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ABSTRACT

An image-based technique for passive acquisition of three-dimensional (3-D) 

range data is proposed. The distance is extracted, in this technique, from the 

estimation of focus conditions on images produced through a monocular imaging 

system under natural illumination.

The image taken from a 3-D object is generally out-of-focus (defocused). For 

each surface point, the severity of defocus on the image depends upon how far away 

the point is from the imaging system and how camera (optical) parameters are 

adjusted. Each setting of the parameters can be recorded physically, and associated 

in object-space with the inverse of a distance that corresponds to the position for the 

sharpest imaging under this setting. Therefore, for a given surface point the defocus 

severity is a function of such an inverse object-distance. It can be shown that this 

function is symmetrical to, and monotonic on both sides of, a point corresponding to 

the inverse distance of the surface point. To estimate the parameters of the function 

(one of which is the inverse distance of the surface point), 3~4 images need to be 

taken under different camera settings with known associated inverse distances in 

object-space, determined through a once-for-all calibration procedure. Defocus 

severity is evaluated from a calculation on the window image that corresponds to a
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small area around the surface point, and the inverse variance in the window is 

suggested in this technique for the best performance. The 3-D surface geometry is 

acquired by applying the algorithm, in parallel, to all surface points in the field of

view.

Various aspects of the technique are discussed and several algorithms are 

developed. The technique is implemented on an opto-digital imaging system and 

evaluated under different conditions. A number of objects are tested to demonstrate 

its performance.
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CHAPTER 1

INTRODUCTION

1.0 Introduction

A primary goal of a visual system is to perceive and acquire information about 

the 3-D world. In machine vision, the knowledge of a scene, especially its 3-D 

geometry, is often crucial for supporting tasks such as scene recognition, automated 

inspection, and mobile robot navigation (Horn, 1986; Kanade, 1987; Shirai, 1987).

Range data acquisition is always an interesting, and sometimes challenging 

field to explore. During recent years, a great deal of effort has been made in the 

computer vision community, and in industry at large, to extract this important 

information about the world around us (Besl, 1988). In this chapter, we present 

some basic concepts concerning the acquisition of 3-D range information and review 

briefly some related work in the literature.

1.1 Image-Based Ranging and Range Image

A variety of ranging techniques that collect 3-D coordinate data of visible 

object surfaces in a scene are now available varying from noncontact optical methods
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to those based on tactile sensing (Jarvis, 1983; Shirai, 1987; Besl, 1988). Amongst 

these noncontact techniques, image-based approaches, which acquire 3-D (depth) 

information from 2-D (intensity) image(s) of a scene, are particularly useful where 

geometric (scene depth) data need to be extracted in parallel (without physical 

scanning), or photometric (scene radiance) information is required at the same time 

(Jarvis, 1983). Shape-ffom-shading, depth-from-texture, and depth-from-motion, for 

example, can be categorized as image-based.

The acquired geometric data are described as range image, also known as a 

range map or depth map. The term "image" is used here because a range image can 

be displayed on a video monitor, in the form of a digitized video image. Generally 

speaking, a range (geometric) image and the corresponding photometric image are 

in common in that a scene point can be "imaged" at the same location on both 

images. Apparently, they are different in that the value of a pixel on the range 

image gives depth information, while that on the photometric image represents
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brightness. Depending on how the distance is measured, the resultant range image 

is usually in the form of Cartesian Z-XY, or Orthogonal-Axis r-00, or the mixed Z-00 

coordinates (Besl, 1988). In the coordinates system with origin at the camera, as 

shown in Figure 1.1, these coordinates are related through:

x-tan0•z

y-tan^-z (1-1)

r - y 1+tan20 + tan2# • z

Most optical imaging systems are axially symmetric. Unless otherwise 

specified, the optical axis is always chosen as Z-axis. Under such a coordinate 

system, referring to Figure 1.1, the coordinates of an object point Qo are related to 

its height h and viewing angle o by:

h-xi+yj or tan2<o - tan20+tan20 (1-2)

where h is the height vector, and h represents its magnitude.

Figure 1.2(a) is an example of range image from our experiment, the depth 

map of two spring washers; the corresponding image of brightness and 3-D surface 

plot are shown in (b) and (c) respectively.

1.2 Focus-Based Techniques

Most of the image-based techniques are based on a pin-hole camera model,

i.e., the image from a camera of finite aperture size, which is generally defocused or 

blurred (except for some in-focus points), will be considered as "imperfect".
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Figure 1.2 Example: Spring-Washers.
(a) Depth Map.
(b) Image of Brightness.
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Figure 1.2 Example: Spring-Washers, 
(c) 3-D Surface Plot (skeleton).

' 1, 
I

/*■ I’*-



Figure 1.2 Example: Spring-Washers, 
(c) 3-D Surface Plot (rendered).
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However, the "imperfect" image is itself a useful source of depth information. 

As shown in Figure 1.3, the surface of a 3-D object is "copied", through the imaging 

system, into an "image surface" on which all the surface points are exactly focused. 

The image taken at /’ is generally defocused. The geometrical blur on the image- 

plane, d, is related to the distance l0 of the surface point Qo by:

A>“
f- l'

I'-f + dF
(1-3)

where f is the focal length, and F refers to the system’s F-number, f/D. Note that 

I’ and Zo in Eq.(l-3) are related, respectively, to distances / and l0’ in Figure 1.3 by

Lens Law:

and (1-4)
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Image-based methods that exploit this kind of information are focus-based, and 

are often referred to as shape-from-(de)focus. This approach avoids, inherently, 

heuristic assumptions on the scenes and images (Subbarao, 1989; Hwang, 1989), 

which are often used in techniques based on the pin-hole camera model. For 

instance, in depth-from-stereopsis the correspondence problem often requires 

heuristic solutions; in shape-from-shading, the reflectance model of visible surfaces 

needs to be assumed in order to recover the surface geometry. The problem of 

image point-to-point correspondence does not exist in this approach, and the regional 

correspondence between images can be attained, in general, by a simple 

magnification modification or normalization (Horn, 1968; Subbarao, 1989).

1.2.1 Shape-from-Focus

To estimate the quality of focus, a number of focus sharpness criteria 

{criterion), abbreviated as FSC, have been proposed (Jarvis, 1983; Krotkov, 1987; 

Nayar, 1992). Since o (refer to Figure 1.3) exhibits its global minimum (ideally zero) 

if r=l0’, where If is the image-distance corresponding to Zo, the FSC must be so 

designed that the global extreme value is assumed at Zo. Obviously, searching for the 

FSC extreme by constantly accommodating camera parameter(s), usually the image- 

plane position, is a way to find the object-distance of a surface point. Techniques 

employing this strategy are referred to as shape-from-focus (SfF).

Although fast searching algorithms can be applied (Krotkov, 1987), this 

approach is inherently slow since it involves recording and computing a large number
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of (theoretically infinitive) images. Horn (1968), Jarvis (1976, 1983) provided some 

technical details on focusing relationship and computational formulae for FSC. 

Krotkov (1987) evaluated and compared different FSC. Das (1989) presented an 

interesting approach integrating both stereo and focus as sources of depth for surface 

reconstruction. Schlag (1983), Engelhardt (1988), Darrell (1988), and Nayar (1992) 

also presented different approaches based on SfF strategies.

1.2.2 Shape-from-Defocus

Instead of accommodating the vision system for the best focus, Pentland (1987, 

1989), Rioux (1986), and Grossman (1987) proposed and implemented algorithms 

based on so called shape-from-defocus (SfD) (Hwang, 1989).

In their algorithms, only a few (even one) images are processed and the 

distances are estimated from defocus conditions on the images. It has also been 

investigated that the human visual system may use the same information, the gradient 

of defocus, to perceive depth (Pentland, 1987). Subbarao (1987, 1988, 1989) 

presented more general solutions for SfD. Hwang (1989), and Lai (1992) further 

modified and generalized Pentland’s algorithms with some experimental results. 

Cardillo (1991) presented a calibration scheme for such SfD methods.

Most of the focus-based techniques are passive, by which we mean that no 

controlled illumination is involved, and thus the natural scene radiance is recovered 

along with the depth map. Two exceptions are the techniques given by Engelhardt 

(1988) and Rioux (1986), where controlled grating and grid illuminations, and
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aperture masks were used.

1.3 Thesis Organization

In this thesis, we are concerned with passive SfD techniques. In Chapter 2, 

such techniques are reviewed and a new technique is proposed and discussed. This 

new technique acquires depth information by modelling the gradient of focus and 

both scene depth and albedo can be recovered in parallel. The technique is detailed 

in Chapter 3, which includes the related rationale and algorithms. An 

implementation of a system is described in Chapter 4 together with some 

experimental results. A discussion of the technique and recommendations for further 

work conclude the thesis in Chapter 5.



CHAPTER 2

PASSIVE SHAPE-FROM-DEFOCUS

2.0 Introduction

In this chapter, we first discuss, in general, passive shape-from-defocus (SfD) 

techniques. A new technique based on modelling the gradient of defocus in image- 

space is then introduced. Emphasis is placed on the comparisons amongst the 

assumed models in these techniques.

2.1 Modelling Point Spread Function

The blur size d in Eq.(l-3) is directly related to the point spread function 

(PSF) with respect to the image position in the imaging system, and it is often 

referred to as the spatial constant, or spread parameter, of the PSF. Apparently, if we 

can somehow estimate d, the object-distance /0 can be derived from Eq.(l-3). Indeed, 

most passive SfD techniques are based on modelling or evaluating the PSF, and 

Eq.(l-3) or similar formulae are more or less involved. These techniques appear to 

be practically feasible, and results with reasonable accuracy have been reported 

(Grossman, 1987; Pentland, et al. 1989; Cardillo, 1991; Lai, 1992). However, such

11
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PSF model-based approaches are inherently inaccurate, and thus do not ensure high 

quality results (Nayar, 1992).

Since Eq.(l-3) is deduced from the geometry of lens imaging, d in the 

equation only represents the pure geometrical blur caused by out-of-focus, or 

defocus. On the other hand, the actual blur, whatever means is used to obtain it, is 

not caused by geometrical defocus alone. Therefore, substituting d in Eq.(l-3) with 

the actual blur would yield errors (usually nonlinear) in calculating distance /0. 

Replacing d by kd (Pentland, 1987; Subbarao, 1988), where A: is a constant of 

proportionality determined through camera calibration, may eliminate the effect of 

diffraction, but not the effect from factors such as optical aberrations, vignetting, 

discretization, etc. In the worst case, where an object point happens to be exactly in­

focus, d is zero but the actual blur, caused by aberrations and other effects, is not.

