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Abstract

Wastewater treatment facilities are increasingly installing sensors to monitor water

quality. As these datasets have increased in size and complexity, it has become difficult

to identify abnormal readings in a timely manner either manually or using simple rules

that might have been sufficient previously. Two ammonia sensors were installed at

the Dundas Wastewater Treatment Plant in November 2017. The collected ammonia

concentration data shows a daily pattern. A learning-based method is implemented

in this thesis to identify any readings which violate this daily pattern. The data

points which were predicted to be anomalous were qualitatively ranked based on the

severity and the likelihood of being faulty. The result of the learning-based method

was evaluated and compared to other traditional detection methods.
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Chapter 1

Introduction

Ammonia is the natural product of the decay of organic nitrogen compounds. Ammo-

nia in wastewater is a concern due to its detrimental impact on aquatic ecosystems.

In wastewater, most ammonia comes from human urine or industrial discharges such

as fertilizers. Ammonia can contribute to algal blooms when discharged to bodies

of water. Excess algae deplete dissolved oxygen and release toxins which can lead

to the destruction of aquatic life [Liang et al., 2000]. As such, many wastewater

treatment plants (WWTPs) are required to limit the discharge of ammonia [Canada,

2013]. Controlling ammonia discharges from wastewater treatment plants can signif-

icantly reduce the load on the receiving water body. Modern wastewater treatment

plants are usually designed with biological systems to treat ammonia. In the process

of so-called biological nitrification, ammonia gets converted to nitrate using aerobic

autotrophic bacteria [Ruiz et al., 2003]. Ammonia sensors are installed inside the

WWTPs [Harrou et al., 2018] to monitor the ammonia concentration. The collected

ammonia data can be used for the plant operation and optimization. The monitored

faulty sensor readings need to be detected as soon as possible, so that operators can
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be alarmed in time and start to diagnose factors which prevents WWTP from normal

operation.

1.1 Problem

The term anomaly is used to describe patterns or instances which differ from the

expected or normal behavior. Anomalies are also referred to as outliers or novel-

ties. The term anomaly detection refers to the process of identifying anomalies. The

detection is non-trivial as the ammonia concentration data is usually variable and

noisy. Simple thresholds such as an upper or bottom threshold, where a violation of

a threshold triggers an alarm, can be applied to detect anomalies. This simple static

rule works well for situations such as an emergency when the concentration reaches

extreme values. For example, the sensor stops working and keeps collecting zero

readings. However, the normal range of ammonia concentration is not static. For the

concentration in Figure 1.1, in winter time, an upper threshold can be set at 20mg/L

as no reading seems to be above this value. However, using the same threshold is

likely to trigger a lot of false alarms in the summertime, as normal concentration can

be above 25mg/L. A threshold around 28mg/L would be better in this case. As a

result, a single static threshold does not work for different months.

There are repeating patterns in the ammonia concentration data. A set of rules

can be manually designed to describe the underlying structure of the ammonia con-

centration. It is possible to detect anomalies using such hand-crafted rules by using

professional software such as DataDesk developed by Primodal. DataDesk allows

users to use different pre-loaded statistical rules or customized rules to capture the

features of the dataset. Readings which do not follow these rules can be identified as

4
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Figure 1.1: Potential Static Threshold

anomalies. However, the customization requires extensive knowledge and effort by a

domain expert. In addition, the manual designed rules are usually dataset-specific,

which means the rules that work for one may not work for another one.

1.2 Methodology and Goal

The data-driven approach is a preferable option as all the rules are derived from

the dataset directly without much prior knowledge. An LSTM (Long Short-Term

Memory) network was chosen as the data-driven approach due to its success in recent

time series problems in different applications [Graves et al., 2013]. LSTM can learn

high-level representations of datasets automatically with little or no need for manual

feature engineering and domain knowledge. The repeating patterns are learned and

stored as a predictive model. Prediction of future values is calculated based on its

previous values and the predictive model. The anomalies can be detected and ranked

based on the difference between the predicted values and the actual values. A good

anomaly detection approach, or an anomaly detector, should detect most anomalies

based on the concentration dataset only.

As the ammonia concentration is heavily affected by precipitation, some of the
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detected anomalies are the result of rain events. The other anomalies, or the real

faulty data caused by operations are of more interest. As the precipitation and flow

data are available in this project, an attempt was made using the weather datasets

to distinguish the real faulty data from the precipitation-caused anomalies.

1.3 Contribution

Different methods have been proposed to detect water quality anomalies in the past.

Some approaches used statistical modelling techniques [Venkatasubramanian et al.,

2003], while others used conventional data-driven techniques such as PCA (principal

component analysis) [Sanchez-Fernandez et al., 2015]. However, not much previous

work was found using LSTM to solve this specific problem for WWTPs. LSTM has

been widely used in similar applications when dealing with time series datasets [Kwon

et al., 2017] from totally different sources, such as the medical field or manufacturing.

These datasets share some common characteristics with the ammonia dataset, i.e.,

they are all time series with repeating patterns. As LSTM has proven to be successful

in many different fields, it can be reasonably deduced that LSTM might also be a

suitable choice for the ammonia dataset.

This thesis project has three contributions. First, the architecture of neural net-

works is reviewed to explain the reasons why LSTM is suitable for time series and

how a learning based method extracts information from sequential data. Secondly,

an LSTM-based method was implemented to detect ammonia anomalies. Thirdly,

the relationships between ammonia data and weather data were explored to better

analyze the detection results.

6
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1.4 Outline

This thesis is arranged as follows. Chapter 2 gives a systematic overview of related

work and discusses their suitability for this project. The scope illustrates why deep

learning is a suitable approach for this particular problem and introduces the fun-

damental architectures. Chapter 3 discusses the setup of the experiments and the

datasets. Chapter 4 presents the results of different experiments and evaluation of

performance. Chapter 5 concludes the thesis and gives a perspective for future work

that could be conducted based on the results. The code for this project is available

in a Gitlab directory 1.

1https://gitlab.cas.mcmaster.ca/waterquality/reports/tree/master/Wang19AutomatedDetection/Code
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Chapter 2

Related Work and Background

More and more high-frequency sensors are being installed in WWTPs. Prior to the

adoption of monitoring sensors [Rabiet et al., 2009], in order to find the anomalies of

a WWTP, water samples needed to be manually collected from rivers and monitoring

wells. The water samples are typically stored in bottles and sent back to be analyzed

in an laboratory by someone with sufficient domain knowledge. This process is slow

and expensive. Now with sensors in WWTPs, water quality quantities like ammonia

concentration can be monitored continuously. The collected data can still be analyzed

by experts using tools like DataDesk as in the past; however, the increasing volume

of the stored data has made it difficult to assess the data quality in a timely manner.

Anomalies may occur when the system is not operating properly. In such cases, the

problem needs to be alarmed as soon as possible to avoid collecting faulty data. As

it is unrealistic for a human engineer to monitor data 24/7, it thus becomes more

advantageous to automate this process by employing algorithms.

8
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2.1 Rule-based Approaches

In this project, the collected ammonia data is a variable time series. Anomaly detec-

tion in time series data is a difficult problem due to the complexity and variable nature

it has [Chandola et al., 2009]. The most direct approach is to identify anomalies based

on differences from normal data.

One possible statistical feature of ammonia anomalies is their derivatives, which

measure the change in ammonia concentration over time. The change in concentra-

tion in a normal day is usually slow and smooth. Readings with a high derivative,

indicating a rapid rate of change, are more likely to be an anomaly caused by an

unusual events. The rate of change for all data samples can be calculated, and a

threshold for this can be set [Rajasegarar et al., 2008] so that any points above that

threshold are identified as anomalies.

Another option is to make use of the seasonality or repeating daily pattern of

the ammonia data, with the moving average (MA) approach. A series of subsets is

generated by moving lagging windows across the full dataset [Nakano et al., 2017].

The moving averages are calculated to reveal the average values over the given period.

Ammonia anomalies are identified from the calculated moving average and the actual

values difference. In a simple moving average (SMA), every data sample in the window

has the same weight on the resulted average. In the equation, xt is the value at time

t, and n is the size of the moving window.

SMA =
xt + xt−1 + ...+ xt−(n−1)

n
(2.1)

However, in the ammonia dataset the recent data usually has more influence or

9
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importance than older data. Thus, the exponential moving average (EMA) was used

instead, where greater weight is given to more recent values [Hansun, 2013]. In EMA

the most recent data sample gets the most significant weight, and the weights on

other data values decrease as they progress away from the current time. In Equation

2.2 α represents a constant smoothing factor between zero and one. As a result, EMA

can respond more quickly to value changes than the SMA does.

EMA =


yt = xt, t = 1

yt = α(xt) + (1− α)yt−1, t > 1

(2.2)

The unusual or rare ammonia concentrations are another indicator for anomalies.

In statistics, the standard deviation σ is the measure for the amount of variation or

dispersion. In a dataset with a low standard deviation, the data samples tend to

be close to the mean value. If a dataset is approximately normally distributed, 99.7

percent of the data samples will fall within three standard deviations of the mean as

shown in Figure 2.2. In this scenario, the remaining data are identified as anomalies

because it is assumed that anomalies are usually rare events in a well-operated sensor.

