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Abstract

Matting, which aims to separate the foreground object from the background of an im-

age, is an important problem in computer vision. Most existing methods rely on auxiliary

information such as trimaps or scibbles to alleviate the difficulty arising from the underde-

termined nature of the matting problem. However, such methods tend to be sensitive to the

quality of auxiliary information, and are unsuitable for real-time deployment. In this pa-

per, we propose a novel Attention-based Multi-scale Matting Network (AMMNet), which

can estimate the alpha matte from a given RGB image without resorting to any auxiliary

information. The proposed AMMNet consists of three (sub-)networks: 1) a multi-scale

neural network designed to provide the semantic information of the foreground object, 2)

a Unet-like network for attention mask generation, and 3) a Convolutional Neural Network

(CNN) customized to integrate high- and low-level features extracted by the first two (sub-

)networks. The AMMNet is generic in nature and can be trained end-to-end in a straight-

forward manner. The experimental results indicate that the performance of AMMNet is

competitive against the state-of-the-art matting methods, which either require additional

side information or are tailored to images with a specific type of content (e.g., portrait).
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Notation and abbreviations

Adam Adaptive moment estimation algorithm

CNN Convolutional Neural Network

GPU Graphics Processing Unit

MSE Mean Square Error

ReLu Rectified Linear unit

FCN Fully Convolutional Network

ResBlock Residual Block

DenseBlock Densely Block

vi



Contents

Abstract iv

Acknowledgements v

Notation and abbreviations vi

1 Introduction and Problem Statement 1

2 Related Work and Background 5

2.0.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The Proposed Algorithm 12

3.0.1 Multi-scale Semantic Extractor . . . . . . . . . . . . . . . . . . . . 14

3.0.2 Attention Proposal Network . . . . . . . . . . . . . . . . . . . . . 15

3.0.3 Fusion Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Losses 18

4.0.1 Alpha-prediction Loss . . . . . . . . . . . . . . . . . . . . . . . . 18

4.0.2 Compositional Loss . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.0.3 Content Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



4.0.4 Overall Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Experiments and Analysis 22

5.0.1 Datasets and Evaluation Metrics . . . . . . . . . . . . . . . . . . . 22

5.0.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.0.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.0.4 Sensitivity to the Quality of Trimaps . . . . . . . . . . . . . . . . . 27

6 Conclusion and Analysis 38

7 Appendix 40

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.1.1 Step 1: Convert source image to smaller grayscale image. . . . . . 41

7.1.2 Step 2: Construct Reeb graph from continuous interpolation of

grayscale image. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.1.3 Step 3: Identify Reeb graph cutpoints using persistence analysis. . . 42

7.1.4 Step 4: Derive two or more persistence countours from each cutpoint. 43

7.1.5 Step 5: Represent the spatial density of the persistence contours as

a grayscale image at source image size. . . . . . . . . . . . . . . . 43

viii



List of Figures

1.1 Direct alpha matting result. Left: Original RGB image. Right: Alpha matte. 3

2.1 Sigmoid function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 ReLU function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Structure of Resblock. The left figure is a conventional convolutional layers

while the right figure is a standard resblock. . . . . . . . . . . . . . . . . . 9

2.4 The structure of DenseBlock. . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Max pool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 The architecture of AMSMNet, having three parts: upper part is the Multi-

scale Semantic Extractor (Sec.3.0.1), lower part is the Attention Proposal

Network (Sec.3.0.2) and the rightmost part is the final Fusion Network

(Sec.3.0.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 The first row shows an example of segmentation. The second and third

rows are bad and good results of our attempt to transfer segmentation net-

work to do alpha matting (with the matting specific loss in Sec.4). . . . . . 14

4.1 Guided gradient that back-propagates from fusion network, which will be

used to update the weights of MSSE and APN. . . . . . . . . . . . . . . . 21

ix



5.1 Various adapted FCN-8s output. (b) is trained by alpha loss and composi-

tional loss with ground-truth alpha. (c) is trained by cross- entropy loss and

binarized alpha. (d) is trained by cross-entropy loss and three-valued trimaps. 24

5.2 The visual comparison results on the DAPM Dataset between two auto-

matic matting methods (SHM and ours). . . . . . . . . . . . . . . . . . . . 30

5.3 Visual comparison of some interactive methods test on DIM Dataset. . . . . 33

5.4 Figure of trimaps’ side-effect. . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5 Trimap dilation result that represent the results trend with respect to dilation

parameter d variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.6 This figure shows methods that take an all-unknown trimap as input. (b)

is derived from normal trained DIM network, while (c) is obtained from a

network that trained on all-unknown trimaps. . . . . . . . . . . . . . . . . 37

x



Chapter 1

Introduction and Problem Statement

In many real-world applications, one needs to perform so-called matting, which is to ac-

curately separate the foreground and the background of images or videos. For instance,

the matting technology is widely used in the film industry and photography to improve

professional work. It can also be leveraged to faciliate the creation of advertisements for

e-commerce websites (e.g., generating customized fashion model designs).

