
A DEVICE-INDEPENDENT COMPUTER GRAPHICS LIBRARY

THE DEVELOPMENT

OF A DEVICE-INDEPENDENT

COMPUTER GRAPHICS LIBRARY

BASED ON THE CORE SYSTEM

By

OWEN DOUGLAS FRANCES PLOWMAN, B.Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

April 1983

MASTER OF SCIENCE (1983)
(Computation)

mcmaster university
Hamilton, Ontario

TITLE: The Development of a Device-Independent Computer Graphics
Library Based on the Core System

AUTHOR: Owen Douglas Frances Plowman, B.Sc. (Biology,
McMaster University)

SUPERVISOR: Professor K.A. Redish

NUMBER OF PAGES: viii, 165

ii

) ABSTRACT

It has been recognized for some years that the use of

computer graphics systems has great potential for improving man/

computer communication. In the past, however, the high cost of

graphics hardware, and the lack of accepted principles for graph

ics programming, prevented the widespread use of such systems.

Recently, hardware has become more readily available, and efforts

have been made to develop graphics software standards. This

report presents an overview of one of the proposed standards, the

Core System, and also discusses a portable subroutine library,

based on the the Core System, that has been developed for use at

McMaster University. This library, called SSOCS, is written in

Pascal, and allows a user to produce two-dimensional images

without regard to the characteristics of the graphics devices

being used.

iii

ACKNOWLEDGEMENTS

It is my pleasure to thank Prof. Ken Redish for his

direction, encouragement, and patience (together with innumerable

cups of coffee) during the course of this work. I would also

like to thank the members of the Unit for Computer Science, and

my fellow students in the Computation programme, for making my

stay in the Unit very memorable.

I wish to express my appreciation to Dr. Heinz Klein, for

his helpful discussions and critical comments, and also to Dr.

Richard Welke, for his support over the last two years.

I am indebted to my friends for helping me to see this

thing through; in particular, Cary, Patrick, and Pierre have

given me invaluable support, in the bad times as well as the

good.

Finally, my family has been behind me all the way on this

project, and I dedicate it to them.

iv

TABLE OF CONTENTS

CHAPTER 1

1.1
1.2
1.3

Introduction

What is Computer Graphics?
The Importance of Computer Graphics
The Objectives of this Project

CHARTER 2 The Standardization Issue

2.1 The Need for a Graphics Standard
2.2 The Seillac Workshop

CHAPTER 3 An Overview of the Core System

3.1 The Programmer's Model
3.2 Output Primitive Functions
3.3 Primitive Attributes
3.4 Segments
3.5 The Viewing Transformation

3.5.1 Two-dimensional Viewing
3.5.2 Three-dimensional Viewing
3.5.3 Other Capabilities

3.6 Input Primitive Functions
3.7 Control

3.7.1 Multiple View Surfaces
3.7.2 Control of Picture Changes

3.8 Levels of the Core System

CHAPTER 4 An Overview of the SSOCS Library

4.1 Purpose
4.2 Capabilities
4.3 The Choice of Programming Language
4.4 The Device-Independent/Device-Dependent

Interface
4.5 Device-Independent Structure

4.5.1 Output Primitive Functions
4.5.2 Viewing Operations
4.5.3 Control Facilities
4.5.4 Escape Functions

1

1
2
5

7

7
8

14

15
17
18
19
21
22
23
24
25
26
26
28
29

31

31
31
32
37

39
39
40
45
46

v

CHAPTER 5 The S50CS Implementation 48

5.1 Portability 49
5.2 Internal Control 50
5.5 Text-Handling Capabilities 51
5.4 Application Program Interface 53
5.5 Device Drivers 54

5.5.1 Structure 54
5.5.2 Current Device Drivers 56

CHAPTER 6 Conclusions and Recommendations 58

6.1 Conclusions 58
6.2 Recommendations 59

APPENDIX I The Graphical Kernel System (GKS) 60

APPENDIX II The SSOCS Procedures 62

1. Type Declarations 62
2. The Procedures 62

2.1 MOVE_ABS 63
2.2 MOVE_REL 63
2.3 QUERY_CP 64
2.4 LINE_ABS 64
2.5 LINE_REL 65
2.6 POLY_ABS 66
2.7 POLY_REL 66
2.8 MARKER_ABS 67
2.9 MARKER_REL 67
2.10 CREATE_TEMPORARY_SEGMENT 68
2.11 CLOSE_TEMPORARY_SEGMENT 69
2.12 QUERY_TEMPORARY_SEGMENT 69
2.13 SET_WINDOW 69
2.14 QUERY_WINDOW 70
2.15 SET_VIEWUP 71
2.16 QUERY_VIEWUP 71
2.17 SET_NDC_SPACE 72
2.18 QUERY_NDC_SPACE 73
2.19 SET_VIEWPORT 74
2.20 QUERY_VIEWPORT 75
2.21 MAP_NDC_TO_WORLD 75
2.22 MAP_WORLD_TO_NDC 76
2.23 SET_CLIPPING 77
2.24 QUERY_CLIPPING 77
2.25 INITIALIZE_CORE 78

vi

2.26 TERMINATE CORE 78
2.27 INIT VIEW SURFACE 79
2.28 TERM VIEW SURFACE 79
2.29 SEL VIEW SURFACE 80
2.30 DESEL VIEW SURFACE 80
2.31 NEW FRAME 81
2.32 REPORT_MOST_RECENT_ERROR 81

3. Error Messages and Severity Codes 82

APPENDIX III Source Code Listing of the SSOCS Library 85

REFERENCES 163

vii

LIST OF FIGURES

Figure 1: The Core System Input Devices 27

Figure 2: A Comparison of the Core System (Output 33
Level 1) and the SSOCS Library

Figure 3: The SSOCS Viewing Operations 42

Figure 4: The Effect of Clipping 44

viii

CHAPTER 1

INTRODUCTION

1.1 What is Computer Graphics?

A basic definition of computer graphics is that it is the

area of computer science which is concerned with the creation and

manipulation of pictures. This kind of statement, though, is

rather simplistic. The variety of pictures that can be generated

by a computer graphics system range from simple two-dimensional

plots and histograms, that might be produced by an average user,

to complex dynamic three-dimensional images, used in aircraft

simulators and the film industry. The field itself can be div

ided into passive (non-interactive) and interactive graphics.

The former deals with the production of images on output devices,

such as plotters and CRT-based displays, where an observer has

little control over the appearance of the images. Interactive

graphics, in contrast, is concerned with providing an observer

with the ability to manipulate images through graphical means.

Input devices such as light pens, joysticks, or digitizing tab

lets can be used to dynamically control the size, content, and

format of the output on a display device.

1

2

1.2 The Importance of Computer Graphics

The introduction and proliferation of computer technology

has had a revolutionary impact on our society, and we are be

coming more and more dependent on the use of computers for the

smooth functioning of our everyday affairs. This extraordinary

influence is attributable to several factors, notably the great

number of potential uses of computers, and the explosive growth

of their capabilities, in terms of processing speed and capacity,

together with their decreasing costs.

A consequence of these factors is that our expectations

have changed. Computers used to be sufficiently complex and

expensive that only fairly large organizations could afford to

own or use them. They were initially used for scientific applic

ations, dealing with numerical data, and then for commercial

tasks, where the ability to store and process large amounts of

character and numeric data was of primary concern. Today it is

possible for individuals to own or use quite sophisticated 'per

sonal' computer systems, and applications have spread to areas

which do not necessarily have any prim a facie computational

aspects (for example, visitors to major Canadian cities can use

the Telidon system to obtain information on restaurants, tours,

and entertainment).

This expansion of the use of computers does have some

drawbacks. In the past, the usual means of interacting with a

3

computer has been through some sort of textual medium: to pro

duce certain results, people had to write or use programs in some

computer language, and they 'used' the computer primarily through

a keyboard on a card punch or a terminal. This kind of inter

action may have been sufficient for tasks where some sort of end

result was the focus of the application, but a different trend is

now emerging. Because of the diversity of computer applications

much more emphasis is being placed on man/computer communication.

For most ordinary users, and some professionals, however, the

complexity of the man/computer interface represents a formidable

barrier, rather than an open door to communication ID0HE79].

Since the early work of Sutherland^ in the 1960's, it has

been clear that the use of computer graphics systems could great

ly improve the quality of man/computer interaction: "The power,

value, and success of Man/Computer communication via a good

graphics system is undoubted" [STEW79]. The presentation of in

formation and relationships in a pictorial format is a very

effective means of communication, and it may be applied to a wide

range of applications that do not have any obvious visual comp

onent. For example, incorporating a graphics display facility

into a system that is essentially for business data-processing

could have considerable benefit, since the information output

from such a system would be enhanced by the expression of infor-

Ipublished in 1963, and referenced in I SUTH70].

4

mation in a visual form [STEW79]. The office environment is one

area where this could have substantial impact, since management

or clerical information could be more readily assimilated or

interpreted when presented in a pictorial format. This kind of

use of computer graphics is one of the motives behind the design

of systems such as the Xerox Star and Apple LISA workstations.

Given the potential for improved man/computer communic

ation, a reasonable question to ask at this point is why computer

graphics technology is not more widely used. There are several

plausible reasons for this. One is that the relevance of graph

ics to many applications is not always obvious (for example,

office workers may be less likely to think in visual terms than

people in creative disciplines like architecture and design

[STEW79]). Another reason is that until recently computer graph

ics equipment was expensive, and investment in it could not

always be justified. In the past few years, however, the 'micro

electronic revolution' has led to a substantial increase in the

sophistication of computer graphics hardware, with a decrease in

cost, to the point where it is now readily available to the

average user.

Graphics software has been, and remains, a major

obstacle. The wide range of applications, the great number of

equipment manufacturers, and the lack of an acceptable set of

principles for graphics programming were a major source of dis

5

couragement to potential users in the 1970s, and delayed the

acceptance of computer graphics systems [NEWM78]. In an attempt

to overcome this problem, work was undertaken to develop a stan

dard for programming graphics software. Such a standard, by

specifying agreed-upon properties of graphics systems, would tend

to increase software portability, and act as a foundation for the

development of new applications.

One of the results of the movement towards standardiz

ation is the proposed Core System Graphics Standard, which was

developed by the Graphics Standard Planning Committee (GSPC) of

the ACM Special Interest Group on Graphics (SIGGRAPH). This

standard is designed to be used for graphical systems dealing

with line drawing (also called vector) graphics.

1.3 The Objective of this Project

At the present time at McMaster University, there are a

number of passive graphical devices available for use, attached

to different computer systems. A considerable need exists for

software which will allow individuals to use these devices,

without regard to their specific characteristics, or to the

characteristics of the hardware to which they are attached.

The objective of this project was to construct a portable

subroutine library, based on the Core System specification. This

library, called SSOCS (S/jbset o/ Core System) is written in

6

Pascal, and implements the features of the Core System that are

considered to be necessary for the development of passive graph

ics packages oriented towards the production of simple two

dimensional charts and graphs.

CHAPTER 2

THE STANDARDIZATION ISSUE

2.1 The Need for a Graphics Standard

In the early 1970s the lack of a set of commonly-accepted

codes of practice for developing computer graphics systems became

a source of concern for many workers in the field. Too often,

the design and implementation of new applications was requiring a

large amount of time and programming, and the results of this

effort were not satisfactory. Newman and Sproull pointed out in

1974 that: "Virtually every time a graphical display terminal is

attached to a computer ... a fresh graphics software system must

be written to support it" (NEWM74]. The lack of understanding of

what the important methodological principles of computer graphics

were contributed to the problem.

One result of the attempts to resolve these difficulties

was a movement towards the standardization of graphics systems.

By making a standard available at all graphics installations, a

uniform interface to graphics devices would be created. The

following benefits could then be realized:

1. improved software portability, allowing graphics app

lication software to be transported from one install-

7

8

ation to another with minimal changes [NEWM78]

[GUED76].

2. improved 'programmer portability'; that is, lowering

training costs and easing the task of a programmer,

by decreasing the number of graphics systems with

which it is necessary to be familiar {NEWM78].

3. improved productivity; applications based on a stan

dard system, instead of one which is specially built,

should be easier and faster to develop [GUED76].

2.2 The Seillac Workshop

To organize the standardization efforts, the Graphics

Standards Planning Committee (GSPC) was formed in the United

States in 1974, and IFIP WG5.2 was set up in Europe in 1975. Few

tangible results appeared, though, until 1976. A key event in

that year was a workshop which took place in Seillac, France,

under the auspices of IFIP WG5.2. This workshop, called "Method

ology in Computer Graphics" was held to allow the study of basic

issues, and clarification of the underlying concepts of computer

graphics, leading to a better understanding of its methodology.

It was hoped that this would resolve some of the more difficult

issues raised by the question of "what should be in the stan

dard?", and that a set of generally agreed-upon principles of

graphics system programming could be produced. The proposal for

a standard that resulted from the workshop had a great influence

9

on graphics standard development, and formed the basis for the

design of the Core System and the Graphical Kernel System (GKS).^

One of the fundamental issues in the Seillac proposal

deals with the relationship between graphical 'modelling' and

'viewing' functions. Modelling is concerned with the definition

of graphical objects and the relations between them: it deter

mines what is in the application program's world. Viewing fun

ctions are used to determine what information the end-user act

ually sees on a device: how the world appears. Since the former

is more likely to be dependent on a particular application, it

was proposed that a graphical standard should only be concerned

with functions that are used for viewing purposes; any modelling

capabilities that could be built on top of such functions should

be excluded. This decision helped to focus attention on what

graphical capabilities should be standardized.

A graphical standard should provide a set of functions

which can be used to build descriptions of graphical entities. A

fundamental strategy for achieving the portability desired in

such a standard is the provision of features which shield the

application programmer from specific hardware considerations

f'B08O] [NEWM78]; this is termed 'device-independence'. With this

goal in mind, various approaches to standardization are possible.

^A brief overview of GKS, and its relationship to the Core Sys
tem, is presented in Appendix I.

10

The participants of the Seillac workshop considered proposing a

standard graphics language; the lack of consensus about the

important concepts, goals, and semantic facilities for such a

language, however, showed that it was not an ideal solution.

Extensions could have been made to existing programming lan

guages, to allow the expression of graphical abstractions, but to

adopt this approach would have meant modifying the compilers for

whatever language was to be extended, and was not feasible. To

standardize at a low level, oriented towards hardware, would be

impractical, since equipment capabilities are very diverse, and a

large interface would therefore be required. Conversely, stan

dardization at the application level would be too specific and

restrictive, since the standard should be appropriate for as wide

a range of tasks as possible.

It was agreed that any proposed standard should be app

licable at a programming language level [H0PG76]. The Seillac

workshop attendees therefore recommended defining a standard

subroutine library, which would be general enough to support a

wide variety of users, and with an underlying conceptual model

simple enough to be easily understood by programmers and users

IENCA76]. It was recognized that functions contained in the

library should have a potential for long life, stability against

change, and a high probability of representing the best tech

niques for graphical work fSANC76l. In order to produce some

concrete proposals in a reasonable time, the following principles

11

were used to establish the scope of the proposed standard:

1. functions for the construction and manipulation of

'pictures' should be provided;

2. 'pictures' should consist of text and vectors;

3. only graphical devices suitable for a general-purpose

system should be included;

4. the graphical functions available should reflect the

capabilities of the most frequently used devices, in

order to ensure efficient use of these devices.

It became obvious, at the Seillac workshop, that a stan

dard could not be based on any of the existing graphics software

packages. While there appeared to be some consensus, on the part

of the designers of this software, about what features were

important for an effective graphics package, there was also a

considerable diversity between the packages. In order to avoid

constraining the potential applications of the standard, and the

computer graphics equipment it could be implemented on, the

Seillac workshop participants decided to include features that

would be generally useful, and which would not unnecessarily

complicate the underlying programmer's model. After a good deal

of discussion, it was agreed that the following modules should be

included:

1. a limited set of output primitives, or lowest-level

12

graphical functions^, for the specification of pic

tures. The set of primitives should be rich enough

to use most of the capabilities of specific devices.

2. two- and three-dimensional viewing transformations,

which would allow objects to be described in an

application-dependent coordinate system, and then

mapped to actual physical devices.

3. a limited set of interaction primitives, to allow

selected virtual input devices to be used.

4. one level of segmentation; a segment is a named coll

ection of graphical primitives that can be manip

ulated as a distinct unit.

5. functions to manipulate attributes of the graphical

primitives, such as colour and style of lines.

6. control functions.

An important methodological concept that was uncovered at

the Seillac workshop concerns the relationship of application

program structure to the design of a standard. Since the behav-

•^Foley [’F0LE76] defines a primitive as:

1. a function which directly takes advantage of the
hardware capabilities of commercially-available
devices,

2. a function which could directly take advantage of the
hardware characteristics of new devices which might
become available,

3. a construct which cannot easily be simulated on ex
isting or planned devices.

13

iour of an application program is often dependent on the actual

graphics devices it employs, its underlying design may also be

oriented towards these devices. This conflicts with the primary

goal of standardization: to make systems more portable. An

effective standard must, therefore, contain features that allow

programs to be transported successfully with a minimum of change

to their design. The functional capabilities inherent in the

modular structure of the Seillac workshop's proposal provide a

well-structured, device-independent interface to graphics equip

ment, and can be used to meet the needs of different types of

applications.

CHAPTER 3

AN OVERVIEW OF THE CORE SYSTEM

The 1976 Seillac workshop represented a considerable step

forward in the efforts to standardize graphics systems. As well

as focussing attention on issues of graphics methodology, the

attendees made a number of proposals regarding standardization.

Following on from this work, the GSPC set out to produce a spec

ification for a standard, based on the Seillac recommendations.

One of the most important concepts in the Seillac propos

als concerns the modelling/viewing dichotomy. It was recommended

that a graphical standard should only be concerned with viewing

functions, which determine the information that is visible on a

graphical device. These functions should be generally useful,

not cost too much to implement, and not introduce hard-to-resolve

issues [’GSPC79]. The GSPC's specification was therefore viewed

as a kind of 'core' of capabilities, which would have a variety

of high-level application systems built around it, and it became

known as the Core System (or Core). This system is oriented

primarily towards applications using medium performance vector

graphics displays. While it allows quite powerful line-oriented

graphical manipulations, the necessity to remain both device

independent and useful for a variety of tasks means that it

14

15

ignores more sophisticated capabilities that are found on some

devices^.

A preliminary document specifying the Core System was

published in [GSPC77 This document described a draft standard,

intended to provoke discussion and further work, so that a more

complete and useful version could be developed. A second attempt

at a specification, based on comments and criticisms received in

response to [GSPC77J, was published in IGSPC79J. This chapter

presents a summary of the major features of the Core System as it

was described in that document. Raster Extensions and the GSPC

Metafile Proposal are not discussed, since they are outside the

scope of this project.

3.1 The Programmer's Model

The routines provided by the Core present the application

programmer with a simple yet powerful conceptual model, based on

the following ideas:

1. there are separate sets of functions for input and

output. Together these functions provide a logical

^The Core does however, allow an installation to implement fun
ctions which take advantage of device capabilities it does not
support directly (for example, curve generation on a display
terminal). These kinds of functions are called 'escapes'. They
are required to interface with the Core System in a well-defined,
uniform way, and provide "a standard way of being non-standard"
IGSPC79] .

16

graphics system, independent of the graphical equip

ment which is actually available. There is little

difference, for example, between using the Core to

create an image on a plotter or a display terminal.

Similarly, input functions can be used without know

ing the specifics of actual input devices.

A description of an object to be displayed is built

up through invocation of the output functions, which

create instances of output primitives. The appear

ance of the output primitives depends on the values

of primitive attributes.

2. there are two coordinate systems. The application

programmer manipulates images in the 'world' coord

inate system (which is application-dependent), while

the actual information that is visible is in a norm

alized device coordinate system. Some mechanism must

be available for mapping coordinates from one system

to the other, and this is called the 'viewing trans

formation'. The application programmer can define

the bounds of the world, and, using normalized device

coordinates, where the picture of an object is to be

placed on a logical output device. The Core System

will handle the transformation of the object's world

coordinate description to normalized device coord

17

inates, and then to the coordinates of the actual

physical device selected

3. all of the output primitives for an object are placed

in segments. Each segment contains a part of the

picture being displayed, and can be used to manip

ulate a collection of primitives as a distinct unit.

3.2 Output Primitive Functions

Output primitive functions are used to build descriptions

of objects in the graphical world. Each invocation of an output

primitive function produces a primitive instance that specifies

one part of the total picture. The functions can be thought of

as simulating the action of a plotter pen, or the beam of a

storage tube device; there are six classes, describing moves

(without producing any visible line), lines, connected sequences

of lines, marker symbols, sequences of marker symbols, and text.

The output primitive functions all use the world coord

inate system, and operate with reference to the 'current pos

ition'. This is an intrinsic Core System value which defines the

current location of the simulated pen. There are equivalent

functions in each class for specifying coordinates that are

absolute or relative (to the current position). Also, since some

applications require three-dimensional capabilities, as well as

two-dimensional, they are incorporated into the Core System (this

18

has an impact on the design of the Core's viewing specification,

described in section 3.5).