The Extreme Studentized Deviate (ESD) test [Rosner, 1983] is an algorithm which

detects multiple anomalies assuming data is normally distributed. By estimating the

percentage of anomalies within the total dataset, ESD can detect the most extreme

values as anomalies. However, the general ESD cannot be applied directly to the

concentration dataset for two reasons. First, the concentration dataset is not normally

distributed because of the repeating pattern. Second, the general ESD does not work

well for datasets containing a high percentage of anomalies. ESD uses mean and

standard deviation to model the data, but these two metrics are easily distorted

10
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Figure 2.2: Three-Sigma Rule

by anomalies. For example, a single high value can inflate both of these measures

significantly. Thus, to address these problems in other applications researchers from

Twitter built the Seasonal Hybrid ESD (S-H-ESD) [Vallis et al., 2014].

In a time series, a trend component, T can be derived that it refers to the un-

derlying movement, while a seasonal component S refers to the repeating movement

as shown in Figure 2.3. S-H-ESD can decompose the residual component R from

the trend and seasonal components using the decomposition technique called STL

[Cleveland et al., 1990].

RX = X − TX − SX (2.3)
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Figure 2.3: Example of Seasonal Decomposition by STL [Vallis et al., 2014]

The residual thus has a unimodal distribution that is suitable for ESD. A modified

ESD can also be used, where mean and standard deviation are replaced with median

and MAD (Median Absolute Deviation). MAD refers to the median of the absolute

deviations from the sample median. Both median and MAD are more robust mea-

sures. Unlike the mean value which can be distorted by a single anomaly, the median

value may tolerate up to 50 percent of the data being anomalous. The S-H-ESD

should thus be able to detect anomalies even if some spikes exist.

The three approaches discussed above, i.e., derivative, EMA and S-H-ESD are

based on statistical features. As these features are easy to adopt, they were used as

the baseline or benchmark in the experiments.

More complex statistical methods can be introduced to handle more complex

datasets [Venkatasubramanian et al., 2003]. In practice, an expert can also make

use of professional tools like DataDesk to design more advanced rules to identify

anomalies. However, rule-based anomaly detection approaches usually struggle to

identify real faults from normal process variations as it is often difficult to develop an

accurate model that describes all physical or chemical factors in the process. Even

though the statistical analysis can be custom-made for one dataset, the same set of

rules usually do not apply directly to other WWTPs. It is expensive to craft a set

of rules for every individual WWTPs. A dataset-specific approach indeed needs to

be designed for the best possible features of each dataset. Instead of defining rules

12
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manually, a data-driven approach, where the process is modelled without the explicit

expression of the process, would appear to be a better option [Qin, 2009].

2.2 Machine Learning

Machine learning can derive high-level representations of data with little manual

feature engineering or domain expertise. Both supervised learning and unsupervised

learning are widely used for anomaly detection tasks [Patcha and Park, 2007]. In

supervised learning, a classifier is trained to detect anomalies with training data

being labeled as normal and abnormal. However, in practice sensor anomalies are

usually rare events caused by critical failures and can be may not be present in the

training data. If there are not enough representative abnormal data to be learned,

the classifier may not work properly. Furthermore, labeling a large dataset can be

a time-consuming task, and incorrect labels may result in higher false alarm rates.

Unlike supervised learning, unsupervised learning uses unlabelled training data, as

long as most of data is normal. Anomalies are detected in a regression setting.

The predicted or expected values are estimated based on the previous values and

the normal pattern, where the normal pattern is ”learned” from normal data. The

prediction error is calculated as the offset between the predicted and actual recorded

values. A threshold for prediction error can be set to distinguish anomalies. As the

ammonia dataset lacks labels and most data is normal, only the unsupervised machine

learning is used as the data-driven approach in this project.

PCA (principal component analysis) and its extensions, where the original data

gets projected onto a feature space, have been widely used for modeling and monitor-

ing of WWTPs [Liu et al., 2014]. A PCA model is built to describe the correlations
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between the features. A new data sample is projected using the model, which re-

sults in a reconstruction error. Anomalies are detected based on a high normalized

error method [Sanchez-Fernandez et al., 2015]. In a similar application, water quality

anomalies were identified in conductivity, pH, temperature and turbidity sensor data

collected from a river and a WWTP [Alferes et al., 2013]. After the PCA model was

trained with normal data, faults or abnormal conditions were detected by violations

of confidence limits. There are some limitations for PCA as an anomaly detection

approach. For example, PCA is highly sensitive to data perturbations. A few extreme

data samples in the training dataset can heavily change the orientation of projection

[Chalapathy et al., 2017]. This limit may be resolved by using more complex PCA

variant such as robust PCA. However, once a PCA model is built for the training

dataset, it explicitly describes the features of the training set. Using the same model

in a different condition or time period can cause false alarms [Haimi et al., 2016]. It

takes efforts to understand the new dataset and retrain the PCA model.

2.3 Deep Learning

Deep learning, as one method of the machine learning algorithms, has shown ro-

bust capabilities in a variety of tasks in recent years. Deep learning works well with

raw data, and it has given satisfactory results from computer vision to natural lan-

guage processing [Hinton et al., 2012]. Deep learning is also widely used in the field

of anomaly detection and a survey of deep learning-based anomaly detection has

been presented [Kwon et al., 2017]. The learning-based method was tested on dif-

ferent benchmark datasets and the result showed an improved accuracy in detecting
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anomalies compared to conventional machine learning techniques. Compared to ma-

chine learning algorithms, deep learning can be viewed as a ”black box” approach to a

certain degree. Although the mathematics used to construct a neural network is clear

and straightforward, the trained deep learning model is more implicit about how the

output was arrived at. It thus makes it easier to reuse the model. For example, after

a deep learning model is built for one WWTP, the model can be reused for a similar

application in a new location. The learned pattern from a previous WWTP can help

when there is not enough collected data in the new WWTP. Instead of designing or

training a new model from scratch, training the model can be continued with the new

data directly.

The concept of deep learning dates back to the 1970s [Ivakhnenko, 1971], and

many of the critical algorithmic breakthroughs occurred in the 1980s and 1990s. The

recent success of deep learning techniques has been facilitated by two factors: vast

computational power and the availability of massive datasets as shown in Figure 2.4.

Moreover, distributed hardware systems including GPUs have allowed deep learning

architectures to be trained adequately. Enormous datasets including images, video,

audio, and text are being collected across the internet [Chen and Lin, 2014], which

allows neural network models to be appropriately fitted with millions of parameters.

The architecture of neural networks is flexible such that they can be designed for

specific tasks for different applications.

2.4 Artificial Neural Network

It is necessary to understand how deep learning algorithms work before determining

the proper approach for the ammonia dataset. The basic structure of deep learning
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Figure 2.4: The Recent Success of Deep Learning [Patidar, 2018]

algorithms are artificial neural networks (ANNs), which are inspired by the structure

and function of the biological neural networks in the brain. In this thesis, all the

neural networks are referred to as artificial neural networks.

In general, a neural network consists of an input layer, one or multiple fully con-

nected hidden layers, and an output layer as shown in Figure 2.5. The input layer

is the first layer which receives the input data. The input layer only forwards the

input data without any processing. The output layer is responsible for processing the

output. The layers in-between are referred to as hidden layers. Each layer contains

multiple computational units, which are also called nodes or neurons. The sophisti-

cated features of the dataset are learned and stored within the hidden layers. Hidden

layers can be stacked, working as a pipeline where each layer does part of the task.

A neuron receives input vectors from neurons in the previous layer along the di-

rected edges. Every edge contains a corresponding weight associated with it. The

input data is then multiplied by the weight and subsequently added to the bias. The

sum serves as input for the activation function or transfer function. The output is

16



M.Sc. Thesis - Xi Wang McMaster - Computer Science

Figure 2.5: Neural Networks with One Hidden Layer

passed to neurons in the next layer. A single neuron can be represented mathemati-

cally by the following vector equation, where x represents the input, o represents the

output, g represents the activation function, ω represents the weight, and b represents

the bias.

o(x) = g(ω � x+ b) (2.4)

The activation function can be linear, which is used for regression problems where

continuous values are predicted. The output of a linear activation function is not

constrained to any range. There are also some non-linear activation functions. The

Sigmoid, Tanh, and Rectified Linear Units (ReLU) [Nair and Hinton, 2010] are three
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Figure 2.6: Commonly Used Activation Functions

commonly used non-linear activation functions as shown in Figure 2.6. The Sigmoid

function is usually used for probabilities, as its output is restricted to between 0 and

1. The Tanh function can be used for similar situations with its output ranging from

-1 to 1. ReLU is half rectified from the bottom. The output is zero when y is less

than zero and f(y) is equal to y when y is above or equal to zero.

2.5 Training Neural Networks

The normal repeating pattern of ammonia is learned by a neural network by the

process called training. In the terminology of deep learning, the learned information

is stored as parameters, i.e., weights and biases, while hyperparameters refer to all

the variables which determine the network structure or how the network is trained.

Hyperparameters are set before training starts, while the parameters are optimized

during the training.

