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Abstract  
 
Metabolomics offers a systemic approach to discover clinical biomarkers for early 

detection of chronic diseases while also revealing underlying mechanisms relevant 

to human disorders of complex aetiology. Metabolomic studies in support of 

chronic disease prevention have focused primarily on surrogate biofluids (e.g., 

serum, plasma) for analysis due to their routine and less invasive sample collection 

in a clinical setting. However, biofluids are non-organ specific and thus are 

reflective of confounding biochemical processes within the body that are often 

difficult to interpret. As a result, it is necessary to assess metabolite changes 

localized within tissues since they are the direct site of pathogenic processes, in 

order to obtain more robust and specific biomarkers. This thesis aims to contribute 

to new advances in biomarker discovery and tissue metabolomic studies using 

multiplexed separations together with innovative data workflows based on 

multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-

MS). Chapter II introduces a high throughput yet targeted screening method for 

accurate quantification of serum γ‐glutamyl dipeptides from a cohort of overweight 

Japanese non-alcoholic steatohepatitis (NASH) patients that may allow for better 

risk assessment of long-term survivorship complementary to histopathology. 

Chapter III introduces a non-targeted metabolite profiling strategy for fasting 

plasma samples from prediabetic, older adults undergoing short-term step reduction 

(<1000 steps/day) in order to identify adaptive metabolic responses to abrupt 

changes in physical inactivity for early detection of sarcopenia in high-risk older 

persons. Chapter IV describes the first metabolomics study to characterize the 

human skeletal muscle metabolome from mass-restricted tissue biopsies together 

with matching plasma samples, which identified novel metabolic signatures 

associated with strenuous interval exercise, as well as treatment effects from high-

dose bicarbonate pretreatment that delays the onset of muscle fatigue. Lastly, in 

Chapter V, metabolite coverage was expanded to include fatty acids for 

comprehensive characterization of murine placental tissue metabolome, which 
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revealed sex-specific metabolic adaptations during gestation from maternal dams 

fed a standardized diet. In summary, this thesis contributes to new innovations in 

metabolomics for the discovery of novel biomarkers from blood and/or tissue 

specimens as required for early detection of chronic diseases relevant to population 

health, which were also used to validate the efficacy of therapeutic interventions 

based on physical activity to support healthy ageing. 
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Chapter I: A Review of Tissue Metabolomic Studies in Clinical Research 

 

1.1 Historical overview of tissue biopsies: from histology to systems biology  

Renowned French pathologist and founder of modern histology, Marie François 

Xavier Bichat, first defined the term “tissue” as fundamental structural units of 

organs within the human body that comprised of interlaced vessels and fibers, 

resembling a woven structure (Bichat 1977). Bichat’s tissue doctrine of general 

anatomy stated that in order to advance understanding of disease origins and 

improve therapeutic interventions, one must directly analyze the specific sites of 

disease progression within the organs (i.e., tissues) (Bichat 1977; Haigh 1984). 

Through his contributions, the inception of histology emerged as the systematic 

study of tissue specimens using microscopy. Typically, specimens for histology are 

obtained using tissue biopsy techniques. In 1847, Kün was the first to employ a 

needle-biopsy technique for extracting tumor tissue for microscopy (Kun 1847). 

Thereafter, Sir James Paget and Erichsen used a needle-aspiration biopsy method 

for histological analysis of breast tumours in 1853 (Rosa 2008; Webb 2001). The 

needle biopsy technique was further developed as a diagnostic tool for assessing 

tumours in the 20th century. In the mid-1920s, the needle aspiration biopsy 

technique became routine clinical practice at the Memorial Center in New York 

where 2,500 tumors were assessed using the method over three years (Martin and 

Ellis 1930; Rosa 2008). Despite promising evidence for its utility of tissue biopsies 

for tumour diagnosis, the technique faced early criticisms from clinicians deeming 

the technique as inaccurate due to the small amount of tissue specimens obtained 

while others feared of potential adverse effects (e.g., metastasis) resulting after the 

procedure. Furthermore, employing this technique into clinical practice would 

require trained specialists to perform and interpret the results, placing a burden on 

medical resources (Rosa 2008). While being widely rejected in the US, the needle-

aspiration biopsy technique continued to be used across Europe during the Second 

World War (Webb 2001). Ultimately, within the latter half of the 20th century, 
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further developments in the technique led to its widespread use in other developed 

countries worldwide (Rosa 2008).  

  

At present, tissue biopsies are routinely used in histology and cytology for 

disease diagnosis of benign and malignant tumours. Tissue processing for 

histopathology involves a number of key steps: fixation, staining, processing, 

embedding and sectioning (Titford 2014). Fixation involves preserving the tissue 

cellular structure while minimizing decay due to autolysis, through a chemical 

process (Comanescu et al. 2012).  Formalin represents the most common fixative 

used in histology that preserves secondary and tertiary protein structures. Other 

fixatives include paraffin-formalin for immunohistochemistry and bouin fixative 

for soft and/or delicate tissue (e.g., brain) (Alturkistani et al. 2015). After fixation, 

histological staining is performed to help enhance important features within the 

tissue for visualization under a light microscope. A combination of two dyes, 

hematoxylin and eosin (H&E), is the most widely used staining procedure in 

histology. Hematoxylin consists of a blue dye that stains nuclei by binding to 

basophilic components such as DNA and RNA within the nucleus. In contrast, eosin 

is a pink dye that stains components within the cytoplasm by binding to acidophilic 

substances such as charged amino acid side chains. Recent advancements in stains 

for more specialized features include Masson’s stain for connective tissue and 

Golgi stain for neuronal fibres (Alturkistani et al. 2015). Thereafter, further 

processing such as dehydration is completed in order to facilitate removal of water 

for solidification, followed by embedding in paraffin wax and sectioning onto a 

microscope slide for examination (Alturkistani et al. 2015). These steps are crucial 

in order to preserve clinically relevant pathological information while minimizing 

perturbations in intact cellular and structural components to make an accurate 

diagnosis (Comanescu et al. 2012). Despite the widespread use of histology by 

pathologists for clinical decision making, the method is prone to observer bias that 

stem from visual (e.g., differences in illusion of size, brightness, colour hues) and  
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cognitive biases (e.g., confirmation and/or context bias) that may lead to subjective 

interpretation and grading using semi-quantitative scoring systems (Aeffner et al. 

2017). For instance, Kleiner et al., previously performed a study to examine inter 

and intra-observer variability in histopathology scoring of liver specimens (n = 50) 

obtained from patients with non-alcoholic fatty acid liver disease (NAFLD). While 

all pathologists showed high agreement in steatosis and fibrosis scoring among 

adult cases, there were lower levels of agreement in pediatric cases, especially in 

evaluating the presence of microvesicular steatosis, pigmented macrophages and 

ballooning (Kleiner et al. 2005). Figure 1.1. illustrates photomicrographs 

representing the scoring of ballooning injury in hepatocytes that range from 0, with 

no presence of ballooning, to +1 showing few balloon cells and finally to +2, where 

prominent ballooning is evident. Interestingly, the intermediate case of ballooning 

(i.e., score = +1) showed higher inter-observer variability among the pathologists. 

The authors reported that the photomicrograph of the intermediate cases showed 

balloon cells that were surrounded by steatotic hepatocytes of similar size, making 

it more difficult for pathologists to differentiate these features from one another, 

compared to other extreme cases of fewer (i.e., score = 0) to multiple (i.e., score = 

2) ballooning (Kleiner et al. 2005). While histopathology and semi-quantitative 

grading is clinically useful for patient stratification in diseases such as NAFLD, it 

Figure 1.1: Photomicrographs of hepatocyte scoring of ballooning injury. (A) Score = 0; no 
ballooning evident in presence of mild steatosis (white cell deposits). (B) Score = +1; few balloon 
cells shown surrounding steatotic hepatocytes. (C) Score = +2; ballooning injury prominent, with 
few steatotic hepatocytes. Hematoxylin and eosin; original magnification x600. Reproduced from 
Kleiner et al. 2005 with permission (Kleiner et al. 2005). 
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is imperative to understand the potential visual and cognitive biases that may lead 

to subjective interpretation among pathologists. Evidently, there is a need for more 

objective biochemical tests to facilitate clinical decision making while supporting 

histopathological findings.  

  

In recent years, tissue biopsies have emerged as a specimen of interest in 

systems biology “-omics” approaches, including genomics, epigenomics, 

transcriptomics, proteomics and metabolomics (Figure 1.2). Metabolomics aims to 

characterize and quantify low molecular weight metabolites (< 1.5 kDa) within 

complex biological specimen, such as biofluids, single cells, and tissue specimens 

(Goodacre 2005). Metabolites are clinically relevant proxies of biochemical activity 

that are strongly associated with molecular phenotype due to its sensitivity to 

environmental exposures and physiological changes (Alonso et al. 2015). 

Metabolomics not only can be used to discover biomarkers for early detection of 

treatable diseases of unknown etiology, but can also reveal the underlying 

mechanisms of therapeutic interventions based on pharmacological agents, exercise 

training and/or nutritional supplementation (C. H. Johnson et al. 2016; Patti et al. 

2012). Traditionally, most metabolomics studies rely on a surrogate biofluids (e.g., 

urine, plasma, stool) due to its less invasive sample collection, especially for 

biomonitoring applications in large population cohorts. However, biofluids are non-

organ specific and are reflective of many biochemical processes occurring over 

numerous tissues and cell types within the body (Zukunft et al. 2018). As a result, 

it is imperative to analyze tissues directly as they are the direct and localized site of 

most disease processes that can be measured at early stages of development. 

Furthermore, they may provide more robust biomarkers in the context of disease 

screening, diagnosis or prognosis as compared to blood or urine specimens 

(Gonzalez-Riano et al. 2016). In 2002, Watkins and colleagues reported one of the 

first comprehensive tissue metabolomics studies in murine heart and liver  
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Figure 1.2: (A) The “omics” cascade used in systems biology illustrating interactions between 
genomics, transcriptomics, proteomics and metabolomics. Unlike genes and proteins that undergo a 
number of epigenetic and post-transcriptional modifications, metabolites are downstream end 
products of these interactions that can be linked to the observed phenotype. (B) A schematic of a 
metabolic pathway illustrating enzymatic alterations elicited by a single or multiple genotypes that 
lead to a myriad of metabolic perturbations that can be used to correlate with the phenotype. 
Reproduced from Patti et al. 2012 with permission (Patti et al. 2012).  

 

tissues to examine the effects of rosiglitazone on lipid metabolism in type 2 diabetes 

(German et al. 2002). Within the last two decades, there has been a rapid increase 

in tissue metabolomics studies with new advances in sample preparation 

techniques, as well as instrumentation and bioinformatics to expand the  detection 

and identification of metabolites from minimal amounts of tissue  (Veenstra and 

Zhou 2009). In a recent PubMed search using the terms “tissue metabolomics,” 

over 1100 studies have been reported for mammalian tissue specimens from 2002 

to March 2019, with a majority of studies performed from 2015 onwards as depicted 

in Figure 1.3 (A). Moreover, a diverse range of tissue specimens have been  
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analyzed in these published reports with liver (21%), brain (14%), heart (10%), 

skeletal muscle (9%) and kidney (8%) tissues comprising of the top five organs 

mainly analyzed from mammals as depicted in Figure 1.3 (B). Other mammalian 

tissues less frequently explored include adipose, pancreas and bladder tissue. 

Approximately 20% of these studies involved human tissue specimens – the most 

common being brain (10%), intestine (10%), breast (10%), liver (8%) and prostate 

(10%) tissues as illustrated in Figure 1.3 (C).  A majority of these studies employed 

nontargeted metabolomics approaches for differentiating tumour-related metabolite 

markers in cancerous vs. noncancerous tissue, including hepatocellular carcinoma 

(HCC), colorectal cancer (CRC), and breast cancer, whereas brain tissue 

metabolomic studies focus on neurodegenerative diseases such as Alzheimer’s  

Figure 1.3: (A) An overview of published research articles in the field of tissue metabolomics from 
2002 to March 2019 based on a PubMed search with the terms “tissue metabolomics.” Only original 
research articles were reported (excluding comprehensive reviews, book chapters, commentaries, 
conference abstracts) based on mammalian species (blue). Approximately 20% of these studies were 
based on human tissue specimens (red). Pie chart distributions of various (B) mammalian and (c) 

human tissue specimens analyzed in these published studies.  
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disease. Evidently, tissue metabolomics is a rapidly evolving field that shows 

promise in a wide array of clinical applications from biomarker discovery to drug 

development in order to develop more efficacious yet safe interventions for the 

prevention or treatment of chronic human diseases.  

 
1.2 Overview of tissue metabolomics workflows 

To date, two complementary strategies have been adopted for tissue metabolomics 

studies, namely targeted (hypothesis-driven) analysis of known metabolites and/or 

non-targeted (hypothesis-generating) analysis of all detectable metabolites when 

using one or more instrument platforms. Targeted metabolomics focuses on 

measuring a small subset of metabolites within one or more metabolic pathways of 

interest in order to answer a defined biochemical question (D. Broadhurst et al. 

2018; Patti et al. 2012). In this case, absolute quantification of the metabolites can 

be achieved using stable-isotope dilution mass spectrometry (MS) methods and 

authentic chemical standards, where data preprocessing, statistical analyses and 

biochemical interpretation is far more routine than nontargeted metabolite profiling 

(D. Broadhurst et al. 2018; Yi et al. 2016). However, a major drawback of targeted 

approaches is the limited coverage when characterizing the metabolic phenotype of 

a tissue that is unsuitable for discovery-based studies required for understanding 

complex disease processes of unknown etiology. In contrast, nontargeted 

metabolomics is a global approach that aims to measure a far wider range of 

metabolites within a tissue specimen, including the identification of unknown 

metabolites of biological or clinical significance. In contrast to targeted approaches, 

nontargeted metabolomic studies aim to filter, authenticate and annotate 

metabolites from potentially thousands of molecular features measured when using 

full-scan high resolution MS methods whose chemical structures are unknown a 

priori (Patti et al. 2012). Indeed, only a small fraction of total detectable signals 

generated in ESI-MS represent reliable and authentic metabolites from tissue 

samples, whereas a majority of molecular features are derived from spurious 



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

9 
 

 

detail in the proceeding sections. 

 

 

 

 

signals, background adducts and contaminants that need to be rigorously filtered 

from data (Jankevics et al. 2012). As a result, since chemical standards and stable-

isotope internal standards are often not available, only semi-quantitative or relative 

quantification is feasible in discovery-based tissue metabolomic studies involving 

high dimensional data sets requiring multivariate statistical approaches for 

improved data visualization, pattern recognition, group classification and 

metabolite ranking (Yi et al. 2016). As a result, numerous steps are involved in 

tissue metabolomic workflows (Figure 1.4) in order to obtain high data quality 

while reducing bias and false discoveries (Want et al. 2013), including structural 

elucidation of unknown compounds when using MS/MS from their most likely 

molecular formula (Dunn et al. 2013). These steps will be outlined in detail in the 

proceeding sections.  

 

Figure 1.4: Overview of workflow for MS-based tissue metabolite profiling studies. Tissue 
collection via biopsy or autopsy by a trained physician represents the first key step in the workflow. 
Thereafter, tissues undergo several steps of sample preparation (e.g., lyophilization, 
homogenization etc.) prior to metabolite extraction.  Following rigorous sample preparation 
methods, metabolite profiling is performed using a suitable analytical platform of choice such as 
NMR or hyphenated MS-based analytical platforms (e.g. GC-, LC-, CE-MS). Data preprocessing 
and filtering are then applied to the complex metabolite data acquired to obtain a clean data matrix 
for statistical analysis, metabolite identification and biological interpretation.  
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1.2.1 Tissue collection and sample preparation 

Tissue collection and sample preparation is one of the outstanding challenges that 

remains a major bottleneck and source of bias in tissue metabolomic workflows. 

Typically, tissue collection is performed under anesthesia through a biopsy, surgical 

procedure or an autopsy by a trained physician. Depending on the tissue of interest, 

a number of microsampling biopsy procedures can be used for tissue collection. 

However, the most common procedures include fine needle-aspiration biopsy 

(FNAB) and core needle biopsy (CNB). FNAB is a minimally invasive, low cost 

and simple biopsy technique that requires no anesthesia to obtain small amounts of 

tissue using a small, fine needle (Łukasiewicz et al. 2017). FNAB has been used in 

breast (Ly et al. 2016), thyroid (Gharib et al. 1993) and pancreatic tissue (Gress et 

al. 2001) for disease diagnosis and/or tumour progression.  CNB is routinely used 

in clinical and/or research settings that employs a larger needle to obtain “core” 

intact tissues for examination. In contrast to FNAB, this technique requires local 

anesthesia and is prone to slightly more complications (e.g., pain, discomfort, 

infection) (Nassar 2011). Figure 1.5 illustrates an example of a CNB technique 

(i.e., Bergstrom muscle biopsy) introduced by Tarnopolsky et al., for obtaining 

skeletal muscle tissue. After local anaesthesia is applied, the biopsy needle is 

inserted through the subcutaneous tissue, fascia and into the muscle, where suction 

is applied to obtain the tissue (~150-200 mg). The tissues are subsequently 

inspected for adequacy and quality, and sectioned for analysis (Tarnopolsky et al. 

2011). Similar CNB techniques have been utilized for other tissues including liver 

(Padia et al. 2009), breast (Meyer et al. 1999) and lymphatic tissues (Ben-Yehuda 

et al. 1996). 

  

There are numerous other precautions one should take for collecting tissues 

for non-targeted metabolomics studies as summarized in Table 1.1.  For instance, 

after tissue collection via biopsy or surgical procedures, tissues should be removed 

of fat/connective tissue as well as potential contaminants such as anesthetics used 
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during the collection procedure or blood from the specimen, in order to obtain an 

accurate, metabolite profile representative of the tissue. Moreover, it is imperative 

to immediately freeze tissues after collection (i.e., flash-freezing) and store the 

specimens at low temperatures (-80°C) (Gonzalez-Riano et al. 2016; Want et al. 

2013) in order to halt metabolism and ensure metabolites within the tissues remain 

stable following sample collection and long-term storage (Want et al. 2013). This 

is crucial for labile metabolites such as major phosphagens (e.g., ATP) and thiols 

(e.g., GSH) that are prone to hydrolysis and oxidation artifacts, respectively.  

 

Figure 1.5: Schematic of a suction-modified Bergström muscle biopsy technique. (A) Lidocaine is 
first applied to the skin and subcutaneous tissue. (B) An incision is made though the subcutaneous 
tissue into the fascia to help guide the biopsy needle (C) into the muscle, where suction is applied to 
obtain the tissue specimen. (D) Removal of the needle is facilitated using counterpressure and 
twisting motion. (E) The specimen are examined for adequacy and aliquoted to smaller pieces for 
analysis. (F) The incision is closed using a 3.0 silk suture. Reproduced from Tarnopolsky et al. 2011 
with permission. (Tarnopolsky et al. 2011). 
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Table 1.1: Guidelines for tissue collection in animals and human tissues for nontargeted MS-
based metabolomics. Adapted from Want  et al. (Want et al. 2013) 

Tissue collection recommendations for nontargeted hyphenated-MS metabolomics 

studies 

General 
Concerns:  
 
 
 
 
 
 
 
Sampling from 
human patients  
 
 
 
Sampling from 
animals  

- Ensure timing of tissue collection is randomized for the entire 
study cohort 

- Be cautious of contaminants due to collection procedure (i.e., 
anesthetics, surgical instrument cleaning solutions)  

- Large tissue samples should be divided and aliquoted into 
smaller pieces for freezing and storing to i) accelerate the 
freezing process and ii) minimize number of freeze-thaw 
cycles  

 
- Small biopsies are typically obtained  
- Ensure samples are snap-frozen immediately  
- Ensure blood is removed using deionized water or PBS from 

samples to minimize contamination  
 

- Whole organ samples are typically obtained  
- Subdivide and aliquot the whole organ and snap-freeze them; 

if this is not possible, freeze the whole organ  
- In rodents, the exsanguination process should be performed 

first before tissue removal in order to minimize 
contamination of blood on tissue    

 

After collection, tissues can either be lyophilized (i.e., freeze-dried) or remain wet 

prior to various sample workup protocols that are critical for subsequent 

metabolomic analysis, such as tissue disruption, liquid extraction, sample 

deproteinization and/or chemical derivatization. However, lyophilizing tissues is 

often preferred as a means to quench any residual enzymatic activity and eliminate 

excess water from the sample while minimizing biological variance by more 

accurately weighing out dried tissue speicmens prior to extraction (Gonzalez-Riano 

et al. 2016). Thereafter, the tissues are further subjected to grinding with a nitrogen 

cooled mortar and pestle or homogenization to break the tissues further. Manually 

grinding the tissue using a cooled mortar and pestle remains the gold standard; 

however, it is extremely labour intensive and low throughput. Tissue 

homogenization consists of physically disrupting the tissue using a homogenizer 

(i.e., Quiagen Tissuelyser, Precelly’s 24 bead-based homogenizer) (Geier et al. 
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2011; Masson et al. 2010, 2011; Römisch-Margl et al. 2011) to ensure a consistent, 

homogenous solution results upon addition of the extraction solvents. Furthermore, 

many homogenizers to date, such as the Precelly’s 24 homogenizer, are capable of 

sampling up to 24 samples, significantly increasing throughput with bettter 

reproducibility due to automation (Römisch-Margl et al. 2011). While 

homogenization is evidently less labour intensive, it is impractical for smaller tissue 

quantities (C. Y. Lin et al. 2007). Therefore, several factors such as minimum tissue 

quantity available, number of samples and available infrastructure must be 

considered when choosing an appropriate method for homogenization of tissue 

specimens prior to metabolite extraction.  

 

 To date, numerous metabolite extraction methods have been reported for 

various tissue specimens from animals and humans; this stems from the chemically 

diverse range of metabolites present within tissue metabolomes that span a wide 

dynamic range having different solubilities and chemical stabilities. As a result, 

there is no single global extraction procedure when performing nontargeted tissue 

metabolomics studies that can simultaneously extract the entire metabolome with 

high efficiency (Beltran et al. 2012; C. Y. Lin et al. 2007). In general, the optimal 

extraction method to employ in tissue metabolomics studies should be nonselective, 

reproducible, simple and produce high metabolite yields with good long-term 

stability (Gonzalez-Riano et al. 2016; C. Y. Lin et al. 2007).  In 2007, Lin et al., 

first sought out to determine a simple, reproducible extraction method for muscle 

and liver tissues using NMR metabolomics. Various extraction solvents were 

compared in this study including, perchloric acid, as well as polar organic solvents 

(i.e., methanol, ethanol, acetonitrile) mixed with water and/or chloroform. Overall, 

the methanol/chloroform/water solvent system based on the classic Bligh-Dyer 

extraction procedure was ideal for the tissue samples due to its efficiency in 

obtaining both hydrophilic and hydrophobic metabolites distributed across two 

immiscible solvent layers with high efficiency and reproducibility (C. Y. Lin et al. 
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2007). In addition, Wu et al. also concluded that a two-step Bligh-Dyer extraction 

procedure with the addition of extra water and a 10 min equilibration time resulted 

in high metabolite extraction yields and good reproducibility while minimizing 

metabolic decay (Wu et al. 2008). Many studies to date have made advances in 

overcoming the low throughput in tissue metabolite extraction procedures that can 

be implemented in multiplatform approaches (Römisch-Margl et al. 2011; Zukunft 

et al. 2018). Furthermore, there have been efforts made to establish standard 

extraction procedures for various tissue types (e.g., liver kidney, skeletal muscle 

etc.) in murine tissues (Zukunft et al. 2018).  

 

1.2.2 Analytical techniques for tissue metabolomics  

Global metabolome analysis of complex and heterogeneous tissue specimens with 

high data fidelity is a persistent challenge in metabolomics (Dunn and Ellis 2005; 

Y. Wang et al. 2015). In most cases, orthogonal extraction and/or analytical 

platforms are required to achieve broad metabolome coverage for a diverse range 

of metabolites ranging from abundant electrolytes/osmolytes to low abundance 

polar metabolites and unknown intact lipids. Recent technological advances in both 

nuclear magnetic resonance (NMR) and mass spectrometry (MS)-based analytical 

platforms, especially when coupled to high efficiency separations such as gas 

chromatography (GC), liquid chromatography (LC) and capillary electrophoresis 

(CE), have enabled the identification and quantification of a wide array of 

metabolites from tissue extracts (Zhang et al. 2012).  

 

NMR spectroscopy presents a fast and reproducible platform for metabolite 

profiling and metabolic flux analysis (Bothwell and Griffin 2011) while allowing 

for quantitative and qualitative determination of metabolites with excellent long-

term stability (Alonso et al. 2015; Zhang et al. 2012). Moreover, minimal sample 

preparation is required allowing intact metabolites to be measured non-

destructively in complex, biological samples within minutes (i.e., 2-3 min per 
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sample) depending on spectral acquisition settings. However, NMR requires large 

sample volumes (i.e., 100- 200 μL) while also being prone to spectral overlap and 

low sensitivity that prevents detection of sub-micromolar concentrations of 

metabolites as compared to MS-based techniques (Alonso et al. 2015; Wishart 

2016; Zhang et al. 2012). The advent of High Resolution Magic Angle 

Spectroscopy (HRMAS)-NMR, first introduced by Cheng et. al.  (Cheng et al. 

1996), allows for intact tissue analysis from minimal amounts of tissue (i.e., 10–20 

mg) while achieving highly resolved spectra (Burns et al. 2004; Dinges et al. 2019; 

Tsang et al. 2005). More importantly, since the tissue remains unaltered during 

analysis, other tests can be performed on the same tissue by trained physicians 

and/or pathologists (e.g., histopathology). Tate and colleagues first demonstrated 

the utility of HRMAS-NMR as a metabolomics platform to decipher metabolic 

differences between cancerous kidney tissue from normal/non-cancerous tissue in 

human clear cell renal cell carcinoma (ccRCC) patients (Tate et al. 2000). Since 

2004, HRMAS-NMR has been successfully used for intact tissue metabolomics 

analysis in various tissue types including brain, breast, lung, and pancreas (Dinges 

et al. 2019).  In particular, HRMAS-NMR has been for examining differences in 

metabolite profiles between cancerous and adjacent, noncancerous tissue and 

monitoring disease progression (Chen et al. 2017; Haukaas et al. 2016; Vandergrift 

et al. 2018). For instance, Bathen et al. applied HRMAS-NMR on over 300 breast 

tissue samples to differentiate between tumour and non-cancerous, adjacent tissue. 

Based on the metabolite profiles depicted in Figure 1.6, choline metabolites (e.g., 

choline, phosphocholine), glycine and taurine were elevated in tumour tissue 

compared to the normal, adjacent tissue (Bathen et al. 2013).  However, the high 

infrastructure and operating costs of NMR, as well as its complicated spectral 

processing steps prevent its widespread applicability in tissue metabolomic studies 

in non-specialized laboratories. 
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 In contrast, MS-based techniques have been more widely applied in tissue 

metabolomics studies due to its higher sensitivity that can measure a wider range 

of metabolites as compared to NMR. Moreover, recent advances in high resolution 

MS with higher resolving power and mass accuracy together with faster scan rates 

have greatly improved analytical performance to reduce isobaric interferences 

while allowing for the identification for unknown metabolites (Fuhrer and Zamboni 

2015; Wishart 2016; Zhang et al. 2012). Moreover, different ion sources (e.g., ESI, 

APCI, and EI) and mass analyzers (e.g., TOF, QTOF, Orbitrap, FTICR) can be used 

in tandem with suitable separation methods in tissue metabolomics studies 

depending on the metabolites of interest. Direct injection-mass spectrometry (DI-

MS) of tissue extracts offers a “separation-free” platform for high throughput 

Figure 1.6: Representative HRMAS-NMR spectra and corresponding histopathology images of 
cancerous breast tissues of patients diagnosed with (A) invasive ductal carcinoma (80% tumour 
cells) and (B) invasive mucinous carcinoma with (60% tumour cells). Elevations in choline-derived 
metabolites, glycine and taurine were characteristic in tumour tissues compared to (C) non-
cancerous, adjacent tissues (0% tumour cells). Reproduced by Bathen et al. 2013 with permission. 
(Bathen et al. 2013) 
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metabolite profiling making it an attractive technique for large-scale metabolomic 

studies, such as shot-gun lipidomics (Y. Wang et al. 2015). However, DI-MS is 

prone to ion suppression due to matrix effects as well as lower specificity due to 

lack of resolution of isobaric ions that can contribute to false discoveries without 

stable-isotope internal standards; additionally unknown identification is 

challenging due to convoluted MS/MS spectra when compared to reference spectral 

databases without orthogonal retention/migration time information (Holmes et al. 

2015; Zhang et al. 2012).  

 

 Alternatively, ambient ionization MS is a rapid technique for the analysis 

of samples requiring minimal sample preparation for in situ metabolic profiling 

without separation (Y. Wang et al. 2015). In recent years, the use of ambient MS-

based techniques have increased for tissue metabolomics (Clendinen et al. 2017).  

Desorption electrospray ionization (DESI)–MS, first introduced by Cooks and 

colleagues (Takáts et al. 2004), enables the direct analysis of metabolites from 

intact tissue specimens by applying a fine spray of charged droplets to extract 

metabolites from the sample surface while facilitating droplet formation and 

collision prior to analysis via mass spectrometry (Clendinen et al. 2017). 

Importantly, DESI-MS also allow for mass spectral imaging of tissue that retains 

the underlying spatial distribution of metabolite concentrations lost with 

conventional metabolomic methods relying on tissue disruption, homogenization 

and extraction processes. DESI-MS has demonstrated its utility for providing 

intraoperative tissue characterization for disease diagnosis. For instance, Eberlin et 

al. (Eberlin et al. 2013), first developed a DESI-MS technique combined with 

machine learning methods (i.e., SVM) for brain tumour classification based on 

lipidomic profiling, which coincided with histopathology diagnosis in 32 surgical 

specimens (n =5). As seen in Figure 1.7, DESI-MS imaging of meningioma brain  

tissue samples revealed elevations in characteristic lipids, m/z 788.3 and m/z 885.3.  

Interestingly, the regional distribution of these lipids shown in the DESI-MS images 
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Figure 1.7: (A) DESI-MS imaging of brain tissue obtained from a case of meningioma with 
characteristic abundances of lipid species m/z 788.3 and m/z 885.3. The regional distribution of 
these species coincided with the distribution of meningioma cells based on histopathology results. 
(B) Mass spectrum of meningioma regions within the brain tissue specimen analyzed. Reproduced 
from Eberlin et al. 2013 with permission (Eberlin et al. 2013). 
 

were highly correlated with the distribution of meningioma cells as observed via 

histopathology of the same brain tissue specimen. The study demonstrated the 

utility of DESI-MS as an alternative, promising ambient MS technique to provide 

accurate diagnosis based on tissue characterization in tumours that coincided with 

gold standard techniques (e.g., histopathology) currently implemented within 

clinical settings. Probe electrospray ionization (PESI)-MS has also emerged as an 

ambient MS technique for real time, in vivo analysis for tissue specimens. The 

mechanism of ionization is achieved through insertion of an acupuncture needle 

into the sample of interest where water content enables ionization to occur upon 

application of high voltage (Clendinen et al. 2017; Hiraoka et al. 2007). Yoshimura 

et al., used PESI-MS as a minimally invasive technique for revealing differences in 

triglyceride expression among cancerous and non-cancerous kidney tissue ccRCC 

patients, signifying its potential for cancer diagnosis (Yoshimura et al. 2012). The 
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advent of laser ablation electrospray ionization (LAESI)-MS by Nemes and Vertes 

(Nemes and Vertes 2007), allowed both in situ and in vivo tissue analysis with no 

sample preparation over a wide mass range (up to 60 kDa). Using the native water 

content of the sample, a mid-infrared laser is focused on the sample matrix 

facilitating ablation followed by ionization (Clendinen et al. 2017; Y. Wang et al. 

2015). LAESI-MS has been applied to various biological specimens, most notably 

in brain tissue and single cells. One of the first applications of LAESI-MS for direct 

tissue analysis was performed by Shrestha et al., in which several metabolites and 

lipids were characterized in mouse brain tissue. This study showed the potential of 

LAESI-MS as well as other novel ambient MS-techniques for ex vivo analysis of 

specimens, where physiological and metabolic processes reflect closely those in 

their native state without any artifactual changes in biochemical activity due to 

extensive sample pretreatment (Shrestha et al. 2010). Rapid Evaporative Ionization 

Mass Spectrometry (REIMS) or “iknife” was recently introduced as an ambient 

ionization technique that allows for in situ tissue sampling for real time 

characterization of human tissue to guide surgical operations/procedures while  

facilitating rapid data analysis for patient diagnosis (Balog et al. 2013). A schematic 

of the REIMS instrumentation setup during intraoperative procedures is depicted in 

Figure 1.8. During surgery, a high frequency current is applied to the surgical 

blades to facilitate tissue plume formation in order to produce charged species that 

are subsequently removed by suction from the surgical site to the mass spectrometer 

for data analysis (Clendinen et al. 2017).  Intriguing results obtained by Balog et 

al., revealed that the intraoperative REIMS technique coincided with postoperative 

histopathology results in 96.2% of the cases (n = 81), demonstrating the potential 

of iknife technology to be translated for routine clinical use during surgical 

procedures while accelerating decision making to improve patient outcomes (Balog 

et al. 2013). While the use of ambient MS-techniques in tissue metabolomics is 

steadily increasing due to its ability to directly analyze intact tissue samples in real 

time, these techniques are prone to ion suppression and matrix effects, as well as  
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Figure 1.8: Schematic of the REMIS (iknife) instrumentation used for (A) monopolar and (B) 
bipolar electrosurgery for guiding surgical procedures while facilitating rapid data analysis and 
patient diagnosis. (C) Commercially available bipolar forceps used during electrosurgery to 
facilitate aerosol aspiration for MS data analysis. Reproduced from Balog et al. 2013 with 
permission (Balog et al. 2013). 
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isobaric/isomeric interferences due to lack of high efficiency separation methods 

prior to ionization, that can contribute to bias and false discoveries (Clendinen et 

al. 2017). 

 

A majority of tissue metabolomics studies still rely on hyphenated analytical 

platforms that couple different separation methods to MS in order improve 

selectivity and expand metabolome coverage despite longer total analysis times as 

a way to improve the resolution of isomeric and isobaric ions, enhance MS/MS 

spectral quality for metabolite identification, as well as reduce ion suppression 

effects between samples (Alonso et al. 2015; Y. Wang et al. 2015). Table 1.2 

summarizes key hyphenated-MS platforms that are commonly employed in tissue 

metabolomics studies. Within recent years, tissue metabolomics studies have used 

various instrumental configurations for targeted and nontargeted approaches 

(Figure 1.9). Overall, LC-MS is the most commonly used platform for tissue 

metabolomic studies to date (39%) due to the fact that complementary retention 

mechanisms can be used to resolve chemically diverse classes of metabolites when 

using reversed-phase (RP), hydrophilic interaction (HILIC) and/or ion-exchange 

column types in conjunction with optimal gradient elution programs. RP columns 

are the most column types employed in a majority of tissue metabolomics studies. 

However HILIC columns have been also gaining widespread use within recent 

years. As a result, the broad selectivity of LC-MS enhances metabolome coverage 

with high sensitivity, small sample requirements and ease of compatibility with 

various mass analyzers (Holmes et al. 2015; Wishart 2016). GC-MS is followed as 

the second most widely used analytical platform (23%) in tissue metabolomics 

studies, with ~14% of these studies utilizing both LC-MS and GC-MS to increase 

metabolome coverage of the tissue specimens analyzed (Garvey et al. 2014; 

Gonzalez-Riano et al. 2017; Lieblein-Boff et al. 2015; Meller et al. 2015). Both 

NMR and HRMAS-NMR together comprised of ~24% of methods applied for 

tissue metabolomic studies primarily due to its less destructive sample preparation 



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

22 
 

methods as compared to MS-based platforms that allows for direct measurement of 

metabolites within intact tissue (Alonso et al. 2015; Wishart 2016). Interestingly, 

while CE-MS is a high efficiency separation platform that is ideal for analysis of 

mass-restricted tissue specimens, it remains an underutilized technique in tissue 

metabolomics studies (4%) in comparison to other hyphenated-MS based platforms 

(Hatazawa et al. 2015; Satoh et al. 2017; Tang et al. 2018). Furthermore, DI-MS 

and FIA-MS are also underrepresented analytical platforms in tissue metabolomics 

studies (2%) due to the low specificity and issues with ion suppression and matrix 

effects, limiting their utility to largely targeted-based studies (Bijkerk et al. 2019; 

Singhal et al. 2017). Other analytical techniques have also been over recent years 

in tissue metabolomics studies include multidimensional separation techniques 

(e.g. GCxGC-MS), ambient ionization-MS techniques (e.g., DESI-MS, LAESI-

MS),(Guenther et al. 2015; Paine et al. 2016) and imaging techniques such as matrix  

assisted desorption ionization (MALDI)-MS imaging (Jung et al. 2016; Zhao et al. 

2018). 

 

Figure 1.9: Representative pie chart summarizing the most common analytical platforms used in 
tissue metabolomics studies from 2002 – March 2019. The inset depicts the distribution of other, 
less frequently used analytical platforms (i.e., GCxGC-MS, Ambient ionization-MS, ion mobility-
MS etc.) encompassed in the published metabolomics studies.   
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Table 1.2: Summary of hyphenated separation techniques coupled to MS for tissue metabolomics 
studies. Adapted from Wishart et al. (Wishart 2016), Holmes et al. (Holmes et al. 2015), and 
Kuehnbaum et al. (Kuehnbaum and Britz-McKibbin 2013). 
 

Platform Advantages Disadvantages 

Gas chromatography – 
mass spectrometry 
(GC-MS) 
 

 

 

 

 

- Highly sensitive and 
reproducible 

- Modest sample volume 
requirements (100 -200 
μL) 

- Widely available EI-MS 
spectral databases for 
metabolite ID 

- High resolution 
separations, including 
GC X GC 

- Robust and mature 
platform 

- Can be automated 

- Extensive sample 
pretreatment (i.e., 
sample 
derivatization) 

- Limited to volatile & 
thermally stable 
compounds 

- Long analysis times 
and low sample 
throughput 

- Limited column 
types as compared to 
LC 

 
Liquid chromatography 
– mass spectrometry 
(LC-MS) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Capillary 
electrophoresis-mass 
spectrometry 
(CE-MS) 
 

 

- Highly sensitive 

- Small sample volume 
requirements (10 – 100 
μL) 

- Simple sample 
preparation 

- Broad selectivity due to 
variety of columns 
available 

- Core shell or UHPLC for 
high efficiency 
separations, including 
LC X LC 

- Can be automated 
 
 

- High efficiency 
separation for polar/ionic 
compounds 

- Minimal sample volume 
requirements (< 20 μL) 

- Simple sample 
preparation 

- Minimal ion suppression 
- Accurate prediction of 

ion mobility for 
identification 

- Multiplexed separations 
for higher sample 
throughput 

 

 

- Standardization 
difficult with various 
columns and gradient 
elution programs 

- Prone to ion 
suppression due to 
ESI-MS 

- Limited MS/MS 
spectral databases for 
metabolite ID 

- Prone to batch effects 
due to instrumental 
drift 

- Poor precision 
(HILIC) 

 
- Moderate sensitivity 

with sheath liquid 
interface 

- Bias to charged 
compounds in ESI-
MS 

- Limited databases for 
metabolite 
identification 

- Poor migration time 
reproducibility due to 
changes in EOF 
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1.2.3 Pre-analytical QA/QC considerations to reduce false discoveries in 

tissue metabolomics 

 

In order to achieve reproducible research findings with high data quality in 

nontargeted metabolomics studies, care must be taken in the pre-analytical phase in 

the workflow to minimize false discoveries. Inadequate study power is a major 

limitation in tissue metabolomics studies due to limited sample sizes and small 

effect sizes compared to the large inherent biological variance in the study cohort 

(D. I. Broadhurst and Kell 2006; Ioannidis 2007). In order to reduce false 

discoveries, well-controlled observational studies should be performed where 

comparison groups are closely matched in terms of anthropometric and clinical 

characteristics (i.e., sex, age, BMI), especially when measuring small to modest 

effect sizes in the metabolome (Dunn, Broadhurst, Atherton, et al. 2011). 

Furthermore, it is crucial to implement stringent quality assurance (QA) and quality 

control (QC) practices in the experimental workflow to minimize bias and false 

findings. Quality assurance is defined as systematic practices that are routinely 

implemented prior to sample processing and data acquisition in order to 

successfully obtain high quality yet reproducible data that is likely free of bias. For 

instance, protocols that include addition of recovery standards (i.e., added before 

sample preprocessing) and internal standards (i.e., added to samples before data 

acquisition) is a crucial QA practice in order to assess and correct for variations 

associated with sample preprocessing and data acquisition, respectively (D. 

Broadhurst et al. 2018; Dudzik et al. 2018). Other examples of QA practices include 

the implementation of standardized operating procedures (SOP) with rigorous staff 

training in all aspects of the metabolomics workflow, including sample 

collection/storage, sample workup, instrument calibration and operation, 

preventative instrument maintenance, as well as data preprocessing steps (D. 

Broadhurst et al. 2018). Additionally, implementing QC samples in nontargeted 

metabolomics workflows has been emphasized within the last decade in the 

metabolomics community given lessons learnt from instrumental bias and false 
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discoveries in cancer biomarker studies in proteomics which have largely failed to 

reach the clinic (D. Broadhurst et al. 2018; Diamandis 2012; Dudzik et al. 2018; 

Dunn et al. 2012; Dunn, Broadhurst, Begley, et al. 2011; Lewis et al. 2016; Sangster 

et al. 2006) QC samples are implemented in workflows for multiple purposes: (1) 

to assess system stability and performance, (2) to evaluate technical precision and 

detect systematic bias and (3) to correct for within and between batch variations 

associated with long-term signal drift over time during data acquisition. QC 

samples should resemble the metabolite composition of the tissue specimen 

analyzed in a given study, such as a standard reference material (NIST) or a 

representative pooled sample from cohort under investigation (Dunn, Broadhurst, 

Begley, et al. 2011).  

  

QC practices are utilized to ensure QA practices have been fulfilled to 

achieve high data quality before and after data acquisition (D. Broadhurst et al. 

2018). During data acquisition, multiple steps should be implemented in 

metabolomics workflows to assess system suitability. At the start of analysis, blank 

samples are run to assess potential contamination of the column or capillary. 

Additionally, blank samples can also be injected intermittently between sequences 

of study samples to determine if sample carryover is observed; if a peak in the blank 

signal appears, the signal can be flagged and subsequently removed if its intensity 

is greater than a predefined threshold. Moreover, blank samples can be useful in the 

data preprocessing step of peak filtering where signals derived from solvents, 

sample collection and/or handling can be identified and removed from the final data 

matrix. After injecting blank samples at the start of the analysis, a mixture of 

authentic chemical standards is subsequently run to assess instrumental 

performance (i.e., accuracy and precision) prior to the analysis of the study samples. 

Ideally, the standards should cover a wide m/z range and RT or MT range in order 

to assess if performance factors such as sensitivity, RT/MT, and peak shape fulfill 

pre-determined acceptance criteria, such as a mean CV for metabolite RT < 2% 
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from QC samples with no evidence of peak splitting or ion suppression. If the 

standards do not fulfill the criteria, corrective maintenance measures should be 

performed, such as rigorous cleaning of the ion source, mass tuning etc. (D. 

Broadhurst et al. 2018).  However, if such criteria are satisfied, pooled QC samples 

should be injected immediately after the standards in order to equilibrate the 

system, which will assist in minimizing variability in RT or MTs and stabilizing the 

response of the detector (Zelena et al. 2009). Once good system suitability has been 

evaluated following repeat analysis of QC samples, the study samples are fully 

randomized and subsequently analyzed in batches while analyzing intermittent 

pooled QC samples after every 5 to 10 samples to monitor for signal drift with 

sufficient temporal resolution (D. Broadhurst et al. 2018; Dunn, Broadhurst, 

Begley, et al. 2011; Want et al. 2013). After data acquisition, it is recommended to 

evaluate instrumental performance and compare biological (between sample) and 

technical variances (repeat QCs) using unsupervised multivariate statistical 

methods, such as principal component analysis (PCA). Overall, QC samples ideally 

cluster closely together on a 2D scores plot when compared to the overall biological 

variance from the individual study samples (Figure 1.10 (A)) (D. Broadhurst et al. 

2018). Furthermore, depending on the type and total number of biological 

specimens analyzed, a coefficient of variance (CV) <  20%( Dunn, Broadhurst, 

Begley, et al. 2011; Sangster et al. 2006) or < 30%, (Lewis et al. 2016; Want et al. 

