCA basis vectors. We plotted 

the results of this correlation analysis in a heatmap (Figure 8), and arranged the order of the 

correlations according to a surrounding dendrogram. There were 4 main branches to this 

dendrogram, which identified the groups of indices that change together. The top right corner 

showed that the protein sums, identified by PCA basis vector 1 (cos2 > 0.5, PGSS Sum and the 

PSD95 and Gephyrin Sum) were strongly correlated. The next branch contained a single index, 

Integrin:GFAP, identified by PCA basis vector 3. The remaining two branches contained all 

indices that were identified by PCA basis vector 2. These indices could be sorted into ones that 
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increased from immature to mature (GABAAα1: GABAAα2, Gad65:VGAT, GluA2:GluN1, 

Classic:Golli-MBP) and ones that decreased from mature to immature (CB1: GABAAα1, 

Ube3A:PGSS, Ube3A:Drebrin) across development. 

Figure 8. Association between protein sums and functional indices identify developmental changes that 
emerge during each cluster. 

 Correlation matrix between protein sums and indices. Pearson’s R calculated across the lifespan for each index 
represents the strength of association (negative= black, purple, blue; positive = green,green, yellow, orange, red) 
between index and protein sum pairings. Inset indicates distribution of Pearson’s R values. 

To test this idea we visualized the changes described by each index all at once. We plotted 

plasticity phenotypes for each cluster, and ordered the phenotypes starting with the cluster that 

had the youngest median age and progressing to the oldest cluster (Figure 9A-Clusters A-F). The 

bars representing the features (protein sums and indices) were ordered using the same 

dendrogram plotted around the correlation matrix (dendrogram in Figure 9A). The first 3 bars 

represent the protein sums identified by basis vector 1, and span from white (low protein 

expression) to black (high protein expression).  The remaining bars represent the indices, and are 

color coded to represent one side of each balance as green, and the other side as red (Figure 9).  

Aside from the first bar for Integrin:GFAP, most indices were green or yellow across the 

first 3 clusters (A, B and C). Cluster C began to transition to orange for 2 important indices, 
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GluA2:GluN1 and Gad65:VGAT. This would suggest that the unsilencing of synapses (as GluN1 

overtakes GluA2) and a shift in the readily releasable pool of inhibitory neurotransmitter (as 

VGAT overtakes Gad65) are beginning to transition in this stage of childhood development. 

These shifts indicated both excitatory receptors and pre-synaptic inhibitory neurotransmission 

come online in the early stages of development. 

Figure 9. Plasticity motif of indices and protein sums separated by cluster. 

 A. Mean feature expression for each cluster was mapped to a color scale. Minimum and maximum expression 
of each cluster was set to grey and black respectively for protein sums (top legend), and immature and mature 
expression of each cluster was set to green and red respectively for functionally related indices (right side- legend). 
B. Cluster phenotypes were divided amongst the 7 original age-bins typically used for developmental analysis. 
Neonates (<0.3 years), Infants (0.3–1 year), Young children (1–4 years) Older Children(5–11 years), Teenagers (12–
20 years), Young Adults (21–55 years) and Older Adults (>55 years). Clusters that exist in multiple age bins are 
presented multiple times. C. Clusters per age bin, presented here for comparison. Conventions the same as in Figure 
1M. 
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In Cluster D, all three protein sums peak at maximal expression. This indicates high 

availability of proteins to support plasticity mechanisms. Furthermore, the GluA2:GluN1 

transition continued to peak with maximal GluN1 expression. Most other indices were shifting 

from yellow to orange. A few indices were delayed in the transition (Integrin:GFAP Index, 

Ube3A:Drebrin and CB1: GABAAα1). Cluster E saw total protein sums decrease from the peak 

in Cluster D, and there were also more indices that reached maximal expression. The oldest 

cluster, Cluster F, demonstrated even further decreases in protein expression, while the remaining 

indices shifted to red in this stage.  

To visualize the overlap of clusters, we aligned neighbouring cluster phenotypes and 

repeated the presentation of a phenotype when a cluster was present in more than one age bin 

(Figure 9B). The percentage of each cluster per age bin showed a good progression from 

youngest to oldest, but importantly, demonstrated overlap in cluster phenotypes from youngest to 

oldest age bin.  

Modelling receptor kinetics identifies excitatory:inhibitory balance across 
development 

Two indices that did not attain significant correlation with the PCA basis vectors were the 

NMDAR maturation index (NR2A:NR2B) and the GABAAR maturation index (GABAAα1: 

GABAAα3). These indices are standard balances to investigate in animal models due to the 

strong link with both visual function (Fagiolini et al., 2003; 2004) and plasticity (Philpot et al., 

2001). Both NMDAR and GABAAR undergo a well-documented substitution in the subunit 

composition (Laurie et al., 1992; Flint et al., 1997) that is impacted by abnormal early experience 

(Fagiolini et al., 2003; 2004; Beston et al., 2010). The scatterplots of these indices (Figure 7A) 

revealed the likely reason for non-significant correlations is that there is a large spread in the 

95% CI around the loess plots for these two indices.  

To better explain the impact of these receptor subunits on synaptic function, we modelled 

the predicted receptor decay kinetics of a pool of receptors. The predicted kinetic modelling was 

based on the observed kinetics in animal models (Eyre et al., 2012; Sun et al., 2017). We plotted 

the predicted kinetics as scatterplots, and colored the points to match their cluster assignments. 

