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Abstract

This thesis gives an overall survey of preprocessing and postprocessing techniques in 

linear optimization (LO) and its implementations in the software package McMaster 

Interior Point Method (McIPM).

We first review the basic concepts and theorems in LO. Then we present all the 

techniques used in preprocessing and the corresponding operations in postprocessing. 

Further, we discuss the implementation issues in our software development. Finally 

we test a series of problems from the Netlib test set and compare our results with 

state of the art software, such as LIPSOL and CPLEX.
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Linear Optimization (LO) has been developed fast since the second world war and 

it is widely used in practice. When solving an LO problem with a software package, 

preprocessing and postprocessing plays an important role. In preprocessing, an LO 

problem is transformed into a standard form, the redundancies are removed and its 

size is reduced. The more important is that matrix A is made to have full rank so 

that the LO problem can be solved by Interior Point Methods (IPMs). Preprocessing 

is an indispensable part in implementations.

In this thesis, we present the fundamental theorems of LO and the techniques 

in preprocessing and postprocessing. Further, detailed implementation issues are 

described and the testing results and the comparisons are shown.

In Chapter 1, we first present the LO in standard form and review the basic 

concepts and duality theorems of LO. They are the basis for preprocessing techniques. 

The MPS format is also described in this chapter and to make the description more 

clear, an MPS file example is given as well.

In Chapter 2, we give an overall survey of preprocessing techniques. In Chapter 

3, the corresponding operations of postprocessing are described as well. Preprocessing 

changes the LO problem somehow, thus we need postprocessing to recover the changes 

made to the LO problem.

1



Chapter 4 is devoted to implementation issues. In our implementation, we de­

veloped three subroutines: MPS reader, preprocessing and postprocessing. Detailed 

information about the implementation environment, the procedures in preprocessing 

and postprocessing, the design of data structure, data storage and data link between 

MATLAB and C are discussed.

Further, we present our testing results based on the Net lib testing set in Chapter 

5. The comparison with LIPSOL and CPLEX are also presented in this chapter.

Finally in Chapter 6, we conclude the thesis and some suggestions for future 

work are given.
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Chapter 1

Preliminaries

In this chapter we discuss various representations of linear optimization problems. 

Basic concepts and fundamental theorems of linear optimization are discussed as well.

1.1 Linear Optimization Problems

Linear Optimization (LO) is a discipline that develops methodologies to find the 

optimal (minimal or maximal) value of a linear objective function, subject to linear 

constraints on the variables.

1.1.1 The LO Forms

There are a variety of ways to represent LO problems. In the LO literature, to simplify 

the description of the theory and the algorithms, in the “standard form”, there are 

only equality constraints and all the variables are nonnegative without upper bounds.

3
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Formally, an LO problem in the standard form [17] is given as:

min + ... + cnxn

S.t. “I- ... “I- ainXn i — 1,..., zzz, (1.1.1)
j = l,...,n.

There are n decision variables xlt... ,xn subject to m constraints where % is the 

coefficient of variable j in constraint i; bi is the right-hand side (RHS) coefficient of 

constraint z; Cj is the cost coefficient of variable j in the objective function c^xi + 

... + cnxn. All the variables Xj, j = 1,..., n, are restricted to be nonnegative.

Using matrix notation, system (1.1.1) can be written as:

s.t. Ax = b, (1.1.2)
X > 0,

where x = [xb x2,..., xn}T € Rn, c = [cb c2,..., cn]T 6 R", b = [6b b2,..., bm]T e 

Rm, A = (<zb) € Rmxn with rank(A) = m, m < n.

In most practical LO problems, the variables may have lower and upper bounds. 

If we put all variables’ bounds into the constraints, the problem size will be doubled. 

Therefore, to be efficient, the standard form of LO problem usually includes lower 

and upper bounds for variables in LO implementation [3, 13]. Thus our standard LO 

problem with bounds on the variables can be presented in the following form:

s.t. Ax = b, (1.1.3)
I < X < u,

4
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where I = [llt..., ln]T G Rn and u = [ui,..., un]T G Rn are lower and upper bounds 

for the variables x, respectively. The value of lj and Uj, j = 1,... ,n, can be —oo and 

+oo, respectively.

Additionally, the general constraints may also have lower and upper bounds. The 

objective function may include an additive constant cq as well. The LO problem can 

be presented in a more general form [17]. For instance,

min co + cTx

s.t. b < Ax < b, (11 4)

I < x < u,

where b = [^,..., bmf 6 RTO is the lower bound vector for the constraints and 

b = [bi,..., bm]T G Rm is the upper bound vector for the constraints. The value of bt 

and bi, i = 1,..., to, can be —oo and +oo, respectively.

An LO problem can be converted from the general form (1.1.4) into the standard 

form (1.1.2) (or vise versa) by carrying out appropriate transformations [23].

1.1.2 The MPS Format

When an LO model of a practical problem is built, for instance, in the form of (1.1.2) 

or (1.1.4), it needs to be presented in a standard readable form to computers. Such 

a representation form is called external representation.

The most widely used external representation is the Mathematical Programming 

System (MPS) format [17], an ASCII file with rigid format. The MPS format was 

first invented by IBM for use in its mathematical programming packages in the 1950s. 

Due to technology limitations at that time, the data was written on punch cards.
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Therefore, the record length and the positions of the data on the card are strictly 

defined.

The rigid MPS format is still widely used today. It is considered to be the default 

industry standard, originally created by a single vendor with market dominance. This 

standard input form makes LO problem data portable from one LO software package 

to another. This standard representation of problem definition can be read by all 

commercial LO softwares packages. After read the data by some customizied MPS 

reader code, the LO problem is converted to a certain internal representation, that will 

be submitted to the solvers after a preprocessing procedure. Internal representations 

are not standard. It varies with different software packages and also depends on what 

algorithms are implemented in the solver.

The MPS format aims to express linear problems and mixed integer linear prob­

lems. Recently the MPS format was extended to allow the representation of convex 

quadratic problems too. To be able to cover most LO problems in general form, an 

MPS file stores LO problems in the form of (1.1.4). To reduce the amount of data, 

principally only the nonzero elements are given in an MPS file. However, in practice 

some zero elements may be included due to some modelling needs, e.g., when different 

scenarios are considered and data need to be changed in subsequent solutions.

The MPS File

The MPS data file contains 80 character long records and it is composed of 

seven sections: NAME section, COLUMNS section, RHS section, RANGES section, 

BOUNDS section and ENDATA section. These sections must display in this order. 

The RANGES section and the BOUNDS section are optional. The other sections 

appearance is mandatory.

In each section, there are two types of records: indicator records and data records.

6
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Each section begins with an indicator record that is used to identify the section. The 

indicator record starts at column 1. It will be one of the following character strings:

NAMEROWSCOLUMNSRHSRANGESBOUNDSENDATA
Data records give the information about the data A, b, b, c, I and u as presented in 

(1.1.4). There are six fields with predefined positions in a data record. The following 

diagram shows the character positions in a data record.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
2-3 5-12 15-22 25-36 40-47 50-61

The content of data records varies with the different sections. We discuss the 

seven sections one by one.

NAME section: The NAME section is the beginning of the MPS file that states the 

name of an LO problem. Any information before it can be ignored. There is no 

data record in this section. This section contains a single identifier record with 

the string NAME in columns 1-4 and the problem name (optional) in columns 

15-22.

Columns 1-4 Columns 15-22
NAME problem name

7
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Note that in practice, it is allowed that the problem name can be any long up 

to the end of the record.

ROWS section The ROWS section describes all the rows information. It consists 

of an indicator record and several data records.

The Indicator Record:

It contains the section indicator ROWS in columns 1-4.

Columns 1-4 
ROWS ~

The Data Records:

Data records in the ROWS section include information about the rows 

(constraints) of the LO problem: the row type and the row name. They 

are specified in Field 1 and Field 2, respectively.

Field 1 Field 2
row type row name

The row name is used to identify a row by a maximum 8 character long name, 

instead of a numerical index “i”. The row type, i.e., equal, less than or equal, 

greater than or equal, or not restricted, is expressed by a row type code as 

described in the following table:

Row type____________ Meaning____________Row Type Code

= Equality constraint E
< Less than or equal constraint L
> Greater than or equal constraint G

Objective Objective function N
Free No restriction N

More than one N type rows may appear in the ROW section. The reason is 

that the MPS file was designed to be a flexible data file that enables the user to

8
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express information about different model variants in one file. Objective func­

tions vary in different model variants, thus they may become a constraint or 

irrelevant in another and they are subject to the same constraints, therefore all 

the objective functions are displayed in one file. This also allows to deactivate 

a constraint. For these reasons, multiple N type rows may appear. Users can 

specify the objective function by row name when a solver needs the MPS file 

and solves the LO problem. In software implementations, as default, the first N 

type row is usually considered to be the objective function. The other N type 

rows are not read and not passed to the solver.

COLUMNS section The COLUMNS section gives the information about matrix 

A and vector c in (1.1.4). It is composed of an indicator record and several data 

records too.

The Indicator Record:
It contains the section indicator COLUMNS in columns 1-7.

Columns 1-7 
"COLUMNS

The Data Records:
Z cT \

Data records specify the nonzero data of the matrix I 1 in a column 

order representation. A data record includes the column name, the row 

name and the corresponding coefficient value.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank column name row name value row name value

For each column, the information of the column name, the row name and the 

coefficient is repeated for each element. It is optional to define two elements 

in one row, i.e., the use of Field 5 and Field 6 is optional. If used, the second

9
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element given in Field 5 and Field 6, shares the same column name with the 

first element of that record.

Row index i and column index j are replaced by descriptive maximum 8 char­

acter long row and column names, respectively. All the nonzero elements a^ 

and Cj are specified in Field 4 and Field 6, thus both the constraint matrix 

A e TZ,mxn and the objective function vector c € HA are stored and can be used 

from the COLUMN section. It is possible that some zero coefficients appear in 

this section due to some modelling purposes. Thus we can not assume that all 

given entries are nonzero. However we can remove those zero coefficients using 

some preprocessing techniques.

COLUMN section is column oriented. All the information related to a column 

must be given in one group, but within that group, data may be in any order. 

The order is not necessarily the same as the rows are given in the ROWS section.

RHS section: The RHS section specifies the information about the RHS data, i.e., 

b 6 Hn. It consists of an indicator record and several data records. The 

structural of the RHS section is similar to that of the BOUNDS section, because 

it specifies only a single column vector b, the right hand side data of the LO 

problem.

The Indicator Record:

It contains the section indicator RHS in columns 1-3.
Columns 1-3 
RHS

The section indicator RHS must be displayed in the MPS format even if 

the right hand side vector b is a zero vector.

The Data Records:

These records include the RHS name, the row name and the RHS value.

10
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Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank RHS name row name RHS value row name RHS value

It is optional that two different row names and the corresponding RHS values 

are written in the same line. In this case, Field 5 and Field 6 are used. It 

is allowed that multiple RHS vectors are specified with different names in a 

single RHS section. Since coefficient matrix A may be shared in different model 

variants with several objective functions, RHS, range or bound vectors, those 

sets of vectors may have different values based on the different vector names. 

Therefore, multiple RHS vectors, range vectors and bound vector may exist in 

one file. Users can choose the set of vectors or by default, the first vector is 

used automatically by an MPS reader code, if not specified otherwise.

RANGES section: The RANGES section is optional. It is desired when the con­

straints have both lower and upper bounds. It describes the range between the 

lower and upper bounds on the constraints. There is an indicator record and 

several data records in this section.

The Indicator Record:

It contains the section indicator RANGES in columns 1-6.

Columns 1-6 
RANGES ~

The section indicator RANGES need not to be displayed if there is no 

range vector in the LO problem.

The Data Records:

Data records include the range name, the row name and the range value in 

an analogous format as data records in the RHS and COLUMN sections.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank range name row name value range name value

11
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RANGES section actually gives the difference between the upper bound bi and

the lower bound bt of constraint i.
n _

bi < aijXj <bi,i = l,...,m. 
j'=i

Let bi be the RHS value for row i given in the RHS section and n be the range 

value specified in the RANGE section. The actual lower bound bi and upper 

bound bi of RHS can be calculated according to the row type and the value of 

range. There are four cases as following:

Row Type Sign of Range RHS Lower Bound RHS Upper Bound
G + /- bi bi + |n|
L + /- bi - |n| bi
E + bi bi + |n 1
E — bi - |n| bi

As in the other sections, it is also optional to define two rows range values in 

one row. The second row name and range value are given in Field 5 and Field 

6, respectively.

BOUNDS section: The BOUNDS section describes the variable’s bound informa­

tion. As the RANGE section, the BOUNDS section is also optional. There is 

an indicator record and several data records.

The Indicator Record:

It contains the section indicator BOUNDS in columns 1-6.
Columns 1-6 
BOUNDS

The Data Records:

Data Records give the information about variable’s bound type, bound 

name, column name and bound value.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
bound type bound name column name value blank blank

12
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It is possible that more than one bound data record shares the same column 

name, e.g., when a variable has both upper and lower bounds. Different from 

the data records in the RHS and RANGE sections, Field 5 and Field 6 are not 

used in the BOUNDS section. More than one BOUNDS data set (with different 

bound name) can be present in the BOUNDS section. The bounds vectors may 

have different values based on the different bounds name. It is similar to the 

RHS and RANGES sections.

There are five bound types as the follows:

Bound Type Meaning Expression
LO/LB lower bound lj < Xj < +OO
UP/UB upper Bound 0 < Xj < Uj

FX fixed variable lj = xj = uj

FR free variable — OO < Xj < +OO
MI unbounded below —oo < Xj < 0
PI unbounded above 0 < xj < +00

The default bounds for each variable Xi is 0 < Xi < +oo. If the variable is 

nonnegative, it needs not be defined.

ENDATA section: The ENDATA section marks the end of the MPS file. It only 
has a single indicator record:.

Columns 1-6 
ENDATA

Comments can be included anywhere in MPS format. A comment is introduced 

by an * (asterisk) character. Any information starting with the asterisk is ignored.

As we mentioned, the BOUNDS and the RANGES sections are optional. That 

means that these two sections may not appear in an MPS file. To the contrary, 

the other sections are mandatory. When their content is empty, their corresponding 

section indicator records shall be presented in an MPS file. For instance, even if the

13
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RHS vector b is a zero vector, then still its identifier record containing RHS must 

come right after the content of the COLUMNS section in the MPS file.

One peculiarity of the MPS format is that the direction of optimization: minimize 

or maximize is not indicated. Therefore, the solver must be advised if the objective 

is maximization or minimization. In software packages, minimization is the default 

option.

Integer Variables: As we mentioned, the MPS format is used to express linear 

problems and mixed integer linear problems. Integer variables are defined in 

the COLUMNS section too. There are two indicator records and several data 

records. The two indicator records are placed at the beginning and the ending 

of the integer variables’ definition, respectively.

The Indicator Record:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank marker name ‘MARKER’ blank keyword blank

Field 1, Field 4 and Field 6 must be blank. Field 3 contains the string 

’MARKER’ (including the quotation marks). Field 2 contains the marker 

name that is different from other column names. At the beginning of 

an integer variable definition, Field 5 must contain the value ’INTORG’ 

(including the quotation marks) to specify the beginning of the definition. 

At the end of the integer variable definition, Field 5 must contain the value 

’INTEND’ (including the quotation marks as well).

The Data Records:

Data records are the same as what we defined previously in the COLUMNS 

section.

14
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Binary Variables: Binary variables may be defined as integer variables with their 

upper bounds equal to one. Additionally, binary variables can be specified in 

the BOUNDS section by using “BV” as bounds type. In the BOUNDS section, 

”BV” means binary variable, whose value equals to either 0 or 1.

QSECTION section: In the MPS file, we can also define a quadratic model. The 

objective function in a quadratic model is given as:

where Q is a symmetric positive semidefinite matrix [20]. The QSECTION 

specifies the matrix Q, since Q is symmetric, only the upper triangle part of 

Q needs to be specified. The following three sections describe the quadratic 

part xTQx. They can be given in a separate MPS file. It is also possible that 

they are contained in the same file with the linear part we discussed before. In 

this case, the linear part is simply followed by the quadratic part. The three 

sections are:

NAMEQSECTIONENDATA
The NAME and ENDATA sections are the same as what we defined previously. 

For the QSECTION section, there are an indicator record and several data 

records.

The Indicator Record:

It contains the section indicator QSECTION in columns 1-8.

Columns 1-8 
QSECTION

15
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The Data Records:

Data Records give two column names in Field 2 and Field 3, that actually 

specify the variables that form the quadratic term in the objective function. 

The column names in Field 2 and Field 3 need not be the same.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
blank column name column name value column name value

The following example may help to understand how to derive Q from the QSECTION 

section of an MPS file.

Example:

NAMEQSECTION
xl xl 4.0 x4 4.0

xl x2 0.0 x3 0.0

x2 xl 0.0 x3 5.0

x2 x2 5.0 x4 0.0

x3 x3 5.0 xl 0.0

x3 x4 0.0 x2 5.0

x4 xl 4.0 x2 0.0

x4 x4 4.0 x3 0.0ENDATA
The QSECTION section specifies Q as:

/ 4 0 0 4 \
0 5 5 0
0550 ’

\ 4 0 0 4 /

16
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with x = [xi, X2, x3, x4]T 6 R4. Then, we have

^xtQx — 2x^ + ^X2 + + 2^4 + 4XiX4 + 5x1X3.

To close this section, we present a sample MPS file and the corresponding LO problem 

to facilitate the understanding of an MPS file.

Example:

NAME sample problemROWS
N OBJ

G Cl

L C2

E C3

COLUMNS

VI OBJ 4.5 Cl 1.0

VI C3 2.5

V2 OBJ 2.5 C2 1.5
V2 C3 2.0

V3 OBJ 4.0 Cl 1.0
V3 C2 0.5 C3 3.0
V4 OBJ 4.0 Cl 1.5
V4 C2 0.5 C3 2.0

RHS

RHS1 Cl 40.0 C2 30.0
RHS1 C3 95.0

RANGES

RANGE1 C3 10.0

17
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BOUNDSL0 BND V3 10UP BND V3 20UP BND V4 25ENDATA
This MPS file specifies the following LO problem:

min 4.5xi + 2.5x2 + 4^3 + 4x4 

s.t. Xi + X3 + 1.5x4 > 40,

20 < 1.5x2 + 0.5x3 + 0.5x4 < 30, 
2.5xi + 2x2 + 3x3 + 2x4 = 95,

xi > 0,

x2 > 0,

10 < x3 < 20,

0 < x4 < 25.

Reading the MPS file precedes preprocessing that is followed by the solver and 

post-processing of the solution. The implementation of our preprocessing code will 

be discussed in Chapter 4, that is devoted to implementation issues.

18
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1.2 Basic Concepts and Fundamental Theorems 
of LO

Every LO problem, called the primal problem, has another companion problem, the 

so-called dual problem. Duality [26] of LO problems plays an important role both 

in the theory and computational practice of LO. The famous duality theorem [26] 

characterizes the strong duality relationship.

1.2.1 The Primal Problem

Problem (1.1.2) is usually called the primal problem and denoted by (LP).

In the sequel, we list several basic concepts and notations related to (LP):

Set of primal feasible solutions: Tp = {x \ Ax = b, x > 0}.

Primal feasible solution: A vector x G J-p is a primal feasible solution.

Primal optimal solution: A primal feasible solution x* satisfies cTx* < (Tx for 

all x e J-p, then x* is a primal optimal solution.

Primal infeasible: If Tf = then (LP) is infeasible.

Primal unbounded: If there is a sequence {zfc}^=1 such that xk G J-p and cTxk —> 

—oo as A: —» +oo, then (LP) is unbounded.

For any LO problem, there are three possible cases. An LO problem

• is infeasible, or

• is feasible but unbounded, or
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• has an optimal solution exists with final optimal objective value.

The set of primal feasible solutions defines an n x m dimensional polyhedron in 

an n dimensional space which is known as the feasible region. If the feasible region 

is not empty, then the LO problem is feasible. Otherwise, it is infeasible, i.e., there 

is no solution for the LO problem. When the LO problem is feasible, then we want 

to find a solution that can minimize the objective function when the objective is 

minimization. Such a solution is called the optimal solution. If such a point is found, 

then the LO problem is optimal. There is another case when the LO problem is 

feasible. If there are some solutions that make the objective value —oo, then the 

LO problem is unbounded. Thus, from the analysis, we know that there is no other 

possibility except the three results.

1.2.2 The Dual Problem

Problem (LP) is associated with another LO problem which we call “dual”. The dual 

problem of (LP) is denoted by (LD). Problem (LD) shares the same sets of data with 

(LP) and (LD) can be given in the following form:

max bTy

s.t. ATy < c, (1 2.5)

y is free,

where y G TZm is the vector of dual variables.

By adding a nonnegative vector s G Hn as slack variables to the inequality 

constraints, then inequalities are transformed into equality constraints. The dual
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problem can be rewritten in the following form:
max bTy

s.t. ATy + s = c, (1.2.6)

y is free, s > 0.

Problem (LP) has m constraints and n variables. Problem (LD) has m dual 

variables yu i = 1,..., m and n dual slack variables Sj, j = 1,..., n. A dual variable 

yi is associated with constraint i in problem (LP) while a dual slack variable Sj 

is associated with a primal variable Xj. The roles of variables and constraints are 

reversed in (LP) and (LD).

Analogous to the primal problem, we give the basic terminology and notations 

for the dual problem.

Set of dual feasible solutions: T7© — {(y> s) | ATy + s = c, s > 0}.

Dual feasible solution: If there is a pair of vectors (y,s) G J-p, then (z/,s) is a 

dual feasible solution.

Dual optimal solution: If there is a pair of vectors (y*, s*) such that bTy* > bTy 

for all (y, s) 6 Tf, then (?/*, s*) is a dual optimal solution.

Dual Infeasible: If FD = then (LD) is infeasible.

Dual unbounded: If there is a sequence {yk, sfc}fcLx € Td such that (yk, sk) e Fd 

and bTyk —> +oo as k —> +oo, then (LD) is unbounded.

1.2.3 Duality Theorems

Duality theorems are probably the most important theorems in LO. They provide 

optimality certificates and provide solid foundation for the investigation of the rela­
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tionship between (LP) and (LD).

Theorem 1.2.1. [Weak Duality [26]]

Let x e Pp and (y, s) G Pd- Then cTx > bTy, where equality holds if and only if 

xT (c — ATy) = 0 holds, or equivalently if

Xj(c — ATy)J = 0 holds for all j = 1, ... ,n.

Proof. Since Ax — b, then bTy = (Ax)Ty = xTATy and thus

cTx — bTy = xTc — xTATy = xT(c — ATy) = xTs > 0. □

The condition Xj(c — ATy)j = XjSj = 0, j = 1, ..., n is called the complementar­

ity condition. The value cTx — bTy is called the duality gap for the solution x € Pp 

of (LP) and y € Pd of (LD).

There are several consequences of the weak duality theorem. The weak duality 

theorem shows that if both (LP) and (LD) admit feasible solutions, then both prob­

lems are bounded. The primal objective value of any primal feasible solution is an 

upper bound for the maximum objective value in (LD). On the other hand, the dual 

objective value of any dual feasible solution is a lower bound for the optimal objective 

value of (LP).

The following corollary is an obvious consequence of the Weak Duality Theorem

[26].

Corollary 1.2.1. (1) If (LP) is unbounded, then (LD) is infeasible.

(2) If (LD) is unbounded, then (LP) is infeasible.

(3) If there is an x* e Pp and y* € Pd with cTx* = bTy*, then x* is an optimal so­

lution of (LP) and y* is an optimal solution of (LD).
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Proof. The proof of the first two statements is obvious. The proof of the third 

statement is as follows:

By the weak duality theorem, we have

cTx > bTy* = cTx*,

and

bTy < cTx* = bTy*.

Since x* G Xp and it provides the minimal objective value, it must be an optimal 

solution for (LP). Since y* G J-p and it provides the maximal objective value, it is 

an optimal solution for (LD).

□

Corollary 1.2.1 gives sufficient conditions for the infeasibility of (LP) or (LD) 

and for the optimality of a pair of primal and dual solutions. However, the reverse of 

the first two statements is not true and the reverse of the third statement is highly 

nontrivial.