2010) is considered an adequate threshold for precision for metabolites in 

discovery-based metabolomic studies (D. Broadhurst et al. 2018; Gika et al. 2008). 

Additionally, the use of control charts for depicting random changes in responses 

for metabolites analyzed from QCs is an excellent strategy for evaluating long-term 

system drift, as well as detecting potential batch effects especially for shared/multi-

user instruments over weeks or months of continuous and especially intermittent 

operation (Wehrens et al. 2016). In order to minimize batch effects in 

metabolomics, several algorithms have been developed to perform batch correction 

including empirical Bayes approaches (W. E. Johnson et al. 2007) where  
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Figure 1.10: (A) Representative 2D PCA scores plot illustrating good technical variance through 
tight QC clustering (red) in comparison to the biological variance exhibited by the individual 
samples (blue). (B) Control chart depicting batch effects observed when individual study samples 
from multiple batches (blue = batch 1, green = batch 2, yellow = batch 3) are injected on the same 
instrumentation across several days. Using intermittent QCs (red) implemented in the workflow, 
batch correction can be performed (C) to correct for between-batch systematic error. Reproduced 
from Broadhurst et al. 2018 with permission (D. Broadhurst et al. 2018).  
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intermittent QCs injected during the experimental run are used to generate a 

smoothed model for specific feature intensities that can be used for correction as 

illustrated in Figure 1.10 (B) and (C) (Dunn, Broadhurst, Begley, et al. 2011). 

However, due to the a diverse range of instrumental platforms and data workflows 

adopted in metabolomics, a single unified QA/QC procedure will not fit all 

laboratories. Nonetheless specific guidelines outlined here are increasingly adopted 

to promote good analytical practice and transparency in reporting. 

 

1.2.4 Data preprocessing and statistical analysis  

Data preprocessing is a critical step in the nontargeted metabolomics for converting 

raw, complex data acquired through appropriate NMR or MS-based platforms to a 

clean data matrix suitable for statistical analysis and metabolite identification 

(Hendriks et al. 2011; van den Berg et al. 2006). This encompasses several steps 

including data filtering, peak detection and spectral deconvolution, time alignment 

and normalization and/or scaling (Castillo et al. 2011; Yi et al. 2016). In MS-based 

workflows, noise filtering is a crucial process that aims to separate authentic 

molecular features from background signal, chemical noise (i.e., from buffers and 

solvents) and/or random noise from instrumental interference. ESI is a soft 

ionization technique readily used in hyphenated-MS metabolomics platforms, 

including direct infusion/flow injection analysis, as well as LC and CE separation 

platforms. Often, each metabolite can generate several in-source fragments, isotope 

signals and adduct ions (e.g., [M + Na]+)that should be removed to eliminate 

redundant information in the data matrix and avoid false positives (Dunn et al. 

2013). Thereafter, through peak detection and spectral deconvolution, an authentic 

molecular feature reflecting a unique metabolite is annotated based on two 

orthogonal parameters, such as accurate mass and retention time (m/z:RT), which 

reduces data overfitting in cases when thousands of molecular features are detected 

among a much smaller number of samples. Currently, there are several open source 

programs (e.g., XCMS (Benton et al. 2008; Smith et al. 2006), MAVEN (Clasquin 
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et al. 2012; Melamud et al. 2010), apLCMS (Yu et al. 2009)) that integrate both 

filtering and peak detection algorithms into a single function (Castillo et al. 2011; 

Yi et al. 2016). For almost all types of metabolomics data, peak alignment is 

imperative in order to correct for instrumental drifts or interferences during data 

acquisition, such as retention and/or migration time shifts in separation-based MS 

platforms especially when using HILIC and CE without adequate column re-

equilibration or temperature regulation. A number of time alignment 

procedures/algorithms have been developed and employed in metabolomics studies 

including correlation optimized warping (COW) (Nielsen et al. 1998), dynamic 

time warping (DTW) (Pravdova et al. 2002) and recursive alignment by fast Fourier 

transform (RAFFT) (Wong et al. 2005). Time alignment allows molecular features 

to be compared and grouped accordingly between samples prior to statistical 

analysis (Castillo et al. 2011; Liland 2011). Additionally, missing values often 

emerge in metabolomics datasets due to heterogeneity of the study cohort (i.e., 

biological variance) and/or limitations in sensitivity of the platform employed when 

metabolite concentrations are below the method detection limit. Metabolites that 

are inconsistently detected above a user-defined threshold (e.g., < 75%) among 

individual samples are removed to avoid skewing the data. For representative 

metabolites that are frequently detected in the majority of samples, a suitable 

missing value estimation method can then be applied. Employing an inappropriate 

estimation method can potentially introduce further bias and consequently, affect 

statistical outcomes and interpretation. Common methods for handling missing 

features and/or non-detects in metabolomics include replacement with a small, 

predefined value (i.e., half the detection limit or the metabolite response measured 

in the dataset), mean/median replacement, or estimating missing data using various 

imputation algorithms such as the k-nearest neighbor (KNN) method or Bayesian 

PCA missing value estimation (Hrydziuszko and Viant 2012). 
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Thereafter, normalization and scaling methods can be applied to remove 

variations in the raw data due to analytical noise, sampling pretreatments or 

experimental bias while retaining the inherent biological variation (Hendriks et al. 

2011; Yi et al. 2016). A common strategy in MS-based workflows is to normalize 

feature responses to internal standards, based on the assumption that systematic 

error exclusively contributes to the variance observed in the internal standards. For 

tissue metabolomics studies, feature responses are also often normalized to the (wet 

or dry) weight of tissue specimen analyzed, to account for variations in tissue 

weights. Prior to statistical analysis, mathematical transformations (i.e., log 

transformation, power transformation) are employed to correct for 

heteroscedasticity and skewed distribution in the datasets (van den Berg et al. 2006; 

Yi et al. 2016). Scaling methods (i.e., autoscaling, pareto scaling, range scaling) are 

used to correct for variances in feature abundances, where variables with high 

abundance are scaled down to reduce their influence on statistical analysis 

compared with metabolites of lower abundance (Liland 2011; van den Berg et al. 

2006). According to Broadhurst and Kell, it is imperative to choose appropriate 

univariate and multivariate statistical analyses to avoid false discoveries in 

metabolomics studies (D. I. Broadhurst and Kell 2006).  In order to perform 

parametric, univariate tests such as the student’s t-test or analysis of variance 

(ANOVA), the data must have a normal, Gaussian distribution.  Thus, normality 

testing is a crucial step prior to statistical analysis as most metabolomics data are 

often skewed and not normally distributed. Graphical methods (i.e., histograms) as 

well as univariate normality tests such as the Kolmogorov-Smirnov (K-S) or 

Shapiro-Wilk (S-W) tests should be used to assess normality. Furthermore, 

mathematical transformations such as log transformation may be used to attempt to 

transform skewed distributions to a Gaussian distribution. However, if the data 

remains skewed, even after applying transformations, non-parametric tests must be 

used (i.e., Mann-Whitney U test) (D. I. Broadhurst and Kell 2006).  
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For large, complex metabolomics datasets, univariate significance testing is 

performed for tens to hundreds of metabolites simultaneously. Therefore, multiple 

hypothesis testing correction is essential in order to minimize false positives (i.e., 

Type I errors) (Saccenti et al. 2014; Vinaixa et al. 2012). The Bonferroni correction 

represents a conservative multiple hypothesis testing approach that adjusts the 

statistical p-value threshold (i.e., α = 0.05) in proportion to the number of variables 

(i.e., metabolites, n) in the dataset (i.e., α/n) (D. I. Broadhurst and Kell 2006). While 

this approach minimizes false positives by controlling the family wise error 

(FWER), applying a stringent threshold increases the potential for false negatives 

(i.e., Type II errors) (Vinaixa et al. 2012).  Other multiple testing correction 

methods such as the False Discovery Rate (FDR) provide less rigorous approaches 

for controlling false positives while also controlling for false negatives. For 

instance, the Benjamini-Hochberg procedure consists of adjusting the statistical p-

values to a unique, q-value (or p-corrected value) for each metabolic feature, based 

on statistical significance ranking of all features (Storey and Tibshirani 2003; 

Vinaixa et al. 2012). Regardless of the ultimate method chosen, it is crucial to 

correct for multiple testing when performing multiple univariate statistical tests in 

order to incorrectly reject a null hypothesis due to random chance and control Type 

I and II errors.  

  

Metabolomics datasets are characterized as highly dimensional/multivariate 

due to hundreds of metabolites being measured concurrently from numerous 

samples. Multivariate statistical analysis methods can therefore be used to evaluate 

the relationship (i.e., correlations, covariances) amongst all the metabolites 

simultaneously (Saccenti et al. 2014).  Unsupervised methods are exploratory 

methods  used to assess the overall data structure of the dataset while observing 

trends and groupings due to inherent variation amongst the data without a priori 

information on the data structure (Hendriks et al. 2011; Yi et al. 2016). PCA is a 

frequently used method for dimensionality reduction, that aims to decompose the 
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multivariate data to fewer principal components, where a majority of the inherent 

variation in the dataset is captured within the first few components (Hendriks et al. 

2011; Liland 2011). Hierarchical Clustering Analysis (HCA) is also a widely used, 

exploratory method in metabolomics to reveal natural groupings among samples or 

variables (i.e., metabolites) based on similarities in the form of distances or 

correlations (Liland 2011). Other unsupervised methods such as Self Organization 

Mapping (SOM) and Parallel Factor Analysis (PARAFAC) can also be utilized in 

metabolomics for dimensionality to reveal informative parts of the data from noise 

(Hendriks et al. 2011).  

 

In contrast, supervised methods have a priori information regarding the data 

structure and thus, are often used to generate predictive models for classification 

(Yi et al. 2016).  Partial Least Squares Discriminant Analysis (PLS-DA) is a widely 

used supervised method in metabolomics that maximizes covariances between 

independent variables (e.g., external stimuli) and the dependent variables (i.e., 

metabolite responses) in the form of components of lower dimensionality (Saccenti 

et al. 2014). Furthermore, PLS-DA can also reveal informative metabolites that 

discriminate amongst the groups in the form of variable ranking (i.e., variable 

importance in projection). Modifications to the PLS-DA method have also been 

utilized in metabolomics for classification modelling including orthogonal (O)–

PLS-DA (Trygg and Wold 2002) and multilevel PLS-D (Westerhuis et al. 2010). 

Furthermore, other supervised methods can also be encompassed in metabolomics 

as pattern recognition strategies such as SVM and random forests (RF) (Yi et al. 

2016). However, it is imperative to validate these predictive models using 

supervised methods to decrease the risk of data overfitting and avoiding false 

discoveries (D. I. Broadhurst and Kell 2006; Liland 2011). Cross-validation and 

test-set validation are readily used validation methods in metabolomics (Liland 

2011). In cross-validation, the dataset is split into mutually exclusive n subgroups 

of equal size; the model is trained n times where one of the subgroups are held out 
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as an internal validation set. Thereafter, the reproducibility (R2) and predictive 

ability (Q2) of the model are unraveled. Ideally, test set validation methods should 

be used to assess the accuracy of the model and is often underutilized in 

metabolomics studies. In test set validation, the data set is split into a training set 

and validation set (2:1). The training set is used to optimize the predictive model, 

while the validation set assesses the model accuracy that was previously optimized 

by the training set. Lastly, a test set (15-20% training set) is comprised of 

independent samples randomly selected from the training and validation test sets, 

which is used to better assess model accuracy (D. I. Broadhurst and Kell 2006). 

Other methods such as bootstrapping, permutation testing and rotation tests can also 

be used for method validation in metabolomics studies.  

 

1.2.5   Unknown metabolite identification using high resolution MS/MS 

Due to the chemical diversity of the human metabolome that is composed of a 

complex array of environmental exposures and by-products of host metabolism, the 

majority of detectable molecular features in MS based metabolomics remains 

largely unknown (Dunn et al. 2013). Indeed, a major fraction of the human 

metabolome is derived from exogenous metabolites, such as dietary and lifestyle 

influences, pharmaceuticals and the microbiome (Bujak et al. 2014; Dunn et al. 

2013; Wikoff et al. 2009). As a result, few publicly available databases (i.e., HMDB 

(Wishart et al. 2018), KEGG (Ogata et al. 1999), METLIN (Smith et al. 2005)) 

provide incomplete metabolite information on all metabolites present in human 

biospecimens, so reliance on structural elucidation for chemical identification of 

unknown metabolites is imperative prior to biological interpretation (Bujak et al. 

2014). This remains a significant bottleneck in nontargeted MS-based 

metabolomics studies (Dunn 2008; Wishart 2011). According to the Chemical 

Analysis Working Group of the Metabolomics Standard Initiative, four levels of 

metabolite identification are described in Table 1.3 as reporting standards in 

metabolomics studies.  



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

34 
 

  
Table 1.3: Four levels of metabolite identification confidence defined by the Metabolomics 
Standard Initiative. Adapted by Dunn, et al. (Dunn et al. 2013) 

Level Confidence of ID Support 

1 

 

2 

 
 

3 
 
 

4 
 

Confidently 
identified 

compounds 
 

Putatively annotated 
compounds 

 
 

Putatively annotated 
compound classes 

 
Unknown 

compounds 

Comparison of at least two or more properties with an 
authentic chemical standard under identical analytical 
conditions  
 
Comparison of physiochemical properties and/or 
spectra with publically available databases without 
reference to authentic chemical standards  
 
Comparison of physiochemical properties and/or 
spectral similarity of known class of compounds  
 
Unidentified and unclassified metabolites but can still 
be differentiated and quantified based on spectral data 

 

It is noteworthy that while the probability of level 1 identification is high for most 

compounds, stereoisomers that appear similar or identical in terms of both RT/MT 

as well as mass spectral characteristics must be considered. In order to elucidate 

accurate, unambiguous identifications of isomers, a suitable chromatographic 

method for chiral separations or NMR can be used to determine structural 

configurations of the stereoisomers (Dunn et al. 2013). This is especially important 

when the different configurations plays biologically important roles, such as 

cis/trans unsaturated fatty acids.  

 

In order to facilitate metabolite identification in non-targeted metabolomic 

workflows, accurate mass measurement is required to successfully match the 

molecular features to a small number of putative or most likely molecular formulas. 

This can be achieved using high resolution MS instruments after appropriate mass 

calibration (Scheltema et al. 2008). Furthermore, recent advances in commercial 

software from MS vendors have allowed automated generation of putative 

molecular formulas based on mass spectral features, such as the accurate mass of 

the molecular ion, as well as its isotopic pattern and charge state ([M+H]+). Another 
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strategy to reduce the number of putative molecular formulas is to apply the seven 

golden rules proposed by Kind and Fiehn (Kind and Fiehn 2007; Lommen 2014). 

The rules consist of restricting the number of elements during formula generation, 

applying LEWIS and SENIOR rules, applying isotopic pattern filters, checking for 

hydrogen/carbon ratios, checking for elemental ratios of heteroatoms (i.e., nitrogen, 

oxygen, phosphate and sulfur vs. carbon) and checking element ratio probabilities 

(Kind and Fiehn 2007). Developed methods in stable 13C isotope labelling can also 

be applied to aid in structural identification and quantification through 

differentiating between biologically derived metabolite ions from background 

(Giavalisco et al. 2008, 2009).  

 

As aforementioned, in order to achieve level 1 identification for a metabolite 

of interest, two or more orthogonal properties must be compared (e.g., m/z, RT or 

MT, fragmentation mass spectrum) to an authentic standard under identical 

acquisition conditions.  Tandem mass spectrometry (MS/MS) has gained 

widespread use as a tool for unambiguous metabolite identification in 

metabolomics studies. It is often performed using a targeted approach following 

data acquisition in order to (1) differentiate molecular features with the same 

molecular formula but similar chemical structure and/or (2) compare fragmentation 

spectra to public databases, mass spectral libraries and authentic standards for 

compound identification (Dunn et al. 2013).  For instance, Figure 1.11 illustrates 

previous work by DiBattista et al. comparing MS/MS spectra of a putatively 

identified metabolite, ophthalmic acid (OPA, m/z 290.1349) in a representative 

dried blood spot (DBS) extract to the authentic, chemical standard under identical 

optimal collisional induced energies (CID 10V) in the form of a mirror plot. 

Unambiguous identification (level 1) was confirmed based on excellent spectral 

matching for three distinct product ions, m/z 58.0644, m/z 161.0917 and m/z 

215.1022, and their relative intensities as well as low mass error (DiBattista et al. 

2019). 
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Figure 1.11: Mirror plot comparing MS/MS spectra of ophthalmic acid (OPA m/z 290.1349; red 
trace) in a pooled DBS extract to an authentic standard (blue trace). High matching score was 
achieved based on three characteristic product ions (m/z 58.0644, m/z 161.0917, m/z 215.1022) CID 
experiments performed at 10V. Reproduced by DiBattista  et al. 2018 with permission (DiBattista 
et al. 2019). 

 
Recently, there have been rapid developments in computational MS/MS 

software that can further assist in metabolite identification, particularly when 

authentic standards are not available (Hufsky et al. 2014). These approaches include 

MS/MS spectrum prediction that aims to directly predict mass spectra (e.g., 

MyCompoundID (Huan et al. 2015)), in silico fragmentation, which generates in 

silico derived mass spectra to match experimental MS/MS spectrum (e.g., MetFrag 

(Wolf et al. 2010), FiD (Heinonen et al. 2008), FingerID (Heinonen et al. 2012)) 

and de novo fragmentation to elucidate the structure of a precursor ion based on the 

observed fragments of the experimental spectrum (e.g.., fragmentation trees 

(Böcker and Rasche 2008; Rasche et al. 2011)).   

 

Other approaches such as applying prior biological (e.g., enzymatic 

transformations) and chemical (e.g., physiochemical properties based on RT/MT 
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behaviour, ionization behaviour) knowledge can assist in metabolite identification 

(Draper et al. 2009; Dunn et al. 2013; Yi et al. 2016). Furthermore, correlation 

analysis (i.e., Pearson, Spearman rank) can be used to reveal associations between 

metabolites (p < 0.05) resulting from commonly derived metabolic pathways and/or 

enzymatic reactions (Macedo et al. 2017). Figure 1.12 highlights in silico 

approaches used by DiBattista et al. to identify an unknown, modified glutathione 

analogue (m/z 388.1094) in DBS extracts. After confirming a tentative molecular 

formula based on its accurate mass, charge state and isotope patterning, a thiol-

specific chemical reactivity test was performed where excess dithiothreitol (DTT) 

was added as a reducing agent to a representative DBS extract. This resulted in 

attenuation of the signal and formation of a new reduced thiol (m/z 470.1438) as 

well as reduced glutathione (GSH, m/z 308.091) confirming the unknown 

metabolite was a mixed oxidized glutathione disulfide. The distinct fragmentation 

patterning generated through CID experiments of the precursor ion and chemical 

reactivity tests confirmed that the unknown ion was identified as an N-glycated 

glycine mixed oxidized glutathione (Glc-GSSG) (DiBattista et al. 2019) 

  

1.3  Current trends and challenges in tissue metabolomics in clinical research 

Tissue-based metabolomics studies have increased significantly within the last 

decade, especially in the context of human health and chronic diseases.  Since 

tissues are the origins of metabolic changes due to external stressors such as viral 

infections or carcinogen exposure, they are deemed a suitable specimen to analyze 

to further elucidate mechanisms underlying disease pathogenesis. However, recent 

metabolomics studies performed in human samples have shifted towards using 

tissue specimen with complimentary minimally invasive biological specimen (e.g., 

serum, urine, feces) as a more holistic approach in determining perturbations in 

both intracellular and circulatory/systemic metabolites as a result of disease 

progression and thus, find a mechanistic link among both specimens by offering a 

more convenient sample type for screening or testing in the population.  



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

38 
 

Figure 1.12: (A) Full scan TOF-MS spectra of unknown metabolite highlighting its most likely 
molecular formula as a divalent protonated species [MH22+] based on its accurate mass, charge state 
and isotopic patterning. (B) Thiol-specific chemical reactivity test performed by addition of DTT to 
a pooled DBS resulting in the attenuation of the signal and formation of a new reduced thiol (m/z 
470.144) suggesting the unknown metabolite as a mixed oxidized disulfide. (C) MS/MS 
fragmentation spectra consistent with a mixed oxidized glutathione disulfide with a modified N-
glycated glycine residue. Reproduced by DiBattista  et al. 2018 with permission (DiBattista et al. 
2019). 

 

 

 

 

If metabolites are identified in both specimen to be differentially expressed between 

cancerous vs. adjacent noncancerous tissue and/or diseased vs. control samples, the 

metabolite can be used as a potential, tissue-derived biomarker for assessing disease 

diagnosis, predicting progression or disease subtypes or monitoring treatment 

responses to therapy without reliance on invasive tissue biopsy procedures. Table 

1.4 summarizes key tissue metabolomics studies recently published with 

applications in clinical medicine including biomarker discovery for disease 

diagnosis and monitoring progression. Perhaps one of the most well-known tissue 

metabolomics studies to date was the discovery of sarcosine as a marker for prostate 
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cancer published in Nature by Sreekumar et al. in 2009 (Sreekumar et al. 2009). 

Elevations in sarcosine were observed in metastatic and clinically localized prostate 

cancer tissues compared to benign tissues (n = 42); these changes were associated 

with cancer progression and notably, observed in patient matched serum (n = 110) 

and urine (n = 110) samples. This link between sarcosine and prostate cancer 

progression led the authors to conclude that sarcosine could be a promising, 

potential biomarker for prostate cancer. However, since its publication, there have 

been conflicting studies reporting poor associations between sarcosine levels and 

prostate cancer progression in both urine (Jentzmik et al. 2010) and serum (Ankerst 

et al. 2015), suggesting its limited utility for prostate cancer screening. These 

discordant findings may be due to a number of inconsistencies in the study design 

and sample collection procedures of these validation studies. For instance, in a 

study published by de Vogel et al., it was revealed that high serum sarcosine levels 

were associated with reduced prostate cancer risk, contrary to the first findings by 

Sreekumar et al. (De Vogel et al. 2014). However, it was reported that a large time 

window between serum sarcosine measurement and biopsy was reported which 

may have explained the disparity in results among both studies. In fact, an editorial 

published by Jack A. Schalken in the journal, European Urology, emphasizes the 

need for standardization of biomarker validation studies, substrate collection 

procedures and parameters in order to make biomarker studies more comparable 

(Schalken 2010). While the role of sarcosine in the diagnosis of prostate cancer 

currently remains unclear, the preliminary findings published Sreekumar et al. 

provided a basis for determining less invasive biomarkers derived from the direct 

site of disease origin (i.e. tissue) for diagnosis and disease progression, while also 

revealing unknown underlying molecular mechanisms of the disease. Care must be 

taken when validating these biomarkers in biospecimens within larger cohorts in 

future studies in order to make appropriate conclusions regarding their diagnostic 

utility in the population.  
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Other tissue metabolomics studies have used similar approaches for biomarker 

discovery for disease diagnosis and prognosis. Huang et al. performed nontargeted 

metabolite profiling to determine markers for differentiating tumour tissues from 

adjacent and distal noncancerous tissues in HCC patients (n = 50). Metabolic 

correlation networks revealed upregulations in fatty acids, glycolytic metabolites, 

and amino acids, while downregulations in bile acids, TCA cycle intermediates, 

phospolipids and short chain acylcarnitines were also observed. Of these 

metabolites differentially expressed in HCC tumour tissue and noncancerous tissue, 

a combination of betaine and propionylcarnitine were shown to be significantly 

different in serum of HCC patients (n = 139) from patients with non-malignant liver 

diseases including cirrhosis (n = 81) and hepatitis (n = 81), demonstrating the 

diagnostic potential of this metabolite panel in the clinical diagnosis of HCC (Q. 

Huang et al. 2013). More and colleagues used a similar approach to determine 

potential biomarkers in serum of invasive ductal carcinoma (IDC) patients (n = 76), 

benign patients (n = 33) and healthy controls (n = 33) that were highly correlated 

to IDC cancer progression seen in tissues (n = 24 IDC, n = 24 benign, n = control). 

Three amino acid metabolites (tyrosine, tryptophan and creatine) were shown in 

both the serum and tissue to be differentially expressed as a result of IDC 

progression, suggesting a bi-directional interaction between both specimens and 

potential biomarkers that could be used in monitoring IDC progression and severity 

for future studies (More et al. 2017). Recently, Wang et al. performed nontargeted 

metabolomics on paired colon tissues and plasma samples from CRC patients (n = 

34) undergoing colorectal surgery to discover metabolite correlations among both 

specimen that could provide deeper insight to CRC pathogenesis (Z. Wang et al. 

2019) . As a result, over 240 metabolites (143 unregulated, 70 downregulated) were 

consistently detected and dysregulated in both tumour derived tissue and plasma of 

CRC patients. The authors then sought out to select a panel of tissue-derived 

metabolites for CRC diagnosis and prognosis using additional plasma samples 

obtained from CRC patients (n = 73) and sex- 
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Table 1.4: Metabolomics studies recently published that encompass paired tissue and less invasive 
biofluids for applications in biomarker discovery, disease diagnosis and progression in clinical 
research.  

Disease Specimen 

Analytical 

Platform(s) Key Findings Ref 

Prostate Cancer 

(PCA) 
 
 
 
 
 
Hepatocellular 

carcinoma 

(HCC) 
 
 
 
 
 
 
 
 
 
 
Invasive Ductal 

Carcinoma 

(IDC) 
 

 

 

Colorectal 

cancer (CRC) 
 

 

 

 

 

Colorectal 

cancer (CRC) 
 

 

Prostate  
(n = 50) 
Urine  

(n = 110) 
Plasma 

 (n =110) 
 
Liver (n = 50) 

Serum  
(n = 298) 

 
 
 
 
 
 

 
 
 
 

Breast  
(n = 72) 
Serum  

(n = 142) 
 

 
Colon (n = 50) 
Fecal (n = 70) 

 
 
 
 

 
Colon (n = 68) 

Plasma (n = 
282) 

LC-MS, 
GC-MS 

 
 
 

 
 

LC-MS 
 
 
 
 
 
 
 

 
 
 
 
 

LC-MS, 
GC-MS 

 
 

 
 

1H NMR 
 
 
 
 
 

 
LC-MS 

- Increased sarcosine observed 
in metastatic and clinically 
localized tissue, urine and 
serum due to cancer 
progression compared to 
negative controls  
 
- Increased amino acids, SFAs, 
MUFAs, glycolytic 
metabolites; 
decreased bile acids, PUFAs, 
short chain acylcarnitines in 
tumour tissues  
-Betaine and 
propionylcarnitine in serum 
differentially expressed in 
HCC patients compared to 
cirrhosis and chronic hepatitis 
patients   
 
- Tyrosine, tryptophan and 
creatine showed differences in 
both tissue and serum due to 
IDC progression compared to 
healthy controls  
  
-Decreased butyrate; increased 
succinate, alanine, lactate and 
glutamine differentially 
expressed in tumour tissues 
and feces compared to healthy 
controls   
 
-8 metabolite panel (creatinine, 
dihydrothymine, tryptophan, 
xanthine, tyrosine, gluconic-γ-
lactone, his-gly and 
chenodeoxycholic acid) 
significantly differed in tumour 
tissue and plasma compared to 
adjacent, normal tissue and 
controls respectively.  

(Sreekumar 
et al. 2009) 
 
 
 
 
 
(C.-C. 
Huang et al. 
2009)  
 
 
 
 
 
 
 
 
 
 
(More et al. 
2017) 
 
 
 
 
(Y. Lin et 
al. 2019) 
 
 
 
 
 
(Z. Wang et 
al. 2019) 

Abbreviations: SFA = Short chain fatty acids,, MUFA = monounsaturated fatty acids, PUFA = 
polyunsaturated fatty acids  
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matched polyp controls (n = 73). Eight metabolites including amino acids 

(tryptophan, tyrosine, creatinine), bile acids (chenodeoxycholic acid), dipeptides 

(histidinyl-glycine), purine metabolites (dihydrothymine, xanthine) and 

gluconolactones (gluconic-γ-lactone) were selected as potential biomarkers for 

monitoring CRC progression (Z. Wang et al. 2019). Additionally, Lin et al. used 

NMR-based metabolomics to determine metabolite signatures of CRC in paired 

tumour tissues (n = 50) and fecal samples (n = 70). The authors observed consistent 

changes in butyrate, lactate, alanine, glutamate and succinate in colonic tissues and 

feces of CRC patients, compared to healthy controls, suggesting the potential utility 

of fecal samples as a novel, less invasive specimen for early detection of CRC (Y. 

Lin et al. 2019).  

 

Despite the utility of using tissues for nontargeted metabolomics studies, 

persistent challenges still remain including limitation in tissue quantities and lack 

in standardization of tissue extraction procedures.  As a result, recent efforts have 

been made by metabolomics researchers to address these issues. Since 2007, several 

studies have been performed to standardize tissue extraction procedures for NMR 

and MS-based platforms (C. Y. Lin et al. 2007; Wu et al. 2008). Earlier studies 

focused on developing rapid yet simple metabolite extraction methods that result in 

high metabolite recoveries. However, these methods were optimized on only one 

to two tissue specimens (i.e., liver, skeletal muscle) and thus, may not be applicable 

to other tissue types that differ in composition. In 2012, Römisch-Margl and 

colleagues sought out to develop a simple, high throughput metabolite extraction 

method amenable for several tissue types (i.e., liver, kidney, skeletal muscle, 

adipose and brain) in two different species (i.e., bovine, mouse) using a targeted 

metabolomics approach (Römisch-Margl et al. 2011). Various extraction solvents 

were tested including: methanol, ethanol, phosphate buffer as well as combinations 

of different solvent systems (e.g., ethanol and dichloromethane). While some 
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extraction procedures performed better in some tissue types compared to others, 

overall methanol extractions were preferred for most tissue types and amenable for 

both NMR and hyphenated-MS techniques (Römisch-Margl et al. 2011). Most 

recently, Zukunft et al., developed a high throughput extraction method for a wide 

range of murine tissues, given the high incidence of mouse models being utilized 

in tissue metabolomics studies in the last 5 years (Zukunft et al. 2018). Optimization 

of extraction protocols were performed on over 10 different tissue types (i.e., liver, 

kidney, skeletal muscle, adipose, brain, pituitary gland, lung, bone, adrenal glands, 

testes, ovaries) using three solvent systems (i.e., methanol, phosphate buffer, and 

ethanol with phosphate buffer). In general, methanol and a mixture of ethanol with 

phosphate buffer provided high metabolite yields, for both hydrophilic (e.g., amino 

acids, acylcarnitines) and lipid (e.g., glycerophospholipids) metabolites, with good 

reproducibility (CV<15%) and ionization efficiency for most murine tissues 

(Zukunft et al. 2018).  

 

Due to the invasive nature of tissue biopsies in humans, limited sample 

quantities are typically obtained (~60 – 120 mg wet weight) (Alves et al. 2015) and 

often need to be utilized for other “omics”-based platforms (e.g., transcriptomics, 

proteomics) or clinical tests (e.g. histopathology, cytology). Therefore, nontargeted 

tissue metabolomics studies often face the challenge of achieving broad metabolite 

coverage with minimal tissue samples. Recent studies have developed standardized 

workflows to overcome this challenge by maximizing the amount of metabolite 

information from the same tissue. Vorkas et al., developed a pipeline for untargeted 

analysis using a simple extraction protocol to extract hydrophilic and lipid 

metabolites from the same arterial tissue to improve metabolome coverage while 

employing UPLC-MS as a single platform. The proposed workflow implements 

extensive QA/QC practices (e.g., intermittent injections of pooled QCs and blank 

samples) while also employing unbiased LC-MS/MS acquisition during data 

acquisition to aid in unknown identification to permit simultaneous collection of 
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structural information while reducing analysis time. This work demonstrates recent 

developments in methodology that addresses gaps in tissue metabolomics studies 

(i.e., need for multiple analytical platforms, limitations in sample quantities) that 

can be applied in future studies to achieve high data quality, broad metabolite 

coverage while minimizing false discoveries (Vorkas et al. 2015).  

 

1.4 Thesis motivations and objectives: new innovations in biomarker discovery 

and tissue metabolomics  

 

Metabolomics provides a unique approach for biomarker discover for early 

detection of treatable diseases of unknown etiology while also providing insights 

to the underlying mechanisms regarding disease pathophysiology. Biomarker 

discoveries in metabolomics have relied on surrogate biofluids (e.g., plasma or 

serum) as a more convenient sample type for screening or testing in populations. 

Despite its less invasive sample collection, biofluids are non-organ specific 

reflecting numerous biochemical processes within organs throughout the body, 

which may complicate biological interpretations. Thus, metabolomics studies on 

tissue specimens are necessary in order to gain direct insights to the intracellular 

metabolic changes occurring at the direct site of the disease. In this context, the 

work in this thesis contributes to new innovations in biomarker discovery and tissue 

metabolomics using multiplexed separations with unique data workflows and 

stringent QC. The first part of this thesis focuses on the discovery of novel, putative 

blood-based biomarkers for population-based screening of high risk adults to 

NASH progression (Chapter II) as well as early detection of sarcopenia related 

muscle loss and function in high risk older adults (Chapter III). The second part of 

this thesis describes two unique tissue metabolomics studies. The first study 

involves characterizing the human skeletal muscle metabolome and matching 

fasting plasma specimens from a cohort of recreationally active males participating 

in standardized exercise trials following bicarbonate pre-treatment (Chapter IV). 

The second study involves the comprehensive characterization of murine placental 
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tissue from maternal dams fed a controlled diet during gestation to determine the 

role of biological sex on adaptive metabolic responses on placental function, fetal 

growth and development (Chapter V).  

 

 

1.4.1 Multiplexed separations for serum g-glutamyl-dipeptides in NASH 

patients 

 

Nonalcoholic Fatty Acid Liver Disease (NAFLD) is a spectrum of liver diseases 

that has drastically increased in prevalence in Western populations due to the rise 

in the metabolic syndrome and insulin resistance (Benedict and Zhang 2017). While 

a majority of NAFLD patients exhibit mild forms of liver diseases, up to 30% often 

progress to severe forms of diseases such as non-alcoholic steatohepatitis (NASH), 

fibrosis and cirrhosis where irreversible liver damage can result (Angulo 2002). The 

pathogenesis is complex and multifactorial, contributed by genetic, epigenetic and 

environmental factors; however it remains largely unknown including its 

progression to NASH (Dowman et al. 2010). Thus, there is an urgent need to 

advance our understanding of NAFLD disease progression while elucidating its 

pathogenesis in order to identify disease severity in patients that are at higher risk 

for liver-associated morbidity and/or mortality (Rowe 2018). Chapter II presents a 

targeted, high throughput screening platform developed through an industrial 

collaboration with Human Metabolome Technologies (HMT) Inc. in Tsuruoka, 

Japan, for rapid screening of serum g-glutamyl-dipeptides in NASH patients (n = 

116, Age: 52 ± 15 years).  Through rigorous method optimization and validation, 

this work demonstrates the utility of this multiplexed, metabolomics workflow in 

large scale metabolomics studies that incorporates extensive QA/QC practices to 

reduce bias and false discoveries while increasing sample throughput.  

Unsupervised pattern recognition methods (i.e., HCA) revealed significant distinct 

NASH subgroups based on circulating the g-glutamyl dipeptide levels, which were 

inversely correlated with serum g-glutamyl glutamyltransferase (GGT) activity. 

Collectively, these findings suggested the key role of the g-glutamyl dipeptide cycle 
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in the pathogenesis and progression of NASH that may provide better risk 

assessment of NASH patients who suffer from co-morbidities, while 

complementing current liver enzyme screens and histopathology.  

 
 
1.4.2 Plasma metabolic phenotyping for assessing the impact of short-term 

step reduction in older adults  

 

Sarcopenia is characterized as the involuntary loss of skeletal muscle mass,  

strength and function that occurs concurrently with aging around the fifth decade 

of life, at an annual rate of 1-2% (Janssen et al. 2002; Walston 2012; Ziaaldini et 

al. 2017).  The onset and progression of sarcopenia is caused by multiple factors 

(e.g., chronic inflammation, hormonal changes, malnutrition, prolonged physical 

inactivity) (Landi et al. 2015; Marty et al. 2017; Walston 2012), that elicit 

physiological and morphological changes in skeletal muscle structure and function 

(Shafiee et al. 2017; Ziaaldini et al. 2017). The progressive decline in muscle 

quality results in numerous adverse effects such as physical impairments (e.g., 

disability and mobility disorders) and increases chronic disease risks (e.g., type 2 

diabetes), leading to an overall decline in the quality of life among the elderly 

(Shafiee et al. 2017; Ziaaldini et al. 2017), while placing a burden on medical 

resources. Evidently, there is an urgent need to implement public policies to 

develop preventatives strategies for sarcopenia progression, especially among 

increasing geriatric populations. However, the underlying molecular mechanisms 

associated with sarcopenia remain unclear. In Chapter III, nontargeted metabolite 

profiling was performed using multisegment injection-capillary electrophoresis-

mass spectrometry (MSI-CE-MS) in a cohort of healthy older adults (n = 17, Age: 

69±4 years) participating in a two week step reduction intervention (<1000 

steps/day), followed by two weeks of recovery, returning to normal habitual 

activity. Repeated fasting plasma specimens were collected at baseline, after step 

reduction and following recovery. Short-term step reduction elicited increases in 

plasma metabolites associated with muscle energy metabolism (glutamine, 



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

47 
 

creatine, carnitine and deoxycarnitine) as a result of deceased myofibrillar protein 

synthesis, compared to baseline. Decreases in uremic toxins (indoxyl sulfate, 

andhippuric acid) and changes in glutathione precursors (oxoproline and 

methionine) were also observed with step reduction. Interestingly, these 

metabolites did not fully return to baseline levels following recovery. To the best 

of our knowledge, this is the first metabolomics study to report the impacts of acute 

physical inactivity in overweight/pre-diabetic older adults to elicit metabolic 

dysregulation to stimulate muscle disuse in a community setting less severe than 

prolonged bed rest or hospitalization. Our findings revealed important underlying 

metabolic pathways that advance our understanding of the pathophysiology of 

sarcopenia while providing putative markers for routine monitoring of sarcopenia 

progression in older adults.  

 

1.4.3 Muscle metabolome characterization for assessing the impact of interval 

exercise and bicarbonate ingestion 

 

Bicarbonate is an alkalinizing agent that has long been touted as a supplement to 

attenuate muscle fatigue and improve exercise performance and/or recovery (Carr 

et al. 2011; McNaughton et al. 2016; Shelton and Kumar 2010). Despite over 80 

years of research efforts in assessing the effects of bicarbonate on strenuous 

exercise in human interventions, the precise mechanisms of action beyond blood 

pH and muscle bioenergetics remain to be fully elucidated (Carr et al. 2011). In 

Chapter IV, we employed two orthogonal analytical platforms for nontargeted 

metabolite profiling using MSI-CE-MS and targeted analysis of electrolytes (e.g., 

potassium, sodium, magnesium, calcium) using CE with indirect UV detection to 

characterize mass-limited muscle tissue biopsies (≈ 2 mg fried mass) and paired 

plasma specimens from a cohort of healthy, active men (n =7, Age = 22 ± 2 years) 

participating in standardized interval exercise trials with and without oral 

bicarbonate pretreatment (0.4 g/kg body mass). In this double-blinded, placebo-

controlled, cross-over study design, muscle tissue biopsies and matching plasma 
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specimens were collected at rest, post-exercise and recovery. A quantitative, tissue 

extraction protocol was first developed for mass-limited, lyophilized tissue (< 5 

mg) in order to maximize metabolite recovery without deleterious oxidation or 

hydrolysis effects. Thereafter, characterization of the human skeletal muscle 

metabolome was achieved resulting in the identification and quantification of more 

than 80 polar/ionic metabolites (CV < 30%) were consistently detected in a majority 

(> 75%) of the samples. Complementary statistical methods revealed specific 

biomarkers associated with interval exercise and/or bicarbonate treatment 

responses. Our findings showed that bicarbonate ingestion prior to interval exercise 

elicited a modest treatment effect on metabolic pathways associated with ionic 

homeostasis (potassium), purine degradation (uric acid), glutathione metabolism 

(oxidized mixed disulfides) and histidine-containing dipeptide (anserine), that has 

previously been unreported within human skeletal muscle. This work is crucial in 

order to advance our basic understanding of acute alkalosis and its impact on the 

preservation of contracting muscle function during exercise-induced stress and 

metabolic acidosis. Moreover, this study emphasized the importance paired tissue 

and plasma specimens for gaining more holistic, deeper insights on skeletal muscle 

health. 

 

 

1.4.4 Placental metabolome characterization for elucidating in utero sex 

specific adaptations  

 

The placenta is a key metabolically, active organ that plays functional roles in 

nutrient delivery, gas exchange and fetal waste removal while providing insights to 

maternal and fetal interactions during gestation (Gabory et al. 2013). There is 

growing evidence suggesting that the biological sex associated with the placenta 

influences fetal responses to external stimuli in utero during pregnancy; many of 

which are mediated by placental genes, proteins and steroid pathways (Clifton 

2010). However, the precise biochemical mechanisms associated with sex-specific 

adaptations to pregnancy and its link to placental function and fetal development 
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have yet to be elucidated. Herein, multisegment injection-capillary electrophoresis-

mass spectrometry (MSI-CE-MS) was used as a multiplexed metabolomics 

platform to characterize maternal murine placental tissue (≈ 1-2 mg dried weight) 

in mice fed a controlled diet prior to and during gestation. Characterization of the 

placental metabolome resulted in more than 130 unique, polar/ionic and lipid 

metabolites that spanned a wide dynamic range. Overall, our findings revealed 

subtle differences in metabolic profiles between male (n = 14) and female (n = 14) 

placentae derived from the same control-fed maternal mice. Interestingly, 

metabolites involved in beta-oxidation (short-chain acylcarnitines) as well as purine 

degradation (uric acid) were increased in females compared to males. These 

findings will advance our understanding of how males and females elicit different 

metabolic adaptations in the placenta that may contribute to differences in placental 

function, fetal growth and development.  
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Chapter II: Rapid Screening of Serum g-Glutamyl Dipeptides for Risk 
Assessment of Patients with Nonalcoholic Steatohepatitis and Impaired 
Glutathione Salvage Pathway  
 
 
2.1 Abstract  

Non-alcoholic fatty liver disease (NAFLD) is the most common preventable 

chronic liver disorder in developed countries whose prevalence is increasing 

worldwide due to its association with obesity, metabolic syndrome and type 2 

diabetes. However, the exact mechanisms of NAFLD pathophysiology remain 

poorly understood including its progression to the more severe non-alcoholic 

steatohepatitis (NASH). New advances for early detection and monitoring of 

NASH progression are limited due to the lack of specific blood biomarkers 

requiring invasive liver biopsies for histopathology. Herein, multisegment 

injection-capillary electrophoresis-tandem mass spectrometry (MSI-CE-MS/MS) is 

validated as a high throughput, robust and quantitative platform for targeted 

analysis of a panel of sixteen serum g-glutamyl dipeptides from a cohort of NASH 

adult patients from Japan (median age=50 years, median BMI=27 kg/m2, n=116). 

Multiplexed electrophoretic separations based on MSI-CE-MS/MS enable the 

design of customized serial sample injection formats and unique data workflow for 

accurate determination of g-glutamyl dipeptides with quality control, whereas use 

of a liquid coolant device to the capillary outlet improved long-term migration time 

stability. Unsupervised pattern recognition methods revealed two distinctive NASH 

sub-groups despite having similar clinical phenotypes and NASH activity scores 

(median NAS ≈ 6.0) based on their circulating g-glutamyl dipeptide status. There 

was an inverse correlation between serum g-glutamyl dipeptide concentrations and 

g-glutamyltransferease (GGT) enzyme activity (r = -0.46; p = 2.5 E-7) inferring a 

low-risk (n=64) as compared to a high-risk (n=52) patient sub-group with defective 

glutathione salvage pathway and likely poor clinical prognosis. Our findings 

highlight the key role of defects in the g-glutamyl cycle for differentiation of NASH 
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patients that may enable better risk assessment of long-term survivorship as a 

complement to standard liver enzyme screens and histopathology. 