The NMDAR kinetics shifted from slow decay speeds to much faster decay into aging (Figure 
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10A), as the combination of receptor subunits shifted from more 2B to more 2A. Interestingly, 

the shift to more 2B in old age (Siu et al., 2017) became less pronounced when examining the 

predicted kinetics as opposed to the expression of receptor subtypes. 

The predicted GABAAR kinetics also transitioned from slow, α3:α3 to faster α1:α1 (Figure 

10B). The subunit switch in GABAA  receptors in animal models (Beston et al., 2010) and 

humans (Pinto et al., 2010) suggest this transition in kinetics was to be expected. In order to 

compare NMDAR and GABAAR kinetics, the two models were plotted on the same set of axis, 

with predicted NMDAR kinetics on the y-axis and predicted GABAAR kinetics on the x-axis 

(Figure 10C). Youngest points from Cluster A (red) all localized in the bottom left corner of this 

plot, where both receptor types have slow kinetics. The next oldest Clusters, B and C, had only a 

few samples and were highly variable. As a result these samples provided a range of predicted 

kinetics for NMDAR (~100-250ms) and GABAAR (50-70ms). Cluster D was more tightly 

regulated and began to transition toward fast NMDAR (~50-100ms) and fast GABAAR 

(50-65ms). Cluster E was even more well-regulated with the fastest NMDAR speed (45-55ms) 

and GABAAR speed (45-55ms).  

A curious trend was noted for the oldest Cluster F, where compact groupings of samples 

caused the predicted kinetics to regress for both predicted NMDAR (50-200ms) and GABAAR 

kinetics (50-65ms). The regression of both receptor kinetics suggested that in aging there was a 

fundamental shift in the function of synapses that enables slower neurotransmission and perhaps 

greater coincidence detection and LTP.  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Figure 10. Indices of receptor subunit pairs for NMDAR and GABAAR predict receptor decay kinetics 
across development. 

A. Average predicted decay kinetics of each individual sample were plotted, and color coded according to 
cluster. Points were fit with a loss curve, surrounded by 95%CI. Dashed line represents the predicted heterotrimeric 
decay kinetics [2A:2B]. Predicted GABAAR decay kinetics across development B. Points were plotted as in A for the 
predicted GABAAR decay kinetics. Dashed line represents the predicted heterotrimeric decay kinetics [α1:α3]. C. 
Correlation between predicted decay kinetics of GABAAR (bottom) and NMDAR (side). Points were plotted as 
before. Dashed lines represent the same values as in A and B. 
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6.5 Discussion 

Our results show that the neurobiological development of human visual cortex progresses 

through a series of age-related clusters. The median ages of the clusters were similar to well-

known stages of human cognitive and perceptual development. The composition of the clusters, 

however, did not simply recapitulate discrete age-bins. Samples from the youngest and oldest 

cases formed discrete age clusters but the clusters representing the rest of the lifespan were a 

progression of overlapping latent states. For example, the age of the cases in the 4 clusters 

centered on infants, young children, older children and teenagers overlapped. Since overlap was 

greatest for clusters centered in childhood, this suggested a period of human development where 

the synaptic environment in visual cortex has multiple opportunities to diverge into one of many 

latent brain states. These results expand upon our previous investigations of protein expression in 

human V1, which identified waves of inter-individual variability in young children (Pinto et al., 

2010, Siu et al. 2015, Siu 2018). The current analysis found that the series of 4 overlapping 

clusters might explain this stage of heightened variability. Despite the overlap in cluster age, 

there was a clear progression in the expression of plasticity phenotypes across development, with 

many features of the plasticity phenotype switching from immature to mature as cluster median 

age increased.  

Study design and limitations 

There were some limitations to the approach employed here. First, the process of 

homogenizing cortical tissue in preparation for Western blot analysis destroys valuable 

information related to the source of proteins, including cell type and cortical layer. Second, even 

though protein quantification through Western blotting is highly reliable, it does not directly 

indicate cellular function. With these drawbacks in mind, we restricted our panel of 23 neuronal 

and non-neuronal proteins to those with well-documented roles in synaptic plasticity and visual 

function. This allowed us to make more direct comparisons between protein expression and 

cellular function.  

The study design did have multiple strengths, including i) only a small amount of tissue 

(~20-30µg) was required to perform multiple rounds of Western blotting ii) Western blotting let 

us investigate expression across a large panel of proteins in the same tissue samples and iii) 

�259



Ph.D. Thesis - J.L. Balsor McMaster University - Neuroscience

individuals were sampled across the entirety of the human lifespan. Most importantly, we 

employed a modern statistical analysis, with techniques borrowed from large scale genomic and 

proteomic assays that proved sensitive to subtle changes in protein expression. It was only by 

using this analysis that the 6 latent states of human cortical development could be identified on 

the basis of the inherent protein signatures of each individual. 

