
A FORTRAN GRAPHICS AND ANIMATION LIBRARY FOR X WINDOWS

A FORTRAN GRAPHICS AND ANIMATION

LIBRARY FOR X WINDOWS

By

DUNCAN NAPIER, B.SC.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fufillment of the Requirements
for the Degree

Master of Science

McMaster University
©Copyright by Duncan Napier, December 1992

McMaster universityMASTER OF SCIENCE (1992)

(Computation) Hamilton, Ontario

TITLE: A FORTRAN Graphics and Animation Library for X Windows

AUTHOR: Duncan Napier, B.Sc. (University of Waterloo)

SUPERVISORS: Professor Randall Dumont (Department of Chemistry)

Professor Robin Griffin (Department of Computer Science and

Systems)

NUMBER OF PAGES: vii, 194

ii

Abstract

The requirements for a computer package for the graphical animation and vi

sualization of scientific data are discussed. It is concluded from the analysis of these

requirements that simplicity of implementation, interactive response and FORTRAN

compatibility are features that are strongly desired by users. These features have

a major impact on the design of the graphical library. The handling of graphics

resources is further complicated by the need to remove the details of resource man

agement from the FORTRAN programmer while at the same time maintaining some

degree of flexibility and efficiency. A “black box” system of graphics library primi

tives has been constructed to conform the needs of the FORTRAN programmer. The

library primitives are constructed from a lower-level commercial graphics library to

simplify resource management and give the library a FORTRAN ‘flavor’. A modular

style of programming that emphasizes event-driven passing of program control is de

veloped to guide the FORTRAN programmer. A User’s Manual containing a series

of instructional tutorials as well as a routine-by-routine description of the library is

included along with a code listing.

iii

Acknowledgement s

I would like to acknowledge the support and guidance of my supervisors Dr.

Randall Dumont and Dr. Robin Griffin. I would also like to thank Dr. Dumont and

his group for providing me with the hardware and software for this project. This

undertaking would also not have been possible without the valuable advice of Mr.

Dan Trottier and Ms. Patricia Monger.

iv

Table of Contents

Descriptive Note ii

Abstract iii

Acknowledgements iv

List of Figures vii

Chapter 1 - Introduction..1
Background And Objectives 1

Software Tools 3

XView 3

XGL 4

Languages 7

Levels of Software in GAL 8

Portability and Platform Issues 8

Chapter 2 - Planning and Conceptual Design.................. 9
X Windows Tools and Utilities 10

Graphics Primitives 15

The View Model 16

Color and Animation 18

Chapter 3 - Software Architecture of GAL Applications . 20

Static Program Structure of GAL Applications 23

Dynamic Structure of GAL Applications 25

Feature Interaction in GAL Applications 26

v

Chapter 4 - Epilogue ...28

Enhancements to GAL 28

Extensions to GAL 31

Limitations of GAL 32

Conclusions 34

Appendix 1 - GAL User’s Manual......................................36

Appendix 2 - GAL Code Listing .. 94

Appendix 2a - GAL Header Files 96

Appendix 2b - X Windows Utilities 100

Appendix 2c - Color and Animation 111

Appendix 2d - Views and Transformations 130

Appendix 2e - 2D Primitives 136

Appendix 2f - 3D Primitives 170

References .. 193

VI

List of Figures

Figure 1. Software Layers..9

Figure 2. Object Handling in GAL..14

Figure 3. Double Buffering Schematic.. 20

Figure 4. Conventional Interactive Loop Flow Diagram......................... 41

Figure 5. Notifier-based Loop Flow Diagram...42

Figure 6. Flow Diagram of GAL Application.. 61

vii

Chapter 1 - Introduction

Background and Objectives

FORTRAN was developed as a programming language for the IBM 704 and

quickly became the standard programming language within the scientific and en

gineering community [MACLEN86]. There have been numerous revisions and ex

tensions since then and some 35 years later, FORTRAN still endures as a major

language in the fields of scientific and engineering computation. FORTRAN’S pop

ularity has been attributed to the large amounts of code invested in libraries and

routines over the years and even decades. Newer languages, such as C and Pascal,

do not have this accumulated body of tried and tested code and appear unlikely to

displace FORTRAN from its place within the sciences and engineering in the near

future.

The emergence of increasingly powerful and sophisticated hardware at lower

cost has also changed the role of computers in the sciences. The numerical pro

cessing (“number-crunching”) that was long associated with scientific computation

is now commonly integrated with data visualization and manipulation capabilities

on scientific/engineering workstations using a Graphical User Interface (GUI). The

challenge to the vendors of scientific/engineering workstations has been to increase

machine and software performances to allow for the display and processing of large

datasets at interactive rates [FOLEY90].

1

2

The above-mentioned factors have heavily influenced the requirements anal

ysis in developing a graphics and animation library for members of the scientific

community. The following user requirements were specified:

• The package had to support FORTRAN77.

• The only requirement placed on the user was a working knowledge of

FORTRAN77.

• No knowledge of computer graphics on the part of the user was to be assumed.

(An understanding of some basic principles of linear algebra was assumed).

• The package would have a simple kernel of commands and could be easily

and quickly learned, with little or no training.

The requirements stated above reflected the need for a high-performance graph

ics package for scientists who are not professional or advanced programmers. The

package envisaged would present the user with a reasonable choice of defaults and

parameters as well as the ability to use the library in a ‘black-box’ manner.

• The package had to have animation capabilities.

• The graphics that were rendered could be manipulated interactively via

the GUI.

These last two requirements are the key factors that initiated this undertaking.

Fairly sophisticated and powerful FORTRAN-callable commercial graphics libraries

do exist (for example PHIGS, SuperMongo, GA’s Disspla). No known commercially

3

available package meets all the guidelines stated above. The desire to incorporate

these requirements into a working package initiated the development of a customized

Graphics and Animation Library (GAL).

Software Tools

The complexity of the undertaking and the 5 to 6 month development time

allocated for it required the use of some software tools that were specific to Sun

Microsystem’s SunOS operating system and OpenWindows (Sun’s implementation

of the Open Look GUI). This decision to implement the package on a specific plat

form, namely the Sun4 architecture running X Windows, was the starting point of

the project. All graphical user interfaces were implemented through Sun’s XView

Toolkit for X Windows. The processing and rendering of the graphical environment

was accomplished through Sun’s XGL graphics package. Information on XGL can

be found in [XGL91] and [XGL91A].

XView

XView (X Window-system-based Visual/Integrated Environment for Work

stations) is a toolkit developed by Sun Microsystems Inc. that supports the devel

opment of graphics-based applications running under the XWindow System. The

package has an object oriented style with a hierarchy of widgets - pre-built, user-

interface objects such as canvases, control panels, buttons and sliders. XView is in

turn built up from Xlib, the lowest programming level of the X Windows system.

A comprehensive guide to the XView toolkit can be found in [HELLER92].

4

X Windows uses the client/server model in which the application (client)

makes requests to the server (which runs on a workstation) to draw objects (text,

windows and so forth). The application programmer links the application to X

Windows through Xlib. Xlib commands are passed to the operating system which

in turn passes an X Protocol Package to the server. For a brief discussion on X

Windows refer to [POUNTA89]. An introduction to X Windows and Xlib is found

in [JONES89]

The XView toolkit does support Sun FORTRAN but requires a knowledge

of Sun’s extensions to FORTRAN (which resemble C) as well as some degree of

programming proficiency above and beyond those stated as requirements [SUN90].

It was decided to customize the XView widgets and objects to be used in GAL by

writing bindings for the FORTRAN code in C and then interfacing the C subrou

tines with FORTRAN. (The term binding is used to refer to a subroutine call that

interfaces the calling routine with one or more other subroutines.)

XGL

XGL is a software library of 2 dimensional (2-D) and 3 dimensional (3-D)

graphics primitive functions designed to run on Sun hardware platforms. XGL re

quires a windowing system to manage drawing operations and cannot render graph

ics to a raw display screen [XGL91]. XGL is written in an object-oriented style.

XGL is class-based, and the XGL programmer can only define instances of a class

(i.e. an Object), but cannot create new classes. XGL objects correspond to graphics

resources. The programmer renders graphics by manipulating these resources.

5

Manipulation is carried out through XGL’s operators. In order to render an ob

ject the user defines an object and then proceeds to set its attributes using XGL’s

operators.

A simplified example of the use of objects to set options and generate display

lists is as follows: the Raster Object is the display device resource. The Raster

Object is associated with the XView Canvas Object. The hardware color scheme

attribute of the Raster Object is set, depending upon whether the platform supports

RGB color scheme or an Indexed color scheme (the latter uses hardware lookup

tables). A Color Map Object is then initialized and a color table is built up as one

of the Color Map attributes. The Color Map Object is attached to the Raster Object,

becoming in effect an attribute of the Raster Object. Then, a Context Object is

initialized and the attributes of the graphical context (the graphical image) are set.

The Context Object is also attached to the Raster Object. A call to a graphics

primitive results in the attributes being passed through the rendering pipeline (this

process is transparent to the user) and rendered to the screen, a memory buffer (in

the case of double-buffered animation) or a graphical output file. Essentially, using

XGL involves initializing objects, attaching them to a resource and then setting

their attributes using XGL’s operators. Algorithm 1 shows the pseudocode of a

code fragment of this sequence. (This font is used for pseudocode statements, this

font is used for comments}.

6

Algorithm 1. XGL pseudocode fragment to make a color map
and graphical object.

This fragment makes a color map and then draws a red circle on a white background.

Declare the circle parameters

integer circle_color;

real circle_radius;

Initialize the object structures

initialize RasterObject;

initialize Color_Map_Object;

initialize Graphical_Context_Object;

Attach the graphical context to the raster

attach Graphical_Context_Object to Raster_Object;

Attach the color map to the raster with attach operator

attach Color_Map_Object to Raster_Object;

Set ColorjScheme attribute of Color_Map_Object to Indexed_C'olor

Color_Map_Object.scheme := lndexed_Color;

Set up indices corresponding to various colors, 1 is red, 2 is purple, 3 is green, 4 is

white

Color_Map_Object.color[l] := red;

Color_Map_Object.color[2] := purple;

Color_Map_Object.color[3] := green;

Color_Map_Object.color[4] := white;

Set the background color attribute of the graphical object to white (index 4)

Graphical_Context_Object.background_color ;= 4;

Set the color of the circle to red (index 1), radius 1.0

7

cirde_color := 1;

circle_radius := 1.0;

Draw in the circle

set_circle_attributes(Graphical_Context_Object, circle_color, circle_radius);

The XGL libraries lie directly above the hardware and firmware of the display

devices and graphic accelerators. This is done to minimize software overhead and

maximize performance. XGL emphasizes transparent acceleration through graphical

resources. Where the corresponding hardware does not exist, emulation facilities are

often available. The purpose of the GAL package was to cohesively group the more

intricate tasks required of XGL applications programming. These groupings would

constitute a library of FORTRAN-callable modules that a non-specialist could easily

learn and utilize.

Languages

XGL’s object-oriented style and its use of sophisticated data structures make

it unsuited to FORTRAN applications. The modules for the libraries were writ

ten in C and given a FORTRAN-compatible interface. This resulted in certain

parameter-passing protocols and the hiding of data structures from the FORTRAN

programmer. These features were considered necessary to give the library a FOR

TRAN flavor. The FORTRAN “flavoring” of the library had a large influence on the

software design. The desired result was was to obtain an environment in which the

FORTRAN programmers could use GAL as they would use any other FORTRAN

library.

8

The technical details of interfacing C and FORTRAN are discussed in manuals

such as [SUN90] and [LOUK90]. Most of the details are minor, such as accommo

dating FORTRAN’S parameter passing by reference (as opposed to value) and the

concatenation of C subroutine names with an underscore (_). The real problems of

interfacing C and FORTRAN arise in the software design stage when the designer

has to decide what course of action to take in dealing with C structures that have

no representation in FORTRAN77.

Levels of Software in GAL

A FORTRAN program that uses GAL (from now on referred to as the FOR

TRAN application or simply the application) may be thought of as consisting of four

levels of software (refer to Figure 1). The highest level is FORTRAN code written

by the user. GAL is intended to run of Sun platforms and is written to interface

with Sun FORTRAN. The second level is the basis of this thesis - the Graphics and

Animation Library. This level is made up of C code, supported by Sun programming

tools, namely the XView toolkit and XGL. XView and XGL form the next layer and

were used to construct software to render graphics in an event-driven X Windows

environment. The final layer is the lowest level - the lower-level implementations of

XView and XGL (although this does not suggest that their implementations are by

any means similar).

Portability and Platform Issues

Due to the use of platform-specific software tools, the portability of GAL

from platform-to-platform is limited. GAL requires an environment running Sun’s

OpenWindows System. As for the hardware requirements, an attempt was made to

9

FORTRAN

Application

Graphics and Animation

Library

XGL XView

firmware
+

low level
code

X11, XLib

Figure 1. The layers of the Graphics and Animation Library Application.

Each layer is built on another layer of software, down to the lowest level

(firmware and X libraries).

accommodate as wide a variety of hardware options as possible. Graphics utili

ties such as z-buffering, double buffering and graphics acceleration are emulated

in software by XGL where hardware facilities are lacking. The package supports

the Indexed method of color representation. The RGB method is not supported,

although allowance was made for future implementation of this system. (RGB sys

tems for graphics applications are currently less common and cannot support double

buffering, which is at the heart of this package).

Chapter 2 - Planning And Conceptual Design

Throughout the planning and design stage GAL was divided into 4 areas.

These were:

1. X Window Tools and Utilities

2. Graphical Primitives

3. The View Model

4. Color and Animation.

These areas were explored simultaneously in the early stages of the project (4 to

6 weeks) to determine the feasibility of the requirements analysis. The partition

ing of the project into 4 mini-projects corresponded to the 4 perceived areas of

decision-making that would determine the implementation and appearance of a

FORTRAN-callable graphics and animation package. These four areas were not

mutually exclusive and were often found to overlap. A more detailed discussion of

each area follows.

X Windows Tools and Utilities

The objective of this area of the project was to provide a simple interface

with the XView toolkit for the FORTRAN programmer. Simplicity dictated that

10

11

the XView window and frame parameters should be set with as many defaults as

possible. This was done for the purpose of minimizing the number of library calls

and parameters that the user would need to use to set up the window and canvas

(rendering surface) of the application. As a result, the only parameters that the

user has control over in a window are the size of the window and the picture to be

rendered to its canvas.

The types of XView widgets (the pre-written GUI icons of XView) were also

kept to a minimum. Only 2 of the XView widgets were made available to the appli

cations programmer - the panel button and the slider. The panel button initiates a

callback response when pushed (an “all-or-none” action). The slider, on the other

hand, allows for the input of one of a continuous series of values (a “choose-one-out-

of-many” action).

The issue of how to handle objects had to be settled very early into the project.

It was decided to “hide” structures from the FORTRAN programmer by making the

structures global structures. Since the scoping rules of FORTRAN do not permit

global variables (exceptions can be made via a COMMON block), the structures

were deemed safe from corruption through indiscriminate access.

The creation of an object (a child) from its parent class and other object-

oriented procedures were accomplished by invocation of the C libraries. The global

objects had their attributes set or child classes created in a manner that was invisible

to the FORTRAN programmer. The following example will be used to illustrate this.

Suppose the FORTRAN programmer wished to create a window. The FORTRAN

statement

12

CALL GAL_INIT_WINDOW(WIDTH, HEIGHT, LABEL)

causes the creation of the XView Frame Object. The Frame Object is of the

Class Frame in XView, and has the attributes WIDTH (the width of the window),

HEIGHT (its height) and LABEL (a character string labeling the window). Suppose

one next wanted to paint a figure to the window. The user would then invoke the

FORTRAN call

CALL GAL_PAINT_PROC(PAINT_PROCESS) .

PAINT_PROCESS is declared as an EXTERNAL variable in FORTRAN (meaning

that it is the name of a procedure) and is an attribute of the Canvas Object (of Class

Canvas). The Canvas Class is derived from the Frame Class via a C library call (i.e.

the former is the child of the latter). PAINT.PROCESS is a GAL/FORTRAN

procedure that carries out the rendering of graphical objects (graphical objects may

be thought of as children of the Canvas Class). These library calls are “black boxes”

to the FORTRAN applications programmer.

GAL Objects exist as static global structures in C. Referring back to Algorithm

1, an object such as Graphical_Context_Object was static and global throughout the

duration of the program. Each time a new graphical primitive (e.g. squares) was

added, the global object was modified and re-attached to the Raster_Object. The

global structures were declared and compiled independently so that they are only

accessible through access functions. Access functions are functions that return a

value associated with a variable or object. Access functions were used to limit the

accessibility to global structures, in accordance with good programming practice

[HOLLUB87],

13

Access functions in the GAL source code can be identified by their names,

which are all prefixed with the word ‘get_’. For example, the C function get_frame()

returns the address of the frame object (i.e. its C type is a pointer to the frame

- this is called an object handle). Figure 2 schematically illustrates the concept of

global C structures within a framework that is ‘hidden’ from FORTRAN.

The next design challenge was the integration of XView’s notification-based

tools into GAL. Notification-based programs are often used to run event-driven

systems. In the conventional style of programming, interactive input is entered

in a request loop (refer to Figure 4, Appendix) which is exited when the input is

completed. Event-driven systems appear to present many sources of input to the

user simultaneously. The inputs and their appropriate responses are handled by

callback procedures (or simply callbacks) which are monitored for input in a notifier

loop. Figure 5 (Appendix) illustrates how a notifier exists outside the main program.

When an input is entered (by pressing a button on the screen with a mouse, for

example) the notifier calls the callback procedure associated with that input.

In GAL, the statement

CALL GAL_PANEL_BUTTON(CALLBACK_PROC, X, Y)

would set up a button that called the user-defined subroutine CALLBACK_PROC.

(The location of the button on the window and its label are also passed as param

eters, X and Y. For a full description of the package and examples of applications,

refer to the User's Manual in the Appendix). Sliders are somewhat more elaborate

14

in their implementation, but the principles involved are unchanged. Algorithm 2

shows the button implementation in pseudocode.
Hidden GAL Objects and Operators Pseudocode GAL Program

Figure 2. Schematic representation of the Object Hiding in GAL. The

Objects are represented by small rectangular boxes. The solid arrows

show class inheritance, which is carried out with the help of access func

tions. Objects in the large box are invisible to the outside world. The

right hand side shows a sequence of GAL pseudocode calls. The broken

arrows connect the GAL calls with their objects, via the library interface.

All manipulations of Sun’s object classes are handled in this manner.

15

Algorithm 2. Panel button implementation in pseudocode

subroutine GAL_PANEL_BUTTON(CALLBACK_PROC, X, Y);

integer : X, Y;

start

draw panel button at (X, Y);

register the callback procedure (the appropriate procedure in Figure 5) for this

button

register CALLBACK_PROC() with notifier;

end

Graphics Primitives

Graphics primitives were implemented through XGL. The GAL library sup

plied FORTRAN bindings to XGL for the application. Parameters passed from the

FORTRAN application were converted to object attributes through these bindings.

XGL graphics are the attributes of an XGL Graphics Context Object, which could

be either a 2-D or 3-D Context Object.

The Graphics Primitives stage of planning and design largely involved settling

conflicts that arose between the speed and complexity of the graphics primitive

library. The condition that the library be simple and easy to learn often ran counter

to the implementation of the simplest, fastest code for the primitives. For example,

it was thought that a single set of primitives for 2-D and 3-D graphics would be

preferred (instead of having, say, one primitive to draw 2-D circles and another

to draw 3-D circles). However, some overhead would be required to check for the

dimensionality of the data, resulting in a slowdown. Since GAL was designed for

16

animation, and is therefore required to run as fast as possible, it was concluded

that such overhead was undesirable. The result is a near-duplication of graphics

primitives, one set each for 2-D and 3-D graphics. This type of dilemma occurred

repeatedly during the design of graphics primitives, and the primitives of the GAL

package are generally some compromise between efficiency and simplicity of form.

The quantitative effect of this overhead was never established, since the vendor of

XGL was either unwilling or unable to supply a profiling library for timing profiles.

The remainder of the planning stage in this area involved obtaining a “wish list” of

graphical functionalities that would be useful to scientists and engineers.

The View Model

GAL has a specific View Model associated with it. 2-D models suffer no

distortion, since they are mapped 1:1 onto a 2-D view (the display screen). In order

to map a 3-D model onto a 2-D screen, a 3-D view model must be established.

In graphical systems, planar geometric projections are used to map a 3-D object

onto a 2-D surface. The projection model used in GAL was a Parallel Orthographic

Projection. The projection is parallel because the center of projection is at infinity

and the projectors are parallel. The projection is also orthographic because the

projectors are always orthogonal or perpendicular to the projection surface. Chapter

6 of [FOLEY90] contains an in-depth discussion of view projections and models.

Parallel orthographic projections are usually the least demanding projection

from the computational standpoint because no scaling transformations are required.

The only transformations needed in this type of projection are shear transformations.

17

Keeping the number of transformations to a minimum allowed the attainment of

maximum speed.

The resulting 3-D images have a particular “motif’ or characteristic “feel” to

them. Orthographic parallel projections maintain the parallelism of parallel lines.

This is often preferred from the standpoint of scientific and engineering graphics

where straight and parallel lines are common. In orthographic parallel projections,

angular dimensions are not conserved. The shear transforms give cause foreshort

ening which compensate for the lack of scaling perspective.

Orthographic parallel projections also distort the perception of depth in the

projected image. Images at different distances from the user are not scaled (as in

Perspective Projections) and ambiguities can arise in the interpretation of these

images, especially in wireframe models. To overcome these difficulties, facilities to

allow for View Transformations were implemented. View Transformations allow the

user to transform the Model coordinate system, in effect moving the viewer around

for a “better view”. It is important to distinguish between View Transformations

and Model Transformations. View Transformations involve the transformation of

the coordinate system. The allowed View Transformations in GAL were rotation

of the principal (x,y,z) axes, translation in space and zooming (a scaling transfor

mation). Model Transformations are specified by the user, and an example would

be the effect of physical forces acting on an object. A sequence of Model Transfor

mations that are drawn and redrawn on the screen is the basis of animation. View

Transformations only change the viewer’s perspective of the object. View Trans

formations were implemented in GAL by XGL’s transformation operators. These

operators set Transform Attribute of the XGL graphical context. The result was a

18

transformation of the model-to-screen projection. All transformations in GAL are

with respect to the Origin.

Another design issue that had to be resolved was the coordinate system con

vention. XGL supports coordinate specifications in either Device Coordinates (i.e.

pixels) or Model Coordinates (the physical coordinates/dimensions of the object).

The latter was selected, since it is the more natural representation for scientists.

The axis conventions are a right-handed axis coordinate system, with the positive y

vector pointing vertically up the screen, the positive x vector pointing to the right,

and the positive z vector pointing out at the user. These settings are fixed and

cannot be altered through GAL. The mapping from model coordinates to device

coordinates is done automatically in GAL and is based on two factors. The first

factor is the size of the window, which is set in pixel units by the application. The

second factor is the viewing volume, which is set in model coordinates in the appli

cation and passed to XGL via GAL bindings. The viewing volume is set by giving

the dimensions of the “viewport” which are then mapped to the canvas. Note that

rotation primitives are lacking for the 2-D systems. It was concluded from discus

sions that such a facility is of dubious value in 2-D, since the viewer does not gain

any new visual information from a rotation in the plane of the object.

Color and Animation

This area of the project consumed the most time. Much of the early work was

done using a simple color scheme of 2 colors - black and white. When the success of

implementation was assured, the color table was enlarged to accommodate a wide

variety of colors.

19

For reasons discussed previously, an Indexed Color Scheme was used. Indexed

color involves associating an integer number with an r,g,b combination of color via

a hardware lookup table. Indexed color allows for 8 bits of color (256 colors) based

on a 24-bit color system (8 bits each for red, green and blue). Refer to [FOLEY90]

and [SUN90] for more information. The system is set up with a default color scheme

which may be altered (refer to the User’s Manual). The color tables in GAL are

initialized along with the XGL 2-D and 3-D Graphical Context Objects. All these

initializations are carried out in the GAL library call GAL_INIT_COLOR().

A simple, yet effective method of implementing animation was central to ac

complishing the goals of GAL. The package emphasized double-buffered animation,

although unbuffered animation is also possible. Double-buffering is a technique

used to remove the flicker observed when the contents of a screen are erased and

redrawn. Instead of erasing the screen prior to redrawing, the output to the screen

is switched from one screen buffer to a second screen buffer. Screen buffers are

storage devices (typically video RAM) that store a screen image. While one buffer

is being displayed, the other (hidden) buffer is erased and redrawn, and when this

is completed, the buffers are switched again. The result is a smooth transition from

one “frame” to the next corresponding to a screen refresh raster scan. Some plat

forms posses hardware double buffering. This essentially consists of duplicate screen

buffers (video chips that store a screen image). Hardware double buffering is at the

present time an expensive accessory, and XGL has the ability to perform software

emulation of the double buffer. Software emulation is carried out through color map

double buffering and requires splitting the 8-bit color index into two parts, one for

each buffer. This requires some program manipulation of the color index in forming

a double buffered index. As a result of double buffering, an 8-bit index is reduced

20
Hardware Double

Buffering Screen

Pixel (x,y)

Hardware Color
Tables

Software Double
Buffering

o i
r> 7

8
9XX

255

ooooooool oooooooo loooooooi

red green blue
> 7 |oooooooo|oooooooo|oooooooi I

Y Y112 toooooooolooooooodoooooootI

255>

map buffer 1 map buffer 2

8-bit color
pixel (x,y)

8-bit color
pixel (x,y)

4-bit color 4-bit color
pixel (x,y) pixel (x,y)

r

r

G

Hardware
Buffer 1 (displayed)

Hardware
Buffer 2 (hidden)

Software
Buffer 1 (hidden) I----------------------------

Software
Buffer 2 (displayed)

Figure 3. A schematic diagram to illustrate hardware double buffer

ing (left) and software (color map) double buffering (right). The buffer

contains the color index of each pixel (location (x,y)). In the hardware

buffering, 8 bits or 256 colors are available. In software buffering, the

color pixel is split into 2 “planes”, each 4 bits in size. In the hardware

case, the pixel color is blue, corresponding to index 7 (00000111 in bi

nary). In the software case, the color 7 is now 112, which correspons to

7 in 2x4-bit planes (01110111).

21

to 2x 4-bit indexes resulting in a maximum of only 16 colors in double-buffered

images. Figure 3 shows the a schematic representation of double buffering concepts.

Note that double buffering has use in applications other than animation. It was

found that slow redrawing of large static datasets resulting from rotation, for ex

ample, could be made more pleasant by redrawing to a hidden buffer, and then

switching the buffers.

A rigid, customized scheme was devised for animation for the sake of simplicity

of programming on the part of GAL users. Animation is accomplished through a

repetitive callback procedure. If animation is desired in a GAL application, the

user invokes the animation button (supplying the name of the callback routine) and

sets up the appropriate double buffer (2-D or 3-D). Pressing the animate button

toggles the repetitive callback on, and the routine specified is called repeatedly.

The algorithm for the animation loop is described in Algorithm 3.

Algorithm 3. The algorithm for the toggle on/off animate
button.

while animate button not pressed

Carry out the animation sequence

get next frame data;

draw next frame to hidden buffer;

interchange displayed and hidden buffer;

Check for other inputs, carry them out, then return

check notifier for other inputs;

22

endwhile;

return to notifier;

By calling a routine to set up a 2-D or a 3-D buffer (only one is allowed at a time),

and registering a Model Transformation/Drawing module as the animation callback,

the application can be made to perform double buffered animation. (Refer to the

User’s Manual and source code in the Appendices for details).

Chapter 3 - Software Architecture of GAL Applications

Static Program Structure of GAL Applications

GAL applications are intended to be highly modular by design. (Refer to

the Tutorials in the User’s Manual). A typical GAL application consists of a Main

routine and one or more subroutines. The Main routine typically serves 4 functions,

which are carried out in the following order:

1. Initialization of values. Initialization refers to a procedure that only needs to

be carried out once in the course of the application. An example is the assignment of

starting coordinates of an animated object. The subroutine INITIALIZE in Tutorial

4 of the User’s Manual is such an example.

2. Registration of callback procedures. Callback registration is essential to

ensure that a specific event results in control being passed to a specific subroutine.

All event-driven procedures in GAL as well as the procedures for painting the canvas

and animation depend on the notifier. In even the most complex GAL applications,

the callback procedures are divided into at most three categories.

(a) Rendering Callback Procedures. This is the rendering or drawing component

of the application. It is made up of a subroutine or series of subroutines associ

ated with the rendering of graphical primitives, and is fundamental to all graphical

applications. These subroutines simply invoke the drawing of a primitive to the

23

24

screen while passing the relevant primitive attributes to the GAL. The callback for

painting the XView Canvas belongs to this category. Typically, a Rendering Call

back Procedure consists entirely of GAL 2-D and 3-D graphics primitives. Refer to

FORTRAN subroutine DRAW_PIC in Tutorial 2 of User’s Guide in the Appendix

for an example of this type of callback.

(b) View Transform Callback Procedures. These callback procedures are associated

with the transformation widgets (especially sliders). A View Transformation Pro

cedures are written when the application requires an interactive view adjustment

environment. Tutorial 3 in the Appendix User’s Guide contains the subroutine RO

TATE which enables interactive View Transformation of the graphical environment.

(c) Model Transform Callback Procedures. These callback procedures control the

motion of objects on the screen during animation. The Model Transformation is

defined by the applications programmer and animation is simply a series of successive

redrawings of the transformed primitives. Tutorial 4 of the User’s Manual uses the

subroutine NEXT_FRAME for this purpose.

3. Setting of graphics environment. Following the registration of callback

procedures, the graphics environment of the GAL application is set. No defaults

are present, and the user must explicitly call GAL routines to set up color tables, z

buffers, double buffers, viewport dimensions and any color table redefinitions.

4. Starting the notifier loop. The notifier loop is at the center of the event-

driven application. The notifier loop is entered at the end of the Main program and

the program goes into a wait-for-event state. When an event occurs (e.g. pushing a

button) the procedure associated with this event has control passed to it. The as-

25

sociation between event and procedure was established during callback registration.

The GAL library procedure GAL_END passes control to the notifier loop.

Dynamic Structure of GAL Applications

The dynamic or run-time structure of GAL applications is based on the notifier

loop, as described previously. Figure 6 (Appendix) attempts to conceptually link the

static and dynamic structures of a GAL application. A GAL program is conceptually

a series of event-driven modules threaded together by the notifier. The flow of

control through a callback subroutine and the subroutines invoked by a callback is

analogous to a pipeline. The control sequence in Figure 6 is that for an animated

graphical object that can be manipulated in 2-D or 3-D. The passing of control to

the callback results in a sequence or chain of subroutine calls (refer to the tutorials in

the index). The graphical objects are transformed according to the physical model,

they are then piped through the view transformation settings (typically based upon

a slider setting) before being rendered to the screen. After reaching the end of a

“chain” of subroutines, control is again returned to the notifier. Tutorials 4 and 5

in the Appendix deal with three single stage callback modules (Model Transform,

View Transform and Rendering), but as Figure 6 implies, any number of stages

can be chained together. This thinking parallels the graphics or rendering pipelines

that operate in computer graphics hardware. Examples of the application of several

Model and View Transform stages would be the toggling transformations “on” and

“off” by using flag settings to bypass designated modules. This is of use in the

modeling of physical objects where forces or pertubations are altered, switched on

or switched off interactively and in real time by the user. Similarly, the use of

chained rendering subroutines gives the user the flexibility of adding or removing

26

transient graphics, for example, a grid, at the push of a button. This modularity has

the advantage of flexibility and reusability in GAL applications code. The result of

these threadings and chainings is the ability to build fairly sophisticated and highly

interactive graphical environments.

The key to good design of GAL applications is to ensure that notifier threading

and transfers of control are efficient and physically consistent with the system being

modeled. There is a hierarchy or sequence associated with this threading or chaining,

as Figure 6 shows. For instance, one chains the View Transformation modules to

the Model Transformation modules and not vice versa. The reasons for this become

obvious when one considers what would happen if the two were interchanged in

Figure 6. The result would be a Model Transformation (corresponding to a frame

advance in animation) on top of manipulation of the graphical object. This would

be undesirable in the case where animation is suspended and the object is being

manipulated in space by the user.

Feature Interaction in GAL Applications

There is some degree of interaction between independent primitives in GAL

that needs to be clarified. The primitives that handle XWindow Tools and Utilities,

and Color and Animation (refer to the divisions in Chapter 2) tend to be highly

restricted in the manner and order in which they may be applied. For example,

the primitive GAL_START must be invoked before any other GAL primitives and

GAL.END must be the final GAL primitive in the program sequence. Referring

back to the static structure, one observes a specific sequence of commands that are

required to set up and initialize GAL’s structures and objects. Once these structures

27

are initialized, the application is free to manipulate them in any chosen order. This

second set of GAL primitives tend to belong to the graphics and transformation

subset of GAL primitives. This is largely attributable to the fact that graphical

objects can usually be processed in an order-independent manner [TORBO88].

Some interaction between GAL’s primitives can be attributed to features of

XGL. The mixing of 2-D and 3-D graphical primitives in the same application is an

example. The reason for the partitioning of GAL’s graphical primitives into 2-D and

3-D sets is due largely to the fact that XGL’s operators for 2-D and 3-D graphical

objects are only partially overloaded. In other words, some operators only operate

on 2-D objects, some only on 3-D objects and others operate on both. This explains

the reason for GAL having 2 primitives for setting the boundaries of the view space

(one for 2-D graphics and one for 3-D graphics), but a single primitive for handling

double buffering in both 2 and 3 dimensions. This arrangement is probably due to

XGL having independent 2-D and 3-D rendering pipelines [XGL91]. This pipeline

configuration speeds up the rendering of XGL’s 2-D graphics. Initial tests on GAL

have shown that mixing 2-D and 3-D primitives in the same application is possible,

but there is no guarantee that unexpected events will not occur. The mixing of

2-D and 3-D primitives is not recommended from the implementation point of view

besides the fact that, physically speaking, this practice is highly questionable. (A

possible motive for mixing 2-D and 3-D primitives would be to gain performance in

the case where 3-D objects exist in the plane of the screen, but once again, such a

practice is not advised).

Chapter 4 - Epilogue

Enhancements to GAL

After the 4 to 6 week trial period, it was decided to go ahead with a full im

plementation of GAL. The foundations of the package had already been established,

and the improvement and enhancement of the existing features was an ongoing pro

cess that continued for the next 4 months. Based on [KNUTH89], enhancements to

the package could be classified as one of the following types.

1. Cleaning up. This refers to the improvement of consistency and clarity in

the package. Naming conventions for the library were established -for example, all

GAL library procedures start with the word ‘GAL’. An attempt was made to ensure

consistency in the ordering of parameter lists to aid the user. The library names are

also highly mnemonic and descriptive for this purpose. These enhancements do very

little for the software/hardware implementation but are concerned with the human

factors in this package.

2. Efficiency. Efficiency in the implementation of the code was extremely im

portant if the package was to fulfil its goal of high-speed rendering. The tradeoff

between efficiency and convenience was always an issue (refer to the section Lim

itations of GAL below). Highly efficient, high-speed code was only vital for the

graphics primitive rendering operations. The enforcement of efficiency was directed

mainly at these graphics primitives. The processing of graphical information is typ

28

29

ically of a repetitive nature (e.g. the processing of Cartesian coordinates) and the

use of “tight” loops in the code was stressed.

3. Robustness. Attempts were made to ensure that the package was robust. The

result of this can be seen in the XWindow utilities and color initialization primitives.

The consolidation and cohesion of complex assignments and utilities removes some

power from the user, but at the same time guarantees the robustness and stability

of the package. If an attempt is made to use an XGL object before it is initialized,

the program will crash. Fortunately, most computer graphics primitives can be

processed in an order-independent manner and there are only a few problems that

can result from specifying library commands in an incorrect order. These order-

dependent primitives deal largely with XWindow, system and color settings.

4. Error Identification and Recovery. It has been said that roughly 25 percent

of a program’s code should be devoted to error checking and handling [KNUTH89].

Fairly extensive error checking was carried out in the object initiation and object

modification routines of GAL. The graphics primitives contained much less rigorous

checking of errors due to the expected increase in overhead. All memory allocation

and most object-handling operations were checked for validity. Few checks on user

input error are carried out (especially for the high-speed graphics primitives). A

possible solution to the problem of error-checking versus run-time performance could

be the implementation of two libraries - the first, a “code-builder” library with

extensive error checking, and the second, an identical optimized high-speed version

to meet the demands of high-performance interactive graphics. Common errors that

were encountered in the building of GAL applications could be attributed to one of

the following causes.

30

(a) Incorrect ordering of GAL calls (i.e. bad static structure). These errors were

checked for by ensuring that no object could be used unless it had first been initial

ized. Failure to obey this law results in an error message and the program being

aborted. The error message identifies the offending library routine and suggests the

most probable cause. .

(b) Mismatched subroutine parameters. Due to the sparse error checking in the

graphics primitives, mismatched parameters often resulted in undiagnosed crashes.

Refer to the User’s Manual.