The key equation underlying the matting problem is as follows:

I
(c)
i = αiF

(c)
i + (1− αi)B(c)

i ,

c ∈ {R,G,B}, i = 1, · · · , N. (1.1)

Here I(c)i , F (c)
i , and B(c)

i are respectively the intensities of color channel c of pixel i of the

RGB image, the foreground and the background; the matte value αi ∈ [0, 1] specifies how

the foreground and the background are superimposed at pixel i; N is the total number of

pixels in the image. Matting, which aims to recover the alpha matte α , (αi)
N
i=1 based on

the RGB image I , (I(c))c∈{R,G,B} (with I(c) , (I
(c)
i )Ni=1), is an underdetermined problem
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Levin et al. (2008) since there are fewer equations than unknowns (see Eq. (1.1)).

To deal with the underdetermined nature of the matting problem, most existing methods

Aksoy et al. (2017a); Chen et al. (2013); Levin et al. (2008); Xu et al. (2017) rely on extra

constraints offered by auxiliary information, such as trimaps or scribbles, acquired through

user interactions. However, such methods suffer from two major issues. Firstly, they are

not suitable for real-time deployment, and the required interactions could be difficult for

nonprofessional users to provide. Secondly, their performance tend to be sensitive to the

quality of auxiliary information; indeed, sometimes even well-created strokes or trimaps

cannot guarantee good matting results.

In view of the shortcomings of interactive methods, there is a clear demand for fully

automated image matting methods amenable to large-scale real-time implementation. One

possible approach is to modify interactive methods by replacing manually-supplied aux-

iliary information with its algorithmically-generated substitute. However, the resulting

methods are likely to inherit some of the shortcomings of interactive methods, say, the sen-

sitivity issue. In fact, the quality of algorithmically-generated auxiliary information is even

harder to control. For example, trimaps created by segmentation methods often suffer from

the simple boundary erosion problem, which may jeopardize the final matting result; fur-

thermore, classification errors introduced by segmentation tend to exacerbate the situation.

Note that the aforementioned shortcomings are largely the consequence of the sequential

architecture of such automated matting methods, where one essentially first identifies a

coarse matte using high-level semantic information then produces a refined matte by ex-

ploiting low-level features. The sensitivity to the quality of the coarse matte is simply a

manifestation of the bottleneck effect of this sequential architecture.

In this work, we take a fundamentally different approach to automated image matting.

2
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Specifically, we construct the final matting result by leveraging high- and low-level features

simultaneously. This is accomplished by adopting a novel parallel architecture, which, in

contrast to its sequential counterpart, places different levels of features on an equal footing

and consequently is immune from the detrimental bottleneck effect. In the proposed paral-

lel architecture, the upper branch is a multi-scale network designed to learn semantic fea-

tures while the lower branch supplements the upper branch by attending to high-frequency

details via the attention mechanism; finally the extracted features are integrated to produce

the matting result. The overall system is generic in nature, fully automated, and end-to-end

trainable. The experimental results indicate that this system can effectively take advantage

of different levels of features, and its performance is competitive against the state-of-the-

art, which either require manually-supplied auxiliary information or are tailored to a special

category of images. See Figure 1.1 for an alpha matting example.

(a) Input (b) Output

Figure 1.1: Direct alpha matting result. Left: Original RGB image. Right: Alpha matte.

The rest of this thesis is organized as follows: In Chapter 2, we review many alpha

matting methods and some related techniques. Chapter 3 introduces the proposed Attention

Based Mult-Scale Matting Network (AMMNet) together with a detailed explanation of the

network architecture and its building blocks. In Chapter 4, we discusses details of the losses

used in the AMMNet architecture, and shows some analysis of the designed loss. Chapter

3
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5 illustrates detail implementation of our network, and also shows the experimental results

of AMMNet and the performance comparison with other state-of-the-art methods. Finally,

Chapter 6 makes the conclusion and discusses our future work of image matting problem.
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Chapter 2

Related Work and Background

Over the past few decades, many matting methods have been developed. They roughly fall

into two categories: traditional methods and deep-learning-based methods. Most traditional

methods predict the mattes through samplingChuang et al. (2001); Gastal and Oliveira

(2001); He et al. (2011); Shahrian et al. (2013); Wang and Cohen (2007) or propagatin-

gAksoy et al. (2017a); Chen et al. (2013); Grady et al. (2005); Levin et al. (2008); Sun

et al. (2004) on color or low-level features. Recently deep-learning-based matting meth-

ods Cho et al. (2016); Chen et al. (2018); Xu et al. (2017) have gained popularity due to

their superior performance. Cho et al. Cho et al. (2016) propose a CNN for image matting,

which makes use of the results of closed-form matting Levin et al. (2008) and KNN matting

Chen et al. (2013) as supplementary information. The work by Xu et al. Xu et al. (2017),

which is based on an encoder-decoder structure, represents the state-of-the-art of general

image matting. However, all the above methods require auxiliary information, such as

trimaps or scribbles, from user interactions. Such auxiliary information localizes the fore-

ground object and provides semantic information. As a consequence, the remaining task is

simply to resolve the residual uncertainties (say, predict the alpha values in the unknown

5
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region of the trimap), and low-level features typically suffice for this purpose.

Fully automated image matting has recently received much attention. Quan et al. Chen

et al. (2018) develop a sub-network called T-Net to automatically generate trimaps, which

are then fed into an encoder-decoder network Xu et al. (2017) for matte prediction. This

solution realizes automated matting, but still needs trimaps to pre-train the T-Net. Shen et

al. Shen et al. (2016a) use a CNN to generate trimap labels from a pre-defined mask shape

and the RGB image, then produce the final matting result using a closed-form method.