It is possible that if either (LP) or (LD) is infeasible, then the other might be 

infeasible as well. Sufficiency is characterized by Farkas’ lemma [22]. For further use 

we present both the primal and the dual forms of Farkas’ Lemma.

Theorem 1.2.2 (Farkas Lemma [10], Primal Form). Exactly one of the following 

two systems has a feasible solution:

(I) Ax = b, x > 0;

(II) ATy < 0, bTy > 0.

Theorem 1.2.3 (Farkas Lemma, Dual Form). Exactly one of the following two 

systems has a feasible solution:
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(1) cTx <0, Ax = 0, x > 0;

(II) ATy < c.

We use the Farkas Lemma to prove the following result.

Corollary 1.2.2. (1) If (LP) is infeasible, then (LD) is infeasible or unbounded.

(2) If (LD) is infeasible, then (LP) is infeasible or unbounded.

Proof. We proof the first statement. If (LP) is infeasible, then there is no x £ Rn 

such that

Ax — b, x > 0.

Then the primal form of the Farkas Lemma, Theorem 1.2.2 ensures that there exists 

a y E Rm such that

ATy < 0, bTy > 0.

If (LD) is infeasible, then there is nothing to prove. If (LD) is feasible, then there 

exists a y such that

ATy < c.

For any a > 0, we have

AT(ay + y) < c,

that leads to

lim bT (ay + y) = +oo,
a—>4-oo

and thus (LD) is unbounded.

The proof of the second statement is analogous, where the dual form of the Farkas 

Lemma needs to be used. □
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We have discussed the cases when either (LP) or (LD) is unbounded or infeasible. 

The remaining unsolved case is that what happens when both (LP) and (LD) have 

feasible solutions. We know that the optimal values are bounded. So far it is not 

clear if an optimal solution always exists and if both the primal and dual problems 

have optimal solutions, and then if the optimal objective values of the primal and 

dual problems are equal or not. The strong duality theorem answers the questions.

Theorem 1.2.4 (Strong Duality [22]). Consider a pair of problems (LP) and 

(LD). If one of the problems has a finite optimal value, then so does the other, both 

problems admit an optimal solution, and the optimal objective values are equal, i.e., 

cTx* = bTy*, where x* is a primal optimal solution and y* is a dual optimal solution.

The strong duality theorem provides solid foundation for designing algorithms 

to solve LO problems and it is especially useful to verify the optimality of candidate 

solutions for large-scale LO problems. The strong duality theorem guarantees that 

the optimal values of (LP) and (LD) are equal at optimality, and thus optimality 

check reduces to check primal and dual feasibility and to check whether the objective 

values of the two problems are equal.

In summary, there are four possible cases in LO.

(LP)(LD)

optimal optimal
feasible and unbounded infeasible

infeasible feasible and unbounded
infeasible infeasible

If one of the two problems is unbounded, then the other is infeasible. If either 

of the two problems is infeasible, then the other is either infeasible or unbounded. If 

both have feasible solutions, then both have optimal solutions with zero duality gap.
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In the next chapter, we give a comprehensive review of preprocessing techniques.
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Chapter 2

Preprocessing

In spite of emerging technologies, the availability of faster and faster computers, and 

great improvement of LO algorithms, preprocessing is still an essential part of opti­

mization software. In this chapter, we give a comprehensive review of preprocessing 

techniques for LO.

2.1 Introduction

Not only computer capacity increased significantly in the last two decades, but novel 

general purpose modelling systems enable users to model larger, more complex prac­

tical problems in more detail. This results in the need to solve very large scale LO 

problems on a regular base. These huge problems are usually not solvable in the form 

they were generated by general purpose modelling systems. Preprocessing is a proce­

dure that transforms the LO problem into a properly formulated format while reduces 

problem size. It not only removes some redundancies but by simplifying problem for­

mulation, it also improves the numerical characteristics of the problem. Therefore, 

preprocessing is an indispensable procedure in LO software implementation.
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Preprocessing is not a new idea and it has been discussed by many authors.

Although many techniques have been addressed, the principle is the same: use simple 

and fast techniques to detect various redundancies and use them repeatedly until the 

LO problem can not be reduced further in a short time. Usually, the time spent in 

preprocessing is only a small fraction of the total calculation time.

More extensive preprocessing does not necessarily imply faster overall solution 

time. Since some preprocessing techniques are quite time consuming, we have to 

balance the effect of the removed redundancies with the time spent in preprocessing. 

The ideal strategy is to choose only those techniques that reduce the total solution 

time. However, it is hard to find the optimal balance in practice. Therefore, a con­

servative strategy is used widely in most software packages. Only the fast and cheap 

techniques are usually chosen in most software implementations. Time consuming, 

sophisticated techniques are used only in high-end commercial products, frequently 

only as an optimal tool when solving very large-scale problems.

The ultimate aim of preprocessing is to speed up the solution time and improve 

computational efficiency. Generally, the roles of preprocessing are:

Transform the problem into a standard form. Before submitting the problem 

to the solver, the LO problem should be transformed into a “proper” form that 

the solver accepts. The “standard” form may be somewhat different among 

different LO solvers. Usually, the problem is transformed into the standard 

form:
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min cTx

s.t. .Ax —- 6, (2 11)

0 < x < u,

where matrix A has full row rank.

Detect infeasibility or unboundedness without solving the problem. If there 

are conflicts among the data in the original problem, problem (LP) may be de­

tected infeasible even before submitting to the solver. Preprocessing may also 

detect that problem (LP) is unbounded by using the duality theorems or vari­

ants of the Farkas Lemma.

Reduce the problem size. Some data in the original problem may be redundant. 

Redundancy can be eliminated by removing fixed variables, redundant and forc­

ing constraints. Moreover, some variables’ bounds can be tightened that may 

result in conflicting bounds or fixed variables. The purpose is to reduce problem 

size and to improve computational efficiency.

Make A sparser. The sparsity of matrix A G 7Zmxn can reduce the complexity of 

the problem and make the computation faster and more reliable.

Improve numerical characteristics. Numerical instability will occur if there are 

some very small and/or large numbers in the problem. Scaling is used to bring 

those numbers to approximately the same magnitude that, in turn will improve 

numerical stability.

In this chapter, we give an overall survey of the preprocessing techniques. Here, 

we list and classify them briefly as follows:
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1. Transform the LO problem into the standard form (2.1.1).

2. Basic logical analysis of the LO problem:

(a) Infeasible variable.

(b) Empty row.

(c) Empty column.

(d) Fixed variable.

(e) Singleton row.

(f) Singleton column.

(g) Duplicate rows.

(h) Duplicate columns.

3. Advanced logical analysis of the LO problem:

(a) Redundant constraint.

(b) Forcing constraint.

(c) Tighten variable bounds.

(d) Tighten dual variable bounds.

(e) Dominated variables.

4. Make A sparser.

5. Make A to have full rank.

6. Scaling.
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Preprocessing techniques are divided into several groups. The first group contains 

those basic transformations of the LO problem that convert the problem into a 

“proper” format that the solvers accept. Then two groups of logical analysis are 

presented. They are the essential and most widely used parts in preprocessing. The 

classification of “Basic” and “Advanced” logical analysis is based on the amount of 

calculation needed to perform that step. Much more calculations are needed for 

advanced analysis than for basic analysis. The more computation the techniques in­

clude, the more time they consume. Different users may choose which techniques they 

want to use according to their needs. Generally, in logical analysis, all the variables, 

the constraints, and the columns are scanned one by one. For instance, each variable 

is checked whether it indicates infeasibility or it is fixed based on its bounds. Some 

variable’s bounds can even be tightened. Each row is checked whether it is empty, 

singleton or a duplicate of some other rows. Similarly, each column is checked whether 

it is empty, singleton or a duplicate of some other columns. Each constraint in both 

the primal problem and the dual problem is checked whether it is redundant or forc­

ing. The operations can be summarized as elimination, substitution and removal of 

inherent redundancy [16]. Two more advanced techniques will be discussed as well. 

They are: make matrix A sparser and make A to have full rank. The aim of making 

matrix A sparser is to reduce the computational effort of the Cholesky factorization in 

Interior Point Methods (IPMs) and also to speed-up pivoting in simplex algorithms. 

Keeping A nonsingular is mandatory for IPM solvers. Actually some logical analysis 

can also help to remove the dependencies in A. We will describe them in detail. The 

last technique we discuss is scaling that aims to improve numerical stability.

We present these groups of preprocessing techniques one by one in the sequel.
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2.2 Transform to Standard Form

One can read an LO problem from an MPS file (see Section 1.1.2) in the general form 

as given by (1.1.4):
min co + cTx 

s.t. b< Ax <b,

I < x <u.

Our aim is to transfer the problem in a form that can be used by any Interior Point 

Methods (IPMs) or simplex solver. LO problems in the general form (1.1.4) are 

transformed into the standard form (2.1.1):

min cTx 

s.t. Ax — b,

0 < x <u.

The following transformations are required to bring (1.1.4) to (2.1.1):

1. Introduce a slack variable Si > 0 to inequality constraint i:

{
 n _ 

a-ij Xj T s % — bi ,

n
> Q'ij'Ej bj

i=l —

with Q < Si < bi — bj li bi < +oo and 0 < Sj if bt = +oo.

2. Split free variables.

If variable Xj is a free variable, then it can be split into two nonnegative variables 

xf and x~:

xi = 4 - xf > (2.2.2)32
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(2.2.3)

(2.2.4)

where x+ > 0 and xJ > 0. Having the optimal value of x+ and Xj , the value 

of Xj can be calculated by (2.2.2).

3. Shift the lower bound.

If the lower bound vector I is nonzero, then a new variable vector x is introduced 

to shift the nonzero vector I to a zero vector:

x = x — I.

Then (2.1.1) becomes:

min cTx + cTl 

s.t. Ax = b — Al,

0 < x < u - I.

Having the optimal value of vector x, the value of vector x can be recovered by 

(2.2.3).

2.3 Optimality Conditions

Optimality conditions provide the foundation of most preprocessing techniques. In 

Section 2.2, we have discussed how to transform an LO problem given in the general 

form (1.1.4) to the standard form (2.1.1). However, for ease of discussion, when 

describing the following preprocessing techniques, we allow lj to be a nonzero vector. 

Thus, problem (LP) is given as:

min

s.t.

TC1 X

Ax = b,

I < X < u,

(2.3.5)
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and its dual problem (LD) is:

max bTy + lTv — uTw 

s.t. ATy + v — w = c,

y is free, v > 0, w > 0.
(2.3.6)

From the Strong Duality Theorem [26], if x G Hp and (y, v, w) € Hp, then systems 

(2.3.5) and (2.3.6) have optimal solutions with their objective values equal, i.e.,

cTx — (bTy + lTv — uTw) = 0,

which can be written as

(ATy + v — w)Tx — bTy — lTv + uTw = 0.

Since Ax = b, we have

(x — l)Tv + (u — x)Tw = 0.

From I < x <u, v >0 and w > 0, we get

(x — l)Tv = 0,

(w — x)Tw = 0,

that is equivalent to:

(aj - = 0, j = l,.

(Uj - Xj)wj =0, j = 1,.

(2.3.7)

,n,

,n. (2.3.8)

Further, from (2.3.8), we can see for the j-th constraint in the dual problem (2.3.6) 

that:
n

If lj = — oo, then Vj = 0 which leads to ^2 aTyj > Cj.
i=l

n
If Uj = +oo, then Wj — 0 which leads to ^2 — ci-

i=l

(2.3.9)
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These two conclusions are very important, they will play a crucial role in developing 

the preprocessing techniques about duplicate columns (see Section 2.4.8) and domi­

nated columns (see Section 2.5.4).

In summary, the optimality conditions of the primal-dual systems (2.3.5) and 

(2.3.6) can be written as:

Ax = b, (1)

I < x <u, (2)

ATy + v — w — c, (3)

(xj — lj)vj = 0, j = I,-- . ,n, (4)

(uj — Xj)wj = 0, . ,n, (5)

v > 0, w > 0, y is free. (6)

Now we are ready to present and justify the techniques of preprocessing analysis.

2.4 Basic Logical Analysis of the LO Problem

We consider the primal LO problem in the form of (2.3.5) and its dual problem in the 

form of (2.3.6). In problem (2.3.5), slack variables have been added to the inequality 

constraints. However, to understand the preprocessing techniques in the following row 

related preprocessing analysis, we still consider the original row type of a constraint, 

that read directly from the MPS file or in other words, we distinguish slack variables 

from structural variables. Therefore, when we consider an inequality row, its slack 

variable is not included in the analysis. Moreover, if an inequality row can be removed 

from the LO problem, then its slack variable is removed as well.

35



M.Sc. Thesis - X. Huang McMaster - Computing and Software

Now, we present one by one the basic logical analysis techniques.

2.4.1 Infeasible Variable

Checking infeasibility of variables is the simplest technique in preprocessing. For 

each individual variable, if its lower bound is larger than its upper bound, then this 

constraint can not be satisfied. In this case, the variable is infeasible. It can be 

presented as:

variable Xj is infeasible if

> uj-

Obviously, the existence of an infeasible variable implies that problem (2.3.5) is 

infeasible. It is worth to detect such a possible contradiction for all the variables. 

The procedure of detection is easy. What we need to do is just to compare two bound 

vectors I and u.

2.4.2 Empty Row

If all the coefficients in a row are zero, then this row is an empty row. It can be 

presented as:

row i is an empty row if

aij = 0 for all j = 1,..., n.

An empty row may appear due to some zero entries in the original MPS file, as 

we discussed in Section 1.1.2. It also can be the result of some other reductions in the 

intermediate stages of preprocessing. Checking an empty row is necessary because it 

leads to the singularity of matrix A that is not acceptable by most IPM solvers.
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For empty row i, the analysis is based on the row type of the original problem 

that was obtained directly from the MPS file. What is the implication of an empty 

row is decided by the sign of bi. There are three cases:

n
1. If the row type is equal, i.e., J2 aijxj — h, then:

t=i

(a) If bi = 0, then row i is redundant.

(b) If bi 7^ 0, then problem (2.3.5) is infeasible.

n
2. If the row type is greater than or equal, i.e., £3 aijxi > then:

J=i

(a) If bi > 0, then problem (2.3.5) is infeasible.

(b) If bi < 0, then row i is redundant.

n
3. If the row type is less than or equal, i.e., £2 aijxj then:

i=i

(a) If bi < 0, then problem (2.3.5) is infeasible.

(b) If bi > 0, then row i is redundant.

We can see that an empty row can lead to the conclusion that either this empty row 

is redundant or problem (2.3.5) is infeasible.

If redundancy is detected, then this empty row can be removed from the problem. 

Additionally, in the case that row i is an inequality constraint, the slack variable of 

this row is removed as well. The removal of an empty row will reduce the LO problem 

size without any change in the solution of problem (2.3.5). The corresponding dual 

variable of this empty row can be set to any value, for instance, to zero.
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2.4.3 Empty Column

If all the coefficients in a column are zero, then this column is an empty column. It 

can be presented as:

column j is an empty column if

aij = 0 for allf = 1,..., m.

Similar to an empty row, an empty column may exist in the original MPS file, 

or it may appear due to row removal.

For empty column j (variable Xj), there are three cases depending on the cor­

responding cost coefficient Cj and its bounds lj and Uj. The analysis of an empty 

column j is as follows:

1. If Cj = 0:

Because variable Xj does not appear in the objective function c and matrix A, 

it has no influence on the problem, thus column j can be removed from the LO 

problem. The solution of problem (2.3.6) is not affected by the removal of an 

empty column. The value of Xj can be set to any value, satisfying lj < Xj < Uj.

2. If Cj > 0:

(a) If lj = —oo, then Cjlj may go to —oo. Obviously, either problem (2.3.5) is 

unbounded or dual infeasible.

(b) If lj / —oo, then Cjlj < CjXj for X/Xj E [lj, u,]. Column j can be removed 

from the LO problem and x3 is set to the value of its lower bound lj.

3. If Cj < 0:
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(a) If Uj = +oo, then CjUj may go to — oo. Obviously, either problem (2.3.5) 

is unbounded or dual infeasible.

(b) If Uj / +oo, then CjUj < CjXj for Vxj 6 [lj, a,]. Column j can be removed 

from the LO problem and Xj is set to the value of its upper bound Uj.

Therefore, we know that there are two possible consequences of an empty column: 

either variable Xj is fixed to one of its bounds, lj or Uj, or problem (2.3.5) is detected 

to be unbounded or dual infeasible. In the first case, Xj can be substituted out 

of the problem. Its value is stored in some array such that it can be retrieved in 

postprocessing. The size of the LO problem is reduced. Moreover, the objective 

value will be changed by an additive constant cq where Cq := cq + CjXj when Cj 0.

2.4.4 Fixed Variable

Variable x3 can be fixed if there exists a j such that

Zj = Uj.

Fixed variable Xj may be defined directly in the BOUNDS section in an MPS 

file with bounds type definition “FX”. It can also be detected at some intermediate 

stages of preprocessing. For instance, in the technique of detecting an empty column 

as described in Section 2.4.3, the value of a variable can be fixed to one of its bounds, 

lj or Uj. In subsequent discussions on preprocessing, fixed variables can be produced 

by other techniques as well.

The treatment of a fixed variable is simple. As we referred in Section 2.4.3, if 

Xj is a fixed variable, then it can be substituted out of the problem and the problem 

size gets smaller. Before removed, the value of variable x3 must be stored in some
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array so that it can be retrieved in postprocessing. Further, an additive constant in 

the objective value Cq needs to be updated as

Co . Cq "I" Cj Xj ,

and the corresponding RHS value needs to be updated as:

6^ bi ajj Xj,

where i is the row index where variable Xj occurs in matrix A.

2.4.5 Singleton Row

Row i is a singleton row if there is only one nonzero coefficient in this row, i.e., there 

exists a k such that

aij = 0 for j = 1,..., k — 1, k + 1,..., n and 0.

A singleton row may appear directly in the MPS file. It may also occur when 

some columns are removed from the LO problem. If some columns are eliminated 

and only one nonzero coefficient is left in a row, then a new singleton row is created.

There are three cases, based on the row type of row i, to consider:

n
1. If the row type is equal, i.e., — bi, then:

J=i

(a) If Ik < — < uk, then row i is removed and Xk is set to — and variable
&ik &ik

Xk becomes a fixed variable (see Section 2.4.4).
6 • b-

(b) If — < lk or — > uk, then problem (2.3.5) is infeasible.
&ik &ik

n
2. If the row type is greater than or equal to, i.e., aik%k > bi, then:

j=i
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(a) If aik > 0, then an implied lower bound is obtained as Xk > lk = —■
Uik

(b) If aik < 0, then an implied upper bound is obtained as Xk < Uk = —■
aik

n
3. If the row type is less than or equal to, i.e., ^2 aikxk < hi, then:

i=i
bi

(a) If aik > 0, then an implied upper bound is obtained as Xk < Uk = —■
^ik

(b) If aik < 0, then an implied lower bound is obtained as Xk > Ik
0>ik

If the singleton row is an inequality, then a new implied bound, lk or Uk is 

obtained. The new implied bound needs to be compared with the original bounds, 

Ik or Uk- If they conflict, i.e., Ik > Uk or Uk < lk, then the LO problem (2.3.5) is 

infeasible. If the new implied bound is tighter than the original bound, i.e., Ik > Ik 

or Uk < Uk, then the corresponding bound needs to be tightened as:

lk = max (lk,lk) or uk = mm(uk,Uk)- (2.4.11)

If the tightened new bounds, lk and Uk, are equal, then variable Xk is treated again 

as a fixed variable.

If the implied bound is looser than the original one, i.e., Ik < lk or ilk > uk, then 

row i is redundant and it can be removed. The corresponding dual variable y, is set 

to zero. If the redundant row i is an inequality, the slack variable in row i is removed 

as well.

Therefore, summarizing our findings, we may say that there are three possible 

results of a singleton row: the variable bound is tightened, the variable is fixed or 

problem (LP) (2.3.5) is infeasible.

One singleton row elimination often creates new singleton row eliminations [13], 

thus checking singleton rows is an easy and efficient way to reduce the problem size.
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2.4.6 Singleton Column

Column j is a singleton column if there is only one nonzero element in the column,

i.e., there exist a k such that

aij = 0 for i = 1,..., k — 1, k + 1,..., m and ■=/=■ 0.

Variable x3 can be substituted out of the problem under the following two circum­

stances.

1. When variable Xj is a free variable, it can be replaced by the other variables in 

row k:

n
bk o,kpXp

Xj =____p=1’p*>____ . (2.4.12)
akj

Constraint k becomes a free constraint, thus row k can be removed.

The value of other variables xp, p = 1,..., j — 1, j + 1,... , n, can be obtained 

from the solvers. Then the value of Xj can be calculated from (2.4.12).

2. When variable x3 is not a free variable, if its tightest computed bounds lj or Uj, 

derived from the lower and upper bounds of the constraints where variable Xj 

appears, is tighter than its original bounds lj and Uj, i.e., lj > lj and Uj < Uj, 

then variable Xj is called an implied free variable. The computed bounds of 

variable Xj, also called the implied bounds of variable Xj, can be calculated 

using the technique of “tighten bounds”, that will be presented in detail in 

Section 2.5.2.

Xj is an implied free variable if
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If variable Xj is an implied free variable, then it can be treated as a free variable 

as outlined in case 1.

When a free (or an implied free) variable Xj is detected in a singleton column 

j where ak] is the only nonzero coefficient in column j, variable Xj and constraint 

k can both be eliminated. An advantage of this is that matrix A does not change 

except row k is removed. The only change is in the cost coefficients cp of all the other 

variables xp, p = 1,..., j; — l,j + 1,..., n that have nonzero coefficients in constraint 

k. The cost coefficient Cp is changed to:

&kpCj

The objective value will also be changed by a constant Cq := Cq +
bf;Cj

akj

Note that the removed row k specifies the relationship (2.4.12) between the re­

moved variable Xj and the other variables xp, i = 1,.. .,j — l,j + 1,... ,n, therefore 

the related information, for instance, all the nonzero coefficients in row k and the 

right hand side value bk must be recorded. This information will be used to recover 

the value of variable Xj in postprocessing.

If Xj is a free (or an implied free) variable, then the corresponding value of yk
Q .

can be fixed to —, because free variables imply equality constraints in the dual, and 

thus constraint j in the dual is a singleton equality row.

2.4.7 Duplicate Rows

Two rows are called duplicate rows if their corresponding coefficients are in propor­

tion, i.e., there exist i k and 1 < i, k < m, such that
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aij = Xakj for all j = 1,..., n, A 7^ 0.

Most duplicate rows appear directly in the MPS file. It is necessary to check 

the duplicate rows and remove them, especially when the original row types are both 

equality, that imply that matrix A is singular.

There are four cases depending on the row types. The analysis is as follows:

1. If both row i and row k are equalities, then the two constraints are:

n

O'ijXj — bi, (2.4.13)
1=1

n

y = bfc. (2.4.14)
1=1

Let us multiply equation (2.4.14) by A and substract it from equation (2.4.13).

We have
n n

Oij Xj A bi Xbk .
1=1 1=1

The left-hand side of this equation is a zero vector, thus this constraint is an 

empty row (see Section 2.4.2). We list the possible results briefly as follows:

(a) If bi = Xbk, then either row i or row k can be removed.

(b) If bi 7^ Xbk, then problem (2.3.5) is infeasible.

2. If both row i and row k are inequalities with the same row type, e.g., both are 

greater than or equal constraints:

n

'^aijXj>bi, (2.4.15)
1=1
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''^akjXj >bk. (2.4.16)
j=i

For ease of discussion, assume that the ranges of row i and k are and rk, 

respectively. Note that vy and rk can be infinite. We have

bi + ri>^2 avxi &*> (2.4.17)
j'=i

n

bk + rk> akjXj > bk. (2.4.18)
j=i

(a) If A > 0, then from (2.4.18), we have:

n n

X(bk 4” rk) > A akjXj = ' Q'ijXj > Xbk. (2.4.19)
j=i j=i

There are two cases to be considered:

i. If \(bk + rk) < bi or bi + ri < Xbk, then the two constraints conflict, 

that imply that problem (2.3.5) is infeasible.

ii. If \(bk + rk) > bi and br + > \bk, then the two constraints can be

reduced to one constraint:

min(A(5fc + rfc), 6, + n) > aoxj max(A5fc, bi). (2.4.20) 
j'=i

We keep the constraint that has a tighter right-hand side b,b = max(A5fc, bf) 

Its corresponding range is updated as | min(A(6fc + rk), bi + rj — 6|. The 

other constraint is redundant and it can be removed.