Secondly, in these techniques, d must be characterized as one of the 

parameters in a PSF model. For mathematical simplicity, a bivariate symmetric 

Gaussian was suggested (Pentland, 1987), and d was taken as its spatial constant. 

According to Central Limit Theorem, the model is accurate where defocus is 

comparable to many other blur factors, which is often the case where defocus is very 

small. Obviously, the model is inaccurate where defocus prevails. In this case, the 

geometrical-optics predicted model, the symmetric cylindric one, would be more 

appropriate for describing the PSF (Goodman, 1968). Subbarao and Natarajan 

(1988) even provided a more general alternative: the circularly symmetric model. 

The second order central moment is taken as the spatial constant. However, in a
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practical optical imaging system, which is not shift-invariant, the symmetrical PSF is 

not an exact model for off-axis image points. Also, in the early stage of processing, 

the differentiation operation (for central moments) is often vulnerable to noises. In 

an attempt to generalize an algorithm using defocused edges to infer depth, Lai et 

al. (1992) decomposed the spatial constant in Gaussian PSF into two orthogonal 

ones. Though less sensitive to noise and edge orientation, the algorithm is based on 

the assumed validity of the Gaussian model.

Indeed, because of the complexity involved, it is difficult to model PSF that 

is both analytically accurate and technically feasible. In the next section, a new 

method for determining SfD without modelling PSF is described.

2.2 Modelling Gradient of Focus

An alternative is to model the gradient of focus (or defocus). As shown in 

Figure 1.3, the size of the blurred image of a surface point Qq, d, will vary as we 

make certain changes on camera (optical) parameters, for example, by moving the 

image-plane back and forth (changing the parameter /’). In other words, a gradient 

of (de)focus exists in image-space. Since such a change on camera parameters also 

gives rise to the change of object-plane position, the position from which an object 

is sharply focused, we can always associate this gradient of de(focus) in image-space 

with such a positional change in object-space. For the simple lens system in Figure 

1.3, for example, we can easily associate d in image-space with the object-distance I 

from Eq.(l-2) and (1-3):
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d - 1^2-III ♦ m (2-1)
t F ' *

where t=tx is the inverse object-distance; t0=/0'1 refers to the inverse distance of the 

surface point <20; and

m (2-2)

is the magnification associated with each pair of object/image planes.

2.2.1 Focal Gradient

Conceptually, the gradient of focus and the gradient of defocus are different: 

"focus" here implies the quality of focus, and should be so quantitatively described 

that its global maximum is taken at the position of exact focus (Jarvis, 1983); 

"defocus", on the other hand, refers to the severity of defocus, and is evaluated so 

that a global minimum occurs at the same position. The blur size d on the image 

plane, for example, can be a measure of defocus in this sense since it takes its global 

minimum, which is zero ideally, at the position of exact focus. Obviously, a measure 

of focus quality, if used inversely, can be a measure of defocus severity. In this light, 

the focal gradient is used, in this thesis, to refer to either the gradient of focus or the 

gradient of defocus, and, as we already do in Chapter 1 without explanation, the 

focus sharpness criterion (FSC) is used in its broader sense (Krotkov, 1987), i.e., a 

FSC assumes its global extreme, either maximum or minimum, at the position of exact

focus.
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2.2.2 Parameter Estimation from Focal Gradient

In practice, the focal gradient is quantitatively evaluated with a FSC. The 

focal gradient function, which describes the aforementioned relationship between the 

focal gradient and the object-plane position, is then defined as a function of 

normalized FSC in terms of the inverse object-distance t, and will be represented by 

J(Z) throughout the thesis. Without question, J (7) must also assume a global extreme 

at t=t0, where lies the surface point Qo. In addition, it will be shown that J (7) is 

symmetrical to, and monotonic on both sides of, the point t0.

Apparently, the geometrical centre of the J (7) curve indicates the position of 

exact focus. Mathematically, this centre, namely t0, can be estimated from only finite 

number of J(z) values at known points provided an analytical model for the curve is 

assumed. In the proposed technique, the acquisition of range data is, in essence, 

such an estimation procedure for the parameter t0 from J(t, t0).

Applying this procedure to every point on the images, we are able to extract 

the distance for every surface point and thus establish the whole surface geometry. 

With parallel processing technology and the programmable motion control system 

currently available, the distances can be extracted in parallel, and in real-time.

2.2.3 Parameter Association through Calibration

In this parameter estimation technique, the value of J(f,/0) at a point, say

J(q/0), i = 1, 2,...... , n, is acquired from the z'th image taken with a known setting of

camera parameters. The number n here refers to the number of points required to
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estimate t0, which is equivalent to the number of images needed. A calibration 

procedure, which determines the relationship between the camera setting and t„ is 

required for the following reasons:

1) In general, it is difficult to obtain an accurate analytical relationship between a 

setting of camera parameters and t in object-space;

2) Even if such a relationship does exist, as is the case for a simple lens system, 

where one of the camera parameters, is analytically associated with t=l'x through 

Eq.(l-4), it is always less accurate to infer tx from such a relationship than physically 

searching for the best association.

3) In practice, camera parameters are often better recorded and acquired physically 

in terms of their changes, i.e., their relative values. In this case, analytical relations 

such as Eq.(l-4) cannot be applied.

In addition, through the calibration, the magnifications between each 

associated pair can also be found so that the magnification normalization can be 

carried out accurately for the regional correspondence amongst the images. Though 

it is time-consuming and computationally complex, the calibration is a once-for-all 

procedure.



CHAPTER 3

DEPTH ESTIMATION FROM FOCAL GRADIENT

3.0 Introduction

In this chapter, we elaborate this new technique that estimates depth from the 

focal gradient. We first address the problem of regional image correspondence; then 

discuss, in detail, the validity of the assumed attribute for the focal gradient function 

and how a FSC, the energy measure in particular, can be applied for describing the 

function. Finally, some algorithms based on different analytical approximations for 

the focal gradient model are presented.

3.1 Regional Correspondence

The diagram of a monocular camera system is given in Figure 3.1. The 

object-planes at different positions, P2, ..., PB, are associated, respectively, with 

image-planes Fj’Depending upon the system and how the camera parameters 

are adjusted, the image-planes may physically coincide. For the object-planes, the 

differences in position result from the changes of camera parameters. The physical 

movement of the image-plane, the translation of the lens along the optical axis, and

17
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the change of focal length (for the zoom lens), for example, are all considered in this 

technique as such parametric changes.

3.1.1 Scale Normalization

The points Qp Q2, •••> Qn on object-planes are the geometrical centres of 

the projections from Qo, the object surface point. Q2i Q2,..., Qn’ in image-space are 

the correspondents to those projection centres in object-space. By the correspondent

'fie mean that if an object point is positioned at Qx (z = l, 2, ....... , «), an exactly

focused image of the point must occur at Q? in image-space. As mentioned before, 

the association of each acquired image P’ with the inverse distance and the 

magnification between the associated object/image pair, mx, are determined through 

a system calibration procedure.

Although the acquired images usually have the same size, and there is no
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rotation among them, they are often different in scale. In Figure 3.1, for example,

we usually have ...... *Qn’On\ In other words, there is a region-to-

region matching problem. Although the problem was noted in some of the previous 

work (Krotkov, 1987; Subbarao, 1989; Nayar, 1992), there appears to have been no 

experimental result where it was both addressed and solved.

First of all, the images must be normalized so that they are all the same in 

scale. In this technique, given a calibrated system (with known tt and mi associated 

with each image), the normalization procedure is straightforward. From the 

geometry in Figure 3.1, we have

Q- O- -m,- • 2f • tana (i-1,2,... ,n) (3-1)

where mx = Q’O’/QP^, determined through the calibration; tano> = QqOJIq.

Dividing in Eq.(3-1) by a factor

yields the normalized image height that only depends on to, the viewing angle 

corresponding to Qo:

h - K‘ tanw (3-3)

where K is a scale factor which determines the actual sizes of the normalized images.

In practice, K is often chosen so that the values of R; are close to 1. For a 

given digital image resolution, selecting Rt< 1 results in images becoming larger and 

we gain no extra information. For f?j>l, images become smaller and we lose
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information.

As shown in Eq.(l-2), given the directions of two orthogonal coordinates, the 

height vector h whose (normalized) magnitude is described with Eq.(3-3) can always 

be decomposed into two independent components. Therefore, depth maps obtained 

from this technique must be in the form of z-0</» or z-tan0tan</>, which, according to 

Eq.(l-l), can be directly converted into the more common Cartesian system.

3.1.2 Reference Point

Note that to perform only scale normalization, it is not necessary to assume 

a reference point or the origin of coordinates on the images. However, it is 

necessary to locate at least one reference point on the images that have been 

normalized, to ensure a complete matching amongst them. Feature points on the 

images are used to establish the correspondence among images in shape-from- 

stereopsis. In SfD, a feature point could also be taken as the reference point on the 

images, though finding such a feature point may not be as straightforward as 

normalizing the scale and a blurred feature point on the defocused images may 

introduce nonnegligible matching errors. The regional correspondence problem 

could then be solved and a depth map be acquired. However, without knowing the 

location of the optical axis, it is impossible to convert the depth map into real world

3-D coordinates.

The position of the optical axis on the images can be determined through a 

once-for-all calibration procedure and, within a distance range, it can be accurately
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Figure 3.2 Feature Points and Optical-Axis.

located using readily available optical methods. More importantly, the optical axis 

on the images is itself a good reference point for image correspondence. It can be 

shown that the matching error caused by the error of locating the optical axis on the 

images is far less than that caused by the error of locating a feature point.

Suppose that two MxN images in Figure 3.2(a), It and I2, are taken for the
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same object with different and thus have different scales. The normalized images, 

1/ and I2’, are in Figure 3.2(b), where they become the same in scale but different 

in size. On the original images, O represents the real position of the optical axis 

which is, say, inaccurately located (in a once-for-all calibration) at O* and the error 

is | aAo |, where ho is the height vector for the optical axis position on the images. 

Suppose S then represents a feature point, which is erroneously located (in a 

measurement) at S/ and S2 on Ij and I2 respectively. O’, O*’, S’, 5/’ and S2’ are the 

corresponding points on the normalized images, and | aAs | represents the relative 

error locating S’, where hs is the height vector for the feature point. Rx and R2 in the 

figure are, referring to Eq.(3-2), the normalization factors for Ix and I2 respectively.

