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Lay Abstract 
 
Background: South Asians are approximately two times more at risk for developing 
gestational diabetes mellitus (GDM) compared to white Caucasians. Genetic factors may 
contribute to this elevated risk. Polygenic risk scores (PRSs), which combine the effects of 
multiple disease loci and variants associated with the disease into one variable could be 
useful in further understanding how GDM develops in South Asians.  
 
Methods: Data from the South Asian Birth Cohort (START) was used to test the 
association of three PRSs with the outcomes of interest. 
 
Results: The type 2 diabetes PRS was independently associated with GDM. The insulin-
based maternal PRS was not associated with cord blood insulin but the insulin-based 
newborn PRS was independently associated with cord blood insulin. However, neither the 
insulin-based maternal nor newborn PRS was associated with cord blood glucose/insulin 
ratio.  
 
Conclusion: The PRSs suggests a possible genetic component, which contributes to 
abnormal glycemic status development in South Asian mothers and their newborns.  
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Abstract 
 
Background:  South Asians are at an increased risk of developing dysglycemia during and 
after pregnancy. In pregnant women, dysglycemia often develops in the form of gestational 
diabetes mellitus (GDM), which may predispose their newborns to adverse health outcomes 
through abnormal cord blood insulin levels. However, reasons for the elevated risk of 
dysglycemia in South Asians have not been extensively studied. Genetic factors may 
contribute to the heritability of GDM and abnormal cord blood insulin levels in South 
Asians.  
 
Objectives: The objectives of this thesis were to test the association of:  
1) A type 2 diabetes polygenic risk score with GDM in South Asian pregnant women from 
the South Asian Birth Cohort (START);  
2) maternal and newborn insulin-based polygenic risk scores with cord blood insulin and 
glucose/insulin ratio in South Asian newborns from START  
 
Methods: Three polygenic risk scores were created to test their association with participant 
data (N=1012) from START. GDM was defined using cut-offs established by the Born in 
Bradford cohort of South Asian women. The type 2 diabetes polygenic risk score was 
created in 832 START mothers and included 35,274 independent variants. The maternal 
and newborn insulin-based polygenic risk scores were created in 604 START newborns 
and included 1128017 independent variants. Univariate and multiple logistic and linear 
regression models were used to test the associations between the polygenic risk scores and 
dysglycemia outcomes.  
 
Results: The type 2 diabetes polygenic risk score was associated with GDM in both 
univariate (OR: 2.00, 95% CI: 1.46-2.75, P<0.001), and multivariable models (OR: 1.81, 
95% CI: 1.30-2.53, P<0.001). The maternal insulin-based polygenic risk score was not 
associated with cord blood insulin or cord glucose/insulin ratio. However, the newborn 
insulin-based polygenic risk score was associated with cord blood insulin in a multivariable 
model adjusted for maternal insulin-based polygenic risk score (𝛽 = 0.036, 95% CI: 0.002 
– 0.069; P=0.038 among other factors.   
 
Conclusion: A type 2 diabetes polygenic risk score and a newborn insulin-based polygenic 
risk score may be associated with maternal and newborn dysglycemia.  
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Chapter 1: Introduction – Establishing the context    

1.0 Gestational Diabetes Mellitus overview 

1.0.1 What is Gestational Diabetes Mellitus? 

Pregnancy is a state characterized by many physiological changes. Women undergo 

several metabolic adaptations during pregnancy to support the developing fetus. One such 

adaptation is the change in insulin sensitivity over the course of the pregnancy.(1) Insulin 

sensitivity is higher in the first half of the pregnancy but an increase in other local and 

placental growth hormones such as estrogen, progesterone, leptin, cortisol, placental 

lactogen and placental growth hormone reduces insulin sensitivity, as pregnancy 

progresses.(1) Since insulin is responsible for regulating plasma glucose levels, a lower 

insulin sensitivity (or a higher insulin resistance) in the latter stages of the pregnancy results 

in elevated levels of glucose in the blood.(1)  

In women affected with gestational diabetes mellitus (GDM), this insulin resistance 

tends to be higher than in healthy pregnant women, which results in more than normal 

levels of glucose in the blood.(1) Thus, GDM is defined by the World Health Organization 

as a physiological state characterized by impaired glucose tolerance first detected anytime 

during pregnancy.(2)  

People originating from the South Asian continent may be more prone to 

developing GDM due to their elevated cardiometabolic risk. There is increasing evidence 

suggesting higher rates of insulin resistance, glucose intolerance, and type 2 diabetes (T2D) 

amongst this population, attributable to a greater amount of visceral fat in South Asians 

compared to white Caucasians.(3-6) South Asians find it difficult to adequately regulate 
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plasma glucose levels due to this increased propensity for insulin resistance.(6) Although 

the biology underlying GDM has not been extensively studied in a South Asian context, it 

may be reasonable to assume that South Asian women are more susceptible to GDM based 

on the pathophysiology of the disease.   

 

1.0.2. Prevalence and burden of disease in South Asians  

GDM is becoming an increasing concern worldwide. The global prevalence of the 

disease has been estimated to be 16.9%.(7) According to the International Diabetes 

Federation, 21.3 million women (representing 16.2% of live births) experienced 

dysglycemia in pregnancy, with 85.1% of the cases being attributable to GDM.(8) 

Approximately, 1 in 7 births is influenced by maternal dysglycemia in the form of GDM.(8) 

The prevalence of hyperglycemia during pregnancy increases with age-45.4% of women 

who become pregnant after the age of 45 develop a form of dysglycemia during pregnancy, 

although the amount of pregnancies in this age group are rare.(9)   

The estimated burden of GDM varies across the globe. Women aged 20-49 years 

from South-East Asia have the highest prevalence of GDM (24.2%), and those in Africa 

have the lowest (10.4% - Table 1).(9) In absolute terms GDM affects 6.9 million live births 

in South East Asia, and 3.4 million live births in Africa (Table 1).(9). In general, South 

Asians have an estimated twofold-higher risk for GDM compared to white-Caucasians.(10, 

11) Several studies conducted in India have shown that the prevalence of GDM ranges from 

0 to 41.9% across regions (Table 2).(12) In addition, there is a high proportion of GDM 

cases among South Asian immigrants to Canada and the United Kingdom (UK) (Table 3) 
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as well. According to a study by Anand et al. the prevalence of GDM in South Asians 

residing in Ontario, Canada is 36.3%(11), while the prevalence of GDM in South Asians 

living in the UK is 24.2 %. (13)  

Table 1: The prevalence of GDM in women aged 20-49 years of age by region in 2017(9) 

 
Raw Prevalence (%) Number of live births 

affected 

Africa  10.4  3.4 million 
Europe 16.2  1.7 million 

Middle East and North 
Africa 21.8  3.8 million 

North America and 
Carribean 14.6 1.0 million 

South America and Central 
America  13.1 0.9 million 

South East Asia  24.2 6.9 million 
Western Pacific 12.6 3.6 million 

 

Table 2: Regions with the highest and lowest prevalence estimates of GDM across 

India(12)  

Region Prevalencea 

Highest 

Uttar Pradesh 13.4 – 41.9% 

Andhra Pradesh 17.20 - 21.81% 

Lowest 

Jammu and Kashmir 3.8-11% 
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Maharashtra 0.5-9.5% 

Assam 3.0% 

Manipur 0-1% 

Overall India 8.9% 

 
a A majority of the prevalence estimates listed here are based on the WHO99 and IADPSG 
definition of GDM. The review(12), however, does not provide the exact definition used to 
calculate each of the prevalence estimate since multiple studies provided such information.  
 

Table 3: Prevalence of GDM among South Asians outside the Indian subcontinent(11, 13-

15) 

Region Prevalence Diagnostic Criteria Study Design 

Canada 36.3% Born in Bradford 
OGTT cut-offs 

Prospective  
cohort 

United 
Kingdom 24.2% Born in Bradford 

OGTT cut-offs 
Prospective  

cohort 

Australia 11.5% NA Cross-sectional 
study 

USA 9.7% Self-reported 

Cross sectional 
analysis of a 
prospective 
cohort study 

 

1.0.2. Diagnostic criteria for GDM 

Differences in prevalence estimates are possibly due to the wide range of diagnostic 

criteria used in these studies.(12) Identifying criteria for GDM have been highly contested 

in recent times. One set of criteria is the threshold recently established by the International 
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Association of Diabetes and Pregnancy Study groups (IADPSG) to diagnose the disease by 

identifying children who were large for gestational age, highly adipose at birth, and had 

high cord blood C-peptide levels .(13) The IADPSG criteria was developed to elucidate 

whether there were any complications associated with hyperglycemia in pregnancy that is 

not completely characterized as overt diabetes. Researchers from the Hyperglyemia and 

Adverse Pregnancy Outcomes (HAPO) group had 25,505 pregnant women from nine 

countries undergo 75-g oral glucose tolerance tests between 24 to 32 weeks of 

gestation.(16) They assessed if participants who had 1-hour fasting plasma glucose levels 

of 5.8mmol/L or less and 2-hour plasma glucose levels of 11.1 mmol/L or less had any 

adverse pregnancy complications such as primary caesarean delivery, their newborns being 

born with a birth weight above the 90th percentile for gestational age, clinically diagnosed 

neonatal hypoglycemia, or cord-blood serum C-peptide level being above the 90th 

percentile. They also assessed secondary outcomes such as delivery before 37 weeks of 

gestation, shoulder dystocia or birth injury, need for intensive neonatal care, 

hyperbilirubinemia, and preeclampsia. The HAPO group found that the lower than 

clinically used diagnostic thresholds of overt diabetes were in fact associated with adverse 

pregnancy outcomes such as increased birth weight (OR: 1.38, 95% CI: 1.32 – 1.44) and 

increased cord blood C-peptide levels (OR: 1.55, 95% CI: 1.47 – 1.64).(16) The IADPSG 

criteria increased the amount of women diagnosed with GDM as compared to the more 

restrictive definitions such as the WHO or Canadian Diabetes Association criteria.(7, 13)  

However, the applicability of IADPSG criteria across different ethnic groups, such 

as South Asians, is questionable given the differences in glucose regulations as discussed 
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previously. It is unclear whether the IADPSG criteria is appropriate for diagnosing GDM 

in South Asians, who are at a higher risk for GDM compared to White-Caucasians.(13)  

The Born in Bradford cohort study, conducted in South Asians of predominantly Pakistani 

origin residing in the UK, thus established new cut points to diagnose GDM in South Asian 

pregnant women: a fasting glucose level of 5.2 mmol/L or higher, or a 2-hour post-load 

level of 7.2 mmol/l or higher. These criteria were selected based on the specificity for high 

infant birthweight (>90th percentile for gestational age) and adiposity (sum of skinfold 

measurements > 90th percentile for gestational age) in 5408 infants born to South Asian 

women from this cohort.(13)  

 

1.0.3 Fetal programming  

GDM often increases the odds of large for gestational age (LGA) babies and results 

in other pregnancy related complications.(11, 17, 18) These adverse health outcomes in 

mothers and their newborns can be attributed to a concept known as “fetal programming”.  

Fetal programming, an idea first proposed by a British epidemiologist, David 

Barker, suggests that the environmental insults a fetus undergoes in utero will have long-

term consequences on its health as an adult.(18, 19) The effects on long-term health are 

exacerbated when the post-natal energy environment, characterized by excess nutrition, 

does not match the energy conditions in utero.(5)   

GDM may influence fetal programming by i) contributing to the “thin-fat” 

phenotype: a characteristic feature of babies born to South Asian women who are low in 

birthweight but have high visceral adiposity, ii) contributing to macrosomia - large for 
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gestational age babies, and/or iii) by causing beta cell dysfunction/stress in the fetal 

pancreas.(3, 20) In mothers with GDM, an excess amount of glucose and other growth 

factors such as some amino acids and lipids are passed onto the developing fetus (Figure 

1), exposing the latter to a hyperglycemic environment. Insulin, however, is unable to 

crossover to the placenta due to its large size. (21, 22) The fetal pancreas must overwork to 

produce enough insulin to meet the increased glucose, which results in the development of 

excess fetal adipose tissue, and an increased fetal size.(22)  

 

 

 

Figure 1: Exchange of nutrients at the fetal-placental membrane and the eventual 
progression to dysglycemia in newborns and young children.  
IGT = Impaired Glucose Tolerance, DM = Diabetes Mellitus (23)   
Image reproduced with permission from the publisher: S Karger AG, Basel, Switzerland 
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1.0.4. Future risk for disease  

Based on the “fetal programming” theory, prenatal development is an important 

time period that defines the mother and their newborn’s life trajectory and adult health. 