Comparison with previous studies 

Since the data used here come from 5 studies, it is important to highlight the main 

differences in biological features using this clustering approach versus those found using 

standard developmental age bins. We have previously investigated many of these biological 

features in subsets of these data sets, but only some of these retained significance when examined 

altogether. For example, the PSD95:Gephyrin, Synapsin:Synaptophysin, GluN2A:GluN2B and 

GABAAα1:GABAAα3 features revealed important developmental changes when examined 

previously (Pinto et al., 2010; 2015, Williams et al., 2010 and Siu et al., 2017) but failed to 

achieve significance in the current analysis.  The reason for the lack of significance in the current 

study is that the current PCA basis vectors are created using contributions from all 23 proteins, 

which would produce a very different set of basis vectors than in the original studies. Therefore, 

these features that failed to attain significant correlations in the current analysis simply did not 

map onto the updated set of PCA  basis vectors (Figure 5, 6). Closer examination of these 

features in Figure 7 shows that many of the ones that fail to retain significance have a large 95% 

CI, including GluN2A:GluN2B and GABAAα1:GABAAα3. It is possible that these features do 

not provide as tight regulation of human cortical development as some of the other features that 

were well correlated with PCA basis vectors. 

Some features that have previously been examined were well mapped onto the current set 

of PCA basis vectors and retained significance. These include GABAAα1:GABAAα2, 

Gad65:VGAT (Pinto et al., 2010), Ube3A:PGSS Sum (Williams et al., 2010), PGSS Sum (Pinto 

et al., 2015), Classic-MBP:Golli-MBP (Siu et al., 2015), GluA2:GluN1 (Siu et al., 2017). For 

many of these features we have previously noted large variability, especially early in 

development. Parsing the data into clusters reduced the within cluster variability, and instead 

revealed greater between cluster variability. For example, the PGSS sum used in Pinto et al., 
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2015 now shows that the peak in development where this protein sum reaches a maximum arises 

from a single cluster that contained all the samples with high protein sums, while the two 

neighbouring clusters had much lower protein sum expression.  

Finally, new features that were identified as significant in the current study include the Sum 

of proteins with cos2 >0.5, PSD95 and Gephyrin Sum, Ube3A:Drebrin, CB1:GABAAα1 and 

Integrin:GFAP. A brief explanation of these features follows. 

Identification of new features 

The analysis of human cortical development revealed several new features that highlight 

the differences between latent brain states. Specifically, the three protein sum measurements 

(Sum of proteins with cos2 >0.5, PG Sum and PGSS Sum) highlighted an early developmental 

period during childhood that encompassed the overlapping states. For example, the third state 

(median age= 3.0±2.03 years) was closest in median age to young children (1-4 years) and 

demonstrated under-representation of protein expression, while the fourth state (median 

age=6.8±2.78 years) was closest in median age to older children (5-11 years), and demonstrated 

protein over-representation. Protein over-representation may be related to the PSD95 peak that 

coincides with the end of the critical period in both rodents and humans (Pinto et al., 2015, Siu et 

al., 2018). Taken together, the variability across the 4 overlapping states indicated a period of 

heightened protein dynamics. The variability in protein sum expression could represent dynamic 

fluctuations between overlapping states or fluctuations in protein expression within an individual. 

The idea of large changes in protein expression levels of human cells is not uncommon, and 

expression levels have been found to fluctuate after just a few hours  (Sigal et al., 2006). The 

repeated sampling of tissue samples used in our methodology revealed low variability within an 

individual, suggest that these dynamics highlight changes between individuals belonging to the 

different clusters. 

We identified a period late in development, during the final latent state (Cluster F= 61.6 

±27.5 yrs), where several indices regress from the mature end of an index toward the immature 

end. For example, Classic-MBP:Golli-MBP reverted in favor of more Golli-MBP suggesting 

heightened immune response (Pribyl et al., 1993, Paez et al., 2007, 2011, 2012)  and increased 

immune response could indicate active glial and astrocytic presence. The GluA2:GluN1 reverted 
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back to more GluN1 which decreases synapse efficacy (Liao et al. 2001, Huang et al., 2015), 

would prolong excitatory impulses in post-synaptic cells since the kinetics of these receptors are 

much longer than the kinetics for AMPAR (Gainey et al., 2009). The shift in these features likely 

preserves synapse integrity by causing a regression of these indices to become more 

neuroprotective.  

The notion of prolonged receptor kinetics was supported by our model of receptor kinetics 

for NMDA and GABAA receptors across development using values from animal studies (Eyre 

and Nusser 2012, Sun et al., 2017). This analysis revealed a steady progression of predicted 

receptor kinetics from slow early in development to reach a peak in the teenage to young adult 

years, before slowing again in older adults. This final state with older adults had slow predicted 

receptor kinetics affecting both the excitatory and inhibitory receptors. In animal studies, slow 

receptor kinetics typically transforms synaptic environments to become receptive to experiential 

changes (Bridi et al., 2018, Kirkwood et al., 1996). If one only considered this measure then it 

suggests a period late in development where the visual cortex might be more susceptible to either 

long-term potentiation or depression.  However, if that were the case then we would have 

expected the oldest and youngest samples to be in the same cluster and they are not. Furthermore, 

if cortical aging shifts to a period of heightened plasticity then it has devastating implications for 

any visual insult that manifests in old age. This includes the formation of cataracts, which could 

result in lasting visual impairments that persist even after corrective action is taken.  