(b) If A < 0, then from (2.4.18), we have:
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n n
Xbk> A^akjXj = OijXj > X{bk + rfc). (2.4.21)

j=i j=i
There are two cases to be considered:

i. If Xbk < bi or bi + ri < X(bk + rk), then the two constraints conflict, 

that imply that problem (2.3.5) is infeasible.

ii. If Xbk > bi and bi + rz > X(bk + rk), then the two constraints can be 

reduced to one constraint:

n

min(Abfc, + rf) > aijxi > max(A(5fc + rk),bi). (2.4.22) 
j=i

If bi is tighter than X(bk + rk), i.e., bi > X(bk + rk), then the constraint
n

52 aijxj h is kept- Its range is updated as | min(6; + riz Xbf) — 6j|. 

If Xbk is tighter than bz+rt, i.e., Xbk < bi+ri, then the constraint Xbk >
n

52 is kept. Its range is updated as | max(A(6fc + rk), bf) — Xbk\. 
j=i

The case when both constraints have less than or equal row type can be treated 

analogously.

3. If both of row i and row k are inequalities with different row types, then we 

have:

n
CLjjXj >

n
CLkjXj < bk-

The sign of A may change the row type. Multiplying by A, the row types of the 

two constraints may be the same or different. The analysis goes the same way 

as case 2 that has been discussed.
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4. If one of the row types is equality while the other one is inequality, e.g.,

n
a^j Xj — bi,

J=i

Ufcj Xj < bk,
J=i

then the analysis is similar to case 2 as well.

Detecting duplicate rows may result in either one row removal, or detecting that 

problem (2.3.5) is infeasible. When both of the two rows are equalities, then detecting 

duplicate rows is mandatory because they imply that matrix A is singular, that can 

be disastrous for IPM solvers.

2.4.8 Duplicate Columns

Two columns are called duplicate columns if their corresponding coefficients are in 

proportion, i.e., there exists a pair j / k and 1 < j,k < n such that

= Xaik for all i — 1,..., m, A 7^ 0.

Using this relation, we may write

O'ijXj *i" OikXk Oik(XXj 4“ «T/c), (2.4.23)

and

CjXj + ckxk = ck(\Xj + xk~) + (Cj - \ck)Xj. (2.4.24)

Our aim is to remove variables Xj and xk, while introducing a new variable 

xk = Xxj + xk. We have three cases to consider depending on the value of Cj — Xck.
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1. If Cj — Xck = 0, then we can introduce the new variable Xk = Xxj + Xk- The 

bounds Ik and Uk of Xk can be derived from the bounds of Xj and x^.

• If A > 0, then lk + Xlj < Xk < Uk + Xuj, i.e., Ik = lk + Xlj and Uk = Uk + Xuj.

• If A < 0, then lk + Xuj < Xk < Uk + Xlj, i.e., ik = lk + Xuj and Uk = Uk + Xlj.

In this case, variables Xj and Xk are removed from the problem and they will not 

appear in the matrix A and cost vector c. The number of variables in (2.3.5) is 

reduced by one. Further, we compare the bounds of Xk- If they are in conflict, 

then problem (2.3.5) is infeasible. If the bounds of variable Xk are equal, i.e., 

Ik = Uk, then Xk is a fixed variable and can be removed from the problem as 

discussed in Section 2.4.4. The value of A and the bounds of the two variables 

need to be recorded in order to recover the values of Xj and Xk in postprocessing. 

In the recovery step, the values of Xj and Xk are obtained by:

Xxj + xk — xk,

lj < Xj < Uj, 

Ik < Xk < Uk,

(2.4.25)

where Xk is already known in that stage.

2. If Cj — Xck > 0, then we consider the dual problem (2.3.6). Constraint j can be
m

written as + vj — wj = cj,

that imply
m m

Vj ~ Wj ~ C3

thus we get

- Wj > A(ufc - wfe).
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Two special cases are of particular interest:

(a) Uk = +oo and A > 0:

From the optimality condition (see Equations (2.3.10)), when Uk = +oo, 

we have Wk = 0, and

Vj — Wj > Xvk > 0,

implies:

Vj — Wj > 0.

Because Wj >0, we have Vj > 0.

(b) If Ik = — oo and A < 0:

Similarly, when Ik = — oo, we have Ufc = 0 and 

Vj — Wj > —Xvk > 0.

Because Wj > 0, we have Vj > 0.

Both cases lead to Vj > 0. When Vj > 0, then from (xj — lj)v3 — 0 in the 

optimality condition (2.3.10), we derive

~ h ~ O-

The result is decided by the value of lj. Therefore, because Cj — Xck > 0:

(a) If lj is finite, then variable Xj can be fixed to lj.

(b) If lj is infinite, i.e., lj = —oo, then we should have Vj = 0. This conflicts 

with Vj > 0, thus the dual problem (2.3.6) is infeasible.

3. If Cj — Xck < 0, then an analogous analysis to case 2 can be given. The result 

is this case decided by the value of Uj\

(a) If Uj is finite, then variable Xj can be fixed to Uj.

(b) If Uj is infinite, i.e., Uj = +oo, then the dual problem (2.3.6) is infeasible.
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2.5 Advanced Logical Analysis of the LO Problem

So far, we have discussed several basic logical techniques. Usually, those techniques do 

not require much calculation except the case when singleton columns are analyzed. In 

this section, we consider advanced logical analysis techniques that require significantly 

more calculation.

2.5.1 Redundant Constraint and Forcing Constraint

Those two techniques may reduce the dimension of the LO problem. To find a re­

dundant constraint or a forcing constraint, we need to calculate the lower and upper 

bounds of the given constraint.

For constraint i, to compute its lower bound bi and upper bound bi} we define 

the index sets of the positive and negative coefficients in row i as follows:

'Pi = {j, &ij > 0},

A/i = {j, aij <c 0}.

Since we know the bounds of each individual variable,

lj < Xj < Uj, j = 1,..., n,

we can calculate the lower bound bi and the upper bound bi of constraint i as follows:

aijlj + a^Uj,

j£Pi jeMi

bi 'y ^ijuj + Oijlj. 
jePi jeMi
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Thus, for constraint i, we have
n __

bi < 5 7 a>ij Xj < bi.
j=i

Definition 2.5.1. An equality constraint i is called a forcing constraint if either its 

upper bound bi or lower bound bi is equal to its right-hand side value bi, i.e.,

bi - bi or bi = bi.

Moreover, a less than or equal to constraint i is called a forcing constraint if 

its right-hand side value bi is equal to bi, i.e., bi = b^; A greater than or equal to 

constraint i is called a forcing constraint if its right-hand side value bi is equal to bi,

i.e., bi bi.

Definition 2.5.2. Constraint i is called a redundant constraint in the following two

cases:
__ n

bi > bi for 53 < h,
3=1

or
n

bi < bi for 52 dijXj > bi. 
j=i

We can examine the relationship among biy bi and bi to find out redundant 

constraints and forcing constraints. There are three cases depending on the row type. 

For constraint i:

n
1. If the row type is less than or equal to, i.e., 52 aij%j < bz:

j=i

(a) If bi < bi, then problem (2.3.5) is infeasible.

(b) If bi = bi, then constraint i is forced to its lower bound. Variable Xj is 

fixed at its lower bound lj for j € Pi, and Xj is fixed at its upper bound 

Uj for j effi-
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(c) If bi > bi, then constraint i is redundant, thus row i can be removed.

(d) if bi < bi < bif then constraint i can not be removed. However, we may 

tighten the constraints range and have a chance to tighten the bounds of 

the participating variables, (see Section 2.5.2). Note that if the original 

range of row i is we can update the range iy as min(6, — bi,ri).

n
2. If the row type is greater than or equal to, i.e., £3 aijxj >

J=i

(a) If bi > bi, then problem (2.3.5) is infeasible.

(b) If bi = bi, then constraint i is forced to its upper bound. Variable Xj is 

fixed at its upper bound Uj for j € Pi, and Xj is fixed at its lower bound 

lj for j E Mi-

(c) If bi < bi, then constraint i is redundant, thus row i can be removed.

(d) If bi < bi < bi, then constraint i can not be removed. However, we may 

have a chance to tighten the bounds of the participating variables (see 

Section 2.5.2). Note that if the original range of row i is ri, we can update 

the range as min(£>i — bi, rf).

n
3. If the row type is equal, i.e., a^Xj =

i=i

(a) If bi = bi, then constraint i is forced to its upper bound. Variable Xj is 

fixed at its upper bound Uj for j E Pi, and Xj is fixed at its lower bound 

lj for j E Mi-

(b) If bi = bi, then constraint i is forced to its lower bound. Variable Xj is 

fixed at its lower bound lj for j E Vi, and Xj is fixed at its upper bound 

Uj for j E Mi.

(c) If bi > bi or bi < bi, then problem (2.3.5) is infeasible.
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(d) I£ bi < bi < bi, then constraint i can not be removed. However, we may 

have a chance to tighten the bounds of the participating variables (see 

Section 2.5.2).

When constraint i is found to be a forcing constraint, the participating variables 

in this constraint can be fixed either to their upper bounds or to their lower bounds. 

Therefore, it is highly advantageous to find forcing constraints because both the forc­

ing constraint and all the participating variables in that constraint can be removed. 

In this way the LO problem may be simplified significantly.

When constraint i is found to be a redundant constraint, it can be removed from 

the LO problem. The corresponding dual variable is set to zero.

Note that during the preprocessing implementation, once the bounds of some 

variables in constraint i change, the bounds bi and bi of constraint i need to be 

recalculated again.

2.5.2 Tighten Variable Bounds

The technique of tightening variables bounds has been referred to in Section 2.4.6. 

Here we discuss this technique in detail.

In Section 2.5.1, we have derived the constraint bounds bi and bi- However, we

concluded that constraint i is not forcing, redundant or infeasible only if 
__ n

if bi < bi < bi when E dijXj <
3=1

__ n
if bi < bi < bi when aijxj >

__ n
ii bi < bi < bi when aijxj = h- 

3=1
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We can use bi and bi to compute implied bounds lk and uk for the participating 

variables xk in constraint i. We will discuss the various cases one by one.

1. If the row type of constraint i is less than or equal to, i.e., JS aijxj — b* and all 
J=i

Ik for k EPZ and uk for k E J\ft are finite, then in this case is finite as well.

If for \/k E Pi, we have > 0 and
n

6^ “H dik(xk Ik) — 2

that imply

j=i

bi — bi
Xk < H Z/c — uk.

&ik

If for VA; G Ai, we have < 0 and

bi + aik(xk - O < £ avxj - bi'

that imply
bi — bi

xk >----- = + uk = lk.
Oik

Variable xk, k E Pi, gets an implied upper bound uk if Uk < uk. Variable xk, 

k E ffi, gets an implied lower bound lk if 4 > lk-
n

2. If the row type of constraint i is greater than or equal to, i.e, aijxj and 

all uk for k^Pi and lk for k G J\fi are finite, then in this case bi is finite as well. 

If for Vfc G P<, we have aik > 0 and

bi + dik(xk uk) > dijXj > bi, 
J=i

that imply
_ bi bi t _ pXk > H uk — lk.

^ik
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If for V/c G JV], we have < 0 and
n

bi T Oik(Xk Ik) > OijXj > 6j,

J=1

that imply _
bi _  „

Xk — T Ik Uk-
0>ik

Variable Xk, k G Pi, gets an implied lower bound lk if 4 > h- Variable Xk, 

k G Ni, gets an implied upper bound Uk if u-k > Uk-

For variable Xk, the new implied lower and upper bounds Ik or uk need to be 

compared with the original bounds. If they conflict, i.e., 4 > Uk or Uk < Ik, then 

problem (2.3.5) is infeasible. Otherwise, we will check whether the new bounds are 

tighter than the original ones, i.e., Ik > Ik or Uk < Uk- If tighter, then the bounds of 

variable Xk need to be updated by (2.4.11):

lk = max(/fc,4), uk = min (life, Ufc).

To the contrary, if the new bounds are looser than the original ones, i.e., Ik < lk or 

Uk > Uk, the constraint and the variables are kept without change.

Further, Gondzio [13] noticed that when bi or bi is infinite, it still may be possible

to derive an implied bound for a variable. To compute a finite lower bound

bj= y) Uijij -+• y) a^Uj, 
jCPi jess,

the variables in P must have their finite lower bounds, while the variables in JV must 

have their finite upper bounds. However, if only one variable in P has an infinite 

lower bound, or only one variable in J\f has an infinite upper bound, then we can 

calculate an implied bound for this variable.

Similarly, if there is an infinite upper bound
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bi
jePi je^i

and if only one variable in P has an infinite upper bound, or only one variable in 

ff has an infinite lower bound, then also we can calculate an implied bound for this 

variable.

The detailed discussion is as follows:

n
1. If the row type is less than or equal to, i.e., ^2 aijxj <bi, we assume that there 

j=i
exists only one infinite bound:

(a) Ik = —oo for k G Pi, or

(b) Uk = +00 for k G A/i- 

(a) For k G Pi, we have aik > 0 and
n

^ik^k + E E CLijUj < aijXj —
jePi-{k} jeNi j=l

that imply

53 O"ij I j 53 &ij Uj
. jePi-{k} jeAfi

Xk S —
&ik

(b) For k G f\fi, we have aik < 0 and

&ikxk T E &ij I j H” E UijUj < OijXj < bi,
jePi jeMi-{k} j=i

that imply

xk E
bi ^2 &ijlj J2 OijUj

jePi jerfi-ik}

&ik
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If k € Xk gets an implied upper bound. If k E J\fi, Xk gets an implied lower 

bound.

n
2. If the row type is greater than or equal to, i.e., 52 aijxj &», we assume there 

j=i
exists only one infinite bound:

(a) Uk = +oo for some k G Pi, or

(b) I). — —oo for some k G Af*.

(a) For k G Pi, we have aik > 0 and

Uikxk H- O"ijlj "b E OijXj
jeX jePi-{k} j=i

that imply
bi 52 aijlj 52 o,j,jUj

jzXi je"Pi-{k} f
Xk > ---------------------------------------------------  = Ik-

&ik

(b) For k G A/i, we have < 0 and

n
Q'ikKk “H E lj “1“ E Uj Oij Xj b^,

jeXi-{fcj jePi j=i

that imply

bi y ' Oijlj y j OijUj
. jeX-{fe} j^Pi

Xk < ------------------------------------------------------
Oik

Uk-

If k G Pi, Xk gets an implied lower bound. If k G A/i, Xk gets an implied upper 

bound.

Dealing with implied bounds is the same as what we have discussed in the case
n

of 52 aijxj > bi- 
J=1

57



M.Sc. Thesis - X. Huang McMaster - Computing and Software

Gondzio’s extension is especially useful for free variables. A free variable can 

get its implied bounds. If the implied bounds of a free variable are equal, then this 

variable is fixed and it can be removed from the problem.

Using “tighten variable bounds” techniques, we may find that either problem 

(2.3.5) is infeasible, or obtain fixed variables, or have some variable bounds tightened.

Once some variable bounds are updated, the new bounds can be used to cal­

culate the bounds of other constraints. Then more forcing constraints or redundant 

constraints may be found and thus the problem dimension of the LO problem reduces.

2.5.3 Tighten Dual Variable Bounds

The analysis discussed so far are all related to the primal problem. Some techniques 

can be applied to the dual problem too. For instance, we can use similar techniques 

to the ones discussed in Section 2.5.2 to tighten the bounds of dual variables.

Similarly, for the dual constraint j, we define the following notations:

P'j = {i : aij > 0},

A/j — . a^j 0},

Pi < Vi < Qi, i = 1, • • •, m.

Then, the lower and upper bounds Cj and cf of the dual constraints j can be 

easily obtained by:
Cj = y) o,ijPi + y) OjjQj,
— iep' ieAfJ

Cj V) &ijPi T O'ijQi- 
ieu'j ier'j

We will use these bounds to find the implied lower and upper bounds Pk and qk
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for a participating dual variable yk in constraint j. First, we present the cases when 

either c] or Cj, or both of them are finite.

m
1. If the type of dual constraint j is less than or equal to, i.e., ^2 fly?/; < Cj and all 

»=i
Pk for k e Pj and qk for keN- are finite, then in this case c,3 is finite as well. 

For V/c G Pj , we have akj > 0 and

m
Q.j 4" ^kj^Vk Pk) — ^ijVi < 

i=l

that imply
Cj Cj

Vk < --------= + Pfc = Qk-
O-kj

For \/k G we have < 0 and

m

Qj 4" ^-kj(jjk Qk') — ^ijPi < Cj, 

i=l

that imply
Cj — Cj

Vk >--------= + Qk = Pk-
a^

Variable yk, k G Pj, gets an implied upper bound qk if qk < Qk- Variable yk, 

k E ff'j, gets an implied lower bound pk if Pk > Pk-

m
2. If the type of dual constraint j is greater than or equal to, i.e., JZ aijUi cj 

i=l
and all pk for k € M'j and qk for k G Pj are finite, then in this case Cj is finite 

as well.

For V/c G Pj , we have akj > 0 and

Cj + akj(yk qk) — a^yi > Cj, 
i=l
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that imply
^7 ^7

Pk > -- --------  + Qk = Pk-
akj

For V/c 6 Aj, we have < 0,

Cj "F akj^yk Pk) > *aijUi > Cj,
i=l

that imply

yk < -—- +Pk = Qk- 
akj

Variable Pk, k E P'-, gets an implied lower bound pk if Pk > Pk- Variable yk, 

k E J\fj, gets an implied upper bound qk if qk < Qk-

The analysis is valid when either c^ or Cj or both are finite. Further, Gondzio [13] 

found that it still may be possible to tighten an implied bound for a variable when 

either Cj or Cj is infinite. The analysis is analogous to what we did for the primal 

problem.

1. If the type of dual constraint j is less than or equal to, i.e., Yl^jPi < Cj, we
i=l

assume that there exists only one infinite bound:

(a) pk = — oo for some k €.Pj, or

(b) qk = +oo for some k Ej\fj.

(a) For k EPj, we have a^ > 0 and

Q-kjPk T 0>ijPi T O-ijQi < a-ijPi < Cji
teP'-W ietf- 1=1

that imply
Cj 53 O-ijPi 53 ®ijQi 

iePi-{k} ietf.
Pk < --------------------------------------------------- = Qk-

akj
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(b) For k G Aj, we have < 0 and

^kjUk 4* Q'ijPi 4* ' Oijqi < O'ijVi E Cj>

iev- i=l

that imply

yk >

Cj QijPi QijQi
ie/^-ik} ier^

akj
Pk-

If k e Pj, yk gets an implied upper bound fa if fa < qk- li k E ffj, yk gets an 

implied lower bound fa if fa > Pk-

m
2. If the type of dual constraint j is greater than or equal to, i.e., ^2 — CJ>

i=l
we assume there exists only one infinite bound:

(a) Qk = 4-co for some k EP'j, or

(b) Pk — —oo for some k € Nj.

(a) For k EPj, we have a^ > 0 and

m

QkjPk 4" UijQj 4" QijPi > OijPi > Cj,
ieP'-{fe} i=1

that imply

yk >

Cj QijPi OijUi
i&Mrk iePj

Okj
= pk-

(b) For kEM*, we have < 0 and

m

QkjVk H" QijQi “I" Q'ijPi > E Q'ijPi > Cj,
ier'j ieMj-W i=1

61



M.Sc. Thesis - X. Huang McMaster - Computing and Software

that imply
Cj 52 O'ijPi 52 

iep'
Pk < --------------------------------------------------- = qk-

Okj

If k e Pj, yk gets an implied lower bound pk if Pk > Pk- If k e Al*, yk gets an 

implied upper bound qk if qk < qk-

The new implied bounds fa and fa need to be compared with their original bounds qk 

and pk- If they are in conflict, then the dual problem (2.3.6) is infeasible. Otherwise, 

check whether the new bounds are tighter than the original ones. If tighter, the 

bounds need to be updated as:

Pk = max(fa,pk), 

qk = min(gfc,gfc).

2.5.4 Dominated Variables

Prom Section 2.5.3, we know how to calculate the lower and upper bounds c^ and Cj 

for dual constraint j. They have the following relationship with the dual constraint:

m

Qj — y aijVi — Cj- 
i=l

We also know that
m

' aijyi T j — wj = Cj.

1=1

In our subsequent discussions, the lower and upper bounds of variable Xj will decide 

the result of our analysis. Therefore, we consider two cases separately: Uj = +oo or 

lj = — oo. In both cases, the relationships among c7, Cj and Cj are discussed.
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1. If Uj = +oo, the result is decided by the value of lj.

Prom (2.3.9), we know that when Uj = +oo then Wj = 0. We have

m
O'ijVi "f" Vj = Cj.

t=l (2.5.26)

(a) If Cj < Cj, (2.5.26) can not happen, therefore the dual problem (2.3.6) is 

infeasible.

(b) If c] < Cj, from (2.5.26), we know that Vj is strictly positive, i.e., Vj > 0. 

In this case, we call column j a dominated column. From (xj — lj)Vj = 0 

in (2.3.10), we know:

i. If lj = —oo, then the dual problem (2.3.6) is infeasible.

ii. If Zj 7^ — oo, then Xj is fixed at its lower bound lj.

(c) If (cf = Cj), we know that (2.5.26) is satisfied when Vj > 0. In this 

case, column j is called a weakly dominated column. Variable Xj can be 

eliminated the same way as a dominated column [3]. Here, a more general 

condition can be used to eliminate variable Xj as follows:

Proposition 2.5.1. [13] Assume that lj > —oo, Uj = +oo andc] = Cj. If 

for all k E Pj, the constraint k in (2.3.5) is of the ’ < ’ type, and for all 

k E Afj, the constraint k in (2.3.5) is of the ’ > ’ type, then there exsits 

an optimal solution such that Xj = lj or the LO problem (2.3.5) has no 

optimal solution.

(d) If Cj < Cj < cf, then Xj can not be eliminated, but we may use the technique 

presented in Section 2.5.3 to find implied bounds for the participating dual 

variables in dual constraint j.

2. If Zj; — — oo, then the result is decided by the value of u}.
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From (2.3.9), we know that Vj = 0 when lj = —oo. We have
m
52 aijyi ~ = cj- (2 5 27)

(a) If Cj > cf, then (2.5.27) can not happen, therefore the dual problem (2.3.6) 

is infeasible.

(b) If Cj > Cj, then we call column j a dominated column.

From (2.5.27), we know that Wj > 0. From (u,j —Xj)wj = 0 in (2.3.10), we 

know:

i. If Uj = +oo, then the dual problem (2.3.6) is infeasible.

ii. If Uj 7^ +oo, then Xj is fixed to its upper bound Uj.

(c) If Cj = Cj, then column j is called a weakly dominated column. In this 

case, Xj can be eliminated like a dominated column. Here, a more general 

condition can be used to eliminate variable Xj as follows:

Proposition 2.5.2. [13] Assume that lj = —oo, Uj < 4-oo and Cj = Cj. If 

for all k G P'j, the constraint k in (2.3.5) is of the ’ > ’ type, and for all 

k G the constraint k in (2.3.5) is of the ’ < ’ type, then there exsits 

an optimal solution such that Xj = Uj or the LO problem (2.3.5) has no 

optimal solution.

(d) If Cj < Cj < c[, then Xj can not be eliminated, but we may use the technique 

in Section 2.5.3 to find implied bounds.