Women with GDM have an increased risk of developing cardiometabolic conditions such 

as type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease.(24-26)  A recent 

meta-analysis of 30 cohort studies with 2,626,905 pregnant women worldwide showed that 

women with GDM were almost eight times more likely (OR: 7.76, 95%CI: 5.10-11.81; P=-

0.0091) to develop T2D in comparison to women with no GDM.(27) On the other hand, 

offspring born to mothers who had GDM during pregnancy were two-to four times more 

likely to have increased body fat percentage, insulin resistance in childhood, and were more 

likely to develop metabolic diseases such as obesity and T2D in childhood and adulthood. 

(17, 18, 22, 28) These findings have been replicated in South Asian women and their 

offspring.  (22, 29) In particular, South Asian offspring born to mothers with GDM are 

more likely to have an increased amount of adipose tissue at birth.(22, 29)  

Understanding the risk factors that eventually lead to the development of GDM and 

subsequent adult diseases is important in preventing and controlling the disease outcomes. 

 

1.1 Determinants of Gestational Diabetes Mellitus (GDM) 

1.1.1 Modifiable and non-modifiable risk factors 

Reasons for increased GDM risk among South Asians are unclear. Observational 

studies conducted in multiethnic populations from different parts of the world have 

identified both modifiable and non-modifiable risk factors. Some of the established risk 
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factors include modifiable factors such as increased maternal age, living in an urbanized 

habitat, maternal overweight, and cigarette smoking.(30-33), and non-modifiable risk 

factors such as family history of T2D,  low maternal height, and ethnicity.(30-33) Studies 

conducted in South Asian pregnant women from different parts of India and UK have also 

showed the role of parity (3 or more children) and vitamin B12 levels in the onset of 

GDM.(30, 34-36) A recent study conducted in South Asian pregnant women from Canada 

established another novel risk factor in the form of maternal diet quality, which is also 

implicated in the risk of GDM.(11)  

 Furthermore, apart from the environmental risk factors discussed previously, there 

is evidence which supports a genetic association with GDM. Genetic factors such as family 

history of T2D have been shown to be moderately associated with GDM (OR = 1.65, 95% 

CI: 1.01-1.04).(11) However, there are few large scale studies using genome wide data 

investigating the genetic association with GDM. To our knowledge, there are no genome 

wide association studies (GWASs) or genome wide association meta-analyses (GWAS-

MAs) on the outcome of GDM which have been conducted in South Asians. Furthermore, 

to our knowledge no prior studies have estimated the heritability of GDM.   

 

  1.1.2 Studying the genetics of GDM 

Several glucose- and T2D-related traits have been extensively studied and documented 

through GWASs and GWAS-MAs. In fact, some candidate gene studies have identified 

associations between T2D related genes and GDM. Independent testing of some T2D 

associated loci (e.g. TCF7L2, PPARG, CDKN2A/B, KCNQ1, GCK) has revealed an 
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association with GDM, when tested separately or as genetic risk scores.(37-41) The few 

GDM GWASs which have been conducted show signals near/within genes (CDKAL1, 

MTNR1B, GCKR, PCSK1, PPP1R3B and G6PC2) that have previously been shown to be 

associated with T2D/glucose related traits.(38, 42) South Asian specific studies have also 

revealed associations with T2D which have been reported to be associated with GDM in 

South Asians, including HMG20A (rs7178572), HNF4A (rs4812829), and CDKAL1 

(rs7754840 and rs7756992).(43, 44) Thus, it is reasonable to study T2D specific genetic 

variants to assess the heritability of GDM in South Asians due to shared risk factors 

between the two states and their similar pathophysiology.  

Recently, researchers have opted to use polygenic risk scores (PRSs), derived from 

capturing genetic information from multiple loci, to quantify the risk of a disease.(45, 46) 

This approach combines multiple single variants associated with risk across the genome 

into  a single genetic risk score. When used in combination, gene scores are more useful 

for assessing the joint effects of multiple genes on  disease susceptibility. (46) Like other 

complex diseases, i.e. those caused by several genetic and non-genetic exposures, such as 

cardiovascular disease or T2D, GDM is unlikely to have a singular genetic etiology, and 

thus lends itself to the PRS approach. Use of a PRS using expanded GWASs genotype 

information may be particularly useful in South Asians given their higher propensity for 

developing GDM and its strong association with the family history of T2D, which is 

suggestive of an underlying genetic association.  
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1.2 Issue of ethnic transferability  

GDM is a complex disease. Most of the GWASs conducted to date on GDM or T2D 

have been conducted in white/European populations. Although most of the results can be 

transferred or applied to other ethnicities, the predictive ability of such GWASs may be 

limited in non-white populations due to population differences in allelic frequencies and 

linkage disequilibrium structures.(47)  

T2D GWASs are one of the few GWAS-MAs which include variants from both 

white Caucasians as well as multiethnic populations.(47) These studies suggest a 

cautionary approach when interpreting results from a single-ancestry GWAS and applying 

those results across other populations. A study conducted by Martin et al. shows that the 

orders of magnitude of the PRSs derived from these T2D GWASs depend on whether the 

data were derived from a white/European or a multiethnic population.(47) They found 

directional inconsistencies in all the PRSs which were developed from white/European 

data, when applied to other populations. For example, their height-based PRS predicted a 

decrease in height in populations that were genetically different than Europeans despite the 

empirical evidence that shows that West Africans are equally as tall as Europeans, on 

average.(47) Such directional inconsistencies in the PRSs developed from white/European 

data may not be controlled for by simply accounting for the observed vs expected bias this 

approach generates using an analytic technique alone.(47) The transferability of single-

ancestry GWAS studies therefore requires the inclusion of diverse populations. Finally, 

there is a possibility that differences in genetic background or environmental exposures 

may lead to the same locus having a differential effect across ethnically diverse populations 
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when assessing the association between common variants and T2D.(48) This may explain 

why novel variants are often identified in non-white/European populations. (43) For 

example, variants in KCNQ1, were associated with the risk of developing T2D in South 

East Asian populations,(48) while variants of HMG20A and HNF4A have been shown to 

be associated with GDM in South Asians through GWASs. Conducting more ethnically 

diverse GWASs may be necessary to identify other unique variants that may be implicated 

in disease risk and further understand disease pathology.   

The utility of a PRS developed using GWAS summary statistics depends on genetic 

similarity between the group in which the GWAS was conducted and the target group to 

which PRS is being applied.(47) Conducting genetic studies in ethnic groups like South 

Asians is important to further understand the biological and genetic mechanisms behind 

T2D and GDM, since they share the largest burden of such metabolic diseases and are 

therefore more likely to harbour rare genetic variants exclusive to South Asians.  

  



MSc. Thesis – J Limbachia; McMaster University – Health Research Methodology 
 

 
 

25 

Chapter 2: Genetic Contribution to Gestational Diabetes in South Asian 

women: Analysis from the START-Canada Birth Cohort study - Paper 

2.0 Abstract 
 

Background: Women of South Asian (SA) ancestry are at increased risk of developing 

gestational diabetes mellitus (GDM). Few studies have investigated the contribution of the 

maternal genetic profile to GDM risk. We built a type 2 diabetes (T2D) polygenic risk score 

(PRS) based on genotypes from the genome-wide SNP genotyping array and large 

consortium data and investigated whether the maternal genetic load is associated with 

GDM.  

Methods: As part of the Canadian South Asian Birth Cohort (START) prospective birth 

cohort study we recruited 1,012 SA pregnant women and assessed them in the second 

trimester. 832 women had a PRS for T2D based on a multi-ethnic GWAS meta-analysis, 

which included 35,274 independent variants. GDM was defined based on glucose values 

established by the Born in Bradford cohort of SA women.   

Results: 301 (36.2%) women were classified as having GDM. The mean PRS was 

significantly higher in women without GDM, P<0.001. The tertiles of the PRS (tertiles 2 

and 3 versus 1) were associated with GDM in both univariate (OR: 2.00, 95% CI: 1.46-

2.75, P<0.001), and multivariable models (OR: 1.81, 95% CI: 1.30-2.53, P<0.001) 

including other known predictors of GDM: maternal age, pre-pregnancy weight, family 

history of T2D, low quality diet and height. The population attributable risk of the PRS 
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tertiles 2 and 3 in the univariate model was 38.0% and in the multivariable model was 

35.3%.   

Discussion/Conclusion: A PRS including 35,274 independent variants for T2D is strongly 

associated with GDM in SA women living in Canada, independent of a reported family 

history of T2D, maternal age, pre-pregnancy weight, height and low diet quality. 



MSc. Thesis – J Limbachia; McMaster University – Health Research Methodology 
 

 
 

27 

Abbreviations 

AUC  Area Under the Curve 

BMI  Body Mass Index 

CI  Confidence Interval 

DIAGRAM DIAbetes Genetics Replication and Meta-analysis  

GDM  Gestational Diabetes Mellitus 

GWAS  Genome-Wide Association Study 

GWAMA GWAS Meta-Analysis 

LD  Linkage Disequilibrium 

OGTT  Oral Glucose Tolerance Test 

OR  Odds Ratio 

P+T  Pruning and Thresholding 

PAR  population attributable risk (PAR) 

PRS  Polygenic Risk Score 

QC  Quality Control 

SA  South Asian 

SNP  Single Nucleotide Polymorphism 

START SouTh Asian biRth cohorT 

T2D  Type 2 Diabetes 
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2.1 Introduction 

Gestational diabetes mellitus (GDM) is defined as diabetes first diagnosed during 

pregnancy. This abnormal increase in blood glucose levels is associated with an increased 

risk of adverse health outcomes for both mother and their fetus/child during pregnancy, and 

later in life.(49) It is estimated that in 2017, 1 in 7 live births were affected by gestational 

diabetes (GDM) worldwide.(9) Furthermore, the prevalence of GDM has been shown to 

vary widely between ethnicities, countries/regions.(50) For example, South Asian women 

(those who originate from the Indian subcontinent) have nearly a 2-fold increased odds of 

developing GDM, compared to white Caucasian women.(9, 13, 51-53) Reasons for this 

disproportionate risk are not well understood and have not been fully examined in a South 

Asian context. In a prior analysis, we reported that pre-pregnancy weight, low diet quality 

in pregnancy, advanced maternal age, maternal height, and family history of type 2 diabetes 

(T2D) are associated with the risk of developing GDM in South Asian women living in 

Canada.(11) 

The contribution of genetic factors to the development of GDM is not well 

understood. GDM is a complex disorder, which is strongly influenced by maternal 

characteristics such as body weight, dietary intake, smoking status, and family history of 

T2D.(32, 33) It is generally accepted that GDM and T2D share a common genetic 

background. This is illustrated by the fact that top genetic signals from genome wide 

association studies (GWAS) of GDM and dysglycemia during pregnancy are located 

within/near genes/loci previously known for their association with glucose related traits in 

non-expectant populations.(38, 42) Hence, data from large T2D consortia can be used to 
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estimate a polygenic risk score (PRS) of T2D/GDM for each individual in studies with 

available genome wide genetic data. In the absence of genetic information, 

clinicians/researchers use self-reported family history of T2D as a proxy of the genetic risk 

in people at risk for GDM.  