Obviously, if S were chosen as the reference point, two normalized images 

would be dislocated to each other by | aAs |. On the other hand, if we choose the 

location of optical axis on the images as the reference point, the images will only be 

dislocated by | a/io| -| l//^1-l/7?21. In SfD, the differences of images in scale are 

usually very small, and so is | l/7?j-l/7?21. In our experiment, for example, five 

object-planes are calibrated, and 11/R1-1/R51 is only about 0.015 (assuming 7?3=1).

Applying this normalization procedure in both orthogonal directions to all 

points on the images will ensure the direct matching amongst all images, region to 

region, point to point. Note that the position of the entrance pupil is implicitly 

assumed to be fixed in deriving Eq.(3-3). Indeed, this condition can be readily 

ensured in practice, and it enables all the projections from Qo to be in the same
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direction toward the entrance origin so that a linear scale modification is made 

possible. Subbarao (1988) noticed that the lens should not be moved during the 

measurement. Further analysis shows that in a general system, except for images of 

objects of no depth variation (the vertical planes), fixing the entrance pupil position 

is the only way to ensure the correspondence amongst the images.

3 J Focal Gradient Function

The symmetry and monotonicity is the necessary attribute assumed for J(f), 

the focal gradient function. A real J(t) curve obtained from this experiment is shown

in Figure 3.3 (through aperture of F/2.8). In this model, the focal gradient is 

practically evaluated by a focus sharpness criterion (FSC). We first examine how the 

FSC in a diffraction-limited system behaves with respect to t. Obviously, the only 

cause for image degradation in such a system is out-of-focus. In other words, for
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such a system, the quality of image and the quality of focus imply the same, as do a 

criterion for image quality and a FSC. Since the quality of image in a system is 

primarily characterized by its point spread function (PSF), any criterion for image 

quality, a FSC in this case, should behave, in principle, in agreement with the PSF.

A simple geometrical relationship in Eq.(2-1) shows how the PSF, 

characterized here by its spatial constant d, varies with t. After the necessary 

magnification normalization on the images by R in Eq.(3-2), we have

d-^-lt-tol (3-4)

which is symmetrical to and monotonic on both sides of f0, and has its minimum at 

this position.

The analysis based on diffraction optics provides in the spatial frequency 

domain a similar conclusion. The optical transfer function (OTF) for the diffraction- 

limited system of a square aperture is derived as (Goodman, 1968, p.125):

OTF(t-t0,rx,/y) - tri( *)• tri(_/) • sinc[ (t-t0)D2 f,
(^) (1--^) ] •

sinc[
(t-t0)D2 fv lfvl' o’ ( *)(1- *)] 

r0 r0
(3-5)

where A. is the wave length; fx and fy are two independent spatial frequency 

components; D is the aperture width.

The incoherent cutoff frequency, beyond which no frequency component is

transmitted through the system, is defined as:
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where m, referring to Eq.(2-2), is the magnification associated with the imaging 

position.

After the images are normalized by R in Eq.(3-2),/0 becomes a constant, i.e., 

it is irrelevant to t = 1//. The functions tri(x) and sinc(x) in Eq.(3-5) are defined as:

. ,1-lxl lxl<l
tn(x) Q otherwise

(3-7)
sinc(x) - sin^y)

7TX

At a given frequency point (fx0, OTF is only a function of t-t0. This 

function is symmetrical to and maximizes at tQ. Due to the minor fluctuations of 

sinc(x) beyond its first zero, OTF(f-Z0) is not monotonic in general. However, if the 

defocus is kept within a range (so that x in sinc(x) is not beyond the first zero), the 

monotonicity can be assured. This is the case for this technique since only certain 

(usually small) depth can be extracted with the technique. Moreover, in most 

applications, not just one but a range of spatial frequency components are involved. 

The integration of OTF over such a range is also a function of t-t0 and this function, 

on close examination, is monotonic on both sides in general.

It is worth noting that OTF in Eq.(3-5) is the normalized form of the Fourier 

transform of PSF. Since the magnitude of brightness on images varies as we change 

the camera parameters, the non-normalized transfer function, or any other non- 

normalized criterion for image quality, may not have the desired properties. This
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intensity normalization for image quality criterion is not critical in shape-from-focus 

(SfF) (Krotkov, 1987), since the position of the global extreme of a focus sharpness 

criterion (FSC) is little affected by the brightness variation. In fact, most FSC in the 

literature are defined in non-normalized forms. However, the symmetry of J(f) will 

be affected by this variation of intensity with camera parameters, and, in this sense, 

those criteria are not properly presented.

For the sake of mathematical simplicity, a square aperture is assumed. An 

examination of PSF for the system with a circular aperture (Born, 1965) would give 

the same result. Indeed, the conclusion from this analysis applies in general to any 

aperture shape.

The real optical imaging system is not diffraction-limited. The presence of 

sources other than defocus in the system, which contribute to the degradation of 

image quality, will inevitably affect the shown properties of J(t). The aperture of the 

system often plays a key role in controlling the non-focus sources on the image 

degradation. For example, according to the theory of primary aberration, given the 

view angle o, the spherical lateral aberration is only proportional to D3, the aperture 

to the third, and the coma aberration, to D2. Generally speaking, if the aperture is 

kept unchanged during a measurement, the "non-focus" effect is practically constant 

over a certain range of t. Obviously, this constancy may not hold well for t over a 

large range. However, over such a range, defocus must prevail, and the 

comparatively small "non-focus" effect is often negligible. Therefore, the symmetry 

and monotonicity of J(f) should remain in a practical system, as is evidenced from
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the real J(r) curve in Figure 3.3 where the normalized energy is used to evaluate the

function.

3.3 Focus Sharpness Criterion

In principle, J(f) can be evaluated with any FSC. Krotkov (1987) listed and 

discussed most FSC that had appeared in the literature. All the criteria are 

consistent in that the global extremes are assumed at the sharpest focus.

3.3.1 Window Operation

For each point on an image-plane, Q’ in Figure 3.1 for example, a FSC is 

usually evaluated with a calculation from a window on the image-plane, centred at 

Q’. Windows centred at Qt’, Q2\ ..., and <2n’ all correspond to the same small area 

on the object surface, centred at <20. This window-to-window correspondence is 

ensured, in principle, with the ensured regional correspondence (Section 3.1).

Apparently, this technique only acquires the average distance within the small 

surface area. Eventually, the acquired 3-D surface geometry is a "flattened" version 

of the real surface — the rapid (usually minor also) depth variation on the surface 

diminishes in the meantime. The larger the window, the more the surface is

flattened.

On the other hand, the accuracy of distance estimation in this technique 

depends partly on the accuracy of the calculation from the window, which is, in turn, 

affected by factors such as random noise, window position error on the image,
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sampling and grey-level quantization, and even the abundance of spatial frequencies 

from the intensity distribution in the window. With the window large enough, all of 

the effects can be statistically reduced or even eliminated. In this sense, the larger 

the window, the better the accuracy of the acquired distances.

Therefore, a balance between the two requirements is necessary. Ideally, the

window should be such in size that the resultant distance error from such a window

calculation matches the actual depth variations in the small surface area 

corresponding to that window. We can only select the proper window size for a 

specific application by trial-and-error. Generally speaking, larger windows for 

smooth object surfaces, and smaller windows for surfaces with precipitous depth

variations.

Processing defocused images with windows introduces the window border effect 

(Subbarao, 1988). This effect is characterized by the "spread-out" of intensities from 

neighbouring regions into the window due to image blurring. This "spread-out" is 

uneven: for a window on the image-plane close to the exact focus position, the 

intensities are little spread into the window because blurring is little; for a window 

away from this position the spread-out is more because of more blurring. Therefore, 

in a sense the window-to-window correspondence dose not hold precisely. This 

phenomenon always poses a problem in PSF-model based methods (Pentland, 1987; 

Subbarao, 1988).

However, the problem does not exist in the proposed technique. On one 

hand, given the window size, this border effect only depends upon the degree of
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image blurring. On the other hand, according to the analysis in Section 3.2, the 

image blurring in one form or another must be a function of t with the shown 

attribute: symmetry and monotonicity. Therefore, the effect should not change the 

attribute for J(f), the model for the focal gradient, nor should it affect this technique 

that is primarily based on the modelling.

3.3.2 Energy in Power Spectrum

Amongst all the known FSC, the energy measure (Subbarao, 1987) that is 

defined as the normalized power spectrum in the window is of particular interest to 

us. This criterion is well-defined and consistent with others. In addition, it is less 

vulnerable to noise and, after a conversion from frequency domain to space domain, 

it is computationally simple and thus less time-consuming. We believe that it is one 

of the best candidates for representing J(r), the focal gradient function, in this 

technique.

Referring to Figure 3.1, we begin with a small surface area centred at <3(), and 

positioned at tQ. On an image-plane with parameter t, we can always find a window 

corresponding to that area. The normalized power spectral density on that window 

is then a function of t, and defined as

P(/X,fy,t)
L?(fx,fy,t)l2 
1.7(0,O,t)l2

(3-8)

where is the Fourier transform of i(xy,f), the intensity distribution inside the

window on the image-plane associated with t:
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^(rx,fy,t) -JJf (x,y,t)-exp[-27rj(xfx+yfy) ]dxdy (3-9) 

where A is the area of the window.

From Eq.(3-5), defocus in the spatial frequency domain is primarily 

characterized by the attenuation of (high) frequencies. Therefore, Pif^t) at a fixed 

frequency pair (f^, would provide a reasonable FSC. In practice, however, 

selecting (fM, fy<)) can be subjective since the intensity distribution on the target 

surface is often analytically unknown. Even if the "optimal" (fxofyo) can be selected, 

it is always task-dependent. Moreover, the criterion is vulnerable to noise in the 

frequency domain.

Indeed, a more robust FSC is the integration of Pif^t) over the entire 

frequency space, which yields the energy in terms of power spectrum:

^(t)-JJp(fx,fy,t)drxdfy (3-10)

where B is an area in the spatial frequency domain.

Theoretically, area B stretches from -°o to +°° in both orthogonal directions 

in the domain. In practice, it is often an area of finite size depending upon how the 

image is sampled.

3.3.3 Energy and Grey-Level Variance

% (t) is not dependent on a specific frequency component and the effect of 

noise is much reduced. However, % (t) in the form of Eq.(3-10) involves a large
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amount of computation, and special hardware is often required for FFT operations. 

