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Abstract

An iterative solution to the problem of blind image deconvolution is presented whereby 

a previous image estimate is explicitly used in the new image estimation process. The 

previous image is pre-filtered using an adaptive, non-parametric stabilizing function 

that is updated based on a current error estimate. This function is experimentally 

shown to dramatically benefit the convergence rate for the a priori restoration case. 

Noise propagation from one iteration to the next is reduced by the use of a second, 

regularizing operator, resulting in a hybrid iteration technique. Further, error terms 

are developed that shed new light on the error propagation properties of this method 

and others by quantifying the extent of noise and regularization error propagation. 

Optimal non-parametric, frequency adaptive stabilizing and regularization functions 

are then derived based on this error analysis.
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Chapter 1

Introduction

The process of deconvolution, or inverse filtering, is part of a wide range of applica­

tions in the diverse field of image restoration. Image restoration began in the late 

1950’s and early 1960’s as an effort by scientists in the United States and former Soviet 

Union space programs to de-blur photographic images of the earth and solar system. 

This effort was intensified, particularly after the “space race” ended in 1969 with the 

first manned space flight to the moon when the focus of space programs changed 

to unmanned missions like the Ranger, Lunar Orbitor and Mariner initiatives. This 

focus has continued to this decade, recently receiving wide spread media recognition 

publicizing the problems with the main mirror of the Hubble Space Telescope.

Although astronomical imaging is still one of the primary applications of image 

restoration, many other applications are being developed, for instance in the medi­

cal imaging, law enforcement and forensic science fields to name but a few. Other 

prominent applications are the restoration of aging photographs and motion pictures, 

and the removal of artifacts resultant to the application of block based compression 

techniques.

The uses for image restoration mentioned here cannot begin to do complete justice 

to the possibilities that actually exist in practice. Hence the need for better and more

1
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accurate image restoration algorithms.

1.1 Background

Digital image restoration deals with the study of methods to recover the original scene 

from degraded versions of that scene. Techniques are oriented towards modelling a 

degradation process, then using that knowledge to undo the effects of those degra­

dations. Some common degrading effects on images are random observation noise, 

photographic out-of-focus effects, motion blur, and atmospheric turbulence blurring. 

This field is generally considered distinct from the area of image enhancement, which 

is purely designed to manipulate an image without making use of degradation mod­

els. The primary objective of image enhancement is solely to produce results that are 

pleasing to the observer without the primary importance set on image accuracy that 

is prominent in the image restoration field.

Figure 1.1 shows a schematic of the most common image degradation system. For 

simplicity sake, the additive noise is modeled to be zero mean, Gaussian independent 

and identically distributed (iid) noise. Some methods that will not be covered in this 

work model the noise as signal dependant, which often leads to non-linear solutions. 

An example would be work presented in [12]. The degrading function or point spread 

function (PSF), designated in Figure 1.1 as H, is usually considered to be a spatially 

invariant discrete operator. This leads to the degradation process modeled as two­

dimensional linear convolution.

1.1.1 Why Image Restoration is Difficult

Generally speaking, image recording processes tend to loose image information. The 

single most prominent attribute for all image degradations (see Section 2.1) is that 

of a band limiting process. This constitutes a “many-to-one” transformation, and
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Figure 1.1: Image Degradation Process

introduces ambiguity when one attempts to reverse the process to regain the original 

image. As will be discussed in Chapter 2, a singular value decomposition of any band 

limiting blur operator H will have zeros or near-zero singular values. This makes 

direct inversion of the operator H impossible unless prior information is introduced 

into the solution method.

1.1.2 Regularization

The most common method of dealing with the ill-posed nature of the inverse filter­

ing process is regularized least squares, or simply regularization. The most common 

method of regularization is referred to as Tikhonov regularization[5Q\.

Regularization seeks to improve the image estimate by introducing a bias into the 

solution. Quantifying the optimal trade-off that is created by this bias is in effect 

the main challenge in implementing a regularized solution. There are many methods 

that employ regularized least squares in their solutions, some of which which will 

be covered in Chapter 2. A good review of methods for choosing a regularization 

parameter and the relationships between each other can be found in [10].
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1.2 Restoration Methods

The scope of digital image restoration methods to be covered in this thesis can be 

divided into two main groups; stochastic methods and deterministic methods. These 

two groups can again be divided into blind and nonblind methods. The blind tech­

niques can be further sub-divided into two groups; a priori blur estimation techniques 

where the PSF is determined using the degraded image, and a posteriori restoration 

where the PSF and image are jointly estimated. Generally, a priori blur estimation 

techniques are less complicated but limited in scope due to constraints on the PSF 

model.

1.2.1 Stochastic Methods

Bayesian Methods

Bayesian methods assume a structure to the a posteriori probability density function 

(PDF) of the original image given the degraded image. To accomplish this, the PDFs 

of both the image and additive noise are both required. For the maximum a poste­

riori (MAP) estimator, the image and noise are both considered to be multivariate 

Gaussian with zero mean. The noise is also assumed to be iid.

Associated with the MAP estimator is the maximum likelihood estimator (ML or 

MLE). Here the image is considered to be a non-random vector, maximizing the like­

lihood function. Originally, these estimators did not account for noise in the problem 

formulation, and so were not robust when used for noise contaminated images. Later 

versions include noise in the model, and are developed for the blind case. Most use 

the expectation maximization algorithm (EM) to find the ML solution[27][35][36][39].
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Wiener Filtering

The Wiener filter is the linear minimum variance estimator. This filter is designed 

to minimize the mean-squared error between the original and restored images. This 

filter is equivalent to the MAP estimator when the multivariate Gaussian assumption 

is used.

Kalman Filtering

Kalman filtering uses state-space equations in a recursive dynamic system. The 

Kalman filtering process consists of two stages; a prediction step and an update 

step. The state dimension may be quite large for two-dimensional blurs, so the use of 

a Kalman filter is computationally expensive, and therefore not as practical as other 

methods. Sub-optimal but efficient alternatives to the standard Kalman filter have 

been developed, in particular the reduced update Kalman filter (RUKF)[61][62] and 

the reduced order model Kalman filter (ROMKF)[1].

Generalized Cross Validation

The method of generalized cross validation (GCV) uses the “leave one out” principle 

to test a solution’s applicability to the regularized least squares criterion. This method 

is flexible, and is used to estimate regularization parameters and PSF parameters in 

a blind procedure [47] [48].
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1.2.2 Algebraic Methods

Tikhonov Miller Regularization

This is a class of methods for finding a solution to a linear system of equations where 

the observation vector is contaminated by noise. This class of methods is to solve ill- 

posed problems by introducing a priori information, usually in the form of a smooth­

ness constraint. Differences in these related methods are usually in the problem formu­

lation, resulting in slightly different regularization parameters[6][10][15][16][17][18][20] 

[44][50].

1.2.3 Iterative Deconvolution Methods

Successive Approximations

Related to the algebraic, regularized methods are iterative ones that are based on 

successive approximations of the direct inversion operator by using an appropri­

ate expansion. These methods when unconstrained converge to the direct solution. 

Their main use in practice, however involves constraints that can be applied after 

each iteration, thus reducing the ambiguity that is involved with ill-posed problems 

[8] [24] [25] [22] [23] [29] [30] [34] [37] [51] [55].

These iterative techniques can be modified to improve convergence rates, but the 

application of constraints between iterations is no longer possible[26][33][46].

Projections on to Convex Sets

Another popular iterative method is called alternating projections on to convex sets 

(POCS). This is a method where known properties of the original image are defined 

as convex sets. A projection operator can be formulated that finds the closest point 

on the convex set in the least squares sense, given the originating vector is outside of
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that set. This method is covered in [21][24][53] and [65].

Blind Deconvolution Methods

The literature covering blind deconvolution is diverse, and includes many different 

approaches. Some of the most common are reviewed in [32]. In this article, blind 

deconvolution methods are categorized as:

• Zero sheet separation methods.

• A priori blur estimation.

• ARMA parameter estimation methods.

• Nonparametric, deterministic image constraints restoration.

• Nonparametric methods based on higher oder statistics.

The following references represent a cross section of the current literature on blind 

deconvolution [2] [9] [13] [31] [38] [41] [45] [52] [58] [60] [63].

1.2.4 Multichannel Approaches using Wavelet Theory

This approach decomposes a single channel image into multiple channels or sub­

bands using wavelet theory. The idea is to treat each separate channel as a linear 

space-invariant problem, thus allowing for some non-stationarity for the image as a 

whole. Most schemes apply a known technique to individual channels, for example 

using linear minimum mean square error (LMMSE) filters[ll][28][4] or a Bayesian 

paradigm [40]. The authors of [4] also report work on using the EM algorithm and 

constrained least squares within each channel. A multiscale Kalman pre-filter is used 

in [5]. These methods incorporate both within and between channel correlations to 

form a solution. All of the aforementioned are not blind solutions, requiring that the
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PSF be known a priori. A blind multiresolution method is developed in [64], which 

uses DFT zeros to estimate the PSF. Some methods for designing complex valued sin­

gle side-band filters have also been developed [49]. With this type of subband filter 

design, it may be possible to de-couple the relationships between individual channels 

of the decomposed image.

1.3 Scope of Thesis

This research work has a focus on two-dimensional regularized least squares restora­

tion with a major emphasis on blind iterative deterministic methods. To reach that 

goal, methods with restricted scope will be first analysed to shed light on the specific 

properties of image restoration. This analysis will start with the degradation system 

model, how it is applied to direct regularized least squares methods, and then the 

analysis moves on to iterative methods that converge to the direct solution. The 

expansion of these ideas to the blind case will then be covered. This work will deal 

exclusively with monochromatic images, as for practical reasons it is common practice 

to assume that the RGB components of colour image pixels are independent, ignoring 

the mutual relations that exist between them.

The history behind image restoration has followed a similar type of development. 

Since the introduction of digital image restoration until quite recently, most methods 

assume the point spread function to be known. These methods, known collectively 

as a priori restoration have reached a degree of maturity, since many yield similar 

results. The problem of joint image and blur identification (blind deconvolution or a 

posteriori identification and restoration) is not as mature, and was therefore a major 

goal set at the outset of this research work. The extension of this work from the 

single channel to multichannel case will not be covered, but is assumed to be the next 

logical step for continuation of this work.
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The problem at hand is divided into four parts.

1. Firstly, the underlying essence of the image restoration is identified by reviewing 

“classical” techniques. The ill-posed nature of the image restoration problem 

will be shown by analysing the eigensystem of the blurring operator, and some 

of the most common regularized least squares methods will be compared.

2. These techniques will then be cast as iterative algorithms based on the method 

of successive approximations. The use of nonlinear constraints will be shown as 

an effective way to incorporate prior knowledge into the restoration process.

3. Using this background, a new iterative procedure using error-adaptive non- 

parametric regularization and stability functions will be presented. Although 

developed as an a priori method, analysis assumes an error in the PSF operator 

thus alowing for expansion to a blind algorithm. An a priori version of this 

algorithm is also presented in [19]. Experimental results comparing this new 

method with the iterative Tikhonov-Miller method will be presented, as well 

as experimental proof of the increased rate of convergence attributed to the 

addition of a stability function.

4. This a priori method is extended to the blind case by introducing an estimator 

for the PSF. An operator that is dual to the regularizing function is devel­

oped, and a blind iterative algorithm presented. Experimental results are also 

presented.

The thesis concludes with closing comments and suggestions for future develop­

ment of these ideas.
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1.4 Outline of Thesis

Each of the following four chapters form a background for the next, after which a 

final chapter concludes the thesis with comments and suggestions for future research.

Chapter 2, “Classical Image Restoration Approaches” outlines some of the most 

common deterministic .methods for image restoration by inverse filtering. The image 

degradation model used throughout this work will be specified, along with elabora­

tions on the difficulties that arise with image deconvolution. Finally, regularized least 

squares methods will be introduced with an emphasis on direct or algebraic methods.

Chapter 3, “Iterative Image Restoration” presents some of the most common 

iterative techniques for digital image restoration, as well as describing some of the 

advantages of iterative methods over direct methods. The technique of applying 

prior knowledge by the use of non-linear constraints will be discussed, as well as 

the application of constraints by the use of alternating projections onto convex sets 

(POCS). Iterative algorithms with higher order convergence rates are also discussed.

Chapter 4, “A Hybrid Algorithm for Iterative Deconvolution” presents an adaptive 

iterative algorithm that uses nonparametric stability and regularization operators. 

Error terms will be developed, and subsequently used to estimate optimal operators. 

Experimental results using this algorithm are presented, as well as experimental proof 

of increased convergence rate due to the inclusion of a stability operator.

Chapter 5, “Blind Deconvolution” extends the a priori methods of the previous 

chapters to the blind case, where the PSF is not explicitly known. Blind identifica­

tion methods are roughly divided into two groups; methods that determine the PSF 

directly from the degraded image before the image restoration process begins and 

those that jointly determine the PSF and image as the algorithm progresses. Several 

blind procedures will be discussed, including maximum likelihood estimation (MLE)
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and generalized cross validation (GCV). A blind iterative algorithm based on the ma­

terial presented in Chapter 4 will then be presented with corresponding experimental 

results.

Finally, Chapter 6 draws some conclusions, making some suggestions for future 

research.



Chapter 2

Classical Image Restoration 

Approaches

Although methods for restoring images are diverse, a great majority use the same im­

age formation model[3][33]. Initially, this image degradation model will be described, 

outlining the different types of degradation that are common to the image formation 

process. As we will see, only a certain number of these degradation sources can be 

considered dominant, making it possible to simplify the image degradation process 

to that of a discrete, linear, space invariant system. Some common degradation func­

tions, or point spread functions (PSF) will be presented, along with justification for 

their parametric simplifications. This degradation system will be then re-formulated 

in a matrix-vector form where certain matrix structure properties will be exploited 

to transform the problem into the discrete Fourier space where dramatic computa­

tional efficiencies can be attained. Using further assumptions on the structure of the 

matrix-vector formulation, this Fourier space transformation can be shown to be an 

eigenvalue analysis problem, thus shedding light on some important properties of this 

image degradation system. Once the common point spread functions are analysed, 

the ill-posed nature of image restoration by deconvolution is revealed.

12
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2.1 Image Formation and Degradation Model

2.1.1 Continuous Model

A three-dimensional object can be recorded on to a two-dimensional image plane by a 

recording device such as a camera. This image can be subject to many types of degra­

dation in the imaging process including diffraction effects, atmospheric turbulence, 

motion, and out-of-focus blurs. The main effect of all of these degradations is that of 

a bandwidth reduction function. Further, these degradations can change for different 

physical areas of the image, making the degradation space-variant in nature. Finally, 

the sensor response of the recording system may be non-linear, further degrading the 

image.

The case of restoring two-dimensional images from their blurred or degraded coun­

terparts will govern the scope of this work. For the sake of computational efficiency, 

assumptions that simplify the degradation model will be made. Firstly, the incorpora­

tion of nonlinear responses into the degradation model results in an overly complicated 

restoration algorithm that may well be impossible to use in image restoration in gen­

eral [33]. Hence we will restrict analysis of the image formation model to that of a 

linear degradation system characterized by a two-dimensional point spread function 

(PSF). Further to this, since it is overly complex and burdensome from a compu­

tational viewpoint to consider a distinct PSF for each coordinate of an image, we 

will again restrict further discussion to a space invariant or stationary PSF. These 

assumptions lead to the most commonly adopted degradation system, that of linear, 

two-dimensional convolution.

r(z, y)
oo oo

y y h(x — s, y - t)s(s, tjdsdt
— OO —oo
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00 oo
= y y h(s,t)s(a: — s,y — t)dsdt 

—oo —oo

= h(x,y) * s(x,y) (2.1)

where r(x,y) is a received or recorded image, h(x,y) is a point spread function, 

s(x, y) is the underlying or desired two-dimensional image, and * denotes linear two- 

dimensional convolution.

In addition to the deterministic degradations described thus far, images are in­

variably further degraded by additive stochastic observation noise, revising 2.1 to:

r(x, y) = h(x, y) * s(x, y) + n(x, y) (2.2)

where n(x,y) is assumed to be zero-mean white Gaussian noise with a variance

2.1.2 Discrete Model

The discrete form of the equation (2.2) is achieved by sampling the received image 

r(x, y) on a uniform 2-D lattice of dimension M xN. This is done only after appropri­

ately band-limiting r(x, y) using an anti-aliasing filter. At this point it is important 

to note that the original continuous image, under practical situations, cannot be per­

fectly recovered after sampling since the conditions to do so cannot be satisfied in 

practice[33]. These sets of conditions for perfect reconstruction are as follows:

1. The original image s(x, y) and the PSF h(x,y) must both be bandlimited and 

sampled at Nyquist rate. The anti-aliasing filter must also have all pass charac­

teristics for all frequencies less than the maximum bandwidth for both s(x, y) 

and h(x, y).

2. If s(x, y) and h(x, y) are not bandlimited, the anti-aliasing filter must be an 

ideal 2-D low-pass filter with a cut-off frequency equal to Nyquist frequency.
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The first set of conditions, although attainable are rarely met in practice as images 

are seldom bandlimited. The second set of conditions cannot be met in practice due 

to the requirement of an ideal anti-aliasing filter.

Incorporating all of these assumptions, we can now say that the degradation sys­

tem for most imaging processes can be approximately expressed in discrete form as 

two-dimensional linear convolutive blurring with additive white Gaussian noise:

M N
= 2252^ _ kO - l)s(k,l) (2.3)

k=l 1=1

where r(z,j) is a sampled pixel value in an M x N recorded image, is the

sampled unit impulse response of the point-spread function (PSF) for the image 

recording system, s(i,j) is the sampled underlying or desired signal, and n(i,j) is 

additive white Gaussian noise. The assumption here and throughout this work is 

that all images are appropriately band limited before sampling at a sufficient rate to 

prevent aliasing. Since the same ideas expressed here can be used for square as well 

as rectangular images without loss of generality, for simplicity of notation images will 

now be assumed square of dimension N x N. Equation (2.3) is now re-written as:

N N

k=l 1=1
= + (2.4)

where * denotes two-dimensional linear convolution.

