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ABSTRACT

The main aim of the thesis is to find the optimal division of load in the three 

queues, i.e. the optimal degree of overlap of skills between the two servers with waiting 

time in queue as the performance measure. The model under consideration is a polling 

system with two servers and three queues - two specialized queues, 1 and 2, and a 

common queue, queue 3. One of the servers cycles between queues 1 and 3 and the other 

between 2 and 3. The imbedded Markov chain state equations and the functional 

equations for queue length probability generating functions are formulated. It was not 

possible to obtain a closed for expression for the exact mean waiting time in the queues 

by solving the functional equations. So, an attempt has been made to get an approximate 

closed form expression that could be used to find the optimal division of load in the three 

queues. Since the results are available only for the symmetric system we first assume the 

two specialized queues to be identical. But later we relax this assumption and give 

approximation method for the asymmetric system. The recommended method to 

approximate the mean waiting time in a queue can be used to determine the optimal 

allocation of load to the three queues.
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CHAPTER 1 

INTRODUCTION

Optimum utilization of the factors of production - capital, land and labor - has 

been the goal of the society ever since the industrial revolution. Labor at that time meant 

blue collar workers only. With the advent of information age, the attention has diverted 

to white collar workers who dominate the labor market today. Different types of real life 

situations have been modeled mathematically to find optimum worker configurations. 

One of the areas deals with queues and one such situation has been discussed below.

With the increase in the variety of customer classes, the basic problem has been
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that of assigning the required skills to the servers. There are different ways in which this 

can be accomplished. One of the ways is by having highly specialized servers where 

each server is capable of handling only one of the customer classes. It results in as many 

numbers of queues and servers as the number of customer types (Figure 1.1). The server 

idles if there are no customers in its service class even though there are customers of 

other classes waiting in the system. This configuration can result in significant 

differences in the amount of waiting time experienced by each customer type. Therefore, 

this kind of a system may not be desirable.

In order to improve the system performance, an arriving customer can be allowed

to go to the next available server, which is a single queue system with n servers (figure

1.2). Here each server has to be skilled to perform all service types. Smith and Whitt

t Arriving
| Customers

♦
♦
♦
♦
♦
♦

Queue

Servers

Departing
Customers

III I
tit t

Fig 1.2: Single queue n servers system
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(1981) mathematically proved the following result of teletraffic engineering:- having a 

common queue is more efficient than separate queues. This is so because in case of 

separate queues, a call can get blocked in a trunk while other trunks are idle. Stidham, 

(1970) studied the waiting cost function (sum of service cost and waiting cost per unit 

time) and concluded that single queue system minimizes the waiting cost function. It 

definitely improves the performance of the system, but at the cost of increased training 

expenses. It is also possible that the lack of specialization may reduce the service rate. 

Both of these - high cost of training and low service rate - are not desirable. Moreover, in 

reality, it may not be feasible for each server to be conversant with each service type. So, 

this system may not be practical.

Therefore, it would be desirable to allow a certain degree of overlapping and 

specialization of the service rather than complete specialization or complete flexibility. 

That is, train the server to perform more than one kind of job but not all kinds of jobs. 

Thus by having a combination of both i.e., common queue served by several servers and 

specialized queues served by single server would reduce the training cost, increase 

efficiency, and balance utilization across all servers. Sheikhzadeh, Benjaafar and Gupta, 

(1997) showed that in manufacturing systems, pooling, grouping machines together based 

on the operation, improves the system performance over the specialization, especially in 

presence of set up times. They also claimed that the chain configuration, limiting the 

number of parts that can be processed on any individual machine, performs better than 

completely flexible system once again when set up times are significant.
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In this thesis we discuss a similar model with a focus on service system 

applications. We consider three different types of customer classes (/=1,2,3) and two 

servers (k=\,2\ Each server is specialized to serve only one type of primary customers, 

(either type 1 or type 2), but both the servers can serve type 3 customers. This kind of 

system is more practical than either a completely specialized or completely flexible 

system. The server processes at most one waiting customer each time it visits a queue.
X

This 1-limited service protocol is more suitable for the service sector rather than the 

manufacturing, because in manufacturing, once a machine has been set up for a particular 

of kind of job, it is advantageous to exhaust the queue of that kind of job specially in case 

of high set up costs. The 1-limited service discipline gives equal opportunity to all the 

queues of the system to receive server attention. It does not allow any queue to 

monopolize the server. Therefore, this kind of system is preferred in the service sector. 

The greater the degree of overlap, more flexible the two servers are and more traffic

Fig 1.3: Two server three queue polling model.
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can be diverted to the common queue. Lower the degree of overlap of skills, more 

specialized the servers are and less traffic can be sent to the common queue. Intuitively 

the stability conditions for this type of system would involve the switch over time in 

addition to the service time and the arrival rate. In order for the system to be stable, the 

mean number of arrivals during the visits of a server to the queue should be less than 1 

(since at most one customer is served each time server visits a queue).