In fact, %(f) can be as well described in the space domain through Parseval’s

Theorem:

l.^(/x, fy, t)l2dfxdfy - J|lf (x,y,t)l2dxdy (3-11)

The Grey-level variance (Jarvis, 1976; Krotkov, 1987), which is defined as 

V(t) - A JJ[f (x,y,t)-fm(t) ]2dxdy (3-12)

where

f»(t) ‘ JJf IW'Wxty (3-13)

is directly related to & (t). Applying Eq.(3-ll) to both Eq.(3-10) and (3-12), we

obtain

^(t)- l[l + v(t) 1 (3-14)

For a ITxlT square window on a digitized image, V(r) can be calculated from

u w
££if(*,y>
x-1 y-1

-f I2

W2

u u
£Ef(*,y>
x-1 y-1

(3-15)

3.3.4 Fast Grey-Level Variance Calculation



32

(3-16)

A simple "running" scheme can be employed to speed up the grey-level 

variance calculation. In extracting distances for all or selected points on the 

normalized images, the IFxIF window moves, in either orthogonal direction, L 

columns from one selected point to the next, where L is the sampling interval on the 

images. In each transition, the content in the window is updated by throwing away 

WxL pixels and adding JFxL new pixels. The remaining Wx(W-2L) pixels are 

unchanged.

To implement the fast scheme, Eq.(3-15) is rewritten as:

V-

W2 x-1 y-1

and fm and (f2)m in the equation are updated through

W L
[f(xa,ya)-f(xbtyb)]

(f2) J- (f2) [f2 (xa,ya)-f2 (xb,yb)]
IV 1 1

where fm’ and (^)m’ are, respectively, the values of fm and (f2)m after the transition; 

(xbJyb) refer to the image points to be abandoned and (xaJya) those to be added.

Under this scheme, the average time(s) each pixel is processed is only about 

2W/L (W>2L) as compared to W2fl}‘ without employing it.

(3-17)

3.4 Algorithms
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3.4.1 Focal Gradient Function Model

To estimate the distance (in terms of t0), the analytical form of J(t) must be 

assumed. The only knowledge about J(t) is, for the moment, that it is symmetrical 

and monotonic and thus takes a global extreme at t0, its geometrical centre (Section 

3.2). Obviously, an assumed model is theoretically valid if it is based on, and only 

on these shown properties of J(t).

Taylor Expansion of J(0 at t0 provides such a model. Because of its symmetry, 

only terms to the even power are left in the expansion:

J(t-t0) -a+b(t-t0)2 + c(t-t0)4 +............. (3-18)

where a, b, c,...... , are constants.

The monotonicity of J(f) ensures its global extreme at t0. The analysis shows 

that tQ can be analytically estimated from J(W0) in Eq.(3-18) that includes terms up 

to the fourth power. Two algorithms are then developed that are based on, 

respectively, the quadratic and the quadruple approximations for J(t-t0).

In the following algorithms, normalized inverse distances are used for 

mathematical conciseness. Suppose n images are required in one of the algorithms.

The normalized inverse distance is defined as

n
t-_-1 where (3-19)

n i-1

where T is the mean of n known inverse distances, each associated with an acquired 

image.
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3.4.2 Algorithm 1: First Order Approximation

In this algorithm, J(W0) is only taken to its quadratic term. Three images 

(n=3) with known tx are required:

Ji«a+b(t,--t0)2 i-1,2,3 (3-20)

where Jj (i = 1, 2, 3) represents the value of J(fj-f0) obtained from the ith image. 

Simple manipulation of Eq.(3-20) yields

•^23(^1 t2) ^12(^2 tj)
2 [^23(^1“ ^2) - ^12 (^2“ £3) 1

(3-21)

where

Jj j — 1-1,2,.. . ,n (322)

We can always calibrate the system to satisfy

t1-t2-t2-t3 (3-23)

Substituting Eq.(3-23) into Eq.(3-21), we have

to ti Jl3
2(J23-J12)

(3-24)

3.4.3 Algorithm 2: Second Order Approximation

One more image is required (n=4) in this algorithm:

J1-«a+b(tj-t0)2 + c(tj-t0)4 i-1,2,3,4 (3-25)
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Manipulation of Eq.(3-25) yields

2C3t‘ + C2t0 + Ci+ ° -0 (3-26)
*-0

Mathematically, we can obtain the analytical solution of t0 from Eq.(3-26) 

though it is tedious. However, the analysis shows that Co=(), if, and only if

(3-27)

and Eq.(3-26) is reduced to a quadratic. As in Algorithm 1, the relationship in 

Eq.(3-27) is ensured through the calibration.

Simplifying Eq.(3-26), we obtain

J14 J23 )tJ+(J12-J34)t0+4(tr^) (Z^ + ^)-0 (3-28)

Solving Eq.(3-28) yields

(3-29)

where "±" is determined from a priori knowledge about J(t): what extreme is assumed 

at t0. The energy in Eq.(3-10), for example, assumes a global maximum at t0. Simple 

analysis shows that S(/0)<0 for J(t) with the maximum, and S(fo)>O for J(f) having 

the minimum, where

(3-30)
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If C3 in Eq.(3-26) happens to be zero, f0 becomes

J14 . *~2

2(J34-J12)
(3-31)

3.4.4 Other Algorithms

The inverse of the function values in Figure 3.3 yields another J(f) curve as 

shown in Figure 3.4. Assuming J(/) to approximate a hyperbola:

J (t-t0) ~ a + Jb+ c(t-t0)2 (3-32)

leads to another analytical model that may be applied to the inverse energy 

represented J(t). A simple algorithm can then be developed that requires four (n=4) 

images. We have

2-1,2,3,4 (3-33)
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On condition that Eq.(3-27) is satisfied, we arrive at from Eq.(3-33)

fc fcl+fc2 . (J3+J4~Jp) J34+ ( J1+J2~Jq) J12 (3 34)
°“ 2 (J3+J4-J0)J34-(J1+J2-J0) J12

where Jy, /J =1,2,3,4, is defined in Eq.(3-22), and

0 tx(J2-J3)-t2(J1-J4)

In fact, it is possible to design different J(t) models based on observations 

from different FSC employed. The hyperbola model is one example of such 

approaches. For the moment, except for two universal algorithms in Sections 3.4.2 

and 3.4.3, we are unable to give a J(f) model from a specific FSC that is both 

analytically valid and in good keeping with experimental observation.



CHAPTER 4

IMPLEMENTATION AND TESTING

4.0 Introduction

In this chapter, we demonstrate how the technique is applied to 3-D depth 

measurement with a computer interfaced imaging system. After an introduction to 

the system and the related digital image processing facilities, we discuss how the 

algorithms are realized under given hardware and software environments. Then we 

attempt to experimentally evaluate its performance under various conditions and 

provide test results for some real objects.

4.1 System Description

The system consists of an optical imaging device with position-fixed entrance 

pupil and an image detection and storing device. Certain optical parameter(s) of the 

system must also be adjustable and recordable. Imaging processing is accomplished 

by a digital computer, interfaced with the image digitizer for fast image manipulation.

4.1.1 Optical Set-Up

38
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Figure 4.1 Implementing System.
. i,i

i4 ( *
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Figure 4.1 shows the implementation of the system used in our experiment. 

The system includes a Javelin* Ultrichip™ JE-7442 CCD camera and a Nikon 

Micro-Nikkor* 55mm F/2.8 lens for high quality imaging. The lens is specially 

designed to produce a flat field image with low distortion. The entrance pupil of the 

lens is located 14.36mm behind the first optical surface. The Ultrichip camera has 

better than 52 dB signal-to-noise level. By properly setting the internal control 

switches, the operation mode of the camera is selected so that linear, natural 

contour, and low-noise pictures are obtained. The devices, including a bracket 

holding targets, are all mounted on movable carriers and stages sit on a two-meter 

optical rail. The translational movements of the devices are controlled by 

micrometers fixed to the stages and recorded from readings on the micrometer of 2 

micron sensitivity. The alignment of the devices along the rail (optical axis) is 

mechanically ensured and the translational position of the optical axis can be located 

optically.

In this experiment, all the devices are fixed after the necessary adjustment 

except for the CCD camera (or the image-plane position), whose translation along 

the optical axis represents the only allowed change of camera parameters, required 

to obtain different focus conditions (Section 3.1).

4.1.2 Image Processing Facilities

A Sun* SPARCstation 2 using the Unix operating system is connected with 

the imaging system. Images from CCD array are grabbed into frame buffers using
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the VideoPix® facility. Images are captured at a rate of 30 frames per second and 

displayed in the window at about 4 frames per second under Preview Mode. The full 

image (window) size from the VideoPix is 640x480, and the images are quantized 

and stored in 8-Bit (256) grey-scale TIFF format.

SunIP image processing tools in Sunvision* are used to display and process 

intermediate 2-D and 3-D data. The SunART advanced rendering tool and SunGV 

interactive 3-D viewer in the Sunvision package are also used to produce high-quality 

3-D visual images from the acquired range images. Figure 1.2(c) in Chapter 1 is an 

example of such 3-D images.

42 Practical Considerations

4.2.1 Image Correspondence

(1) Optical Axis

According to the analysis in Section 3.1.2, the position of the optical axis 

needs to be first located on the images. In this experiment, the imaging lens is fixed 

on the optical rail, and within an axial range the optical axis can be considered to be 

parallel to the optical rail. In principle, two known feature points on the images are 

required to locate the optical axis of the fixed imaging system. Suppose two M*N 

images in Figure 4.2 are taken, for the same object, at two different image-plane 

positions. O on the images represents the location of the optical axis. and S2 are
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I,: MxN l2: MxN

(xo. Yo) (Xo ,Yo)

o (x*.yj o (xi,y2')
(xi.y,) s2 (x/. y/) s-

s, s’i

Figure 4.2 Locating Optical Axis.

two feature points on image Ix; S/ and S2’ are their correspondents on I2. We have:

and
x\-x0 x±-x0

yi-y0_ y2-y0 

Y’,-x0 Yi~Yo
(4-1)

or

xfo-xfi
Xq~ ---------------------------------

YiYz-YiYz

(Yi-Yi)-(Yz-Y2)

Using only two feature points to estimate the optical axis location is 

erroneous. This is not only because the image resolution is limited by the pixel size, 

but also because locating the blurred features is often subject to intolerable errors. 

In this experiment, the following strategy is adopted that involves a large number of 

feature points:
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1) To estimate x0, a black stripe against bright (white) background, parallel to Y-axis, 

is used as the target.