2.6 Make A Sparser

Large scale LO problems usually contain relatively few nonzero elements. This feature 

is referred to as sparsity, or low density. For matrix A, its sparsity is defined as the
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number of nonzero elements divided by the total positions in this matrix. If p(A) 

denotes the sparsity and v(A) the number of nonzero entries, the sparsity of matrix 

A is given by the formula:
v(A)e(A)
mn

Similarly, the sparsity of a vector, e.g., vector c is defined as

The sparsity of matrix A needs to be utilized in implementations and matrix A 

needs to be made as sparse as possible during preprocessing. Improved sparsity (i.e., 

reducing p(A)) not only saves memory and decreases the cost of calculations at each 

iteration, but also improves numerical stability and allows to produce more accurate 

solutions.

Hoffman and McCormick [15, 19] defined sparsity problem as a general optimiza­

tion problem and concluded that finding the exact solution of the sparsity problem 

is an NP-complete problem.

Definition 2.6.1. Sparsity Problem [6]: Given A E Rmxn and b E Rm, that define 

the constraints Ax = b, find a nonsingular T E Rmxn such that A = TA is as sparse 

as possible, i.e., min {0(A) | A = TA and T E RmXn nonsingular }.

Gondzio [13] proposed a heuristic algorithm that is simple to implement and can 

reduced the sparsity of matrix A effectively. The algorithm is based on the analysis 

of the sparsity pattern of each equality constraint in A. We try to find a row whose 

sparsity pattern is a superset of the sparsity pattern of another row. In this way we 

can make A sparser. For instance, if there are row i and row k with the following 

sparsity patterns:

65



M.Sc. Thesis - X. Huang McMaster - Computing and Software

x x x <= row i,

x x x x x x <= row k,

then we say that the sparsity pattern of row A: is a superset of the sparsity pattern of 

row i. In this case, we select row i as a pivoting row. By choosing a suitable scalar A, 

this multiple of row i is added to row k so that at least one nonzero element in row 

k is eliminated, i.e.,

0>kj O'kj “I” Adjj, j 1, . . . , 71,

and the corresponding RHS value is also changed to:

bk — bk + Ai>j.

The solution of problem (2.3.5) with the revised new row k is the same as that of the 

original one.

The main difficulty is how to find a pivoting row and the corresponding rows 

whose sparsity patterns are the superset of this row. To reduce the computational 

effort of this process, a linked list for all the equality constraint is built in an ascending 

order by the number of nonzero elements. We usually start with a row, e.g., row i, 

that has the smallest number of nonzero elements. Then we check each column that 

has nonzero element intersection with row i and choose the column, e.g., column j, 

that has the smallest number of nonzero element. The superset of row i is found by 

scanning each row, e.g., row k, that has nonzero element in column j. To be efficient, 

if the number of nonzero elements of row k is less than that of row i, then row k is 

rejected from our candidate superset row list. It is reported by Gondzio that if the 

sparsity pattern of row k is not a superset of the nonzero pattern of row i, then this 

fact usually can be easily found after checking the first three elements.
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This algorithm can guarantee that at each elimination step at least one nonzero 

element is eliminated from the LO problem. If we are lucky, more nonzero elements 

may be eliminated at a single elimination step. And the advantage of this procedure 

is that no new fill in is produced and no additional storage is needed to store the 

updated matrix.

Observe that among the basic and the advanced logical analysis technologies, 

there are some, e.g., fixed variables, singleton rows, forcing rows and dominated vari­

ables that can directly or indirectly help to improve the sparsity of matrix A. Thus, 

in some optimization software packages, the task of making A sparser is implemented 

only by relying on those techniques.

2.7 Make A Full Rank

For IPMs solvers, to make matrix A full rank is mandatory, thus it is indispensable 

to find out the dependent rows if they exist.

Definition 2.7.1. [2] Let S C {1,... ,m} be a non-empty set. If there exists a vector

s G Rm such that s^ =4 0 for all i G S and si A = 0, then the rows in matrix A 
ies

corresponding to the indices in S are said to be linearly dependent.

Once dependent rows are found, then one of them can be removed from the LO 

problem due to the following property:

Proposition 2.7.1. [2] Assume that the rows corresponding to the indices in S are 

linearly dependent. In this case, either one of these rows can be removed from the 

problem without changing the optimal solution or the problem is infeasible.

Therefore, when linearly dependent rows are found in matrix A, at least one of them
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can be removed from the problem if the LO problem is feasible. The removal process is 

repeated as long as linearly dependent rows are found. Finally a coefficient matrix A 

with full row rank is sent to the solver. The problem is how to find linearly dependent

rows.

Theoretically, Gaussian Elimination can be used to check the dependency of the 

rows. For system Ax = b, we combine matrix Am*n with vector b to get the matrix 

A = [A | b ] with the size of m x (n+1). A sequence of elementary row operations can 

be applied to the rows in matrix A to identify its rank. The row operations include:

• Multiply a row by a scalar;

• Swap two rows;

• Add a scalar multiple of one row to another row.

A detailed description of Gaussian Elimination is as follows:

Examine each row starting from the first row of matrix A.

1. If there are some nonzero entries in the examined row, e.g., row i, then select 

one of the nonzero entries, e.g., OjP / 0 for some 1 < p < n, as the pivot element. 

Row i is called the pivot row and column p is called the pivot column. Perform 

row operations to all the rows below the pivot row i, i.e., for alii < k < m to 

convert the corresponding nonzero coefficient akp to zero.

2. If there are only zero entries in the examined row i. There are two cases:

(a) If aj(n+i) = 0, then this row is dependent. It can be removed from the 

problem;
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(b) If Oi(n+i) / 0, then the LO problem is infeasible;

If matrix A is detected to be singular, then the indices of the linearly dependent rows 

are recorded. By removing those rows from the original matrix A, the remaining 

submatrix of matrix A has full row rank and it is sent to the solver. If the problem 

is checked to be infeasible, then we get an infeasibility certificate directly without 

solving the problem.

In practice, since large scale LO problems usually have relatively few nonzero 

elements, to do a complete Gaussian Elimination is far too expensive. It not only 

destroys the sparsity structure of matrix A, but also affects numerical stability. Thus, 

in practice a modified method is used instead. There are two factors to be considered 

during the implementation: avoid creating much fill in and keep numerical stability. 

What we want to find is just the linearly dependent rows.

1. We can find all zero rows first and check if the corresponding RHS coefficient 

is zero. If there is a RHS coefficient is nonzero, then the problem (2.3.5) is 

infeasible. Otherwise, remove these zero rows.

2. Then find all the columns that have only one nonzero entry and its correspond­

ing row. We do not remove them. These rows are obviously linearly independent 

and for linear dependency, we need to check only the remaining submatrix. For 

instance, if the coefficient a^ is the unique nonzero element in column j, then 

column j and row k are eliminated during the process of finding linear de­

pendency. The singularity of the remaining matrix is the same as the original 

matrix A.

3. For the remaining matrix, to check the matrix singularity, we need to choose a

pivot element for each row. After k pivots, let denote the remaining
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coefficient matrix. To preserve sparsity, the generalized Markowitz pivoting 

strategy is used to choose the pivot element. We only consider the rows and 

columns that remained in the system. The rows and columns that have already 

been pivoted are ignored. Let Qi denote the number of remaining nonzero 

elements for row i and let Tj denote the number of remaining nonzero elements 

for column j. The Markowitz criteria suggests to select a^ as a pivot element 

in the remaining matrix A(.m~k')*(.n-k') at the fcth stage that minimizes

min{(& - 1)(tj - 1)}. (2.7.28)

Numerical stability is ensured by avoiding too small pivot elements. If the value 

of ajj obtained by Markowitz’s rule is “too small”, then the first acceptable can­

didate that still gives a small (& — 1)(tj — 1) value is chosen instead.

The implementation of Markowitz’ strategy requires the knowledge of the up­

dated sparsity pattern of the reduced (m — k) x (n — k) submatrix at the fcth stage 

of Gaussian Elimination. For efficient search, both the row-wise and column-wise 

storage of the coefficient matrix are needed.

The following pseudocode shows the pivoting algorithm for large scale LO prob­

lems.
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Pivoting Algorithm

Input:

row size m and column size n of matrix A; 

tolerance e;

begin

find row p whose nonzero element number equals to 0. 

if the corresponding right-hand-side value equals to 0.

mark row p.

else

the LO problem is infeasible; return; 

find column q whose nonzero element number equals to 1. 

find the unique nonzero element atq in column q 

mark row t and column q

reorder matrix A such that marked rows and columns at the end of the matrix.

p = i;

while p < m do

find the nonzero element atj that minimizes Equation (2.7.28) 

if (a^ < e) or (a^- —— 0)

find the second candidate ai>j> minimizing Equation (2.7.28) 

i = i'\3 = ?‘,

end

swap row i with row p and pivoting to the rows below row i. 

mark row i and column j.

end
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At the end of the pivoting algorithm, find the rows whose nonzero element number is 

equal to zero. If the corresponding RHS equals to zero, then the row is removed from 

the problem. Otherwise, the LO problem is infeasible. When all the empty rows are 

removed from the LO problem, the matrix is made to have full rank.

Except for Gaussian Elimination, the heuristic of making A sparser and checking 

duplicate rows can both help to eliminate the linearly dependent rows to make A full 

rank.

2.8 Scaling

In LO, if there are some very large and very small numbers among the coefficients of 

A, b and c, then the problem may be difficult to solve numerically. Scaling is used to 

avoid such instability and increase the solution accuracy by adjusting the numerical 

characteristics of the LO problem.

Scaling is a linear transformation where the rows and/or columns are multiplied 

by some scalar factors. Scaling can be represented by multiplying by diagonal matrices 

Rmxm and Tnxn, where matrix R is the row scaling factor for A and matrix T is the 

column scaling factor for A. If is the row scalar factor for row i and tj is the column 

scalar factor for column j, then R = diag(ri,..., rm) and T = diag(ti, ...,tn).

If x is the solution of the problem before scaling and x is the solution of the 

problem after scaling, we have:

RATx = Rb and x = Tx.

Every scaling needs the adjustment of the other data vectors, i.e., I, u and c in
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the LO problem. After scaling, the vectors u, I and c become:

I = T_1Z, u = T~xu and c = Tc.

It is clear that the objective values of the scaled problem and unsealed problem 

are the same, i.e., cT£ = cTx.

Although scaling is used quite often, it is still little understood. Some scaling 

methods are reputed to be more effective than others, but there is no theoretical basis 

of their comparisons. These comparisons and recommendations [7] are obtained just 

by some experimental evidence [24]. In practice, scaling may cause opposite effect on 

an LO problem. A good scaling can help to solve an LO problem reliably, however, 

a bad scaling may destroy numerical stability. We need to know how to measure 

the result of scaling. There are two methods [7] to measure the result of scaling by 

computing the magnitudes of the nonzero elements in matrix A.

1. Compute
maxl°vl for all aij ± 0. (2.8.29)
min|Gy|

The matrix is well scaled if this value is not larger than a threshold value of 

about 106 - 108.

2. Compute

(log [o-ij |)2 for all 7^ 0. (2.8.30)

Generally speaking, the smaller the value of Equation (2.8.30), the better the 

scaling is. It is impossible to give some numerical estimates for (2.8.30) because 

its value increases when the number of its entries grows. The sum of (log \aij |)2 

is used here is to reduce the sensitivity to some extreme large or small values. 

This is the advantage of (2.8.30) over (2.8.29).
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There are three frequently used scaling methods [17] that can reduce the spread 

of the magnitudes of the nonzero elements in the LO problem:

1. Equilibration method:

Row i is scaled by multiplying by the reciprocal of the largest absolute element 

in the row:

rf1 = max{|ajj| : j = 1,..., n}, and R = diag(r).

Column j is scaled by multiplying by the reciprocal of the largest absolute 

element in the column:

tf1 = max{|ajj| : i = 1,..., m}, and T = diag(t).

2. Geometric method:

Row i is scaled by the factor r,, where

rf1 = yfrnaxdajjl} x min{|ajj|}, 1 < j <n, and R = diag(r).

Column j is scaled by the factor tj, where

tf1 = y/max{|aij|} x min{|ay|}, 1 < i < m, and T = diag(f).

3. Arithmetic mean method:

Row i is scaled by the reciprocal of the arithmetic mean of the nonzero entries 

in the row:
n

52 aij

rf1 = , and R = diag(r).

Column j is scaled by the reciprocal of the arithmetic mean of the nonzero 

entries in the column: m

52 aiji _ i_l----- anj j, _
J m
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There are not many papers in the open literature with computational results compar­

ing the different scaling methods. It is hard to say which method is the best. Based on 

a set of experimental results, Tomlin [24] concluded that to get a satisfactory scaling 

result with simple and inexpensive methods, the geometric mean method, optionally 

followed by Equilibration method is recommended.

Recall the two computed measures about scaling result. Based on (2.8.30), Curtis 

and Reid [17] designed a special approximation algorithm to find the scaling factors 

R and T. Assume that the nonzero coefficients in matrix A can be written in the 

normalized floating point form as:

aij = where < fa < 1, and is an integer,

then the row scaling factor rj for row i and the column scaling factor tj for column j 

can be calculated as:

Tj = 2Pi and tj = 27->,

where pt and 7? are integers. It is shown in [7] that to get R = diag(ri, ...,rm) and 

T = diag(ti,..., tn), one needs to solve the following equation system

(2-8-3i)

where p = [/?!,..., pm]T, 7 = [71,..., 7„]T, matrix M G Rm*m is a diagonal matrix

whose diagonal element Ma is the number of the nonzero entries in row z, and matrix

N G Rnyn is a diagonal matrix whose diagonal element Njj is the number of the

nonzero entries in column j. Vectors s G Rm and t G Rn are vectors whose elements

Si and tj are the sums of the logarithms of the nonzero entries in row i and column 
n m

j, respectively, i.e., Sj = 52 and tj = 52 e»j- Matrix Z is the nonzero pattern of 
7=1 i=l

matrix A, where Zij = 1 if 0 and Zij = 0 if = 0.
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Curtis and Reid [7] designed an algorithm to solve the system (2.8.31) approxi­

mately with an iterative procedure. The initial solution is set with pQ = M~rs and 

7o = 0. The residual of the system is
J , where <50 = t — ZTM~1s.

By setting h-i = 0, <5_i = 0, qo = 1 and So = SqN^So, the subsequent residuals can 

be calculated recursively with the following equations:

f ——(ZN 18j + if j is even,

1-----(ZM 1Sj + if j is odd,
v Qj

(2.8.32)

_j 8T+1M-16j+1, if j is even,
Sj+1 ( §T+1N~1$j+1, if j is odd, (2.8.33)

j ~ Qj > (2.8.34)
sj

Qj+i = ~ hj- (2.8.35)

When j is even, the residuals 6 is (0, ^)T; when j is odd, the residuals 8 is (<5j, 0)T. At 

each iteration, one of the vectors pj and 7? is calculated by the following equations:

72fc+2 — 72fc H-----------------(N rS2k + h2jfc-lh2fc_2(72fc — 72fc-2))> (2.8.36)
Q2kQ2k+l

72fc+i — 72fc H----- (N 152fc + h2fc-ih2fc-2(72A: — 72fc—2))? (2.8.37)
<l2k

for k = 0,1,..., with h_2 = 0,7_2 — 0,

P2k+3 — P2k+1 H-------------- (M 1§2k + h2k-lh2k(p2k+l ~ /?2fc-l)), (2.8.38)
Q2k+lQ2k+2

P2k+2 = P2fc+1 H--------(M 1§2k + h2k-lh,2k(P2k+l ~ Z>2fc-l)), (2.8.39)
?2fe+l
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for k = 0,1,..., with p_i = pi = Pq.

The stopping criteria is as follows:

Sj+i < 0.01p(A), (2.8.40)

where i/(A) is the number of nonzero entries in matrix A.

The solutions of Equation (2.8.31) are rounded to the nearest integer, to pi and

Then the row scaling factor is set to = 2Pi and the column scaling factor 

is set to tj = 2T This algorithm is proved to be efficient by experience, as it is 

demonstrated in [24]. It reduces the computational effort to solve the LO problem, 

thus, it is implemented in our code.

Scaling can be performed repeatedly based on the user’s need. If scaling is 

performed k times, then one has

Rk ... R]AT\... TkX = Rk ■ • • Rib,

and

x = T^ ...T^x, (2.8.41)

the vectors u, I and c after k scalings become:

I = T^1.. . Tf1/, u, = Tjf1..-T^u and c = Tk-..Tic.

Scaling aims to improve the accuracy of the LO solution, however, there is no 

performance guarantee. Sometimes scaling may cause an adverse effect and some 

problems may get more accurate solution without scaling [17]. In the case that when 

little or no numerical information is available about the LO problem, scaling is usually 

used to improve performance of LO algorithms [24].
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Chapter 3

Postprocessing

Postprocessing is the collection of operations that, after solving the problem, undo all 

problem transformations that were made in preprocessing. In this chapter, we present 

all those postprocessing operations corresponding to preprocessing techniques that were 

discussed in Chapter 2.

In preprocessing, a number of techniques are used to reduce the size of the original 

LO problem so that it can be solved efficiently and reliably. After preprocessing, the 

LO problem becomes simpler and smaller. Thus the reduced LO problem, that is 

submitted to the solver, is not exactly the same problem as the original one. If the 

reduced problem is primal and dual feasible, then after solving it, the solution and the 

problem itself need to be transformed back to the original form as it was presented 

in terms of the original variables and constraints. Such a restoration procedure is 

called postprocessing. In postprocessing, the solution of the original LO problem is 

recovered.
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3.1 The Order of Actions in Postprocessing

To recover the solution of the original problem, one needs the optimal values of the 

variables of the reduced problem that are obtained directly from the solver. Moreover, 

each change of the original problem made in preprocessing has to be recorded properly 

so that it can be found and retrieved in the proper order easily. Generally, the 

changes are stored in the data structure of a stack where the most recently happened 

operation is recorded on the top. During the recovery procedure, the information 

on the top of the stack is used first. Then it is deleted and the next information 

becomes the top. Such “undo” operations are repeated until the stack becomes empty. 

Thus, the restoration order in the stack is “last performed in preprocessing, first 

recovered in postprocessing”. The operations are performed in the reversed order 

w.r.t. preprocessing.

Recall that the action order in preprocessing is:

1. Transformed the original LO problem (1.1.4) into the standard form (2.1.1).

2. Basic, advanced techniques and some comprehensive techniques, e.g., make ma­

trix A sparser and full rank are used to get the revised problem.

3. Scaling is used to improve the numerical stability of matrix A.

Thus the recovery order is reversed in postprocessing:

1. Recover the problem to the unsealed problem.

2. Recover the solution of the standard form problem (2.1.1).

3. Recover the solution of the original LO problem (1.1.4).
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In the sequel, we present the postprocessing operations one by one.

3.2 Unsealing

Unscale an LO problem is the first thing to do in postprocessing. As presented in 

Section 2.8, the LO problem is scaled as

RATx = Rb,

where the row scaling diagonal matrix R = diag(rx, ...,rTO) and the column scaling 

diagonal matrix T = diag(U, ...,fn) are stored in the stack. Then the value of x is 

recovered by (2.8.41) as

x = Tx.

The logical variables, i.e., the slack variables are not involved in column scaling. To 

recover the corresponding values in the unsealed LO problem, their values should be 

divided by the corresponding row scaling factors, i.e.,

XiXi = —.
U

The dual solution of the unsealed problem is obtained by multiplying by the row 

scaling factors, i.e., yx — r^f.

3.3 Recover the Solution of the Standard Form 
Problem

3.3.1 Empty Row

An empty row i can either directly imply that problem (2.3.5) is infeasible or row i is 

redundant. If the empty row i is implied that the problem is infeasible, then we get
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the result directly and the problem is not submitted to the solver and postprocessing. 

If row i is redundant, then the solution of problem (2.3.5) is not affected. The 

corresponding value of pz in problem (2.3.6) can be set to any value, for instance, to 

zero.

3.3.2 Empty Column

An empty column j can either directly imply that problem (2.3.5) is unbounded or 

variable Xj is fixed to either its lower bound lj or its upper bound Uj. If variable Xj 

is fixed, it is removed from the problem. Its value is recorded in the stack for later 

restoration. The solution of problem (2.3.6) is not affected by empty column removal
m

and Sj = Cj — ^a^pi. We have = 0 when column j is an empty column, so
i=l

Sj = Cj > 0.

3.3.3 Fixed Variable

If variable Xj is a fixed variable, its value is stored in the stack. The solution of problem
m

(2.3.6) is not affected and the dual slack variable is calculated as Sj = Cj — a-ijUi- 
i=l

3.3.4 Singleton Row

If a singleton row i is an equality constraint, it either implies that problem (2.3.5)

is infeasible or variable Xk is fixed to — (see Section 2.4.5). When the problem is 
&ik

detected to be infeasible, then we directly get the result without solving the problem. 

When Xk is fixed, its value is stored before variable Xk and constraint i are removed 

from the LO problem. The value of the corresponding dual variable pi is obtained by
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C-k y? ^ijVi 
i=l,v£k

Vi =----------------------------,
aik

while due to the complementarity constraint, we must set 

Sfc = 0.

If a singleton row i is an inequality, it results in one of the following three cases: 

problem (2.3.5) is infeasible, row i is redundant or a tightened bound of Xj is obtained. 

If row i is infeasible, we directly get the result without solving the LO problem. If 

row i is redundant, the value of yt is set to zero. If a tightened upper bound Uj for 

Xj is obtained, then it does not affect the solution. If a tightened lower bound lj 

is obtained and it is transformed into zero in preprocessing, then the value of Xj is 

recovered as Xj = Xj + lj if Xj is the solution obtained from the solver.

3.3.5 Singleton Column

If column j is a singleton column and Xj is a free or an implied free variable, then

constraint i and variable Xj are removed from the problem. We have 
Cj .

Vk = — and Sj = 0,

and

Xj

3.3.6 Duplicate Rows

If row i and row k are duplicate rows, as described in Section 2.4.7, we may know 

that either problem (2.3.5) is infeasible or one of the two rows can be eliminated. We 

consider the following two cases:

akj

n
bk y*) akpXp 

p=i,pft 

a^
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1. If both of row i and row k are equalities, we need to check whether their corre­

sponding RHS values are in proportion. If they are in proportion, i.e., bi = Xbk, 

then one of the constraints can be removed from the problem. For instance, 

assume that row k is eliminated, then the value of yz can be obtained directly 

from the solver and the value of yk is set to zero. The solution of problem (2.3.5) 

is not affected.

2. Recall that we have discussed three other cases in preprocessing: both rows are 

inequalities and they have the same row types, or both rows are inequalities 

and they are in different row types, or one of the rows is an equality and the 

other one is an inequality. Here, we discuss the three cases together since all of 

them can result in either of the following two conclusions: the two constraints 

conflict, or one of the constraints is removed from the problem.

To explain the case that one of the constraints is eliminated, we assume that 

row i is kept and row k is removed. From the solver we get one dual variable 

value y*. The problem is how to decide the value of and yk for the original 

problem.

To find the answer, we analyze the following systems:

Assume the primal problem is given as:

min cTx 

s.t. Ax > b,

I < x < u.

By introducing slack variables, this can be rewritten as:

84



M.Sc. Thesis - X. Huang McMaster - Computing and Software

min cTx 

s.t. Ax — x — b,

I <x <u,

x >0.

The dual problem is:

max bTy + lTd — uTw 

s.t. ATy + d — w + s = c,

-Iy + s = Q, 

y is free, d > 0, w > 0.

From the Weak Duality Theorem (see Theorem 1.2.1), we know that xTs = 0 

and xTs = 0. The optimal values of x and x are obtained directly from the 

solver. Depending on the value of x, there are two cases as follows:

(a) If Xi = 0, then by the complementarity condition x^ = 0, we conclude 

that s7 needs not to be zero. Moreover, from — Iyi + si = 0, we have that 

yi = si is a nonzero value.

(b) If Xi / 0, then by the complementarity condition XiSi = 0, we conclude 

that s7 must be zero. Moreover, from —Iyi + si = 0, we have that yi =~si 

is a zero value.

Thus, we can decide the value of j/j and yk if row i is kept and row k is eliminated:

(a) If £i = 0, then y{ = y* and yk — 0.

(b) If £i ± 0, then yi = 0 and yk = y*.
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3.3.7 Duplicate Columns

Recall our discussion in Section 2.4.8, if the columns j and k are duplicate columns, 

then aj = Xak for some A G R. There are two cases in our analysis depending on 

whether the corresponding cost coefficients of the two columns are in proportion, i.e., 

Cj Xck.