3.3 Primitive Attributes

The characteristics of each output primitive instance

depend on the values of attributes. These can be changed by the

application programmer at any time, using appropriate functions.

Several attributes are applicable to all of the output

primitives. These are colour, intensity, type of 'pen' used to

draw the primitive, and its 'pick id'. Colour determines the

colour of the output primitive, while intensity affects its

relative brightness. The pen attribute is used to distinguish

the image of a particular primitive: the different types of

logical pen provided are installation-dependent and may employ

several other attributes. For example, the default pen provided

when the Core System is initialized might be one that draws black

solid lines. With different logical pens available, the applic

ation programmer might be able to select one to draw red dashed

lines. The pick id attribute is used to associate a name with an

output primitive, to allow it to be selected by an end-user using

a PICK input device (described in section 3.6).

Other attributes are applicable only to some of the

output primitives. A 'marker-symbol' attribute defines the type

of symbol to be used as a marker. The style and width of lines

19

can be varied. Powerful capabilities exist for affecting the

appearance of textual primitives. For example, the size, font,

and orientation of characters in the world coordinate system can

be manipulated by the application programmer.

3.4 Segments

Since the Core System is designed to allow interactive

use of computer graphics devices, some capability has to be

included to which allow the interactive modification of the

images displayed. This is necessary, for example, to allow a

portion of a picture selected by an operator to be deleted. The

Core provides a graphical data structure called the 'segment1,

which groups output primitive instances together into separate

named units. A picture is built up by successively creating a

segment, invoking output primitive functions, and then closing

the segment.

Segmentation gives a single level of partitioning of

graphical data: each segment can only contain output primitives.

An alternative method of structuring would have been to use a

hierarchical approach; that is, to build a collection of units,

each of which consists of primitives, or references to other

units. While this is a very flexible way of partitioning an

image, it was rejected for the Core System, since (a) there was

no agreement on the best type of structure, and (b) it was felt

that most applications would not need this flexibility TMICH78].

20

There are actually two kinds of segments available to an

application programmer using the Core System. 'Temporary' seg

ments are useful for purposes where data is to be displayed

without modification, such as in a completely passive plotting

package. To retain information in segments would be a needless

overhead for such a package. None of the information placed in a

temporary segment is recorded, so that if a display surface is

cleared, any information placed in such a segment is lost. 'Ret

ained' segments gather primitives into units which can be given

names. To modify a displayed image, it is only necessary to

change the segments which contain the primitives describing that

part of the picture. "Changing", in this context, means that

segments have to be deleted and recreated. The Core System does

not provide a segment modification operation, since if a segment

was closed at a certain point, and later on modification was re

quired, it would have to be reopened in an identical state for

additions or deletions of primitives to be made. This would

require that the viewing parameters, which describe the graphical

world, would have to be saved with each segment, and this was

thought to be too expensive to implement. The designers of the

Core also felt that most applications could be implemented with

out needing any modification or extension capability [MICH78].

The Core provides segment attributes, which can be used

to change characteristics of retained segments (temporary seg

ments have no attributes). Dynamic attributes can be changed at

21

any time after a retained segment has been created, and affect

properties such as its visibility (it may be visible or invis

ible), and size, position, and orientation (through an image

transformation). A single static attribute determines whether an

image transformation can be applied to a particular segment.

There is no facility for sharing attributes between primitives

and segments. For example, it is not possible to create a seg

ment, populate it with primitives drawn in a certain colour,

close the segment, and then later change the colours of the

primitives in one step. Primitive attributes, therefore, affect

the characteristics of an object, while segment attributes affect

the displayed image of the object.

3.5 The Viewing Transformation

The role of the viewing transformation has already been

briefly mentioned: it specifies the limits of the graphical

world, and maps descriptions of objects defined in the world

coordinate system to equivalent descriptions in device-dependent

coordinates. The designers of the Core System used a conceptual

model based on a 'synthetic camera' to develop the implementation

of this transformation. In this analogy, the viewing trans

formation simulates a camera which takes snapshots of the graph

ical world.

Two- and three-dimensional viewing operations are comb

ined in the Core; the former are considered to be special cases

22

of the latter. If a three-dimensional viewing tranformation has

been specified, both two- and three-dimensional output primitives

can be used to describe objects. Two-dimensional primitives are

simply considered to have a missing coordinate, and this is

supplied by the current position value. The viewing operations,

therefore, specify all necessary information for the placement of

the synthetic camera; that is, its location, the orientation of

the lens and film plane, and the vertical axis. A snapshot is

begun when a segment is open, and is completed when the segment

is closed. Because of this, the viewing transformation cannot be

changed while a segment is open.

3.5.1 Two-dimensional Viewing

To describe a two-dimensional object an application prog

ram first specifies the bounds of a rectangular 'window'. This

represents the portion of the two-dimensional world which con

tains the objects of interest, and it may be rotated about the

origin of the world coordinate system axes. If part of an object

being described by primitive functions falls outside the window,

it may be 'clipped'; this process divides an image into visible

and invisible portions, so that only the information inside the

window (i.e. which is visible) is mapped to device coordinates.

To accomplish this mapping, a 'viewport' is specified, on a

logical 'view surface'. A view surface is a rectangular area on

a selected device, and has dimensions which range from 0 to 1

23

along both the X- and Y-axes-*-; it therefore defines a normalized

device coordinate space.

To produce a display, the Core System maps the contents

of the window to the viewport, and then to the physical device

surface, to give one particular view of the graphical world.

Coordinates are therefore transformed from the world coordinate

system, to normalized device coordinates, and then to actual

physical device coordinates.

3.5.2 Three-dimensional Viewing

In order to display a three-dimensional picture on the

surface of a two-dimensional device, the viewing transformation

has to specify a projection from three dimensions to two, as well

as clipping to a window and mapping to a view surface. The

mapping from the two-dimensional projection to the view surface

device coordinates is carried out in a similar way to two-dimen

sional mapping. The projection is accomplished in the following

way. First, an application program sets up a view plane (also

called a projection plane) within the world, and defines a por

tion of this plane to be the window. Objects in the world will

be projected onto the view plane for display purposes. Next, the

type of projection is selected, in order to set up a 'view vol-

^To allow efficient use of non-square displays, this range may be
constrained along one axis, but not both.

24

ume'. A view volume is a three-dimensional area in the world

coordinate system, within which an object of interest appears.

If a perspective projection has been specified, this volume is a

pyramid, while in parallel projections it is a parallelepiped.

The projection of an object is found by passing lines through

each point on the object and finding their intersection wih the

view plane. To produce a perspective projection, these lines are

considered to emanate from a point called the 'centre of project

ion', while for a parallel projection, all the lines are parallel

to a 'projection direction'.

In three dimensional viewing two kinds of clipping may

occur. The view volume may be restricted through the specific

ation of front and back clipping planes. 'Depth clipping' will

then discard parts of the picture which protrude from the front

or the back of this restricted view volume. Clipping can also

occur against the window, as in the two-dimensional transform

ation; this determines what is visible in the view plane.

3.5.3 Other Capabilities

Although modelling was not considered to be part of the

Core System, the viewing transformation may be preceded by a

'world coordinate transformation', which would allow a modelling

system built into an application program to work more efficient

ly. This kind of transformation allows objects in the world

25

coordinate system to be scaled, rotated, and positioned, indepen

dently of the viewing parameters.

The Core System also provides for an 'image transform

ation'. This allows scaling, rotation, and translation of coord

inates in normalized device coordinate space, and is analagous to

transforming a photograph of an object by repositioning it on the

page of a photo album {GSPC79]’.

3.6 Input Primitive Functions

The Core System's input primitive facilities provide a

conceptual framework for the interaction of an end-user with an

application program. A set of logical input devices, which

simulate typical physical input devices, is available, making

this interaction independent of actual physical input devices

that are present.

Each logical input device is defined in terms of the type

of data produced by the corresponding physical device, and the

way in which that data is captured by the application program

[GSPC79]. Before any device can be used, it must be explicitly

enabled by the application program. There are two different

models of data input provided in the Core: synchronous, or

sample-based, and asynchronous, or event-based. Synchronous

devices produce values which may be sampled by the application

program; when data is requested from such a device, the applic

26

ation program will wait until that data becomes available, and

will then continue executing. Asynchronous devices signal events

to the application program. As soon as such a device is enabled

it may be used to generate 'event reports', which contain data

concerning the state of the device when the event took place.

The event reports are placed in a first-in, first-out 'event

queue', and they may be removed and processed by the application

program at any point. These devices may therefore be used with

out interrupting program execution.

The logical devices, their corresponding physical dev

ices, and the input model they employ, are shown in Figure 1.

3.7 Control

The Core System provides several routines which exert a

global control over the generation of pictures. Basically these

routines fall into two groups, concerned with: (a) control over

multiple view surfaces, and (b) control of picture changes.

3.7.1 Multiple View Surfaces

While many applications are designed with one end-user

and graphical display device in mind, there are situations where

more than one device may be required simultaneously. For exam

ple, a hardcopy of a displayed image might be needed at the same

time it is being generated on a terminal. The Core System there-

27

FIGURE 1:

THE CORE SYSTEM INPUT DEVICES

1
1

LOGICAL DEVICE 1 PHYSICAL DEVICE 1
1 1-

INPUT MODEL 1
11

1

1
PICK 1 Light Pen I

I I
Asynchronous 1

11
1

1

1

KEYBOARD
1 1
I Alphanumeric 1
1 Keyboard I

1
Asynchronous I

1
II

1

1
1

BUTTON
I i
1 Program Function 1
1 Key I
j |

1
Asynchronous 1

1
11

1

1

1

STROKE 1 Tablet Stylus / 1
1 Joystick 1
| j

1
Asynchronous 1

1
1I

1

1

1

LOCATOR1 1 Tablet Stylus / 1
1 Joystick |
1 1

I
Synchronous 1

1
11

1

1
VALUATOR

1 1
1 Potentiometer I
1 1

1
Synchronous I

1

1A LOCATOR device provides a single item of coordinate inform
ation, while a STROKE device provides a series of items

28

fore allows an image to be displayed on more than one device at

the same time. A limitation of this is that the images that

result could be different, since display devices might differ in

their capabilities (for example, the colour attribute might not

be supported on a plotter). A routine is therefore provided that

determines the capabilities of any given device.

3.7.2 Control of Picture Changes

The Core System provides several routines which allow an

application programmer to exert control over the manner in which

changes are made to pictures; this may be useful for reasons of

efficiency. Three types of control are allowed:

1. control over the visibility of segments. In order to

achieve near-simultaneity of changes to pictures, an

application program can prepare new retained seg

ments, but keep them invisible. When all required

segments have been generated, they can all be made

visible at once, while the segments which were prev

iously being displayed are made invisible (and can

then be deleted as necessary). This process obvious

ly imposes overhead on an application, since extra

segments must be stored.

2. control over the sequencing of changes. An applic

ation program may generate changes to a displayed

29

image in batches; this means that some changes will

be deferred, and will not take effect until a later

time, when the batch is said to be over (some changes

may occur immediately, depending on the capabilities

of the physical view surface). This kind of capab

ility would be useful when a storage-tube device is

being employed, and multiple deletions are occuring:

instead of deleting each segment and redrawing the

image several times, the deletions can be deferred so

that only one erase and redraw of the screen is

necessary.

3. control over the immediacy of changes. The Core

allows a number of changes to be grouped into a

block, and then sent to a device; this means that

some changes may be delayed, and then appear in a

burst. This capability is useful when the connection

between the application software and a graphical

device imposes high overhead.

3.8 Levels of the Core System

Since one of the motives behind developing a standard for

graphics software is that it should be useful for a wide range of

applications, the Core System has been designed in 'levels'. The

rationale behind this is explained by the following example: a

purely passive plotting package would not need any capabilities

30

for retained segments or interaction, so if it had to include

them in order to conform to the standard, this would be quite

wasteful.

Three classes of upward-compatible levels are specified

by the Core. One class deals with output capabilites, one with

input, and the third with the number of dimensions in the world

coordinate system (two or three). Classification of capabilities

on this basis means that there are a finite number of 'dialects'

of the Core, and their relationships and dependencies are well-

defined .

CHAPTER 4

AN OVERVIEW OF THE SSOCS LIBRARY

4.1 Purpose

The primary objective of this project was to develop a

subroutine library (also called a 'package'), based on the cap

abilities described in the Core System specification, that could

be used by a programmer to generate reasonably simple two-dimen

sional pictures on different output devices. The library was

therefore required to implement the facilities of the Core that

would allow it to be device-independent. A secondary goal was to

write the routines in the library so that they could be trans

ported to different machines with a minimum of changes.

4.2 Capabilities

Given the primary goal of the project, it was judged

that, as a minimum, the following functional areas of the Core

System should be implemented in the SSOCS library:

1. two-dimensional output primitive functions;

2. two-dimensional viewing functions;

3. capabilities for handling multiple view surfaces.

31

32

At present, the library incorporates nearly all of these

features (time limitations prevented the implementation of the

full set)l. Appendix II contains a list of the available SSOCS

routines together with their functions. The library provides

many of the features of an Output Level 1 (Basic Output) implem

entation of the Core System. Its capabilities are compared with

this level in figure 2.

4.3 The Choice of Programming Language

Since a portable implementation of the SSOCS library was

required, a high-level, widely-available programming language had

to be used. It is probably safe to say that there is no single

language which is best suited to the task of programming a graph

ics package like SSOCS. The positive features of the language

chosen will nearly always be balanced by some negatives. Recog

nizing this, the GSPC did not establish any rules concerning the

choice of language in which to develop the Core System; implemen

tations have been produced in FORTRAN [WARN78] FF0LE81J, APL

.[FRIE79], and Pascal [NICO81] (STLU82i. At the time this project

was begun, the only machine on which the SSOCS library could be

developed was the McMaster University Cyber 170/730. Suitable

languages available on this machine were FORTRAN and Pascal.

1 There is no world
viewing operations.

coordinate transformation available in the

33

FIGURE 2;

A COMPARISON OF THE CORE SYSTEM

(OUTPUT LEVEL 1) AND THE SSOCS LIBRARY

FUNCTIONAL CAPABILITIES
AVAILABLE

1 CORE SYSTEM 1
I (BASIC OUTPUT) |

SSOCS LIBRARY

Output Primitives
1 !
1 Yes 1
| |

Yes

Primitive Attributes 1 Yes |
1 I

No

Viewing
1 1
1 Yes |
| |

Most

Control 1 Yes I
1 |

Some

Temporary Segments
I I
1 Yes |
1 1

Yes

34

FORTRAN is one of the most widely-used languages for

scientific programming. It was the first high-level language,

and was introduced in the 1950s. Since that time it has under

gone many revisions, but one of its main design goals has remain

ed the achievement of high execution efficiency. As a result,

its language structures are quite simple. This, however, proves

to be a disadvantage. A programming language can be considered

to provide both a conceptual framework for thinking about prob

lems, and a means of expressing solutions to those problems in a

concrete form. To be useful, therefore, a language should be

based on a set of concepts that provides a clear and powerful

means of developing algorithms, and that results in a notation

which is natural to the problem. The lack of a powerful set of

control facilities and data structures in FORTRAN makes the

structured development of programs difficult. On the positive

side, however, writing the SSOCS package in standard FORTRAN

would have ensured a high degree of portability, because the

language is available on many machines.

Pascal was designed in the early 1970s to meet two prin

cipal objectives. The first was to develop a language suitable

for the teaching of a systematic method of programming. As a

result it is a reasonably simple language, and at the same time

it is quite powerful. Concepts important for a disciplined

approach to programming are naturally reflected by Pascal's syn

tax. The second objective was to produce reliable and efficient

35

(and machine-independent) implementations of the language; many

have been developed, and the use of Pascal has now spread from

the academic world to commercial organizations.

Pascal was used as the implementation language for the

SSOCS library. The crucial difference between the two languages

available, which led to the selection of Pascal, is their facil

ity for data abstraction. An abstraction of an object is used in

a sense that is removed from its concrete specification or rep

resentation. That is, it is viewed in terms of a subset of its

actual attributes. In the graphical world, the objects of inter

est are pictures, made up of points, line segments, and text. In

a system which is modelling the graphical world, some represent

ation has to be found for the data items which correspond to

these objects. The closer this representation to the real world,

the easier the development of routines which deal with the data

items would be, since the programmer's perception of the graph

ical world would be more precisely reflected. An ideal program

ming language would allow the spurious properties of objects, and

their representation inside the machine, to be ignored.

Data abstraction facilities in FORTRAN are not very soph

isticated. Integer, real, logical, and character variables may

be used, while arrays allow data structures that are composed of

related variables (i.e. of the same primitive type) to be spec

ified. FORTRAN variable names are restricted to a maximum length

36

of six characters. In Pascal, three basic classes of type are

available:

1. scalar types are integer, real, char, and boolean; it

is also possible to define 'enumeration' types. These

allow a programmer to introduce a new type ident

ifier, and to specify the set of identifiers denoting

the values of this new type.

2. structured types are the array, where all components

must be of the same type, and the record, which

allows components to be of different types.

3. pointer types, which allow a programmer to specify

data objects that may change in size during the exec

ution of a program.

Variable names in Pascal are not limited to any specific length,

although standard Pascal only distinguishes the first eight char

acters of a name.l

These features allow a Pascal program to use data ab

stractions that are much closer to the real world than their

counterparts in FORTRAN. Since a programmer can define new

types, meaningful specifications for graphical objects can be

^In fact, the length is restricted to the maximum line length of
a program, since identifiers cannot be continued over line
boundaries.

37

developed, and this was judged to be an important capability,

both for the SSOCS library, and for application programs using

it. To be most effective the behaviour of the data objects

introduced by an abstraction should be completely expressed in

terms of a set of operations that are meaningful for those ob

jects ElISK77]. It should be possible to specify every action to

be carried out by way of these operations, which should also be

the sole means of manipulating the data objects. Both FORTRAN

and Pascal allow the specification of such a set of operations

through the development of appropriate procedures and functions.

4.4 The Device-Independent/Device-Dependent Interface

The connection between the SSOCS package and the physical

output devices that can be used by it is provided through the

device driver routines. The capabilities of these routines are

defined by the Device-Independent/Device-Dependent (DI/DD) inter

face. This interface has to be uniform for all devices, regard

less of their capabilities, and at the same time it must allow

future expansion of the device-independent portion of the pack

age, as extra facilities are added. For example, the structure

of the interface should not preclude the addition, at some later

time, of capabilities for manipulating primitive attributes. One

of the first tasks in developing the package was deciding on the

level of the interface: too low a level, and inefficient use of

devices could result, while too high a level could make the

38

addition of drivers for different devices quite difficult. If

the interface were to incorporate capabilities that are not

supported directly by a display device, these features would have

to be simulated by the driver routines for that device.

The SSOCS DI/DD interface was designed to reflect the

capabilities commonly found on the display devices available at

the time the library was written (for example, it incorporates a

low-quality text-handling capability). Since the specification

of the output primitives for the Core System also reflects this,

the interface essentially provides the same conceptual graphics

device model as the high-level routines available to an applic

ation program. As each output primitive is created it is con

verted to a normalized device coordinate representation by the

device-independent portion of the SSOCS package, and then passed

across the DI/DD interface to the device drivers, where it is

transformed to an equivalent representation for selected devices.

A distinction is made, at the DI/DD interface, between

producing graphical output and describing the state of the device

environment on which that output is to appear. One pathway is

provided for commands which actually perform output, and another

for sending commands to a device to alter its properties. At

present, the capabilities for altering the device-dependent

graphical environments are restricted to accessing specific dev

ices, preparing the device surfaces for graphical output, clear

39

ing the surfaces, and terminating use of the devices. Each

alteration of the environment uses the command pathway to invoke

a device driver routine, supplying it with the action to be

taken, and the device to be affected. The routine simply trans

mits appropriate commands to the selected device to enable it to

perform the required action. For graphical output, a set of

routines is provided at the driver end of the output pathway;

these perform specific primitive actions on each device.

4.5 Device-Independent Structure

4.5.1 Output Primitive Functions

The output primitive functions available in the SSOCS

library allow a programmer to specify moves, lines, text, marker

symbols, and sequences of lines and marker symbols in the world

coordinate system. Either relative or absolute world coordinates

may be used to define the locations of the primitive instances,

by using the appropriate version of the functions. Each invo

cation of a function, except for a move, creates an instance of a

data type called a primitive, which is implemented as a Pascal

variant record; this structure can be used to represent any of

the output primitives available, and carries the information

specifying the action to be taken (line, marker symbol, etc.),

and its coordinate information. The operations that can be

carried out on a variable of type primitive are defined as low-

40

level procedures and functions; this provides a way of man

ipulating the variable from other higher-level routines that is

independent of its definition, and which is more natural^. There

is no variable created for a move function: a move simply sets

the current position in the world coordinate system, and this

will not necessarily have any visible effect on a device. The

other primitives record their starting and ending coordinates in

their own primitive variables.