2) Two edges of the stripe are taken as the feature lines (integration of N feature 

points each along the lines);

3) The edge locations (xj and x2) are estimated from the half-intensity points on the 

blurred edges, in which way the error for locating xx and x2 is significantly reduced. 

For symmetrical PSF, the error can be practically zero.

4) In addition, taking more than two images and using stripes with different widths, 

all increase the abundance of valid feature points and thus improve the accuracy of 

estimating x0.

5) To locate y0, the target is turned 90 degrees, and the procedure repeated.

In this experiment, (x0ly0) is located to an accuracy of 1-2 pixels within the 

axial range of about 5mm in object-space. This matching error is neglectable.

(2) Scale Normalization

The coordinates normalization could be carried out by directly zooming the 

image by a factor as in Eq.(3-2). Depending on which interpolating mechanism is 

used, nearest neighbour, bilinear, or adaptive, zoomed images are usually different 

in grey-scale distributions. In other words, zooming a digital image introduces, to a 

degree, distortion in intensity distribution, especially with the presence of background 

noise. In this experiment, the normalization is performed without physically zooming 

the images. As shown in Figure 4.3, the location of point S1 on the zth image and its
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Figure 4.3 Scale Normalization.

correspondent Sf on the yth image are related through:

(4-3)

and a window on I( corresponds to a window on Ij by:

R, . .i ,j-1,2,..., n (4-4)
Ri

where hx and ht’ represent the height vectors for 5! and S/ respectively; n is the 

number of images required in the algorithm. O in the images refers to the optical 

axis. Applying weights to the pixels, we are able to locate image points at fractional 

pixel positions.

Image points near image comers and edges require extra attention. The 

window fltxWj for S2, for example, exceeds the image border. The window for S3 is 

within the image region, but its match on Ij, the W<xH< window for S3, is not. For
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those points, smaller window sizes are needed to ensure the full window-to-window 

correspondence within the image region.

Note that under this normalization strategy, updating grey-level variance on 

the images is a bit more complex than what is described in Eq.(3-17). The 

calculation of focus sharpness criteria (FSC) from the window also needs slight 

modification. Consider % (t), the energy measure for example. Suppose that f(x,y) 

represents the normalized intensity distribution in the window andyl the normalized 

window size. The intensity distribution in the original (non-normalized) window is 

then a' i(x/Ry/R), and the window area/I -R2, where a is a constant and R is (refer 

to Eq.3-2) the normalization factor, &(t) in Eq.(3-14) represents a calculation from 

the scale normalized window, and let ^(r) be a calculation from the original window. 

Similar to the derivation of Eq.(3-14), we obtain

^R(t)-A^(t) (4-5)
R2

In practice, ^(f) can be modified by simply multiplying itself with the window 

area (which is proportional to R2):

&(t) - (AR2) - (4-6)

in which way, referring to Eq.(3-14), is also "regulated" to have unit base value 

regardless of window area.

Subtracting 1 from Eq.(4-6), we can even further regulate the % (t) value to 

have zero base. In fact, such a regulated form of % (t) is equivalent to the
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normalized variance in the window. In this experiment, unless otherwise specified, 

&(t) is always calculated and referred to this way, and energy and grey-level variance 

are used interchangeably where applicable. The energy function in Figure 3.3, for 

example, is presented in this regulated form.

4.2.2 Camera Response and Noise

For fixed camera parameters and under constant illumination, two images 

obtained at different times have different intensity distributions. This was also 

observed by Krotkov (1987), and termed "temporal variations". The variations are 

not due to the varying incandescent illumination from time to time since they appear 

to be random over the image region even under point source illumination. We 

attribute the temporal variations primarily to the thermal noise on the CCD array

in the camera.

Subtracting two images taken for the same object at different times yields an 

image of temporal variations. Statistically, the variance from this image is twice as 

much as the variance of the actual noise. Applying illuminations of different radiant 

intensities to a plain object, we are able to extract, under our experimental condition, 

the relationship between the noise and the average grey-level on the images. Curve 

I in Figure 4.4 shows the result. According to this curve, the noise level is about 

constant over a range, and the average signal-to-noise level is about 40 dB.

Acquired in a similar way, curve II in the figure shows the camera response 

in terms of grey-level vs relative image intensity. In this experiment, all the
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concerned images are taken within a grey-level range of about 50-220 so that both 

a linear response and a near constant noise level hold over the range.

The presence of thermal noise also results in the CCD camera having non­

zero response without any incoming light. It is observed that with an average of 28 

grey-level, this background response is unevenly distributed over the CCD plane. 

Simple analysis shows that the symmetry of % (t) is affected by this response, 

especially when images are acquired under low illumination level. In this 

experiment, this non-zero and spatially varying response is removed by subtracting 

the images and an image, obtained once for all by averaging a number of images 

taken with no incoming light.

Nevertheless, the effect of thermal noise on this technique is minimal. This 

is not only because the noise is comparatively small and no noise-vulnerable 

differentiation operation is involved, but also because the noise can be statistically



48

eliminated through the image subtraction and the window operation.

4.2.3 Surface Directional Reflection

It is no doubt that this technique fails for textureless surface areas for the lack 

of spatial frequency content. Subbarao (1989) discussed the problem in general and 

provided a solution that introduces "texture" by controlled illumination.

Most machine parts are not Lambertian reflectors either. The sporadic 

directional reflection from the surface often results in saturated brightness on the 

images and causes significant distortion in distance estimation. The glare effect may 

remain for surface features such as edges and corners even if the surface is physically 

or chemically processed. A polarizing filter may be used to reduce the effect. 

However, we observe only limited improvement using the filter, and the improvement 

is often countervailed by the reduced incoming light from non-glaring surface areas.

Median filtering is an effective way to remove scattered noise (Nayar, 1992), 

especially when the noise amplitude is relatively high. A fast 2-D median algorithm 

(Huang, 1979) is employed in this experiment to reduce the noise on depth maps, 

caused primarily by the directional reflection from surface edges and corners. The 

depth map in Figure 1.2(a), for example, is the improved result after 5x5 median 

filtering. Figure 4.5(a) shows one cross-section of the depth map; (b) gives the 

corresponding cross-section from the unfiltered depth map. The improvement is 

distinct, and, as long as the filtering window is small compared with the window for 

distance estimation, the surface "smoothing" effect brought about by the filtering is
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negligible.

Y-340, m-0 . 0 2 5 4 7 (mm/pixel).

(a) From Median Filtered Depth Map.

Y-340, m-0. 02547 (mm/pixel).

X (pixel)

(b) From Unfiltered Depth Map. 
Figure 4.5 Cross-Sections of Depth Maps.

4.3 Calibration Scheme

The aim and the necessity for camera calibration in this technique are stated 

in Section 2.2.3. In principle, the relationship between tx, i = 1,2, ..., n, and a camera
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setting is determined, in the calibration, by the fact that under this camera setting, 

the image taken from ti is exactly in focus (where J(fj) takes its extreme value). The 

number n here refers to the number of (object-planes) calibrated, which must be 

larger than the number of images required in a specific algorithm. The system can 

be calibrated either by searching for camera settings that are associated, respectively, 

with given tt, or by looking for object-distances Zj —1/fj which correspond, 

respectively, to given (the ith) camera settings. Since Eq.(3-23) and (3-27) must be 

satisfied to simplify the algorithms, the first option is, at least for Algorithm 2, the 

only choice.

4.3.1 Searching for Camera Settings

In general, the first option can be described (refer to Figure 3.1) as follows:

1) Position a target at with known and known height, say QP(,

2) Accommodate camera parameter(s) and find the sharpest image;

3) Record Q’O’ (or mt=Q’O’/QP^ and the camera setting;

4) Repeat 1) ~ 3) n times and the system is ready to go.

An object of contrast step-edges, like one used in locating the optical axis, 

may serve as the target. In practice, however, to accurately locate, along the optical 

axis, where the sharpest edge occurs is found severely affected by both thermal and 

discretization noises. Moreover, because of the existence of astigmatic difference in 

the system, the axial location of the sharpest edges is affected by edge orientations.

Worst of all, it is noticed that, depending on which edge finding algorithm is
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used, the sharpest edge does not always correspond with no sensible difference to the 

maximum energy — although all focus sharpness criteria (FSC), including the energy 

and the edge measures, should in principle agree with each other. In consideration 

of these factors, the following two-phase calibration scheme is adopted:

Phase 1. Acquiring magnification distribution using edges:

a) Position a stripe target of known width perpendicular to the optical axis at 

with known t-t (refer to Figure 3.1). The stripe is placed parallel to X

direction.

b) Move the image-plane about P{ along the optical axis, obtaining a series of 

images, the number of which should be large enough to have a good estimate 

of distribution about Pf, wxi(/’).

c) For each image, find ma and record the relative position of the image-plane. 

Note that edges are not necessarily in focus here and edge finding techniques 

must be applied (Shirai, 1987).

d) Interpolate the data and obtain m^F).

e) Place the target along Y-axis, repeat a)~d), obtaining the ratio of mjmy.

f) Repeat a)~d) n times.

Phase 2. Acquiring the records of camera settings using energy measure:

a) Position a plane target perpendicular to the optical axis at Px with given tx.

For the best performance, there should be patterns on the target plane that 

are rich in spatial frequency components. Figure 4.17(b) in the next section 

shows what the patterns look like in this experiment. This kind of target is
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referred to as standard target.

b) Move the image-plane about Pf along the optical axis, obtaining a series of 

images. Searching strategies may be applied here to minimize the number of 

images required.

c) Normalize the images based on mKi(T) and mx/my obtained in Phase 1.

d) Calculate the energy &(/’) on the images and search for the maximum.

e) Record the camera setting corresponding to the maximum.

f) Repeat a)~e) n times.

In principle, n can be very large that a great range of depth is covered in 

object-space. This way, the system gains greater flexibility: the object can be placed 

either near or far away from the system according to the requirements of field of 

view and depth resolution.

To calibrate a large number of t{ is a time-consuming and tedious task that is 

beyond the scope of this experiment. In this thesis, we are mainly concerned about 

the effectiveness and the accuracy of the new technique rather than its flexibility. At 

an average stand off distance of 157.42mm from the system, a total of five (n=5) 

object-plane positions are calibrated over a range of 4.96mm. For a specific 

algorithm, only part (3 or 4) of the calibrated planes are used. The calibration result 

is presented in Table 4.1 where pt refers to the record of the camera parameter 

setting, acquired from the micrometer fixed to the CCD camera.