 

2.2 Introduction 

Nonalcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic 

liver diseases in developed countries with an overall prevalence of 20-30%, which 

is characterized by the accumulation of fat in hepatocytes not caused by excessive 

alcohol consumption, steatogenic medication, viral infection or inherited genetic 

disease.1,2 The alarming rise in NAFLD prevalence coincides with a global 

epidemic of obesity, metabolic syndrome and insulin resistance elicited by a poor 

diet and/or an increasingly sedentary lifestyle.2 NAFLD encompasses a complex 

disease spectrum ranging from steatosis to more severe forms of liver disease, 

including nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, where 

progressive inflammation and liver damage is evident.3 Over 70% of NAFLD 

patients exhibit simple steatosis and are largely asymptomatic, however those that 

suffer from more severe forms, such as NASH are at risk for lower life expectancies 

with poor prognosis due to liver failure.4 As a result, liver transplantation remains 

the only viable treatment option in more advanced stages of NASH-associated 

cirrhosis,5 whereas lifestyle modifications are efficacious for the treatment of early 

stages of NAFLD with a loss > 10% of body weight reported to improve 

necroinflammation.6 As a result, there is an urgent need for prevention of liver 

disease progression in NAFLD on a population level, including risk assessment 

tools for identifying patients who are at higher risk for liver-associated morbidity 

and/or mortality.7  

 

 There remains a lack of an international consensus on methods optimal for 

routine screening of NAFLD with recommendations for increased vigilance among 

adults having metabolic comorbidities, including obesity, type 2 diabetes and 

dyslipidemia.8 Conventional liver enzyme blood tests, including elevations in 
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alanine aminotransferase (ALT), aspartate aminotransferase (AST) and/or γ-

glutamyltransferase (GGT) may be indicative of liver function abnormalities and 

inflammation, however a normal test result may not exclude NAFLD due to its poor 

sensitivity.7 Formal diagnosis of suspected patients is typically achieved by 

abdominal ultrasound imaging followed by confirmation with histopathology; 

Nonalcoholic fatty liver (NAFL) is defined as the presence of  ≥ 5% hepatic 

steatosis without evidence of hepatocellular injury, whereas NASH is defined as ≥ 

5% hepatic steatosis together with inflammation and hepatocyte injury (i.e., 

ballooning) with or without any fibrosis.9  As a result, liver biopsies remain the gold 

standard for distinguishing NAFL from NASH based on standardized histological 

grading/scoring systems, such as the NAFLD Activity Score (NAS)10,11 However, 

liver biopsies are highly invasive, prone to complications and costly to perform in 

routine clinical settings while being prone to intra- and inter‐pathologist 

variability.12 Alternatively, there is growing interest in developing less invasive 

blood biomarkers notably for predicting liver inflammation and advanced fibrosis 

without biopsies, but these have been far less validated for NASH as compared to 

other chronic liver diseases.13,14 Recently, Soga et al.15 identified a series of γ-
glutamyl dipeptides from nontargeted metabolomic studies as potential serum 

biomarkers for characterizing liver disease progression among nine different forms 

of liver disease, including differentiating NASH from simple steatosis. However, 

the clinical utility of serum γ-glutamyl dipeptides have not yet been investigated for 

routine screening or prognostic testing in large NASH patient populations as 

compared to standard biochemical tests and histopathology from liver biopsies. 

 

 Herein, we introduce a high throughput platform for quantitative 

determination of sixteen serum γ‐glutamyl dipeptides from a cohort of adult 

Japanese NASH patients (n=116) using multisegment injection-capillary 

electrophoresis-tandem mass spectrometry (MSI-CE‐MS/MS).16-19 MSI-CE-

MS/MS offers a multiplexed platform for simultaneous analysis of seven or more 
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samples within a single run using customized serial injection configurations as 

compared to conventional separation methods,20 which allows for stringent quality 

control and batch correction optimal for large-scale epidemiological studies.21,22 

Additionally, the use of a liquid coolant tubing sleeve for better thermal regulation 

of the capillary section outlet prior to the ion source is demonstrated to improve 

overall long-term migration time stability in conjunction with excellent technical 

precision and accuracy for reliable serum γ‐glutamyl dipeptide quantification. 

Noteworthy, unsupervised multivariate pattern recognition identified two 

distinctive sub-groups of NASH patients with contrasting circulating γ‐glutamyl 

dipeptide status despite having similar liver histopathology test results that was 

inversely correlated with serum GGT activity. We hypothesize that lower 

circulating γ‐glutamyl dipeptides may reflect an impaired glutathione salvage 

pathway among high-risk NASH patients susceptible to increased oxidative 

stress/inflammation and likely poor clinical prognosis. 

 

2.3 Materials and Methods  

2.3.1 Study Cohort 

Fasting serum samples were collected from a cohort of adult Japanese patients 

(n=116) from Tokyo Women’s Medical University who were diagnosed with 

probable (NAS = 3-4, 14%) or definitive NASH (NAS ≥ 5.0, 86%) with a median 

NAS of 6.0 (ranging from 3.0 to 7.5) following standardized histopathology grading 

and exclusion of excessive alcohol intake and/or other chronic liver diseases. 

Written informed consent was acquired from all the patients and the study design 

followed the ethical guidelines of the 1975 Declaration of Helsinki. Standard liver 

enzyme and blood protein tests were performed at the Tokyo Women’s Medical 

University using serum aliquots stored at -20 °C, which were also used for 

determination of serum g-glutamyl dipeptides in this study. Table 2.1 summarizes 

all the patient characteristics and clinical information of the NASH cohort, as well 
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Table 2.1: Summary of the characteristics of a cohort of Japanese NAFLD patients who were 
classified in two sub-groups based on their distinctive serum g-glutamyl dipeptide status 
 

Clinical 
Parameter* 

Full Cohort 
(n=116) 

Subgroup Ad 
(n=52) 

Subgroup Bd 
(n=64) 

p-
valued 

Age (years) 53 (21) 50 (22) 54 (22) 0.15 
Sex     M        56 (48%) 28 (54%) 28 (44%) -- 
            F      60 (52%) 24 (46%) 36 (56%) 

Albumin (g/dL) 4.4 (0.50) 4.5 (0.63) 4.3 (0.50)  0.23 
Platelet count  

(x 109/L) 21 (10) 23 (11) 21 (9) 0.62 

AST (µmmol/min) 43 (35) 50 (42) 40 (30) 0.24 
ALP (µmmol/min) 249 (131) 267 (127) 234 (116) 0.11 
ALT (µmmol/min) 67 (67) 77 (101) 58 (68) 0.090 

GGT (µmmol/min) 64 (97) 122 (116) 52 (53) 
1.04E-

04 
Total cholesterol 

(mg/dL) 205 (51) 210 (63) 190 (46) 0.61 
Triglycerides 

(mg/dL) 138 (109) 143 (128) 132 (95) 0.23 

BMI (kg/m2) 27 (6.1) 27 (7.8) 27 (5.7) 0.25 
HbA1c (%) 5.9 (1.3) 6.1 (1.4) 5.8 (1.2) 0.46 
Diabetesa 57 (49%) 26 (50%) 31 (48%) -- 

Hyperlipidemiaa 77 (66%) 34 (65%) 43 (67%) -- 
Hypertensiona 59 (51%)  25 (48%) 34 (63%) -- 

NASH Activity 
Score (NAS)b 6.0 (2.0)  6.0 (1.2) 6.0 (2.0) -- 

Fibrosis Scorec 3.0 (1.0) 3.0 (2.0) 3.0 (3.0) -- 
* All clinical data expressed as median (interquartile range); p-values obtained from Mann-Whitney 
U test, where abbreviations refer to AST: Aspartate aminotransferase; ALT: Alanine 
aminotransferase; GGT: γ-Glutamyltransferase; ALP: Alkaline phosphatase.  
 
a NASH patients with one condition (10/88); two conditions: hyperlipidemia and hypertension 
(13/88), diabetes and hyperlipidemia (8/88) or diabetes and hypertension (7/88), and with all three 
conditions (25/88). 
b NAS determined from sum of steatosis, inflammation and ballooning scores, where NAS ≥ 5.0 is 
defined as NASH, whereas < 3.0 is non-NASH and NAS = 3-4 is considered a probable NASH 
diagnosis (n=106).  
c Fibrosis score determined from histopathology based on increasing scale of liver scarring from 0-
1, 2, 3 to 4. 
d Differentiation of NASH patients into two distinct sub-groups was derived from HCA algorithm 
based on their serum g-glutamyl dipeptide status, where statistical significance (p < 0.05) was 
based on a Mann-Whitney U test. 
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as the histopathology grading based on the NASH clinical research’s network 

(NASH CRN) scoring system for NAFLD.23   

 

2.3.2 Instrumentation  

Targeted profiling of serum g-glutamyl dipeptides from NASH patients was 

performed on an Agilent G7100 CE system coupled to an Agilent 6460 triple 

quadrupole mass spectrometer equipped with an Agilent Dual ESI Source (Agilent 

Technologies Inc. Tokyo, Japan). Separations were performed on a 110 cm long 

uncoated fused silica capillary with a 50 µm inner diameter under a 30 kV voltage 

at 25 °C under normal polarity. The background electrolyte (BGE) consisted of 1 

M formic acid with 15% vol acetonitrile (pH 1.80). The serial injection 

configuration consisted of 7 discrete hydrodynamic sample plugs for 5 s interspaced 

with BGE spacers for 40 s at 100 mbar.16 The sheath liquid composition consisted 

of 60% vol methanol with 0.5% vol formic acid delivered at a flow rate of 9 µL/min, 

whereas the ion source conditions for electrospray ionization consisted of a 

capillary voltage at 4 kV, nebulizer at 7 psi, and dry gas at 300 °C at 7 L/min. 

Multiple reaction monitoring (MRM) under positive ion mode detection was used 

to increase sensitivity and selectivity for determination of 16 serum g-glutamyl 

dipeptides similar to settings reported by Hirayama et al.20   

 

2.3.3 Serum Extract Preparation and Method Calibration/Validation 

A modified Bligh-Dyer extraction was performed on the thawed serum samples as 

described elsewhere.20 Briefly, 450 µL of methanol, 500 µL of chloroform and 200 

µL of deionized water were added as pre-chilled solvents to a 50 µL aliquot of 

human serum. After vortexing and centrifugation at 4 °C, the upper aqueous layer 

containing polar/ionic metabolites, including g-glutamyl dipeptides were isolated. 

Thereafter, the aqueous serum extract was filtered using a 5 kDa MWCO 

ultrafiltration tube with centrifugation at 9,100 g for 2 h to filter out protein. The 

aqueous serum filtrates were subsequently dried under a flow of N2 and 
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reconstituted in 25 µL of 200 mM ammonium acetate (pH 5.0) containing the 

internal standard, thiomorpholinoacetic acid-1,1’-dioxide (TAD) with a final 

concentration of 50 μM, which was used for data normalization in MSI-CE-

MS/MS. Seven-point calibration curves were prepared using commercial standards 

(HiPep Laboratories, Kyoto, Japan) over a wide linear dynamic range from 0.010 

to 50 µM depending on specific γ-glutamyl dipeptide. All calibrant solutions were 

prepared in deionized water with 50 μM of TAD as the internal standard, which 

was used for data normalization to correct for changes in electroosmotic flow and 

on-capillary injection volume between samples, which was used for determination 

of relative migration times (RMT) and relative peak areas (RPA) for serum γ-

glutamyl dipeptides, respectively. For assessment of method accuracy when using 

MSI-CE-MS/MS, 2.5 μL of each γ-glutamyl dipeptides were spiked into 2.5 μL of 

a pooled serum extract at four different concentration levels (ranging from 0.01 to 

25 μM) depending on the average baseline concentration of each dipeptide from 

NASH patients. Also, technical precision was evaluated based on repeated analysis 

of a pooled serum extract (n=20) that served as a QC, which was introduced in 

randomized sample injection positions for every run over the entire workflow when 

using MSI-CE-MS/MS. Further validation studies were also performed involving a 

comparison of long-term migration time stability of serum g-glutamyl dipeptides 

with/without temperature control of the capillary from all NASH patients (n=116), 

as well as a direct comparison of separation performance using a conventional 

single injection in CE-MS/MS relative to multiplexed injections by MSI-CE-

MS/MS on a sub-set of serum samples from NASH patients (n=15). 

  

2.3.4 Data Processing and Statistical Analysis 

Data analysis for this study was performed using Agilent MassHunter Qualitative 

Analysis (B 07.00) and Microsoft Excel. All g-glutamyl dipeptide ion responses 

were normalized to a single non-deuterated internal standard, TAD. Prior to 

multivariate and univariate statistical analysis, normality testing was performed on 
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SPSS (IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. 

Armonk, NY: IBM Corp.) using the Shapiro-Wilk’s test for normality (p < 0.05). 

Multivariate statistical analysis methods, including principal component analysis 

(PCA), correlation matrices, as well as a hierarchal clustering analysis (HCA) using 

a Euclidean distance measure and Ward clustering algorithm were performed on 

Metaboanalyst 4.0 using generalized log-transformed and autoscaled data unless 

otherwise stated.24 Univariate, non-parametric statistical tests including Mann 

Whitney-U test was performed on all patient clinical data on SPSS. Analysis of 

Covariance (ANCOVA) was applied to log-transformed data where p–values were 

adjusted using sex as a covariate. To correct for multiple hypothesis testing, a false 

discovery rate (FDR) correction using the Benjamini-Hochberg procedure was 

applied in this work.   

 

2.4 Results  

2.4.1 Multiplexed separations of γ-glutamyl dipeptides from NASH patients by 
MSI-CE-MS/MS 
 
In order to increase sample throughput and quality control for rapid analysis of 

serum γ-glutamyl dipeptides, we have introduced an integrated data workflow that 

takes advantage of customized serial injection configurations involving 7 discrete 

samples analyzed within a single run when using MSI-CE-MS/MS.  In this case, 

serum extracts were prepared from a cohort of overweight adult Japanese NASH 

patients (n=116) with a median age of 53 years and a BMI of 27 kg/m2 having 

severe liver inflammation and fibrosis as reflected by a median NAS of 6.0, and a 

more sensitive NAS including fibrosis (NAS+Fibrosis) of 9.0 as two diagnostic 

scores of NASH.25 Standard histopathology from liver tissue biopsies of these 

patients demonstrated high grades of fibrosis, as well as inflammation, ballooning 

and steatosis with the majority of NAFLD cases with a definitive NASH diagnosis 

(NAS ≥ 5.0, 86%) as listed in Table S2.1 of the Supporting Information. This 

largely sex-balanced cohort comprised a heterogeneous group of NASH patients 
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who were also co-morbid with hyperlipidemia, hypertension and/or type 2 diabetes 

with about 28% having all three adverse cardiometabolic health conditions as 

summarized in Table 2.1. Multiple reaction monitoring (MRM) transitions for 

sixteen serum g-glutamyl dipeptides and an internal standard were acquired when 

using MSI-CE-MS/MS under positive ion mode conditions as listed in Table S2.2 

of the Supporting Information. MSI-CE-MS enables the design of customized 

data workflows that has several merits for large-scale targeted metabolomics 

studies as highlighted in Figure 2.1, including more than a 3-fold improvement in 

sample throughput as compared to a conventional single injection format in CE-

MS/MS decreasing acquisition times from about 59 h to under 19.3 h for analysis 

of serum extracts from the NASH cohort (n=116). Moreover, each run also includes 

a pooled serum extract that serves as a quality control (QC) allowing for assessment 

of technical precision and continuous monitoring of signal drift in ESI-MS in every 

run, including more robust batch-correction adjustments as compared to 

conventional intermittent QC runs.21,22 Absolute quantification for g-glutamyl 

dipeptides is achieved by performing a seven-point calibration curve (run#1), as 

well as spike/recovery studies at four different concentration levels for reliable g-

glutamyl dipeptide quantification (run#23). Additionally, QC runs are performed 

intermittently throughout the entire data workflow (runs#2, 13 and 24) to check for 

long-term migration time and current stability for serum g-glutamyl dipeptides 

notably when using newly conditioned (unmodified) fused-silica capillaries, which 

also includes blank extracts. A series of four representative extracted ion 

electropherograms are also depicted in Figure 2.1 for serum g-Glu-Val (m/z 247.1 

à72.1), including a calibration curve showing a linear increase (R2 = 0.999) in ion 

response ratio over a 100-fold concentration range, a QC run of repeated pooled 

serum extracts with excellent precision (CV = 4.0%, n=6) when normalized to an 

IS without evidence of sample carry-over effects between injections for the blank 

extract. Also, a randomized serial injection of six different serum extracts from 
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Figure 2.1: Representative extracted ion electropherograms (EIEs) of different serial injection 
configurations when using MSI-CE-MS/MS as a high throughput method for targeted analysis of 
serum g-glutamyl dipeptides. Multiplexed separations enables the design of customized injection 
configurations that reflect an experimental design as depicted in the analytical workflow to analyze 
116 serum extracts from a cohort of adult NASH patients (n=116) within a single day, including 
stringent measures to assure precision, accuracy and quality control (QC). Representative 
experiments are highlighted for g-Glu-Val that involve various serial injection configurations 
involving 7 independent samples analyzed within a single run by MSI-CE-MS/MS, including (a) 7-
point calibration curve using authentic standards for reliable quantification of g-glutamyl dipeptides 
over a wide dynamic range, (b) replicate injections of pooled serum as QC sample with blank extract 
to assess technical precision and lack of sample carry-over, (c) randomized analysis of six serum 
extract samples from individual NASH patients together with a QC highlighting the biological 
variance of g-Glu-Val concentrations between subjects as compared to the grand mean from the 
pooled serum sample, and (d) a spike/recovery study in pooled serum at four different concentration 
levels to demonstrate accurate determination of g-glutamyl dipeptides in human serum. 
 

 

7x10
3

6

5

4

3

2

1

0

Io
n 

co
un

t

3634323028262422
Time (min)

5x10
2

4

3

2

1

Io
n 

co
un

t

3634323028262422
Time (min)

1.0x10
3

0.8

0.6

0.4

0.2

Io
n 

co
un

t

3634323028262422
Time (min)

3.5x10
3

3.0

2.5
2.0

1.5

1.0

0.5

Io
n 

co
un

t

3634323028262422
Time (min)

1  2  3  
4  5  

7  QC1  

QC2 
QC3 

QC4 
QC5 

QC6 

Blank 

0.10

0.08

0.06

0.04

0.02

0.00

R
P

A

20151050
Concentration (µM)

R2 = 0.999 

y = 0.053x+ 0.0001 

6  

98 

15 
35 

59 

28 

2 

QC 

QC 73 

32 

Low 
Mid1 

Mid2 

High 
(A) Run1: Calibration Curve (B) Run 2: QC/Blank/Precision (C) Run 9: 6 NASH Serum + QC (D) Run 23: Spike/Recovery 

MS 

ESI 

+ 
EOF 

MS/MS 

MSI-CE-MS/MS: Serial injection/zonal separation of  
γ-glutamyl dipeptides from 7 independent samples 

		 Vial	Posi)on		
Experiment		 1	 2	 3	 4	 5	 6	 7	

1	 Calibrant	1	 Calibrant	2	 Calibrant	3	 Calibrant	4	 Calibrant	5	 Calibrant	6	 Calibrant	7	
2	 QC	 QC	 QC	 Blank		 QC		 QC		 QC	
3	 21	 76	 69	 QC	 71	 68	 112	
4	 7	 QC	 29	 56	 14	 116	 52	
5	 31	 66	 5	 83	 23	 QC	 44	
6	 98	 15	 35	 59	 28	 2	 QC	
7	 42	 25	 105	 101	 QC	 77	 38	
8	 4	 95	 QC	 100	 107	 79	 17	
9	 19	 8	 9	 74	 33	 QC	 85	
10	 QC	 26	 84	 37	 111	 87	 113	
11	 12	 91	 61	 65	 QC		 92	 3	
12	 QC	 106	 43	 78	 109	 22	 6	
13	 QC	 QC	 QC	 Blank	 QC	 QC	 QC		
14	 40	 99	 39	 QC	 54	 20	 93	
15	 36	 104	 96	 18	 75	 QC	 72	
16	 62	 QC	 50	 16	 110	 53	 13	
17	 30	 34	 81	 86	 49	 58	 QC	
18	 10	 80	 QC	 46	 89	 102	 51	
19	 90	 QC	 108	 88	 24	 27	 94	
20	 57	 11	 67	 1	 41	 QC	 47	
21	 45	 63	 82	 115	 114	 48	 QC	
22	 97	 QC	 103	 64	 70	 55	 60	

23	 QC	 73	 32	 Spike/Recovery	
Low		

Spike/Recovery	
Mid	1	

Spike/Recovery	
Mid	2	

Spike/
Recovery	High	

24	 QC	 QC	 QC	 Blank	 QC	 QC	 QC	

(A) External 
calibration curves 

(D) Spike & 
recovery to 

assess accuracy 

(C) A QC placed 
in random 

positions in each 
run to assess 
instrument 

stability  

(B) Intermittent 
system stability & 
carry-over check 

Extracted Ion Electropherograms for γ-Glu-Val (247.1 à 72.1) 



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

74 
 

different NASH patients highlights significant biological variance between-patients 

as compared to the QC, as well as spike/recovery studies that shows a proportional 

increase in ion response for g-Glu-Val at four different concentration levels added 

to pooled serum samples. As a result, MSI-CE-MS offers a versatile multiplexed 

separation platform for rapid data acquisition with stringent QC, where rigorous 

calibration and validation studies can be readily programmed automatically within 

a fully integrative data workflow.  

 

2.4.2 Stabilization of Migration Time with Liquid Coolant in MSI-CE-MS/MS 

A major source of migration time stability in CE are associated with variations in 

electroosmotic flow (EOF) that has long hindered large-scale clinical applications 

of CE-MS within an accredited laboratory setting.26 Depending of the specific CE-

MS instrumental configuration/vendor, temperature control is often limited to a 

section of the capillary held within a cassette using convection (air) or a liquid 

coolant, whereas sections of the capillary outlet coupled to the ion source are often 

exposed to fluctuating ambient temperatures. In this work, we compared the 

performance of a customized capillary tubing sleeve that was designed to provide 

better temperature control over the entire capillary using a circulating liquid coolant 

at a temperature similar to cassette (at 25 °C), whereas the sample tray was set at 4 

°C to minimize sample evaporation when analyzing large-batches of samples by 

MSI-CE-MS/MS. In this case, all serum samples from NASH patients (n=116) 

using a standardized data workflow (Figure 2.1) were analyzed twice 

independently without (August 2015) and with (January 2016) the use of an 

insulated capillary tubing as shown in Figure 2.2(A). Overall, temperature control 

of the outer capillary significantly improved the long-term migration time stability 

for serum g-glutamyl dipeptides measured in QC samples (n=20) with an average 

RMT of CV = 1.2% as compared to CV= 1.8% (without temperature control) as 

highlighted in a 2D scores plot from a principal component analysis (PCA) in  



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

75 
 

 

 

 

 

 

 

 

 

 
Figure 2.2: (a) An insulated tubing prototype with liquid coolant used to minimize migration time 
variability due to an exposed section of capillary (from cassette to CE-MS interface) when using 
MSI-CE-MS/MS for analysis of large batches of serum samples from NASH patients (n=116). (b) 
A 2D scores plot using PCA for comparing the overall migration time variance (i.e., RMT) for 15 
serum g-glutamyl dipeptides consistently measured in QC samples (CV < 30%, n=20) from NASH 
patients, which highlights the larger variability with two outlier runs (arrows) when performing 
analyses without tubing  (mean CV = 1.8%) as compared to with tubing (mean CV = 1.2%) and 
liquid coolant for more stable CE separations. (c) Representative control charts of g-glutamyl 
dipeptides from repeat analysis of pooled serum extracts as QCs included with each experimental 
run when analyzing the entire cohort of serum samples using MSI-CE-MS/MS originally without 
tubing (August 2015, red) and then independently with tubing (January 2016, blue).  
 

Figure 2.2(B). Additionally, there were fewer outliers caused by major shifts in 

EOF as shown in extracted ion electropherograms for the internal standard at three 

different runs acquired over the entire workflow (Figure S2.1 of the Supporting 

Information). Better thermal management of repeated electrophoretic separations 

with a liquid coolant was achieved despite similar average current readings (≈�22 

µA) resulting in longer apparent migration times and lower RMTs as compared to 

runs performed without temperature control of the capillary outlet (i.e., no tubing). 

This also coincided with better resolution achieved for certain g-glutamyl 

dipeptides from isobaric interferences in serum extracts from NASH patients, such 

as g-Glu-Gln that was resolved from g-Glu-Lys and an unknown isobar from serum 
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extracts (Figure S2.2 of the Supporting Information). Control charts depicted in 

Figure 2.2C demonstrates that improved long-term migration time stability was 

achieved in MSI-CE-MS runs for three representative serum g-glutamyl dipeptides 

measured in repeat QC samples (n=20). Additionally, a direct comparison of ten 

consistently measured serum g-glutamyl dipeptide concentrations (n=150) was 

measured using a conventional low throughput, single injection CE-MS method20 

and then compared to serial sample injections using MSI-CE-MS/MS on a sub-set 

of fifteen serum samples from NASH patients. In this case, good mutual agreement 

was achieved between both methods as reflected by a mean bias of 9.2% with few 

outliers outside agreement limits together with a slope close to unity (Figure S2.3 

Supporting Information).  For these reasons, experimental data from MSI-CE-

MS/MS with improved thermal management of the capillary was used in 

subsequent work as it provided greater sample throughput with better data fidelity 

when analyzing large numbers and different batches of samples collected over time. 

 
2.4.3 Method Validation for Reliable Quantification of Serum γ-Glutamyl 
Dipeptides 
 
A summary of several major figures of merit from MSI-CE-MS/MS is summarized 

in Table 2.2 where g-glutamyl dipeptides are listed based on their characteristic 

migration behavior in CE from fast migration cationic dipeptides (e.g., g-Glu-Orn) 

to slowly migrating bulky/aromatic (e.g., g-Glu-Trp) amino acid substituents. 

Overall, the overall precision of RMT (n=20) was under 1% for most g-glutamyl 

dipeptides from serum extracts migrating close to the internal standard with the 

exception of the three fast migrating cationic dipeptides (CV ≈ 3%). Similarly, the 

median technical precision for quantification of g-glutamyl dipeptides from pooled 

QC serum extracts based on their integrated ion response ratio to an internal 

standard was acceptable (CV ≈ 13%, n=20) with certain dipeptides prone to greater 

variation (CV = 20-28%) due to their lower abundance in serum (g-Glu-Trp, S/N ≈ 

5) or detection of minor/partially overlapping isobaric interferences (g-Glu-Gly and  
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Table 2.2: Summary of the figures of merit of MSI-CE-MS/MS for reliable g-glutamyl dipeptide 
determination using pooled serum samples from NASH patients 
 

g-Glutamyl 
Dipeptide 

Mean 
RMT 

LOD 
(µM) 

LOQ 
(µM) 

Linearity 
(R2) 

Linear  
Range (µM) 

RMT 
Precision 
(%CV)a 

RPA 
Precision 
(%CV)a 

Mean 
Recover
y (%)b 

γ-Glu-Orn 0.458 0.02 0.05 1.0000 0.1-10 2.9 17 106 

γ-Glu-Arg 0.469 0.18 0.55 0.9992 0.1-10 3.0 18 130 

γ-Glu-His 0.471 0.06 0.19 0.9996 0.05-5.0 2.8 4.0 111 

γ-Glu-Gly 0.685 0.08 0.24 1.000 0.2-20 1.1 20 -- 

γ-Glu-Ala 0.703 0.08 0.23 0.9999 0.1-10 1.0 26 -- 

γ-Glu-Ser 0.725 0.10 0.31 0.9997 0.1-10 0.9 28 108 

γ-Glu-Val 0.729 0.17 0.50 0.9998 0.2-20 0.8 4.0 102 

γ-Glu-Thr 0.733 0.10 0.29 0.9998 0.1-10 0.8 6.0 97 

γ-Glu-Asn 0.736 0.05 0.16 0.9997 0.05-5.0 0.9 22 106 

γ-Glu-Met 0.746 0.02 0.06 0.9998 0.02-2.0 0.8 7.0 106 

γ-Glu-Gln 0.754 0.55 1.67 0.9997 0.5-50 1.4 13 112 

γ-Glu-Phe 0.751 0.03 0.08 0.9995 0.02-2.0 0.7 6.0 104 

γ-Glu-Glu 0.762 0.34 104 0.9999 0.5-50 0.7 5.0 104 

γ-Glu-Trp 0.763 0.02 0.05 0.9993 0.01-1.0 0.7 22 113 

γ-Glu-Cit 0.771 0.06 0.18 0.9996 0.05-5.0 0.7 13 115 

γ-Glu-Tyr 0.773 0.02 0.05 0.9998 0.02-2.0 0.7 9.0 106 
a Technical precision for relative peak area (RPA) and relative migration time (RMT) for serum g-
glutamyl dipeptides based on normalization to an internal standard, which was measured in pooled 
serum extracts as QCs (n = 20) throughout the analysis of all NASH patient samples (n=116) by 
MSI-CE-MS/MS. 
b Average recovery for accurate quantification of g-glutamyl dipeptides in pooled serum from NASH 
patients at four different concentration levels (low, mid level 1, mid level 2, and high level). 
 

g-Glu-Ala). In all cases, excellent calibration linearity (R2 > 0.999) was achieved 

over a 100-fold with concentration detection limits (LOD, S/N = 3) of about 50-100 

nM depending on the specific g-glutamyl dipeptide. Also, method accuracy was 

evaluated based on spike-recovery studies performed at four different levels above 

baseline concentrations of g-glutamyl dipeptides in pooled serum samples, which 

was acceptable with a mean recovery of 108%; however, poor recoveries were 

measured at the lowest concentration level spiked since in some cases the added 

amount of calibrant did not significantly change the measured ion response notably  
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Figure 2.3: (a) Data structure overview based on a 2D scores plot using PCA that compares the 
considerable between-subject biological variance (median CV = 63%) of sixteen g-glutamyl 
dipeptide concentrations measured from a cohort of adult NASH patients (n=116) as compared to 
the technical precision (median CV = 13%) of the method based on repeated analysis of a pooled 
serum sample as QC (n=20) analyzed in every MSI-CE-MS run. (b) Unsupervised pattern 
recognition using HCA revealed two distinctive patient sub-groups within cohort based on 
contrasting g-glutamyl dipeptide status measured in serum, which were subsequently designated as 
a high-risk NASH and a low-risk NASH phenotype reflecting low and high circulating serum g-
glutamyl dipeptide concentrations, respectively.   
 

for higher abundance g-glutamyl dipeptide in serum as summarized in Table S2.3 

of the Supporting Information. A 2D PCA scores plot is also depicted in Figure 

2.3, which provides an overview of the biological variance of sixteen serum g-

glutamyl dipeptide concentrations (median CV = 63%, n = 116) between individual 

NASH patients as compared to the technical variance of the method (median CV = 

13%, n=20) from sample extraction and data analysis. Figure 2.3(B) also shows a 

2D heat map together with a hierarchical clustering analysis (HCA), which 

unexpectedly identified two distinctive sub-groups of NASH patients with either 

low (i.e., sub-group A or high-risk NASH patients, n=52) or high (i.e., sub-group 

B or high-risk NASH patients, n=64) circulating concentrations of g-glutamyl 

dipeptides. Table S2.4 of the Supporting Information summarizes the average 

serum concentrations measured for sixteen different g-glutamyl dipeptides which  
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Figure 2.4: (a) Metabolic phenotyping a sub-set of NASH patients (n=116, average NAS = 6.0) 
identified based on their contrasting g-glutamyl dipeptide status in serum as shown for three top-
ranked compounds (g-Glu-Glu, g-Glu-Thr, g-Glu-Val), which were inversely correlated with GGT 
activity, whereas (b) shows a log-log plot demonstrating a linear correlation between serum g-Glu-
Glu concentrations and GGT activity (r = -0.46, p = 2.5 E-7), and (c) a correlation matrix confirming 
strong co-linearity among all serum g-glutamyl dipeptides as compared to GGT activity. Low-risk 
NASH patients were indicated by high circulating concentrations of g-glutamyl dipeptide and low 
serum GGT activity, whereas high-risk NASH patients were consistent with low circulating 
concentrations of g-glutamyl dipeptide and a corresponding high serum GGT activity with likely 
poor clinical outcomes. 
 

were ranked ordered based on their significance using ANCOVA (after adjustment 

to sex) to discriminate between two main sub-groups of NASH patients classified 

based on HCA. For instance, serum g-Glu-Glu, g-Glu-Thr and g-Glu-Val were 

among the top-ranked of g-glutamyl dipeptides for sub-typing NASH patients with 

large effect sizes (> 0.50), as well as F-value, p-value (or q-value, FDR) and mean 

fold-change (FC) ratio. Interestingly, the two distinctive sub-groups of NASH 

patients identified by their contrasting g-glutamyl dipeptide status reflective of 

underlying differences in glutathione recycling capacity otherwise did not have any 

significant difference in other clinical parameters listed in Table 2.1, including, 

age, BMI, standard blood biochemical tests, or disease co-morbidity prevalence 

with the exception of serum GGT activity (p = 1.04 E-4). Importantly, there was no 
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significant association of g-glutamyl dipeptide concentrations with histopathology 

grading among NASH patients in terms of severity of steatosis, NAS, and fibrosis 

(Table S2.5-S2.7 and Figure S2.4 of the Supporting Information). Indeed, 

Figure 2.4 demonstrates metabolic phenotyping the NASH cohort into two major 

sub-groups based on their contrasting g-glutamyl dipeptide status, where circulating 

g-Glu-Glu concentrations show an inverse correlation with serum GGT activity (r 

=-0.46, p = 2.5 E-7) that were measured independently by two different analytical  

platforms. Additionally, Figure S2.5 of the Supporting Information comparing 

receiver operating characteristic (ROC) curves based on serum g-Glu-Glu 

concentration (AUC = 0.958, p < 1.0 E-5) and GGT activity (AUC = 0.694, p = 2.0 

E-4) show good to excellent performance to discriminate NASH sub-groups who 

differ primarily in their liver glutathione recycling capacity as mediated by the g-

glutamyl cycle27  despite having similar histopathology results and fibrosis grading 

(median NAS 6.0 and NAS+Fibrosis ≈ 9.0). 

 
2.5 Discussion  
 
Liver biopsies remain the gold standard for confirmatory diagnosis of NASH from 

a majority of asymptomatic NAFLD cases, where standardized histological scoring 

systems are used to determine liver disease severity.8 However, liver biopsies are 

invasive, costly to perform, prone to complications, and are susceptible to bias and 

sampling variability that may delay timely diagnoses in the absence of high quality 

ultrasound imaging data or abnormal blood liver enzymes test results. A pilot study 

by Soga et al.15 previously reported that patients with mild steatosis (n=9) had 

higher concentrations of six g-glutamyl dipeptides as compared to severe NASH 

patients (n=11) and thus, proposed that these dipeptides may serve as less invasive 

biomarkers for routine screening of liver disease severity among NAFLD patients 

without biopsies.  However, this study did not extensively validate the specificity 

nor the clinical utility of g-glutamyl dipeptides for screening diverse NASH patient 

populations who often suffer from several extra-hepatic health conditions 
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complicating their disease prognosis, including obesity, hypertension, 

hyperlipidemia and/or type 2 diabetes (Table 2.1). In this work, we first developed 

and extensively validated a rapid method for quantification of sixteen serum g-

glutamyl dipeptides from a heterogeneous cohort of NASH patients when using a 

multiplexed separation platform based on MSI-CE-MS/MS (Figure 2.1).16-19 

Hirayama et al.20 recently demonstrated that CE-MS/MS requires smaller sample 

volumes while allowing for faster total analysis times that is less prone to sample 

matrix effects as compared to reversed-phase LC-MS/MS. However, sample 

throughput, migration time stability and long-term robustness remain major 

obstacles that hinder large-scale clinical applications of CE-MS/MS technology. In 

our case, customized serial injection configurations in MSI-CE-MS/MS enable 

analysis of seven discrete samples within a single run that improves throughput by 

over three-fold with better data fidelity as compared to conventional single injection 

separation formats. Additionally, various experimental designs can be integrated 

within an automated data workflow, including rapid acquisition of calibration 

curves, spike-recovery studies, as well as QC and/or blank samples to monitor and 

correct for long-term signal drift and sample carry-over effects, respectively.21,22  

The installation of a capillary tubing with circulating liquid coolant also allowed 

for better thermal control of electrophoretic separations significantly reducing RMT 

variance by about 34% (Figure 2.2) with improved long-term stability (Figure 

S2.1) and peak capacity for resolving g-glutamyl dipeptides from isobaric 

interferences in human serum (Figure S2.2). Overall, there was excellent mutual 

agreement between g-serum glutamyl dipeptide concentrations measured via single 

injection CE-MS/MS as compared to MSI-CE-MS/MS (Table 2.2; Figure S2.3), 

which demonstrated acceptable technical precision (mean CV ≈ 13%), accuracy 

(mean recovery ≈ 108%) and linearity (R2 > 0.999) for reliable quantification over 

a 100-fold linear dynamic range with nanomolar detection limits (LOD ≈ 100 nM). 

However, certain low abundance g-glutamyl dipeptides were prone to partial 

overlap with other isobaric interferences in serum extracts resulting in higher 
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variance and potential bias, such as g-Glu-Gly, g-Glu-Ala and g-Glu-Phe. In this 

case, the introduction of electrokinetic spacers between hydrodynamic sample 

plugs used in MSI-CE-MS may further improve peak capacity for resolving g-

glutamyl dipeptides from several unknown isobaric interferences in serum by 

retaining the effective capillary length used for separation.28  

 

          A major finding in this study was the identification of two sub-groups of 

NASH patients with contrasting serum g-glutamyl dipeptides concentration profiles 

(Table S2.4) when using HCA as an unsupervised multivariate analysis method for 

pattern recognition (Figure 2.3); indeed, there was considerable biological variance 

in circulating g-glutamyl dipeptides measured between-patients (median CV ≈ 

63%, n=116) as compared to technical precision based on the repeated analysis of 

pooled serum extracts as QC samples (n=20).  Further analysis revealed that these 

two distinctive NASH sub-types classified based on their circulating g-glutamyl 

dipeptide status had otherwise similar clinical disease phenotypes, as well as 

standard blood biochemical tests and disease co-morbidities with the exception of 

differences in serum GGT activity (Table 2.1). For instance, we confirmed that 

serum g-glutamyl dipeptides were not able to stratify patients based on steatosis 

(S1-S3), inflammation (I0/1 to I3), and fibrosis severity (F0/1 to F4) in our patient 

cohort (Table S2.1; Table S2.5-2.7), including NAS (Figure S2.4) and 

NAS+Fibrosis.  Consequently, our results indicate that serum g-glutamyl dipeptides 

are not suitable biomarkers for differentiating fibrosis severity among NASH 

patients, such as new predictive models and blood-based tests for non-invasive 

assessment of inflammation or fibrosis in NAFLD.29 These results may be 

contingent on the specific patient population examined in this work since a majority 

were diagnosed with NASH as compared to a small sub-set with borderline or 

probable diagnosis (14%), whereas no early stage NAFLD cases with mild steatosis 

and NAS < 3.0 were included. However, the inverse correlation between serum g-

glutamyl dipeptide concentrations and GGT activity (Figure 2.4) inferred that a 
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sub-set of high-risk NASH patients may be susceptible to glutathione insufficiency 

due to impairments in the g-glutamyl cycle with poor clinical prognosis. For 

instance, a longitudinal study with thirteen year follow-up reported that out-patients 

with GGT activity > 10-14 µmol/min as part of a routine screening panel were at 

greater risk for all causes cancer, hepatobillary and vascular related mortalities with 

unfavorable prognosis for long-term survival after adjustment for age and sex.30 

This upper threshold range for serum GGT activity was exceeded in NASH patients 

evaluated in this study notably among the higher risk sub-group A (Table 2.1; 

Figure S2.5). Although elevated GGT is often associated with hepatobillary 

diseases and excessive alcohol consumption,31,32 it also has been shown to be 

associated with diverse pathological processes, including incident metabolic 

syndrome, type 2 diabetes and cardiovascular disease outcomes,33-35 which are 

prevalent among NASH patients but are not predicted by standard histopathological 

parameters.36 Similarly, a NASH diagnosis itself did not increase liver-specific or 

overall mortality as opposed to the rate of severe liver disease progression 

according to fibrosis stage.37  As illustrated in Figure 2.5, the primary role of GGT, 

a membrane-bound glycoprotein with an active site directed towards the outer cell 

surface, is to metabolize extracellular reduced glutathione (GSH) allowing for 

recycling of precursor amino acids, namely Cys-Gly that is transported within liver 

to support intracellular glutathione biosynthesis since it is rate-limited by the 

availability of Cys.38 Indeed, recent clinical trials have demonstrated the promising 

therapeutic efficacy of oral treatment with glutathione (300 mg/day over 4 mo) in 

patients with NAFLD with better responses reported for younger patients without 

diabetes.39  Further studies are needed to more clearly delineate the prognostic value 

of serum g-glutamyl dipeptide status and optimal cut-off concentrations (Figure 

S2.5) in predicting clinical outcomes in NASH patients as compared to serum GGT 

activity that is prone to enzyme denaturation and false negatives due to sample 

handling and delays to storage. 
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Figure 2.5: Schematic overview of the role of the g-glutamyl cycle for risk assessment of NASH 
prognosis among patients with similar liver histopathology and metabolic disease co-morbidities, 
where high-risk NASH patients are indicative of lower circulating g-glutamyl dipeptide 
concentrations and higher serum GGT activity In this case, impairments to the g-glutamyl cycle 
reduce the salvage pathway for glutathione biosynthesis within hepatocytes with deleterious 
oxidative stress due to elevated ROS production. Abbreviations include: GGT = g-glutamyl 
transferase; GGCT = g-glutamyl cyclotransferase; GCL = glutamate cysteine ligase; GS = 
glutathione synthase  
 

2.6 Conclusion 

This work is the first to validate a multiplexed separation platform and integrated 

data workflow based on MSI-CE-MS/MS for reliable analysis of a panel of serum 

g-glutamyl dipeptides from a large cohort of overweight Japanese NASH patients 

who also suffer from several other cardiometabolic co-morbidities. Also, the 

introduction of an insulating tubing with liquid coolant provided greater long-term 

migration time stability when analyzing large batches of serum samples by MSI-

CE-MS/MS offering greatly improved sample throughput and quality control as 

compared to conventional single injection separation formats. Overall, good 

reproducibility, accuracy, linearity and robustness were demonstrated for 

quantification of serum g-glutamyl dipeptide concentrations with few isobaric 

interferences. In contrast to earlier pilot studies, it was shown that serum g-

glutamyl-dipeptides were not associated with standardized histopathology 

GGT

!-Glu-Cys-Gly 

!-Glu-dipeptide

5-oxoproline

Glutamate

!-Glu-Cys

!-Glu-Cys-Gly

GGT 

Amino acid
Amino acid

Cys-Gly
Cys

Gly
GCL

GS

GGCT

HEPATOCYTE BLOOD

ROS

ROS
ROS

ROS

ROS

!-Glu-dipeptide

Cys-Gly 



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

85 
 

parameters based on liver biopsies from NASH patients. Instead, it was discovered 

that two distinctive NASH sub-groups in this cohort could be classified based on 

their contrasting serum g-glutamyl dipeptide concentration profiles, which were 

inversely correlated with serum GGT activity. Our findings inferred the important 

role of the g-glutamyl cycle in maintaining redox homeostasis and intracellular 

glutathione reserves during oxidative stress, which is relevant in the 

pathophysiology of advanced stages of NAFLD with severe liver inflammation and 

fibrosis. Importantly, we hypothesize that serum g-glutamyl dipeptides may serve 

as useful prognostic indicators of long-term survivorship and all causes mortality, 

where high-risk NASH patients are defined by low circulating concentrations of g-

glutamyl dipeptides that coincided with higher serum GGT activity. Ultimately, this 

work may potentially pave way for better risk assessment tools for predicting liver-

associated complications among NAFLD patients that are not feasible by 

conventional liver blood tests and histopathology. Also, this approach may enable 

better treatment monitoring of NASH patients when validating novel diet and/or 

lifestyle interventions designed to support glutathione biosynthesis and prevent 

liver disease progression. 
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2.8 Supporting Information  
 
Table S2.1:Distribution of standardized histopathology grading score of Japanese NASH patients, 
including sub-groups of patients identified from unsupervised pattern recognition using HCA 
 

Histopathology 
Characteristic 

Grade Full 
Cohort 
(n=111) 

Subgroup A 
(n=52) 

Subgroup B       
(n=64) 

Fibrosis Grade  (F-
Score) 

0-1 13 5 8 
 

2 25 13 12  
3 47 17 30  
4 26 14 12 

Inflammation (I-
Score) 

0-1 5 2 3 
 

2 53 24 29  
3 53 23 30 

Ballooning 0-1 68 28 39  
2 40 20 20 

Steatosis Grade (S-
Score) 