2.2 Common Point Spread Functions

Many of the most common blurs or point spread functions can be expressed para­

metrically, with the set of parameters determining the extent of the blur. Although 

continuous in nature, point spread functions will be presented in a discrete format
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here as they will be used in that context. As previously discussed in Section 2.1.2, 

the exact relation between the discrete and continuous models cannot be quantified 

due to aliasing. As established before, the assumption of a sufficiently high sampling 

rate to prevent aliasing error is made here.

Since the underlying physical phenomena in the image degradation process is well 

understood, certain prior assumptions can be used to constrain point spread functions. 

In all PSF model cases, both the underlying and recorded image are positive, real­

valued signals. From the image degradation model (2.4) we see that the PSF must 

be positive and real-valued as well.

>0 V i,j (2.5)

An assumption of energy preservation will also be made, since the degradations in 

the imaging system are passive in nature. Consequently, any discrete PSF will be 

constrained such that:

£Mm) = 1.0 (2.6)
ij€Sh

where Sh is the area of support for h(i, j), which for practical reasons will be consid­

ered finite in extent. Finally, all blur models considered will be space-invariant.

The following sections will outline some of the most frequently encountered PSF 

models for practical situations.

2.2.1 Linear Motion Blur

This type of blur is caused by a relative motion between the imaging device, e.g. 

camera, and the object being recorded. There may many forms of relative motion 

like translation, rotation, change of scale or a combination of these, but by far the 

most important case is that of translation. To simplify this model, a constant velocity
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is assumed in the horizontal direction only.

1
L

0
h(z) ■ < if

otherwise
(2-7)

where the single parameter L is the length of motion in pixels.

2.2.2 Uniform Out-of-Focus Blur

A simplified out-of-focus model can be derived using a geometrical approach[54] that 

results in a uniform intensity distribution in the area of support for the PSF. This 

area of support, which is circular with radius R, is given by:

h(i,j)
1

ttR2

0

ifV^Tj^< R 

otherwise
(2-8)

2.2.3 Atmospheric Turbulence Blur

Atmospheric turbulence blur can be simplified by approximating it with a Gaussian 

function [42].

h(i,j) = Kexp (2-9)

The parameter o’g determines the severity of the blur, and the constant K is chosen 

such that (2.6) is satisfied. The above function as given does not have finite support 

as assumed previously, so the PSF must be truncated appropriately.

2.2.4 Uniform 2-D Blur

This model is similar to (2.8), except that the area of support is not considered 

circular. This type of PSF model can be used when a separable function will facilitate 

deconvolution. Also in this case, it may be empirically verified that the extent of
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degradation is not as severe for similar areas of support.

= <
0 otherwise

(2-W)

We conclude this section by noting that all of the above PSF functions, with the 

exception of the atmospheric blur PSF, are characterized by a regular pattern of zeros 

in the frequency domain. Although the atmospheric blur PSF does not explicitly have 

zeros in the DFT domain, it does have many near or numerically zero values. The 

significance of this fact will be shown in Section 2.4, where the eigensystem of the 

blurring operation will be discussed.

2.3 Block-Toeplitz and Block-Circulant Matrices

It is convenient to express (2.4) in a matrix-vector form. Here the received and 

underlying images, and s(i,j) respectively, are lexicographically ordered into

vectors of size N2 x 1. The point spread function is transformed into a N2 x N2 

blurring matrix H which yields:

r = Hs + n (2.11)

where r, s and n are columnized or lexicographically ordered versions of the received, 

desired, and noise images respectively and H is an N2 x N2 convolutive blurr oper­

ator.

The convolutive blur operator H is block-Toeplitz in structure, and will be square 

if r and s are of the same dimension1. A block-Toeplitz matrix can be replaced by 

a block-circulant one with appropriate zero-padding for hj and s since these matrix
1This will be true even when the images are M x N instead of the assumed N x N
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types are similarly structured[3] [33]. Refer to Appendix A for a more detailed dis­

cussion on the justification for making a block-circulant assumption for the blurring 

matrix H.

2.4 The Eigensystem of the Blurring Matrix

Assuming that H is block-circulant, and that the recorded image r(i, j) is sufficiently 

zero padded such that the results of linear and circular convolution are the same, it 

is well known that H can be diagonalized using the discrete Fourier transform [14]:

H = WDWff (2.12)

where D is a complex valued diagonal matrix with nonzero elements consisting of the 

2-dimensional discrete Fourier transform (DFT) coefficients of the the PSF h(i, j), 

W is a matrix with columns of eigenvectors which are the normalized complex ex­

ponential basis functions for the DFT, and the superscript H denotes the Hermitian 

transpose (See Appendix A for further details on the eigendecomposition of block- 

circulant matrices). The eigenvector matrix W is such that a two-dimensional discrete 

Fourier transform can be achieved by the operation:

JF{x} = NWhx

where JF{.} denotes the discrete Fourier transform operator. Returning to the matrix- 

vector degradation model of (2.11), and noting that W_1 = WH since W is unitary:

r - Hs + n

= WDWHs-n

W"r = DWHs + WHn
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5-{r} = D.F{s} +^{n}

r = JF”1 {DJF{S}} + n (2.13)

where again F{.} denotes the discrete Fourier transform operator. Recall that r and 

s are column vectors that are the received and underlying images in lexicographic 

order. Since D is a diagonal matrix with F {h} across the diagonal, the right hand 

side of the last line of (2.13) is simply the inverse Fourier transform of the N2 scalar 

multiplications of the corresponding DFT coefficeints for and r(i,j). Hence

this N2 x N2 system can be decomposed into N2 independent scalar relations:

7£(m, v) = H(u,v)S(u,v) + Af(u,v) V u,v (2-14)

where R(u, f) H(u, u) and S(u, v) are the 2-D discrete Fourier transform coefficients 

at frequency index (u,v). Hence the image degradation model can be expressed in 

both the spatial and frequency domains using the block-circulant blurring matrix 

assumption.

To conclude this section, we suffice to say that the discrete Fourier transform 

coefficients of the discrete point spread function h(i, j) are eigenvalues of the block- 

Toeplitz blurring matrix H due to the block-circulant assumption. As a result, the 

DFT spectrum of h(i, j) can be an invaluable analysis tool for the image restoration 

problem.

2.5 Least Squares Approach

The system (2.11) can be directly solved by finding an estimate desired signal s that 

satisfies a least squares fit to the data by minimizing the noise norm, given that H is 
known and follows one of the models of Section 2.2.

s = argrnin ||n||2 = argrnin ||r - Hs||2 (2-15)
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This leads to the generalized inverse filter:

(HtH)s = Hrr 

s = (HTH)"lHTr (2.16)

Using the same assumptions and approach outlined in Section 2.4, the solution 

can be transformed to the frequency domain [3]. This diagonalization approach can 

be reformulated as:

Hrr

WDHWHr

DHWHr

DH;F{r}

R*(u, v)R(u, v) V u,v
R* (u, v)R(u, v)
—---- 7^— V u,v (2-17)

HtHs

WDhWhWDWhs 

DhDWhs 

DhD^{§}

H*(u, u)7/(u, v)<S(u, v)

<S(u, u)
no­

where again S,R and R are the 2-D discrete Fourier transforms of s(i, j), r(i,j) and

respectively, and * denotes complex conjugation. The main issues to overcome 

in this solution, which are evident on inspection of the last line of (2.17), and in view 

of the fact |7Z(«, u)| is small in some regions for the PSF’s under consideration, are:

• high frequency additive noise amplification, particularly if the PSF is inherently 

low pass with small or zero DFT coefficients in the higher frequency bands.

• retrieval of lost information. If the columnspace of the convolutive operator H 
does not span the entire signal space, it represents a many-to-one transforma­

tion.
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The noise amplification problem cited in the first item above is especially promi­

nent due to the energy preservation constraint on the PSF given in (2.6), as:

7/(u, v) > 1.0 V u, v

since

Rv)l2

|7/(u, f)| < 1.0 V u, v

(2.18)

(2.19)

In fact, the equality relations above are only true for one coefficient of H, specifically 

at the frequency indices 7/(0,0).

2.6 Regularized Image Restoration

Regularization theory was introduced as a solution to discrete ill-posed problems. 

Strictly speaking though, the term “ill-posed” describes continuous systems with an 

infinite dimensional space[18]. Despite this, certain finite dimensional discrete systems 

have properties similar to that of continuous ill-posed problems like Fredholm integral 

equations of the first kind[37]. A problem is considered ill-posed if an arbitrarily small 

perturbation in a data set could cause an arbitrarily large perturbation in the solution.

A class of discrete, ill-posed problems can be characterized by a linear system of 

equations:

Ax = b, A e $ftnxn (2.20)

where only the vector b contains additive observation noise. This is usually cast as a 

possibly over-determined linear least squares problem to minimise the residual norm:

min || Ax - bg, A G 5Rrnxn, m>n (2.21)

The above (2.20) and (2.21) are said to be discrete ill posed problems if the 

following are satisfied[18]:

1. the singular values of A decay gradually to zero



CHAPTER 2. CLASSICAL IMAGE RESTORATION 23

2. the ratio between the smallest and largest non-zero singular values is large

The difficulty in solving problems like 2.20 and 2.21 under these conditions is that 

the system of equations is unstable due to the small singular values. It is therefore 

necessary to incorporate prior information to stabilize the problem, thus determining 

a meaningful solution.

In comparing (2.11) to (2.20) and in view of the low-pass characteristic of the 

PSF’s we deal with, we see that image restoration is an ill-posed problem.

2.6.1 Tikhonov Regularization

The best known form of regularization is Tikhonov regularization. Essentially, prior 

information is incorporated in the problem by the use of a side constraint or stabilizing 

functional. This constraint embodies some known feature of the solution, which in the 

case of image restoration is usually smoothness. Other common constraints include 

maximum power and maximum entropy. The form of constraint usually chosen is one 

that facilitates the mathematical analysis of the problem, that is:

l|Cs||= (2.22)

where C is a real-valued block-circulant matrix of size N2 x N2 that sets a semi-norm 

on the solution[15]. The resultant objective function is:

min{||Hs-r||2 + A||Cs||2} (2.23)

where A, referred to as the regularization parameter, is a positive scalar constant that 

controls the size or norm of the solution vector s. The matrix C, referred to as the 

regularization operator on the other hand determines the nature of the side constraint. 

In example, if C is a high pass operator, the higher frequency bands of the solution 

vector will be suppressed, thus enforcing a smoothness constraint.
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The regularization parameter A controls the weight given to the minimization of 

the side constraint relative to the minimization of the residual norm, and therefore 

controls the trade-off between the first and second terms of 2.23. With larger values 

of A, which is the case of more regularization, the restored image exhibits ringing 

effects. On the other hand, with smaller values of A, the effect of noise amplification 

is more pronounced. There are various methods to estimate the value for A, many of 

which are analysed in [10].

The regularization operator C is often a first or second derivative operator. In­

deed, a common choice for this operator is the high pass two-dimensional Laplacian 

operator [3] [33]. Another choice for regularization operator is the identity matrix, in 

which case the Tikhonov problem is said to be in standard form[15]. More examples 

for the regularization operator C are given in [25].

The resulting solution takes the form:

(HTH + ACtC) s = HTr
s = (HtH + ACtC) _1 HTr (2.24)

which, in the frequency domain due to block-circulant assumptions made on H and 

C can be written as:

'H*(u,v)R(u,v') 
|?/(m, u)|2 + A |C(«, v)

«S(u, v) = V u, v (2.25)

Constrained Least Squares Approaches

Identical results to (2.24) can be obtained in various ways. In example, a quadratic 

constraint can be applied to the least-squares problem by setting the problem as:

min||Hs —rHj subject to ||Cs||2 < E2 (2.26)

then using the Lagrange multiplier formulation:
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£(s, A) = ||Hs - r111 + A (11Cs|\22 - E2) (2.27)

where A is the Lagrangian multiplier and E is a scalar constant that sets a specific 

limit to the norm ||Cs|(2-

Alternative approaches to the CLS problem are[24]:

min||Hs —r||2 subject to ||Cs||2 = E2 (2.28)

where the equality of side constraint of (2.26) is strictly enforced:

min||Cs||2 subject to ||Hs — ij^ = e2 (2.29)

where the roles of each side of (2.28) are reversed.

As previously mentioned, the resulting solution to the above (2.26), (2.28) and

(2.29) are the same as (2.24). Differences come in the exact value chosen for the 

regularization parameter A.

Yet another approach to constrained least squares is set as[6]:

mjn ||Hs — rKg subject to ||Cs — = e2 (2.30)

Again, the method of undetermined Lagrange multipliers can be used to obtain the 

solution:

s= (HTH + ACTC) 1(H + AC)Tr. (2.31)

Although (2.31) differs from (2.24), it is mentioned here due to its similarity to the 

proposed solution presented in Chapter 4, in particular equation (4.2).

2.6.2 Miller’s Method

In the Miller regularization approach[44], the restoration problem is set in a similar 

way to those in Section 2.6.1. Here, a vector is sought that satisfies two constraints
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simultaneously, which are:

l|Cs||2<£2

and

||Hs-r||2<e2

Miller’s approach combines the two constraints into one quadrature formula that 

results in:

M(a, s) = ||Hs - r||2 + A 11Cs||2 < 2e2 (2.32)

where the parameter A is set to (j;) . Setting the gradient of (2.32) to zero and 

solving for s again results in (2.24).

2.7 Synopsis of Classical Restoration Approaches

The above approaches lead to the very same result of (2.24), with subtle differences 

in each approach attributed to the values assigned to the regularization parameter A, 

and the regularization operator C. Given this similarity, many researchers refer to 

all these related methods as “Tikhonov-Miller” regularization.

To adequately analyse the subtle differences between these regularization meth­

ods, as well as compare them to the generalized inverse (pseudo-inverse) filter, a set 

theoretic approach to analysis has been taken in [24] and [25]. In these articles, regu­

larized solutions must reside in the intersection of two ellipsoids representing convex 

sets, namely:

Qs||r = {s : ||r - Hs||2 < e2} (2.33)

where e is an estimate of the noise norm, and

<2. = {s : ||Cs||2 < £2} (2.34)
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Figure 2.1: Intersection of two ellipsoids (after Katsaggelos et aT)

where E is a prescribed constant chosen to ensure that the two ellipsoids (sets) in­

tersect. The pseudo-inverse solution, which is at the center of ellipsoid Qs||r, is a 

special case for regularized image restoration with A set to zero, that is to say with no 

regularization. Figure 2.1 shows these two ellipsoids and the possible solutions where 

Sm indicates the Miller solution to (2.32), Se the CLS solution to (2.28) and se the 

dual CLS solution to (2.29). The pseudo-inverse solution is designated as s+.



Chapter 3

Iterative Image Restoration

In the previous chapter, several classical direct algebraic methods were introduced, 

outlining some of the difficulties in solving the image restoration problem. The ill- 

conditioned nature of this operation was shown, as well as the many-to-one property 

of some of the most common point spread functions. Here we will introduce some 

important iterative versions of these methods. Iterative methods are popular as they 

use a series expansion to evaluate the blurring matrix inverse, thus avoiding direct 

matrix inversion. Most importantly though, they allow for the application of con­

straints at each iteration that, when properly applied, can allow convergence to a 

unique solution.

A simple iterative method that converges linearly to the direct inverse filter will be 

introduced, as it offers a simplified analysis for the convergence properties of many of 

the other methods. This method, known by various names, is limited in its use due to 

constraints on the PSF h(i, j) that must be applied to ensure convergence. Another 

method referred to as “re-blurring” will be shown to be more universal in nature, 

with less restrictions on the PSF model. This re-blurring method will be shown to 

be equivalent to the generalized inverse or pseudo-inverse solution (2.16) presented 

in Section 2.5. The inclusion of regularization is then discussed, with the iterative

28
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Tikhonov-Miller method presented. These methods offer a linear convergence rate, 

but variations with higher order convergence rates are possible. Finally, the use of 

prior knowledge about the target solution by applying nonlinear constraints will be 

discussed.

3.1 Linear Convergence Iterative Technique

This method is known as the Van Clittert[59], Landweber[37] or Bially[7] iteration. 

Starting with the degradation model (2.11), and ignoring the additive stochastic noise, 

the blurring process can be rewritten as:

/3Hs = /?r (3.1)

where /3 is either a constant or linear operator[46][51]. If we let the operator matrix 

T — (I — /3H), then we can evaluate (I — T)_1 using the Neuman series expansion[46]:

oo
(I- T)_1 = ^2Tn (3.2)

n=0
therefore

OO

(I - (I - 0H))-‘ = £ (I - /3H)"
71=0

OO

(/3H)_1 = £ (I - W (3.3)
71=0

which is true if H represents a continuous function and ||I — /3H|| < 1. If (3.3) is 

applied to both sides of (3.1), we then have a new solution to the inverse problem:
OO

s = y (I - /SH)" ffr (3.4)
71=0

which is the direct inverse solution when is appropriately chosen. If the fcth ap­

proximation of s is defined as:

s* = L(I-^H)^r
71=0

(3-5)
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then the next iteration is:

k
sfe+1 = £(I-/?H)n/3r 

71=0
= [i + (I - /?H) + (I - /?H)2 + ... + (I - £H)*] pr 

= Ipr + (I - pH) [i + (I - pH) + (I - /3H)2 + ... + (I - pH)k~x] pv 

= Pr+(I-pH)sk

sk+i = sfc + p (r - Hsfc) (3.6)

This standard iterative solution can also be derived by making (3.1) a fixed point 

equation and using the method of successive approximations[33][51].