For all these methods, it is important to ensure the quality of algorithmically-generated

trimap-like information, which is a challenging task in general. To alleviate this difficulty,

essentially all existing automated matting methods are designed specifically for a particular

category of images (mostly portrait) so that the associated semantic information can be

leveraged to facilitate the generation of trimap-like information.

It is instructive to compare matting with segmentation. The former is a (pixel-level)

regression problem while the latter is a classification problem. Segmentation mostly relies

on high-level semantic features. Indeed, popular segmentation methods (e.g., multi-scale

and dilated convolutions Yu and Koltun (2015), PSPNet Zhao et al. (2015)) all make use

of Fully Convolutional Networks (FCNs) Long et al. (2015) with large receptive field to

enable the learning of semantic patterns. In contrast, both high- and low-level features are

needed for matting. Nevertheless, it is by no means obvious how such features should be

strategically combined to produce the final matte since their exact roles are hard to delin-

eate. Most existing matting methods exploit high- and low-level features in a sequential

manner. It is conceivable that joint exploitation of these heterogeneous features might

deliver better matting results. The main difficulty is to come up with an effective way to re-

alize this somewhat abstract idea. A potential solution is offered by attention mechanisms,

6
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which have found applications to a wide range of tasks in natural language processing

Chorowski et al. (2015); Bahdanau et al. (2014); Sankaran et al. (2016) and computer vi-

sion Zhang et al. (2018); Li et al. (2018); Liu et al. (2018). It will be seen that attention

mechanisms enable the system to learn, via a data-driven approach, the appropriate con-

tributions of different features to the final matting result without pre-defined ordering or

priority.

2.0.1 Background

Sigmoid Sigmoid function is used as activation function in machine learning. It has

a formulation as follows:

f(x) =
1

1 + e−x
(2.1)

Sigmoid function maps the value of a function from range [−∞,∞] to [0, 1], which im-

Figure 2.1: Sigmoid function.

ports nonlinearity to the neural network. Therefore, deep neural network can approximate

7
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arbitrary nonlinear function and can solve complicated problems. The differentiability of

sigmoid function also ensures backpropagation of the training step. It is used in classifi-

cation and image reconstruction tasks, where value range of [0, 1] needed. The curve of

sigmoid function can be seen from Fig. 2.1.

Figure 2.2: ReLU function.

ReLU The use of sigmoid function has some drawbacks such as gradient vanishing

and computational inefficient. Rectified Linear Unit (ReLU) on the contrary is easy to com-

pute and can avoid gradient vanishing. Another functionality o ReLU function is it increase

the sparsity of deep neural network. A ReLU is simply defined as f(x) = max(0, x), and

the nonlinear function is represented in Fig. 2.2. As we can see from the formula, the

function is zero for negative values, and it grows linearly for positive values.

8
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Residual Block Residual Network (ResNet), created by He et al. (2016a) makes it

possible to train a deep neural network without gradient vanishing or explosion. The main

concept of ResNet is Residual Block (ResBlock) that can be seen from Fig. 2.3.

Figure 2.3: Structure of Resblock. The left figure is a conventional convolutional layers
while the right figure is a standard resblock.

Instead of learning a specific function H(x), ResBlock learns residual F(x) from the

data and combines x in a form ofH(x) = F(x)+x. It can be accomplished by adding x as

identity function in ResBlock. The intuition of ResBlock is that it is easy to solveF(x) = 0

rather than F(x) = x using stack of non-linear convolutional layers. By using ResBlocks,

one can make a deeper and powerful neural network and have quicker convergence.

DenseBlock DenseBlock Huang et al. (2017a) can be seen from Fig. 2.4, is block of

densely connected convolutional layers compare to ResBlock. The problems arise when

CNNs go deeper because of a long path for input data to the output. DenseBlock is used as

the next step on the way to keep increasing the depth of deep convolutional netowks. It also

9
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Figure 2.4: The structure of DenseBlock.

reduces the parameters of the neural network and increase sparsity in a large scale. Further-

more, some variations of ResBlocks have proven that many layers are barely contributing

and can be dropped. In fact, the number of parameters of ResBlocks are big because ev-

ery layer has its weights to learn. Instead, DenseBlocks layers are very narrow, and they

just add a small set of new feature-maps. Another problem with very deep networks is the

problems to train. DenseBlocks solve this issue since each layer has direct access to the

gradients from the loss function and the original input image.

MaxPool Pooling is a method used in CNNs to down-sample data, and in computer

vision area such method also enlarge receptive field which preserve high-level features of

images. The pooling layer is usually placed after the Convolutional layer. The utility of

pooling layer is to reduce the spatial dimension of the input volume for next layers. Note

that it only affects weight and height but not depth. Fig. 2.5 shows how to operate max

pool. The max pool layer is similar to convolution layer, but instead of doing convolution

10
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Figure 2.5: Max pool.

operation, it selects the max values in the receptive fields of the input, saving the indices

and then producing a summarized output volume. The gradient of the backward pass is

a zero matrix with the max index replaced by the value from last layer.Because there is

no gradient for non max neurons, changing them slightly does not change the output. So

gradient from the next layer is passed only to the neurons that achieved max, and all the

other neurons get zero gradient.