1 11 4 7 
 

2 35 21 14  
3 66 25 41 
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Table S2.2: MRM parameters employed for targeted analysis of sixteen serum γ-glutamyl 
dipeptides using MSI-CE-MS/MS as adapted from Hirayama et al. (2014).20 

 

Compound Q1 
(m/z) 

Q3 
(m/z) 

Fragmentor voltage 
(V) 

Collision energy 
(V)  

TAD (IS) 194.1 148.1 100 13 
γ-Glu-Gly 205.1 84.1 80 25 
γ-Glu-Ala 219.1 84.1 70 21 
γ-Glu-Ser 235.1 84.1 85 25 
γ-Glu-Val 247.1 72.1 100 17 
γ-Glu-Thr 249.1 84.1 90 29 
γ-Glu-Orn 262.1 70.1 85 29 
γ-Glu-Asn 262.1 133.1 100 9 
γ-Glu-Gln 276.1 84.1 70 29 
γ-Glu-Glu 277.1 84.1 65 29 
γ-Glu-Met 279.1 150 95 9 
γ-Glu-His 285.1 156 90 9 
γ-Glu-Phe 295.1 120.1 80 25 
γ-Glu-Arg 304.2 175.1 90 12 
γ-Glu-Cit 305.2 70.1 95 37 
γ-Glu-Tyr 311.1 182.1 70 13 
γ-Glu-Trp 334.1 188.1 70 21 
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Table S2.3: Spike and recovery studies performed on 14 γ-glutamyl dipeptide standards spiked at 
four different concentrations levels in pooled serum QC samples from NASH patients 
 

 % Recovery 
Compound Level 1 Level 2 Level 3 Level 4 
γ-Glu-Ser 192 107 114 104 
γ-Glu-Val 89 103 103 101 
γ-Glu-Thr 80 92 96 104 
γ-Glu-Orn 51 167 97 105 
γ-Glu-Asn 133 114 101 104 
γ-Glu-Gln 162 118 113 104 
γ-Glu-Glu 126 103 105 104 
γ-Glu-Met 227 104 112 102 
γ-Glu-His 104 136 96 102 
γ-Glu-Phe 45 99 103 109 
γ-Glu-Arg 124 115 137 140 
γ-Glu-Cit 168 121 110 114 
γ-Glu-Tyr 150 116 103 99 
γ-Glu-Trp 178 131 95 114 

Overall Recovery (%) 131±53 116±19 106±11 108±10 
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Table S2.4: Serum γ-glutamyl dipeptide concentrations and liver enzyme activities for two sub-
groups of NASH patients classified by their g-glutamyl dipeptide status using ANCOVA. 
 
g-Glutamyl 
Dipeptide 

A-High Risk 
(n=52)a 

B-Low Risk  
(n=64)a F-value p-valueb q-valueb Effect Sizec FCd 

γ-Glu-Glu 0.98±0.46 3.63±1.56 208 2.55E-27 4.59E-26 0.65 3.70 

γ-Glu-Thr 0.30±0.14 0.73±0.27 145 5.29E-22 4.76E-21 0.56 2.46 

γ-Glu-Val 0.70±0.34 1.95±0.82 132 1.03E-20 6.17E-20 0.54 2.77 

γ-Glu-Tyr 0.15±0.07 0.32±0.11 102 1.58E-17 7.10E-17 0.48 2.06 

γ-Glu-His 0.34±0.16 0.91±0.32 90 4.56E-16 1.64E-15 0.44 2.71 

γ-Glu-Orn 0.59±0.31 1.46±0.60 85 2.12E-15 6.37E-15 0.43 2.48 

γ-Glu-Asn 0.19±0.08 0.37±0.14 77 2.61E-14 5.88E-14 0.41 1.99 

γ-Glu-Gln 2.79±1.69 3.10±2.97 77 2.61E-14 5.88E-14 0.41 1.11 

γ-Glu-Phe 0.17±0.09 0.35±0.14 71 1.36E-13 2.71E-13 0.39 2.09 

γ-Glu-Ser 0.78±0.45 1.66±0.73 53 6.18E-11 1.11E-10 0.34 2.12 

γ-Glu-Arg 0.56±0.38 1.26±0.71 50 1.62E-10 2.66E-10 0.32 2.23 

γ-Glu-Trp 0.03±0.01 0.05±0.02 46 8.02E-10 1.14E-09 0.30 1.67 

γ-Glu-Gly 1.29±1.00 3.11±1.81 45 8.23E-10 1.14E-09 0.28 2.41 

γ-Glu-Ala 0.57±0.41 1.22±0.84 26 1.68E-06 2.16E-06 0.20 2.12 

γ-Glu-Cit 0.11±0.07 0.20±0.13 14 3.42E-04 3.85E-04 0.14 1.87 

γ-Glu-Met 0.15±0.08 0.21±0.16 1 0.472 0.472 0.01 1.38 

GGT 144±133 69±65 16 1.04E-04 1.25E-04 0.13 0.48 
a Average g-glutamyl dipeptide serum concentrations and their standard deviation measured by 
MSI-CE-MS/MS 
 b p-values adjusted for sex, whereas q-values are based on False Discovery Rate using a 
Benjamini-Hochberg procedure for multiple hypothesis correction. 
c Effect size using Partial Eta Square where small effects > 0.01, medium effects > 0.06 and large 
effects > 0.14   
d Average fold-change (FC) based on ratio of g-glutamyl dipeptide concentrations in sub-groups of 
patients (B/A). 
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Table S2.5: Summary of serum γ-glutamyl dipeptides concentrations in adult Japanese NASH 
patients (n=111) based on steatosis severity (S1-S3) from histopathology 
 

Compound Mean serum concentration (µM) with ± 1s p-value* 
S1 (n=11)  S2 (n=35) S3 (n=66) 

γ-Glu-Gly 3.22±2.66 2.20±1.66 2.20±1.65 0.545 
γ-Glu-Ala 1.36±1.14 0.92±0.91 0.93±0.61 0.489 
γ-Glu-Ser 1.67±1.08 1.20±0.70 1.30±0.74 0.395 
γ-Glu-Val 1.57±1.22 1.12±0.77 1.49±0.87 0.104 
γ-Glu-Thr 0.64±0.37 0.43±0.26 0.58±0.31 0.051 
γ-Glu-Orn 1.40±0.96 1.04±0.60 1.02±0.62 0.524 
γ-Glu-Asn 0.37±0.24 0.29±0.13 0.28±0.13 0.612 
γ-Glu-Gln 3.51±3.14 3.33±2.88 2.67±2.22 0.540 
γ-Glu-Glu 3.50±2.53 2.09±1.82 2.44±1.58 0.114 
γ-Glu-Met 0.20±0.13 0.17±0.13 0.19±0.15 0.711 
γ-Glu-His 0.77±0.45 0.61±0.40 0.65±0.37 0.447 
γ-Glu-Phe 0.28±0.17 0.21±0.13 0.29±0.15 0.019 
γ-Glu-Arg 1.27±0.92 0.75±0.46 1.02±0.72 0.090 
γ-Glu-Cit 0.26±0.19 0.16±0.10 0.15±0.11 0.134 
γ-Glu-Tyr 0.25±0.13 0.21±0.13 0.26±0.11 0.065 
γ-Glu-Trp 0.04±0.02 0.04±0.02 0.04±0.02 0.633 

*p-value obtained from Kruskal-Wallis Test 
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Table S2.6: Summary of serum γ-glutamyl dipeptide concentrations in the NASH study cohort 
(n=106) based on NASH Activity Score (NAS) for borderline/probable and definitive diagnosis 
 

Dipeptide 
Mean serum concentration (µM) with ± 1s 

p-value* Borderline NASH (n=19)  NASH (n=87) 
NAS < 5  NAS  ≥ 5   

γ-Glu-Gly 2.20±1.61 2.34±1.64 0.713 
γ-Glu-Ala 1.07±0.78 0.96±0.73 0.605 
γ-Glu-Ser 1.27±0.81 1.33±0.70 0.719 
γ-Glu-Val 1.39±1.03 1.41±0.87 0.781 
γ-Glu-Thr 0.52±0.30 0.55±0.31 0.683 
γ-Glu-Orn 1.17±0.88 1.07±0.59 0.905 
γ-Glu-Asn 0.33±0.20 0.29±0.13 0.612 
γ-Glu-Gln 3.45±3.12 2.78±2.31 0.462 
γ-Glu-Glu 2.43±2.18 2.46±1.67 0.415 
γ-Glu-Met 0.15±0.14 0.19±0.14 0.250 
γ-Glu-His 0.69±0.43 0.66±0.38 0.806 
γ-Glu-Phe 0.24±0.13 0.27±0.15 0.617 
γ-Glu-Arg 0.89±0.65 0.98±0.66 0.471 
γ-Glu-Cit 0.21±0.11 0.15±0.10 0.119 
γ-Glu-Tyr 0.22±0.11 0.25±0.12 0.368 
γ-Glu-Trp 0.04±0.02 0.04±0.02 0.889 

*p-value obtained from Mann-Whitney U Test 
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Table S2.7: Summary of the relationship of serum γ-glutamyl dipeptides concentrations in adult 
Japanese NASH patients (n=111) based on fibrosis score from histopathology 
 

Dipeptide Mean serum concentration (µM) with ± 1s p-value* 
F1 (n= 13)  F2 (n= 25) F3 (n= 47) F4 (n= 26) 

γ-Glu-Gly 2.09±1.46 2.02±1.91 2.50±1.54 2.31±2.24 0.417 
γ-Glu-Ala 0.95±0.68 0.82±0.66 1.03±0.66 0.99±1.14 0.433 
γ-Glu-Ser 1.19±0.68 1.30±0.92 1.27±0.71 1.48±0.86 0.729 
γ-Glu-Val 1.53±0.96 1.31±1.01 1.52±0.87 1.15±0.76 0.244 
γ-Glu-Thr 0.63±0.33 0.47±0.29 0.56±0.31 0.53±0.30 0.386 
γ-Glu-Orn 1.09±0.70 0.94±0.73 1.15±0.59 1.04±0.70 0.407 
γ-Glu-Asn 0.29±0.17 0.29±0.20 0.31±0.12 0.26±0.15 0.195 
γ-Glu-Gln 2.74±2.31 3.85±3.20 2.91±2.27 2.67±2.85 0.579 
γ-Glu-Glu 2.98±2.09 2.23±1.94 2.47±1.48 2.35±2.08 0.470 
γ-Glu-Met 0.20±0.17 0.15±0.14 0.18±0.13 0.22±0.15 0.414 
γ-Glu-His 0.76±0.48 0.59±0.42 0.67±0.34 0.62±0.41 0.493 
γ-Glu-Phe 0.29±0.13 0.25±0.13 0.27±0.15 0.26±0.17 0.700 
γ-Glu-Arg 1.10±1.06 0.98±0.67 0.98±0.62 0.85±0.62 0.796 
γ-Glu-Cit 0.18±0.09 0.17±0.12 0.16±0.11 0.16±0.16 0.783 
γ-Glu-Tyr 0.27±0.11 0.21±0.12 0.24±0.11 0.27±0.15 0.493 
γ-Glu-Trp 0.04±0.02 0.04±0.02 0.04±0.02 0.04±0.02 0.252 

*p-value obtained from Kruskal-Wallis Test 
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Figure S2.1: Representative extracted ion electropherograms (EIEs) for the internal standard (TAD) 
added to pooled serum extracts from NASH patients as QC samples (together with a blank extract) 
analyzed at the start (run#2), middle (run#13) and end (run#24) of data workflow when using MSI-
CE-MS/MS. These runs were performed independently either without (August 2015) and with 
(January 2016) temperature control of the capillary outlet with a tubing sleeve and circulating liquid 
coolant. Note changes in apparent migration times due to differences in solution viscosity and 
greater migration time stability of runs performed with thermal control of the capillary outlet. 
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Figure S2.2: An overlay to two ion electropherograms for the mid-QC run (run#13) in the 
standardized data workflow performed independently without (August 2015) and with (January 
2016) temperature control of the capillary outlet highlighting the longer migration times and greater 
peak capacity improves the resolution of g-Glu-Glu from its isobar g-Glu-Lys as well unknown 
minor serum isobaric interference. 
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Figure S2.3: (a) A Passing-Bablok regression analysis and (b) % difference Bland-Altman plot 
comparing the quantification of 10 serum g-glutamyl dipeptides consistently measured from fifteen 
NASH patients (n=150) using a conventional single injection CE-MS/MS method as compared to 
the multiplexed separation method based on MSI-CE-MS/MS. Overall, good mutual agreement was 
achieved for measured g-glutamyl dipeptide concentrations in serum extracts with a slope of 0.960 
within line of equity, as well as a mean bias of 9.2% with few outlier data outside agreement limits 
(p < 0.05;  ± 2 s).  
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Figure S2.4: A summary of the distribution of NAS data (median NAC = 6.0) from a cohort of 
probable and mostly definitively diagnosed NASH patients (n=111) after standardized 
histopathology, which highlights that both sub-sets of NASH patients with differential serum g-
glutamyl dipeptide status have equivalent severity of liver steatosis, ballooning and/or inflammation. 
Similar results were also noted for fibrosis grade scoring, as well as NAS+Fibrosis distributions 
among NASH patients confirming that there was no direct association between measured serum g-
glutamyl dipeptide concentrations and histopathology diagnostic scoring. 
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Figure S2.5: A comparison of receiver operating characteristic (ROC) curves from (a) the top-
ranked serum g-glutamyl dipeptide (g-Glu-Glu concentration) as compared to (b) GGT activity that 
were measured in a cohort of adult Japanese NASH patients (n=116) who were largely comorbid 
with other metabolic conditions, including hypertension, dyslipidemia and type 2 diabetes. Overall, 
there was a negative correlation between g-Glu-Glu and GGT activity (r = 0.46, p = 2.5 E-7), 
however g-Glu-Glu was able to better discriminate (AUC = 0.958) between a sub-set of low-risk 
(n=64) and high-risk (n=52) NASH patients as compared to GGT activity (AUC = 0.694). Optimum 
cut-off concentrations for g-Glu-Glu in serum are 1.66 µM as compared to 96 µmol/min for GGT 
activity for differentiation between two sub-groups of NASH patients based on their g-glutamyl 
dipeptide status. 
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Chapter III: Metabolic Perturbations from Step Reduction in Overweight 
and Prediabetic Older Persons: Plasma Biomarkers of Abrupt Physical 
Inactivity 
 
3.1 Abstract 

Sarcopenia is the age-related loss of skeletal muscle mass, strength and function, 

which may be accelerated during periods of physical inactivity. Declines in skeletal 

muscle and functionality not only impacts mobility, but also increases chronic 

disease risk, such as type 2 diabetes. The aim of this study was to measure adaptive 

metabolic responses to acute changes in habitual activity in a cohort of overweight, 

pre-diabetic older adults (age = 69 ± 4 years; BMI = 27 ± 4 kg/m2, n=17) when 

using nontargeted metabolite profiling by multisegment injection-capillary 

electrophoresis-mass spectrometry. Participants completed two weeks of step 

reduction (< 1000 steps/day) followed by a two week recovery period, where 

fasting plasma samples were collected at three time intervals at baseline, after step 

reduction and following recovery. Two weeks of step reduction elicited increases 

in circulatory metabolites associated with a decline in muscle energy metabolism 

and increased protein degradation, including glutamine, carnitine and creatine (q < 

0.05; effect size > 0.30), as well as methionine and deoxycarnitine (p < 0.05; effect 

size ≈� 0.20) as compared to baseline. Similarly, decreases in uremic toxins in 

plasma that promote muscle inflammation, indoxyl sulfate and hippuric acid, as 

well as oxoproline, a by-product of glutathione metabolism were also associated 

with inactivity (p < 0.05; effect size > 0.20). Our results indicate that older persons 

are susceptible to metabolic changes to short-term step reduction that were not fully 

reversible with resumption of normal ambulatory activity over the same time 

period. These plasma biomarkers may enable early detection of inactivity-induced 

metabolic dysregulation in older persons at risk for sarcopenia that is not readily 

measured by imaging methods, which is also applicable towards the design of 

effective therapeutic interventions to counter these deleterious changes in support 

of healthy ageing. 
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3.2 Introduction  

Sarcopenia is the progressive, degenerative decline in skeletal muscle mass, 

function and strength and is measurable after the fifth decade of life [1–3] affecting 

5-13% of 60-70 year olds and up to 50% in those 80 years and older [4]. Multiple 

factors contribute to sarcopenia, including age-related biological changes (e.g., 

chronic inflammation, oxidative stress, hormonal alterations), malnutrition (e.g., 

decreased protein and total caloric intake), as well as physical inactivity [1,4,5]. All 

these stressors contribute to profound physiological and morphological changes in 

skeletal muscle structure and function, leading to a loss in functionality and 

independence [2,6] with greater physical frailty [7]. Increasing rates of obesity have 

also been implicated in the higher incidence of sarcopenia, with older adults faced 

with the combined metabolic burdens of excess adiposity and reduced muscle mass 

referred to as sarcopenic obesity [8]. Nevertheless, a consensus on an exact 

definition of sarcopenia remains elusive due to comorbidity with other diseases, as 

well as inconsistent thresholds, reference standards and instrumental methods used 

for measuring lean body mass despite its recent recognition as an independent 

condition in 2016 [9].  

   

        The current gold-standard for diagnosis of sarcopenia relies on imaging 

techniques based on dual-energy X-ray absorptiometry (DXA) that provides an 

index of skeletal muscle mass [10]; however inaccuracies have been reported when 

comparing data from different manufacturers/instruments [11], and sensitivity is 

limited when detecting small changes in muscle mass for early detection of 

sarcopenia. For these reasons, qualitative measures of muscle strength and function 

are also assessed using standardized performance tests such as the handgrip strength 

test [12], gait speed [13], and short physical performance battery (i.e., balance, 

walking speed and strength) [14]. Thus, both functional and quantitative measures 

of skeletal muscle health are needed to better distinguish sarcopenia from other 

muscle-related ageing processes prevalent in older adults since gains in muscle 
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mass do not necessarily prevent age-related loss in muscle strength [15]. The 

progressive loss in muscle quality, strength and metabolic decline contributes to a 

profound decline in quality of life in affected seniors with deleterious health 

outcomes, including physical impairments, chronic disease risk (e.g., type 2 

diabetes), as well as cognitive impairments and depression [2,6]. For these reasons, 

sarcopenia places an increasingly severe burden on public healthcare resources due 

to loss of mobility, with greater risk for falls or fractures resulting in new or 

prolonged hospitalization and institutionalization [16,17]. Direct and indirect 

healthcare expenditures associated with sarcopenia are projected to expand 

dramatically due to an ageing demographic in most developed countries [5].  

 

       As a result, there is an urgent need to implement public policies that promote 

healthy ageing to prevent sarcopenia on a population level; however, a fundamental 

understanding of the molecular mechanisms associated with sarcopenia is lacking, 

including reliable screening tools for identifying high risk individuals. Herein, we 

performed nontargeted metabolite profiling using multisegment injection-capillary 

electrophoresis-mass spectrometry (MSI-CE-MS) on plasma samples collected 

from a cohort of older adults who completed two weeks of reduced daily stepping, 

followed by two weeks of recovery upon return to habitual ambulatory activity [18]. 

We aimed to elucidate adaptive metabolic responses to abrupt changes in physical 

activity (via step reduction), an increasingly common scenario in aging, based on 

dynamic changes in the plasma metabolome at three time intervals during the 

intervention. Our work identified a panel of circulating biomarkers that reflect 

inactivity-induced metabolic dysregulation corresponding to early stages of protein 

degradation within muscle tissue. To the best of our knowledge, this is the first 

metabolomics study to examine the systemic effects from physical inactivity on 

overweight/pre-diabetic older persons at risk for sarcopenia, which was used as a 

model system of muscle disuse less severe than prolonged bed-rest or 

hospitalization cases. 
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3.3 Results  
 
3.3.1 High throughput metabolomic studies of plasma filtrates using MSI-
CE-MS 
 
Multiplexed separations based on MSI-CE-MS offer a high throughput platform for 

biomarker discovery in metabolomics that is optimal for analysis of mass or 

volume-restricted biological specimens ranging from dried blood spot punches, 

infant sweat specimens to skeletal muscle tissue biopsies [19–22]. Major 

improvements in sample throughput are achieved without added infrastructure costs 

or complicated column switching programs, which allows for stringent quality 

control (QC) and batch correction [23]. To date, previous studies have employed a 

serial hydrodynamic injection of discrete sample plugs (i.e., typically seven) 

between alternating segments of background electrolyte (BGE) within a single 

experimental run [24]. In this work, we implemented a modified serial injection 

format in MSI-CE-MS comprising of 13 plasma filtrate samples when using 

electrokinetic BGE spacers in order to further boost sample throughput (< 3 

min/sample), separation resolution and peak capacity as compared to conventional 

single injection separations. This process initiates zonal electrophoretic separation 

of ions and their isomers/isobars immediately after each sample injection and thus, 

takes advantage of the total effective capillary length as shown in Figure 3.1A. 

Novel experimental workflows can be designed in MSI-CE-MS via customized, 

serial injection configurations that is effective for metabolite authentication when 

performing nontargeted profiling in order to reject a plethora of background or 

redundant signals (e.g., in-source fragments, isotope signals, adduct ions) generated 

in ESI-MS [20,25]. For example, a randomized injection of plasma filtrate samples 

from each participant was analyzed in duplicate with a distinct dilution pattern (1:1, 

1:2, 2:1) to encode sample position information reflecting the study design of the 

experiment (Figure 3.1B). Each run in MSI-CE-MS also includes a pooled QC 

and/or blank filtrate to assess technical precision and confirm the lack of sample 

carry-over between injections. Each ion was annotated based on its characteristic  
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Figure 3.1: Multiplexed separations by MSI-CE-MS for rapid metabolite profiling of 13 
samples within a single run, including their reliable identification and quantification in 
plasma. (A) Plasma filtrate samples were prepared after ultrafiltration and then randomly analyzed 
as paired duplicates using a temporal dilution pattern (1:2, 1:1, 2:1) at three time points in this 
repeated measures step reduction intervention. Also, a pooled plasma QC and/or blank filtrate 
sample was injected within each in run in order to assess technical precision and potential sample 
carry-over effects, respectively. (B) Representative extracted ion electropherograms for a cationic 
plasma metabolite, carnitine as denoted by its m/z:RMT (162.112:0.666, [M+H]+) and most likely 
molecular formula with low mass error. Two different serial injection configurations in MSI-CE-
MS are depicted here, including a randomized analysis of six pairs of plasma samples from each 
participant at a specific time point from this study, and a duplicate six-point calibration curve for 
metabolite quantification. (C) Two analogous extracted ion electropherograms are shown for a 
major anionic plasma metabolite detected under negative ion mode, hippuric acid as denoted by its 
m/z:RMT (178.0510:0.880, [M-H]-) and most likely molecular formula with low mass error. Note 
the much larger between-subject biological variance of plasma hippuric acid relative to circulating 
levels of carnitine, which is also evident based on comparison to the mean average from the peak 
intensity of each QC.  
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accurate mass and relative migration time (m/z:RMT) under positive (+) or negative 

(-) ion mode detection with putative identification (level 2) based on its most likely 

molecular formula using high resolution MS as shown in extracted ion 

electropherograms for representative cationic (Figure 3.1B) and anionic (Figure 

3.1C) plasma metabolites, such as carnitine (162.112:0.666 as [M+H]+) and 

hippuric acid (178.051:0.880 as [M-H]-). Unambiguous identification of plasma 

metabolites (level 1) was then achieved based on their co-migration and MS/MS 

spectra match when compared to an authentic standard based on recommended 

guidelines from the Metabolomics Standards Initiative [26,27]. Once identified, a 

different injection format in MSI-CE-MS was used to acquire calibration curves for 

metabolite quantification in plasma samples as shown for a series of calibrant 

solutions for carnitine and hippuric acid under positive and negative ion modes, 

respectively (Figure 3.1B, C).  

 

3.3.2 Plasma metabolic phenotyping of healthy seniors in a step reduction 
study 
 
This work involved nontargeted metabolite profiling of plasma samples collected 

from a cohort of overweight, pre-diabetic older men and women participating in a 

step reduction trial (ClinicalTrials.gov #NCT03039556) [18]. In order to minimize 

confounding effects, all participants were provided standardized meals for 3 days 

prior to clinical visits to collect fasting plasma in the morning while maintaining 

normal habitual diet/activity with exception of the two-week step reduction period 

(< 1000 steps/day). Only participants (n=17 of 22) who had complete fasting 

plasma samples collected at three time intervals were included in this study [18], 

which included slightly more males (58%) with a mean age of 69 years who were 

largely overweight Caucasians with a mean BMI of 27 kg/m2 recruited from the 

local community as summarized in Table 3.1. Overall, all participants underwent 

about an eight-fold reduction (p = 2.70 E-6) in habitual physical activity via step 

reduction as compared to baseline and recovery periods as confirmed by a  
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Table 3.1: Summary of physical and clinical characteristics and daily activity of study 
cohort 

 Baseline 
(BL) 

Step Reduction 
(SR) 

Recovery 
(RC) 

p-
value* 

Sex 10 male, 7 
female - -  

Age (years) 69 ± 4 - -  

Body Mass (kg) 75 ± 14 76 ± 15 76 ± 15 0.26 

BMI (kg∙m2) 27 ± 4 27 ± 4 27 ± 4 0.16 

Daily Energy Expenditure (kJ) 9890 ± 2680 8118 ± 1350 9498 ± 
2310 

2.99 E-
04 

Myofibrillar Protein Synthesis 
(% per day) 

1.50 ± 0.06 1.33 ± 0.05 1.32 ±  
0.14 

0.040 

Pedometer Steps (per day) 7550 ± 3320 980 ± 84 7345 ± 
3850 

2.70 E-
06 

Armband steps (per day) 6375 ± 3560 1248 ± 850 
5612 ± 
3740 

1.33 E-
04 

Fasting glucose (mM) 5.24 ± 0.61 5.31 ± 0.92 5.47 ± 0.73 0.26 

(mg/dL) 94 ± 11 96 ± 17 99 ± 13 0.26 
2h Post-OGTT glucose (mM) 7.6 ± 1.5 9.0 ± 2.4 8.2 ± 2.9 0.070 

(mg/dL) 137 ± 26 163 ± 43 147 ± 53 0.070 
* p-values determined using a one-way repeated measures ANOVA  
 

pedometer assigned to each participant, as well as independent armband 

measurements [18]. As expected, this drastic change in habitual activity resulted in 

a corresponding decrease in total energy expenditure (p = 2.99 E-4), and a modest 

reduction in myofibrillar protein biosynthesis (p = 0.040) following step reduction 

[18]. All participants were generally healthy and moderately active upon 

recruitment for this study; however, standardized oral glucose tolerance tests 

(OGTT) during clinical visits revealed that a majority (53%) of participants were at 

risk for prediabetes at baseline due to impaired fasting glucose (6.1-6.9 mM) and/or 

impaired glucose tolerance (2hPG = 7.8 – 11 mM) based on diagnostic criteria 

defined by Diabetes Canada [28]. After completing step reduction and recovery 

periods, three additional subjects had 2hPG levels that satisfied criteria for 

prediabetes. Therefore, after the intervention about 88% of the study cohort were 

defined as prediabetic who are at risk for cardiovascular disease [29], with three 

(23%) subjects at highest risk since they both had impaired fasting glucose and 
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impaired glucose tolerance results. Supplemental Figure S3.1 depicts individual 

changes in glucose metabolism for all participants in this study, which also 

highlights that one participant with borderline impaired fasting glucose at baseline 

later developed diabetes after step reduction. Indeed, step reduction resulted in a 

modest overall decrease in glucose tolerance (p = 0.070) in this cohort of largely 

pre-diabetic, overweight older persons.  

 

          Figure 3.2(A) depicts the overall study design which included repeat fasting 

plasma samples collected at three time intervals for each participant at baseline, 

after 2 weeks of step reduction and after recovery when resuming normal 

ambulatory activity for 2 weeks. Stringent selection criteria were applied when 

performing nontargeted metabolite profiling of plasma in order to reduce bias and 

false discoveries as described elsewhere [20,21].  Briefly, after initial metabolite 

authentication and identification when using a dilution trend filter on a pooled 

plasma sample, only frequently detected plasma metabolites measured in the 

majority of samples in this cohort (> 75%), with acceptable technical precision 

based on repeated analysis of QCs (average CV < 30%, n=25), were included in the 

final data matrix. Overall, a total of 47 polar/ionic metabolites from plasma filtrate 

samples satisfied these selection criteria with most metabolites identified with 

authentic standards (level 1), including circulating amino acids, acylcarnitines, 

biogenic amines, organic acids and various secondary metabolites as their 

glucuronide, glycine, or sulfate conjugates (Table S3.1 of Supporting 

Information). As expected, the overall biological variance in the plasma 

metabolome was considerably larger (median CV = 33%, n=51) as compared to the 

technical precision for QCs (median CV = 15%, n=25) as shown in the 2D scores 

plots from a principal component analysis (PCA) in Figure 3.2B. A 2D heat map 

with hierarchical cluster analysis (HCA) summarizes the overall data structure 

involving 47 plasma metabolites denoted by their m/z:RMT consistently measured 

in the majority of participants at three time points in this study. In all cases, average  
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Figure 3.2: An overview of the study design and data structure from metabolome analyses 
using MSI-CE-MS for matching fasting plasma samples collected at three time intervals for 
all participants. (A) Study design of this repeat measures step reduction intervention trial with 
fasting plasma samples collected at three time intervals, including baseline (BL), after 2 weeks of 
step reduction (SR) and following 2 weeks of recovery to habitual physical activity (RC). Two 
unsupervised multivariate data analysis methods for summarizing glog-transformed and autoscaled 
plasma metabolome data, including a (B) PCA with a 2D scores plot used to compare overall 
biological variance of fasting plasma samples to the technical precision from repeat analysis of 
pooled QC, and (C) 2D heat map with HCA for depicting overall data structure in this study. Also, 
control charts for recovery standard (F-Phe) measured under (D) positive ion and (E) negative ion 
modes for all plasma samples highlights acceptable intermediate precision (CV = 14%) with few 
outliers (2 out of 102) exceeding warning limits (± 3s).  
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ion responses for metabolites in MSI-CE-MS were normalized to an internal 

standard from the same injection position in order to correct for random variations 

in injection volume on-capillary [22]. Furthermore, control charts for the recovery 

standard (10 µM 4-fluorophenylalanine, F-Phe) added to all thawed plasma samples 

prior to ultrafiltration confirm acceptable intermediate precision (median CV = 

14%, n=51) based on its normalized ion response measured in (D) positive ion 

mode using 3-chlorotyrosine (Cl-Tyr), and (E) negative ion mode using 

naphthalene monosulfonic acid (NMS) as internal standards with few outliers 

exceeding warning limits. As there was no evidence of long-term signal drift or 

systematic error, application of a QC-based batch correction algorithm was not 

deemed necessary unlike long-term/intermittent studies performed on shared 

instrumentation following service repairs and/or relocation [30]. As a result, MSI-

CE-MS offers a rapid metabolomics platform for reliable metabolite quantification 

when relying on customized serial injections that encode mass spectral information 

temporally in the separation with stringent quality control. 

 
 
3.3.3 Evaluating the effects short-term/acute physical inactivity in older pre-
diabetic adults 
 
The major goal of this work was to identify dynamic plasma metabolite signatures 

modulated by acute step reduction and subsequent recovery to normal habitual 

physical activity. Overall, eight plasma metabolites were found to undergo 

significant changes in circulation throughout the intervention period (p < 0.05; 

effect sizes > 0.20) when using a repeat measures 1-way ANOVA as summarized 

in Table 3.2. Plasma glutamine and carnitine increased after step reduction without 

returning back to baseline after the recovery period that satisfied a False Discovery 

Rate (FDR) adjustment for multiple hypothesis testing (q < 0.05). Additionally, 

plasma creatine, methionine and deoxycarnitine were also found to undergo 

analogous metabolic trajectories over time (p < 0.05). In contrast, three other 

plasma metabolites displayed an opposite trend with a significant decrease in  
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Table 3.2: Top plasma metabolites and ratiometric markers significantly perturbed due to short-
term step reduction as compared to baseline and recovery periods in older adults (n = 17) 

m/z:RMT:mode Compound p-
value 

q-
valuea 

Effect 
sizeb 

Pairwise 
comparison 

BL-
SRc 

SR-
RCc 

BL-
RCc 

147.0764:0.908:p Glutamine 
5.80E-

6 
3.02E-

4 
0.53 

BL-SR, BL-
RC 

1.30 1.01 1.31 

 Creatine/ 
Oxoproline* 

1.43E-
4 

1.49E-
2 

0.45 
BL-SR, BL-
RC, SR-RC 

2.40 0.87 2.10 

 Glutamine/ 
Indoxyl Sulfate 

3.01E-
4 

0.015 0.40 
BL-SR, BL-

RC 
2.65 0.90 2.39 

 Carnitine/ 
Oxoproline 

1.00E-
3 

0.010 0.35 
BL-SR, BL-

RC 
1.87 0.88 1.65 

 
Creatine/ 
Indoxyl 
Sulfate* 

1.42E-
3 

0.015 0.42 
BL-SR, BL-

RC 
2.70 0.82 2.21 

 Carnitine/ 
Indoxyl Sulfate 

2.34E-
3 

0.015 0.32 
BL-SR, BL-

RC 
2.13 0.86 1.82 

162.1125:0.666:p Carnitine (C0) 
2.53E-

3 
0.019 0.31 

BL-SR, SR-
RC 

1.21 0.87 1.05 

132.0768:0.710:p Creatine* 0.010 0.019 0.34 
BL-SR, SR-

RC 
1.57 0.80 1.26 

212.0023:1.025:n Indoxyl sulfate 0.021 0.12 0.21 
BL-SR, BL-

RC 
0.67 1.04 0.69 

128.0353:1.025:n Oxoproline 0.025 0.13 0.20 BL-SR 0.67 1.09 0.73 

150.0583:0.890:p Methionine* 0.028 0.13 0.21 BL-SR 1.20 0.93 1.11 

178.051:0.880:n Hippuric acid 0.033 0.14 0.19 BL-RC 0.71 0.96 0.68 

146.1176:0.615:p Deoxycarnitine* 0.044 0.17 0.19 BL-SR 1.16 0.96 1.12 

mode: p = positive mode, n = negative mode; *adjusted for sex; a p-adjusted value (q-value) based 
on False Discovery Rate (FDR) using Benjamini-Hochberg procedure; b Effect size measured 
using Partial Eta Square;  c Mean fold-change ratio when comparing relative ion response ratio 
for metabolite between two time points.   
 

circulation after step reduction (p < 0.05) as compared to baseline or recovery time 

intervals, including indoxylsulfate, hippuric acid and oxoproline. Additionally, 

several ratiometric markers among the top-ranked plasma metabolites were found 

to increase the effect size (> 0.30) and statistical significance (q < 0.05, FDR) for 

most single plasma metabolites with the exception of glutamine as depicted in 

Supplemental Figure S3.2. As shown in the box-whisker plots in Figure 3.3, 

plasma glutamine, carnitine, creatine, methionine and deoxycarnitine showed 

similar trends with increasing circulating concentrations following step reduction 

yet remained persistently elevated after recovery when resuming normal 

ambulatory activity for two weeks. In contrast, plasma indoxyl sulfate, hippuric 

acid and oxoproline showed distinct decreases in circulation following step 

reduction relative to baseline. Nevertheless, there were large between-subject  
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Figure 3.3: Box-whisker plots illustrating dynamic changes among eight top-ranked plasma 
metabolites modulated after two weeks of step reduction (SR) with a subsequent two week 
recovery (RC) period to normal physical activity as compared to baseline (BL) in a cohort of 
older pre-diabetic adults (n = 17). A one way repeated measures ANOVA test was performed to 
identify significant changes in circulating metabolite concentrations as summarized in Table 3.2, 
where a bracket represents a significant pairwise comparison (* p < 0.05; ** q < 0.05). Overall, 
these plasma metabolites reflect adaptive metabolic responses to physical inactivity/muscle disuse 
with step reduction that did not fully recover after resuming normal habitual physical activity. 
 

variations in plasma metabolite concentrations at baseline, and variable responses 

to the step reduction trial when plotting individual metabolic trajectories among 

participants as shown in Figure S3.3 of the Supporting Information. For instance, 

while most subjects showed a general trend of increasing plasma carnitine 

following 2 weeks of step reduction, subject#8 (i.e., a pre-diabetic/overweight 

male) showed an opposing trend with a decreasing carnitine trajectory over time 

with elevated baseline concentrations. Similarly, subject#4 (i.e., a pre-diabetic/lean 

male) had unusually elevated baseline plasma concentrations of indoxylsulfate, 
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hippuric acid and oxoproline as compared to all other participants. This extent of 

biological variance exists even though participants were supplied with standardized 

meals for 3 days prior to clinical visits for blood collection while fasting. All plasma 

metabolites were adjusted for sex, however the extent of step reduction was not 

different between subjects as a potential confounder. Additionally, a correlation 

matrix among the eight top-ranked plasma metabolites associated with abrupt 

changes in physical activity from step reduction is shown in Supplemental Figure 

S3.4, which reveals strong co-linearity between circulating levels of indoxylsulfate 

and oxoproline (r = 0.881; p < 1.0 E-15), hippuric acid and oxoproline (r = 0.622; 

p < 1.1 E-6), hippuric acid and indoxylsulfate (r = 0.507; p < 1.4 E-4), as well as 

inverse correlations between glutamine and oxoproline (r = -0.502; p < 1.8 E-4), 

and glutamine and indoxylsulfate (r = -0.500; p < 1.8 E-4). 

 

3.4 Discussion  
 
Nontargeted metabolite profiling was performed on repeat plasma samples from a 

cohort of overweight, prediabetic older adults who completed two weeks of step 

reduction (< 1000 steps/day) followed by a two week recovery period resuming 

their normal habitual activity. Although all participants were generally healthy and 

moderately active, most were pre-diabetic (88%) following step reduction and 

therefore susceptible in developing type 2 diabetes; however only one participant 

(subject#19) with borderline aberrant glucose homeostasis at baseline transitioned 

to diabetes as shown in Supplemental Figure S3.1. Overall, all participants 

significantly reduced their ambulatory activity and energy expenditure over a 2 

week period (Table 3.1). To the best of our knowledge, this is the first 

metabolomics study exploring adaptive metabolic responses to an abrupt change in 

physical activity involving older adults. Previous results from this cohort reported 

lower rates of myofibrillar protein biosynthesis using a deuterated water ingestion 

method, as well as a worsening of glycemic control with a modest elevation in 

circulatory inflammatory markers (e.g., C-reactive protein, IL-6, TNF-a) following 
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step reduction [18]; however, there was no detectable reduction in DXA-measured 

fat free mass, BMI or muscle strength indicative of early stages of muscle protein 

degradation without measurable evidence (pre-clinical) of sarcopenia. Earlier bed-

rest studies have reported substantial muscle atrophy and whole-body insulin 

resistance likely due to a more pronounced reduction in daily physical activity 

[31,32] as compared to this study. In contrast, a single day of bed rest was not 

reported to induce any changes in skeletal muscle deconditioning or gene 

expression associated with the regulation of muscle mass and insulin sensitivity 

[33], whereas changes in insulin sensitivity were elicited in young men following 2 

weeks of step reduction in conjunction with overfeeding [34]. In our case, 

participants were requested to maintain habitual dietary patterns during the 

intervention with the exception of standardized meals consumed for 3 days prior to 

clinical visits. 

 

          Similar to previous targeted metabolomics studies which have focused on 

sarcopenic patients exhibiting poor muscle quality [35–37], several circulating 

metabolites closely associated with skeletal muscle metabolism were modulated by 

step reduction in this work. MSI-CE-MS was used as a high throughput platform in 

metabolomics that takes advantage of customized serial injection configurations for 

analysis of 13 samples within a single run, including pairs of plasma filtrates 

together with a pooled sample as a QC and/or blank (Figure 3.1). Overall, forty-

seven plasma metabolites (Supplemental Table S3.1) were consistently detected 

in the majority of plasma samples with acceptable technical precision from a cohort 

of older adults participating in a repeated measures intervention trial (Figure 3.2). 

However, only eight plasma metabolites were found to undergo significant changes 

(p < 0.05) following physical inactivity via step reduction. These results are similar 

to independent data from measurements of myofibrillar protein and genes encoding 

several mitochondrial protein within muscle tissue [18]. In this work, plasma 

glutamine was by far the most significant biomarker associated with physical 

inactivity that increased 1.3-fold following step reduction (q = 3.02 E-4; effect size 
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= 0.53), which was independent of sex and extent of step reduction as potential 

confounders. In fact, plasma glutamine concentrations remained persistently 

elevated and did not fully return back to baseline after a 2 week recovery period to 

normal activity. These findings coincide with a recent report demonstrating that 

increases in plasma glutamine were associated with clinically diagnosed sarcopenic 

and community-dwelling and institutionalized elderly [37]. Glutamine is the most 

abundant amino acid in circulation [22] that is conditionally essential during 

periods of acute metabolic stress and it is largely derived from de novo synthesis in 

the skeletal muscle from glutamic acid and ammonia via glutamine synthetase 

[38,39]. While glutamine is involved in a myriad of metabolic pathways in the body 

(i.e., nitrogen transport, signal transduction, energy metabolism etc.) [38], it plays 

a crucial role in regulating protein synthesis and breakdown within skeletal muscle, 

where glutamine is used for transporting nitrogen to the liver [40]. Indeed, 

decreasing concentrations of intramuscular glutamine accelerate protein catabolism 

resulting in a decline in skeletal muscle mass which is a hallmark of sarcopenia 

[38,41]. Therefore, the apparent increase in plasma glutamine from step reduction 

could be indicative of increased efflux of glutamine from skeletal muscle stores into 

circulation reflecting a catabolic physiological state among older adults as reflected 

by a decline in myofibrillar protein synthesis. 

 

         Adaptive changes in muscle energy metabolism from acute physical inactivity 

also play a major role in 1.21-fold increase by in plasma carnitine concentrations 

following step reduction (q = 0.020; effect size = 0.31). While carnitine may be 

derived from diet and/or endogenously synthesized in the liver, kidney and brain 

from trimethyllysine [42], plasma carnitine is a major source for skeletal muscle 

carnitine and subsequent synthesis of intracellular acylcarnitines for fatty acid b-

oxidation. Thus, in the absence of changes in habitual diet during the intervention, 

our findings support that increased plasma carnitine concentrations with step 

reduction may be caused by its decreased uptake within skeletal muscle due to 
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fewer demands for muscle contractions with prolonged inactivity that triggers an 

increase in protein catabolism and a decline in mitochondrial biogenesis. Similarly, 

deoxycarnitine (or g-butyrobetaine) showed a modest 1.16-fold increase in plasma 

concentrations as a result of step reduction (p = 0.044; effect size = 0.19). 

Deoxycarnitine is a known precursor of carnitine that undergoes hydroxylation via 

γ-butyrobetaine hydrolase (BBOX) in the liver and/or kidneys to form carnitine 

[43]. Thereafter, deoxycarnitine is released in circulation in order to be uptaken by 

skeletal muscle for storage. However, our results confirmed an accumulation in 

circulatory deoxycarnitine following step reduction, which was likely caused by a 

reduced uptake capacity within muscle tissue. 

 

         Similar to the trends identified in metabolite trajectories for glutamine, as well 

as carnitine and deoxycarnitine in plasma, two weeks of step reduction also resulted 

in a 1.6-fold increase in plasma creatine concentrations (p = 0.010; effect size = 

0.34) as shown in Figure 3.3. Creatine is primarily synthesized in the kidneys and 

liver, subsequently excreted into circulation and further stored within skeletal 

muscle, where it plays important roles in energy metabolism and muscle function 

[44,45] as it is transformed into the high energy phosphate donor, phosphocreatine 

to regenerate ATP during active muscle contractions with strenuous exercise [22]. 

However, prolonged periods of physical inactivity have shown to severely decrease 

intramuscular creatine concentrations due to muscle atrophy and protein 

catabolism. For instance, MacDougall et al. [46] reported a 25% reduction in 

muscle phosphocreatine in healthy, recreationally active men after five weeks of 

experimentally-induced immobilization. Similar declines may be paralleled in older 

adults with sedentary lifestyles, including those that are hospital-bound and bed-

ridden. As a result, increases in plasma creatine concentrations likely mirror a 

corresponding decrease in intramuscular creatine with greater muscle protein turn-

over rates after two weeks of step reduction. A recent study by Garvey et al. [47] 

also reported increased plasma creatine levels and decreased muscle creatine in 
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aged rats, which was attributed to skeletal muscle “leak,” promoting the excretion 

of creatine from skeletal muscle stores and preventing further uptake due to age-

related declines in muscle mass.  