For this iteration to converge to H_1r the real part of the eigenvalues of H must 

be positive [8] [33] [51]. However, convergence is not preferable given the characteristics 

of most practical blurs and would result in an unusable image estimate. Interestingly 

enough, it has been shown that truncating the iterations at a certain value of k is in 

itself a form of regularization [33]. Unfortunately, this iteration has limited use due to 

the positivity constraint on the real part of the complex eigenvalues, as this excludes 

the linear motion and uniform out-of-focus blurs introduced in Section 2.2.

3.2 Re-blurring Methods

One way to ensure that the real parts of all eigenvalues of a blurring function are 

positive is to pre-filter it with an abcissa reversed version of itself[21][29]. To see this, 

we realize the DFT coefficients are the eigenvalues of the blurring matrix H; hence:

h(i, j) * h(-i, -j) & HU* = |?/|2 (3.7)

so the eigenvalues are indeed positive. We then convolve both the PSF and the 

received image by the abcissa-reversed PSF to ensure convergence. This is the same
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as replacing the PSF with its autocorrelation. The relation of (3.1) is then revised 

to:

/?HtHs = /3HTr (3.8)

which, when /3 = 1 is the least squares solution introduced in Section 2.5. The 

corresponding successive approximation iteration for this, or a re-blurred equivalent 

to (3.6) is:
sfc+1 = sk + /3 (HTr - HTHsk) (3.9)

For (3.9) to converge, it is required that[3][8][24][33]:

1 - ft |'H(m,v)|2| < 1 V u, v (3.10)

where H(u, v) are equivalently the the eigenvalues and DFT coefficients of the blurring 

matrix H. From this, a range on can also be set:

0 < /3 < (3-11)
|%max|2

where ?Zmax is the maximum norm DFT coefficient H(u, u). Imposing the energy 

preservation constraint of (2.6) and the positivity constraint of (2.5) would then make 

|%max| = 1, therefore:

0 </? < 2 (3.12)

3.3 Iterative Tikhonov-Miller Method

To derive the iterative Tikhonov-Miller algorithm, the method of steepest descent 

can be used[33]. This is accomplished by minimizing (2.23) which we will designate 

as $ (s).

$(s) = ||Hs-r||22 + A||Cs||2

= stHtHs — 2sTHTr + rTr -I- AsTCTCs (3.13)
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hence:

Vs$(s) = 2 [HTHs - HTr + ACtCs]

= 2 [(HTH + ACTC) s - HTrj (3.14)

We then use the steepest descent iteration to formulate the fcth estimate, where 

shown below is the “downhill” direction vector and /3 the positive scaling factor.

Sk+x = sk + /3dk
= sk-h?v.$(s)

Sfc
= sk-/3 ((htH + ACtC) sk - HTr)

= sk +13 (HTr - sk (HtH + ACTC)) (3.15)

Recalling that the DFT coefficients of a block-circulant matrix are its eigenvalues, 

the iteration can be shown to converge when[33]:

|l -/5 (|7-Z(u, v)|2 + A |C(u,u)|2)| < 1 V u, v (3.16)

which can be rearranged to set bounds on /5:

o < P < 7-^ (3.17)
I Pmax I

where \pmax I is the maximum eigenvalue for the term HTH + ACTC.

3.4 Higher Order Convergence Methods

The standard iteration (3.6) along with the logical derivatives (3.9) and (3.15) exhibit 

linear or first-order convergence rates. The term-by-term implementation of the geo­

metric series for (/?H)_1 given in (3.3) can be grouped, for instance into two groups 

of even and odd power terms:
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E
n=0,2,4,... n=l,3,5,...
00 oo

n=0 n=0
oo

(/ + T) 52 T2n
n=0

rpn | gpn

(3.18)

Since the right hand side of (3.18) is again a geometric series, but this time in T2n, 

it can be factored as in (3.18) again and again:

OO

C0H)-1 = (/ + T) (/ + T2) £ Tin
n=0

= (/ + T)(/ + T2) (l + T4)...
OO

= n(/+T2n) (3-iq)

n=0

In a way similar to the linear convergence case, an iterative algorithm can be derived 

for this expansion by using the first k terms of the expansion (3.19) and defining an 

estimate image at iteration k as:

Sfc nh+orfc-i
/Jr (3.20)

_n=0 .

The estimate s^+i, when the iteration is initialized to So = fir, is then related to s*, 

by the expression:

Sfc+1 — Sfc + s/; (/ — /?H)2 (3-21)

This second order convergence iteration can be extended to the pth order case 

as in [8][24][26][33][46][51]. The higher order or multi-step algorithms yield the same
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results as their linear convergence counterparts, however the application of non-linear 

constraints between iterations (see Section 3.5) is not possible and therefore an open 

research topic [24] [26].

3.5 Using Nonlinear Constraints with an Iterative 

Restoration Algorithm

We conclude the topic of successive approximation iteration methods with a discussion 

on the application of nonlinear constraints. This is a popular and straightforward way 

to incorporate prior knowledge into an image restoration solution. There are two ma­

jor ways that constraints are applied; projections on to convex sets (POCS) [24][53] [65] 

and the use of nonlinear contstraint operators in fixed point iteration methods.

A nonlinear constraint operator C : can be applied to an arbitrary signal x such 

that the relation:

x = Cx (3.22)

will be true if and only if the signal x already satisfies the constraints embodied in 

C. This is a convenient way to express adherence to prior knowledge, and C has 

the property that if any signal x already satisfies the proposed constraints, it will be 

unchanged by C as stated in (3.22). Examples of constraints that have this property 

are positivity, band limitation, and a specified area of support.

An approach to obtaining an iteration equation that makes use of a nonlinear 

constraint is to modify (3.6) introduced in Section 3.1. Here, we can replace the 

target signal s*, with the constrained signal Cs*,.

sfc+i = Csfc + /? (r - HCsfc) 

= £r + (I - /?H) Csk



CHAPTER 3. ITERATIVE IMAGE RESTORATION 35

= /3r + Gsk (3.23)

where G = (I — (TPPjC. This follows the standard fixed-point iteration equations that 

follow the form:

xfc+1 = Fxk (3.24)

where the fixed point operator F is defined by:

Fsk = fir + (I - £H) Csk (3.25)

For convergence to a fixed point, the operator F must be a contraction mapping, 

and must satisfy the following:

IlFX-FsJI <r||Si-sJ|, 0<r<l (3.26)

If the operator F is indeed a contraction mapping in a given sub-space, then there is 

a unique fixed point in that sub-space such that x = Fx and an iterative estimation 

scheme based on successive approximations will converge to that point for any starting 

signal choice in that subspace[51]. The iteration control parameter /? can be chosen 

such that (3.26) holds.

Application of these concepts to the iterative Tikhonov Miller iteration (3.15) 

results in:

sfc+1 = Csk+fi (HTr - (HTH + ACtC) Csk) (3.27)

3.6 Projections on to Convex Sets

The method of alternating projections on to convex sets (POCS) is an alternative 

approach to applying prior knowledge into the restoration process. Here, desirable 

properties of a reconstructed signal are defined by two or more convex signal sets. If
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the desired deconvolution solution can be adequately defined by several sets of signals, 

and given that those signal sets are convex with a nonempty intersection, alternately 

projecting intermediate solutions onto these convex sets will result in convergence 

to a final solution. Some convex signal sets frequently encountered in practice are 

band limited signals, bounded signals, signals with a given area, and signals that are 

constant over a given interval [21][53][65].

Geometrically, a set A is said to be convex if the line connecting any two vectors 

ui,U2 & A are completely subsumed in A. If any portion of that line lies outside of 

A, then the set is not convex. Hence a projection onto a convex set A of any vector 

v A will be the unique element in A that is closest to v.

For example, these ideas can be applied to inverse filtering by considering the two 

convex sets
Qs|r = {s|||r - Hs||2 < e2}

and

Qa = {s|||Cs||2 < E2}

where e2 is the measurement noise variance and E2 is an energy limit set on the high 

pass version of the estimated signal The respective projections, RiS and P2S

are defined by [24]:

Pis = s + Ai(I + AiHTH)_1HT(r - Hs) (3.28)

R2s = [i - A2(I + A2CTC)-1CTC] s (3.29)

where Ai and A2 are iteration control parameters.

There are three possible outcomes in the application of POCS, depending on the 

way that the convex sets intersect[21].

1. Given two or more convex sets with a nonempty intersection, alternately pro­

jecting onto the sets will converge to a point included in that intersection. The
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actual point of convergence will depend on the initialization point on the POCS 

process.

2. If any two convex sets do not intersect, the result is a limit cycle, or a “mean 

square” solution to the problem. The solutions will be the two points in each 

set that are the closest in the mean square sense to each other.

3. When any three or more convex sets do not intersect, the POCS process will 

break down. The result is a greedy limit cycle that is dependant on the order 

of projections. The resulting projections generally do not display any desirable 

signal properties.

The restoration of degraded images can in many cases be posed as a POCS prob­

lem. POCS is particularly useful for ill-posed deconvolution problems, where regular­

ization is imposed by way of the possibly nonlinear convex constraints on the solution 

set.

3.7 Synopsis of Iterative Restoration Techniques

Iterative deconvolution techniques, although more time consuming than direct meth­

ods, are popular due to their flexibility. Not only can direct inversion be avoided, but 

most importantly a priori constraints can be applied at each step to ensure a solu­

tion that displays desirable image qualities. The application of constraints in effect 

removes the ambiguity imposed by the ill-posed nature of the problem.

There are two major methods of iterative deconvolution; the method of successive 

approximations and POCS. The method of successive approximations has a linear 

convergence rate, but can be formulated to display pth order convergence character­

istics. This gain in efficiency however precludes the possibility of applying constraints 

between iterations, which will result in an undesirable image estimate. POCS is also
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a popular and efficient way to regularize the image solution. If the convex sets are 

chosen such that their intersection is nonempty, the projections will converge to a 

fixed point that is dependent on the algorithm initialization.



Chapter 4

A Hybrid Algorithm for Iterative 

Deconvolution

The two preceding chapters dealt with some classical approaches to image restoration. 

Although there are many other methods of image restoration, these few approaches 

were introduced as they are closely related to the method proposed in this work. The 

successive approximation approach to iteratively solving the deconvolution inverse fil­

ter has been analysed in numerous publications^] [22] [23] [24] [25] [28] [33] [34] [51]. These 

methods are based on minimizing the asymptotic error as the number of iterations 

becomes infinitely large. Also, the regularization parameter A and operator C are 

assumed to be constant in k. These facts lead to some important questions, namely:

1. If a method based on minimizing the transient error at each iteration were 

developed, how would the asymptotic error be affected?

2. Can this approach of analysing the transient error benefit iteration convergence 

properties?

In this chapter, an answer to these questions is provided with a new iterative 

algorithm based on minimizing the residual error norm for a two-image system. The

39
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Figure 4.1: Two-Image Degradation System

idea of using two images is a natural extension of existing work based on the blind 

identification of one-dimensional signals[57]. This two image approach, depicted in 

Figure 4.1, will be used as a basis for estimating a current image at a given iteration 

using a filtered version of the previous estimate as the second degraded image. The 

two-signal or two-image approach was originally adopted to facilitate the design of an 

inverse filter, as the corresponding two-PSF blurring matrix will at the very least have 

a null space dimension as small as the single blurring matrix H, and will in most cases 

have a null space of lesser dimension. In the case of non-singular matrices as well, it 

can be said that the two-PSF blurring matrix will in most cases be better conditioned 

than the single PSF situation. Hence the notion of choosing a second blur operator 

that improves conditioning will be discussed. In fact, it will be argued that since the 

“second image” in this two image system is a previous estimate in an iterative pro­

cess, this second blurring matrix should not have large eigenvalues that coincide with 

the small or zero eigenvalues of the actual (or estimated in the case of blind deconvo­

lution) blurring matrix. The result is a hybrid adaptive iterative algorithm that uses 

a filtered version of a previous image estimate for stability purposes, as well as the 

incorporation of a non-parametric, frequency adaptive regularization operator. An
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error analysis, based on the current PSF estimate and assuming a blind iterative pro­

cedure is developed. Both the regularization parameter and secondary “pseudo-PSF” 

are estimated at each iteration based on the minimization of the current transient 

error estimate. The beneficial effect of the additional stability operator will then be 

shown experimentally to have significantly improved convergence properties relative 

to previous methods.

4.1 Direct Multi-Image Deconvolution

One approach is to assume that two versions1 of the received signal are available, 

ri(i,j) and r2(«,j). Then the degradation process of equation (2.11) can be reformu­

lated in matrix-vector form as:

ri _
Hx '

s +
ni

H2 _ . n2 .

Using the same approach as before, we can again seek to minimize the objective 

function corresponding to (2.15) resulting in:

sfe = (H*Hx + Hj H2)_1 (H?n + Hjr2) (4.2)

As before, the same diagonalization approach can be taken if both Hx and H2 are 

assumed to be block-circulant. Hence the frequency domain formulation* 2:

S(u,V) — 2 2 (4.3)
|Hi(u,u)| + !?£>(«, v)|

This solution is well-posed if Hi and H2 do not share common zeros, which will be 

true if the columnspace of the matrix
JTwo images of the same source corresponding to distinct PSF’s
2Note that for following discussions, the DFT coefficient indices (u,v) will be omitted. Any 

scripted variables (e.g. H or TV) will be considered to be complex valued DFT coefficients.
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Figure 4.2: Proposed Iterative Process

H2

is full rank. The difficulty in undertaking this approach is that two versions of the 

image must be available. Since an auxiliary image is often not available in practical 

applications, we propose a novel iterative approach. The image r2 is replaced with a 

filtered version of the image estimate Sfc_i at the previous iteration. Specifically, at 

iteration k we set = HsSfc_i as in Figure 4.2. The “pseudo”-PSF Hs is chosen to 

be a stability operator in a manner yet to be described. The DFT domain expression 

for the /cth estimate of the image is then:

Sk = (4-4)|7Z|2 + |7/J2
Obviously, no new information is available with this approach. However, we show 

later that there are significant advantages with respect to speed of convergence by 

including a “selective memory” of past image estimates.
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4.1.1 Error Analysis

To gain some insights into the properties of this preliminary algorithm, expressions 

for the error terms in equation (4.4) can be developed. These expressions will be 

presented in the frequency domain, as the approximate relationship between the DFT 

coefficients of H and its eigenvalues due to the block-circulant assumption lead to 

some intuitive conclusions. The estimates for S and H at the kth iteration can be 

defined as:

«Sfc - 5 + £$k

H-k = H + £-fik

We note here that although the PSF H is considered to be known, the PSF estimate 

Hk is defined firstly to identify the effect of PSF error on the overall error, and 

secondly to facilitate the extension of this analysis to the blind case in Chapter 5. 

Here we also look at the stability operator T-Ls. renaming the expression 3

\Hs\2 = H*Hs = 1 (4.5)

An error expression can then be obtained by making the above substitutions, then 

subtracting S from (4.4).

H*kAf -H*k£^S + yk£^ ,= —------rn?—(4-6)
|^fc| +

where fif are the DFT coefficients of the additive observation noise n. The total 

error for each DFT coefficient in the estimated image can therefore be broken down 

into three components; error due to additive observation noise, error due to the mis­

estimation of the blur operator hfc(i,j), and finally the error due to the mis-estimation
3 Although not in scripted text or complex valued, the operator 7 as defined in (4.5) is still a 

function of frequency, i.e. y(u, v)
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in the unconstrained estimate Noting that can be expressed recur­

sively with respect to the other two types of error in previous iterations, equation 

(4.6) can thus be re-written (See Appendix B for a more detailed development):

(4-7)

where

'll* K K <ynJ
j=i

Hl +

Z„

i=l

<7/*
Kj-l

Zi-1

(4-8)

Hk
k

i=l
nJ
j=i Zi-1

+ vA*'11
(4-9)

I ~ I2and Zi = VHA +7j. From (4.7), (4.8) and (4.9) we can see that the three original error 
propagation terms are controlled by the recursive terms and E^P. It will soon 

be shown that the use of 7 results in a minimized error term that only propagates 

the more useful information from past estimates without consequence to the overall 

or asymptotic error. It is also important to note that the extent or “memory” factor 

involved with this recursive error propagation is controlled by the stability operator 

7, which can be chosen to select regions of Sk-t where the error is low.

Hence, even though the use of a second image to develop an iterative procedure 

is ad hoc in nature, the introduction of the parameter 7 allows extra flexibility. Also, 

the corresponding error analysis reveals considerable insight. Given this, there are 

two issues that need to be addressed.
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1. Does the introduction of 7 in (4.4) and (4.6) have any regularization influence?

2. How can 7 be used to speed convergence?

Point two is addressed later in this chapter. We now address regularization.

With respect to regularization, close inspection of (4.4) reveals a conflict. On the

one hand, to reduce error due to noise amplification, the value of 7 must be larger 

when YHk] is small. However, these larger values for 7 will increase the last term in 

(4.6) for those coefficients. Further, from (4.8) these very regions where is small 
are the same regions where the error magnitude fcsj is large. Therefore, we see from 

this intuitive argument that the use of 7 in (4.4) cannot perform regularization.

An approach to verify this intuitive analysis is to assume that 7 will be held 

constant with k. The image estimate (4.4) can then be expanded:

Sk l^|2 + 7

H*K + y
H*R + 7 M2 + 7

+ 7

(4-10)

lim <Sk
fc->oo

(4.11)l<
which we can see is undefined for any zero eigenvalues of H. So we can see that 

the stability operator 7 does not regularize the inverse filtering solution in this case.
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In fact, we can see that at the limit, this iterative estimation procedure converges 

to the generalized least squares or pseudo-inverse solution. Therefore, some form of 

regularization is required apart from the operator 7.