Because the same FSC (inverse energy) is used in both calibration and 

measurement procedures, there is no problem of disagreement between different
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FSC. Using the same type of light source in both procedures also minimizes the 

effect of chromatic aberration in the system.

Table 4.1 Calibration Result.

i h (mm) A (1/mm) Pi mxi (pixel/mm) myjm*

1 154.98 0.0064524 13.5-05.8 40.1756

1.00944

2 156.19 0.0064024 13.5-40.8 39.7167

3 157.42 0.0063524 14.0-25.5 39.2618

4 158.67 0.0063024 14.5-09.9 38.8107

5 159.94 0.0062524 14.5-44.0 38.3636

4.3.2 Calibration Interval

In this calibration, the interval between each neighbouring pair of calibrated 

object-planes is set for 0.05 1/m and referred to as calibration interval. For the 

convenience of the discussion that follows, we define:

1) the interval between the first and the last calibrated object-planes involved in a 

algorithm as the range of implementation, or I-range. In this experiment, the I-range 

may include 2~4 calibration intervals depending upon which algorithm and how the 

algorithm is implemented.

2) the range of the central region on the J(f) curve, where a good quadratic or 

quadruple approximation holds, as Q-range. There is no absolute criterion for 

determining Q-range. It depends upon the requirement for depth resolution, the 

depth of field of the system, and even the form of J(t). The J(t) curves in Figures 3.3 

and 3.4, for example, apparently have different Q-ranges given the same criterion for
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determining them.

3) the range where linear and low-error-level distance estimates are acquired as the 

range of measurement, or M-range.

In a measurement, the J(t) curve moves along the optical axis as the surface 

depth changes, as does the Q-range. Generally speaking, to obtain a certain M- 

range, the Q-range, wherever it moves, must cover the I-range. Under such a 

condition, the sum of I-range and M-range must equal Q-range. In other words, 

there is a limit for I-range, and the I-range too large may result in intolerable 

distortion in distance estimation. On the other hand, a small I-range only contains 

a small section of Q-range, within which the difference between the measured J(r) 

values may be too little to overcome the measurement noise and the error of low- 

order approximations within the Q-range.

In short, the range of implementation should be such that a good quadratic 

or quadruple approximation for J(t) is ensured within certain range of measurement, 

and the calibration interval can then be selected accordingly.

For instance, as seen from the J(f) curves in Figures 3.3 and 3.4, the interval 

for this calibration (0.05 1/m) appears, at least in Algorithm 1 (quadratic), a bit 

larger for the energy represented J(r), but is fairly reasonable for J(f) described by 

inverse energy (variance). This observation is further examined through a test in

Section 4.4.1.

4.4 Experimental Results
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The algorithms are realized in the C programming language for a SPARC 

station under the Unix environment. The algorithms are themselves fairly 

straightforward. Image pre/post-processing deserves special attention. The weighted 

and fractional pixel, for example, is used in the image processing procedures to 

ensure accurate image correspondence and mapping. The system adjustment and the 

calibration procedures are time-consuming. The programme includes four major

subroutines:

1) Image acquisition: grab images into frame buffers; if necessary, average the 

images to reduce the noise effect.

2) Pre-processing: remove the unevenly distributed noise level on the images; 

normalize the image scales.

3) Distance estimation: apply the algorithm to all or selected image points; obtain 

the depth map.

4) Post-processing: median filter the depth map; convert the depth map to 

Cartesian coordinate system; acquire 3-D plot if necessary.

In this experiment, we choose R3 = l, so the scale factor is (refer to Eq.3-2):

K-m3l3 (4-7)

In other words, whenever a JTxIF window is applied to the images in a measurement, 

it really means that only on the image taken withp3= 14.0-25.5 (corresponding to 

l3 = 157.42mm) does the window size equal to WxW.
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4.4.1 Tests Using Standard Target

The system and the algorithms

are evaluated with the same standard

target as is used in the calibration. 

Over the calibrated range in object- 

space (154.98mm~ 159.94mm), the target 

is placed at 13 different positions. At 

each position, 5 images are acquired

with different calibrated sets of camera

parameters. Depending upon the aim 

of each test, the images are averaged 

over 1~8 frame(s) taken at different

times. To evaluate the effect of

aperture on the accuracy in depth 

estimation, over a dozen images are 

also taken with different aperture sizes.
Figure 4.6 Focal Gradient Function 
Values.

(1) Acquiring J(t) Curves

For each target position, 5 J(t) values can be extracted from the images. An 

approximate estimate of J(t) curve for that position can then be obtained over the 

calibrated range. Figure 4.6(a) is such an example when the target is placed at 

157.42mm (f0=0.0063524 1/mm); (b) shows the result when t0=0.0062524 1/mm. In
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Figure 4.7 Target Positions.

these examples, each image is averaged over two frames, and the energy in a 

400x400 window is calculated to represent the value of J(t).

Obviously, each curve only 

represents a section of J(t). It is not

difficult to combine these sectional

curves into a J(r) curve over a larger 

range and with more interpolating 

points. The only problem is to ensure 

that the same surface area is processed 

for all the target positions. As shown in 

Figure 4.7, given 7?3=1 and assuming the target moves along the optical axis within 

the range, we have:

W- m3h'

■‘■o

or from Eq.(4-7):

(4-8)

(4-9)

where h represents the height of a square surface area to be processed on the target, 

and h’ its projection on the calibrated object-plane; K, the scale factor, is a constant; 

Zo represents the target position, and W the window width corresponding to the height

of that surface area.
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Therefore, to obtain J(f) curves that come from the same surface area, one 

has to apply different window sizes while moving the target from one position to 

another. For example, if we choose 1T=4OO for a measurement, then the actual 

window size for /0=/3 is the same, while that for /0=/5 = 159.94mm must be smaller 

(about 394).

Table 4.2 Values (x100) of Focal Gradient Function.

t (1/m) 6.152 6.177 6.202 6.227 6.252 6.277 6.302 6.327

lF=100 0.600 0.689 0.790 0.911 1.072 1.301 1.679 2.307

tF=400 0.598 0.668 0.762 0.881 1.054 1.307 1.722 2.408

6.352 6.377 6.402 6.427 6.452 6.477 6.502 6.527 6.552

2.774 2.251 1.667 1.309 1.075 0.922 0.795 0.688 0.595

2.887 2.331 1.704 1.307 1.050 0.882 0.756 0.666 0.590

Figure 4.8 and Table 4.2 gives the results of our calculation from two window 

sizes, 400x400 and 100x100, assuming the target position /0=/3. In fact, Figure 3.3
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in Chapter 3 is from one of the results (400x400 window).

(2) Effect of Window Size

Window Size (pixel)

(a) IV = L.

Window Size (pixel)

(b) L = 30.
Figure 4.9 Errors & Window Sizes.
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We now examine how the accuracy in depth estimation is affected by the size 

of windows. The standard target is placed at l3= 157.42mm. The algorithms are 

tested under different conditions and the results are generally the same, i.e., they are 

all, in principle, in agreement with the analysis in Section 3.3.1. Two typical results 

from Algorithm 1 are presented in Figure 4.9. No temporal averaging is performed 

on the images in this test. In the figure, a represents the standard (root-mean- 

square) deviation of distance estimates for a large number of surface points on the 

target plane.

Statistically, to obtain a satisfactory estimate of distance errors, it is 

unnecessary to take into account distance estimates from all the surface points. The 

images involved in obtaining the results in this section are all properly sampled. 

Sampling interval L in Figure 4.9(a) is equal to the window width, which way, 

regardless of window size, all the image points are processed just once in a 

measurement; L in (b) is kept to 30 pixels in both orthogonal directions on the 

images. In the following test examples in this section, unless otherwise noted, the 

window size always equals the sampling interval on the images.

The original data from the figure are listed in Table 4.3. Two sets of the 

result are basically the same, and IF=30 (pixel) is the place where the error of 

distance estimates is about twice as much as the minimal error (<xmin«0.01mm in this 

measurement).

In this and the following two tests, the second, the third, and the fourth 

calibrated positions in object-space are involved in distance estimation, using
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Algorithm 1 and with inverse energy representing J(f). This experimental scheme is 

expressed, in this thesis, as 2-3-4.I. "I" here stands for Inverse energy, and "E" and 

"H" are used to denote the Energy measure and Hyperbola algorithm respectively. 

The "1-2-4-5.E" scheme, for example, indicates that, with the energy representing J(t), 

Algorithm 2 is applied and the 1st, 2nd, 4th, and 5th calibrated object-planes are

involved.

Table 4.3 Distance Estimates, Errors, and Window Sizes.

w
W = L L = 30

Ave. Dist. (mm) a (mm) Ave. Dist. (mm) a (mm)

6 157.456 0.203 157.453 0.101

8 157.446 0.075 157.452 0.076

10 157.448 0.057 157.449 0.056

16 157.443 0.035 157.445 0.032

20 157.441 0.027 157.442 0.027

30 157.439 0.019 157.439 0.019

40 157.437 0.017 157.437 0.016

50 157.436 0.014 157.437 0.014

60 157.437 0.013 157.437 0.013

70 157.436 0.012 157.435 0.012

80 157.435 0.011 157.435 0.011

90 157.436 0.010 157.435 0.011

100 157.434 0.010 157.434 0.010

120 157.436 0.009 157.435 0.010

(3) Time Averaging

Averaging the images taken at different times is a simple way to reduce the
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Averaging Time(s)

Figure 4.10 Errors and Averaging Time(s).

temporal noise. Two examples are provided in Figure 4.10 and Table 4.4 to 

demonstrate the effect. The target is placed at a stand-off distance 157.42 mm from 

the entrance pupil and two window sizes are used in the algorithm (using 2-3-4.I 

scheme).

Table 4.4 Distance Estimates, Errors, and Averaging Time(s).

Ave.
Time(s)

W = 8 W= 30

Ave. Dist. (mm) a (mm) Ave. Dist. (mm) a (mm)

1 157.446 0.075 157.439 0.019

2 157.447 0.068 157.439 0.017

3 157.447 0.066 157.439 0.017

4 157.447 0.065 157.439 0.017

6 157.447 0.067 157.439 0.016

8 157.447 0.067 157.439 0.017

It is observed that to average the images more than two times brings about 

little more improvement on the accuracy in distance estimation. For larger windows
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(e.g. 30x30), without resorting to time averaging, the temporal variations can almost 

be eliminated only through window operation, which is indeed consistent with the 

analyses in Sections 3.3.1 and 4.2.2.