 

         Step reduction involving older adults also elicited a 1.2-fold increase in 

plasma methionine levels (p = 0.028; effect size = 0.21) as compared to baseline. 

Our findings coincided with a previous study by Moaddel et al. [36], concluding 

that increased circulating methionine levels were associated with low muscle 

quality in older persons. Methionine is an essential sulfur-containing amino acid 

that plays crucial roles in several metabolic processes (e.g., polyamine, creatine and 

phosphotidylcholine metabolism), as well as protein synthesis and redox 

homeostasis [48]. Methionine is also an immediate precursor of cysteine, a rate-

limiting substrate for intracellular glutathione biosynthesis that is upregulated 

during oxidative stress, a hallmark of ageing and sarcopenic obesity who have 

higher circulatory levels of oxidized glutathione than non-sarcopenic controls [49]. 

Indeed, glutathione synthesis and intracellular glutathione concentrations both tend 

to decline with aging [50], which is exacerbated by low dietary protein and/or 

inadequate sulfur amino acid intake common among older persons [51]. 

Interestingly, our study also revealed several unexpected plasma biomarkers of 

physical inactivity as a result of step reduction, including indoxyl sulfate (p = 0.021) 

and hippuric acid (p = 0.033), as well as oxoproline (p = 0.025) with similar modest 

effect sizes (≈ 0.20). The former two plasma metabolites are uremic toxins that 

often accumulate in plasma due to chronic kidney disease (CKD) prevalent among 

patients with type 2 diabetes, which have been shown to contribute to deleterious 

health effects by stimulating muscle atrophy, protein catabolism and CKD-induced 

sarcopenia or uremic sarcopenia [52,53]. It is noteworthy that increased 

intramuscular indoxyl sulfate has recently been reported to induce metabolic 

alterations in skeletal muscle tissue that increase oxidative stress and triggers 

inflammatory cytokines (e.g., TNF-α, IL-6) with higher expression of myostatin 
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and atrogin-1, leading to inhibition of muscle growth and development and thus 

muscle atrophy [53]. We hypothesize that the decline in plasma indoxyl sulfate 

following prolonged physical inactivity may be a result of its increased uptake 

within skeletal muscle that promotes muscle wasting in susceptible older adults. 

The exact biochemical role of hippuric acid in step reduction/muscle disuse is not 

clear, but both indoxyl sulfate and hippuric acid are major protein-bound uremic 

toxins [54] that are modulated by dietary intake, host liver metabolism and gut 

microbiota activity as reflected by their moderate co-linearity in fasting plasma 

samples analyzed in this study (r = 0.507; p < 1.4 E-4, Supplemental Figure S3.4). 

Our study also revealed a corresponding 0.67-fold lowering of plasma oxo-proline 

(or pyroglutamic acid), a known precursor of intracellular glutathione, produced 

through the γ-glutamyl dipeptide cycle that is a key glutathione salvage pathway 

activated during oxidative stress [55,56]. The adaptive decrease in circulating 

oxoproline concentrations after step reduction suggests its higher intramuscular 

uptake to promote glutathione biosynthesis in order to combat increases in reactive 

oxygen species (ROS) from muscle disuse. Interestingly, plasma oxoproline was 

strongly correlated to both indoxyl sulfate (r = 0.881; p < 1.0 E-15) and hippuric 

acid (r = 0.622; p < 1.1 E-6) implying a direct coupling of intra-muscular oxidative 

stress/glutathione depletion and increased uremic toxin uptake within muscle tissue 

resulting in lower oxoproline released in circulation. Similar to most other 

biomarkers of muscle disuse from step reduction (Table 3.2), plasma oxoproline 

concentrations remained persistently lower as compared to baseline even 2 weeks 

following recovery with a return to normal ambulatory activity. As access to 

residual muscle tissue specimens was not available for analysis in this study, muscle 

metabolomic studies [22] were not feasible to better understand the relationship 

between changes in circulatory metabolism and skeletal muscle health in older 

adults. 
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          Figure 3.4 depicts an illustrative scheme that provides an overview of the 

adaptive metabolic changes following step reduction that may provide new targets 

for therapeutic interventions in managing or preventing sarcopenia among high-risk 

older persons. Overall, top-ranked plasma biomarkers of muscle disuse were largely 

associated with changes in skeletal muscle energy metabolism (creatine, carnitine, 

deoxycarnitine) and/or protein catabolism (glutamine), as well as glutathione 

biosynthesis (methionine, oxoproline), and uremic toxins (indoxyl sulfate, hippuric 

acid) which are likely contributing factors to metabolic acidosis, muscle protein 

wasting and uremic sarcopenia. In order to ameliorate the effects of protein 

catabolism (i.e., muscle atrophy) due to aging, nutritional supplementation has long 

been proposed to increase muscle protein synthesis and thus, increase muscle mass 

in geriatric populations. Interestingly, many metabolites identified in this study 

(e.g., glutamine, creatine and carnitine) are widely used dietary supplements for 

enhancing overall muscle health, strength and performance [57]. In fact, previous 

studies have demonstrated that high dose creatine supplementation led to 

improvements in muscle strength and performance in daily activities, while 

preventing bone loss in the older adults [58,59]. In contrast, glutamine 

supplementation in aged rats without physical activity showed no improvements in 

protein synthesis and thus, was insufficient to increase skeletal muscle mass to 

combat age-related muscle atrophy [60]. Similarly, oral supplementation with 

carnitine has not shown beneficial effects on skeletal muscle mass and function in 

older women [61] despite its widespread use as a nutritional supplement to support 

muscle energy metabolism. Alternatively, there is growing evidence that resistance 

training can elicit a number of metabolic adaptations that can combat the adverse 

effects associated with age-related declines in muscle mass and function in older 

persons [62,63].  These improvements can be further enhanced when coupling 

protein supplementation with resistance training to improve muscle mass and 

combat age-related muscle atrophy [64]. Future studies will validate the impact of 

safe yet effective lifestyle modifications based on diet and/or exercise to attenuate  
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Figure 4: Schematic illustrating the metabolic effects on circulatory (systemic) metabolism 
and associated changes in skeletal muscle metabolism due to abrupt changes in physical 
activity from step reduction in older adults. Prolonged physical inactivity elicits several 
metabolic and physiological changes in skeletal muscle, including a lower rate of myofibrillar 
protein synthesis that may subsequently contribute to mitochondrial dysfunction and protein 
catabolism. This decline in muscle mass and quality likely results in the accumulation of plasma 
creatine and glutamine concentrations due to skeletal muscle export from major muscle stores. 
Additionally, plasma carnitine (and deoxycarnitine) concentrations increased likely due to reduced 
uptake capacity within skeletal muscle upon mitochondrial dysfunction leading to downregulation 
in lipid metabolism (i.e. β-oxidation) as well as other energy metabolism pathways. Step reduction 
also led to declines in circulating uremic toxins, indoxyl sulfate and hippuric acid. The reduction in 
indoxyl sulfate likely reflects greater intramuscular accumulation that contributes to an increase in 
oxidative stress products (ROS), and inflammatory cytokines (TNF-α, IL-6) thereby promoting 
muscle atrophy (wasting). Moreover, the increase in oxidative stress within skeletal muscle also 
depletes intracellular glutathione given limiting amounts of cysteine or methionine. Also, circulatory 
levels of oxoproline, a known intermediate involved in glutathione recycling, are transported within 
muscle for intracellular glutathione biosynthesis in response to oxidative stress due to short-term 
physical inactivity. BBOX: γ-Butyrobetaine hydrolase; Crt: Creatine; CK: Creatine kinase; Gln: 
Glutamine; Glu: Glutamic acid; GS: Glutamine synthetase; GSH: Glutathione; IL-6: Interleukin-6; 
IS: Indoxyl sulfate; MPS: Muscle protein synthesis; PCr: Phosphocreatine; ROS: Reactive oxidative 
species; TNF-α: Tumour necrosis factor alpha; γ-Glu-AA: γ-glutamyl-amino acids 
 

the deleterious effects of physical inactivity on skeletal muscle health that promotes 

healthy ageing.  

 

          Although this work provided novel insights to the deleterious metabolic 

responses to physical inactivity in high-risk older adults, there were several study 
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limitations. Firstly, a larger and more diverse cohort of participants is needed to 

increase study power due to significant between-subject variance while further 

validating these findings in other community dwelling centres. Also, there were no 

measurable phenotypic changes in free fat mass, BMI or muscle strength in this 

study that likely require a longer intervention period of acute muscle disuse. 

Furthermore, access to muscle tissue biopsies is needed to better interpret adaptive 

metabolic changes in circulatory metabolism to those occurring strictly within 

skeletal muscle due to abrupt changes in habitual physical activity. While this study 

focused on the characterization of the polar/ionic metabolites in plasma, future 

studies should expand metabolome coverage to include circulating fatty acids and 

intact lipids when using multiplexed separations with nonaqueous-CE-MS [23] due 

to their essential roles in muscle energy metabolism and modulators of 

inflammation. A major finding of this study was that otherwise healthy and 

moderately active older persons were susceptible to metabolic stresses and 

catabolic processes that were not fully recoverable when resuming normal 

ambulatory activity, including a panel of plasma metabolites associated with 

muscle energy metabolism, protein breakdown and oxidative stress from 

glutathione depletion and inflammatory uremic toxin exposures. Additionally, 

these same metabolites may serve as useful biomarkers for monitoring sarcopenia 

progression and novel treatment interventions for its prevention. In this case, longer 

recovery times (> 2 weeks) can be explored to determine if these metabolic changes 

do indeed return to baseline, which may be accelerated with optimal resistance 

training and/or nutritional supplementation regimes suitable for older adults.  The 

analysis of biomarkers identified in this work from non-invasive biological fluids, 

such as urine may enable effective screening of older adults for pre-symptomatic 

detection of sarcopenia that is not measurable by standard body imaging or muscle 

function tests. 
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3.5 Materials and Methods  

3.5.1 Study Cohort and Intervention  

This study was based on a previously published study where 22 older adults (12 

men, 10 women) were recruited to undergo an acute step reduction intervention 

[18]. However, only 17 (10 men, 7 women) of the 22 participants were included in 

our study due to lack of plasma specimens available at each time point. Prior to the 

intervention, participants were screened to ensure they met the inclusion criteria 

(i.e., non-smoking, free from chronic disease, moderately active, did not consume 

nonsteroidal anti-inflammatory drugs or medication for cholesterol management). 

The study protocol was approved by the Hamilton Integrated Research Board (REB 

#14-609). First, participants underwent 7 days of monitored normal physical 

activity (baseline; BL). Thereafter, participants underwent two weeks of step 

reduction (SR, < 1000 steps per day) followed by return to habitual physical activity 

for two weeks during recovery (RC). Daily step count was monitored using a hip-

placed pedometer unit (Piezo SC-StepX Health System, StepsCount, Deep River, 

ON, Canada), which was internally validated with a SenseWear arm band 

accelerometer (BodyMedia, Pittsburg, PA, USA). During the last three days of each 

intervention period (BL, SR and RC), participants were provided with standardized 

meals (55% carbohydrate (CHO), 30% fat and 15% protein) in the form of flash 

frozen, prepackaged foods (Heart to Home, Hamilton, ON, Canada). Furthermore, 

at the end of each intervention period (BL, SR and RC), participants also performed 

an oral glucose tolerance test (OGTT) following a 10 h overnight fast where blood 

samples were obtained via an intravenous catheter inserted into an antecubital vein. 

After collection, blood samples were centrifuged at 4,000 g for 10 min at 4 ºC. 

Afterwards, all plasma samples were stored at -80 ºC prior to further preparation 

for metabolomics analysis. 
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3.5.2 Plasma Sample Preparation  

Frozen raw plasma was slowly thawed on ice, vortexed for 30 s and aliquoted. An 

aliquot of 50 μL of plasma was diluted two-fold with ultra grade LC-MS water 

(Caledon Laboratories Ltd, Georgetown, ON, Canada) containing 40 μM of the 

recovery standards, 4-fluoro-L-phenylalanine (F-Phe) and 3-cyclohexylamino-1-

propanesulfonic acid (CAPS), for both positive and negative mode ESI-MS. The 

diluted plasma was vortexed for 30 s and transferred to a pre-rinsed 3 kDa 

molecular weight cutoff (MWCO) ultrafiltration tube (Pall Life Sciences, Port 

Washington, NY, USA) and filtered at 14,000 g for 7.5 min to remove proteins with 

the plasma filtrate used for analysis. Ultrafiltration tubes were pre-rinsed with ultra 

grade LC-MS water, centrifuged for 5 min at 14,000 g and air dried for about 20 

min prior to use. Thereafter, the plasma filtrates were obtained and aliquoted into 

two centrifuge tubes in order to prepare two aliquots with 1:2 ratio dilution for the 

temporal signal pattern recognition configuration for MSI-CE-MS analysis. For the 

1-fold diluted samples, 20 μL of ultra grade LC-MS water containing 80 μM of the 

internal standards, 3-chloro-L-tyrosine (Cl-Tyr) and 2-napthalenesulfonic acid 

(NMS), and 16 mM of 13C-glucose was added to 15 μL of plasma filtrate. For the 

2-fold diluted samples, 30 μL of ultra grade LC-MS water containing the internal 

standards and 13C-Glucose was added to 10 μL of plasma filtrate. The final 

concentrations of the recovery and internal standards were 10 μM and 2 mM for 
13C-Glucose in the diluted plasma filtrates for MSI-CE-MS analysis. 

 

3.5.3 Nontargeted metabolite profiling of plasma filtrates by MSI-CE-MS 

Nontargeted metabolite profiling using MSI-CE-MS was performed on an Agilent 

7100 capillary electrophoresis (CE) instrument (Agilent Technologies Inc., 

Mississauga, ON, Canada) coupled to an Agilent 6230 Time-of-Flight Mass 

Spectrometer (TOF-MS) equipped with a coaxial sheath liquid (Dual EJS) 

Jetstream electrospray ion source with heated nitrogen gas. The CE separations 

were performed using uncoated fused-silica capillaries (Polymicro Technologies, 
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AZ, USA) with 50 μm inner diameter and 120 cm total length. The background 

electrolyte (BGE) consisted of 1 M formic acid with 15% v/v acetonitrile (pH 1.80) 

for positive ion mode, and 50 mM ammonium bicarbonate (pH 8.50) for negative 

ion mode, which were used for nontargeted profiling of cationic and anionic 

metabolites, respectively [20-22]. In order to minimize sample carryover between 

injections as well as polymer swelling/degradation upon contact with organic 

and/or ammonia-based solvents, the terminal ends of the capillary were burned 

using a MicrosolvCE Window Maker to remove 7 mm length of polyimide coating.  

           

       The serial sample injection sequence used in MSI-CE-MS consisted of 13 

discrete samples injected hydrodynamically (5 s at 100 mbar) interspaced with BGE 

spacers injected electrokinetically at 30 kV for 75 s for the separation of cationic 

metabolites and 45 s for anionic metabolites. The separations were performed under 

normal polarity using a pressure gradient of 2 mbar/min from 0 to 40 min, with an 

applied voltage of 30 kV at 25°C. Between runs, the capillary was flushed for 15 

min with BGE at 950 mbar. The sheath liquid compositions consisted of 60% 

methanol with 0.1% v/v formic acid for positive ion mode and 50% methanol for 

negative ion mode. Additionally, purine and hexakis(2,2,3,3-

tetrafluoropropoxy)phosphazine (HP-921) (API-TOF Reference Mass Solution Kit, 

Agilent Technologies) were added to the sheath liquid as reference masses to 

provide real-time mass calibration during data acquisition. The sheath liquid was 

delivered at a rate of 10 μL/min using an Agilent 1260 Infinity series Isocractic 

Pump equipped with a 100:1 splitter. Data acquisition was performed in full-scan 

mode on the TOF-MS that spanned a mass range of 50-1700 m/z at an acquisition 

rate of 500 ms/spectrum. The ESI conditions were Vcap = 2000 V, nozzle voltage 

= 2000 V, nebulizer gas = 10 psi, sheath gas = 3.5 L/min at 195 °C, drying gas 8 

L/min at 300 °C. whereas, the MS voltage settings were fragmentor = 120 V, 

skimmer = 65V and Oct1 RF= 750 V. During sample injection, the Vcap, nozzle 

voltage and nebulizer gas were turned off to minimize electrospray suctioning 
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effects.  At the beginning of each day, the TOF-MS system was calibrated over 50-

1700 m/z range before analysis using an Agilent tune mixture to ensure residual 

mass ranges did not exceed 0.30 ppm. Additionally, preventative maintenance was 

performed such as daily cleaning of the CE electrode and ion source with 50% v/v 

isopropanol using a lint-free cloth. Thereafter, a standard mixture and pooled QCs 

with blank were injected to equilibrate the CE-MS system and assess system 

stability prior to sample analysis. After sample analysis was completed each day, 

the capillary was flushed for 10 min with ultra grade LC-MS water and air dried for 

10 min. The individual plasma samples were analyzed over four consecutive days 

in both positive and negative ESI-MS. 

 

3.5.4 Data Processing and Statistical Analysis  

All data processing and analysis were performed using Agilent MassHunter 

Qualitative Analysis B.06.00 and Microsoft Excel. All metabolite responses were 

normalized to the internal standard. Prior to univariate statistical analysis, normality 

testing was performed using the Shapiro-Wilk test (p < 0.05) on log-transformed 

data using SPSS (IBM SPSS Statistics for Windows, Version 20.0. NY, USA). A 

one way repeated measures analysis of variance (ANOVA; intervention (BL, SR, 

RC) as within-subjects factor) was also performed on SPSS. The Mauchly’s 

sphericity test was initially used to determine if the data satisfied the sphericity 

assumption (p > 0.05); in cases where sphericity was violated, a Greenhouse-

Geisser correction was applied accordingly. Furthermore, sex and baseline step 

count were tested as covariates for all metabolites and the p-values were adjusted 

accordingly when the effect of sex and/or baseline step count were significant. 

Pairwise comparisons using the Fischer’s LSD was used for post-hoc analysis. To 

correct for multiple hypothesis testing, a false discovery rate (FDR) correction 

using the Benjamini-Hochberg procedure was applied.  Prior to multivariate 

analysis, all data was generalized log-transformed and autoscaled. Multivariate 
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statistical analyses including principal component analysis (PCA) and hierarchical 

clustering analysis (HCA) were performed using Metaboanalyst 4.0 [65].  

 

3.6 Conclusions  

In this work, two weeks of acute physical inactivity induced adaptive metabolic 

changes in a cohort of overweight and prediabetic older adults who did not fully 

return to baseline after resuming normal ambulatory activity. Our study 

demonstrated increases in plasma concentrations of several metabolites associated 

with muscle energy metabolism (creatine, carnitine and deoxycarnitine) and protein 

degradation/ammonia transport (glutamine) following step reduction due to muscle 

disuse with decreased myofibrillar protein biosynthesis. Interestingly, a decrease in 

plasma uremic toxins (indoxyl sulfate and hippuric acid) as well as changes in 

essential precursors of glutathione biosynthesis (oxoproline, methionine) was 

indicative of deleterious oxidative stress within skeletal muscle following an abrupt 

change in physical activity among high-risk older persons due to increased 

intramuscular inflammation. Of these metabolites, glutamine showed the most 

pronounced changes and largest effect size, whereas ratiometric biomarkers were 

found to further increase study power for other plasma metabolites. This study 

revealed important metabolic pathways that advance our understanding of 

sarcopenia at early stages of development while providing putative biomarkers 

applicable to routine monitoring of progressive loss in muscle mass and function in 

older persons. With the world’s geriatric population projected to increase 

worldwide by 2050, preventative strategies are needed to mitigate the many 

socioeconomic and healthcare impacts of sarcopenia and frailty in order to improve 

quality of life and independence while reducing the need for support services and 

long-term care.  
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3.9 Supporting Information  
Table S3.1: Summary of 47 plasma metabolites consistently detected in majority (> 75%) of 
samples with adequate precision (QCs with CV < 30%, n=25) in this step reduction intervention 
study by MSI-CE-MS. 
 

m/z:RMT:mode  Formula Compound ID  Mass error 
(ppm) Classification CV% 

67.0720:0.458:p -- Unknown [M+H]+ 16.4 -- 15.4 

76.0393:0.643:p C2H5NO2 Glycine 11.3 Amino acid 15.0 

90.0550:0.716:p C3H7NO2 Alanine 5.3 Amino acid 16.7 

104.0706:0.776:p C4H9NO2 

3-
Aminoisobutyric 

acid (BAIBA) 5.1 Amino acid 16.6 

104.1075:0.462:p C5H14NO Choline 6.0 

Quaternary 
ammonium 

salt 24.8 

106.0499:0.826:p C3H7NO3 Serine 1.2 Amino acid 15.3 

114.0662:0.522:p C4H7N3O Creatinine -0.8 Amino acid 20.2 

116.0706:0.903:p C5H9NO2 Proline -1.8 Amino acid 12.5 

118.0863:0.814:p C5H11NO2 Valine -1.6 Amino acid 18.9 

118.0863:0.963:p C5H11NO2 Betaine -0.7 Amino acid 30.5 

120.0655:0.878:p C4H9NO3 Threonine -4.3 Amino acid 12.4 

132.0656:1.023:p C5H9NO3 Hydroxyproline 0.9 
Amino acid 
derivative 16.9 

132.0768:0.710:p C4H9N3O2 Creatine -2.2 
Amino acid 
derivative 20.9 

132.1019:0.831:p C6H13NO2 Isoleucine -2.3 Amino acid 16.3 

132.1019:0.843:p C6H13NO2 Leucine -2.1 Amino acid 15.3 

133.0608:0.878:p C4H8N2O3 Asparagine -17.3 Amino acid 12.5 

133.0969:0.469:p C5H12N2O2 Ornithine 0.1 Amino acid 19.2 

134.0488:0.980:p C4H7NO4 Aspartic Acid -13.8 Amino acid 14.8 

137.0457:1.096:p C5H4N4O Hypoxanthine -1.6 
Purine 

derivative 19.9 

144.0988:0.971:p C7H13NO2 Proline betaine -2.3 
Amino acid 
derivative 20.5 

146.1176:0.615:p C7H16NO2 Deoxycarnitine 9.9 
Amino acid 
derivative 17.1 

147.0764:0.908:p C5H10N2O3 Glutamine -2.8 Amino acid 12.4 

147.1128:0.472:p C6H14N2O2 Lysine -2.7 Amino acid 25.0 

148.0604:0.924:p C5H9NO4 Glutamic Acid -2.9 Amino acid 20.2 

150.0583:0.890:p C5H11NO2S Methionine 1.6 Amino acid 21.1 
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156.0768:0.530:p C6H9N3O2 Histidine -4.4 Amino acid 25.8 

160.1331:0.653:p C8H17NO2 Unknown [M+H]+ 16.2 -- 15.9 

161.1285:0.496:p C7H16N2O2 Unknown [M+H]+ 0.6 -- 20.5 

162.1125:0.666:p C7H15NO3 Carnitine  -2.3 
Amino acid 
derivative 15.1 

166.0863:0.925:p C9H11NO2 Phenylalanine 16.1 Amino acid 19.1 

170.0924:0.551:p C7H11N3O2 3-Methylhistidine -3.9 
Amino acid 
derivative 15.9 

175.1190:0.503:p C6H14N4O2 Arginine -1.6 Amino acid 23.5 

176.1030:0.938:p C6H13N3O3 Citrulline -1.1 
Amino acid 
derivative 13.0 

182.0812:0.962:p C9H11NO3 Tyrosine -2.0 Amino acid 13.4 

204.1230:0.734:p C9H17NO4 Acetylcarnitine  1.3 Acylcarnitine 19.5 

276.1185:1.125:p C10H17N3O6 Unknown [M+H]+ -2.4 NA 13.2 

89.0244:1.186:n C3H6O3 Lactic acid 5.8 Organic acid 6.1 

101.0608:0.983:n C5H10O2 Isovaleric acid -3.3 
Fatty acid 
derivative  10.9 

102.0510:0.936:n C4H9NO2 Dimethylglycine 0.5 
Amino acid 
derivative 12.1 

117.0557:0.988:n C5H10O3 
2-Hydroxyvaleric 

acid -3.0 
Fatty acid 
derivative  25.4 

128.0353:1.025:n C5H7NO3 Oxoproline -1.2 
Amino acid 
derivative 8.2 

167.0211:0.947:n C5H4N4O3 Uric acid -1.0 
Purine 

derivative 7.0 

178.0510:0.880:n C9H9NO3 Hippuric acid 2.6 Organic acid 12.3 

179.0564:0.455:n C6H12O6 Glucose 2.9 
Monosacchari

de 7.1 

187.0071:1.082:n C7H8O4S p-Cresol sulfate -3.8 Phenylsulfate 23.8 

212.0023:1.025:n C8H7NO4S Indoxyl sulfate 20.4 Phenylsulfate 31.1 

263.1037:0.759:n C13H16N2O4 
Phenylacetylgluta

mine -1.9 
Amino acid 
derivative 15.9 
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Figure S3.1: Summary of changes in fasting plasma glucose and oral glucose tolerance (2hPG) 
responses in terms of (A) mM and (B) mg/dL following step reduction and recovery in a cohort of 
overweight and largely pre-diabetic participants. Overall, 7 (of 15 or 47%) participants were defined 
as pre-diabetic with impaired glucose tolerance (7.8-11 mM or 140-199 mg/dL 2hPG) with one 
subject also having impaired fasting glucose at baseline (BL). However, following the step reduction 
(SR) and/or the recovery (RC) period, most participants in this cohort were defined as pre-diabetic 
(12 out of 15 or 80%) with one participant becoming diabetic with impaired fasting glucose (> 7.0 
mM or 126 mg/dL) and grossly elevated 2hPG (> 11.1 mM or 200 mg/dL) based on diagnostic 
criteria defined by Diabetes Canada. Overall, there were only two participants in this cohort (among 
15 with blood glucose measurements) who maintained normal glucose homeostasis and glucose 
tolerance throughout the intervention period. 
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Figure S3.2: Individual metabolic trajectories for the top-ranked 8 plasma metabolites associated 
with physical inactivity from a cohort of overweight/pre-diabetic older adults at baseline (BL), 
following 2 weeks of step reduction (SR) and after resuming normal habitual activity upon recovery 
for two weeks (RC).  Despite collection of blood specimens under standardized conditions with 
fasting/morning plasma samples collected after participants were provided 2 days of standardized 
meals, there was considerable between-subject variability in circulating plasma metabolite 
concentrations, including their dynamic responses to step reduction. 
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Figure S3.3: Ratiometric plasma markers associated with physical inactivity from a cohort of 
overweight/pre-diabetic older adults at baseline (BL), following 2 weeks of step reduction (SR) and 
after resuming normal habitual activity upon recovery for two weeks (RC). All ratiometric 
biomarker satisfied Benjamini-Hochberg adjustment (q < 0.05, FDR) for multiple hypothesis 
testing, which increased the effect size as compared to most single plasma metabolites (e.g., creatine, 
oxo-proline, indoxylsulfate) with the exception of glutamine and carnitine. Overall, most ratiometric 
markers reflected significant changes in circulating metabolites associated with muscle tissue energy 
metabolism and oxidative stress upon step reduction with a persistent perturbation from baseline 
even after two weeks of recovery with normal habitual activity. 
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Figure S3.4: A correlation matrix/2D heat map among the top-ranked plasma metabolites (glog-
transformed ion responses) identified in this step reduction intervention study, which highlights the 
strong co-linearity between circulating levels of indoxylsulfate and oxo-proline (r = 0.881; p < 1.0 
E-15), hippuric acid and oxo-proline (r = 0.622; p < 1.1 E-6), as well as hippuric acid and 
indoxylsulfate (r = 0.507; p < 1.4 E-4). Additionally, there was an inverse correlation between 
glutamine and oxoproline (r = -0.502; p < 1.8 E-4), as well as glutamine and indoxylsulfate (r = -
0.500; p < 1.8 E-4) suggesting common metabolic pathways involved in their regulation in 
circulation. 
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Chapter IV: Characterization of the Human Skeletal Muscle Metabolome for 
Elucidating the Mechanisms of Bicarbonate Ingestion on Strenuous Interval 
Exercise 
 
4.1 Abstract 

Bicarbonate has long been touted as a putative ergogenic aid that improves exercise 

performance and blood buffering capacity during strenuous exercise. However, the 

underlying mechanisms of action of bicarbonate intake on skeletal muscle 

metabolism have yet to be fully elucidated. Herein, we apply two orthogonal 

analytical platforms for nontargeted profiling of metabolites and targeted analysis 

of electrolytes from mass-limited muscle tissue biopsies (≈�2 mg dried mass) when 

using multisegment injection-capillary electrophoresis-mass spectrometry (MSI-

CE-MS) and CE with indirect UV detection, respectively. Seven untrained men 

performed a standardized bout of high intensity interval exercise trial following 

either bicarbonate (0.40 g/kg) or placebo ingestion in a double-blinded, placebo-

controlled, cross-over study design, where paired skeletal muscle tissue and plasma 

specimens were collected at three time intervals at rest, post-exercise and recovery. 

Optimization of a quantitative microextraction procedure was first developed for 

lyophilized tissue prior to characterization of the human muscle metabolome, which 

resulted in the identification and quantification of more than 80 polar/ionic 

metabolites reliably (CV < 30%) detected in a majority (> 75%) of samples with 

quality control. Complementary univariate and multivariate statistical methods 

were used to identify biomarkers associated with strenuous exercise and/or 

bicarbonate treatment responses, whereas structural elucidation of biologically 

significant intramuscular metabolites was performed using high resolution MS/MS. 

Importantly, bicarbonate ingestion prior to strenuous interval exercise was found to 

elicit a modest treatment effect (p < 0.05) as compared to placebo on metabolic 

pathways associated with ionic homeostasis (potassium), purine degradation (uric 

acid), and oxidative stress as regulated by glutathione metabolism (oxidized mixed 

glutathione disulfide) and histidine-containing dipeptides (anserine) within muscle 

tissue that was distinctive from dynamic metabolic changes measured in 



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

143 
 

circulation. This work provides deeper biochemical insights into the impact of acute 

alkalosis in preserving contracting muscle function during high-intensity exercise, 

which is also applicable to the study of muscle-related pathologies relevant to 

human health and ageing. 

 

4.2 Introduction 

High intensity interval-type exercise is characterized by intermittent periods of 

strenuous effort interspersed with brief recovery periods. Importantly, interval 

exercise elicits comparable, and in some cases, superior physiological and 

metabolic adaptations to traditional moderate-intensity endurance exercise that 

improves cardiometabolic health outcomes despite a five-fold lower exercise 

volume and time commitment.1,2 However, this type of physical activity is also 

associated with significant metabolic disturbances within contracting skeletal 

muscle with the development of metabolic acidosis due to the high energetic 

demands for ATP regeneration beyond mitochondrial respiration capacity.3 The 

acute decline in intracellular pH also contributes to altered muscle contractile 

function, perturbation of redox homeostasis and the development of fatigue.4,5 As 

a result, efficacious yet safe dietary interventions (i.e., ergogenic aids) that can 

attenuate metabolic acidosis while preserving muscle function during strenuous 

exercise have long been sought after to improve athletic performance and/or 

recovery in competitive sports.6   Treatment interventions that support muscle 

function are also relevant for age-related muscle decline with ageing (i.e., 

sarcopenia) that is exacerbated with extended hospitalization.7 

 

The acute ingestion of alkalinizing agents, such as sodium bicarbonate, 

remain one of the most frequently investigated strategies to delay the onset of 

muscular fatigue following strenuous exercise.8,9 Bicarbonate pretreatment at high 

dosages has been shown to effectively buffer blood pH during interval exercise and 

modulate selected markers of skeletal muscle substrate metabolism (i.e., glycogen 
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breakdown).10,11 However, other metabolic responses beyond muscle bioenergetics 

require further characterization given that muscle also secretes bioactive 

metabolites (i.e., myobolites) into circulation with systemic effects on human 

physiology.12 Herein, we report characterization of the human skeletal muscle 

metabolome derived from lyophilized muscle tissue biopsies (≈�2  mg dried tissue) 

together with matching blood samples from a cohort of recreationally active males 

participating in standardized exercise trials following bicarbonate pretreatment in a 

double-blind, placebo-controlled cross-over study design. Due to the invasive 

nature of repeated tissue biopsies, there have been few metabolomics-based studies 

reported on skeletal muscle tissue from human trials involving exercise and/or 

dietary interventions.13,14 Previous studies have performed targeted analysis of 

known metabolites when using several analytical platforms without absolute 

metabolite quantification nor the identification of novel muscle-derived 

metabolites. In our case, nontargeted metabolic profiling of the human skeletal 

metabolome was first performed using multisegment injection-capillary 

electrophoresis-mass spectrometry (MSI-CE-MS) as a multiplexed analytical 

platform for analysis of polar/ionic metabolites that is optimal for mass or volume-

restricted biospecimens, such as dried blood spots.15,16 A targeted assay based on 

CE with indirect UV detection was also applied for reliable determination of major 

electrolytes involved in ionic homeostasis. Rigorous method development to 

maximize metabolite recovery from human muscle tissue extracts is outlined in our 

work, including reference concentration ranges measured for a wide range of 

metabolites and electrolytes from matching muscle tissue and plasma/serum 

samples. Importantly, our work is the first to identify anserine within human 

skeletal muscle, a histidine-containing dipeptide derived from carnosine that was 

significantly modulated with bicarbonate pretreatment following strenuous exercise 

as compared to placebo. Overall, this work provides new mechanistic 

understanding of the modest treatment effects of bicarbonate ingestion on strenuous 
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interval exercise that extends well beyond its known role as a buffer to attenuate 

the lowering of blood pH. 

 

4.3 Experimental Section  

4.3.1 Study Cohort, Treatment Interventions and Interval Exercise Trials 

The study was based on a previously published study that did not include 

comprehensive metabolite profiling,17 where nine active young men were recruited 

to participate in a double-blinded, placebo-controlled crossover study design. The 

study protocol was approved by the Hamilton Integrated Research Ethics Board 

(#13-426). However, only seven of the nine participants had sufficient residual 

muscle tissue available in the present study ranging from 1.2 to 3.4 mg of dried 

mass with an average mass of 2.4 mg (n=42) collected for subjects at all time 

intervals. A summary of the physical characteristics and performance data of this 

cohort (n=7) is summarized in Table S4.1. Briefly, after 10 h of overnight fasting, 

each subject was fed a standardized breakfast the morning of each session. All 

participants ingested two doses of the placebo (2 x 0.14 g·kg-1 NaCl) or sodium 

bicarbonate (2 x 0.2 g·kg-1 NaHCO3) at 90 and 30 min prior to exercise. The order 

of interventions was counterbalanced at least one week following the first session 

in a randomized fashion. The intense interval exercise regimen was completed on 

a LifeCycle 95 C1 cycle ergometer (Life Fitness, Schiller Park, IL) consisting of a 

5 min warm up followed by 10 x 60 s high intensity cycling bouts at an intensity 

estimated to elicit approximately 90% of maximal heart rate (HRmax) for individual 

subjects interspaced with 60 s of low-intensity recovery at 50 W or rest. Blood 

samples were obtained at eight intervals during the protocol, however only three 

time points were analyzed in this work, namely pre-exercise (Pre), immediately 

post-exercise (Post) and after 3 h of recovery (Rec). All plasma (EDTA as 

anticoagulant) samples were promptly processed while serum samples were left at 

room temperature for 30 min and centrifuged at 1,400 g for 10 min at 4 ºC. 

Following centrifugation, serum/plasma samples were aliquoted and stored at -80 



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

146 
 

ºC until analysis. Skeletal muscle tissue biopsies were also collected at the same 

three time intervals as blood samples from the vastus lateralis under local 

anesthesia using a Bergström needle adapted with suction by a trained physician.1 

Muscle tissue biopsies were immediately frozen in liquid nitrogen and stored at -

80 °C. Thereafter, muscle was dissected from any visible fat/connective tissue, 

lyophilized for 48 h using a benchtop freeze dryer system (Savant Instruments Inc., 

NY, USA) and then stored at -80 °C. All lyophilized muscle tissue samples were 

weighed using an electronic balance prior to extraction to allow for normalization 

of intramuscular metabolite responses/concentrations as described below.  

 

4.3.2 Muscle Tissue Extraction Protocol 

Freeze-dried muscle tissue samples (≈ 2 mg) were extracted using a modified Bligh 

Dyer extraction18-20 to fractionate hydrophilic constituents. A two-step extraction 

procedure consisted of adding 64 µL ice cold methanol:chloroform (1:1) followed 

by 26 µL de-ionized water to induce phase separation. After vortexing for 10 min 

and centrifugation at 2,000 g at 4 °C for 20 min, the upper aqueous layer was 

aliquoted. Then, a second extraction on the residual muscle tissue was performed 

by adding a fresh aliquot of 32 µL of methanol:deionized (1:1) water. Following 

the same vortexing and centrifugation procedure, the second upper aqueous layer 

was combined to the first aliquot to maximize the recovery of metabolites from 

muscle tissue extracts. Prior to analysis, 5 μL of 3-chloro-L-tyrosine (Cl-Tyr) and 

2-napthalenesulfonic acid (NMS) were added to 20 μL of muscle tissue extract with 

a final concentration of 25 μM, which served as internal standards for positive and 

negative mode detection, respectively. Further experimental details on the 

collection and sample workup of repeat plasma (for all metabolites and chloride) 

and serum (for all other electrolytes) specimens are described in the Supporting 

Information. 
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4.3.3 Nontargeted Metabolite Profiling by MSI-CE-MS 

MSI-CE-MS experiments were performed on an Agilent G7100A CE (Agilent 

Technologies Inc., Mississauga, ON, Canada) equipped with a coaxial sheath liquid 

(Dual AJS) Jetstream electrospray ion source coupled to an Agilent 6230 TOF-MS 

system. Separations were performed using uncoated fused-silica capillaries 

(Polymicro Technologies, AZ, USA) with a total length of 120 cm and inner 

diameter of 50 μm when using an applied voltage of 30 kV at 25 °C. The 

background electrolyte (BGE) consisted of 1 M formic acid with 15% vol 

acetonitrile (pH 1.80) under positive ion mode, and 50 mM ammonium bicarbonate 

(pH 8.50) under negative ion mode for comprehensive analysis of cationic and 

anionic metabolites from matching muscle tissue extracts and plasma filtrates, 

respectively.21 Terminal ends of the capillary had a 7 mm length of polyimide 

removed when using a burner in order to reduce sample carry-over effects, as well 

as potential deleterious swelling when in contact with organic solvent or ammonia 

based buffers that can lead to incidental capillary fractures.22 Temporal signal 

pattern recognition using different serial sample injection configurations in MSI-

CE-MS was applied for optimization of the tissue extraction protocol, nontargeted 

metabolite profiling of matching tissue extracts and plasma filtrates, and acquisition 

of calibration curves for absolute quantification of metabolites as described 

elsewhere.15,23,24 Briefly, a seven sample serial injection format was used in MSI-

CE-MS (with the exception of the tissue extraction optimization) and utilized 

alternating hydrodynamic injection sequences at 100 mbar for 5 s each sample that 

was followed by a 40 s BGE spacer. Thus, an MSI-CE-MS run consisted of a series 

of six alternating injections of each sample corresponding to matching placebo and 

bicarbonate treatment arms from the same subject which were randomized 

according to sample position, but paired according to the time point in the 

interventions (i.e., Pre, Post and Rec). Also, a pooled quality control (QC) within 

each experimental run was also randomly inserted within each serial injection 

configuration when using MSI-CE-MS to assess technical variance while also 
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allowing for robust batch correction.16 Between runs, the capillary was flushed for 

15 min with BGE at 950 mbar. The sheath liquid was comprised of 60% vol MeOH 

with 0.1% vol formic acid for positive ion mode, and 50% vol MeOH for negative 

ion mode. The TOF-MS system was operated with full-scan data acquisition over 

a mass range of m/z 50-1700 and an acquisition rate of 500 ms/spectrum. The ESI 

conditions were Vcap = 2000 V, nozzle voltage = 2000 V, nebulizer gas =10 psi, 

sheath gas = 3.5 L/min at 195 °C, drying gas 8 L/min at 300 °C. whereas, the MS 

voltage settings were fragmentor = 120 V, skimmer = 65V and Oct1 RF = 750 V. 

Further details on unknown metabolite identification via collision-induced 

dissociation experiments using a QTOF-MS system, as well as data pre-processing, 

statistical analysis and batch-correction adjustments are described in the 

Supporting Information, including a supporting excel data file with original and 

batch-corrected muscle and plasma/serum metabolome data from this study. 

 

4.3.4 Targeted Electrolyte Analysis by CE Indirect UV Detection 

All CE with indirect UV experiments were performed on a P/ACE MDQ CE system 

(Beckman-Coulter, Fullerton, CA, USA) equipped with indirect UV detection at 

214 nm at 25 ºC. Separations of inorganic cations was achieved using a BGE 

consisting of 5 mM formic acid, 12.5 mM creatinine, 3 mM 18-crown-6-ether at 

pH 4.0, which was adjusted using 1 M sulfuric acid.25 Separations were performed 

under normal polarity using an uncoated fused-silica capillary with a total length of 

60 cm and inner diameter of 50 µm using an applied voltage of 30 kV at 25 ºC. CE 

with indirect UV detection was also used for the analysis of plasma chloride using 

a BGE consisting of 0.4 M formic acid, 5 mM naphthalene disulfonate (NDS), 5 

mM naphthalene trisulfonate (NTS) at pH 2.0.26 Separations were performed on an 

uncoated fused-silica capillary with a total length of 60 cm and an inner diameter 

of 75 µm using an applied voltage of -18 kV (reversed polarity). A hydrodynamic 

injection for 10 s or 80 s (at 0.5 psi) was used for analysis of chloride and other 

major blood electrolytes, respectively. As plasma used a potassium salt of EDTA 
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as an anticoagulant, it was not used for analysis of cationic electrolytes, such as 

potassium. Further details on method validation and quality control (QC) performed 

for major serum electrolyte analysis by CE with indirect UV method are outlined 

in the Supporting Information. 

 

4.4 Results and Discussion 

4.4.1. Development of a Quantitative Tissue Extraction Protocol 

A major constraint of tissue metabolomic studies is the invasive nature of acquiring 

percutaneous biopsies from human participants, notably repeat specimens from the 

same individual during exercise that are more heterogeneous than conventional 

biofluids (e.g., plasma). As a result, standardized extraction protocols are needed 

for analysis of mass-limited muscle biopsies collected via the Bergström technique 

(≈100-200 mg of wet tissue)27 when using multiple assays (i.e., transcriptomics, 

enzymatic assays) and complementary metabolomics-based platforms.13,15 Wu et 

al.19 reported a high throughput extraction protocol for tissue (fish liver) 

metabolomics, however there have been few studies to date demonstrating 

quantitative recovery for a wide range of intra-cellular metabolites from human 

tissue specimens28,29 to reduce false discoveries due to pre-analytical sources of 

bias.30  Lyophilization of all muscle tissue was performed to allow for more efficient 

extraction of powdered/freeze-dried samples that can be accurately weighed out for 

normalization of ion responses or metabolite concentrations to total dried weight to 

reduce overall biological variance. We first performed four repeated rounds of 

extractions on muscle tissue (≈�2 mg) in triplicate when using a modified Bligh-

Dyer protocol.18 To preserve the integrity of labile intra-cellular metabolites that 

are prone to oxidation (sulfhydryls) and hydrolysis (phosphagens), two recovery 

standards were added to the extraction solvent prior to sample processing. The 

extent of oxidation and hydrolysis was then evaluated based on the measured ratio 

of the oxidized/reduced forms of a synthetic reduced glutathione analog (i.e., g-Glu-

Cys-Gly-OEt) and hydrolyzed/non-hydrolyzed forms of a stable isotope-labelled 



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

150 
 

nucleotide analog (i.e., 13C10-ATP) as shown in Figure S4.1 of the Supporting 

Information. A five sample serial injection format in MSI-CE-MS comprising of 

four successive rounds of extracts performed on a pooled muscle tissue sample on 

ice (+4 °C) together with a blank extract (pre-chilled solvent alone) were analyzed 

within a single run as shown in Figure 4.1(A). Overall, the first, second, third and 

fourth round of serial extracts resulted in an average recovery of (64 ± 6)%, (26 ± 

4)%, (8 ± 2)% and (4 ± 2)% respectively, which was based on the analysis of 45 

representative metabolites from three independent muscle tissue specimens as 

summarized in Table S4.2, including amino acids, acylcarnitines, organic acids, 

sugar phosphates and nucleotides. As a result, it was concluded that pooling 

together the first two upper layer aqueous fractions allowed for near exhaustive 

extraction (> 90% recovery) of polar/ionic metabolites from muscle tissue as shown 

for O-acetyl-L-carnitine (C2) and phosphocreatine (PCr) in Figure 4.1(B) while 

minimizing oxidation and hydrolysis artifacts (< 8%) during sample processing 

(Figure S4.1). Furthermore, our study also noted that repeat (i.e., up to three) 

freeze-thaw cycles of muscle extracts generated lower recoveries for abundant yet 

labile intracellular phosphagens (e.g., PCr, ATP) and reduced thiols (e.g., reduced 

glutathione, GSH) with a concomitant increase in hydrolyzed/oxidized by-

products, such as inorganic phosphate (PO4
3-) and oxidized glutathione disulfide 

(GSSG). Thus, to minimize bias and accurately measure high energy phosphate 

donors/nucleotide pools and intracellular thiol redox status,31 all muscle extracts 

were analyzed by pooling two aqueous fractions together after a single thaw on ice 

when stored at -80 °C. 