An example of this kind of system is where the service is provided in more than 

one language. Here the server may either know a single language or be multilingual. 

Bilingual server systems have been discussed in the past by, for example, Stanford and 

Grassmann, (1993). They considered a system where there are two customer classes - 

people speaking majority language and ones speaking minority language - and two server 

types - unilingual and bilingual. The unilingual servers know only the majority language 

while bilingual are conversant with both majority and minority languages. The service 

required by both customer types is the same but, they demand it in different languages. 

All the arriving customers join the same single queue and proceed to get served by the 

next available server. If the minority language speaking happens to go to the unilingual 

server, it is routed to another queue, referred to as the transfer queue, which is served on a 

non-preemptive priority basis over the entry queue by the bilingual server. Therefore, the 

customers are not distinguished until the start of their service.

Green, (1984) also discussed a similar model with two types of customers and two 

types of servers - general servers (type G) and the restricted use servers (type R). Either 

type of servers - type G as well as type R - can serve the general type of customers. But,
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R type customers can be served only by R type servers. Both types of customers join the 

same queue upon arrival and are served on First Come First Serve (FCFS) basis. But if 

the type R server is unavailable but, type G is available then the general customer, if any 

waiting in queue, gets served before the type R. On the contrary, if type R server 

becomes available, the first customer waiting in the queue gets served. Therefore, the 

customers are not distinguished till the server becomes available.

In our model, we have three separate queues depending on the service kind and 

the arriving customer joins one of the queues - 1, 2 or 3 - depending on the type of 

service required on arrival to the system. In other words, the customers are differentiated 

based on the type of service they require as soon as they enter the system unlike in 

Stanford and Grassman, (1993) (wait till time of service) or Green, (1984) (wait till 

server becomes available).

Marsan et al. (1990) discuss a polling system with multiple servers. They assume 

Poison arrivals; service times and switch over times are assumed to be independent, 

identically distributed random variables with arbitrary probability distribution function. 

Our model is different from theirs as they assume that each server moves in cyclic order 

and visits each queue of the system while in our model, server 1 does not go to queue 2 

and server 2 does not visit queue 3.

The main idea of carrying out the study is to find the optimal division of load in 

the three queues. In other words, the aim is to find the optimal degree of overlap of skills 

between the two servers. The performance measure is the mean waiting time in queue. 

We formulate the steady state flow equations and the functional equations for queue
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length probability generating functions. These functional equations give rise to the 

Boundary Value Problem (Cohen and Boxma, 1983) which is difficult to solve. 

Therefore, it is not possible to obtain the exact mean waiting time in the queues by 

solving the functional equations. So, we make an attempt to get an approximate closed 

form expression that can be used to find the optimal division of load in the three queues. 

Since previous results (Marsan et al., 1990 and Boxma and Meister, 1987) are available 

only for the symmetric system, we first assume the two specialized queues to be identical. 

But later we relax this assumption and give approximation method for the asymmetric 

system also. In the asymmetric system the rate of arrival and the service rates of 

specialized queues are different but the total load in both the queues is same. Also, the 

sum of the loads in the specialized queue is equal to the load in the common queue.

We did the numerical analysis of the methods and conclude that the 

approximation performs reasonably well (the relative error being with in + 15% to - 

15%) except for high server utilization and small switch over times. The reason for the 

approximations to be not good for high server utilization is that the cycles become highly 

correlated and this violates one of our assumptions. Small switch over times as well as 

small server utilization creates a system where the server switches very fast completing 

thousands of cycles in a very short time leading to an unstable system. The 

approximations are also not good in some cases of asymmetric traffic. This is in 

agreement with Boxma and Meister’s (1987) observation. They observed that if one or 

more queues have relatively large arrival rates, these queues become nearly unstable, and 

so their approximation method does not predict the mean waiting times at the queues with
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low arrival rate accurately. They also suggest a remedy for this - remove the queues with 

heavy arrival rate and compensate for its service time in the switch over times. For our 

model, this remedy would mean removal of one of the two queues - common queue or 

specialized queue. We applied this remedy too which is our method 7 - single queue with 

multiple server vacation. This method gives very high errors for queue 1 and so the 

results are not reported. For queue 3 the proposed method performs better than the 

single queue model with multiple vacations. Since none of them worked well, giving 

error between +15% to - 15% for all p, we could not use the expressions for the intended 

optimization of the load in the three queues.

Our model is a polling system where one server cycles between queues 1 and 3 

and the other between 2 and 3. A standard polling system consists of multiple customer 

classes attended by a single server in cyclic order. Customers of class j arrive according 

to an independent Poisson process of rate A-j. Each queue has infinite buffer capacity. The 

server visits each station in some predetermined order. The service times at each queue 

are independent random variables with general distribution.