Pixel shuffle Pixel shuffle Shi et al. (2016a) enlarges the size of feature map after

convolution. To be specific, it transforms tensor with shape of (∗, r2C,H,W ) to shape

(∗, C, rH, rW ). In other words, pixel shuffle uses data in channels to resize tensor to larger

scale, which can be used as a reverse operation of max pool.

11



Chapter 3

The Proposed Algorithm

In this section, we describe the structure and the functionality of the proposed Attention-

based Multi-scale Matting Network (AMMNet). The AMMNet aims to learn an end-to-end

mapping between a given RGB image and its associated alpha matte. Fig. 3.1 shows the

whole pipeline. The AMMNet takes a three-channel RGB image as the input, and outputs

a one-channel alpha matte. It does not need any auxiliary information such as trimaps or

scribbles.

The AMMNet consists of three sub-networks: Multi-scale Semantic Extractor (MSExt),

Attention Proposal Network (APNet), and Fusion Network (FNet). In the MSExt, ‘near-

est’ mode interpolation is used to resize the original image to different scales. The APNet

uses the original image as the input. The feature maps from MSExt and APNet are mul-

tiplied before being fed into the FNet. The AMMNet can simultaneously grasp global

semantic information of the salient object and discern fine details such as hair, holes and

semi-transparency. The three sub-networks are jointly trained end-to-end, without any in-

dividual sub-network pre-training. We discuss the sub-networks in detail in the following

subsections.

12
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Figure 3.1: The architecture of AMSMNet, having three parts: upper part is the Multi-scale
Semantic Extractor (Sec.3.0.1), lower part is the Attention Proposal Network (Sec.3.0.2)
and the rightmost part is the final Fusion Network (Sec.3.0.3).
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3.0.1 Multi-scale Semantic Extractor

The MSExt is designed to provide semantic information in the form of rough pixel-wise

prediction of the foreground object. We use one convolutional layer as scale reader, and

employ a pre-processing module (which is inspired by Lim et al. (2017)) as the ”head” for

each scale, which consists of two residual blocks each with 5 ∗ 5 kernels. By using a large

kernel size, one can reduce the scale-related influence while guaranteeing a large receptive

field.

We construct each scale body with ResBlocks He et al. (2016b), which have been

proved useful for various high- and low-level computer vision tasks. We pass each small-

scale feature map to its successor scale by concatenating it with the features after the scale

reader; in this step we choose pixel-shuffle Shi et al. (2016b) to ensure scale unification.

Another measure to preserve the large receptive field is to use skip-connections across the

scale body, which is also useful for avoiding vanishing gradients and boosting the training

process. At the end of the largest-scale level, we use a convolutional layer with sigmoid

activation as the output layer of MSExt.

(a) Input (b) gt (c) Output

Figure 3.2: The first row shows an example of segmentation. The second and third rows are
bad and good results of our attempt to transfer segmentation network to do alpha matting
(with the matting specific loss in Sec.4).

The multi-scale structure is commonly used for semantic segmentation tasks. Note that

14
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Semantic segmentation can be viewed as a simplified version of the image matting prob-

lem. Indeed, 1) the Ground Truth (GT) of segmentation is typically ”coarse” as compared

to that of matting; 2) the segmentation problem concerns classification of blocks of pixels,

whereas every pixel counts in the alpha matting problem; 3) segmentation produces a dis-

crete result, but matting outputs floating-point values. The multi-scale structure developed

for semantic segmentation is generally inadequate for image matting since much more ex-

pressive power is needed to handle the latter. To demonstrate this, we use the MSExt alone

to perform alpha matting. It can be seen from Fig. 3.2 that the MSExt fails to deliver a

satisfactory matte when the foreground object has a complex topological structure and/or

is semi-transparent. See also Sec. 5.0.3 for some related experiment and discussion.

3.0.2 Attention Proposal Network

In view of the above discussion, we introduce an attention mechanism to enhance the ex-

pressibility of the whole system. Specifically, we use the APNet to supplement the MSExt

by attending to high frequency features in the image, such as boundary, hair or holes.

As shown in Fig.3.1, the APN consists of a contracting path (left side) and an expansive

path (right side). With the original RGB image as input, the contracting path extracts low

level features using two convolutional layers. Max pooling is then used to reduce the size of

data and to enlarger the receptive field. We then use Denseblock Huang et al. (2017b) with

three layers within each block, and with dense growth rate to eight. There is a sequence

of two denseblocks in the contracting path with maxpool downsampling between them.

At the bottom is a shared Denseblock that is used by both the right and left part. In the

expansive path, the structure is like a mirror version of the contracting path; pixelshuffle is

used to keep the the feature maps align together dimensionally. Along the path of the APN,

15
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low-level features from an earlier stage might be lost as the network propagates forward.

Therefore, a combination of low-level and high-level features in the expansive path is used

to prevent information loss. This skip-connection structure is a key feature of the attention

map. Lastly, two convolutional layers and a sigmoid activation function are used to output

a floating point value between zero and one for each pixel.

The APNet takes the original RGB image as the input, and outputs a feature map at-

tention mask. As shown in Fig. 3.1, the APNet consists of a contracting path (left side)

and an expansive path (right side). This architecture is inspired by Unet Ronneberger et al.

(2015). The contracting path extracts low-level features using two convolutional layers.