In the following tests, each image is averaged twice in the time domain, which, 

according to this observation, reduces the effect of temporal variations to a negligible 

level (along with the measure removing the average noise level).

(4) Effect of Aperture Size

The size of aperture plays an important role in determining the depth of focus 

or the error of depth in object-space (a discussion on the topic is in Section 5.1). 

Figure 4.11 shows, in an example, how the estimated distance is affected by aperture 

size. In this example, the standard target at 157.42 mm is tested using the 2-3-4.I

scheme and with a 30x30 window.

It is observed that the performance is fairly consistent from F/2.8 to F/4. 

After that, the accuracy drops constantly. Although measures are taken to increase 

the incoming light as the aperture size decreases, the intensity level on the images 

under F/11 is still much lower than normal, which is probably the reason that a much 

larger error is observed under this aperture. Table 4.5 provides the original data

from this test.

Table 4.5 Distance Estimates, Errors, and Aperture Sizes.

Aoerture F/2.8 F/4.0 F/5.6 F/8.0 F/ll

Ave. Dist. (mm) 157.43 157.42 157.22 157.06 157.07

a (mm) 0.017 0.021 0.036 0.077 1.67
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Figure 4.11 Errors and Aperture Sizes.

In this experiment, except for those in this test, all images are taken under 

F/2.8 aperture to obtain the maximum focus effect (or the minimal depth of focus).

(5) Range of Measurement

This test is intended to examine, in an example, how the error in distance 

estimation is related to the range of measurement (M-range) and affected by I-range. 

The distance deviation at a target position is defined as:

Err. - e ± a (4-10)

where a is the standard deviation of estimated distances; and e denotes the 

difference between /0‘, the average of the distance estimates, and l0, the real distance:

e - -Zo-A, (4-11)
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Generally speaking, for a given target position, a represents the relative 

(random) error in distance estimation, and e the absolute (systematic) deviation. The 

value e varies over the range of measurement and its root-mean-square error, ae, can 

be estimated from different target positions within the range.

Figure 4.12 Errors and Ranges of Measurement.

The 30x30 window is used in this test and, unless otherwise specified, the 

same window size is applied to the rest of the tests in this section. Figure 4.12 and 

Table 4.6 provide the result in this test, where the standard target is tested, under 1­

3-5.1 and 2-3-4.I schemes, from 13 different positions over the entire range of 

calibration (154.98mm ~ 159.94mm). The "—" in the table indicates that no 

meaningful result can be extracted at that distance with the given scheme and

window size.

The I-range for the 1-3-5.I scheme doubles that for the 2-3-4.I scheme. It is 

observed that the M-range for the former is about twice as large as that for the latter
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(errors measured within M-ranges are bold-faced in the table). According to the 

analysis in Section 4.3.2, the Q-range for the 1-3-5.I scheme should also be twice as 

much as that for the 2-3-4.I. One should not be surprised at the result since a larger 

average error is observed within the M-range for the 1-3-5.I, and so is a larger Q-

range.

Table 4.6 Distance Estimates and Errors: Inverse Energy Measure.

Target Posi. Zo 
(mm)

2-3-4.I 1-3-5.I

Ave. Dist. Zo* (mm) a (mm) Ave. Dist. Zo* (mm) a (mm)

154.981 — — — —-

155.584 — — 155.741 7.015

156.191 — — 156.195 0.029

156.497 156.383 0.185 156.538 0.092

156.804 156.846 0.021 156.850 0.102

157.112 157.160 0.028 157.136 0.068

157.421 157.430 0.018 157.417 0.032

157.731 157.720 0.034 157.702 0.077

158.043 158.101 0.026 158.003 0.113

158.356 158.667 0.342 158.328 0.099

158.670 — — 158.689 0.029

159.302 — — 159.801 2.963

159.939 — — — —

(6) Energy and Inverse Energy Measures

The J(r) represented by inverse energy has been used in testing the effects of

window, time-averaging, and aperture. It is noticed from Figures 3.3 and 3.4 that this 

J(f) form, as compared with the energy represented J(r), appears to be closer to the
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(a) 2-3-4.1 vs 2-3-4. E.

(b) 1-3-5.1 & 1-3-5.E.
Figure 4.13 Energy vs Inverse Energy Measures.
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low-order Taylor approximations (or have a larger Q-range). The intuition is further

examined in this test.

Two of the "E" schemes are tested for different target positions. The result 

is presented in Table 4.7. The results from 2-3-4.I and 2-3-4.E are compared in 

Figure 4.13(a), and those from 1-3-5.I and 1-3-5.E are in (b). Only data in the M- 

ranges are shown in the figure. It is observed that the inverse energy is superior to 

the energy measure in performance. Because of the smaller Q-range, strictly 

speaking, there is no linear range of measurement (M-range) for either of the "E"

schemes.

Table 4.7 Distance Estimates and Errors: Energy Measure.

Target Posi. 
(mm)

2-3-4.E 1-3-5.E

Ave. Dist. (mm) a (mm) Ave. Dist. (mm) a (mm)

154.981 159.040 0.581 159.488 0.511

155.584 158.857 0.378 — —

156.191 160.334 3.056 156.206 0.091

156.497 — — 156.956 0.072

156.804 156.894 0.040 157.224 0.045

157.112 157.271 0.018 157.345 0.022

157.421 157.425 0.009 157.419 0.009

157.731 157.606 0.022 157.497 0.022

158.043 158.190 0.067 157.630 0.047

158.356 — — 157.919 0.074

158.670 155.219 2.190 158.757 0.109

159.302 155.914 0.567 152.767 8.640

159.939 155.798 0.722 155.405 0.603
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(7) Algorithms

With inverse energy representing J(f), Algorithm 2 is tested under two slightly 

different schemes: 1-2-3-4.I and 1-2-4-5.I. The higher accuracy is expected for 

Algorithm 2 since higher order term in Taylor Expansion is involved. The result is 

listed in Table 4.8 and is shown in Figure 4.14 together with data from Table 4.6.

It is observed that the 1-2-3-4.I scheme from Algorithm 2 performs best, with 

a comparatively large M-range and the lowest average error level over the range. 

The 1-2-4-5.I scheme has a slightly larger M-range but an apparently higher error 

level. One problem with Algorithm 2 is that, for "bad" points on the images {e.g. due 

to the glary surface points), the calculation under the square root in Eq.(3-29) is 

often negative. In practice, we assign to the bad point a large value that is beyond
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the M-range, which is then removed through median filtering.

Table 4.8 Distance Estimates and Errors: Algorithm 2.

Target Posi. 
(mm)

1-2-3-4.I 1-2-4-5.I

Ave. Dist. (mm) a (mm) Ave. Dist. (mm) a (mm)

154.981 — — — —

155.584 155.619 0.019 155.628 0.029

156.191 156.194 0.019 156.264 0.066

156.497 156.490 0.025 156.526 0.037

156.804 156.824 0.020 156.800 0.025

157.112 157.142 0.021 157.099 0.031

157.421 157.430 0.018 157.424 0.025

157.731 157.726 0.029 157.746 0.026

158.043 158.100 0.024 158.045 0.025

158.356 — — 158.322 0.047

158.670 — — 158599 0.079

159.302 — — — —

159.939 — — — —

The 2-3-4.I scheme from Algorithm 1 is relatively simple and fast. For objects 

with small depth range, it is an alternative to Algorithm 2.

The hyperbola algorithm is also tested under two schemes. The resultant data 

are given in Table 4.9. Under either of the schemes, we observe a significant error 

at the centre of the I-range. On close examination, we attribute it to the inherent 

defect in the algorithm.

Algorithm 2 and the hyperbola algorithm are compared in Figure 4.15. With 

this and the result in Figure 4.14, we are able to claim the 1-2-3-4.I (or 2-3-4-5.I) to 

be the best amongst the present schemes available.
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(a) 1-2-3-4.I vs 1-2-3-4.H.

(b) 1-2-4-5.I & 1-2-4-5.H.
Figure 4.15 Algorithm 2 vs Hyperbola Algorithm.
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Table 4.9 Distance Estimates and Errors: Hyperbola Algorithm.

Target Posi. 
(mm)

1-2-3-4.H 1-2-4-5.H

Ave. Dist. (mm) a (mm) Ave. Dist. (mm) a (mm)

154.981 154.607 2.875 155.385 6.921

155.584 155.614 0.018 155.832 3.992

156.191 156.194 0.021 156.208 0.155

156.497 156.499 0.025 156.502 0.047

156.804 156.823 0.599 156.800 0.028

157.112 157.124 0.024 157.107 0.033

157.421 157.430 0.020 157.397 0.436

157.731 157.743 0.035 157.734 0.033

158.043 158.092 0.025 158.044 0.028

158.356 158.535 0.346 158.351 0.061

158.670 158.806 7.765 158.660 0.141

159.302 — — 159.381 0368

159.939 — — — —

4.4.2 Real Scene Tests

Three real scenes are tested and all surface points are processed (i.e. L = 1). 

The objects are all placed near the central region of the calibrated range to ensure 

the minimal error level and the maximum range of measurement. One pixel size on 

these depth maps represents, in both orthogonal directions, about 0.0255mm in real

world dimensions.

(1) Scene 1: U.S, Coin Surface

The maximum depth variation on the U.S. coin surface is measured to be



73

about 0.22mm. Two schemes (2-3-4.I and 1-2-3-4.I) are employed in estimating the 

surface depth and no difference in performance is observed between the two. In fact, 

the same performance is expected given such a depth range (refer to Figure 4.14). 

Two window sizes (10x10 & 16x16) are used and, from the previous testing results, 

the depth resolution (±3ct) for the windows are estimated at about ±0.17mm and 

±0.1mm respectively. The actual depth resolution could be lower than the estimated 

due to less spatial frequency content and excessive directional reflection from the

metal surface.

Figure 4.16 (a) gives the depth map for 10x10 window and (b) for 16x16 

window. In either case, the 3-D relief pattern on the coin surface is distinguished 

from the background. As seen, while the smaller window results in the noisier depth 

map and less depth resolution power, the larger window losses some pattern detail.

The corresponding intensity image is shown in (c). Several intensity images 

are involved in obtaining the depth map. By the corresponding intensity image we 

mean one of the intensity images that corresponds to R = 1 (refer to Section 1.1 and 

Eq.(3-2)). Median filtering with 5x5 window is applied onto the depth map to

reduce the scattered noise.