1. If the cost coefficients are in proportion, i.e., Cj = Ac*,, then the variables Xj and 

xk can be replaced by a new variable xk and xk = Xxj + xk. Then Xj and xk are 

removed from the problem and they do not appear in matrix A nor in vector c. 

The value of xk can be obtained from the solver. The values of Xj and xk are 

decided by (2.4.25). Any value that satisfies Equation (2.4.25) is a candidate 

for being the optimal values of Xj and xk. Another thing to be considered is

that the optimal values of Xj and xk should also satisfy the complementary
m m

condition, i.e., Xj(cj - Y yPaPj) = xisi = 0 and xk(ck - Y VPaPk) = xksk = 0.
P=1 P=1

For instance, if Sj =0, then Xj needs not to be zero. Any solution satisfying 

Equation (2.4.25) can be set to the value of Xj. If Sj / 0, then Xj must be zero. 

If lj < 0, then Xj is set to zero. Otherwise, the problem is infeasible. Similar 

analysis can be given to the value of xk.

2. If the cost coefficients are not in proportion, i.e., Cj Xck, then there are two 

special cases that may lead to the conclusion that the dual problem (2.3.6) is 

infeasible, or to the conclusion that Xj can be fixed to either its lower bound or 

its upper bound (see Section 2.4.8). If the dual problem is detected infeasible, 

then we directly get the result. When Xj is fixed, the operation in postprocessing 

is the same as for a fixed variable (see Section 3.3.3).
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3.3.8 Redundant Constraint

If row i is a redundant row, then it can be removed in preprocessing. The correspond­

ing optimal value of pi is set to zero.

3.3.9 Forcing Constraint

If row i is a forcing row, then it can be removed and all the participating variables 

Xj in this row are fixed. The values of those variables Xj are recorded in the stack 

and as fixed variables, they are substituted out of the problem. Those values can be 

retrieved from the stack in postprocessing.

For each participating variable Xj, its dual slack variable Sj must be nonnegative:
m
£) ykakj - Viaij > o and aij 0,

thus, the value of Pi is be chosen such that all the corresponding dual slack variables 

Sj are nonnegative if problem (2.3.6) is feasible.

For simplicity, if all > 0 in constraint i, then the value of Pi is given by
m

If all < 0 in constraint i, then the value of yz is given by
m

If there are some atJ > 0 and some a^ < 0, then the value of Pi is given by
m m

Cj 'llkC'kj

max k—1, k-/-i min
Cj y? i/kC'kj

(3.3.1)
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If there is a yi satisfying condition (3.3.1), then the dual variable yi is found. Other­

wise, the problem (2.3.6) is infeasible.

3.3.10 Tighten Variable Bounds

If variable bounds are tightened in row i, then the solutions of problem (2.3.5) and 

(2.3.6) are not affected. It is possible that some variables are fixed. In this case, their 

values are recovered from the stack that is recorded in preprocessing. The operation 

is the same as fixed variables (see Section 3.3.3).

3.3.11 Tighten Dual Variable Bounds

If dual variable bounds are tightened, then the solutions of problem (2.3.5) and (2.3.6) 

are not affected. It is possible that some dual variables are fixed. In this case, their 

values are recovered from the stack.

3.3.12 Dominated Variables

If variable Xj is a dominated variable, then it can lead to either problem (2.3.6) is 

infeasible or xg fixed to either lj or Uj. If Xj can be fixed, then the value of Xj becomes 

a fixed variable and its optimal value is recovered from the stack (see Section 3.3.3).

3.3.13 Make A Sparser

In the heuristic algorithm [13] proposed by Gondzio, an elementary Gaussian opera­

tion is applied to row i and row k in matrix A:

hkj akj 4- Adjj, j' = 1,..., n,
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that can also be expressed as A = MA, where M is a nonsingular matrix. Conse­

quently, the constraint in problem (2.3.6) ATy + v — w — c becomes

ATMTy + v — w = c,

thus, the dual optimal solution of the original problem is MTy.

Since there are only row operations in this heuristic algorithm, the optimal so­

lution of problem (2.3.5) is not affected.

3.4 Recover the Optimal Solution of the Original 
Problem

Recall that in Section 2.2, in order to transform the original problem (1.1.4) into the 

standard form (2.1.1), we performed the following operations:

1. Introduce slack variables to inequality constraints.

2. Split free variables.

3. Shift the lower bound I if it is a nonzero vector.

To recover the solution of the original problem (1.1.4), correspondingly, we need 

to execute the following operations:

1. Remove slack variables to get back the inequality constraints.

2. For free variables, x+ and x~ are known, then we have

I _  'T*

89



M.Sc. Thesis - X. Huang McMaster - Computing and Software

3. If the lower bound I is nonzero, then given the optimal value of x, the optimal 

value of x is recovered by

x = x + I.

We have completed the discussion on postprocessing operations. We continue 

our discussions with implementation issues in Chapter 4.
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Chapter 4

Implementation Issues

The implementation consists of three subroutines: MPS reader, preprocessing and 

postprocessing. We use the McMaster Interior Point Method (McIPM) solver as our 

solver that connects the subroutines of preprocessing and postprocessing. Thus, we 

will discuss the implementation issues of the three subroutines and the data links 

among the subroutines of MPS reader, preprocessing, McIPM solver and postpro­

cessing.

4.1 Program Structure

A large scale LO problem is solved in a standard procedure as follows: first the prob­

lem given in an MPS file is read by the subroutine MPS reader, then it is standardized 

and simplified by the subroutine preprocessing. Next the LO problem is solved by 

the solver. Here, we use the McIPM solver that was implemented by X. Zhu. The 

interested reader can find the detail information in her Master thesis [28] and in the 

papers [27] [29]. Finally, the solution obtained from the solver is sent to the postpro­

cessing subroutine that “undo” the changes in the LO problem. The following figure
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shows the flow chart of the procedure:

Figure 4.1: The Structure of McIPM

In the sequel, we focus our discussions on the implementation issues of our MPS 

reader, preprocessing and postprocessing and the communication among MPS reader, 

preprocessing, postprocessing and the McIPM solver.
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4.2 Computational Environment

The subroutines of MPS reader, preprocessing and postprocessing are developed in 

the language of IBM C on an IBM RS-6000-44p-270 workstation with four processors 

under the operating system of the AIX 4.3. The McIPM solver is implemented in 

IBM C too and it uses MATLAB 1 6.1 as the computing environment because it is 

suitable for numerical computation and visualization. Therefore, the subroutines of 

preprocessing and postprocessing are called from MATLAB.

MATLAB has an external function MEX, meaning MATLAB executable files, 

that can dynamically link the subroutines compiled from C with MATLAB. With 

MEX file, the C subroutines of preprocessing and postprocessing are called directly 

in MATLAB as if they are embedded. MATLAB supports the use of a variety of 

compilers to build MEX file. In our case, MEX file is generated from C subroutines 

using the IBM c/c++ compiler xlc.

In addition, data files are in MAT, TXT, DAT file formats that are used to 

communicate date between C and the MATLAB environment.

4.3 The MPS Reader

The MPS reader is aimed to transform an external representation of an LO problem 

into an internal representation that can present the LO problem to the preprocess­

ing subroutine. The main issue is how to link the names, e.g., row name, column 

name, bound name, with their respective indices, and then set up the structures for 

A, b, b, c, I, u and the LO problem name. Thus, the process is non-numerical.

MATLAB® is the product of MathWorks Inc.. It stands for “Matrix Laboratory”.
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Processing an MPS file is a complicated procedure. In our implementation, there 

are three essential tasks in reading an MPS file:

1. Recognize the section identifiers to determine what information is being read.

2. In the ROWS and COLUMNS sections, set up a hashing table that gives the 

correspondence of the name and its index, i.e., to link a row name with the 

corresponding index i and link a column name with its index j. Then, using 

the hashing table, find the corresponding row index i with the row name in 

RHS and RANGES sections and find the corresponding column index j with 

the column name in BOUNDS section.

3. Write the corresponding part into the data structures of A, b, b, c, I, and u. In 

the process of reading an MPS file, the corresponding information are stored in 

linked list temporarily. We choose the linked list as storage media because the 

size of an LO problem is unknown. Once the LO problem is finished reading, 

the matrix information is transferred the corresponding data structure: matrix 

A is stored column-wise in sparse form. The vectors b, b, c, I and u are stored in 

full size.

It is essential to keep reliability and efficiency of the reading process.

1. To ensure the reliability in our implementation:

(a) We always check for errors, inconsistence and contradictions. When there 

are errors or contradictions in the process of reading an MPS file, the pro­

gram should not crash. For instance, if there are more than two definitions 

for one variable bound type, then a warning is given and the latest defini­

tion is used while the others are ignored. The warning can help to correct
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the problem. If there is fatal errors, e.g., there is no required section found 

in an MPS file, then a corresponding message is given and the program 

ends.

(b) Moreover, duplicate information must be checked and eliminated in each 

section to avoid information redundancy. For instance, in ROWS section, 

it is necessary to check whether duplicate row names are defined. Further, 

to check whether a row type is legal or not.

2. To improve efficiency:

(a) We use the hashing table to link the names and their indices. The hashing 

table can quickly link the row name with its index i, and the column name 

with its index j. It can save considerable time especially for those huge 

problems with over ten thousand rows and/or columns.

(b) For each LO problem, since its size is unknown, the information obtained 

from the ROWS and COLUMNS section, including the information of c 

and A, is written into the linked list first. Once finished reading the ROWS 

section, we can know the row size. Based on the row size, we can allocate 

array space for b and | b — b | that store the information directly from 

the RHS and RANGES sections. When finished reading the COLUMNS 

section, the column size is known too. Based on the column size, we can 

allocate space for vectors I and u that store the information directly from 

the BOUNDS section.

Writing A needs a little calculation. We can directly write A from the 

linked list, but because writing A is time consuming and the slack vari­

ables need to be added to the constraints later, we choose to allocate 

enough space at one time. Therefore, we calculate the total number of
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variables, e.g. the sum of the number of the original variables and the 

slack variables. Then we calculate the corresponding total space needed 

for A. After allocating space, the information from the linked list is writ­

ten into the corresponding arrays. In this way, no more space allocation is 

needed when the slack variables are written into A.

Next, we introduce the matrix storage.

4.4 Matrix Storage

Matrix storage is very important for sparse matrix. Due to sparsity, the sparse matrix 

AmXn is not stored in full size, e.g., a multi-dimension array with size of m x n. To 

improve efficiency, only the nonzero elements in A are stored. Moreover, in the process 

of preprocessing, matrix A is required to be accessed not only by column-wise, but also 

by row-wise. For instance, when a forcing row is detected in preprocessing procedure, 

every variable in this row needs to be substituted out of the problem. First, the 

indices of those variable j are needed. To retrieve such information efficiently, we 

need the row-wise information of matrix A. Once the variable index is known, all the 

rows in which the variable participates are needed for performing substitution. The 

corresponding values of the RHS change as well. This in turn requires the column­

wise information. Thus, the column-wise and row-wise storage of matrix A are both 

necessary in our implementation.

We store matrix A column-wise. There are three arrays to provide the following 

information:

• Array J A: the start position of each column;
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• Array AR: the value of each nonzero element;

• Array I A: the row index of each nonzero element.

The starting position of each column is recorded in array J A. We set JA[0] = 1. 

If there are n columns in matrix A, then the size of array J A is n + 1. Then the 

beginning position of column j is JA[j] and its ending position is JA[j +1] — 1. There 

are JA[i + 1] — JA[i] nonzero elements in column j. The values and row indices of 

nonzero elements are stored consecutively in the arrays AR and I A, respectively. If 

the row is physically the first row, then the corresponding value in IA is 1. The size 

of AR and IA equals to the number of nonzero elements.

The following example may help to understand column-wise mode of matrix 

storage:

Example:

4 0 0 5 
0 7 9 0 
2 0 4 6

If A = , then we have

J A = [1 3 4 6 8],

AR = [4 2 7 9 4 5 6] and

IA = [1 3 2 2 3 1 3],

The column-wise information can be directly obtained from the storage of A. For 

each column j, its starting index AJ[j] and its ending index AJ[j +1] — 1 are known, 

thus the nonzero entries in column j are obtained by searching the array between 

AJ[j + 1] — 1 and AJ[j].

To get the row-wise information of A, we make use of matrix AT. Like the storage
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of A, matrix AT is stored by column-wise as well. The column-wise information of 

AT is exactly the row-wise information of A.

Example:

If AT =

4 0 2 \ 
0 7 0 
0 9 4

\ 5 0 6 /

, then we have

J A' = [1 3 5 8],

AR' = [4 5 7 9 2 4 6] and

I A! = [1 4 2 3 1 3 4],

For row i in A, there are JA'[i + 1] — JA'[i] elements. The corresponding column 

index and coefficient can be obtained by searching the arrays AR' and I A' between 

the index JA'[i + 1] — 1 and

In our program, the information of A is first written from the linked list directly 

obtained from the MPS file. Then the slack variables are added to the constraints. 

A is changed too if there are some fixed variables and nonzero lower bound variables 

in the BOUNDS section. After those fixed variables are removed and nonzero lower 

bounds are shifted to zero, AT are written out and the process of preprocessing begins.

Here, we do not split the free variables at this moment because we want to keep 

them in the LO problem during preprocessing procedure. Therefore, when using the 

preprocessing techniques, there are three types of variables kept in the LO problem: 

Q < Xj < +oo, 0 < Xj < Uj or Xj is free variable.

Further, to describe a complete LO problem, another four vectors are needed: 

the RHS vector b, the cost coefficient vector c, the lower bound vector I and the upper
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bound vector u. For those vectors, even if they are sparse vectors, they are still stored 

in full size, i.e., the size b is m, the size of vectors c, I and u is n.

4.5 Preprocessing and Postprocessing

Preprocessing and postprocessing are a pair of operations that changes the LO prob­

lem and retrieves the problem changes, respectively. It is essential that the operations 

in preprocessing are recorded in a proper order. Postprocessing performs the “undo” 

operations in the reverse order.

Recall the preprocessing techniques in Section 2.1, we implement all the basic 

techniques and part of advanced techniques as follows: check infeasible variables, 

remove the fixed variable, remove the empty row and empty column, find the singleton 

row and singleton column, remove the duplicate rows and duplicated columns, find the 

forcing rows and redundant rows and tighten the bounds of the variables. There are 

four more complicated techniques left: tighten dual variables bounds, find dominated 

variables, make A sparser and make A to have full rank. The first two techniques are 

the operations dealing with the dual problem. The last two techniques need more 

computational effort. Due to the time limits, we have not implemented them.

In our program, matrix A is obtained from the linked list directly from the MPS 

file. Then the slack variables are added to the constraints, the fixed variables are 

removed from the problem and the nonzero lower bounds are shifted to zero. Here, 

we do not split free variables, leaving it until the last moment of the preprocessing. 

The flow of the preprocessing procedure is drawn as Figure 4.2.

Figure 4.2 describes the “normal” procedures when the LO problem has optimal 

solution. It is possible to find out that the LO problem is infeasible or unbounded.
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Figure 4.2: The Structure of Preprocessing 
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In such cases, the program just jumps out of the loop and gives the result directly.

After matrix A is added the slack variables, shifted the nonzero lower bounds, 

we check the infeasible variables. They can be easily checked by comparing the lower 

bound and upper bound of each variable. If the bounds conflict, then the LO problem 

is infeasible. Otherwise, AT stored by column-wise is written and the LO problem is 

sent to the preprocessing procedures.

In our program, there are two arrays recording the nonzero entry numbers in 

each row and column, respectively. Using them, some “characterized” rows and 

columns can be easily found. Once the nonzero elements are changed in some rows 

and columns, the value in the two arrays changes too. For instance, to find the empty 

row and the empty column, we just find the rows and columns whose nonzero entry 

number is zero. Once the empty row and empty column are found, the corresponding 

operations are simple. Readers can refer to Sections 2.4.2 and 2.4.3.

The singleton row and singleton column are easily found by searching the rows 

and columns whose nonzero entry number are equal to one. The detail operation 

to singleton row refers to Section 2.4.5. Once the singleton column is found, we 

need to check whether the variable is free variable or implied free variable. If yes, 

then the variable can be substituted out of the LO problem, then the corresponding 

information is recorded. The detail operation refers to Section 2.4.6.

The operation to duplicate rows and duplicate columns are similar. We give the 

example how to find the duplicate row for row i. The preliminary is that row i has 

at least two nonzero entries. Then we find the shortest column k that has nonzero 

entry in row i and has the least nonzero entry number. Our target is to search each 

row except row i that has nonzero entry in column k. If there is row p that has 

the same nonzero number as row i, then row p is the candidate row. Further, we
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investigate whether the position of each nonzero entry in row p and row i are the 

same and whether their value are in proportion. If yes, the duplicate rows are found. 

The corresponding operations refers to duplicate rows and duplicate columns refer to 

Section 2.4.7 and Section 2.4.8.

The procedure to find a forcing row need some calculation. Because there are 

only three types of variables left in the LO problem: 0 < x3< +oo, 0 < x3< Uj or 

Xj is free variable, the lower bound bi and the upper bound bi are easy to calculate. 

Further, it is also easy to find the infinity of bi and bi Once bi and bi are found 

infinity, the calculation stops and the search moves to the next row. The technique of 

tightening bounds combines with the calculation. If tightened bound can be found, 

then it compares with the original bound. If the new bound is tighter than the 

original one, then it substitutes the original one. If the lower bound are tightened, 

then we usually shift it to zero at once and the corresponding RHS is changed too. 

The corresponding operations refers to Section 2.5.1 and Section 2.5.2.

Notice in Figure 4.2, if there is a change caused by a preprocessing technique 

in the loop, the change information is written into the stack. Because one change 

or elimination may cause more changes or elimination, the loop continues until there 

is no more change in the LO problem. Then, the LO problem is scaled. Recall 

Section 2.8, there are several scaling methods. We chose to use the special algorithm 

proposed by Curtis and Reid [17]. The procedure seems to be complicated, but its 

implementation is easy. We use equation (2.8.30) to measure the scaling effect and the 

algorithm stops until equation (2.8.40) is satisfied. Once the row and column scaling 

factors are found, they are recorded in two arrays, respectively. The two arrays are 

used to recover the scaling in postprocessing.

The whole corresponding procedures in postprocessing is as follows:
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Figure 4.3: The Structure of Postprocessing
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In our implementation, the main problems are what kind of data structures are 

used to store the information of change in the LO problem and how to retrieve those 

information in the given order.

The first problem is how to store the change information. There are various 

preprocessing techniques and different techniques require different information. For 

instance, an empty row is very simple structure, it only needs the index of the row that 

is used to set the corresponding dual variable to zero. We define the data structure 

as:

typedef struct { 

int Rowlndex;

} EmptyRow,

where Rowlndex is the empty row index i.

An empty column needs more information, i.e., the column index, the variable 

value if it is fixed. Once the variable is fixed, it is marked as “DELETED” that 

means it is not included in further operations. Correspondingly, the objective value 

will have a shift that needs to be recorded as well. The data structure is as follows:

typedef struct { 

int Collndex; 

double xValue; 

double cValue; 

double cshiftObj;

} EmptyColumn,

where Collndex is the column index j, xValue is the value of fixed variable Xj, cValue 

is the coefficient Cj and cshiftObj is the shift of the objective value XjCj.
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However, more preprocessing techniques need more complicated information.

The most complicated data structure is the forcing row. All the information re­

lated to the row and the information related to all the participating variables in this 

row need to be recorded. For instance, if row i is detected to be a forcing row, then all 

the variables Xj in this row are fixed either to its lower bound or to its upper bound 

and they are removed from the problem. Before removal, the column index j, the 

fixed value Xj and its coefficient in row i, i.e., needed to be recorded. Moreover, 

to recover the dual variable z/j in postprocessing, for each variable Xj in row i, all the 

participating row index p and the related coefficients aPj in those rows are recorded 

as well. Therefore, the data structure for a forcing row is as follows:

First, we define a structure Sparse Vector for a vector because there are so many row 

and column vectors needed for a forcing row. The structure of Sparse Vector includes 

the information of the vector size, the index and the value of its elements.

typedef struct{ 

int size; 

int * Index; 

double *Value;

} Sparse Vector,

then we make use structure Sparse Vector to define the structure for a forcing row:

typedef struct { 

int Rowlndex; 

int ForcingType; 

double bValue; 

double cshiftObj;

Sparse Vector *xValues;
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Sparse Vector *cValues;

Sparse Vector *DeletedRow;

Sparse Vector **DeletedColumns;

} ForcingRow,

the pointer DeletedRow records the information about the forcing row itself, i.e., the 

number of the variables, the column index j and its coefficient aZJ in row i. The 

double pointer DeletedColumns stores the information about the deleted columns for 

the fixed variable Xj. Because each variable may participate in other rows, once it is 

removed, the related value of the RHS need to be re-calculated and all the coefficients 

in those rows are needed as well in order to recover the solution of the dual variable. 

The pointer xValues records the information about the fixed variables, i.e., the number 

of the fixed variables, the column index j and the values Xj. The pointer cValues is 

similar to x Values, the difference is the information stored in Value is the coefficient 

Cj in the objective function.

In this way, we set up the data structure for each preprocessing technique. The 

next problem is how to organize those data structures and retrieve them in a certain 

order. The stack is a popular concept in computer science. It is specially useful when 

the information needs to be obtained in a certain order, normally “last come and first 

go”. Therefore, a stack is used to control the order of the operations. In our data 

structure design, we refer to the design of the software package PCx. Because the 

stack is composed of single changes in preprocessing. Each change is exactly one of 

the preprocessing techniques in Section 2.1. As an example technique, let us assume 

we use the preprocessing techniques of empty row, empty column and forcing row, 

the data structure of SingleChange is defined as follows:

typedef struct {
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int ChangeType;

EmptyRow *pEmptyRow;

EmptyColumn *pEmptyColumn;

ForcingRow *pForcingRow;

} SingleChange,

then we the stack data structure of PresolveChanges is composed of every Sin­

gleChange as follows:

typedef struct { 

int size;

SingleChange **StackOfChanges;

} PresolveChanges,

where the number of size is the number of the changes in stack.

Therefore, in preprocessing, when a technique used to change somehow the LO 

problem, it is first written into the stack and then store the information to the cor­

responding data structure according to the technique. The last procedure in pre­

processing is to write the stack information into a DAT files. Correspondingly, in 

postprocessing, the first procedure is to read the stack information from the DAT 

files, then “undo” each changes in the stack to recover the solution for the original 

problem.

4.6 Data Communication

In our implementation, the running environment is under MATLAB 6.0. The sub­

routines of preprocessing and postprocessing are developed in C and their executive
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files are compiled in C as well. Referred to Section 4.2, the executive files are called 

in MATLAB via MEX file. The difficulty is how to pass the information obtained 

from preprocessing to the McIPM solver; from the McIPM solver to postprocessing; 

and from preprocessing to postprocessing.

Our solution is as follows:

1. Preprocessing - McIPM solver: Using the MAT file format, the matrix 

stored in C can be read by MATLAB.

2. McIPM solver - Postprocessing: Using a TXT file, the solution obtained 

from the McIPM solver in MATLAB can be read in our C code.

3. Preprocessing - Postprocessing: All the changes in preprocessing are recorded 

in the stack in order to be retrieved during the postprocessing subroutine. In 

preprocessing, the stack information are stored in the DAT file, where the in­

formation about changes can be retrieved in postprocessing.

We will describe the three files one by one.

4.6.1 MAT-Format

The data of the LO problems in MAT-format includes seven quantities:

A, b, c, Ibounds, abounds, BIG, NAME

representing the following LO problem:
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min cTx

s.t. Ax = b,

Ibounds < x < ubounds,

(4.6.1)

NAME is the name of the LO problem, BIG is a very large number. We define 

BIG — 1032. It is used when variable xt has infinity upper bound or lower bound, 

i.e., uboundsj, = BIG, Iboundsi = —BIG. Matrix A is stored column-wise. There is a 

little difference from what we discussed in Section 4.4. In the MAT file, the starting 

point of the first row is defined as 0, and the physically first row is defined as 0 too.