The difference between the predicted values and the actual values can be indicated

by a loss function. A loss function refers to the performance of a predictive model

on predicting the expected output. The loss function is also called the cost function

sometimes as it represents some ”cost” associated with the prediction. One commonly
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used loss function is the mean squared error (MSE), which measures the averaged

squared distance between the predicted values and actual values.

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (2.5)

The loss function depends on the learnable parameters of a neural network. Infor-

mation about the repeating pattern in the ammonia dataset is stored as these learned

parameters. The goal of training a neural network is to minimize the loss function

by optimizing these parameters. The gradient is the measure of the change in the

loss function corresponding to changes in the parameters. The algorithm used to

calculate the gradients is called backpropagation. The ”back” part of the name comes

from the fact that the calculation of the gradient propagates backward through the

neural networks. The gradient of the final layer of weights get calculated first while

the gradient of the first layer of weights get calculated last. According to the chain

rule of derivatives, the partial gradient computations from one layer get reused in

the computation of the gradient in the next layer. The efficient computation of the

gradient at each layer thus result from the backward flow of the error information.

The calculated derivatives are then used by an optimization algorithm, gradient

descent, to adjust the weights up or down, depending on the direction that minimizes

the loss function. The optimization is an iterative process, where the training data

needs to be passed multiple times before it reaches the optimal result. The loss func-

tion should become smaller after each iteration. There are several variants of gradient

descent algorithms. The first one, batch gradient descent computes the gradient of the

loss function with the entire training dataset. It is slow and computationally unreal-

istic for datasets that do not fit in memory [Wilson and Martinez, 2003]. In contrast,
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Figure 2.7: Fluctuations in SGD

a second algorithm, stochastic gradient descent (SGD), performs a parameter update

with every single training example and is usually much faster. The problem is that

frequent updates can result in a noisy gradient signal as shown in Figure 2.7, which

often makes it difficult for the parameters to settle on the optimal.

In practice, a third variant, mini-batch gradient descent, is more often employed.

The mini-batch gradient descent is in between the two previous approaches. The

training dataset is split into multiple subsets, each of which is called a batch and

contains multiple training samples. Mini-batch gradient descent calculates the error

and updates the parameters over a batch, so it takes the best features of the previous

two gradient descent algorithms. The batch size needs to be set properly for the
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Figure 2.8: High Learning Rate vs. Low Learning Rate

dataset, so that the model can be trained efficiently. In mini-batch, it is possible

to set the size of the steps when moving the parameters in the opposite direction of

the gradient. The scalar value for the step size is called the learning rate [Bottou,

2012]. With a low learning rate, the training is more reliable as the parameters are

being recalculated so frequently. However, calculating the gradient is time-consuming,

so it will take a long time to reach the optimal. With a high learning rate, more

ground is covered in each step, but the parameter changes are so significant that the

optimizer may overshoot the minimum, the training may not converge or can even

diverge [Donges, 2018] as shown in Figure 2.8. Thus, it is sometimes preferable to

use a dynamic decay such that the learning rate can gradually decrease as parameters

approach the optimum values.

Some popular mini-batch gradient descent optimization algorithms are AdaGrad,

RMSprop, and Adam. AdaGrad adapts the learning rate to the parameters. It
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uses low learning rates for parameters associated with frequently occurring features,

and high learning rates for parameters associated with infrequent features [Duchi

et al., 2011]. RMSprop is an unpublished algorithm proposed by Geoff Hinton in his

Coursera lecture. The approach resolves AdaGrad’s radically diminishing learning

rates problem [Tieleman and Hinton, 2012] and uses a decay of the accumulated

historical gradients. Adam stands for Adaptive Moment Estimation. Compared to

RMSprop, Adam uses an exponentially decaying average of past gradients.

One pass over all the training datasets is referred to as an epoch. After every

epoch, the parameters, i.e., weights and biases, should get closer to their optimum

values which minimizes the loss function. Underfitting occurs when the algorithm

does not fit the data well enough. In contrast, overfitting occurs where the model

fits the training dataset well but cannot predict data that has not been seen during

training. The reason for that is the network has memorized the training examples

including the noise. Overfitting is a serious problem, as the learned model in this case

should only remember the daily repeating pattern. One way to prevent overfitting

is to use ”early-stopping” [Prechelt, 1998]. The dataset is split into a training and

a validation set. The values of the loss function when applied to the training set

and validation set are compared after every iteration. New iterations can improve

both the training and validation set initially. After several iterations the loss on the

validation set starts to increase while the loss for the training set is still decreasing.

The training process should stop at that point as shown in Figure 2.9.

Another commonly used technique to avoid overfitting is dropout [Srivastava et al.,

2014]. As overfitting often occurs when the model is more complicated than required,

it is efficient to simplify the model. During each training step, the output of some
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Figure 2.9: Early Stopping

random connections in the network gets removed by multiplying with 0. As a result,

the training set in each epoch will be slightly different. This prevents the network

from memorizing the exact training set. Both data splitting and dropout techniques

were applied in the experiments to avoid the overfitting problem.

Conventional neural networks are limited when dealing with time series datasets.

In conventional neural networks, each neuron in any hidden layers is fully connected

to all neurons in the previous layer. Each neuron is also entirely independent and

does not share any connections. The number of weights grows rapidly when the

input size of the training data increases. It is thus slow and inefficient to train the

ammonia concentration dataset with a conventional neural network. This problem

can be addressed by using a convolutional architecture where all the training samples

are padded to a fixed sized window. The window slides over the whole dataset and

learns the features inside each window [Krizhevsky et al., 2012].
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2.6 Convolutional Neural Network (CNN)

Convolutional neural networks (CNNs) are another neural network architecture and

were initially designed for two-dimensional data i.e., images. CNNs model the cells in

the human visual cortex and have been widely used in computer vision tasks [Lecun

et al., 1998]. CNNs also have been adapted for one-dimensional data such as time

series in recent years. There have been some attempts to use CNNs for time series

dataset from other fields. Research has been conducted using 1D convolutional neural

networks to detect anomalies in electrocardiography (ECG) signals [Kiranyaz et al.,

2016]. An ECG dataset records the electrical activity of the heart muscle as it changes

with time. Even though the ECG data comes from a totally different field, these data

still share some common characteristics of time series data. A normal ECG also

contains a repeating pattern caused by a heartbeat. The normal ECG signal is fed

directly into a CNN to build the predictive model without any prior information. And

the results exhibited excellent performance regarding both accuracy and speed. CNNs

have also been applied in other time series domains, such as motor faults [Ince et al.,

2016] and network intrusions [Vinayakumar et al., 2017]. In all these applications, a

CNN anomaly detector proved to be efficient and accurate.

The main reason for this success is that a CNN can extract highly discriminative

features efficiently. In a conventional neural network, all layers are fully connected,

i.e., each neuron is connected to all neurons in the previous layer. In contrast, in

convolutional neural networks, the layers are locally connected, i.e., each neuron is

only connected to a small region of the previous layer. The parameters are shared

with all neurons in one layer. As a result, CNNs require fewer parameters and are

more efficiently computed. The locally connected feature of CNNs is achieved through
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Figure 2.10: Example of One-Dimensional Convolutional Layer

two particular types of layers: convolutional layers and pooling layers. Convolutional

layers use a parameter sharing scheme to control the number of parameters, where a

one-dimensional window slides or convolves across the input data. The convolutional

window is called a filter or kernel. The stride refers to the number of steps when the

filter slides. The values of a filter are multiplied with the input data. Multiple filters

can be applied to capture the features of the input data. In Figure 2.10 there are 128

elements in the input data. The filter size is set to 32, and there are 128 filters used

in total. The output is 128-dimensional vectors, each of which contains 97 (128 − 32

+ 1) elements.

Pooling layers are applied afterward to prevent overfitting by reducing the spatial
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Figure 2.11: Example of One-Dimensional Maxpooling Layer

size and the number of parameters to be computed. A pooling layer summarizes the

output from a convolutional layer, so it is sometimes also called a subsampling layer.

The most commonly used pooling method is maxpooling, where only the maximum

value within the pooling window is kept. Similarly, averaging the pooling keeps only

the average value. In Figure 2.11, the pooling size is two, so the maximal value of

every two elements is subsampled.

However, a CNN does not store any explicit memory for the past and its ability to

model a time series is limited by the size of the time window [Frank et al., 2001]. The

problem is that the window size needs to be carefully set. The dependencies in the

time series cannot be captured using a window that is too small, while unnecessary

information can be added when the window size is too large. Moreover, different

sized windows may be required due to the long-range dependencies between training

samples,i.e., an event downstream in time depends upon one or more events that

came before.

CNNs may be suitable for specific datasets, where the input data is a multidimen-

sional feature vector rather than as a sequence of data samples. The same compu-

tational steps are applied to each training sample without any memory of previous

samples. For example, for an image recognition task, the sequence of the photographs
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is unlikely to affect the trained classification. However, this assumption is violated

in sequential datasets where the output of one step may depend on the inputs and

outputs from previous steps. Like conventional neural networks, convolutional neural

networks also have no explicit memory of the past, as all inputs and outputs are

treated as independent of each other. In such cases, it is difficult to apply a mem-

oryless network to variable sized inputs and outputs with nontrivial dependencies.