4.5.2 Viewing Operations

Information about the graphical world is captured in a

data structure of type environment, which is a Pascal record used

to store the window, viewport, and the size of the normalized

device coordinate space. This information may be supplied by the

application program, or set to default values. Like the type

primitive, the representation of environment is 'hidden' from the

remainder of the package: to describe the graphical world from

high-level SSOCS routines, low level procedures and functions are

used.

The viewing operations in the SSOCS package are implemen

ted in a manner similar to that of the viewing 'pipeline' concept

^For example, a procedure 'set_action_to' determines what kind of
primitive is currently being described (line, move, etc.); with
out this facility it would be necessary to refer to the actual
structure of the data type in each place it used.

41

discussed in [F0LE81]. At the beginning of the pipeline, the in

vocation of an output primitive function creates an instance of a

primitive. At this stage, the information contained in this is in

a device-independent form. The primitive instance is sent along

the viewing pipeline, and is prepared for display by transforming

it into successively more device-dependent representations. The

process is illustrated in Figure 3.

First, the output primitive is mapped to the window, to

determine what portions of it are visible. The window, defined

in world coordinate space, corresponds to the viewport, defined

in normalized device coordinate space. Any primitives which

appear inside the window will be visible on a display surface.

Since the window may be rotated about the world origin by the

application program, some representation of the effect of this is

needed. In the SSOCS library, a physical rotation of the window

is not actually performed. Instead, each coordinate pair is

rotated, in the reverse direction, by the angle of rotation

specified for the window. This process achieves the same effect

as rotating the window. It simplifies the clipping stage of the

viewing process, since the sides of the window are kept parallel

to the coordinate axes.

In order to determine what elements of the graphical

world are to be displayed on a device surface, each output prim

itive may undergo clipping. This process discards primitives,

and parts of primitives, that do not lie inside the window, so

FIGURE 3: The SSOCS Viewing Operations

43

that only the picture elements that do appear inside are dis

played on a device surface. Any primitive that lies partially

inside and partially outside is cut off at the window edge before

being transformed to normalized device coordinate space. This

effect is illustrated in Figure 4. The SSOCS package uses a

clipping algorithm developed by Cohen and Sutherland and desc

ribed in [‘NEWM79].

The application program may request that clipping be

turned off. In this situation, the window will still be mapped

to the viewport, but if there are parts of a picture which lie

outside the window, device-dependent results such as wraparound

may occur. The ability to turn off the clipping is of practical

importance since it will increase efficiency in applications

where all primitives are known to lie within the window.

If the output primitive is discarded at the clipping

stage of the viewing pipeline, further viewing operations will be

abandoned, and control will return to the application program.

If this does not occur, the primitive will be mapped to the

current viewport, by transforming it to normalized device coord

inate space. The output primitive is then passed to a 'dispat

cher' module. This determines the kind of primitive that is to

be displayed, and passes the primitive information down the DI/DD

output pathway to the appropriate device driver routines.

44

Fig. 4 (a) : The original diagram of Fig. 3.

Fig. 4 (b): The window has been reduced in size, enlarging
the diagram and clipping portions which lie
outside.

FIGURE 4: The Effect of Clipping

45

4.5.3 Control Facilities

The SSOCS library allows output primitives to be dis

played on more than one device surface at the same time. Each

surface must be initialized before it can be used, and then

explicitly selected before graphics output appears on it. A

device cannot be released from output while a segment is open,

and when a device is released the image displayed on its surface

will remain until use of the device is terminated by the applic

ation program.

The library also provides the capability of forcing a

device surface to be cleared, by requesting a 'new frame action'.

This action will clear the screen of a CRT-based display, and

will advance the paper on a hardcopy device. For some buffered

devices (for example, plotters) images will not appear on the

device view surface until this function is used, or the device is

released and terminated.

Two routines control the initialization and termination

of the entire SSOCS library. The initialization routine sets

control variables to required defaults, and also assigns some of

the default values for the dev ice-independent graphical world

(for example, the dimensions of the world coordinate system's

window). Although the Core System specification document states

that this routine is to be called before any others in the lib

rary, an application program using the SSOCS package must call

46

another routine before this, in order to guarantee the initial

states of control variables.The SSOCS termination routine

closes any segments that are open, and clears and releases any

devices being used.

The SSOCS library provides similar error handling capab

ilities to those described in the Core System specification

document, except that there is no provision for a programmer to

define an application-dependent error handling routine^. When

ever an error is detected an error report is created, consisting

of an error identification number and a code indicating the

severity of the error. The report is then sent to whatever error

log device is available. The most recent error report is main

tained by the library for interrogation by the application prog

ram. The error indentification numbers, and severity codes, are

listed at the end of Appendix II.

4.5.4 Escape Facilities

One escape routine is provided in the SSOCS package.

This is used for creating circles on devices that possess a

circle generator. The application program is required to specify

the desired view surface, and the location of the circle on that

^This is necessary because Pascal does not allow variables to be
initialized at compile time.

The reason for this is that the library routines are loaded as a
single unit at run time.

47

surface in normalized device coordinates. This information is

passed directly to the dispatcher, which then invokes the appro

priate device driver routines.

CHAPTER 5

THE SSOCS IMPLEMENTATION

The SSOCS library currently consists of about 3 000 lines

of Pascal; this represents about 170 routines. Many of these

routines are concerned with the data abstraction mechanism of the

library. There are three main data structures. Two have already

been mentioned in the previous chapter: one is used to represent

an output primitive, and the other is used to hold information

about the graphical world. The third structure is used for

control, and is discussed in section 5.2. Once the important

data structures were designed, and the routines for their man

ipulation coded, development of the library proceeded in a 'top

down' manner. Each of the library's application program inter

face routines is derived from the corresponding routine desc

ription given in [GSPC79]. These routines were written and

tested first, and lower-level routines were then incorporated.

One of the principal considerations in the development of the

routines was that the resulting library should be upwards compat

ible with the Core System, so that, over time, functions could be

added to achieve an implementation closer to the graphics stan

dard. This meant that any constraints imposed on the library by

data structures and the hierarchy of routines had to be kept to a

minimum.

48

49

5.1 Portability

Development of the SSOCS library was initially carried

out on the McMaster Cyber computer using Pascal 6000. A working

version of the library was eventually produced, with drivers for

two quite different devices: a DEC GIGI terminal and a Versatec

plotter. At this point the entire package was transferred to a

Pixel 100/AP microcomputer (a 68000-based machine running under

the UNIX operating system). A Pascal compiler produced by Sil

icon Valley Software (SVS) is available on this machine. At

present most of the continuing development effort of the SSOCS

library is being carried out on the Pixel implementation.

When the library was transferred to the Pixel only one

statement had to be changed, in the type declaration section^-, to

allow the device-independent portion of the library to compile

correctly. Since the GIGI is very similar to the DEC VT125

graphics terminal that is available on the Pixel, minor modific

ations were made to the GIGI driver routines, and to the SSOCS

library's interface to the operating system, and a second working

version of the entire package was produced. One of the object

ives of the design of the library — to make it transportable —

has therefore been met.

•'•This change is discussed in section 5.3.

50

5.2 Internal Control

Since the application program interface routines are

based on descriptions contained in the Core System specification,

the question arises of how to deal with the SSOCS library inter

nal control variables. These variables are required for routines

to determine the state of the library (whether initialized or

terminated), window, and viewport, whether normalized device

coordinate space has been defined, if a segment is open or

closed, whether an error is being processed, and so forth. Each

of the Core System high-level descriptions includes the routine

name, required parameters, an overview of the routine's purpose,

and possible error messages that could result from an invocation

of the routine. There is no provision in the parameter lists for

passing control information between routines. Since there is no

facility in Pascal for sharing data between two routines except

by making this data global in a common ancestor of the routines-'-,

all control information has to be global to the library, and also

to the application program. In order to hide as much of this

information from the routines that do not require it as possible,

the Pascal record structure shown in Figure 5 was defined. This

structure allows the creation of a global library control pack

age. By defining routines which operate on this package, and

only accessing the control variables through these routines, the

•'■There is no counterpart to the labelled COMMON data areas avail
able in FORTRAN.

51

type

operations = (up, down);
condition = (ouvert, ferme);
switch = (on, off);

status_data record
core_state,
window_state,
vport_state,
ndc_state,
ndc_def_state,
seg_state
error_processing
report_gone

end;

operations;
condition;
switch;
boolean

FIGURE 5

THE SSOCS LIBRARY CONTROL VARIABLE

number of global control structures is reduced to one, and this

is only manipulated through a well-defined interface.

5.3 Text-Handling Mechanism

The current version of the SSOCS library does not support

primitive attributes. This causes difficulties in dealing with

the text primitive described in the Core System specification,

since attributes are used to determine the size, quality, orient

ation, and spacing of the output performed by this primitive.

The SSOCS library, therefore, only supports the creation of low

quality text. Furthermore, all characters which appear in an

image must be the same size. The driver routines for each device

are responsible for defining the size of each character.

52

The primitive function for producing textual output des

cribed in the Core System specification takes a character string

as its argument. A serious limitation of standard Pascal is that

its capabilities for the manipulation of character strings are

not very elaborate. There is no predefined string type. The

primary mechanism for storing a sequence of characters is to use

an array of type char. This is not very satisfactory, however,

since the size of a Pascal array is part of its type; general-

purpose routines for processing strings of different sizes there

fore cannot be written. All strings have to be made the same

size, by padding with blanks, or some special string terminating

character has to be inserted into the array.

In order to implement the text primitive in the SSOCS

library, the non-standard string facilities provided by both

Pascal 6000 and SVS Pascal were used. Pascal 6000 includes a

facility for defining dynamic arrays, while SVS Pascal provides

quite extensive string-handling features. In order to transfer

the library from one machine to another a single change had to be

made in the definition of the character string type. Although

this departure from standard Pascal introduces an element of

machine-dependence to the SSOCS library, it was judged to be

worthwhile. An application programmer who wishes to perform some

textual output uses a routine call of the following form:

text_string ('this is a message');

53

If the non-standard string-handling capabilities were not used

the programmer would have to convert the string 'this is a mess

age' to whatever type has been defined for strings in the lib

rary, padding with blanks or using termination characters.

5.4 Application Program Interface

The interface to the application program is different for

the Cyber and Pixel versions of the SSOCS library. Standard

Pascal does not allow the separate compilation of any routines.

This means that the entire SSOCS library, in source form, would

have to be incorporated into each application program if no

machine-dependencies were allowed.Pascal 6000 and SVS Pascal

do support the creation of libraries of routines, but Pascal 6000

will not allow global variables to be referenced in the library.

Since every SSOCS high-level routine references (at a minimum)

the initialization status variable, contained in the global con

trol package, use of the separate compilation facility on the

Cyber is limited. SVS Pascal, however, treats independent com

pilation in a manner similar to UCSD Pascal. Routines to be

compiled separately are placed in a module called a unit, which

is a collection of declarations and statements with some portions

accessible by other program units, and some private. Each unit

contains an interface section, which describes what is available

In contrast FORTRAN does provide for separate compilation.

54

to other units, and an implementation section, which supplies the

code required for the unit. The interface contains definitions

of global constants, types, and variables, which can be used by

other units.

Since the routines on the Cyber cannot actually be placed

in a library that is external to the application program, all

statements making up the library must be included in the program.

Pascal 6000 provides a useful 'include1 facility, which allows

external text to be brought into a program and compiled, and the

Cyber SSOCS library is incorporated in this way. On the Pixel,

the application programmer inserts a statement into his program

which declares that it uses the SSOCS library unit. Using this

capability can decrease the time required to compile application

programs by up to 30%. Although a significant amount of time is

saved at the code translation stage, an increase in the time

required to link-edit the program is apparent.

5.5 Device Drivers

5.5.1 Structure

The structure of the device drivers in the SSOCS library

is quite simple. The state, or environment, of each device is

determined by a single device control routine, MAKE_DEVICE, and

each device possesses a set of routines which implement the SSOCS

primitive actions at the device level,

55

In the current SSOCS implementation the actions that may

be performed by the control routine are:

1. accessing the physical device, which normally invol

ves opening and rewinding a file to which the device

is attached^;

2. preparing the device for graphical output, which

requires that the device display surface is cleared^,

and the device is made ready to receive graphics

commands;

3. clearing the device's display surface;

4. terminating access to the device, which normally

involves resetting the device to its default mode,

and closing the file with which it is associated.

For some kinds of devices one or more of these actions

will not be required. For example, in the current CYBER implem

entation, nothing has to be done either to access the VER5ATEC

plotter, or to prepare it to receive graphic commands. In con

trast, to use the VT125 terminal with the Pixel version of SSOCS,

the file associated with this terminal must be opened and re

wound. To prepare the terminal for graphics output, MAKE_DEVICE

writes to this file commands which (a) home the alphanumeric

1 The way in which the files are connected to the devices is
system-dependent.

Erasing the screen on a terminal, and advancing the paper on the
plotter.

56

cursor, (b) clear the alphanumeric screen, (c) turn on graphics

mode, (d) clear the graphics screen, and (e) set the graphics

origin position. The appropriate strings corresponding to the

required commands are provided as Pascal constants.

Device-specific procedures are required to perform the

following primitive actions:

1. draw a line, given the end points in normalized

device coordinates;

2. draw a marker symbol at a point specified in normal

ized device coordinates;

3. write a text string beginning at a point specified in

normalized device coordinates;

4. create a circle of given radius centred at a point

specified in normalized device coordinates.

Each procedure has to transform the normalized device

coordinates specified into device coordinates, and output the

appropriate graphics command to the device. If a device cannot

directly achieve one of these functions (for example, creating a

circle) the procedure must simulate the function.

5.5.2 Current Device Drivers

The device drivers for the GIGI and VT125 terminals are

very similar. To perform graphics output on these devices, a

language called Regis (Remote Graphics Instruction Set) is used.

57

Regis consists of a set of commands, and options for those comm

ands. Each command, or sequence of commands, sent to the termin

al is preceded by a 'device control string' (an escape character,

followed by 'Pp'); this causes the terminal to enter graphics

mode. To terminate a sequence of Regis commands a termination

string is used (escape followed by '/').

When one of these devices is initialized by the applic

ation program the library will rewind the appropriate file, and

write the device control string to it. The device driver rout

ines then translate the commands from the device-independent

section into equivalent Regis commands, and write these commands

to the file. In response to the routine call 'line_abs (1.0,

1.0)', for example, the VT125 driver could write the characters

'v [479, 479]' to the appropriate file. When a device is term

inated the Regis termination string is sent to the file.

In order to use the Versatec plotter, which is attached

to the Cyber, the device driver routines call FORTRAN routines in

the Versatec plotting library, PLOTVER. These routines are dec

lared to be 'external' to the library. No special action is

taken when the plotter is initialized, but no output appears

until the application program terminates the device. The driver

then signals that the current plot is complete.

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Both of the objectives of this project have been met in

the current implementation of the SSOCS library:

1. An application programmer who understands the con

ceptual model underlying the Core System can use the

library to generate output on different graphics

devices with little knowledge of the capabilities of

the actual devices.

2. The library is transportable. Two versions exist:

one on a mainframe (Cyber), and one on a micro

computer (Pixel). Very little source code mod

ification was needed to produce the second version.

Also, drivers have been written for two quite diff

erent devices (a Versatec plotter and GIGI/VT125

terminal). This demonstrates that the task of pro

ducing a device driver for an additional device is

reasonably straightforward, provided that the device

^Many of the figures in this report were produced using the Cyber
version of SSOCS.

58

59

possesses the basic graphical capabilities required

by the DI/DD interface.

Although it does provide device-independent graphical

capabilities SSOCS is somewhat limited. It includes only the

most basic features of the Core System that are needed for two

dimensional output. The most serious deficiency is the lack of

primitive attributes. This restricts the ability of an applic

ation programmer to produce textual output, and also prevents the

use of colour, varying style of line, etc.

6.2 Recommendations

Adding the Core System's primitive attribute manipulation

capabilities to the SSOCS library should be of high priority. It

would also be useful to add the features that allow an applic

ation program to use retained segments and segment attributes,

since at present any capability for selectively modifying por

tions of a picture has to be built into the application program.

APPENDIX I

THE GRAPHICAL KERNEL SYSTEM (GKS)

GKS was developed by the German Institute for Standard

ization (DIN); like the Core System it is based on the Seillac

workshop proposal for a graphic standard. Because it appears to

possess some advantages over the Core System it has been proposed

as an international graphics standard. The most important feat

ures of GKS are described here, and are discussed in detail in

[PRES80] and [ENCA80].

For output, GKS provides basic line drawing primitives,

as well as raster graphics primitives. Five classes of input

device are supported. Unlike the Core System, GKS only deals

with two-dimensional graphical capabilities, since the majority

of graphics applications today are of a two-dimensional nature

fB08O]’. It therefore presents a simpler conceptual model to the

application programmer. The GKS viewing transformation is sim

ilar to the Core's two-dimensional viewing transformation. A

window is used to determine the portion of the world coordinate

system that is visible. This area is mapped to the viewport,

which is defined in normalized device coordinates on a view

surface.

60

61

GKS allows a picture to be structured into segments,

which provide a selective modification facility. In contrast to

the Core System, which allows segments to be composed only of

output primitives, GKS segments may be composed of primitives or

other segments, so that libraries of segments can be developed.

A basic concept in the system is the ’abstract graphics

workstation’. This represents a collection of graphical devices,

operated by an end-user, and treated as one logical unit for

input and output. The use of the workstation provides a flexible

way of adapting application program requirements to specific

hardware devices.

Each implementation of GKS maintains a table describing

the capabilities of the available workstations. A 'workspace

transformation’ is used to map the normalized device coordinate

representation of an object to an equivalent representation in

the device coordinate system of each workstation selected for

output. The transformation may be set individually for each

workstation, allowing the same output to appear on different

devices in different scales. GKS also provides a set of work

station attributes. An application program can use these attrib

utes to control the appearance of identical output primitives on

different workstations.

APPENDIX II

THE SSOCS PROCEDURES

1. Type Declarations

Declarations of the types of parameters used by the SSOCS

procedures are shown below:

const

maxpoints = 80;

type

coordrange =
coordseq =

(1 .. maxpoints);
array [coordrange] of real;

condition = (ouvert, ferme);

switch = (on, off);

devices s (vtl25, versatec, gigi);

error_info =
error_data s

(identifier, code);
array [error_info] of integer;

type

coordrange =
coordseq =

(1 .. maxpoints);
array [coordrange] of real;

condition = (ouvert, ferme);

switch = (on, off);

devices s (vtl25, versatec, gigi);

error_info =
error_data s

(identifier, code);
array [error_info] of integer;

2. The Procedures

This section lists the procedures contained in the SSOCS

library that may be called by an application program. Further

information on the procedures can be found in [GSPC79] . Each

entry here shows:

62

63

1. an example of the invocation of the procedure, giving

the number and type of its parameters;

2. a description of the procedure's function, and the

way it is implemented within the SSOCS library;

3. error messages that may be produced by invocation of

the procedure.1

The procedures listed here are from the Pixel implement

ation of the SSOCS library. The Cyber version routines are

similar, except that underscores are omitted.

2.1 MOVE_ABS (X, Y : REAL);

This procedure sets the current pen position to the point

specified by (X, Y), where X and Y are absolute coordinates in

the world coordinate system. The current position is an internal

SSOCS value, and invocation of this routine does not cause any

change to images on any selected view surface.

Errors: none.

2.2 MOVE_REL (DX, DY : REAL);

This procedure sets the current pen position to a new

position DX and DY away from its present value. DX and DY are

^All of the procedures will report error 717 if INITIALIZE_CORE
has not been called prior to their invocation.

6b

relative coordinates in the world coordinate system. Like

MOVE_ABS, MOVE_REL does not cause any change to images being

displayed.

Errors: none.

2.3 QUERY_CP (VAR X, Y : REAL);

This procedure assigns the coordinates of the current pen

position to the parameters X and Y.

Errors: none.

2.4 LINE_ABS (X, Y : REAL);

This procedure draws a line from the current pen position

to the point specified by (X, Y), where X and Y are absolute

coordinates in the world coordinate system. The point (X, Y)

becomes the current pen position.

The procedure first determines whether the point spec

ified by X and Y is coincident with the CP; if so, no further

action is taken and the procedure terminates. If these points

are distinct, LINE_ABS calls the low-level routines SET_ACTION_TO

and SET_ENDPOINTS, to place the required line information in the

primitive information packet. This packet is then sent down the

viewing pipeline to the procedure SEND_TO_DISPLAY.

65

SEND_TO_DISPLAY performs the following:

1. mapping of the primitive to the current window

through MAP_T0_W INDO W, which may involve (a) clipping

(procedure CLIP), and (b) rotation of the points

specifying the primitive (procedure ROTATE_POINT);

2. if the primitive is still visible after the above

step, it is mapped to the current viewport (procedure

MAP_TO_VIEWPORT), which involves transforming the

world coordinate specification to normalized device

coordinates;

3. the primitive is then passed to a procedure called

DISPATCHER, which (a) determines the type of prim

itive, and (b) calls the appropriate device driver

routines. The device driver routines transform the

normalized device coordinates to device coordinates,

and produce an image on selected device surfaces.