 

4.4.2 Nontargeted Profiling of the Human Skeletal Muscle Metabolome 

CE with indirect UV detection was used as a targeted approach for determination 

of major (involatile) electrolytes relevant to muscle contractile function, including 

potassium, sodium, calcium, magnesium and chloride. Key figures of merit are 
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Figure 4.1: Sample workflow developed for optimization of a quantitative tissue extraction protocol 

for small amounts of lyophilized muscle tissue biopsies (≈ 2 mg dried weight). (A) MSI-CE-MS 

using a five sample serial injection configuration applied for evaluating metabolite recoveries after 

four repeated rounds of extractions based on a modified Bligh-Dyer procedure together with a blank 

(solvent) extraction. (B) Extracted ion electropherograms (EIE) for representative metabolites from 

muscle tissue extracts, acetylcarnitine (C2) and phosphocreatine (PCr) showing excellent recoveries 

(> 90%) when pooling together the first two extracts from the top aqueous layer without sample 

carry-over as reflected in blank extracts. 
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> 0.990) with acceptable detection limits (20-60 µM), mean recoveries (≈ 94%) and 

technical precision based on intermittent analysis of pooled serum extracts as QC 

samples (CV = 13%, n = 30) as shown in control charts. Also, MSI-CE-MS was 

used as a high throughput platform for nontargeted analysis of a wide array of 

polar/ionic metabolites that comprise of the human skeletal muscle metabolome. 

Figure S4.3 depicts an overview of the data workflow used for selection of 

authentic metabolites from muscle tissue when using multiplexed separations with 

temporal signal pattern recognition,15, 21 where each metabolite is annotated by their 

accurate mass and relative migration time (m/z:RMT) in positive (p) or negative (n) 

1.4x10
4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Io
n 

co
un

t

32313029282726
Time (min)

6x10
4

5

4

3

2

1

0

Io
n 

co
un

t

2120191817
Time (min)

3 2 1 

 
MSI-CE-MS: 5 sample configuration; 

Serial exhaustive liquid extraction Modified B-D 
Extraction (X4) 

Extract#4     

MS 

ESI 

+ 
EOF 

Serial injection of 4 tissue extracts + 1 blank 
followed by zonal separation and ionization 

< 5 mg freeze-dried 
muscle tissue 

Extract#3     Extract#2     Extract#1     

Dilute + IS 
MeOH/ 

H2O 
 

CHCl3 

Phosphocreatine (PCr)  Acetylcarnitine (C2) 
Ext.#1 

Ext.#2 

Blank 

Ext.#3 
Ext.#4 

Ext.#1 

Ext.#2 

Blank 

Ext.#3 
Ext.#4 

m/z:RMT  
204.123:0.772 

m/z:RMT  
210.028: 1.302 

Recovery: 92 ± 7% 
* pooling 2 extracts 

Recovery: 90 ± 9% 
* pooling 2 extracts  

(A) 

(B) 

0 4 

Blank 

Tissue Filtrate 
(X4) 

 

* All extracts analyzed in positive 
and negative ion mode under acidic 

and alkaline BGE conditions 



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

152 
 

ion mode. In this case, a dilution trend filter was used to effectively reject spurious, 

background and/or redundant ion signals (i.e., isotope peaks, in-source fragments 

and/or adducts) that comprise the majority of molecular features generated in ESI-

MS.32 Overall, 84 muscle-derived metabolites (together with 5 electrolytes) 

satisfied several stringent selection criteria in this work, namely they were 

measured with adequate precision (CV < 30%, n=3, with 54 

metabolites/electrolytes with CV < 15%) without a background signal measured in 

the blank while also undergoing a linear response change upon serial dilution. 

However, 76 metabolites/electrolytes were included within the final data matrix as 

they were detected in the majority (> 75%) of muscle tissue extracts (to avoid 

missing value inputs) while also still having adequate technical precision (CV < 

30%, n=7) for pooled samples analyzed as QC. Most muscle metabolites were 

confidently identified based on co-migration after spiking pooled muscle extracts 

with an authentic standard (level 1), whereas 7 metabolites were tentatively 

identified based on their MS/MS spectra when compared to public databases (level 

2), and 6 metabolites had unknown chemical structures and were denoted by their 

most likely molecular formulas (level 3). Additionally, this study included 

characterization of the plasma metabolome from the same subjects when using 

MSI-CE-MS (Figure S4.4) using analogous selection criteria outlined for muscle 

tissue, which comprised 60 polar/ionic metabolites and electrolytes reliably 

detected in the majority of samples. Furthermore, absolute quantification of a 

majority of identified muscle metabolites (mmol/kg) are also summarized in Table 

S4.4 in comparison to their circulating concentrations from matching plasma/serum 

samples (mM) for a cohort of male subjects (placebo, n=7) at rest. Muscle 

metabolite concentrations spanned a wide dynamic range (0.04 to 316 mmol/kg) 

from low abundance compounds (O-propionylcarnitine) to major electrolytes (K+) 

with several metabolites uniquely expressed within skeletal muscle as compared to 

plasma, including GSH, PCr, cAMP, ATP, glucose-1-phosphate, glycerol-3-

phosphate, and carnosine. Interestingly, lidocaine (235.1805:0.844, MH+) was also 
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detected in muscle tissue extracts since it was administered as a local anesthetic 

prior to acquiring tissue biopsies. Overall, similar metabolome coverage was 

achieved in MSI-CE-MS as compared to recent studies12,13 which adopted a 

targeted strategy for analysis of more than 96 known muscle metabolites when 

using several different analytical platforms, including GC-MS (organic acids), 

UPLC-MS/MS (amino acids, acylcarnitines), ion pair-LC-MS/MS 

(nucleotides/coenzymes), LC-MS/MS (lipids), as well as specific enzyme assays 

(PCr, ATP, creatine). Major advantages of MSI-CE-MS include its higher 

throughput when relying on a single cost-effective platform for metabolomics with 

stringent QC, which allows for the discovery of novel metabolites from low 

amounts of residual muscle tissue specimens. It is important to note that although 

an average of 2 mg of dried muscle tissue was needed for accurate weighing and 

data normalization prior to extraction, only about 10 nL of a 20 µL extract (≈ 500 

ng) is effectively injected on-column for muscle metabolomic analyses when using 

MSI-CE-MS.  

 

4.4.3 Interval Exercise on Metabolome Dynamics in Muscle Tissue and Blood 

An overview of this cross-over intervention study is shown in Figure 4.2(A), where 

dynamic metabolic changes were measured from repeat muscle and blood 

specimens acquired from untrained males performing standardized ergometer 

cycling trials as a function of two factors, namely time of interval exercise (Pre, 

Post, Rec) and treatment (placebo, bicarbonate). Figure 4.2(B) depicts an extracted 

ion electropherogram for lactic acid, a classic biomarker of metabolic acidosis that 

has been shown to preserve muscle function during strenuous exercise,33 which was 

measured in both muscle tissue extracts and plasma filtrates when using MSI-CE-

MS. In this case, dynamic metabolic changes as a function of strenuous exercise 

time for each subject are evident within a single run based on elevations in lactic 

acid (> 4 to 7-fold-change, FC) immediately post-exercise (Post) as compared to 

baseline (Pre) and recovery (Rec) states. Additionally, the same run also captures 
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treatment responses to bicarbonate intervention on an individual level when 

comparing changes in lactic acid as a function of exercise time as compared to 

placebo together with a pooled sample that serves as a QC. Figure 4.2(C) shows 

quantitative lactic acid determination was achieved using a 7-point calibration 

curve, where ion responses were normalized to an internal standard (NMS) 

migrating from the same sample in MSI-CE-MS. Figure S4.5 summarizes an inter-

laboratory method comparison for plasma lactic acid determination (n=42) when 

using a commercial lactic acid analyzer17 as compared to MSI-CE-MS, which 

showed good mutual agreement as reflected by a slope = 0.818 and a mean bias of 

27% with few outliers based on a Passing-Bablok regression and Bland-Altman 

plot, respectively. This modest extent of negative bias is reasonable given that 

measurement of lactic acid by the colorimetric enzyme assay was performed shortly 

after blood collection, whereas it was completed after prolonged storage of samples 

over two years at -80 °C by MSI-CE-MS. Also, Figure 4.2(D) shows a 2D scores 

plot from a principal component analysis (PCA) that was used to demonstrate good 

overall technical precision for QCs (median CV = 10%) when measuring lactic acid 

and 75 other classes of polar/ionic metabolites and electrolytes comprising the 

muscle metabolome when compared to the overall biological variance (median CV 

= 40%) between samples after normalization to total dried weight. Similarly, 

Figure 4.2(E) highlights the paired data structure of the study design when using a 

3D heat map with hierarchical cluster analysis (HCA), where each subject serves 

as their own control when completing exhaustive exercise trials with bicarbonate 

pretreatment relative to a placebo. The effects of interval exercise on dynamic 

metabolic changes for the placebo trial were first analyzed when using a one-way 

repeated measures ANOVA as summarized in Table S4.5 and Table S4.6, 

respectively. Overall, 13 muscle metabolites and 23 plasma metabolites showed 

significant changes post-exercise (p < 0.05; effects sizes > 0.40) relative to baseline 

and recovery time points, which were related to metabolic pathways associated with 

muscle bioenergetics, including glycolysis (e.g., malic acid), amino acid 
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metabolism (e.g., phenylalanine), ketone bodies (e.g., 3-hydoxybutyric acid), 

purine degradation (e.g., uric acid), nucleotide signalling (e.g., GTP), and lipolysis 

(e.g., glyercol-3-phosphate). Figure 4.3 shows dynamic changes among four of the 

most significant metabolites quantified consistently in both muscle tissue 

(mmol/kg) and plasma (mM), including lactic acid, alanine, glutamic acid, and 

acetylcarnitine. As expected, both intramuscular and plasma lactic acid 

concentrations were elevated immediately post-exercise with a mean fold-change 

(FC) increase ranging from 4 (muscle) to 7 (plasma) relative to baseline or recovery 

states indicative of transient hyperlactatemia. These findings coincide with a 

decrease in muscle glycogen reported by Percival et al.17 since it is used as primary 

carbohydrate source during prolonged strenuous exercise as accumulation of 

intramuscular lactic acid from glycolysis and oxidative phosphorylation pathways 

represents a physiological response to the high energetic demands for ATP within 

contracting muscle.33 To preserve muscle function however, monocarboxylate 

transporters (MCTs) facilitate both H+ and lactic acid efflux from the muscle into 

circulation, where lactic acid acts as a substrate for metabolism by other inactive 

tissue.34 Interestingly, intramuscular lactic acid concentrations in this work were 

strongly correlated with both malic acid (r = 0.864; p = 4.56 E-7) and glycerol-3-

phosphate (r = 0.848; p = 1.20E-6) highlighting the activation of central energy 

metabolism during strenuous exercise. Exercise-induced changes in amino acid 

metabolism were also widely measured in this study, most notably alanine and 

glutamic acid. In this case, alanine concentrations post-exercise were consistently 

elevated in both muscle tissue (p = 4.0E-4) and plasma (p = 8.70E-5), which 

subsequently decreased to levels slightly lower than baseline upon recovery. In 

contrast, intramuscular glutamic acid concentrations decreased immediately after 

exercise (p = 0.001) and reached levels slightly greater than baseline after recovery 

unlike the increase in plasma glutamic acid concentrations post-exercise (p = 

0.005). These opposing temporal patterns are attributed to the activation of alanine 

aminotransferases with glycolytic pyruvate production at the onset of exercise,  
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Figure 4.3: Dynamic metabolic changes following strenuous interval exercise using a one-way 

repeated measures ANOVA in (A) muscle tissue and matching (B) plasma samples from a cohort 

of untrained male subjects (n=7) at baseline (Pre), post-exercise (Post) and 3 h of recovery (Rec) 

after ingestion of (sodium chloride) placebo. These compounds were among the most significant 

metabolites consistently detected in both types of specimens with large effect sizes. Other muscle 

and/or plasma metabolites undergoing temporal changes upon strenuous exercise for the placebo are 

summarized in Table S4.5 (muscle tissue) and Table S4.6 (plasma) of the Supporting 
Information. 
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mitochondrial oxidative capacity.37 In fact, plasma 3-hydroxybutyric acid (Table 

S4.6) was notably elevated only after 3 h of recovery with a mean FC increase of 

5.1 as compared to baseline (p = 0.0008; effect size = 0.719) reflecting a “delayed” 

post-exercise ketosis response.38 

 

4.4.4 Exploring the treatment effects of bicarbonate ingestion following 
interval exercise 
 
Since profound physiological and metabolic perturbations occur immediately after 

strenuous exercise, our study next focused on understanding the mechanisms of 

bicarbonate intake on intramuscular metabolism, which attenuates the lowering of 

blood pH post-exercise.17 Due to the inherent paired data structure of this crossover 

study, a multilevel partial least squares-discriminant analysis (mPLS-DA)39 was 

first used to differentiate metabolic phenotype changes due to high dose bicarbonate 

ingestion relative to placebo at the post-exercise time interval as shown in Figure 

S4.6 (muscle tissue) and Figure S4.7 (plasma/serum). Both mPLS-DA models 

showed good accuracy and robustness (R2 = 0.982, Q2 = 0.853; R2 = 0.955, Q2 = 

0.835) and were validated by permutation testing (p < 0.05, n = 1000) as shown in 

their 2D scores plots. Additionally, top-ranked metabolites associated with 

bicarbonate intervention were selected based on their variable of importance in 

projection (VIP scores > 1.5) along the first component, such as uric acid and 

potassium within muscle tissue (12 compounds in total), as well as citric acid and 

chloride in plasma/serum (7 compounds in total). A two-way repeated measures 

ANOVA test was then used to confirm the statistical significance (p < 0.05; effect 

size > 0.50) of these candidate biomarkers of treatment responses to bicarbonate 

following strenuous exercise as summarized in Table S4.7 (muscle tissue) and 

Table S4.8 (plasma). Figure 4.4(A) depicts box-whisker plots for intramuscular 

concentrations of potassium, uric acid, glutathionylcysteine oxidized disulfide 

(GSH-Cys-SS), as well as an unknown ion (m/z 241.1295) that was subsequently 

identified as anserine (level 1) based on its co-migration and high resolution  
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Figure 4.4: (A) Boxplots of four top-ranked intracellular metabolites/electrolytes (p < 0.05) 

associated with improved muscle function due to oral bicarbonate pretreatment following strenuous 

interval exercise in this placebo-controlled cross-over intervention study. A multi-level PLS-DA of 

metabolomic data (Figure S4.7) and then a two-way repeated measures ANOVA was performed 

for identification of metabolites/electrolytes from muscle tissue modulated by bicarbonate 

intervention immediately following exercise as compared to placebo. (B) Extracted ion 

electropherogram with full-scan mass spectrum of the unknown ion, subsequently identified 

unambiguously as anserine by comigration after spiking pooled muscle tissue with an authentic 

standard. (C) Also, a mirror plot comparing MS/MS spectra acquired for the unknown ion at 20 V 

as compared to anserine standard demonstrates a high matching score based on four characteristic 

product ions that is consistent with the β-alanyl-1-methylhistidine dipeptide. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MS/MS spectra with four characteristic products ions (at 20 V) that match well to 

an authentic standard as shown in Figure 4.4(B, C). Intramuscular potassium 

concentrations increased 1.4-fold post-exercise with bicarbonate ingestion as 

compared to placebo (p = 0.038), whereas serum potassium concentrations were 

modestly attenuated by 0.87-fold post-exercise (p = 0.047). In this case, potassium 

efflux from muscle to the interstitium and venous blood occurs during strenuous 

exercise as a means to prevent K+ induced decline in muscle force and 

contractibility at the onset of fatigue.40 Interestingly, our findings indicate that 
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ingestion of bicarbonate induced a mild hypokalemic effect following strenuous 

exercise, which is consistent with previous studies where acute metabolic alkalosis 

has been shown to reduce K+ efflux.40, 41 An increase in intramuscular potassium 

post-exercise together with a lowering of its efflux into blood suggests bicarbonate-

induced improvements in muscle contractibility that prevents cell membrane 

depolarization. Such changes may be governed by enhanced Na+-K+ pump activity 

that is typically suppressed with high-intensity exercise, but is restored by the 

alkalizing effects of bicarbonate.41 

  

This study also revealed several unexpected outcomes with bicarbonate 

intervention, such as a 0.74-fold lowering of uric acid concentrations (p = 0.028) 

within skeletal muscle post-exercise as compared to placebo. Uric acid represents 

a terminal end-product of purine degradation due to irreversible ATP hydrolysis, 

which increases in serum following strenuous exercise activity.42 In our case, uric 

acid concentrations were only significantly elevated post-exercise from baseline 

within muscle tissue (Table S4.5). Previous work has also demonstrated that 

plasma hypoxanthine, an intermediate of uric acid formation and biomarker of 

energetic stress, was significantly attenuated post-exercise after 6-weeks of interval 

training.37 To date, there is little known regarding the effects of acute metabolic 

alkalosis on purine metabolism within skeletal muscle as most studies focus on 

changes in phosphagens and nucleotide pools (i.e., ATP, PCr).43 Additionally, 

modest bicarbonate treatment effects also affected intramuscular glutathione 

metabolism and redox homeostasis as reflected by a 0.77-fold lowering of GSH-

Cys-SS concentrations (p = 0.039) post-exercise as compared to placebo. 

Importantly, this effect was not correlated with changes in either potassium or uric 

acid (p > 0.05). Strenuous exercise leads to increased oxidative stress within 

skeletal muscle due to the accumulation of reactive oxygen species (ROS) that may 

lead to oxidative damage of protein resulting in impaired contractility and muscle 

fatigue.44 Intracellular antioxidants, such as glutathione (GSH) play crucial roles in 
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counteracting exercise-induced oxidative stress via reversible formation of 

oxidized disulfides, which can be enhanced with oral N-acetylcysteine ingestion to 

boost GSH recycling capacity during exhaustive exercise.45 In this work, 

bicarbonate intake was found to attenuate GSH-Cys-SS concentrations within 

skeletal muscle post-exercise likely reflecting a decrease in intracellular oxidative 

stress and lower muscle protein oxidation. Additionally, anserine was identified for 

the first time within human skeletal muscle, which showed a modest decrease post-

exercise following bicarbonate pretreatment (p = 0.026) as compared to placebo. 

Carnosine, a b-alanyl-histidine dipeptide is a major constituent within mammalian 

skeletal muscle that plays key roles in muscle contraction/excitation as an 

intracellular buffer and an antioxidant.46 In our work, carnosine had mean baseline 

concentrations within skeletal muscle similar to GSH, glutamine and PCr (≈ 60 

mmol/kg) at rest, which was only lower than intramuscular creatine (≈ 96 mmol/kg) 

and major electrolytes (> 200 mmol/kg for chloride, sodium and potassium) as 

summarized in Table S4.4. The biological activity of carnosine however is 

modulated via enzymatic transformations, including methylation (anserine), 

acetylation (N-acetylcarnosine), or decarboxylation (carcinine).47 The former two 

histidine-containing dipeptides were identified and quantified within human muscle 

tissue, but had mean concentrations more than 120-fold lower than carnosine. As a 

result, the attenuation of anserine post-exercise with bicarbonate intake was 

indicative of lower carnosine methylation activity following strenuous exercise. 

While the exact function of specific carnosine metabolites within human skeletal 

muscle is not fully understood, animal studies have shown that methylation of 

carnosine to anserine enhances its antioxidant efficiency due to stronger 

interactions to neutralize superoxide (O2
-) and hypochlorite (ClO-) anion radicals.48 

Overall, this data supports that oral bicarbonate intervention had modest effects on 

lowering both oxidative stress (anserine, GSH-Cys-SS) and bioenergetic stress (uric 

acid) while maintaining ionic homeostasis (potassium) following strenuous 

exercise. Modest to strong treatment effects of bicarbonate (effect sizes = 0.53 to 
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0.71; p < 0.05) were also measured in circulation (plasma/serum) as shown in 

Figure S4.8, including a significant lowering of mean chloride and potassium 

concentrations post-exercise, as well as increases in three metabolites of central 

energy metabolism (i.e., lactic acid, pyruvic acid, citric acid) and two branched-

chain amino acid catabolites, namely a-ketoisovaleric acid and ketoleucine (a-

ketoiscaproic acid). Interestingly, these two alpha-keto acids, and pyruvate were 

inversely correlated to serum potassium concentrations (r > -0.67; p < 0.01) 

suggesting common regulatory mechanisms in their transport into circulation. 

  

An illustrative scheme that summarizes the pleiotropic effects of bicarbonate 

ingestion on strenuous exercise on key metabolic pathways within muscle tissue is 

depicted in Figure S4.9. Although new insights of the underlying mechanisms of 

bicarbonate action on skeletal muscle metabolism were achieved in this work, there 

were several study limitations. Firstly, a larger cohort is needed to increase study 

power due to between-subject variations in bicarbonate pharmacokinetics, enzyme 

activities, habitual diet and baseline cardiorespiratory fitness levels among 

participants despite including a standardized breakfast prior to exercise trials. 

However, the invasive nature of repeat muscle tissue biopsies during exercise trials 

placed practical limits on recruitment, which was comprised of young men. Also, 

bicarbonate interventions that link metabolic changes within skeletal muscle to 

improvements in exercise performance are recommended for future studies, such 

as reductions in self-perceived exertion or maximum heart rate, and increases of 

time to fatigue.41 Although our study implemented a validated method for 

metabolomics with stringent quality control,15 metabolome coverage was limited to 

polar/ionic metabolites and electrolytes. Recent advances in multiplexed CE-MS 

separations using non-aqueous buffer systems49 now enable high throughput 

screening of fatty acids and intact lipids in order to expand metabolome coverage 

as required to fully understand the roles that alkalizing agents have on contracting 

skeletal muscle. Future metabolomic studies will also elucidate the mechanisms of 
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other nutraceuticals that counter fatigue during strenuous exercise, which may also 

offer therapeutic benefits for treatment of human diseases of unknown etiology as 

related to muscle dysfunction, such as chronic fatigue syndrome.50 

 

4.5 Conclusions  

This work represents the first study that uses a nontargeted and quantitative 

approach for characterization of the skeletal muscle metabolome from mass-

restricted human tissue biopsies that applied a rigorous data workflow for 

metabolite authentication with quality control. A placebo-controlled, cross-over 

study design was used to evaluate treatment responses to bicarbonate ingestion 

following strenuous exercise with repeat muscle tissue and blood specimens 

collected from untrained participants. Extensive validation of an efficient extraction 

protocol for lyophilized muscle tissue achieved high recoveries for a wide range of 

polar/ionic metabolites and major electrolytes with good accuracy and technical 

precision without oxidation or hydrolysis artifacts. As expected, dynamic 

metabolomic studies for placebo exercise trials demonstrated large perturbations in 

metabolites primarily involved in muscle bioenergetics and ionic homeostasis in 

skeletal muscle and circulation. Noteworthy, our work revealed that bicarbonate 

pretreatment prevented potassium efflux from contracting muscle together with 

lower oxidative and energetic stress as reflected by modest reductions in anserine, 

GSH-Cys-SS, and uric acid concentrations post-exercise. While blood may act as a 

convenient and less invasive sample for biomarker discovery and routine analysis 

in human clinical trials as compared to skeletal muscle tissue, biochemical 

interpretations are often obscured since metabolites are derived from other organs 

and inactive tissues in the body. Thus, this study paves the way for routine 

metabolite profiling on mass-restricted tissue biopsies as required for deeper 

insights on skeletal muscle health and related myopathies, such as sarcopenia and 

frailty due to aging, sedentary inactivity and/or prolonged hospitalization. 
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4.8  Supporting Experimental   

4.8.1 Blood Sample Preparation 

Frozen raw plasma and serum aliquots were thawed slowly on ice, vortexed for 30 

s and then ultrafiltrated using a 3 kDa molecular weight cut-off filter (Pall Life 

Sciences, Port Washington, NY) at 14,000 g for 20 min to sediment protein. The 

plasma ultrafiltrates were vortexed for 10 s and diluted 4-fold with deionized water 

with 25 μM of 3-chloro-L-tyrosine (Cl-Tyr) and 2-napthalenesulfonic acid (NMS) 

as internal standards for both positive and negative mode ESI-MS, respectively. 

Since K+EDTA was used as an anticoagulant during plasma sample collection, 

serum specimens were used for CE with indirect UV detection to avoid 

interferences for potassium measurements as well as all other electrolytes with the 

exception of chloride. Otherwise, all other metabolites (and chloride) were 

measured using plasma samples. The serum/plasma ultrafiltrates were vortexed and 

diluted 10-fold with deionized water and 0.2 mM barium (for all cationic 

electrolytes) or perchlorate (for chloride), which were used as internal standards for 

electrolyte analysis by CE with indirect UV. All blood samples were analyzed at 

all three time points (Pre, Post, Rec) for both standardized high-intensity exercise 

trials (PLA, BIC) for all subjects with the exception of plasma chloride 

measurements (Pre, Post). 

 

4.8.2 CE with Indirect UV: Method Validation with Quality Control 

Although CE with indirect UV detection has been widely applied for inorganic 

electrolyte analysis, few methods have been extensively validated for clinical 

studies with rigorous quality control. Several figures of merit were assessed to 

determine the analytical performance of the assay to measure major electrolytes in 

complex biological samples. The CE assays showed excellent linearity (R2 > 0.997) 

over a wide linear dynamic range, which spanned a 20- to 125-fold concentration 

range relevant to concentration levels typically found in blood and skeletal muscle. 

Furthermore, the method had adequate sensitivity for detecting major electrolytes 
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with a detection limit ranging from 20 to 60 μM. Precision was measured by 

analysis of pooled quality control (QC) samples over three days of analysis for each 

sample type. The assay was found to have good reproducibility with an average 

coefficient of variation (CV, n=30) of about 14% for RPAs and 0.8% for RMTs for 

electrolytes in serum filtrates. The accuracy of the method was evaluated via 

recovery studies, where standard solutions of electrolytes were spiked into pooled 

serum at three concentration levels except for sodium, which was spiked at one 

level due to its to high natural abundance. Overall, the method demonstrated good 

accuracy with an average bias of about 6%. Similar assay performance was also 

found in the analysis of muscle tissue extracts (data not shown). Furthermore, the 

robustness of the method was evaluated by intermittent analysis of three pooled QC 

serum samples over ten consecutive days of analysis as a way to evaluate long-term 

system stability as illustrated in control charts.  

 

4.8.3 Tandem Mass Spectrometry for Unknown Identification 

High resolution tandem mass spectrometry (MS/MS) was employed for structural 

elucidation of unknown muscle derived metabolites of biological significance in 

this study. Targeted MS/MS experiments were performed on an Agilent G7100A 

CE system (Agilent Technologies Inc., Mississauga, ON, Canada) with a coaxial 

sheath liquid (Dual AJS) Jetstream electrospray ion source connected to an Agilent 

6500 iFunnel QTOF-MS. Pooled muscle tissue extracts (n = 7) were injected 

hydrodynamically using a conventional single sample injection plug at 50 mbar for 

10 s followed by 5 s with BGE. Precursor ions were selected for collisional induced 

dissociation (CID) experiments at 10, 20 and 40 V. Mirror plots comparing MS/MS 

spectra of unknown metabolites from muscle tissue extracts were also compared to 

their respective authentic reference standard whenever available that were 

generating using the “InterpretMSSpectrum” R Package.  
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4.8.4 Data Pre-processing and Statistical Analysis 

All MSI-CE-MS data were integrated and analyzed using Agilent MassHunter 

Qualitative Analysis B.07.00 and Microsoft Excel. Prior to statistical analysis, 

normality testing based on a Shapiro-Wilk test (p < 0.05) was performed using 

SPSS. A QC-based batch correction algorithm was also applied to all muscle 

extracts and plasma filtrate metabolomic data sets to adjust for long-term signal 

drift in ESI-MS.1 Univariate statistical analysis and a repeated measures analysis of 

variance (ANOVA; two factors: time and treatment) were also performed on SPSS 

(IBM SPSS Statistics for Windows, Version 20.0. NY, USA). The Mauchly’s 

sphericity test was initially used to determine if the data satisfied the sphericity 

assumption; in cases where sphericity was violated, a Greenhouse-Geisser 

correction was applied accordingly. All batch corrected data was pre-processed 

using log-transformation and autoscaling prior to multivariate statistical analysis. 

Furthermore, in the case of the data obtained from muscle extracts, metabolite 

responses were normalized to the total dried mass of each muscle specimen (mg). 

Multivariate statistical analyses, including principal component analysis (PCA), 

multilevel partial least-squares discriminant analysis (PLS-DA) and pathway 

analysis were performed using Metaboanalyst 4.0.2 In evaluating the effects of 

bicarbonate supplementation on interval exercise, multilevel PLS-DA was 

employed in order to take advantage of the paired data structure in this double blind, 

placebo-controlled crossover study.3 To validate each multilevel PLS-DA model, 

cross-validation and permutation testing (n = 1000) were also performed.   

 

4.8.5 QC Based Batch-Correction: Minimizing Batch Variation and Signal 
Drift 
 
Due the modest number of samples in this metabolomics study (n = 49), two 

different batches of individual muscle tissue extracts and plasma specimens were 

analyzed using MSI-CE-MS. An inherent feature of performing large metabolomics 

studies when using ESI-MS is significant batch variation due to long-term signal 
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drift, especially when performing analyses intermittently over long periods of time 

on a multi-user instrumental platform. As a result, a batch-correction using an 

adjustment algorithm based on empirical Bayesian frameworks4 was employed in 

our study that takes advantage of the pooled QC samples included in each serial 

injection run when using MSI-CE-MS, as well as batch and injection sequence 

information. After batch correction, there was a significant improvement in overall 

technical variation (p < 0.01) with the median CV decreasing from 15% to 10% for 

all pooled muscle QCs (n = 7). Similarly, batch-corrected metabolomic data 

analyzed resulted in the median CV decreasing overall from 14% to 10% for all 

pooled plasma QCs (n =7).  Further details on the implementation of an optimal 

batch-correction algorithm when relying on multiplexed separation data workflows 

based on MSI-CE-MS are discussed elsewhere.1  
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Table S4.1: Physical characteristics and performance data of cohort (n =7)  

 

Characteristic Mean ± SD 
Age (yr) 22 ± 1 

Height (cm) 181 ± 7 

Mass (kg) 77 ± 14 

BMI (kg/m2) 23 ± 3 

Body Fat (%) 16 ± 5 

VO2 peak (mL/min/kg) 50 ± 8 

Total NaHCO3 (g) 31 ± 5 

Total NaCl (g) 21 ± 4 
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Table S4.2: Summary of the extraction efficiency for 45 representative intra-cellular metabolites 

obtained after four rounds of modified Bligh Dyer extractions of pooled muscle tissue specimens (2 

mg, n = 3)  

 
  

Percent Recovery (%)a 

m/z:RMT:mode  Metabolite First 
Extraction 

Second 
Extraction 

Third 
Extraction  

Fourth 
Extraction 

76.0393:0.725:p Glycine 68±3 23±3 6.1±0.9 2.4±0.8 

90.0550:0.775:p Alanine 68±4 23±3 6.2±0.6 2.6±1.0 

106.0499:0.858:p Serine 64±3 25±2 7.4±0.8 3.6±1.6 

114.0662: 0.646:p Creatinine 65±1 26±1 5.9±0.7 2.7±0.8 

116.0706:0.916:p Proline 68±4 24±3 5.8±0.5 2.4±0.8 

118.0863:0.850:p Valine 70±4 23±3 6.6±0.5 <LOQ 

118.0863:0.959:p Betaine 63±2 27±3 7.4±0.8 3.2±1.0 

120.0655:0.897:p Threonine 68±3 23±2 5.9±0.7 2.9±1.3 

123.0567:0.676:p Unknown 59±9 33±0 9.7±0.6 <LOQ 

132.0768:0.758:p Creatine 66±4 25±4 6.2±0.5 2.4±0.9 

132.1019:0.862:p Isoleucine 62±6 25±2 8.6±1.9 4.6±2.2 

132.1019:0.871:p Leucine 72±5 19±2 5.7±1.0 3.1±1.3 

134.0488:0.980:p Aspartic acid 68±3 23±3 6.6±1.2 2.7±0.9 

146.1176:0.704:p Deoxycarnitine 68±4 24±3 6.2±1.4 2.7±1.0 

147.0764:0.919:p Glutamine 69±4 23±4 5.7±0.5 2.2±0.9 

147.1128:0.605:p Lysine 59±2 26±4 9.3±1.2 5.4±2.3 

148.0604:0.931:p Glutamic acid 70±4 23±4 5.4±0.2 2.0±0.7 

150.0583:0.905:p Methionine 56±5 37±3 6.3±0.3 <LOQ 

156.0768:0.651:p Histidine 66±4 25±3 6.9±0.7 2.9±0.8 

160.1331:0.728:p Unknown 60±4 32±4 5.7±0.8 2.2±0.8 

162.1125:0.736:p Carnitine (C0) 70±4 23±3 5.5±0.8 2.2±0.9 

166.0863:0.931:p Phenylalanine 60±3 28±3 7.4±0.4 4.4±2.3 

175.1190:0.626:p Arginine 56±1 26±3 10.7±1.0 6.8±2.3 

176.1030:0.943:p Citrulline 69±5 24±3 6.0±0.1 2.9±1.7 

182.0812:0.960:p Tyrosine 63±3 25±3 7.6±0.8 4.5±1.8 

204.123:0.776:p Acetylcarnitine (C2) 70±4 22±3 5.5±0.9 2.4±1.1 

205.0972:0.931:p Tryptophan 60±4 27±3 12.2±2.6 <LOQ 

227.1139:0.606:p Carnosine 65±4 26±4 6.9±0.4 2.6±0.5 

230.0952:1.403:p Unknown 67±3 23±2 6.8±0.9 4.2±1.8 

248.1489:0.857:p 
Hydroxybutrylcarniti

ne 
68±5 27±5 7.9±1.3 <LOQ 

269.1242:0.927:p N-Acetylcarnosine 72±3 23±4 5.5±0.7 <LOQ 

307.0833:1.039:p 
Oxidized Glutathione 

(GSSG) 
66±2 26±3 7.9±1.4 <LOQ 
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308.0911:1.118:p Glutathione (GSH) 70±3 23±3 5.3±0.4 2.1±0.7 

89.0244:1.149:n Lactic acid 64±4 26±2 9.6±5.0 <LOQ 

96.9700:1.720:n Phosphoric acid 54±4 29±2 10.7±0.8 6.2±2.2 

110.9851:1.619:n Unknown 69±5 24±3 6.3±0.8 <LOQ 

128.0353:1.016:n Oxoproline 70±6 30±6 <LOQ <LOQ 

132.0302:0.990:n Iminodiacetic acid 71±1 26±7 <LOQ <LOQ 

133.0142:1.943:n Malic acid 68±6 27±4 7.4±0.1 <LOQ 

167.0211:0.954:n Uric acid 69±12 26±7 7.8±1.3 <LOQ 

171.0064:1.277:n Glycerol-3-phosphate 65±1 24±2 7.1±0.4 3.8±1.7 

210.0285:1.287:n Phosphocreatine 66±5 24±4 6.9±0.5 2.5±0.5 

259.0224:1.054:n 
Glucose-6-phosphate 

(G6P) 
59±3 29±4 8.6±0.8 3.4±0.4 

347.0398:1.027:n IMP 64±10 33±10 <LOQ <LOQ 

505.9885:1.209:n ATP 42±4 36±5 15.4±3.3 6.6±0.7 

662.1019:0.720:n NAD+ 66±6 25±3 7.4±2.1 2.8±1.5 

a Percent recovery expressed as average ±  standard deviation  (n=3) 
 

 
Table S4.3: Analytical figures of merit for quantitative analysis of major electrolytes in biological 

samples when using CE with indirect UV detection. 

 

Electrolyte RMT 
LOD          
(µM) 

LOQ          
(µM) Linear regression 

Linearity    
(R2) 

Linear  
range     
(mM) 

Recoverya       
(%) 

Intermediate 
Precisionb     

 (CV, n=30) 

Ammonium 
0.524 ± 

0.011 
60 200 

y = 0.853 (±0.022)x     

+ 0.011 (±0.050) 0.997 0.2-4.0 94 ± 7 -- 

Potassium 
0.607 ± 

0.012 
60 200 

y= 1.12 (±0.017)x          

- 0.034 (±0.038) 
0.999 0.2-4.0 93 ± 4 13% 

Sodium 
0.782 ± 

0.040 
60 200 

y= 1.62 (±0.014)x         

- 0.310 (±0.199) 
1.000 0.2-25 86 ± 7 11% 

Calcium 
0.839 ± 

0.010 
30 100 

y= 3.12 (±0.069)x         

- 0.005 (±0.078) 
0.998 0.1-2.0 98 ± 7 17% 

Magnesium 
0.894 ± 

0.009 
20 60 

y= 3.69 (±0.080)x         

- 0.028 (±0.054) 
0.998 0.06-1.2 98 ± 4 12% 

a Spike/recovery studies performed at three concentration levels (except sodium) in pooled serum 
samples in triplicate for assessment of method accuracy. 
b Intermediate precision assessed by intermittent analysis of three pooled serum filtrate samples 
over ten consecutive days (n=30) based on peak area integration of each electrolyte relative to the 
internal standard (Ba2+). 
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Table S4.4: Summary of 84 metabolites measured in matching muscle tissue biopsies and 

plasma/serum specimens collected from a cohort of placebo treated untrained males (n = 7) at 

baseline prior to interval exercise. Metabolites are classified according to their m/z:RMT, most likely 

molecular formula and mass error with most compounds confirmed by spiking with authentic 

standards (level 1 identification). Absolute concentrations of intracellular (i.e., skeletal muscle) and 

circulatory (i.e., plasma/serum) metabolites were quantified using calibration curves from authentic 

standards for majority of compounds.  

 

   

 

         Muscle            Blood 

m/z:RMT:mode  Molecular 
Formula Compound ID  

Mass 
error 
(ppm) 

Baseline 
Concentration 
(mmol/kg d.w.)  

 Baseline 
Concentration 

(mM) 

76.0393:0.725:p C2H5NO2 Glycine 11.8 5.0 ± 1.8 0.25 ± 0.02 

90.0550:0.775:p C3H7NO2 Alanine 4.1 9.6 ± 3.9 0.47 ± 0.09 

104.0706:0.828:p C4H9NO2 N-N-Dimethylglycine
a
 1.9 -- -- 

104.1075: 0.602: p C5H14NO Choline
a
 -2.9 -- 0.02 ± 0.01 

106.0499:0.858:p C3H7NO3 Serine 0.3 1.69 ± 0.52 0.11 ± 0.02 

114.0662: 0.646: p C4H7N3O Creatinine
a
 -2.0 -- 0.06 ± 0.01 

116.0706:0.916:p C5H9NO2 Proline -0.3 3.32±1.61 0.21 ± 0.04 

118.0863:0.850:p C5H11NO2 Valine
a
 -1.1 -- -- 

118.0863:0.959:p C5H11NO2 Betaine
a
 -1.4 -- -- 

120.0655:0.897:p C4H9NO3 Threonine -0.3 2.03 ± 0.82 0.14 ± 0.01 

123.0567:0.676:p C6H6N2O Unknown [M+H]
+ 

6.0 -- -- 

126.0219:1.760:p C2H7NO3S Taurine -0.8 43 ± 11 -- 

132.0768:0.758:p C4H9N3O2 Creatine 4.0 96 ± 28 0.02 ± 0.01 

132.1019:0.862:p C6H13NO2 Isoleucine
a
 -12.1     -- 0.06 ± 0.02 

132.1019:0.871:p C6H13NO2 Leucine
a
 -3.8 -- -- 

133.0608:0.897:p C4H8N2O3 Asparagine 3.0 0.98 ± 0.27 0.05 ± 0.01 

134.0488:0.980:p C4H7NO4 Aspartic Acid -37.8 0.54* -- 

137.0715:0.659:p C7H8N2O N-Methylnicotinamide
c
 -24.1 -- -- 

142.0264:1.640:p C2H8NO4P O-Phosphoethanolamine
c
 -4.2 -- -- 

144.0988:0.974:p C7H13NO2 Proline betaine 19.9 0.04 ± 0.02 -- 

146.1176:0.704:p C7H15NO2 Deoxycarnitine -0.2 0.37 ± 0.13 
0.0013 ± 

0.0002 

146.1652:0.420:p C7H19N3 Spermidine
d
 -6.4 -- -- 

147.0764:0.919:p C5H10N2O3 Glutamine 4.1 57 ± 16 20 ± 3 

147.1128:0.605:p C6H14N2O2 Lysine -2.5 1.42 ± 0.61 0.14 ± 0.06 

148.0604:0.931:p C5H9NO4 Glutamic acid 1.8 8.67 ± 3.74 0.04 ± 0.02 

150.0583:0.905:p C5H11NO2S Methionine -1.3 0.30 ± 0.20 0.04 ± 0.01 

156.0768:0.651:p C6H9N3O2 Histidine
a
 -0.2 -- 0.08 ± 0.01 



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

175 
 

160.1331:0.728:p C8H17NO2 Unknown [M+H]
+
 1.0 -- -- 

161.1285:0.636:p C7H16N2O2 Unknown [M+H]
+
 5.6 -- -- 

162.1125:0.736:p C7H15NO3 Carnitine (C0) 4.3 14 ± 4 0.01* 

164.1278:0.730:p C7H17NO3 Unknown [M+H]
+
 1.2 -- -- 

166.0863:0.931:p C9H11NO2 Phenylalanine -1.2 0.49 ± 0.30 0.07 ± 0.02 

170.0924:0.659:p C7H11N3O2 3-Methylhistidine 1.2 0.21 ± 0.18 0.02 ± 0.01 

175.1190:0.626:p C6H14N4O2 Arginine -1.7 0.68 ± 0.27 0.08 ± 0.02 

176.1030:0.943:p C6H13N3O3 Citrulline -2.1 0.69 ± 0.41 0.04 ± 0.02 

182.0812:0.960:p C9H11NO3 Tyrosine -3.7 2.37 ± 1.03 0.70 ± 0.08 

189.1346:0.630:p C7H16N4O2 Homoarginine
c
 16.2 -- -- 

189.1598:0.627:p C9H20N2O2 Trimethyllysine
c
 -12.0 -- -- 

203.2230:0.418:p C10H26N4 Spermine
d
 -2.8 -- -- 

204.123:0.776:p C9H17NO4 Acetylcarnitine (C2) 0.2 1.31 ± 0.80 0.0003* 

205.0972:0.931:p C11H12N2O2 Tryptophan -3.1 0.19 ± 0.13 1.65 ± 0.19 

218.1135:0.864:p C8H15N3O4 Alanyl-glutamine
c
 0.3 -- -- 

218.1387:0.808:p C10H19NO4 Propionylcarnitine (C3) -2.1 0.04 ± 0.02 -- 

227.1139:0.606:p C9H14N4O3 Carnosine 4.1 59 ± 24 -- 

230.0952:1.403:p C17H11N Unknown [M+H]
+
 1.2 -- -- 

232.1543:0.825:p C11H21NO4 Butyrylcarnitine (C4) 1.5 0.011 ± 0.005 -- 

235.1805:0.844:p C14H22N2O Lidocaine
c
 3.8 -- -- 

241.1295:0.614:p C10H16N4O3 Anserine
c
 1.1 0.45 ± 0.29 -- 

248.1489:0.857:p C11H21NO5 
Hydroxybutyrylcarnitine

c
 

-1.5 -- -- 

258.1097:1.758:p C8H20NO6P 
Glycerophosphoryl-

choline
c
 

0.4 -- -- 

269.1242:0.927:p C11H16N4O4 N-Acetylcarnosine 1.7 0.27 ± 0.17 -- 

274.5918:0.920:p C27H25N5O8 Unknown [M+2H]
2+

 -0.6 -- -- 

298.0968:0.888:p C11H15N5O3S 5'-Methylthioadenosine
c
 -2.0 -- -- 

307.0833:1.039:p C20H32N6O12S2 
Oxidized glutathione 

(GSSG) 
-2.3 0.79 ± 0.49 -- 

308.0911:1.118:p C10H17N3O6S 
Reduced glutathione 

(GSH) 
-1.1 64 ± 22 -- 

380.1113:1.159:p C18H9N11 Unknown [M+H]
+
 -1.0 -- -- 

427.0952:0.999:p C13H22N4O8S2 
Cysteineglutathione  

(GSH-Cys-SS) 
-3.5 -- -- 

89.0244:1.149:n C3H6O3 Lactic acid -9.2 32 ± 23 2.13 ± 0.94 

96.9700:1.720:n H3O4P Inorganic phosphate -2.4 8.97 ± 2.03 0.29 ± 0.05 

101.0608:0.988:n C5H10O2 Isovaleric acid 1.0 0.38  ±-0.01 0.0004* 

117.0193:1.928:n C4H6O4 Succinic acid
b
 -5.7 -- 0.005 ± 0.002 
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128.0353:1.016:n C5H7NO3 Pyroglutamic acid 0.4 0.34 ± 0.14 0.014 ± 0.004 

132.0302:0.990:n C4H7NO4 Iminodiacetic acid -1.3 -- -- 

133.0142:1.943:n C4H6O5 Malic acid -1.9 0.16 ± 0.12 0.003 ± 0.002 

167.0211:0.954:n C5H4N4O3 Uric acid -5.6 0.37 ± 0.12 0.23 ± 0.01 

171.0064:1.277:n C3H9O6P Glycerol 3-phosphate -3.3 0.46* -- 

191.0197:2.139:n C6H8O7 Citric acid 2.8 -- 0.03 ± 0.02 

210.0285:1.287:n C4H10N3O5P Phosphocreatine -2.6 53 ± 11 -- 

218.1034:0.827:n C9H17NO5 Pantothenic acid 0.7 0.14 ± 0.04 -- 

259.0224:1.054:n C6H13O9P 
Glucose-6-phosphate 

(G6P)
a
 

-0.1 4.36 ± 2.66 -- 

328.0452:0.857:n C10H12N5O6P cAMP -35.1 0.08 ± 0.03 -- 

338.9888:1.499:n C6H14O12P2 
Fructose-1,6-

bisphosphate (F1,6P) 
-0.8 0.57 ± 0.25 -- 

346.0558:0.987:n C10H14N5O7P AMP
a
 5.2 -- -- 

347.0398:1.027:n C10H13N4O8P IMP -1.5 0.36 ± 0.46 -- 

481.9772:1.252:n C9H16N3O14P3 CTP 8.2 0.32 ± 0.19 -- 

482.9613:1.271:n C9H15N2O15P3 UTP 5.4 0.48 ± 0.21 -- 

505.9885:1.209:n C10H16N5O13P3 ATP 4.8 17 ± 5 -- 

521.9834:1.174:n C10H16N5O14P3 GTP -0.03 0.58 ± 0.33 -- 

662.1019:0.720:n C21H28N7O14P2 NAD
+
 9.5 1.08 ± 0.31 -- 

K
+
:CE-iUV -- Potassium -- 316 ± 59 4.4 ± 0.4 

Na
+
: CE-iUV -- Sodium -- 309 ± 109 151 ± 7 

Ca
2+

: CE-iUV -- Calcium -- 2.2 ± 0.80 1.3 ± 0.1 

Mg
2+

: CE-iUV -- Magnesium -- 44 ± 11 0.6 ± 0.05 

Cl
-
: CE-iUV -- Chloride -- 206 ± 61 126 ± 73 

* Standard deviation < LOQ 
a Not included in final matrix due to poor isomeric/isobaric resolution 
b Multiply charged organic acids with poor peak shapes due to poor ionization efficiency  
c Putatively annotated compounds   
d Compounds obtained in the salt front and prone to ion suppression  
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Table S4.5: Dynamic (temporal) metabolic signatures of strenuous interval exercise within skeletal 

muscle upon ingestion of placebo for a cohort of untrained male participants (n = 7). 