Max pooling is used to reduce the size of data and to enlarge the receptive field. We adopt

DenseBlocks Huang et al. (2017b) with three layers in each block and set the dense growth

rate to 8. There are two DenseBlocks in the contracting path with maxpool downsampling

between them. At the bottom is a DenseBlock shared by the two sides. The expansive

path is mirror-symmetrical to the contracting path. Pixel-shuffle is used to keep the feature

maps dimension-wise compatible. We introduce skip-connections between the contracting

path and the expansive path to prevent information loss. Two convolutional layers and a

sigmoid activation function are empolyed at the output end of APNet. The output of AP-

Net, i.e., the feature map attention mask, is of the same size as that of MSExt, and consists

of floating-point values between 0 and 1.

3.0.3 Fusion Network

The FNet takes the element-wise product of the outputs of MSExt and APNet as the input,

passes it through three ResBlocks for feature integration, and produces the final alpha matte

via a sigmoid function. Note that element-wise multiplication plays at least two roles:
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1) it highlights the important semantic features and conceal the irrelevant ones (e.g., this

happens when the attention mask assigns roughly the same weight to the elements of a

semantic feature map); 2) it enriches semantic features with low-level details (e.g., this

happens when the semantic feature is roughly a constant map and its elements are weighted

diferently by the attention mask).
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Chapter 4

Losses

In order to train the proposed AMMnet, we need to introduce a loss function that quantifies

the difference between the predicted alpha matte α̂ , (α̂i)
N
i=1 and the GT α. The loss

function adopted in this work has several components as described below.

4.0.1 Alpha-prediction Loss

The alpha-prediction loss Xu et al. (2017) provides a simple means for direct comparison

of α̂ and α, and is defined as

Lα =
1

N

N∑
i=1

fS(α̂i − αi), (4.1)

where fS is the smooth `1 loss, i.e.,

fS(x) =


0.5x2, if |x| < 1,

|x| − 0.5, otherwise.
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4.0.2 Compositional Loss

The compositional loss Xu et al. (2017) reflects the distortion in the RGB domain induced

by the matte prediction error, and is defined as

Lcom =
1

3N

N∑
i=1

∑
c∈{R,G,B}

fS(Î
(c)
i − I

(c)
i ), (4.2)

where

Î
(c)
i = α̂iF

(c)
i + (1− α̂i)B(c)

i ,

c ∈ {R,G,B}, i = 1, · · · , N.

4.0.3 Content Loss

The alpha-prediction loss and the compositional loss are not necessarily good indicators

of perceptual distortion. It is believed that the content loss Johnson et al. (2016) defined

using certain feature maps produced by properly trained neural networks can better serve

the purpose. However, evaluating the content loss of the predicted alpha matte α̂ is not very

suitable because α̂ is largely deprived of content; it is also not very appropriate to evaluate

the content loss of the composed RGB image Î , (Î(c))c∈{R,G,B} (with Î(c) , (Î
(c)
i )Ni=1)

since Î carries too much background information that is irrelevant to the alpha matte. For

this reason, we take Iα̂ , (α̂�I(c))c∈{R,G,B} as the evaluation target, compared against its

GT Iα , (α � I(c))c∈{R,G,B}, where � denotes element-wise multiplication. Specifically,

we define the content loss as

Lcon =
1

4

4∑
j=1

MSE(σ̂j, σj), (4.3)
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where σ̂j (σj) is the feature map of the j-th convolutional layer of the pre-trained VGG

induced by Iα̂ (Iα), j = 1, 2, 3, 4, and MSE denotes the Mean Squared Error.

4.0.4 Overall Loss

We define the overall loss as a weighted sum of Lα, Lcom, Lcon, and the square of the `2

norm of the parameter ensembleW of AMMnet:

Lall = w1Lα + w2Lcom + w3Lcon + λ‖W‖2, (4.4)

where w1 = w2 = 20, w3 = 0.1, λ = 0.0004. We choose a small value for w3 (as compared

to w1 and w2) because the content loss tends to be numerically large. The last term in Eq.

(4.4) plays the role of `2 regularization (also known as ridge regression), which is used to

penalize large network parameters and avoid overfitting.

Functionality of the Loss Function Fig. 4.1 is an illustration of the guided gradient

map back-propagated from Fnet to MSExt and APNet. This map is used to update the

parameters of MSExt and APNet. It can be seen that, under our chosen loss function, the

gradient map carries the depth-like information, which is clearly useful for delineating the

boundary between the foreground and the background of the RGB image and generating

the alpha matte.
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Figure 4.1: Guided gradient that back-propagates from fusion network, which will be used
to update the weights of MSSE and APN.
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Chapter 5

Experiments and Analysis

5.0.1 Datasets and Evaluation Metrics

We adopt two matting-related datasets for performance comparisons: the DAPM dataset

Shen et al. (2016b) and the DIM dataset Xu et al. (2017). The DAPM dataset Shen

et al. (2016b) consists of 19, 000 portrait images with a variety of re-scaling and color-

transformation applied. The DIM dataset consists of 49, 300 images, created using 493

distinct foreground objects.