In this analysis, the PRS for each mother part of the South Asian Birth Cohort 

(START) was calculated using their genotypes from the genome-wide SNP genotyping 

array and data from a large multi-ethnic GWAS meta-analysis.(54, 55) Our aim is to test 

the association of this T2D PRS with GDM in South Asian pregnant women, and to assess 

the independent association of the PRS with GDM in a multivariable model which includes 

family history of T2D.  

2.2 Methods 

 Study design and participants  

The South Asian Birth Cohort (START) is a prospective cohort study designed to 

evaluate the environmental and genetic determinants of cardio-metabolic traits of South 

Asian women and their offspring, living in Canada. The rationale and study design are 

described elsewhere.(56) In brief, 1,012 South Asian pregnant women, aged between 18 

and 40 years old, were recruited during their second trimester of pregnancy from Peel 

Region (Ontario, Canada) through physician referrals between July 2011 and November 

2015.  
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All START participants provided informed consent for participation and genetic 

testing and the study is approved by local ethics committees (Hamilton Integrated Research 

Ethics Board, William Osler Health System, and Trillium Health Partners, March 3rd, 

2011). A detailed description of the maternal measurements has been published 

previously.(11) Briefly, weight and height were measured using standard procedures, and 

collected information about family and personal medical history using questionnaires. A 

validated ethnic-specific food frequency questionnaire (57) was used to collected dietary 

information. Each participant without a pre-pregnancy history of T2DM had a 75-gram oral 

glucose tolerance test (OGTT).  

 Exposures and Outcomes in this analysis: Family history of T2D is defined based 

on maternal reported parental history of T2D. GDM status is defined using the South Asian 

specific cutoffs defined in the Born in Bradford study (fasting glucose level of 5.2 mmol/L 

or higher, or a 2-hour post load level of 7.2 mmol/L or higher).(13) Self-reported GDM 

status is used if these measures were unavailable. Women with pre-existing T2D were 

excluded from this analysis. Diet quality is coded as a dichotomous variable (low vs 

medium + high) as previously described.(11) 

 DNA extraction, Genotyping, Imputation and Filtering:  

DNA was extracted and genotyped from a total of 867 samples (START mothers) 

using the Illumina Human CoreExome-24 and Infinium CoreExome-24 arrays (Illumina, 

San-Digeo, CA, USA). Data has been cleaned using standard quality control (QC) 

procedures (58) and 837 samples passed the QC. Genotypes have been subsequently phased 
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using SHAPEIT v2.12 (59), and imputed with the IMPUTE v2.3.2 software (60) using the 

1000 Genomes (phase 3, all ethnic groups) data as a reference panel.(61) Variants with an 

info score ≥ 0.7 have been kept for analysis. Using these criteria, 832 START participants 

with known GDM status (301 cases and 531 controls) and available genotypes have been 

included in the analysis. 

 Building the PRS 

The procedure used to build the PRS is described elsewhere (54). In brief, the PRS 

has been built based on data from the DIAGRAM consortium (55), using a pruning and 

thresholding method (p-value cutoff 0.2). In this analysis, we standardized the continuous 

PRS to a mean of 0 and a standard deviation of 1. The PRS was divided into tertiles to 

calculate the population attributable risk (PAR). 

 Statistical Analysis  

We calculated means (and standard deviations [SDs]) and counts to summarize 

continuous variables and categorical data, respectively, and means (and standard errors 

[SEs]) for adjusted continuous results. First, a univariate logistic regression model was used 

to assess if maternal PRS was associated with GDM. We then built upon the GDM 

predictive model constructed in our previously published analysis (11) by adding the 

maternal PRS component. The effect of the addition of PRS was compared to the model 

without PRS using a General Likelihood Ratio test. Diet quality is coded as a dichotomous 

variable (low vs medium + high) as previously described.(11) These analyses were 
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conducted using SPSS v.25.(62) The Interactive Risk Attributable Program (IRAP v2.2, 

US National Cancer Institute) was used to calculate the PAR by considering the frequency 

of the exposure in the population and the relation of the exposure to GDM. For calculation 

of PAR, continuous variables were recoded into categorical variables: age was divided into 

categories [(29-31, 32-43) vs 19-28], body mass index was divided into 3 categories (<18.5, 

18.5-23, and >23) and tertiles of the PRS, whereby Tertile 2 and 3 of the PRS is compared to 

Tertile 1.   

2.3 Results 

Table 5 shows the characteristics of the START cohort. The women enrolled into 

START originate from North India (69.5%), and Pakistan (21.5%), followed by South India 

and/or Sri Lankan (7.5%), and other countries (1.6%). About half the women identify as 

Sikh, one-quarter as Muslim, one-fifth as Hindu, and less than 5% as Christian or other 

faiths. Women with GDM were older, have higher pre-pregnancy weight, lower height, 

lower quality dietary intake, and are more likely to report a family history of T2D compared 

to pregnant women without GDM. (Table 5) 

 The standardized final PRS includes data from 35,274 variants and ranges from -

2.99 to 3.21 (mean = 0, SD = 1). Women with GDM have a higher mean polygenic score 

compared to women without GDM (.26 [SD=.99] vs -.17 [SD=.99], P<0.001). Similarly, 

women with GDM are more likely to have a PRS that is categorized in tertile 2 or 3 

compared to tertile 1 (tertile 2 and 3: [76.1%] vs. tertile 1: [61.4%], P<0.001). 
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The PRS is significantly associated with the risk of GDM in a univariate model 

(OR: 1.57, 95% CI: 1.35-1.82 [P<0.001 per 1 unit increase in the PRS]). The risk of GDM 

increases progressively comparing tertile 2 to 1 (OR: 1.55 95% CI: 1.08-2.23, P=0.002), 

and tertile 3 vs 1 (OR: 2.56 95% CI: 1.79-3.65, P<0.001). When tertile 2 and 3 are combined 

and compared to tertile 1, and the increase odds of GDM is OR: 2.00 (95% CI: 1.46-2.75, 

P<0.001). Results for the pooled PRS categories will be presented in the rest of the analysis. 

Independent predictors of GDM  

In a multivariable model including maternal age, pre-pregnancy weight, height, diet 

quality and family history of T2D, being in the top 2 tertiles of polygenic score is strongly 

and independently associated with GDM, with an odds ratio (OR) of 1.81 [95% CI: 1.30-

2.53, P<0.001] (Table 6). The addition of the PRS to the model reduced the effect size of 

the family history of T2D; however, the effect remains significant OR: 1.62 (95% CI: 1.20-

2.20, P=0.002; change in models: X2 (1) = 12.77,   P=0.0004).   

Population attributable risks:  

The PAR of all independent predictors of GDM including categorical maternal PRS 

was calculated using their multivariable ORs and the exposure frequency.  Results are 

shown in Table 7 and Figure 2.  When all factors are considered, the collective PAR is 

74.7% (95% CI: 65.1%-84.3%), which is a notable increase from the multivariable model 

without genetic information included (total PAR = 62.7%, 95% CI: 54.6% – 74.10%). The 

maternal PRS independently accounts for 35.3% (95% CI: 19.8% - 50.7%) of the PAR for 

GDM. The total inherited component of GDM, which includes maternal PRS and family 

history of T2D, accounts for 47.9% (95% CI: 33.8% - 62.0%) of the PAR. 
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2.4 Discussion 

Using a T2D polygenic risk score derived from GWAS significant SNPs, we 

demonstrate that there is a strong genetic association with GDM in South Asian women, 

which accounts for a substantial proportion (35.3%) of the PAR of GDM. This association 

is independent and additive to other known factors associated with GDM which include 

family history of T2D, maternal age, pre-pregnancy weight and height, and low diet quality. 

Together these factors including the PRS account for a PAR of almost 75%.  

 The addition of PRS reduces but does not negate the impact of family history of 

T2D on GDM, which has an odds ratio for GDM of 1.62 and a PAR of 20.4%. This could 

reflect that the PRS does not capture information from all of the genetic variants associated 

with GDM, and/or that family history also represents non-genetic shared lifestyle 

factors.(63) 

There has only been one published GWAS of GDM(38), and all GDM associated 

genes/loci known to date are also associated with T2D. However, genetic variants that are 

exclusively associated to GDM are yet to be discovered. Genes/loci that are significantly 

associated to T2D at a GWAS significance level (P-value < 5×10-8) are largely common 

between South Asians and European populations, but prior South Asian-specific T2D 

GWAS have also yielded some unique variants.(64, 65) In addition, the analysis of whole 

genome sequencing data in South Asians performed by Chambers et al., also shows a 1.5-

fold enrichment for stratified SNPs at T2D loci in South Asians genomes compared to 

Europeans. This enrichment could underlie the increased risk of T2D in SA 

populations.(66) Prior lines of evidence include the following explanations: frequent 
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endogamous unions due to socio-cultural constructs like the caste system among South 

Asians, and within regions of India (i.e. North vs South) resulted in a reduction in 

heterozygosity rates, which in turn could have favored the increase in frequency of genetic 

variants associated with T2D/GDM.(67, 68) The caste system which was enforced in the 

Indian Subcontinent for several thousand years encouraged marriages among 2nd or 3rd 

degree relatives and/or within the same caste, village, or region. This system was declared 

illegal in 1950 in India, and discrimination based on caste categories is condemned by local 

South Asian governments. However, these cultural beliefs and practices, along with 

promoting marriages within Hindus, Sikh, Muslim, Christian and other subgroups are still 

deeply rooted in South Asian culture. Increasing the awareness that greater genetic 

admixture will likely lower the population’s risk to develop diseases with a strong genetic 

component may reduce the prevalence of GDM in South Asians over time.   

 Our estimations indicate that GDM has a strong genetic component in START 

(heritability h2SWG_SNPs in START = 0.55, SE = 0.42).(54) This could explain why the PAR 

of our PRS (35.3%) is substantial. This observation is also in line with our additional 

observation that the proportion of the variance explained by the SNPs included in our top 

P+T PRS (h2SNPs in PRS) approximates 0.15, SE = 0.13. Furthermore, our results show that 

all independent predictors of GDM together have a PAR of 74.7%. Prevention of GDM 

reduces both the mother’s future risk of T2D and cardiovascular disease, and lowers the 

offspring’s risk of future obesity, insulin resistance and T2D.(24, 50, 69-72) Future 

interventions to reduce GDM should focus on reducing modifiable risk factors of GDM 

such as pre-pregnancy weight and diet quality. Genetic factors are typically considered non-
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modifiable, and indeed this is true for the pregnant women at risk of GDM.  

 The implications of our findings should be considered. Currently, inquiring about 

the family history of T2D is an easy and informative way of identifying an inherited 

predisposition to T2DM and GDM. However, the use of genetic information in the clinical 

setting is expensive as it includes counselling, genotyping and analytic costs. Since studies 

thus far have not consistently shown that knowledge of genetic predisposition for selected 

health conditions serves as a motivator to health behavior change or improved 

treatment(73-75), whether genetic testing for GDM should be implemented in a clinical 

setting in is still open to debate. Hence, for now taking a thorough personal, family and 

dietary history along with measuring pre-pregnancy BMI and performing an OGTT is the 

most cost-efficient clinical risk assessment for GDM. This may change in the future as the 

predictive value of the PRS is refined and genotyping costs are reduced.  