Errors: 201 (There is no open segment)

2.5 LINE_REL (DX, DY : REAL);

This procedure draws a line from the current pen position

to a point DX and DY away from this position. DX and DY are

relative coordinates in the world coordinate system. The point

(DX, DY) becomes the current pen position.

66

LINE_REL converts the relative coordinates DX and DY to

absolute, and then invokes LINE_ABS.

Errors: 201 (There is no open segment)

2.6 POLY_ABS (X_ARRAY, Y_ARRAY : COORDSEQ; N : COORDRANGE);

This procedure draws a sequence of lines. The sequence

begins at the current pen position, runs to (X_ARRAY (1), Y_ARRAY

(1)), and ends at (X_ARRAY (N), Y_ARRAY (N)). Coordinates con

tained in X_ARRAY and Y_ARRAY are absolute world coordinates.

The current pen position is set to the point specified by

(X_ARRAY (N), Y_ARRAY (N)).

POLY_ABS performs N invocations of LINE_ABS, supplying

the appropriate coordinate pairs each time.

Errors: 2 (N is less than or equal to zero)

201 (There is no open segment)

2.7 POLY_REL (DX_ARRAY, DY_ARRAY : COORDSEQ; N : COORDRANGE);

This procedure draws a sequence of lines. The sequence

begins at the current pen position, runs to (DX_ARRAY (1),

DY_ARRAY (1)), and ends at (DX_ARRAY (N), DY_ARRAY (N)). Coord

inates contained in DX_ARRAY and DY_ARRAY are relative world

coordinates. The current pen position is set to the point spec

ified by (DX ARRAY (N), DY ARRAY (N)).

67

POLY_REL performs N invocations of LINE_ABS, converting

the relative coordinates to absolute each time.

Errors: 2 (N is less than or equal to zero)

201 (There is no open segment)

2.8 MARKER_ABS (X, Y : REAL);

This procedure sets the current pen position to the point

specified by (X, Y), and creates a marker symbol (a dot) at that

point. X and Y are absolute world coordinates.

MARKER_ABS essentially performs the same actions as

LINE_ABS. The low-level routines SET_ACTION_TO and GO_TO_ACTION_

POINT are used to place the required marker information in the

primitive information packet, which is sent to the procedure

SEND_TO_DISPLAY.

Errors: 201 (There is no open segment)

2.9 MARKER_REL (DX, DY : REAL);

This procedure sets the current pen position to a point

DX and DY away, and creates a marker symbol (a dot) at that

point. DX and DY are relative world coordinates.

MARKER_REL converts the relative coordinates DX and DY to

absolute, and then calls MARKER_ABS.

68

Errors: 201 (There is no open segment)

2.10 CREATE_TEMPORARY_SEGMENT;

This routine creates a new, empty, temporary segment,

which becomes the open segment. Invocations of output primitive

routines that create output primitives will result in new inform

ation appearing on selected view surfaces.

While a segment is open, the viewing specification may

not be changed, and view surfaces may not be selected or

deselected.

This procedure checks that at least one view surface has

been selected for output, and that a segment has not already been

opened. If both these conditions are satisfied, the SSOCS con

trol variable is set to indicate that a segment has been opened,

and CHECK_NDC_SPACE_STATE is then called to determine the state

of the normalized device coordinate space.

CHECK_NDC_SPACE_STATE sets the NDC space to its default

values (procedure DEFINE_NDC_SPACE), if it has not already been

defined by the application program. It then creates the viewport

to default specifications (procedure DEFINE_VIEWPORT), if this

has not already been defined, and will determine the mapping

required to transform world coordinates to normalized device

coordinates (procedure TRY_TO_DEFINE_MAPPING).

69

Errors: 4 (The set of selected view surfaces is

empty)

301 (There already is an open segment)

2.11 CLOSE_TEMPORARY_SEGMENT;

This procedure closes the current open temporary segment,

preventing output primitives from being sent to selected view

surfaces.

Errors: 307 (There is no open temporary segment)

2.12 QUERY_TEMPORARY_SEGMENT (VAR OPEN : CONDITION);

This procedure sets the parameter OPEN to the temporary

segment status of the SSOCS library.

Errors: none.

2.13 SET_WINDOW (XMIN, XMAX, YMIN, YMAX : REAL);

This procedure is used to define the viewing specific

ation's window. The parameters specify a rectangle in the world

coordinate system. This rectangle represents the window; its

left and right sides are vertical, and its top and bottom are

horizontal. After it has been defined, the window may be rotated

about the origin of the world coordinate system (see 2.15, SET_

VIEWUP).

70

The window and the viewport (see 2.19, SET_VIEWPORT) def

ine the transformation which will be used to map from world

coordinates to normalized device coordinates. When enabled,

clipping will be performed at the window boundary, so that por

tions of objects which lie outside the window will not be vis

ible. The contents of the window will be displayed on the view

port, which is established on a view surface.

The default specification for the window is (0.0, 1.0,

0.0, 1.0), and window clipping is enabled.

SET_WINDOW first checks that no segment is open, and that

the supplied parameters are valid. It these conditions are

satisfied, DEFINE_WINDOW is called to actually assign the para

meters to the window variable, and an attempt is made to define

the mapping from world coordinates to normalized device coord

inates (procedure TRY_TO_DEFINE_MAPPING); this can only be done

if the viewport has previously been specified.

Errors: 6 (A segment is open)

501 (XMIN is not less than XMAX, or YMIN is

not less than YMAX)

2.14 QUERY_WINDOW (VAR XMIN, XMAX, YMIN, YMAX : REAL);

This procedure assigns the coordinates specifying the

current window to the appropriate parameters.

71

Errors: none.

2.15 SET_VIEWUP (DXJJP, DY_UP : REAL);

This procedure is used to define the world coordinate

system 'up' direction. DX_UP and DY_UP define a 'view up point'.

The window (see 2.15, SET_WINDOW) is rotated about the origin of

the world coordinate system so that its left and right sides run

in the direction of a vector from the origin to the view up

point.

The default for (DX_UP, DY_UP) is (0.0, 1.0), so that the

world coordinate Y axis is the view up direction.

SET_VIEWUP uses the specified parameters to calculate the

angle of rotation of the window about the world coordinate orig

in, provided that no segment is open, and that the parameters are

valid.

Errors: 6 (A segment is open)

502 (DX_UP and DY_UP are both zero; no view up

direction can be established)

2.16 QUERY_VIEWUP (VAR DX_UP, DY_UP : REAL);

This procedure assigns the coordinates specifying the

view up point to the parameters DX_UP and DY_UP.

Errors: none.

72

2.17 SET_NDC_SPACE (WIDTH, HEIGHT : REAL);

This procedure defines the size of the two-dimensional

normalized device coordinate space (NDC space) which can be

addressed on the surfaces of display devices used by an applic

ation program. Viewports will be specified within this area (see

2.19, SET_VIEWPORT).

Both parameters must be in the range from 0.0 to 1.0, and

at least one parameter must have a value of 1.0. Horizontally,

normalized device coordinates range from 0.0 to WIDTH, and vert

ically from 0.0 to HEIGHT. The rectangle defined by the par

ameters is mapped to the viewable area of any display device so

that the entire rectangle is visible.

The default normalized device coordinate specification is

WIDTH = 1.0 and HEIGTH = 1.0.

SET_NDC_SPACE may only be invoked once for each initial

ization of the SSOCS library, and the normalized device coord

inate space it establishes applies to all view surfaces that

might be used by an application program. If SET_NDC_SP ACE has

not been called previously, the default values have not been

assigned, and the specified parameters are valid, SET_NDC_SPACE

calls DEFINE_NDC_SPACE to assign the parameters to the environ

ment variable, and then:

1. creates the viewport to default specifications, if

73

the viewport has not been assigned by the application

program, and .

2. determines the mapping required to transform world

coordinates to normalized device coordinates (proc

edure TRY_TO_DEFINE_MAPPING).

Three SSOCS procedures, CREATE_TEMPORARY_SEGMENT, SET_

VIEWPORT, AND QUERY_VIEWPORT, require that the NDC space is

established before they complete execution. If, prior to their

invocation, SET_NDC_SPACE has not been used, these procedures

will implicitly establish NDC space to the default specification.

Errors s 503 (SET_NDC_SPACE has already been invoked

since the SSOCS library was last initial

ized)

504 (The invocation of SET_NDC_SPACE is too

late -- the default NDC space has been

established)

505 (A parameter is not in the range of 0.0 to

1.0)

506 (Neither WIDTH nor HEIGHT has a value of

1.0)

507 (WIDTH or HEIGHT is equal to zero)

2.18 QUERY_NDC_SPACE (VAR WIDTH, HEIGHT : REAL);

This procedure assigns the values specifying the normal

ized device coordinate space to the appropriate parameters.

Errors: none.

2.19 SET__VIEWPORT (XMIN, XMAX, YMIN, YMAX : REAL);

This procedure is used to define the viewing specific

ation’s viewport. The parameters specify a rectangle in normal

ized device coordinates. This rectangle represents the viewport;

its sides are vertical, and top and bottom horizontal. The

viewport establishes an area on a view surface, within which the

contents of the window (see 2.13, SET_WINDOW) will be displayed.

The viewport cannot exceed the bound of normalized device

coordinate space. The default viewport specification is the

entire normalized device coordinate space.

Provided that there is no currently open segment (in

which case the procedure terminates) SET_VIEWPORT calls CHECK_

NDC_SPACE_STATE to determine the currently defined normalized

device coordinate space. It then ensures that the supplied

parameters lie within this space, and if so, calls DEFINE_

VIEWPORT to assign the parameters to the viewport variable.

SET_VIEWPORT then calls TR Y_TO_DEFINE_MAPPING to determine the

mapping required to transform world coordinates to normalized

device coordinates.

Errors: 6 (A segment is open)

75

501 (XMIN is not less than XMAX, or YMIN is

not less than YMAX)

508 (One or more of the viewport corners is

outside the normalized device coordinate

space)

2.20 QUERY_VIEWPORT (VAR XMIN, XMAX, YMIN, YMAX s REAL);

This procedure assigns the values specifying the viewport

to the appropriate parameters.

Since it is possible for an application program to invoke

this procedure without invoking SET_VIEWPORT, a call is made to

CHECK_NDC_SPACE_STATE to ensure that, at least, normalized device

coordinate space has been created to default specifications, and

the default viewport has been defined. Once this has been com

pleted, WHAT_IS_VIEWPORT is called to assign the viewport dimen-

sioons to the parameters.

Errors: none.

2.21 MAP_NDC_TO_WORLD (NDC_X, NDC_Y : REAL; VAR X, Y : REAL);

This procedure calculates the world coordinates X and Y

corresponding to the normalized device coordinates contained in

NDC_X and NDC_Y.

The procedure calls WHAT IS VIEWPORT to determine the

76

size of the current viewport, and ensures that the normalized

device coordinates specified lie within this viewport. If this

is so, TRANS_NDC_TO_WORLD is called to actually transform the

coordinates, using the mapping established by the procedure TRY_

TO_DEFINE_MAPPING. If the window is rotated, the reverse rotat

ion is then applied to the coordinates (procedure ROTATE_POINT).

Errors: 510 (The specified normalized device coord

inate position is outside the current

viewport)

2.22 MAP_W0RLD_T0_NDC (X, Y : REAL; VAR NDC_X, NDC_Y : REAL);

This procedure calculates the normalized device coord

inates NDC_X and NDC_Y corresponding to the world coordinates

contained in X and Y.

If clipping is enabled, the procedure calls WHAT_IS_

WINDOW to determine the size of the current window, and ensure

that the world coordinates specified lie within this window. If

this is so, the following actions are performed:

1. if the window is rotated about the world coordinate

origin, ROTATE_POINT is called to rotate the coord

inates accordingly;

2. TRANS_WORLD_TO_NDC is called to actually transform

the coordinates, using the mapping established by the

77

procedure TRY_ TO_DEFINE_MAPPING.

Errors: 512 (The specified world coordinate position

is outside the current window and clipp

ing is enabled)

2.23 SET_CLIPPING (ON_OFF : SWITCH);

This procedure is used to enable or disable clipping

against the window in the viewing plane, according to the value

of the parameter ON_OFF. When clipping is turned off, objects

described in the world coordinate system are not checked for

possible window clipping. If a line or a portion of a line

appears outside the normalized device coordinate space the app

earance of the line is device dependent. When clipping is enab

led, objects described in the world coordinate system are clipp

ed, if necessary, to the window.

The default window clipping mode is on.

Errors: 6 (A segment is open)

2.24 QUERY-CLIPPING (VAR MODE : SWITCH);

This procedure assigns the current clipping mode (either

"on" or "off") to the parameter MODE.

Errors: none.

78

2.25 INITIALIZE_CORE;

This procedure must be the first SSOCS routine called by

an application program. It guarantees that the SSOCS library is

in a predefined state with the default settings of all parameters

established.

INITIALIZE_CORE calls RESET_VALUES, which sets all SSOCS

library parameters to their default state (showing, for example,

that no segments are open, no errors have been detected). It

then calls:

1. SET_WINDOW, to create the viewing operation window to

the default specification;

2. SET_CLIPPING, to turn clipping on;

3. SET_VIEWUP, specifying a view up point at coordinates

(0,1), showing no rotation of the window;

4. MOVE_ABS, to set the current pen position to the

origin of the world coordinate system.

Errors: 701 (The SSOCS library has already been init

ialized)

2.26 TERMINATE_CORE;

This procedure is used to terminate use of the SSOCS

library. It closes an open segment, terminates access to any

initialized view surface (procedure MAKE_DEVICE), and releases

79

any other resources used by the library.

After the SSOCS library has been terminated it may be

reinitialized with the INITIALIZE_CORE procedure.

Errors: none.

2.27 INIT_VIEW_SURFACE (SURFACE_NAME : DEVICES);

This procedure is used to gain access to the view surface

SURFACE_NAME, and to prepare that surface for graphics output. A

device must be initialized with this procedure before it can be

selected for output (see 2.29, SEL_VIEW_SURFACE).

The procedure adds the name SURFACE_NAME to the set of

initialized surfaces, maintained in the Pascal set INIT_SURFACES.

Procedure MAKE_DEVICE is than called to gain access to the sur

face, and to prepare it for graphics output.

Errors: 705 (The specified view surface is already

initialized)

2.28 TERM_VIEW_SURFACE (SURFACE_NAME : DEVICES);

This procedure is used to terminate an application prog

ram's access to the view surface SURFACE_NAME, which will also be

cleared.

SURFACE NAME is removed from INIT SURFACES, and

80

MAKE_DEVICE is called to clear the surface, and terminate access

to it.

Errors: 708 (The specified view surface is not

initialized)

2.29 SEL_VIEW_SURFACE (SURFACE_NAME : DEVICES)?

This procedure adds the view surface SURFACE_NAME to the

set of selected view surfaces SELECTED_SURFACES. Any images

resulting from graphics output primitive function invocations

will appear only on the view surfaces contained in the set of

selected view surfaces. Also, when NEW_FRAME is called (see

2.31) a new-frame action will occur only on those view surfaces

in this set.

The set of selected view surfaces is initially empty.

Errors:

708

709

6 (A segment is open)

(The specified view surface is not init

ialized)

(The specified view surface is already

selected)

2.30 DESEL_VIEW_SURFACE (SURFACE_NAME : DEVICES)?

This procedure removes the view surface SURFACE_NAME from

SELECTED_SURFACES. Any subsequent graphics output, or new-frame

81

actions, will not affect SURFACE-NAME unless it is reselected

with a SEL_VIEW_SURFACE procedure invocation.

Errors: 6 (A segment is open)

711 (The specified view surface is not sel

ected)

2.31 NEW_FRAME;

This procedure causes a new-frame action to take place on

each view surface that has been selected.

A new-frame action results in the elimination from view

of all output primitives currently being displayed. For a term

inal device, the display is cleared, while for a hardcopy device

the output medium is advanced.

For each selected surface, NEW_FRAME calls MAKE_DEVICE to

clear that surface.

Errors: 4 (The set of selected view surfaces is

currently empty)

2.32 REPORT_MOST_RECENT_ERROR (VAR LATEST : ERRORDATA);

This procedure copies the report for the most recently

detected error into LATEST, and then discards the original re

port. If no error has been detected since the SSOCS library was

initialized, or since the last call to REPORT_LATEST_ERROR, a

82

null error report will be returned (an error identifier and a

severity code of zero).

Errors: none.

3. Error Messages and Severity Codes

This section shows the error messages, and their corr

esponding identification numbers, that may be generated by the

SSOCS library:

2: N is less than or equal to zero

4: The set of selected view surfaces is empty

6: A segment is open

201: There is no open segment

301: There already is an open segment

307: There is no open temporary segment

501: XMIN is not less than XMAX, or YMIN is not less

than YMAX

502: DX_UP and DY_UP are both zero; no view up

direction can be established

503: SET_NDC_SPACE has already been invoked since

the SSOCS library was last initialized

504: The invocation of SET_NDC_SPACE is too late —

the default NDC space has been established

505: A parameter is not in the range of 0.0 to 1.0

506: Neither WIDTH nor HEIGHT has a value of 1.0

83

507: WIDTH or HEIGHT is equal to zero

508: One or more of the viewport corners is outside

the normalized device coordinate space

510: The specified normalized device coordinate

position is outside the current viewport

512: The specified world coordinate position is

outside the current window and clipping is

enabled

701: The SSOCS library has already been initialized

705: The specified view surface is already initial

ized

708: The specified view surface is not initialized

709: The specified view surface is already selected

711: The specified view surface is not selected

The severity codes that are used by the SSOCS library to

notify the application program of the seriousness of an error

are:

5: indicates an invalid parameter value or values; the

procedure that has been invoked will return without

any change to the state of the SSOCS library (for

example, a parameter to SET_NDC_SPACE may be less

than 0.0);

6: indicates that a routine has been called which is

invalid with the present state of the SSOCS library

84

(for example, an output primitive function is invoked

when there is no open segment).

APPENDIX III

SOURCE CODE LISTING OF THE SSOCS LIBRARY

85

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 86

program ssocs_demo?

(*

THIS IS TOE PIXEL 100/AP (UNIX) VERSION .OF TOE SSOCS LIBRARY

OWEN PLOWMAN,
ISRAM

APRIL, 1983

Device drivers for:

1. VT125 (attached to serial 1)
2. GIGI (---- serial 2)

This version of SSOCS is based on the material found in
"Status Report of The Graphics Standards Planning Carmittee",
Canputer Graphics, Volume 13, Number 3, August 1979.

*)

(* CONSTANT DECLARATION SECTION
*)

const

esc
erroractual

= '\lb';
= 1/dev/console'; (* error log device *)

maxsurfaces = 4; (* surfaces available *)

ndcwidth = 1.0? (* default width *)
ndcheight = 1.0; (* default height *)

(* constants for the devices

VT125
*)

vtl25actual = '/dev/serial0'; (* physical device for
the VT125 *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 87

vtl25max — 479; (* width of VT125 screen *)
vtl25hcme = ’C?61’; (* heme sequence for cursor*)
vtl25alphaclear = ‘C2j’; (* clear alpha screen *)
vtl25graphicclear = 's(e)'; (* clear graphics screen *)
vtl25gron = •Pp'; (* enter graphics mode *)
vtl25groff as (* exit graphics mode *)
vtl25setorigin = 's(a[0,479][767,0])1 ; (.* origin to (0,0) *)
vtl25marker = 't(sC8,14])'; (* define marker size *)

(*
GIGI

*)

gigiactual = '/dev/serial2'; (* physical device for
the GIGI*)

gigimax = 479; (* width of GIGI screen *)
gigigraphicclear = 's(e)'; (* heme and clear *)
gigigron = ’Pp'? • (* enter graphics mode *)
gigigroff as 'W; (* exit graphics mode *)
gigisetorigin = *s(a[0,479][767,0])1; (* set origin to (0,0)*)
gigimarker = 1 t(s[8,14])'; (* define marker size *)

(*
VERSATEC — not implememented on this version

*)

vstecmax = 10.555;
vstecletter - 0.21;
vstecmarkoffset = 0.07;

marksyiribol

maxpoints = 80;

(* width of versatec *)
(* size of characters *)
(* to centre marker symbol *)

(* marker symbol *

(* max. points for polyline*)

• ■ <.