4.2 Hybrid Formulation

Pursuant to this discussion, we extend the previous treatment to reduce the effect 

of noise propagation error by introducing a regularization operator to augment the 

stability operator 7. Starting again with the two-image matrix-vector form of (4.1), 

we seek to minimize the functional:

2

+ A Cs (4.12)
2 

2

where C and A are the regularization operator and parameter respectively. The 

minimization of the above results in the following expression:

Hi

H2

(H^Hx + H£H2 + ACTC) s = H^n + HJr2 (4.13)

As before, a block-circulant assumption can be made for the two block-Toeplitz blur 

operators Hi and H2 as well as the regularization operator C. Hence this expression 

can be re-written in the frequency domain.

HrRi+H*2R2 
|fti|2 + |ft2|2 + A |C|2

Most existing approaches to this problem treat A and C as separate entities, often 

choosing C as a known, smooth form and fixing A based on some estimated prior 

knowledge. Here we propose to combine these two into one N2 x N2 real valued array
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p such that4:
p = \C*C = A |C|2 (4.15)

Incorporating this into the error analysis and defining = HsSfc_i and 7 by (4.5) 

in a manner discussed previously, (4.4) is now changed to:

+ 'IkSk-X
(4.16)

+ 7fc + Pk

where as before the subscript refers to an estimate at iteration k. Now the error 

formulation of (4.7) has one additional term to account for regularization error.

- 5S<‘)

where the regularization error propagation term is

(4.17)

=

(4.18)

and
I ~ |2

%i = \Hi\ + 7i + pi

Note also that Zi is changed accordingly for (4.8) and (4.9) as well.

4.2.1 Alternate Error Formulation

The error formulation (4.17) can also be re-written in terms of Sk and a noise estimate 

Jv as
4 As with 7, the operator p is a function of frequency i.e. p(u, v)
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ft + 5fc^) Eg -
-i (qj e \ pM yW r>M 
1 - [tik - t"Hk) ~LH ~ LP

(4.19)

where <Sk is as per (4.16), and

Af = R — HkSk

The obvious benefit of (4.19) is that the error, when the PSF is assumed to be 

known a priori, is now completely defined in terms of known quantities. Experimental 

evidence shows that the use of (4.19) indeed does yield better results despite the 

instability introduced by the denominator term.

4.2.2 Optimal Stability and Regularization Operators

To choose and pk, we minimize the squared norm of the estimation error, which by 

Parseval’s theorem is the same a minimizing £gk£sk or . Note that here we min­

imize the error for each frequency domain coefficient separately as opposed to other 

methods that choose a static regularization operator and minimize the expectation of 

the entire error with respect to a regularization parameter[10]. The partial derivative 

of £5 I with respect to is

(4.20)

where

and

(4.21)

(4.22)
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Setting this partial derivative to zero and solving for 7^ yields:

7fc =
AB* + A*B 

£sk^'+£*sk_A
(4.23)

Repeating the same process with respect to pk yields:

9 Kl x(y-PksY + x*(y-pks)
dpk + 7fe + Pk^

(4.24)

where

X = S(J%| +7*-^J+7.^_1+^Af

(4-25)

and

y = - Wt£*S

I I2Hence the value for pk that minimizes £§ I is:

xy* + x*y

(4-26)

Pk = SX* + S*X (4.27)

Note that (4.23) and (4.27) are nonlinear equations in two unknowns that need 

to be jointly solved. Both of these expressions yield values that are real due to the 

conjugate structure of (4.23) and (4.27). This does not however guarantee that values 

for 7/. and pk are positive. Hence, at each iteration yk and pk are constrained such 

that any negative values as calculated per (4.23) or (4.27) are set to zero.

7fc<
0

7k > 0 

7fe < 0
(4.28)

Pk
Pk<

0

Pk>0

Pk<0
(4.29)

7*
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In summary, we now have an iterative image restoration method that uses both 

a regularization operator to reduce noise amplification, and a stability operator that 

allows an additional degree of freedom. Further to this, we note that since this 

iteration is computed solely using scalar operations on complex DFT coefficient values, 

the algorithm complexity is O(N2) per iteration where N2 is the number of pixels in 

the image. We now experimentally show the benefit gained by the introduction of 7 

in (4.16), by comparing convergence rates with and without its use.

4.3 Stability Operator Effect on Convergence

In this chapter a frequency-adaptive, iterative algorithm for image restoration using 

an inverse filter or deconvolution technique is described. The development of this it­

erative scheme is based on a two-image analysis approach, where the second degraded 

image is replaced by a filtered version of a previous image estimate. This filter, the 

basis for the stability operator 7, should be chosen such that DFT coefficient values 

with a high confidence level of correctness are reinforced, thus facilitating the process.

To provide some anecdotal proof for this notion, experiments were run on the 

gray-tone image referred to as “Lena”. Figure 4.3 compares the convergence rate 

for two runs of the unconstrained algorithm (4.16), one with 7 set to zeros, and the 

other with 7 calculated as per equation (4.27). Figure 4.5 shows similar results for 

the gray-tone “cameraman” image. Figures 4.4 and 4.6 show pictorial results, with 

almost identical solutions for the stabilized and non-stabilized cases. The stabilized 

case though reached an almost maximum improved signal-to-noise ratio (ISNR) level 

within three to four iterations compared to the non-stabilized case which took over 

one-hundred iterations.

The images were degraded with a nine pixel horizontal motion blur as per (2.7) 

and then further degraded by additive white Gaussian noise to achieve the blurred
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Figure 4.3: Effect of Stability Operator - ISNR (Lena) BSNR = 40 dB

T

signal to noise ratio (BSNR) indicated. The PSF was assumed to be known, and 

the noise variance was estimated using the generalized cross validation method to be 

described in Section 5.3.3. The normalized change in energy, used as a measure of 

convergence, is defined as:

||Sk+l - SkH2

IlSkll2
Also the ISNR and BSNR, both in dB, are respectively defined as:

(4.30)

ISNR = 10 log10

var (Hs)^ 
<72 )SS7VR = 101og10l ,1 t-Z

n

For both cases, the initial “guess” for the image <Sq was initialized to:
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Original Lena

50 100 150 200 250

Blurred Lena, BSNR is 40

50 100 150 200 250
Noise variance is 0.1823 Error variance is 325.6

Solution Using gamma Solution Without gamma

Figure 4.4: Effect of Stability Operator -

> ».

Pictoral Results (Lena) BSNR = 40 dB
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c _
“ I1Z|2 i-----|%| + pQ

where
Po = 0.5 (l - |7/|2)

then po was set to zeros. Before applying the image estimator (4.16), estimates for 7 

and p were calculated as follows:

• For the stabilized case, in order to reduce computational requirements, we use 

the following simplified procedure to determine 7 and p rather than a multiple 

nonlinear equation solver as suggested earlier.

- 7fc was first calculated using (4.23) with pk-i.

— then pk was calculted using (4.27) with 7^
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Original Cameraman Blurred Cameraman, BSNR is 40
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Figure 4.6: Effect of Stability Operator - Pictoral Results (Cameraman) BSNR = 40 
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• For the unstabilized case, p was calculated using (4.27) with 7 set to zeros.

4.4 The Stability Operator: Effect on Asymptotic 

Error

In this section we evaluate the effect of 7 on the asymptotic image error (k -> 00). 

Asymptotically, p and 7 are constant in k and hence the error expansion of

(B.3) is:

z h\z) -s (4.31)

where Z = |7/|2 + 7 + p. If we assume the term 

•^ < 1 V u, v

then - \ /c-hl" “1 -
u* Hi0 H* 1 - (i)
z :i) J — 0

Z Mi) JJ (4.32)

taking the limit of (4.32) yields:

lim £c = Affc-»OO Sk

H*

WAT - pS 
l^|2 + P

(4.33)

which is independent of 7. Further, this limiting error is the same as that for any 

direct regularized least squares method when p = A |C|2. Hence the introduction of 

7 does not affect the asymptotic error. However, by selecting 7 so that the transient 

error is minimized, significant improvements in convergence are obtained.
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4.5 A Priori Deconvolution Results

Figures 4.7 to 4.14 show further pictorial results of the a priori (nonblind) algorithm 

presented in this chapter. Figures 4.7 through 4.11 show experimental results using 

the iteration outlined by (4.16) on the “Lena” image. Images for 4.7 to 4.9 were 

degraded using a 9-pixel horizontal blur and figures 4.10 to 4.11 were degraded by a 

7-by-7 uniform blur. Both scenarios include additive noise at various BSNR levels.

Figures 4.12 and 4.14 show experimental results using the iteration outlined by 

(4.16) on the “Cameraman” image. Images were degraded using a 9-pixel horizontal 

blur and additive noise.

It is seen from the figures that the improvement as measured by ISNR offered 

by the proposed de-blurring process is significant in comparison to the iterative TM 

algorithm which is used as a benchmark. Further to the recorded ISNR improvements 

it can be readily seen that the prominent ringing effect evident in the TM case is 

significantly reduced for the proposed method. It should also be noted here that 

the iterative TM algorithm is conducted under ideal conditions, that is to say with 

regularization parameter Atm set to the normally unknown value of

Atm = |C(w,u)«S(u,u)|
(4.34)

where C is the Laplacian operator, JV is the noise, and S is the real or underlying 

image. These results are also comparable to, and in most cases outperform other 

methods including another frequency adaptive iteration method presented in [22]. 

Other comparable “single channel” iterative deconvolution results are presented in 

[24] [28] [55].
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Blurred Lena, BSNR is 40Original Lena

50 100 150 200 250 50 100 150 200 250
Noise variance is 0.251393 Error variance is 434.521

Estimated Lena after 2 iterations

50 100 150 200 250
error variance is 32.2687 ISNR is 11.3001

Figure 4.7: Deconvolution results
< 1 ,

Direct TM solution to Lena

50 100 150 200 250
error variance is 36.2418 ISNR is 10.7957

9 Pixel Horizontal Blur. BSNR = 40 dB
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Original Lena Blurred Lena, BSNR is 30

Estimated Lena after 6 iterations Direct TM solution to Lena

50 100 150 200 250 50 100 150 200 250
error variance is 67.55 ISNR is 8.115 error variance is 73.92 ISNR is 7.724

Figure 4.8: Deconvolution results: 9 Pixel Horizontal Blur. BSNR = 30 dB

» »,
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Blurred Lena, BSNR is 15Original Lena

50 100 150 200 250 50 100 150 200 250
Noise variance is 79.5 Error variance is 504.3

Estimated Lena after 84 iterations

50 100 150 200 250
error variance is 170.4 ISNR is 4.715

Direct TM solution to Lena
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Error var is 208.3 ISNR is 3.845

Figure 4.9: Deconvolution results: 9 Pixel Horizontal Blur. BSNR = 15 dB
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Blurred Lena, BSNR is 30Original Lena

50 100 150 200 250 50 100 150 200 250
Noise variance is 2.628 Error variance is 355.6

Estimated Lena after 511 iterations

50 100 150 200 250
Error variance is 83.05 ISNR is 6.332

Iterative TM solution to Lena

Figure 4.10: Deconvolution results: 7x7 Uniform Blur. BSNR = 30 dB
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Blurred Lena, BSNR is 15Original Lena

50 100 150 200 250
Noise variance is 83.1 Error variance is 425.7

Estimated Lena after 314 iterations
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Error variance is 155.2 ISNR is 4.389

Iterative TM solution to Lena
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Error variance is 231.3 ISNR is 2.658

Figure 4.11: Deconvolution results: 7x7 Uniform Blur. BSNR = 15 dB

* ».



CHAPTER 4. A HYBRID ALGORITHM 62

Blurred Cameraman, BSNR is 30
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Estimated Cameraman after 15 iterations
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Direct TM solution to Cameraman
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Error var is 89.69 ISNR is 7.2error variance is 75.07 ISNR is 7.973

Figure 4.12: Deconvolution results 9 Pixel Horizontal Blur. BSNR = 30 dB
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Original Cameraman Blurred Cameraman, BSNR is 15

Noise variance is 105.7 Error variance is 558.1

Estimated Cameraman after 30 iterations Direct TM solution to Cameraman

50 100 150 200 250 50 100 150 200 250
Error variance is 203.7 ISNR is 4.384 Error variance is 253.6 ISNR is 3.433

Figure 4.13: Deconvolution results: 9 Pixel Horizontal Blur. BSNR — 15 dB
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Original Cameraman Blurred Cameraman, BSNR is 30
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Figure 4.14: Deconvolution results: 7x7 Uniform Blur. BSNR = 30 dB
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4.6 Discussion

In Section 4.2.2, optimal frequency-adaptive stability and regularization operators 

are derived. This optimization is facilitated by a novel error analysis such that 7 and 

p can be adaptively estimated based on a past history that is encapsulated in the 
updated variables £7^ and In developing these error propagation terms

in this way, more accurate error estimates, and therefore better updates of 7 and p 

are possible. In other words, as the iteration continues, the estimates for S and Af 

improve, and therefore our estimates for and by extension 7 and p improve as 

well.

The use of a stability operator 7 has been shown experimentally to improve the 

convergence rate in a dramatic fashion. The stability and regularization operators 

are optimized on a coefficient-by-coefficient basis in the DFT domain. This is unlike 

many methods that define a regularization operator that is static, and control the 

regularization process by a parameter that is a positive scalar quantity.

In the next chapter, these ideas will be applied to blind deconvolution where the 

PSF is not known a priori.



Chapter 5

Blind Deconvolution

In previous chapters, the issue of identifying the image blur or point spread function 

was not addressed. Indeed, most classical image restoration techniques require explicit 

prior knowledge of the PSF before any reasonable results can be achieved. The sad 

reality, however is that for most cases the PSF is not known a priori. Hence the 

need for blur estimation or blind deconvolution techniques. Many methods have been 

developed to estimate this function, for various types of image classes. In general, 

there are two main approaches to blind deconvolution[32]:

1. Identify the PSF separately for the image (a priori blur identification).

• DFT “Null-search” Techniques

- Zero Sheet Separation

- Cepstrum Techniques 

— Bicepstrum Techniques

• Point Source Techniques

2. Incorporate the PSF identification procedure with the restoration algorithm 

(joint PSF/image estimation).

66
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• Maximum Likelihood Estimation (MLE)

• Generalized Cross Validation (GCV)

• Iterative Blind Deconvolution (IBD)

• Simulated Annealing (SA)

• Non-negativity and Support Constraints Recursive Inverse Filtering (NAS- 

RIF)

• Minimum Entropy Deconvolution (MED)

Initially, existing blind image deconvolution methods will be briefly discussed. 

Then, a simple a priori method will be explored as a solution to the initialization 

problem that many blind iterative image restoration techniques encounter. A priori 

methods can sometimes be accurate particularly if the type of PSF is known and easily 

parameterized. This result can then be used as a starting point for a more complex 

iterative technique, which will be presented and applied to the problem at hand. 

This revised technique will address the inherent instability and slow convergence of 

the IBD and other algorithms by using the stability operator 7 introduced in Chapter 

4. A detailed description of the proposed blind iterative deconvolution algorithm will 

then be presented.

5.1 A Priori Blur Estimation

Most a priori blur identification methods rely on known features of the PSF and pa­

rameterization of the blur to reduce the complexity of the identification procedure. 

Many of the popular parametric PSF models were presented in Section 2.2. Tech­

niques may look at estimating the PSF from known features of the true image like 

point sources on a uniform background or edges. Others invoke prior knowledge of the 

blur mechanism, using the frequency domain nulls or magnitude spectrum minima
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of the blurred image to determine the PSF parameters. This approach is justified 

by the frequency domain realization of the image formation model (2.14), where the 

nulls of H will be those in common with HS. Since additive noise tends to mask 

these nulls, the effectiveness of this approach depends a lot on the signal-to-noise 

ratio. Methods that estimate PSF parameters using frequency domain zeros include 

spectra magnitude cepstrum and bicepstrum techniques. These techniques tend to 

be relatively low in complexity, and are relatively easy to implement.

5.2 Joint PSF/Image Estimation Methods

The iterative or joint PSF estimation techniques are broader in scope and more dif­

ficult to use, on both computational and practical levels. Again, many methods 

must rely on parameterized models of the PSF to reduce computational complexity 

and facilitate convergence. The following sections deal with three major groups of 

blind iterative image restoration techniques; stochastic techniques that use an autore­

gressive image formation model and moving average blur model (ARMA), algebraic 

techniques that use non-expansive, nonlinear constraints in a recursive scheme, and 

techniques based on higher-order statistics.

5.2.1 ARMA Methods

A good example of a stochastic method is the use of maximum likelihood estimation 

(MLE) when applied to blind image restoration. This method uses an autoregressive 

moving average (ARMA) model for the blurred image, where the true image is as­

sumed to be a 2-D autoregressive process, and the blur a 2-D moving average process. 

Many procedures use the expectation-maximization (EM) algorithm to achieve MLE 

image restoration[27][35][36][39]. Another example of a stochastic blur identification 

method that uses the ARMA blurred image model is generalized cross validation
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(GCV), which can also be used for estimation of the regularization parameter A and 

regularization operator C[47][48]. The ML and GCV methods thus far are the most 

successful for blind image processing[32], The AR model however is not valid for 

images with abrupt nonstationarities such as edges, so restoration results tend to be 

over-smooth. Both the MLE and GCV methods have difficulty converging when the 

dimension of the optimization parameter space is too high, resulting in the algorithm 

becoming trapped in local minima. Also, the respective objective functions for both 

methods have a tendency to become insensitive to parameter changes when the total 

number of parameters is large. Both methods therefore require some other means to 

obtain an initial “guess” for PSF parameters before any standard optimization pro­

cedure can be used. Even then, convergence cannot be guaranteed therefore manual 

inspection of the final image estimate is required to verify results.