The strengths of our study include: i. the PRS is optimized in order to target South 

Asian population by using data from a multi-ethnic GWAMA and by restricting the list of 

variants to those tested in South Asians(54, 55), ii. the PRS is also based on genotypes from 

the genome-wide SNP genotyping array which allows us to capture more genetic 

information and improve the predictive power of our PRS, and iii. GDM status is 

determined using validated South Asian-specific cutoffs and objective measures (OGTT 

test). There are some limitations of our data: i. the PRS is based on a multi-ethnic GWAS 

meta-analysis of primarily white Caucasians as only ~ 20% of the study sample were South 

Asian, ii. the genetic variants included in the PRS represent T2D loci as there were too few 

GDM GWAS variants previously reported, iii. our observations are made in South Asian 
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pregnant women living in Canada who are predominantly of North Indian origin; and 

generalizability to other South Asians i.e. South Indian, or other ethnic groups should be 

made cautiously. (55)  

 Conclusion: A polygenic risk score including 35,274 independent variants for T2D 

is strongly associated with GDM in South Asian women, independent of a reported family 

history of T2DM, maternal age, pre-pregnancy weight, and low diet quality. 
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Chapter 3: Genetic contribution of a maternal and newborn insulin 

polygenic risk score to newborn dysglycemia  

 3.0 Physiology of fetal glucose and insulin 

 Insulin is a peptide hormone responsible for regulating plasma and intracellular 

glucose levels across different tissues. In peripheral tissues, insulin is responsible for 

regulating glucose uptake by activating a signalling cascade through the GLUT-4 

transporter.(76) Maternal glucose, but not insulin, crosses the placenta due to its smaller 

size. A specialized glucose transporter, GLUT-1, facilitates the movement of glucose 

across the placenta, which is independent of maternal insulin activity.(76) Umbilical cord 

blood insulin is produced by the fetal pancreas in response to maternal glucose levels.(77) 

It is an important marker of glucose homeostasis in the newborn and a potential indicator 

of the intrauterine environment of the developing fetus.(78)   

 Newborns whose mothers have GDM or impaired glucose tolerance during 

pregnancy are more likely to have elevated levels of cord blood insulin.(78-81) There is an 

increased glucose transfer from the mother to the fetus through the placenta due to the high 

concentration of maternal plasma glucose. The fetal pancreas responds to the increased 

glucose by increasing its insulin production which can lead to fetal hyperinsulinemia or 

insulin dysregulation at birth.(22, 80)  The compensation by the fetal pancreas may affect 

the development and long-term function of the pancreatic beta cells, eventually leading to 

insulin resistance and increased risk of future metabolic diseases in the newborn (82).  
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  3.0.1 Genetic determinants of insulin regulation and response in adults  

 Elevated plasma insulin in adults is a marker for subsequent GDM and T2D. 

Genetic variants associated with reduced beta cell function and independently with insulin 

resistance have been identified in prior GWASs.  

 Some of the main genetic loci implicated in T2D operate through their effect on 

insulin secretion. For example, variants associated with loci such as TCF7L2 and MTNR1B 

reduce insulin secretion by altering the gene expression in adult pancreatic beta cells.(83) 

Similarly, a variant (rs1552224) at another loci in the CENTD2 gene has been suggested to 

impair the function of beta cells and insulin production.(84) On the contrary, the lead 

variant of KLF14 has an opposite effect on insulin levels—it has been suggested that the 

variant increases insulin production via an insulin resistance-like effect in peripheral 

tissues.(84) Based on the GWAS catalog, 9 genetic variants associated with beta cell 

function (measured by HOMA B) and 24 associated with peripheral insulin resistance 

(measured by HOMA IR, insulin resistance, and insulin sensitivity measurement) have 

been identified to date (at the GWAS significance level: P < 5 x 10-8).(85)  

Accordingly, there are several genetic determinants of insulin levels in adults. 

Although the variants differ in the way they regulate insulin activity and affect subsequent 

disease development, it is important to note that the association of these variants to fasting 

insulin levels is weak. In addition, there are unique genetic variants which may be specific 

to a certain population or limited to the pregnancy period. There may be other nongenetic 

determinants of plasma insulin levels in adults, especially pregnant women.(86)  Further 
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research is needed to elucidate if there are unique genetic variants implicated in the long 

term glycemic changes which occur as a result of a pregnancy.(86) 

 

3.0.2 Genetic determinants of cord blood insulin regulation  

 Cord blood insulin is a marker for intrauterine glucose homeostasis. Abnormal cord 

blood insulin regulation may lead to a series of downstream consequences in growth, which 

may eventually lead to adult health problems. Thus, it is important to understand the 

underlying genetic factors, in addition to the more obvious environmental factors such as 

maternal glucose levels, which regulate cord blood insulin. There is some evidence that 

genome-wide epigenetic modifications could explain some of the mechanisms behind this 

fetal programming, which has led other studies to explore how pregnancy may affect the 

genetic underpinnings of future disease risk.(87)  

 Interestingly, the risk of T2D in newborns and the growing offspring may be 

mediated by genetic risk variants associated with cord blood insulin in a similar way that 

plasma insulin is in adults. Genetic risk variants may directly affect the ability of the fetal 

pancreas to secrete insulin.(81, 88) In fact, a study by Dungar et al. identified a common 

variant in the maternally expressed gene, H19, to be associated with IGF2 (insulin 

regulating gene) levels in cord blood.(89) However, more evidence supporting such an 

association is needed—no GWASs to date have identified genetic variants that are directly 

associated with cord blood insulin levels. It is reasonable to consider that the genetic 

variants which regulate plasma insulin levels in adults may also regulate cord blood insulin 

levels in the developing fetus. 
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In this analysis, we investigated: i. the association of an insulin-based maternal PRS, 

and ii. insulin-based newborn PRS with cord blood insulin and cord blood glucose/insulin 

ratio in South Asian newborns.  

 

3.1 Methods  

  3.1.1. Study design and participants 

South Asians in Canada have a unique risk profile. They are at twofold greater risk 

for T2D and cardiovascular disease (CVD) compared to white Europeans.(90) They also 

have higher amounts of fasting insulin and glucose levels compared to their Chinese and 

Europeans counterparts.(90)  

The study population for this analysis comes from START.(56) As described 

previously (Chapter 2), START was designed to evaluate the environmental and genetic 

determinants of adverse metabolic conditions among South Asian women and their 

offspring, living in Canada. This birth cohort aims to further understand the risk factors in 

pregnancy and early life that are associated with the elevated risk of T2D, atherosclerosis 

and coronary artery disease in the South Asian population.(56) More information on 

rationale, study design and participants can be found elsewhere.(56) 

 START participants were approached for consent to collect and analyze their DNA 

as described before (Chapter 2). 92.9% of pregnant women provided consent for their 

sample, and 91.6% for their offspring. Details regarding maternal measurements have been 

published elsewhere(11) and briefly described before (Chapter 2). With regards to START 

infants, their weight (to the nearest 10g) and length were measured at birth, 6 months and 
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12 months using standard procedures. Newborn adiposity was measured using skin-fold 

thickness at birth, 1 year, 3 and 5 years. Fetal sonograms were used to determine gestational 

age and assess other fetal growth characteristics.  

Exposures and outcomes in this analysis: Cord blood was collected and processed at the 

time of birth from the umbilical vein at the local hospital following a standard protocol and 

transported to Hamilton for storage in liquid nitrogen. These samples were batched and 

subsequently insulin and glucose were analyzed using the electrochemiluminescence 

immunoassay (on the Roche Elecsys® 2010 immunoassay analyzer) and the Bectron 

Dickenson Unicell DxC 600 Synchron Clinical System assay, respectively.(56) With 

regards to maternal exposures, GDM status is defined using the Born in Bradford criteria 

(see Chapter 2).  

 

3.1.2. DNA extraction, Genotyping, Imputation and Filtering:  

Information on DNA extraction, genotyping, quality control, phasing, imputation, 

and filtering has been presented before (Chapter 2). For this analysis, PRSs were developed 

for 1441 participants in START (837 mothers and 604 infants). Cord blood insulin was 

available for 638 START newborns (Note: from the 1000 START newborns, 777 provided 

their blood for analysis. We received 739 samples back from the lab analysis, out of which 

638 had insulin values available, while the remaining samples [N=98] could not be 

analyzed due to insulin hemolysis or miscellaneous sample problems, [N=3]). From the 

638 START newborns, 515 had available DNA to be included in this analysis.  
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  3.1.3. Building the maternal and infant PRS 

The maternal and infant PRS used in this analysis were developed using a pruning 

and thresholding (P+T) method. The P+T method is one of the many methods used to create 

a PRS, which involves using empirically derived p-value thresholds to select the SNP 

variants that make up the PRS. The process involves clumping linked SNP variants into 

groups from which variants with the highest p-values (lowest significance) are selected 

against while the ones with the lowest p-values (highest significance) are included in the 

risk score.(91)  

Consortium data: In brief, summary statistics (P-value, effect size) for plasma 

insulin levels from the Meta-analyses of Glucose and Insulin-related traits Consortium 

(MAGIC) were used to build the maternal and infant PRS using R v3.5(92) and Plink 

v1.9(93, 94) (https://www.cog-genomics.org/plink1.9). Initially, two studies from MAGIC 

were identified as relevant to the study objectives. The study conducted by Dupuis et al.(95) 

collected information from a GWAS-MA in which fasting glucose, fasting insulin (log-

transformed) and indices of B-cell function (HOMA-B) and insulin resistance (HOMA-IR) 

in 46,186 non-diabetic participants were measured. The second study, conducted by Lagou 

et al., (2018 manuscript in preparation) is a GWAS-MA measuring fasting plasma glucose 

(mmol/L) and log transformed fasting plasma insulin (pmol/L concentrations at study level 

in 160692 European, non-diabetic individuals.  The study has sex-specific summary 

statistics on fasting glucose in 67,506 men and 73,809 women and fasting insulin in 47,806 

men and 50,404 women, collected separately. The Lagou et al. study, (2018 manuscript in 

preparation) was used for this analysis due to its larger sample size and sex specific 
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summary statistics. Results from this study were downloaded from MAGIC’s main website 

(https://www.magicinvestigators.org/downloads/).  

The genomic position of the variants included in the consortium were extracted 

from the Ensembl database using R v3.5(92) (biomaRt package)(96, 97). Both male and 

female effect estimates (with P-value) from Lagou data were extracted separately to create 

different male and female PRSs.  From START, 1449 genotyped samples were used. SNPs 

with a minor allele frequency ≥ 0.01 in START were considered. The pruning was 

performed using PLINK’s --clump function for variants with a P-value ≤ 0.05 in the 

consortium only. Genotypes of European participants from the 1000 genome study were 

used to estimate the linkage disequilibrium (LD) between variants. Other parameters were 

kept at default.  

The associations between maternal and newborn PRS and fasting plasma insulin 

levels collected from START pregnant women at the time of the OGTT were tested. This 

was conducted to validate the PRSs since the data from Lagou et al., (2018 manuscript in 

preparation) was based on fasting plasma insulin levels in men and women. The PRSs 

(both maternal and newborn) are made up of 1128017 variants in total. The continuous 

PRSs were standardized to a mean of 0 and a standard deviation of 1.  

 

3.1.4. Literature search informing the analytical approach for maternal and newborn 

PRSs 

Mothers and their newborns share half of their genotypes (r = 0.5). Thus, in this 

analysis, it was important to delineate the separate effects of maternal and newborn PRS 
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on our outcome of interest in newborn’s cord blood insulin. Genetic studies that consider 

both maternal and newborn genetic contribution to a phenotype of interest are often unable 

to identify whether the genetic associations reflect the effects of the newborn’s own 

genotype or their mother’s genotype or a combination of both.(98) There is also a 

possibility that maternal (through the intrauterine environment) and newborn genotypes 

(direct effect) have opposing effects (98) on the outcome of interest. Hence, a literature 

search was necessary to identify the methodologic approaches which capture the true effect 

of maternal and newborn genotypes on cord blood insulin while controlling for their 

correlation.   