 

m/z:RMT:mode Metabolite p-valuea Pairwise 
comparison 

Effect 
sizeb FCc 

90.0550: 0.775:p Alanine 4.0E-04 Pre-Post; Post-Rec 0.730 
1.43, 

0.51 

89.0244:1.149:n Lactic Acid 0.001 Pre-Post; Post-Rec 0.808 
3.56, 

0.22 

148.0604: 0.931:p Glutamic Acid 0.001 Pre-Post; Post-Rec 0.717 
0.52, 

2.42 

133.0142:1.943:n Malic Acid 0.009 Pre-Post; Post-Rec 0.685 
2.14, 

0.37 

521.9834:1.174:n GTP 0.003 Pre-Rec; Post-Rec 0.615 
1.28, 

1.61 

166.0863:0.931:p Phenylalanine 0.006 Post-Rec 0.575 0.68 

147.1128: 0.605:p Lysine 0.011 Pre-Rec; Post-Rec 0.530 
0.67, 

0.69 

205.0972:0.931:p Tryptophan 0.011 Post-Rec 0.528 0.61 

167.0211:0.954:n Uric Acid 0.011 Pre-Post 0.525 1.76 

171.0064:1.277:n 
Glycerol-3-

phosphate 
0.012 Pre-Post 0.521 1.96 

150.0583: 0.905:p Methionine 0.025 Post-Rec 0.460 0.70 

204.1230:0.776:p Acetylcarnitine 0.030 
Pre-Post; Pre-Rec; 

Post-Rec 
0.443 

6.56, 

4.88, 

0.74 

182.0812:0.960:p Tyrosine 0.049 Post-Rec 0.394 0.70 

* mode: p = positive mode, n = negative mode. a p-values obtained using one factor (time) repeated 
measures ANOVA using p < 0.05 as cut-off threshold. b Effect size measured using Partial Eta 
Square. c Average fold-change (FC) based on the measured ion response ratio indicated by pairwise 
comparison. Pairwise comparison indicates which of the time points contribute significantly to 
overall p-value obtained from ANOVA.   
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Table S4.6: Dynamic (temporal) metabolic signatures of strenuous interval exercise in blood 

(plasma or serum) upon ingestion of placebo for a cohort of untrained male participants (n = 7). 

 

m/z:RMT:mode Metabolite p-valuea Effect 
sizeb Pairwise comparison FCc 

89.0244:1.149:n Lactic acid 4.5E-05 0.882 
Pre-Post; Pre-Rec;  

Post-Rec 

7.13; 0.63; 

11.32 

116.0706:0.916:p Proline 4.9E-05 0.809 Pre-Rec; Post-Rec 0.61; 1.65 

182.0812:0.960:p Tyrosine 7.2E-05 0.796 Pre-Rec; Post-Rec 0.63; 1.49 

90.0550:0.775:p Alanine 8.7E-05 0.790 
Pre-Post; Pre-Rec;  

Post- Rec 

1.37; 0.58; 

2.36 

150.0583:0.905:p Methionine 1.4E-04 0.772 Pre-Rec; Post-Rec 0.59; 1.64 

96.9700:1.720:n Phosphoric acid 4.3E-04 0.725 Pre-Post; Post-Rec 1.34; 1.33 

103.0401:1.024:n 
3-Hydroxybutyric 

acid 
8.0E-04 0.719 

Pre-Post; Pre-Rec;  

Post- Rec 

1.53; 5.07, 

0.30 

120.0655:0.897:p Threonine 0.0010 0.709 Pre-Rec; Post-Rec 0.68; 1.47 

204.1230:0.776:p Acetylcarnitine 0.0010 0.691 Pre-Post; Pre-Rec 2.48; 2.21 

133.0608:0.897:p Asparagine 0.0010 0.684 Pre-Rec; Post-Rec 0.67; 1.43 

166.0863:0.931:p Phenylalanine 0.0010 0.678 Pre-Rec; Post-Rec 0.77; 1.37 

103.0401:1.050:n 
2-Hydroxybutyric 

acid 
0.013 0.653 Pre-Rec; Post-Rec 2.02; 0.52 

117.0193:1.928:n Succinic acid 0.018 0.618 
Pre-Post; Pre-Rec;  

Post- Rec 

2.61; 0.74, 

3.52 

132.0656:1.022:p Hydroxyproline 0.004 0.606 Post-Rec 1.37 

175.1190:0.626:p Arginine 0.020 0.605 Pre-Rec; Post-Rec 0.63; 1.60 

276.1185:1.102:p Unknown 0.004 0.603 Pre-Post; Post-Rec 0.73; 0.68 

148.0604:0.931:p Glutamic acid 0.005 0.580 Pre-Post 1.63 

76.0393:0.725:p Glycine 0.007 0.560 Post-Rec; Pre-Rec 1.42; 0.82 

176.1030:0.943:p Citrulline 0.010 0.537 Post-Rec 1.29 

CE-iUV Potassium 0.011 0.528 Pre-Post 1.18 

205.0972:0.931:p Tryptophan 0.036 0.425 Pre-Post; Pre-Rec 1.27; 1.26 

106.0499:0.858:p Serine 0.049 0.394 Post-Rec 1.25 

* mode: p = positive mode, n = negative mode. a p-values obtained using one factor (time) repeated 
measures ANOVA using p  < 0.05 as cut-off threshold. b Effect size measured using Partial Eta 
Square. c Average fold-change (FC) based on the measured ion response ratio indicated by pairwise 
comparison. Pairwise comparison indicates which of the time points contributes significantly to 
overall p-value obtained from ANOVA. 
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Table S4.7: Muscle tissue metabolites significantly different after strenuous interval exercise with 

oral bicarbonate pretreatment (n=7) as compared to placebo. 

 

m/z:RMT:mode Metabolite Main effect p-valuea Effect 
sizeb FCc 

241.1295:0.614:p Anserine Treatment  0.026 0.588 0.91 

167.0211:0.954:n Uric Acid Treatment  0.028 0.579 0.74 

CE-iUV Potassium 
Treatment x 

Time  
0.038 0.540 1.38 

427.0952:0.999:p GSH-Cys-SS Treatment  0.039 0.534 0.77 

*mode: p = positive mode, n = negative mode a p-values obtained using two factor (time and 
treatment) repeated measures ANOVA using p  < 0.05 as cutoff threshold. b Effect size measured 
using Partial Eta Square. c Average fold-change (FC) based on the measured ion response ratio of 
post-exercise levels for bicarbonate relative to placebo treatment arms. 
 

 
 
 
Table S4.8: Blood metabolites significantly different after strenuous interval exercise with 

oral bicarbonate pretreatment (n=7) as compared to placebo. 

 

m/z:RMT:mode Metabolite Main effect p-
valuea 

Effect 
sizeb FCc 

CE-iUV Chloride 
Treatment x 

Time 
0.008 0.711 0.76 

129.0557:1.025:n Ketoleucine Treatment 0.010 0.694 1.50 

160.1331:0.728:p 
Unknown, 

C8H17NO2 

Treatment x 

Time 
0.023 0.606 0.81 

89.0244:1.149:n Lactic acid Treatment 0.030 0.570 1.17 

87.0088:1.359:n Pyruvic acid Treatment 0.036 0.547 1.21 

191.0197:2.139:n Citric acid Treatment 0.038 0.541 1.29 

115.0456:1.094:n 
a-Ketoisovaleric 

acid Treatment 0.041 0.528 1.43 

CE-iUV Potassium 
Treatment x 

Time 
0.047 0.510 0.87 

*mode: p = positive mode, n = negative mode a p-values obtained using two factor (time and 
treatment) repeated measures ANOVA using p  < 0.05 as cutoff threshold. b Effect size measured 
using Partial Eta Square. c Average fold-change (FC) based on the measured ion response ratio of 
post-exercise levels for bicarbonate relative to placebo treatment arms. 
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Figure S4.1: Recovery standards (25 µM) added to muscle tissue samples to evaluate extent of 

oxidation and hydrolysis artifacts incurred during extraction using four serial aliquots of fresh 

solvent, which were analyzed separately within the same run together with a blank extract when 

using MSI-CE-MS (A) A synthetic reduced glutathione analog (GSH-OEt) confirmed low residual 

levels of inadvertent oxidation when pooling together two serial extracts together while processing 

samples under ice at 4 °C with less than 8% oxidized disulphide detected. (B) Similarly, a stable-

isotope labelled ATP highlighted low residual levels of hydrolysis when pooling together two serial 

extracts together with less than 4% of corresponding isotope-labelled ADP detected. Ionization 

efficiency was assumed similar for both precursor recovery standards and their by-products when 

calculating measured ratios since chemical standards were lacking in the latter case.  
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Figure S4.2: (A) Representative electropherogram for determination major electrolytes derived 

from a muscle tissue extract when using CE with indirect UV detection, where barium is used as an 

internal standard. (B) Representative electropherogram for determination of chloride derived from 

a muscle tissue extract when using CE with indirect UV detection, where perchlorate is used as an 

internal standard. Control charts for major electrolytes based on intermittent analysis of pooled 

blood samples as quality controls, including (C) potassium, (D) sodium, (E) calcium and (F) 

magnesium. Serum (potassium, sodium, magnesium, calcium) or plasma (chloride) samples were 

analyzed intermittently three times per day between batches of runs over 10 consecutive days (n = 

30) in order to demonstrate method robustness with a mean CV of 0.76% and 14% in terms of 

relative migration time (RMT) and serum electrolyte concentrations from intermittent analysis of 

pooled serum filtrates as QC samples, respectively.  
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Figure S4.3: An overview of the data workflow for selection of authentic, reproducible yet 

representative metabolites from a pooled muscle tissue extract when using MSI-CE-MS. Untargeted 

metabolomics was first performed using a dilution trend filter that offers a rigorous screening 

approach to reject spurious signals, irreproducible peaks and/or background ions as required for 

authenticating muscle derived metabolites when using ESI-MS. (A) An extracted ion 

electropherogram (EIE) of a typical spurious signal (m/z 245.1355, ESI+) that does not fulfill 

selection criteria as an authentic metabolite from muscle extracts and is thus confidently rejected. 

In contrast, EIEs are also shown for reduced glutathione, GSH (m/z 308.0911, ESI+) and ATP (m/z 

505.9885, ESI-), which both display characteristic temporal signal patterns, including a precisely 

measured signal at a given dilution (CV < 30%, n=3), the lack of a signal measured in the blank 

extract, and good linearity in signal based on expected dilution trend (R
2
 > 0.90). This conservative 

approach to metabolite selection greatly reduces false discoveries and data overfitting when 

performing nontargeted metabolite profiling prior to multivariate statistical analysis since 

metabolites reliably detected in the majority (> 75%) of samples in the cohort are included in the 

final data matrix while also having CV < 30% (n=7) for pooled samples analyzed as quality control 

(QC). In this case, QC is ensured based on analysis of a randomly positioned pooled muscle tissue 

extract within every run when using MSI-CE-MS (Figure 4.2) that can also allow for robust batch 

correction due to long-term signal drift in ESI-MS. (D) A control chart also confirms good technical 

precision (CV = 12%) with few outliers when analyzing a batch of 49 muscle tissue extracts using 

MSI-CE-MS based on an recovery/internal standard (Cl-Tyr) that is added into all muscle tissue 

extracts. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

183 
 

(A)  PCA: 2D Scores Plot: Plasma Metabolome 
Technical Variance, QC (n=7)  
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Figure S4.4: An overview of data obtained during the analysis of plasma filtrate samples collected 

from each subject (n=7) at three time points (Pre, Post, Rec) during strenuous interval exercise upon 

ingestion of both placebo and bicarbonate (n=42) and the pooled QC analyzed in each run (n=7) 

when using MSI-CE-MS. A total of 60 cationic/anionic metabolites were consistently measured 

(CV < 30%) in the majority (> 75%) of plasma samples analyzed in this work as annotated based 

on their characteristic accurate mass:relative migration time (m/z:RMT) in positive (p) or negative 

(n) ion mode. Unsupervised multivariate data analysis used for reviewing data structure while 

revealing overall trends or outliers, including (A) a principal component analysis (PCA) 2D scores 

plot that compares the magnitude of the biological variance of metabolites in plasma (median CV = 

35%) relative to the technical variance of the method (median CV = 10%) and (B) a 3D heatmap 

with hierarchical cluster analysis (HCA) reflecting a double blinded placebo-controlled cross-over 

study design based on two variables, namely exercise time and treatment intervention. In all cases, 

metabolite responses were normalized to an internal standard (Cl-Tyr or NMS), log-transformed, 

autoscaled and batch-corrected. Major electrolytes in matching plasma or serum samples (Na
+
, K

+
, 

Ca
2+

, Mg
2+

 and Cl
-
) were also measured using two CE with indirect UV detection methods due their 

physiological relevance in muscle contractile function. 
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Figure S4.5: (A) A Passing Bablok regression scatter plot and (B) Bland Altman % difference plot 

used to evaluate the method performance between a commercial blood lactate analyzer (a 

colorimetric enzyme kinetic assay) as reported in Percival et al. (J. Appl. Physiol. 2015, 119, 1303) 

as compared to MSI-CE-MS for absolute quantification of plasma lactate concentrations. Overall, 

there was good mutual agreement between both analytical methods with few outliers beyond 

agreement limits with a modest extent of negative bias in reported lactate concentrations by MSI-

CE-MS as compared to the lactate analyzer as reflected by a slope of 0.82 and average percent 

difference of 27%. The overall technical precision for plasma lactate based on repeated 

measurements of QC samples by MSI-CE-MS was about 14%. Plasma lactate was measured 

independently by MSI-CE-MS on frozen specimens after 2 years of storage at -80 °C as compared 

to blood lactate analyzer measurements. 
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Figure S4.6: (A) Multilevel PLS-DA 2D scores plots of muscle tissue extracts illustrating 

differences in the metabolic phenotype of a cohort of untrained male subjects upon oral ingestion of 

placebo as compared to bicarbonate treatment immediately post-exercise (Post) that takes advantage 

of a paired/cross-over study design. Metabolite ion responses were normalized to internal standards, 

dry weight (mg), autoscaled and batch-corrected when using a perturbation test (R2
 = 0.982, Q2 = 

0.853, p = 0.04, n = 1000). (B) Variance in Projection (VIP) plot along component 1 for ranking the 

most significant intracellular muscle tissue metabolites (VIP > 1.5) discriminating between the 

placebo and bicarbonate treatments post-exercise.  
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Figure S4.7: (A) Multilevel PLS-DA 2D scores plots of plasma filtrates illustrating differences in 

the metabolic phenotype of a cohort of untrained male subjects upon oral ingestion of placebo as 

compared to bicarbonate treatment immediately post-exercise (Post) that takes advantage of a 

paired/cross-over study design. Metabolite ion responses were normalized to internal standards, dry 

weight (mg), autoscaled and batch-corrected when using a perturbation test (R2
 = 0.965, Q2 

= 0.863, 

p = 0.032, n = 1000).  (B) Variance in Projection (VIP) plot along component 1 for ranking the most 

significant circulating plasma metabolites (VIP > 1.5) discriminating between the placebo and 

bicarbonate treatments post-exercise.  
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Figure S4.8: Correlation matrix/heat map (Pearson correlation; log-transformed data) for the top 

eight ranked plasma/serum metabolites significantly (Table S4.7) modulated by oral bicarbonate 

pretreatment immediately post-exercise as compared to placebo. As expected, strong positive 

correlations were found between circulating deaminated a-keto-acids from branched-chain amino 

acids, Keto-IVA, Keto-Leu (r = 0.822; p = 0.0003) and major electrolytes, potassium and chloride 

(r = 0.793; p = 0.0007). Additionally, circulating potassium concentrations were inversely correlated 

to three a-keto-acids, including Keto-IVA, Keto-Leu and pyruvate (r > 0.670; p < 0.01). The mild 

hypokalemic effect of bicarbonate intervention thus also impacts central energy metabolism and 

amino acid catabolism within contracting muscle tissue. 
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Figure S4.9: Overall summary of the pleiotropic effects of oral bicarbonate pretreatment on skeletal 

muscle and circulatory (systemic) metabolism following strenuous interval exercise on untrained 

participants. Metabolic alkalosis is attenuated by high dose bicarbonate ingestion resulting in 

reduced amounts of exercise-induced oxidative stress products (ROS, LOPs), which is reflected by 

lower concentrations of oxidized (mixed) disulfides (GSH-Cys-SS), antioxidants (anserine) and 

purine degradation products (uric acid) within skeletal muscle as compared to placebo immediately 

post-exercise. A mild hypokalemic effect was also observed, where bicarbonate intervention 

attenuated extracellular potassium leakage into blood, with a corresponding increase in potassium 

uptake into the skeletal muscle. Similarly, decreased extracellular chloride was also measured with 

bicarbonate pretreatment that was correlated positively to the mild hypokalemic effect, which 

together better preserve contracting muscle function post-exercise. Additionally, extracellular 

increases in glycolytic (lactate, pyruvate) and Krebs cycle (citric acid) metabolites were also 

measured in plasma due to oral bicarbonate intake, as well as increases in BCAA breakdown 

products (ketoisovaleric acid and ketoleucine). BCAA = Branched-chain amino acids; BCAT1 = 

Branched-chain amino acid transaminase; ClCN1 = Chloride channel protein; CNT = Carnosine-N-

methyltransferase; CS: Carnosine synthase; GS: Glutathione synthase; Keto-Leu = ketoleucine; 

Keto-IVA= alpha-ketoisovaleric acid; LOPs: Lipid oxidation products; MCT= Monocarboxylate 

transporter; LDH = Lactate dehydrogenase; ROS: Reactive oxygen species. 
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Chapter V: Placental Metabolomics for Functional Assessment of Sex-specific 
Adaptations in Fetal Development During Normal Gestation  

 

5.1 Abstract  

The placenta is a metabolically active interfacial organ that plays crucial roles in 

fetal nutrient delivery, gas exchange and waste removal reflecting dynamic 

maternal and fetal interactions during gestation. There is growing evidence that the 

sex of the placenta influences fetal responses to external stimuli in utero. However, 

the exact biochemical mechanisms associated with sex-specific metabolic 

adaptations to pregnancy and its link to placental function and fetal development 

remain poorly understood. Herein, multisegment injection-capillary 

electrophoresis-mass spectrometry (MSI-CE-MS) was used as a high throughput 

metabolomics platform to characterize lyophilized maternal placental tissue (~2 mg 

dried weight) from mice fed a standardized diet. Over 130 authentic metabolites 

were consistently measured from placental extracts when using a nontargeted 

metabolomics workflow with stringent quality control and batch correction. For the 

first time, our work revealed inherent differences in metabolic phenotypes that exist 

between male (n=14) and female (n=14) placentae derived from the same control-

fed maternal mice. Intracellular metabolites associated with fatty acid oxidation and 

purine degradation were found to be significantly elevated in females as compared 

to male placentae (p < 0.05, effect size > 0.40), including uric acid, valerylcarnitine, 

hexanoylcarnitine, and 3-hydroxyhexanoylcarnitine. This work sheds new insights 

into sex-specific differences in placental mitochondrial function and protective 

mechanisms against deleterious oxidative stress that may impact fetal growth 

development and birth outcomes early in life as a result of environmental exposures 

or sub-optimal nutrition during pregnancy. 
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5.2 Introduction 

The placenta is an interfacial organ that regulates complex maternal-fetal 

interactions during the course of pregnancy (Gabory et al. 2012). This metabolically 

active organ plays crucial roles in transferring nutrients and oxygen from maternal 

circulation to the fetus, as well as facilitating removal of waste products and 

synthesizing hormones, cytokines and growth factors to promote growth, cellular 

regulation and immune protection for the fetus (Gabory et al. 2013; Rossant and 

Cross 2001). Normal placental function is critical to ensure optimal birth outcomes 

for offspring while preventing placental-induced pregnancy complications, such as 

intrauterine growth restriction and preeclampsia (King et al. 2017). Since the 

placenta is often the first organ to develop during embryogenesis in mammals, it 

has been shown to be the origin of sexual dimorphism, thus it is considered a sexual 

organ (Gabory et al. 2013; Rossant and Cross 2001). There is growing evidence 

demonstrating the importance of sex-specific embryonic and fetal adaptations to 

adverse environments in utero, which are largely mediated by placental genes, 

proteins and steroid pathways (Clifton 2010). For instance, females more readily 

respond to abrupt changes to intrauterine environment, where developmental 

adaptations ultimately lead to functional changes in placental growth and 

development resulting in decreased fetal growth (Clifton 2010). In contrast, male 

feto-placental units have a more “minimalist approach” where they undergo very 

few placental changes and continue to grow normally under adverse in utero 

environment; however this places male fetuses at higher risk to exposures that may 

contribute to deleterious health impacts on later development as a result of 

environmental toxins and/or sub-optimal maternal diet (Dearden et al. 2018; 

Lorente-Pozo, 2018; Al-Qaraghouli & Fang, 2017).   

 

Despite these known sex-specific mechanisms in fetal development, few 

studies have examined the impact of sexual dimorphism on placental growth, 

development and function in the absence of disease or adverse stimuli. Most reports 
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have focused primarily on measuring dynamic changes in transcriptome, genome 

and epigenome expression (Fattuoni et al. 2018; Rosenfeld 2015) with sparse work 

aimed at characterizing functional changes in the placental metabolome. 

Metabolomics offers a nontargeted approach for the detection and identification of 

low molecular weight metabolites (< 1 kDa) comprising a biofluid, cell, tissue or 

organism. Due to its sensitivity to changes in environmental and physiological 

stimuli, metabolomics provides a link between biochemical mechanisms and 

molecular phenotype that is closely associated with clinical outcomes (Patti et al. 

2012). To date, adaptive metabolic changes within placentae during pregnancy have 

been largely analyzed in the context of adverse in utero environments, such as 

pregnancy complications (e.g., preeclampsia, hypoxia, gestational diabetes) and 

maternal obesity (Dunn et al. 2012; Chi et al. 2014; Korkes et al. 2014; Austdal et 

al. 2015; Mumme et al. 2016; Fattuoni et al. 2018; Walejko et al. 2018). Herein, we 

investigated the impact of sex on the placental metabolome in normal 

uncomplicated murine pregnancies. For the first time, we examine the impact of 

sexual dimorphism on placental function based on comprehensive metabolic 

phenotyping of lyophilized placental tissue extracts when using multisegment 

injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS). This method 

offers a high throughput platform for biomarker discovery in metabolomics with 

stringent quality control (QC) optimal for the analysis of mass-limited 

biospecimens (DiBattista et al. 2019; Macedo et al. 2017; Saoi et al. 2019). We 

sought to identify metabolite signatures distinguishing female from male placentae 

that underlie sex-dependent responses to environmental stressors early in life 

relevant to the developmental origins of health and disease (Dearden et al. 2018). 
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5.3 Experimental Section  
 

5.3.1 Study Design and Cohort 

We employed our validated model of high fat diet–induced obesity during a murine 

pregnancy (Gohir et al. 2019) to generate placental tissues. All animal experiments 

were performed at the McMaster Central Animal Facility and approved by the 

McMaster University Animal Research Ethics Board (Animal Utilization 

Protocol#12-10-38). Four week old female C57BL/6J mice (n=14) were 

randomized and fed a control diet with a macronutrient composition of 17% kcal 

fat, 29% kcal protein, and 54% kcal carbohydrate (HT8640 Teklad 22/5 Rodent 

Diet, Harlan, Indianapolis, IN, USA). The mice were fed the standardized control 

diet for six weeks prior to a five-day mating period with C57BL/6J control-fed male 

mice. After mating and confirmation of vaginal plug at embryonic day (E)18.5, 

pregnant mice were killed by cervical dislocation and whole placentas (~7-8 per 

dam) were dissected, collected, snap-frozen in liquid nitrogen and stored at -80 °C 

prior to subsequent lyophilization, liquid extraction and metabolite analysis. Two 

independent batches of placenta specimens from mice were collected and analyzed 

at different time periods in this study, including a first batch (n=9 female, n=9 male) 

of placental tissue in 2016, and a second batch (n=5 female, n=5 male) in 2018.  

 

5.3.2 Sample Workup and Placental Extraction Procedure 

Murine placental tissues were freeze-dried to form a fine powder to enable accurate 

weighing using an electronic balance. Lyophilization also enhances extraction 

efficiency and reproducibility as all ion responses for metabolites were normalized 

to total dried weight. For the analysis of polar/ionic metabolites, a modified two-

step Bligh-Dyer extraction procedure was performed on freeze-dried placental 

tissue (~ 2 mg dried tissue) as recently developed for human muscle tissue biopsies 

(Saoi et al. 2019). Briefly, in the first extraction, 64 µL of ice cold 

methanol:chloroform (1:1) was added to the tissue, followed by 26 µL ice cold 

deionized water to induce phase separation. After vortexing for 10 min and 



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

194 
 

centrifugation at 2000 g at 4 ºC at 20 min, the upper aqueous layer was aliquoted. 

A second extraction on the residual placental tissue was performed through the 

addition of 32 µL of 50% vol methanol, followed by vortexing and centrifugation 

as described above. The second, upper aqueous layer was collected and combined 

with the first aliquot resulting in ~ 80 µL total volume of placental tissue extract. 

Prior to MSI-CE-MS analysis, 5 µL of the internal standards (25 µM), 3-chloro-L-

tyrosine (Cl-Tyr) and 2-napthalenesulfonic acid (NMS), were added to an aliquot 

of 20 µL of placenta extract. For the analysis of total (hydrolyzed) fatty acids and 

bile acids in placental tissue (~ 1-2 mg dried tissue), a hydrolysis reaction combined 

with a modified methyl-tert-butyl ether (MTBE) extraction procedure was 

employed (Chen et al. 2013; Azab et al. 2019). First, hydrolysis of lipids was 

performed by the addition of 25 μL of butylated hydroxytoluene (BHT) in 0.1% vol 

toluene and 25 μL of 2.5 M of sulfuric acid to the freeze-dried placental tissue. 

After vortexing for 1 min, the samples were incubated in an oven at 80 °C for 1 h. 

Then, a MTBE extraction was performed by adding 500 μL of MTBE containing 

50 μM of the stable-isotope labeled recovery standard, myristic acid-d27 to placental 

tissue. After vortexing for 30 min at room temperature, 250 μL of de-ionized water 

was added to induce phase separation, followed by 30 min of centrifugation at 4400 

g at 4 °C. Then, ~ 250 μL of the upper ether layer was transferred and dried under 

nitrogen. Prior to MSI-NACE-MS analysis, dried samples were reconstituted in 25 

μL of acetonitrile/isopropanol/water (70:20:10) with 10 mM of ammonium acetate 

and 50 µM of stearic acid-d35 as the stable-isotope labeled internal standard used 

for data normalization.  

 

5.3.3 Nontargeted Metabolomics of Placental Extracts by MSI-CE-MS 

All nontargeted metabolite profiling studies using aqueous and nonaqueous buffer 

systems were performed on an Agilent G7100 CE System (Agilent Technologies 

Inc., Mississauga, ON, Canada) coupled to a high resolution Agilent 6230 Time-

of-Flight Mass Spectrometer (TOF-MS) equipped with a coaxial sheath liquid 
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(Dual AJS) Jetstream electrospray ion source.  Separations for polar metabolites 

were achieved using uncoated fused-silica capillaries (Polymicro Technologies, 

AZ, USA) with 50 μm inner diameter and 120 cm total length, while 95 cm total 

length was used for lipid separations. A background electrolyte (BGE) composition 

of 1 M formic acid with 13% vol acetonitrile (pH 1.80) was used for the separation 

of cationic metabolites, while a BGE comprised of 50 mM ammonium bicarbonate 

(pH 8.5) was used for anionic metabolite separation. A nonaqueous BGE was used 

for separations of lipids based on MSI-nonaqueous capillary electrophoresis 

(NACE)-MS to fully solubilize ionic yet hydrophobic metabolites (e.g., fatty acids, 

bile acids) from ether extracts using 35 mM ammonium acetate (pH 9.5) in 70% 

vol acetonitrile, 15% vol methanol, 5% vol isopropanol and 10% vol de-ionized 

water. A capillary window maker (MicroSolv, Leland, NC, USA) was used to 

remove 7 mm of polyimide from the terminal ends in order to minimize sample 

carryover and/or capillary swelling upon contact with organic and/or ammonia 

based buffers (Yamamoto et al. 2016; DiBattista, et al. 2017). The applied voltage 

was set to 30 kV at 25 °C to enable zonal separations to occur. Moreover, for lipid 

separations, the Vcap, nozzle voltage and nebulizer gas were turned off during 

serial sample injection to minimize electrospray suctioning effects. A seven sample 

serial injection format was used for nontargeted metabolite profiling with placenta 

tissue extracts injected hydrodynamically at 50 mbar for 5 s interspaced with seven 

BGE spacers for 40 s. Therefore, each MSI-CE-MS run consisted of six alternating 

injections of placental tissue extracts that were paired based on female and male 

placentae collected from the same dam. A pooled quality control (QC) was also 

included in each experimental run to assess system stability and performance, 

which was also used to correct for batch effects associated with long-term signal 

drift during data acquisition. An Agilent 1260 Infinity series Isocratic Pump 

equipped with a 100:1 splitter was used to deliver sheath liquid at a rate of 10 

μL/min during separations. Sheath liquid compositions consisted of 60% vol 

methanol with 0.1% vol formic acid for positive and 50% vol methanol for negative 
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ion modes in MSI-CE-MS, whereas 80% vol methanol with 0.5% vol ammonium 

hydroxide was the sheath liquid for acidic lipids under negative ion mode when 

using MSI-NACE-MS. For real-time mass correction during data acquisition, 

0.02% vol of purine and hexakis (2,2,3,3-tetrafluoropropoxy)phosphazine (HP-

921) were added to the sheath liquid. Details on MSI-CE-MS workflow, ESI-MS 

conditions, and unknown metabolite identification using high resolution tandem 

mass spectrometry (MS/MS) are described in the Supporting Information.  

 

5.3.4 Data Processing and Statistical Analysis 

Data processing was performed using Agilent MassHunter Qualitative Analysis 

B.06.00 and Microsoft Excel. Prior to statistical analysis, all metabolite responses 

were normalized to the internal standards and the dry mass of each placenta sample 

(mg). Also, authenticated metabolites were reliably detected (QC for CV < 30%) in 

the majority (> 75%) of placental extracts analyzed in this study, whereas missing 

data inputs for a given metabolite was substituted with one half of its lowest 

measured response. Normality testing based on a Shapiro-Wilk test (p < 0.05) was 

performed using SPSS (IBM Corp. Released 2011. IBM SPSS Statistics for 

Windows, Version 20.0. Armonk, NY: IBM Corp.). A QC-based batch correction 

algorithm “BatchCorrMetabolomics” R package was used to correct for batch 

effects (Wehrens et al. 2016). Additional data preprocessing including generalized 

log transformation and autoscaling were performed prior to multivariate statistical 

analysis. Metaboanalyst 4.0 was used for multivariate statistical analysis including 

Principal Component Analysis (PCA), Partial Least-Square Discriminant Analysis 

(PLS-DA) and Hierarchal Clustering Analysis (HCA) (Chong et al. 2018). 

Univariate statistical analysis such as Mann Whitney U test was performed using 

log transformed data (p < 0.05) on SPSS for data that was not normally distributed. 

To correct for multiple hypothesis testing, a false discovery rate (FDR) using the 

Benjamini-Hochberg procedure was performed to obtain q-values (i.e., adjusted p-

values) for each top-ranked placental metabolite. 
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5.4 Results 

5.4.1 Characterization of the Murine Placental Metabolome  

Comprehensive metabolite profiling of murine placental extracts was performed 

using a multiplexed electrophoretic separation platform applicable to the analysis 

of a diverse range of polar/non-polar ionic metabolites using small amounts of 

lyophilized tissue specimens. Figure 5.1 depicts an overview of the data workflow 

used for authenticating metabolites from unknown molecular features detected 

from placental tissue extracts; this process takes advantage of a serial injection 

format comprising of seven samples within a single run in conjunction with 

temporal signal pattern recognition when using MSI-CE-MS (DiBattista et al. 

2017). Firstly, a dilution trend filter was used as a rigorous approach to reject 

background, spurious and redundant ion signals (i.e., in-source fragments and/or 

adducts, isotope peaks) generated in ESI-MS (Mahieu & Patti 2017) that contribute 

to data over-fitting and false discoveries in metabolomics as shown in Figure 

5.1(a). Stringent selection criteria were also applied to confirm that metabolites 

measured from a pooled placental extract have adequate precision (CV < 30%, n = 

3) and linearity (R2 > 0.900 upon serial dilution of a placental extract) without a 

signal detected in a blank extract as control. Figure 5.1(b) illustrates an extracted 

ion electropherogram for choline, a highly abundant intracellular metabolite 

detected from murine placental extracts satisfying all three selection criteria 

outlined above. Also, high resolution MS spectra were acquired for all metabolites 

that provides information on their accurate mass, charge state, and isotope pattern 

for determination of their most likely molecular formulae with low mass error (< 

10 ppm). Overall, 135 authentic and reliably measured placental metabolites (79 

cations, 27 anions, 29 acidic lipids) were confirmed from over 700 molecular 

features initially detected. A comprehensive list of placental metabolites are listed 

in Table S5.1 and Table S5.2, where each metabolite is annotated based on their 

characteristic accurate mass and relative migration time (m/z:RMT) under positive 

(p) or negative (n) ion mode detection. However, only 122 metabolites were  



Ph.D. Thesis – Michelle E. Saoi; McMaster University – Chemical Biology  

198 
 

 

Figure 5.1: Overview of the metabolomics data workflow to authenticate placenta-derived 

metabolites when using multiplexed separations based on MSI-CE-MS. a A dilution trend filter was 

initially used to filter out background, spurious and redundant signals generated in ESI-MS to avoid 

false discoveries. A representative extracted ion electropherogram of a spurious peak (m/z 

233.1857,+) is depicted that does not fulfill  selection criteria and thus removed from a list of 

molecular features detected from a pooled placental extract. b Choline (m/z:RMT 104.108:0.605,+) 

is an authentic metabolite from placenta that can be measured with good precision (CV = 2.5%, 

n=3), lacks a signal in the blank extract and shows good linearity upon dilution (R2 >0.90) forming 

a distinctive temporal signal pattern reflecting serial sample injection. c Using these selection 

criteria, a final data matrix of authentic placental metabolites was curated reliably detected in a 

majority of samples in the cohort (> 75%) with adequate precision (CV < 30%) based on pooled 

placental extracts used as QCs (n=12) in the study. d Absolute quantification for a majority of 

placental metabolites was performed using MSI-CE-MS where a 6-point calibration curve was 

performed in one experimental run; all signals were normalized to an internal standard and placental 

dried weight, and metabolite identification was confirmed by co-migration after spiking standard 

into a pooled sample.  

included in the final metabolomics data matrix as these were consistently detected 

in a majority (> 75%) of individual murine placental samples analyzed in this study 

(n=28). Overall, representative and reliably measured placental metabolites 

comprised a wide array of compound classes associated with amino acid 

metabolism, redox homeostasis, central energy metabolism and fatty acid 

metabolism. Most placental metabolites were confidently identified (level 1) based 

on mass spectral matching and co-migration when spiked with an authentic 

standard, whereas 12 metabolites (~ 10%) were putatively identified (level 2) based 
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on comparing their MS/MS spectra to public databases. Additionally, 11 unknown 

features (~ 10%) were detected and annotated based on their most probable 

molecular formula (level 3) in accordance with recommendations from the 

Metabolomics Standards Initiative (Dunn et al. 2013). Absolute quantification for 

a majority of placental metabolites was achieved using a six-point calibration curve 

using authentic standards over a 100-fold linear dynamic range as depicted in 

Figure 5.1(c), where ion responses were normalized to a non-deuterated internal 

standard (Cl-Tyr or NMS). Indeed, Table S5.1 and Table S5.2 also summarize the 

average intracellular concentrations for placental metabolites measured in this 

study that were normalized to total dried weight (µmol/mg).  

 

5.4.2 High throughput Metabolite Profiling of Placenta Tissue  

After characterizing the murine placental metabolome using stringent selection 

criteria to authenticate metabolites, MSI-CE-MS was then used to analyze 

individual sex-paired placental extracts (i.e., female and male) from dams fed a 

standardized diet as shown in Figure 5.2(a). In this case, between-sex differences 

in metabolite expression within placenta were measured by comparing their 

normalized ion responses by MSI-CE-MS while analyzing a QC for assessing 

technical precision and long-term signal drift. Figure 5.2(b) shows an extracted ion 

electropherogram for placenta-derived acetylcarnitine (C2), an important mediator 

of fatty acid metabolism in the mitochondria, which was recently demonstrated to 

decrease within placental tissues in both sexes when mice were fed a high fat diet 

during gestation (Gohir et al. 2019). Similarly, representative intracellular anionic 

metabolites from placental extracts were also measured in this work under negative 

ion mode conditions, including intracellular polar metabolites, such as uric acid 

(167.0211:0.960:n) and non-polar lipids, including long-chain polyunsaturated 

fatty acids, such as docosahexaenoic acid or DHA (327.2330:0.988:n).  
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Figure 5.2: a Schematic overview of the study design where maternal mice were fed a standardized 

diet for six weeks prior to mating with a control-fed male with gestation for 17 days (0.5-18.5), and 

at the embryonic day, (E)18.5 murine placentae tissue were collected. b Representative extracted 

ion electropherograms for acetylcarnitine and uric acid that depict a seven sample plug serial 

injection configuration used for nontargeted metabolite profiling of placental extracts using MSI-

CE-MS. Within one experimental run, three sex-paired placental tissue extracts were simultaneously 

analyzed from maternal dams fed a standardized diet together with a pooled sample as QC to assess 

and correct for long-term signal drift in ESI-MS. c Control charts for the recovery standard, F-Phe 

which was added in every tissue extract to confirm good long-term technical precision (CV = 4.6%, 

n=76) over two days when using MSI-CE-MS under positive and negative ion mode detection. 

After data acquisition, instrumental performance was carefully assessed 

before proceeding to data processing and statistical analysis. Two analytical batches 

of placental tissue were collected and analyzed over a period of two years. The first 

batch was analyzed in 2016 and the second batch was subsequently analyzed in 

2018 using the same instrumental platform. Importantly, aliquots of the same QC 

from first batch of samples was analyzed in every run across both sample batches 

when using MSI-CE-MS. Figure 5.2(c) depicts a control chart for the second 

analytical batch analyzed, which demonstrates that good technical precision was 

obtained (CV= 4.6%, n=76) over two consecutive days of analysis based on the 

normalized ion responses for a recovery standard (F-Phe) added to all placental 

extracts. Overall, acceptable technical precision was evident for F-Phe with few 
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outliers exceeding warning limits (± 3s). However, between-batch effects were 

nonetheless evident due to long-term system drift (CV > 20%) for certain 

metabolites as highlighted in Figure S5.1(a). To correct for this systematic bias that 

was compound dependent, a batch-correction algorithm based on an empirical 

Bayesian framework was applied when relying on QC samples analyzed in each 

serial injection run by MSI-CE-MS (DiBattista et al. 2019). Indeed, control charts 

highlight considerable improvements in long-term technical precision following a 

QC-based batch correction algorithm as shown in Figure S5.1(b). Importantly, 

Figure S5.1(c) also demonstrates that batch adjustment did not impact the 

underlying data structure as related to the natural biological variance of the murine 

placental metabolome. 