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 88

(* TYPE EECLARATICN SECTION
*)

type

switch = (cn, off);

operations = (up, down);

condition - (cuvert, ferme);

buffer = string [50];
coordrange = 1 .. maxpoints;
coordseq = array [coordrange]

(* interpreted as "operating state" *)

(* since 'cpen' and
'close' are reserved *)

(* PIXEL-dependent type *)

of real;

devices = (vtl25, versatec, gigi, prism);
surfaces = set of devices;

vstecpens - 0 .. 9; (* pens available on the Versatec *)

surrange = 1 .. maxsurfaces;
surarray = array [surrange] of devices;

(* The following are possible instructions to the carmand pathway
to the device drivers

*)
instructions = (access, startup, clear, finishoff);

radian = real;

direction = (x, y);
point = array [direction] of real;

pair = (first, second);

point_pair = record
Plr
p2 : point

end;

(* This record holds information about the window in the graphical
world (the application program's world)

*)
world_data = record

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 89

fenster : point_pair;
clipping : switch;
rotation : radian;
viewuppoint : point

end;

(* window dimensions *)
(* clipping on/off *)
(* angle of rotation *)
(* current view up point *)

coordtrans = record (*
scale, (*
offset : real

end;
transformdata = array [direction] of

for transforming points *)
frcm world to ndc coords *)

coordtrans;

(* This record holds all of the information for the graphical
world (the application program's world)

*)
environment = record

windcw : world_data;
ndcspace : point;
viewport : point_j?air;
mapping : transformdata

end;

(* Data structures for describing primitives
*)

line_stuff = record
ends : point_pair;
place : switch (* an or off the screen? *)

end;
mark_stuff = record

markposition : point;
place : switch

end;
validescapes = (prompt, circle);
escapestuff = record

viewsurface : devices;
case escapefunction : validescapes of
prompt :

(ndcx,
ndcy : real;
pranptmessage : buffer;);

circle :
(centre : point;
radius : real)

end;
thingstodo = (line, marker, charseq, escapade);
primitive = record

case action : thingstodo of
marker :

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 9 0

(currentmarker : mark_stuff);
line :

(currentline : line_stuff);
escapade :

(currentescape : escapestuff)
end;

(* error reporting information
*)

error_info = (identifier, code);
error_data = array [error_info] of integer;

(* The record defines here hold all of the information controlling
the SSOCS system

*)
status_data = record

corestate,
wndwstate,
vportstate,
ndcstate,
ndcdefstate : operations;
segstate : condition;
errorprocessing : switch;
reportgone : boolean

end;

(*
(*
(*
(*
(*
(*
(*
(*

systan initialized? *)
window up? *)
viewport up? *)
ndc space up? *)
ndc space set default*)
segment open?*) •
error handling on? *)
error report flushed?*)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 91

(* VARIABLE DECLARATION SECTION
*)

var

cp : point; (* the current position *)

controls : status_data; (* ' the state of SSOCS *)

thejworld : environment; (* the graphical world *)

init surfaces, (* surfaces initialized *)
selected surfaces : surfaces; (* surfaces selected *)

esccodes : set of validescapes;
primcodes : set of thingstodo;

error_report : error_data;

stderr,
gigifile,
vtl25file,
prismfile : text;

answer : char;

rangle : radian;
dpoint : point;

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 9 2

(* SSOCS CONTROL VARIABLE PACKAGE MODULE
*)

procedure core_is (state : operations;
var controller : status_data);

(* This routine assigns the value specified by the parameter "state"
to the SSOCS control variable ("state" specifies that the library
is "tp" or "down")

*)

begin
with controller do

corestate := state
end; (* core is *)

function core_is_down (controller : status_data) : boolean;

(* This routine returns the value true if the graphics system state is
"dcwn" (i.e. not initialized)

*)

begin
with controller do

core_is_dcwn := corestate = dcwn
end; (* core is down *)

procedure a_segment_is (state : condition;
var controller : status_data);

(* This routine assigns the value specified by the parameter "state"
to the segstate control variable, and establishes whether a segment
is cpen or closed

*)

begin
with controller do

segstate := state
end; (* setsegmentstate *)

function segment_is_6pen (controller : status_data) : boolean;

(* This routine returns the value true if there is currently a segment

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 93

open
*)

begin
with controller do

segnent_is_open := segstate = ouvert
end; (* segment_is_qpen *) .

procedure set_error_processing (mode : switch;
var controller : status_data);

(* This routine assigns the value specified by the parameter "mode"
to the errorprocessing control variable ("mode" specifies that
error-processing is currently either "on" or "off"

*)

begin
with controller do

errorprocessing := mode
end; (* set_error_processing *)

function handling_error (controller : status_data) : boolean;

(* This routine returns the value true if an error is currently being
processed

*)

begin
with controller do

handling_error := errorprocessing = on
end; (* handling_error *)

procedure check_call_is_valid (controller : status_data);

(* This routine is used to determine the validity of invocations of
SSOCS routine by application programs. No routine should be
called vhile error-processing is going cn. If such a situation
does arise, the SSOCS system will abort.

*)

begin
if handling_error (controller) then
halt

end; (* check_call_is_valid *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 94

procedure set_report_flushed (flushed : boolean;
var controller : status_data);

(* This routine assigns the value specified by the parameter "flushed"
to the reportflushed control variable ("flushed" specifies that an
error report has (true) or has not (false), been flushed frcm the
system

*)

begin '
with controller do

reportgone := flushed
end; (* set_report_flushed *)

function report_is_flushed (controller : status_data) : boolean;

(* This routine returns the value true if an error report has been
flushed frcm the system ■

*)

begin
with controller do

report_is_flushed := reportgone
end; (* report_is_flushed *)

procedure the_window_is (state : operations;
var controller : status_data);

(* This routine assigns the value specified by the parameter "state"
to the windowstate control variable ("state" specifies that the
window is currently either "up" or "down")

*)

begin
with controller do
wndwstate := state

end; (* aswindowup *)

function window_is_up (controller : status_data) : boolean;

(* This routine returns the value true if the window is currently "up"
*)

begin

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 95

with controller do
window_is_up := wndwstate = up

end; (* window_is_up *)

procedure the_viewport_is (state : operations;
var controller : status_data);

(* This routine assigns the value specified toy the parameter "state"
to the viewportstate control variable ("state" specifies that the
viewport is currently either "up" or "down")

*)

begin
with controller do

vportstate := state
end; (* the_viewport_is *)

function viewport_is_up (controller : status_data) : boolean;

(* This routine returns the value true if the viewport is currently "up"
*)

begin
with controller do

viewport_is_up := vportstate = tip
end; (* viewport_is_up *)

procedure ndc_is (state : operations;
var controller : status_data);

(* This routine assigns the value specified by the parameter "state"
to the ndcspacestate control variable ("state" specifies that the
ndc space is currently either "up" or "down")

*)

begin
with controller do

ndcstate := state
end; (* ndc is *)

function ndc_is_up (controller : status_data) : boolean;

(* This routine returns the value true is the ndc space as been
specified (is "tip")

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 96

*)

begin
with controller do

ndc_is_up := ndcstate = up
end; (* ndc_is_up *)

procedure set_ndc_default_state (state : operations;
var controller : status_data);

(* This routine assigns the value specified by the parameter "state"
to the ndcspacedefaultstate control variable ["state" specifies
that the ndc space default is currently either "up" or "down" (i.e.
that the ndc space was or was not set to the default value)]

*)

begin
with controller do

ndcdefstate := state
and; (* set_ndc_default_state *)

function ndc_default_was_set (controller : status_data) : boolean;

(* This routine returns the value true is the ndc space was set to the
default values (i.e. if the default control variable for ndc space
is up)

*)

begin
with controller do

ndc_default_was_set := ndcdefstate = up
end; (* ndc_default_was_set *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 97

(* ERROR PROCESSING ROUTINES

The philosophy of error reporting and recovery supported by SSOCS is
that all errors detected will be reported to the application program.

Whenever an error is detected, SSOCS creates an error report, and in
vokes the function error_handler. This routine takes a single
aggregate parameter ' error_report', vfoich is an ordered pair consisting
of an error identifier and a severity code. Both the error identifier
and the severity code are unsigned integers. The purpose of the severity
code is to inform the application program of the seriousness of the
particular error.

A default error_handler is provided as part of SSOCS. This function
simply invokes the log_error routine. log_error logs each error on
an error log device, which is normally a file, and returns. The
default error_handler routine then returns control to SSOCS. SSOCS
always attempts bo recover and continue, or at least to exit gracefully,
if control can be returned. For at least sane errors, however, the
graphical result cannot be guaranteed.

For more sophisticated error-handling, an application program could
provide its own error_handler by modifying the SSOCS source code.
The only restriction on this application-provided function is that it
not invoke any SSOCS function except log_error (this is checked as
each routine is called by the procedure check_call_is_valid). If the
application-supplied error_handler does invoke a SSOCS function, SSOCS
will abort.

The most recent error report is maintained by SSOCS for interrogation
with the report_latest_error function.

A SSOCS function invocation generates at most one error report. The
order in vhich SSOCS detects the various conditions is irnplanentation-
dependent (usually the error conditions are detected and reported in
the order in which they appear in the GSPC Core System report).

*)

procedure process_error (errorid, severity : integer) ;

forward;

procedure build_error_report (errorid,
severity : integer;

http:forVJa.rd
http:alVJa.ys

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 98

var report : error_data);

(* This routine takes the values of errorid and severity, and creates
a single aggregate variable containing both values

*)

begin
report [identifier] : = errorid;
report [code] := severity

end; (* build_error_report *)

procedure log_error (report : error_data);

(* This procedure can be used by the application program only as
part of its error handling function. It performs the logging
that is accomplished by the default error handler.

*)

begin
if handling_error (controls) then
begin
writeln (stderr, ' error number ', report [identifier] : 4,

' has occurred1);
writeln (stderr, ' severity code = ', report [code] : 4)

end
else
process_error (719, 6)

end; (* log_error *)

procedure error_handler (error_report : error_data);

begin
log_error (error_report)

end; (* error handler *)

procedure process_error ;

(* This routine builds the error report for the current error, and
invokes the error handling routine

*)

begin
set_report_flushed (false, controls);
build_error report (errorid, severity, error report);
(*

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 99

... the current error report is passed to the errorhandling
routine. The errorprocessing flag is set to "on", to ensure
that no other system routines are called vhile error
processing is going on. The error processing flag is turned off
vdnen the errorhandling routine returns

*)
set_error_processing (cm, controls);
error_handler (error_report);
set_error_processing (off, controls)

end; (* process_error *)

procedure report_latest_error (var latest : error_data);

(* This procedure copies the error report for the most recently
detected error into latest, and flushes the report fran the SSOCS
system. If no error has occurred since SSOCS was initialized,
or since report_latest_error was last invoked, the procedure
returns a null error report (an error identifier and a severity
code of zero).

*)

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else
(*

... if there is a "latest error", it is copied into the
variable latest. Otherwise a null error report is returned.
The control variable for the flushing of reports is set to
true, indicating that a report has been flushed

*)
begin

if report_is_flushed (controls) then
build_error_report (0, 0, latest)

else
build_error_report (error_report [identifier],

error_report [code], latest);
set_report_flushed (true, controls)

end
end; (* report_latest_error *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 100

(* GRAPHICS ENVIRONMENT PACKAGE *)

(* encapsulation routines for a 'point' *)

procedure set_coord'inates (xcoord,
ycoord : real;

var thepoint : point);

(* constructor *)

begin
thepoint [x] := xcoord;
thepoint [y] := ycoord

end; (* set_ooordinates *)

function get_x_ooord (anypoint : point) : real;

(* selector function for x coordinate *)

begin
get_x_coord := anypoint [x]

end; (* get_x_coordinate *)

function get_y_aoord (anypoint : point) : real;

(* selector function for y coordinate *)

begin
get_y_ooord := anypoint [y]

end; (* get_y_coordinate *)

function points_equal (pi, p2 : point) : boolean;

(* function to test two points for equality *)

begin
points_equal := (get_x_coord (pi) = get_x_coord (p2)) and

(get_y_coord (pi) = get_y_coord (p2))
end; (* points equal *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 101

(* encapsulation routines for a 'point_pair' *)

procedure set_a_point (thepoint : point;
which : pair;

var anypair : point_pair);

begin
with anypair do

if which = first then
pi := thepoint

else
p2 := thepoint

end; (* set_a_jpoint *)

procedure get_a_point (var thepoint : point;
which : pair;
anypair : point_pair);

begin
with anypair do

if which = first then
thepoint := pi

else
thepoint := p2

end; (* get_a_point *)

procedure define_rectangle (xmin, xmax,
ymin, ymax : real;

var anybox : point_pair);

var
dummy : point;

begin
set_ooordinates (xmin, ymin, dummy);
set_a_point (dunmy, first, anybox);
set_coordinates (xmax, ymax, dunmy);
set_a point (dummy, second, anybox)

end; (* define_rectangle *)

procedure what_is_rectangle (var xmin, xmax,
ymin, ymax : real;
anybox : point_pair);

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 1Q2

var
dummy : point;

begin
get_a_point (dummy, first, anybox);
xmin := get_x_coord (dummy);
ymin := get_y_ooord (dummy);
get_a_point (dummy, second, anybox);
xmax := get_x_coord (dummy);
ymax := get_y_coord (dummy)

end; (* what_is_rectangle *)

(* encapsulation routines for the graphical environment *)

procedure define_window (xmin, xmax,
ymin, ymax : real;

var anyworld : environment);

begin
with anyworld do
with window do

define_rectangle (xmin, xmax, ymin, ymax, fenster)
end; (* define window *)

procedure vhat_is_window (var xmin, xmax, .
ymin, ymax : real;
anyworld : environment);

begin
with anyworld do
with window do

\Ahat_is_rectangle (xmin, xmax, ymin, ymax, fenster)
end; (* vhat_is_window *)

procedure clipping_is (mode : switch;
var anyworld : environment);

begin
with anyworld do
with window do

clipping := mode
end; (* clipping is *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 103

function clip_switch (anyworld : environment) : switch;

begin
with anyworld do
with window do .

clip_switch := clipping
end; (* clip_switch *)

procedure angle_is (angle : radian;
var anyworld : environment);

begin
with anyworld do
with window do

rotation := angle
end; (* angle_is *)

function get_angle (anyworld : environment) : radian;

begin
with anyworld do
with windew do

get_angle := rotation
end; (* get_angle *)

procedure define_vu_point (xcoord,
ycoord : real;

var anyworld : environment);

begin
with anyworld do
with window do

set_coordinates (xcoord, ycoord, viewuppoint)
end; (* define_vujpoint *)

procedure vhat_is_vu_point (var xcoord,
ycoord : real;
anyworld : environment);

begin
with anyworld do
with window do

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 104

begin
xcoord := get_x_coord (viewuppoint);
ycoord := get_y_coord (viewuppoint)

end
end? (* vhat_is_vu_point *)

procedure scale_is (scalevalue : real;
forcoordinate : direction;

var anyworld : environment);

begin
with anyworld do
with mapping [forcoordinate] do

scale := scalevalue
end; (* scale_is *)

procedure offset_is (offsetvalue : real;
forcoordinate : direction;

var anyworld : environment)?

begin
with anyworld do
with mapping [forcoordinate] do

offset := offsetvalue
end; (* offset is *)

function get_scale (forcoordinate : direction;
anyworld : environment) : real;

(* This routine finds the scaling factor for the specified world
to ndc space mapping, for the specified direction *)

begin
with anyworld do
with mapping [forcoordinate] do

get_scale := scale
end; (* get_scale *)

function get_offset (forcoordinate : direction?
anyworld : environment) : real;

(* This routine finds the offset factor for the specified world
to ndc space mapping, for the specified direction *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 105

begin
with anyworld do
with mapping [forcoordinate] do

get_offset := offset
end; (* get_offset *)

procedure define_viewport (xmin, xmax,
ymin, ymax : real;

var anyworld : environment);

begin
with anyworld do

define_rectangle (xmin, xmax, ymin, ymax, viewport)
end; (* define_viewport *)

procedure what_is_viewport (var xmin, xmax,
ymin, ymax : real;
anyworld : environment);

begin
with anyworld do
vhat_is_rectangle (xmin, xmax, ymin, ymax, viewport)

end; (* what_is_viewport *)

procedure trans_ndc_to_world (var p : point);

(* This routine performs a simple transformation of a point in
ndc space to world space *)

var
xnew,
ynew : real;

begin
xnew := (get_x_coord (p) - get_offset (x, the_world)) /

get_scale (x, the_world);
ynew := (get_y_coord (p) - get_offset (y, the_world)) /

get_scale (y, the_world);
set_coordinates (xnew, ynew, p)

end; (* trans ndc to world *)

procedure trans_world_to_ndc (var p : point);

(* This routine performs a simple transformation of a point in

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 106

world space to ndc space *)

var
xndc,
yndc : real;

begin .
xndc := (get_x_coord (p) * get_scale (x, the_world)) +

get_offset (x, the_world);
yndc := (get_y_coord (p) * get_scale (y, the_world)) +

get_offset (y, the_world);
set_ooordinates (xndc, yndc, p)

end; (* trans world to ndc *)

procedure try_to_define_mapping (var anyworld : environment);

(*
This procedure attempts to set up the mapping used to transform
coordinates frcm the world to the viewport.

If both the window and the viewport have been established, then
the mapping will also be established, based on the current bounds
of the window and viewport.

*) ‘

var
vxr, vxl,
vyt, vyb,
wxr, wxl,
wyt, wyb : real;

begin
if window_is_up (controls) and

viewport_is_up (controls) then
begin

(*
... both the window and the viewport have been established.
Their boundary values are determined, and the mapping is
then calculated

*)
what_is_window (wxl, wxr, wyb, wyt, anyworld);
vhat_is_vievport (vxl, vxr, vyb, vyt, anyworld);
(*

... for x coordinates
*)

scale_is (((vxr - vxl) / (wxr - wxl)), x, anyworld);
offset_is ((vxl - (wxl * get_scale (x, anyworld))), x, anyworld);

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 107

(*
... for y coordinates

*)
scale_is (((vyt - vyb) / (wyt - wyb)), y, anyworld);
offset_is ((vyb - (vyb * get_scale (y, anyworld))), y, anyworld)

end
end; (* try_to_define_mapping *) .

(* point rotation *)

procedure rotate_point (var thepoint : point;
theta : radian);

(* This routine performs a rotation of a point by the specified
angle *)

var
x, y,
xprime, yprime : real;

begin
x := get_x_coord (thepoint);
y := get_y_coord (thepoint);
xprime := (x * cos (theta)) + (y * sin (theta));
yprime := ((-1) * x * sin (theta)) + (y * cos (theta));
set_coordinates (xprime, yprime, thepoint)

end; (* rotate_point *)

procedure define_ndc_space (width,
height : real;

var anyworld : environment);

begin
with anyworld do

set_coordinates (width, height, ndcspace)
end; (* define_ndc_space *)

procedure vhat_is_ndc_space (var width,
height : real;
anyworld : environment);

begin
with anyworld do

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 108

begin
width := get_x_coord (ndcspace);
height := get_y_coord (ndcspace)

and
end; (* vhat is ndc space *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 109

(* PRIMITIVE PACKAGE *)

function sel_surface (thelist : escapestuff) : devices?

begin .
with thelist do

sel_surface := viewsurface
end; (* sel surface *)

procedure as_surface (thesurface : devices;
var thelist : escapestuff);

begin
with thelist do

viewsurface := thesurface
end; (* as surface *)

function sel_function (thelist : escapestuff) : validescapes;

begin
with thelist do

sel_functicn := escapefunction
end; (* sel function *)

procedure as_function (thefunction : validescapes;
var thelist : escapestuff);

begin
with thelist do

escapefuncticn := thefunction
end; (* as_function *)

procedure sel_prcrapt_start (var p : point;
thelist : escapestuff);

begin
with thelist do

if sel_function (thelist) = pranpt then
set_coordinates (ndcx, ndcy, p)

else
process_error (1001, 6)

end; (* sel pranpt start *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 110

procedure as_prcmpt_start (x, y : real;
var thelist : escapestuff);

begin
with thelist do

if sel_function (thelist) = prompt then
begin

ndcx := x;
ndcy := y

end
else
process_error (1001, 6)

end; (* as_joranpt_start *)

procedure sel_message (var themessage : buffer;
thelist : escapestuff);

begin
with thelist do

if sel_function (thelist) = prompt then
themessage := pranptmessage

else
process_error (1001, 6)

end; (* sel_message *)

procedure as_message (themessage : buffer;
var thelist : escapestuff);

begin
with thelist do

if sel_function (thelist) = prompt then
pranptmessage := thenessage

else
process_error (1001, 6)

end; (* as_message *)

procedure sel_centre (var p : point;
thelist : escapestuff);

begin
with thelist do

if sel_function (thelist) = circle then
p := centre

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 111

else
process_error (1001, 6)

end; (* sel_centre *)

procedure as_centre (p : point;
var thelist : escapestuff);

begin
with thelist do

if sel_function (thelist) = circle then
centre := p

else
process_error (1001, 6)

end; (* as centre *)

function sel_radius (thelist : escapestuff) : real;

begin
with thelist do

if sel_function (thelist) = circle then
sel_radius := radius

else
process_error (1001, 6)

end; (* sel radius *)

function get_function (instance : primitive) : validescapes;

begin
with instance do

get_function := sel_function (currentescape)
end; (* get_function *)

function get_surface (instance : primitive) : devices;

begin
with instance do

get_surface := sel_surface (currentescape)
end; (* get_surface *)

procedure get_message (var line : buffer;
instance : primitive);

begin

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 112

with instance do
sel_message (line, currentescape)

end; (* get_message *)

function get_radius (instance : primitive) : real;

begin
with instance do

get_radius := sel_radius (currentescape)
end; (* get_radius *)

procedure set_action_to (thisaction : thingstodo;
var instance : primitive);

begin
with instance do

action := thisaction;
end; (* set action to *)

function get_the_action (instance : primitive) : thingstodo;

begin
with instance do

get the_acticn := action;
end; (* get_the_action *)

procedure set_end_points (beginning,
ending : point;

var instance : primitive);

begin
if get_the_action (instance) in primcodes then
with instance do

case get_the_action (instance) of
line :
with currentline do

begin
set_a_point (beginning, first, ends);
set_a_point (ending, second, ends)

end;
marker, escapade :

process_error (1001, 6)
end

else

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 113

process_error (1000, 6)
end? (* setlineends *)

procedure get_end_points (var beginning,
ending : point?
instance : primitive)?