(c) Algorithmic errors. These are not preventable, but can be reduced by clear,

concise and logical structuring in the GAL package.

A discussion of GAL programming errors and their diagnoses is included in the

User’s Manual.

5. Generalization. The goal of generalization as described here was to minimize

the number of primitives. The addition of high-level, specialized primitives (e.g.

axes, contour, mesh plots) was carried out towards the end of the project. It was

found that such primitives, while they were useful for certain specialized applica

tions, were starting to restrict thinking on the scope and depth of the package. It

was decided that complex primitives should be obtained from simple primitives if

the functional integrity and general usefulness of the package was to be maintained.

A policy adopted was that if a complex primitive was requested by a user, a demon

stration program of such a primitive (or something similar) would be included along

with the package. The partitioning of the primitive set into 2-D and 3-D primitives

has already been discussed and is another aspect of this topic. A more general prim

31

itive set could probably be attained if Sun’s XGL allowed complete overloading (as

opposed to the current partial overloading) of the 2-D and 3-D graphical context

operators.

6. Portability. Hardware/Operating System portability was discussed in the

Introduction and to summarize, it may be said that GAL’s portability is restricted

by its reliance on Sun’s OpenWindows. XGL is also dependent on OpenWindows

and hence the portability is fairly limited as things stand so far. Facilities for

using hardware z-buffering, double buffering and graphics acceleration have been

implemented in GAL and software emulation in XGL is used where they are not

present. Care was taken to make GAL fully XGL 2.0 compatible. XGL 2.0 contains

some features from older versions of XGL that will be discontinued in the next

upgrade. These features were avoided to ensure that GAL will be compatible with

the future XGL upgrade.

Extensions to GAL

GAL was written with some facilities for future extensions. The code was

written to accommodate the RGB color scheme in the future. Some rewriting of the

code for color implementation of the canvas background and the graphics primitives

would be required should this be done. The graphics primitive library was written

in a standard format with the intention of allowing for extension by persons with a

knowledge of C and very little familiarity with XGL. The graphics primitive library

is a standalone feature in this sense, and can be extended, edited, modified and

changed with no changes to the GAL Utilities (i.e. widgets, color settings, buffers

etc.). GAL’s View Transformation primitives allow the transformation of a 3-D

32

object to any orientation in 3-D space and may be considered complete in that

sense. 2-D rotations are somewhat restricted, but may be added on in the future

(although as stated before, they appear to be of dubious benefit).

Hardcopy output would be another useful extension to GAL. Currently, screen

dumps of the OpenWindows desktop are the extent of GAL’s hardcopy ability.

Screen dumps do not provide the full resolution capabilities that direct printer out

put can provide. Publication quality laser printers currently supply about 300 dots

per square inch (dpi) resolution. Current screen resolutions are of the order of 110

dpi resolutions, and this results in some degradation of image quality of the resulting

output. Direct output in the form of a Postscript file or similar would add a fair

amount to GAL’s utility. There are at present no plans to add such an extension,

but it may be worth future consideration.

Limitations of GAL

There are limitations to GAL, and these are largely due to the belief that

GAL’s kernel should be as simple as possible. Flexibility has been lost because

GAL is a higher abstraction of XGL library primitives. Donald Knuth [KNUTH74]

describes a similar problem that was encountered in his design of assembly languages

and states his personal belief that:

“.. .such languages should never be improved to the point where they are too easy

or too pleasant to use; one must restrict their use to primitive facilities that are

easy to implement efficiently.”

The objectives of GAL are, in a sense, the reverse of those of Knuth’s assemblers.

33

One wants wants to make the package easy and pleasant to use, and the result is the

suppression of lower level (i.e. primitive) facilities. One area in which this is obvious

is the choice of colors in GAL. In principle, GAL should be capable of displaying 8

bits or 256 shades of color. Instead, the user is forced to use 4 bits or 16 colors. This

is due to the color table initialization scheme, which is fairly complex and whose

structure is subject to the use of double buffering. The desire to carry out all these

tasks in one routine forced a design that yielded a standard color table, whether

double buffering was implemented or not.

Solid modeling has been largely ignored. This is due to the fact that most

systems currently in use are able only to render the most simple solid models at

interactive rates. This is due in part to the computationally expensive processes

of shading and z-buffering. The result is a primitive set dominated by wireframe

primitives. Photorealism and other sophisticated graphical representations were not

among the goals of this project, although they are within XGL’s capabilities.

The temptation to add specialized and more complex primitives to the basic

set of primitives was always present. There was often pressure from the users of the

package to incorporate certain “pet features” into the package. In his development

of the typesetting package TpX, Knuth reports being bombarded with ideas for

extensions [KNUTH89].

“By acting as an extremely conservative filter, and by believing that the system was

always complete, I was perhaps able to save T^X from the “creeping featurism” that

destroys systems whose users are allowed to introduce a patchwork of loosely con

nected ideas.’’

34

Repeated extensions to GAL would only be useful to a point. Elaborate and

extensive additions to GAL would eventually run counter to the goals stated in

the Introduction. A user desiring more and more powerful graphics tools should

abandon FORTRAN altogether for a more sophisticated language such as C.

Conclusions

The goals of FORTRAN support, animation and interactive manipulation

were all attained in this project. The requirement of simplicity is more subjective,

and whether this goal was successfully accomplished remains to be seen. The sim

plicity of the library kernel was one priority that was strongly adhered to during

the course of this project. It was believed that a simple kernel would be the basis

of a simple package. The tradeoffs for simplicity were some loss of flexibility and

a program structure and philosophy that would be unfamiliar to most FORTRAN

programmers. It was hoped that simplicity would outweigh the latter two factors.

The notifier-based programming structure was deemed necessary if the package was

meet the needs of interactive and fairly sophisticated graphical applications.

Two factors contributed to the threaded/pipelined structure of GAL applica

tions. The first, and more obvious, is that it is in fact a style of notifier program

ming. The programs have a very dynamical “flow” aspect to them resulting from

the notifier-based transfers of control.

The other influence on the program structure is the use of an Object-Oriented

tools. The “pipeline” sequence described above is actually a manifestation of the

hidden manipulation of Sun’s Object Classes by GAL’s “black boxes”. Object-

Oriented methods are largely unfamiliar to the many computer users in the general

35

population. The recent proliferation of Object-Oriented tools and systems has left

much of this new power and sophistication out of reach of this population. Scientists,

whose first priority is “doing science”, often do not have the inclination or interest

to learn what have become increasingly sophisticated software tools. The purpose of

GAL was to bridge the gap between XGL (new) and FORTRAN (old). The hiding

of unfamiliar objects from the FORTRAN user seems somewhat counterproductive,

but was deemed necessary in the requirements analysis. This raises the interesting

point as to whether Object Oriented tools help or hinder the development of systems

that are not Object Oriented. From the author’s standpoint, the interfacing of

FORTRAN with Object Oriented C required some important decisions and careful

thought (e.g. how to hide global objects). However, the result of this - a working

interactive, animated graphics library for FORTRAN that was built in just over

four months - can be credited in part to Object Oriented methodologies. Features

such as reusable code, predefined classes and operator overloading allowed for the

rapid implementation of a sophisticated package. Unix programming tools also

speeded up prototyping, testing and development. Unix’s symbolic debugger, dbx,

was indispensable, as were Makefiles, for rapid compilation. The use of multi

tasking, multiple windows in the X Windows environment was also extremely useful.

The ability to debug a program in one window while its graphical output was running

in another window saved many hours of time. The importance of such tools can

be expected to grow in the future, as computers and programmers take on more

complex and demanding tasks.

Appendix 1 - GAL User’s Manual

36

37

A User’s Manual for GAL :
A FORTRAN Graphics and Animation Library

for Scientific Computing

Duncan Napier

Department of Computer Science and Systems and

Department of Chemistry

McMaster University

Hamilton, Ontario, Canada L8S 4M1

email : napier@maccs.dcss.mcmaster.ca

mailto:napier@maccs.dcss.mcmaster

38

Manual Table of Contents

Installation and Use .. 39

Programming with GAL : A Tutorial41

Some Concepts 41

Introducing the GAL Canvas 44

View Transformations in GAL 48

Animation with GAL 51

Depth Perception and the GAL Visual Environment 57

The Structure of GAL Programs 60

Common Errors Encountered in GAL Programs 62

GAL Reference Manual...65

XView Tools 65

Color and Animation 68

View Transformation Primitives 72

GAL Graphics Primitives 74

GAL Bugs 91

Index of GAL Primitives 93

39

GAL is a program library that supports graphics and animation on Sun plat

forms running the OpenWindows windowing system. The package is built on top of

Sun’s XView Toolkit and XGL, a graphics package also developed by Sun. GAL is

intended to be used by persons with a working knowledge of FORTRAN who wish to

visualize data and animate it or view it interactively. No knowledge of X Windows

programming or computer graphics is assumed.

This manual will attempt to familiarize the user with some GAL programming

concepts, as well as provide a reference to GAL’s graphics primitives along with a

series of tutorials and an installation guide.

Installation and Use

In order to use GAL, your system must have Openwindows Version 2.0 or a later

version and XGL Version 2.0 or later. The GAL package consists of the archived GAL

library (libgal.a) which can usually be found in the subdirectory gal_lib and some

FORTRAN programs that demonstrate some capabilities of GAL applications. The

libraries that you need to link to run a GAL application are -lxview -lolgx -1X11 -lm

(found in your openwindows directory) and -lxgl (found in your xgl home directory)

and -lgal (found in gal_lib). Suppose your openwindows directory is in /usr/lib and

your xgl direcory is in /usr. You can compile your application (app.f) by

f77 -L/usr/lib/openwin/lib -L/usr/XGL-2.0/lib -Lgaljib app.f -lxview -lolgx

-1X11 -lm -lxgl -lgal

This procedure is carried out in the demo makefile for you. Note that the

directory gal_lib contains the archived library libgal.a (invoked as -lgal) and is supplied

40

to you with the package while the other libraries (-lxview, -lolgx, -1X11, -lm, -lxgl)

are present on your system. The tutorials described in this manual are also included

with the package.

The speed of rendering of GAL graphics and their appearance can be dependent

on your hardware and OpenWindows defaults. Graphics accelerators (e.g. GX and

GL accelerators on Sun SPARCstations) will greatly increase the speed of rendering.

This increase becomes more noticeable with increasing complexity of the graphics.

Some bugs exist and are discussed at the end of this manual.

41

Programming with GAL : A tutorial

Some Concepts

Windowing systems are event-driven as they present many sources of input

to the user at any given time (e.g. menus, buttons, sliders and so on). GAL is

built upon XView which has notification-based event handling. In GAL applications,

these notifiers control the flow of event-driven code. In the conventional style of

programming, interactive input is entered in a controlling loop (Figure 4).

Figure 4. Flow diagram showing conventional style of interactive program

ming.

42

In notification-based programming, the programmer “registers” the interactive

procedure with the notifier. The procedure associated with that event (i.e. pushing

a button, selecting a menu) is called the notify procedure or callback procedure. The

callback is called when its associated event is activated. The input controlling loop is

located outside the main program in the notifier loop. Refer to Figure 5 for the flow

diagram representation of notifier based programs.

Figure 5. Flow digram of notification-based program. The notifier exists

as a loop outside of the program and waits for interactive input before

transferring control to a callback procedure.

43

You may find all of this overwhelming, but all of these are carried out transpar

ently, and one need not be an X Windows expert to use GAL, provided you follow a

few ground rules. To convince you of this, we shall now proceed to write an event-

driven GAL program.

Tutorial 1 : An Event Driven Panel.

Try writing and compiling the code in Listing 1. These are the commands required

to put up a 500 pixelx 500 pixel window with a button at approximately the middle

of the window.

Listing 1 A simple example of an event-driven program.

C A FORTRAN application to put up an event-driven window.

PROGRAM LISTING1

C All callback procedures must be declared EXTERNAL

EXTERNAL QUIT

C Initialize the XView window and panel in Openwindows.

C Parameters passed are the x and y lengths in pixels and a

C title.

CALL GAL_START

CALL GAL_INIT_WIND0W(500, 500, ’My First GAL Application’)

C Create a panel button, giving x, y coordinates, a label for

C the button and register the name of the procedure to invoke

C when pressed.

C x = 25 puts the button 250 pixels from the left edge of the

C window, 8 puts it about 240 pixels from the top of the

44

C window. The left upper corner is (0,0).

CALL GAL_PANEL_BUTT0N(QUIT,25,8,'Press to Quit')

END.

C Subroutine QUIT-This subroutine invokes the destruction of

C the window

SUBROUTINE QUIT

CALL GAL_QUIT_PROC

RETURN

END

In this case, the procedure QUIT is the callback procedure and is invoked when

the button to which it is registered is pressed. Notice that all GAL library calls are

prefixed with the acronym GAL_.

Introducing the GAL Canvas.

The first tutorial has demonstrated most of the fundamental concepts of GAL.

Now, we shall start doing more useful things with the package. Our goal is to draw

a simple object using some GAL graphics primitives. This example will also show

some of the other display device calls that need to be invoked.

The drawing surface of a GAL window is called the “canvas”. The example in

Tutorial 1 did not have a canvas, and the surface observed was that of the control

panel. The control panel’s color is a property of the OpenWindows Workspace and

can be set from the desktop. The canvas is initialized by calling GAL_PAINT_PROC()

and passing the name of the drawing subroutine as the callback procedure. The color

tables of the canvas are initialized by calling the library routine GAL_INIT_COLOR().

45

The default color table consists of 8 colors : black, white, red, green, blue, yellow,

cyan and magenta. Each color is associated with an integer number, its index. The

color indices range from 0 through 7, respectively.

The background is defaulted to black. You can change the default color scheme

by defining your own colors, but you are always limited to 8 colors. After the canvas

and color palette have been initialized you must specify the boundaries of the viewing

space in “Model Coordinates”. Model Coordinates are the physical space coordinates

of the object being imaged, for example, dimensions in feet or centimeters. Model

Coordinates are distinct from Device (or Screen, in this case) Coordinates, which are

often expressed in pixels, as we saw in Tutorial 1. The viewing volume is defined by

invoking GAL_3D_ASPECT_SET() in the case of Tutorial 2.

Tutorial 2: Modelling a 3-dimensional (3D) Object.

This tutorial involves drawing a “dumbell” composed of 2 wireframe spheres

connected by a line. GAL models objects in Model Coordinates, so we’ll set some

dimensions. The radii of the spheres will be 0.5 meters, and we will place their centers

3 meters apart. One sphere will be red, the other green, with a white line joining the

two. The default coordinate system is a right-handed system in 3-dimensions, with

the positive x coordinate pointing right, the positive y pointing vertically up and the

positive z pointing out of the plane of the screen. The same defaults apply in 2D,

but with no z-axis, of course. Listing 2 shows the GAL application that renders the

model.

Listing 2 A GAL application for modeling a dumbell structure.

C A GAL application to model a 3D object.

46

PROGRAM LISTING2

C LINE_COORDS - this is the COMMON block that holds the coordinates of

C the line segment. It is defined here to avoid redeclaration in the

C callback procedure.

C All callback procedures must be declared EXTERNAL

C0MM0N/LINE_C00RDS/X(2), Y(2), Z(2)

EXTERNAL DRAW_PIC

C Initialize the line segment start and finish coordinates

X(l) = -1.

X(2) = 1.

Y(l) = 0.

Y(2) = 0.

Z(l) = 0.

Z(2) = 0.

CALL GAL_START

CALL GAL_INIT_WIND0W(500, 500, ’SDDumbell’)

C Register the callback routine for painting the canvas

CALL GAL_PAINT_PROC(DRAW_PIC)

C Set up default color palette

CALL GAL_INIT_C0L0R

C Define the boundaries (xmin, xmax, ymin, ymax, z min,)

C z max and set window re-sizing protocol.

CALL GAL_3D_ASPECT_SET(-5., 5., -5., 5., -5., 5.)

CALL GAL_END

END.

C Subroutine DRAW_PIC - calls the graphics primitive routines

47

SUBROUTINE DRAW_PIC

C0MM0N/LINE_C00RDS/X(2), Y(2) , Z(2)

C Draw wireframe spheres, the parameters are color(red = 2

C , green = 3), radius followed by x, y and z coordinates

CALL GAL_3D_UNFILLED_SPHERE(2, 0.5, -1.5, 0., 0.)

CALL GAL_3D_UNFILLED_SPHERE(3, 0.5, 1.5, 0., 0.)

C Draw line, passing color (white = 1), line thickness, number

C of points in the polyline and 3 arrays, holding the x, y

C and z coordinates of the points, respectively.

CALL GAL_3D_S0LID_LINE(l, 3.0, 2, x, y, z)

RETURN

END

Try running the program. The perspective is through a 500 x 500 pixel viewport

representing a space with 10 meters xlO metersxlO meters. The dumbell should

appear with its long axis lying along the x-axis. As with all GAL windows, you can

exit by choosing the “Quit” option from the upper left-hand corner of the window.

Exercise 1 Try adjusting the colors and the dimensions of the object and viewport.

Try resizing the window. If there are any extraneous or incorrect lines, select the

“Refresh” option from the upper left hand corner of the window.

Exercise 2 Change GAL_3D_ASPECT_SET() to GAL_3D_ASPECT_FREE(). Resize

the window, trying different window sizes and shapes.

48

View Transformations in GAL

Now that we have some idea of how to model objects in GAL, we will introduce

the View Transformation. In GAL, the position or configuration of an object on

the screen can be altered in 2 ways. The first is a Model Transformation in Model

Coordinates, in which, for example, a modeled force acts on an object and moves

it. This kind of Transformation is the basis of animation in the modeling of physical

objects. Forces are modeled by the programmer and the object is moved around a

fixed coordinate system. A View Transformation, implemented in Tutorial 3 through

GAL_3D_R0TATE, involves the transformation of the viewing space. In a View

Transformation, the viewer’s perception of the coordinate system is altered. Tutorial

3 also introduces the slider which is used to present one of a continuous series of

possible settings for the user (in this case, the options are rotation angles).

Tutorial 3: View Transformation of an Object in 3D.

This tutorial uses the same model as Tutorial 2, but we will now add some

features that allow you to manipulate the object in 3D space by rotating about the

principal axes (i.e. x and y axes). The code has some additions, namely the callback

registrations for 2 sliders, GAL_PANEL_SLIDER1() and GAL_PANEL_SLIDER2()

and a call to the ROTATE subroutine. In the FORTRAN subroutine ROTATE,

GAL_ROTATE() is called prior to drawing to the canvas (DRAW_PIC remains un

changed and is now also called from ROTATE). Once the slider callbacks are regis

tered, the user can access the slider readings from the values returned by the functions

GET_SLIDER1_ VALUE and GET_SLIDER2_VALUE respectively. A GAL applica

tion can use up to 7 sliders, numbered 1 through 7. Type in the modifications in

49

Listing 3 and observe the behavior of our dumbell as it is manipulated on the screen.

Listing 3 Dumbell model with View Transformation Utilities

C A GAL application to model a 3D object.

PROGRAM LISTING3

C0MM0N/LINE_C00RDS/X(2), Y(2), Z(2)

EXTERNAL DRAW_PIC, ROTATE

C Initialize the line segment start and finish coordinates

X(l) = -1.

X(2) = 1.

Y(l) = 0.

Y(2) = 0.

Z(l) = 0.

Z(2) = 0.

CALL GAL_START

CALL GAL_INIT_WIND0W(500, 500, ’3DDumbell’)

C Register the slider callback (draw_pic in this case), give

C slider a label, give the slider max and min values and

C slider position - an integer 0 through 5).

CALL GAL_PANEL_SLIDER1(ROTATE,’Y-Axis Rotate’, 180, -180, 0)

CALL GAL_PANEL_SLIDER2(ROTATE,’Z-Axis Rotate’, 180, -180, 0)

C Register the callback routine for painting the canvas

CALL GAL_PAINT_PROC(DRAW_PIC)

C Set up default color palette

CALL GAL_INIT_C0L0R

C Define the boundaries

50

CALL GAL_3D_ASPECT_SET(-5., 5., -5., 5., -5., 5.)

CALL GAL_END

END.

C Subroutine ROTATE - rotates the dataset then calls DRAW_PIC

C called from LISTING3

SUBROUTINE ROTATE

REAL Y_ANGLE, Z_ANGLE

C It is VERY IMPORTANT that the slider accessing functions get

C declared as integers

INTEGER GET_SLIDER1_VALUE,GET_SLIDER2_VALUE

C Determine the rotation factors (in degrees) and convert them

C to reals, using the library FLOATJ() function

Z_ANGLE = FLOATJ(GET_SLIDER1_VALUE())

Y_ANGLE = FL0ATJ(GET_SLIDER2_VALUE())

C Carry out the rotation, using the slider values (x is unchanging)

CALL GAL_ROTATE(O., Y_ANGLE, Z_ANGLE)

C Draw the pictures. The above code could have been added to the

C DRAW_PIC routine, but separating the transformation routines

C from the drawing routines can increase the speed of rendering

C by avoiding unnecessary transformations

CALL DRAW_PIC

RETURN

END

The addition of the second subroutine ROTATE is not essential, but emphasizes

the “single-mindedness” approach to subroutine construction. A single module should

51

preferably perform a single task (for example draw, rotate, translate, change a force

constant and so on). By doing so, you can ensure that the transformation is traversed

only when its corresponding action is initiated, and not when just any action is

initiated. This will become apparent if you wish to perform multiple transformations

(whether they are View or Model Transformations) on a model.

Exercise 3 Try performing rotations on the object. Observe how the axes rotate

along with the object.

Exercise 4 Add more sliders. Add an x-axis rotation, and add a slider that con

trols the separation of the spheres, or length of the line (hint: transfer the latter 2

transformations to DRAW_PIC through a COMMON block).

Animation with GAL

GAL is intended largely as an animation package and there is a set philosophy

as to how animation is performed. All animated GAL applications are run through

a repetitive callback. This means that you do not have to run routines by looping

with a counter or conditional statement. The callback routine that is passed to

GAL_ANIMATE_BUTTON is called repetitively when the corresponding button is

pressed, and toggles off when it is pressed again. The callback routine for the button

is typically the routine that performs the Model Transformation (which in turn calls

the drawing routine).

Double buffering is usually used to remove the flicker that is observed when a

new frame succeeds another during animation. Double buffering uses two regions to

store an image. One buffer is visible and the information it holds is displayed on the

52

screen. The other buffer is hidden, and the next frame of the animation is written to

it. When the buffers are switched, the input to the screen refresh cycle is switched,

and the contents of the hidden buffer “wash in” smoothly. This process is repeated

for an entire sequence of frames. This buffering is visually more appealing than the

flicker observed in non-buffered animation due to the screen being erased and then

redrawn.

Tutorial 4: Animation of the Modeled Object

Animation requires the addition of new features to the code. New invocations

to GAL are required. Aside from the animation button discussed above, you must

call GAL_INIT_3D_BUFFER to initialize the double buffer. The image is now drawn

to a hidden canvas, and upon invocation of the GAL_SWITCH_BUFFER command,

is drawn to the screen.

Conceptually, animation consists of drawing the image, displaying it, drawing

the next sequence in the frame (in the hidden buffer) displaying it and so forth. The

difference between 2 sequences of a frame is usually some kind of transformation.

In the next example, this transformation is a rotation about the z-axis. Listing 4

contains this in the subroutine called NEXT_FRAME. The dumbell is rotated in

small increments of THETA (the angle of rotation). Holding true to concept of

cohesiveness or “single-mindedness” note that initial coordinates of the primitives

are now assigned in a separate routine, INITIALIZE. The spatial coordinates are

accessed by DRAW_PIC via a shared COMMON block.

Listing 4 Animated GAL program of Rotating Dumbell

C A GAL application to model a 3D object.

53

PROGRAM LISTING4

EXTERNAL DRAW_PIC, ROTATE, NEXT_FRAME

C Initialize the line primitive

CALL INITIALIZE

CALL GAL_START

CALL GAL_INIT_WIND0W(500, 500, 'Animated Dumbell')

C Register the slider callback

CALL GAL_PANEL_SLIDER1(ROTATE,'Y-Axis Rotate', 180, -180, 0)

CALL GAL_PANEL_SLIDER2(ROTATE,'Z-Axis Rotate’, 180, -180, 0)

C Set up the animation button

CALL GAL_ANIMATE_BUTTON(NEXT_FRAME,10, 0, 'Start/Stop')

C Register the callback routine for painting the canvas

CALL GAL_PAINT_PROC(DRAW_PIC)

C Set up default color palette)

CALL GAL_INIT_COLOR

C Set up the double buffer

CALL GAL_SET_3D_BUFFER

C Define the boundaries

CALL GAL_3D_ASPECT_SET(-5., 5., -5., 5., -5., 5.)

CALL GAL_END

END.

C Subroutine INITIALIZE- initializes coordinate and transform data

SUBROUTINE INITIALIZE

C LINE_COORDS - this COMMON block that holds the coordinates of

C of the line segment

C0MM0N/LINE_C00RDS/X(2), Y(2), Z(2)

54

C SPHERE_COORDS - this COMMON block that holds the parameters of the

C two spheres along with the rotation angle of the Coordinate

C Transformation

COMMON/SPHERE_COORDS/RADIUS, SX(2), SY(2), SZ(2), THETA

C Initialize the line segment start and finish coordinates

X(l) = -1

X(2) = 1.

Y(l) = 0.

Y(2) = 0.

Z(l) = 0.

Z(2) = 0.

C Initialize the sphere parameters

RADIUS =0.5

SX(1) = -1.5

SX(2) = 1.5

SY(1) = 0.

SY(2) = 0.

SZ(1) = 0.

SZ(2) = 0.

THETA =0.1

RETURN

END

C Subroutine ROTATE - rotates the dataset then calls DRAW_PIC

C called from LISTING3

SUBROUTINE ROTATE

REAL Y_ANGLE, Z_ANGLE

55

C It is VERY IMPORTANT that the slider accessing functions get

C declared as integers

INTEGER GET_SLIDER1_VALUE,GET_SLIDER2_VALUE

C Determine the rotation factors (in degrees) and convert them

C to reals, using the library FL0ATJO function

Z_ANGLE = FLOATJ(GET_SLIDER1_VALUE())

Y_ANGLE = FL0ATJ(GET_SLIDER2_VALUE())

C Carry out the rotation

CALL GAL_ROTATE(O., Y_ANGLE, Z_ANGLE)

C Draw the pictures.

CALL DRAW_PIC

RETURN

END

C Subroutine DRAW_PIC - draws the primitives and switches buffer

SUBROUTINE DRAW_PIC

C0MM0N/LINE_C00RDS/X(2), Y(2), Z(2)

COMMON/SPHERE_COORDS/RADIUS, SX(2), SY(2), SZ(2), THETA

C Draw wireframe spheres

CALL GAL_3D_UNFILLED_SPHERE(2, RADIUS, SX(1), SY(1), SZ(1))

CALL GAL_3D_UNFILLED_SPHERE(3, RADIUS, SX(2), SY(2), SZ(2))

C Draw line

CALL GAL_3D_S0LID_LINE(l, 3.0, 2, x, y, z)

C Switch the buffer now. This should be the last act in the

C drawing routine

CALL GAL_SWITCH_BUFFER

RETURN

56

END

C Subroutine NEXT_FRAME carries out the frame to frame transformation

SUBROUTINE NEXTJFRAME

C0MM0N/LINE_C00RDS/X(2), Y(2), Z(2)

COMMON/SPHERE_COORDS/RADIUS, SX(2), SY(2), SZ(2) , THETA

REAL SX_0LD(2), X_0LD(2)

C Carry out the transformations required to rotate about the z-axis

DO 100 1=1,2

X_OLD(I) = X(I)

SX_OLD(I) = SX(I)

X(I) = X(I)*COS(THETA)-Z(I)*SIN(THETA)

Z(I) = X_OLD(I)*SIN(THETA)-Z(I)*COS(THETA)

SX(I) = SX(I)*COS(THETA)-SZ(I)*SIN(THETA)

SZ(I) = SX_OLD(I)*SIN(THETA)-SZ(I)*COS(THETA)

100 CONTINUE

C Now that all the transformations are carried out, draw the picture

DRAW_PIC

RETURN

END

Exercise 5 Run the program and observe the behaviour of the animated object as

you toggle animation on and off. Also note that you can change the view of the

system by adjusting the sliders, either during animation or while the animation is

paused. You should find that you can adjust the dumbell to spin about any position

in space.

57

Exercise 6 Change the drawing primitive for the sphere from GAL_3D_UNFILLED_

SPHERE to GAL_3D_FILLED_SPHERE. Adjust you view of the dumbell until you

can see one sphere pass in front of the other and then behind it. What is wrong

with the representation? Can you see that the program does not have any depth

perception?

Depth Perception and the GAL Visual Environment.

If you have looked at the Tutorial and demonstration programs, you may have

already noticed that the Visual Environment created by GAL applications have a

specific “motif’ or “feel” to them. Representing a 3D space on a 2D surface always

results in a distortion resulting from the loss of visual information. You may imagine

that the object that you see on the screen has been projected onto the screen. An

analogy would be projection by a light source.

The projection model used is formally known as a parallel orthographic projec

tion. This means that the Center of Projection (the light source in our analogy) is at

infinity and the parallel Projectors (light rays) fall orthogonally or perpendicularly

to the projection surface. The resulting projected image has some specific features.

A sense of perspective is provided by the shear transformation of “foreshort

ened” objects (objects that do not lie completely in the plane of the screen). The

dimensions of objects on the screen are not dependent on their distance from the

screen and are not appropriately scaled as in Perspective projections. Therefore,

objects of the same physical dimensions at different distances from the screen will

appear to have the same physical dimensions.

58

The shear transformation preserves the parallelism of parallel lines (but it does

not preserve angles). All 2D objects in GAL exist in the plane of the screen and none

of the features discussed apply.

The representation of solid objects in 3D usually requires some kind of hidden

line or hidden surface removal. In GAL, this capability is activated by invoking the

library call GAL_SET_ZBUFFER. The z-bulfering is the technique used to determine

the surface that is closest to the user and display the correct pixel value. The net result

is that obscured parts of the objects are not drawn to the screen. The z-buffer has

to be reset before every frame is drawn to the screen, and one should remember this

when doing animation. The z-buffer is reset by invoking GAL_RESET_ZBUFFER.

Z-Buffering is also required when drawing mesh surfaces with the the quadrilateral

mesh primitive.

Listing 5 shows the implementation of z-buffering in our GAL application. The

additions to Listing 4 are the implementation of z-buffer settings and the resetting

calls, as well as the replacement of wireframe spheres with solid spheres (refer to

Exercise 6). Note that z-buffering drastically slows down the speed of the application.

Tutorial 5: Z-Buffered Solid Dumbells

Listing 5 Animated GAL program of rotating dumbell using solid spheres.

The main program and DRAW_PIC are listed. The other subroutines

remain unchanged.

C A GAL application to model a 3D object.

PROGRAM LISTING4

EXTERNAL DRAW_PIC, ROTATE, NEXT_FRAME

59

C Initialize the line primitive

CALL INITIALIZE

CALL GAL_START

CALL GAL_INIT_WIND0W(500, 500, 'Animated Dumbell ’)

C Register the slider callback

CALL GAL_PANEL_SLIDER1(ROTATE,'Y-Axis Rotate', 180, -180, 0)

CALL GAL_PANEL_SLIDER2(ROTATE,'Z-Axis Rotate', 180, -180, 0)

C Set up the animation button

CALL GAL_ANIMATE_BUTTON(NEXTJFRAME,10, 0, 'Start/Stop')

C Register the callback routine for painting the canvas

CALL GAL_PAINT_PROC(DRAW_PIC)

C Set up default color palette)

CALL GAL_INIT_C0L0R

C Set up the z-buffer

CALL GAL_SET_ZBUFFER

C Set up the double buffer

CALL GAL_SET_3D_BUFFER

C Define the boundaries

CALL GAL_3D_ASPECT_SET(-5., 5., -5., 5., -5., 5.)

CALL GAL_END

END.

C Subroutine DRAW_PIC - draws the primitives and switches buffer

SUBROUTINE DRAW_PIC

C0MM0N/LINE_C00RDS/X(2), Y(2), Z(2)

COMMON/SPHERE_COORDS/RADIUS, SX(2), SY(2), SZ(2) , THETA

C Reset the z-buffer before drawing the next frame

60

CALL GAL_RESET_ZBUFFER

C Draw solid spheres

CALL GAL_3D_FILLED_SPHERE(2, RADIUS, SX(1), SY(1), SZ(l))

CALL GAL_3D_FILLED_SPHERE(3, RADIUS, SX(2), SY(2), SZ(2))

C Draw line

CALL GAL_3D_S0LID_LINE(l, 3.0, 2, x, y, z)

C Switch the buffer now. This should be the last act in the

C drawing routine

CALL GAL_SWITCH_BUFFER

RETURN

END

Exercise 7 Z-buffering slows down the speed of the application. Try using larger

time (THETA) increments to speed up the animation. Also try resizing the window

while animation is in progress. Note that z-buffering is canvas size dependent.

The Structure of GAL Programs

By looking over the code in the tutorials as well as the demonstration programs,

you may notice that GAL applications are written with a certain structure. The

cohesiveness of the modules allows for reuseable and modifiable code. Typically, the

program is divided into 4 components: initialization, view transformation, model

transformation and drawing. Initialization is usually only called once from in the

MAIN routine. View transformation subroutines are typically callback subroutines

associated with the sliders or other manipulators. Model transformation is the step

that causes the frame change observed with animation. Drawing is the final step in

61

the rendering process. Figure 6 illustrates a schematic of a typical animation program.

The “chaining” of two or more routines emphasizes the order in the flow of command.

Figure 6. Flow chart showing the dynamic and static aspects of a typical

GAL program. The upper portion of the diagram contains the Main rou

tine. The notifier “threads” a series of callback routines that are chained

together, forming a notifier-driven rendering/animation pipeline.

62

Common Errors Encountered in GAL Programs

Anyone who has ever programmed is no stranger to programming errors. Along

with all the typical errors the FORTRAN programmer will encounter, there are some

that are specific or occur frequently in GAL programs. Here are some of them. The

types of errors made in writing GAL programs are typically of 3 types.

1. Errors in the ordering of GAL Primitives.

Symptom : The program aborts with an error message, e.g.

*************************** ERROR ****************************

ERROR - UNABLE TO PAINT IN GAL_PAINT_PROC, CHECK THAT GAL_INIT_WINDOW

IS SET FIRST.

Cure : Check the ordering of the GAL calls in your MAIN routine. This is usually

due to a problem with the order of the GAL calls.

2. Mismatched\Erroneous subroutine parameters.

Symptom : Program crashes.

Some typical error messages:

*** Illegal = signal 4 code 2

- You have forgotten to declare a callback routine as external and the FORTRAN

compiler has assumed that it is an integer/real.

*** Segmentation Violation = signal # code #

- A mismatch of parameters has occurred, e.g. an integer has been passed when a

real should have been, etc.

63

Error number -5: -5

Operator: xgl_stroke_text

Operand: ***

- A font for the annotation primitives cannot be found. Any error messages of this

form are from XGL and are typically due to improper initialization in the GAL MAIN

routine or the creation of graphics that take up excessive amounts of memory.

memory allocation request in gal_2d_filled_polygon failed

- An extremely large number has been passed as a parameter for the number of points.

Often symptomatic of an incorrect parameter list.

Symptom : The program runs, but a distorted window or graphic is observed.

These are often the hardest errors to track. A distorted frame is often the

result of erroneous parameters being passed to the GAL_PANEL_BUTTON and

GAL_PANEL_SLIDER library routines. If the panel is covered by the drawing sur-

face(canvas), then it is usually because you have called GAL_PAINT_PROC before

GAL_PANEL_BUTTON and GAL_PANEL_SLIDER. Circular buttons imply that the

button labels have been incorrectly passed. The overlapping of sliders and buttons

restricts their utility .. .make sure that you keep them clear of each other.

Distorted graphics are often the result of incorrect parameter types being passed.

Make sure that you pass an array when an array is required by the library. Beware

of typos that become automatically defined variables!

3. Algorithm or design errors.

Symptoms : The program compiles and runs without crashing. However, the pro

gram does not function as intended. Graphical operations appear in the incorrect

64

sequences.

Cure : Check the logic of your design. By adhering to the recommended structure,

as shown in the tutorials and demonstrations, there should be little confusion as to

the order of execution of the various callbacks.

65

GAL Reference Manual.

XView Tools

gal_end

No parameters.

This call is made after all other GAL calls have been made. It sets up the event loop

that checks for callback notifiers.

gal_init_window(width, height, label)

INTEGER width : window width in pixels

INTEGER height : window height in pixels

CHARACTER label: window title

The XView Window is created by this application. A control panel is also built. The

panel size is automatically controlled by the positions of sliders and buttons.

gal_paint_proc(paint_proc)

EXTERNAL paint_proc

This library call creates the canvas and tells the application what to paint to the can

vas. The canvas is painted by the procedure “paint_proc” that the user has specified.

This applies when the canvas is being repainted, for example in animation, or when

another window is placed in front of it and removed.

gal_panel_button(button_proc, x_pos, y_pos, label)

EXTERNAL button_proc : the subroutine invoked when the button is pressed.