 

5.4.3 Sex-specific Metabolic Adaptations in the Placenta with Gestation 

We next aimed to determine sexual dimorphic differences in murine metabolomes 

from placental extracts associated with male (n=14) and female (n=14) fetuses. An 

overview of the batch-corrected placental metabolome is depicted in Figure 5.3(a) 

when using a 2D PCA scores plot that confirms good technical precision was 

achieved (median CV = 12%, n=12) based on repeated analysis of QCs as compared 

to the larger biological variation between individual murine placentae (median CV 

= 58%, n=28) after normalization to total dried weight. A 2D heat map using 

hierarchical clustering analysis (HCA) is also shown in Figure 5.3(b), which 

highlights the relationship among 120 intracellular metabolites measured between 

sex-paired placentae from the same dam fed a normal diet. Overall metabolic 

profiles between male and female placentae show modest separation when using 

supervised multivariate analysis based on a partial least squares-discriminate 

analysis (PLS-DA) as shown in Figure S5.2. Also, a variables of importance in 

projection (VIP ³ 2.0) lists six top-ranked metabolites that were largely responsible 

for sex-dependent differences in murine placental metabolomes, including uric 

acid, succinic acid, acetylcarnitine and several medium-chain acylcarnitines.  
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Figure 5.3: An overview of the murine placental metabolome in the form of a 2D PCA scores plot 

and b 2D heat map with HCA derived from maternal dams fed a standardized control diet prior to 

gestation. Metabolite ion responses were normalized to total dried weight (mg), batch-corrected, 

glog-transformed and autoscaled prior to multivariate statistical analysis. c Box-whisker plots of 

top-ranked placental metabolites showing sex-specific differences (p < 0.05) based on Mann-

Whitney U test. d Spearman rank correlation analysis of the top-ranked placental metabolites 

demonstrating strong co-linearity among medium-chain acylcarnitines, C5, C6 and C6-OH (ρ > 

0.80, p < 1.0E-7, n=28). e Extracted ion electropherograms overlay illustrating a slower positive 

mobility/longer migration time shift of a putatively unknown ion, C6OH as compared to C6 from a 

pooled placental tissue extract. f Mirror plot comparing MS/MS spectra acquired with a collision 

energy at 20 V for an unknown ion, tentatively identified as C6-OH based on comparison to a similar 

chemical standard analog, C6. Both spectra depict two common diagnostic product ions at m/z 85 

and m/z 60 consistent with these medium-chain acylcarnitines, whereas their protonated molecular 

ion [M+H+] are offset by m/z 16 due to hydroxyl substituent. 
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Table 5.1: Top-ranked placental metabolites showing sex-specific differences in female and male 

placentae derived from maternal dam fed standardized, control diets prior to and during gestation  
 

m/z:RMT:mode Compound ID 
p-

valuea q-valueb Effect sizec FCd 
167.0211:0.960:n Uric acid  0.005 0.37 0.52 1.48 

246.1700:0.843:p Valerylcarnitine   0.014 0.58 0.46 1.48 

276.1789:0.889:p Hydroxyhexanoylcarnitine  0.024 0.74 0.43 1.34 

260.1856:0.857:p Hexanoylcarnitine  0.035 0.86 0.40 1.39 
a Two-tailed exact p-values based on Mann-Whitney U test,  
b q-value based on False Discovery Rate (FDR) using Benjimini-Hochberg procedure 
c Effect size r values estimated from z-scores 
d Fold-change (FC) based on the measured ion response ratio of female relative to male placentae  
 

Univariate statistical analysis was then applied to these top-ranked placental 

metabolites, which confirmed that four compounds were significantly different 

between female and male placentae following gestation when using a Mann-

Whitney U test as summarized in Table 5.1. Similarly, Figure 5.3(c) depicts box-

whisker plots for placental-derived uric acid and three medium-chain acylcarnitines 

(p < 0.05, effect size > 0.40), which however did not satisfy a False Discovery Rate 

(FDR) adjustment (q > 0.05).  As expected, there was a strong positive correlation 

among all three medium-chain acylcarnitines (ρ > 0.80, p < 0.001, n=28) as 

depicted in the Spearman correction matrix in Figure 5.3(d). Overall, increases in 

uric acid (p = 0.005), a known purine catabolite, was measured consistently within 

female placentae as compared to males with similar trends found for medium-chain 

acylcarnitines, namely valerylcarnitine (p = 0.014, C5), hexanoylcarnitine  (p = 

0.035, C6) and an unknown cation (p = 0.024, [M+H]+). This unknown ion 

(276.179:0.899:p) was tentatively identified (level 2) as 3-

hydroxyhexanoylcarnitine (C6-OH) as shown in Figure 5.3(e) based on its 

characteristic electrophoretic mobility shift as compared to its closest chemical 

analog commercially available, hexanoylcarnitine (C6) that lacks its substituted 

hydroxyl group. Also, high resolution MS/MS spectra confirms the detection of two 

diagnostic product ions (m/z 85; m/z 60) generated from collision-induced 

dissociation experiments when comparing C6-OH (from pooled placental extract) 
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with C6 (as authentic standard) as highlighted in Figure 5.3(f). Furthermore, in 

silico fragmentation using MetFragWeb (Ruttkies et al. 2016)  confirmed excellent 

spectral matching with experimental MS/MS spectra consistent with a hydroxylated 

medium-chain acylcarnitine.  

 

5.5 Discussion  

To date, there have been several metabolomics studies on both human and murine 

maternal placental tissue samples (Chi et al. 2014; Korkes et al. 2014; Austdal et 

al. 2015; Mumme et al. 2016; Walejko et al. 2018). In most cases however, multiple 

analytical platforms, including GC-MS, UPLC-MS and/or NMR were needed to 

achieve adequate coverage due to the chemical diversity of the placental 

metabolome, which ranges from polar/hydrophilic amino acids to hydrophobic 

long-chain fatty acids. To the best of our knowledge, this is the first study 

examining sex-specific metabolic adaptations on a murine placental model during 

normal gestation and feeding. MSI-CE-MS offers a high throughput platform for 

metabolomics with stringent QC that enables unambiguous identification and 

authentication of metabolites from murine placental extracts. Importantly, 

multiplexed separations using a QC-based batch correction algorithm (DiBattista et 

al. 2019; Saoi et al. 2019) allows for robust batch adjustment to metabolomic data 

since two independent batches of placental extracts were analyzed intermittently 

over a period of two years. A major finding of this work was that there was a 1.5-

fold increase in uric acid within female as compared to male murine placentae. Uric 

acid is the terminal end-product of the purine (ATP) degradation pathway, 

catalyzed by xanthine dehydrogenase (XDH) or xanthine oxidase (XO) in the 

placenta (Bainbridge & Roberts 2008). Previous studies have reported deleterious 

impacts on placental vascular development, structure and function, most notably in 

cases of preeclampsia (Martin & Brown 2010). Interestingly, uric acid exhibits 

antioxidant properties in circulation (Sautin & Johnson 2008) by scavenging 

oxidizing agents (i.e., reactive oxygen species, nitric oxide, transition metals), 
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whereas it may also contribute to oxidative stress and placental inflammation at 

elevated concentrations (hyperuricemia) upon formation of insoluble uric acid 

crystals resulting in fetal growth restriction and adverse pregnancy outcomes (Brien 

et al. 2017; Mulla et al. 2013). Indeed, treatment of pregnant mice with the xanthine 

oxidase inhibitor, allopurinol was shown to reduce placental uric acid levels that 

prevented placental insufficiency due to dietary fructose with improved fetal birth 

weights (Asghar et al. 2016). A trend towards a higher GSSG/GSH ratios and mixed 

oxidized disulfides (e.g., CysGly-CysSS) in female as compared to male placentae 

may also indicate that female placentae are more susceptible to oxidative stress. 

Therefore our findings of elevated uric acid levels in female placentae likely 

indicates a greater need for its antioxidant properties for maintaining redox 

homeostasis relative to males, which have been previously reported to have higher 

antioxidant capacities in lean women with greater activity of superoxide dismutase 

and glutathione peroxidase (Evans & Myatt 2017). However, this same metabolic 

adaptation within female placentae may become liability to fetal development with 

excessive uric acid in responses to acute or chronic inflammation during gestation. 

 

              Interestingly, female placentae also demonstrated greater mitochondrial 

activity as reflected by higher levels of three medium-chain acylcarnitines (C5, C6, 

C6-OH) as compared to males during gestation. Carnitine and acylcarnitines play 

key roles in mitochondrial fatty acid beta-oxidation to fulfill energetic demands for 

fetal growth and development, especially in later stages of gestation (Holland et al. 

2017). Previous studies in rodent models (Borum 2015; Ruoppolo et al. 2018) have 

reported sex-specific differences in intra-cellular acylcarnitines among other tissues 

(i.e., heart, liver, skeletal muscle); however, the role of fatty acid metabolism 

remains poorly understood within placenta despite its association with pre-

eclampsia, fetal fatty acid disorders and maternal liver diseases in pregnancy 

(Perazzolo et al. 2017; Shekhawat et al. 2003). The observed increase in medium-

chain acylcarnitines within female placentae may be indicative of fatty acid beta-
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oxidation as a preferred energetic fuel as compared to male placentae during normal 

gestation in the absence of adverse environmental stimuli. For instance, the 

placentae of obese women have been reported to have fewer mitochondria with 

lower acylcarnitine concentrations corresponding to reduced fatty acid oxidation 

capacity than lean women as an adaptive mechanism to restrict excessive fetal 

adiposity (Calabuig-Navarro et al. 2017). Similarly, chronic oxidative stress has 

been shown to impair placental fatty acid oxidation, lipid storage and ATP 

production leading to pregnancies at risk for fetal growth restriction (Thomas et al. 

2018). Indeed, a modest trend towards increases in acetylcarnitine (p = 0.070; effect 

size = 0.34; FC = 1.31) and succinic acid (p = 0.094; effect size = 0.32; FC = 1.25) 

in our work highlight consistent trends towards an upregulation in fatty acid and 

oxidative metabolism within female as compared to male placentae. However, there 

were no sex differences measured in the uptake of all major saturated, 

monounsaturated and polyunsaturated (non-esterified) fatty acids in female and 

male placentae for mice fed a standardized diet, including essential omega-3 

polyunsaturated fatty acids that are important for fetal nutrition in brain and retinal 

development (Cetin et al. 2009), such as DHA (Table S5.2). 

 

Consequently, sexual dimorphism contributes to subtle differences in 

placental metabolism that likely reflects adaptive responses elicited by the fetus to 

maximize fitness for optimal growth while ensuring normal development. Elevated 

intracellular uric acid measured within female placentae may reflect a counter-

balance to compensate for greater oxidative stress from higher mitochondrial 

activity due to medium-chain acylcarnitine utilization as compared to male 

placentae. While this work provided novel insights into sex-specific metabolic 

adaptations during normal gestation, nontargeted metabolite profiling was limited 

to placental tissue. Future metabolomics studies should also include analysis of 

maternal blood and fetal cord blood/tissues as complementary biospecimens to 

better elucidate the interactions between fetus and mother and their impact on 
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placental function that is modulated by dietary exposures (Gohir et al. 2019). By 

correlating metabolite changes in the placenta to circulatory measurements in 

maternal and fetal blood, a more comprehensive understanding of the impact of 

sexual dimorphism on fetal development may be realized. The integration of other 

“-omics” approaches with metabolomics can further validate our findings as related 

to sex-specific metabolic adaptations within placenta during fetal development, 

including the microbiome. Due to the significant biological variance between 

murine placentae, a larger sample size is also required to improve study power in 

future investigations. Future studies will examine the impact of maternal nutrition 

on long-term health outcomes in offspring, including sex-dependent risks for 

obesity and metabolic syndrome. 

 

5.6 Conclusions 

In summary, this is the first study to apply a robust and high throughput 

metabolomics platform for comprehensive metabolite profiling of placental 

extracts using minimal amounts of freeze-dried placental tissue (≈ 1-2 mg). Also, 

this quantitative approach to metabolic phenotyping used a rigorous data workflow 

for authenticating and identifying unknown metabolites while implementing 

stringent quality control measures to minimize false discoveries, including a batch-

correction algorithm to correct for long-term signal drift. Over 120 

polar/hydrophilic and lipid metabolites were reliably detected over a wide dynamic 

range in murine placental tissue extracts when normalized to dried weight. 

Complementary multivariate and univariate statistical methods revealed modest 

differences in placental metabolic profiles among paired male and female placentae 

from pregnant mice fed a standardized diet six weeks prior to and during gestation. 

Intracellular uric acid and three medium-chain acylcarnitines were consistently 

elevated in female placenta as compared to males, indicative of sex-specific 

differences in placental fatty acid beta-oxidation activity and antioxidant capacity. 

Specifically, our work demonstrated that female placentae showed a preference 
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towards increased lipid oxidation to fulfill energetic requirements that may require 

higher uric acid as an anti-oxidant to maintain redox homeostasis during gestation. 

Overall, this work provides deeper insights to the role of sex on metabolic 

adaptations within placenta that is critical to prevent fetal growth restriction and 

adverse birth outcomes early in life, as well as maternal health during pregnancy. 
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5.9 Supporting Experimental  

5.9.1 MSI-CE-MS Instrumentation and Workflow  

The TOF-MS was performed in full-scan mode over a mass range of 50-1700 m/z 

at an acquisition rate of 500 ms/spectrum. The ESI conditions were Vcap = 2000 

V, nozzle voltage = 2000 V, nebulizer gas = 10 psi, sheath gas = 3.5 L/min at 195 

°C, drying gas 8 L/min at 300 °C, whereas, the MS voltage settings were fragmentor 

= 120 V, skimmer = 65V and Oct1 RF= 750 V. As part of quality assurance 

practices, the TOF-MS system was calibrated each day using an Agilent tune 

mixture to ensure mass ranges did not exceed 0.30 ppm. Additionally, daily 

cleaning of the CE electrode and ion source with 50% vol isopropanol with a lint 

free cloth was performed to minimize sample carryover and salt buildup. At the 

start of each day, a standard mixture followed by pooled QCs with blank were 

injected to equilibrate the CE-MS system while ensuring instrumental performance 

was adequate. At the end of each day, the capillary was flushed with 10 min with 

de-ionized water and air dried for 10 min.  

 

5.9.2 Tandem Mass Spectrometry for Unknown Identification  

Tandem mass spectrometry (MS/MS) was utilized in this study for structural 

elucidation and tentative identification of unknown placental metabolites that 

significantly differed between sexes. All Targeted MS/MS experiments were 

performed on an Agilent G7100A CE system (Agilent Technologies Inc., 

Mississauga, ON, Canada) equipped with a coaxial electrospray ionization (ESI) 

source coupled to an Agilent 6550 iFunnel QTOF-MS. A pooled placenta tissue 

extract was injected hydrodynamically at 100 bar for 20 sec followed by a BGE 

spacer at 100 mbar for 5 sec.  Precursor ions were selected for collisional induced 

dissociation (CID) experiments at 10, 20 and 40 V. The ESI conditions were Vcap 

= 3500 V, nozzle voltage = 2000 V, nebulizer gas = 8 psi, drying gas 14L/min at 

225 °C, whereas, the MS voltage settings were fragmentor = 380 V and Oct1 RF= 

750 V.  For structural elucidation, the METLIN database (Smith et al. 2005) 
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accessed through the MassHunter Personal Compound Database and Library 

(PDCL) manager was used. Since no authentic standards were used to confirm via 

co-migration with spiking, in silico fragmentation using MetFragWeb was 

employed for MS/MS spectral comparison (Ruttkies et al. 2016).  
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Table S5.1: Comprehensive list of 106 polar metabolites reliably measured in pooled placental 

tissue extracts by MSI-CE-MS. Metabolites were annotated based on their accurate mass (m/z), 

relative migration time (RMT), mode of ion detection (p or n), most likely molecular formula and 

mass error. Absolute concentrations for a majority of placental metabolites are also summarized 

based on calibration curves acquired from authentic standards. 
 

m/z:RMT:mode Compound ID Chemical 
Formula 

Mass 
Error 
(ppm) 

Concentratio
n (mmol/kg 

d.w.) 
76.0393:0.731:p Glycine C2H5NO2 15.3 5.83±0.03 

76.0757:0.582:p Trimethylamine-N-oxide C3H9NO 13.3 0.06±0.02 

90.0550:0.652:p b-Alanine C3H7NO2 6.6 -- 

90.0550:0.782:p Alanine C3H7NO2 10.1 8.86±0.31 

104.0706:0.782:p GABA*a,b C4H9NO2 1.6 0.053±0.000 

104.0706:0.851:p BAIBA*a,b C4H9NO2 0.9 -- 

104.0706:0.943:p Dimethylglycine (DMG) C4H9NO2 0.9 0.08±0.01 

104.1075:0.605:p Choline C5H14NO 1.5 3.13±0.12 

106.0499:0.860:p Serine C3H7NO3 4.1 2.62±0.11 

110.0270:1.483:p Hypotaurine* C2H7NO2S 0.4 -- 

114.0662:0.648:p Creatinine C4H7N3O 0.4 0.10±0.04 

116.0706:0.917:p Proline C5H9NO2 1.1 3.14±0.05 

118.0611:0.725:p Guanidoacetic acid* C3H7N3O2 2.2 -- 

118.0863:0.852:p Valinea C5H11NO2 0.4 1.99±0.45 

118.0863:0.960:p Betaine C5H11NO2 6.6 29.6±0.4 

120.0655:0.899:p Threonine C4H9NO3 -2.9 4.83±0.15 

120.1020:0.661:p Unknown C5H13NO2 0.4 -- 

122.0270:0.953:p Cysteine C3H7NO2S 8.0 0.43±0.07 

126.0219:1.615:p Taurineb C2H7NO3S 0.2 6.25±0.05 

131.1176:0.457:p N-Acetylputrescine*b C6H14N2O -5.8 -- 

132.0655:1.018:p Hydroxyproline C5H9NO3 2.1 -- 

132.0768:0.769:p Creatine C4H9N3O2 2.1 7.87±0.26 

132.1019:0.863:p Isoleucineb C6H13NO2 -0.04 -- 

132.1019:0.873:p Leucineb C6H13NO2 -0.04 -- 

133.0608:0.899:p Asparagine C4H8N2O3 -3.8 1.06±0.00 

133.0972:0.613:p Ornithine C5H12N2O2 -8.4 0.11±0.06 

134.0448:0.976:p Aspartic Acid C4H7NO4 0.1 2.88±0.12 
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137.0458:1.083:p Hypoxanthine C5H4N4O 1.1 0.37±0.03 

137.0709:0.651:p N-Methylnicotinamide* C7H8N2O -2.7 -- 

141.0657:0.722:p Unknown C6H8N2O2 0.9 -- 

142.0264:1.506:p O-Phosphoethanolamineb C2H8NO4P -1.4 -- 

146.1181:0.712:p Deoxycarnitine C7H16NO2 -4.4 0.12±0.14 

146.1652:0.413:p Spermidine C7H19N3 -1.0 -- 

147.0764:0.921:p Glutamine C5H10N2O3 0.3 417.66±0.02 

147.1128:0.613:p Lysine C6H14N2O2 -1.4 3.18±1.66 

148.0604:0.933:p Glutamic Acid C5H9NO4 -0.5 13.0±0.9 

150.0583:0.908:p Methionine C5H11NO2S -1.7 0.92±0.21 

151.0431:0.511:p Unknown C5H11O3S -6.2 -- 

156.0768:0.653:p Histidine C6H9N3O2 -0.3 0.64±0.38 

160.1330:0.738:p Unknown C8H17NO2 0.01 -- 

162.1125:0.746:p Carnitine C7H15NO3 3.5 12.0±1.2 

166.0863:0.933:p Phenylalanine C9H11NO2 -1.5 1.50±0.29 

170.0924:0.668:p Methylhistidine C7H11N3O2 -1.0 0.24±0.19 

175.1190:0.634:p Arginine C6H14N4O2 -0.7 0.83±0.16 

176.1030:0.944:p Citrulline C6H13N3O3 -4.5 0.49±0.27 

179.0481:0.804:p Cysteinylglycine* C5H10N2O3S -1.3 -- 

182.0812:0.961:p Tyrosine C9H11NO3 -2.4 10.6±0.1 

188.1757:0.565:p N-Acetylspermidine* C9H21N3O -0.9 -- 

189.1346:0.638:p Homoarginine C7H16N4O2 15.3 -- 

189.1598:0.635:p Trimethyllysine C9H20N2O2 -15.1 -- 

203.1503:0.676:p 
Asymmetric 

dimethylarginine 
C8H18N4O2 3.5 0.04±0.01 

203.1503:0.687:p 
Symmetric 

dimethylarginine  
C8H18N4O2 -1.1 -- 

203.2230:0.410:p Spermine C10H26N4 -4.9 0.16±0.14 

204.1230:0.787:p Acetylcarnitine C9H17NO4 1.5 4.13±0.21 

205.0972:0.933:p Tryptophan C11H12N2O2 9.2 366±18 

209.0921:0.891:p Kynurenine C10H12N2O3 -4.8 -- 

218.1387:0.808:p Propionylcarnitine C10H19NO4 -0.8 0.05±0.05 

230.0958:1.404:p Ergothioneine* C9H15N3O2S -0.03 -- 

232.1543:0.820:p Isobutyrylcarnitinea C11H21NO4 -0.01 -- 
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232.1543:0.827:p Butyrylcarnitinea C11H21NO4 -0.01 0.04±0.02 

242.5621:0.883:p CysGly-GSH* C15H25N5O9S2 -1.2 -- 

243.0737:1.044:p Unknown C9H6N8O -2.9 -- 

244.0991:0.848:p Unknown C11H17NO3S 2.7 -- 

246.1700:0.837:p Isovalerylcarnitinea C12H24NO4 -1.1 -- 

246.1700:0.843:p Valerylcarnitinea C12H24NO4 -1.4 -- 

248.1492:0.852:p Hydroxybutyrylcarnitine C11H21NO5 -0.2 -- 

258.1097:1.592:p Glycerophosphoylcholine*b C8H20NO6P -0.1 -- 

260.1856:0.857:p Hexanoylcarnitine C13H25NO4 0.4 -- 

262.1647:0.869:p Unknown C12N23NO5 -1.3 -- 

268.1040:0.871:p Adenosine C10H13N5O4 -1.9 -- 

269.0878:1.528:p Inosineb C10H12N4O5 -1.0 -- 

276.1551:0.833:p Unknown C12H17N7O 8.1 -- 

276.1789:0.889:p Hydroxyhexanoycarnitine C13H25NO5 -5.7 -- 

284.0989:1.149:p Guanosine C10H13N5O5 -3.2 -- 

298.0526:0.828:p 
Cysteinylglycine cysteine 

mixed disulfide * 
C8H15N3O5S2 39.5 -- 

298.0959:0.883:p Methylthioadenosine* C11H15N5O3S -4.4 -- 

307.0833:1.030:p 
Oxidized glutathione 

disulfide 
C20H32N6O12S2 0.9 1.40±0.46 

308.0911:1.108:p Reduced glutathione C10H17N3O6S 0.3 4.87±0.71 

427.0952:0.990:p 
Cysteinylglutathione 

mixed disulfide  
C13H22N4O8S2 -1.0 0.23±0.11 

89.0244:1.155:n Lactic acid C3H6O3 7.3 18.9±1.8 

96.9696:1.720:n Inorganic phosphate H3O4P 0.2 12.6±0.1 

103.0401:1.023:n 3-Hydroxybutyric acid C4H8O3 -0.01 3.77±2.74 

103.0401:1.048:n 2-Hydroxybutyric acid C4H8O3 -0.3 0.11±0.02 

117.0193:1.906:n Succinic acid C4H6O4 1.4 3.27±1.84 

128.0353:1.019:n Oxoproline C5H7NO3 -8.7 0.38±0.04 

133.0142:1.927:n Malic acid C4H6O5 -1.1 -- 

167.0211:0.960:n Uric acid C5H4N4O3 4.4 0.88±0.02 

171.0064:1.305:n Glycerol 3-phosphate C3H9O6P 9.6 -- 

175.0252:0.911:n Ascrobic Acid* C6H8O6 2.1 -- 

179.0561:0.568:n Glucose C6H12O6 19.3 -- 

180.9520:1.720:n Unknown C6H2N2OS2 1.8 -- 
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187.0426:1.155:n Unknown C8H12O3S 0.9 -- 

191.0197:2.106:n Citric acid/Isocitric acid C6H8O7 -6.6 -- 

195.0510:0.879:n Gluconic acid C6H12O7 14.7 -- 

218.1034:0.823:n Pantothenic acid C9H17NO5 0.9 0.05±0.01 

259.0224:1.058:n Glucose-6-phosphateb C6H13O9P -6.6 0.39±0.01 

264.9520:1.782:n 1,3-Bisphosphoglycerate* C3H8O10P2 1.7 -- 

338.9888:1.534:n Fructose-1,6-bisphosphate  C6H14O12P2 -5.3 0.62±0.07 

346.0558:1.006:n AMP C10H14N5O7P -2.2 1.27±0.08 

347.0398:1.027:n IMPb C10H13N4O8P -8.6 0.31±0.04 

426.0221:1.176:n ADP C10H15N5O10P2 0.0 0.33±0.03 

482.9613:1.306:n UTPb C9H15N2O15P3 -20.6 0.60±0.38 

505.9885:1.220:n ATP C10H16N5O13P3 -1.3 1.44±0.44 

521.9834:1.196:n GTPb C10H16N5O14P3 0.03 1.02±0.77 

558.0644:0.916:n ADP-Ribose* C15H23N5O14P2 0.2 -- 

662.1024:0.705:n NAD+ C21H28N7O14P2 -5.7 0.70±0.04 

a Metabolites are prone to isobaric/isomeric interference with partial overlapping peaks using 
MSI-CE-MS.  
b Not included in final study matrix.  
* Tentatively identified based on MS/MS spectral matching to public databases. 
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Table S5.2: Summary of 29 acidic lipid metabolites reliably measured in pooled placental tissue 

extracts by MSI-NACE-MS. Metabolites are annotated based on their accurate mass (m/z), 

relative migration time (RMT), mode of ion detection (p or n), most likely molecular formula and 

mass error.. Absolute concentrations for placental lipid metabolites are also summarized based on 

calibration curves from authentic standards if available. 

 

m/z:RMT:mode Compound ID Chemical 
Formula 

Mass 
Error 
(ppm) 

Concentration 
(mmol/kg d.w.) 

199.1703:1.032:n Lauric acid (C12:0)b C12H24O2 -2.8 0.13±0.09 

227.2017:1.004:n Myristic acid (C14:0) C14H28O2 -3.0 0.44±0.15 

241.2173:0.990:n 
Pentadecanoic acid 

(C15:0) 
C15H30O2 -2.4 0.33±0.08 

253.2173:0.985:n 
Palmitoleic acid 

(C16:1n-7) 
C16H30O2 -1.7 1.54±0.47 

255.2329:0.981:n Palmitic acid (C16:0) C16H32O2 4.3 20±2 

267.2330:0.975:n 
Heptadecenoic acid 

(C17:1)  
C17H32O2 -0.8  

269.2486:0.966:n 
Heptadecanoic acid 

(C17:0) 
C17H34O2 -2.1 0.104±0.067 

277.2173:0.983:n 
g-Linolenic acid 

(C18:3n-6)a 
C18H30O2 -2.9  

277.2173:0.981:n 
a-Linolenic acid 

(C18:3n-3)a 
C18H30O2 -2.3  

279.2330:0.967:n 
Linoleic acid (C18:2n-

6) 
C18H32O2 0.4 8.7±2.3 

281.2486:0.961:n Oleic acid (C18:1n-9) C18H34O2 0.8 9.1±2.3 

283.2642:0.954:n Stearic acid (C18:0) C18H36O2 2.6 48±4 

297.2799:0.942:n 
Nonadecanoic acid 

(C19:0) 
C19H38O2 -20.5  

301.2173:0.981:n 
Eicosapentaenoic acid 

(20:5n-6) 
C20H30O2 59.5 0.88±0.28 

303.2330:0.978:n 
Arachidonic acid 

(20:4n-6) 
C20H32O2 2.4 12±3 

305.2486:0.953:n 
Eicosatrienoic acid 

(20:3n-6) 
C20H34O2 -0.3  

307.2642:0.942:n 
Eicosadienoic acid 

(C20:2n-6) 
C20H36O2 -3.6  

309.2799:0.937:n Eicosenoic acid (C20:1) C20H38O2 -6.7  

311.2955:0.931:n 
Arachidic acid (C20:0n-

6) 
C20H40O2 -3.4  

327.2330:0.988:n 
Docosahexaenoic acid 

(C22:6n-3) 
C22H32O2 1.3 6±1 

329.2486:0.982:n 
Docosapentaenoic acid 

(C22:5n-3) 
C22H34O2 11.8  

331.2643:0.939:n 
Docosatetraenoic acid 

(C22:4n-6) 
C22H36O2 -0.3  

337.3112:0.918:n Erucic acid (C22:1n-9) C22H42O2 10.9  

339.3269:0.913:n 
Docosanoic acid 

(C22:0) 
C22H44O2 -0.8  

365.3425:0.901:n 
Nervonic acid (C24:1n-

9) 
C24H46O2 -3.2  

367.3582:0.898:n 
Tetracosanoic acid 

(C24:0) 
C24H48O2 -3.0  
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407.2803:0.951:n Cholic acid C24H40O5 7.5  

448.3068:0.987:n 
Glycochenodeoxycholic 

acid 
C26H43NO5 -6.9  

565.5211:0.958:n Unknown C36H69O4 -9.4  

a Partially resolved isobaric/isomeric fatty acids integrated as total of both isomers 
b Not included in the final data matrix 
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Figure S5.1: Control charts of placental QCs of betaine (118.0863:0.960:p) and docosahexaenoic 

acid (327.2330: 0.988:n) a before and b after batch correction was used to correct for signal drift in 

ESI-MS thereby improving technical precision when both analytical batches were combined. The 

red lines represent batch 1 analyzed in 2016, while the green lines represent batch 2 analyzed in 

2018. Two 2D scores plots using PCA c before and d after application of QC based batch-correction 

algorithm, where overall technical variance significantly decreased from 21% to 12% without 

changing natural biological variance based on 120 metabolites reliably measured in the placental 

QCs (n=12). 
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Figure S5.2: a A 2D PLS-DA scores plot showing sex-dependent differentiation of the murine 

placental metabolome of control-fed dams. Metabolite ion responses were normalized to an internal 

standard and dry weight (mg), and then autoscaled and batch-corrected when using a perturbation 

test. b Variance in Projection (VIP) plot along component 1 which lists the top-ranked metabolites 

discriminating between sex from placentae along the first component. Bolded metabolites are 

significant (p < 0.05) when using a Mann Whitney U test. 
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Chapter VI: Future Directions in Tissue Metabolomics in Human Health 
Interventions and Clinical Research  
 
6.1 Overview of major thesis contributions  

The work presented in this thesis has contributed to new advancements in 

biomarker discovery using multiplexed separations with novel data workflows, 

including: (1) validating a high throughput screening platform for targeted analysis 

of a panel of serum γ-glutamyl dipeptides to allow for better risk assessment in non-

alcoholic steatohepatitis (NASH) patients that complements classic liver enzyme 

tests and tissue histopathology, and (2) elucidating adaptive responses in the plasma 

metabolome due to abrupt physical inactivity as a diagnostic screening tool for early 

detection of sarcopenia in high risk older persons who are susceptible to fraility. 

Currently, there is an urgent need for population based-screening tools, such as non-

invasive biomarkers, for preventing liver disease progression in non-alcoholic fatty 

liver disease (NAFLD) while also validating better prognostic indicators that 

predict liver-associated morbidity and/or mortality.  Similarly, reliable screening 

tools must also be implemented to prevent sarcopenia in ageing populations across 

developed countries while also validating innovative lifestyle interventions for its 

effective prevention. Metabolomics offers a systemic approach for identifying 

clinically relevant biomarkers that also provide deeper insights to underlying 

disease pathophysiology. Biomarker discovery using metabolomics based on MSI-

CE-MS have primarily focused on non-invasive human blood samples (e.g., serum 

or plasma), which are widely used specimens for routine screening in a clinical 

setting. However, biofluids are non-organ specific and reflect numerous metabolic 

processes within the body that complicate biochemical interpretations. Therefore, 

it is imperative to assess metabolite changes localized within tissues, as they are the 

direct site and origin of most disease processes as a way to obtain more robust and 

specific biomarkers. This motivated the work presented in the second half of this 

thesis where new advancements in tissue metabolomics studies were developed, 

including (3) characterization of the human skeletal muscle metabolome from a 
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cohort of recreationally-active males undergoing a strenuous exercise regimen after 

ingestion of high oral dosages of bicarbonate as a way to provide new insights of 

acute alkalosis in preserving muscle function during interval exercise, and (4) 

comprehensive characterization of the murine placental metabolome derived from 

maternal dams fed a controlled diet prior to and during pregnancy to elucidate the 

influence of sex on placental adaptations that may influence fetal development and 

birth outcomes later in life. 

  

 

Chapter I of this thesis provided a comprehensive review of tissue 

metabolomic studies in clinical research with a focus on biomarker discovery using 

complementary instrumental methods based on high efficiency separations coupled 

to high resolution mass spectrometry, as well as high field NMR methods. Recent 

trends and new advances for tissue metabolomics studies are highlighted while also 

discussing current limitations to be addressed in future research. Chapter II 

introduces multiplexed electrophoretic separations using multisegment injection-

capillary electrophoresis-tandem mass spectrometry (MSI-CE-MS/MS) for 

targeted analysis of sixteen serum γ‐glutamyl dipeptides from a cohort of 

overweight Japanese NASH patients using a multiplexed data workflow with 

stringent quality control. Rigorous method optimization and validation was 

performed to demonstrate the utility of this workflow as required in large-scale 

metabolomics studies with good technical precision, accuracy and robustness while 

reducing analysis times as compared to conventional single injection separation 

methods.1 Importantly, unsupervised multivariate pattern recognition revealed two 

distinct NASH patient sub-groups (i.e., low-risk vs. high-risk) based contrasting 

differences in serum γ‐glutamyl dipeptide concentration profiles despite having 

similar clinical phenotypes and liver histopathology parametrics. Moreover, serum 

γ‐glutamyl dipeptide concentrations were inversely correlated with GGT activity, 

which inferred that impairments in the glutathione salvage pathway among high-

risk NASH patients with elevated oxidative stress who likely have poor clinical 
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prognosis. This study revealed the crucial role of the g-glutamyl cycle in the 

pathophysiology and disease progression in advanced stages of NASH especially 

since patients often suffer from several other co-morbidies (e.g., diabetes, 

hypertension). This research paves the way for developing better risk assessment 

tools to complement routine liver enzyme tests and histopathology, which will need 

to be further validated in a longitudinal study involving NASH patients when 

evaluating the predictive accuracy of serum γ‐glutamyl dipeptides for potential 

clinical use.  

 

In Chapter III, nontargeted metabolite profiling by MSI-CE-MS was 

performed in fasting plasma specimens collected from a cohort of prediabetic, older 

adults participating in two weeks of short-term step reduction (< 1000 steps/day) 

followed by two weeks of recovery, returning to normal ambulatory activity. We 

sought out to determine adaptive metabolic responses to acute periods of physical 

inactivity associated with metabolic dysregulation and muscle wasting at three time 

intervals during the intervention trial. Our findings revealed that two weeks short-

term step reduction elicited a myriad of adaptive metabolic changes that did not 

return to baseline after two weeks of recovery. Increased levels in plasma 

metabolites associated with muscle energy metabolism, including circulating 

concentrations of glutamine, creatine, carnitine and deoxycarnitine, which were 

evident after step reduction and correlated with deceases in myofibrillar protein 

biosynthesis.2 An unexpected finding in this study was that acute inactivity elicited 

a decrease in plasma uremic toxins (e.g., indoxyl sulfate and hippuric acid), as well 

as changes in glutathione precursors (oxoproline and methionine). Among these 

panel of plasma metabolites, glutamine was the most significant biomarker 

associated with physical inactivity that was independent of sex and extent of step 

reduction as potential confounders. This apparent increase in plasma glutamine may 

suggest an increased efflux to circulation from the muscle as a result of increased 

protein catabolism from prolonged muscle disuse.3,4 Our findings revealed 
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fundamental metabolic pathways to advance our understanding of the pathogenesis 

of early stages sarcopenia, which may provide a convenient way for therapeutic 

monitoring of the efficacy of lifestyle interventions that promote healthy ageing in 

geriatric populations. However, a major limitation of the study was that access to 

muscle tissue biopsies was not available in order to corroborate changes in 

circulatory metabolism with adaptive metabolic responses within skeletal muscle 

tissue following acute inactivity.  

 

Chapter IV represents the first metabolomics study to characterize the 

human skeletal muscle metabolome from mass-restricted tissue biopsies (≈�2 mg 

dried mass) with matching fasting plasma samples when using nontargeted 

profiling of polar/ionic metabolites by MSI-CE-MS together with targeted analysis 

of major electrolytes using CE with indirect UV.5  Rigorous optimization of a 

quantitative tissue microextraction procedure achieved high metabolite recoveries 

(> 90%) while minimizing artifactual oxidation and hydrolysis (< 8%) among labile 

metabolites. Over 80 polar/ionic metabolites were reliably characterized in the 

majority of muscle tissue specimens collected from a cohort of recreationally-active 

males participating in standardized interval training with bicarbonate pretreatment 

in a double-blind, placebo-controlled cross-over study. In this case, dynamic 

changes in metabolites including in glycolytic metabolites (lactic acid), amino acids 

(alanine, glutamic acid) and acylcarnitines (acetylcarnitine) were identified as 

biomarkers of strenuous exercise in both muscle tissue and plasma specimens. 

Importantly, this study revealed that bicarbonate ingestion prior to strenuous 

interval exercise elicited perturbations in ionic homeostasis that attenuated 

potassium efflux from contacting muscle together with lower oxidative and 

energetic stress as reflected by lower intramuscular concentrations of GSH-Cys-SS, 

uric acid and anserine, which is a histidine-containing dipeptide from carnosine 

identified for the first time in human skeletal muscle using high resolution MS/MS. 

Overall, our findings revealed underlying molecular mechanisms associated with 
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acute bicarbonate ingestion and strenuous exercise on muscle metabolism, which 

may prove useful to design safe yet effective dietary interventions that inhibit 

fatigue. Although this work demonstrated the utility of tissue metabolomics to 

provide deeper biochemical insights that cannot always be inferred from circulatory 

metabolism, metabolome coverage was limited to polar/ionic metabolites.  

 

Finally, in Chapter V nontargeted metabolomics was performed on murine 

placental tissue (≈� 2 mg dried mass) in mice fed a standardized, control diet to 

examine the impact of sex on the placental metabolome during gestation.6 This was 

the first study to apply MSI-CE-MS to expand metabolome coverage beyond 

polar/ionic metabolites, such as long-chain fatty acids that are important mediators 

of inflammation and mitochondrial energy/function. Characterization of the murine 

placental metabolome resulted in over 120 placental metabolites reliably detected 

in placental tissue extracts over a wide dynamic range. Modest differences in 

metabolic profiles were observed between male and female placenta derived from 

the same control-fed maternal mice. Importantly, a panel of short-chain 

acylcarnitines (C5, C6, C6OH) were significantly increased in females compared 

to males, indicating a sex-dependent increase in lipid oxidation prevalent in females 

to fulfill energetic requirements during gestation. Interestingly, increases in 

placenta uric acid, a known antioxidant, were also measured in females to maintain 

redox homeostasis to compensate for lowered antioxidant capacities as compared 

to males. For the first time, our findings revealed novel insights into mechanisms 

dictating sex-specific metabolic adaptations in normal, uncomplicated murine 

pregnancies, which have important implications in the developmental origins of 

health and disease relevant to human health outcomes early in life. 
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6.2 Further validation of the role of γ-glutamyl dipeptides in liver biopsies for   
NASH risk assessment  

To date, most tissue metabolomics studies on liver specimens have aimed to 

determine diagnostic markers in more severe forms of chronic liver diseases 

including hepatocellular carcinoma (HCC)7,8 and cirrhosis,9 where irreversible liver 

damage often results.10 However, there have been far fewer studies focusing on 

NASH patient populations, who are at higher risk for liver-associated morbidity 

and/or mortality.10 Therefore future metabolomics studies on paired liver biopsy 

and serum specimens in a larger, more diverse cohort of NASH patients is necessary 

in order to validate the role of γ-glutamyl dipeptides for NASH risk assessment. A 

major limitation highlighted in Chapter II was limited access to liver tissue biopsies 

to correlate intracellular γ-glutamyl dipeptides changes with those observed in the 

serum. This is imperative in order to gain an overall mechanistic understanding of 

how the γ-glutamyl-cycle leads to impairments in the glutathione salvage pathway 

in high-risk NASH patients, predisposing them to increased oxidative 

stress/inflammation and thus, lower life expectancies and poor prognosis.11 Ideally, 

sample analysis by MSI-CE-MS should be performed using the data workflow 

proposed in Chapter II with stringent quality control. Moreover, expanding 

metabolome coverage to other polar and lipid metabolites, we can potentially 

discover tissue-derived makers that correlate with histopathology grading for 

NASH diagnosis.12 These markers can then be validated for routine screening and 

prognostic testing to complement classic liver enzyme tests that often lack 

specificity,10 as well as routine histopathology, which is prone to observer bias12 

and require longer turn-around times (e.g., days to weeks) in clinical settings.  

 

 
6.3 Examining the influence of sex on bicarbonate treatment responses    
following interval exercise  
 

As discussed in Chapter IV, bicarbonate ingestion prior to strenuous interval 

exercise elicited modest treatment effects in metabolic pathways associated with 
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ionic homeostasis, purine degradation and oxidative stress. However, this study 

employed a small cohort of recreationally active men. Recently, there has been 

increasing evidence that sex influences skeletal muscle adaptations in response to 

exercise.13 For instance Scalzo et al. observed higher mitochondrial protein 

synthesis in recreationally activity in males after training compared to females with 

similar baseline fitness. Higher rates of mitochondrial protein synthesis in males 

were due to an increase in 127 mitochondrial proteins.14 Additionally, a recent study 

by Cardinale et al.15 revealed that women had lower mitochondrial content 

compared to men due to lower oxygen affinity. Based on these preliminary findings, 

future studies are required to examine the dependence of biological sex in skeletal 

muscle adaptations in response to exercise as well as nutraceuticals, such as sodium 

bicarbonate. While numerous studies have explored the effects acute alkalosis 

through ingestion of alkalizing agents (e.g., sodium bicarbonate, sodium citrate) in 

males on muscle metabolism as well as exercise performance, there is a lack of 

studies performed in recreationally active females due to challenges in recruitment 

when relying on highly invasive tissue biopsy procedures. Of these studies, the 

effects of acute alkalosis remain unclear.16 Therefore, future studies involving a 

larger and more diverse cohort of recreationally-active participants should be 

performed in order to examine sex-dependent metabolic adaptations associated 

with dietary interventions and/or interval exercise. This will confirm the 

preliminary findings reported in Chapter IV while providing new insights to the 

underlying metabolic pathways that may differentially impact women as compared 

to men.  

 

6.4 Characterizing metabolomes of fetal tissues for sex-specificity  

In Chapter V, nontargeted metabolomics was performed using MSI-CE-MS on 

murine placental tissue for polar metabolites as well as fatty acids. The unique data 

workflow with stringent quality control adopted in this work can be applied to other 

mass-restricted tissue specimens for to achieve wide metabolite coverage without 
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the need for multiple analytical platforms,17–19 which is often costly and impractical 

in many academic research settings. Sex-specific metabolic adaptations were 

observed between male and female placenta derived from the same maternal dam 

fed a controlled diet prior to and during gestation. A key finding from our study 

showed increased levels of short-chain acylcarnitines in female placenta compaed 

to males in uncomplicated, maternal pregnancies. This suggested a shift towards 

higher placental b-oxidation compared to males. While these findings provided 

preliminary insights to the influence of sex on the placental metabolome during 

gestation, future studies should also incorporate paired maternal and/or fetal tissues 

in order to gain a more comprehensive understanding of the impact of sex 

differences on maternal-fetal interactions during pregnancy. For instance, Mumme 

et al.,19 employed a rodent model to examine the influence of maternal diet (control-

fed, 4% salt, high fat, high fat +4% salt) on the placenta as well as maternal and 

fetal liver tissues. The authors were able to examine global metabolic changes in 

both the mother and offspring as a result of environmental insults in utero elicited 

by maternal diet. Moreover, access to paired tissues for future studies can be used 

to also examine how the role of biological sex plays on placental adaptations that 

impact subsequent birth outcomes, such as obesity and metabolic syndrome. More 

studies are urgently needed to investigate the influence of sex during early stages 

of fetal development and how these adaptations can differentially impact health 

outcomes later in childhood.  

 

6.5 General Conclusions 

In conclusion, this thesis presents unique applications of multiplexed separations 

using MSI-CE-MS for the discovery of putative, non-invasive blood-based 

biomarkers to identify high risk adults prone to NASH progression as well as 

inactivity-induced losses in muscle mass and function in older adults. Additionally, 

the second half of this thesis presented two unique tissue metabolomics studies. The 

first study involved the first comprehensive characterization of the human skeletal 
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muscle with paired matching plasma specimens from recreationally active men 

participating in standardized exercise trials following bicarbonate pre-treatment. 

Metabolite coverage was expanded using MSI-NACE-MS to include fatty acids 

and intact lipids in the second study, where murine placental metabolome 

characterization was achieved to examine sex-specific adaptations during gestation.  

Overall, this thesis paves way for routine metabolite profiling in tissues in order to 

gain deeper insights to pathophysiology and functionality in organs, which is the 

direct site of where metabolite changes owing to a disease take place.   
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