Recurrent neural networks (RNNs) can provide a more elegant solution to solve these

issues and handle complex time series dataset.

2.7 Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs) are designed for temporal tasks such as speech

recognition by making use of temporal information. RNNs are called recurrent be-

cause they perform the same operation on every sample of a sequential input, with the

output being dependent on the previous steps. For example, the ammonia concentra-

tion depends on its previous values. To predict that value accurately, the dependence

needs to be memorized. An RNN layer receives its input sequence from the output

sequence of the previous layer. The RNN layer also maintains the memory of the

hidden state of the previous layer. The hidden state is maintained over all time steps

as it captures temporal information about what has been calculated previously.

A single RNN layer with only one activation function can only operate at a sin-

gle time scale. When the hierarchical information is complicated and the temporal

information needs to be operated at different timescales, multiple RNN layers can be

stacked on top of each other to form a deep RNN (DRNN) or a stacked RNN. In a

DRNN, there are multiple layers with recurrent connections between the units in the
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Figure 2.12: Unrolled Recurrent Neural Network Lecun et al. [2015]

same layer, as well as the conventional connections between units between different

layers. Time dependencies can be learned for sequences with different lengths as the

network is unrolled according to the length of the input sequence. For the ammonia

dataset, the concentration is a function of the hour it occurs in a day. However, that

value may also be affected by the day it occurs in a week. To predict as accurately as

possible, it is beneficial to use DRNN, i.e. employing more than one recurrent layer.

RNN is implemented by unrolling a neural network on the temporal axis as shown

in Figure 2.12. Each node at a time step takes an input from the previous node,

and this is represented using a feedback loop. At time step t, x represents the input,

s represents the hidden state, and o represents the output. The weights between

different layers are represented by U, W, V, where U represents the weight between

the input and hidden layers, W represents the weight for the recurrent transition

between different hidden states, and V represents the weight for the hidden to output

transition.

The main feature of an RNN is the hidden state, which is calculated based on

the previously hidden state and the input at the current step. The first hidden state

is typically initialized to all zeroes. The process of carrying memory forward can be
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expressed mathematically. At any time t, the RNN unit receives the input x from

the current time step and the hidden state s from the previous time step, where

g represents the activation function and b represents the bias. The output is then

calculated while the hidden state is also updated. The current output thus depends

on all the previous inputs.

st = g(Uxt +Wst−1 + bs) (2.6)

Conventional RNN only learns information from previous time steps. However,

in some cases, data samples from future time steps also matter. For example in

language modeling tasks, it is beneficial to know the full context. Bidirectional RNNs

were thus developed such that output depends on both the previous samples and the

next samples [Schuster and Paliwal, 1997]. Two identical layers are given the same

input sequence. The input sequence is fed in regular time order for one, and in reverse

time order for the other. The outputs are calculated based on the hidden state of

both networks. The results are usually concatenated at each time step. Bidirectional

RNNs come with extra computational cost compared to conventional RNNs.

Training RNNs is similar to training conventional neural networks using back-

propagation, where the number of layers is equivalent to the number of time steps in

the input sequence. Comparing to a conventional neural network where parameters

are different at each layer, RNN shares the same parameters U, W, V across all steps,

as the same task is performed at each step with different inputs. The depth of RNN

maintains the memory of temporal information instead of the hierarchical informa-

tion. Neural networks can be viewed as nested composite functions, whether they are

recurrent or not. Thus, adding a time element only extends the series of functions
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for which the derivatives are calculated with the chain rule. The difference for RNN

compared to the conventional neural network is that as the parameters are shared

among all the time steps. As a result, the gradient at each output depends on the

computation of the current time step as well as the previous time steps. For example,

to calculate the gradient at t=3, two backpropagation steps are needed to sum up the

gradients. This approach is called backpropagation through time (BPTT). In theory,

RNNs trained with BPTT can learn dependencies between steps that are arbitrar-

ily far apart [Werbos, 1990], which may seem to be ideal to the ammonia dataset.

However, in practice, the conventional RNN is only able to remember short-term

memory sequences and thus becomes unsuitable for the application in this thesis.

The limitation is caused by the vanishing/exploding gradient problem.

Vanishing/exploding gradient problems also happen in deep conventional neural

networks. If each timestep is considered as a layer with weights going from one

timestep to the next, the recurrent network will be at least as deep as the number

of timesteps. This property makes the problem a lot more common for RNNs [Pas-

canu et al., 2013]. Vanishing gradient occurs when the gradients flowing through

the network become very small as the chain rule is applied many times in the back-

propagation [Hochreiter, 1998]. Two factors which affect the magnitude of gradients

are the weights and the derivatives of activation functions that the gradient passes.

A typical initialization of weights is from a Gaussian with mean zero and standard

deviation one, which mostly yields weights of magnitude less than one. RNNs are

formed with a chain of repeating modules. In a conventional RNN, each module has

a simple structure such as a single Tanh layer as shown in Figure 2.13, where the

derivative is bounded by 1. Multiplying these small numbers shrinks the gradient
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Figure 2.13: Conventional RNN Unit [Olah, 2015]

values exponentially. This problem may not be obvious for a shallow network. How-

ever, it usually requires more than one hidden layer to handle a complex dataset like

the ammonia concentration. In such cases, the problem becomes much worse as more

multiple layers of such non-linearities are stack on top of each other. The neurons

in the earlier layers of the hierarchy thus learn very slowly. In the worst case, the

network training may completely stop. The opposite case, i.e., exploding gradient

problem [Pascanu et al., 2012] occurs when the magnitude is greater than one.

In practice, it is easier to handle the exploding gradients problem. Clipping the

gradients at a pre-defined threshold is a very simple and effective solution [Bengio

et al., 2013]. Several standard techniques have been proposed to solve the more

problematic vanishing gradients. An ReLU activation function can be chosen instead

of Tanh or Sigmoid activation functions, as the derivative of ReLU is one at every point

above zero, creating a more stable network. Initialization of the weight matrix can

be set more carefully such that the weight matrix is not initialized in the saturation

region of the activation function. In recent time series applications, a more preferred
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solution is to use a variant of RNN, called Long Short-Term Memory (LSTM). LSTM

has proven to be useful in learning long-term dependencies, and it has become the

model of choice for many temporal tasks. In the experiments in this thesis, LSTM

was applied as the representation of RNN.

2.8 Long Short-Term Memory Network (LSTM)

LSTM (Long Short-Term Memory Networks) was first proposed in 1997 by the Ger-

man researchers Sepp Hochreiter and Juergen Schmidhuber to solve the vanishing

gradient problem [Hochreiter and Schmidhuber, 1997]. LSTM is perhaps the most

popular RNN variant especially in temporal tasks like natural language processing.

LSTM has been widely used in the field of anomaly detection [Malhotra et al., 2015]

in different time series. For example, in an ECG application, LSTM was able to

detect multiple types of abnormalities insides ECG signals [Chauhan and Vig, 2015].

LSTM was also successfully used in different fields such as automobile control [Taylor

et al., 2016], and WWTP operation control [Inoue et al., 2017]. Even though there

is not much previous research conducted on ammonia data, LSTM was able to learn

temporal information and identify anomalies in all these time series applications. As

the ammonia data is a typical time series with a repeating pattern, it can be deduced

that LSTM should also be suitable for the ammonia dataset. But it is necessary to

give a brief review of the development history and features to better understand the

suitability of LSTM.

The structure of an LSTM network also contains the repeating module similar

to conventional RNNs but it does more operations as shown in Figure 2.14. These

modules are referred to as an LSTM unit or LSTM block. In a conventional RNN, the
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vanishing/exploding gradient problem is caused by the repeated use of the recurrent

weight matrix. The key idea behind LSTM is the cell state, which is decoupled from

the output between hidden layers. Changes to the cell state are explicitly written by

an explicit addition or subtraction so that each element of the state can stay constant

without outside interference, which makes the memories in the cell state more stable.

The gradient through the cell state is kept making it hard to vanish, while gradient

explosion can be resolved through gradient clipping as discussed before.

In the original 1997 LSTM, the motivation was to make this recursive derivative

a constant value so that gradients would neither explode or vanish. A new strcture

called constant error carousel (CEC) was introduced as the central unit, and denotes

the recurrent connection of the cell state. Its internal activation contains the state

which acts as the memory for information from the past. The recurrent connection is

a feedback loop with a time step equal to one. Gating mechanisms are introduced to

enable the model to decide whether to accumulate specific information or not. The

access to CEC is controlled by two gates, an input gate, and an output gate. The input

gate prevents the information stored in CEC from being disturbed by the irrelevant

input.

Similarly, the output gate prevents other units from interfering with information

stored in CEC. When the input gate is open, the cell state is changed by addition.

During the backpropagation, the error is reduced only when it enters and exits CEC,

but it can stay unchanged in the CEC no matter how long distance it travels. This

way the vanishing gradient problem is avoided. The original LSTM - CEC does not

work well because the cell state tends to grow uncontrollably and eventually create

an unstable network. In this case, it fails to learn the sequences in the dataset. As a
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Figure 2.14: LSTM Unit [Olah, 2015]

result, in this thesis, original CEC was not employed. To solve these issues, a third

gate, known as the forget gate was added to scale the previous cell state. Forget gates

learn to reset LSTM memory when starting a new sequence. The forget gates allows

the network to operate on different scales of time and therefore effectively model short

as well as long-term dependencies. For the ammonia dataset, the dated values should

be discarded with the forget gate, while the more recent values should pass through

the input gate and get stored in the cell state. As a result, the modern LSTM as

shown in Figure 2.15 was applied instead of the original CEC.