Benefits of multiple latent brain states 

Our finding of a developmental series of overlapping brain states does not uncover whether 

individuals oscillate between brain states, or if brain states are a characteristic belonging to each 

individual.  If individuals can jump between states, this would provide an avenue to rapidly and 

dramatically change protein expression in response to different synaptic environments. The 

central dogma of biology predicts that protein expression follows RNA expression, and 

proteogenomic studies have indeed reported a wide range of correlations between RNA 

expression and protein expression depending on the state of the system (Gry et al., 2009, Ruggles 

et al., 2017, Liu et al., 2016). At steady-state, when there are few overlapping states, protein 

levels are well-predicted by RNA expression, but during state transitions the RNA-protein 
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correspondence drops (Liu et al., 2016). Indeed, in the human cortex before childhood and 

adolescence, the correspondence between cortical gene expression and protein levels is high 

(Beveridge et al., 2013, Breen et al., 2018), meaning that fluctuations in RNA expression would 

be matched by fluctuations in protein expression. The high variability in protein expression 

during these states is likely matching changes in RNA expression. 

    There is a decrease in RNA-protein correspondence, however, from the middle stages of 

development and onward (Beveridge et al., 2013, Breen et al., 2018). This means that as 

development proceeds into aging there are fewer state transitions, but RNA-protein 

correspondence decreases. We suggest that during these later states, the post-transcriptional 

machinery that protects against variations in RNA fails to balance over- or under-representation 

of proteins, as suggested by Bevereidge et al. (2013). As a result, a secondary protective system 

likely becomes activated that converges on olgiodendrocytic and myelinating processes (Breen et 

al., 2018), creating an over-representation of immune-system proteins in the latest stages of life. 

We demonstrate this via regressions in the Integrin:GFAP and Classic-MBP:Golli-MBP indices 

toward the immature GFAP and Golli-MBP, respectively, in the older adults cluster (Cluster F). 

Conclusions 

This investigation of 23 synaptic and non-neuronal proteins in human V1 across the 

lifespan revealed plasticity features and phenotypes that are useful for describing human 

development. These plasticity phenotypes represent 6 latent states that begin as a distinct and 

non-overlapping  during the early, neonatal period of development, then become heterogeneous 

and demonstrate developmental overlap through childhood and the teenage years, before 

separating into distinct states into aging. The overlapping states during childhood and 

adolescence represent high variability in protein expression in response to changes in visual 

experience. The discrete states demonstrated by older adults (Cluster F) displayed a regression to 

juvenile-like states of plasticity for both immune-related plasticity features and predicted 

kinetics.  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Chapter 7. General Discussion 
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7.1 Summary of main findings 
In this thesis I have contributed to advancements in the areas of synaptic plasticity 

mechanisms as they pertain to animal models, our understanding of the course of human cortical 

development, and in identifying potential targets for amblyopia therapy. I have done this by using 

modern approaches to studying questions. In the first part of this thesis (Chapters 2, 3 and 4), I 

presented new techniques for studying the central visual pathway. My most significant 

contributions addressed two gaps in the literature. First, using the cat animal model I identified 

the plasticity phenotypes that distinguished treatments promoting good versus poor recovery 

from amblyopia (Chapter 5). Second, using human postmortem tissue and modern high-

dimensional data analyses I characterized the neurobiological development of human visual 

cortex from birth to older adults as a series of stages with overlapping phenotypic states (Chapter 

6). 

In Chapter 2, I combined classic neural tracing techniques and unfolding and flattening 

tissues, with fluorescent tracers and tissue clearing to easily, affordably and efficiently image 

stages of the cat central visual pathway. The approach showed the patchy pattern of retinal 

afferents in the superior colliculus. That pattern was first proposed by Ann Graybiel in 1970, and 

subsequently was only partially been demonstrated by Illing in 1989 using a single tracer 

injection. Here I used two different fluorescent labels that were easily visualized in every slice of 

the cat SC, I confirmed the waxing and waning pattern in SC as true interdigitation and 

demonstrate clear interdigitation of ipsilateral and contralateral afferents in the cat LGN (Chapter 

2). The benefit of my approach was that every single section was easily and rapidly reacted to 

reveal label extending from both eyes. I also confirmed that these labels remained in cleared 

tissue, however because we imaged through the entire depth of cleared tissue, the utility of these 

labels in cleared subcortical and cortical structures leaves something to be desired. This 

anterograde labeling method was cheap, rapid and provided a high-resolution way to visualize 

projections from both eyes in multiple stages along the central visual pathway. 

In Chapter 3, I modernized the classic fractionation protocol for producing 

synaptoneurosomes by introducing semi-automated steps for the homogenization and filtration of 

samples. The protocol is amenable for use in animal as well as human cortical tissues. The main 
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benefit of this protocol was increased reliability, and the three additional benefits were the 

increased synaptoneurosome yield and decreased preparation time and cost over traditional 

manual hand-preparations. This method for procuring synaptoneurosomes was high throughput 

and semi-automated, and with some modifications, the process could become fully automated. 

This would save researchers valuable time and manpower in their experiments.  

In Chapter 4, I describe the development of two workflows for the high-dimensional 

analyses that I used throughout the remainder of this thesis. This resource proved extremely 

valuable in identifying expression patterns across multiple proteins that were otherwise obscured 

by standard parametric analyses (eg. ANOVA, t-tests). Tissue preparations such as those outlined 

in chapter 3 simplified data acquisition, and when coupled with genomic assays or shotgun 

proteomics, large data sets are becoming commonplace for systems neuroscientists. Identifying 

patterns in high dimensional data sets is a challenge faced by many researchers. As such, Chapter 

4 serves as a valuable tool for any neuroscientist with a multivariate data set who is having 

difficulties identifying patterns of change. 