5.2.2 Non-Parametric Deterministic Constraint Methods

Non parametric methods such as iterative blind deconvolution (IBD)[2], simulated 

annealing (SA)[41][31] and non-negativity and support constraints recursive inverse 

filtering (NAS-RIF) [32] use deterministic constraints to achieve image restoration 

results. In general these methods do not assume parametric models for blurring 

mechanisms. The simulated annealing algorithm tends to be too computationally 

complex for most image restoration problems with an algorithm order per iteration 

of O(Mg) where Ms is the number of pixels in an image1. In comparison, The IBD 

algorithm has order O(MS log2(Ms)) per iteration. The NAS-RIF algorithm is sensi­

tive to additive observation noise, and is therefore only effective for high SNR image 

restoration applications. The IBD method, in general, tends to be unstable in its 

application [32] [64] particularly at low SNR.

The IBD algorithm can be argued to be a blind application of projections onto
Tn our case, this value Ms is equal to N2
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convex sets (POCS) if the constraints chosen represent closed convex sets. Care must 

be taken in choosing each constraint; if three or more convex sets do not intersect, a 

“greedy” limit cycle will result[21]. As outlined in [21] and [65] it is also important 

to incorporate relaxation in the process.

5.2.3 High Order Statistics Based Methods

This class of methods account for the non-Gaussian nature of many images. Most 

apply an FIR inverse filter that is adaptively updated using the higher order statistics 

of the most recent image estimate. The FIR filter taps are optimized based on an a 

priori HOS model of the true image.

An example of a HOS based method is minimum entropy deconvolution. This 

method was developed for de-blurring images with “spikey” features such as seismic 

data, and as an extension to this any two-tone image[63][60].

5.2.4 Unification of Image Estimation Methods

Many image estimation techniques described herein, blind or otherwise, have the 

same characteristic form. The formal relationships between many methods have been 

studied in [33] where a generic form for these inverse filters is given by:

sfe = (HTH + M)_1HTr (5.1)

where H can be the blurring matrix for a known blur, or alternately an estimate blur 

in a blind iterative process. For separate positive definite methods, the regularization 

term M takes on differing values. For example direct algebraic methods use:

M = ACtC (5.2)

where the MLE method using EM has the form:
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M = (5.3)

The former form uses A and C in the various forms described in Chapter 2, where 

the latter form uses updated estimates of the observation noise variance cr^ and the 

covariance matrix of the AR image formation system Ax [27]. I is the identity matrix. 

These forms hold some similarity to the Wiener filter where the regularization term 

is:

M = AnnA-x (5.4)

where Ann and Ass represent covariance matrices for the observation noise and image 

respectively. It is a common assumption that both the noise process and original 

image are multivariate Gaussian with zero mean, making (5.3) and (5.4) equivalent. 

M can also be chosen as:

M = AI (5.5)

which is the standard form for Tikhonov regularization.

The IBD process as presented in [32] also has the same form as (5.1), where the

DFT domain expression for the fcth estimate of the image Sk is:

4
Hk\ + O' |4-!

(5-6)

where cc is a positive scalar parameter representing the additive noise energy and the 

“tilde” identifies that element in the expression as a nonlinearly constrained variable, 

that is:

Sk

where C represents a constraint operator.
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The notion of using the inverse of an image estimate as a regularization operator is 

supported in [10] where it was proven that almost all estimators2 for the regularization 

parameter A are equivalent when the regularization operator term |C|2 is chosen to be 

|<S|-2. Further to this, the estimated value for A was found to be the additive noise 

variance cr2. This insight on the use of the image inverse as a form of regularization 

operator justifies the often-used Laplacian operator, which tends to whiten or de­

correlate the image.

The distinction between the blind case as opposed to the a priori case is that 

with the former, an estimate or update of the blur operator must be obtained at 

each iteration in addition to the estimate of the image. Hence, by extension, the IBD 

estimator of Ayers and Dainty in [2] for the PSF H at iteration k is:

SiK 

+ a

By comparison to (5.6), we see that the “roles” of the image and blur estimates are 

reversed. Interestingly, the MLE algorithm presented in [27] has the same form for 

PSF estimator with a different value for the “regularization” term:

(5.7)

S'kR (5-8)Hk =
|<Sfe| +7V2S«

Here the updated variable represents the diagonalized values for the conditional 

covariance matrix of s given r and the A:th estimate of the unknown parameter set. 

This covariance matrix is also assumed to be block-circulant as a simplification to 

analysis, enabling this Fourier domain implementation of the EM algorithm.
2The one exception found for this was the constrained least squares (CLS) estimate for A.
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5.3 A Blind Iterative Deconvolution Method

Figure 5.1 shows an overall schematic of the blind iterative procedure we are propos­

ing. The a priori method presented in Chapter 4 is the innermost kernel of this 

procedure, which is essentially wrapped with the blur estimation procedure. A de­

tailed algorithm corresponding to Figure 5.1 is given in Section 5.4.

5.3.1 Proposed Image and PSF Estimators

Instead of using one of the above (5.1) through (5.6) to estimate 5 at each iteration, 

the estimator (4.16) can be used with regularization and stability operators chosen 

as described in Chapter 4. The inclusion of a stability operator, as demonstrated in 

Section 4.3, will help the slow convergence rate that is characteristic of this type of 

iterative procedure.

For the blur estimator, we use the same logic as previously discussed with the IBD 

algorithm and switch the roles of S and H estimates in (4.16). The corresponding 

equation for TLk is then:

'fi-k+i —
S’k'R'A KkRk

(5-9)
Sfc + >^k + ^k

where the real variables and serve the same function as 7^ and pk respectively. 

Error terms can be developed with optimal values for /c and 5 derived in the same 

manner as in Sections 4.1.1 and 4.2.

As introduced in Section 3.5, the application of constraints between iterations is 

a powerful method of removing the ambiguity possible with regularized least squares 

estimation methods. Empirically, it is easier to apply constraints to the PSF rather 

than the image since the physics behind the blurring process is better understood 

compared to that of image formation. Also, the PSF requires less parameters to esti­

mate than does the image and in most cases, since images are rarely bandlimited, PSF
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Figure 5.1: Blind Iterative Procedure
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estimation is a better conditioned problem. Pursuant to this, the stability operator 

k will not be used in the PSF estimation process, so that nonlinear constraints such 

as positivity (2.5) and energy preservation (2.6) can be used as indicated in Figure 

5.1. The resulting PSF estimator is then:

?4+i = | (5.10)
+ Sk

5.3.2 Optimal Regularization Operator for the PSF Estima­
tor

An error expression can be obtained in the same manner as Sections 4.1.1 and 4.2.

S-tM-Sj£SiH
(5-11)"Hk

|<5fc| + Sk

Repeating the same process for $ as was completed in Section 4.2.2 for pk yields:

d£k
_ x{y-5knr + x*{y-6kn')

(5-12)

where

X = h (|s,|2 - ,%«) +

= (5.13)

and

y = s-„N - s^h

I I2Hence the value for 8k that minimizes I is:

(5-14)
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xy* + x*y 
HX* + U*X (5.15)

By virtue of the PSF eigenvalues in the denominator term of (5.15), the calculation 

for 5 at those coefficients where \H\ is small or zero is inherently unstable. Therefore 

safeguards at these coefficient indices must be adopted.

5.3.3 A Priori Blur Estimation using GCV

In this section, we describe the use of generalized cross validation as a means of 

determining an initial guess for the blur operator H as shown in Figure 5.1. This 

estimate can then be applied to the iterative blind deconvolution process.

Generalized cross validation is a method whereby assumptions about the data 

can be tested to aid in the image restoration process. The basic idea behind GCV 

is that one portion of the data is used to obtain an estimate based on a particular 

assumption. The other portion of the data is then used to validate that assumption. 

This is sometimes called the “leave one out” method. This idea can be expanded by 

dividing the data into overlapping sets and imposing the assumption on all sets but 

one. This process is repeated with another set left out, until all sets have been left 

out in turn. In this way, all the data are used for both estimation and validation.

This process can be implemented by minimizing a function V(0). By choosing dif­

ferent minimization parameters, GCV can be used to estimate the blur operator[48], 

or for determining the best regularization parameter A and regularization operator

C[47],

V(0) using block-circulant assumptions on the blur operator H, can be written 

as [47]:

V(0) = N2 (5.16)
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where 0 = X 0O and 0O is a vector of parameters defining the PSF.

According to [10] [32] [47] [48], the GCV function V(0) may not be convex for the

total range of 0, and hence have local minima. To prevent the possibility of incorrect 

PSF estimates due to local minima, a grid search can be completed on a target area 

of the blur parameter space. We assume the PSF can be described as H(#i, 02) where 

($i, 02) € © and © is the parameter space specifying H. A description of the blur 

estimation procedure is as follows:

1. For a given (^,02) €■ ©, calculate the best A according to the objective func­

tion (5.16) by first using a discrete search, then using the results of that search 

as an initial point for optimization of V(0). The result of this optimization 

gives Xgcv-

2. Using these values for A and H(0!,02), use (5.16) directly to calculate V{0).

3. Repeat 1 and 2 for all possible PSF’s in the parameter space.

4. Choose Hgcv as the PSF with the smallest value of V(0) as the image blur 

operator

For calculating Xgcv and Hgcv, the Laplacian operator is used for C. The cor­

responding Xgcv and Hgcv are then used, with the Laplacian operator, to estimate 

the received image additive noise variance according to [10]:

= Qp) (5.17)

where

A (A) = —------|7Z|2 + A|C|2
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5.3.4 A Priori Blur Estimation Results

Table 5.1 shows the results of a parametric grid search for the minimum GCV cri­

terion. The “Lena” image was degraded using a seven-by-seven out-of-focus blur, 

and then further degraded with additive noise at various BSNR levels. This search is 

conducted over the following specification for ©:

1 < 0i <

3 < 02 < 13 /
e i0 (5.18)

where 0! is the maximum vertical dimension of the blur, 02 is the maximum horizontal 

direction and Io denotes the set of odd integers. The blur is then in the shape of an 

ellipse with major axis dimensions by 02. The PSF can be defined with respect to 

these parameters as:

k (5.19)j) —
0 otherwise

where K is the number of non-zero pixels. As indicated in Table 5.1, this search 

works well except when the blurred signal-to-noise ratio becomes low. Estimates for 

the regularization parameter A are also not as accurate at low BSNR. Despite this, 

noise variance estimates are relatively good. Here, \tm is calculated using (4.34).

Table 5.2 shows similar results searching the same parameter space only with the 

“Lena” image degraded with a nine pixel linear motion blur (i.e. di = 1 and 02 = 9). 

These results indicate similar trends as the out-of-focus blur, except estimates for the 

regularization parameter are underestimated at low BSNR levels. It is important to 

note that the value for A is only used in our case to estimate the noise variance and 

so this mis-estimation is not critical since noise variances are estimated reasonably 

well.
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A Priori Blur Parameter Estimation
BSNR (dB) 0i

—--
$2 VrM ^GCV

5 9 7 4.7811 4.9504 602.64 598.39
10 7 7 1.5023 3.0524 190.57 188.77
15 7 7 0.47943 0.83861 60.264 60.042
20 7 7 0.1498 0.20548 19.057 18.638
25 7 7 0.047423 0.059612 6.0264 5.8811
30 7 7 0.014983 0.0162 1.9057 1.8347
35 7 7 0.004696 0.0045861 0.60264 0.56239
40 7 7 0.0014998 0.0013916 0.19057 0.17672
45 7 7 0.00047383 0.00043127 0.060264 0.055024
50 7 7 0.00015136 0.00014102 0.019057 0.017844
55 7 7 4.7493e-05 4.4345e-05 0.0060264 0.0056312
60 7 7 1.5053e-05 1.425e-05 0.0019057 0.0018069

Table 5.1: PSF and noise variance estimation, 7 by 7 uniform out-of-focus blur.

A Priori Blur Parameter Estimation
BSNR (dB)

—X--
01

-- X---
02 Atm Agcv

5 1 11 4.5726 3.333 576.35 568.52
10 1 9 1.4368 1.0806 182.26 174.78
15 1 9 0.45852 0.40316 57.635 56.225
20 1 9 0.14327 0.15235 18.226 18.195
25 1 9 0.045354 0.053847 5.7635 5.972
30 1 9 0.014329 0.016124 1.8226 1.8773
35 1 9 0.0044912 0.0045961 0.57635 0.56282
40 1 9 0.0014344 0.001401 0.18226 0.17588
45 1 9 0.00045316 0.00043298 0.057635 0.054568
50 1 9 0.00014475 0.00013618 0.018226 0.017253
55 1 9 4.5422e-05 4.3319e-05 0.0057635 0.0054836
60 1 9 1.4396e-05 1.3344e-05 0.0018226 0.0016897

Table 5.2: PSF and noise variance estimation, 9 pixel linear motion blur.
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5.4 Proposed Blind Iterative Algorithm

We now describe in more detail the proposed blind deconvolution algorithm of Figure 

5.1.

1. A Priori Blur Estimation
The purpose of this procedure is to find parametric PSF model parameters 

that best suit the degraded image data based on the GCV criterion (5.16) (see 

associated box in Figure 5.1).

• Use method outlined in Section 5.3.3

• Let parameter vector 0 = [0i02]t be the blur vertical and horizontal di­

mensions respectively, and:

0 otherwise

• Estimate noise variance using (5.17).

• Set area of support for PSF based on this model

• Use the DFT of h(i, j) as the initial PSF estimate Ho for the blind iterative 

process.

2. A Priori Image Estimation
This part of the algorithm uses the current PSF estimate to evaluate an image 

estimate Hk using the nonblind process described in Chapter 4. The algorithm 

iterates within the “a priori image estimation” block in Figure 5.1 until con­

vergence is met.

(a) Initialize key variables 

• p0 = c (l - |7/oQ 0 < c< 1
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H*nK

• L {A<} = z{ft-ft0S0}

Increment iteration number k(b)

(c)

(d)

Calculate 7fc and Pk using (4.23) and (4.27).

Use 7ifc, pk and 7^ in equation (4.16) to estimate Sk

3.3.

(e) Estimate noise

• z{?/} = a{r-hoso}
• |x| = TV2 a2

(f) Calculate using (4.19).

(g) If a priori estimation stop criteria “A” are not met, go to 2(b). Otherwise, 

go to 3.

Check blind procedure stop criteria
Here, we determine whether a new iteration for the blur operator H is required 

using the most recent estimate of S. If overall blind image estimation stop 

criteria “B” are not met, go to 4. Otherwise, go to 5.

PSF Estimation
This process is part of the “blind image estimation” block of Figure 5.1. Within 

this part of the procedure, nonlinear constraints as discussed in Sections 2.2 and 

5.3.1 are applied. Specifically, we apply a positivity constraint (2.5), an energy
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preservation constraint (2.6), an area of support constraint, and a constraint 

such that the PSF pixel values are non-increasing from the origin.

(a) Estimate S using (5.15)

(b) Estimate 7/^ using (5.10)

(c) Use IDFT of Hk and constrain in spatial domain

• Symmetry constraint
I h(i,j) k(i,j)eSk

• hUO) = <
I 0 otherwise

where Sh is the area of support for h(i,f).

• = 1

• hk(i,j) > hk(m,n) V |z| < |m|, |j| < |n|

(d) Use DFT of constrained hk(i,f) => % as next PSF estimate.

(e) Reduce a priori image estimation stop criteria “A”. Go to 2(a)

5. Terminate algorithm
The final estimated image is the IDFT of the most recent Sk-

5.4.1 Blind Deconvolution Results

Figures 5.2 and 5.3 show the respective convergence comparison results and pictorial 

results of applying the blind iterative algorithm presented in Section 5.4 to the “Lena” 

image degraded by the symmetrical PSF with pixel values shown in the top half of 

Table 5.3 and additive white noise such that the BSNR is 30 dB. The final PSF, used 

for the last a priori image estimation cycle is shown in the bottom half of Table 5.3.

The final quality of the blindly restored images are superior to the benchmark re­

stored images, both qualitatively and quantitatively. Not only is the final ISNR level 

of the blindly restored image much higher than that of the iterative Tikhonov-Miller
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Original PSF
0 0 0.0259 0.0262 0.0259 0 0
0 0.0264 0.0272 0.0275 0.0272 0.0264 0

0.0259 0.0272 0.0281 0.0284 0.0281 0.0272 0.0259
0.0262 0.0275 0.0284 0.0287 0.0284 0.0275 0.0262
0.0259 0.0272 0.0281 0.0284 0.0281 0.0272 0.0259

0 0.0264 0.0272 0.0275 0.0272 0.0264 0
0 0 0.0259 0.0262 0.0259 0 0

Estimated PSF
0 0 0.0262 0.0266 0.0262 0 0
0 0.0263 0.0270 0.0274 0.0270 0.0263 0

0.0261 0.0271 0.0279 0.0283 0.0279 0.0271 0.0261
0.0264 0.0276 0.0284 0.0284 0.0284 0.0276 0.0264
0.0261 0.0271 0.0279 0.0283 0.0279 0.0271 0.0261

0 0.0263 0.0270 0.0274 0.0270 0.0263 0
0 0 0.0262 0.0266 0.0262 0 0

Table 5.3: Results for Blind Procedure: Original and Estimated PSF

method, it also does not exhibit the same ringing artifacts that are characteristic of 

many regularized least squares methods. Clearly, the blind algorithm has outper­

formed the nonblind iterative Tikhonov Miller algorithm. It is important to mention 

that for the benchmark run of the iterative Tikhonov-Miller method, not only were 

ideal values for the regularization parameter used (see Section 4.5), but the actual 

nonblind degrading PSF was also used and not an estimate.

As an indication of how the blind procedure compares to its nonblind counterpart, 

results using the known PSF for one cycle of the a priori algorithm results in an 

ISNR of 5.17 dB after 125 iterations compared to the blind results of 5.091 dB in 310 

iterations.
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Figure 5.2: ISNR and Convergence Comparison (Lena) BSNR = 30 dB

5.5 Discussion

In this chapter, a blind iterative algorithm based on the material developed in Chapter 

4 is presented. The accelerated convergence properties of the nonblind algorithm 

of Chapter 4 benefit the blind process by allowing multiple iterations of the image 

estimation part of the algorithm between each PSF estimation cycle. Each cycle 

of the nonblind procedure is apparent in the “sawtooth” pattern of the convergence 

comparison graphs of Figure 5.2. Convergence is achieved by lowering the termination 

criteria at each image estimation cycle.