begin
if get_the_action (instance) in primcodes then
with instance do

case get_the_action (instance) of
line :
with currentline do

begin
get_a_point (beginning, first, ends)?
get_a_point (ending, second, ends)

end?
marker, escapade :

process_error (1001, 6)
end

else
process_error (1000, 6)

end? (* get_end_points *)

procedure the_line_is (onscreen : switch?
var instance : primitive)?

begin
if get_the_action (instance) in primcodes then
with instance do

. case get_the_action (instance) of
line :
with currentline do

place := onscreen?
marker, escapade :

process_error (1001, 6)
end

else
process_error (1000, 6)

end? (* the line is *)

function line_is_cn (instance : primitive) : boolean?

begin
if get_the_action (instance) in primcodes then

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page H4

with instance do
case get_the_action (instance) of

line :
with currentline do

line_is_cn := place = cn;
marker, escapade :

process_error (1001, 6)
end

else
process_error (1000, 6)

end; (* line is on *)

procedure go_to_action_point (position : point;
var instance : primitive);

begin
if get_the_action (instance) in primcodes then
with instance do

case get_the_action (instance) of
marker :
with currentmarker do
markpositicn := position;

line, escapade :
process_error (1001, 6)

end
else
process_error (1000, 6)

end; (* go_to_action_point *)

procedure vhat_is_action_point (var thepoint : point;
instance : primitive);

begin
if get_the_action (instance) in primcodes then
with instance do

case get_the_action (instance) of
marker :
with currentmarker do

thepoint := markpositicn;
escapade :

case sel_function (currentescape) of
prompt :

sel_prcmpt_start (thepoint, currentescape);
circle :

sel_centre (thepoint, currentescape)
end;

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 115

line :
process_error (1001, 6)

end
else
process_error (1000, 6)

end? (* vhat_is_action_point *)

procedure the_point_is (onscreen : switch;
var instance : primitive);

begin
if get_the_action (instance) in primcodes then
with instance do

case get_the_action (instance) of
marker :
with currentmarker do
place := onscreen;

line, escapade :
process_error (1001, 6)

end
else
process_error (1000, 6)

end; (* the_point_is *)

function point_is_cn (instance : primitive) : boolean;

begin
if get_the_action (instance) in primcodes then
with instance do

case get_the_action (instance) of
marker :
with currentmarker do

point_is_cn := place = on;
line, escapade :
process_error (1001, 6);

end
else
process_error (1000, 6)

end; (* point_is_cn *)

procedure set_parameters (parmlist : escapestuff;
var instance : primitive);

begin
if get_the_action (instance) in primcodes then

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 116

with instance do
case get_the_action (instance) of
escapade :

currentescape := parmlist;
line, marker :
process_error (1001, 6)

end
else
process_error (1000, 6)

end; (* setjoarameters *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 117

(* VIEWING OPERATIONS *)

procedure set_window (xmin, xmax, ymin, ymax : real);

(*
The parameters to set_window specify a rectangle (in world
coordinates, which has left and right sides vertical, and top
and bottom horizontal. The rectangle is rotated about the origin
of the world coordinate systan so that the sides running from
ymin to ymax run in the direction of the view-up vector. This
rotated rectangle defines the window. In the default case,
the view-up vector is in the positive y direction, so that no
rotation has to be performed.

The window and the viewport define the transformation used to
map from world coordinates to normalized device coordinates.
When enabled, clipping is performed at the window boundary.
That is, portions of objects on or inside the window boundary are
visible, vhile portions outside the boundary are not. If window
clipping is disabled, then the entire xy plane is mapped to the
view surface in such a way that the window is mapped to the
viewport. The image appearing on the view surface is
well-defined only for that portion of the xy plane vhich,
vhen mapped to the view surface, falls within the range of normal
ized device coordinate space. Any object whose image is partially
or completely outside these bounds will be displayed in an irtp-
lementation dependent way.

The default window specification is (0.0, 1.0, 0.0, 1.0), and window
clipping is enabled.

*)

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if segment_is_open (controls) then
process_error (6, 6)

else if ((xmin >= xmax) or
(ymin >= ymax)) then

process_error (501, 5)
else
begin

(*
• • • the values specified for the boundaries of the window

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 118

. are valid, and so the window is defined. The status of
the window is set to "up", and an attenpt is made to
determine the world —> ndc-space mapping (this can only
be done if the viewport has also been defined).

*)
define_window (xmin, xmax, ymin, ymax, the_world);
the_window_is (up, controls); .
try_to_define_mapping (the_world);

end
end; (* set window *)

procedure queryjwindcw (var xmin, xmax, ymin, ymax : real);

(*
The values specifying the current window are copied
into the parameters.

*)

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else
>hat_is_window (xmin, xmax, ymin, ymax, the_world)

end; (* query_window *)

procedure set_clipping (mode : switch);

(*
This procedure is used to enable or disable clipping
against the window in the view plane. When window clipping
is "off", objects described to the SSCCS system are not
checked for possible window clipping. If a line, or a
portion of a line, appears outside the normalized device
coordinate space, the appearance of that line is undefined.
When window clipping is set to "on", objects described to
the SSOCS system are clipped, when necessary.

The default window clipping mode is "on".

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if segment_is_open (controls) then

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 119

process_error (6, 6)
else
clipping_is (mode, the_world)

end; (* set_clipping *)

procedure query_clipping (var mode : switch);

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else
mode := clip_switch (the_world)

end; (* query_clipping *)

procedure set_view_up (dxup, dyup : real);

(*
This function specifies the world coordinate "up"
direction, so that the world coordinate y-axis need not be
upright on the view surface. The synthetic camera is
rotated about its line of sight so that the vector fran
the origin to (dxup, dyup) would appear to be vertical in
the camera's viewfinder.

The default for (dxup, dyup) is (0.0, 1.0), and so the world
coordinate y-axis direction is the default view up direction.

*)

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if segnent_is_open (controls) then
process_error (6, 6)

else if (dxup = 0.0) and
(dyup =0.0) then

process_error (502, 5)
else
begin

define_vu_point (dxup, dyup, the_world);
if (dxup = 0.0) and

(dyup > 0.0) then
angle_is (0.0, the_world)

else

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 120

angle_is ((-1.0) * (arctan (dxup / dyup)), the_wrld)
end

end; (* set_view_up *)

procedure query_vw_up (var dxup, dyup : real);

(*
The coordinates for the view up point are copied into the
specified parameters.

*)

begin
check_call_is_valid (controls);
if core_is_dcwn (controls) then
process_error (717, 6)

else
vhat_is_vu_point (dxup, dyup, the_world)

end; (* query_vw_up *)

procedure set_ndc_space (width, height : real);

(*
This function defines the size of the two-dimensional
normalized device coordinate space which can be addressed on
the view surface of all the display devies used by the
application program, and within which viewports will be
specified. Both parameters must be in the range 0 to 1, and
at least one parameter must have a value of 1.

Horizontally, normalized device coordinates range frcm 0
to width, and vertically, from 0 to height. The rectangle
so defined is mapped to the viewable area of any display
device used by the application program, so that the entire
rectangle is visible. Only uniform scaling of the rectangle
is allowed as part of the mapping, vhich will usually (but
not necessarily) maximize the useable area of the display.

The default normalized device coordinate specification is
width = 1.0 and height = 1.0. set_ndc_space may only be
used once for each initialization of the SSOCS system, and
the ndc space it establishes applies to all view surfaces
vhich might be used by the application program.

Several SSOCS system routines require that ndc space is established
before they complete execution. If, prior to their invocation, the
ndc space has not been established, these routines will implicitly

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 121

establish ndc space using the default values. The routines are:

create_segment,
set_viewport,
query viewport

*)

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if ndc_is_up (controls) then
process_error (503, 6)

else if ndc_default_was_set (controls) then
process_error (504, 6) ' ’

else if (width < 0.0) or
(width > 1.0) or
(height < 0.0) or
(height > 1.0) then •

process_error (505, 5)
else if (width <> 1.0) and

(height <> 1.0) then
process_error (506, 5)

else if (width = 0.0) or
(height =0.0) then

process_error (507, 5)
else
begin

(*
... the input values are valid, so the ndc space is
defined. The status of the ndc space is set to "up".

*)
define_ndc_space (width, height, the_world);
ndc_is (up, controls);
(*

... if the viewport, has not yet been specified, it
is defined as being equal to the entire ndc space,
and an attempt is made to establish the world —>
ndc-space mapping (this can only be done if the
window has also been specified).
*)

if not viewport_is_up (controls) then
begin
define_viewport (0.0, width, 0.0, height, the_world);
the_viewport_is (up, controls);
try_to_define_mapping (the_world);

end

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 122

end
end; (* set_ndc_space *)

procedure query_ndc_space (var width, height : real);

(* ■
The current dimensions of the normalized device coordinate
space is copied into the specified parameters.

*)

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else
vhat_is_ndc_space (width, height, the_world)

end; (* query_ndc_space *)

procedure check_ndc_space_state ;

(*
This procedure is used by certain SSOCS system functions
to determine whether the ndc space has been established.
If either an application program or another of the SSOCS system
functions has set the ndc space, the procedure exits. Otherwise
the ndc space is set to the default value (width =1.0 and
height = 1.0), and the control flag is set to show that this
operation has been carried out.

*)

begin
if ndc_is_up (controls) then

(* ndc space has been set; do nothing *)
else if ndc_default_was_set (controls) then

(* ndc space has been set by another system function;
do nothing *)

else
begin

(*
... the ndc space has not yet been set, and so it is set to
the default values. The status of the ndc space is set to
"up", and indicates that ndc space was set by default

*)
define_ndc_space (ndcwidth, ndcheight, the_world);
set_ndc_def ault_state (up, controls);
(*

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 123

... if the viewport has not yet been set, it is made equal to
the default ndc space, and an attempt is made to establish the
world ---> ndc space mapping (this can only be done if the
window has also been specified

*)
if not viewport_is_up (controls) then
begin .

define_viewport (0.0, ndcwidth, 0.0, ndcheight, the_world);
the_viewport_is (up, controls);
try_to_define_mapping (the_world);

end
end

end; (* check_ndc_space_state *)

procedure set_viewport (xmin, xmax, ymin, ymax : real);

(* The parameters give the extent, in two-dimensional normalized device
coordinate space, of the current viewport. The viewport's sides are
vertical, and its top and bottom horizontal. The viewport cannot
exceed the boundaries of normalized device coordinate space.

This viewport will be used for displaying all output primitives until a
new viewport is specified. The default viewport specification is the
entire normalized device coordinate space, as specified by set_ndc_space,
or the default (width = 1.0, height = 1.0), if this function has not
been invoked.

*)

var
width,
height: real;

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if segment_is_open (controls) then
process_error (6, 6)

else if (xmin >= xmax) or
(ymin >= ymax) then

process_error (501, 5)
else
begin

the_viewport_is (up, controls);
check_ndc_space_state ;
the_viewport_is (down, controls);
query ndc space (width, height);

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 124

if (xmin < 0.0) or
(xmax > width) or
(ymin < 0.0) or
(ymax > height) then

process_error (508, 5)
else
begin .

define_viewport (xmin, xmax, ymin, ymax, the_world);
the_viewport_is (up, controls);
try_to_define_mapping (the_world)

end
end

end; (* set_viewport *)

procedure query_viewport (var xmin, xmax, ymin, ymax : real);

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else
begin

check_ndc_space_state ;
what_is_viewport (xmin, xmax, ymin, ymax, the_world)

end
and; (* query_viewport *)

procedure map_ndc_to_world (ndcx, ndcy : real;
var wx, wy : real);

(* The world coordinates corresponding to the position (ndcx, ndcy)
are calculated, and written into the parameters x and y. *)

var
xmin, xmax,
ymin, ymax : real;
durrrny : point;

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else
begin

(*
• • • determine the size of the viewport and ensure that

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 125

the coordinates to be transformed lie within it
*)

what_is_viewport (xmin, xmax, ymin, ymax, the_world);
if (ndcx < xmin) or

(ndcx > xmax) or
(ndcy < ymin) or
(ndcy > ymax) then .

process_error (510, 5)
else
begin

(*
... build a dumny point carrying the required
coordinates and transform it to world space

*)
set_coordinates (ndcx, ndcy, dumny);
trans ndc to_world (dumny);
(*

... if the window is rotated, apply the required
(reverse) rotation to the dumny point

*)
if get_angle (the_world) <> 0.0 then
rotate point (dumny, (-1.0) * get angle (the world));

(* _ -
... retrieve the now-transformed coordinates

*)
wx := get_x_coord (dumny) ;
wy := get_y_coord (dumny)

end
end

end; (* map_ndc_tq_world *)

procedure map_world_to_ndc (x, y : real;
var ndcx, ndcy : real);

(*
... the normalized device coordinates corresponding to
the world position (x, y) are calculated, and written
into ndcx and ndcy.

*)

var
xmin, xmax,
ymin, ymax : real;
dumny : point;

begin
check_call_is_valid (controls);

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 126

if aore_is_down (controls) then
process_error (717, 6)

else
begin

(*
... determine the size of the window, and ensure that the
coordinates to be transformed lie within it if clipping
to the window boundary is enabled

*)
vhat_is_window (xmin, xmax, ymin, ymax, the_world);
if ((x < xmin) or

(x > xmax) or
(y < ymin) or
(y > ymax)) and
(clip_switch (the_world) = on) then

process_error (512, 5)
else
begin

(*
... build a dunrny point carrying the specified
coordinates.

*)
set_coordinates (x, y, dunrny);
(*

... if the window is rotated, rotate the point
accordingly, and then transform the coordinates
to ndc space.

*)
if get_angle (the_world) <> 0.0 then
rotate_point (dunrny, get_angle (the_world));

trans_world_to_ndc (dunrny);
(*

... retrieve the now-transformed coordinates
*)

ndcx := get_x_coord (dunrny);
ndcy := get_y_coord (dunrny)

end
end

end; (* nap_world_to_ndc *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 127

(* DEVICE ERIVER ROUTINES *)

(* The following declarations are for the Cyber version only.

External fortran routines for the versatec plotter

procedure plot (x, y : real? code : integer);

fortran;

procedure letter (n : integer;
height,
angle,
xl,
yl : real;

var bed : buffer);

fortran;

procedure newpen (penwidth : vsteepens); •

fortran;

procedure arc (xa, ya, xb, yb, xc, yc, dev : real);

fortran;

... end of Versatec external declarations *)

(* device driver routines *)

procedure make_device (decode : instructions;
thedevice : devices);

(* This is the carmand pathway for the SSOCS device drivers.
Any action which is concerned with the state of a device
is performed fran this routine

*)

begin
case thedevice of

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 128

vtl25 :
case docode of
access :
rewrite (vtl25file, vtl25actual);

startup :
begin

write (vtl25file, esc, vtl25heme,
esc, vtl25alphaclear);

write (vtl25file, esc, vtl25gron,
esc, vtl25graphicclear, vtl25setorigin)

end;
clear :
write (vtl25file, esc, vtl25graphicclear);

finishoff :
write (vtl25file, esc, vtl25groff)

end;
gigi :

case docode of
access :

rewrite (gigifile, gigiactual);
startup :
write (gigifile, esc, gigigron,

gigigraphicclear, gigisetorigin);
clear :
write (gigifile, gigigraphicclear);

finishoff :
write (gigifile, esc, gigigroff)

end;
versatec : (* THIS EEVICE IS UNAVAILABLE *)

case docode of
access :

(* no special action required *);
startup :

(* newpen (2) *);
clear :

(* plot (0.0, 0.0, 999) *);
finishoff :

(* no special action required *)
end;

prism :
(*

... not yet implemented
*)

end
end; (* make_device *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 129

(* The following routine make up the graphical cannand pathway for
the SSOCS system. Any graphical output is performed through these
routines. If a device cannot support an action (for example,
lew-quality text output), it must he simulated in the
routine provided here

*)

procedure vtl251ine (pi, p2 : point) ;

var
x, y : integer;

begin
(* ... find the coordinates of the starting position of the

line and convert them to device coordinates *)
x := round (get_x_coord (pi) * vtl25max);
y := round (get_y_coord (pi) * vtl25max);
(* ... set the current position, for the device, to the start

of the line *)
write (vtl25file, 'p[', x, y, ']');
(* ... similarly, find the coordinates of the end point of the

line, and convert them to device coordinates *)
x := round (get_x_coord (p2) * vtl25max);
y := round (get_y_coord (p2) * vtl25max);
(* ... draw a vector cn the device, frcm the current position

to the end point of the line *)
write (vtl25file, 'v[', x, y, ']')

end; (* vtl251ine *)

procedure vtl25mark (markpoint : point);

var
x, y : integer;

begin
(* ... find the coordinates of the marker symbol and convert

than to device coordinates *)
x := (round (get_x_coord (markpoint) * vtl25max)) - 4;
y := (round (get_y_coord (markpoint) * vtl25max)) + 12;
(* ... go to the point specified cn the device screen *)
write (vtl25file, 'pf, x, ',', y, ']');
(* ... write the marker symbol at the current point *)
write (vtl25file, vtl25marker, marksyiribol)

end; (* vtl25mark *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 130

procedure vtl25text (atpoint : point;
message : buffer);

var
x, y : integer;

begin
x := (round (get_x_ooord (atpoint) * vtl25max));
y := (round (get_y_coord (atpoint) * vtl25max));
write (vtl25file, 'pC, x, ',', y, ']’);
write (vtl25file, 't' ", message, '''')

end; (* vtl25text *)

procedure vtl25circle (atpoint : point;
radius : real);

var
x, y,
devrad : integer;

begin
x := (round (get_x_coord (atpoint) * vtl25max));
y := (round (get_y_coord (atpoint) * vtl25max));
devrad := round (radius * vtl25max);
write (vtl25file, *p[', x, y, ']');
write (vtl25file, 'c[+', devrad, ']’);

end; (* vtl25circle *)

procedure gigiline (pi, p2 : point);

var
x, y : integer;

begin
(* ... find the coordinates of the starting position of the

line and convert them to device coordinates *)
x := round (get_x_coord (pi) * gigimax);
y := round (get_y_coord (pi) * gigimax);
(* ... set the current position, for the device, to the start

of the line *)
write (gigifile, 'p[', x, 1,', y, ']');
(* ... similarly, find the coordinates of the end point of the

line, and convert them to device coordinates *)
x := round (get_x_coord (p2) * gigimax);
y := round (get y coord (p2) * gigimax);

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 131

(* ... draw a vector on the device, frcm the current position
to the end point of the line *)

writeln (gigifile, 'v[', x, ',', y, ']')
end? (* gigiline *)

procedure gigimark (markpoint : point) ?

var
x, y : integer;

begin
x := (round (get_x_ooord (markpoint) * gigimax)) - 4;
y := (round (get_y_coord (markpoint) * gigimax)) + 12;
write (gigifile, 'p[', x, ',', y, ']')?
writeln (gigifile, gigimarker, marksyitibol)

and? (* gigimark *)

procedure gigitext (atpoint : point;
message : buffer);

var
x, y : integer;

begin
x := (round (get_x_ooord (atpoint) * gigimax));
y := (round (get_y_coord (atpoint) * gigimax))?
write (gigifiie, 'p[', x, ',1, y, ']');
write (gigifile, 't’”, message, ' ' ' ')

and; (* gigitext *)

procedure gigicircle (atpoint : point;
radius : real);

var
x, y,
devrad : integer;

begin
x := (round (get_x_ooord (atpoint) * gigimax));
y := (round (get_y_coord (atpoint) * gigimax));
devrad := round (radius * gigimax);
write (gigifile, 'p[', x, y, ']')?
write (gigifile, ’c[+', devrad, ']');

end? (* gigicircle *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 132

procedure vstecline (pi, p2 : point);

(* This routine applies to the Cyber version of
SSOCS

*)

var
x, y : real;

begin
(* ... find the coordinates of the starting position
of the line, and convert them to device coordinates. *)

x := get_x_ooord (pi) * vstecmax;
y := get_y_coord (pi) * vstecmax;
(* ... move the versatec pen to the starting position

of the line

... the PLOT routine is not available for the PIXEL version

plot (x, y, 3);

... similarly, find the coordinates of the ending position
of the line, and convert them to device coordinates.