In the second part of this thesis (Chapter 5 and 6) I employed the data analyses outlined in 

Chapter 4. My protein analysis workflow has proven extremely useful in classifying plasticity 

phenotypes following various treatments for amblyopia, as well as in analyzing the course of 

human development. In Chapter 5 I used this pipeline to identify the plasticity phenotypes of 

reverse occlusion, the classic treatment for amblyopia therapy. I also identified synaptic changes 

following BD and BV, two of the modern approaches to treating amblyopia in animals. I 

identified the course of recovery in important synaptic proteins for restoring good BV. The 

plasticity phenotyping approach that I created was a novel and useful tool for understanding the 

complexity of experience-dependent plasticity. For example, the GluA2:GluN2A balance 

represented the balance between homeostatic and Hebbian plasticity, and we showed that this 

was crucial for good visual recovery. All of these findings offered much needed insight for the 

failures of RO as a treatment for amblyopia, and a potential explanation for the recent successes 

of binocular treatments.  

In chapter 6 I employed a data-driven approach to quantifying a panel of 23 synaptic and 

non-neuronal proteins in the human visual cortex across development. The main finding from 
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this project was that human development proceeds through a series of 6 overlapping stages. The 

earliest and latest of these stages were discrete from neighbouring stages and showed the least 

amount of overlap with other stages. The intervening 4 stages had a high degree of overlap and 

contained samples with a protein signature that varied between the 4 stages. In particular, this 

explained the high variability often associated with young children and could explain the variable 

efficacy of amblyopia treatments in young children. My series of high-dimensional analyses 

allowed me to identify the proteins that drove the bulk of development in each of the stages. 

Finally, I identified a set of functional indices that identified potential targets for amblyopia 

therapy in the future.  Unlike results following standard statistical analyses, the combination of 

clustering and phenotyping employed in this chapter captured the complexity of human brain 

changes across the lifespan. 

7.2 Methodological Approach 
There were several considerations associated with translation between animal models and 

human patients. The first is the use of proper animal models that share the amblyopia visual 

phenotype being measured. Non-human primates were an attractive animal model for studying 

amblyopia because of homologies between their visual system and humans, including the 

specialized retinal fovea, overlapping binocular visual fields, as well as the existence of primary 

and higher order visual cortical areas. However, some carnivores like the cat are even more 

attractive candidates for studying the development of amblyopia because they share many of 

these important qualities but are also less cost prohibitive. Importantly, cats have an area centralis 

that imbues them with specialized central vision, and cats demonstrate lasting visual deficits that 

resemble the human phenotype after early MD (Williams et al., 2015) and reverse occlusion 

(Murphy and Mitchell, 1986). Rodents on the other hand, score much worse on many visual 

abilities, including having low visual acuity compared to cats, monkeys and humans. Rodents 

also lack an area of specialized central vision and ocular dominance columns, which made direct 

comparison with the amblyopia phenotype difficult. Rodents do however, have cells in a 

binocular region of visual cortex, and these cells respond preferentially to one eye over the other 

and after MD there is an increase in the number of binocular cells that respond to the non-

deprived eye (Dräger, 1978). Thanks to the compatibility of rodents with powerful tools that 
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manipulate genetics, rodents have been instrumental in identifying neurobiological mechanisms 

that initiate and terminate the visual CP (Hensch et al., 1998; Fagiolini et al., 2003; 2004). 

Together all of these animal models form the bridge for translation from molecular to behavioural 

amblyopia, and each has their own attractive qualities for comparing neuroplasticity mechanisms 

across species. 

The second challenge was in employing a methodological approach that could map 

neuroplasticity changes following maladaptive cortical development across species. Measuring 

visual acuity was an obvious first choice, since this is an easily observable phenotype of 

amblyopia. As previously indicated, the various choices of animal model cover a wide range of 

visual acuities progressing from lower order mammals like rodents (grating acuity ~1c/deg) to 

excellent acuity in macaques (grating acuity ~30c/deg). Training animal models however, is time 

consuming, and it is notoriously difficult to restrict acuity changes to a specific mechanism or 

region of visual cortex.  

Luckily, the neuroscientist molecular toolbox is expanding, and the advent of physiological 

probes that measure visually evoked post-synaptic currents and optical imaging of intrinsic 

signals have improved temporal and spatial resolution. Using these techniques scientists have 

identified expanded geniculo-cortical axon terminals (Antonini and Stryker, 1993; 1996), 

expanded dendritic spines and greater internalization of spines after MD (Mataga et al., 2004; 

Oray et al., 2004). Combining this increased resolution with the power of genetic manipulation in 

rodents even allows for advanced techniques like calcium responses of single cells in-vivo (e.g. 

Jaepel et al., 2017). However, recording physiological shifts in ocular dominance is not viable in 

humans. Furthermore, post-mortem anatomy is laborious and notoriously difficult in human 

tissues, thus rendering scaling across species of either physiological or anatomical investigations 

difficult.  