The internal structure is illustrated in Figure 2.14, where lines represent vectors

between the output of one node and the input of others. The pink circles represent

matrix operations. The yellow boxes represent learned neural network layers. Each

layer is labeled with its activation function. As the purpose of the gates is to remove or

add information to the cell state, the function for a gate is always Sigmoid. The output

from the Sigmoid layer is a number between zero and one, where zero represents no
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Figure 2.15: Three Gates of LSTM

information passed, and one represents all information passed.

The operation in an LSTM network can be broken down into three steps. The

first one is the forget gate operation. The forget gate allows the model to discard

irrelevant information from the previous cell state by evaluating the information given

by the input at the current time step. The discard is implemented with the Sigmoid

activation function, as it converges to 0 or 1. By setting it to 0, the information is

forgotten. The memory also gets reset during this operation, when the memory is no

longer relevant. The second operation is the update gate operation, where the model

learns to accumulate specific information from the current time step by considering

the previous output. The input gate allows specific information from the current time

step to be added to the cell state. The third operation is the output gate operation,

where the output of an LSTM unit is generated. The output gate is calculated using

the same method as the forget gate and input gate. The purpose is to control what

information flows out of the LSTM unit.

LSTMs proved to be successful in a variety of applications related to long-range

dependencies, such as speech recognition, and language translation. In this project,
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the data-driven experiments were conducted with a focus on the use of LSTM instead

of conventional RNNs. As the LSTM unit is complicated, many variations of the

LSTM architecture have been proposed to simplify the architecture. One popular

LSTM variant is called Gated Recurrent Units (GRU) [Cho et al., 2014], which only

has two gates, an update gate and a reset gate.

Figure 2.16: GRU Unit [Olah, 2015]

The problem of the vanishing gradient is eliminated by the update gate as it

decides how much of the past information to pass to the future. The reset gate has

the opposite functionality as it decides how much of the past information to forget.

GRU is similar to LSTM, where the internal memory capacity is used to store and

filter information using the gate mechanism as shown in Figure 2.16, and in many

cases, GRU produces equally excellent results according to recent research [Jozefowicz

et al., 2015].
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Chapter 3

Datasets

3.1 Ammonia Data

In November 2017 this project was launched to acquire a real-world dataset from a

municipal wastewater plant. Our industrial partner, Primodal, installed an RSM30

monitoring station in the Dundas Wastewater Treatment Plant (WWTP) in Hamil-

ton, Ontario as shown in Figure 3.17. Two probes (Xylem VARiON Plus 700 IQ)

with ion-sensitive electrodes were set up in the wastewater shown in Figure 3.18. The

sensors took readings of both concentration and temperature.

Ammonia and nitrate were measured with potassium and chloride corrections. As

the sensors were located at the influent to the activated sludge tanks, the concentra-

tion of nitrate was low and essential zero. The measured ammonia concentration was

the target of this project.

Theoretically, anomalies can occur either at the data collection step or the data

transmission step. In this case, there was no data transmission across a network.

So, all the detected anomalies are assumed to occur at the data collection step, i.e.,
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Figure 3.17: RSM30 Monitor Station at Dundas WWTP

sensors. As the sensors were working in a harsh environment, different procedures

were undertaken to ensure the data quality. An automated air blast system was

installed on the sensor and ran every four hours. One research team member also

manually cleaned the sensors twice a week with a toothbrush as shown in Figure

3.19. Sensors are susceptible to drift errors over time so wastewater samples were

taken from the WWTP and analyzed in the lab to compare with the sensor reading.

The sensors on site were then calibrated when necessary to correct for any drift that

had occurred since the previous adjustment.

Ammonia anomaly is difficult to define, as the ”abnormality” largely depends on

its context. Anomalies may also appear in different time scales. Specifically in this
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Figure 3.18: Sensors in the Dundas WWTP

Figure 3.19: Before and After Cleaning

ammonia dataset, anomalies lasted for a few minutes (observed as a spike) such as

Anomaly-1 in Figure 3.20 or several days (observed as an abnormal period). Due to

the location of these sensors, the spike-type of anomalies or noise were common and

usually occurred randomly. For example, debris at the sensor may cause the reading

to change temporally. Sensor cleaning may also cause spike anomalies as the sensor

was taken out of water for a few minutes and readings were thus disrupted during that

period. In contrast, other anomalies last for much longer periods such as Anomaly-2

and Anomaly-3. In such cases, abnormal data was continuously recorded for multiple

days. In this thesis, the focus was only on the long-term anomalies lasting for at least
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Figure 3.20: Concentration in March 2018

Figure 3.21: Ammonia Concentration Pattern in a Typical Dry Day

one day.

Ammonia collected at the treatment plant is influenced by daily, seasonal and

weather issues and thus exhibits stochastic behavior. There are potentially many

repeating patterns at different time scales such as weekly or monthly patterns. The

focus of the anomaly detector in this thesis is to make use of the daily pattern only.

On a typical dry day, the ammonia concentration demonstrates a repeating daily

pattern as shown in Figure 3.21.
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The ammonia concentration depends on both the ammonia load and the wastew-

ater flow. The total ammonia load coming from industry and residents has a daily

pattern, which is relatively stable regardless of the weather condition. However, the

wastewater flow is profoundly affected by precipitation. Rainfall increases the flow

amount and dilutes the ammonia concentration. The daily pattern of ammonia con-

centration is thus affected by rainfall as shown by Anomaly-3. In such cases, the

concentration drops rapidly and comes back to its normal range in the following

days.

”Serious” operational errors may also result in long-term anomalies such as Anomaly-

2, caused by an incorrect calibration. In this case, the recorded concentration was

approximately half of the normal readings. The sensor was re-calibrated at the next

maintenance interval and normal readings returned. Another long-term anomaly is

shown in Figure 3.22. In this case, the sensors were exposed to the air as the tank

was pumped empty. As a result, the sensors recorded abnormal readings during that

period.

There are eleven long-term ammonia anomalies in total in the collected dataset as

determined by an expert in this field. Nine of the them were caused by precipitation,

as evidenced by the measured behaviour and an available flow dataset. The other

two operational anomalies were the ones in March and May as shown in Figure 3.20

and Figure 3.22.

3.2 Weather Data

It is beneficial to distinguish anomalies caused by precipitation from those caused by

operational issues. The most straightforward way to distinguish precipitation-related
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Figure 3.22: Concentration in May 2018

anomalies is to consult the precipitation data directly. Any concentration anomalies

which occur on a rainy period are very likely to be caused by precipitation. To

investigate this, precipitation data was downloaded from the Environment Canada

website.

However, using precipitation data like this is limited. Firstly, the precipitation is

only available daily, which is usually not enough resolution to feed into the neural

network. Secondly, the precipitation data was collected from a meteorological station

located 6 km northeast of the Dundas WWTP. The recorded precipitation therefore

only reflects the situation at that location. In contrast, the wastewater flow into the

Dundas WWTP comes from the whole catchment area through the sewer system.

Thus, the precipitation data can only be used to estimate the flow qualitatively and

not quantitatively.

42



M.Sc. Thesis - Xi Wang McMaster - Computer Science

Figure 3.23: Precipitation in March 2018

In this case, because the sensors were installed at a treatment plant flow data

was available. So the next option was to use the flow data as it is directly related

to the concentration data. The flow increases with precipitation as shown in March

2018 in Figure 3.24. When there is no precipitation, the flow demonstrates a daily

repeating pattern. After manual inspection, all similar anomalies in the flow data can

be traced back to precipitation during the same period. Because anomalies occur in

both concentration and flow when there is precipitation, the same detection process

can be applied to these two datasets. By comparing the two detection results and

eliminating the periods when they both exhibited anomalies, the ”real” faulty data,

such as Anomaly-2 in Figure 3.20, can be properly identified. Three months’ data

was provided by Dundas and five flow anomalies were identified. However, although

flow data is collected by the Dundas WWTP, it should be noted that this data might

not be available in other similar applications.

Temperature data on the other hand is much easier to access as the temperature

sensor is attached to the concentration sensor. Like the concentration and flow data,

the temperature data has a daily pattern, and can identify the precipitation indirectly
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Figure 3.24: Flow in March 2018

under certain circumstances. For example, in Figure 3.25 the two temperature drops

(observed as anomalies) are caused by precipitation. In these cases the temperature

of the freezing rain or snow is lower than that of the wastewater. Note that the in-

correct calibration of Anomaly-2 only affected the concentration but not the recorded

temperature. The temperature data were normal during those three days. By com-

paring the concentration and temperature results, the ”real” faulty data caused by

the incorrect calibration can be identified. Ten temperature anomalies were identified

in the sensor data.
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Figure 3.25: Temperature in March 2018
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Chapter 4

Results and Discussion

4.1 Implementations and Hardware

The neural network was implemented with TensorFlow and Keras using Python.