 A literature search of current evidence/common practices was conducted using 

PUBMED. The search strategy included terms like [maternal genotypes] AND [fetal 

genotypes] AND [regression]”, with a date range limit of the last 5 years. Sixty studies 

were identified. Out of the 60, only 3 were deemed relevant to the query.(98-100) In 

addition, two more relevant studies were reviewed based on suggestions from a colleague 

and content expert on this topic (Table 3).(101, 102)  

 

Table 4: Relevant studies identified through the literature search  

Study   Objective  
 

Analysis approach 
 

Covariates 

Warrington 
et al., 2018 

 
To determine whether 
maternal or newborn 

genotype or both 
contribute to birthweight 

 

Structural equation 
modelling Not applicable 
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Stordal et al., 
2017 

 
To assess the strength of 

association between 
vitamin D genetic 

variants in mothers and 
their newborns with 
vitamin D levels in 
newborn cord blood 

 

 
Univariate model and 

multivariable 
regression models i) 

mutually adjusting for 
maternal and newborn 
SNPs and ii) newborn 

gene score with 
known covariates 

 

Season of birth, 
maternal dietary 
intake, maternal 

age, pre-
pregnancy BMI, 

geographic region 
of living 

Tyrell et al., 
2016 

To assess if maternal 
glycemic traits-based 

gene scores are 
associated with newborn 

birth weight 

 
Univariate and 
multivariable 

regression models 
adjusting for both 

maternal and newborn 
gene score in one 

model 
 

 
Offspring sex, 
gestational age 

Li et. al., 
2017 

 
To assess the association 
between maternal BMI 

based gene risk score on 
maternal and newborn 

obesity traits 
 

Multivariable 
regression adjusted for 

both maternal and 
newborn genetic risk 
score in one model 

Offspring 
gestational age at 

birth, sex,   
gestational weight 

gain, parity, 
gestational 

diabetes mellitus, 
smoking, and 

ethnicity  
 

Li et al., 
2014 

 
To determine the 

(maternal and/or fetal) 
genetic effects associated 
with the development of 

nonsyndromic 
conotruncal heart defects 

(CTD) 
 

Penalized Logistic 
Regression Approach 

(LASSO) 
Not applicable 

 

The most recent study, conducted by Warrington et al.(98), investigated novel ways 

of determining the effect of maternal and fetal genotypes independently of each other on 
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newborns’ birthweight. The study highlights the importance of an approach that is unbiased 

and beyond simple univariable (one for maternal and one for fetal) regression that often fail 

to capture the correlation between the two. Through their analysis, Warrington et al. 

demonstrated the need to use structural equation modelling when genotype information is 

available in mothers only but phenotype (i.e. birthweight in their case) information was 

available in both mothers and newborns. However, it must be noted that the study does 

justify the use of a multivariable regression model if there are enough data to adjust for the 

fetal genotype in a regression model of maternal genotype on birthweight and vice 

versa.(98) The authors suggest that this approach yields an unbiased estimate of the effects 

of maternal and/or fetal genotype on birthweight by capturing the correlation between 

maternal and fetal genotypes as two sources of variation of equal importance.  

 The second study by Stordal et al.(99) was conducted to assess the influence of both 

maternal and fetal vitamin D genotypes on cord blood vitamin D levels. First, they used 

simple (univariate) linear regression analyses to study the effects of maternal and fetal 

genotypes individually and measured the proportion of variance explained by each. They 

then added maternal and fetal genotypes in a single model to test the association between 

the genotypes and birth weight by mutually adjusting for each other. In the model with 

maternal and fetal genotypes as independent predictors, adjusted for one another, only the 

fetal genotypes were associated with cord blood vitamin D levels.(99) Finally, they 

combined the fetal genotypes in a genetic risk score and tested its association with 

birthweight in a multivariable model with other known predictors of cord blood vitamin D 

levels adjusted as covariates. There were no issues with collinearity in the model with both 
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maternal and fetal genotypes adjusted for each other. However, the authors suggest that the 

the lack of association between maternal genotypes and vitamin D levels may be due to a 

small sample size since such relationship has been shown previously.(99)  

 The study by Tyrell et al.(100) aimed to assess the genetic evidence which supports 

the association between different maternal traits (such as BMI) and newborn birth weight. 

Tyrell et al. were also interested in understanding if confounders such as maternal smoking 

and dietary habits affect the proposed association.  SNPs associated with maternal traits 

such as BMI, fasting plasma glucose, and systolic blood pressure were selected and a 

weighted genetic risk score was developed for each trait to test its association with birth 

weight. First, they tested different maternal genetic risk scores with newborn birth weight 

in univariate analyses and then repeated the analyses after adjusting for fetal genotypes in 

multivariable models. The maternal BMI, fasting plasma glucose and systolic blood 

pressure genetic risk scores were found to be associated with newborn birth weight, but the 

amount of variance explained was modest (0.2-5%). Replication of these results is 

warranted to understand the biology behind these results.  

 Finally, from the suggested studies, the more recent one by Li et al.(101) followed 

a similar statistical modelling approach as previously outlined. One of their objectives was 

to assess the effect of maternal BMI genetic risk score  on maternal (such as pre-pregnancy 

BMI, postpartum weight retention at 5 years) and offspring (BMI Z-score at birth and from 

birth to 5 years old) traits.(101). To assess the association between the maternal BMI 

genetic risk score and newborn birth weight, they used a multivariable model regressing 

maternal BMI gene score on BMI Z-score at birth, which was then repeated by adjusting 
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for the newborn genetic risk score. This corrected the possible confounding effects of 

newborn genotype on birthweight and allowed Li et al. to study the independent association 

between maternal BMI gene score and newborn birth weight—which became non-

significant after adjusting for the newborn genetic risk score. Once again, the lack of effect 

after adjustment may be attributable to a lack of power.(101)  

However, the older study by Li et al. (102) used a unique approach to differentiate 

the effects of maternal and newborn genotype when studying the candidate genes 

associated with congenital heart defects. They proposed a haplotype-based analysis with a 

penalized regression framework (Least Absolute Shrinkage and Selection Operator) to 

delineate the genetic effects when mother-newborn pair data is available. The basis behind 

this machine learning technique requires parental genotypes to clearly differentiate the 

effects of maternal and newborn genotypes and also their interaction. Their technique 

allowed Li et al. to identify seven genes that were associated with their phenotype of interest 

and whether each of them corresponded to maternal main effect, newborn main effect or 

their interaction.(102) However, the study was powered to detect interactions between 

maternal and newborn genotypes from the same genomic region only. Studying multiple 

regions would significantly increase the statistical tests to be conducted, making the study 

not feasible.(102) 

 Based on the review, most of the studies (three(99-101) out of five studies) support 

the use of multivariable regression analyses conditioning maternal genotypes on newborn 

genotypes and vice versa to account for the correlation between the two. From the three 

studies, two of them are particularly relevant to our study’s aim. The two studies conducted 
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by Tyrell et al.(100) and Li et al.(101) aimed to study a broader genetic contribution to 

birthweight and BMI, respectively. They were interested in validating the hypothesized 

causal associations between genetic variants and their outcomes of interests, whereas 

Stordal et al.(99) were specifically interested in knowing which of the maternal or fetal 

genome played a bigger role in predicting cord blood vitamin D levels. The analysis 

conducted in this study aims to understand the broad genetic architecture behind newborn 

cord blood insulin levels. There is no literature that supports the role of either the maternal 

or newborn genotypes in predicting cord blood insulin levels. Thus, using univariate linear 

regression models followed by multivariable models conditioning the effects of maternal 

and newborn PRSs on each other was used in the START analysis. This is justified since 

we had access to complete genotype and phenotypes, while the LASSO technique used by 

Li et al.(102) is cumbersome and limited to information derived from one genomic region 

only. In fact, even the Warrington et al. study, (98), which used structural equation 

modeling to address the correlation issue suggests that simply adjusting for maternal and 

newborn genotypes in one model if the data is adequate and complete with both maternal 

and newborn genotypes and phenotypes can provide unbiased results.  

3.1.5 Statistical analysis  

  All analyses were conducted using SPSS v.25.(62) Two continuous outcomes were 

assessed – i) cord blood insulin and ii) glucose/insulin ratio (as a surrogate for insulin 

sensitivity). All main predictors (maternal and newborn PRSs) and outcomes (i. cord blood 

insulin and ii. cord blood glucose/insulin ratio) were assessed for normality (based on 

graphical distribution and Shapiro Wilk test P>0.05). Log transformations were applied to 
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variables that did not follow a normal distribution (i. cord blood insulin, and ii. 

glucose/insulin ratio).  

First, a univariate model was used to assess the effects of insulin-based maternal 

PRS and newborn PRS (separately) on i) cord blood insulin. Second, the univariate models 

were built upon by adding covariates (deemed relevant based on literature(99, 101, 103) 

and biological plausibility) in a multivariable model. The univariate model with maternal 

PRS was built upon by adding maternal related covariates, such as maternal age (years), 

pre-pregnancy BMI (kg/m2), parity (n, continuous), gestational weight gain during 

pregnancy (kg), and GDM status (yes/no). Finally, the multivariable model was tested again 

but with the addition of the newborn PRS as a confounder. Likewise, the univariate model 

with the newborn PRS was built upon by adding newborn related covariates such as 

newborn age (days), gestational age (weeks), newborn weight (g), newborn length (cm) 

and sex (M/F) in the initial multivariable model, which was then tested again by adjusting 

for maternal PRS in the final multivariable model.  

 Furthermore, a combined multivariable model regressing maternal and newborn 

PRS with both maternal and newborn covariates on cord blood insulin was also tested. 

Finally, a stratification analysis based on GDM status of mothers was conducted if one of 

the two PRSs (main predictors) were significantly associated with cord blood insulin in a 

multivariable model. The stratification analysis was complemented with an interaction term 

to further assess the differential effect of PRSs on cord-blood insulin based on GDM status. 

A similar analysis plan was followed for the ii) glucose/insulin ratio outcome.  
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      3.2. Results 

Descriptive characteristics for participants from the START cohort have been 

presented in Chapter 2 (Table 3).  

The standardized final PRSs (both maternal and newborn) includes data from 

1,128,017 SNP variants. The maternal PRS ranges from -3.10 to 3.56 (mean = 0, SD = 1), 

while the newborn PRS ranges from -2.60 to 2.95 (mean = 0, SD = 1).  Both continuous 

and categorical (tertiles) maternal and newborn PRS have been assessed. Results for the 

continuous variables (maternal and newborn PRS) will be presented in the rest of the 

analysis.  

i) cord blood insulin: Neither the maternal nor the newborn PRS is significantly 

associated with cord blood insulin in a univariate model (Table 8: P>0.05 per 1 unit increase 

in the PRS). The non-significant effect persists in the final multivariable model with 

newborn PRS adjusted for newborn covariates such as newborn age, gestational age, 

newborn weight, newborn length, and sex, and conditioning on maternal PRS (Table 9). In 

a multivariable model which includes maternal PRS adjusted for maternal covariates such 

as maternal age, pre-pregnancy BMI, parity, gestational weight gain, and GDM status, 

conditioning on newborn PRS, the newborn PRS is significantly associated with cord blood 

insulin (Table 10: 𝛽 = 0.035, 95% CI: 0.002 – 0.069; P=0.039). However, in the combined 

multivariable model with both maternal and newborn covariates, including maternal and 

newborn PRS, the newborn PRS does not remain significantly associated with cord blood 

insulin (Table 11: 𝛽 = 0.022, 95% CI: -0.010 – 0.055; P=0.17).  The significant effect seen 

in the multivariable model with newborn PRS and maternal covariates also does not persist 
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across quartiles of cord blood insulin (P-value for linear trend=0.29)—there is a general 

increasing linear trend for pre-pregnancy BMI (P=0.022), gestational weight gain 

(P=0.008) and number of GDM cases (P=<0.001) across cord blood insulin quartiles, but 

not for newborn PRS (Table 12).  