*)
x := get_x_coord (p2) * vstecmax;
y := get_y_coord (p2) * vstecmax;
(* ... draw a line frcm the current position to the

end point.

plot (x, y, 2)
*)

end; (* vstecline *)

procedure vstectext (atpoint : point;
message : buffer);

var
x, y : real;

begin
x := get_x_aoord (atpoint) * vstecmax;
y := get_y_coord (atpoint) * vstecmax;
(* letter (maxchars, vstecletter, 0.0, x, y, message) *)

end; (* vstectext *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 133

procedure vsteanark (rnarkpoint : point);

var
x, y : real?

begin
x := (get_x_coord (rnarkpoint) * vstecmax) - vstecmarkoffset;
y := get_y_coord (rnarkpoint) * vstecmax;
(* letter (1, vstecletter, 0.0, x, y, '.') *)

end; (* vsteanark *)

procedure vsteccircle (centre : point;
ndcradius : real);

var
x, y,
devradius : real;

begin
x := get_x_coord (centre) * vstecmax;
y := get_y_coord (centre) * vstecmax;
devradius := ndcradius * vstecmax;
(* arc (x + devradius, y, x+devradius, y, x, y, 0.001) *)

aid; (* vsteccircle *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 134

(* DISPLAY PIPELINE PACKAGE *)

procedure send_to_display (instance : primitive);

var
ok_to_display : boolean;

procedure map_to_window (var instance : primitive);

(* This procedure maps the current output primitive instance to the
current window; that is, it performs any rotation of points that
is required, and clips lines that cross the window boundary. By
performing these actions, it determines what information is actually
visible in the current window.

*)

var
start,
finish : point;
modified : boolean;
onscreen : switch;

procedure clip (var startpoint,
endpoint

var place
: point;
: switch);

(* The clipping algorithm used in SSOCS is from Cohen and
Sutherland, described in Newnan and Sproull's "Principles
of Interactive Computer Graphics", 1979

*)

type
edges = (left, right, bottom, top);
outcodes = set of edges;

var
codeone, (*
code two, (*
poode : outcodes;
leftbound, rightbound, (*
upperbound, lowerbound, (*

code values for first point
code values for second point

left and right window bounds
upper and lower window bounds

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION.Page 135

yl, y2 : real?

procedure findcodes (x, y : real?
var regions : outcodes)?

(* This procedure determines the code values for the
point at the specified coordinates

*)

begin (* findcodes *)
regions := []?
if x < leftbound then

regions := [left]
else if x > rightbound then

regions := [right]?
if y < lowerbound then

regions := regions + [bottan]
else if y > upperbound then

regions := regions + [top]
end? (* findcodes *)

begin (* clip *)
(*

... determine the boundaries of the window
*)

vhat_is_window (leftbound, rightbound,
lowerbound, upperbound, the world)?

(*
... find the coordinates of the two and points

*)
xl := get_x_coord (startpoint)?
yl := get_y_coord (startpoint)?
x2 := get_x_coord (endpoint)?
y2 := get y coord (endpoint)?
(*

... get the code values for the end points
*)

findcodes (xl, yl, codeone)?
findcodes (x2, y2, codetwo)?
(*

... clip the points to the window, if necessary
*)

while ((codeone <> []) or (codetwo <> [])) and
(codeone * codetwo = []) do

begin
pcode := codeone?

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 136

if pcode = [] then .
pcode := codetwo;

if left in pcode then (* line crosses left edge *)
begin
y := yl + (y2 - yl) * (leftbound - xl) / (x2 - xl);
x := leftbound

aid .
else if right in pcode then (* line crosses right edge *)
begin
y := yl + (y2 - yl) * (rightbound - xl) / (x2 - xl);
x := rightbound

end
else if bottcm in pcode then (* line crosses bottom edge *)
begin

x := xl + (x2 - xl) * (lowerbound - yl) / (y2 - yl);
y := lowerbound

end
else if top in pcode then (* line crosses top edge *)
begin

x := xl + (x2 - xl) * (upperbound - yl) / (y2 - yl);
y := upperbound

end;
if pcode = codeone then
begin

xl := x;
yl := y;
findcodes (x, y, codeone)

end
else
begin

x2 := x;
y2 := y;
findcodes (x, y, codetwo)

end
end;

if codeone * codetwo <> [] then
place := off

else
begin
place := on;
set_coordinates (xl, yl, startpoint);
set_coordinates (x2, y2, endpoint)

end
end; (* clip *)

function whereispoint (thepoint : point) : switch;

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 137

(* this function is used to determine if a point lies
inside the window

*)

var
wxl, wxr,
wyb, wyt : real; .

begin (* vhereispoint *)
vhat_is_window (wxl, wxr, wyb, wyt, the_world);
if (get_x_aoord (thepoint) >= wxl) and

(get_x_coord (thepoint) <= wxr) and
(get_y_ooord (thepoint) >= wyb) and
(get_y_coord (thepoint) <= wyt) then

vhereispoint := cn
else
vhereispoint := off

end; (* whereispoint *)

begin (* map_to_window *)
case get_the_action (instance) of

line :
begin

(*
... the current instance is a line. The end points of the
line are retrieved, and rotation or clipping is performed,
if necessary

*)
get_end_points (start, finish, instance);
modified := false;
the_line_is (cn, instance);
if get_angle (the_world) <> 0.0 then
begin

rotate_point (start, get_angle (thejworld));
rotate_point (finish, get_angle (the_world));
modified := true

end;
if clip_switch (the_world) = cn then
begin

clip (start, finish, onscreen);
modified := true;
the_line_is (cnscreen, instance)

end;
(*

... if either rotation or clipping has been performed it is
assumed that the end points of the line have been changed,
so their values in "instance" are updated

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 138

*)
if line_is_on (instance) and

modified then .
set_end_points (start, finish, instance)

end;
marker :
begin .
vhat_is_action_point (start, instance);
modified := false;
the_point_is (cn, instance);
if get_angle (the_world) <> 0.0 then
begin

rotate_j?oint (start, get_angle (the_world));
modified := true

end;
if clip_switch (the_world) = cn then
the_point_is (whereispoint (start), instance);

if point_is_cn (instance) and
modified then
go_to_action_point (start, instance)

end
end

end; (* map_to_window *)

procedure map_to_viewport (var instance : primitive);

(* This procedure transforms the coordinates, specified in the
instance of the current primitive, frcm the world coordinate
system to the corresponding ndc space visible in the current
viewport.

*)

var
start,
finish : point;

begin
case get_the_action (instance) of

line :
begin

(*
... the current output primitive is a line. The end
points of the line are retrieved, transformed to
the visible ndc space, and replaced in the variable
describing the current instance

*)
get_end_points (start, finish, instance);

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 139

trans_world_to_ndc (start); (* for starting point of line *)
trans_world_to_ndc (finish); (* for end point of line *)
set_end_points (start, finish, instance)

end;
marker :

begin
(*

... the current output primitive is a marker or text.
The position of the primitive is retrieved, transformed
to the visible ndc space, and replaced in the variable
describing the current instance

*)
vhat_is_action_point (finish, instance);
trans_world_to_ndc (finish);
go_to_action_point (finish, instance)

end
end

end; (* map_to_vievport *)

procedure dispatch (instance : primitive);

var
start,
finish : point;
display : devices;
charstring : buffer;

begin (* dispatch *)
(*

... determine the kind of output primitive
*)

case get_the_action (instance) of
line :
begin

(*
... the current output primitive is a line. Find the
end points of this line, and for each device in the
set of selected_surfaces, execute the appropriate
line-drawing routine

*) .
get_end_points (start, finish, instance);
for display := vtl25 to prism do

if display in selected_surfaces then
case display of
vtl25 :
vtl251ine (start, finish);

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 140

prism :
(* prismline (start, finish) *);

gigi :
gigiline (start, finish);

versatec :
(* THIS ROUTINE IS NOT TO BE CAT I,ED FOR THIS VERSION
vstecline (start, finish) . *);

end
end; (* of line section *)

marker :
begin
vhat_is_action_point (start, instance);
for display := vtl25 to prism do

if display in selected_surfaces then
case display of
vtl25 :
vtl25mark (start);

prism :
(* prisnmark (start) *);

gigi s
gigimark (start);

versatec :
(* THIS ROUTINE IS NOT TO BE CATTED FOR THIS VERSION
vstecmark (start) *);

end
end; (* of marker section *)

escapade :
case get_function (instance) of
prompt :
begin
vhat_is_action_point (start, instance);
get_message (charstring, instance);
case get_surface (instance) of
vtl25 :

vtl25text (start, charstring);
prism :

(* prismtext (start, charstring); *);
gigi :

gigitext (start, charstring);
versatec : _

(* THIS ROUTINE IS NOT TO BE CALLED
vstectext (start, charstring) *);

end
end; (* of prompt section *)

circle :
begin
vhat_is_action_point (start, instance);
case get surface (instance) of

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 141

vtl25 :
vtl25circle (start, get_radius (instance));

prism :
(* prismcircle (start, get_radius (instance)) *)

gigi :
gigicircle (start, get_radius (instance));

versatec : .
(* THIS ROUTINE IS NOT TO BE CALLED ...
vsteccircle (start, get_radius (instance)) *);

end
end (* of circle section *)

end (* of escapade section *)
end

end; (* dispatcher *)

begin (* send_to_display *)
if get_the_action (instance) = escapade then
dispatch (instance)

else
begin
map_to_window (instance);
case get_the_action (instance) of

line :
ok_to_display := line_is_cn (instance);

marker :
ok_to_display := point_is_cn (instance)

end;
if ok_to_display then
begin
map_to_viewport (instance);
dispatch (instance)

end
end

end; (* send_to_display *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 142

(* OUTPUT PRIMITIVE FUNCTIONS *)

(* moves *)

procedure move_abs (x, y : real);

(* The cp is set to the position (x, y), viiere x and y are coordinates
in world space. Invocation of this procedure merely sets the cp;
no drawing acmnands are output.

*)

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else
set_coordinates (x, y, cp)

end; (* move abs *)

procedure move_rel (dx, dy : real);

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else
set_coordinates (dx + get_x_coord (cp), dy + get_y_coord (cp), cp)

end; (* move rel *)

procedure query_cp (var x, y : real);

(* The current drawing position is copied into the parameters
x and y.

*)

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else
begin

x := get_x_coord (cp);
y := get y coord (cp)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 143

end
aid; (* query_cp *)

(* lines *)

procedure line_abs (x, y : real);

(* This procedure is used to describe a line of an object in wrld
coordinates. The line runs fran the current position (cp) to the
position specified by (x, y).

If the position specified is coincident with the cp, the appearance
of the line is device-dependent (in this implenentaticn, no further
action is taken, i.e. the line_abs procedure exits immediately).

The cp is updated to (x, y).
*)

var
instance : primitive;
endpoint : point;

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if not segment_is_open (controls) then
process_error (201, 6)

else
begin

(*
... the endpoint of the line is defined by the input
coordinates, and it begins at the cp. If both of these
points are equal then nothing else is done and the procedure
will exit

*)
set_aoordinates (x, y, endpoint);
if not points_equal (cp, endpoint) then
begin

(*
... since this is a valid line (i.e. it is accepted
for display), the "instance" of this current primitive
(the line) is described, and the cp is updated to the
end point.

*)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 144

set_action_to (line, instance);
set_end_points (cp, endpoint, instance);
send_to_display (instance);
cp := endpoint

end
end

end; (* line abs *) .

procedure line_rel (dx, dy : real);

begin
line_abs (dx + get_x_coord (cp), dy + get_y_coord (cp));

end; (* line rel *)

(* polylines *)

procedure poly_abs (x_array, y_array
n

: coordseq;
: coordrange);

var
i : integer;

begin
for i := 1 to n do

line_abs (x_array [i3, y_array Ei])
end; (* poly__abs *)

procedure poly_rel (dx_array, dy_array : coordseq;
n : coordrange);

var
i : integer;

begin
for i:= 1 to n do
line_abs (dx_array Ei] + get_x_coord (cp),

dy_array Ei] + get_y_coord (cp))
end; (* poly_rel *)

(* markers *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 145

procedure marker_abs (x, y : real);

(* The cp is updated to (x, y), and then the marker symbol is created.
The marker is centred at the transformed position of the cp.

*)

var
instance : primitive;

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if not segment_is_open (controls) then
process_error (201, 6)

else
begin

(*
... the cp is updated to the point specified by the parameters
x and y. The "instance" of the marker is then prepared, and
sent for display.

*)
set_ooordinates (x, y, cp);
set_action_to (marker, instance);
go_to_action_point (cp, instance);
send_to_display (instance)

end
end; (* marker abs *)

procedure marker_rel (dx, dy : real);

begin
marker_abs (dx + get_x_coord (cp), dy + get_y_coord (cp));

end; (* marker rel *)

(* escape functions *)

procedure escape (name : validescapes;
parmno : integer;
parmlist : escapestuff);

var
instance : primitive;

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 146

function validparmlist (thelist : escapestuff) : boolean;

var
okay : boolean;
width,
height : real;
p : point;

begin
okay := true;
if not (sel_surface (thelist) in init_surfaces) then
okay := false

else
begin
what_is_ndc_space (width, height, the_world);
if sel_function (thelist) in esccodes then
case sel function (thelist) of
pranpt :
begin

sel_prcmpt_start (p,
okay := (get_x_coord

(get_x_coord
(get_y_coord
(get_y_coord

end;
circle :
begin

sel_centre (p, thelist);
okay := (get_x_coord (p)

(get_x_aoord (p)
(get_y_coord (p)
(get_^y_coord (p)

thelist);
(p) >= 0.0) and
(p) <= width) and
(p) >= 0.0) and
(p) <= height)

>= 0.0) and
<= width) and
>= 0.0) and
<= height)

end
oid

else
process_error (1000, 6);

validparmlist := okay
aid

end; (* invalidparmlist *)

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if not validparmlist (parmlist) then

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 147

process_error (803, 5)
else
begin

set_action_to (escapade, instance);
set_parameters (parmlist, instance);
send_to_display (instance)

end .
end; (* escape *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 148

(* SEGMENT OPERATION PACKAGE *)

(*

Temporary segments are provided for use by application programs or
portions of application programs that do not require the picture
modification capabilities of retained segments (Retained segments are
not yet inplemented). Although all output primitives must be included
within a segment, SSOCS does not retain the image if the output prim
itives are part of a temporary segment.

Temporary segments conceptually represent a very simple graphical data
structure. Only two operations can be performed on the picture:

1. temporary segments can be added, and

2. all temporary segments can be deleted.

Temporary segments have no names and no attributes. It is impossible to
explicitly remove the images of individual temporary segments fran a view
surface.

*)

procedure create_temporary_segment ;

(* This procedure creates a new, empty, temporary segment. The tsuporary
sequent becomes the open sequent. Subsequent output primitive function
invocations will result in new information appearing on the currently
selected view surface(s).

*)

begin
check_call__is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if selected surfaces = □ then
process_error 7*4, 6)

else if segment_is_open (controls) then
process_error (301, 6)

else
begin

a_segment_is (ouvert, controls);
check_ndc_space_state

end

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 149

end; (* create_tanporary_segment *)

procedure close_temporary_segment ;

(* The currently cpen temporary segment becanes closed; output
primitives can no longer be sent to the selected view surface(s).

*)

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if segment_is_open (controls) then
a_segment_is (ferme, controls)

else
process_error (307, 6)

end; (* close_temporary_segment *)

procedure query_ternporary_segment (var cpen : condition);

(* The temporary segment status of SSOCS is copied into 'cpen'.
*)

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if segment_is_open (controls) then
cpen := ouvert

else
open := ferme

end; (* query temporary segment *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 150

(* VIEW SURFACE PACKAGE

Two functions are provided to add view surfaces to, and remove
view surfaces fran, the set of selected view surfaces. When a
segment is created, it is associated with the surfaces that are
currently selected, so that, afterwards, until the segment is
deleted, the image of the segment appears only cn those view
surfaces. The set of selected view surfaces cannot be changed
while there is an cpen segment.

*)

procedure select_view_surface (surfacename : devices);

(*
This procedure adds the view surface 1surfacename' to the set
of selected view surfaces. The set of selected view surfaces is
used for two purposes:

1. When a segment is created, the image of the segment appears
only cn those surfaces in the set of selected view surfaces

2. When new_frame is called, a new-frame action occurs only
cn view surfaces in the set of selected view surfaces.

The set of selected view surfaces is initially empty.
*)

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if segment_is_open (controls) then
process_error (6, 6)

else if not (surfacename in init_surfaces) then
process_error (708, 6)

else if surfacename in selected_surfaces then
process_error (709, 6)

else
selected_surfaces := selected_surfaces + [surfacename]

end; (* select view surface *)

procedure deselect_view_surface (surfacename : devices);

(*
This procedure removes the view surface ' surfacename1 fran the

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 151

set of selected view surfaces. Subsequent segment creations and new
frame invocations will not affect this view surface until it is
reselected with a select view surface invocation.

*) “ “

begin
check_call_is_valid (controls); .
if core_is_down (controls) then
process_error (717, 6)

else if segment_is_open (controls) then
process_error (6, 6)

else if not (surfacename in selected_surfaces) then
process_error (711, 6)

else
selected_surfaces := selected_surfaces - Esurfacename3

end; (* deselect_view_surface *)

(*

A view surface must be initialized before it can be used.
The procedures select_view_surface and deselect_view_surface add view
surfaces to, and remove view surfaces fran, the set of - selected
view surfaces.

The set of selected view surfaces cannot be changed vhile there is an open
segnent. View surface selection only affects the create_temporary_segment
and new_frame procedures.

*)

procedure init_view_surface (surfacename : devices);

(*
This procedure adds the' specified view surface surfacename to
the set of initialized view surfaces, and initializes that surface.
The view surface must be initialized with the init_view_surface
procedure before it can be selected for graphic output with the
select_view_surface procedure. The init_view_surface procedure does
not perform an implicit select_view_surface for the specified surface.

*)

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if surfacename in init surfaces then

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 152

process_error (705, 6)
else
begin

(*
... the specified surface is added to the set of initialized
view surfaces

*) .
init surfaces := init surfaces + [surfacename];
(*

... the specified device is "connected" to the application
program, and prepared for graphics output

*)
make_device (access, surfacename);
make_device (startup, surfacename); *

end
end; (* init view surface *)

procedure term_view_surface (surfacename : devices);

(*
This procedure terminates access to the view surface surfacename.
Segments whose images appear cn only this surface are deleted.

In this implementation, the view surface is cleared.
*)

begin
check_call_is_valid (control s);
if core_is_down (controls) then
process_error (717, 6)

else if not (surfacename in init_surfaces) then
process_error (708, 6)

else
begin

init_surfaces := init_surfaces - [surfacename];
make_device (clear, surfacename);
make_device (finishoff, surfacename)

end
aid; (* term view surface *)

procedure query_selected_surfaces (arraysize : integer;
var viewsurfacenames : surarray;
var numberofsurfaces : integer);

var
display : devices;

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 153

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if arraysize <= 0 then
process_error (3, 5) .

else
begin

nuiriberofsurfaces := 0;
for display := vtl25 to prism do
if display in selected_surfaces then
begin

if arraysize > 0 then
begin

viewsurfacenames [arraysize] := display;
arraysize := arraysize - 1

end;
nuntoerofsurfaces := nuntoerofsurfaces + 1

end
end

and; (* query_selected_surfaces *)

procedure new_frame ;

(*
... this procedure causes a new-frame action for each of the
currently selected view surfaces.

*)

var
display : devices;

begin
check_call_is_valid (controls);
if core_is_down (controls) then
process_error (717, 6)

else if selected surfaces = [] then
process_error 74, 6)

else
for display := vtl25 to prism do

if display in selected_surfaces then
make_device (clear, display)

end; (* new frame *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 154

(* INITIALIZATION MODULE

Since variables cannot be initialized at canpile time in Pascal, a
special routine MUST be called before any other SSOCS routine, in
order to guarantee the initial state of the library

*)

procedure reset_values ;

begin
core_is (down, controls);
a_segnent_is (ferme, controls);
set_error_processing (off, controls);
set_report_flushed (true, controls);
the_window_is (down, control s) ;
the_viewport_is (down, controls);
ndc_is (down, controls);
set_ndc_default_state (dcwn, controls);
selected_surfaces := [];
init_surfaces := [];
rewrite (stderr, erroractual);
primcodes := [line, marker, escapade];
esccodes := [prompt, circle];

end; (* reset_values *)

(* system is down
(* no segment open
(* no errors
(* no error reports
(* window is down
(* viewport is down
(* ndc space is down
(* ndc default no set
(* no surfaces going
(* no surfaces set up
(* set up error log
(* possible actions
(* possible escapes

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 155

(* INITIALIZATION AND TERMINATION OF TOE SSOCS LIBRARY
*)

procedure initialize_core ;

(*
initialize_core must be the first SSOCS procedure invoked (after a
call to reset_values). It guarantees that the library is in a
predefined state, with the default settings of all the SSOCS
parameters established.