These libraries enable neural networks to be configured in a modular way by com-

bining different neural layers, loss functions, optimizers, and activation functions.

Neural networks with different hyperparameters needed to be compared to find the

best choice for the ammonia dataset. The evaluation was conducted on both the

detection results and training speed.

In this project, the training was done on a machine with a Nvidia GTX 1080 (8

GB of memory) and an Intel i7 6700 CPU (16 GB memory). Due to the required com-

putations of deep learning, the training of a neural network can be significantly sped

up by using a graphics processing unit (GPU). GPU-accelerated libraries for deep

learning have been developed and NVIDIA has developed a library called CuDNN

(CUDA Deep Neural Network library), where CUDA is a parallel computing plat-

form and programming model. According to the documentation of Keras, CuDNN
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provides highly tuned implementations of standard routines including both RNNs

and CNNs. According to the documentation, a standard LSTM network is automat-

ically accelerated by CuDNN whenever a suitable GPU is available. There are also

special modules used by the GPU only. For example, CuDNNLSTM is the LSTM

implementation which only runs on a NVIDIA GPU. Both CPU and GPU training

were conducted, and their performances are compared.

4.2 Anomaly Detection Process

Anomaly detection in the ammonia data is handled by LSTM in a data-driven way.

The method consists of three steps: training, prediction, and detection as shown in

the Figure 4.26. In the training step, a model is learned from a training set, which

contains information about the normal pattern. In the prediction step, each data

point is predicted from its previous points and the predictive model. In the detection

step, data points are identified as being anomalies based on the difference between

the predicted value and the actual value.

The training of the predictive model takes most of the time and computing re-

sources. In the training step, the selected training data is fed into the neural network.

Two weeks of data from December 2017 was selected as the training set as shown in

Figure 4.27, during this period there was no precipitation and no observable anoma-

lies. The architecture of the network (i.e. the hyperparameters) is stored in a JSON

file, where JSON stands for JavaScript Object Notation. The JSON file stores config-

uration information such as the activation function. The learned parameters (weights

and biases) are stored in a HDF5 file, where HDF stands for Hierarchical Data For-

mat. HDF5 file format is used as it is suitable for storing large collections of numeric
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Figure 4.26: Anomaly Detection Process

arrays. Both of these are reused in the prediction part by Keras.

model j son = model . t o j s on ( )

with open( ”model . j s on ” , ”w” ) as j s o n f i l e :

j s o n f i l e . wr i t e ( model j son )

# Predefined Hyperparameter information is stored as a JSON f i l e

model . s ave we ight s ( ”model . h5” )

# Learned parameter information is stored as a HDF5 f i l e

Listing 4.1: Save Predictive Model

The test data, which is new to the network, is then fed into a network using the

same hyperparameters. For this project, six months of ammonia data from January

2018 to July 2018 were used. During this period, sensors were taken out for main-

tenance from time to time, and no readings were recorded during those periods as

shown in Figure 4.28. As a result, the prediction step cannot be done on the whole

six months’ dataset all together. The longest continuous sections from each month
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Figure 4.27: Training Data

were thus selected as the test set, such that anomalies (red boxes) were included in

the test set but not the missing data (orange box).

Predictions based on previous samples and the predictive model (HDF5 file) were

calculated as shown in Figure 4.29. For example, given values at time k − 5 , k − 4 ,

..., k − 1 , the value at time k was predicted with the predictive model. Next, the

future value at k + 1 was predicted with historical values between k − 4 and k . Even

though it is possible to predict multiple time steps, the lookahead (the number of

predicted samples) was set to one in this project, as the prediction accuracy usually

decreases as lookahead increases.
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Figure 4.28: Raw Data for February 2018

j s o n f i l e = open( ’model . j s on ’ , ’ r ’ )

l oaded mode l j son = j s o n f i l e . read ( )

j s o n f i l e . c l o s e ( )

loaded model = model f rom json ( loaded mode l j son )

# JSON f i l e is loaded to create model for test set

loaded model . l oad we ight s ( ”model . h5” )

# HDF5 f i l e is loaded

Listing 4.2: Load Predictive Model

For the detection stage, the prediction error is calculated by the difference in the

predicted value and the actual value received. The prediction errors are analyzed
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Figure 4.29: Predicting Future Values using the Past Values

and modeled using the Gaussian Tail Probability defined by Numenta, where the

anomaly score is calculated based on the probability of errors [Taylor, 2018]. The

anomaly score represents the likelihood that a point is an anomaly, with 0.0 being

the lowest likelihood and 1.0 being the highest likelihood. For records that arrive

every minute, an anomaly score or likelihood of 0.0001 means it occurs once out of

every 10,000 samples, or about once every seven days. Ideally the threshold is set

such that anomalies can be detected with as few false alarms as possible. Any score

higher then the threshold is assumed to be an anomaly.
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def compute scores ( y va l i da t e , y pred , normal ize=True ) :

e r r o r s = np . array ( ( y va l i d a t e − y pred ) ∗∗ 2)

# Prediction error is calculated as the di f ferent ia l ly square

between predicted and actual values

i f normal ize :

e r r o r s = e r r o r s / f loat ( e r r o r s .max( ) − e r r o r s .min( ) )

# Prediction error is normalized

l i k e l i h o o d s = [ ]

anoma ly l i k e l i hood = AnomalyLikelihood ( )

for i in range ( len ( y v a l i d a t e ) ) :

l i k e l i h o o d = anoma ly l i k e l i hood . anomalyProbabi l i ty ( y va l i d a t e [ i

] , e r r o r s [ i ] , timestamp=None )

l i k e l i h o o d = anoma ly l i k e l i hood . computeLogLikel ihood ( l i k e l i h o o d )

l i k e l i h o o d s . append ( l i k e l i h o o d )

# Anomaly Score is calculated based on the probability of prediction

errors

N = len ( l i k e l i h o o d s )

anomal ies = { ’ Guaranteed ’ : np . z e r o s (N) , ’ Po s s i b l e ’ : np . z e r o s (N) }

x = np . array ( l i k e l i h o o d s )

h igh idx = x >= 0.5

anomal ies [ ’ Guaranteed ’ ] [ h i gh idx ] = 1

# Any data points with score above the threshold is determined to be

an anomaly

return e r ro r s , l i k e l i h o od s , anomal ies

Listing 4.3: Detect Anomaly for Test Set
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Figure 4.30: Neural Network Structure

The evaluation metrics of the detection algorithms focus on both the false posi-

tives and false negatives. A false positive occurs when a data sample is identified as

abnormal, whereas it is normal. A false positive is also referred to as a false alarm. In

contrast, a false negative occurs when an anomaly is identified as normal, while a true

positive occurs when an anomaly is correctly identified as abnormal. An appropriate

anomaly detector should detect as many anomalies as possible, while signaling as few

false alarms as possible.

4.3 Neural Network Structure

Neural networks with different hyperparameters were examined. Each of them was

formed with an input layer, one or more hidden layers, and an output layer. There

were four preprocessing operations performed before the data was trained by the

network: data augmentation, data normalization, data reshaping, and data splitting.

Data augmentation and data splitting are applied only to the training set and

not the test set. Both are used to prevent overfitting. Data augmentation is the
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opposite operation to dropout. In dropout, partial connection and corresponding

weights between layers are discarded, while in data augmentation a small amount of

training data is randomly duplicated and added to the training set.

dup l i c a t i o n r a t i o = 0 .04

# The ratio of duplication is predefined as 0.04

def augment data (X, y , d u p l i c a t i o n r a t i o ) :

nb dup l i c a t e s = dup l i c a t i o n r a t i o ∗ len (X)

X hat = [ ]

y hat = [ ]

for i in range ( len (X) ) :

for j in range (np . random . random integers (0 , nb dup l i c a t e s ) ) :

X hat . append (X[ i , : ] )

y hat . append (y [ i ] )

# The randomly duplicated data is added to the training set

return np . asar ray ( X hat ) , np . asar ray ( y hat )

Listing 4.4: Data Augmentation

The normalization or standardization is a useful technique to reduce the variations

in raw input data which may be significantly different in amplitude. The anomalies

related to the amplitude may be handled by other threshold detectors. The focus

of this thesis is to detect anomalies by using the daily pattern instead of the ampli-

tude. According to some time series research in structural pattern mining [Shalabi

and Shaaban, 2006], z-normalization helps mining algorithms focus on the structural

similarities or dissimilarities rather than on the amplitude. The normalization used in

this project, z-normalization, ensures all samples of the input vector are transformed
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into the output vector whose mean is approximately zero with a standard deviation

close to one. The mean of input x̄ is first subtracted from the original values, and

the difference is then divided by the standard deviation σ.

x =
x− x̄
σ

(4.7)

def z norm ( r e s u l t ) :

r e su l t mean = r e s u l t . mean ( )

# Calculate the mean value

r e s u l t s t d = r e s u l t . s td ( )

# Calculate the standard deviation

r e s u l t −= resu l t mean

r e s u l t /= r e s u l t s t d

# Conduct the z−normalization

return r e su l t , r e su l t mean

Listing 4.5: Data Normalization

Keras requires that the data be in a specific array so the data needs to be reshaped.