INTEGER x_pos : x position on the panel (1 unit = 10 pixels)

INTEGER y_pos : y position on the panel (1 unit = 30 pixels)

66

CHARACTER label : button label

This creates a panel button, y position = 0 is closest to the top of the panel. The panel

automatically resizes as buttons are added. The button width is also automatically

sized to accommodate the width of the label. Button color, as with panel color, is

set from the OpenWindows desktop. The ranges for x_pos and y_pos are set by the

dimensions of the window (refer to gal_init_window).

gal_start

No parameters.

This is the first statement of a GAL application. It initializes some GAL variables

that are used by the library. All statements of a GAL application are bracketed

between gal_start and gal_end.

gal_panel_slider#(slider_proc, label, max, min, y_pos)

EXTERNAL slider_proc : the subroutine invoked when the slider is touched.

CHARACTER label : the label for the slider.

INTEGER max : the maximum value of the slider position.

INTEGER min : the minimum value of the slider position.

INTEGER y_pos : the y position of the slider on the panel. The panel is automatically

sized to accommodate a slider.

A series of sliders, where # ranges from 1 to 6, can be built by invoking this call. A

slider is useful for representing a continuous range of values. The process slider_proc

would contain the function get_slider#_value from which the current value of the

slider would be obtained. The default initial reading of the slider is 0, or the closest

value to it in the range max - min.

67

get_slider#_value

No parameters. A FUNCTION returning type INTEGER.

This is a special GAL function that returns the current setting of the #th slider. Note

that it is vital that the this function be declared as an integer if it is used, and that it

always returns a value of type INTEGER. For use as a REAL or any other type, the

slider value must be converted into a REAL. Note that the fineness of control can be

“tuned” by multiplying the scale by a constant and then dividing to convert to the

appropriate units.

gal_quit_proc

No parameters.

A call to this procedure destroys the window.

68

Color and Animation

gal_init_color

No parameters.

This call sets up the color tables and initializes the structures that will form the

2D and 3D objects being drawn. This call must be made before the dimensions of

the view space, color index changes, the setting of double buffers and/or z buffers are

invoked. The color system that is supported is Indexed color. Each color is associated

with of “indexed” with a number. Color monitors use an additive color scheme with

red (R), blue (B) and green (G) as the primary colors. For example, R = 1.0, B =

1.0, G = 1.0 gives white. R = 0.0, B = 0.0, G = 0.0 gives black. Between these two

extremities lies the spectrum of usable colors. The user chooses a color by passing its

index to the primitives. The background is defaulted to black (index 0).

The following are the defaults for the color indices:

index 0 black R = 0.0, G = 0.0, B = 0.0

index 1 white R = l.o, G = 1.0, B = 1.0

index 2 red R = l.o, G = 0.0, B = 0.0

index 3 green R = 0.0, G = 1.0, B = 0.0

index 4 blue R = 0.0, G = 0.0, B = 1.0

index 5 yellow R = l.o, G = 1.0, B = 0.0

index 6 cyan R = 0.0, G = 1.0, B = 1.0

index 7 magenta R = l.o, G = 0.0, B = 1.0

Refer to gal_reset_color for changing the defaults. This call must be made before

the dimensions of the view space, color index changes, the setting of double buffers

and/or z buffers are invoked.

69

gal_set_2d_buffer, gal_set_3d_buffer

No parameters.

These set up the double buffer for 2D and 3D objects, respectively. Only one of the

two can be invoked per application. If an attempt is made to initialize both, an error

message results. May only be set after gal_init_color.

gal_new_2d_frame, gal_new_3d_frame

No parameters.

These commands clear the GAL canvas, which reverts to the background color. Note

that the command to clear a 2D canvas also results in any 3D objects on the screen

being cleared as well, and vice versa.

gal_switch_buffer

No parameters.

Switching of the hidden and displayed buffers is accomplished by making a call to

this routine. Once the buffers are set up, all drawing is done to the hidden buffer.

No image will be seen until gal_switch_buffer is invoked. Conversely, anything drawn

after the call is made will not be viewed until the call to switch the buffers is made

again.

gal_set_zbuffer

No parameters.

This call sets up the z-buffer. It applies only to 3D objects.

gal_reset_zbuffer

No parameters.

Once the z buffer has been set up, it must be reset or cleared before the drawing of

70

each new frame. Failure to do so will result in all the previous images remaining on

the screen.

gal_reset_color(index, red, green, blue)

INTEGER index

REAL red, green, blue

If the platform being used utilizes an Indexed Color Scheme (as is the most common),

the default color table can be altered. The color indexed by x can be changed to the

color R = r, G =g and B =b by simply invoking gal_reset_color(x, r, g, b).

gal_animate_button(button_proc, x_pos, y_pos, label)

EXTERNAL button_proc : the subroutine is called repeatedly when the button is

pressed and then stops when pressed again.

INTEGER x_pos : x position on the panel (1 unit = 10 pixels)

INTEGER y_pos : y position on the panel (0 through 6, 1 unit = 10 pixels)

CHARACTER label : button label

This is the animation button that works as a repeated call back, calling button_proc

repeatedly. button_proc should be the routine that advances the frame of the anima

tion. To stop the animation, press the button again.

gal_step_anim_button(button_proc, x_pos, y_pos, label)

EXTERNAL button_proc : the subroutine is called once when the button is pressed.

INTEGER x_pos : x position on the panel (1 unit = 10 pixels)

INTEGER y_pos : y position on the panel (0 through 6, 1 unit = 10 pixels)

CHARACTER label : button label

This button advances animation frame-by-frame. It is a customized button, but

71

could have been made by simply invoking the frame advancing routine by a generic

button. The advantage of this customized button is that the user does not have to

stop animation before advancing frame by frame.

72

View Transformation Primitives

gal_3d_pan_and_zoom(x_translate, y_translate, zoom)

gal_2d_pan_and_zoom(x_translate, y_translate, zoom)

REAL x_translate : the x-axis translation (in Model coordinates)

REAL y_translate : the y-axis translation (in Model coordinates)

REAL zoom : the scaling factor of the objects (> 0)

Panning and zooming are terms associated with camera or film work. Panning in

volves translating the object across the viewport, with no change in perspective.

Zooming increases (zoom factor > 1) or decreases the size (zoom < 1) of the object

on the screen. Zoom factors having a value < 0 are read as a value of 1. When zoom

ing interactively (with a slider, for example) one tends to zoom in on the origin. Some

degree of panning is often required to bring the desired region into the viewport.

gal_rotate(x_angle, y_angle, z_angle)

REAL x_angle, y_angle, z_angle : rotations about the x-axis, y-axis and z-axis, re

spectively, in degrees.

Rotations are only applicable to 3D objects. Some specific rules apply when using

rotations:

1. All rotations are about one of the 3 principal axes (i.e. x, y or z)

2. The rotational scheme is such that any rotation, no matter what order the rota

tional data for the axes is input, is executed in a particular order. The unrotated

object is first rotated by x_angle about the x-axis, followed by a y_angle rotation

about the y axis and finally a z_angle rotation about the z-axis. This sequence is

repeated each time this routine is called, and successive rotations about a given axis

73

are not cumulative. In other words, a succeeding x, y, z-rotation replaces the previous

x, y, z rotation sequence.

74

GAL Graphics Primitives

2D Primitives

gal_2d_filled_circle(color_index, radius, x_coord, y_coord)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

REAL radius : circle radius in 2D Model Coordinates.

REAL x_coord : the x-axis coordinate of the circle centre.

REAL y_coord : the y-axis coordinate of the circle centre.

This draws a disk.

gal_2d_unfilled_circle(colorjndex, radius, x_coord, y_coord)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

REAL radius : circle radius in 2D Model Coordinates.

REAL x_coord : the x-axis coordinate of the circle centre.

REAL y_coord : the y-axis coordinate of the circle centre.

This draws a circle.

gal_2d_filled_rectangle(colorjndex, x_corner, y_corner)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

ARRAY REAL x_corner(2) : the maximum and minimum values of the x-coordinates.

ARRAY REAL y_corner(2) : the maximum and minimum values of the y-coordinates.

Draws a filled rectangle with corners at (x_corner(l), y_corner(l)) and (x_corner(2),

y_corner(2)).

gal_2d_unfilled_rectangle(colorjndex, x_corner, y_corner)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

75

ARRAY REAL x_corner(2) : the maximum and minimum values of the x-coordinates.

ARRAY REAL y_corner(2) : the maximum and minimum values of the y-coordinates.

Draws an unfilled rectangle with corners at (x_corner(l), y_corner(l)) and

(x_corner(2), y_corner(2)).

gal_2d_unfilled_polygon(color_index, num_pts, list_x, list_y)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

INTEGER num_pts : the number of vertices a 2D polygon.

REAL list_x : an array list_x(num_pts) of x-coordinates

REAL list_y : an array list_y(num_pts) of y-coordinates

A polygon with vertex list ({list_x(l), list_y(l)}, {list_x(2) ,

list_y(2)},..,,{list_x(num_pts), list_y(num_pts)}) is drawn to the screen. The vertex

list represents a polygon where the n-1, n and n+1 pairs are joined by line segments.

The first and last sets in the list are also joined by a line segment. (The set {x,y}

corresponds to a the coordinates of the point (x,y)).

gal_2d_filled_polygon(color_index, num_pts, list_x, list_y)

Refer to gal_2d_unfilled_polygon.

gal_2d_?????_line(color_index, thickness, num_pts, list_x, list_y)

????? = solid gives_____

????? = dotted gives........

????? = dashed-----------

????? = dash_dotted

????? = dash_dot

????? = dash_dot_dot

76

????? = long_dash

INTEGER color_index : ranges from 0 through 7 for 8 colors

INTEGER num_pts : the number line segments in a polyline.

REAL thickness : line thickness

ARRAY REAL list_x(num_pts) : an array list_x(num_pts) of x-coordinates

ARRAY REAL list_y(num_pts) : an array list_y(num_pts) of y-coordinates

This call draws a polyline (a series of line segments joined end-to-end). The list

contains the elements ({list_x(l), list_y(l)}, {list_x(2), list_y(2)},..., {list_x(num_pts),

list_y(num_pts)}) where sets n-1, n and n+1 are connected by line segments (where

n > 1 and n < num_pts). Line thickness is an arbitrary thickness scale, where thickness

= 1.0 is the thinnest line setting. (The set {x,y} corresponds to a the coordinates of

the point (x,y)).

gal_2d_?????_marker(color_index, num_pts, list_x, list_y)

????? = asterisk gives *

????? = circle gives o

????? = cross gives x

????? = plus gives +

????? — square gives Q

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

INTEGER num_pts : the number of markers to be drawn

ARRAY REAL list_x(num_pts) : an array list_x(num_pts) of x-coordinates

ARRAY REAL list_y(num_pts) : an array list_y(num_pts) of y-coordinates

This call draws a series of markers drawn from a list. The list contains the elements

({list_x(l), list_y(l)}, {list_x(2), list_y(2)},..{list_x(num_pts), list_y(num_pts)})

where each set pair represents a marker coordinate. The user has a choice of 5

77

marker styles, as described above. The marker sizes are not adjustable, and are set

to about 20 pixels across in size.

gal_2d_text_annote(color_index, string, font_size, font, font_spacing, x_pos, y_pos,

x_ vector, y_vector)

INTEGER color_index : ranges from 0 through 7 for 8 colors

CHARACTER string : the string to be rendered (not more that 80 characters).

REAL font_size : a scaling factor for the characters

CHARACTER font : a selected XGL font

REAL font_spacing : spacing between characters

REAL x_pos : the x-axis coordinate, in Model Coordinates

REAL y_pos : the y-axis coordinate, in Model Coordinates

REAL x_vector : the x-component of the line vector

REAL y_vector : the y-component of the line vector

Annotation text is added by invoking this routine. Text should only be added as an

overlay to a figure/model, and its implementation greatly slows down the animation

speed. Text characters are transformed by the transformation calls and their use in

animation is not advisable. The use of a toggle to turn text annotation on and off is

probably the best approach.

The fonts available are : Cartographic, Cartographic_M, English_G, Greek,

Greek_C, Greek_M, Headline, Italic_C, Italic_T, Miscellaneous, Miscellaneous_M, Ro

man, Roman_C, RomanJD, Roman_M, Roman_T, Script, Script_C. (Note the naming

convention - lowercase with capitalized letter of first word - is essential for proper

usage).

Text can be scaled, the separation between characters can be controlled, its po

sition and alignment can also be altered. x_vector and y_vector control the alignment

78

of a line of text. For example, x_vector = 1.0 and y_vector = 0.0 give horizontal text.

On the other hand, x_vector = 0.0 and y_vector = 1.0 gives vertical text.

gal_2d_real_annote(color_index, number_string, field_width, decimal_places,

font_size, font, font_spacing, x_pos, y_pos, x_vector, y_vector)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

REAL number_string : the numeric label

INTEGER field_width : the number of significant digits

INTEGER decimal_place : the number of decimal places

REAL font_size : a scaling factor for the characters

CHARACTER font : a selected XGL font

REAL font_spacing : spacing between characters

REAL x_pos : the x-axis coordinate, in Model Coordinates

REAL y_pos : the y-axis coordinate, in Model Coordinates

REAL x_vector : the x-component of the line vector

REAL y_vector : the y-component of the line vector

This library call is used to display numeric labels in GAL. Its purpose is to allow for

the display of computed values. A real value is passed in the form of the parameter

number_string. The number of significant figures is determined by field_width. The

routine rounds off insignificant figures. If the number or decimal places is set equal

to 0, an integer is displayed. Refer to gal_2d_text_annote for details on the remaining

parameter values.

gal_2d_ _axes(color_index, xmin, xmax, ymin, ymax, xjnterval, y_interval)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

REAL xmin : the minimum of the x-axis

79

REAL xmax : the maximum of the x-axis

REAL ymin : the minimum of the y-axis

REAL ymax : the maximum of the y-axis

REAL xjnterval : x-interval

REAL yjnterval : y-interval

This routine draws a set of axes, an x-axis (length xmax-xmin, with tic marks sep

arated by xjnterval) and a y-axis (length ymax-ymin, with tic marks separated by

xjnterval). Currently, labels must be added through an text or real number annota

tion “overlay”.

gal_2d_filled_multicircle(colorjndex, num_circles, radius, x_coords, y_coords)

INTEGER color jndex : ranges from 0 through 7 for 8 colors

INTEGER num_circles : the number of circles to be processed

ARRAY REAL radius(num_circles) : array of radii of the list of circles.

ARRAY REAL x_coord(num_circles) : the x-axis coordinate of the circle centre.

ARRAY REAL y_coord(num_circles) : the y-axis coordinate of the circle centre.

Draws a series of filled circles of the same color. A list of circle data is passed in the

form of one array each for radii, x coordinates and y coordinates. All three arrays

are of length num_circles. The ith circle has a radius radius(i) and center (x_coord(i),

y_coord(i)).

gal_2d_unfilled_multicircle(colorjndex, num_circles, radius, x_coords, y_coords)

INTEGER color jndex : ranges from 0 through 7 for 8 colors

INTEGER num_circles : the number of circles to be processed

ARRAY REAL radius(num_circles) : array of radii of the list of circles.

ARRAY REAL x_coord(num_circles) : the x-axis coordinate of the circle centre.

80

ARRAY REAL y_coord(num_circles) : the y-axis coordinate of the circle centre.

Draws a series of unfilled circles of the same color. A list of circle data is passed in

the form of one array each for radii, x coordinates and y coordinates. All three arrays

are of length num_circles. The ith circle has a radius radius(i) and center (x_coord(i),

y_coord(i)).

gal_2d_filled_multirectangle(color_index, num_rectangles, x_corner, y_corner)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

INTEGER num_rectangles : the number of circles to be processed

ARRAY REAL x_corner(2xnum_rectangles) : x axis maxima and minima for rectan

gles

ARRAY REAL y_corner(2xnum_rect angles) : y axis maxima and minima for rectan

gles

Draws a series of filled rectangles. The maximum and minimum corners of the rect

angles are specified by (x_corner(i), y_corner(i)) and (x_corner(i+l), y_corner(i+l)),

where i is an odd-number.

gal_2d_unfilled_multirectangle(color_index, num_rectangles, x_corner, y_corner)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

INTEGER num_rectangles : the number of circles to be processed

ARRAY REAL x_corner(2xnum_rectangles) : x axis maxima and minima for rectan

gles

ARRAY REAL y_corner(2xnum_rectangles) : y axis maxima and minima for rectan

gles

Draws a series of unfilled rectangles. The maximum and minimum corners of the rect

angles are specified by (x_corner(i), y_corner(i)) and (x_corner(i+l), y_corner(i+l)),

81

where i is an odd-number.

gal_solid_contour(color_index, thickness, row_size, column_size, leveljnterval, xmin,

xmax, ymin, ymax, data_field)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

REAL thickness : thickness of the contour lines

REAL row_size : number of row elements in the data field.

REAL column_size : number of column elements in the data field.

REAL leveljnterval : the interval between contour levels

REAL xmin : the minimum x value

REAL xmax : the maximum x value

REAL ymin : the minimum y value

REAL ymax : the maximum y value

ARRAY REAL data_field(row_sizexcolumn_size) : array of z-values of data field,

starting with point (xmin, ymin), ending with (xmax, ymax).

Contour plots of a uniformly-spaced data field can be generated when the z-axis

values are entered as a vector array data_field. The array data_field has a dimension

row_sizexcolumn_size and consists of ordered elements of z for all coordinates (x,y).

Let the row_size be m and the column_size be n. If Zij = for the ith x-axis

interval and the jth y-axis interval, then the array data_field would be

(f(*2,2/l),

f(^2,SZ2),

f(xm,!/l),

f(*m,!/2),

f(*l,2/n), f(*2,J/n), f(2-m,2/n))

82

The contour plotter assumes uniform intervals between the sampled points (starting

at x and y minima and ending at atheir respective maxima). The algorithm relies

upon interpolation between points of a uniform rectangular grid of z-axis data. The

interval between z-levels of the contour is set with the variable leveljnterval. 8 choices

of color are available (including background) and the line thickness is set to 1.0 or

greater (anything less that 1.0 will be defaulted to 1.0).

gal_dotted_contour(data_field, row_size, column_size, leveljnterval, xmin, xmax,

ymin, ymax, colorJndex, thickness)

ARRAY REAL data_field(row_sizexcolumn_size) : z-values of data field, starting with

point (xmin, ymin), ending with (xmax, ymax).

REAL row_size : number of row elements in the data field.

REAL column_size : number of column elements in the data field.

REAL leveljnterval : the interval between contour levels

REAL xmin : the minimum x value

REAL xmax : the maximum x value

REAL ymin : the minimum y value

REAL ymax : the maximum y value

INTEGER color jndex : ranges from 0 through 7 for 8 colors

REAL thickness : thickness of the contour lines

Identical to gal_solid_contour, except that a dotted line is drawn instead of a solid

line.

83

GAL Graphics Primitives

3D Primitives

gal_3d_filled_sphere(color_index, radius, x_coord, y_coord, z_coord)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

REAL radius : sphere radius in 3D Model Coordinates.

REAL x_coord : the x-axis coordinate of the sphere centre.

REAL y_coord : the y-axis coordinate of the sphere centre.

REAL z_coord : the z-axis coordinate of the sphere centre.

This draws a solid sphere. Its actual implementation is through so-called annotation

circles. Annotation circles are circles that always maintain the same orientation in

relation to the plane of the screen, given a centre point and a radius.

gal_3d_unfilled_sphere(colorjndex, radius, x_coord, y_coord, z_coord)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

REAL radius : sphere radius in 2D Model Coordinates.

REAL x_coord : the x-axis coordinate of the sphere centre.

REAL y_coord : the y-axis coordinate of the sphere centre.

REAL z_coord : the z-axis coordinate of the sphere centre.

This draws a set of 3 orthoplanar circles that form a wireframe sphere.

gal_3d_unfilled_polygon(colorjndex, num_pts, list_x, list_y, list_z)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

INTEGER num_pts : the number of vertices a 3D polygon.

ARRAY REAL list_x(num_pts) : an array list_x(num_pts) of x-coordinates

ARRAY REAL list_y(num_pts) : an array list_y(num_pts) of y-coordinates

84

ARRAY REAL list_z(num_pts) : an array list_z(num_pts) of z-coordinates

A polygon with vertex list ({list_x(l), list_y(l), list_z(l)}, (list_x(2), list_y(2), list_

z(2)},..., {list_x(num_pts), list_y(num_pts), list_z(num_pts)}) is drawn to the screen.

The vertex list represents a polygon where the n-1, n and n+1 sets are joined by line

segments. (The set {x,y,z} corresponds to a the coordinates of the point (x,y,z)). The

first and last sets in the list are also joined by a line segment.

gal_3d_filled_polygon(color_index, num_pts, list_x, list_y)

Refer to gal_3d_unfilled_polygon.

gal_3d_????_line(color_index, thickness, num_pts, list_x, list_y, list_z)

For ???? designations refer to gal_2d_????_line

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

INTEGER num_pts : the number line segments in a polyline.

REAL thickness : line thickness

ARRAY REAL list_x(num_pts) : an array list_x(num_pts) of x-coordinates

ARRAY REAL list_y(num_pts) : an array list_y(num_pts) of y-coordinates

ARRAY REAL list_z(numj>ts) : an array list_z(num_pts) of z-coordinates

This call draws a polyline (a series of line segments joined end-to-end). The poly

line list contains the elements ({list_x(l), list_y(l), list_z(l)}, {list_x(2), list_y(2),

list_z(2)},..., {list_x(num_pts),list_y(num_pts), list_z(num_pts)}) where sets n-1, n and

n+1 are connected by line segments (where n > 1 and n < num_pts). (The set {x,y,z}

corresponds to a the coordinates of the point (x,y,z)). Line thickness is an arbitrary

thickness scale, where thickness = 1.0 is the thinnest line setting.

gal_3d_?????_marker(colorjndex, num_pts, list_x, list_y)

85

Refer to gal_2d_?????_marker for the ????? designations.

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

INTEGER num_pts : the number of markers to be drawn

ARRAY REAL list_x(numj»ts) : an array list_x(num_pts) of x-coordinates

ARRAY REAL list_y(num_pts) : an array list_y(num_pts) of y-coordinates

ARRAY REAL list_z(num_pts) : an array list_z(num_pts) of z-coordinates

This call draws a series of markers drawn from a list. The list contains the elements

({list_x(l), list_y(l)}, {list_x(2), list_y(2)},..., {list_x(num_pts), list_y(num_pts)})

where each set represents a marker coordinate. (The set {x,y,z} corresponds to a

the coordinates of the point (x,y,z)). The user has a choice of 5 marker styles, as

described above. The marker sizes are not adjustable, and are set to about 20 pixels

across in size.

gal_3d_text_annote(colorjndex, string, font_size, font, font_spacing, x_pos, y_pos,

z_pos, x_vector, y_vector)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

CHARACTER string : the string to be rendered (not more than 80 characters).

REAL font_size : a scaling factor for the characters

CHARACTER font : a selected XGL font

REAL font_spacing : spacing between characters

REAL x_pos : the x-axis coordinate, in Model Coordinates

REAL y_pos : the y-axis coordinate, in Model Coordinates

REAL z_pos : the z-axis coordinate, in Model Coordinates

REAL x_vector : the x-component of the line vector

REAL y_vector : the y-component of the line vector

Annotation text is added by invoking this routine. Text should only be added as an

86

overlay to a figure/model, and its implementation greatly slows down the animation

speed. Text characters are transformed by the transformation calls and their use in

animation is not advisable. The use of a toggle to turn text annotation on and off is

probably the best approach.

The fonts available are : Cartographic, Cartographic_M, English_G, Greek,

Greek_C, Greek_M, Headline, Italic_C, Italic_T, Miscellaneous, Miscellaneous_M, Ro

man, Roman_C, Roman_D, Roman_M, Roman_T, Script, Script_C. (Note the naming

convention - lowercase with capitalized letter of first word - is essential for proper

usage).

Text can be scaled, the separation between characters can be controlled, its po

sition and alignment can also be altered. x_vector and y_vector control the alignment

of a line of text. For example, x_vector = 1.0 and y_vector = 0.0 give horizontal text.

On the other hand, x_vector — 0.0 and y_vector = 1.0 gives vertical text. In 3D, all

text is defaulted to be in the plane of screen.

gal_3d_real_annote(color_index, number_string, field_width, decimal_places,

font_size, font, font_spacing, x_pos, y_pos, z_pos, x_vector, y_vector)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

REAL number_string : the numeric label

INTEGER fieldjvidth : the number of significant digits

INTEGER decimal .place : the number of decimal places

REAL font_size : a scaling factor for the characters

CHARACTER font : a selected XGL font

REAL font_spacing : spacing between characters

REAL x_pos : the x-axis coordinate, in Model Coordinates

REAL y_pos : the y-axis coordinate, in Model Coordinates

87

REAL z_pos : the z-axis coordinate, in Model Coordinates

REAL x_vector : the x-component of the line vector

REAL y_vector : the y-component of the line vector

This library call is used to display numeric labels in GAL. Its purpose is to allow for

the display of computed values. A real value is passed in the form of the parameter

number_string. The number of significant figures is determined by field_width. The

routine rounds off insignificant figures. If the number or decimal places is set equal

to 0, an integer is displayed. Refer to gal_3d_text_annote for details on the remaining

parameter values.

gal_3d_axes(color_index, xmin, xmax, ymin, ymax, zmin, zmax, xjnterval,

yjnterval, zjnterval)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

REAL xmin : the minimum of the x-axis

REAL xmax : the maximum of the x-axis

REAL ymin : the minimum of the y-axis

REAL ymax : the maximum of the y-axis

REAL zmin : the minimum of the z-axis

REAL zmax : the maximum of the z-axis

REAL xjnterval : x-interval between tic marks

REAL yjnterval : y-interval between tic marks

REAL zjnterval : z-interval between tic marks

This routine draws a set of axes, an x-axis (length xmax-xmin, with tic marks sepa

rated by xjnterval) y-axis (length ymax-ymin, with tic marks separated by xjnterval)

and a z-axis (length zmax-zmin, with tic marks separated by zjnterval). Currently,

labels must be added through an text or real number annotation “overlay”.

88

gal_3d_filled_multisphere(color_index, num_spheres, radius, x_coord, y_coord,

z_coord)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors.

INTEGER num_spheres : number of spheres.

ARRAY REAL radius(num_spheres) : array of sphere radii in 3D Model Coordinates.

ARRAY REAL x_coord(num_spheres) : array of x-axis coordinates of sphere centres.

ARRAY REAL y_coord(num_spheres) : array of y-axis coordinates of sphere centres.

ARRAY REAL z_coord(num_spheres) : array of z-axis coordinates of sphere centres.

This draws a list of identically colored solid spheres. Its actual implementation is

through so-called annotation circles. Annotation circles are circles that always main

tain the same orientation in relation to the plane of the screen, given a centre point

and a radius.

gal_3d_unfilled_multisphere(color_index, num_spheres, radius, x_coord, y_coord,

z_coord)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors.

INTEGER num_spheres : number of spheres.

ARRAY REAL radius(num_spheres) : array of sphere radii in 3D Model Coordinates.

ARRAY REAL x_coord(num_spheres) : array of x-axis coordinates of sphere centres.

ARRAY REAL y_coord(num_spheres) : array of y-axis coordinates of sphere centres.

ARRAY REAL z_coord(num_spheres) : array of z-axis coordinates of sphere centres.

This procedure draws a list of identically colored wireframe spheres, given arrays of

their radii and respective x,y and z model coordinates.

gal_quadrilateral_mesh(colorjndex, row, column, num_pts, mesh)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

89

INTEGER row : number of vertex rows in the mesh

INTEGER column : number of vertex columns in the mesh

INTEGER num_pts : number of points in the mesh array

ARRAY REAL mesh(3xnumj>ts) : an array mesh(3x num_pts) of vertex coordinates

The mesh list contains i = num_pts sets : ({ an, 2/1, zi}, {a;2, 2/2, Z2}, • ••,{*», 2A, 2.})

entered as a 1 dimensional array (a vector). The sets represent (x,y,z) coordinate of

each vertex, resulting in 3x numj>ts elements. A quad mesh consists of a m x n matrix

of vertices (column = m, row — n):

{*1,2/1,21} {*2,2/2,22} ••• {xm,ym,zm}

hm+l ,2/m+l ,2m+l} {*m+2,2/m+2,2m+2} ••• {*2m,2/2m,22m}

{*(n —1)m+l ,2/(n —l)m+l ,2(n — l)m+l} {*(n — l)m+2,2/(n — l)m+2,2(n — l)m+2} ,2nm}

The mesh above defines (m- 1) x (n-1) quadrilaterals (4-sided polygons) formed from

the adjacent vertices:

{ar*+i,3/i+i,zjfc+1} {a:jt+2,2/i+2,2fc+2}

{Zm+fc+l ,2/m+k+l ,2m+fc + l } {*m+fc+2,2/m+fc+2,2m+fc+2 }

where k < (n - l)m (m and n are the number of columns and rows, respectively).

gal_quadrilateral_surface(color_index, row, column, num_pts, mesh, color_array)

INTEGER colorjndex : ranges from 0 through 7 for 8 colors

INTEGER row : number of vertex rows in the mesh

INTEGER column : number of vertex columns in the mesh

INTEGER num_pts : number of points in the mesh array

ARRAY REAL mesh(3xnum_pts) : an array mesh(3x num_pts) of vertex coordinates

90

ARRAY INTEGER color_array((column-l)x (row-1)): an array color _array((column-

1) x (row-1)) of integers assigning the colors of each facet of the surface.

The color_array array contains the colors (0 through 7) for the (m-1) x (n-1) facets

for a m x n grid. (Refer to gal_quadrilateral_mesh() for details on the quadrilateral

configuration. The integer color_array(k) maps the color of the quadrilateral specified

by the coordinates

{xk,yk,zk} {xk+i,yk+1,zk+1}

jJ/rn+fc + l i^m+k + l}

where k is some integer and 1 < k < (m - 1) x (n - 1) (m is the column length). The

color assigned to color_array(k) describes the color of the ith facet in row j, where i

= (k mod(j x m)) + 1. Note that gal_quadrilateral_surface() renders a solid object

and should be used in conjunction with the z-buffer.

91

GAL Bugs

Color choices - GAL should have a 16 color (4-bit) palette. Instead, only 8 colors (3

bits) are availiable. Utilizing the entire 8 bits for double-buffering results in mysterious

color mapping problems.

“multi” drawing primitives - Primitives that draw arrays of geometric objects

(e.g. gal_3d_multisphere(), gal_2d_multicircle()) appear to have upper limits for

the number of objects that can be drawn. For example, the author’s experience

on the author’s machine (a SPARCstation 1+ with GX accelerator) suggests that

gal_3d_multisphere() behaves eratically when set up to draw arrays of sphere coordi

nates larger than 64.

Mixing of z-buffered solid and wireframe objects - Caution is advised here - for some

yet-to-be determined reason, wireframe objects (e.g. polygons, spheres) are not to

the screen when z-buffering is carried out. It is advised that if you are drawing solid

spheres and filled polygons, and require unfilled polygons, draw the unfilled polygons

as a line (using gal_3d_solid_line() as opposed to gal_3d_filled_polygon()). Another

option would be to an depth sort your primitives (draw the most distant objects

first).

This list is by no means comprehensive or complete. If you find any more bugs

or have any inquiries or suggestions, for that matter, contact me by email at

napier@maccs.dcss.mcmaster.ca.

92

Index of GAL Primitives

The Listing of GAL primitves in the manual follows a logical (in this user’s

opinion, at least!) ordering that was based on similarities in functionality. The

following is an alphabetical listing of the primitives.

gal_2d_asterisk_marker 76 gal_2d_unfilled_polygon 75

gal_2d_axes 78 gal_2d_unfilled_rectangle 74

gal_2d_circle_marker 76 gal_3d_asterisk_marker 85

gal_2d_cross_marker 76 gal_3d_axes 87

gal_2d_dash_dot_dot_line 75 gal_3d_circle_marker 85

gal_2d_dash_dot_line 75 gal_3d_cross_marker 85

gal_2d_dash_dotted_line 75 gal_3d_dash_dot_dot_line 84

gal_2d_dotted_line 75 gal_3d_dash_dot_line 84

gal_2d_filled_circle 64 gal_3d_dash_dotted_line 84

gal_2d_filled_multicircle 79 gal_3d_filled_multisphere 88

gal_2d_filled_polygon 75 gal_3d_filled_polygon 83

gal_2d_filled_rectangle 74 gal_3d_filled_sphere 83

gal_2d_long_line 75 gal_3d_long_line 84

gal_2d_plus_marker 76 gal_3d_pan_and_zoom 72

gal_2d_real_annote 78 gal_3d_plus_marker 85

gal_2d_solid_line 75 gal_3d_real_annote 86

gal_2d_square_marker 76 gal_3d_solid_line 84

gal_2d_text_annote 77 gal_3d_square_marker 85

gal_2d_unfilled_circle 74 gal_3d_text_annote 85

gal_2d_unfilled_multicircle 79 gal_3d_unfilled_multisphere 88

93

gal_3d_unfilled_polygon 83

gal_3d_unfilled_sphere 83

gal_animate_button 70

gal_dot ted_contour 82

gal_init_color 68

gal_init_window 65

gal_new_2d_frame 69

gal_new_3d_frame 69

gal_paint_proc 65

gal_panel_button 65

gal_panel_slider^ 66

gal_quadrilateral_mesh 88

gal_solid_mesh 89

gal_quit_proc 67

gal_reset_color 70

gal_reset_zbuffer 69

gal_rotate 72

gal_set_2d_buffer 69

gal_set_3d_buffer 69

gal_set_zbuffer 69

gal_solid_contour 71

gal_start 66

gal_step_anim_button 71

gal_s wi t chbuffer 69

get_slider^_value 67

94

Appendix 2 - GAL Code Listing

95

Appendix 2a - GAL Header Files

96

/*********

* xv.h - contains the headings for structures used in GAL and
* definition of its subroutines
*********i

#include <stdio.h>
#include <string.h>

#include
#include
#include
#include
#include
#include
#include
#include
#include

<xv i ew/xvi ew.h>
<xview/frame.h>
<xview/canvas.h>
<xview/panel.h>
<xview/xv_xrect.h>
<xview/server.h>
<X11/Xlib.h>
<X11/Xatom.h>
<X11/Xutil.h>

/* The XGL header file */
#include </home/ephesus/duncan/xgl-2.0/include/xgl/xgl.h>

/* error banner */
#define GAL_ERROR "™********--***-*-***** GAL Error **********************
*\n"
#define TRAIL **\n«
#define MAX_COLORS 8

/* GAL primitive and associated library functions */
void gal_init_window_();
void gal_end__() ;
void gal_start_();
void gal_panel_button_();
void gal_init_color_();
void gal_animate_button_();
void gal_step_anim_button_();
void step_procl();
void gal_quit_proc_();
void start_stop_proc();
void get_anim_proc();
void gal_2d_unfilled_circle_();
void gal_2d_filled_circle_();
void gal_2d_unfilled_multicircle_() ;
void gal_2d_filled_multicircle_() ;
void gal_2d_unfilled_rectangle_();
void gal_2d_filled_rectangle_();
void gal_2d_unfilled_multirectangle_ () ;
void gal_2d_f illed_mul.tirectangle_ () ;
void gal_3d_unfilled_sphere_();
void gal_3d_filled_sphere_();
void gal_2d_filled_polygon_();
void gal_3d_filled_polygon_();
void gal_2d_unfilled_polygon_();
void gal_3d_unfilled_polygon_();
void gal_quadrilateral_mesh_();
void gal_quadrilateral_surface_() ;
void gal_2d_solid_line_();
void gal_2d_dotted_line_();
void gal_2d_dashed_line_();
void gal_2d_dash_dotted_line_() ;
void gal_2d_dash_dot_line_();
void gal_2d_dash_dot_dot_line_();
void gal_2d_long_dash_line_() ;
void gal_3d_solid_line_();
void gal_3d_dotted_line_();

97
void gal_3d_dashed_line_();
void gal_3d_dash_dotted_line_();
void gal_3d_dash_dot_line_();
void gal_3d_dash_dot_dot_l ine_ ();
void gal_3d_long_dash_line„();
void gal_2d_cross_marker_();
void gal_2d_plus_marker_();
void gal_2d_asterisk_marker_();
void gal_2d_square_marker_();
void gal_2d_circle_marker_();
void gal_3d_cross_marker_();
void gal_3d_plus_marker_();
void gal_3d_asterisk_marker_();
void gal_3d_square_marker_();
void gal_3d_circle_marker_();
void gal_2d_azes_();
void gal_3d_axes_();
void gal_new_2d_frame_();
void gal_new_3d_frame_();
void gal_switch_buffer_();
void gal_set_3d_buffer_() ;
void gal_set_2d_buffer_();
int gal_dbuf_color_map();
void gal_3d_aspect_set_();
void gal_2d_aspect_set_();
void gal_3d_aspect_free_();
void gal_2d_aspect_free_();
void gal_reset_color();
void gal_2d_text_annote_();
void gal_3d_text_annote_();
void gal_2d_real_annote_();
void gal_3d_real_annote_();
void gal_rotate_();
static void xv_wm_install();
char *nullcpy();
int xlib_checkvisual();
Xgl_win_ras xglut_create_window_raster_from_xv_canvas() ;
void gal_panel_sliderl_();
void gal_panel_slider2_();
void gal__panel_slider3_() ;
void gal_panel_slider4_();
void gal_panel_slider5_();
void gal_panel_slider6_();
void sliderl_notify_proc();
void slider2_notify_proc();
void slider3_notify_proc();
void slider4_notify_proc();
void slider5_notify_proc();
void slider6_notify_proc();
int get_sliderl_value_();
int get_slider2_value_();
int get_slider3_value_();
int get_slider4_value_();
int get_slider5_value_();
int get_slider6_value_();
void (*get_sliderl_proc())();
void (*get_slider2_proc()) ();
void (*get_slider3__proc ()) () ;
void (*get_slider4_proc())();
void (*get_slider5_proc())() ;
void (*get_slider6_proc())();
void gal_3d_pan_and_zoom{);
void gal_2d_pan_and_zoom();