To understand better, we give the example again to compare this difference in 

storage index:

Example:

4 0 0 5
If A = I 0 7 9 0

\ 2 0 4 6
, then in MAT file we have

J A = [0 2 3 5 7],

AR = [4 2 7 9 4 5 6] and 

IA = [0 2 1 1 2 0 2],

In this way, all the information of the LO problem is stored in a MAT file and sent 

to the McIPM solver. By reading the MAT file, the solver receives all the necessary 

data of an LO problem.
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4.6.2 TXT File

The data communication between the McIPM solver and the postprocessing subrou­

tines is simple. Because the information needed by postprocessing is just the solution 

of the LO problem, the solution is saved in a TXT file that can be easily read by the 

postprocessing subroutine.

4.6.3 DAT File

The data communication between preprocessing and postprocessing is different from 

the above. As stated before, the information of the changes in the LO problem are 

stored in the stacks in preprocessing. This information is stored in C, but they can 

not be obtained in MATLAB. Therefore, we need some “buffer” to store the changes 

information temporarily and get them to postprocessing. We make use of a DAT file 

to store those information in preprocessing and retrieve them in postprocessing. In 

this way, postprocessing recalls those changes to get the solution of the original LO 

problem.

Each preprocessing technique has its own DAT file. The main reason is that 

different techniques have different requirement for data information, thus their data 

structure are quite different (see Section 4.5). However, no matter the data structure 

is, its storage and retrieval method are the same. Generally, to save the information to 

a DAT file, the data structure is stored first. If there is an array in the data structure, 

its elements need to be stored as well. Vice Versa, to retrieve the information from a 

DAT file, all the data structure and arrays need to be allocate space first, then read 

the information in the same order as what we did when saving the information to a 

DAT file.
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UP to know, we have finished discussing the implementation issues. In the next 

chapter, we will go to the test procedure and give out the testing result.
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Chapter 5

Computational Results

In this chapter, we first describe the testing problem set and present our computa­

tional results. Further, we compare our result with two commercial software packages 

CPLEX 1 and LIPSOL 2.

5.1 Testing Problems and Results

We use the linear problems in the NETLIB set as our testing problems. The NETLIB 

set is a collection of practical linear problems from various sources. The problems are 

presented in MPS format. It consists of three testing sets:

• Netlib standard testing set, composed of 95 linear problems. All the problems 

have optimal solutions.

• Netlib infeasible testing set, composed of 28 linear problems. None of the prob­

lems have an optimal solution.

1 CPLEX is the product of ILOG Inc..
2LIPSOL is a Matlab-based package for solving linear programs by interior-Point methods. It 

stands for “Linear-programming Interior-Point SOLvers”.
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• Netlib Kennington testing set, composed of 16 very large scale problems chosen 

from military aircraft applications. All the problems have optimal solutions.

Normally, the size of an LO problem is shown in the following ways: the number 

of rows counts the objective function, but exclude the other free rows; the number 

of columns excludes both the slack variables and the added split free variables; the 

number of nonzero elements counts the nonzero elements in the objective function, 

but exclude both the slack variables and the added split free variables. To find such 

information of an LO problem in the Netlib set, readers can refer to Appendix B in 

[28]-

However, in our preprocessing result comparison, we do not use the same in­

formation. The reason is that such information can not present clearly the effect of 

preprocessing on an LO problem, thus we design the tables as follows: Problem is the 

problem name. Row is the row size of the matrix A, excluding all the free rows. Col is 

the column size of the matrix A including the slack variables and the added split free 

variables. Nnz is the number of nonzero elements in the matrix A including the slack 

variables and the split free variables as well. In this way, we show the size of a whole 

LO problem. Then, we list the reduced sizes in the next three columns. Rrow is the 

reduced row size, Rcol and Rnnz are the reduced column size and the nonzero element 

numbers, respectively. Both Rcol and Rnnz include the slack variables and split free 

variables. In this way, by comparing the pair of data, the effect of preprocessing is 

shown clearly. Further, Tpre, Tpost and Tsoi mean the time spent in preprocessing, 

in postprocessing, and in solver, respectively. Iter means the iteration number.

The results of the Netlib testing sets are shown from Tables 5.1 to 5.5 as follows.
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Table 5.1: The Netlib Standard Problem Set (I)

Problem Row Col Nnz Rrow Rcol Rnnz Tpre Tpost Iter Tsoi
25fv47 821 1876 10705 788 1843 10538 0.11 0.01 30 4.84

80bau3b 2262 12061 23264 2183 11163 21908 0.11 0.02 41 29.67
adlittle 56 138 424 55 137 417 0.08 0.01 14 0.33

afiro 27 51 102 27 51 102 0.07 0.01 10 0.18
agg 488 615 2862 468 595 2780 0.09 0.01 22 1.87

agg2 516 758 4740 516 758 4740 0.10 0.01 21 2.16
agg3 516 758 4756 516 758 4756 0.10 0.01 22 2.29

bandm 305 472 2494 251 417 1982 0.08 0.02 18 0.81
beaconfd 173 295 3408 107 218 1888 0.09 0.02 11 0.38

blend 74 114 522 71 111 477 0.11 0.01 10 0.27
bnll 643 1586 5532 624 1564 5498 0.10 0.01 33 3.17
bnl2 2324 4486 14996 1998 4078 14259 0.16 0.02 36 10.08

boeingl 351 726 3827 344 719 3352 0.08 0.01 24 2.17
boeing2 166 305 1358 125 264 922 0.09 0.02 15 0.71
bore3d 233 334 1448 124 217 1009 0.10 0.02 18 0.72
brandy 220 303 2202 136 246 1964 0.04 0.00 19 0.70

capri 271 496 1965 241 436 1528 0.09 0.01 19 1.15
cycle 1903 3378 21248 1496 2999 16669 0.13 0.01 39 11.39

czprob 929 3562 10708 719 3123 6209 0.10 0.01 36 5.49
d2q06c 2171 5831 33081 2132 5728 31965 0.12 0.01 52 26.76
d6cube 415 6184 37704 403 5443 34233 0.12 0.01 19 6.07
degen2 444 757 4201 444 757 4201 0.09 0.01 12 1.10
degen3 1503 2604 25432 1503 2604 25432 0.17 0.00 14 8.17
dflOOl 6071 12230 35632 5984 12143 35338 0.15 0.01 45 263.27

e226 223 472 2768 214 463 2702 0.09 0.01 21 0.99
etamacro 400 816 2537 334 669 1995 0.08 0.02 27 1.96

fffff800 524 1028 6391 322 826 5164 0.08 0.00 32 2.39
finnis 497 1064 2760 456 966 2414 0.07 0.01 25 2.03
fitld 24 1049 13427 24 1049 13427 0.11 0.01 19 2.70
fitlp 627 1677 9868 627 1677 9868 0.11 0.01 19 9.85
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Table 5.2: The Netlib Standard Problem Set (II)

Problem Row Col Nnz Rrow Rcol Rnnz Tpre Tpost Iter Tsoi
fit2d 25 10524 129042 25 10524 129042 0.15 0.01 23 31.69
fit2p 3000 13525 50284 3000 13525 50284 0.16 0.00 21 37.53

forplan 161 492 4634 122 450 4477 0.08 0.00 29 1.74
ganges 1309 1706 6937 1113 1510 6537 0.09 0.02 20 3.07

gfrd-pnc 616 1160 2445 590 1134 2393 0.07 0.02 18 1.65
greenbea 2392 5598 31070 2297 5270 29777 0.13 0.00 51 26.67
greenbeb 2393 5405 31499 2296 5258 29477 0.16 0.00 51 26.29

grow 15 300 645 5620 300 645 5620 0.10 0.01 18 1.90
grow22 440 946 8252 440 946 8252 0.07 0.01 19 2.75
grow7 140 301 2612 140 301 2612 0.08 0.01 18 1.11
israel 174 316 2443 174 316 2443 0.06 0.01 22 1.71

kb2 43 68 313 43 68 313 0.11 0.01 17 0.47
lotfi 153 366 1136 133 346 867 0.09 0.01 17 0.53

maros 846 1966 10137 789 1860 9489 0.11 0.01 30 3.91
maros-r7 3136 9408 144848 2152 7440 100486 0.24 0.01 16 30.13
modszkl 687 1622 3170 665 1599 3065 0.10 0.01 30 2.56

nesm 662 3105 13470 654 2922 13244 0.12 0.01 36 9.48
perold 625 1594 7317 613 1500 6963 0.11 0.02 40 5.07

pilot 1441 4860 44375 1423 4639 42242 0.17 0.01 52 44.96
pilot j a 940 2355 16216 858 1972 12900 0.12 0.03 42 8.98

pilotwe 722 3008 9801 718 2925 9494 0.10 0.00 44 8.32
pilot4 410 1211 7342 400 1117 7106 0.10 0.01 39 4.66

pilot87 2030 6680 74949 1990 6411 72258 0.26 0.01 85 156.98
pilotnov 975 2446 13331 864 2149 12037 0.08 0.01 27 5.60

recipe 91 204 687 71 137 476 0.06 0.00 12 0.46
scl05 105 163 340 104 162 339 0.10 0.02 12 0.29
sc205 205 317 665 203 315 663 0.07 0.00 12 0.36
sc50a 50 78 160 49 77 159 0.08 0.01 11 0.23
sc50b 50 78 148 48 76 146 0.07 0.00 10 0.21

scagr25 471 671 1725 469 669 1715 0.10 0.02 16 0.82
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Table 5.3: The Netlib Standard Problem Set (III)

Problem Row Col Nnz Rrow Rcol Rnnz Tpre Tpost Iter Tsoi
scagr7 129 185 465 127 183 455 0.07 0.01 13 0.35
scfxml 330 600 2732 311 581 2497 0.08 0.02 23 1.18
scfxm2 660 1200 5469 622 1162 4999 0.07 0.01 27 2.33
sc£xm3 990 1800 8206 933 1743 7501 0.11 0.01 27 3.31

scorpion 388 466 1534 361 436 1415 0.08 0.01 14 0.58
scrs8 490 1275 3288 430 1215 3067 0.09 0.01 26 1.85
scsdl 77 760 2388 77 760 2388 0.09 0.00 10 0.46
scsd6 147 1350 4316 147 1350 4316 0.08 0.02 12 0.80
scsd8 397 2750 8584 397 2750 8584 0.06 0.01 10 1.25

sctapl 300 660 1872 284 644 1802 0.09 0.01 19 0.87
sctap2 1090 2500 7334 1033 2443 7052 0.11 o.oi 19 2.52
sctap3 1480 3340 9734 1408 3268 9383 0.11 0.02 20 3.84

seba 515 1036 4360 514 1033 4342 0.06 0.03 24 4.29
share lb 117 253 1179 112 248 1148 0.09 0.00 28 0.79
share2b 96 162 777 96 162 777 0.09 0.01 12 0.33

shell 536 1777 3558 487 1451 2906 0.09 0.00 24 2.44
ship041 402 2166 6380 323 2104 4734 0.10 0.03 19 1.65
ship04s 402 1506 4400 235 1356 3044 0.07 0.00 18 1.13
ship081 778 4363 12882 630 4231 9526 0.14 0.01 20 3.30
ship08s 778 2467 7194 358 2063 4634 0.10 0.02 17 1.52
shipl21 1151 5533 16276 756 5170 11491 0.13 0.01 25 5.29
ship 12s 1151 2869 8284 384 2134 4718 0.11 0.00 21 1.94

sierra 1227 2735 9252 1212 2705 7931 0.12 0.00 18 4.66
stair 356 620 4021 356 538 3831 0.10 0.00 18 1.43

standata 359 1274 3230 346 861 1537 0.08 0.00 15 1.14
standgub 361 1383 3339 346 861 1537 0.11 0.01 15 1.12
standmps 467 1274 3878 454 1245 2953 0.08 0.00 18 1.74

stocforl 117 165 501 102 150 421 0.08 0.00 14 0.36
stocfor2 2157 3045 9357 1980 2868 8090 0.11 0.02 30 5.57
stocfor3 16675 23541 76473 15362 22228 63608 0.29 0.01 52 86.47

truss 1000 8806 27836 1000 8806 27836 0.17 0.02 20 7.67
tuff 333 630 4563 263 586 4284 0.08 0.01 23 1.61

vtpbase 198 347 1052 163 273 692 0.09 0.00 16 0.73
woodlp 244 2595 70216 243 2474 64483 0.15 0.00 19 6.77
woodw 1098 8418 37487 1094 8414 31579 0.19 0.00 29 11.69
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Table 5.4: The Netlib Infeasible Problem Set

Problem Row Col Nnz Rrow Rcol Rnnz Tpre Tpost Iter Tsoi
bgdbgl 348 629 1662 267 548 1205 0.15 0.00 10 1.01
bgetam 400 816 2537 334 669 1995 0.09 0.00 10 0.75
bgprtr 20 40 70 20 40 70 0.10 0.01 11 0.21

boxl 231 261 651 231 261 651 0.07 0.00 7 0.25
chemcom 288 744 1590 288 744 1590 0.08 0.01 8 0.61

cplexl 3005 5224 10947 3005 5224 10947 0.08 0.02 16 6.78
cplex2 224 378 1215 224 378 1215 0.07 0.00 42 2.57
ex72a 197 215 467 197 215 467 0.09 0.01 8 0.25
ex73a 193 211 668 193 211 457 0.08 0.00 7 0.23

forest6 66 131 246 66 131 246 0.08 0.01 9 0.29
galenet 8 14 22 7 13 20 0.03 0.02 7 0.16

gosh 3792 13697 100672 3533 13336 97002 0.27 0.01 150 218.99
gran 2568 2525 20111 — 0.12

greenbeainf 2393 5600 31087 2301 5271 29883 0.17 0.00 27 14.36
itest2 9 13 26 9 13 26 0.09 0.01 7 0.12
itest6 11 17 29 10 15 26 0.08 0.01 7 0.13
kleinl 54 108 750 54 108 750 0.09 0.02 20 0.49
klein2 477 531 5062 477 531 5062 0.06 0.01 17 7.84
klein3 994 1082 13101 994 1082 13101 0.11 0.00 19 765.79

mondou2 313 604 1623 259 467 934 0.08 0.01 14 1.01
pang 361 757 2973 334 692 2661 0.10 0.01 25 1.75

pilot4i 410 1211 7342 400 1117 7106 0.09 0.01 20 2.42
qual 323 464 1646 305 441 1596 0.09 0.01 38 2.85

reactor 318 808 2591 305 793 2557 0.06 0.02 22 1.98
refinery 323 464 1626 303 439 1574 0.07 0.01 16 1.09

voll 323 464 1714 305 441 1596 0.11 0.01 32 2.26
woodinfe 35 89 140 — 0.10

— means the problem is detected infeasible in preprocessing.
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Table 5.5: The Netlib Kennington Problem Set

Problem Row Col' Nnz Rrow Rcol Rnnz Tpre" Tpost Iter Tsoi
cre-a 3516 7248 18168 3081 6901 17460 0.15 0.02 31 11.44
cre-b 9648 77137 260785 7236 77133 260752 0.79 0.02 35 213.76
cre-c 3068 6411 15977 2643 6068 15248 0.14 0.01 40 14.02
cre-d 8926 73948 246614 6456 73928 246489 0.72 0.02 33 180.34

ken-07 2426 3602 8404 1437 2613 5994 0.10 0.02 17 4.93
ken-11 14694 21349 49058 10085 16740 38520 0.15 0.01 20 41.05
ken-13 28632 42659 97246 22534 36561 82698 0.26 0.01 26 126.88
ken-18 105127 154699 358171 78862 128434 298858 0.72 0.02 38 836.12
osa-07 1118 25067 144812 1081 25030 89316 0.30 0.02 23 25.12
osa-14 2337 54797 317097 2300 54760 196716 0.67 0.00 48 156.90
osa-30 4350 104374 604488 4313 104337 377404 1.09 0.01 41 271.23
osa-60 10280 243246 1408073 10243 243209 849356 2.55 0.03 42 721.57
pds-02 2953 7716 16571 2654 7417 15964 0.14 0.02 32 18.51
pds-06 9881 29351 63220 9366 28836 62100 0.19 0.02 43 149.14
pds-10 16558 49932 107605 15978 49352 106310 0.31 0.01 57 508.40
pds-20 33874 108175 232647 32947 107324 230621 0.59 0.03 79 3241.03

From Table 5.1 to 5.5, the testing results are obtained by McIPM that uses both 

McPre and McIPM solver. We can see that all the LO problems in the Netlib sets 

can be processed by preprocessor and solved successfully. Moreover, it is shown in 

Table 5.4 that two problems, gran and woodinfe, can be detected to be infeasible in 

preprocessing.

5.2 Comparison with LIPSOL

In this section, we compare our results with the academic optimization software pack­

age LIPSOL.

From Table 5.6 to 5.10, there are two groups of data. The data in the first 

group are the results obtained from McIPM, i.e., our preprocessor, McPre (McIPM 

Preprocessor) combining with the McIPM solver. The data in the other group are 

the results obtained from LIPSOL. In each group, Rrow, Rcol and Rnnz mean the 

reduced size of row, column and nonzero element, respectively. Tpre, Tpost and Tsoi
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mean the time spent in preprocessing, postprocessing and solver, respectively.

From Table 5.6 to 5.8, it can be seen that McPre can eliminate the same number 

of constraints in 25 problems. Moreover, McPre can eliminate more constraints in 70 

problems. For small scale problems, e.g., 25fv47 and adlittle, the time that McPre 

spends in preprocessing is a little more than LIPSOL does. However, for the large 

scale problems (over 10,000 variables), e.g., fit2d and greenbea, McPre is faster than 

LIPSOL. The reason is that we always spend time in writing the preprocessing in­

formation to DAT files, while LIPSOL does not have such writing procedure. For 

small scale problems, the time spent in the reading and writing procedures is a big 

fraction of the whole preprocessing time while for large scale problems, that time is a 

relatively small fraction of the total preprocessing time. For the infeasible problems 

in Table 5.9, we can detect the same two infeasible problems during preprocessing. 

We eliminate more constraints than LIPSOL in 11 problems. For the other problems, 

McPre and LIPSOL remove the same number of constraints. For the problems in 

Table 5.10, McPre can process all the problems while LIPSOL can not process the 

two largest problems: ken-18 and pds-20. For the remaining problems except four 

relatively small problems, i.e., cre-a, cre-c, ken-07 and pds-02, McPre spends less 

time in preprocessing than LIPSOL. For the aspect of preprocessing time, McPre is 

superior to LIPSOL on large scale problems.

From Table 5.11 to 5.15, we compare the results with different preprocessor but 

with the same solver. In each table, there are two groups of data. The data in the 

first group are the results obtained from the McIPM, i.e., McPre combining McIPM 

solver, that are the same as what we have presented. The data in the other group are 

the results obtained by using LIPSOL Pre (LIPSOL Preprocessor) combining with 

McIPM solver. In each group, we present the size of row, column in the reduced 

matrix, the time spent in preprocessing, postprocessing and solver, and the iteration
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Table 5.6: Comparison between McIPM and LIPSOL: Netlib Standard Problem Set (I)

Results from McIPM Results from LIPSOL
Problem Rrow Rcol Rnnz Tpre Tpost Tsoi Rrow Rcol Rnnz Tpre Tpost Tsoi

25fv47 788 1843 10538 0.11 0.01 4.84 798 1854 10580 0.09 0.01 1.89
80bau3b 2183 11163 21908 0.11 0.02 29.67 2235 11516 22648 0.23 0.02 9.67

adlittle 55 137 417 0.08 0.01 0.33 55 137 417 0.02 0.00 0.14
afiro 27 51 102 0.07 0.01 0.18 27 51 102 0.01 0.00 0.07

agg 468 595 2780 0.09 0.01 1.87 488 615 2862 0.03 0.00 1.06
agg2 516 758 4740 0.10 0.01 2.16 516 758 4740 0.04 0.00 1.11
agg3 516 758 4756 0.10 0.01 2.29 516 758 4756 0.05 0.00 1.10

bandm 251 417 1982 0.08 0.02 0.81 269 436 2137 0.02 0.00 0.44
beaconfd 107 218 1888 0.09 0.02 0.38 148 270 3105 0.03 0.01 0.32

blend 71 111 477 0.11 0.01 0.27 74 114 522 0.01 0.00 0.15
bnll 624 1564 5498 0.10 0.01 3.17 632 1576 5522 0.04 0.00 1.03
bnl2 1998 4078 14259 0.16 0.02 10.08 2268 4430 14914 0.11 0.00 4.27

boeingl 344 719 3352 0.08 0.01 2.17 347 722 3819 0.03 0.00 0.94
boeing2 125 264 922 0.09 0.02 0.71 140 279 1332 0.02 0.00 0.46
bore3d 124 217 1009 0.10 0.02 0.72 199 300 1324 0.03 0.00 0.39
brandy 136 246 1964 0.04 0.00 0.70 149 259 2015 0.01 0.00 0.34

capri 241 436 1528 0.09 0.01 1.15 267 476 1905 0.04 0.00 0.57
cycle 1496 2999 16669 0.13 0.01 11.39 1801 3305 20805 0.18 0.00 5.24

czprob 719 3123 6209 0.10 0.01 5.49 737 3141 9454 0.09 0.01 2.03
d2q06c 2132 5728 31965 0.12 0.01 26.76 2171 5831 33081 0.16 0.01 9.55
d6cube 403 5443 34233 0.12 0.01 6.07 404 6184 37704 0.08 0.01 4.64
degen2 444 757 4201 0.09 0.01 1.10 444 757 4201 0.02 0.00 0.67
degen3 1503 2604 25432 0.17 0.00 8.17 1503 2604 25432 0.05 0.01 8.42
dflOOl 5984 12143 35338 0.15 0.01 263.27 6071 12230 35632 0.11 0.01 372.20

e226 214 463 2702 0.09 0.01 0.99 220 469 2737 0.03 0.00 0.48
etamacro 334 669 1995 0.08 0.02 1.96 357 692 2044 0.03 0.00 0.77

fffff800 322 826 5164 0.08 0.00 2.39 501 1005 6283 0.04 0.00 1.49
finnis 456 966 2414 0.07 0.01 2.03 492 1014 2527 0.03 0.00 0.94
fit Id 24 1049 13427 0.11 0.01 2.70 24 1049 13427 0.05 0.00 1.17
fitlp 627 1677 9868 0.11 0.01 9.85 627 1677 9868 0.06 0.00 7.96

number separately. It can be seen that the effect of different preprocessor on McIPM 

solver is not obvious. Using McPre, some problems has less iteration number and less 

time spent in solver, but some problems has more iteration number and more time 

spent in solver.
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Table 5.7: Comparison between McIPM and LIPSOL: Netlib Standard Problem Set (II)