*)

begin
if core_is_down (controls) then
begin

reset values ;
core_Ts (up, controls);
set_window (0.0, 1.0, 0.0, 1.0);
set_clipping (on);
set_view_up (0.0, 1.0);
move_abs (0.0, 0.0);

oid
else
process_error (701, 6)

end; (* initialize_core *)

procedure terminate_core ;

(*
This procedure closes any open segment, terminates all initial
ized view surfaces, and releases all other resources being used by
the SSOCS system. This procedure should be used to terminate the
use of the library, and may be invoked at any time after the SSOCS
system is initialized. After the library is terminated, it may
be reinitialized with the initialize core procedure.

*)

var
qpen_surface : devices;

begin
if core_is_down (controls) then
process_error (717, 6)

else
if segment_is_cpen (controls) then

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 156

a_segment_is (ferme, controls);
if init_surfaces <> □ then

for open_surface := vtl25 to prism do
if open_surface in init_surfaces then
begin
make_device (clear, cpen_surface);
make_device (finishoff, open_surface);
init_surfaces := init_surfaces - [cpen_surface]

end;
reset_values

end; (* texminate_core *)

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 157

(* SAMPLE APPLICATION PROGRAM *)

procedure box (xl, yl, width, height : real);

begin
move_abs (xl, yl);
line_rel (width, 0.0);
line_rel (0.0, height);
line_rel (-width, 0.0);
line abs (xl, yl)

end; T* box *)

procedure arrow (xl, yl, length : real);

(* draws a right arrow *)

begin
move_abs (xl, yl);
line_abs (xl+length-0.2, yl);
move_abs (xl+length, yl);
line_rel (-0.2, 0.1);
line_rel (0.0, -0.2);
line_abs (xl+length, yl)

end; (* arrow *)

procedure chair (x, y : real);

begin
move_abs (x, y);
line_rel (2.5, 0.0);
line_rel (0.0, 1.0);
line_rel (-0.75, 1.0);
line_rel (-1.0, 0.0);
line_rel (-0.75, -1.0);
line_abs (x, y);

end; (* chair *)

procedure desktop;

begin
move_abs (10.0, 10.0);
move rel (2.5, 0.2);

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 158

line_rel (2.5, 0.0);
line_rel (0.0, 2.0);
line_rel (-2.5, 0.0);
line_rel (0.0, -2.0)

end;

procedure diary;

begin
move_abs (12.5, 12.5);
line_rel (1.0, 0.5);
line_rel (-0.25, 0.5);
line_rel (-1.0, -0.5);
line rel (0.25, -0.5)

end; T* diary *)

procedure plan;

(* draw floor plan *)

begin
move_abs
line_abs
line_abs
line_rel
line_rel
line_rel
line_abs

move_rel
line_rel
line_rel

move_rel
line_rel
line_rel
move_rel
line_rel
line_rel
move_rel
line_rel
move_abs
line_rel

move_abs
line rel

(5.0, 5.0);
(45.0, 5.0);
(45.0, 45.0);
(-20.0, 0.0);
(0.0, -10.0);
(-20.0, 0.0);
(5.0, 5.0);

(15.0, 0.0);
(0.0, 20.0);
(-15.0, 0.0);

(15.0, 0.0);
(5.0, 0.0);
(0.0, 10.0);
(0.0, -10.0);
(0.0, -5.0);
(20.0, 0.0);
(-15.0, 0.0);
(0.0, -15.0);
(25.0, 30.0);
(20.0, 0.0);

(5.0, 7.5);
(2.5, 0.0);

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 159

line_rel (0.0, 10.0);
line_rel (-2.5, 0.0);
box (10.0, 10.0, 7.5, 5.0);
chair (12.5, 7.5);
move_abs (10.0, 25.0);
line_rel (0.0, -2.5);
line_rel (7.5, 0.0);
line_rel (2.5, 0.0);

desktop;
diary;

aid; (* plan *)

begin

(* this routine must always be called before anything
else is donelll! *)

reset_values;

initialize_core ;
init_view_surface (gigi);
select_view_surface (gigi);
set_window (0.0, 8.0, 0.0, 8.0);
create_temporary_segment;
box (0.0, 2.25, 1.25, 1.5);
box (2.0, 1.0, 5.0, 4.0);
box (2.5, 2.25, 1.5, 1.5);
box (4.75, 2.0, 0.5, 2.25);
box (5.75, 2.25, 0.75, 0.75);
box (5.75, 3.25, 0.75, 0.75);
arrow (1.25, 3.3, 1.25);
arrow (1.25, 2.6, 1.25);
arrow (4.0, 3.0, 0.75);
arrow (5.25, 2.6, 0.5);
arrow (5.25, 3.6, 0.5);
arrow (6.5, 2.6, 1.0);
arrow (6.5, 3.6, 1.0);
close_temporary_segment;

writeln (' ready for # 2?');
readln (answer);

term_view_surface (gigi);
deselect_view_surface (gigi);
terminate_core;

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 160

(* number 2 diagram *)

initialize_core;
init_view_surface (gigi);
select_view_surface (gigi);
set_window (0.0, 50.0, 0.0, 50.0);
cr eate_temporary_segment ;

plan;

close_temporary_segrnent;

writeln (1 ready to proceed? ');
readln (answer);
new_frame;

(* part of plan *)

set_window (0.0, 25.0, 0.0, 27.0);
create_temporary_segment;

plan;

close_temporary_segment;
writeln (' ok? ’);
readln (answer);
new_frame;

(* cne roan *)

set_window (5.0, 20.0, 5.0, 25.0);
set_viewport (0.0, 0.75, 0.0, 1.0);
create_temporary_segment;

plan;

ciose_temporary_segment;
writeln (1 ok? ');
readln (answer);
new_frame;

(* part of the desk *)

set_window (11.0, 18.0, 10.0, 14.0);
set_viewport (0.0, 1.0, 0.0, 0.571);
create_temporary_segment;

plan;

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 161

close_temporary_segment ;

(* now different viewports *)

writeln (' ready to go cn?');
readln (answer);
new_frame;
set_window (0.0, 50.0, 0.0, 50.0);
set_viewport (0.0, 0.5, 0.5, 1.0);
create_temporary_segment;

plan; (* complete floor *)

close_temporary_segment; .

writeln (1 ready to proceed? ');
readln (answer);

(* part of plan *)

set_window (0.0, 25.0, 0.0, 27.0);
set_viewport (0.5, 1.0, 0.5, 0.9);
create_temporary_segment;

plan;

close_temporary_segment;
writeln (' ok? ');
readln (answer);

(* cne roam *)

set_window (5.0, 20.0, 5.0, 25.0);
set_viewport (0.062, 0.437, 0.0, 0.5);
create_tenrporary_segment;

plan;

close_temporary_segment;
writeln (1 ok? ');
readln (answer);

(* part of the desk *)

set_window (11.0, 18.0, 10.0, 14.0);
set_viewport (0.5, 1.0, 0.108, 0.392);
create_temporary_segment;

Jun 10 19:21 1983 SSOCS LIBRARY — PIXEL 100/AP UNIX VERSION Page 162

plan;

move_abs (0.0, 0.0);
close_temporary_segnent ;
terminate_oore

end. (* main pregram *)

REFERENCES

B08O Brf, K., "Standardisation of Graphics Software", Com
puter Graphics: Invited Papers, B. Shackel (ed), Info-
tech International Limited, 1980. pp. 82 - 93.

D0HE79 Doherty, W.3., "The Commercial Significance of Man/Com-
puter Communication", Man/Computer Communication: In
vited Papers, B. Shackel (ed), Infotech International
Limited, 1979. pp. 81 - 93.

ENCA76 Encarnacao, 3., and G. Nees, "Recommendations on Meth-
odoloqy in Computer Graphics", Methodoloqy in Com
puter Graphics, Gued.i, R.A., and H.A. Tucker (eds),
North-Holland, 1976, pp. 9 - 26.

F0LE76 Foley, 3.D., "Output Primitives", Methodoloqy in Com
puter Graphics, Gued.i, R.A., and H.A. Tucker (eds),
North-Holland, 1976, pp. 119 - 122.

F0LE81 Foley, 3.D. and P.A. Wenner, "The George Washington
University Core System Implementation", Computer Graph
ics, Vol. 15, No. 3, August 1981, pp. 123 - 131.

FRIE79 Frieden, A, "A CORE Viewing System for APL", Computer
Graphics, Vol. 13, No. 1, 1979, pp. 55 - 77.

GSPC77 "Status Report of the Graphics Standards Planning Comm
ittee", published as Computer Graphics, Vol. 11, No. 3,
Fall 1977.

GSPC79 "Status Report of the Graphics Standards Planning Comm
ittee", published as Computer Graphics, Vol. 13, No. 3,
August 1979.

GUED76 Guedj, R.A., "Some Methodological Remarks for the Work
shop", Methodoloqy in Computer Graphics, Gued.i, R.A.,
and H.A. fucker (eds), North-Holland, 1976, pp. 3-8.

163

164

H0PG76 Hopgood, F.R.A., "Is a Graphics Standard Possible?",
Methodoloqy in Computer Graphics, Gued.i, R.A., and H.A.
Tucker (eds), North-Holland, 1976, pp. 9 - 26.

LISK77 Liskov, B. et al, "Abstraction Mechanisms in CLU",
Communications of the ACM, Vol. 20, No. 8, August 1977,
pp. 546 - 576.

MICH78 Michener, O.C. and O.D. Foley, "Some Major Issues in
the Design of the Core System", Computing Surveys, Vol.
10, No. 4, December 1978, pp. 445 - 463.

NEWM74 Newman, W.M. and R.F. Sproull, "An Approach to Graphics
System Design", Proceedings of the I.E.E.E., Vol. 62,
No. 4, April 1974, pp. 471-483.

NEWM78 Newman, W.M. and A. van Dam, "Recent Efforts Toward
Graphics Standardization", Computing Surveys, Vol. 10,
No. 4, December 1978, pp. 365-380.

NEWM79 Newman, W.M. and R.F. Sproull, Principles of Inter
active Computer Graphics, McGraw-Hill, 1979, pp.63 -
76. .

NIC081 Nicol, C.O. and A.C. Kilgour, "A Pascal Implementation
of the GSPC Core Graphics Package", Computer Graphics,
Vol. 15, No. 4, December 1981, pp.327 - 335.

SANC76 Sancha, T.L., "Guidelines for the IFIP Workshop on
Graphics Methodoloqy", Methodoloqy in Computer Graph
ics, Guedj, R.A., and H.A. Tucker (eds), North-Holland,
1976, pp. 123 - 126.

STEW79 Stewart, T.F.M., "Visual Communication", Man/Computer
Communications Invited Papers, B. Shackel (ed), Info-
tech International Limited, 1979. pp. 82 - 93.

STLU82 Stluka, F.P. et al, "Overview of the University of
Pennsylvania CORE System", Computer Graphics, Vol. 16,
No. 2, June 1982, pp. 177 - 186.

165

SUTH70 Sutherland, I.E., "Computer Displays", Scientific Amer
ican, Vol. 226, No. 6, June 1970, pp. 56 - 80.

WARN78 Warner, J.R., Polisher, M.A. and Kopolow, R.N., "DIGRAF
- A FORTRAN Implementation of the Proposed GSPC Stan
dard", Computer Graphics, Vol. 12, No. 3, August 1978,
pp. 301 - 307.

	plowman_owen_d_f_1983Apr_masters0001
	plowman_owen_d_f_1983Apr_masters0002
	plowman_owen_d_f_1983Apr_masters0003
	plowman_owen_d_f_1983Apr_masters0004
	plowman_owen_d_f_1983Apr_masters0005
	plowman_owen_d_f_1983Apr_masters0006
	plowman_owen_d_f_1983Apr_masters0007
	plowman_owen_d_f_1983Apr_masters0008
	plowman_owen_d_f_1983Apr_masters0009
	plowman_owen_d_f_1983Apr_masters0010
	plowman_owen_d_f_1983Apr_masters0011
	plowman_owen_d_f_1983Apr_masters0012
	plowman_owen_d_f_1983Apr_masters0013
	plowman_owen_d_f_1983Apr_masters0014
	plowman_owen_d_f_1983Apr_masters0015
	plowman_owen_d_f_1983Apr_masters0016
	plowman_owen_d_f_1983Apr_masters0017
	plowman_owen_d_f_1983Apr_masters0018
	plowman_owen_d_f_1983Apr_masters0019
	plowman_owen_d_f_1983Apr_masters0020
	plowman_owen_d_f_1983Apr_masters0021
	plowman_owen_d_f_1983Apr_masters0022
	plowman_owen_d_f_1983Apr_masters0023
	plowman_owen_d_f_1983Apr_masters0024
	plowman_owen_d_f_1983Apr_masters0025
	plowman_owen_d_f_1983Apr_masters0026
	plowman_owen_d_f_1983Apr_masters0027
	plowman_owen_d_f_1983Apr_masters0028
	plowman_owen_d_f_1983Apr_masters0029
	plowman_owen_d_f_1983Apr_masters0030
	plowman_owen_d_f_1983Apr_masters0031
	plowman_owen_d_f_1983Apr_masters0032
	plowman_owen_d_f_1983Apr_masters0033
	plowman_owen_d_f_1983Apr_masters0034
	plowman_owen_d_f_1983Apr_masters0035
	plowman_owen_d_f_1983Apr_masters0036
	plowman_owen_d_f_1983Apr_masters0037
	plowman_owen_d_f_1983Apr_masters0038
	plowman_owen_d_f_1983Apr_masters0039
	plowman_owen_d_f_1983Apr_masters0040
	plowman_owen_d_f_1983Apr_masters0041
	plowman_owen_d_f_1983Apr_masters0042
	plowman_owen_d_f_1983Apr_masters0043
	plowman_owen_d_f_1983Apr_masters0044
	plowman_owen_d_f_1983Apr_masters0045
	plowman_owen_d_f_1983Apr_masters0046
	plowman_owen_d_f_1983Apr_masters0047
	plowman_owen_d_f_1983Apr_masters0048
	plowman_owen_d_f_1983Apr_masters0049
	plowman_owen_d_f_1983Apr_masters0050
	plowman_owen_d_f_1983Apr_masters0051
	plowman_owen_d_f_1983Apr_masters0052
	plowman_owen_d_f_1983Apr_masters0053
	plowman_owen_d_f_1983Apr_masters0054
	plowman_owen_d_f_1983Apr_masters0055
	plowman_owen_d_f_1983Apr_masters0056
	plowman_owen_d_f_1983Apr_masters0057
	plowman_owen_d_f_1983Apr_masters0058
	plowman_owen_d_f_1983Apr_masters0059
	plowman_owen_d_f_1983Apr_masters0060
	plowman_owen_d_f_1983Apr_masters0061
	plowman_owen_d_f_1983Apr_masters0062
	plowman_owen_d_f_1983Apr_masters0063
	plowman_owen_d_f_1983Apr_masters0064
	plowman_owen_d_f_1983Apr_masters0065
	plowman_owen_d_f_1983Apr_masters0066
	plowman_owen_d_f_1983Apr_masters0067
	plowman_owen_d_f_1983Apr_masters0068
	plowman_owen_d_f_1983Apr_masters0069
	plowman_owen_d_f_1983Apr_masters0070
	plowman_owen_d_f_1983Apr_masters0071
	plowman_owen_d_f_1983Apr_masters0072
	plowman_owen_d_f_1983Apr_masters0073
	plowman_owen_d_f_1983Apr_masters0074
	plowman_owen_d_f_1983Apr_masters0075
	plowman_owen_d_f_1983Apr_masters0076
	plowman_owen_d_f_1983Apr_masters0077
	plowman_owen_d_f_1983Apr_masters0078
	plowman_owen_d_f_1983Apr_masters0079
	plowman_owen_d_f_1983Apr_masters0080
	plowman_owen_d_f_1983Apr_masters0081
	plowman_owen_d_f_1983Apr_masters0082
	plowman_owen_d_f_1983Apr_masters0083
	plowman_owen_d_f_1983Apr_masters0084
	plowman_owen_d_f_1983Apr_masters0085
	plowman_owen_d_f_1983Apr_masters0086
	plowman_owen_d_f_1983Apr_masters0087
	plowman_owen_d_f_1983Apr_masters0088
	plowman_owen_d_f_1983Apr_masters0089
	plowman_owen_d_f_1983Apr_masters0090
	plowman_owen_d_f_1983Apr_masters0091
	plowman_owen_d_f_1983Apr_masters0092
	plowman_owen_d_f_1983Apr_masters0093
	plowman_owen_d_f_1983Apr_masters0094
	plowman_owen_d_f_1983Apr_masters0095
	plowman_owen_d_f_1983Apr_masters0096
	plowman_owen_d_f_1983Apr_masters0097
	plowman_owen_d_f_1983Apr_masters0098
	plowman_owen_d_f_1983Apr_masters0099
	plowman_owen_d_f_1983Apr_masters0100
	plowman_owen_d_f_1983Apr_masters0101
	plowman_owen_d_f_1983Apr_masters0102
	plowman_owen_d_f_1983Apr_masters0103
	plowman_owen_d_f_1983Apr_masters0104
	plowman_owen_d_f_1983Apr_masters0105
	plowman_owen_d_f_1983Apr_masters0106
	plowman_owen_d_f_1983Apr_masters0107
	plowman_owen_d_f_1983Apr_masters0108
	plowman_owen_d_f_1983Apr_masters0109
	plowman_owen_d_f_1983Apr_masters0110
	plowman_owen_d_f_1983Apr_masters0111
	plowman_owen_d_f_1983Apr_masters0112
	plowman_owen_d_f_1983Apr_masters0113
	plowman_owen_d_f_1983Apr_masters0114
	plowman_owen_d_f_1983Apr_masters0115
	plowman_owen_d_f_1983Apr_masters0116
	plowman_owen_d_f_1983Apr_masters0117
	plowman_owen_d_f_1983Apr_masters0118
	plowman_owen_d_f_1983Apr_masters0119
	plowman_owen_d_f_1983Apr_masters0120
	plowman_owen_d_f_1983Apr_masters0121
	plowman_owen_d_f_1983Apr_masters0122
	plowman_owen_d_f_1983Apr_masters0123
	plowman_owen_d_f_1983Apr_masters0124
	plowman_owen_d_f_1983Apr_masters0125
	plowman_owen_d_f_1983Apr_masters0126
	plowman_owen_d_f_1983Apr_masters0127
	plowman_owen_d_f_1983Apr_masters0128
	plowman_owen_d_f_1983Apr_masters0129
	plowman_owen_d_f_1983Apr_masters0130
	plowman_owen_d_f_1983Apr_masters0131
	plowman_owen_d_f_1983Apr_masters0132
	plowman_owen_d_f_1983Apr_masters0133
	plowman_owen_d_f_1983Apr_masters0134
	plowman_owen_d_f_1983Apr_masters0135
	plowman_owen_d_f_1983Apr_masters0136
	plowman_owen_d_f_1983Apr_masters0137
	plowman_owen_d_f_1983Apr_masters0138
	plowman_owen_d_f_1983Apr_masters0139
	plowman_owen_d_f_1983Apr_masters0140
	plowman_owen_d_f_1983Apr_masters0141
	plowman_owen_d_f_1983Apr_masters0142
	plowman_owen_d_f_1983Apr_masters0143
	plowman_owen_d_f_1983Apr_masters0144
	plowman_owen_d_f_1983Apr_masters0145
	plowman_owen_d_f_1983Apr_masters0146
	plowman_owen_d_f_1983Apr_masters0147
	plowman_owen_d_f_1983Apr_masters0148
	plowman_owen_d_f_1983Apr_masters0149
	plowman_owen_d_f_1983Apr_masters0150
	plowman_owen_d_f_1983Apr_masters0151
	plowman_owen_d_f_1983Apr_masters0152
	plowman_owen_d_f_1983Apr_masters0153
	plowman_owen_d_f_1983Apr_masters0154
	plowman_owen_d_f_1983Apr_masters0155
	plowman_owen_d_f_1983Apr_masters0156
	plowman_owen_d_f_1983Apr_masters0157
	plowman_owen_d_f_1983Apr_masters0158
	plowman_owen_d_f_1983Apr_masters0159
	plowman_owen_d_f_1983Apr_masters0160
	plowman_owen_d_f_1983Apr_masters0161
	plowman_owen_d_f_1983Apr_masters0162
	plowman_owen_d_f_1983Apr_masters0163
	plowman_owen_d_f_1983Apr_masters0164
	plowman_owen_d_f_1983Apr_masters0165
	plowman_owen_d_f_1983Apr_masters0166
	plowman_owen_d_f_1983Apr_masters0167
	plowman_owen_d_f_1983Apr_masters0168
	plowman_owen_d_f_1983Apr_masters0169
	plowman_owen_d_f_1983Apr_masters0170
	plowman_owen_d_f_1983Apr_masters0171
	plowman_owen_d_f_1983Apr_masters0172
	plowman_owen_d_f_1983Apr_masters0173
	plowman_owen_d_f_1983Apr_masters0174
	plowman_owen_d_f_1983Apr_masters0175