/* Global object and flag access functions */

98
Frame *get_frame();
Panel *get_panel();
Canvas *get_canvas();
Display *get_display()
Xgl_win_ras *get_ras()
Xgl_2d_ctx

/* access functions for GAL's objects */

Xgl_3d_ctx
Xgl gcache
Xgl_sys_st
Xgl_color
Xgl_color_list
structure */
Xgl_color_rgb
Xgl_usgn32 •
int
short
short

*get_2d_ctx();
*get_3d_ctx();
*get_gcache();
*get_sys_state();
*get_color_table();

*get_cmap_info

raster object */
3d context object */
2d context object */
text context object */

/* system state used by xgl_object_create */
/* retrieves the color table */

(); /* retrieves color map information

*get_rgb();
get_dbuf_on();
get_dbuf_alloc(
get_gal_start()
get_aspect_flag

/* retrieves the value of dbuffer flag */
); /* returns size of dbuffer */
; /* returns flag to check gal_start */
(); /* returns flag to check the view volume */

/* Double buffering structures */

}

typedef struct {
/* USER SUPPLIED FIELDS */
Xgl_ctx ctx;
Xgl_sgn32 number_of_co1ors_per_buffer
Xgl_color *color_table;
/* COMPUTED FIELDS */
Xgl_boolean cmap_dbu f f e r i ng;
Xgl_boolean xgl_dbu f f ering;
Xgl_boolean current_buffer_is_buffer_0;
Xgl_sgn32 bits_per_buffer;
Xgl_sgn32 bufO_pm, bufl_pm;
Xgl_cmap cmapO, cmapl;
Xgl_sgn32 buffers_requested;
Xgl_sgn32 buffers_allocated;
Xgl_sgn32 buf_draw;
Xgl_sgn32 buf_display ;
Xgl_sgn32 bu f_m i n_d e1 ay;

Xglut_dbuf_info;

Xglut_dbuf_info *get_dbuf_info(),

/★ XGL hardware inquiry variables,
facilities exist */

These tell the library what hardware

Xgl_boolean
Xgl_boolean
Xgl_color__type

xg1ut_hw_zbu ffer;
xglut_hw_shading;
xglut_hw_color_type;

/* A macro to build a color map for the cmap_info structure */
#define XGLUT_SETCMAP_INFO(arg, arg_start, arg_length, arg_info) do { \

(arg).start_index = (arg_start); \
(arg).length = (arg_length); \
(arg).colors = (arg_info); \

} while (0)

/* some axis defaults for the axis - drawing primitives */
static float axis_thickness = 1.0;
static int axis_num_pts = 2;
static float zero = 0.0;

/★★***/

y*************

99

* color.h - contains values used in coloring primitives of GAL
★

/* color indices */
#define BACKGROUND_INDEX 0
#define WHITE_INDEX 1
#define RED_INDEX 2
#define GREEN_INDEX 3
#define BLUE_INDEX 4
#define YELLOW_INDEX 5
#define CYAN_INDEX 6
#define MAGENTA_INDEX 7
/* #define OLIVE_INDEX 8
#define PURPLE_INDEX 9
#define AQUA_INDEX 10
#define PINK_INDEX 11
#define LIME_INDEX 12
#define SKY_INDEX 13
#define DARK_GRAY_INDEX 14
#define LIGHT_GRAY_INDEX 15

*/

#define COLOR_SIZE 8

Xgl_color
Xgl_color
Xgl_color
Xgl_color

black_color, white_color, red_color, green_color, blue_color;
yellow_color, cyan_color, magenta_color, olive_color;
purple_colorz aqua_color, pink_color, lime_color, sky_color;
dark_gray_co1or, 1i ght_gray_co1or;

/* double buffering
static Xgl_usgn32
static Xgl_usgn32

stuff */
toggle = 0;
set_dbuf = 0

/* Color */
static Xgl_color color_table[COLOR_SIZE];

100

Appendix 2b - X Windows Utilities

101

y *********
* GAL source code by Duncan Napier, Computer Science and Systems,
* McMaster University, Hamilton, Ontario, Canada, October 1992.
* The horizontal asterisks (/******★/) demarcate sorce files ***********y

#include "../include/xv.h"

static short set_start; /* A flag to ensure routine has been set */
y**************
* gal_start_() - a routine to initialize all the objects of the gal
* object set for error detection. This is the first statement of any
* GAL routine. This routine is a syntactic device for the GAL
* programmer. Initially, it was intended to be an initialization
* routine for error detection. However,more efficient methods for
* error detection were developed. After this, point, it was decided
* that a bracketing statement would clarify GAL applications - and
* this is now the only function of this procedure.
**************i

void gal_start_() {
extern short set_start;

set_start = 1;

/**********
* get_gal_start - access function for the gal_start flag.
* called by - gal_end()
********** j

short get_gal_start() {
extern short set_start;

return set_start;

y***********************************»*****************************y

#include "../include/xv.h"

static Frame frame; /* XView's frame object */
static Panel panel; /* XView's panel object */
y************
* gal_init_window() - Initializes the top-level Xwindow via XView
* toolkit. The set of possible child widgets is initialized. It also
* creates a panel on the window, parameters passed - Xwindow width,
* height, label, n - number of characters (automatic from FORTRAN).
* functions called - xv_init, xv_create.
★★***★*****/

void gal_init_window_(width, height, label, n)
int *width, *height;
char * label;
int n;
{

char *frame_label;
extern Frame frame;
extern Panel panel;

frame_label = malloc(n);

102

if (’frame_label) {
printf("\n \n \n %s \n",GAL_ERROR);
printf("BAD PARAMETER IN

GAL_INIT_WINDOW \n");
printf("\n \n \n %s \n",TRAIL);
exit(1);

}

(void) nullcpy(argv[0], label, n);
(void) nullcpy(frame_label, label,n);

/* pass the label to the XView frame, along with window dimensions */

frame = (Frame) xv_create (NULL, FRAME,
FRAME_LABEL, frame_label, XV_WIDTH,
*width, XV_HEIGHT, *height, NULL);

free(frame_label);

/* create a panel */
if (!panel) {

panel = (Panel) xv_create (frame, PANEL, NULL);
} else
{

printf(”\n \n \n %s \n",GAL_ERROR);
printf("CANNOT CREATE SECOND PANEL, ONE ALREADY EXISTS !
\n \n");
printf("\n \n \n %s \n",TRAIL);
exit (1);

}

/**********
* get_frame() - An acess function that passes the frame widget's
* address to external routines. '* * * * * * * * * * i

Frame *get_frame() {

return &frame;

! ***********
* get_panel() - function to access the XView panel widget
**********j

Panel *get_panel() {

return &panel;

y***/

#include "../include/xv.h"

static Display *display; /* XGL display object */
static Canvas canvas; /* XView's canavs object */
/ ifkitifkititiftcte-icititieititit

* gal_paint_proc_() - this procedure produces the XView canvas for XGL
* rendering.
* subroutines called - get_panel, get_frame, xv_get,

103

* xlib_checkvisual, window_f it_height xv_wm_install.
*★********★■*★★•* j

void
void
{

int
Xgl_sgn32
Frame
Panel

gal_pa int_proc_(draw_proc)
(*draw_proc)();

win_visual_class
e x_w in_depth;
*global_frame ;
*panel;

panel = get_panel();

global_frame = get_frame();

if (!*global_frame) {
• printf("\n \n \n %s \n",GALJERROR) ;

printf(“ERROR - UNABLE TO PAINT IN GAL_PAINT_PROC, CHECK THAT
GAL_INIT_WINDOW IS SET FIRST. \n“);

printf("\n \n \n %s
\nM,TRAIL) ;

exit (1);
}

display = (Display *) xv_get (*global_framez XV_DISPLAY);

/* determine color class of the display (rgb or indexed) */

if (xlib_checkvisual(display, DefaultScreen(display), 24)) {
ex_win_depth = 24;
win_visual_class = TrueColor;

} else {
ex_win_depth = 16;
win_visual_class = Pseudocolor;

}

/* check for the existence of a pane then create the XView canavs */

if (’*panel) {
canvas = (Canvas) xv_create (*global_frame,

CANVAS,
XV_X,
CANVAS_AUTO_CLEAR,
CANVAS_RETAINED,
C ANVAS_F IXE D_IMAGE,
CANVAS_REPAINT_PROC,
WIN_DEPTH,
XV_VISUAL_CLASS,

0,
FALSE,
FALSE,
FALSE,
draw_proc,
ex_win_depth,

win_visual_class, NULL);

} else {
window_fit_height (*panel);

canvas = (Canvas) xv_create (*global_frame, CANVAS,
XV_X,
WIN_BELOW,
CANVAS_AUTO_CLEAR,
CANVAS_RETAINED,
CANVAS_FIXED_IMAGE,
CANVAS_REPAINT_PROC,
WIN_DEPTH,
XV_VISUAL_CLASS,

0,
*panel,
FALSE,
FALSE,
FALSE,
draw_proc,
ex_win_depth,

win_visual_class, NULL);

}

http:CANVAS_REPAINT_P:::I.JC

104

/* install cursor tracking across the canvas */

xv_wm_install();

/**★★***★**
* get_canvas() - an access routine for the canvas object
**********i

Canvas *get_canvas() {
return kcanvas;

} /* get_canvas */

/**************
* xv_wm_install() given a xview frame and canvas; tell the
* server/window manager to track the cursor and color map events.
* procedures called - xv_get, canavs__paint_window, XInternAtom,
* XChangeProperty.
************i

static void xv_wm_install() {
Atom catom;
Window frame_window, canvas_window;
Display *display;
Frame *global_frame;
Canvas *global_canvas;

global_frame = get_frame();
global_canvas = get_canvas();
display = (Display *)xv get(*global frame, XV_DISPLAY);
canvas_window = (Window)xv_get(

(Xv_Window) canvas__paint_window(*global_canvas) ,
XV_XID);

frame_window = (Window)xv_get(*global_frame, XV_XID);
catom =

XInternAtom(display,"WM_COLORMAP_WINDOWS",False);
XChangeProperty(display, frame_window, catom, XA_WINDOW,

32, PropModeAppend, &canvas_window, 1);

return;
} /* xv_wm_install */
/**********
* xlib_checkvisual() - get the visual type which matches the depth
* argument routines called - XGetVisuallnfo.
********* j

int
xlib_checkvisual(display, screen, depth)
Display Misplay;
int screen;
int depth;
{

XVisuallnfo template;
XVisuallnfo *visuals, *v;
int nvisuals, i;

template.screen = screen;
template.depth = depth;

visuals = XGetVisuallnfo(display, VisualScreenMask I

105

. VisualDepthMask, ^template, &nvisuals);

for (v = visuals, i = 0; i < nvisuals; v++, i++)
if (v->depth == depth) {

return(1) ;
break;

}
return(0) ;

} /* xlib_checkvisual */

/**********
* get_display() - access routines for the display object.
***********i

Display *get_display() {
extern Display *display;

return display;

} /* get_display */
/***★***************/

#include "../include/xv.h"
I ************

* gal_end() - enters the event loop for XWindows.
* procedures called - get_frame, xv_main_loop
* This is- the last statement of a graphical command
************i

void gal_end_() {
Frame *global_frame;

global_frame = get_frame();

/* if there is no gal_start, warn */
if (!get_gal_start())
{

printf("\n \n \n %s \n",GAL_ERROR) ;
printf("WARNING

GAL_START MISSING. \nM);
printf("\n \n \n %s \n",TRAIL) ;

}

/* if the viewport dimensions are not set, abort */
if (!get_aspect_flag())
{

if (*get_canvas())
{

printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR - THE DIMENSIONS OF THE VIEWSPACE
HAVE NOT BEEN SET. USE GAL_#D_ASPECT_SET OR _FREE. \n");
printf("\n \n \n %s\n",TRAIL) ;
exit (1);

}
}

/* register callbacks if a frame exists */
if (!*global_frame)
{

printf("\n \n \n %s \n",GAL_ERROR) ;
printf("CANNOT CREATE PROGRAM WITHOUT WINDOW! \n \n");
printf("\n \n \n %s \n",TRAIL);

106

exit (1);
}
/* start the event-driven program */
else xv_main_loop(*global_frame);

exit(0);

} '
/***/

#include "../include/xv.h”
/**★**★*★*
* gal_panel_button_() - a puts abutton on the panel and registers the
* callback routines called - get_panelz xv_create
★*******★★★*/

void gal_panel_button_(process,x_pos, y_pos, label,n)
int *x_pos,*y_pos; /* the panel coordinates */

int n;
char *label;
void (*process)(); /* the callaback procedure */

{
char *string = "”;
Panel *panel;

panel = get_panel();

if (!(*panel)) {
printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ATTEMPT TO CREATE BUTTON BEFORE WINDOW! \n \n");
printf("\n \n \n %s \n",TRAIL) ;
exit (1);

} '
else {

/* null-terminate the string */
(void) nullcpy(string, label, n);
(void) xv_create (*panel, PANEL_BUTTON,

PANEL_ITEM_X, xv_col (*panel, *x_pos),
PANEL_ITEM_Y, xv_row (*panel, *y_pos),
PANEL_LABEL_STRING, string, PANEL_NOTIFY_PROC,
process, NULL);

}

}
/ ***i

#include "../include/xv.h"
#include "../include/color.h"

static int sliderl_value; /* global slider value */
static void (*sliderl_proc)(); /* global pointer to slider function */

void (*get_sliderl_proc())();/* acess function for slider callback */

y***********************
* This file contains routuines required to implement XView sliders via
* gal calls. The slider implementation consists of 4 parts: ‘*
* 1) gal_panel_slider#() - sets up the panel slider and generates the

107

* corresponding global routine (passed from a FORTRAN call)
* 2)slider#_notify_proc() - the corresponding notifier procedure
* This procedure obtains the value generated at the slider it also
* calls the subroutine (user_supplied) passed to its parent.
* 3)get_slider#_value_() - Acess function for the slider value.
* 4)(*get_sliderl_proc())() - Acess function that returns the
* procedure passed to gal_panel_slider#().
*
* These calls collectively set up the slider, access the slider value,
* and then calls a function of the user's choice
*
* Note there are 6 seperate slider procedures, only one is shown here for
* the sake of brevity ...
*★**★**★★******★*/

void gal_panel_sl ider 1_ (slide r_proc_dummy, slider_label, max_value,
min_value, slider_pos, str_len)
void (*slider_proc_dummy)(); /*a dummy variable pointer to FORTRAN
function */
char *slider_label; /* the label for the slider */
int *max_value, *min_value, *slider_pos, str_len; /* slider limits
*/

extern void (*sliderl_proc)();
Panel *panel;
char *slider_label_copy;

panel = get_panel ();

if (’(*panel))
{

■ printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ATTEMPT TO CREATE SLIDER1 BEFORE PANEL.
CHECK GAL_INIT_WINDOW. \n\n");

printf("\n \n \n %s \n",TRAIL) ;
exit (1);

}
else
{

sliderl_proc = slider_proc_dummy;

slider_label_copy = malloc(80);

if (!slider_label_copy) {
printf("memory allocation request in gal_panel_sliderl

failed\n");
exit(1);

}

(void) nullcpy(siider_label_copy, slider_label, str_len);

panel_create_item(*panel, PANEL_SLIDER, PANEL_ITEM_Y,
ATTR_ROW(*slider_pos), PANEL_ITEM_X, ATTR_COL(0),
PANEL_NOTIFY_PROC, siiderl_noti fy_proc,
PANEL_LABEL_STRING, slider_label_copy ,
PANEL_VALUE, 0, PANEL_MIN_VALUE, *min_value,
PANEL_MAX_VALUE, *max_value, PANEL_SLIDER_WIDTH,
256, 0);

free(slider_label_copy);
}

IOS

/************
* sliderl_notify_proc - XView slider notifier process
************J

void sliderl__notify_proc (item, value, event)
Panel_itern item;
int value; /* slider value */

Event event;
{

extern int sliderl_value;
Xgl_3d_ctx *ctx3d;

sliderl_value = value;
ctx3d = get_3d_ctx();
xgl_context_new_frame(*ctx3d);

/* call FORTRAN program corresponding to sliderl */

(*get_sliderl__proc ()) ();
}
/**************
* get_sliderl_value_() - access function for slider value *************/

int get_sliderl_value_(){
extern int sliderl_value;

return(sliderl_value);

/****************
* get_sliderl_proc() - access function for slider function
***************i

void (*get_sliderl_proc())() {
extern void (*sliderl_proc) () ;

if (sliderl_proc == NULL) {
printf("Incorrect/inaccesible sliderl procedure!!!\n");
exit(0);

} else return(sliderl_proc);

/**★**★**********★*****★***********★**★***************************/

#include "../include/xv.h"
/***********

★
* gal_new_(2d/3d)_frame_() - these commands clear the graphical
* contexts
*
* procedures called - xgl_object_set, xgl_context_new_frame*
***********j

void gal_new_2d_frame_() {
Xgl_2d_ctx *ctx;

ctx = get_2d_ctx();

xgl_obj ect_set(*ctx, XGL_CTX_NEW_FRAME_ACTION,
XGL_CTX_NEW_FRAME_VRETRACE i

109

XGL_CTX_NEW_FRAME_CLEAR, NULL);

xgl_context_new_frame (*ctx) ;

I***********
* gal_new_(2d/3d)_frame_() - these commands clear the graphical
* contexts
*
* procedures called - xgl_object_set, xgl_context_new_frame
*********** j

void gal_new_3d_frame_() {
Xgl_3d_ctx *ctx;

ctx = get_3d_ctx();

xgl_obj ect_set(*ctx, XGL_CTX_NEW_FRAME_ACTION,
XGL_CTX_NEW_FRAME_VRETRACE I

. XGL_CTX_NEW_FRAME_CLEAR, NULL) ;

xgl_context_new_frame (*ctx) ;

/*********★***********************★******★************************/

#include "../include/xv.h"
y************
* gal_set_zbuffer() - sets up hidden line/hidden surface removal in
* XGL
*********** j

gal_set_zbuffer_() {
Xgl_3d_ctx *ctx_3d;

ctx_3d = get_3d_ctx();

if (!*ctx_3d) {
printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR - UNABLE TO SET ZBUFFER IN GAL_SET_ZBUFFER,

CHECK THAT GAL_INIT_WINDOW IS SET \n");
printf("\n \n \n %s \n",TRAIL) ;
exit (1);

}

xgl_object_set(*ctx_3 d, XGL_3D_CTX_HLHSR_MODE,
XGL_HLHSR_ZBUFFER, NULL);

}
/****★★*************★*********★*************************************/

#include "../include/xv.h"
/***★★*****★*★

* gal_set_zbuffer() - sets up hidden line/hidden surface removal in
* XGL
************i

gal_set_zbuffer_() {
Xgl_3d_ctx *ctx_3d;

ctx_3d = get_3d_ctx();

110

if (!*ctx_3d) {
printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR - UNABLE TO SET ZBUFFER IN GAL_SET_ZBUFFER,

CHECK THAT GAL_INIT_WINDOW IS SET \n");
printf("\n \n \n %s\n",TRAIL) ;
exit (1);

xgl_object_set(*ctx_3dz XGL_3D_CTX_HLHSR_MODE,XGL_HLHSR_ZBUFFER, NULL);

/★a***/

#include "../include/xv.h"
/★**★******★**★★*
* nullcpyO - a function that returns a null-terminated 'd'
* (destination) copy of the source 's'. Note that both strings
* must be initialized * before being passed. Supplied by Patricia
* Monger.
* procedures called - strncpy
* ★★★•****★★*★*★★★ /

char *nullcpy(d,s,lent)
char *dz /* null terminated string (destination) */
s; / non-null terminated string (source) */
{

if(ient > 0)
{

while(s[icnt - 1] == ' ') ient--;
(void)strncpy(dz s, ient);

}
d[icnt] = '\0';
return(d);

Ill

Appendix 2c - Color and Animation

112

/★*★★***★******★

* These routines control the color settings and double_buffering in GAL.
* Duncan Napier, McMaster University, Hamilton, Ontario, Canada.
* October 1992.
★**★**★★*****★*/

#include 11. ./include/xv.h"
#include "../include/color.h"

ras ;
ctx_2d;

/*
/*

XGL
XGL

raster object */
*/2d context object

ctx_3d; /* XGL 3d context object */

static Xgl_gcache
primitives */

gcache; /* XGL's gcache object for annotation

static Xgl_sys_st sys_st; /* system state used by xgl_object_create */
static Xglut_dbuf_info dbuf_info; /* XGL double bufering information */
static Xgl_color_list cmap_info; /* XGL color map structure */

Xgl_color black_color, white_color, red_color, green_color,
blue_color, yellow_color, cyan_color, magenta_color,
olive_color, purple_color, aqua_color, pink_color,
lime_color, sky_color, dark_gray_color, light_gray_color;
static Xgl_color_rgb default_rgb[COLOR_SIZE]={

{ 0.2, 0.2, 0.2 b•{ 1.0, 1.0, 1.0 },
{ 1.0, 0.0, 0.0 b.{ 0.0, 1.0, 0.0 },
{ 0.0, 0.0, 1.0 b-{ 1.0, 1.0, 0.0 },
{ 0.0, 1.0, 1.0 b•{ 1.0, 0.0, 1.0 },
{ 0.5, 0.5, 0.0 b• { 0.5, 0.0 , 0.5 }
{ 0.0, 0.5, 0.5 b■ { l.o, 0.5 ,0.5 },
{ 0.5, 1.0, 0.5 b■ {0.5, 0.5, 1.0 },
{ 0.5, 0.5, .5 b. { 0.7, 0 • 7, 0.7 } }

y*****************

* gal_init_color_() - Initializes the raster object and color tables for
* XGL rendering as well as the graphical contexts. This is taken mainly
* the demos that accompanied XGL.
*
* procedures called - canvas_paint_window, xv_get, DefaultScreen,
* xgl_inquire, xgl_object_create *************/

void gal_init_color_() {
Display *display;
Window frame_window;
Window canvas_window;
Xv_window pw;
Xgl_X_window xgl_x_win;
Xgl_color_type ex_color_type;
Xgl_cmap cmap;
Xgl__obj_desc obj_desc;
Xgl_inquire *inq_info;
Frame *global_frame; /* the global frame object */
Canvas *global_canvas; /* the global canvas object */
extern Xgl_color color_table[COLOR_SIZE];/* the global color table */
Xgl_color_list *cmap_info; /* a global structure that contains
colormap information */
Xglut_dbuf_info dbuf_info; /* global d buffer info structure */

/* the folowing acces functions return the addresses of their
respective structures */
global_frame = get_frame();
global_canvas = get_canvas();

113

display = get_display();
cmap_info = get_cmap_info();

/* Check to make sure the frame has already been created */
if .(’ *global_frame) {

printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR IN GAL_INIT_COLOR. MAKE SURE GAL_INIT_WINDOW
HAS BEEN CALLED FIRST. \n \n");
printf("\n \n \n %s \n”,TRAIL) ;
exit (1);

/* Check to make sure the canvas has already been created */
if (’*global_canvas) {

printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR IN GAL_INIT_COLOR. MAKE SURE GAL_PAINT_PROC
HAS BEEN CALLED FIRST. \n \n");
printf("\n \n \n %s \n",TRAIL) ;
exit (1);

display = (Display *) xv_get (*global_frame, XV_DISPLAY);

pw = (Xv_Window) canvas_paint_window (*global_canvas);
canvas_window = (Window) xv_get (pw, XV_XID);

frame_window = (Window) xv_get (*global_frame, XV_XID);

xgl_x_win.X_display = (void *) XV_DISPLAY_FROM_WINDOW (pw) ;
xgl_x_win.X_window = (Xgl_usgn32) canvas_window;
xgl_x_win.X_screen = (int) DefaultScreen (display);

/* create the system state * /
sys_st = xgl_open (NULL);

obj_desc.win_ras.type = XGL_WIN_X;
obj_desc.win_ras.desc =&xgl_x_win;
if (!(inq_info = xgl_inquire(&obj_desc))) {

printf(" \n \n \n %s \n", GAL_ERROR);
printf("ERROR IN INQUIRY IN GAL_INIT_COLOR, CANNOT

DETERMINE COLOR TYPE OF DEVICE\n");
printfC \n \n \n %s \n", TRAIL);
exit(1);

}

/* check the color type of the device */
if (inq_info->color_type.index)

ex_color_type = XGL_COLOR_INDEX;
else if (inq_info->color_type.rgb)

ex_color_type = XGL_COLOR_RGB;
else {

printfC \n \n \n %s \n", GAL_ERROR) ;
printf("UNKNOWN COLOR TYPE\n");
printf(" \n \n \n %s \n", TRAIL);
exit(1);
}

free (inq_.info) ;

/* if accelerated color type is indexed then create ex color map
* color maps are attatched to the sys_st */

if (ex_color_type == XGL_COLOR_INDEX) {

114

/* initialize the color indices - the color indices are
declared

as static r,g,b values, and can be changed if desired
by a routine gal_reset_color() */

color_table[BACKGROUND_INDEX].rgb = default_rgb[0];
color_table[WHITE_INDEX].rgb = default_rgb[l];
color_table[RED_INDEX].rgb = default_rgb[2];
color_table[GREEN_INDEX].rgb = default_rgb[3];
color_table[BLUE_INDEX].rgb = default_rgb[4];
color_table[YELLOW_INDEX].rgb = default_rgb[5];
color_table[CYAN_INDEX].rgb = default_rgb[6];
color_table[MAGENTA_INDEX].rgb = default_rgb[7];
color_table[OLIVE_INDEX].rgb = default_rgb[8];
color_table[PURPLE_INDEX].rgb = default_rgb[9];
color_table [AQUA_INDEX] .rgb = default_rgb [10] ;
color_table[PINK_INDEX].rgb = default_rgb[11];
color_table[LIME_INDEX].rgb = default_rgb[12];
color_table[SKY_INDEX].rgb = default_rgb[13];
color_table[DARK_GRAY_INDEX].rgb = default_rgb[14];
color_table[LIGHT_GRAY_INDEX].rgb = default_rgb[15];

/* initialize the color table */
cmap_info->start_index = 0;
cmap_info->length = COLOR_SIZE;
cmap_info->colors = color_table;
cmap = xgl_object_create

(sys_st, XGL_CMAP, 0z
XGL_CMAP_COLOR_TABLE_SIZE,
COLOR_SIZE,
XGL_CMAP_COLOR_TABLE,
cmap_info, NULL);

/* this beast was picked from a demo, it appears to be equivalent
to the above one (and works too), but does some hardware
checks first */

ras = xglut_create_window_raster_from_xv_canvas(sys_st,
*global_canvas, ex_color_type);

if (ex_color_type == XGL_COLOR_INDEX) {
/* setup index color values in global color structures */
xgl_object_set(ras, XGL_RAS_COLOR_MAP, cmap, NULL);
black_color.index = BACKGROUND_INDEX;
white_color.index = WHITE_INDEX;
red_color.index = RED_INDEX;
green_color.index = GREEN_INDEX;
blue_color.index = BLUE_INDEX;
yellow_color.index = YELLOW_INDEX;
cyan_color.index = CYAN_INDEX;
magenta_color.index = MAGENTA_INDEX;
olive_co1or.index = OLIVE_INDEX;
purple_color.index = PURPLE_INDEX;
aqua_color.index = AQUA_INDEX;
pink_color.index = PINK_INDEX;
lime_color.index = LIME_INDEX;
sky_color.index = SKY_INDEX;
dark_gray_color.index = DARK_GRAY_INDEX;
light_gray_color.index = LIGHT_GRAY_INDEX;

} else {
/* setup rgb color values in global color structures */
black_color.rgb = default_rgb[0] ;

115

white_color.rgb = default_rgb[1];
red_color.rgb = default_rgb[2];
green_color.rgb = default_rgb[3];
blue_color.rgb = default_rgb[4];
yellow_color.rgb = default_rgb[5];
cyan_color.rgb = default_rgb[6];
magenta_color.rgb = default_rgb[7];

/* olive_color.rgb = default_rgb[8];
purple_color.rgb = default_rgb[9];
aqua_color.rgb = default_rgb[10];
pink_color.rgb = default_rgb[11];
lime_color.rgb = default_rgb[12];
sky_color.rgb = default_rgb[13] ;
dark_gray_color .rgb = default_rgb [14]
light gray color.rgb = default_rgb[15];
* /

/* create the 2d context object */

ctx_2d = xgl_object_create(sys_st, XGL_2D_CTXZ 0,
• XGL_CTX_DEVICE, ras,

XGL_CTX_DEFERRAL_MODE, XGL_DEFER_ASAP,
XGL_CTX_BACKGROUND_COLORZ &black_color,
XGL_CTX_VDC_ORIENTATION,
XGL_Y_UP_Z_TOWARDz NULL);

gcache - xgl_object_create(sys_st, XGL_GCACHEZ NULL, NULL);

/* the 3d ctx has sveral default values set : the coordinate system
* is set with + y pointing up and z toward the user.
* The z-buffer is set to obscure hidden surfaces and lines.
* The z-buffering is used to control the appearence of the
* annoted solid circles. HLHSR_MODE requires a manual reset
* for transformations. */

ctx_3d = xgl_object_create(sys_st, XGL_3D_CTXZ 0z
' XGL_CTX_DEVICEZ ras,

XGL_CTX_DEFERRAL_MODE, XGL_DEFER_ASAP,
XGL_CTX_BACKGROUND_COLORZ &black_color,
XGL_CTX_VDC_ORIENTATION,
XGL_Y_UP_Z_TOWARD, NULL);

/********************

* gal_set_3d_buffer_ - this routine sets up 3d double buffering, the
* the color table field is set in dbuf_info here because of problems
* with the passing of pointer fields (i.e. *color_table) with access
* functions.
* •

* functions called - get_3d_ctxz get_dbuf_infoz get_cmap_infoz get_color_table
* xglut_dbuf_init, xglut_dbuf_on.*********************i '

void gal_set_3d_buffer_() {
Xglut_dbuf_info *dbuf_info;
Xgl_3d_ctx *ctx_3d;
Xgl_color_list

cmap_info;
Xgl_win_ras wras;
extern Xgl_usgn32 set_dbuf;

/* Check to see the buffer is not already set */

116

if (!(set_dbuf)) {
• ctx_3d = get_3d_ctx() ;

if (!*ctx_3d) {
printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR - UNABLE TO SET BUFFER IN

. GAL_SET_3D_BUFFER, CHECK THAT GAL_INIT_COLOR IS
SET \n");
printf("\n \n \n %s \n",TRAIL) ;
exit

(1) ;
}

dbuf_info = get_dbuf_info();
cmap_info = *get_cmap_info();
dbuf_info->number_of_colors_per_buffer = cmap_info.length;
dbuf_info->color_table = get_color_table();
dbuf_info->ctx = *ctx_3d;

/* initialize the buffers for animation */
xglut_dbuf_init(dbuf_info);
xglut_dbuf_on (dbuf_info) ;

/* set the color map flag if no hardware double buffering */
if (get_dbuf_alloc) set_dbuf = 1;

} else {
printf(" \n \n \n %s \n", GAL_ERROR);
printf("DOUBLE BUFFER INITIALIZED TWICE CHECK FOR EXTRA

GAL_SET_3D_BUFFER\n");
printf(" \n \n \n %s \n", TRAIL);

' exit(1);

I**********************
* gal_set_2d_buffer_ - this routine sets up 2d double buffering, the
* the color table field is set in dbuf_info here because of problems
* with the passing of pointer fields (i.e. *color_table) with access
* functions.
if

* functions called - get_2d_ctx,get_dbuf_info,get_cmap_info,
* get_color_table, xglut_dbuf_init, xglut_dbuf_on.
***********************i

void gal_set_2d_buffer_() {
Xglut_dbuf_info *dbuf_info;
Xgl_2d_ctx *ctx_2d;
Xgl_color_list

cmap_info;
extern Xgl_usgn32 set_dbuf;

/* Check to see the buffer is not already set */
if (!(set_dbuf)) {

ctx_2d = get_2d_ctx();

if (!*ctx_2d) {
printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR - UNABLE TO SET BUFFER IN

GAL_SET_2D_BUFFERZ CHECK THAT GAL_INIT_COLOR IS
SET \n");

printf("\n \n \n %s \n"zTRAIL) ;
exit

(1) ; •
}

117

dbuf_info = get_dbuf_info();
cmap_info = *get_cmap_info();
dbuf_info->number_of_colors_per_buf fer = cmap_info.length;
dbuf_info->color_table = get_color_table();
dbuf_info->ctx = *ctx_2d;

/* initialize the buffers for animation */
xglut_dbuf_init(dbuf_info);
xglut_dbuf_on(dbuf_info);

/* set the color map flag if no hardware double buffering */
if (get_dbuf_alloc) set_dbuf = 1;

} else {
printf(" \n \n \n %s \n", GAL_ERROR);
printf("DOUBLE BUFFER INITIALIZED TWICE CHECK FOR EXTRA

GAL_SET_2D_BUFFER\n");
printf(" \n \n \n %s \n", TRAIL);
exit(1);

/************************
★
* gal_switch_buffer_ - This procedure is the drives the switch_buffer
* routine by passing it dbuf_inf

* functions called - get_dbuf_info,get_color_table
*
*************************j

void gal_switch_buffer_() {
Xglut_dbuf_info *dbuf_info;

dbuf_info = get_dbuf_info();
dbuf_info->color_table = get_color_table();
switch_buffer(dbuf_info);

! *********
* get_ras() - access function for the raster object
**********i

Xgl_win_ras *get_ras() {

extern Xgl_win_ras ras;

return &ras;

/**********
* get_2d_ctx() - access function for a 2d context***********/

Xgl_2d_ctx *get_2d_ctx() {
extern Xgl_2d_ctx ctx_2d;

return &ctx_2d;

}

118

/************
* get_3d_ctx() - access function for a 3d context
************i

Xgl_3d_ctx *get_3d_ctx() {
extern Xgl_3d_ctx ctx_3d;

return &ctx_3d;

f********
* get_sys_state() - access function for the system state object
*********i

Xgl_sys_st .*get_sys_state () {
extern Xgl_sys_st sys_st;

return &sys_st;

/**********
* acces function for the dbuf_info record
********** j

Xglut_dbuf_info *get_dbuf__inf o () {

extern Xglut_dbuf_info dbuf_info;

return(&dbuf_info);

/**********************
*
* xglut__create_window_raster_from_xv_canvas - this code was lifted from a demo
* do not know if it has any advantages, but it seems to carry out some
* hardware checks
*
*********************** !