Results from McIPM Results from LIPSOL
Problem Rrow Rcol Rnnz Tpre Tpost Tsoi Rrow Rcol Rnnz Tpre Tpost Tsoi

fit 2d 25 10524 129042 0.15 0.01 31.69 25 10524 129042 0.45 0.00 13.79
fit2p 3000 13525 50284 0.16 0.00 37.53 3000 13525 50284 0.31 0.01 28.86

forplan 122 450 4477 0.08 0.00 1.74 135 463 4539 0.05 0.00 0.69
ganges 1113 1510 6537 0.09 0.02 3.07 1137 1534 6593 0.04 0.01 1.23

gfrd-pnc 590 1134 2393 0.07 0.02 1.65 600 1144 2413 0.01 0.00 0.66
greenbea 2297 5270 29777 0.13 0.00 26.67 2318 5424 30434 0.17 0.01 10.66
greenbeb 2296 5258 29477 0.16 0.00 26.29 2317 5415 30384 0.29 9.73 0.02

grow 15 300 645 5620 0.10 0.01 1.90 300 645 5620 0.04 0.00 0.92
grow22 440 946 8252 0.07 0.01 2.75 440 946 8252 0.04 0.00 1.42

grow7 140 301 2612 0.08 0.01 1.11 140 301 2612 0.01 0.00 0.50
israel 174 316 2443 0.06 0.01 1.71 174 316 2443 0.02 0.00 1.08

kb2 43 68 313 0.11 0.01 0.47 43 68 313 0.01 0.00 0.21
lotfi 133 346 867 0.09 0.01 0.53 151 364 1123 0.02 0.00 0.27

maros 789 1860 9489 0.11 0.01 3.91 835 1921 10060 0.06 0.00 2.39
maros-r7 2152 7440 100486 0.24 0.01 30.13 3136 9408 144848 0.39 0.00 49.33
modszkl 665 1599 3065 0.10 0.01 2.56 686 1622 12943 0.02 0.00 0.95

nesm 654 2922 13244 0.12 0.01 9.48 654 2922 13244 0.08 0.01 3.43
perold 613 1500 6963 0.11 0.02 5.07 625 1530 7131 0.05 0.00 1.91

pilot 1423 4639 42242 0.17 0.01 44.96 1441 4657 42300 0.20 0.01 17.32
pilot j a 858 1972 12900 0.12 0.03 8.98 924 2044 13339 0.10 0.00 3.84

pilotwe 718 2925 9494 0.10 0.00 8.32 722 2930 9537 0.08 0.00 2.43
pilot4 400 1117 7106 0.10 0.01 4.66 402 1173 7226 0.04 0.01 1.79

pilot87 1990 6411 72258 0.26 0.01 156.98 2030 6460 72479 0.33 0.00 51.04
pilotnov 864 2149 12037 0.08 0.01 5.60 951 2242 12460 0.07 0.00 2.24

recipe 71 137 476 0.06 0.00 0.46 85 177 249 0.02 0.00 0.16
scl05 104 162 339 0.10 0.02 0.29 105 163 340 0.01 0.00 0.12
sc205 203 315 663 0.07 0.00 0.36 205 317 665 0.00 0.00 0.14
sc50a 49 77 159 0.08 0.01 0.23 49 77 159 0.12 0.00 0.10
sc50b 48 76 146 0.07 0.00 0.21 48 76 146 0.01 0.00 0.07

scagr25 469 669 1715 0.10 0.02 0.82 471 671 1725 0.00 0.00 0.36
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Table 5.8: Comparison between McIPM and LIPSOL: Netlib Standard Problem Set (III)

Results from McIPM Results from LIPSOL
Problem Rrow Rcol Rnnz Tpre Tpost Tsoi Rrow Rcol Rnnz Tpre Tpost Tsoi

scagr7 127 183 455 0.07 0.01 0.35 129 185 465 0.01 0.00 0.17
scfxml 311 581 2497 0.08 0.02 1.18 322 592 2707 0.03 0.00 0.45
scfxm2 622 1162 4999 0.07 0.01 2.33 644 1184 5419 0.03 0.00 0.86
scfxm3 933 1743 7501 0.11 0.01 3.31 966 1776 8131 0.06 0.01 1.22

scorpion 361 436 1415 0.08 0.01 0.58 375 453 1460 0.01 0.01 0.29
scrs8 430 1215 3067 0.09 0.01 1.85 485 1270 3262 0.02 0.00 0.60
scsdl 77 760 2388 0.09 0.00 0.46 77 760 2388 0.01 0.00 0.15
scsd6 147 1350 4316 0.08 0.02 0.80 147 1350 4316 0.01 0.00 0.31
scsd8 397 2750 8584 0.06 0.01 1.25 397 2750 8584 0.02 0.00 0.47

sctapl 284 644 1802 0.09 0.01 0.87 300 660 1872 0.00 0.00 0.34
sctap2 1033 2443 7052 0.11 0.01 2.52 1090 2500 7334 0.00 0.00 0.97
sctap3 1408 3268 9383 0.11 0.02 3.84 1480 3340 9734 0.04 0.01 1.21

seba 514 1033 4342 0.06 0.03 4.29 515 1036 4360 0.02 0.00 3.34
sharelb 112 248 1148 0.09 0.00 0.79 112 248 1148 0.04 0.00 0.28
share2b 96 162 777 0.09 0.01 0.33 96 162 777 0.02 0.00 0.17

shell 487 1451 2906 0.09 0.00 2.44 496 1487 2978 0.02 0.01 0.70
ship041 323 2104 4734 0.10 0.03 1.65 356 2162 6368 0.03 0.01 0.53
ship04s 235 1356 3044 0.07 0.00 1.13 268 1414 4124 0.02 0.00 0.38
ship081 630 4231 9526 0.14 0.01 3.30 688 4339 12810 0.07 0.00 1.10
ship08s 358 2063 4634 0.10 0.02 1.52 416 2171 6306 0.04 0.00 0.58
shipl21 756 5170 11491 0.13 0.01 5.29 838 5329 15664 0.08 0.01 1.53
ship 12s 384 2134 4718 0.11 0.00 1.94 466 2293 6556 0.05 0.00 0.69

sierra 1212 2705 7931 0.12 0.00 4.66 1222 2715 7951 0.06 0.01 1.74
stair 356 538 3831 0.10 0.00 1.43 356 538 3831 0.04 0.00 0.61

standata 346 861 1537 0.08 0.00 1.14 359 1258 3173 0.02 0.00 0.53
standgub 346 861 1537 0.11 0.01 1.12 361 1366 3281 0.02 0.00 0.53
standmps 454 1245 2953 0.08 0.00 1.74 467 1258 3862 0.02 0.00 0.87

stocforl 102 150 421 0.08 0.00 0.36 109 157 471 0.01 0.00 0.18
stocfor2 1980 2868 8090 0.11 0.02 5.57 2157 3045 9357 0.03 0.00 1.85
stocfor3 15362 22228 63608 0.29 0.01 86.47 16675 23541 76473 0.44 0.01 23.43

truss 1000 8806 27836 0.17 0.02 7.67 1000 8806 27836 0.10 0.01 2.68
tuff 263 586 4284 0.08 0.01 1.61 292 617 4549 0.03 0.00 0.77

vtpbase 163 273 692 0.09 0.00 0.73 194 325 937 0.02 0.00 0.47
woodlp 243 2474 64483 0.15 0.00 6.77 244 2595 70216 0.25 0.00 4.48
woodw 1094 8414 31579 0.19 0.00 11.69 1098 8418 37487 0.17 0.00 5.48
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Table 5.9: Comparison between McIPM and LIPSOL: Netlib Infeasible Problem Set

Results from McIPM Results from LIPSOL
Problem Rrow Rcol Rnnz Tpre Tpost Tsoi Rrow Rcol Rnnz Tpre Tpost Tsoi
bgdbgl 267 548 1205 0.15 0.00 1.01 348 629 1662 0.01 0.00 0.18
bgetam 334 669 1995 0.09 0.00 0.75 357 692 2044 0.03 0.00 0.22
bgprtr 20 40 70 0.10 0.01 0.21 20 40 70 0.01 0.00 0.07

boxl 231 261 651 0.07 0.00 0.25 231 261 651 0.01 0.00 0.06
chemcom 288 744 1590 0.08 0.01 0.61 288 744 1590 0.01 0.00 0.18

cplexl 3005 5224 10947 0.08 0.02 6.78 3005 5224 10947 0.08 0.01 1.44
cplex2 224 378 1215 0.07 0.00 2.57 224 378 1215 0.02 0.00 1.20
ex72a 197 215 467 0.09 0.01 0.25 197 215 467 0.01 0.00 0.06
ex73a 193 211 668 0.08 0.00 0.23 193 211 457 0.02 0.01 0.05

forest6 66 131 246 0.08 0.01 0.29 66 131 246 0.01 0.00 0.13
galenet 8 14 22 0.03 0.02 0.16 8 14 22 0.02 0.00 0.05

gosh 3533 13336 97002 0.27 0.01 218.99 3718 13625 100566 0.52 0.01 15.35
gran — 0.12 —

greenbea 2301 5271 29883 0.17 0.00 14.36 2319 5419 30425 0.18 0.01 3.48
itest2 9 13 26 0.09 0.01 0.12 9 13 26 0.01 0.00 0.05
itest6 10 15 26 0.08 0.01 0.13 11 17 29 0.01 0.00 0.05
kleinl 54 108 750 0.09 0.02 0.49 54 108 750 0.00 0.00 0.25
klein2 477 531 5062 0.06 0.01 7.84 477 531 5062 0.03 0.00 4.74
klein3 994 1082 13101 0.11 0.00 765.79 994 1082 13101 0.03 0.01 844.58

mondou2 259 467 934 0.08 0.01 1.01 259 467 934 0.02 0.00 0.18
pang 334 692 2661 0.10 0.01 1.75 357 727 2932 0.02 0.00 0.79

pilot4i 400 1117 7106 0.09 0.01 2.42 402 1173 7226 0.04 0.00 1.01
qual 305 441 1596 0.09 0.01 2.85 323 459 1633 0.02 0.00 1.20

reactor 305 793 2557 0.06 0.02 1.98 318 806 2589 0.02 0.00 0.40
refinery 303 439 1574 0.07 0.01 1.09 319 455 1600 0.02 0.00 0.44

voll 305 441 1596 0.11 0.01 2.26 323 459 1633 0.02 0.00 0.70
woodinfe — 0.10 —

— means the problem is detected infeasible in preprocessing.
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Table 5.10: Comparison between McIPM and LIPSOL: Netlib Kennington Problem Set

Results from : McIPM Results from LIPSOL
Problem Rrow Rcol Rnnz Rrow Rcol Rnnz

cre-a 3081 6901 17460 3428 7248 18168
cre-b 7236 77133 260752 7240 77137 260785
cre-c 2643 6068 15248 2986 6411 15911
cre-d 6456 73928 246489 6476 73948 246614

ken-07 1437 2613 5994 1691 2867 6640
ken-11 10085 16740 38520 11548 18203 42161
ken-13 22534 36561 82698 23393 37420 84909
ken-18 78862 128434 298858 *
osa-07 1081 25030 89316 1118 25067 144812
osa-14 2300 54760 196716 2337 54797 317097
osa-30 4313 104337 377404 4350 104374 604488
osa-60 10243 243209 849356 *
pds-02 2654 7417 15964 2788 7551 16230
pds-06 9366 28836 62100 9617 29087 62582
pds-10 15978 49352 106310 16239 49613 106802
pds-20 32947 107324 230621 33250 107627 231155

Results from McIPM Results from LIPSOL
Problem Tpre Tpost Tsoi Tpre Tpost Tsoi

cre-a 0.15 0.02 11.44 0.07 0.01 4.66
cre-b 0.79 0.02 213.76 0.89 0.02 112.10
cre-c 0.14 0.01 14.02 0.06 0.00 4.59
cre-d 0.72 0.02 180.34 0.81 0.02 95.36

ken-07 0.10 0.02 4.93 0.05 0.02 2.09
ken-11 0.15 0.01 41.05 0.31 0.02 18.73
ken-13 0.26 0.01 126.88 0.59 0.04 47.97
ken-18 0.72 0.02 836.12 *
osa-07 0.30 0.02 25.12 0.38 0.01 19.01
osa-14 0.67 0.00 156.90 0.87 0.01 55.79
osa-30 1.09 0.01 271.23 1.86 0.02 130.26
osa-60 2.55 0.03 721.57 *
pds-02 0.14 0.02 18.51 0.09 0.00 5.14
pds-06 0.19 0.02 149.14 0.30 0.02 54.49
pds-10 0.31 0.01 508.40 0.54 0.04 244.05
pds-20 0.59 0.03 3241.03 1.38 0.10 2062.98

* means the problem can not processed in preprocessing.
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Table 5.11: Preprocessor Comparison: Netlib Standard Problem Set (I)

Results from McPre Results from LIPSOL Pre
Problem Rrow Rcol Tpre Tpost Iter Tsoi Rrow Rcol Tpre Tpost Iter Tsoi

25fv47 788 1843 0.11 0.01 30 4.84 798 1854 0.24 0.01 29 4.65
80bau3b 2183 11163 0.11 0.02 41 29.67 2235 11516 0.28 0.02 41 30.31

adlittle 55 137 0.08 0.01 14 0.33 55 137 0.06 0.01 14 0.34
afiro 27 51 0.07 0.01 10 0.18 27 51 0.07 0.00 10 0.19
agg 468 595 0.09 0.01 22 1.87 488 615 0.07 0.00 22 1.91

agg2 516 758 0.10 0.01 21 2.16 516 758 0.07 0.00 20 2.13
agg3 516 758 0.10 0.01 22 2.29 516 758 0.07 0.01 21 2.18

bandm 251 417 0.08 0.02 18 0.81 269 436 0.07 0.00 18 0.84
beaconfd 107 218 0.09 0.02 11 0.38 148 270 0.07 0.00 12 0.54

blend 71 111 0.11 0.01 10 0.27 74 114 0.10 0.00 11 0.28
bnll 624 1564 0.10 0.01 33 3.17 632 1576 0.08 0.00 31 3.11
bnl2 1998 4078 0.16 0.02 36 10.08 2268 4430 0.13 0.00 38 11.41

boeingl 344 719 0.08 0.01 24 2.17 347 722 0.09 0.00 25 2.37
boeing2 125 264 0.09 0.02 15 0.71 140 279 0.07 0.00 19 0.98
bore3d 124 217 0.10 0.02 18 0.72 199 300 0.08 0.00 18 0.84
brandy 136 246 0.04 0.00 19 0.70 149 259 0.10 0.00 18 0.67

capri 241 436 0.09 0.01 19 1.15 267 476 0.07 0.00 18 1.17
cycle 1496 2999 0.13 0.01 39 11.39 1801 3305 0.25 0.00 39 13.72

czprob 719 3123 0.10 0.01 36 5.49 737 3141 0.15 0.01 36 6.62
d2q06c 2132 5728 0.12 0.01 52 26.76 2171 5831 0.22 0.01 43 23.21
d6cube 403 5443 0.12 0.01 19 6.07 404 6184 0.15 0.00 21 7.20
degen2 444 757 0.09 0.01 12 1.10 444 757 0.07 0.00 12 1.06
degen3 1503 2604 0.17 0.00 14 8.17 1503 2604 0.14 0.00 14 8.08
dflOOl 5984 12143 0.15 0.01 45 263.27 6071 12230 0.18 0.00 45 234.35

e226 214 463 0.09 0.01 21 0.99 220 469 0.10 0.00 21 1.00
etamacro 334 669 0.08 0.02 27 1.96 357 692 0.10 0.00 25 1.82

fffff800 322 826 0.08 0.00 32 2.39 501 1005 0.05 0.00 27 2.59
finnis 456 966 0.07 0.01 25 2.03 492 1014 0.05 0.00 25 2.11
fit Id 24 1049 0.11 0.01 19 2.70 24 1049 0.10 0.00 25 3.77
fitlp 627 1677 0.11 0.01 19 9.85 627 1677 0.13 0.00 16 8.34
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Table 5.12: Preprocessor Comparison: Netlib Standard Problem Set (II)

Results from McPre Results from LIPSOL Pre
Problem Rrow Rcol Tpre Tpost Iter Tsoi Rrow Rcol Tpre Tpost Iter Tsoi

fit2d 25 10524 0.15 0.01 23 31.69 25 10524 0.51 0.00 23 32.86
fit2p 3000 13525 0.16 0.00 21 37.53 3000 13525 0.36 0.00 21 37.89

forplan 122 450 0.08 0.00 29 1.74 135 463 0.09 0.00 31 1.96
ganges 1113 1510 0.09 0.02 20 3.07 1137 1534 0.09 0.00 21 3.25

gfrd-pnc 590 1134 0.07 0.02 18 1.65 600 1144 0.10 0.01 18 1.66
greenbea 2297 5270 0.13 0.00 51 26.67 2318 5424 0.22 0.01 47 25.30
greenbeb 2296 5258 0.16 0.00 51 26.29 2317 5415 0.24 0.01 46 24.00

growl5 300 645 0.10 0.01 18 1.90 300 645 0.07 0.00 18 1.88
grow22 440 946 0.07 0.01 19 2.75 440 946 0.09 0.00 18 2.56

grow7 140 301 0.08 0.01 18 1.11 140 301 0.05 0.00 18 1.10
israel 174 316 0.06 0.01 22 1.71 174 316 0.09 0.00 22 1.68

kb2 43 68 0.11 0.01 17 0.47 43 68 0.06 0.00 17 0.49
lotfi 133 346 0.09 o.oi 17 0.53 151 364 0.08 0.00 23 0.73

maros 789 1860 0.11 0.01 30 3.91 835 1921 0.13 0.00 31 4.40
maros-r7 2152 7440 0.24 0.01 16 30.13 3136 9408 0.44 0.00 16 63.46
modszkl 665 1599 0.10 0.01 30 2.56 686 1622 0.08 0.00 29 2.53

nesm 654 2922 0.12 0.01 36 9.48 654 2922 0.13 0.01 31 7.68
perold 613 1500 0.11 0.02 40 5.07 625 1530 0.09 0.01 45 6.22

pilot 1423 4639 0.17 0.01 52 44.96 1441 4657 0.25 0.01 64 51.71
pilot j a 858 1972 0.12 0.03 42 8.98 924 2044 0.12 0.00 42 9.33

pilotwe 718 2925 0.10 0.00 44 8.32 722 2930 0.13 0.00 43 7.34
pilot4 400 1117 0.10 0.01 39 4.66 402 1173 0.08 0.00 36 4.43

pilot87 1990 6411 0.26 0.01 85 156.98 2030 6460 0.39 0.00 70 125.27
pilot nov 864 2149 0.08 0.01 27 5.60 951 2242 0.12 0.01 27 5.72

recipe 71 137 0.06 0.00 12 0.46 85 177 0.07 0.00 12 0.48
scl05 104 162 0.10 0.02 12 0.29 105 163 0.04 0.00 12 6.29
sc205 203 315 0.07 0.00 12 0.36 205 317 0.05 0.00 12 0.37
sc50a 49 77 0.08 0.01 11 0.23 49 77 0.07 0.00 11 0.23
sc50b 48 76 0.07 0.00 10 0.21 48 76 0.07 0.00 10 0.21

scagr25 469 669 0.10 0.02 16 0.82 471 671 0.04 0.00 16 0.81
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Table 5.13: Preprocessor Comparison: Netlib Standard Problem Set (III)

Results from McPre Results from LIPSOL Pre
Problem Rrow Rcol Tpre Tpost Iter Tsoi Rrow Rcol Tpre Tpost Iter Tsoi

scagr7 127 183 0.07 0.01 13 0.35 129 185 0.08 0.00 13 0.35
scfxml 311 581 0.08 0.02 23 1.18 322 592 0.09 0.01 23 1.19
scfxm2 622 1162 0.07 0.01 27 2.33 644 1184 0.08 0.00 25 2.11
scfxm3 933 1743 0.11 0.01 27 3.31 966 1776 0.12 0.00 29 3.69

scorpion 361 436 0.08 0.01 14 0.58 375 453 0.09 0.01 14 0.60
scrs8 430 1215 0.09 0.01 26 1.85 485 1270 0.08 0.00 24 1.70
scsdl 77 760 0.09 0.00 10 0.46 77 760 0.08 0.00 10 0.46
scsd6 147 1350 0.08 0.02 12 0.80 147 1350 0.06 0.00 12 0.80
scsd8 397 2750 0.06 0.01 10 1.25 397 2750 0.08 0.00 10 1.23

sctapl 284 644 0.09 0.01 19 0.87 300 660 0.07 0.00 17 0.80
sctap2 1033 2443 0.11 0.01 19 2.52 1090 2500 0.06 0.00 13 1.79
sctap3 1408 3268 0.11 0.02 20 3.84 1480 3340 0.10 0.00 14 2.44

seba 514 1033 0.06 0.03 24 4.29 515 1036 0.07 0.00 26 4.85
share lb 112 248 0.09 0.00 28 0.79 112 248 0.08 0.00 27 0.76
share2b 96 162 0.09 0.01 12 0.33 96 162 0.06 0.00 11 0.30

shell 487 1451 0.09 0.00 24 2.44 496 1487 0.09 0.00 25 2.65
ship041 323 2104 0.10 0.03 19 1.65 356 2162 0.09 0.00 16 1.60
ship04s 235 1356 0.07 0.00 18 1.13 268 1414 0.08 0.00 16 1.17
ship081 630 4231 0.14 0.01 20 3.30 688 4339 0.13 0.00 19 3.66
ship08s 358 2063 0.10 0.02 17 1.52 416 2171 0.09 0.01 17 1.73
shipl21 756 5170 0.13 0.01 25 5.29 838 5329 0.15 0.00 28 7.05
ship 12s 384 2134 0.11 0.00 21 1.94 466 2293 0.09 0.01 21 2.28

sierra 1212 2705 0.12 0.00 18 4.66 1222 2715 0.11 0.00 18 4.67
stair 356 538 0.10 0.00 18 1.43 356 538 0.08 0.00 18 1.41

standata 346 861 0.08 0.00 15 1.14 359 1258 0.08 0.00 17 1.47
standgub 346 861 0.11 0.01 15 1.12 361 1366 0.07 0.00 17 1.53
standmps 454 1245 0.08 0.00 18 1.74 467 1258 0.07 0.00 19 1.79

stocforl 102 150 0.08 0.00 14 0.36 109 157 0.03 0.00 13 0.33
stocfor2 1980 2868 0.11 0.02 30 5.57 2157 3045 0.07 0.00 31 6.24
stocfor3 15362 22228 0.29 0.01 52 86.47 16675 23541 0.47 0.00 49 84.14

truss 1000 8806 0.17 0.02 20 7.67 1000 8806 0.14 0.00 20 7.58
tuff 263 586 0.08 0.01 23 1.61 292 617 0.08 0.00 20 1.49

vtpbase 163 273 0.09 0.00 16 0.73 194 325 0.08 0.00 17 0.81
woodlp 243 2474 0.15 0.00 19 6.77 244 2595 0.29 0.00 15 5.66
woodw 1094 8414 0.19 0.00 29 11.69 1098 8418 0.16 0.00 26 11.16
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Table 5.14: Preprocessor Comparison: Netlib Infeasible Problem Set

Results from McPre Results from LIPSOL Pre
Problem Rrow Rcol Tpre Tpost Iter Tsoi Rrow Rcol Tpre Tpost Iter Tsoi
bgdbgl 267 548 0.15 0.00 10 1.01 348 629 0.13 0.00 10 1.08
bgetam 334 669 0.09 0.00 10 0.75 357 692 0.07 0.01 9 0.70
bgprtr 20 70 0.10 0.01 11 0.21 20 40 0.07 0.00 11 0.20

boxl 231 261 0.07 0.00 7 0.25 231 261 0.07 0.00 7 0.24
chemcom 288 744 0.08 0.01 8 0.61 288 744 0.05 0.01 8 0.60

cplexl 3005 5224 0.08 0.02 16 6.78 3005 5224 0.13 0.00 16 6.65
cplex2 224 378 0.07 0.00 42 2.57 224 378 0.06 0.00 41 2.55
ex72a 197 215 0.09 0.01 8 0.25 197 215 0.04 0.00 8 0.25
ex73a 193 211 0.08 0.00 7 0.23 193 211 0.06 0.00 7 0.22

forest6 66 131 0.08 0.01 9 0.29 66 131 0.06 0.00 9 0.29
galenet 7 13 0.03 0.02 7 0.16 8 14 0.04 0.00 7 0.17

gosh 3533 13336 0.27 0.01 150 218.9 3718 13625 0.57 0.02 150 237.1
gran — 0.12 — 0.20

greenbea 2301 5271 0.17 0.00 27 14.36 2319 5419 0.21 0.01 22 11.41
itest2 9 13 0.09 0.01 7 0.12 9 13 0.06 0.00 7 0.13
itest6 10 15 0.08 0.01 7 0.13 11 17 0.07 0.00 7 0.13
kleinl 54 108 0.09 0.02 20 0.49 54 108 0.06 0.00 20 0.49
klein2 477 531 0.06 0.01 17 7.84 477 531 0.07 0.00 17 7.81
klein3 994 1082 0.11 0.00 19 765.8 994 1082 0.06 0.00 19 751.4

mondou2 259 467 0.08 0.01 14 1.01 259 467 0.10 0.00 14 1.03
pang 334 692 0.10 0.01 25 1.75 357 727 0.07 0.00 30 2.16

pilot4i 400 1117 0.09 0.01 20 2.42 402 1173 0.08 0.00 18 2.20
qual 305 441 0.09 0.01 38 2.85 323 459 0.06 0.00 31 2.24

reactor 305 793 0.06 0.02 22 1.98 318 806 0.06 0.00 20 1.82
refinery 303 439 0.07 0.01 16 1.09 319 455 0.06 0.00 17 1.23

voll 305 441 0.11 0.01 32 2.26 323 459 0.06 0.00 27 2.01
woodinfe — 0.10 — 0.01

— means the problem is detected infeasible in preprocessing.
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Table 5.15: Preprocessor Comparison: Netlib Kennington Problem Set

Results from McPre Results from LIPSOL Pre
Problem Rrow Rcol Tpre Rrow Rcol Tpre

cre-a 3081 6901 0.15 3428 7248 0.22
cre-b 7236 77133 0.79 7240 77137 1.06
cre-c 2643 6068 0.14 2986 6411 0.11
cre-d 6456 73928 0.72 6476 73948 0.95

ken-07 1437 2613 0.10 1691 2867 0.13
ken-11 10085 16740 0.15 11548 18203 0.38
ken-13 22534 36561 0.26 23393 37420 0.66
ken-18 78862 128434 0.72 *
osa-07 1081 25030 0.30 1118 25067 0.58
osa-14 2300 54760 0.67 2337 54797 1.12
osa-30 4313 104337 1.09 4350 104374 2.05
osa-60 10243 243209 2.55 *
pds-02 2654 7417 0.14 2788 7551 0.13
pds-06 9366 28836 0.19 9617 29087 0.42
pds-10 15978 49352 0.31 16239 49613 0.62
pds-20 32947 107324 0.59 33250 107627 1.51

Resu ts from McPre Results from LIPSOL Pre
Problem Tpost Iter Tsoi Tpost Iter Tsoi

cre-a 0.02 31 11.44 0.01 28 10.72
cre-b 0.02 35 213.76 0.02 36 211.62
cre-c 0.01 40 14.02 0.01 35 13.33
cre-d 0.02 33 180.34 0.02 33 176.04

ken-07 0.02 17 4.93 0.00 17 5.46
ken-11 0.01 20 41.05 0.02 20 44.97
ken-13 0.01 26 126.88 0.04 27 133.57
ken-18 0.02 38 836.12 *
osa-07 0.02 23 25.12 0.02 34 54.17
osa-14 0.00 48 156.90 0.01 40 153.52
osa-30 0.01 41 271.23 0.03 45 354.36
osa-60 0.03 42 721.57 *
pds-02 0.02 32 18.51 0.01 32 18.68
pds-06 0.02 43 149.14 0.03 44 152.25
pds-10 0.01 57 508.40 0.04 55 486.79
pds-20 0.03 79 3241.03 0.11 79 3152.44

* means the problem can not processed in preprocessing.
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5.3 Comparison with CPLEX

In this section, we compare our results with the commercial optimization software 

package CPLEX.