Moreover, in the stratification analysis, newborn PRS is nominally associated with 

cord blood insulin in  the univariate (𝛽 = 0.041, 95% CI: <0.001 – 0.082, P=0.047) model 

but not in the multivariable models (𝛽 = 0.042, 95% CI: <0.001 – 0.084, P=0.051) in non-

GDM participants (Table 13). No such effect was seen in either the univariate or the 

multivariable models of the GDM participants stratum (P>0.05; Table 14). The interaction 

model with newborn-based insulin PRS and GDM was also not significant (Pinteraction = 

0.40).  

ii) cord blood glucose/insulin ratio: Neither the maternal nor the newborn PRS is 

significantly associated with cord blood glucose/insulin ratio in the univariate (Table 15) 

or multivariable analysis (Table 16 and 17: P>0.05 per 1 unit increase in the PRS).  

 
 

 3.3. Summary and implications 

 In summary, an insulin-based newborn polygenic risk score derived from GWAS 

significant SNPs is nominally associated with cord blood insulin levels in newborns born 

to South Asian mothers from the START cohort. This association is independent of other 

known maternal factors such as the insulin-based maternal polygenic risk score, maternal 

age, pre-pregnancy BMI, parity, gestational weight gain, maternal smoking, GDM status 

and the insulin-based maternal polygenic risk score. However, it is important to note that 
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the insulin-based newborn polygenic risk score is not associated with cord blood insulin 

levels when the maternal factors are not held constant. In addition, the insulin-based 

newborn polygenic risk score is not independently associated with cord blood insulin when 

controlled for newborn factors such as newborn age, gestational age, newborn weight, 

newborn length and sex plus insulin-based maternal polygenic risk score. The sequential 

assessment of maternal and newborn factors as covariates in the multivariable models 

further elucidates how newborn genetic variants influence cord blood insulin. Based on this 

analysis, the newborn genotype influences cord blood insulin independent of maternal 

factors but not newborn factors. This may be because the newborn polygenic gene score is 

in itself a newborn related factor, and thus may be heavily correlated with other newborn 

factors included in the multivariable model. Furthermore, the maternal insulin-based 

polygenic risk score derived from significant SNPs is not independently associated with 

cord blood insulin levels in either of the adjusted models with maternal or newborn factors. 

The maternal genotype may not play any role in influencing cord blood insulin levels. 

Finally, neither the newborn nor the maternal insulin-based polygenic risk score is 

associated with cord blood glucose/insulin ratio in children from START.  

 The implications of these findings are broad. Firstly, this is a one of its kind study 

to establish genetic variants associated with cord blood insulin levels in South Asians. 

Based on our findings, the newborn’s own genotype may be responsible for regulating cord 

blood insulin levels, independent of their mother’s genotype (mediated through the intra-

uterine environment). This is in line with evidence from GWASs that have assessed the 

role of maternal and newborn genotypes on birthweight,(104, 105) which is known to be 
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affected by cord blood insulin levels. In those studies, newborn genotypes explain 24% to 

69% of the variance in birth weight while the maternal genetic contribution is as low as 3% 

to 22%.(106) The role of the newborn genotype in influencing cord blood insulin may be 

attributable to the fetus’s response to an increased glucose demand; a common 

characteristic of South Asian pregnancies. Intuitively, the fact that maternal genotype does 

not play a role in influencing cord blood insulin is justified since maternally produced 

insulin does not cross the placenta. Cord blood insulin production is exclusive to the fetal 

pancreas. However, it must be noted that the effects of the newborn genotype are not 

completely independent and are in part mediated by maternal environmental factors. This 

is particularly important from a public health perspective as controlling the modifiable 

factors such as gestational weight gain or GDM during pregnancy may reduce the burden 

of issues against the genetic predisposition to abnormal cord blood insulin levels in South 

Asian newborns. Further research is warranted to determine how exactly newborn genetic 

variants influence cord blood insulin. Secondly, since cord blood insulin levels can be a 

marker of adult diseases in children,(107) this information presents a unique approach of 

using newborn specific PRS to evaluate and stratify at-risk children. Newborns with high 

insulin PRS are likely to have overworking pancreas at the time of birth which may make 

a case for closer monitoring of their post-natal environment, based on the “thrifty 

phenotype” hypothesis. Excess energy post-natally may cause a further exacerbation in 

pancreatic function and predispose such high-risk newborns to diseases such as T2D in the 

future. (20, 108, 109)  Further research and GWAS assessing glycemic traits such as cord 
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blood insulin in multiethnic populations are needed to further understand the intra-uterine 

pathways that may mediate the effect of insulin-based newborn PRS on cord blood insulin.   

 This study has several strengths. First, the maternal and newborn PRS capture a 

large amount of genetic information, being adapted from studies looking at whole-genome 

genotypes. This adds to the predictive capability of the PRS in determining the outcome of 

interest. Second, the Lagou et al. (2018 manuscript in preparation) study had information 

collected separately in both males and females which adds more power and an ability to 

control for sex-specific differences in our analysis. Finally, we used a less extreme GWAS 

significant threshold to ensure a high predictive power of the PRS, without removing too 

many SNPs by using the established GWAS significance threshold (P< 5 x 10-8).  

 Nonetheless, there are some limitations inherent in the data informing the analysis. 

First, the null effect of the insulin-based maternal PRS may be due to a lack of power. The 

study did not have an adequate sample size (number of START participants with cord 

insulin or cord glucose/insulin ratio measurements) to rule out “no difference” (Appendix 

1).  Second, the genetic variants measured in the GWAS (Lagou et. al., 2018 Manuscript 

in preparation) were entirely collected in a European population. This is in contrast to the 

fully South Asian population from the START cohort for whom we have phenotypic 

information available. Ethnic differences may underestimate the true effect of the PRS and 

cord blood insulin or glucose/insulin ratio in our population. Third, the GWAS represents 

plasma insulin levels measured in an adult population while our outcomes of interest, cord 

blood insulin and glucose/insulin ratio are measured in offspring born to START mothers. 

There may be some inconsistencies in the associations between the genotypes and 
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phenotypes since the genetic variants are based on slightly different loci than the outcomes. 

The lack of effect between PRS and glucose/insulin ratio may particularly be attributed to 

the inconsistency between the genotypes (insulin-based) and the phenotype, which 

represents insulin sensitivity in this case. Finally, the generalizability of our analysis (with 

regards to the newborn PRS association with cord blood insulin) is limited to South Asians 

from Canada, mainly originating from Northern India.  

 Overall, the results from this analysis may support the use of an insulin-based 

newborn PRS made up of 1128017 variants to predict cord blood insulin levels in South 

Asian newborns, independent of other maternal factors such as maternal age, pre-pregnancy 

BMI, parity, gestational weight gain and GDM status. If true, this information can be useful 

for early detection and monitoring of abnormal insulin levels in newborns with a high 

genetic risk score.  
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Chapter 4: Discussion, Conclusions, and Future Directions 

4.0. Discussion  

Maternal and newborn dysglycemia are important predictors of future disease. In 

mothers, dysglycemia may take the form of gestational diabetes mellitus (GDM) during 

pregnancy, and eventually result in newborn dysglycemia in their offspring. Having an 

understanding of modifiable and non-modifiable risk factors that are implicated in the risk 

of maternal and newborn dysglycemia is important for prevention and better management 

of future diseases. This is particularly important in a South Asian population who have 

some of the highest rates of dysglycemic events such as GDM —with future risk of disease 

for both mothers and their newborns being “programmed” in utero. 

Based on the study, a maternal T2D PRS is a significant predictor of GDM in South 

Asian pregnant women, while an insulin-based newborn PRS is nominally associated with 

cord blood insulin levels in South Asian newborns, given other maternal factors such as 

maternal age, pre-pregnancy BMI, parity, gestational weight gain, maternal smoking 

history, GDM status, and insulin-based maternal PRS are held constant.  

The lack of association between the insulin-based maternal PRS and cord blood 

insulin may suggest a lack of maternal genetic contribution to newborn insulin levels. 

However, it is also reasonable to assume that the lack of effect is because the insulin-based 

maternal PRS does not capture enough information from all of the genetic variants 

associated with glycemic traits such as cord blood insulin levels in South Asians and/or that 

the amount of samples from START are not adequate to measure a noticeable effect of the 

maternal PRS on cord blood insulin.  



MSc. Thesis – J Limbachia; McMaster University – Health Research Methodology 
 

 
 

61 

Finally, the lack of association between the insulin-based maternal and/or newborn 

PRS and cord blood glucose/insulin ratio (a marker of insulin sensitivity) might be 

attributable to the non-specificity of the genotype data compared to the outcome and/or low 

study power. The same insulin data from Lagou et al., 2018 (Manuscript in preparation) 

that informed the maternal and newborn PRS was also used to predict insulin sensitivity 

since no other studies from the MAGIC consortium had calculated insulin sensitivity 

similar to how it was done in the START cohort—i.e. estimated using the glucose/insulin 

ratio.  

 

 4.0.1 Clinical implications 

Calculating the cumulative genetic risk based on an additive effect of SNP variants 

in the form of a PRS has been used to investigate the underlying biology behind several 

diseases now, including T2D, CVD, breast cancer, schizophrenia and other psychiatric 

disorders.(110) Accordingly, findings from this study may have some clinical implications. 

Firstly, the PRS can be used to study gene-environment interactions and develop better 

disease prevention approaches.(111, 112) An understanding of both genetic and 

environmental factors can inform more personalized and tailored approaches to alleviating 

risk factors that contribute to disease development. The association of maternal T2D PRS 

with GDM in a South Asians population can be useful in further evaluating the PRS’s 

interaction with other environmental risk factors such as pre-pregnancy weight, and/or diet 

quality that have also been shown to be implicated in the risk for GDM. Likewise, the 

nominal association of an insulin-based newborn PRS with cord blood insulin can be 
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further contextualized if it interacts with other maternal factors such as gestational weight 

gain or GDM status to modify the risk of abnormal insulin regulation in newborns. In 

addition, the gene-environmental interaction can elucidate which environmental factor is a 

stronger contributor in regulating newborn insulin levels and subsequent dysglycemia 

associated with abnormal insulin regulation.  This idea has been supported by a study 

conducted by Nakamura et al.(111) assessing gene-environmental interactions in obesity. 

Nakamura et al. found that their genetic risk score was associated with obesity and 

interacted with other environmental factors such as BMI. They propose that their gene score 

can be useful in selecting optimal lifestyle factors (determined by the highest interaction 

with their gene risk score) that can be considered intervention targets for personalized and 

targeted obesity prevention.(111). A similar approach could be used based on the results 

from this study to assess optimal environmental factors which can serve as intervention 

targets to prevent maternal and newborn dysglycemia characterized by GDM and abnormal 

cord blood insulin levels.   

Secondly, PRSs can not only be used to stratify participants at risk but can also 

inform their management plan based on their genetic risk category. For example, a study 

conducted by Natarajan et al.(113) identified that patients categorized with high genetic 

risk of coronary heart disease fared significantly better on statin therapy compared to those 

categorized as low genetic risk. In our case, participants who belong to the high genetic 

risk for GDM category (tertiles 2 and 3) could be assessed to see if they are the ones more 

likely to benefit from a tailored diet intervention compared to the low genetic risk group.  
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Lastly, PRSs can be useful in determining genetic overlap between multiple 

diseases in clinic.(110) Studies have shown that a PRS derived from one disease (e.g. 

Schizophrenia-specific PRS) can be used to ascertain the risk or onset of another disease 

(e.g. bipolar disorder).(110) This has led to an emerging field of using multi-polygenic risk 

scores (MPSs), derived from multiple GWASs, to predict outcomes by enhancing the gene 

score’s predictive power.(114) Perhaps combining genetic variants contributing to the 

maternal T2D PRS and insulin-based newborn PRS in a MPS could be useful in reducing 

some of the costs related to utilizing gene scores while increasing the predictive capacity 

of the PRSs and identifying both maternal and newborn dysglycemia in a clinical setting.  