We consider four performance metrics: the Sum of Squared Errors (SSE) and the Sum

of Absolute Difference (SAD), Gradient, and Connectivity Rhemann et al. (2009) defined
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respectively as

SSE(α̂, α) =
∑
i

(α̂i − αi)2, (5.1)

SAD(α̂, α) =
∑
i

|α̂i − αi|, (5.2)

G(α̂, α) =
∑
i

|∇̂i −∇i|, (5.3)

C(α̂, α) =
∑
i

|ϕ̂i − ϕi|, (5.4)

where ∇̂i (∇i) and ϕ̂i (ϕi) denote, respectively, the gradient and the connectivity of α̂

(α) at pixel i. In (5.1)–(5.4), the summation is taken over all pixels for comparisons with

trimap-free methods and is taken over the unknown region of the trimap for comparisons

with trimap-dependent methods.

5.0.2 Training Details

Our experiments are implemented using the PyTorch (v1.0.1) framework on NVIDIA GTX

1080Ti GPU with 12GB memory. We train the AMMNet with RGB image patches contain-

ing both foreground and background information so that it can learn high-level semantic

features and low-level details simultaneously; all the image patches are resized to 320×320.

The input is standardized by ImageNet mean and variance Deng et al. (2009). We adopt

random vertical flipping with probability 0.5. The overall loss in Eq. (4.4) is used for

end-to-end training. All the parameters of AMMNet are initialized with Xavier random

variables. We use the standard Adam optimizer in the PyTorch toolbox and set the batch

size to 8. The initial learning rate is chosen to be 10−4. The training process shows conver-

gence after 60 epochs.
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5.0.3 Comparison

(a) Image (b) Reg

(c) Seg (d) FCN8s+

Figure 5.1: Various adapted FCN-8s output. (b) is trained by alpha loss and compositional
loss with ground-truth alpha. (c) is trained by cross- entropy loss and binarized alpha. (d)
is trained by cross-entropy loss and three-valued trimaps.

To evaluate the effectiveness of the proposed AMMNet, we shall compare it with both

automated matting methods and the interactive methods. Specifically, SHM Chen et al.

(2018) is chosen as the baseline for automated matting, and the comparisons are per-

formed on the DAPM dataset; as to interactive methods, we consider Closed Form (CF)

matting Levin et al. (2008), KNN matting Chen et al. (2013), Information Flow Matting
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Methods SSE (×103) SAD Gradient (×103) Connectivity (×103)
SHM Chen et al. (2018) 5.4 10.4 5.8 9.3
Our Method (AMMNet) 5.1 13.7 4.5 9.8
FCN-8s Seg 6.4 9.0 25.0 9.5
FCN-8s Reg 5.9 12.5 16.0 13.4
KNN Chen et al. (2013) 10.6 15.7 13.4 16.2
CF Levin et al. (2008) 10.9 15.4 10.6 15.8
IFM Aksoy et al. (2017b) 10.2 15.6 10.6 16.2
SM Gastal and Oliveira (2010) 9.0 12.7 16.3 12.9
DIM Xu et al. (2017) 3.6 6.6 4.7 6.6
Our Method (AMMNet) 1.0 3.3 4.2 3.4

Table 5.1: Performance comparisons of our method and some existing ones. The first two
rows show the comparisons between two trimap-free methods, SHM and ours (in italic
font), on the DAPM dataset, where the evaluation is performed over the whole image. The
last eight rows show the comparisons of our method and some trimap-dependent methods
(as well as FCN-8s Seg and FCN-8s Reg) on the DIM dataset, where the evaluation is
performed over the unknown region specified by the trimap generated for FCN-8s+X . The
best results are highlighted in bold.
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(IFM) Aksoy et al. (2017b), Shared Matting (SM) Gastal and Oliveira (2010) as well as

Deep Image Matting (DIM) Xu et al. (2017), and perform the comparisons on the DIM

dataset. For the traditional interactive matting methods, the implementation offered by the

Affinity-Based Matting Toolbox Aksoy (2017) is adopted; DIM is based on our PyTorch re-

implementiation and is trained according to the approach outlined in Xu et al. (2017). We

use FCN-8s Long et al. (2015) to supply trimaps to the aforementioned interactive methods

(denoted as FCN-8s+X). Note that FCN-8s Long et al. (2015) was originally designed to

perform segmentation. Here we adapt it for slightly different purposes. FCN-8s Seg is an

adapted version for hard separation of foreground and background; it is trained with binary

matte under the cross-entropy loss, where the binary matte is obtained by thresholding the

GT alpha matte using the indicator function

Ind(x) =


1, if x > 0,

0, otherwise.

FCN-8s Reg is another adapted version, which can perform regression instead of segmen-

tation; it is trained with the GT alpha matte under the alpha prediction loss and the com-

positional loss. For FCN-8s+X , we use FCN-8s to generate a ternary matte (consisting

of foreground, background, and unknown regions) based on the input RGB image. This

FCN-8s is trained with hand-crafted trimaps, and the training process is guided by the

cross-entropy loss; in particular, the hand-crafted trimaps are obtained from the GT alpha

matte using the standard dilating and eroding operations (with the MORPH ELLIPSE ker-

nel of size d = 20). An illustrative example of the outputs of the above adapted versions of

FCN-8s can be found in Fig. 5.1.