Xgl_win_ras xglut_create_windcw_raster_from_xv_canvas(sys_st,
xv_canvas, color_type)
Xgl_sys_st sys_st;
Canvas xv_canvas;
Xgl_color_type color_type;
{

Xgl_X_window
Xv_Window
Display
int
Window
Xgl_win_ras
Xgl_obj_desc
Xgl—inquire
extern
Xgl_color__type
extern Xgl_boolean
xg1ut _hw_zbu f fe r;
extern Xgl_boolean

xgl_x;
canvaS—pw;
Misplay;
screen;
window;
ras ;
obj_desc;
*inq_info;

xglut—hw_color_type;

xglut_hw_shading;

119

canvas_pw = (Xv_Window) canvas_paint_window(xv_canvas);

display = (Display *)XV_DISPLAY_FROM_WINDOW(canvas_pw);
screen = DefaultScreen(display);
window = (Window)xv_get(canvas_pw, XV_XID);

xgl_x.X_display = (void *)display;
xgl_x.X_screen = screen;
xgl_x.X_window = window;

obj_desc.win_ras.type = XGL_WIN_X I XGL_WIN_X_PROTO_DEFAULT;
obj_desc.win_ras.desc = &xgl_x;

if (!(inq_info = xgl_inquire(&obj_desc))) {
printf("error getting inquiry\n");
exit(1);

}

if (inq_info->color_type.index)
xglut_hw_color_type = XGL_COLOR_INDEX;

else
xglut_hw_color_type = XGL_COLOR_RGB;

if (inq_info->hlhsr_mode == XGL_HLHSR_ZBUFFER)
xglut_hw_zbuffer = TRUE;

else
, xglut_hw_zbuffer = FALSE;

if (inq_info->shading == XGL_INQ_SOFTWARE)
xglut_hw_shading = FALSE;

else
xglut_hw_shading = TRUE;

free (inq_info);

ras = xgl_object_create(sys_st, XGL_WIN_RAS, &obj_desc,
XGL_DEV_COLOR_TYPE, color_type, 0);

return(ras);

/********
* get_color_table - acess function for the color_table object
★*★*★***i

Xgl_color *get_color_table() {
extern Xgl_color color_table[COLOR_SIZE];
Xgl_color *p_color_table;

p_color_table = color_table;
return(p_color_table);

}

/**★**★*
* get_cmap_info - acess function for the cmap_info object **★***★*/

Xgl_color_list *get_cmap_info() {

extern Xgl_color_list cmap_info;

return &cmap_info;

/★*★★★★★★*

120

* gal_reset_color_ - changes the color table defaults*
************i

void gal_reset_color_(index, r, g, b)
int *index;
float *r, *g, *b;

{
extern Xgl_color_rgb default_rgb[COLOR_SIZE];
Xgl_sys_st *sys_st;

sys_st = get_sys_state();

if (*sys_st) {
printf(" \n \n \n %s \n", GAL_ERROR);
printf("WARNING - NO

COLOR RESETTING IN GAL_RESET_COLOR. YOU MUST CALL THIS
PROCEDURE BEFORE GAL_INIT_COLOR. \n");

printfC \n \n \n %s
\n", TRAIL);

}

if ((*r < 0. I *r > 1.0) I(*g < 0. I *g > 1.0) |(*b < 0. I *b >
1.0))

printfC\n \n Unable to reset color ... check all r,g,b
values are less than or equal to 1.0 ’!! \n) ;

else
{

default_rgb[*index].r = *r;
default_rgb[*index].g = *g;
default_rgb[*index].b = *b;

}

}
y********
*
* get_dbuf_on - access function returns 1 if double buffers are set,
* 0 if not
*
* called from - all primitives which use color index. *
********i

Xgl_usgn32 get_dbuf_on() {
extern Xgl_usgn32 set_dbuf;

return(set_dbuf);
}
/★**★★***★*

* get_gcache - acess function for the cmap_info object*
**********f

Xgl_gcache *get_gcache() {

extern Xgl_gcache gcache;

return &gcache;

/**«*****************/

#include "../include/xv.h

121

#include include/color.h"

#define XGLUT_ITIMER_NULL ((struct itimerval *)0)

static void (*anim_proc)();
void (*get_anim_proc())();
static
void (*rev_proc)();
void (*get_rev_proc())();
static void
start_stop_proc();
static void step_procl();
static void step_proc2();
void gal_quit_proc_();
void gal_animate_button_();
void
gal_step_anim_button_();
void gal_step_rev_button_();
/******************

★
* gal_animate_t>utton_ - this button is a customized feature that repeatedly
* calls the procedure passed to it until the button is toggled off*
* processes called - get_panel,nullcpy,xv_create
**************xti

void gal_animate_button_(process, x_pos, y_pos, label, n)
int *x_pos, *y_pos, n;
char *label;
void (*process)();
{

extern void (*anim_proc)(); /* this is a global procedure
that is assigned a value pased by
the user */

char *string =
Panel *panel;

panel = get_panel();
anim_proc = process;

if (!(*panel)) {
printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ATTEMPT TO CREATE GAL_ANIMATE_BUTTON BEFORE PANEL! \n

\n") ;
printf("\n \n \n %s \n",TRAIL) ;
exit (1) ;

} else {

(void) nullcpy(string, label, n) ;

(void) xv_create (*panel, PANEL_BUTTON,
PANEL_ITEM_X, xv_col (*panel, *x_pos),
PANEL_ITEM_Y, xv_row (*panel, *y_pos),
PANEL_LABEL_STRING, string, PANEL_NOTIFY_PROC,
start_stop_proc, NULL);

}
/**************

* gal_step_anim_button_ - this button is a customized feature that toggles the
* the animation off and then advances by 1 frame when pressed again

122

* processes called - get_panel,nullcpy,xv_create
★
****************i

void gal_step_anim_button_(process, x_pos, y_pos, label, n)
int *x_pos, *y_pos, n;
char *label;
void (*process)();
{

extern void (*anim_proc)(); /* a global process passed by
the user*/
char *string =
Panel *panel;

panel = get_panel();
anim_proc = process;

if (!(*panel)) {
printf("\n \n \n %s \n“,GAL_ERROR) ;
printf("ATTEMPT TO CREATE GAL_STEP_ANIM_BUTTON BEFORE PANEL! \n

\nM);
printf("\n \n \n %s \n",TRAIL) ;
exit (1);

} else {

(void) nullcpy(string, label, n) ;

(void) xv_create (*panel, PANEL_BUTTON,
PANEL_ITEM_X, xv_col (*panel, *x_pos),
PANEL_ITEM_Y, xv_row (*panel, *y_pos),
PANEL_LABEL_STRING, string, PANEL_NOTIFY_PROC,
step_procl, NULL);

} '

}

/*************
* this procedure steps through the animation, frame-by frame, using
* an XView timer function
*
* procedures called - notify_set_itimer_func()*
* called from gal_step_anim_button_()
*************/

static void step_procl() {
void (*anim_proc)();

Frame * frame;

frame = get_frame();

anim_proc = get_anim_proc();

if(toggle) {
toggle = 0;
(void) notify_set_.itimer_func (*frame, *anim_proc,

ITIMER_REAL,
XGLUT_ITIMER_NULL,
XGLUT_ITIMER_NULL);

)
anim_proc();

} /* step_proc */

123

/****************
* the quit button ends the session
★
* procedure called - xv_destroy_safe()
*
***************i

void gal_quit_proc_() {
Frame *frame;

frame = get_frame();

if (xv_destroy_safe(*frame) == XV_OK)
exit(0);

/**************
* start/stop for the animation uses XView timer functions attributes
* to toggle the repetitive callback on and off.*
* called from - gal_animate_button_()
★
* procedure called - notify_set_itimer_func ()
***********i

static void start_stop_proc() {
void (*anim_proc)();

Frame *frame;

frame = get_frame();

anim_proc = get_anim_proc();

if (toggle A= 1) {
(void)notify_set_itimer_func (*frame, *anim_proc, ITIMER_REAL,

&NOTIFY_POLLING_ITIMER,
XGLUT_ITIMER_NULL) ;

} else {
(void)notify_set_itimer_func (*frame, *anim proc, ITIMER_REAL,

XGLUT_ITIMER_NULL,
XGLUT_ITIMER_NULL) ;

}
} /* start_stop_proc */

I********
* access function for the animation procedure
********* j

void (*get_anim_proc())() {

extern void (*anim_proc)();

return (anim_proc);

/**/

#include "../include/xv.h"

124

static int dbuf_alloc; /* flag to indicate status of buffering */
/******************
* xglut_dbuf_init() - A buffer color initialization program. This was lifted
* from Sun's demo and accomodates buffers of different sizes.

* called from - gal_set_3d_buffer_(),gal_set_2d_buffer_()*
* subroutines called - xgl_object_set, xgl_object_get, xgl_context_new_frame
****************f

void xglut_dbuf_init(dbuf_information)
Xglut_dbuf_info *dbuf_information;
{

Xgl_win_ras
Xgl_color
Xgl_color
Xgl_co1or_list
Xgl_color_list
Xgl_sgn32
Xgl_sys_state
extern int

wras;
color_tableO[256]
color_tablel[256]
cmap_infoO;
cmap__infol ;
i, ncolors, nbits
*sys_st;
dbuf_alloc;

sys_st = get_sys_state(); /* check USER supplied context */
if
(!(dbuf_information->ctx)) {

printf("\n \n \n %s \n",GAL_ERROR) ;
printf("DOUBLE BUFFER ERROR CHECK TO SEE GAL_INIT_COLOR

INIALIZED BEFORE GAL_SET_#D_BUFFER \n");
printf("\n \n \n %s \n",TRAIL) ;
return;

}
/* get window raster */ xgl_object_get(dbuf_information->ctx,

XGL_CTX_DEVICE, &wras) ;
if (!wras) {

printf("\n \n \n %s \n",GAL_ERROR) ;
printf("DOUBLE BUFFER ERROR CHECK TO SEE GAL_INIT_COLOR

INIALIZED BEFORE GAL_SET_#D_BUFFER \n");
printf("\n \n \n %s Xn",TRAIL) ;
return;

}

/* request double buffering from window raster */
xgl_obj ect_set(wras, XGL_WIN_RAS_BUFFERS_REQUESTED, 2, 0) ;
dbuf_information->buffers_requested = 2;

/* get number of buffers available in hardware underlying window
raster */ xgl_object_get(wras,
XGL_WIN_RAS_BUFFERS_ALLOCATED,
&(dbuf_information->buffers_allocated));

/* set dbuffering flags accordingly */ if
(dbuf_information->buffers_allocated == 2) {

/* great'!! HW double buffering support */ dbuf_alloc =
dbuf_information->buffers_allocated;

dbuf_information->cmap_dbuffering = FALSE;
dbuf_information->xgl_dbuffaring = TRUE;

} else {
/* we must do color map double buffering */
dbuf_informat ion->cmap_dbuffaring = TRUE;
dbuf_information->xgl_dbuffering = FALSE;

/* set dbuf_information accordingly */ if

125

(dbuf_information->xgl_dbuffering) {
xgl_object_set(wras,

XGL_WIN_RAS_BUF_DISPLAY, 0, XGL_WIN_RAS_BUF_DRAW, 0, 0);
xgl_context_new_frame (dbuf_information->ctx);
xgl_obj ect_set(wras,

XGL_WIN_RAS_BUF_DISPLAY, 1, XGL_WIN_RAS_BUF_DRAW, 1, 0);
xgl_context_new_frame (dbuf_information->ctx) ;
xgl__obj ect_set (wras,

XGL_WIN_RAS_BUF_DISPLAY, 0, XGL_WIN_RAS_BUF_DRAW, 0, 0);
xgl_obj ect_get(wras,

XGL_WIN_RAS_BUF_DISPLAY, & (dbuf_information->buf_display)) ;
xgl_obj ect_get(wras,

XGL_WIN_RAS_BUF_DRAW, & (dbuf_informat ion->buf_draw)) ;
xgl_obj ect_get(wras,

XGL_WIN_RAS_BUF_MIN_DELAY,
&(dbuf_information->buf_min_delay));

dbuf_information->current_buffer_is_buffer_0 = TRUE;
dbuf_information->buf0_pm = -1;
dbuf_information->bufl_pm = -1;
if . (xglut_hw_color_type == XGL_COLOR_INDEX) {

Xgl_color_list cmap_info;

cmap_info.start_index = 0;
cmap_info.length =

. dbuf_information->number_of_colors_per_buf f er;
cmap_info.colors = dbuf_information->color_table;
dbuf_information->cmap0 = xgl_object_create(*sys_st,

XGL_CMAP, 0, XGL_CMAP_COLOR_TABLE_SIZE,
cmap_info.length, XGL_CMAP_COLOR_TABLE, &cmap_info, 0);

dbuf_information->cmapl = dbuf_information->cmapO;
xgl_object_set (wras,

XGL_RAS_COLOR_MAP, dbuf_information->cmapO, 0);
}

}
else if (dbuf_information->cmap_dbuffering) {

/* check args in data structure for color map double buffering
*/ if (dbuf_information->number_of_colors_per_buffer <= 0) {
printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR -

INVALID NUMBER OF DOUBLE BUFFER COLORS\n");
printf("\n \n

\n %s \n",TRAIL) ;
dbuf_informat ion->cmap_dbuf fering =

FALSE;
return;

}

if (!(dbuf_information->color_table)) {
printf("\n \n \n %s \n",GAL_ERROR) ;

■ printf("ERROR - MISSING COLOR TABLES\n");
printf("\n \n \n %s \n",TRAIL) ;
dbuf_information->cmap_dbuffering = FALSE;
return;

}

if (xglut_hw_color_type == XGL_COLOR_RGB) {
printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR - CANNOT DO COLOR MAP DOUBLE BUFFERING,

RGB DEVICE\n");
printf("\n \n \n %s \n",TRAIL) ;
return;

}

/* setup plane mask for number of buffers and */ if
(dbuf_information->number_of_colors_per_buffer <= 2) {

dbuf_information->buf0_pm = 0x01; /* buffer 0 is bit 0 */

126

dbuf_information->bufl_pm = 0x02; /* buffer 1 is bit 1 */
ncolors = 4;

' nbits = 1;
} else if

(dbuf_information->number_of_colors_per_buffer <= 4) {
dbuf_information->buf0_pm = 0x03; /* buffer 0 is bits 0,1

*/
dbuf_information->bufl_pm = 0x0c; /* buffer 1 is bits

2,3 */
ncolors = 16;
nbits = 2;

} else if
(dbuf_information->number_of_colors_per_buffer <= 8) {

dbuf_informat ion->buf0_pm = 0x07; /* buffer 0 is bits 0,1,2
*/

dbuf_information->bufl_pm = 0x38; /* buffer 1 is bits
3,4,5 */

ncolors = 64;
nbits = 3;

} else if
(dbuf_information->number_of_colors_per_buffer <= 16) {

dbuf_information->buf0_pm = OxOf; /* buffer 0 is bits
0,1,2,3 */

dbuf_information->bufl_pm = OxfO; /* buffer 1 is
bits 4,5,6,7 */

ncolors = 256;
nbits = 4;

} else {
printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR - MAXIMUM OF 16 COLORS SUPPORTED\n ");
printf("\n \n \n %s \n",TRAIL) ;

return;

#define DBICT dbuf_information->color_table

for (i = 0; i < ncolors; i++) {
int iO = i & dbuf_information->bufO_pm;
int il = (i »

nbits) & dbuf_information->buf0_pm;

color_table0[i].rgb = DBICT[i0].rgb;
color_tablel[i].rgb = DBICT[il].rgb;

cmap_info0.start_index = 0;
cmap_info0.length = ncolors;
cmap_info0.colors = color_table0;
dbuf_information->cmap0 = xgl_obiect_create(*sys_st,

XGL_CMAP, 0, XGL_CMAP_COLOR_TABLE_SIZE, ncolors,
XGL_CMAP_COLOR_TABLE, &cmap_info0, 0);

cmap_infol.start_index = 0;
cmap_infol.length = ncolors;
cmap_infol.colors = color_tablel;
dbuf_information->cmapl = xgl_obiect_create(*sys_st,

XGL_CMAP, 0, XGL_CMAP_COLOR_TABLE_SIZE, ncolors,
. XGL_CMAP_COLOR_TABLE, &cmap_infol, 0);

dbuf_information->bits_per_buffer = nbits;

dbuf_information->current_buffer_is_buffer_0 = TRUE;
dbuf_information->buf_display = 0;
dbuf_information->buf_draw =
1;

127

dbuf_information->buf_min_delay = 0;

/* set USER context and raster to first color map (or buffer) */
xgl_obj ect_set(dbuf_information->ctx,
XGL_CTX_PLANE_MASK, dbuf_information->buf0_pm, 0);
xgl_object_set(wras,
XGL_RAS_COLOR_MAP, dbuf_information->cmapl, 0);
} else {

printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR - UNABLE TO

CREATE 2 BUFFERS FOR DOUBLE BUFFERING \n");
printf("\n \n \n %s

\n",TRAIL) ;
return;

}
}

/********************************
* xglut_dbuf_on() - creates the double buffers. The program searches for
* hardware buffers. If they are absent color map double buffering is
* implemented. A slightly modified version of Sun's demo.*
* called from - gal_set_3d_buffer,gal_set_2d_buffer
★
* subroutines called - xgl object set,xgl object get ***************/

void xglut_dbuf_on(dbuf_information)
Xglut_dbuf_info *dbuf_information;
{

Xgl_win_ras wras;
Xgl_ctx ctx;
Xgl_ctx_new_frame_action nf_save;

/* check USER supplied context */ if (’(ctx =
dbuf_information->ctx)) {

printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR - NO GRAPHICAL CONTEXT. CHECK THAT

GAL_INIT_COLOR HAS BEEN SET
BEFORE GAL_SET_2D_BUFFER/GAL_SET_3D_BUFFER. \n") ;

printf("\n \n \n %s \n",TRAIL) ;

return;
} /* get window raster */
xgl_object_get(dbuf_information->ctx, XGL_CTX_DEVICE, &wras);
if
(’.wras) {

printf("ERROR - xglut_dbuf_on: no window raster in context.
Check that gal_init_color has been invoked prior to
gal_set_3d_buffer/gal_set_2d_buffer\n");

return;
}

if (dbuf_informat ion->xgl_dbuffering) {
xgl_object_get(ctx, XGL_CTX_NEW_FRAME_ACTION, &nf_save);

xgl_object_set(ctx,
XGL_CTX_NEW_FRAME_ACTION,
nf_save|XGL_CTX_NEW_FRAME_SWITCH_BUFFER, 0);

xgl_object_set (wras, XGL_WIN_RAS_BUFFERS_REQUESTED, 2, 0);

xgl_obj ect_set(wras,
XGL_WIN_RAS_BUF_DISPLAY, 0, XGL__WIN_RAS_BUF_DRAW, 1, 0);

128

dbuf_information->buf_display = 0;
dbuf_information->buf_draw = 1;

} else if (dbuf_information->cmap_dbuffering) {
xgl_object_get(ctx, XGL_CTX_NEW_FRAME_ACTION, &nf_save);

xgl_object_set(ctx,
XGL_CTX_NEW_F RAME_ACT ION,
nf_save I XGL_CTX_NEW_FRAME_VRETRACE, 0) ;

if (dbuf_information->current_buffer_is_buffer__0) {
xgl_obj ect_set(wras,

XGL_RAS_COLOR_MAP, dbuf_information->cmap0, 0);
xgl_obj ect_set(ctx,

XGL_CTX_PLANE_MASK, dbuf_information->bufl_pm, 0) ;
dbuf_information->buf_display = 0;
dbu f_informat ion->buf_draw = 1;

} else {
xgl_obj ect_set(wras,

XGL_RAS_COLOR_MAP, dbuf_information->cmapl, 0);
xgl_obj ect_set(ctx,

XGL_CTX_PLANE_MASK, dbuf_information->buf0_pm, 0) ;
dbuf_information->buf_display = 1;
dbuf_informat ion->buf_draw = 0;

}
dbuf_information->current_buffer_is_buffer_0 TRUE;

}

/********************
* switch_buffer() - This routine switches buffers by toggling between a
* hidden buffer (to which the object is drawn, after the prvious object
* is cleared) and a displayed buffer.*
* subroutines called - xgl_object_get, xgl_object_set
****************j

void switch_buffer(dbuf_information) Xglut_dbuf_info *dbuf_information;
{

Xgl_win_ras wras;

/* check USER supplied context */
if (!(dbuf_information->ctx)) {

printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR - UNABLE TO SWITCH BUFFER, NO

GRAPHICAL CONTEXT. CHECK IF GAL_INIT_COLOR
IMPLEMENTED\n");

printf("\n \n \n %s \n",TRAIL) ;
return;

} /*
get window raster */

xgl_obj ect_get(dbuf_information->ctx,
XGL_CTX_DEVICE, &wras);

if (!wras) {
printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR - UNABLE TO SWITCH BUFFER, NO

GRAPHICAL CONTEXT. CHECK IF GAL_INIT_COLOR
IMPLEMENTED\n");

printf("\n \n \n %s \n",TRAIL) ;
return;

}

/* if doing HW dbuffering then set bit in context new frame and
let xgl do the switch; otherwise switch the cmap buffers */

if (dbuf_information->xgl_dbuffering) {

129

Xgl_ctx ctx;

ctx = dbuf_information->ctx;

/* just do a new frame because xglut_dbuf_on should turn
* ON the SWITCH attribute */

xgl_context_new_frame (ctx) ;

/* switch buffers */
xgl_obj ect_get(wras,

XGL_WIN_RAS_BUF_DISPLAY, &(dbuf_information->buf_display));
xgl_obj ect_get(wras,

XGL_WIN_RAS_BUF_DRAW, & (dbuf_informat ion->buf_draw)) ;
xgl_object_get (wras,

XGL_WIN_RAS_BUF_MIN_DELAY,
&(dbuf_information->buf_min_delay));

dbuf_information->current_buffer_is_buffer_0 =
(dbuf_information->buf_display == 0);

} else if
(dbu f_in format i on->cmap_dbu f f er ing) {

Xgl_ctx ctx;

ctx = dbuf_information->ctx;

if (dbuf_information->current_buffer_is_buffer_0) {
xgl_object_set(wras,

XGL_RAS_COLOR_MAP, dbuf_information->cmap0, 0);
xgl_object_set(ctx,

XGL_CTX_PLANE_MASK, dbuf_information->bufl_pm, 0);
dbuf__information->buf_display - 0;
dbuf_information->buf_draw = 1;
dbuf_information->buf_min_delay = 0;

} else {
xgl_obj ect_set(wras,

XGL_RAS_COLOR_MAP, dbuf_information->cmapl, 0);
xgl_object_set(ctx,

XGL_CTX_PLANE_MASK, dbuf_information->buf0_pm, 0);
dbuf_information->buf_display = 1;
dbuf_information->buf_draw = 0;
dbuf_information->buf_min_delay = 0;

}
dbuf_information->current_buffer_is_buffer_0 TRUE;
xgl_context_new_frame(ctx); /* clear back buffer planes */

}
else /* unbuffered switch */ {

Xgl_ctx ctx;

ctx = dbuf_information->ctx;

xgl_context_new_frame(ctx); /* clear back buffer planes */
return;

y ********
* access function for the number of buffers allocated
********j

int get_dbuf_alloc() {
extern int dbuf_alloc;

return (dbuf_aHoc) ;

}

130

Appendix 2d - Views and Transformations

131

/*****************

* These subroutines deal with the the view model and the view space.
★

* Duncan Napier, McMaster University, Hamilton, Ontario, Canada
* October, 1992*
* ★★★if*********** j

#include "../include/xv.h"
#include "../include/color.h"
f ********************
* gal_pan_x() - This procedure performs a translation in the x-y
* plane and follows with a zoom (enlargement). Note that no
* interference with the rotation transforms results because the
* REPLACE attribute affects only the global model transform, and
* not the view transform (i.e. the rotate transform)*
* routines called - xgl object get, xgl_transform_scale,
* xgl_transform_translate.
********************i

void gal_3d_pan_and_zoom_(x_shift,y_shift, factor)
float *x_shift,*y_shift, *factor;

Xgl_pt
Xgl_trans
Xgl_pt_f3d
Xgl_pt_f3d
Xgl_3d_ctx

tmp_pt,zoom_pt;
xshift_trans,zoom_trans;
shift;
zoom;
*ctx3d;

ctx3d = get_3d_ctx () ;

xgl_object_get(*ctx3d, XGL_CTX_GLOBAL_MODEL_TRANS,
&xshift_trans);
xgl_object_get(*ctx3d,
XGL_CTX_GLOBAL_MODEL_TRANS, &zoom_trans);

/* zoom factors <= 0 are forbidden */

if (*factor <= 0.) *factor = 1.;

/* set up the zoom transformation */

zoom.x = *factor; zoom.y = *factor; zoom.z = *factor;
zoom__pt .pt_type = XGL_PT_F3D; zoom_pt .pt. f3d = &zoom;

/* set up the translation transformation */

/* don't forget to scale the translation */ shift.x =
x_shift(*factor);
shift.y = *y_shift*(*factor);
shift.z = 0.;
tmp_pt .pt_type = XGL_FT_F3D;
tmp_pt.pt.f3d = &shift;

/* carry out the transforms on the object */

xgl_transform_scale(zoom_trans, &zoom_pt, XGL_TRANS_REPLACE);
xgl_transform_translate(xshift_trans , &tmp_pt,
XGL_TRANS_POSTCONCAT);

}

void gal_2d_pan_and_zoom_(x_shift,y_shift, factor)

132

★float x_shi ft,*y_shi ft, * factor;

Xgl_pt
Xgl_trans
Xgl_pt_f2d
Xgl_pt_f2d
Xgl_2d_ctx

tmp_pt,zoom_pt;
xshift_trans,zoom_trans;
shift;
zoom;
*ctx2d;

ctx2d = get_2d_ctx();

xgl_object_get(*ctx2d, XGL_CTX_GLOBAL_MODEL_TRANS,
&xshift_trans); xgl_object_get(*ctx2d,
XGL_CTX_GLOBAL_MODEL_TRANS, &zoom_trans);

/* zoom factors <= 0 are forbidden */

if (*factor <= 0.) *factor = 1.;

/* set up the zoom transformation */

/* don't forget to scale the translation */
zoom.x = *factor;
zoom.y = *factor;
zoom_pt.pt_type = XGL_PT_F2D;
zoom_pt.pt.f2d = &zoom;

/* set up the transformation */

shift.x = *x_shift*(*factor);
shift.y = *y_shift*(*factor);
tmp_pt.pt_type = XGL_PT_F2D;
tmp_pt.pt.f2d = &shift;

/* carry out the transforms on the object */

xgl_transform_scale(zoom_trans, &zoom_pt, XGL_TRANS_REPLACE);
xgl_transform_translate(xshift_trans, &tmp_pt,
XGL_TRANS_POSTCONCAT);

y**************»*************i********************************y

#include include/xv.h"
#include include/color.h"
I •k-k-kkkk-kk-kk-k-k-k-kkk-kk-k-kick-k-k

* This procedure carres out rotational transformations of a 3d
* context object. The slider values determine the rotations about the
* x, y and z axes.

* procedures called xgl_object_get,xgl_transform_rotate
**************»*********i

void gal_rotate_(x_angle, y_angle, z_angle)
float *x_angle, *y_angle,*z_angle;
/* Slider values passed from FORTRAN */
{

Xgl_3d_ctx *ctx3d;
Xgl_trans view_trans;

ctx3d = get_3d_ctx();

133

/* create the view transform attribute */
xgl_object_get(*ctx3d, XGL_CTX_VIEW_TRANS, &view_trans);

/* Carry out the required transformations given the
slider positions. Note the specific order of the
transformations */

xgl_transform_rotate(view_trans, *x_angle*3.14159/180.,
XGL_AXIS_X, XGL_TRANS_REPLACE);

xgl_transform_rotate(view_trans, *y_angle*3.14159/180.,
XGL_AXIS_Y, XGL_TRANS_POSTCONCAT);

xgl_transform_rotate (view__trans, *z_angle*3.14159/180 .,
• XGL_AXIS_Z, XGL_TRANS_POSTCONCAT);

/**/

#include "../include/xv.h"

static short aspect_flag; /* a flag to ensure that the viewport
is set */
J ■k-kit-k-k-ie-k'ieitititifk-kit

* gal_(3d/2d)_aspect_set_()- procedures to set the boundaries of the
* 3D/2D view space. This procedure maintains the aspect ratio
throughout widow resizing.
*
* procedures called - xgl_object_set()
★******★**★★★/

void gal_3d_aspect_set_(xmin, xmax, ymin, ymax, zmin, zmax)
float *xmin, *xmax, *ymin, *ymax, *zmin, *zmax;
{

Xgl_3d_ctx *ctx;
Xgl_bounds_f3d vdc_3d_window;
extern
short aspect_flag;

aspect_flag = 1;
/* pass the model space dimensions and convert them to device coords */
vdc_3d_window.xmin = *xmin;
vdc_3d_window.xmax = *xmax;
vdc_3d_window.ymin = *ymin;
vdc_3d_window.ymax = *ymax;
vdc_3d_window.zmin = *zmin;
vdc_3 d_wi ndow.zmax = * zmax;

ctx = get_3d_ctx();

if (!*ctx) {
printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR - UNABLE TO SET GAL_3D_ASPECT_SET,

CHECK THAT GAL_INIT_COLOR IS SET \n");
printf("\n \n \n %s \n",TRAIL) ;
exit (1);

}

xgl_object_set(*ctx, XGL_CTX_VDC_WINDOW, &vdc_3d_window, NULL);

xgl_object_set(*ctx, XGL_CTX_VDC_MAP, XGL_VDC_MAP_ASPECT,
NULL);

}

void gal_2d_aspect_set_(xmin, xmax, ymin, ymax)
float *xmin, *xmax,*ymin, *ymax;

134

Xgl_2d_ctx *ctx;
Xgl_bounds_f2d vdc_2d_window;
extern
short aspect_flag;

aspect_flag = 1;
vdc_2d_window.xmin = *xmin;
vdc_2d_window.xmax - *xmax;
vdc_2d_window.ymin = *ymin;
vdc_2 d_wi ndow.ymax = *ymax;

ctx = get_2d_ctx();

if (!*ctx) {
printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR - UNABLE TO SET GAL_2D_ASPECT_SET

, CHECK THAT GAL_INIT_COLOR IS SET \n \n ");
printf(”\n \n \n %s \n",TRAIL) ;
exit (1);

}

xgl_object_set(*ctx, XGL_CTX_VDC_WINDOW, &vdc_2d_window, NULL);

xgl_object_set(*ctx, XGL_CTX_VDC_MAP, XGL_VDC_MAP_ASPECT,NULL);

* gal_(3d/2d)_aspect_free_() - procedures to set the boundaries of the
* 3D/2D view space. This procedure adjusts the aspect ratio to ensure
* as much of the canvas is covered during resizing.*
* procedures called - xgl_object_set()
*
***************J

void gal_3d_aspect_free_(xmin, xmax, ymin, ymax, zmin, zmax)
float *xmin, *xmax, *ymin, *ymax, *zmin, *zmax;
{

Xgl_3d_ctx *ctx;
Xgl_bounds_f3d vdc_3d_window;
extern
short aspect_flag;

aspect_flag = 1;
vdc_3d_window.xmin = *xmin;
vdc_3 d_window. xmax = *xmax ;
vdc_3d_window.ymin = *ymin;
vdc_3 d_window.ymax = *ymax;
vdc_3d_window.zmin = *zmin;
vdc_3d_window.zmax = *zmax;

ctx = get_3d_ctx();

if (!*ctx) {
printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR - UNABLE TO SET GAL_3D_ASPECT_FREE

, CHECK THAT GAL_INIT_COLOR IS SET \n");
printf("\n \n \n %s \n",TRAIL) ;
exit (1);

}

xgl_object_set(*ctx, XGL_CTX_VDC_WINDOW, &vdc_3d_window, NULL);

xgl_object_set(*ctx, XGL_CTX_VDC_MAP, XGL_VDC_MAP_ALL, NULL);

135

}

void gal_2d_aspect_free_(xmin, xmaxz ymin, ymax)
float *xmin, *xmax,*ymin, *ymax;
{

Xgl_2d_ctx *ctx;
Xgl_bounds_f2d vdc_2d_window;
extern
short aspect_flag;

aspect_flag - 1;
vdc_2d_window.xmin = *xmin;
vdc_2d_window.xmax = *xmax;
vdc_2d_window.ymin = *ymin;
vdc_2d_window.ymax = *ymax;

ctx = get_2d_ctx();

if (!*ctx) {
printf("\n \n \n %s \n",GAL_ERROR) ;
printf("ERROR- UNABLE TO SET GAL_2D_ASPECT_FREE

, CHECK THAT GAL_INIT_COLOR IS SET \n");
printf("\n \n \n %s \n",TRAIL) ;
exit (1) ;

}
xgl_object_set(*ctx, XGL_CTX_VDC_WINDOW, &vdc_2d_window, NULL);

xgl_object_set(*ctx, XGL_CTX_VDC_MAP, XGL_VDC_MAP_ALL,NULL);
}
/**********
* get_aspect_flag - acces function for the viewport dimension flag*
* called by - gal_end()
**********f
short get_aspect_flag() {

extern short aspect_flag;

return aspect_flag;

}

136

Appendix 2e - 2D Primitives

137

#include "../include/xv.h"
#include "../include/color.h"
/************
* gal_2d_unfilled_circle_() - a primitive drawing routine to draw a
* circle routines called - get_2d_ctx, xgl_object_set,xgl_multi_circle ***********/

void gal_2d_unfilled_circle_(color_index, rad, x, y)
int *color_index;
float *x, *y, *rad; /* x and y coordinates and radius
{

I

Xgl_2d_ctx *ctx;
Xgl_color color;
Xgl_circle_list circle_list;
Xgl__pt_f2d center;
Xgl_circle_f2d circs;

/*
* get a smooth circle */

ctx = get_2d_ctx();

/* define the closeness of the circle points */
xgl_object_set(*ctx, XGL_CTX_CURVE_APPROX, XGL_CURVE_METRIC_VDC,

XGL_CTX_CURVE_APPROX_VALUE, 1.0, NULL) ;

/* draw the circle */
circle_list.type = XGL_MULTICIRCLE_F2D;
circle_list.num_circles = 1;
circle_list.bbox = 0;
circs.center.flag = 0;
circs.center.x = *x;
circs.center.y = *y;
circs.radius = *rad;
circle_list.circles.f2d = &circs;

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

/* set fill to hollow */ xgl_object_set (*ctx,
XGL_CTX_SURF_FRONT_FILL_STYLE,XGL_SURF_FILL_HOLLOW,

XGL_CTX_SURF_FRONT_COLOR, &color, NULL);

xgl_multicircle(*ctx, &circle_list);

/★*******★***★-<■**★**
* gal_2d_unfilled_rectangle_() - a primitive drawing routine to draw a
* rectangle routines called - get_2d_ctx, xgl_object_set,xgl_multi_rectangle
***************X** j

void gal_2d_unfilled_rectangle_(color_index, x, y)
int *color_index;
float x[], y[]; /* the max/min x values and max/min y values */

{

Xgl_2d_ctx
Xgl_color
Xgl_rect_list
Xgl_pt_f2d

*ctx;
color;
rect_list;
center;

138

Xgl_rect_f2d rects;

ctx = get_2d_ctx();

/* draw the rectangles ★/
rect_list.rect_type = XGL_MULTIRECT_F2D;
rect_list.num_rects = 1;
rect_list.bbox = 0;
rects.corner_min.x = x[0];
rects.corner_min.y = y[0];
rects.corner_min.flag =0;
rects.cornerjnax.x = x[l];
rects.corner_max.y = y[l];
rect_list.rects.f2d = &rects;

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

xgl_object_set (*ctx,
XGL_CTX_SURF_FRONT_FILL_STYLE, XGL_SURF_FILL_HOLLOW, XGL_CTX_SURF_FRONT_COLOR, &co lor

, NULL) ;

xgl_multirectangle(*ctx, &rect_list);

}

/************
* gal_2d_filled_circle_() - a primitive drawing routine to draw a
* filled circle routines called - get_2d_ctx, xgl_object_set,
* xgl_multi_circle
***********i

void gal_2d_filled_cir<
int *color
float *x,
{ '

Xgl_2d_ctx
Xgl_color
Xgl_circle_list
Xgl_pt_f2d
Xgl_circle_f2d

le_(color_index, rad,
index;
, *rad;

*ctx;
color;
circle_list ;
center;
circs;

x, y)

ctx = get_2d_ctx();

xgl_object_set(*ctx, XGL_CTX_CURVE_APPROX, XGL_CURVE_METRIC_VDC,
XGL_CTX_CURVE_APPROX_VALUE, 1.0, NULL) ;

/* draw the circles */
circle_list.type = XGL_MULTICIRCLE_F2D;
circle_list.num_circles = 1;
circle_list.bbox - 0;
circs.center.flag = 0;
circs.center.x = *x;
circs.center.y = *y;
circs.radius = *rad;
circle_list.circles.f2d = &circs;

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index - *color_index;

xgl_object_set (*ctx, XGL_CTX_SURF_FRONT_COLOR, &color, NULL);

139

xgl_multicircle(*ctx, &circle_list);

/**★*★*★**★***★**
* gal_2d_unfilled_rectangle_() - a primitive drawing routine to draw a
* rectangle routines called - get_2d_ctx, xgl_object_set, xgl_multi_rectangle

void gal_2d_filled_rectangle_(color_index,
int *color_index;
float x[] , y [] ;
{

x, y)

Xgl_2d_ctx
Xgl_color
Xgl_rect_list
Xgl_pt_f2d
Xgl_rect_f2d

*ctx;
color;
rect_list;
center;
rects;

ctx = get_2d_ctx();

/* draw the rectangles*/
rect_list.rect_type = XGL_MULTIRECT_F2D;
rect_list.num_rects •= 1;
rect_list.bbox = 0;
rects.corner_min.x = x[0]
rects.corner_min.y = y [0]
rects.corner_min.flag = 0
rects.cornerjnax.x = x[l]
rects.cornerjnax.y = y Ci]
rect_list.rects.f2d = Erects;

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

xgl_object_set (*ctx, XGL_CTX_SURF_FRONT_COLOR, &color, NULL);

xgl_multirectangle(*ctx, &rect_list);

}

y**x****x***x*xxx
* gal_2d_filled_polygon_() - draws a filled polygon given an ordered
* list of points. The polygon is filled with color color_index. The
* user specifies the number of points and then gives the x and
* y-coordinates of each point.*
* routines called - xgl_object_set,xgl_polygon.
★★★★★****★*★***«/

void gal_2d_filled_polygon_(color_index,
list_pts_y)
float list_pts_x[], list_pts_y[];
int *color_index, *num_pts;
{

num_pt s, list_pts_x,

Xgl_2d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
poly_pts
i ;

140

/* allocate memory for the coordinates to be processed */

if (!(poly_pts.pts.f2d = (Xgl_pt_f2d
*)malloc(*num_pts*sizeof(Xgl_pt_f2d)))) {

printf("memory allocation request in
gal_2d_filled_polygon failed\n"); exit(l); }

poly_pts .pt_type = XGL_PT_F2D; poly__pts .bbox = NULL;
poly_pts.num_pts = *num_pts;

/* assign the vertices to their individual points */

for (i=0; i<*num_pts; i++) {

poly_pts.pts.f2d[i].x = list_pts_x[i];
poly_pts.pts.f2d[i].y = list_pts_y[i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_2d_ctx();

xgl_object_set (*ctx, XGL_CTX_SURF_FRONT_COLOR, &color, NULL);

xgl_polygon (*ctx, XGL_FACET_NONE, NULL, NULL, 1, poly_pts);

free(poly_pts.pts.f2d); }

/*************★**
* gal_2d_unfilled_polygon_()-draws an unfilled polygon given an
* ordered list of points. The polygon is filled with color
* color_index. The user specifies the number of points and then gives
* the x and y-coordinates of each point.
*
* routines called - xgl_object_set, xgl_polygon.

void gal_2d_unfilled_polygon_(color_index,
list_pts_y)
float list_pts_x [] , list_pts_yr [] ;
int *color_index, *num_pts;
{

num_pt s, list_pts_x,

Xgl_2d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
poly_pts
i ;

/* allocate memory for the coordinates to be processed */

if (!(polv_pts.pts.f2d = <Xgl_pt_f2d
*)malloc(*num_pts*sizeof(Xgl_pt_f2d)))) {

printf("memory allocation request in
gal_2d_filled_polygon failed\n"); exit(l); }

poly_pts.pt_type = XGL_PT_F2D;
poly_pts.bbox = NULL;
poly_pts.num_pts = *num_pts;

/* assign the vertices to their individual points */

141

for (i=0; i<*num_pts; i++) {

• poly_pts.pts.f2d[i] .x = list__pts_x[i] ;
poly_pts.pts.f2d[i].y = list_pts_y[i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_2d_ctx();

xgl_obj ect_set (*ctx, XGL_CTX_SURF_FRONT_FILL_STYLE, XGL_SURF_FILL_HOLLOW,
XGL_CTX_SURF_FRONT_COLOR, &color, NULL);

xgl_polygon (*ctx, XGL_FACET_NONE, NULL, NULL, 1, poly_pts);

free(poly_pts.pts.f2d); }

/*************
* gal_2d_solid_line_() - draws a solid line given the color,
* thickness, number of points and coordinates.
ic

* routines called - malloc, xgl_object_set, xgl_multipolyline. **************y

void gal_2d_solid_line_(color_index, thickness
list_pts__y)
float list_pts_x[], list_pts_y[], *thickness;
int *color_index, *num_pts;
{

num_pts, list_pts_x,

Xgl_2d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
line_pts
i ;

/* allocate memory for the coordinates to be processed */

if (!(line_pts.pts.f2d = (Xgl_pt_f2d
*)malloc(*num2pts*sizeof(Xgl_pt_f2d)))) {

printf("memory allocation request in gal_2d_solid_line
failed\n"); exit(l); }

line_pts.pt_type = XGL_PT_F2D;
1ine_pt s.num_pt s = *num_pts;
line_pts.bbox = 0;

for (i=0; i<*num_pts; i++) {

line_pts.pts.f2d[i].x = list_pts_x[i];
line_pts.pts.f2d[i3.y = list_pts_y[i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_2d_ctx();

xgl_obj ect_set(*ctx, XGL_CTX_LINE_WIDTH_SCALE_FACTOR,
*thickness, XGL_CTX_LINE_COLOR, &color, NULL);

142

xgl_multipolyline(*ctx, NULL, 1, line_pts);

free (line_pts .pts . f2d) ; }
j************
* gal_2d_dotted_line_() - draws a dotted line given the color,
* thickness, number of points and coordinates.
*
* routines called - malloc, xgl_object_set, xgl_multipolyline.
************ I

void gal 2d dotted line (color index, thickness
list_pts_y)
float list_pts_x[],
int *color_index,
{

Xgl_2d_ctx
Xgl_cclor
Xgl_pt_list
int

ist_pts_y[], *thickness;
*num_pts;

*ctx;
color;
line_pts;
i ;

num_pts, 1 ist_.pt s_x,

/* allocate memory for the coordinates to be processed */

if (!(line_pts.pts.f2d = (Xgl_pt_f2d
*)malloc(*num_pts*sizeof(Xgl_pt_f2d)))) {

printf("memory allocation request in gal_2d_dotted_line
failed\n"); exit(l); }

line_pts .pt_type = XGL_PT__F2D;
line_pts .num__pts = *num_pts;
line_pts.bbox = 0;

for (i=0; i<*num_pts; i++) {

line_pts.pts.f2d[i].x = list_pts_x[i];
line_pts.pts.f2dfi].y = list_pts_y[i];

} .