Overall, the positive results from this study may indicate some uses for the PRSs in 

a clinical setting. The maternal T2D PRS and the insulin-based newborn PRS highlight the 

genetic burden of GDM (maternal and newborn dysglycemia) and adverse cord insulin 

profiles (may indicate subsequent newborn dysglycemia) in South Asians (primary 

prevention), while stratifying high risk participants who may require constant screening 

and monitoring (secondary prevention) or treatment optimization (tertiary 

prevention).(110)  

 4.0.2 Limitations and Challenges  

There are some limitations to this study that may affect the generalizability of the 

results. As discussed previously, one of the biggest challenges was that the three PRS 

developed in this study were based on T2D and plasma insulin levels, which are different 

than the outcomes measured in the analysis. Although there are reasons supporting the use 

of T2D genetic variants to predict GDM and plasma insulin genetic variants from adults to 
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predict cord blood insulin in newborns based on similarity and lack of outcome specific 

GWASs, there is a possibility that the true effect is over or underrepresented. Nonetheless, 

there were some other technical challenges that were apparent when conducting this study, 

such as i) identifying the most appropriate methods to create the PRS, and ii) recognizing 

false positives and false negatives.  

Appropriateness of methods used to create PRS 

In epidemiology studies, ethnicity can confound the relationship between the 

exposure and the outcome because of its multidimensionality—ethnicity includes cultural, 

geographical, and biological aspects.(115) One of the main technical challenges in 

conducting this study was a lack of multiethnic GWASs. There is a general paucity of 

genetic variants related to our outcomes of interest (GDM and cord blood insulin) which 

have been extensively studied and collected in a South Asian population. In fact, only 20% 

of the Mahajan et al.(55) data which informed the T2D PRS was representative of a South 

Asian population while the majority of it was white/European. The Lagou et al., 2018 

(Manuscript in Preparation) data, which informed the insulin-based PRS, was entirely 

collected in a white/European population. This may have led to spurious associations 

between the PRSs and our outcomes of interest since the allelic frequencies of the variants 

and beta estimates of the outcomes may vary based on ethnicity.(115) Usually, a stratified 

analysis is useful to delineate the true association between the genotypes and phenotypes 

in these cases. However, this was not possible in our study since the phenotype data has 

been collected from a South Asian population. A lack of diversity in GWASs can introduce 
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significant bias when using these PRS to understand the biology of diseases such as GDM 

and T2D in a clinical setting.(116)  

Furthermore, another technical point of consideration when building the PRS was 

deciding the GWAS significance threshold. In this study, a less conservative threshold     

(P<0.2 for T2D PRS and P<0.05 for insulin PRS) than the commonly accepted                    

(P<5 x 10-8) threshold was used. While the higher threshold is more conservative and 

ensures only the SNP variants that are truly associated with the outcome of interest are 

included, a less conservative estimate was used to avoid missing information from variants 

that may be marginally associated with the outcome and to improve the overall predictive 

capability of the PRS.(54) A less conservative estimate is useful in avoiding the winner’s 

curse or over inflated estimation of the true effect.(110) On the other hand, a higher than 

P<0.2 or P<0.05, threshold respectively, may result in poor tagging, low coverage and a 

smaller heritability estimate despite the reduction in number of SNPs included with that 

approach.(54) An appropriate threshold is required to maintain a balance between having 

too many and too few SNPs informing the PRS.  

   

False positives and false negatives  

One of the biggest challenges in genetic association studies is determining whether 

the association seen between the exposure (the PRS) and the phenotypic traits is the true 

effect (i.e. a non-biased estimate). There is a possibility that the genetic variants informing 

the PRSs have small effect sizes that can result in false positive or false negative 

associations through random or systematic error.(115) 
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In PRSs analyses, population structure or the difference in geographic location 

between the genetic variants and tested traits may be a source of confounding and partially 

contribute to false positive results.(117) For this study, while the base data informing the 

T2D PRS is derived from a multiethnic DIAGRAM consortium (~20% South Asian), the 

data informing the insulin-based maternal and newborn PRS is derived from a completely 

white/European MAGIC consortium. The target data or the phenotypic information, in both 

cases, has been measured in a South Asian population. There is a high possibility that the 

allele frequencies and environmental risk factors for the outcomes of interest systematically 

differ between the base and target data due to genetic drift or ascertainment of genotyped 

variants.(117) As such, the observed associations between PRS and the outcomes of interest 

may have resulted from differences at null SNPs,(117) creating false positive results. 

Although deriving base and target samples from the same population or the one that is 

genetically similar can control for this confounding, this was not possible in this study due 

to a lack of genetic data on South Asians.    

Furthermore, the lack of association between insulin-based maternal PRS and cord 

blood insulin may be a false negative—i.e. a type 2 error due to a lack of specificity of 

genetic variants and power. Prior studies have showed a potential role of maternal 

genotypes on newborn glycemic traits.(100, 118) It is reasonable that the null effect of 

insulin-based maternal PRS on cord blood insulin is partially due to the differences in the 

genetic backgrounds of the base and target populations.(119) However, the lack of 

replication in studies assessing the same association (i.e. the effect of maternal genotype 

on cord blood insulin) makes this finding uncertain. Additionally, and perhaps more 
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importantly, the lack of effect may be due to the study being underpowered (50% - 

Appendix 1). Genetic variants that are included in the maternal PRS have a modest effect 

size. Combing these variants and pooling them together in a PRS further reduces their effect 

size.(119) Thus,  association studies aimed at assessing such genetic associations would 

require a very large sample size, in the range of 1000-10000.(119) Although we cannot 

calculate the required sample size to achieve 80% power in our study, our sample size 

(N=522) is well under that recommended range, and so it is reasonable to assume that the 

lack of effect may be a false negative. This notion has been supported by a study conducted 

by Dudbridge which showed that negative results in polygenic risk score association studies 

are more likely to be due to low sample sizes and that increasing sample sizes may result 

in a more successful analysis.(120)  

 

4.1. Conclusions and Future Directions  

In conclusion, a type 2 diabetes (T2D) polygenic risk score (PRS) is strongly 

associated with GDM in South Asian women, independent of other risk factors for GDM 

including family history of T2D, maternal age, pre-pregnancy weight and low diet quality; 

whereas an insulin-based newborn PRS is nominally associated with cord blood insulin 

levels in South Asian newborns, when adjusted for maternal factors such as age, pre-

pregnancy BMI, gestational weight gain, parity, smoking and GDM status. This study 

shows that PRS may be useful in predicting maternal and newborn dysglycemia, and 

newborn insulin levels to some extent in a South Asian population despite the lack of South 

Asian specific genetic data. The positive association between maternal T2D PRS and GDM 
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adds further evidence to the notion that GDM and T2D share common trajectories, while 

making a case for better risk stratification strategies during pregnancy to reduce the burden 

of future disease in mothers and their newborns. The positive association between insulin-

based newborn PRS and cord blood insulin when adjusted for maternal factors may suggest 

that newborn insulin levels are not primarily driven by their own genetics but also by the 

in-utero environment, making a case for controlling environmental factors during 

pregnancy to reduce disease burden in newborns.  

Future research should consider gene-environment interactions to further delineate 

how the polygenic risk scores affect each other and glycemic traits. It is important to 

identify how modifiable risk factors for GDM such as pre-pregnancy weight and diet 

quality (separately) interact with maternal T2D PRS to modify the risk of GDM. This will 

allow us to determine how environmental modifiable factors that contribute to the risk of 

GDM in South Asians alter the genetic susceptibility to the disease. If the gene-

environment interaction is strong, interventions aimed at reducing pre-pregnancy weight 

and improving diet quality are warranted to reduce the genetic burden of GDM among 

South Asians. In addition, such analysis could highlight which of the two environmental 

factors should be targeted more for optimal effect in South Asian pregnant women based 

on the strength of their interaction with the PRS.(111) The use of a T2D maternal PRS that 

is associated with GDM may allow for more specific targeting of modifiable factors (that 

interact with the PRS) in a cost effective manner compared to generalized interventions. 

Moreover, although we aimed to test the association of our PRS in a South Asian 

population, future analyses could consider using data from multiethnic cohorts to improve 
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the generalizability of our findings. Perhaps a next step would be using cohorts with 

phenotypic data from other high-risk groups for GDM and subsequent T2D such as 

Africans and Native Americans when developing the gene score. This would be especially 

important to increase the accuracy and predictive power of our PRS in understanding 

disease biology and risk stratification.  
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TABLES AND FIGURES 

Table 5: Characteristics of START study participants included in the analysis 

 
No GDM 

(n= 531) 

GDM 

(n=301) 
P value * 

Maternal Age, yr (SD) 30 (4) 31 (4) <0.001 

Maternal Height, cm (SD) 162.7 (6.2) 161.5 (6.2) 0.007 

Pre-pregnancy weight, kg (SD) 61.4 (11.7) 64.9 (12.2) <0.001 

Pre-pregnancy BMI, kg/m2 (SD) 23.2 (4.2) 24.9 (4.6) <0.001 

Low diet quality, n (%) 123 (23.5%) 96 (32.2%) 0.006 

Family history of diabetes, n (%) 180 (34.0%) 154 (51.2%) <0.001 

Maternal Polygenic Risk Score (SD) -0.2 (1.0) 0.3 (1.0) <0.001 

Maternal Polygenic Risk Score, n (%)    

Tertile 1 205 (38.6%) 72 (23.9%) <0.001 

Tertile 2 180 (33.9%) 98 (32.6%)  

Tertile 3 146 (27.5%) 131 (43.5%)  

Tertile 2+3 (vs Tertile 1) 326 (61.4%) 229 (76.1%) <0.001 

 
Presented data are means (Standard Deviation) unless otherwise indicated. There is missing data for 
some variables. * P-Values are calculated from Chi-squared test for categorical variables and 
independent t-test for continuous variables 
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Table 6: Association results between GDM risk factors and GDM in mothers 
from the START cohort 

 
Abbreviations: CI, confidence interval; OR, odds ratio  
 
*from multivariable logistic regression model. 
 
b: Maternal categorical PRS is further organized as a dichotomous variable with Tertile 2 and 3 
being compared to Tertile 1 to improve interpretability and since these categories were the most 
significantly different when compared to each other.  
 
  

Risk Factor  OR (95%CI) * P-value* 

PRS (Tertile 2+3 vs 1)b  1.81 (1.30 - 2.53) <0.001 

Maternal Age 1.08 (1.04 - 1.12) <0.001 

Pre-pregnancy weight, kg 1.03 (1.01 - 1.04) <0.001 

Maternal Height, cm 0.96 (0.94 - 0.99) 0.003 

Diet quality (low vs medium + high)            1.44 (1.03 - 2.01) 0.032 

Family history of T2D 1.62 (1.20 - 2.20) 0.002 
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Table 7: Population attributable risk of GDM risk factors in mothers from the 
START cohort 

Abbreviations: CI, confidence interval; PRS: Polygenic risk score, OR, odds ratio 

  

Risk Factor 

OR (95% CI) from 

multivariable logistic 

regression model 

Prevalence 

% 

Population 

attributable risk % 

(95% CI) 

PRS (Tertile 2+3 vs. 1) 1.86 (1.34 - 2.59) 66.6 35.3 (19.8 - 50.7) 

Age 32-43 yr vs. < 29 yr 1.89 (1.32 - 2.70) 36.6 21.7 (11.0 - 32.4) 

Age 29-31 yr vs. <29 yr 1.25 (0.84 - 1.84) 27.7 5.2 (-3.7 - 14.2) 

Body mass index >23 vs. 

< 23 
1.85 (1.36 - 2.51) 51.8 29.4 (16.8 - 42.0) 

Low diet quality 1.46 (1.04 - 2.03) 26.7 10.1 (1.5 - 18.6) 

Family history of T2D 1.66 (1.22 - 2.25) 40.4 20.4 (9.2 - 31.5) 

Total PAR   74.7 (65.1 - 84.3) 
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Figure 2: Partial population attributable risk for individual risk factors 
associated with GDM among South Asian women. 
 