According to Table 5.1, FCN-8s Seg and FCN-8s Reg perform poorly on the DIM
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dataset. Indeed, it can be seen from Fig. 5.1 that FCN-8s Seg produces coarse boundaries

while the matting results of FCN-8s Reg tend to be blurred. This can be attributed to the

fact that the FCN-8s architecture, designed for the purpose of semantic segmentation, is

ill-suited to matting. On the other hand, with the trimaps predicted by FCN-8s, the interac-

tive methods can focus on learning delicate low-level details and generate more satisfactory

matting results. In light of Table 5.1, DIM achieves the best performance among the inter-

active methods under consideration; it is also encouraging to see that the performance of the

proposed automated method is only slightly inferior to that of DIM. Similar observations

can be made from Fig. 5.3.

Analysis of Evaluation Results Table 5.1 provides the evaluation results of the pro-

posed AMMNet and its competitors. It can be seen that SHM and our method achieve

similar performance on the DAPM dataset. However, it should be noted that SHM is de-

signed specifically for human matting whereas our method is generic in nature. The visual

comparisons shown in Fig. 5.2 also indicate that the matting results of our method are

comparable to, if not slightly better than, those of SHM.

5.0.4 Sensitivity to the Quality of Trimaps

To better understand the advantage of our trimap-free method, it is instructive to study how

sensitive the interactive methods are to the quality of trimaps. We use a subset of the DIM

dataset for this study. The trimaps are generated by performing the standard dilating and

eroding operations on the GT alpha matte. We control the quality of trimaps by adjusting

the kernel size d. Specifically, we choose d ∈ {5, 20, 30, 60, 90, 120, 150, 180, 210, 300, 400, 500, 600}.

Note that the quality of trimap degrades (in the sense that the unkown region gets enlarged)
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(a) Inputs (b) SHMChen et al. (2018)

(c) Ours (d) GT

28



M.A.Sc. Thesis - Chenxiao Niu McMaster - Electrical Engineering

(e) Inputs (f) SHMChen et al. (2018)

(g) Ours (h) GT
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(i) Inputs (j) SHMChen et al. (2018)

(k) Ours (l) GT

Figure 5.2: The visual comparison results on the DAPM Dataset between two automatic
matting methods (SHM and ours).
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Inputs KNN SM CF

IFM DIM Ours GT

Inputs KNN SM CF

IFM DIM Ours GT
31



M.A.Sc. Thesis - Chenxiao Niu McMaster - Electrical Engineering

Inputs KNN SM CF

IFM DIM Ours GT

Inputs KNN SM CF

IFM DIM Ours GT
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Inputs KNN SM CF

IFM DIM Ours GT

Figure 5.3: Visual comparison of some interactive methods test on DIM Dataset.
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as d increases; in particular, the whole trimap is fully covered by the unknown region when

d = 600.

Figure 5.4: Figure of trimaps’ side-effect.

It can be seen from Fig. 5.4 that the performance of DIM is quite competitive when

d ≤ 20 but quickly degenerates as d becomes large. DIM-AU is a variant of DIM, trained

with all-unknown trimaps. It is more robust than DIM, but its overall performance is far

from satisfactory, which suggests that the DIM architecture is inherently unsuitable for

automated matting. In contrast, though slighlty inferior to DIM when d is small, our method

outperforms all interactive methods under consideration by a wide margin for moderate
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or large d (it is worth mentioning that our method is trimap-free; its performance is d-

dependent simply because the evaluation is performed on the unknown region, which varies

with d). One can make similar observations based on the visual comparisons shown in Fig.

5.5.
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d = 5

d = 60

d = 150

d = 300

d = 20

d = 90

d = 180

d = 400

d = 30

d = 120

d = 210

d = 500

Figure 5.5: Trimap dilation result that represent the results trend with respect to dilation
parameter d variation.
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(a) Input (b) d = 600

(c) DIM-AU (d) Ours

(e) GT

Figure 5.6: This figure shows methods that take an all-unknown trimap as input. (b) is
derived from normal trained DIM network, while (c) is obtained from a network that trained
on all-unknown trimaps.
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Chapter 6

Conclusion and Analysis

In this work we have proposed a fully automated general-purpose image matting method,

which can capitalize on both high- and low-level features for matte prediction. Specifically,

a multi-scale structure is used in conjunction with a certain attention mechanism to identify

the relevant global semantic information and local high-frequency details, which are then

integrated by a fusion network to produce the final alpha matte. Experimental results indi-

cate that the performance of the proposed method is competitive against the state-of-the art

interactive/special-purpose matting methods.

As I mentioned in Chapter 1, alpha matting algorithm can be useful in several real world

applications such as photography and e-commerce advertisement. It is also important when

it comes to large-scale implementation. AMMNet, a tri-map free matting method can save

time consumed to generate trimap and simplify the procedure to generate alpha matte.

Furthermore, the Pytorch framework we used to train our network is a flexible and robust

system that can be a good fit in real-time deployment. With high performance GPUs, it

is quick and easy to fine-tune the model to new dataset in order to be adapted to other

applications.
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However, AMMNet is a little hard to train as it is trained from scratch and content loss

is employed. I test a method from ShapeVision Inc. that uses PCD data in Chapter 7 to

improve convergence time consumption. AMMNet uses attention mechanism to constraint

the network learn features in key-area like boundary. PCD data is derived by persistence

contour density, which takes a role of enhancing attention map. Therefore, with the help of

PCD data we can save a lot training time.