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index - *color_index;

ctx = get_2d_ctx();

xgl_ob j ect_set(*ctx,
XGL_CTX_LINE_WIDTH_SCALE_F ACTOR, *thickness,
XGL_CTX_LINE_STYLE, XGL_LINE_PATTERNED,
XGL_CTX_LINE_PATTERN, xgl_lpat_dotted,
XGL_CTX_LINE_COLOR, &color, NULL);

xgl_multipolyline(*ctx, NULL, 1, line_pts);

free(line_pts.pts.f2d); }

/ ****************
* gal_2d_dashed_line_() - draws a dashed line given the color,
* thickness, number of points and coordinates.*
* routines called - malloc, xgl_object_set, xgl_multipolyline.
**************j

143

void gal_2d_dashed_line_(color_index, thickness
list_pts_y)
float list_pts_x[], list_pts_y[], *thickness;
int *color_index, *num_pts;
{

num_pts, list_pts_x,

Xgl_2d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
line_pts
i ;

/* allocate memory for the coordinates to be processed */

if (!(line_pts.pts.f2d = (Xgl_pt_f2d
*)malloc(*num_pts*sizeof(Xgl_pt_f2d)))) {

printf("memory allocation request in gal_2d_dashed_line
failed\n“); exit(l); }

line_pts.pt_type = XGL_PT_F2D;
line_pts.num_pts = *num_pts;
line_pts.bbox = 0;

for (i=0; i<*num__pts; i++) {

line_pts.pts.f2d[i].x = list_pts_x[i] ;
line_pts.pts.f2d[i].y = list_pts_y[i];

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_2d_ctx();

xgl_object_set(*ctx,
XGL_CTX_LINE_WIDTH_SCALE_FACTOR, *thickness,
XGL_CTX_L INE_STYLE, XGL_L INE_PATTERNED,
XGL_CTX_LINE_PATTERN, xgl_lpat_dashedz
XGL_CTX_LINE_COLOR, &color, NULL);

xgl_multipolyline(*ctx, NULL, 1, line_pts);

free (line__pts .pts . f2d) ; }
/**************
* gal_2d_dash_dotted_line_ () - draws a dashed-dotted line given the
* color, thickness, number of points and coordinates.
k

* routines called - malloc, xgl_object_set, xgl__multipolyline.
****************i

void gal_2d_dash_dotted_line_(color_index, thickness, num_pts,
list_pts_x, list_pts_y)
float list_pts_x[], list_pts_y[], *thickness;
int *color_index, *num_pts;

Xgl_2d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
line_pts
i ;

/* allocate memory for the coordinates to be processed */

144

if (!(line_pts.pts.f2d = (Xgl_pt_f2d
*)malloc(*num_pts*sizeof(Xgl_pt_f2d)))) {

printf("memory allocation request in
gal_2d_dash_dotted_line failed\n"); exit(l); }

line__pts .pt_type = XGL_PT_F2D;
line_pts.num_pts = *num_pts;
line_pts.bbox = 0;

for (i=0; i<*num_pts; i++) {

line_pts .pts . f2d[i] .x = list__pts_x[i] ;
line_pts.pts.f2d[i].y = list_pts_y [i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_2d_ctx();

xgl_object_set(*ctx,
XGL_CTX_LINE_WIDTH_SCALE_FACTOR, *thickness,

■ XGL_CTX_LINE_STYLE , XGL_LINE_PATTERNED,
XGL_CTX_LINE_PATTERN, xg1_1pat_dashed_dotted,
XGL_CTX_LINE_COLOR, &color, NULL);

xgl_multipolyline(*ctx, NULL, 1, line_pts);

free(line_pts.pts.f2d); }
/*************
* gal_2d_dash_dot_line_() - draws a dashed-dotted line given the
* color, thickness, number of points and coordinates.
*
* routines called - malloc, xgl_object_set, xgl_multipolyline.
**************[

void gal_2d_dash_dot__line_(color_index, thickness
list__pts_y)
float list_pts_x[], list_pts_y [], *thickness;
int *color_index, *num_pts;
{

num_pts, list_pts_x,

Xgl_2d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
line_pts
i ;

/* allocate memory for the coordinates to be processed */

if (!(line_pts.pts.f2d = (Xgl_pt_f2d
*)malloc (*num__pts*sizeof (Xgl_pt_f2d))))

{
printf("\n \n memory allocation request in
gal_2d_dash_dot line failed\n"); exit(l); }

line_pts.pt_type = XGL_PT_F2D;
line__pts .num_pts = *num_pts;
line_pts.bbox = 0;

145

for (i=0; i<*num_pts; i++) {

line_pts.pts.f2d[i] .x = list_pts_x[i];
line_pts.pts.f2d[i].y = list_pts_y[i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_2d_ctx();

xgl_object_set(*ctx,
' XGL_CTX_LINE_WIDTH_SCALE_FACTOR, *thickness,

XGL_CTX_LINE_STYLE, XGL_LINE_PATTERNED,
XGL_CTX_LINE_PATTERN, xgl_lpat_dash_dot,
XGL_CTX_LINE_COLOR, &color, NULL);

xgl_multipolyline(*ctx, NULL, 1, line_pts);

free(line_pts.pts.f2d); }

j **************
* gal_2d_dash_dot_dot_line_() - draws a dashed-dotted line given the
* color, thickness, number of points and coordinates.*
* routines called - malloc, xgl_object_set, xgl_multipolyline.
**************i

void gal_2d_dash_dot_dot_line_(color_index, thickness
list_pts_x, list_pts_y)
float list_pts_x[], list_pts_v[], *thickness;
int *color_index, *num_pts;
{

num__pts,

Xgl_2d_ctx
Xgl_color
Xgl__pt_list
int

*ctx;
color;
line_pts;
i ;

/* allocate memory for the coordinates to be processed */

if . (’ (line_pts.pts.f2d = (Xgl_pt_f2d
*)malloc(*num_pts*sizeof(Xgl_pt_f2d)))) {

printf("memory allocation request in
gal_2d_dash_dot_dot line failed\n"); exit(l); }

line_pts.pt_type = XGL_PT_F2D;
line_pts.num_pts = *num_pts;
line_pts.bbox = 0;

for (i=0; i<*num_pts; i++) {

line_pts.pts.f2d[i].x = list_pts_x[i];
line_pts.pts.f2d[i].y = list_pts_y[i]; }

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

146

ctx = get_2d_ctx () ;

xgl_object_set(*ctx,
XGL_CTX_LINE_WIDTH_SCALE_FACTOR, *thickness,
XGL_CTX_LINE_STYLE, XGL_LINE_PATTERNED,
XGL_CTX_LINE_PATTERN, xgl_lpat_dash_dot_dotted,
XGL_CTX_LINE_COLOR, &color, NULL);

xgl_multipolyline(*ctx, NULL, 1, line_pts);

free(line_pts.pts.f2d); }

/**************
* gal_2d_long_dash_line_() - draws a dashed-dotted line given the
* color, thickness, number of points and coordinates.* ■
* routines called - malloc, xgl_object_set, xgl_multipolyline.
**************i

void gal_2d_long_dashed_line_(color_index, thickness
list__pts_x, list_pts_y)
float list_pts_x[], list_pts_y[], *thickness;
int *color_index, *num_pts;
{ .

num__pts,

Xgl_2d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
line_pts
i ;

/* allocate memory for the coordinates to be processed */

if (’(line_pts.pts.f2d = (Xgl_pt_f2d
*)malloc(*num_pts*sizeof(Xgl_pt_f 2d)))) {

printf("memory allocation request in gal_2d_long_dashed
line failed\n"); exit(l); }

line_pts.pt_type - XGL_PT_F2D;
line_pts.num_pts = *num_pts;
line_pts.bbox = 0;

for (i=0; i<*num_pts; i++) {

. line_pts.pts.f2d[i].x - list_pts_x[i];
line_pts.pts.f2d[i].y = list_pts_y[i]; }

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index - *color_index;

ctx = get_2d_ctx();

xgl_object_set(*ctx,
XGL_CTX_LINE_WIDTH_SCALE_FACTOR, *thickness,
XGL_CTX_LINE_STYLE, XGL_LINE_PATTERNED,
XGL_CTX_LINE_PATTERN, xgl_lpat_long_dashed,
XGL_CTX_LINE_COLOR, &color, NULL);

xgl_multipolyline (*ctx, NULL, 1, line__pts);

free(line_pts.pts.f2d); }

147

* gal_2d_cross_marker_() - a routine to draw a given marker type. The
* user supplies the color, number of markers and their locations
*
* routines called - malloc, xgl_object_set, xgl_multimarker
**************i

void gal_2d_cross_marker_(color_index,
float list_pts_x[], list_pts_y[];
int *color_index, *num_pts;
{

num_pts, list_pts_x, list_pts_y)

Xgl_2d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
marker_pts
i ;

/* allocate memory for the coordinates to be processed */

if (!(marker_pts.pts.f2d = (Xgl_pt_f2d
*)malloc (*num__pts*sizeof (Xgl_pt_f 2d)))) {

printf("memory allocation request in
gal_2d_cross_marker failed\ntt); exit(l); }

marker_pts.pt_type = XGL_PT_F2D;
marker_pts.num_pts = *num_pts;
marker__pts .bbox = 0;

for (i=0; i<*num_pts; i++) {

marker__pts .pts . f2d[i] .x = list__pts_x[i];
marker_pts.pts.f2d[i].y = list_pts_y[ij;

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_2d_ctx();

/* the marker size is defaulted to 10 pixels in size */
xgl_obj ect_set(*ctx,

XGL_CTX_MAREER_COLOR, &color,
XGL_CTX_MARKER_SCALE_F ACTOR, 10.0,
XGL_CTX_MARKER_DESCRIPTION, xgl_marker_cross,
NULL);

xgl_muItimarker(*ctx, marker_pts);

free(marker_pts.pts.f2d); }

/**************
* gal_2d_plus_marker_() - a routine to draw a given marker type. The
* user supplies the color, number of markers and their locations
*
* routines called - malloc, xgl_object_set, xgl_muItimarker
★*■*★**★★*★■*•★ j

void gal_2d_plus_marker_(color_index, num_pts, list_pts_x, list_pts_y)
float list_pts_x[], list_pts_y[];
int *color_index, *num_pts;
{

Xgl_2d_ctx *ctx;
Xgl_color color;

148

Xgl_pt_list marker_pts;
int i ;

/* .allocate memory for the coordinates to be processed */

if (!(marker_pts.pts.f2d = (Xgl_pt_f2d
*)malloc(*num_pts*sizeof(Xgl_pt_f2d)))) {

printf("memory allocation request in gal_2d_plus_marker
failed\n“); exit(l); }

marker_pts.pt_type = XGL_PT_F2D;
marker_pts .num__pts = *num_pts;
marker_pts.bbox = 0;

for (i=0; i<*num__pts; i+ +) {

marker_pts.pts.f2d[i].x = list_pts_x[i];
marker_pts.pts.f2d[i].y = list_pts_y [i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_2d_ctx();

/* the marker size is defaulted to 10 pixels in size */
xgl_object_set(*ctx,

XGL_CTX_MARKER_COLOR, &color,
XGL_CTX_MARKER_SCALE_FACTOR, 10.0,
XGL_CTX_MARKER_DESCRIPTION, xgl_marker_plus,
NULL);

xgl_multimarker(*ctx, marker_pts);

free(marker_pts.pts.f2d); }
y******i*k****lf*x
* gal_2d_asterisk_marker_() - a routine to draw a given marker type.
* The user supplies the color, number of markers and their locations*
* routines called - malloc, xgl_object_set, xgl_multimarker

void gal_2d_asterisk_marker_(color_index
list_pts_y)
float list_pts_x[],
int *color_index,

num_pts, list_pts_x,

Xgl_2d_ctx
Xgl_color
Xgl_pt_list
int

list_pts_y[];
*num_pts;

*ctx;
color;
marker_pts;
i ;

/* allocate memory for the coordinates to be processed */

if (!(marker_pts.pts.f2d = (Xgl_pt_f2d
*)malloc(*num_pts*sizeof(Xgl_pt_f2d)))) {

printf("memory allocation request in
gal_2d_asterisk_marker failed\n"); exit(l); }

marker_pts.pt_type = XGL_PT_F2D;
marker_pts.num_pts = *num_pts;
marker_pts.bbox = 0;

149

for (i=0; i<*num_pts; i+ +) {

marker_pts.pts.f2d[i].x = list_pts_x[i];
marker_pts.pts.f2d[i] .y = list_pts_y[i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_2d_ctx();

/*.the marker size is defaulted to 10 pixels in size */
xgl_obj ect_set(*ctx,

XGL_CTX_MARKER_COLOR, &color,
. XGL_CTX_MARKER_SCALE_F ACTOR, 10.0,

XGL_CTX_MARKER_DESCRIPTION,
xgl_marker_asterisk, NULL);

xgl_multimarker(*ctx, marker_pts);

free(marker_pts.pts.f2d); }
/*************
* gal_2d_square_marker_() - a routine to draw a given marker type. The
* user supplies the color, number of markers and their locations
*
* routines called - malloc, xgl_object_set, xgl_multimarker ***********/

void gal_2d_square_marker_(color_index,
list_pts_y)
float list_pts_x[], list_pts_y[];
int *color_index, *num_pts;
{

num_pts, list_pts_x,

Xgl_2d_ctx
Xgl_color
Xgl_pt_list
int

★ctx;
color;
marker_pts
i ;

/* allocate memory for the coordinates to be processed */

if (’(marker_pts.pts.f2d = (Xgl_pt_f2d
*)malloc(*num_pts*sizeof(Xgl_pt_f2d)))) {

printf("memory allocation request in
gal_2d_square_marker failed\n"); exit(l); }

marker_pts.pt_type = XGL_PT_F2D;
marker_pt s.num_pt s = *num_pt s;
marker_pts.bbox = 0;

for (i=0; i<*num_pts; i + +) {

marker_pts.pts.f2d[i].x = list_pts_x[i];
marker_pts.pts.f2d[i].y = 1ist_pts_y [i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_2d_ctx();

/★ the marker size is defaulted to 10 pixels in size */

150

xgl_object_set (*ctx,
XGL_CTX_MARKER_COLOR, &color,
XGL_CTX_MARKER_SCALE_FACTOR, 10.0,
XGL_CTX_MARKER_DESCRIPTION, xgl_marker_square,
NULL);

xgl_multimarker(*ctx, marker_pts);

free(marker_pts.pts.f2d); }
/**************
* gal_2d_circle_marker_() - a routine to draw a given marker type. The
* user supplies the color, number of markers and their locations*
* routines called - malloc, xgl_object_set, xgl_jnultimarker
**************j

void gal_2d_circle_marker_(color_index, num_pts, list__pts_x,
list_pts_y)
float list_pts_x [] , list_pts_y [] ;

int *color_index, *num_pts;
{

Xgl_2d_ctx *ctx; Xgl_color color; Xgl_pt_list
marker_pts; int i;

/* allocate memory for the coordinates to be processed */

if (!(marker_pts.pts.f2d = (Xgl_pt_f2d
*)malloc(*num_pts*sizeof(Xgl_pt_f2d)))) {

printf("memory allocation request in
gal_2d_circle_marker failed\n“); exit(l); }

marker_pts .pt_type = XGL_PT_F2D; marker__pts .num_pts = *num_pts;
marker_pts.bbox = 0;

for (i=0; i<*num_pts; i++) {

marker_pts.pts.f2d[i].x = list_pts_x[i];
marker_pts .pts . f2d[i] .y = list__pts_y [i] ;

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_2d_ctx();

/* the marker size is defaulted to 10 pixels in size */
xgl_object_set(*ctx,

XGL_CTX_MARKER_COLOR, &color,
XGL_CTX_MARKER_SCALE_FACTOR, 10.0,
XGL_CTX_MARKER_DESCRIPTION, xgl_marker_circle,
NULL);

xgl_multimarker (*ctx, marker__pts);

free(marker_pts.pts.f2d); }
y****************
* gal_2d_axes_() - draws x and y axes given maxima, minima and increments
* procedures called - gal_2d_solid_line_()
* *******■*■★★★*★★★ /

void gal_2d_axes_(color_index, xmin, xmax, ymin,
ymax, x_interval, y_interval)
float *xmin, *xmax, *ymin, *ymax,*x_interval, *y_interval;

151

int *color_index;
{ '
extern float axis_thickness, zero;
extern int axis_num_pts;
float list_pts_x[2],list_pts_y[2], *xmin_new, *ymin_new;
float tic_x, tic_yz tic_start,tic_fin;
int ntics, i;

/* If the extremeties of the axes cross the origin, make the
axis lie on the origin */
if ((*ymax >0.) && (*ymin < 0.)) ymin_new = &zero

else ymin_new = ymin;
if ((*xmax >0.) && (*xmin < 0.)) xmin_new = &zero;

else xmin_new = xmin;

/* Draw the x-axis */
list_pts_x[0] = *xmin;
list_pts_x[l] = *xmax;
list_pts_y[0] = *ymin_new;
list_pts_y [1] = *ymin_new;
gal_2d_solid_line__(color_index, &axis_thickness, &axis_num_pts,
list_pts_x, list_pts__y) ;

/* Draw the y-axis */
list__pts_x[0] = *xmin_new;
list_pts_x[l] = *xmin_new;
list_pts_y[0] = *ymin;
list_pts_y[1] = *ymax;
gal_2d_solid_line_(color_index, &axis_thickness, &axis_num_pts,
list_pts_x, list_pts_y) ;

/*'calculate the size of the tics (1/30 the axis length) */
tic_x = (*ymax - *ymin)/30; tic_y = (*xmax - *xmin)/30;

/* calculate the number of tics */ ntics = (int)
((*xmax-*xmin)/ *x_interval) ;

/* calculate the y coordinates of the tics */ tic_start =
*ymin_new - tic_x; tic_fin = *ymin_new + tic_x;

/* draw the n+1 tics */
for (i = 0; i <= (ntics+1); i++) {

list_pts_x[l] = list_pts_x[0] = *xmin +
i*(*x_interval);
list_pts_y[0] = tic_start;
list_pts_y[1] = tic_fin;
gal_2d_solid_line_(color_index, &axis_thickness,
&axis_num_pts, list_pts_x, list_pts_y); }

/* calculate the number of tics */
ntics = (int) ((*ymax-*ymin)/ *y_interval);

/* calculate the y coordinates of the tics */
tic_start = *xmin_new - tic_y;
tic_fin = *xmin_new + tic_y;

/* draw the n+1 tics */ for (i = 0; i <= (ntics+1); i++) {
list_pts_y[1] = list_pts_y[0] = *ymin + i*(*y_interval);
list_pts_x[0] = tic_start;
list_pts_x[l] = tic_fin;

. gal_2d_solid_line_(color_index, &axis_thickness,
&axis_num_pts, list_pts_x, list_pts_y); }

}
/ ********************
* gal_2d_text_annote() - draws a string of text to the screen. The

152

* user supplies the string, font size, font (i.e. the name of the XGL
* font file), the spacing between letters, the orientation and the
* color routines called - malloc, xgl_object_set, xgl_stroke_text;
* *★*★*★*★★***★★★**★■* f

void gal_2d_text_annote_(color_index, string, font_size, font,
font_spacing, x_pos, y_pos, x_vector, y_vector, str__len, font_len)
float *font_size, *font_spacing, *x__pos, *y_pos, *x_vector, *y_vector;
int *color_index, str_len, font_len;
char *string ,*font ;
{

Xgl_sfont
Xgl_obj_desc
Xgl_pt_f2d
Xgl_jpt_f2d
Xgl_color
Xgl_2d__ctx
char *font_
Xgl gcache

sfont;
obj_desc;
text__pos ;
up_vector;
sf_color;
*ctx;
copy ;

*gcache;

ctx = get_2d_ctx();
gcache = get_gcache();

if (!(font_copy = malloc(80))) {
printf("memory allocation request in gal_2d_text_annote
failed\n");
exit(l); }

(void) nullcpy(font_copy, font, font_len);

/* append the '.phontz font file extension to the font
* name. */

(void) strcat(font_copy, ".phont");

if (’(obj_desc.sfont_name = (char *)malloc(80))) {
printf("memory allocation request in gal_2d_text_annote
failed\n");
exit(l); }

strcpy(obj_desc.sfont_name,font_copy) ;

free(font_copy);

sfont = xgl_object_create (*ctx, XGL_SFONT, &obj_desc, NULL);

free(obj_desc.sfont_name);

up_vector.x = *x_vector; up_vector.y = *y_vector;

if (get_dbuf_on()) { sf_color.index = *color_index*COLOR_SIZE +
*color_index; } else sf_color.index = *color_index;

xgl_obj ect_set(*ctx,
XGL_CTX_SFONT, sfont,
XGL_CTX_SFONT_CHAR_HEIGHT, * font_s i ze,
XGL_CTX_SFONT_CHAR_UP_VECTOR, up_vector,
XGL_CTX_SFONT_CHAR_SPACING, *font_spacing,
XGL_CTX_SFONT_TEXT_COLOR, &sf_color,
XGL_CTX_LINE_C0LOR, &sf_color, NULL);

/* invoke the display of the gcache */
text_pos.x = *x_pos, text_pos.y = *y_pos;
xgl_gcache_stroke_text (*gcache, *ctx, string , &text__pos,
NULL);

153

xgl_context_display_gcache (*ctx, *gcache, FALSE, TRUE);
xgl_context_post(*ctx, TRUE);

}
/*******************
* gal_2d_real_annote() - draws a real number to the screen. The user
* supplies the string, the number of significant figures, the number
* of decimal places, font size, font (i.e. the name of the XGL font
* file), the spacing between letters, the orientation and the color
*
* routines called - malloc, xgl_object_set, xgl_stroke_text;
********************j

void gal_2d_real_annote_(color_index, real, field_width,
mantissa,font_size, font, font_spacing, x_pos, y_pos, x_vector,
y_vector, font_len)
float *font_size, *font_spacing, *x_pos, *y__pos, *x__vector, *y_vector,
int *color_index, font_len,*field_width, *mantissa;
char * font ;

*real;

{
char
Xgl_s font
Xgl_obj_desc
Xgl_pt_f2d
Xgl_pt_f2d
Xgl_color
Xgl_2d_ctx
char
Xgl gcache

string [20], format [20];
sfont;
obj_desc;
text_pos;
up_vector;
sf_color;
*ctx;
*font_copy;
*gcache;

ctx = get_2d_ctx(); gcache = get_gcache();

if (!(font_copy = malloc(80))) {
printf("memory allocation request in gal_2d_real_annote
failed\n"); exit(l); }

(void) nullcpy(font_copy, font, font_len);

/* append the '.phont' font file extension to the font
* name. */

(void) strcat(font_copy, ".phont");

if (!(obj_desc.sfont_name = (char *)malloc(80))) {
printf("memory allocation request in gal_2d_real_annote
failed\n"); exit(l); }

strcpy(obj_desc.sfont_name,font_copy) ;

free(font_copy);

sfont - xgl_object_create (*ctx, XGL_SFONT, &obj_desc, NULL);

free(obj_desc.sfont_name);

sprintf(format, "%%%d.%df", *field_width, *mantissa);
sprintf(string, format, *real);

up_vector.x = *x_vector; up_vector.y = *y_vector;

if (geo_dbuf_on()) { sf_color.index = *color_index*COLOR_SIZE +
*color_index; } else sf_color. index = *color_index;

xgl_object_set(*ctx,

154

XGL_CTX_SFONT, sfont,
XGL_CTX_SFONT_CHAR_HEIGHT, * font_s i ze,
XGL_CTX_SFONT_CHAR_UP_VECTOR, up_vector,
XGL_CTX_SFONT_CHAR_SPACING, * font_spacing,
XGL_CTX_SFONT_TEXT_COLOR, &sf_color,
XGL_CTX_LINE_COLOR, &sf_color, NULL);

text_pos.x = *x_pos, text__pos.y = *y_pos;

xgl_gcache_stroke_text (*gcache, *ctx, string , &text_pos,
NULL);
xgl_context_display_gcache(*ctx, *gcache, FALSE, TRUE);
xgl_context__post (*ctx, TRUE) ;

}
/****************
* gal_2d_unfilled_multicircle_() - a primitive drawing routine to draw
* a series of identically colored circles.*
* routines called - get_2d_ctx, xgl_object_set, xgl_multi_circle
****************i

void gal_2d_unfilled_multicircle_(color_index,num__cires, rad, x, y)
int *color_index,*num_circs;
float x[] , y [] ,rad[] ;
{ •

Xgl_2d_ctx
Xgl_color
Xgl_circle_list
Xgl_pt_f2d
int

*ctx;
color;
circle_list
center;
i ;

/* allocate memory for the coordinates to be processed */

if (!(circle_list.circles.f2d = (Xgl_circle_f2d
*)malloc(*num_circs*sizeof(Xgl_circle_f2d)))) {

printf("memory allocation request in
gal_2d_filled_polygon failed\n"); exit(l); }

/*
* get a smooth circle */

ctx = get_2d_ctx();

xgl_obj ect_set(*ctx, XGL_CTX_CURVE_APPROX, XGL_CURVE_METRIC_VDC,
XGL_CTX_CURVE_APPROX_VALUE, 1.0, NULL);

/* draw the circles */
circle_list.type = XGL_MULTICIRCLE_F2D;
circle_list.num_circles = *num_circs;
circle_list.bbox = 0;

for i=0; i<*num_circs; i++) {
circle_list,
circle_list,
circle_list.
circle_list,

circles
circles
circles
circles

f2d[i]
f2d [i]
f 2d [i]
f2d[i]

center.flag = 0;
center.x = x[i];
center.y = y[i];
radius = rad[i]; }

if (get_dbuf_on()) { color.index =
*color_index; } else color.index =

*color_index*COLOR_SIZE +
*color_index;

xgl_object_set (*ctx, ,
XGL_CTX_SURF_FRONT__FILL_STYLE, XGL_SURF_FILL_HQLLOW, XGL_CTX_SURF_FRONT_COLOR, ScCOlo

155

r, NULL);

xgl_multicircle(*ctx, &circle_list);
free(circle_list.circles.f2d);

/****************
* gal_2d_unfilled_multicircle_() - a primitive drawing routine to draw
* a series of identically colored circles.*
* routines called - get_2d_ctx, xgl_object_set, xgl_multi_circle ****************y

void gal_2d_filled_multicircle_(color_index,num_circs, radz xz y)
int *color_index, *num_circs;
float x[] z y [] zrad[] ;

Xgl_2d_ctx
Xgl_color
Xgl_circle_list
Xgl_pt_f2d
int

*ctx;
color;
circle_list
center;
i ;

/* allocate memory for the coordinates to he processed *I

if (!(circle_list.circles.f2d = (Xgl_circle_f2d
*)malloc(*num_circs*sizeof(Xgl_circle_f2d)))) {

printf("memory allocation request in
gal_2d_filled_polygon failed\n"); exit(l); }

/*
* get a smooth circle */

ctx = get_2d_ctx();

xgl_object_set(*ctx, XGL_CTX_CURVE_APPROXZ XGL_CURVE_METRIC_VDC,
XGL_CTX_CURVE_APPROX_VALUE, 1.0, NULL);

/* draw the circles */
circle_list.type = XGL_MULTICIRCLE_F2D;
circle_list.num_circles = *num_circs;
circle_iist.bbox = 0;

for =0; i<*num_circs; i++) {
circle_list.circles
circle_list.circles
circle_list.circles
circle_list.circles

f2d[i]
f2d[i]
f2d[i]
f2d[i]

center.flag = 0;
center.x = x[i];
center.y = y[iJ ;
radius = radfi]; }

if (gec_dbuf_on()) { color.index =
*color_index; } else color.index =

*color_index*COLOR_SIZE +
*color_index;

xgl_object_set (*ctxz XGL_CTX_SURF_FRONT_COLORZ &colorz NULL);

xgl_multicircle(*ctxz &circle_list);
free(circle_list.circles.f2d);

/**★★★**★**★*
* gal_2d_unfilled_multirectangle_() - a primitive drawing routine to
* draw a series of identically colored unfilled rectangles

156

* routines called - get_2d_ctx, xgl_object_set, xgl_multirectangle
************j

void gal_2d_unfilled_multirectangle_(color_index, num_rects, x, y)
int *color_index, *num_rects;
float x[] , y [] ;
{

Xgl_2d_ctx
Xgl_color
Xgl__rect_list
Xgl_pt_f2d
Xgl_rect_f2d
int

*ctx;
color;
rect_list;
center;
rects;
rect_pts, i, rect_inc;

/* allocate memory for the coordinates to he processed */

if .(! (rect_list .rects . f2d = (Xgl__rect_f2d
*)malloc(*num_rects*sizeof(Xgl_rect_f2d)))) {

printf("memory allocation request in
gal_2d_unfilled_multi_rectangle failed\n"); exit(l); }

* get a smooth circle */

ctx = get_2d_ctx () ;

/* draw the rectangles*/
rect_list.rect_type = XGL_MULTIRECT_F2D;
rect_list.num_rects = *num_rects;
rect_list.bbox = 0; rect_pts = 2*(*num_rects);

for (i=0; i<rect_pts;
rect_list.rects.f2d[i]
rect_list.rects.f2d[i]
rect_list.rects.f2d[i]
rect_list.rects.f2d[i]
rect_list.rects.f2d[i]

i++) { rect_inc = 2*i;
corner_min.flag = 0;
corner_min.x = x[rect_inc
corner_min.y = y[rect_inc
corner_max.x = x[++rect_ii
cornerjnax.y = y[rect_inc

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

xgl_object_set (*ctx,
XGL_CTX_SURF_FRONT_FILL_STYLE, XGL_SURF_FILL_HOLLOW, XGL_CTX_SURF_FRONT_COLOR,

r, NULL);
&colo

xgl_multirectangle(*ctx, &rect_list);
free(rect_list.rects.f2d);

/************
* gal_2d_filled_multirectangle_() - a primitive drawing routine to
* draw a series of identically colored filled rectangles
*
* routines called - get_2d_ctx, xgl_object_set, xgl_multirectangle************y

void gal_2d_filled_multirectangle_(color_index, num_rects, x, y)
int *color_index, *num_rects;
float x[], y[];
{ .