The convergence properties of this algorithm require further study however. The 

error in the PSF (see equations (4.7) and (4.9)) propagates with each iteration, and 

will eventually cause divergence if left unchecked. This effect was prevented by setting 

a limit to the number of iterations within the “a priori image estimation” box in
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Original Lena

50 100 150 200 250

Blurred Lena, BSNR is 30

50 100 150 200 250
Noise variance is 2.632 Error variance is 350

Estimated Lena after 306 iterations

50 100 150 200 250
Error variance is 108.8 ISNR is 5.091

Figure 5.3: Blind Hybrid vs Iterative TM - Pictoral Results (Lena) BSNR = 30 dB

> ».

Iterative TM solution to Lena

50 100 150 200 250
Error variance is 145 ISNR is 3.84
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Figure 5.1 as well as a limit to the number of cycles this part of the algorithm was 

allowed to run. Relaxation techniques were also applied to each new image and PSF 

estimate.

An a priori blur estimation method using GCV is also presented. By using a 

highly parameterized model, an estimate for the PSF is determined for initialization. 

At this time an area of support for the PSF is determined, as well as an estimate for 

the additive noise variance.



Chapter 6

Conclusions

A new approach to iterative image deconvolution is proposed that highlights the 

nature of additive noise propagation, and its effect on a final image estimate. A new 

approach to the error analysis for this kind of iterative algorithm is developed, with 

error propagation terms E^\ E^ and E^ defined that “encapsulate” the past history 

of the iterative process with deference to noise, regularization, and PSF estimation 

errors respectively. Since these terms are independent of the original image and noise, 

they do not have cumulative error properties and therefore offer better transient error 

estimates as the iterative procedure progresses.

From this novel approach to error analysis, the idea of a stabilizing operator 7 

to augment the regularizing operator p is explored. Further, it is shown that the 

asymptotic error as the number of iterations k —> 00 is independent of 7, converging 

to the regularized least squares solution. The additional degree of freedom offered by 

7 manifests itself in a dramatically increased convergence rate.

Optimal stability and regularization operators are derived that change adaptively 

based on a current transient error estimate. Each DFT coefficient is optimized inde­

pendently such that non-parametric, frequency adaptive regularization and stability 

operators result.

87
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From the experimental results presented in Chapter 4, is is readily seen that the 

image estimation given by (4.16) outperforms the iterative Tikhonov-Miller method. 

The performance gains with this new algorithm are not only in the restored image 

accuracy as measured by ISNR, but restorations are qualitatively superior with less 

“ringing” when compared to iterative TM. These superior attributes are also achieved 

with a markedly faster convergence rate. It is also noted here as it was in Chapter 

4 that the benchmark given by the iterative Tikhonov-Miller algorithm is conducted 

under ideal conditions, that is to say with regularization parameter Xtm set to a 

normally unknown value.

The a priori blur estimation method outlined in Section 5.3.3 works well until the 

blurred signal-to-noise ratio (BSNR) goes below 5 dB. Results shown in Chapter 5 

are initialized using this method.

The blind deconvolution results shown in Chapter 5 show that the ideas of Chapter 

4 can indeed be extended to the blind case with results that surpass the nonblind 

iterative TM method both qualitatively and quantitatively. Not only does this method 

outperform many existing methods, the results in Section 5.4.1 show that the final 

blind ISNR values are very close to those using the nonblind algorithm of Chapter 

4 with a known PSF. The convergence properties of this blind method require more 

study, as the results obtained were the result of ad hoc convergence criteria.

Future research with respect to the new ideas presented herein can be divided into 

three parts:

1. Develop a procedure for the joint estimation of the stability and regularization 

operators 7 and p.

2. Development of a stable blind iterative algorithm that is not as dependent 

on initialization. Like many other blind methods such as MLE or GCV, the 

success of the algorithm presented in Chapter 5 is highly dependent on a good
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initialization for the PSF. Making the estimation process more robust to initial 

PSF error is essential for application at practical levels.

3. Application of these ideas to multichannel restoration using wavelet theory. 

Many of the current multichannel restoration methods make use of known al­

gorithms to be applied to each subband or channel with remarkable results. In 

a similar way, it may be possible to increase the performance of this estima­

tion method by applying it to a multichannel framework. The claim of many 

researchers working in this area is that the multichannel approach models the 

nonstationarity of images to some degree. It is likely that this property, along 

with the frequency adaptive properties of our new technique, would result in 

further improvements.

In summary, the ideas on a priori or “nonblind” image restoration presented in this 

thesis add some new insights to a fairly mature field of research. When one considers 

the potential of extending these ideas to blind applications, the inherent value is far 

more substantial. This extension is indeed made in this work, thus fulfilling some of 

the potential these new ideas possess.



Appendix A

Block-Toeplitz Structure and 

Eigenvalue Analysis for 2-D 

Systems

In this appendix, the analysis details for the eigenvalues of the blurring matrix H 
are developed, including the lexicographic ordering of matrices, and the differences 

between block Toeplitz and block-circulant matrices.

A.l Lexicographic Ordering

Lexicographic ordering is a mapping of a two-dimensional (image) array into a one­

dimensional vector. Essentially, each row of the image is transposed and stacked one 

atop of each other to form a vector. The received M x N image r for example would 

be:

90
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r = [ r(O,O),r(O,l),r(O,2),...r(O,2V-1),

r(l,0), r(l,1),r(l, 2),...r(l, N - 1),... (A.l)

r(M — 1, 0), r(M — 1, l)r(M — 1,2)... r(M — 1, N — 1) ]T

A.2 Block Toeplitz Matrices

As outlined in Section 2.3, the linear two-dimensional convolution operation of (2.3), 

M N

Z=1

can be rewritten in matrix-vector form by lexicographically ordering the received and 

underlying images and s(i,j), and using an MN x MN convolution operator

matrix H as in (2.11).

r = Hs + n

Assuming the PSF h(i, j) has a support area of 2L + 1 by 2L + 1 pixels with integer 

indexing from — L to L in each direction and 2L + 1 < M or N, the convolution or 

blurring operator H has the structure:

Ho H_! H_2 h_l
Hi Ho H_! •• h_l+1 h_l
h2 Hi Ho H_l+2 H_l+!

hl Hl_i HL_2

hl HL_! • •

Hl

Ho

0
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where there are M2 sub-matrices Hj which are of dimension N x N with the structure:

hifi hi-i hi,-2

hj,i ^i,0 hi,-i

hi,2 hjfi

hi,L hi’L—l hi,L-

hi,L hi,L-

hi,L

hi-L

hi,-L+i hi-L 0
hi-L+2 hi-L+1 hi-L

(A.3)

0

hj.fi

where the PSF indices are indicated by subscripts, i.e. PSF element h(i,j) = hj. 
The eigenvectors and eigenvalues for large matrices like H are in general quite

difficult to find. On the other hand, block-circulant matrices, which are similarly 

structured to block-Toeplitz matrices, are known to have discrete Fourier transform 

coefficients as eigenvalues, with normalized DFT bases as eigenvectors. Making this 

assumption, we can then revise the structure of H such that:
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Ho H_! h_2 H_r 0 0 H

Hi Ho H_x •• h_l+1 h_l 0 H;
h2 Hi Ho h_l+2 h_l+1 h_l H;

hl HL_! Hl_2
0 hl HL_!
0 0 hl

h_l 0 0
h_l+1 H_r 0
h_l+2 h_l+1 h_l

H_! H_2 H_3 • H,
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where each Hi =

hifi hi,—i hi,-2 hi,-L 0 0 hi,I

hi,l hifi hi,—I •• 0 hi,L hi,L-i • • • hip

hi,2 hi,l hi,o hi,-L+2 hi,-L+i hi,-L hi,3

hi,L hi,L-i h>i,L—2

0 h>i,L hi,L—1

0 0 hi,L

hi,-L 0 0

hi-L+i hi,-L 0

hi,-L+2 hi-L+i hi,-L

hi —1 hi,-2 hi-3 ■ 9 hifi

The block-circulant approximation here is equivalent to replacing a linear convolu­

tion with a circulant one. The errors introduced by the block-circulant approximation 

are minor, and affect mainly the image edges. This effect can be eliminated by zero 

padding the image (and correspondingly the PSF), making the linear and circular 

convolutions equivalent.

A.3 The Eigensystem for the Blurring Matrix H

Eigenanalysis is a powerful tool for both the analysis and implementation of linear 

systems of equations. As mentioned in Section 2.4, the block-circulant matrix H can 

be diagonalized using its eigendecomposition:

H = WDW" (A.6)
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For the following discussions, matrix element indices will have a double subscript to 

reflect the fact that we are dealing with lexicographically ordered images. Hence an 

element of the blurring matrix H can be identified by the notation:

0 < u < M

Xu
Q < v < N 

0 < m < M

0 < n < N

where the row index “uv” identifies the vth row of the uth sub-block in the vertical 

direction and the column index and “mri’ identifies the nth column of the mth sub­

block in the horizontal direction1.

It is well known that the eigenvectors of a block-circulant matrix like H are 

complex-valued rotating exponentials:

rrr 1 I n (Um VU\\ . .
Wuv'mn ~ TmN exp V \M+It)) (A’7)

where the term (MN'p is to make each column of W unit norm. Due to this 

orthonormal relationship between the eigenvectors of H, we can say that W is unitary 

and therefore:

WHW = I

hence

w1 = WH

From this discussion we see that the DFT of the point spread function h(m, n) is 

then:

M-lN-l ,
'H{uyv') = 57 57 h(m, n) exp I — 7 27t

___________________________________ m=0 n=0 '

1 Recall that H is made up of M2 N x N sub-matrices.

um vn\\
~M + It))
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= y/MN w"nh

where h is the lexicographically ordered PSF h(m, ri) and w, 
the mth horizontal sub-block of the matrix W.

(A.8)

is the nth column of



Appendix B

Error Terms for the Hybrid 

Iterative Solution

B.l Error Term Expansion

The error term for the hybrid adaptive iterative image estimator (4.16) can be ex­

pressed as:

c _ WkN - Hk£^kS - pkS +
^Sk — I ~ |2

|7/fc| + 7k + Pk
If we define the denominator term

then (B.l) can be expanded in the following way:

(B.2)

97
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Combining similar terms, this expansion can be expressed in relation to the compo­

nents of error attributed to additive noise, regularization, and the error in the PSF 

estimate respectively.

'Sk Af

-S

-S

m 7fc7*-i7C2 +
Z‘kZ‘k. i 1 Zk—2

7fc7fc-i •• - 7i^o
■ • ■ Zq

7fc7fc-i • • • 7iPo 
ZkZk_, ' ’ ‘ Zq

Pk 7fcPfc-l 7fc7fc-lPfc-2 
Zk ZkZk-, ZkZk-,Zk-2

^k^nk 7fc^fc_i f̂c_1 7fc7fc-i'^fc-2^?kt_2

Zk ZkZk-, ZkZk-\Zk-2

. 7fc7*-i • • -71^0Ô^o (B.3)
ZkZk-, ■ ■ ■ Zq

We then return to the same expression presented in Section 4.1.1 as equation (4.7): 

£§k = AfE$ - SE(k) - 5S^}■w

+

• +

u

where

and

q/c)

Zk i=1

k V-n>
J=i A?.

'U*ni-l
Zi-,

07* C k

Zk Af
K Z=1

n—11 Zi
3=1 3 J Zi-,

£?’ = f + E
i=l

n|
j=i .

Pi-1
Zi-,

B.2 Alternate Error Formulation

In the case where it is advantageous to “reset” all error propagation terms in the 

iterative blind deconvolution process, the error formulation (4.7) can be re-written to
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explicitly include the initial image estimate <S0. Note that this development assumes 

that there is no previous estimate to So, therefore the stability operator 70 is initialized 

to zeros and therefore:

H*Af - poS - H^S 
|^o | + Pa

(B-4)

Each numerator term for (B.4) can be removed from the original error estimate

(4.7), thus adding another multiplicative term fl^ that embodies the error propaga­

tion of the initial estimate from one iteration to the next.

(B.5)

where

y\(fc) '17*
+ E

i=2

'k y-nJj=i ^3 Z,
i— 1
i-1

K

(B-6)

HtS.Hk +z
i=2

IT —11 Zi^3 Zi-r

n(fc)7

Kk£-Hk + 
Zk

Zk+^

i=2

kn
j=i '"'I

Tj_
Z„

pk + lkE$-V 
Zk

7i_

Zi

zk

Z,i-1

(B.7)

(B.8)

(B-9)

n
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and as before,

Z>i — \Pii\ + T Pi (B.10)

Note that (B.7), (B.8) and (B.9) differ from their counterpart equations (4.8), (4.9) 

and (4.18) only by the summation starting indices. The first term for each summation 

(i.e. i = 1) is now included in the expression Essentially, this shows the effect

of the initial guess and how it propagates based on the multiplicative term fl^_1\ 

By examination of the first line of (B.9), we see that if

J<1 Vi (B.ll)

then the nonblind algorithm of Chapter 4 will converge independent of the initial 

image estimate So and its error £gQ.



Bibliography

[1] D.L. Anguin, H. Kaufman, “Image Restoration Using Reduced Order Models”, 

Signal Processing, Vol. 16, pp. 21-28, 1989.

[2] G. R. Ayers, J. C. Dainty, “Iterative Blind Deconvolution Method and its Ap­

plications” , Optics Letters, Vol 13, No. 7, pp. 547-549, July 1988.

[3] M.R. Banham, A.K. Katsaggelos, “Digital Image Restoration”, IEEE Signal 

Processing Magazine, pp. 24-41, March 1997.

[4] M.R. Banham, N.P. Galatsanos, H.L. Gonzalez, A.K. Katsaggelos, “Multichan­

nel Restoration of Single Channel Images Using a Wavelet-Based Subband De­

composition”, IEEE Transactions on Image Processing, Vol. 3, No. 6, pp. 821­

833, November 1994.

[5] M.R. Banham, A.K. Katsaggelos, “Spatially Adaptive Wavelet-Based Multiscale 

Image Restoration”, IEEE Transactions on Image Processing, Vol. 5, No. 4, pp. 

619-634, April 1996.

[6] T. Berger, J.O. Stromberg, T. Eltoft, “Adaptive Regularized Constrained Least 

Squares Image Restoration”, IEEE Transactions on Image Processing, Vol. 8, 

No. 9, pp. 1191-1203, September 1999.

101



BIBLIOGRAPHY 102

[7] H. Bially, “Iterative Behandlung Linearer Funktionalgleichungen”, Archive for 

Rational Mechanics and Analysis, Vol. 4, pp. 166-176 July 1959.

[8] J. Biemond, R.L. Lagendijk, R.M. Mersereau, “Iterative Methods for Image De­

blurring”, Proceedings of the IEEE, Vol. 78, No. 5, pp. 856-883, May 1990.

[9] B.L.K. Davey, R.G. Lane, R.H.T. Bates, “Blind Deconvolution of Noisy 

Complex-Valued Image”, Optics Communications, Vol. 69, No. 5,6, pp. 353-356, 

January 1989.

[10] N.P. Galatsanos, A.K. Katsaggelos, “Methods for Choosing the Regularization 

Parameter and Estimating the Noise Variance in Image Restoration and Their 

Relation”, IEEE Transactions on Image Processing, Vol. 1, No. 3, pp. 322-336, 

July 1992.

[11] N.P. Galatsanos, R.T. Chin, “Digital Restoration of Multichannel Images”, IEEE 

Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 3, pp. 

415-421, March 1989.

[12] S. Geman, D. Geman, “Stochastic Relaxation, Gibbs Distributions, and the 

Bayesian Restoration of Images”, IEEE Transactions on Pattern Analysis and 

Machine Intelligence, Vol. PAMI-6, No. 6, pp. 721-741, November 1984.

[13] D.C. Ghiglia, L.A. Romero, G.A. Mastin, “Systematic Approach to Two­

Dimensional Blind Deconvolution by Zero-Sheet Separation”, Journal of the Op­

tical Society of America, Vol. 10, No. 5 pp. 1024-1036, May 1993.

[14] G.H. Golub, C.F. Van Loan, Matrix Computations, Third Ed., Baltimore MD: 

The Johns Hopkins University Press, 1996.



BIBLIOGRAPHY 103

[15] G.H. Golub, P.C. Hansen, D.P. O’Leary, “Tikhonov Regularization and Total 

Least Squares”, SIAM Journal of Matrix Analysis and Applications, Vol. 21, No. 

1, pp. 185-194, January 2000.

[16] G.H. Golub, C.F. Van Loan, “ An Analysis of the Total Least Squares Problem”, 

SIAM Journal of Numerical Analysis, Vol. 17, No. 6, pp. 883-893, December

1980.

[17] G.H. Golub, U. von Matt, “Quadratically Constrained Least Squares and 

Quadratic Problems”, Numerische Mathematik, Vol. 59, pp. 561-580, 1991.

[18] P. C. Hansen, “Regularization Tools, A Matlab Package for Analysis of Discrete 

Regularization Problems”, Numerical Algorithms 6, pp. 1-35, 1994.

[19] J. R. Hare, J. P. Reilly, “The Deconvolution of Linearly Blurred Images using 

Non-Parametric Stabilizing Functions”, Accepted for publication in the Proceed­

ings, 2000 International Conference on Image Processing (ICIP), Vancouver, 

Canada, September 2000.

[20] C.W. Helstrum, “Image Restoration by the Method of Least Squares”, Journal 

of the Optical Society of America, Vol. 57, No. 3, pp. 297-303, March 1967.

[21] P. A. Jansson (Ed.), Deconvolution of Images and Spectra, Toronto, ON: Aca­

demic Press, 1997.