In this thesis I chose to investigate synaptic proteins since they lay at the intersection 

between synaptic structure and function. There were many advantages to studying synaptic 

proteins. The foremost advantage was that synaptic proteins execute synaptic plasticity 

mechanisms, including ocular dominance plasticity.  Secondly, most of these proteins could 

reliably be measured across many species, and they serve as good predictors of synaptic function 
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(eg. Quinlan et al., 1999b). The intersection between structural and physiological consequences 

of MD are the synaptic proteins that execute excitatory and inhibitory transmission in V1, 

mediated by activation of AMPAR, NMDAR and GABAAR proteins, to name a few. Measuring 

the expression of these proteins remains one of the best alternatives to further our understand of 

the mechanisms underlying amblyopia in both animal models and humans. 

The third challenge was in aligning development across species. Typically, alignment is 

done by matching reproductive stages in each species. For aligning the development of the visual 

system, this was not the most useful tool considering differing lengths of gestation, age at eye-

opening and other developmental differences between species. Next, one might choose the 

identification of the visual CP. In cats the window of susceptibility to the effects of early 

monocular deprivation identifies 4-6 weeks as the peak of the CP (Olson and Freeman, 1980). 

Visual milestones such as CP in animals, and the window of susceptibility to amblyopia in 

humans (Lewis and Maurer, 2005), provided comparable proxies for age alignment (Pinto et al., 

2015). Recent efforts use multiple proxies for aligning neurodevelopment, including  

developmental milestones such as birth, gestation, eye opening, opening of CP and close of CP, 

as well as hundreds of other shared stages of neural development amongst higher mammals 

(Clancy et al., 2001; Workman et al., 2013). The issue with this approach was the assumption that 

a single age can be used to align the entirety of cortical development, across both cortical and 

subcortical structures. Within our own lab we have demonstrated different rates of cortical 

development for different regions in rats, monkeys and humans (Pinto et al., 2013; Williams et 

al., 2010). To further complicate the matter, there is a disconnect between the development of 

structure and function in human visual cortex. Anatomical milestones such as synapse density 

and horizontal connections quickly mature over the first few years of life (Huttenlocher et al., 

1982; Burkhalter et al., 1993), but visual abilities take much longer (Lewis and Maurer, 2005; 

Owsley, 2011). Anatomical bases for translation are therefore not good proxies for interspecies 

comparison of the visual system, and developmental milestones are likely region-specific. 

Therefore, an optimal approach to uncover the neural bases of amblyopia treatments, and to 

address transient recovery following treatment, had to address all three challenges outlined here.  

First, a suitable animal model must be used for making comparisons with human amblyopia. In 
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this thesis I present multiple analyses of the cat central visual pathway. Second,  a method must 

be used that is scalable across species to humans. In this thesis I investigated synaptic protein 

expression using Western blotting since synaptic proteins could be quantified in both cat and 

human cortex. Third, a technique must be used that enables unbiased comparison across species. 

In chapter 4, I outline the series of high-dimensional analysis that combined many protein 

variables to define development of cat and human visual cortex based solely on proteins that 

govern ocular dominance plasticity.  

7.3 Significance 
New views of binocular treatment for amblyopia 

 The shortcomings of RO as a treatment for amblyopia have been a perplexing puzzle for 

clinicians and neuroscientists alike for a long while. Recently, this has prompted a shift in 

treatments towards binocular approaches (Birch, 2013). Even though this was not a new idea 

(Mitchell, 1991; Kind et al., 2002; Faulkner et al., 2006; Schwarzkopf et al., 2007), it has taken a 

while for this idea to permeate into testing new treatments in animal models of amblyopia. As an 

example, the recent success of dark exposure might seem like an attractive candidate treatment 

based on matched stimulation to both eyes (He et al., 2013; Duffy and Mitchell, 2013). The 

improvements after dark exposure however, only persist when accompanied by visual training 

paradigms, and practically speaking this is not easily adaptable for human trials. Instead, 

manipulating binocular visual experience by opening both eyes after treating amblyopia seems to 

be a more attractive alternative. Binocular treatments that provided matched stimulation to both 

eyes demonstrate acceptable acuity recovery (Hess et al., 2010; Knox et al., 2012; Kelly et al., 

2018), and binocular perceptual learning has also seen success, even in adults (Levi and Li, 

2009). Even animal models have shown acuity improvements following BV (Williams et al., 

2015). The likely reason for the success of these treatments is that the good eye is able to 

adequately ‘teach’ the poor eye when provided enough stimulation.  

 The significance of the findings from my classification of plasticity phenotypes following 

recovery treatments for amblyopia (Chapter 5) suggest that the type of intervention after fixing 

the monocular occlusion in amblyopic children matters greatly, not only in the first few days, but 
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even the first few hours. Indeed, reports of improved recovery soon after cataract removal in 

young children suggest these first few days are crucial (Maurer, 1999). More importantly, my 

findings identify some of those important plasticity mechanisms employed during these early 

interval of BV (1hr - 4d), including the GluA2:GluN2A balance. We interpreted these results as a 

critical interplay between homeostatic and Hebbian plasticity mechanisms that take place 

immediately following removal of MD. By modelling the course of recovery using predicted 

receptor kinetics we identified a series of changes in the first 4d of BV that restored the synaptic 

environment of these animals to the peak of the CP. For example, the immediate response (hours) 

affected glutamatergic mechanisms and the delayed response (days) affected GABAergic 

mechanisms. Using this knowledge, we can begin to predict the impact of different treatments 

over these intervals, as well as the effect of instituting RO or BD. This is important since future 

behavioural interventions will likely require some combination of BV+RO or BV+BD. 