157

Xgl_2d_ctx
Xgl_color
Xgl_rect_list
Xgl_pt_f2d
Xgl_rect_f2d
int

*ctx;
color;
rect_list;
center;
rects;
rect_pts, i rect_inc;

/* allocate memory for the coordinates to be processed */

if (!(rect_list.rects.f2d = (Xgl_rect_f2d
*)malloc(*num_rects*sizeof(Xgl_rect_f2d)))) {

printf("memory allocation request in
gal_2d_unfilled_multi_rectangle failed\n“); exit(l); }

* get a smooth circle */

ctx = get_2d_ctx();

/* draw the rectangles*/
rect_list.rect_type = XGL_MULTIRECT_F2D;
rect_list.num_rects = *num_rects;
rect_list.bbox = 0; rect_pts = 2*(*num_rects);

for (i=0; i<rect_pts; i++) {
rect_inc = 2*i;
rect_list.rects.f2d[i].corner_min.flag = 0;
rect_list.rects.f2d[i].corner_min.x = x[rect_inc];
rect_list.rects.f2d[i].corner_min.y = y[rect_inc];
rect_list.rects.f2d[i].corner_max.x = x[++rect_inc];
rect_list.rects.f2d[i].corner_max.y = y[rect_inc]; }

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

xgl_object_set (*ctx, XGL_CTX_SURF_FRONT_COLOR, &color, NULL);

xgl_multirectangle(*ctx, &rect_list);
free(rect_list.rects.f2d);

158

/****************************
* This contour generator is based on Bruce Giles' which appeared in the
* June 1992 issue of Dr. Dobbs Journal, #189, Volume 17, Issue 6, pp. 44-46.
***************************j

#include
#include
#include
#include

<stdio .h>
<math.h>
<malloc.h>
cvalues.h>

#if defined (NEVER)
#include <ieeefp.h>
#else
#define NaN OxFFFFFFFF
#define isnanf(x) ((x) -- NaN)
#endif

typedef unsigned short ushort;
typedef unsigned char uchar;

#define DEFAULT_LEVELS 16

/*Mnemonics for
#define EAST
#define NORTH
#define WEST
#define SOUTH

contour line drawings*/
0
1
2
3

/* Mnemonics for relative data point positions */
#define SAME 0
#define NEXT 1
#define OPPOSITE 2
#define ADJACENT 3

/* Bit-mapped information in 'map' field */
#define EW_MAP 0x01
#define NS_MAP 0x02

void Polyline();
#define MXY_to_L(g,x,y) ((ushort) (y) * (g)->dim_x + (ushort) (x) + 1)
#define XY_to_L(g,x,y) ((ushort) (y) * (g)->dim_x + (ushort) (x))

typedef struct
{ :
float x,y;
} LIST;

typedef struct
{
short dim_x; /*dimensions of grid array */
short dim_y;
float max_value;
float min_value;
float mean;
float std;
short contour_mode; /* control variable */
float first_level; /* first (and subsequent) contour level*/
float step;
char format[2]; /* format of contour levels */
float *data; /* pointer to grid data */
char *map; /* pointer to 'in-use' map */
LIST *list; /* used by 'Polyline() */
ushort count;
} GRID;

159

typedef struct
{
short x,y;
uchar bearing;
} POINT;

void Contour();

int scaleDataO;
void startLine();

void startEdge();
void startlnterior();
void drawLine();

void marklnUse();
uchar facelnUseO;
float getDataPoint();

void gal_solid_contour_();
void initPointO;
void lastPoint();
uchar savePoint();
/*★***★*★★*★****»★*****★**★***★★*★**★*****★***★★****★***★★*★★***★★*★**★★★*★★/

* Ooops! I know the use of global variables is a no-no, but I decided that this
* was the quickest way of implementing a choice of line types. The XGL drawing
* procedures were patched onto the contour generator by Bruce Giles*************j

#include "contour.h"

static float *data_set;
static float xmin__plot, ymin_plot, xmax_plot, ymax_plot;

static int contour_color;
static float thick;
static short line_switch;
j**************

★ gal_solid_concour_() - draws a plot of solid contours, given the datafields,
dimensions of the uniformly spaced data field, the extremas of the dimensions,
★ the color and the thickness of the lines.
★
*************y

void
gal_solid_contour_(color, thickness, x_data, y_data, interval, xmin, xmax, ymin, ymax, dat
a)
float data[], *xmin, *ymin, *xmax, *ymax, *thickness;
int *x_data, *y_data, *color;
float * interval;

{
extern float *data_set, ymax_plot, ymin_plot, xmax_plot, ymax_plot;
double d_interval;

/* this flag determones whether the lines are to be solid or dotted */
extern short line_switch;

xmin_plot = *xmin;
ymin_plet = *vmin;
xmax__plct = *xmax;
ymax_plot = *ymax;

160

contour_color = *color;
thick = *thickness;
line_switch = 0;

data_set = data;
d_interval = (double) *interval;

Contour(dataz *x_data, *y_data, d_interval);
}

I**************
* gal_dotted_contour_() - draws dotted-line contours, given the datafields,
* dimensions of the uniformly spaced data field, the extremas of the dimensions
* the color and the thickness of the lines.
*
*************i

void
gal_dotted_contour_(data, x_data, y_data, interval, xmin, xmax, ymin, ymax,
color, thickness)
float data[], *xmin, *ymin, *xmax, *ymax, *thickness;
int *x_data, *y_data, *color;
float *interval;

{
extern float *data_set, ymax_plot, ymin_plot, xmax_plot, ymax_plot;
double d_interval;
extern short line_switch;

xmin__plot = *xmin;
ymih_plot = *ymin;
xmax_plot = *xmax;
ymax_plot = *ymax;

contour_color = *color;
thick = *thickness;
line_switch = 1;

data_set = data;
d_interval = (double) *interval;

Contour(data, *x_data, *y_data, d_interval);

/* getDataPoinr -- Return the value of the data point in the specified corner
* of the specified cell (the 'point' parameter contains the address of the
* top-left corner of the cell */

float
getDataPoint (grid, point, corner)
GRID *grid;
POINT *point;
uchar corner;
{

ushort dx, dy;
ushort offset;
float datapoint;

switch ((point->bearinc + corner) % 4)
{
case SAME : dx = 0; dy = 0; break;
case NEXT : dx = 0; dy = 1; break;
case OPPOSITE : dx = 1; dy = 1; break;
case ADJACENT : dx = 1; dy = 0; break;
}

161

offset = XY_to_L (grid, point->x + dx, point->y + dy);
if ((short)(point->x + dx) >= grid->dim_x 1 1

(short)(point->y + dy) >= grid->dim_y 1 1
(short)(point->x + dx) <011
(short)(point->y + dy) < 0)

{
return NaN;

}
else
{

/* why doesn't grid->data[offset work ???? */
return data_set[offset] ;

}

/* Polyline - draws the lines by calling GAL routines gal_2d_solid_line_
* and gal_2d_dotted_line_()
*/

void
Polyline(n, list)
int n;
LIST *list;
{

float *x, *y, thickness;
int color, num_pts;
extern int contour_color;
extern float thick;

x = (float *)malloc(n*sizeof(float));
y = (float *)malloc(n*sizeof(float));

if (n < 2)
return;

num_pts = n;
for (n = 0; n < num_pts; n++)

{
x[n] = xmax_plot*(list -> x) + xmin_plot;
y[n] = ymax_plot*(l - (list -> y)) + ymin_plot;
list++;
}
if (!line_switch)

gal_2d_solid_line_(&contour_color, &thick, &num_pts,
x, y) ;

else
gal_2d_dotted_line_(&contour_color, &thick, &num_pts,

x, y) ;

free(x), free(y);

/*****o**/

#include "contour.h"

* This contour generator is by Bruce Giles and appeared in the June 1992 issue
* of Dr. Dobbs Journal, #189, Volume 17, Issue 6, pp. 44-46.
*************************** j

void

162

Contour (data, dim_x, dim_y, inc
float
int

Mata;
dim_x;

int dim_y;
double inc;

{
GRID grid;

grid.data = data;
grid.dim_x = dim_x;
grid.dim_y = dim_y;

/* Allocate buffers used to contain contour information */
if ((grid.map = malloc ((dim_x +1) * dim_y)) == NULL)

{
• printf("contour generator unable to allocate memory\n");

free ((char *) grid.map);
exit(1);
}

grid, list = (LIST *) malloc (2*dim_x * dim__y*sizeof (LIST)) ;
if (grid.list == (LIST *) NULL)

{
printf("contour generator unable to allocate memory\n");
free ((char *) grid.map);
exit(1);
}

/* Check for uniformity, then generate field */
if (scaleData (&grid, inc, data))

startLine(&grid);

/* Release data structures */
free((char *) grid.map);
free((char *) grid.list);
}

int
scaleData(grid, inc, data)
GRID *grid;
double inc;
float Mata;
{

ushort i;
float step, level;
float sum, sum2, count;
float p, *v, r;
char *s;
short nl, n2;
int first, n;
long x;

sum = sum2 = count = 0.0;

first = 1;
s = grid->map;
v = data + grid->dim_x * grid->dim_y;

/* determine the max, min grid values and other statistical stuff */
for (i = 0; i < grid->dim_x * grid->dim_j/; i++, data+ + , v++, s+ +)

{
r = Mata;
sum += r;
sum2 += r*r;
count += 1.0;

if (first)

163

{
grid->max_value = grid->min__value = r;
first = 0;
}

else if (grid->max_value < r)
grid->max_value = r;

else if (grid->min_value > r)
grid->min_value = r;

}

grid->mean = sum/count;

/* check to ensure no uniformity */
if (grid->min_value == grid->max_value)

return 0;

grid->std = sqrt ((sum2 - sum*sum/count)/(count - 1.0));
if (inc > 0.0)

{
/* use specified increment */
step = inc;
n = (int) (grid->max_value-grid->min_value)/step + 1;

while (n > 40)
{
step *= 2.0;
n = (int) (grid->max_value - grid->min_value)/ step + 1;
}

• }
else

{
/* choose a reasonable number of levels */
n = (inc ==0.0) ? DEPAUL T_LEVELS : (short) fabs(inc);

step =4.0 * grid->std/(float) n;
p = pow(10.0, floor(logl0 ((double) step)));
step = p*floor ((step + p /2.0) /p) ;
}

nl = (int) floor (loglO (fabs (grid->max_value)));
n2 = -((int) floor (loglO (step)));

if (grid->max_value*grid->min_value < 0.0)
level = step*floor(grid->mean/step);

else
level = step*floor(grid->min_value/step);

level -= step*floor((float) (n-1)/ 2);

/* Back up to include additional levels, if necessacary */
while (level - step > grid->min_value)

level -= step;

grid->first_level = level;
grid->step = step;
return 1;

/* startLine() - locate first point of contour lines by checking edges of
gridded data set, then interior pooints, for each contour level. */

static void
startLine(grid)
GRID *grid;
{
ushort idx, i, edge;
double level;

164

for (idx = 0, level = grid->first_level; level < grid->max_value;
level += grid->step, idx++)
{

/* clear flags */
grid->contour_mode = (level >= grid->mean);
memset (grid->map, 0, grid->dim_x * grid->dim_y);

/* Check edges */
for (edge = 0; edge < 4; edge++)

startEdge(grid, level, edge);
/* Check for interior points */
startlnterior(grid, level);
}

}

/* startEdge -- For a specified contour level and edge of gridded data set,
check for (properly directed) contour line */

static void
startEdge(grid, level, bearing)
GRID *grid;
float level;
uchar bearing;
{

POINT pointl, point2;
float last, next;
short i, ds;

switch (pointl.bearing = bearing)
{
case EAST:

point1.x = 0;
pointl.y = 0;
ds = 1;
break;

case NORTH:
' point1.x = 0;

pointl.y = grid->dim_x - 2;
ds = 1 ;

' break;
case WEST:

point 1.x = grid->dim_x - 2;
pointl.y = grid->dim_y - 2;
ds = -1;
break;

case SOUTH:
point 1.x = grid->dim_x - 2;
pointl.y = 0;
ds = -1;
break;

}
switch(pointl.bearing)

{
/* Find first point with valid data */

case EAST:
case WEST:

next = getDataPoint (grid, &pointl, SAME);
memcpy ((char *) &point2, (char *) &pointl,

sizeof (POINT));
point2.x = -ds;

for (i = 1; i < grid->dim_y; i++,
pointl.y = point2.y + =ds)

{ .
last = next;

165

next = getDataPoint (grid, &pointl, NEXT);
if (last >= level && level > next)

{
drawLine (grid, fcpointl, level);
memcpy ((char *) fcpointl, (char *) &point2,
sizeof (POINT));
point1.x = point2.x + ds;
}

}
break;
/* Find the first point with valid data */
case SOUTH:
case NORTH:

next = getDataPoint (grid, fcpointl, SAME);
memcpy ((char *) &point2, (char *) &pointl,
sizeof(POINT));
point2.y += ds;

for (i = 1; i < grid->dim_x; i++,
pointl.x = point2.x +=ds)

{
last = next;
next = getDataPoint (grid, fcpointl, NEXT);

if (last >= level && level > next)
{
drawLine (grid, fcpointl, level);
memcpy ((char *) fcpointl, (char *) &point2,
sizeof (POINT));
pointl.y = point2.y - ds;
}

}
break;

static void
startInterior(grid, level)
GRID *grid;
float level;
{

POINT point;
ushort x,y;
float next, last;
for (x = 1; x < grid->dim_x - 1; x++)
{

. point.x = x;
point.y = 0;
point.bearing = EAST;
next = getDataPoint (grid, &point, SAME);
for (y = point.y; y < grid->dim_y; y++, point.y++)
{

last = next;
next = getDataPoint (grid, &point, NEXT);
if (last >= level && level > next)
{

if (’facelnUse (grid, &point, WEST))
{

drawLine (grid, &point, level);
point.x = x;
point.y = y;
point.bearing = EAST;

}
}

}

166

}

/* drawLine -- Given an initial contour point by either 'startEdge' or
* 'startlnterior', follow the contour until it encounters an edge or previously
* contoured cell */

static void
drawLine(grid, point, level)
GRID *grid;
POINT *point;
float level;
{

uchar exit_bearing;
uchar adj, opp;
float fadj, fopp;

initPoint (grid);

for (;;)
{
/* add current point to vector list. If either of the points
* is missing, return immediately (open contour) */

if (!savePoint (grid, point, level))
{

lastPoint (grid);
return;

}
/* Has the face of this cell been marked for use? If

so, then this is a closed contour */
if (facelnUse (grid, point, WEST))

{
lastPoint (grid);
return;
}

/* Examine adjacent and opposite corners of the cell;
* determine appropriate action */

marklnUse (grid, point, WEST);

fadj = getDataPoint (grid, point, ADJACENT);
fopp = getDataPoint (grid, point, OPPOSITE);

/* If either point is missing, return immediately (open contour) */
if (isnanf (fadj) || isnanf (fopp))

{
lastPoint (grid);
return;
}

adj = (fadj <= level) ? 2 : 0;
opp = (fopp >= level) ? 1 : 0;
switch (adj + opp)

{
/* Exit EAST face */
case 0:

marklnUse (grid, point, NORTH);
marklnUse (grid, point, SOUTH);
exit_bearing = EAST;
break;

/* Exit SOUTH face */
case 1:

marklnUse (grid, point, NORTH);
marklnUse (grid, point, EAST);
exit_bearing = SOUTH;
break;

167

/* Exit EAST face */
case 2:

marklnUse (grid, point, EAST);
marklnUse (grid, point, SOUTH);
exit_bearing = NORTH;
break;

/* Exit NORTH or SOUTH face, depending upon contour level *I
case 3:

exit_bearing = (grid->contour__mode) ? NORTH : SOUTH;
break;

}
/* update face number, coordinate of defineing corner */
point->bearing = (point->bearing + exit_bearing) % 4;
switch (point->bearing)

{
case EAST : point->x++; break;
case NORTH : point->y--,; break
case WEST : point->x--; break;
case SOUTH : point->y++,; break
}

/* initPoint -- Initialize the contour point list.
* see also savePoint, lastPoint */

static void
initPoint(grid)
GRID *grid;
{

grid->count = 0;
}

/* facelnUse -- Determine if the specified cell face has been marked as
* contoured. This necessary to prevent infinite processing of closed lines.

see also : see also marklnUse() */

static uchar
facelnUse(grid, point,face)
GRID *grid;
POINT *point;
uchar face;
{

uchar r;
face = (point->bearing + face) % 4;
switch (face)

{

+ (face == SOUTH ? 1

case NORTH:
case SOUTH:

r = grid->map[MXY_to_L(grid,
0))] & NS_MAP;

break;
case EAST:
case WEST:

point->x, point->y

r = grid->map[MXY_to_L(grid,
EAST ? 1 : 0), point->y)] & EW_MAP;

break;

point->x + (face ==

}
return r;

168

/* lastPoint -- Generate the actual contour line from the contour point
* list. see also savePoint, lasrPoint */

static void
lastPoint(grid)
GRID *grid;
{

if (grid~>count)
Polyline(grid->count, grid->list);

}

static uchar
savePoint(grid, point, level)
GRID *grid;
POINT *point;
float level;
{

float last, next;
float x, y, ds;
char s[80];

static int cnt = 0;

last = getDataPoint (grid, point, SAME);
next = getDataPoint (grid, point, NEXT);

/* Are the points the same value ? */
if (last == next)

{
printf (" x, y, hearing - %2d, %2d, %d#, point->x, point->y,

point-> bearing);
printf(" %8g, %8g ", last, next);
printf("potential divide by zero ! \n");
return 0;
}

x = (float) point->x;
y = (float) point->y;

ds = (float) ((last - level)/(last-next));

switch (point->hearing)
{
case EAST: y += ds; break;
case NORTH: x += ds; y += 1.0; break;
case WEST : x += 1.0; y += 1.0 - ds; break;
case SOUTH: x += 1.0 -ds; break;
}

/* Update to contour point list */
grid->list[grid->count].x = x/(float) (grid->dim_x -1);
grid->list[grid->count].y = y/(float) (grid->dim_y -1);

grid->count++;

return 1;

}

static void
marklnUse(grid, point, face)
GRID *grid;
POINT *point;
uchar face.;
{

169

face =
switch

(point->bearing + face) % 4;
(face)
{
case NORTH:
case SOUTH:

grid->map [MXY_to_L (grid,
point->x, point->y + (face == SOUTH ? 1 : 0))]

1= NS_MAP;
break;

case EAST:
case WEST:

grid->map[MXY_to_L (grid,
point->x + (face == EAST ? 1 : 0), point -> y)

1= EW_MAP;
break;

}
}

170

Appendix 2f - 3D Primitives

171

/*****************

* The following are the 3d Primitives for GAL
* Duncan Napier, McMaster University, Hamilton, Ontario, Canada
* October 1992
*
*****************/

#include "../include/xv.h"
#include "../include/color.h"

/*******************
* gal_3d__unf illed_sphere_() - this procedure draws a wireframe
* "sphere" from a set of three normal circles sharing a common
* centre.
******************j

void gal_3d_unfilled_sphere_(color_index, rad, x, y, z)
int *color_index;
float *rad, *x, *y, *z;
{

Xgl_3d_ctx
Xgl_color
Xgl_circle_list
Xgl_circle_f3d
int

*ctx;
color;
circle_list;
circs;
jz i;

/* define the circle planes */
static Xgl_pt_f3d vector [5][3] = {{{1.,0 .,0 .}, {0.,l.,0.},
{0.,0.,0.}}, {{l.,0.,0.}, {0.,0.,l.}, {0.,0.,0.}}, {{0.,l.,0.},
{0.,0.,l.}, {0.,0.,0.}}, {{0.70711,1.,0.70711}, {-0.7 0711,1.,-0.7 0711},
{-0.70711,0.70711,0.}}, {{-0.70711,1.,0.70711}, {0.70711,1.,-0.70711},
{0.70711,0.70711,0.}}};

/ allocate memory for the coordinates to be processed /

if (!(circle_list.circles.f3d = (Xgl_circle_f3d
*)malloc(5*sizeof(Xgl_circle_f3d)))) {

printf("\n \n memory allocation request in
gal_unfilled_sphere failed\n \n"); exit(l);

}

ctx = get_3d_ctx();

xgl_obj ect_set (*ctx, XGL_CTX_CURVE_APPROX, XGL_CURVE_METRIC_VDC,
XGL_CTX_CURVE_AP PROX_VALUE, 0.1,
XGL_CTX_MIN_TESSELLATION, 25,
XGL_CTX_MAX_TESSELLATION, 30, NULL);

/* draw the circles */
circle_list.type = XGL_MULTICIRCLE_F3D; circle_list.num_circles
= 5; circle_list.bbox = 0;

for (j = 0; j < 5; j++) {
circle_list.circles.f3d[j].dir_normalized = FALSE;
circle_list.circles.f3d[j].dir_normal = TRUE;
circle_list.circles.f3d[j].center.flag = 0;

for (i = 0; i < 3; i++) {
circle_list.circles.f3d[j].dir[i] vector [j] [i]; }

172

circle_list.circles
circle_list.circles
circle_list.circles
circle_list.circles

f3d[j].center.x = *x
f3d[j].center.y = *y
f3d[j].center.z = *z
f3d [j]. radius = *rad

}
if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

xgl_object_set(*ctx, XGL_CTX_SURF_FRONT_FILL_STYLE,XGL_SURF_FILL_HOLLOW,
XGL_CTX_SURF_FRONT_COLOR, &color, NULL);

xgl_multicircle(*ctx, &circle_list);
free(circle_list.circles.f3d); }

/*★***★*****************
★
* gal_3d_filled_sphere() - this draws an XGL annote circle, one that
* remains in the plane of the screen and is used to represent a
* parallel
* projected square.
*
************i

void gal_3d_filled_sphere_(color_index, radz x, y, z)
int *color_index;
float *radz *x, *y, *z;
{

Xgl_3d_ctx
Xgl_color
Xgl_circle_list
Xgl_circle_af3d

*ctx;
color;
circle_list;
circs;

/*
* get a smooth circle */

ctx = get_3d_ctx();

xgl_object_set(*ctx, XGL_CTX_CURVE_APPROX, XGL_CURVE_METRIC_VDC,
XGL_CTX_CURVE_APPROX_VALUE, 0.1,
XGL_CTX_MIN_TESSELLATION , 2 5,
XGL_CTX_MAX_TESSELLATION, 30, NULL) ;

/* draw the circles ★/
circle_list.type = XGL_MULTICIRCLE_AF3D;
circle_list.num_circles = 1;
circle_list.bbox = 0;
circs.center.flag = 1;
circs.center.x = *x; circs.center.y = *y;
circs.center.z = *z; circs.radius = *rad;

circle_list.circles.af3d = &circs; if (get_dbuf_on()) {
color.index = *color_index*COLOR_SIZE + *color_index;) else
color.index = *color_index;

/* set the edges on the soild circle */

xgl_object_set (*ctx,XGL_CTX_SURF_FRONT_COLOR, kcolor,
XGL_CTX_SURF_EDGE_FLAG, TRUE, XGL_CTX_EDGE_COLOR, &black_color,
NULL);

xgl_multicircle(*ctx, &circle_list);

173

/★**************★****
* gal_3d_solid_line_() - draws a solid line given the color, thickness,
* number of points and coordinates.*
* routines called - malloc, xgl_object_set, xgl_multipolyline.
*★***★★*★***★★•****** i

void gal_3d_solid_line_(color_index, thickness, num_pts, list_pts_x,
list_pts__y, list_pts_z)
float list_pts_x[], list_pts_y[], list_pts_z[],*thickness;
int *color_index, *num_pts;
{

Xgl_3d_ctx
Xgl_color
Xgl_pt__list
int

*ctx;
color;
line_pts
i ;

/* allocate memory for the coordinates to he processed */

if (!(line_pts.pts.f3d = (Xgl_pt_f3d
*)malloc(*num_pts*sizeof(Xgl_pt_f3d)))) {

printf("memory allocation request in gal_solid_line
failed\n"); exit(l); }

line_pts.pt_type = XGL_PT_F3D;
line_pts .num_pts = *num__pts;
line_pts.bbox = 0;

for (i=0; i<*num_pts; i++) {

' line_pts.pts.f3d[i].x = list_pts_x[i];
line_pts.pts.f3d[i].y = list_pts_y[i];
line_pts.pts.f3d[i].z = list_pts_z[i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_3d_ctx();

xgl_object_set(*ctx, XGL_CTX_LINE_WIDTH_SCALE_FACTOR,
*thickness, XGL_CTX_LINE_COLOR, &color, NULL);

xgl_multipolyline(*ctx, NULL, 1, line_pts);

free(line_pts.pts.f3d); }

/****************
* gal_3d_dotted_line_() - draws a dotted line given the color, thickness,
* number of points and coordinates.
*
* routines called - malloc, xgl_object_set, xgl_multipolyline.

void gal_3d_dotted_line_(color_index, thickness, num_pts, list_pts_x,
list_pts_y, list_pts_z)
float list_pts_x[], list_pts_y[], list_pts_z[], *thickness;
int *color_index, *num_pts;

174

{
Xgl_3d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
line_pts;
i ;

/* allocate memory for the coordinates to be processed */

if (!(line_pts.pts.f3d = (Xgl_pt_f3d
*)malloc(*num_pts*sizeof(Xgl_pt_f3d)))) {

printf("memory allocation request in gal_3d_dotted_line
. failed\n"); exit(l); }

line_pts.pt_type = XGL_PT_F3D; line_pts.num_pts = *num_pts;
line_pts.bbox = 0;

for (i=0; i<*num_pts; i++) {

line_pts.pts.f3d[i].x = list_pts_x[i];
line_pts.pts.f3d[i] .y = list_pts_^[i];
line_pts.pts.f3d[i].z = list_pts_z[i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_3d_ctx();

xgl_object_set(*ctx,
XGL_CTX_LINE_WIDTH_SCALE_FACTOR, *thickness,

. XGL_CTX_LINE_STYLE, XGL_LINE_PATTERNED,
XGL_CTX_LINE_PATTERN, xgl_lpat_dotted,
XGL_CTX_LINE_COLOR, &color, NULL);

xgl_multipolyline(*ctx, NULL, 1, line_pts);

free(line_pts.pts.f3d); }
j k-k-kk-kk-k-k-k-k-kifk-k

* gal_3d_dashed_line_() - draws a dashed line given the color, thickness,
* number of points and coordinates.*
* routines called - malloc, xgl_object_set, xgl_multipolyline.
**************i

void gal_3d_dashed_line_(color_index, thickness, num_pts, list_pts_x,
list_pts_y, list_pts_z)
float list_pts_x[], list_pts_y[], list_pts_z[], *thickness;
int *color_index, *num_pts;
{

Xgl_3d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
line_pts;
i ;

/* allocate memory for the coordinates to be processed */

175

if (!(line_pts.pts.f3d = (Xgl_pt_f3d
*)malloc(*num_pts*sizeof(Xgl_pt_f3d)))) {

printf("memory allocation request in gal_3d_dashed_line
failed\n"); exit(l); }

line_pts.pt_type = XGL_PT_F3D; line_pts.num_pts = *num_pts;
line_pts.bbox = 0;

for (i=0; i<*num_pts; i++) {

line_pts.pts.f3d[i] .x = list_pts_x[i];
line_pts.pts.f3d[i].y = list_pts_y [i] ;
1ine_pts.pts.f3d[i].z = list_pts_z[i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_3d_ctx();

xgl_obj ect_set(*ctx,
XGL_CTX_LINE_WIDTH_SCALE_FACTOR, *thickness,
XGL_CTX_LINE_STYLE, XGL_LINE_PATTERNED,
XGL_CTX_LINE_PATTERN, xgl_lpat_dashed,
XGL_CTX_LINE_COLOR, &color, NULL);

xgl_muItipolyline(*ctx, NULL, 1, line_pts);

free(line_pts.pts.f3d); }
I *************
* gal_3d_dash_dotted_line_ () - draws a dashed-dotted line given the color,
* thickness, number of points and coordinates.
*
* routines called - malloc, xgl_object_set, xgl_multipolyline.
★★★*■*★ j

void gal_3d_dash_dotted_line_(color_index, thickness, num_pts,
list_pts_x,. list_pts_y, list_pts_z)
float list__pts_x [] , list_pts_y [] , list_pts_z [] , *thickness;
int *color_index, *num_pts;

Xgl_3d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
line_pts
i;

/* allocate memory for the coordinates to be processed */

if (’(line_pts.pts.f3d = (Xgl_pt_f3d
*)malloc(*num_pts*sizeof(Xgl_pt_f3d)))) {

print f(’’\n \n memory allocation request in
gal_3d_dash_dotted_line failed\n \n"); exit(l);

line_pts .pt_type = XGL_PT_F3D; line__pts .num_pts = *num_pt;s;
line_pts.bbox = 0;

176

for (i=0; i<*num_pts; i++) {

line_pts.pts.f3d[i] .x = list_pts_x[i];
line_pts.pts.f3d[i] .y = list_pts_y [i] ;
line_pts.pts.f3d[i].z = list_pts_z[i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_3d_ctx();

xgl_object_set(*ctx,
XGL_CTX_LINE_WIDTH_SCALE_FACTOR, *thickness,
XGL_CTX_LINE_STYLE, XGL_LINE_PATTERNED,
XGL_CTX_LINE_PATTERN, xgl_lpat_dashed_dotted,
XGL_CTX_LINE_COLOR, &color, NULL);

xgl_multipolyline(*ctx, NULL, 1, line_pts);

free(line_pts.pts.f3d); }
j ***************

* gal_3d_dash_dot_line_() - draws a dashed-dotted line given the color,
* thickness, number of points and coordinates.*
* routines called - malloc, xgl_object_set, xgl_multipolyline. ***************/

void gal_3d_dash_dot_line_(color_index, thickness, num_pts, list_pts_x,
list_pts_y, list_pts_z)
float list_pts_x[], list_pts_y[], list_pts_z[], *thickness;
int *color_index, *num_pts;
{

Xgl_3d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
line_pts;
i ;

/* allocate memory for the coordinates to be processed */

if (!(line_pts.pts.f3d = (Xgl_pt_f3d
*)malloc(*num_pts*sizeof(Xgl_pt_f3d)))) {

printf("memory allocation request in gal_3d_dash_dot
line failed\n"); exit(l); }

line_pts.pt_type = XGL_PT_F3D; line_pts.num_pts = *num_pts;
line_pts.bbox = 0;

for (i=0; i<*num__pts; i++) {

line__pts .pts . f3d[i] .x = 1ist_pts_x[i];
line_pts.pts.f3d[i].y = list_pts_y[i];
line_pts.pts.f3d[i].z = list_pts_z[i];

177

if (get_dbuf_on ()) { color.index = *color_index*COLOR_SIZE +
*color__index; } else color.index = *color_index;

ctx = get_3d_ctx();

xgl_obj ect_set(*ctx,
XGL_CTX_LINE_WIDTH_SCALE_FACTOR, *thickness,
XGL_CTX_LINE_STYLE, XGL_LINE_PATTERNED,
XGL_CTX_LINE_PATTERN, xgl_lpat_dash_dot,

' XGL_CTX_LINE_COLOR, &color, NULL);

xgl_multipolyline(*ctx, NULL, 1, line_pts);

free(line_pts.pts.f3d); }

/**************
* gal_3d_dash_dot_dot_line_() - draws a dashed-dotted line given the color,
* thickness, number of points and coordinates.*
* routines called - malloc, xgl_object_set, xgl_multipolyline.
*************i

void gal_3d_dash_dot_dot_line_(color_index, thickness, num_pts,
list_pts_x, list_pts_y, list_pts_z)
float list_pts_x[], list_pts_y[], list_pts_z[], *thickness;
int *color_index, *num_pts;
{

Xgl_3d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
line_pts;
i ;

/* allocate memory for the coordinates to be processed */

if (’(line_pts.pts.f3d = (Xgl_pt_f3d
*)malloc (*num__pts*sizeof (Xgl_pt_f3d)))) {

printf("memory allocation request in
gal_3d_dash_dot_dot line failed\n"); exit(l); }

line_pts .pt_type = XGL_PT_F3D; line__pts .num_pts = *num_pts;
1ine_pt s.bbox = 0;

for (i=0; i<*num_pts; i++) {

1ine_pt s . pt s . f 3 d [i]
1ine_pt s.pt s.f3 d[i]
1ine_pt s.pt s.f3 d[i]

x = list_pts_x[i]
y = list_pts_y[i]
z = list_pts_z[i]

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_3d_ctx();

xgl_obj ect_set(*ctx,
XGL_CTX_LINE_WIDTH_SCALE_FACTOR, *thickness,
XGL_CTX_LINE_STYLE, XGL_LINE_PATTERNED,
XGL_CTX_LINE_PATTERN, xgl_lpat_dash_dot_dotted,
XGL_CTX_LINE_COLOR, &color, NULL);

178

xgl_multipolyline(*ctx, NULL, 1, line_pts);

free(line_pts.pts.f3d); }

/**************
* gal_3d_long_dash_line_() - draws a dashed-dotted line given the color,
* thickness, number of points and coordinates.
*
* routines called - malloc, xgl_object_set, xgl_multipolyline.
**************j

void gal_3d_long_dashed_line_(color_index, thickness, num_pts,
list_pts_x, list_pts_y, list_pts_z)
float list_pts_x[], list_pts_y[], list_pts_z[], *thickness;
int *color_index, *num_pts;
{

Xgl_3d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
line_pts;
i ;

/* allocate memory for the coordinates to be processed */

if (’(line_pts.pts.f3d = (Xgl_pt_f3d
*)malloc (*num_pts*sizeof (Xgl_pt_f3d)))) {

printf("memory allocation request in gal_3d_long_dashed
line failed\n"); exit(l); }

line_pts.pt_type = XGL_PT_F3D; line_pts.num_pts = *num_pts;
line_pts.bbox = 0;

for (i=0; i<*num_pts; i++) {

line_pts.pts.f3d[i].x = list_pts_x[i];
line_pts.pts.f3d[i].y = list_pts_y[i];

' line_pts.pts.f3d[i].z = list_pts_z [i]; }

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_3d_ctx();

xgl_obj ect_set(*ctx,
XGL_CTX_LINE_WIDTH_SCALE_FACTOR, *thickness,
XGL_CTX_LINE_STYLE, XGL_LINE_PATTERNED,
XGL_CTX_LINE_PATTERN, xgl_lpat_long_dashed,
XGL_CTX_LINE_COLOR, &color, NULL);

xgl_multipolyline(*ctx, NULL, 1, line_pts);

free(line_pts.pts.f3d); }

/****************
* gal_3d_cross_marker__ () - a routine to draw a given marker type. The
* user supplies the color, number of markers and their locations*
* routines called - malloc, xgl_obiect_set, xgl_muItimarker

179

*****************i

void gal_3d_cross_marker_(color_index, num_pts, list__pts_x, list_pts_y,
list_pts_z)
float list_pts_x[], list_pts_y[], list_pts_z[];
int *color_index, *num_pts;
{

Xgl_3d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
marker_pts
i ;

/* allocate memory for the coordinates to be processed */

if (!(marker_pts.pts.f3d = (Xgl__pt_f3d
*)malloc(*num_pts*sizeof(Xgl_pt_f3d)))) {

' printf("\n \n memory allocation request in
gal_3d_cross_marker failed\n \n"); exit(l); }

marker_pts.pt_type = XGL_PT_F3D; marker_pts.num_pts - *num_pts;
marker_pts.bbox = 0;

for (i=0; i<*num_pts; i++) {

marker_pts.pts.f3d[i]
marker_pt s.pt s.f3 d[i]
marker_pts.pts.f3d[i]

x = list_pts_x[i];
y = list_pts_y [i];
z = list_pts_z[i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_3d_ctx();

/* the marker size is defaulted to 10 pixels in size */
xgl_obj ect_set(*ctx,

XGL_CTX_MARKER_COLOR, &color,
XGL_CTX_MARKER_SCALE_FACTOR, 10.0,
XGL_CTX_MARKER_DESCRIPTION, xgl_marker_cross,
NULL);

xgl_multimarker(*ctx, marker_pts);

free(marker_pts.pts.f3d); }

/**************
* gal_3d__plus_marker_() - a routine to draw a given marker type. The
* user supplies the color, number of markers and their locations
*
* routines.called - malloc, xgl_object_set, xgl_muItimarker
★ *★**★*****-*•★** i

void gal_3d__plus_marker_(color_index, num_pts, list_pts_x, list_pts_y,
list_pts_z)
float list_pts_x[], list_pts_y[], list_pts_z[];
int *color_index, *num_pts;
{

180

Xgl_3d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
marker_pts
i ;

/* allocate memory for the coordinates to be processed */

if (!(marker_pts.pts.f3d = (Xgl__pt_f3d
*)malloc (*num__pts*sizeof (Xgl_pt_f3d)))) {

printf("\n \n memory allocation request in
gal_3d_plus_marker failed\n \nH); exit(l); }

marker_pts.pt_type = XGL_PT_F3D; marker_pts.num_pts = *num_pts;
marker_pts.bbox = 0;

for (i=0; i<*num_pts; i++) {

marker_pts.pts.f3d[i].x = list_pts_x[i];
marker_pts.pts.f3d[i].y = list_pts_y[i];
marker_pts.pts.f3d[i].z = list_pts_z[i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_3d_ctx();

/* the marker size is defaulted to 10 pixels in size */
xgl_obj ect_set(*ctx,

XGL_CTX_MARKER_COLOR, &color,
XGL_CTX_MARKER_SCALE_FACTOR, 10.0,
XGL_CTX_MARKER_DESCRIPTION, xgl_marker_plus,

’ NULL);

xgl_multimarker (*ctx, marker__pts);

free(marker_pts.pts.f3d); }
/*************
* gal_3d_asterisk_marker_() - a routine to draw a given marker type.
* The user supplies the color, number of markers and their locations
*
* routines called - malloc, xgl_object_set, xgl_multimarker
*************j

void gal_3d_asterisk_marker_(color_index, num_pts, list_pts_x,
list_pts_y, list_pts_z)
float list_pts_x[], list_pts_y[], list_pts_z[];
int *color_index, *num__pts;
{

Xgl_3d_ctx
Xgl_color
Xgl__pt_list
int

*ctx;
color;
marker_pts
i;

/* allocate memory for the coordinates to be processed */

if (!(marker_pts.pts.f3d = (Xgl_pt_f3d
*)malloc(*num_pts*sizeof(Xgl_pt_f3d)))) {

printf("\n \n memory allocation request in

181

gal_3d_asterisk_marker failed\n \n"); exit(l); }

marker_pts.pt_type = XGL_PT_F3D; marker_pts.num_pts = *num_pts;
marker_pts.bbox = 0;

for (i=0; i<*num^pts; i++) {

marker_pts.pts.f3d[i].x = list_pts_x[i];
marker_pts.pts.f3d[i].y = list_pts_y[i];
marker_pts.pts.f3d[i].z = list_pts_z[i];

}

if .(get_dbuf_on ()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_3d_ctx();

/* the marker size is defaulted to 10 pixels in size */
xgl_obj ect_set(*ctx,

XGL_CTX_MARKER_COLOR, &color,
XGL_CTX_MARKER_SCALE_FACTOR, 10.0,
XGL_CTX_MARKER_DESCRIPTION,
xgl_marker_asterisk, NULL);

xgl_multimarker(*ctx, marker_pts);

free(marker_pts.pts.f3d); }
/**************
* gal_3d_square_marker_() - a routine to draw a given marker type. The
* user supplies the color, number of markers and their locations*
* routines called - malloc, xgl_object_set, xgl_muItimarker
**************i

void gal_3d_square_marker_(color_mdex, numots
list_pts_y, list_pts.
float list_pts_x[],
int *color_index,
{