[22] M. G. Kang, A. K. Katsaggelos, “Frequency Domain Adaptive Iterative Image 

Restoration and Evaluaton of the Regularization Parameter”, Optical Engineer­

ing, Vol. 33, No. 10, pp. 3222-3232, October 1994.

[23] M. G. Kang, A. K. Katsaggelos, “Simultaneous Iterative Image Restoration and 

Evaluation of the Regualrization Parameter”, IEEE Transactions on Signal Pro­

cessing, Vol. 40, No. 9, pp. 2329-2334, September 1992.



BIBLIOGRAPHY 104

[24] A. K. Katsaggelos, “Iterative Image Restoration Algorithms”, Optical Engineer­

ing, Vol. 28, No. 7, pp. 735-748, July 1989.

[25] A. K. Katsaggelos, J. Biemond, R. W. Schafer, R. M. Mersereau “A Regularized 

Iterative Image Restoration Algorithm”, IEEE Transactions on Image Process­

ing, Vol. 39, No. 4, pp. 914-929, April 1991.

[26] A. K. Katsaggelos, S. N. Efstratiadis, “A Class of Iterative Signal Restoration 

Algorithms”, IEEE Transactions on Acoustics, Speech, and Signal Processing, 

Vol. 38, No. 5, pp. 778-786, May 1990.

[27] A. K. Katsaggelos, K.T. Lay, “Maximum Likelihood Blur Identification and Im 

age Restoration Using the EM Algorithm”, IEEE Transactions on Signal Pro­

cessing, Vol. 39, No. 3, pp. 729-733, March 1991.

[28] A. K. Katsaggelos, K.T. Lay, N.R Galatsanos, “A General Framework for Fre­

quency Domain Multi-Channel Signal Processing”, IEEE Transactions on Image 

Processing, Vol. 2, No. 3, pp. 714-420, July 1993.

[29] S. Kawata, Y. Ichioka “Iterative Image Restoration for Linearly Degraded Im­

ages. I. Basis”, Journal of the Optical Society of America, Vol. 70, pp. 762-767, 

1980.

[30] S. Kawata, Y. Ichioka “Iterative Image Restoration for Linearly Degraded Im­

ages. II. Reblurring Procedure”, Journal of the Optical Society of America, Vol. 

70, pp. 768-772, 1980.

[31] S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, “Optimization by Simulated An­

nealing” , Science, Vol. 220, pp. 671-680, 1983.

[32] D. Kundur, D. Hatzinakos, “Blind Image Deconvolution”, IEEE Signal Process­

ing Magazine, pp. 43-64, May 1996.



BIBLIOGRAPHY 105

[33] R. L. Lagendijk, J. Biemond, Iterative Identification and Restoration of Images, 

Boston, Mass:Kluwer Academic Press, 1991.

[34] R. L. Lagendijk, J. Biemond, D. E. Boekee, “Regularized Iterative Image 

Restoration with Ringing Reduction”, IEEE Transactions on Acoustics, Speech, 

and Signal Processing, Vol. 36, No. 12, pp. 1874-1887, December 1988.

[35] R. L. Lagendijk, A.M. Tekalp, J. Biemond, “Maximum Likelihood Image and 

Blur Identification: A Unifying Approach”, Optical Engineering, Vol. 29, No. 5, 

pp. 422-435, May 1990.

[36] R. L. Lagendijk, J. Biemond, D. E. Boekee, “Identificaion and Restoration of 

Noisy Blurred Iamges Using the Expectation-Maximization Algorithm”, IEEE 

Transactions on Acoustics, Speech, and Signal Processing, Vol. 38, No. 7, pp. 

1180-1191, July 1990.

[37] L. Landweber, “An Iteration Formula for Fredholm Integral Equations of the 

First Kind”, American Journal of Mathematics, Vol. 73, pp. 615-624, 1951.

[38] R.G. Lane, R.H.T. Bates, “Automatic Multidimensional Deconvolution”, Jour­

nal of the Optical Society of America, Vol. 4, No. 1, pp. 180-188, 1987.

[39] K.T. Lay, A.K. Katsaggelos, “Image Identification and Restoration Based on the 

Expectation-Maximization Algorithm”, Optical Engineering, Vol. 29, No. 5, pp. 

436-445, May 1990.

[40] R. Molina, A. K. Katsaggelos, J. Abad “Bayesian Image Restoration Using a 

Wavelet-Based Subband Decomposition”, Proceedings, 1999 International Con­

ference on Acoustics, Speech and Signal Processing, pp 3257-3259, 1999.

[41] B.C. McCallum, “Blind Deconvolution by Simulated Annealing”, Optics Com­

munications, Vol. 75(2), pp. 101-105, February 1990.



BIBLIOGRAPHY 106

[42] B. L. McGlamery, “Restoration of Turbulence Degraded Images”, Journal of the 

Optical Society of America, Vol. 57, No. 3, pp. 293-297, 1967.

[43] R.P. Millane, P.J. Bones, H. Jiang, “Blind Deconvolution for Multidimensional 

Images”, Proceedings, 1994 International Conference on Acoustics, Speech and 

Signal Processing, Adelaide, Australia, pp. V445-448, April 1994.

[44] K. Miller, “Least Squares Methods for Ill-Posed Problems with a Prescribed 

Limit”, SIAM Journal of Mathematical Analysis, Vol. 1, No. 1, pp. 52-74, Febru­

ary 1970.

[45] N. Miura, K. Ohsawa, N. Baba, “Single-Frame Blind Deconvolution by Means 

of Frame Segmenation”, Optics Letters, Vol. 19, No. 10, pp. 695-697, May 1994.

[46] C.E. Morris, M.A. Richards, M.H. Hayes, “Fast Reconstruction of Linearly Dis­

torted Signals”, IEEE Transactions on Acoustics, Speech, and Signal Processing, 

Vol. 36, No. 7, pp. 1017-1025, July 1988.

[47] S. J. Reeves, R. M. Mersereau, “Optimal Estimation of the Regularization Para­

mater and Stabilizing Functional for Regularized Image Restoration”, Optical 

Engineering, Vol. 29, No. 5, pp. 446-454, May 1990.

[48] S. J. Reeves, R. M. Mersereau, “Blur Identification by the Method of Generalized 

Cross-Validation”, IEEE Transactions on Image Processing, Vol. 1, No. 3, pp. 

301-311, July 1992.

[49] J.P. Reilly, M. Siebert, M. Wilbur, N. Ahmadvand, “The Single-Sided Subband 

Decomposition: Application to the Decimation of Large Problems”, Submitted 

for publication in IEEE Transactions on Signal Processing.



BIBLIOGRAPHY 107

[50] A. Sabharwal, L. C. Potter, “Convexly Constrained Linear Inverse Problems: 

Iterative Least-Squares and Regularization”, IEEE Transactions on Signal Pro­

cessing, Vol. 46, No. 9, pp. 2345-2352, September 1998.

[51] R. W. Schafer, R. M. Mersereau, M. A. Richards, “Constrained Iterative Restora­

tion Algorithms”, Proceedings of the IEEE, Vol. 69, No. 4, pp. 432-450, April

1981.

[52] T.J. Schulz, “Multiframe Blind Deconvolution of Astronomical Images”, Journal 

of the Optical Society of America, Vol. 10, No. 5, pp. 1064-1073, May 1993.

[53] M.I. Sezan, H. Stark, “Image Restoration by the Method of Convex Projections: 

Part 2 - Applications and Numerical Results”, IEEE Transactions on Medical 

Imaging, Vol. MI-1, No. 2, pp. 95-101, October 1982.

[54] P. A. Stokseth, “Properties of a Defocussed Optical System”, Journal of the 

Optical Society of America, Vol. 59, pp. 1314-1321, 1969.

[55] B. J. Sullivan, A. K. Katsaggelos, “New Termination Rule for Linear Iterative 

Restoration Algorithm” Optical Engineering, Vol. 29, No. 5, pp. 471-477, May 

1990.

[56] A. Tikhonov, V. Arsenin, Solution of Ill-Posed Problems, New York:Wiley, 1977.

[57] L. Tong, S. Perreau, “Multichannel Blind Identification: From Subspace to Max­

imum Likelihood Methods”, Proceedings of the IEEE, Vol. 86, No. 10, pp. 1951­

1968, October 1998.

[58] F. Tsumuraya, M. Miura, N. Baba, “Iterative Blind Deconvolution Method using 

Lucy’s Algorithm”, Astronomy and Astrophysics, Vol. 282, pp. 699-708, 1994.



BIBLIOGRAPHY 108

[59] P.H. van Clittert, “Zum Einfuluss der Spaltbreit auf die Intensitatsverteilung in 

Spektrallinien II”, Zeitschrift fur Physik, Vol. 69, pp. 298-308 1931.

[60] R.A. Wiggins, “Minimum Entropy Deconvolution”, Geoexploration, Vol. 16, pp. 

21-35, 1978.

[61] J.W. Woods, C.H. Radewan, “Kalman Filtering in Two Dimensions”, IEEE 

Transactions on Information Theory, Vol. 23. No. 4, pp. 473-482, April 1977.

[62] J.W. Woods, V.K. Ingle, “Kalman Filtering in Two Dimensions: Further Re­

sults”, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 29. 

No. 2, pp. 188-197, February 1981.

[63] H.-S. Wu, “Minimum Entropy Deconvolution for Restoration of Blurred Two- 

Tone Images”, Optics Letters, Vol. 26, No. 15, pp. 1183-1184, July 1990.

[64] A.E. Yagle, “Multiresolution Blind Deconvolution of Symmetric Point-Spread 

Functions from Bioelectrical Potentials”, Proceedings, 2000 International Con­

ference on Acoustics, Speech and Signal Processing, Istanbul, Turkey, June 2000.

[65] D. C. Youla, H. Webb, “Image Restoration by the Method of Convex Projections: 

Part 1 - Theory”, IEEE Transactions on Medical Imaging, Vol. MI-1, No. 2, pp. 

81-94, October 1982.



Program Listing

% script file DeConv.m
’/, to compare results for deconvolved images with 
’/, the iterative Tikhonov-Miller algorithm

clear all

blind = logical(1);
pad = 1; ’/, zero padding factor
real_ht = 7; ’/, PSF parameters
real_wd = 7;

max_other_count = 150;
max_num_change = 5;
min_change = 2e-5;

if blind
lambdal =0.25; % relaxation parameter

else
lambdal = 1;

end

do_lena = 1;

showfigures = 10;
BSNR = 30;
cd ../lena
if do_lena == 1 

rate = 2;
row = round(300./rate); 
txt = ’Lena’;
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lena = double(imread(’lena.jpg’,’jpg’)); 
lena = lena(l.-rate:512,1 .-rate:512);

else
txt = ’Cameraman’; 
row = 60;
lena = imread(’camera.jpg’,’jpg’); 
lena = double(lena(,2));

end

btm = 0;
top = 255;

lena = lena - min(min(lena));
lena = round(lena .* 255 ./ max(max(lena)));

tM = size(lena,1);
tN = size(lena,2);

generate point spread function h 
L = 31;
lag = floor(L./2);
if blind

h = g_PSF([real_ht real_wd],L).* m_PSF([real_ht real_wd],L); 
h = h ./ sum(sum(h));

else
h = m_PSF([real_ht real_wd],L);

end

M = pad.*tM;
N = pad.*tN;

figure(1)
colormap(gray);
subplot(221),imagesc(lena,[btm top]); 
title (sprintf (’ Original ’/,s ’, txt));
’/, zero pad original image 
tlena = zeros(M.N);
r_sta = tN.*(pad-1)./2+1;
r_stp = tN.*(pad-1)./2+tN;
c_sta = tM.*(pad-1)./2+1;
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c_stp = tM.*(pad-1)./2+tM;
tlena(r_sta:r_stp,c_sta:c_stp) = lena;

cl = zeros(size(h));
c2 = cl;
c3 = [0 -.25 0 ; -.25 1 -.25 ; 0 -.25 0];
% c3 is the Laplacian, c4 is used to make Laplacian zero phase 
c4 = zeros(3,3); 
c4(2,2) = 1; 
cl(lag+l,lag+l) = 1;
c2(l,l) = 1;
C2 = fft2(c2,M,N); 
Cl = fft2(cl,M,N) ; 
C3 = fft2(c3,M,N); 
C4 = fft2(c4,M,N);
0/ 0/ 9/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0,

H = fft2(h,M,N);
H = conj(Cl).*H; 
rH = H; 
rh = h;

Laplacian = conj(C4).*C3; 
clear C3 C4 cl c2 c3 c4;

Lena = fft2(tlena,M,N);
R = fft2(tlena,M,N).*H;
r = real(ifft2(R));
r = r(c_sta:c_stp,c_sta:c_stp);
n_std = sqrt(std2(r).“2 ./ (10."(BSNR./10)));
nois = zeros(size(lena));
nois = n_std .* randn(size(lena));
nois = nois - mean2(nois);
Nois = zeros(M,N);
Nois(r_sta:r_stp,c_sta:c_stp) = nois;
Nois = fft2(Nois,M,N);
Nois(l,l) = 0;

‘/.whiten the noise in FFT domain
rPWR = sum(sum(abs(Nois).~2));



PROGRAM LISTING 112

No(abs(Nois)==0)=eps;
Nois = sqrt(rPWR./(M.*N)).*sign(Nois);

Nois(l,l) = 0;
nois = real(ifft2(Nois));
nois = nois(r_sta:r_stp,c_sta:c_stp);

r = r + nois;
R = R + Nois;

figure(l);
subplot(222),imagesc(r,[btm top]);
title(sprintf (’Blurred ‘/,s, BSNR is %0.4g’,txt,BSNR)) ;
xlabel(sprintf(’Noise variance is %0.4g Error variance is %0.4g’, ... 

n_std.~2,std2(lena-r).“2));
pause(l);

mmm calculation of alpha for tm solution y.y//.y.y.y.y.y//.y//.y.y.y.y.y„y.

alpha = sum(sum(abs(Nois).~2)) ./ sum(sum(abs(Laplacian.*Lena).~2)); 
tGamma = alpha.*abs(Laplacian).~2;

bestTM = conj(rH).*R ./ (abs(rH).~2 + tGamma);
besttm = real(ifft2(bestTM));
besttm = besttm(c_sta:c_stp,c_sta:c_stp);
bestTMISNR = 10.*loglO(sum(sum(abs(lena-r).~2)) ./ ...

sum(sum(abs(lena-besttm). ~2)));

rmmm set options for optimization y.y.y„y.y„y.y„y.y.y„y„y.y.y.

options = optimset;
options.LevenbergMarquardt = ’on’; 
options.TolX = le-15; 
options.TolFun = le-15; 
options.LargeScale=’on’; 
options.MaxFunEvals = 5000;

y.y.y.y.y//.y//.y.y.y.y.y. a priori biur estimation y.y.y.y.y.y.y.y.y.y,y,y.y.y.y.y.y.y.y.y.

start = logical(1);
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if blind
start_ht 
fin_ht = 
start.wd 
fin_wd =

= l;
13;
= 3;
13;

else
start_ht = real_ht;
fin_ht = real_ht;
start_wd = real_wd;
fin_wd = real_wd;

end

for m = start._ht:2:f in_ht
for n = start_wd:2:fin_wd

eH = fft2(m_PSF([m,n],L),M,N); 
eH = conj(Cl).*eH;

V = zeros(1,length(-12:.5:2)); 
ctr = 0;
for q = -12:.5:2 

ctr = ctr+1;
rho = exp(q) .* abs(Laplacian).~2;
V(ctr) = checkGCV(R,eH,rho);

end

I = find(V == min(V));
q = -12:.5:2;
alph = exp(q(I(l)));

alph = lsqnonlin(Jgcv_hpl’,alph,le-6,1, ... 
options,R,eH,Laplacian);

rho = alph .* abs(Laplacian).~2;

denom = abs(eH).“2 + rho; 
denom(abs(denom)==0) = eps;
Z = rho./denom;

nerr = sum(sum(abs(Z).~2 .* abs(R).~2)) ./ ... 
sum(sum(abs(Z))).“2;
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nerr = nerr./ N;

if start
err = nerr; 
start = logical(0); 
ht = m; 
wd = n;
alph_gcv = alph;

else
if (nerr <= err)

disp([m n nerr alph alpha]); 
err = nerr;
ht = m; 
wd = n;
alph_gcv = alph;

end
end

end
end

disp(sprintf (’ht is %g and wd is #/,g’,ht ,wd)) ; 
h = m_PSF([ht wd],L);
H = fft2(h,M,N);
H = conj(Cl).*H;

noise variance estimation
var = abs(H).~2 ./ (abs(H)."2 + alph.gcv.*abs(Laplacian).~2); 
var = sqrt(l-var).*R;
var = (M.*N) ./ (tM.*tN) .* sum(sum(abs(var).~2)) ./(M.*N).~2;

PWR = var.*(tM.*tN).*(M.*N); 
AOS = (m_PSF([ht wd],L) > 0); ’/, area of support for PSF

y •/ y y y y y y y y y y •/ y y y y y y y y y y y y y y y •/ y v y •/ y y y v v y y •/ y y y y y y y v y y y •/ y •/ y y y y y yZo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo /o Zo Zo Zo /o Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo /« Zo Zo Zo Zo Zo Zo Zo Zo Zo /o Zo

if blind == 1
h = m_PSF([ht wd],L); 
H = fft2(h,M,N);
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H = conj(Cl).*H;
else

h = rh;
H = rH;

end

distance = 100;
stop = le-15;
count = 0;
other_count = 0;

rho = 0.5 . * abs(l-abs(H).~2);
rho(l,l) = 0;
SE = conj(H).*R ./ (abs(H).~2+rho);

No = R-H.*SE;
No(l,l) = 0;
nPWR = sum(sum(abs(No). ~2));

No = sqrt(PWR./(M.*N)).*sign(No);
No(l,l) = 0;

sumQ = conj(H) ./ (abs(H).~2 + rho);
sumRho = rho ./ (abs(H)."2 + rho);
Eh = zeros(size(H));
sumEh = zeros(size(H));

Ek = (conj(H).*No - rho.*SE) ./ (abs(H).~2+rho); 
tSE = conj(rH).*R;

ISNR = □ ;
tISNR = □ ;
dist = □ ;
tdist = □ ;

Gamma = zeros(size(H));
NSE = SE;
nH = H;
beta = BSNR./30;
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beta = min([beta 1.9]); 
num_change = 0;

TR = R(1:pad:M,1:pad:N);
TSE = SE(1:pad:M,1:pad:N);
TH = H(1:pad:M,l:pad:N);
‘/.‘/.‘/.•/.'/.•/.’/.•/.•/.•/.•/.•/.’/.•/.’/.’/.’/.‘/.’/.•/.•Z main image estimation loop
while ((distance > stop I tdistance > stop) I count < 2) Sc ... 