The comparison results are listed from Table 5.16 to 5.20. Notice that there 

are two columns Erow and Ecol in each table, that are different from what we have 

presented in other tables. Erow means the number of eliminated rows while Ecol 

means the number of eliminated columns. In other tables, we use Rrow and Rcol to 

represent the number of rows and columns after the eliminated rows and columns are 

removed from the matrix A. For instance, for the problem 25fv47 in Table 5.1, the 

number of Row is 821, the number of Rrow is 788, thus in Table 5.16, the number 

of Erow is 33. The reason we change our method to compare is that in CPLEX, the 

result of preprocessing is presented in this way, therefore, we adjust our data output.

For the Netlib standard problems from Table 5.16 to 5.18 and the Netlib Ken- 

nington problems in Table 5.20, CPLEX can remove more constraints than McPre for 

most problems. The reason is that another four preprocessing techniques (see Section 

4.5) have not been implemented in McPre. For most problems, CPLEX spends less 

time in preprocessing and solver than McPre. Two of the reasons are: (I) McPre 

spends time in reading and writing procedures that CPLEX does not need. (II) 

CPLEX adjusts its code on different machine architecture, that can optimize system 

and speed up the running time. In spite of the extra data communication, for the 

very large scale probles, e.g., osa-30, osa-60, pds-10 and pds-20, McPre spends less 

time than CPLEX. Moreover, another advantage of McPre is that it can read all the 

problems, however, there are eight problems, e.g., blend, dflOOl, forplan, gfrd-pnc, 

perold, pilotwe, scrs8 and sierra can not be read by CPLEX. CPLEX outputs the 

reading errors found in the RHS section.
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For the Netlib infeasible problems in Table 5.19, CPLEX can detect twelve in­

feasible problems in preprocessing while McPre can detect two infeasible problems. 

The reason is that those four preprocessing techniques make it possible for CPLEX 

to detect more infeasibility, thus there is room to complete and improve McPre.

5.4 Computational Result on Extra Large Prob­
lems

In addition to the Netlib testing set problems, we also tested our code on some large 

problems from other resources. Here we list the computational results as follows:

The results in Table 5.21 are obtained by using McIPM. The comparison between 

McIPM and LIPSOL is shown in Table 5.22. In Table 5.23, the comparison is between 

the different preprocessor, i.e., McPre and LIPSOL Pre, both with McIPM solver. 

It is seen that McPre can remove more constraints than LIPSOL Pre does in four 

problems, and they remove the same number of constraints from the left six problems. 

McPre spends less time than LIPSOL Pre for all the problems except ISO. This shows 

again that McPre is superior to LIPSOL Pre in preprocessing time for large scale 

problems.
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Table 5.16: Comparison with CPLEX: Netlib Standard Problem Set (I)

Results from McIPM Results from CPLEX
Problem Erow Ecol Tpre Tpost Tsoi Erow Ecol Tpre Tpost Tsoi

25fv47 33 33 0.11 0.01 4.84 50 36 0.03 0.00 0.32
80bau3b 79 898 0.11 0.02 29.67 297 1123 0.10 0.00 1.11

adlittle 1 1 0.08 0.01 0.33 3 3 0.00 0.00 0.01
afiro 0 0 0.07 0.01 0.18 12 15 0.00 0.00 0.00
agg 20 20 0.09 0.01 1.87 322 54 0.01 0.00 0.00

agg2 0 0 0.10 0.01 2.16 232 58 0.01 0.01 0.06
agg3 0 0 0.10 0.01 2.29 229 58 0.01 0.00 0.06

bandm 54 55 0.08 0.02 0.81 173 223 0.01 0.00 0.05
beaconfd 66 77 0.09 0.02 0.38 124 190 0.00 0.00 0.01

blend 3 3 0.11 0.01 0.27 *
bnll 19 22 0.10 0.01 3.17 81 70 0.02 0.00 0.17
bnl2 326 408 0.16 0.02 10.08 767 785 0.06 0.00 0.72

boeingl 7 7 0.08 0.01 2.17 287 418 0.02 0.00 0.10
boeing2 41 41 0.09 0.02 0.71 44 2 0.00 0.00 0.02
bore3d 109 117 0.10 0.02 0.72 159 221 0.00 0.00 0.01
brandy 84 57 0.04 0.00 0.70 100 60 0.01 0.00 0.06

capri 30 60 0.09 0.01 1.15 34 55 0.01 0.00 0.04
cycle 407 379 0.13 0.01 11.39 639 719 0.06 0.00 0.44

czprob 210 439 0.10 0.01 5.49 268 893 0.03 0.00 0.22
d2q06c 39 103 0.12 0.01 26.76 108 400 0.11 0.00 1.53
d6cube 12 741 0.12 0.01 6.07 12 741 0.08 0.00 0.93
degen2 0 0 0.09 0.01 1.10 1 0 0.02 0.00 0.13
degen3 0 0 0.17 0.00 8.17 1 1 0.05 0.00 1.24
dfiOOl 87 87 0.15 0.01 263.27 *

e226 9 9 0.09 0.01 0.99 69 25 0.00 0.00 0.05
etamacro 66 147 0.08 0.02 1.96 67 171 0.01 0.00 0.11

fffff800 202 202 0.08 0.00 2.39 205 191 0.03 0.00 0.17
finnis 41 98 0.07 0.01 2.03 136 189 0.01 0.00 0.07
fitld 0 0 0.11 0.01 2.70 0 2 0.02 0.00 0.10
fitlp 0 0 0.11 0.01 9.85 0 1254 0.05 0.00 0.18

* means the problem can not processed in preprocessing.
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Table 5.17: Comparison with CPLEX: Netlib Standard Problem Set (II)

Results from McIPM Results from CPLEX
Problem Erow Ecol Tpre Tpost Tsoi Erow Ecol Tpre Tpost Tsoi

fit2d 0 0 0.15 0.01 31.69 0 128 0.31 0.00 1.32
fit2p 0 0 0.16 0.00 37.53 0 0 0.11 0.00 1.24

forplan 39 42 0.08 0.00 1.74 *
ganges 196 196 0.09 0.02 3.07 460 592 0.05 0.00 0.11

gfrd-pnc 26 26 0.07 0.02 1.65 *
greenbea 95 328 0.13 0.00 26.67 461 1441 0.10 0.10 0.87
greenbeb 97 147 0.16 0.00 26.29 461 1450 0.11 0.11 0.77

growl5 0 0 0.10 0.01 1.90 0 0 0.01 0.00 0.14
grow22 0 0 0.07 0.01 2.75 0 0 0.01 0.00 0.21

grow7 0 0 0.08 0.01 1.11 0 0 0.01 0.00 0.06
israel 0 0 0.06 0.01 1.71 11 1 0.00 0.00 0.06

kb2 0 0 0.11 0.01 0.47 0 5 0.01 0.00 0.01
lotfi 20 20 0.09 0.01 0.53 36 26 0.01 0.00 0.03

maros 57 106 0.11 0.01 3.91 219 531 0.03 0.00 0.21
maros-r7 984 1968 0.24 0.01 30.13 984 2830 0.40 0.01 3.95
modszkl 22 23 0.10 0.01 2.56 29 57 0.02 0.00 0.13

nesm 8 183 0.12 0.01 9.48 16 318 0.04 0.00 0.60
perold 12 94 0.11 0.02 5.07 *

pilot 18 221 0.17 0.01 44.96 85 436 0.11 0.08 3.33
pilot j a 82 383 0.12 0.03 8.98 135 522 0.06 0.00 0.85

pilotwe 4 83 0.10 0.00 8.32 *
pilot4 10 94 0.10 0.01 4.66 21 190 0.02 0.00 0.27

pilot87 40 269 0.26 0.01 156.98 64 312 0.19 0.00 10.74
pilot nov 111 297 0.08 0.01 5.60 132 391 0.07 0.00 0.53

recipe 20 67 0.06 0.00 0.46 30 96 0.01 0.00 0.02
scl05 1 1 0.10 0.02 0.29 1 0 0.00 0.00 0.01
sc205 2 2 0.07 0.00 0.36 2 1 0.01 0.00 0.02
sc50a 1 1 0.08 0.01 0.23 1 0 0.00 0.00 0.01
sc50b 2 2 0.07 0.00 0.21 2 0 0.00 0.00 0.00

scagr25 2 2 0.10 0.02 0.82 126 4 0.01 0.00 0.05

means the problem can not processed in preprocessing.
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Table 5.18: Comparison with CPLEX: Netlib Standard Problem Set (III)

Results from McIPM ] Results from CPLEX
Problem Erow Ecol Tpre Tpost Tsoi Erow Ecol Tpre Tpost Tsoi

scagr7 2 2 0.07 0.11 0.35 36 4 0.01 0.00 0.01
scfxml 19 19 0.08 0.02 1.18 56 7 0.01 0.00 0.04
scfxm2 38 38 0.07 0.01 2.33 112 74 0.02 0.00 0.12
sc£xm3 57 57 0.11 0.01 3.31 168 111 0.03 0.00 0.19

scorpion 27 30 0.08 0.01 0.58 138 82 0.01 0.00 0.02
scrs8 60 60 0.09 0.01 1.85 *
scsdl 0 0 0.09 0.00 0.46 0 0 0.01 0.00 0.02
scsd6 0 0 0.08 0.02 0.80 0 0 0.00 0.00 0.05
scsd8 0 0 0.06 0.01 1.25 0 0 0.01 0.00 r 0.09

sctapl 16 16 0.09 0.01 0.87 31 141 0.00 0.00 0.05
sctap2 1057 57 0.11 0.01 2.52 113 554 0.02 0.00 0.16
sctap3 72 72 0.11 0.02 3.84 136 713 0.03 0.00 0.23

seba 1 3 0.06 0.03 4.29 506 1020 0.01 0.00 0.01
share lb 5 5 0.09 0.00 0.79 10 17 0.01 0.00 0.03
share2b 0 0 0.09 0.01 0.33 3 0 0.00 0.00 0.01

shell 49 326 0.09 0.00 2.44 49 367 0.02 0.00 0.09
ship041 79 62 0.10 0.03 1.65 110 228 0.02 0.00 0.10
ship04s 167 150 0.07 0.00 1.13 186 192 0.01 0.00 0.06
ship081 148 132 0.14 0.01 3.30 308 1184 0.02 0.00 0.13
ship08s 420 404 0.10 0.02 1.52 502 819 0.02 0.00 0.05
shipl21 395 363 0.13 0.01 5.29 542 1280 0.03 0.00 0.20
shipl2s 767 735 0.11 0.00 1.94 812 844 0.02 0.00 0.09

sierra 15 30 0.12 0.00 4.66 *
stair 0 82 0.10 0.00 1.43 0 83 0.01 0.00 0.12

standata 13 413 0.08 0.00 1.14 67 658 0.01 0.00 0.03
standgub 15 522 0.11 0.01 1.12 69 767 0.01 0.00 0.03
standmps 13 29 0.08 0.00 1.74 73 64 0.01 0.00 0.07

stocforl 15 15 0.08 0.00 0.36 36 15 0.00 0.00 0.01
stocfor2 177 177 0.11 0.02 5.57 321 177 0.04 0.00 0.22
stocfor3 1313 1313 0.29 0.01 86.47 2331 22293 0.38 0.01 3.16

truss 0 0 0.17 0.02 7.67 0 0 0.05 0.00 0.59
tuff 70 44 0.08 0.01 1.61 86 94 0.01 0.00 0.08

vtpbase 35 74 0.09 0.00 0.73 148 132 0.00 0.00 0.01
woodlp 1 121 0.15 0.00 6.77 74 866 0.10 0.00 0.51
woodw 4 4 0.19 0.00 11.69 543 4395 0.06 0.01 0.36

* means the problem can not processed in preprocessing.
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Table 5.19: Comparison with CPLEX: Netlib Infeasible Problem Set

Results from McIPM Results from CPLEX
Problem Erow Ecol Tpre Tsoi Erow Ecol Tpre Tsoi
bgdbgl 81 81 0.15 1.01 — 0.00
bgetam 66 147 0.09 0.75 67 201 0.01 0.10
bgprtr 0 30 0.10 0.21 6 10 0.00 0.00

boxl 0 0 0.07 0.25 15 0 0.01 0.00
chemcom 0 0 0.08 0.61 0 96 0.01 0.10

cplexl 0 0 0.08 6.78 — 0.01
cplex2 0 0 0.07 2.57 0 0 0.01 0.14
ex72a 0 0 0.09 0.25 4 6 0.00 0.00
ex73a 0 0 0.08 0.23 3 6 0.00 0.01

forest6 0 0 0.08 0.29 0 5 0.00 0.01
galenet 1 1 0.03 0.16 — 0.00

gosh 259 361 0.27 218.99 — 0.23
gran — 0.12 — o.oi

greenbea 92 329 0.17 14.36 — 0.05
itest2 0 0 0.09 0.12 — 0.00
itest6 1 2 0.08 0.13 — 0.00
kleinl 0 0 0.09 0.49 0 0 0.00 0.03
klein2 0 0 0.06 7.84 1 0 0.00 86.20
klein3 0 0 0.11 765.79 1 0 0.07 191.52

mondou2 54 137 0.08 1.01 — 0.04
pang 27 65 0.10 1.75 57 95 0.01 0.18

pilot4i 10 94 0.09 2.42 — 0.04
qual 18 23 0.09 2.85 93 119 0.01

reactor 13 15 0.06 1.98 — 0.01
refinery 20 25 0.07 1.09 95 122 0.00 0.05

voll 18 23 0.11 2.26 93 119 0.01 0.15
woodinfe — 0.10 — 0.00

— means the problem is detected infeasible in preprocessing.
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Table 5.20: Comparison with CPLEX: Netlib Kennington Problem Set

Results from McIPM Results from CPLEX
Problem Erow Ecol Tpre Tpost Tsoi Erow Ecol Tpre Tpost Tsoi

cre-a 435 347 0.15 0.02 11.44 735 129 0.07 0.01 0.77
cre-b 2412 4 0.79 0.02 213.76 4329 40629 0.63 0.02 8.72
cre-c 425 343 0.14 0.01 14.02 745 430 0.06 0.01 0.67
cre-d 2470 20 0.72 0.02 180.34 4842 44792 0.61 0.05 7.05

ken-07 989 989 0.10 0.02 4.93 999 1035 0.04 0.00 0.18
ken-11 4609 4609 0.15 0.01 41.05 4632 4833 0.34 0.03 1.59
ken-13 6098 6098 0.26 0.01 126.88 6115 6326 0.82 0.06 5.65
ken-18 26265 26265 0.72 0.02 836.12 26314 26395 3.17 0.29 30.63
osa-07 37 37 0.30 0.02 25.12 71 934 0.25 0.02 1.14
osa-14 37 37 0.67 0.00 156.90 71 2003 0.64 0.03 3.13
osa-30 37 37 1.09 0.01 271.23 71 3905 1.38 0.05 7.02
osa-60 37 37 2.55 0.03 721.57 71 8841 3.65 ? 44.65
pds-02 299 299 0.14 0.02 18.51 357 2421 0.14 0.00 0.45
pds-06 515 515 0.19 0.02 149.14 795 3612 0.58 0.02 5.25
pds-10 580 580 0.31 0.01 508.40 1023 5097 1.07 0.04 14.78
pds-20 927 851 0.59 0.03 3241.03 1819 4630 2.84 0.10 75.51

? means the value can not be found in output.

Table 5.21: Results by McIPM

Problem Row Col Nnz Rrow Rcol Rnnz Tpre Tpost Iter Tsoi
baxter 27441 30733 111576 23893 30184 107362 0.24 0.01 56 1129.2

data 4944 6318 38493 4944 6316 38493 0.12 0.01 18 494.8
gp20 4042 30011 284428 1691 27408 279222 0.33 0.01 29 233.7

130 2701 18161 66339 2701 18161 66339 0.21 0.02 29 23.9
mod2 34774 66409 199836 29125 56900 157233 0.36 0.01 103 719.6

olp 9932 70891 568060 9880 25800 128000 0.20 0.02 56 13515.4
rail582 582 56097 402290 582 54917 394195 0.51 0.01 31 106.0

route 20894 43019 206782 20894 43019 206782 0.60 0.02 32 271.5
tree9 7686 7938 30618 7686 7938 30618 0.13 0.01 8 2614.2
world 34506 67147 198909 29016 58578 157431 0.40 0.01 103 743.9

137



M.Sc. Thesis - X. Huang McMaster - Computing and Software

Table 5.22: Comparison between McIPM and LIPSOL

Resu] ts from McIPM Results from LIPSOL
Problem Rrow Rcol Rnnz Rrow Rcol Rnnz

baxter 23893 30184 107362 24386 30733 108521
data 4944 6316 38493 4944 6316 38493
gp20 1691 27408 279222 1691 27408 279222

130 2701 18161 66339 2701 18161 66339
mod2 29125 56900 157233 34320 64304 195372

olp 9880 25800 128000 9932 25852 128104
rail582 582 54917 394195 582 56097 402290

route 20894 43019 206782 20894 43019 206782
tree9 7686 7938 30618 7686 7938 30618

world 29016 58578 157431 34081 65875 194986
Results from McIPM Results from LIPSOL

Problem Tpre Tpost Tsoi Tpre Tpost Tsoi
baxter 0.24 0.01 1129.23 1.02 0.01 718.03

data 0.12 0.01 494.86 0.19 0.01 747.91
gp20 0.33 0.01 233.74 1.24 0.06 194.36

130 0.21 0.02 23.98 0.20 0.00 9.06
mod2 0.36 0.01 719.65 1.70 0.09 216.20

olp 0.20 0.02 13515.46 0.92 0.04 14796.78
rail582 0.51 0.01 106.04 1.28 0.02 56.36

route 0.60 0.02 271.53 0.69 0.01 115.01
tree9 0.13 0.01 2614.20 0.12 0.00 2621.26

world 0.40 0.01 743.95 1.67 0.09 357.21
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Table 5.23: Preprocessor Comparison

Results from McPre Results from LIPSOL Pre
Problem Rrow Rcol Tpre Rrow Rcol Tpre

baxter 23893 30184 0.24 24386 30733 0.94
data 4944 6316 0.12 4944 6316 0.19
gp20 1691 27408 0.33 1691 27408 1.02

130 2701 18161 0.21 2701 18161 0.19
mod2 29125 56900 0.36 34320 64304 1.88

olp 9880 25800 0.20 9932 25852 0.83
rail582 582 54917 0.51 582 56097 1.14

route 20894 43019 0.60 20894 43019 0.61
tree9 7686 7938 0.13 7686 7938 0.14
world 29016 58578 0.40 34081 65875 1.71

Results from McPre Results from LIPSOL Pre
Problem Tpost Iter Tsoi Tpost Iter Tsoi

baxter 0.01 56 1129.23 0.02 52 840.40
data 0.01 18 494.86 0.02 18 794.22
gp20 0.01 29 233.74 0.05 29 233.78

130 0.02 29 23.98 0.00 29 25.82
mod2 0.01 103 719.65 0.10 81 786.34

olp 0.02 56 13515.46 0.04 150 36124.10
rail582 0.01 31 106.04 0.02 31 105.37

route 0.02 32 271.53 0.01 32 288.31
tree9 0.01 8 2614.20 0.01 8 2614.63
world 0.01 103 743.95 0.10 91 792.48
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Chapter 6

Conclusions and Future Work

We have presented the MPS format and a comprehensive review of preprocessing 

and postprocessing techniques for LO problems. We also have implemented three 

subroutines: MPS reader, preprocessing and postprocessing, that are essential parts 

of the McIPM optimization software package. In the subroutine of preprocessing, we 

have implemented most of the techniques discussed in Chapter 2. They are: to check 

infeasible variables; to remove fixed variables, empty rows, empty columns, singleton 

rows, singleton columns, forcing rows and redundant rows; to find duplicate rows and 

duplicate columns, and to tighten the bounds of variables. Detailed description of 

implementation issues are given as well.

We have tested our software package on the Netlib testing sets and compared our 

results with two commercial software packages of LIPSOL and CPLEX. Based the 

computational results, we may conclude that the performance of our subroutines is 

encouraging. The MPS reader subroutine is robust. It can read all the LO problems 

in the Netlib testing sets while there are some problems can not be read in the other 

two software packages. It can even read some incorrect MPS files in our testing. The 

preprocessing subroutine removes more constraints than LIPSOL, however, it can
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remove less constraints than CPLEX. The reason is that there are more preprocessing 

techniques used in CPLEX. In infeasibility problem detection, we detect the same 

infeasible problems in preprocessing as LIPSOL does, however, CPLEX can detect 

more. The reason is that due to time limitation, we have not implemented a complete 

preprocessing project. There are another four preprocessing techniques needed to 

implement. They are: to tighten the bounds of dual variables; to find dominated 

variables; to make matrix A sparser, and to have matrix A full rank. Therefore, 

there is room to further develop our subroutines. Our advantage is the time spent in 

preprocessing for very large scale problems. For those large scale problems, McPre 

usually can spend less time than LIPSOL.

Moreover, in our implementation, a MAT file, a DAT file and a TXT file serve 

as the communication media to transfer the data between MATLAB and C. The 

reading and writing procedure takes time and it could be avoided if all the subroutines, 

e.g., preprocessing, postprocessing and solver, are compiled in the same environment. 

Therefore, to speed up, my suggestion is to integrate the subroutines of preprocessing, 

solver and postprocessing in one C package. Thus the subroutines can communicate 

directly without duplicate information.
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