Xgl_3d_ctx
Xgl_color
Xgl_pt_list
int

z)
ist_pts_y [] , list_pts_z [] ;
*num_pts;

*ctx;
color;
marker_pts;
i ;

list_pts_x,

/* allocate memory for the coordinates to be processed */

if (!(marker_pts.pts.f3d = (Xgl_pt_f3d
*)malloc(*num_pts*sizeof(Xgl_pt_f3d)))) {

printf("\n \n memory allocation request in
gal_3d_square_marker failed\n \n"); exit(l); }

marker_pts.pt_type = XGL_PT_F3D; marker_pts.num_pts = *num_pts;
marker_pts.bbox = 0;

for (i=0; i<*num__pts; i + +) {

marker_pts.pts.f3d[i].x = list_pts_x[i];
marker_pts.pts.f3d[i].y = list_pts_y [i];
marker_pts.pts.f3d[i].z = list_pts_z[i];

182

}
if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_3d_ctx();

/* the marker size is defaulted to 10 pixels in size */
xgl_object_set(*ctx,

XGL_CTX_MARKER_COLOR, &color,
XGL_CTX_MARKER_SCALE_FACTOR, 10.0,
XGL_CTX_MARKER_DESCRIPTION, xgl_marker_square,
NULL);

xgl_multimarker(*ctx, marker_pts);

free(marker_pts.pts.f3d); }
I * * * * * * ★ * ★ * ★ *
* gal_3d_circle_marker_() - a routine to draw a given marker type. The
* user supplies the color, number of markers and their locations*
* routines called - malloc, xgl_object_set, xgl_multimarker
************i

void gal_3d_circle_marker_(color_index, num__pts,
list__pts_y, list_pts_z)
float list_pts_x[], list_pts_y[], list_pts_z[];
int *color_index, *num_pts;
{

list_pts_x,

Xgl_3d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
marker_.pt s
i;

/* allocate memory for the coordinates to be processed */

if (!(marker_pts.pts.f3d = (Xgl_pt_f3d
*)malloc(*num_pts*sizeof(Xgl_pt_f3d)))) {

printf(”\n \n memory allocation request in
gal_3d_circle_marker failed\n \n“); exit(l); }

marker_pts.pt_type = XGL_PT_F3D; marker_pts.num_pts = *num_pts;
marker__pts .bbox = 0;

for (i=0; i<*num_pts; i++) {

marker_pts.pts.f3d[i].x = list_pts_x[i];
marker_pts.pts.f3d[i].y = list_pts_y[i];
marker_pts.pts.f3d[i].z = list_pts_z[i];

}

if (get_dbuf_on()) { color.index - *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_3d__ctx () ;

/* the marker size is defaulted to 10 pixels in size */
xgl_object_set(*ctx,

XGL_CTX_MARKER_COLOR, &color,
XGL_CTX_MARKER_SCALE_FACTOR, 10.0,
XGL_CTX_MARKER_DESCRIPTION, xgl_marker_circle,

183

NULL);

xgl__multimarker (*ctx, marker_pts);

free(marker_pts.pts.f3d); }

/******************
* gal_3d_text_annote_() - draws a string of text to the screen. The user
* supplies the string, font size, font (i.e. the name of the XGL font file),
* the spacing between letters, the orientation and the color
*
* routines called - xgl_object_set, xgl_annote_text;
*******************j

void gal_3d_text_annote_(color_index, string, font_size, font,
font_spacing, x_pos, y_pos, z_pos, x_vector, y_vector, str_len,
font_len)
float *font_size, *font_spacing, *x_pos, *y_pos, *z_pos, *x_vector, *y_vector;
int *color_index, str_len, font_len;
char *string ,*font;
{

Xgl_sfont sfont;
Xgl_obj_desc obj_desc;
Xgl_pt_f3d text_pos;
Xgl_pt_f2d up_vector;
Xgl_color sf_color;
Xgl_3d_ctx *ctx;
char *font_copy;
Xgl_gcache *gcache;
static Xgl_pt_f3d dir[2] = { {1., 0., 0.}, {0., 1., 0.}};

ctx = get_3d_ctx();
gcache = get_gcache();

if (!(font_copy = malloc(80))){
printf("\n \n memory allocation request in
gal_3d_text_annote failed\n \n");
exit(l); }

(void) nullcpy(font_copy, font, font_len);

/* append the '.phont' font file extension to the font
* name. */

(void) strcat(font_copy, ".phont");

if (!(obj_desc.sfont_name = (char *)malloc(80))) {
' printf("memory allocation request in gal_3d_text_annote

failed\n"); exit(l); }

strcpy(obj_desc.sfont_name,font_copy) ;

free(font_copy);

sfont = xgl_object_create (*ctx, XGL_SFONT, &obj_desc, NULL);

free(obj_desc.sfont_name);

up_vector.x = *x_vector; up_vector.y = *y_vector;

if (get_dbuf_on()) { sf_color.index = *color_index*COLOR_SIZE +
*color_index; } else sf_color.index = *color_index;

184

xgl_object_set (*ctx,
XGL_CTX_SFONT, sfont,
XGL_CTX_SFONT_CHAR_HEIGHT, * font_s i ze,
XGL_CTX_SFONT_CHAR_SPACING, *font_spacing,
XGL_CTX_SFONT_CHAR_UP_VECTOR, up__vector,
XGL_CTX_SFONT_TEXT_COLOR, &sf_color,
XGL_CTX_LINE_COLOR, &sf_color, NULL);

text_pos.x = *x_pos, text_pos.y = *y_pos, text_pos.z = *z_pos;

xgl_gcache_stroke_text (*gcachez *ctx, string , fctext__pos,
dir) ;
xgl_context_display_gcache(*ctx, *gcache, FALSE, TRUE);
xgl_context_post(*ctxz TRUE);

/**************
* gal_3d_real_annote_() - draws a string of text to the screen. The
* user supplies the string, font size, font (i.e. the name of the XGL
* font file), the spacing between letters, the orientation and the color*
* routines called - xgl_object_set, xgl_annote_text;
***************i

void gal_3d_real_annote_(color_index, real, log, mantissa, font_size,
font, font_spacing, x_pos, y_pos, z_pos, x_vector, y_vector, font_len)
float *font_size,*font_spacing,*x_pos,*y_pos,*z_pos,*x_vector,*y_vector,*real;
int *color_index, font_len, *mantissa, *log;
char *font;
{

char string [20];
Xgl_sfont sfont;
Xgl_obj_desc obj_desc;
Xgl_pt_f3d text_pos;
Xgl_pt_f2d up_vector;
Xgl_color sf_color;
Xgl_3d_ctx *ctx;
char *font_copy,format[20];
Xgl_gcache *gcache;
static Xgl_pt_f3d dir[2] {1., 0., 0.}, [0., 1., 0.}};

ctx = get_3d_ctx(); gcache = get_gcache();

if (!(font_copy - malloc(80))) {
printf("memory allocation request in gal_3d_real_annote
failed\n"); exit(l); }

(void) nullcpy(font_copy, font, font_len);

/* append the '.phont' font file extension to the font
* name. */

(void) strcat(font_copy, ".phont");

if (’(obj_desc.sfont_name = (char *)malloc(80))) {
printf("\n \n memory allocation request in
gal_3d_text_annote failed\n \n");
exit(1); }

strcpy(obj_desc.sfont_name,font_copy) ;

free (font__copy) ;

185

sfont = xgl_object_create (*ctx, XGL_SFONT, &obj_desc, NULL);

free(obj_desc.sfont_name);

sprintf(format, "%%%d.%df“, *log, *mantissa); sprintf(string,
format, *real);
up_vector.x = *x_vector;
up_vector.y - *y_vector;

if (get_dbuf_on()) {
sf_color.index = *color_index*COLOR_SIZE +
*color_index; } else sf_color.index = *color_index;

xgl_object_set(*ctx,
XGL_CTX_SFONT, s font,
XGL_CTX_SFONT_CHAR_HEIGHT, * font_si ze,
XGL_CTX_SFONT_CHAR_SPACING, * font_spacing,
XGL_CTX_SFONT_CHAR_UP_VECTOR, up_vector,
XGL_CTX_SFONT_TEXT_COLOR, &s f_color,
XGL_CTX_LINE_COLOR, &sf_color, NULL);

text_pos.x = *x_pos, text_pos.y = *y_pos, text_pos.z = *z__pos

xgl gcache stroke text (*gcache,
dir) ;
xgl context display gcache(*ctx,
xgl_context_post (*ctx, TRUE) ;

*ctx, string , &text_pos,

*gcache, FALSE, TRUE);

}

* gal_3d_axes_() - draws x, y and axes given maxima, minima and increments
★
* procedures called - gal_3d_solid_line_()****************/

void gal_3d_axes_(color_index, xmin, xmax, ymin, ymax, zmin, zmax,
x_interval, y_interval, z_interval)
float *xmin, *xmax, *ymin, *ymax,*zmin, *zmax;
float *x_interval, *y_interval,*z_interval;
int *color_index;
{
extern float axis_thickness, zero;
extern int axis_num_pts;
float list_pts_x[2] , list__pts_y [2] , list_pts_z [2] ;
float *xmin_new, *ymin_new, *zmin_new;
float tic_x> tic_v, tic_z,tic_start, tic_fin;
int ntics, i;

/* If the extremeties of the axes cross the origin, make the
axis lie on the origin */

if ((*ymax > 0.) && (*ymin < o.)) ymin_ new = &zero
else ymin_new = ymin;

if ((*xmax > 0.) && (*xmin < 0.)) xmin_ new = &zero
else xmin_new = xmin;

if ((* zmax > 0.) && (*zmin < 0.)) zmin_.new = &zero
else zmin_new = zmin;

/* Draw the x-axis */
list_pts_x[O] = *xmin;
list_pts_x[1] = *xmax;
list_pts_y[0] = *ymin_new;

186

list_pts_y[1] = *ymin_new;
list_pts_z[0] = *zmin_new;
list_pts_z[1] = *zmin_new;

gal_3d_solid_line_(color_indexz &axis_thickness, &axis_num__pts,
list_pts_xz list_pts__yz list_pts_z);

/* Draw the y-axis */
list_pts_x[0] = *xmin_new;
list_pts_x[l] = *xmin_new;
list_pts_y [0] = *ymin;
list_pts_y[1] = *ymax;

gal_3d_solid_line_(color_indexz &axis_thickness, &axis_num_ptsz
list_pts_xz list_pts_yz list_pts_z);

/* Draw the z-axis */
list_pts_y[0] = *ymin_new;
list_pts_y [1] = *ymin_new;
list_pts_z[0] = *zmin;
list_pts_z[1] = *zmax;

gal_3d_solid_line_(color_indexz &axis_thickness, &axis_num_ptsz
list_pts_xz list_pts_yz list_pts_z);

/* calculate the size of the tics (1/50 the axis length) */
tic_x - (*ymax - *ymin)/50;
tic_y = (*xmax - *xmin)/50;
tic_z = (*ymax - *ymin)/50;

/* calculate the number of x-axis tics */
ntics = (int) ((*xmax-*xmin)/ *x_interval);

/* calculate the y coordinates of the tics */
tic_start = *ymin_new - tic_x;
tic_fin = *ymin_new + tic_x;

/* draw the n+1 tics */
for (i = 0; i <= (ntics+1); i++) {

list_pts_x[l] = list_pts_x[0] = *xmin + i*(*x_interval);
list_pts_z[1] = list_pts_z[0] = *zmin_new;
list_pts_y[0] = tic_start; list_pts_y[1] = tic_fin;

' gal_3d_solid_line_(color_indexz &axis_thickness, &axis_num_ptsz list_pts_x
, list_pts_y,list_pts_z);

}

/* calculate the number of y-axis tics */ ntics = (int)
((*ymax-*ymin)/ *y_interval);

/* calculate the y coordinates of the tics */ tic_start -
*xmin_new - tic_y; tic_fin = *xmin_new + tic_y;

/* draw the n+1 tics */
for (i = 0; i <= (ntics+1); i++) {

list_pts_y[1] = list_pts_y[0] = *ymin + i*(*y_interval);
list_pts_z[1] - list_pts_z[0] = *zmin_new;
list_pts_x[0] = tic_start; list_pts_x[1] = tic_fin;
gal_3d_solid_line_(coior_indexz &axis_thickness, &axis_num_ptsz

list_pts_xz list_pts_yzlist_pts_z);
}

/* calculate the number of z-axis tics */ ntics = (int)
((*zmax-*zmin)/ *z_interval);

187

/* calculate the y coordinates of the tics */ tic_start =
*ymin_new - tic_z; tic_fin = *ymin_new + tic_z;

/* draw the n+1 tics */
for (i = 0; i <= (ntics+1); i++) {

list_pts_z[1] = list_pts_z[0] = *zmin + i*(*z_interval);
list_pts_x[l] = list_pts_x[0] = *xmin_new;
list_pts_y[0] = tic_start;
list_pts_y [1] = tic_fin;
gal_3d_solid_line_(color_index, &axis_thickness,
&axis_num_pts, list_pts_x, list_pts_y, list_pts_z);

}
/***************
* gal_quadrilateral_mesh_() - draws a quadrilteral mesh given the color
* the number or rows, number of columns of data and a vector containing
* ordered triplets of x,y,z coordinates.*
* procedures called - malloc, get_3d_ctx, xgl_object_set,
* xgl_quadrilateral_mesh
**************i

void gal_quadrilateral_mesh_(color_index, row_index, column_index,
num_pts, mesh)
int *column_index, *row_index, *num_pts, *color_index;
float mesh[];
{

Xgl_3d_ctx *ctx3d;
Xgl_pt_list pi;
Xgl_color color;
int i, j, k;

/* allocate memory for the coordinates to be processed */

if (!(pl.pts.f3d = (Xgl_pt_f3d
*)malloc(*column_index*(*row_index)*sizeof(Xgl_pt_f3d)))) {

printf("memory allocation request in gal_quadrilateral_mesh
failed\n"); exit(l); }

/* set the type and pointers to the coordinates */ pl.pt_type =
XGL_PT_F3D; pi.bbox = NULL; pl.num_pts = *num_pts;

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

/* allocate every third vector element to a new pl.pts.f3d */
3=0;
for (i=0; i< (*column_index)*(*row_index) ; i++) {

pi.pts.f3d[i].x = mesh[j++]; pi.pts.f3d[i].y =
mesh[j++] ; pi .pts . f3d [i] . z = mesh[j++];

}

ctx3d = get_3d_ctx() ;

xgl_obj ect_set(*ctx3d,
XGL_CTX_SURF_FRONT_FILL_STYLE,
XGL_SURF_FILL_HOLLOW, XGL_CTX_SURF_FRONT_COLOR,
kcolor, NULL);

xgl_quadrilateral_mesh(*ctx3d,*row_index,*column_index,NULL,pi);

188

free(pl.pts.f3d); }

/***************
* gal_quadrilateral_surface_ () - draws a quadrilteral surface given the color
* the number or rows, number of columns of data , a vector containing
* ordered triplets of x,y,z coordinates and a listing of every color of every
* quad on the surface.
*
* procedures called - malloc, get_3d_ctx, xgl_object_set,
* xgl_quadrilateral_mesh
**************j

void gal_quadrilateral_mesh_(color_index, row_index, column_index,
num_pts, mesh, color_list)
int *column_index, *row_index, *num_pts, *color_index;
float mesh[];
int color_list[];
{

Xgl_3d_ctx
Xgl_facet_list
Xgl_pt_list
Xgl_color
int i,

*ctx3d;
facet_list
pl;
color;

/* allocate memory for the coordinates to be processed */

if (!(pl.pts.f3d = (Xgl_pt_f3d
*)malloc(*column_index*(*row_index)*sizeof(Xgl_pt_f3d)))) {

printf("memory allocation request in gal_quadrilateral_mesh
failed\n"); exit(l); }

if (!(facet_list.facets.color_facets = (Xgl_color_facet
*)malloc((*column_index-l)*{*row_index-l)*sizeof
(Xgl_color_facet)))) {printf("memory allocation request in
gal_quadrilateral_surface failed\n"); exit(l); }

/* double buffer the facet list if the double buffer is set */
if (get_dbuf_on()) { for
(i = 0; i < facet_list.num_facets; i++) {

facet_list.facets.color_facets[i].color.index =
color_list[i]*COLOR_SIZE + color_list[i];

}
}

else { for (i - 0; i < facet_list.num_facets; i++) {
facet_list.facets.color_facets[i].color.index = color_list [i] ;

}
}

/* set the type and pointers to the coordinates */ pl.pt_type =
XGL_PT_F3D; pl.bbox = NULL; pl.num_pts = *num_pts;

/* set the facet_list members */
facet_list.facet_type = XGL_FACET_COLOR;
facet_list.num_facets = (*row_index-l)*(*column_index-l);

if ' (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

/* allocate every third vector element to a new pl.pts.f3d */
j = 0;
for (i=0; i< (*column_index)*(*row_index) ; i++) {

pl.pts.f3d[i].x = mesh[j++]; pl.pts.f3d[i].y =

189

mesh[j++]; pi.pts.f3d [i] . z = mesh[j++];

}

ctx3d = get_3d_ctx();

xgl_object_set(*ctx3dz
XGL_CTX_SURF__EDGE_FLAG, TRUE,
XGL_CTX_EDGE_COLOR, &color,
NULL) ;

xgl_quadrilateral_mesh(*ctx3dz*row_index, *column_index, facet_list,pl);

free(pi.pts.f3d);

free(facet_list.facets.color_facets);}

/***************
* gal_3d_unfilled_polygon_()- draws a polygon from a list of 3d
* points.*
* procedures called - mallocz xgl_object_set, xgl_polygon
***************i

void gal_3d_unfilled_polygon_(color_indexz num_ptsz
list_pts_y, list_pts_z)
float list_pts_x[], list_pts_y[]z list_pts_z[];
int *color_indexz *num__pts;
{

list_pts_xz

Xgl_3d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
poly_pts
i ;

/* allocate memory for the coordinates to be processed */
if (!(poly_pts.pts.f3d = (Xgl_pt_f3d
*)malloc(*num_pts*sizeof(Xgl_pt_f3d)))) {

printf("\n \n memory allocation request in
gal_filled_polygon failed\n \n"); exit(l); }

poly_pts.pt_type = XGL_PT_F3D; poly_pts.bbox = NULL;
poly_pts.num_pts = *num_pts;

/* assign the vertices to their individual points */

for (i=0; i<*num_pts; i++) {

poly_pts.pts.f3d[i].x = list_pts_x[i];
poly_pts.pts.f3d(i].y = list_pts_y[i];
poly_pts.pts.f3d[i].z = list_pts_z[i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_3d_ctx();

xgl_obj ect_set
(*ctx,XGL_CTX_SURF_FRONT_FILL_STYLE,XGL_SURF_FILL_HOLLOW,XGL_CTX_SURF_FRONT_COLOR,

&color, NULL);

xgl__polygon (*ctxz XGL_FACET_NONE, NULL, NULL, 1, poly_pts);

free(poly_pts.pts.f3d); }

190

/***************
* gal_3d_filled_polygon_()- draws a polygon from a list of 3d
* points.

* procedures called - malloc, xgl_object_set, xgl_polygon
***************i

void gal_3d_filled_polygon_(color_index, num_pts,
list_pts_y, list_pts_z)
float list_pts_x[], list_pts_y[], list_pts_z[};
int *color_index,*num_pts;
{

list_pts_xz

Xgl_3d_ctx
Xgl_color
Xgl_pt_list
int

*ctx;
color;
poly_pts
i ;

/* allocate memory for the coordinates to be processed */
if (!(poly_pts.pts.f3d = (Xgl_pt_f3d
*)malloc(*num_pts*sizeof(Xgl_pt_f3d)))) {

printf("\n \n memory allocation request in
gal_filled_polygon failed\n \n'*); exit(l); }

poly_pts.pt_type = XGL_PT_F3D; poly_pts.bbox = NULL;
poly_pts.num_pts = *num_pts;

/* assign the vertices to their individual points */

for (i=0; i<*num_pts; i++) {

poly_pts.pts.f3d[i].x = list_pts_x[i] ;
poly_pts.pts.f3d[i].y = list_pts_y[i];
poly_pts.pts.f3d[i].z = list_pts_z[i];

}

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

ctx = get_3d_ctx () ;

xgl_obj ect_set
(*ctx,XGL_CTX_SURF_FRONT_COLOR,&color, NULL) ;

xgl_pclygon (*ctx, XGL_FACET_NONE, NULL, NULL, 1, poly_pts);

free(poly_pts.pts.f3d) ; }

/****************
* gal_3d_filled_multisphere() - a primitive drawing routine to draw a
* series of identically colored spheres.
*
* routines called - get_3d_ctx, xgl_object_set, xgl_multi_circle
****************t

void gal_3d_filled_multisphere_(color_index,num_circs, rad, x, y, z)
int *color__index, *num_circs;
float x[] , y[] ,z[] , rad[] ;
{

Xgl_3d_ctx
Xgl_color
Xgl_circle_list

*ctx;
color;
circle__list;

191

int i ;

/* allocate memory for the coordinates to be processed */

if (!(circle_list.circles.af3d = (Xgl_circle_af3d
*)malloc(*num_circs*sizeof(Xgl_circle_af3d)))) {

printf("\n \n memory allocation request in
gal_3d_filled_multisphere failed\n \n"); exit(l); }

/*
* get a smooth circle */

ctx = get_3d_ctx();

xgl_object_set(*ctx, XGL_CTX_CURVE_APPROX, XGL_CURVE_METRIC_VDC,
XGL_CTX_CURVE_APPROX_VALUE, 0.1,
XGL_CTX_MIN_TESSELLATION, 25,
XGL_CTX_MAX_TESSELLATION, 30, NULL);

/* draw the circles */
circle_list.type = XGL_MULTICIRCLE_AF3D;
circle_list.num_circles = *num_circs; circle_list.bbox = 0;

for (i=0; i<*num_circs; i+
circle_list.circles
circle_list.circles
circle_list.circles
circle_list.circles
circle_list.circles

•) {
af3d[i].center.flag = 1;
af3d[i].center.x = x[i];
af3d[i] .center.y = y[i] ;
af3d[i] .center. z = z[i] ;
af3d[i].radius = rad[i]; }

if (get_dbuf_on()) { color.index
*color_index; } else color.index

*color_index*COLOR_SIZE +
*color_index;

xgl_object_set (*ctx, XGL_CTX_SURF_FRONT_COLOR, &color,
XGL_CTX_SURF_EDGE_FLAG, TRUE, XGL_CTX_EDGE_COLOR, &black_color,
NULL) ;

xgl_multicircle(*ctx, &circle_list);

free(circle_list.circles.af3d) ;

}
/*********************

* gal_3d__unfilled_multisphere_() - this procedure draws a wireframe
* "sphere" from a set of three normal circles sharing a common centre.
*
*******************j

void gal_3d_unfilled_multisphere_(color_index, num_spheres, rad, x, y,
z)
int *color_index, *num_spheres;
float rad[] , x[], y[], z[] ;

Xgl_3d_ctx
Xgl_color
Xgl_circle_list
Xgl_circle_f3d
int

*ctx;
color;
circle_list;
circs;
j,i,k, count

/* define the circle planes */
static Xgl_pt_f3d vector{5][3) = {{{1.,0.,0.}, {0.,l.,0.},

{0.,0.,0.}}, {{l.,0.,0.}, {0.,0.,l.}, {0.,0.,0.}}, {{0.,l.,0.},
{0.,0.,l.}, {0.,0.,0.}}, {{0.70711,1.,0.70711), {-0.70711,1.,-0.70711),
{-0.70711,0.70711,0.)}, {{-0.70711,1.,0.70711), {0.70711,1.,-0.70711},

192

{0.70711,0.70711,0.}}};

/* allocate memory for the coordinates to be processed */

if (!(circle_list.circles.f3d = (Xgl_circle_f3d
)malloc(5(*num_spheres)*sizeof(Xgl_circle_f3d)))) {

printf("memory allocation request in
gal_unfilled_sphere failed\n"); exit(l);

}

ctx = get_3d_ctx();

xgl_obj ect_set (*ctx, XGL_CTX_CURVE_APPROX, XGL_CURVE_METRIC_VDC,
XGL_CTX_CURVE_APPROX_VALUE, 0.1,
XGL_CTX_MIN_TESSELLATION, 2 5,
XGL_CTX_MAX_TESSELLATION, 30, NULL);

/* draw the circles */
circle_list.type = XGL_MULTICIRCLE_F3D;
circle_list.num_circles = 5*(*num_spheres);
circle_list.bbox = 0;

k = 0;
for (j = 0; j < circle_list.num_circles;) {

for (count = 0; count < 5;count++) {

circle_list.circles.f3d[j].dir_normalized =
FALSE; circle_list.circles.f3d[j].dir_normal =
TRUE; circle_list.circles.f3d[j].center.flag =
0;

for (i = 0; i < 3; i++) {
circle_list.circles.f3d[j].dir[i] =
vector[count][i];

}
circle_list.circles.f3d[j].center.x = x[k];
circle_list.circles.f3d[j].center.y = y[k];
circle_list.circles.f3d[j].center.z = z[k];
circle_list.circles.f3d[j].radius = rad[k];
j++;

} k++; }

if (get_dbuf_on()) { color.index = *color_index*COLOR_SIZE +
*color_index; } else color.index = *color_index;

xgl_object_set (*ctx,
XGL_CTX_SURF_FRONT_FILL_STYLE,XGL_SURF_FILL_HOLLOW,XGL_CTX_SURF_FRONT_COLOR,

r, NULL);

xgl_multicircle (*ctx, &circle_list);

free(circle_list.circles.af3d);
}

&colo

193

References

MACLEN86 Maclennan, B.J., Principles of Programming Languages, 2nd Ed.,
Holt, Reinhart and Winston Inc., Fort Worth, Texas, 1987.

FOLEY90 Foley, J.D., A. van Dam, S.K. Feiner, J.F. Hughes, Computer
Graphics : Principles and Practice, Addison-Wesley, Reading,
Massachusetts, 1990.

HELLER92 Heller, D., O’Reilly and Associates Inc. Volume Seven: Xview Pro
gramming Manual, O’Reilly and Associates , Sebastopol,
California, 1990.

HOLLUB87 Hollub, A.E., The C Companion, Prentice-Hall Software Series,
Englewood Cliffs, New Jersey, 1987.

KNUTH74 Knuth, D.K., “Structured Programming with GOTO Statements”,
Computing Surveys 6, December 1974, pp.261 - 301.

KNUTH89 Knuth, D.K., “The Errors of Tf?X”, Software - Practice and Exp
erience 19, John Wiley and Sons, New York, New York, 1989, pp.
607-685.

LOUK90 Loukides, M., Unix for FORTRAN Programmers, Nutshell Hand
books, O’Reilly and Associates , Sebastopol, California, 1990.

POUNTA89 Pountain, D., “The X Window System”, Byte, January, 1989, pp.
353.

JONES89 Jones, 0., Introduction to the X Window System, Prentice-Hall,
Englewood Cliffs, New Jersey, 1990.

SUN90 Sun FORTRAN User’s Guide, Part No: 800-3417-10, Revision A, 16
March, 1990, Sun Microsystems Inc., Mountain View, California,
1990.

TORBO88 Torborg, J.G., “A Parallel Processor Architecture for Graphics
Arithmetic Operations”, Computer Graphics, Volume 21, 4, 1987,
pp. 197-204.

194

XGL91 XGL 2.0 Reference Guide, Part No: 800-5732-10, Revision A, 4
October, 1991, Sun Microsystems Inc., Mountain View, California,
1991.

XGL91A XGL 2.0 Software Installation Guide, Part No: 800-5733-10, Revision
A, 4 October, 1991, Sun Microsystems Inc., Mountain View,
California, 1991.

	napier_duncan_1992Dec_masters0001
	napier_duncan_1992Dec_masters0002
	napier_duncan_1992Dec_masters0003
	napier_duncan_1992Dec_masters0004
	napier_duncan_1992Dec_masters0005
	napier_duncan_1992Dec_masters0006
	napier_duncan_1992Dec_masters0007
	napier_duncan_1992Dec_masters0008
	napier_duncan_1992Dec_masters0009
	napier_duncan_1992Dec_masters0010
	napier_duncan_1992Dec_masters0011
	napier_duncan_1992Dec_masters0012
	napier_duncan_1992Dec_masters0013
	napier_duncan_1992Dec_masters0014
	napier_duncan_1992Dec_masters0015
	napier_duncan_1992Dec_masters0016
	napier_duncan_1992Dec_masters0017
	napier_duncan_1992Dec_masters0018
	napier_duncan_1992Dec_masters0019
	napier_duncan_1992Dec_masters0020
	napier_duncan_1992Dec_masters0021
	napier_duncan_1992Dec_masters0022
	napier_duncan_1992Dec_masters0023
	napier_duncan_1992Dec_masters0024
	napier_duncan_1992Dec_masters0025
	napier_duncan_1992Dec_masters0026
	napier_duncan_1992Dec_masters0027
	napier_duncan_1992Dec_masters0028
	napier_duncan_1992Dec_masters0029
	napier_duncan_1992Dec_masters0030
	napier_duncan_1992Dec_masters0031
	napier_duncan_1992Dec_masters0032
	napier_duncan_1992Dec_masters0033
	napier_duncan_1992Dec_masters0034
	napier_duncan_1992Dec_masters0035
	napier_duncan_1992Dec_masters0036
	napier_duncan_1992Dec_masters0037
	napier_duncan_1992Dec_masters0038
	napier_duncan_1992Dec_masters0039
	napier_duncan_1992Dec_masters0040
	napier_duncan_1992Dec_masters0041
	napier_duncan_1992Dec_masters0042
	napier_duncan_1992Dec_masters0043
	napier_duncan_1992Dec_masters0044
	napier_duncan_1992Dec_masters0045
	napier_duncan_1992Dec_masters0046
	napier_duncan_1992Dec_masters0047
	napier_duncan_1992Dec_masters0048
	napier_duncan_1992Dec_masters0049
	napier_duncan_1992Dec_masters0050
	napier_duncan_1992Dec_masters0051
	napier_duncan_1992Dec_masters0052
	napier_duncan_1992Dec_masters0053
	napier_duncan_1992Dec_masters0054
	napier_duncan_1992Dec_masters0055
	napier_duncan_1992Dec_masters0056
	napier_duncan_1992Dec_masters0057
	napier_duncan_1992Dec_masters0058
	napier_duncan_1992Dec_masters0059
	napier_duncan_1992Dec_masters0060
	napier_duncan_1992Dec_masters0061
	napier_duncan_1992Dec_masters0062
	napier_duncan_1992Dec_masters0063
	napier_duncan_1992Dec_masters0064
	napier_duncan_1992Dec_masters0065
	napier_duncan_1992Dec_masters0066
	napier_duncan_1992Dec_masters0067
	napier_duncan_1992Dec_masters0068
	napier_duncan_1992Dec_masters0069
	napier_duncan_1992Dec_masters0070
	napier_duncan_1992Dec_masters0071
	napier_duncan_1992Dec_masters0072
	napier_duncan_1992Dec_masters0073
	napier_duncan_1992Dec_masters0074
	napier_duncan_1992Dec_masters0075
	napier_duncan_1992Dec_masters0076
	napier_duncan_1992Dec_masters0077
	napier_duncan_1992Dec_masters0078
	napier_duncan_1992Dec_masters0079
	napier_duncan_1992Dec_masters0080
	napier_duncan_1992Dec_masters0081
	napier_duncan_1992Dec_masters0082
	napier_duncan_1992Dec_masters0083
	napier_duncan_1992Dec_masters0084
	napier_duncan_1992Dec_masters0085
	napier_duncan_1992Dec_masters0086
	napier_duncan_1992Dec_masters0087
	napier_duncan_1992Dec_masters0088
	napier_duncan_1992Dec_masters0089
	napier_duncan_1992Dec_masters0090
	napier_duncan_1992Dec_masters0091
	napier_duncan_1992Dec_masters0092
	napier_duncan_1992Dec_masters0093
	napier_duncan_1992Dec_masters0094
	napier_duncan_1992Dec_masters0095
	napier_duncan_1992Dec_masters0096
	napier_duncan_1992Dec_masters0097
	napier_duncan_1992Dec_masters0098
	napier_duncan_1992Dec_masters0099
	napier_duncan_1992Dec_masters0100
	napier_duncan_1992Dec_masters0101
	napier_duncan_1992Dec_masters0102
	napier_duncan_1992Dec_masters0103
	napier_duncan_1992Dec_masters0104
	napier_duncan_1992Dec_masters0105
	napier_duncan_1992Dec_masters0106
	napier_duncan_1992Dec_masters0107
	napier_duncan_1992Dec_masters0108
	napier_duncan_1992Dec_masters0109
	napier_duncan_1992Dec_masters0110
	napier_duncan_1992Dec_masters0111
	napier_duncan_1992Dec_masters0112
	napier_duncan_1992Dec_masters0113
	napier_duncan_1992Dec_masters0114
	napier_duncan_1992Dec_masters0115
	napier_duncan_1992Dec_masters0116
	napier_duncan_1992Dec_masters0117
	napier_duncan_1992Dec_masters0118
	napier_duncan_1992Dec_masters0119
	napier_duncan_1992Dec_masters0120
	napier_duncan_1992Dec_masters0121
	napier_duncan_1992Dec_masters0122
	napier_duncan_1992Dec_masters0123
	napier_duncan_1992Dec_masters0124
	napier_duncan_1992Dec_masters0125
	napier_duncan_1992Dec_masters0126
	napier_duncan_1992Dec_masters0127
	napier_duncan_1992Dec_masters0128
	napier_duncan_1992Dec_masters0129
	napier_duncan_1992Dec_masters0130
	napier_duncan_1992Dec_masters0131
	napier_duncan_1992Dec_masters0132
	napier_duncan_1992Dec_masters0133
	napier_duncan_1992Dec_masters0134
	napier_duncan_1992Dec_masters0135
	napier_duncan_1992Dec_masters0136
	napier_duncan_1992Dec_masters0137
	napier_duncan_1992Dec_masters0138
	napier_duncan_1992Dec_masters0139
	napier_duncan_1992Dec_masters0140
	napier_duncan_1992Dec_masters0141
	napier_duncan_1992Dec_masters0142
	napier_duncan_1992Dec_masters0143
	napier_duncan_1992Dec_masters0144
	napier_duncan_1992Dec_masters0145
	napier_duncan_1992Dec_masters0146
	napier_duncan_1992Dec_masters0147
	napier_duncan_1992Dec_masters0148
	napier_duncan_1992Dec_masters0149
	napier_duncan_1992Dec_masters0150
	napier_duncan_1992Dec_masters0151
	napier_duncan_1992Dec_masters0152
	napier_duncan_1992Dec_masters0153
	napier_duncan_1992Dec_masters0154
	napier_duncan_1992Dec_masters0155
	napier_duncan_1992Dec_masters0156
	napier_duncan_1992Dec_masters0157
	napier_duncan_1992Dec_masters0158
	napier_duncan_1992Dec_masters0159
	napier_duncan_1992Dec_masters0160
	napier_duncan_1992Dec_masters0161
	napier_duncan_1992Dec_masters0162
	napier_duncan_1992Dec_masters0163
	napier_duncan_1992Dec_masters0164
	napier_duncan_1992Dec_masters0165
	napier_duncan_1992Dec_masters0166
	napier_duncan_1992Dec_masters0167
	napier_duncan_1992Dec_masters0168
	napier_duncan_1992Dec_masters0169
	napier_duncan_1992Dec_masters0170
	napier_duncan_1992Dec_masters0171
	napier_duncan_1992Dec_masters0172
	napier_duncan_1992Dec_masters0173
	napier_duncan_1992Dec_masters0174
	napier_duncan_1992Dec_masters0175
	napier_duncan_1992Dec_masters0176
	napier_duncan_1992Dec_masters0177
	napier_duncan_1992Dec_masters0178
	napier_duncan_1992Dec_masters0179
	napier_duncan_1992Dec_masters0180
	napier_duncan_1992Dec_masters0181
	napier_duncan_1992Dec_masters0182
	napier_duncan_1992Dec_masters0183
	napier_duncan_1992Dec_masters0184
	napier_duncan_1992Dec_masters0185
	napier_duncan_1992Dec_masters0186
	napier_duncan_1992Dec_masters0187
	napier_duncan_1992Dec_masters0188
	napier_duncan_1992Dec_masters0189
	napier_duncan_1992Dec_masters0190
	napier_duncan_1992Dec_masters0191
	napier_duncan_1992Dec_masters0192
	napier_duncan_1992Dec_masters0193
	napier_duncan_1992Dec_masters0194
	napier_duncan_1992Dec_masters0195
	napier_duncan_1992Dec_masters0196
	napier_duncan_1992Dec_masters0197
	napier_duncan_1992Dec_masters0198
	napier_duncan_1992Dec_masters0199
	napier_duncan_1992Dec_masters0200
	napier_duncan_1992Dec_masters0201
	napier_duncan_1992Dec_masters0202