 Secondly, my analysis in chapters 4 and 5 provided a system-level analysis across 

multiple plasticity mechanisms. This analysis was instrumental in the suggested explanations for 

the failures of treatments that have provided only temporary recovery from the effects of MD, 

including RO and BD. RO employs temporary AMPAR-dominated homeostatic recovery 

mechanisms while BD causes premature, regional shifts in GABAergic mechanisms. High 

dimensional analyses such as these are clearly very powerful for identifying system effects that 

have otherwise been missed with uni-dimensional comparisons. 

Stages of human development 

My analysis of human visual cortical development supported the fundamental shift in the 

way neuroscientist are thinking about neurodevelopment. Standard analyses process data into age 

bins of development (e.g. Siu et al., 2017) or use linear models to track the course of human 

development (e.g. Miller et al., 2012). Neither approach is incorrect, but they both omit a large 

amount of information in the data by restricting data to one class or another. Instead, in Chapter 

6, I analyzed the data across all protein dimensions at once and used high-dimensional clustering 

to identify similarity among the samples based on the underlying patterns in the network of 

protein expression. This approach revealed a series of 6 stages of human development, similar to 
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the ones explained in Siu et al., 2017, except that these stages were not heterogenous, and 

demonstrate a fair degree of developmental overlap. 

Early and late stages of human development were relatively homogeneous and did not 

overlap with neighbouring developmental states. Conversely, the 4 middle stages represented a 

succession of overlapping phenotypes. Together these findings demonstrated that the human 

lifespan was marked by expression of a set of key proteins early and late in development, but 

during the middle stages protein expression was more heterogeneous. The plasticity phenotypes 

were useful for identifying significant plasticity features that defined each of these stages. 

The notion of brain states have been found to influence everything from visual processing 

(Reynolds and Chelazzi, 2004) to the balance between excitation and inhibition in the cortex 

(Zhou et al., 2014) . If deviations to different states occurred on a temporally finite scale, such as 

over the course of a few months or years, it is not surprising that when examining expression of 

individual proteins  in children we identified states of high and low inter-individual variability in 

post-mortem human visual cortex (Pinto et al., 2010; Siu et al., 2015; 2017). Time and again our 

lab has identified this period of high variability early in development, and it is sometimes 

difficult to reconcile with the high reliability of our protein assays. I have shown that this 

variability originates from multiple overlapping plasticity phenotypes that complement the 

standard age-binning approach to analyzing human brain development.  

In early developing human cortex, before childhood and adolescence, there is high 

correspondence between cortical gene expression and protein levels (Beveridge et al., 2014, 

Breen et al., 2018), meaning that fluctuations in RNA and protein expression are well conserved 

in response to environmental changes. I proposed that this variability might explain the difficulty 

in providing lasting recovery to amblyopic children through patching therapy, since the cortex of 

young children can exist in any of the 4 overlapping states that we identified. I proposed future 

treatment strategies should target multiple plasticity mechanisms in order to correct as many 

immature or premature plasticity features as possible, similar to the combined treatment 

strategies tested in animal models (Faulkner et al., 2006). As previously discussed, I also propose 

combined administration of different visual manipulations, however they should focus on 
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matched binocular experience (e.g. BD + BV), since only these manipulations correct plasticity 

features to normal developmental levels in animal models.  

I also identify a period of regression to juvenile forms of plasticity in late adulthood. I 

showed this by the regressions of the Integrin:GFAP and Classic-MBP:Golli-MBP indices toward 

the immature GFAP and Golli-MBP, respectively. This might represent a period of rejuvenation 

where the cortex is once again susceptible to experience-dependent changes, but cannot 

compensate for these changes, supported by the notion that there is decreased correlation 

between RNA and protein levels in aging (Beveridge et al., 2014, Breen et al., 2018). Instead, I 

propose that the cortex compensates by shifting the immune system into a protective state that 

favors glial proteins (GFAP) and other immune interactions (Golli-MBP). This offers a message 

of hope for rescuing the declining acuity in old age. Since other plasticity mechanisms, such as 

the GluN2A:GluN2B balance also shift toward a more juvenile-like state in aging, these findings 

offer a cautionary tale in that even brief visual insult (e.g. the formation of cataracts) could cause 

lasting and damaging changes.  

 7.4 Future Directions 
Animal models  

There are many future directions for this work, not the least of which involves an extension 

of the treatment paradigms for amblyopia therapies. Due to the restraints imposed by the size of 

cat litters, we were only able to test a certain number of intervention lengths. For example the 

reverse occlusion length (18 days) was chosen as the optimal amount of RO because it provides 

the most recovery from the physiological effects of MD (Movshon, 1976a). However, just as we 

tested various intervals of treatment for MD (Beston et al., 2010) and BV (Chapter 5) in order to 

track the progression of recovery, so too should RO be tested across a range of intervals. 