A time window size needed to be specified in the data reshaping step. Even though

multiple repeating patterns may exist in different time scales, the focus here was on

the daily pattern. The window size is thus set as the length of a day. For example,

one day’s data had 96 readings when the readings were taken every 15 minutes. As

the lookahead is one, the lookback or number of previous steps is 95 (96 − 1).
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t ime window s ize = 96

# The size of window when reading is taken every 15 minutes

def c r e a t e t r a i n ( data , t ime window size , d up l i c a t i o n r a t i o , normal ize=

True ) :

nb records = len ( data )

r e s u l t = [ ]

for index in range ( len ( data ) − t ime window s ize ) :

r e s u l t . append ( data [ index : index + t ime window s ize ] )

r e s u l t = np . array ( r e s u l t )

# The window with size 96 sl ides through the training set , creating

multiple training samples

i f normal ize :

r e su l t , r e su l t mean = z norm ( r e s u l t )

print ( ”Train data shape : ” , r e s u l t . shape )

# The training samples are normalized

t r a i n = r e s u l t [ : len ( data ) , : ]

np . random . s h u f f l e ( t r a i n )

X tra in = t r a i n [ : , :−1]

y t r a i n = t r a i n [ : , −1]

# The lookback is the f i r s t 95 readings in any window, while the

lookahead is the last reading to be predicted

X train , y t r a i n = augment data ( X train , y t ra in , d u p l i c a t i o n r a t i o )

# The data augmentation is applied

X tra in = np . reshape ( X train , ( X tra in . shape [ 0 ] , X tra in . shape [ 1 ] ,

1) )

# The training samples are reshaped as numpy array to be fed into

the input layer

return X train , y t r a i n

Listing 4.6: Data Reshaping
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Figure 4.31: Feed Samples with a Shifting Window

Different training samples are overlapped and fed into the input layer as shown in

Figure 4.31. The training set and test set are reshaped in a similar way, except that

data augmentation is used for the training set.

In the last step, data splitting is employed. A small portion of the training set is

split into a validation set as shown in Figure 4.32. In this case, twenty percent of the

data was split into a validation set, and the rest was used for training. The loss for

the validation set is calculated at the end of each epoch. When the loss value stops

improving or even gets worse, training is interrupted.
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Figure 4.32: Splitting Data into Training and Validation

checkpo int = ModelCheckpoint ( f i l e p a t h=’models / best model . h5 ’ , monitor=’

v a l l o s s ’ , s a v e b e s t on l y=True )

# The trained model after each epoch is recorded , but only the best

model is saved .

e a r l y s t opp i ng = EarlyStopping ( monitor=’ v a l l o s s ’ , pa t i ence=3, mode=’

auto ’ )

# If the loss function for the validation set is not improving in the

recent three epochs , the training is interrupted and the model three

epochs ago is saved as the best model .

c s v l o g g e r = CSVLogger ( ’ models / h i s t o r y . csv ’ , append=True , s epa ra to r=’ , ’ )

# The values of cost function are recorded for both training and

validation set .

h i s t o r y c a l l b a c k = model . f i t ( X train , y t ra in , b a t ch s i z e=batch s i z e ,

epochs=epochs , v a l i d a t i o n s p l i t =0.2 , verbose=1, c a l l b a c k s =[

checkpoint , c sv l ogge r , e a r l y s t opp i ng ] )

# Twenty percent of the training data is sp l i t as validation set .

Listing 4.7: Data Splitting and EarlyStopping

After the data has been preprocessed and fed into the input layer, different types
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of hidden layers with different hyperparameters are used to learn the temporal in-

formation from the datasets. Dropout is applied between consecutive layers to avoid

overfitting.

model . add (Dropout ( 0 . 2 ) )

# Twenty percent of units are randomly discarded .

Listing 4.8: Dropout

Different networks use the same input and output layers, and the differences

mainly exist in the hidden layers. CNNs were examined first due to their simple

structure. LSTM and GRU were then used as representatives of RNNs. The com-

parison of different networks with different hidden layers is discussed in the next

chapter.

The output layer is a fully connected dense neural network layer. In this project,

a linear function was chosen as the activation function in the output layer as the

continuous values are predicted. The number of neurons in the output layer is usually

equal to the lookahead value, where each neuron represents one predicted future value.

As only one value is predicted with the previous 95 readings in the time window, the

output layer only contain one neuron. The loss function was chosen to be MSE (mean

squared error) while Adam was chosen as the optimizer.
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l a y e r s = { ’ input ’ : 1 , ’ hidden1 ’ : 64 , ’ hidden2 ’ : 256 , ’ hidden3 ’ : 100 , ’

output ’ : 1}

# The number of neurons of each layer in a four layer network

model . add (Dense( un i t s=l a y e r s [ ’ output ’ ] ) )

# The output Layer contains only one neuron.

model . add ( Act ivat ion ( ” l i n e a r ” ) )

# Activation function is chosen as linear function .

model . compile ( l o s s=’mse ’ , opt imize r=’adam ’ )

# Loss function is chosen as ”MSE” and Optimizer is chosen as ”Adam”.

Listing 4.9: The Output Layer

4.4 Rule Based Method

Two libraries were used for rule-based anomaly detection. The S-H-ESD algorithm

was implemented using the R library AnomalyDetection by Twitter [Twitter, 2015].

The moving average algorithms were implemented using the R library Surus by Netflix

[Netflix, 2015]. These two methods are not learning-based methods, and they do not

require a training step or much manual tuning. The test data was directly fed to the

detectors, and the anomalies were detected automatically.

The S-H-ESD algorithm was applied to all the test data, with the detected anoma-

lies indicated by green cycles. Two sample results were shown in Figure 4.33 and

Figure 4.34. S-H-ESD was unable to detect precipitation-related anomalies.
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Figure 4.33: Sample Result for March 2018

Figure 4.34: Sample Result for May 2018

The moving average algorithm was also applied to all test data, with the detected

anomalies indicated by red dots. Two sample results are shown in Figure 4.35 and
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S-H-ESD Method
True Positive 2
False Positive 0
False Negative 9

Table 4.1: Detection Result by S-H-ESD Method

Figure 4.36. This method was able to detect precipitation-related anomalies, but it

also returned a large number of false alarms.

Figure 4.35: Sample Result for February 2018
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Figure 4.36: Sample Result for March 2018

Moving Average Method
True Positive 3
False Positive Numerous
False Negative 8

Table 4.2: Detection Result by Moving Average Method

4.5 Learning Based Method

The experiments in this thesis were conducted in an exploratory way, from simple to

more sophisticated techniques.

4.5.1 CNN Based Method

The data was first analysed using an one-dimensional convolutional layer, conv1D in

Keras. The CNN method used in this project was comprised of a single Conv1D layer,
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a maxpooling layer and dense output layer with one neuron as shown in Figure 4.37.

Figure 4.37: CNN Based Network

model . add (Conv1D( f i l t e r s =256 , k e r n e l s i z e =5, padding=’ same ’ , a c t i v a t i o n=

’ r e l u ’ , input shape=(t ime window s ize − 1 , l a y e r s [ ’ input ’ ] ) ) )

model . add (Dropout ( 0 . 2 ) )

Listing 4.10: CNN Based Method

The training error for every iteration is shown in Figure 4.38. The validation error

was used to avoid overfitting, as such the training stopped when the validation error

was at its lowest level.
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Figure 4.38: MSE Loss with Iterations

The CNN based methods detected more anomalies than the previous rule based

methods and detected eight out of the eleven anomalies, as shown in Figure 4.39.

However, the CNN detector returned a high rate of false alarms as shown in Figure

4.40.
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Figure 4.39: Sample Result for January 2018

Figure 4.40: Sample Result for June 2018

CNN Based Method
True Positive 8
False Positive 6
False Negative 3

Table 4.3: Detection Result by CNN Based Method
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4.5.2 LSTM Based Method

Because LSTM can remember past information, it was expected that this method

would provide a better result than the CNN method. Training was conducted using

the same training dataset. The neural network used the same input and preprocessing

steps, and only the hidden layers were replaced with LSTM. The LSTM method has

a structure as shown in Figure 4.41.

Figure 4.41: LSTM Based Network

model . add (LSTM( un i t s=l a y e r s [ ’ hidden1 ’ ] , input shape=(t ime window s ize −

1 , l a y e r s [ ’ input ’ ] ) , r e tu rn s equence s=True ) )

model . add (Dropout ( 0 . 2 ) )

model . add (LSTM( un i t s=l a y e r s [ ’ hidden2 ’ ] , r e tu rn s equence s=True ) )

model . add (Dropout ( 0 . 2 ) )

model . add (LSTM( un i t s=l a y e r s [ ’ hidden3 ’ ] , r e tu rn s equence s=False ) )

model . add (Dropout ( 0 . 2 ) )

Listing 4.11: LSTM Method
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The training error from every iteration is shown in Figure 4.42. A lower calculated

loss can be achieved with the LSTM method compared to the CNN method.