(2) Scene 2: Spring Washers

A scene composed of two metal spring washers is tested under 1-2-3-4.I

scheme and with 16x16 window. The result from this scene has been shown as an

example in Figure 1.2. The cross-sections of the median filtered and unfiltered depth
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maps have also been presented in Figure 4.5. As seen in Figures 1.2(b), there are 

some excessive glaring places on the edges of the washers.

Note that the metal surfaces in both scenes have not gone through any 

physical or chemical processing. It is believed that the results could be better should 

such processing be performed.

(3) Scene 3: An Inclined Plane

In Section 4.4.1, we obtain the relationship between the distance and the error 

in distance estimation at discrete target positions. For the 1-2-3-4.I scheme with 

16x16 window, for example, a and ae are estimated at about 0.039mm and 0.027mm 

respectively (refer to Eq.(4-10)). The error of measurement, 5, is then estimated

from

6-±3yo*+oz (4-12)

at about ±0.14mm.

We now examine how the error varies continuously over the range of 

measurement. This time, the standard target is inclined slightly from its original 

vertical position. Since the depth variation of the inclined plane in the field of view 

is out of the M-range of 1-2-3-4.I scheme, two schemes, 1-2-3-4.I and 2-3-4-5.I, are 

used jointly to produce the depth map over such a depth range. The 16x16 window 

is applied and the resultant depth map (without median filtering) is shown in Figure 

4.17(a). One of the intensity images is in (b), the focus condition on which, as seen,
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varies constantly from the nearest surface point to the farthest in the field of view. 

Figure 4.18 provides a cross-section of the depth map. The standard deviation of the 

estimated distances from the real distances, measured on this depth map, is about 

0.044mm (or 6«±0.013mm), which is very close to that obtained from the discrete

estimation.

Y-240, m-0.02547 (mm/plxel).

Figure 4.18 A Cross-Section of Depth Map of Scene 3.

It is necessary to note that no detectable field curvature is found in this 

experiment. We attribute the flat field to the high quality lens design and the 

relatively small field of view. The effects of image distortion and other error sources

are briefed in Section 5.1.
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(a) Depth Map: 10x10 Window.
(b) Depth Map: 16x16 Window.
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Figure 4.16 Scene 1: U.S. Coin Surface, 
(c) Image of Brightness.
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Figure 4.17 Scene 3: An inclined Plane.
(a) Depth Map.
(b) Image of Brightness.
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CHAPTERS

DISCUSSION

5.0 Introduction

In this chapter, we first discuss errors at different implementation levels. 

Then we analyze and compare the attained accuracies in depth acquisition from 

focus-based methods including this new technique. We finally discuss its advantage 

and limitation, and summarize the work.

5.1 Errors and Accuracies

Various error sources, some of which have been briefly discussed in the 

previous chapters, contribute to the error or the deformation of depth maps acquired 

from this technique. It is almost impossible to sort out individual error sources and 

carry out quantitative analysis. While it makes little sense just to specify these error 

sources without quantitative analysis, it may be helpful to categorize them according 

to where in the implementation procedure they appear to affect most:

Stage 1: Model Assumption

This technique is primarily based on the desirable attribute of J(r). While its

79
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validity has been theoretically justified, the model may not be strictly valid in a real 

system, due to the presence of factors like vignetting and transversal optical 

aberrations. These factors change more or less with distance and affect the assumed 

symmetry of focal gradient function. In most cases, the changes are minor and often 

negligible.

Stage 2: Model Approximation

Without question, to approximate the focal gradient function, in one form or 

another, introduces theoretical error. As seen by the experimental results, the 4th 

order Taylor Expansion provides a satisfactory approximation for the model.

Stage 3: Calibration

Error of distance measurement causes deviations of the estimated distances.

The error is mainly due to the limited resolution of measuring tools and human error 

in reading amidst calibration, and can be statistically reduced through multiple 

measurements. The effect of this error changes with system magnifications. For 

example, the 2/zm resolution of the micrometer fixed to the CCD camera in this 

implementation is amplified to about 7/xm in object-space.

Stage 4: Implementation

Window operation is required to calculate the values of the focal gradient 

function, which are then used for distance estimation. Thermal noise and image 

quantization and discretization have a direct bearing on producing random errors in 

window calculation. The sharpness of the focal gradient extreme depends primarily 

upon the richness of spatialfrequency content in the window, and the flat-peaked focal
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gradient is more vulnerable to the random noise. Window position error (mainly due 

to the error in locating the optical axis) causes non-correspondence amongst the 

windows. It is believed that the lack of spatial frequency content on the object 

surface plays a key role in determining the severity of the error in distance estimation 

at this stage.

Stage 5: Range Image Mapping

The field curvature results in the axial deformation of the depth map. Note 

that the image distortion does not add extra error to distance estimates in the original 

depth map of Z-Q<j> form, for the images are distorted in the same way and to almost 

the same degree, and thus no matching problem exists amongst them. However, the 

mapping to Cartesian system as described in Eq.(l-l), making use of the (distorted) 

2-D coordinates on the depth map, introduces distortion in depth. Given necessary 

optical data, the distorted depth map can be corrected. In this experiment, we 

discern within the field of view neither of the effects that is beyond the measurement

errors and noise.

Discussions on the accuracy of depth estimation from focus can be found in 

much of the early work. Pentland (1987) and Das (1989) compared the theoretical 

accuracies from focal accommodation and stereopsis and concluded they are 

comparable with each other over a certain range of distance. Krotkov (1987) and 

Das (1989) provided formulae for calculating the depth of field from geometrical 

optics. Generally speaking, the depth of field is a range of distance in object-space,
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within which the object points are indiscernibly imaged onto the image receptor.

The depth of focus, &T, is a range of distance about the focal point in image- 

space, determined by Rayleigh quarter-wave limit (Kingslake, 1983). It is widely used 

as a measure of tolerance for aberration in optical systems. For a general system,

we have

tJ.' - ±--------------- T or ---------------- (5-1)
8nzsin2— 4nzsin2 —

2 2

where A. is the wave length; n’ is the refractive index in image-space; If denotes the 

half aperture angle in image-space. For small aperture, we have

sinU7 - (5-2)
21'

where D is the diameter of the aperture and /’ the image distance.

The corresponding range to the depth of focus in object-space is, assuming the 

system is in air:

7 2
A_Zf - ±2V — (5-3)

D2

where I is the object distance.

This equation reflects how the depth resolution, or the depth of field, changes 

with distance and aperture in a diffraction-limited system. Although the cause for 

the depth error in real systems is more complicated, the basic relationship in Eq.(5-3) 

should remain. Alternatively, a/£ can be as a measure of evaluating accuracies in
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depth estimation, attained from different techniques and system configurations.

For instance, in this implementation, the average distance 1= 157.42mm,

D = 19.6mm, and a/f= ±0.063mm (assume A,=0.5Mm). The average error of 

measurement for 16x16 window is ±0.13mm, which is about twice as much as the a/£. 

For large windows (e.g., >80x80), cx«ffmin=0.01mm, and the minimal error is 

estimated at about ±0.086mm from Eq.(4-12) (assuming the same ae). Note that the 

depth resolution (random depth error) with the large window size is ±3amin, only 

about half of the a/p

Table 5.1 Accuracies from Focus-Based Methods.

Researcher(s) Accuracy Reported I D A/f

Rioux, et al. (1986) resolution: 1mm lm 30mm ±lmm

Grossman (1987) a= 1.25cm lm

Krotkov (1987) a=0.6-1.6% 1.5m~3m 58mm ±0.67~2.67mm

Engelhardt (1988) mean error: ±1.5m 500mm 20mm ±0.63mm

Pentland, et al. (1989) o=2.5-6%

Cardillo, et al. (1991) average error: 4.5mm 750mm 20mm ± 1.4mm

Lai, et al. (1992) error <5% < 163cm

Nayar (1992) mean error: 7.86pm

— (1992) omm=0.01mm, 5 = ±0.13mm 157mm 20mm ±0.06mm

Table 5.1 lists some reported accuracies from focus-based techniques. The 

concerned system parameters, if available, and the corresponding A/f are also listed 

in the table for reference. The wave length A.=0.5Mm is assumed in calculating A/f.

Different terms were used to describe the attained accuracies. Unless it is

unmistakably recognized as the standard deviation, which is represented by a in the
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table, the accuracy is presented the way as it was in the literature.

It is observed that only the accuracies from two active methods are

comparable to that from this technique, with the "resolution" from Rioux (1986) 

being about the same as the and the "mean error" from Engelhardt (1988) about 

two times the A/f. However, the surface albedo cannot be recovered and only 

distances from limited surface points are extracted with these methods, due to the 

structured illumination patterns. While the overall superiority of our technique is not 

claimed for lack of tests over a large range of distance, it is believed that the 

technique is among the best in approaching the physical limit under given system 

configuration.

5.2 Conclusion

This technique is fully passive and parallel: both natural scene radiance and 

surface depth are recovered simultaneously without physical scanning. Modelling the 

gradient of focus instead of the PSF avoids, in principle, errors due to window border 

effect and other practically constant error sources. The depth acquisition becomes 

a procedure of parameter estimation for the focal gradient function. Within a certain 

range, the approximation of 4th degree for the model is adequate and the distances 

can be extracted with accuracy.

The major disadvantage of this technique is its limited range of measurement. 

While the problem can be solved by joining together several estimations over a larger 

range (as we do for Scene 3 in Section 4.4.2), the execution time increases. Secondly,
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unlike other SfD methods that only need one or two images, this technique uses up 

to four images to obtain a constrained depth estimation. Consequently, more 

processing time is required. Although fast algorithm and optimized programs can be 

used, it seems that for real-time application, special parallel processing hardware and 

fast motion control system would have to be employed.

Other related work worthy to be considered in the future include:

1) Test objects over a large range of distance, which may involve calibrating a large 

number of object/image positions.

2) Employ focus sharpness criteria (FSC) other than the energy measure, especially 

in finding a more accurate analytical model for the focal gradient function.

3) Since the field of view is limited for the commercial Nikon lens, this technique 

would certainly benefit from a specially designed and fabricated system that has large 

field of view and comparatively small aberrations.

4) Develop a fully automated focus-based ranging system for 3-D object surface 

reconstruction in computer vision and industrial applications.

In summary, a new image-based technique for depth extraction from focus is 

proposed. The technique is implemented on a simple opto-digital image processing 

system. Accurate distance estimates are obtained that are comparable to the results 

from existing active focus-based methods.
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