Binocular deprivation should also be tested across a range of intervals, but this intervention 

should be modified to test the effect of dark rearing, since there are subtle differences in the 

amount of recovery noted for the difference between complete darkness and eyelid closure 

(Duffy et al., 2015). Examining the time-course of recovery would pinpoint the exact molecular 

changes that occur after RO and BD. 
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It would also be interesting to confirm the predicted receptor decay kinetics suggested by 

my models. Recording electrical activity in cat V1 has been used since Hubel and Wiesel 

identified the effects of MD on cortical neurons. Now the relative contributions of AMPA, 

NMDA and GABAA receptors can be reliably separated and quantified (Monyer et al., 1994; 

Flint et al., 1997). It would be useful to measure the changes in receptor kinetics in response to 

the various treatments for amblyopia examined in Chapter 5. This would not only confirm the 

physiological impact of each treatment on cortical function, but also confirm the utility of my 

model in extending quantifications of protein expression to actual synaptic function.  

I would also suggest that combined amblyopia treatments be examined, similar to how 

reverse occlusion and binocular experience were used to identify the benefits of BV for good 

recovery (Faulkner et al., 2006), or how binocular training and patching therapy have been used 

in conjunction to promote good recovery from amblyopia (Li et al., 2013). Since we identified 

robust treatment effects for RO in the predicted kinetics of the system, it is feasible to use the 

blueprint for recovery after BV to design and administer RO after different amounts of BV to 

directly target CP-like plasticity. More specifically, we suggest that a few hours or days of dark 

exposure can rescue the effects of RO and BD by targeting multiple plasticity mechanisms that 

become shifted to an abnormal state after these treatments. 

Translating Animal findings to humans 

An avenue for translation between animal models of amblyopia and understanding human 

cortical development is to compare the protein expression in developing cats with expression of 

the same proteins in developing humans. It is essential to understand the normal course of 

development in animal models as well as in humans so that effective translation can take place. 

To address this question, I would first identify which proteins and plasticity features undergo 

similar developmental changes between species. Then combining this information with my recent 

observations of the effects of different treatment paradigms in cats, I could use this information 

to more accurately guide future amblyopia treatments. For example, creating a correlation matrix 

between the two data sets (cats and humans) would identify which proteins covary across 

development. Second, performing high-dimensional clustering techniques such as those outlined 

in Chapter 4 would reveal shared developmental stages between the two species. Using these two 
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approaches I could identify which stages across development share underlying patterns in protein 

expression. Finally, I would use PCA to identify biological features of interest and I could 

compare plasticity phenotypes across both species. Together, these analyses would reveal any 

plasticity mechanisms that are preserved across development in both species, similar to the 

techniques outlined in Luo et al., 2017.  

Human neurobiology 

The work presented here quantifying the panel of proteins in human visual cortex 

represents over a decade of careful tissue collection, processing and analysis. It is important to 

not only verify the trajectories demonstrated by each protein, but also to expand this collection to 

include all proteins involved in visual system plasticity. Unpublished observations from our lab 

has corroborated the expression patterns of many of the proteins in Chapter 6 in a separate data 

set of gene expression in human visual cortex collected by the Allen brain institute (http://

portal.brain-map.org/). This data set contains many more genes of interest, and it would be 

extremely valuable to map the development of human V1, and other cortical areas, to better 

understand human development. 

A common critique of the variability in our young samples might be that the variability is a 

result of measurement error or low sample size. I examined the idea of measurement error in my 

previous publication measuring inter-individual variability using an antibody against two protein 

isoforms of MBP (Classic and Golli) (Siu et al., 2015). In that study, only one protein isoform 

demonstrates a wave of early variability, while the other remains constant. Since both isoforms 

were detected with the same antibody, that control demonstrated the reliability of the inter-

individual variability. Furthermore, Pinto et al. (2015) analyzed anchoring proteins for excitatory 

and inhibitory receptors (PSD95 and Gephyrin) in the same set of samples, and identified two 

different waves on heterogeneity. Notwithstanding these findings, increasing the number of 

samples would help address any concerns over sample variability, as well as  provide more data 

for parsing the 6 developmental stages.   
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Human amblyopia therapy 

 It is clear that a powerful approach to treating amblyopia is visual manipulations and 

binocular vision. However there is still a disconnect in our understanding of the neurobiological 

mechanisms that give rise to amblyopia and how they change during treatment. This is valuable 

information that can first be discovered and tested in animal models (Chapter 5) and then should 

be translated to human therapies. 

It would also be beneficial to see more biologically inspired therapies make it to clinical 

trials. The evidence is growing for pharmaceutical interventions for amblyopia. Many new 

approaches are uncovering potential targets to reinstate CP-plasticity (e.g. Shepherd and Bear, 

2011). However, the gap between animal findings and human trials will persist unless these 

interventions are tested in suitable animal models and tested in a manner that can be adapted for 

use in humans. This disconnect between behavioural and pharmaceutical interventions is 

beneficial for pushing our understanding of the visual system, but it continues to create a further 

divide between possible treatments. 

Utilizing analyses such as the ones implemented in my thesis enables personalized 

medicine for amblyopia patients and aging individuals. Performing assays of cortical protein 

expression gives an estimate of the plasticity state in an individual. Comparing these against the 

course of normal development could give an indication of the errors that exist in an amblyopic or 

aging visual system, and would limit the search for treatment to a subset of plasticity features.  
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