 
 
Note: Error bars represent 95% confidence intervals  
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Table 8: Association results between insulin-based PRS and cord blood 
insulin in participants from the START cohort 

 

 
Continuous 𝜷 
[95% CI, p-

value] 

Categorical 𝜷*b 

[95%CI] P-value* 

Maternal 
PRS 

(n=523) 

-0.007 
[-0.36 to 0.023; 

p=0.66] 

T2 vs. 1 -0.003 
[-0.065 to 0.060] 0.93 

T3 vs. 1 -0.014 
[-0.078 to 0.049] 0.66 

T2+T3 vs. 1 -0.016 
[-0.078 to 0.045] 0.60 

Newborn 
PRS 

(n=514)  

0.021 
[-0.008 to 0.050; 

p=0.12] 
 
 

T2 vs. 1  
0.026 

[-0.037 to 0.090] 0.41 

T3 vs. 1  
0.018 

[-0.045 to 0.080] 0.58 

 
T2+T3 vs. 1  

0.043 
[-0.019 to 0.11) 0.18 

 
 
Abbreviations: CI, confidence interval; 𝛽, effect estimate  
 
*from univariate logistic regression model. 
 
b: Maternal and Newborn categorical PRS are further organized as a dichotomous variable with 
Tertile 2 and 3 being compared to Tertile 1 to improve interpretability and since these categories 
were the most significantly different when compared to each other.  
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Table 9: Association results between insulin-based newborn PRS and cord 
blood insulin, adjusted for maternal PRS in participants from the START 
cohort 

Risk Factor 𝜷 [95%CI] * P-value* 

Newborn PRSb 0.021 [-0.011 – 0.052] 0.19 

Newborn age, days 0.04 [-0.007 – 0.14] 0.48 

Gestational age, wks -0.066 [(-0.090) – (-0.42)] <0.001 

Newborn weight, g <0.001 [<0.001 – <0.001] <0.001 

Newborn length, cm -0.003 [-0.017 – 0.011] 0.66 

Sex, M/F 0.13 [0.072 – 0.19] <0.001 

Maternal PRSb -0.008 [-0.040 – 0.023] 0.61 

 

Abbreviations: CI, confidence interval; 𝛽, effect estimate  
 
*from multivariable linear regression model. 
 
b: Maternal and newborn continuous PRS were used in this model to maintain adequate power  
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Table 10: Association results between insulin-based maternal PRS and cord 
blood insulin, adjusted for newborn PRS in participants from the START 
cohort 

Risk Factor 𝜷 [95%CI] * P-value* 

Maternal PRSb -0.17 [-0.051 – 0.17] 0.33 

Maternal age, years 0.001 [-0.008 – 0.010] 0.82 

Pre-pregnancy BMI, kg/m2 0.010 [0.002 – 0.017] 0.016 

Parity 0.022 [-0.021 – 0.066] 0.32 

Gestational weight gain, kg 0.004 [-0.001 – 0.008] 0.018 

Maternal smoking history, Yes/No -0.31 [-0.64 – 0.021] 0.067 

GDM during pregnancy 0.087 [0.021 – 0.15] 0.010 

Newborn PRSb 0.035 [0.002 – 0.069] 0.039 

 

Abbreviations: CI, confidence interval; 𝛽, effect estimate  
 
*from multivariable linear regression model. 
 
b: Maternal and Newborn continuous PRS were used in this model to maintain adequate power  
 

 

 

 
 
 
 



MSc. Thesis – J Limbachia; McMaster University – Health Research Methodology 
 

 
 

86 

Table 11: Association results between insulin-based PRSs and cord blood 
insulin, adjusted for maternal and newborn factors in participants from the 
START cohort 

Risk Factor 𝜷 [95%CI] * P-value* 

Maternal PRSb -0.008 [-0.040 – 0.024] 0.62 

Newborn PRSb 0.022 [-0.010 – 0.055] 0.17 

Maternal age, years 0.001 [-0.007 – 0.010] 0.80 

Pre-pregnancy BMI, kg/m2 0.005 [0.002 – 0.013] 0.18 

Parity 0.025 [-0.017 – 0.066] 0.24 

Gestational weight gain, kg 0.004 [<0.001 – 0.007] 0.038 

Maternal smoking history, Yes/No -0.18 [-0.50 – 0.14] 0.26 

GDM during pregnancy 0.078 [0.014 – 0.14] 0.016 

Newborn age, days 0.003 [-0.008 – 0.015] 0.56 

Gestational age, wks -0.057 [(-0.082) – (-0.032)] <0.001 

Newborn weight, g <0.001 [<0.001 – <0.001] <0.001 

Newborn length, cm -0.002 [-0.016 – 0.012] 0.79 

Sex, M/F 0.13 [0.069 – 0.19] <0.001 

 

Abbreviations: CI, confidence interval; 𝛽, effect estimate  
 
*from multivariable linear regression model. 
 
b: Maternal and Newborn continuous PRS were used in this model to maintain adequate power  
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Table 12: Influential maternal characteristics by cord blood insulin quartiles 

 N Q1 Q2 Q3 Q4 
P-value 

for 
trend 

N 638 160 166 152 160  

Maternal 
Phenotypes .      

Newborn PRS 638 
-0.086 
(1.05) 

-0.025 
(1.00) 

0.022 
(0.96) 

0.042 
(1.02) 

0.29 

Pre-pregnancy 
BMI, kg/m2 638 

23.70 
(4.4) 

22.70 
(3.50) 

24.50 
(4.90) 

24.30 
(4.60) 

0.022 

Gestational weight 
gain, kg 638 

12.85 
(5.72) 

14.82 
(8.58) 

14.14 
(9.93) 

15.26 
(6.73) 

0.008 

GDM during 
pregnancy (yes) 231 

40 
(25%) 

59 
(35.5%) 

59 
(39.1%) 

73 
(46.5%) 

<0.001 

 
a Continuous newborn PRS was used in this model to maintain adequate power 
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Table 13: Association results between insulin-based maternal PRS and cord 
blood insulin, adjusted for newborn PRS in non-GDM mothers only from the 
START cohort (n=287) 

Risk Factor 𝜷 [95%CI] * P-value* 

Maternal PRSb -0.011 [-0.052 – 0.31] 0.61 

Maternal age, years 0.006 [-0.006 – 0.017] 0.33 

Pre-pregnancy BMI, kg/m2 0.008 [-0.002 – 0.018] 0.11 

Parity 0.007 [-0.048 – 0.061] 0.80 

Gestational weight gain, kg 0.003 [-0.001 – 0.007] 0.13 

Maternal smoking history, Yes/No -0.10 [-0.49 – 0.28] 0.61 

Newborn PRSb 0.042 [<0.001 – 0.084] 0.051 

 
Abbreviations: CI, confidence interval; 𝛽, effect estimate  
 
*from multivariable linear regression model. 
 
b: Maternal and newborn continuous PRS were used in this model to maintain adequate power  
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Table 14: Association results between insulin-based maternal PRS and cord 
blood insulin, adjusted for newborn PRS in GDM mothers only from the 
START cohort (n=161) 

Risk Factor 𝜷 [95%CI] * P-value* 

Maternal PRSb -0.024 [-0.082 – 0.033] 0.41 

Maternal age, years -0.004 [-0.019 – 0.011] 0.61 

Pre-pregnancy BMI, kg/m2 0.012 [-0.001 – 0.025] 0.062 

Parity 0.054 [-0.020 – 0.13] 0.15 

Gestational weight gain, kg 0.010 [0.001 – 0.020] 0.028 

Maternal smoking history, Yes/No -0.84 [-1.51 – (-0.17] 0.014 

Newborn PRSb 0.036 [-0.020 – 0.092] 0.21 

 
Abbreviations: CI, confidence interval; 𝛽, effect estimate  
 
*from multivariable linear regression model. 
 
b: Maternal and newborn continuous PRS were used in this model to maintain adequate power  
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Table 15: Association results between insulin-based PRS and cord blood 
glucose/insulin ratio in participants from the START cohort 

 Continuous 𝜷 
[95% CI, p-value] 

Categorical 𝜷*b 

[95%CI] P-value* 

Maternal PRS 
(n=522) 

0.009 
[-0.022 to 0.039; 

p=0.57] 

T2 vs. 1 -0.004 
[-0.068 to 0.060] 0.90 

T3 vs. 1 0.019 
[-0.045 to 0.084] 0.56 

T2+T3 vs. 1 0.014 
[-0.049 to 0.077] 0.66 

Newborn PRS 
(n=513)  

-0.018 
[-0.048 to 0.013; 

p=0.25] 
 
 

 
T2 vs. 1  

-0.004 
[-0.061 to 0.069] 0.90 

 
T3 vs. 1  

-0.032 
[-0.097 to 0.032] 0.32 

 
T2+T3 vs. 1  

-0.028 
[-0.092 to 0.036) 0.39 

 

Abbreviations: CI, confidence interval; 𝛽, effect estimate  
 
*from univariate linear regression model. 
 
b: Maternal and Newborn categorical PRS are further organized as a dichotomous variable with 
Tertile 2 and 3 being compared to Tertile 1 to improve interpretability and since these categories 
were the most significantly different when compared to each other.  
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Table 16: Association results between insulin-based newborn PRS and cord 
blood glucose/insulin ratio, adjusted for maternal PRS in participants from 
the START cohort 

Risk Factor 𝜷 [95%CI] * P-value* 

Newborn PRSb -0.018 [-0.050 – 0.014] 0.27 

Newborn age, days 0.002 [-0.009) – (0.013)] 0.72 

Gestational age, wks 0.077 [0.053 – 0.10] <0.001 

Newborn weight, g <0.001 [<0.001 – <0.001] <0.001 

Newborn length, cm 0.002 [-0.012 – 0.016] 0.76 

Sex, M/F -0.15 [-0.21 – (-0.087)] <0.001 

Maternal PRSb 0.011 [-0.022 – 0.043] 0.52 

 

Abbreviations: CI, confidence interval; 𝛽, effect estimate  
 
*from multivariable linear regression model. 
 
b: Maternal and newborn continuous PRS were used in this model to maintain adequate power  
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Table 17: Association results between maternal based newborn PRS and cord 
blood glucose/insulin ratio, adjusted for newborn PRS in participants from 
the START cohort 

Risk Factor 𝜷 [95%CI] * P-value* 

Maternal PRSb 0.020 [-0.015 – 0.054] 0.26 

Maternal age, years -0.002 [-0.011 – 0.007] 0.63 

Pre-pregnancy BMI, kg/m2 -0.010 [-0.0018 – (-0.002)] 0.012 

Parity -0.037 [-0.082 – 0.008] 0.11 

Gestational weight gain, kg -0.004 [-0.007 – <0.001] 0.049 

Maternal smoking history, Yes/No 0.26 [-0.067 – 0.61] 0.13 

GDM during pregnancy -0.082 [-0.15 – (-0.014)] 0.018 

Newborn PRSb -0.030 [-0.064 – 0.004] 0.085 

 

Abbreviations: CI, confidence interval; 𝛽, effect estimate  
 
*from multivariable linear regression model. 
 
b: Maternal and newborn continuous PRS were used in this model to maintain adequate power  
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Appendix 1:  

1. Power analysis for a polygenic risk score:  

We used the R code computing the formulae provided by Dudbridge(120) to 
calculate the power of the insulin-based polygenic risk scores (PRSs). There were 
1128017 independent markers in the PRSs and N=638 START participants with 
complete cord blood insulin measurements. We used a heritability estimate of 0.07 
[0.05, 0.10] as the proportion of variance explained by genetic effects of fasting 
insulin(121) in our GWAS sample for the analysis and left the other parameters set 
to default. We found that the power of the chi-squared test of association between 
the PRSs and cord blood insulin is only 50%. Thus, there is less than adequate 
statistical power to test the association (between an insulin-based PRS and cord 
blood insulin) being tested in this study.  
 
The paper by Dudbridge, however, does not support a calculation for the sample 
size required to achieve sufficient power (80%) when testing the association 
between a PRS and a trait. Thus, we are unable to calculate that for our study.  