~(num_change == max_num_change & other_count == max_other_count)

count = count + 1;
other_count = other_count + 1; 
if count == 1

No = R-H.*SE;
No(l,l) = 0;
No = sqrt(PWR./(M.*N)).*sign(No); 
No(l,l) = 0;

end
if blind == 1
y.y.y.y.y.y.y.y.y.y.y. psf estimation loop (if blind) y.y.y.y.y.y.y.y.y.y.y.y.y.y.y.y. 

y.y.y.y.’/.y.y.y.y. sample h, se, no, and Ek spectra y.y.y.y.y.y/my.y. 
TH = H(l:pad:M,l:pad:N);
TSE = SE(1:pad:M,1:pad:N);
TNo = No(l:pad:M,1:pad:N);
TEk = Ek(l:pad:M,1:pad:N);

clear get_H_rho;
h_rho = get_H_rho(TR,TSE,TH,TNo,TEk);

denom = abs(TSE).~2 + h_rho; 
nH = conj(TSE).*(TR) ./ denom;

nh = real(ifft2(nH)); 
nh = estimate(nh,L); 
nh = nh .* AOS;

nh = nh ./ sum(sum(nh));

change PSF if nonblind procedure has converged 'I,*/,*/,*/,*/,*/, 
if (distance<=min_changeIother_count>=max_other_count) ...
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& num_change < max_num_change

Hdist = □;
TH = nH;
Hdistance = 0;
Hstop = le-6;
Hcount = 0;
while Hdistance > Hstop 

Hcount = Hcount + 1;
TNo = TR-TH.*TSE;
TNo(l,l) = 0;
TNo = sqrt(PWR./(M.*N)).*sign(TNo); 
TNo(l,l) = 0;

h_rho = get_H_rho(TR,TSE,TH,TNo,TEk);

denom = abs(TSE)."2 + h_rho; 
nH = conj(TSE).*(TR) ./ denom;

nnh = real(ifft2(nH)); 
nnh = estimate(nnh,L); 
nnh = nnh .* AOS;

nnh = nnh ./ sum(sum(nnh)); 
nh = nh + 0.25.*(nnh - nh);

nH = fft2(nh,tM,tN);

Hdistance = sum(sum(abs(nH - TH).~2)) ... 
./ sum(sum(abs(nH).~2));

Hdist = [Hdist Hdistance];
TH = nH;

end

h = h + 0.25.*(nh - h);
H = conj(Cl).*fft2(h,M,N);
num_change = num_change + 1;

Gamma = zeros(size(H));
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rho = 0.5.*(l-abs(H).~2); 
rho(l,l) = 0;

mm reinitialize variables
SE = conj(H).*R ./ (abs(H).~2 + rho);
No = R-H.*SE;
No(l.l) = 0;
No = sqrt(PWR./(M.*N)).*sign(No); 
sumQ = conj(H) ./ (abs(H)."2+rho); 
sumRho = rho ./ (abs(H).~2+rho);

Ek = (conj(H).*No - rho.*SE) ./ (abs(H).~2+rho); 
rho = zeros(size(H)); 
other_count = 0; 
min_change = min_change./2;

end
end ’/, if blind==l
0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ Hl HI Hl Hl HI Hl HI Hl Hl HI HI HI Hl Hl Hl HI HI HI Hl HI Hl HI Hl HI H,

o Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo Zo

clear get_a_C
clear get_a_rho;
if (count == 1)

Gamma = zeros(size(H)); 
rho = zeros(size(H));

end

Gamma = get_a_gamma(R,H,Eh,Ek,No,SE,rho);
rho = get_a_rho(R,H,Eh,Ek,No,SE,Gamma);

tNSE = beta.*conj(rH).*R + ...
tSE.*(l - beta.*(abs(rH).~2 + tGamma));

denom = abs(H).~2 + rho + Gamma;
msk = (abs(denom)==0 I ~isfinite(denom));

if sum(sum(msk)) > 0
disp(sprintf(’%g zeros or non finite coeff in denom’, ... 

(sum(sum(msk)))));
end
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NSE = zeros(size(SE));
NSE(~msk) = (conj(H(~msk)).*(R(~msk)) + ...

Gamma(~msk).*(SE(~msk))) ./ (denom(~msk));

NSE(msk) = SE(msk);
NSE(~isfinite(NSE)) = SE(~isfinite(NSE));

% update error propagation gain terms 
sumQ(~msk) = (conj(H("msk)) + ...

Gamma(~msk).*sumQ(~msk))./denom(~msk); 
sumRho(~msk) = (rho(~msk) + ...

Gamma(~msk).*sumRho(~msk))./denom(~msk); 
sumEh(~msk) = (conj(H(~msk)).*Eh(~msk) + ...

Gamma(~msk).*sumEh(~msk))./ denom(~msk);

sumQ(msk) = 0; 
sumRho(msk) = 0; 
sumEh(msk) = 0;

mm estimate noise spectrum 
No = R-H.*(NSE);
No(l,l) = 0;

No = sqrt(PWR./(M.*N)).*sign(No); 
No(l,l) = 0;

y,y.y//.y.y.%y.y. estimate transient error mmmWk 
Ek = zeros(size(H));

denom = 1 - (O.*H.*sumQ + sumRho +sumEh);
msk = abs(denom) > 0;
Ek = No.*sumQ - NSE.*(sumRho+sumEh);
Ek(msk) = Ek(msk) ./ denom(msk);
Ek(~msk | ~isfinite(Ek)) = 0;

disp(sprintf(’max sumQ is ‘/,g and max sumRho is */,g’, ... 
max(max(abs(sumQ))),max(max(abs(sumRho))))); 
disp(sprintf(’avg sumQ is ’/,g and avg sumRho is ’/,g’, ... 
mean2((sumQ)),mean2((sumRho))));
disp(sprintf(’estimated noise variance is %g’,var));
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disp(’ ’);

se = real(ifft2(NSE));
tse = real(ifft2(tNSE));

se = se(c_sta:c_stp,c_sta:c_stp);
tse = tse(c_sta:c_stp,c_sta:c_stp);

tISNR = [tISNR 10.*logl0(sum(sum(abs(lena-r).~2)) 
./ sum(sum(abs(lena-tse).~2)))] ;

ISNR = [ISNR 10.*loglO(sum(sum(abs(lena-r).~2)) . 
. / sum(sum(abs(lena-se).~2)))] ;

maxcount = find(ISNR==max(ISNR));
maxcount = maxcount(length(maxcount));

if maxcount == count 
bestSE = NSE;
bestse = real(ifft2(bestSE));
bestse = bestse(c_sta:c_stp,c_sta:c_stp);
bestlSNR = 10.*logl0(sum(sum(abs(lena-r).~2))

./ sum(sum(abs(lena-bestse).“2)));
end

distance = sum(sum(abs(NSE - SE).~2)) ...
./ sum(sum(abs(NSE).~2));

tdistance = sum(sum(abs(tNSE - tSE).~2)) ...
./ sum(sum(abs(tNSE).~2));

if distance <= stop
disp(’proposed procedure has converged’);

end
if tdistance <= stop

disp(’iterative TM procedure has converged’);
end
dist = [dist distance];
tdist = [tdist tdistance];

y.y.y.y.y.y.y.’/.y. show images and graphs y//.y//.y.y//?///;/////.y.y//.y.y,y.y.y.y.y. 
if (rem(count,showfigures) == 0 I distance <= stop) I count < 20

figure(1)
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subplot(223),imagesc(se,[btm top]);
title(sprintf(’Estimated %s after %g iterations’, ... 

txt,count));

xlabel(sprintf(’Error variance is ’/«0.4g ISNR is ‘/oO.4g’, 
std2(lena-se)."2,ISNR(count)));

subplot(224),imagesc(tse,[btm top]);
title(sprintf(’Iterative TM solution to %s’,txt)); 
xlabel (sprintf (’Error variance is ‘/«0.4g ISNR is ’/oO.4g’,

std2(lena-tse)."2,tISNR(count)));

figure(2)
elf
plot(lena(round(row),:),’r’);
hold on

plot(se(round(row),:),’g’);
title (sprintf (’row 7,g’,row));

figure(3)
elf
plot(real(H(1,:)),’b’);
hold on
plot(real(Gamma(l,:)), ’r’);
plot(real(rho(l,:)),’k’);
plot(alpha.*ones(l,N),’k-.’);
plot(real(rH(l,:)),’m—’);
plot(real(H(:, 1) ’),’g’);
axis([l M -1.5 1.5]);

figure(4)
elf
subplot(121),plot(ISNR(max([count-100000 1]):count),’r’) 
if count > 1

subplot(121),axis([1 count floor(min(ISNR))-l ... 
ceil(max(ISNR))+l]);

end

title(’ISNR Comparison: Proposed vs TM’);
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xlabel(’Iteration’);
ylabeK’ISNR (dB)’);

hold on
subplot(122),semilogy(dist,’r’);
title(’Normalized Energy Change Comparison’); 
xlabel(’Iteration’)
ylabel(’Normalized Energy Change (log scale)’);

hold on

subplot(121),plot(tISNR(max([count-100000 1]):count),’r—’) 
legend(’Blind Hybrid Method’,’Iterative TM’,4); 
if count > 1

subplot(121).axis([1 count floor(min(ISNR))-l ...
ceil(max(ISNR))+l]);

end

subplot(122),semilogy(tdist,’r—’); 
legend(’Blind Hybrid Method’,’Iterative TM’);

if blind == 1 
figure(5) 
ctr = lag+1; 
elf
subplot(311),imagesc(h(ctr-5:ctr+5,ctr-5:ctr+5));
subplot(312),mesh(h);
title(’current PSF’);
subplot(313).mesh(nh);
title(’latest estimate of PSF or nh’);

end
disp(sprintf(’Maximum ISNR is ‘/.g at iteration %g’, ... 

max(ISNR).maxcount));
disp(sprintf(’The average MS pixel error in h is ’/.g ...

at iteration ’/,g’,mean2((rh(AOS)-h(AOS)). ~2),count));
pause(1) ;

end

’/o’/o’/«%’/o apply relaxation to result if blind %’/.%
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SE = SE + lambdal.*(NSE - SE); 
tSE = tNSE;
0/ «/ 0/ 0/ 0/ 0/ «/ 0/ 0/ 0/ «/ 0/ 0/ 0/ «/ 0/ 0/ «/ 0/ 0/ 0/ 0/ •/ •/ «/ «/ •/ 01 0/ «/ «/ 0/ «/ »/ 0/ 010/ 0/ 0/ 0/ 0/ «/ 0/ 0/ 0,

o Zo Zo Zo Zo Zo Zo Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0 Zo Zo Zo Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0 Zo Zo Zo Zo

end

if exist(’se’) ~= 1
se = real(ifft2(NSE));
se = se(r_sta:r_stp,c_sta:c_stp);

end
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function h = m_PSF(p,L);

7. h = m_PSF(p,L);
%
% returns an elliptical PSF with uniform pixel values.
°/« p = Epi p2] which are the vertical and horizontal major axis 
7. dimensions of the ellipse.
7. a height parameter of 1 (i.e. pi = 1) is a linear motion blur.

if length(p) == 1 
P = El pi;

end

lag = floor(L./2);

m = (1:L)’;
ctr = lag+1;
hl = (m-ctr).~2 ./ (p(l)./2).~2;
hl = hl(:,ones(l,L));
h2 = (m,-ctr)."2 ./ (p(2)./2).~2;
h2 = h2(ones(L,1),:);
h = (hl+h2)<l;
h = h + (hl+h2<=l);

h = h./(sum(sum(h)));



PROGRAM LISTING 125

function h = g_PSF(p,L);

% h = g_PSF(p,L);
7.
7. returns a Gaussian PSF with std parameters p = [pi p2]
7. which are the vertical and horizontal standard deviations 
7. repectively.

if rem(L,2) == 0;
L = L + 1;

end

lag = floor(L./2);
h = zeros(L,L);
sdl = p(l);
if length(p) == 2

sd2 = p(2);
else

sd2 = p(l);
end

for m = --lag:lag
for n = -lag:lag

h(m+lag+l,n+lag+l) = exp(-(0.5).* ...
((m.~2./(sdl.~2))+(n.~2./(sd2.~2))));

end
end

h = h./(sum(sum(h)));
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function f = gcv_hpl(p,R,H,C) ;

7. f = gcv_hpl(p,R,H,C) ;
7.
% parameter estimation for regularization parameter lambda 
*/, f is objective V(theta) for generalized cross validation

N = size(R,1);
M = N.~2;

alphC = p .* abs(C).~2;
denom = abs(H).~2 + alphC;
Z = alphC./denom;

f = M.* sum(sum(Z.~2 .* abs(R).~2)) ./ sum(sum(Z)).~2;
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function Gamma = get_a_gamma(R,H,Eh,Ek,No,Sk,rho)

’/, Gamma = get_a_gamma(R,H,Eh,Ek,No,Sk,rho)
%
% function to estimate stability operator "gamma"

S = Sk;

A = abs(H).~2.*Sk - conj(H).*R + rho.*Sk + conj(H).*Eh.*S; 
B = -conj(H).*No + rho.*(S) + conj(H).*Eh.*S;

denom = real(A.*conj(Ek) + conj(A).*Ek);
msk = abs(denom)~=0;
Gamma = zeros(size(H));
Gamma(msk) = real(A(msk).*conj(B(msk)) + ...

conj(A(msk)).*B(msk)) ./ denom(msk);
Gamma(~msk) = 0;
Gamma(l,l) = 0;

Gamma(Gamma<0) = 0;
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function rho = get_a_rho(R,H,Eh,Ek,No,Sk,Gamma)

’/, rho = get_a_rho(R,H,Eh,Ek,No,Sk,Gamma) ;

’/, function to estimate regularization parameter "rho"

S = Sk;

X = conj(H).*R + Gamma.*Sk - conj(H).*Eh.*S;
Y = Gamma.*Ek + conj(H).*No - conj(H).*Eh.*S;

denom = real((S).*conj(X) + conj(S).*X);

msk = (abs(denom) ~= 0);
rho = zeros(size(H));
rho(msk) = real(conj(X(msk)).*Y(msk) + ...

X(msk).*conj(Y(msk))) ./ denom(msk);

rho(rho<0) = 0;
rho(1,1) = 0;
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function rho = get_H_rho(R,Sk,H,No,Ek)

7. rho = get_H_rho(R,Sk,H,No,Ek);
7.
7. function to estimate regularization parameter for PSF estimation

Ek = 0;

X = conj(Sk).*R;
Y = conj(Sk). *(No - Ek.*H);

denom = real((H).*conj(X) + conj(H).*X);

msk = (abs(denom) ~= 0);
rho = zeros(size(H));
rho(msk) = real(conj(X(msk)).*Y(msk) + ...

X(msk).*conj(Y(msk))) ./ denom(msk);

rho(rho<0) = 0;

mx = max(max(abs(Sk)."2));
rho(~msk) = mx;
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function eh = estimate(h,L);

°/0 eh = estimate(h,L);
’/.
’/, function to estimate PSF by
7, averaging pixels to attain symmetry 
% and enforcing the non-increasing pixel value 
7, constraint

N = size(h,1);

ctr = N./2 + 1;
lag = floor(L./2);

h = fftshift(h);

h = h(ctr-lag:ctr+lag,ctr-lag:ctr+lag);

h(h<0) = 0;
ctr = lag+1;

A = h(ctr,ctr);
BI = h(ctr,1:lag);
B2 = fliplr(h(ctr,ctr+1:L));
Cl = h(l:lag,ctr);
C2 = flipud(h(ctr+l:L,ctr));

DI = h(l:lag,l:lag);
D2 = fliplr(h(l:lag,ctr+1:L));
D3 = flipud(h(ctr+l:L,1:lag));
D4 = flipud(fliplr(h(ctr+l:L,ctr+1:L)));

7. average each quadrant in PSF

BI = (B1+B2),/2;
Cl = (C1+C2),/2;
DI = (D1+D2+D3+D4),/4;

7. enforce non-increasing with index constraint 
Dl(l,:) = zeros(l,lag);
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Dl(: ,1) = zeros(lag,1);

if BI(lag) > A
Bl(lag) = A;

end
if Cl(lag) > A;

Cl(lag) = A;
end
for m = lag:-1:2

if BI(m-1) > Bl(m)
Bl(m-l) = Bl(m);

end
if Cl(m-1) > Cl(m)

Cl(m-1) = Cl(m);
end
msk = DI (: , lag) > Cl; 
DI(msk,lag) = Cl(msk); 
msk = DI(lag,:) > BI; 
Dl(lag,msk) = Bl(msk);

for n = lag:-1:2
if Dl(m,n-1) > DI(m,n)

Dl(m,n-1) = Dl(m,n);
end

end
for n = lag:-1:2

if Dl(n,m-1) > DI(n,m)
DI(n,m-1) = Dl(n,m);

end
end

EDI Cl fliplr(Dl) ; BI A fliplr(Bl) ;
flipud(Dl) flipud(Cl) flipud(fliplr(DI))];
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