Moreover, due to the idea of pixel-wise attention and fuse features with a sub-network,

it could lay the groundwork for further research on attention mechanism and fusion meth-

ods. We expect that through training, our network can be transferred to other problems that

need to use low- and high-level features together. To conclude, the present work not only

proposed a novel approach of solving alpha matting problem, but also represents an idea of

designing attention and fusion parts in neural network.
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Chapter 7

Appendix

7.1 Overview

From an n × m source image we derive persistence contour density (PCD) data having

the form of an n × m grayscale image. This data format provides easy integration with

AMSMNet. In this section we describe the nature and derivation of the persistence contour

density data.

PCD data for a colour or grayscale source image is computed by the following steps,

each explained in subsequent sections.

PCD algorithm:

1. Convert source image to smaller grayscale image.

2. Construct Reeb graph from continuous interpolation of grayscale image.

3. Identify cutpoints in the Reeb graph using persistence analysis.

4. Derive from each cutpoint one or more persistence contours in the image plane.

5. Represent the spatial density of the persistence contours as a grayscale image at

source image size.
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7.1.1 Step 1: Convert source image to smaller grayscale image.

Size and grayscale conversion are standard image processing operations. The choice of

conversion size affects the level of detail of the final result, with smaller size resulting in

a smaller Reeb graph in step 2, fewer cutpoints in step 3, and therefore fewer persistence

contours in step 4.

7.1.2 Step 2: Construct Reeb graph from continuous interpolation of

grayscale image.

Let n × m be the pixel dimensions of the grayscale image that resulted from step 1. We

interpret the pixel values as point data samples located at the vertices of an n ×m grid of

straight lines that lie on an (n − 1) × (m − 1) rectangular continuum, I . The n ×m grid

of lines delimit a grid of (n − 1) × (m − 1) unit squares. A continuous function within

each grid square is defined by bilinear interpolation of the four corner samples; together,

the interpolated grid squares define a continuous function f on the entire image plane I .

This interpolation is followed by construction of f ’s Reeb graph Reeb (1946). Denoting

the Reeb graph as M , we let µ : I → M denote the mapping of f ’s contours onto M , and

we let λ :M → < assign to each point of M to the corresponding contour’s f value.

The Reeb graph is combinatorial graph comprised of edges and vertices, having the

topology of a graph continuum Jr. (1992). Each vertex of M is a critical point; all points

along the edges are regular.
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7.1.3 Step 3: Identify Reeb graph cutpoints using persistence analysis.

The notion of persistence Edelsbrunner and Harer (2010) is analogous to the mountaineer-

ing concept of prominence Wikipedia (2019), which measures the vertical distance between

a mountain peak and the highest elevation to which one must descend from that peak in or-

der to then ascend to an even higher peak.

In the Reeb graph, each maximum of f is represented by a vertex v having only arcs

such that λ decreases as one moves away from v along the arc, and similarly for minima.

The notion of persistence extends to extrema in the Reeb graph by pairing critical points

Agarwal et al. (2006).

Let q1, q2 be any two points in Reeb graph M with λ(q1) > λ(q2), and let P be the

unique path in M connecting them. We say that path P lies between q1, q2 when, for any

other point q along P , λ(q1) > λ(q) > λ(q2).

Now let vertex v be a non-global maximum of M ; then we can always find a vertex

u with λ(u) < λ(v), and a greater-valued maximum w, i.e. λ(w) > λ(v), such that there

exists a path P1 lying between v and u, and a path P2 lying between u and w. Choosing u

so that λ(v)− λ(u) is minimal, we get v’s persistence Per(v) = λ(v)− λ(u). Persistence

is similar for local minima.

Given a local maximum v of Reeb graph M , we define v’s cutpoints as v together with

all points u1 . . . un of M , including critical and regular points, such that λ(v) − λ(u) =

Per(v), and such that the path from v to each ui lies between v and ui. Cutpoints for local

minima are similar. The cutpoints of Reeb graph M is the union of all cutpoints for all

local extrema.
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7.1.4 Step 4: Derive two or more persistence countours from each cut-

point.

Let p be any point in the Reeb graph M ; then µ−1(p) is a contour of f in the image plane.

We know only that µ−1(p) is closed and connected.

It is a fact that if U ⊂ M is a connected open set containing p, then the set Up =

U r p is open, and has open connected components U1
p . . . U

n
p . Choose U such that Up

contains no critical points, and choose any component U i
p; then the set V i

p = µ−1U i
p is open

and connected in the image plane. It follows that the boundary, ∂V i
p , has two connected

components, each of which is either a Jordan curve or a curve connecting two points of ∂I ,

the boundary of the image plane. One of these two curves is a subset of µ−1(p); we call it

a persistence contour, denoted as Ci
p.

When Up has n > 1 connected components, then we get n not necessarily distinct

persistence contours C1
p . . . C

n
p . Distinct persistence contours Ci

p and Cj
p may be disjoint,

or may intersect at discrete points and/or along portions of the curves.

We now apply the above construction to every cutpoint v of M, collecting all distinct

Jordan curves for each. These are the source images persistence contours.

7.1.5 Step 5: Represent the spatial density of the persistence contours

as a grayscale image at source image size.

Recalling that the image plane comprises an (n − 1) × (m − 1) grid of squares, we can

create an (n − 1) × (m − 1) grayscale image by counting the persistence contours that

intersect each square, and then rescaling these counts to [0255].

By resizing this image to the size of the source image, we get the desired persistence
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contour density data.
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