Figure 4.42: MSE Loss with Iterations

The LSTM method outperformed the CNN method by detecting more anomalies

with fewer false alarms as shown in Figure 4.43 and Figure 4.44.
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Figure 4.43: Sample Result for March 2018
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Figure 4.44: Sample Result for June 2018

Two variants of LSTM, GRU and bidirectional LSTM, were also used, where the

LSTM layers in the neural network were replaced with GRU or bidirectional LSTM

layers. Each variant (standard LSTM, GRU, bidirectional LSTM) returned the same

number of anomalies. Each detected ten out of eleven anomalies with one false alarm.

The major difference among these three LSTM variants was the training time.

LSTM GRU Bidirectional LSTM
True Positive 10 10 10
False Positive 1 1 1
False Negative 1 1 1

Table 4.4: Detection Result by LSTM Method

GRU method merges the input and forgets gates into a single update gate. Owing
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to this simplified architecture, GRU was computationally more efficient than LSTM.

For bidirectional LSTM, each sample is predicted by both the future and past samples.

The training time was thus almost double, owing to the presence of both positive

(forward states) and negative (backward states) processes. The training time for

each epoch is recorded in the Table 4.5.

LSTM GRU Bidirectional LSTM
Training Time (s) 869 716 1423

Table 4.5: Training Time of LSTM Methods

4.5.3 CNN-LSTM Method

Even though the LSTM method can detect more anomalies with fewer false alarms

than the CNN method, the training time for LSTM was significantly longer than

that of CNN as shown in Table 4.6. The difference may even get larger with a larger

training dataset.

CNN LSTM
Training Time (s) 21 869

Table 4.6: Training Time of CNN Method vs. LSTM Method

The CNN-LSTM method combines the convolutional layer with the LSTM layers,

where the features are extracted from the dataset with convolutional layers, and the

temporal relationship is learned by the LSTM layers. The CNN-LSTM method is

comprised of a Conv1D layer and three LSTM layers as shown in Figure 4.45.
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Figure 4.45: CNN-LSTM Network

model . add (Conv1D( f i l t e r s =256 , k e r n e l s i z e =5, padding=’ same ’ , a c t i v a t i o n=

’ r e l u ’ , input shape=(t ime window s ize − 1 , l a y e r s [ ’ input ’ ] ) ) )

model . add (MaxPooling1D( p o o l s i z e =4) )

model . add (LSTM( un i t s=l a y e r s [ ’ hidden1 ’ ] , r e tu rn s equence s=True ) )

model . add (Dropout ( 0 . 2 ) )

model . add (LSTM( un i t s=l a y e r s [ ’ hidden2 ’ ] , r e tu rn s equence s=True ) )

model . add (Dropout ( 0 . 2 ) )

model . add (LSTM( un i t s=l a y e r s [ ’ hidden3 ’ ] , r e tu rn s equence s=False ) )

model . add (Dropout ( 0 . 2 ) )

Listing 4.12: CNN-LSTM Based Method
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Figure 4.46: MSE Loss with Iterations

The CNN-LSTM method turned out to be a cost-effective anomaly detector. Table

4.7 lists the training time of each epoch and compares the CNN-LSTM and LSTM

methods.

CNN-LSTM LSTM
Training Time (s) 82 869

Table 4.7: Training Time of LSTM Method vs. CNN-LSTM Method

CNN-LSTM method managed to detect nine out of eleven anomalies with two

false alarms. The detection result were better than the CNN method with more

anomalies being detected and fewer false alarms. A sample comparison is shown in
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Figure 4.47.

Figure 4.47: Sample Result for February 2018

CNN-LSTM Method
True Positive 9
False Positive 2
False Negative 2

Table 4.8: Detection Result by CNN-LSTM Method

These results indicate that in most cases the LSTM method should be the first

choice as it detected most anomalies with the fewest number of false alarms. If

computing resources are limited, CNN-LSTM method can also be used.
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4.6 Anomaly Detection on Weather Datasets

The same LSTM based anomaly detector was applied to the flow and temperature

datasets in an attempt to detect the two real faulty ammonia anomalies. Only the

LSTM-based detector was used as it provided the best results. For the flow data, the

training data contained three weeks of normal readings selected from December 2017

to January 2018 as shown in Figure 4.48. Training was finished within nine epochs

as shown in Figure 4.49.

Figure 4.48: Training Data for Flow
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Figure 4.49: MSE Loss with Iterations

The flow data between January 2018 and March 2018 contained five anomalies,

which were caused by five rain events. Comparing the ammonia and flow results,

when both results contain anomalies, might be used to detect operational anomalies.

As shown in Figure 4.50, the rain event in late March 2018 was successfully detected

with the flow data. Filtering these two periods from the ammonia result is possible.

However, eliminating anomalies with flow data might not always be possible. Flow

data was provided by the Dundas WWTP, but it might not always be available at

other locations and it cannot always be acquired easily in all possible locations.

76



M.Sc. Thesis - Xi Wang McMaster - Computer Science

Figure 4.50: Detection Results of Flow in March 2018

LSTM Anomaly Detector
True Positive 5
False Positive 1
False Negative 0

Table 4.9: Detection Result for Flow Data

As an alternative, temperature data was used because the temperature sensor is

attached to the ammonia sensor. Similar to the ammonia and flow data, the longest

section with normal readings was selected as the training set for temperature. The

temperature training set contained readings from March 2018 as shown in Figure 4.51.

Training was finished within nine epochs as shown in Figure 4.51.
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Figure 4.51: Training Data for Temperature
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Figure 4.52: MSE Loss with Iterations

There are ten anomalies in the temperature dataset. Precipitation in January was

detected in the temperature dataset as an anomaly as shown in Figure 4.53. However,

the detection for temperature seems to be less accurate compared to the ammonia and

flow cases as judged by the high number of false positive and false negative results.
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Figure 4.53: Detection Result of Temperature in January 2018

LSTM Anomaly Detector
True Positive 6
False Positive 2
False Negative 4

Table 4.10: Detection Result For Temperature Data

The detection results for the temperature dataset show that six out of ten anoma-

lies were detected. However, after further analysis, it was found that temperature

alone could not be used to identify the precipitation-related ammonia anomalies. In

the summertime such as June (Figure 4.54), when the rain temperature is close to

the wastewater temperature, precipitation does not affect the recorded temperature

so no temperature anomalies were detected. As a result, the detected anomaly (nor-

mal rain event) in Figure 4.54 can be misinterpreted as being a real anomaly as it is
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only detected in the ammonia data and not in the temperature data.

Figure 4.54: Detection Result of Temperature in June 2018

The opposite situation can also happen, that is, a real anomaly may be misinter-

preted as a normal rain event. Figure 4.55 shows a case where both ammonia and

temperature showed anomalies. Both anomalies were caused by the real operation

problem, i.e. the sensor was exposed to the air. In this analysis, it was assumed

that temperature anomalies, were only caused by precipitation, but in this case both

anomalies were caused by the a real problem. In cases like this, when both sen-

sors were not working properly, eliminating ammonia anomalies with temperature

anomalies would be incorrect.
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Figure 4.55: Detection Result of Temperature in May 2018
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Chapter 5

Conclusions and Future Work

In this thesis, a data-driven approach was proposed to detect anomalous data in a

real-world ammonia concentration dataset, using a learning based method.

The thesis started by studying the structure of neural networks. Next, an LSTM

based method was applied to the ammonia dataset. The learning-based LSTM

method outperformed the two rule-based algorithms by detecting ten out of eleven

anomalies with only one false positive. In addition, convolutional layers were exam-

ined and the use of CNN combined with LSTM proved to be computationally efficient

which could be important consideration when computing resources are limited. Fi-

nally, the relationship between ammonia and weather were explored. Temperature

could only act as a suitable alternative for flow in winter time. Better alternative

datasets should be studied to eliminate the impact of precipitation.

One potential limitation of this project is the dataset that was used. In this case

the learning-based methods were tested on a newly collected and well-documented

dataset dataset. Typical real-world datasets often lack detailed field notes related

to sensor conditions. The sensors in this project were carefully maintained and did
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not suffer from significant drift. The number of anomalies was thus limited and most

of them were caused by weather. This might not be the case for other applications,

where the sensors are not as carefully maintained. As a result, more tests of this

learning-based method on datasets collected under different conditions should be

conducted.

In addition, the LSTM detectors only made use of the daily pattern for anomaly

detection. However, ammonia dataset also contains repeating patterns on different

times scales. For example, concentration behaves slightly differently on the weekend

from the weekdays, because some industrial facilities do not operate and people do not

work in the weekend. With more collected dataset available in the future, monthly

or even yearly patterns can also be studied. These are the factors to be considered in

the future research.

Wavelet analysis is a signal processing technique which decomposes signals into

multiple components and allows local features of the signals to be examined with

details at the features’ scale [Alarcon-Aquino and Barria, 2001]. Wavelets were widely

used in signal analysis for decades [Zhengjia et al., 1996] and they allow features

to be extracted over a broad range of time scales. Wavelet transforms have been

successfully used as detection methods to identify anomalies in network traffic data

[Kwon et al., 2006]. More recently, wavelets are combined with neural networks to

detect anomalies in a time series dataset collected by health monitoring applications,

where the detection method combines wavelet analysis and neural networks in a

sequential manner [Kanarachos et al., 2015]. As a result, in the future research the

LSTM detector might be examined with the filtered data instead of the raw data to

combine the strengths of different algorithms.
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