Graphically it can be depicted as follows:
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ARRIVALS OF CUSTOMERS

Figure 1.4: A Polling Model

The chapter 2 gives a detailed review of the previous analytical work on analysis

of single and multiple servers polling models with 1-limited service. Chapter 3 gives the
A ■

formulation of steady state flow equations. The discussion about the expressions that 

approximate the mean waiting time in each queue for symmetric as well as asymmetric 

systems can be found in chapter 4. The numerical analysis of the different approximation 

methods proposed and the recommendations for the symmetric system has been 

recapitulated in chapter 5. The numerical analysis of the different approximation methods 

proposed in chapter 4 and the recommendations for the asymmetric system has been 

summarized in chapter 6. Chapter 7 gives the conclusion of the thesis and scope for 

further study. The Microsoft FORTRAN (1987) program used to compute the estimate 

for the mean waiting time in the queue for our system has been attached as Appendix A. 

The Control statements for the SLAM II (1989) are provided in Appendix B. Appendix

I
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C gives the sample input file for the program and Appendix D shows the sample output 

of the FORTRAN program with SLAM II subroutines. The program was run on Compaq

Presario 4504 - Pentium 200.



CHAPTER 2

RELEVANT LITERATURE REVIEW

2.1 MODEL DESCRIPTION

Consider a system consisting of three queues (/' = 1, 2, 3) each with infinite buffer 

capacities. A unit arrives to queue j, y = 1, 2, 3 according to the independent Poisson 

process with rate Xj, so that the total arrival rate to the system is given by: A = Xi + X2 +

X3. The customer arriving at queue j is referred to as type j customer. There are two 

servers (k = 1,2). Server 1 serves queues 1 and 3 only and server 2 serves queues 2 and 3 

only. Queues 1 and 2 are referred to as the specialized queues and queue 3 as common 

queue. Both servers 1 and 2 can be present at queue 3 at the same time serving a 

customer each. If there is only one unit waiting in queue 3 then the server who reaches 

queue 3 first servers the waiting unit. The service times of type-y customer are 

independently and identically distributed according to distribution FSj(t), having mean

bj, second moment bj2) and Laplace-Stieltjes transforms B*(s) ,y=l,2,3. We assume the

service time distribution to be exponential. The service discipline is 1-limited at each 

station, i.e., each time server arrives at a queue, it serves at the most 1 customer. The 

queue discipline is FCFS at each queue. The switch over times of the server between

11
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queues 1 and 3 and between queues 2 and 3 are independently identically distributed with 

exponential distribution, first two moments as rj, r2 and r,(2), r2<2) respectively. The 

switch over times of the server between queues 3 and 1, and between queues 3 and 2 are 

independently identically distributed with exponential distribution, having first two 

moments as r3 and r3(2). We also assume that both the servers continuously rove between

stations 1 and 3 and between stations 2 and 3 respectively even though their sub-systems 

may be empty. For each server, the switch over times between queues are assumed to be 

independent of each other, independent of those of the other server and also independent 

of the inter arrival times and service times at each queue.

Before proceeding with the discussion of the solution of the model, terms and 

notations referred to in the thesis are defined followed by the relevant literature review.

2.2 DEFINITIONS

We now define some of the terms that would be used through out the thesis.

• A continuously roving server is one that continuously switches among the queues 

even though there is no one waiting at any of the queues, i.e., irrespective of the

system states.

• The switch point is the instant (time epoch) at which the server begins to move to the

next queue.

• The switch over time is the time needed by the server to physically move from queue j 

to the queue j+1. A switch over time may be zero. However, when the server never 

stops, sum of the switch over times over a server cycle must be strictly positive.
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The following definitions are the same as defined by Marsan et al. (1990).

• The arrival instant is the instant when the server arrives at a queue.

• The polling instant is the instant of arrival of a server to a queue where upon arrival 

the server can serve a waiting customer.

Marsan et al. (1990) use these two different epochs because in their model at most 

S, S > 1, servers can be present at a queue. If there are S servers serving customers at a 

queue then the arriving server does not serve any waiting customers in that queue and 

moves on to the next queue in the cycle. Therefore that server observes the arrival instant 

but does not observe the polling instant. Hence, every arrival instant is not followed by a 

polling instant. According to the classical definition, a polling instant is the moment 

when the server arrives at a queue and is ready to serve any waiting customers. Therefore 

each time a server arrives at a queue it observes a polling instant but Marsan et al. (1990) 

do not observe the polling instant if the arriving server finds S servers present at that 

queue. Because of this their definition of polling instant differs from the usual definition. 

In our system there is no restriction on the maximum number of servers that can be 

present at a queue. Therefore each time a server arrives at a queue, it servers at most one 

customer, if any waiting. Hence the arrival instants and the polling instants are the same.

• The residual j-cycle is the time from the arrival of a type- j customer until the server 

returns to the queue j.

• The station cycle time is the time interval between two consecutive polling instants by 

any server at queue j.
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• The station-server cycle is the time between two consecutive polling instants at queue 

j by server k.

• The, server-intervisit time is the time between the consecutive arrival instants of 

server k at queue j.

• The intervisit time is the time between the two consecutive polling instants of any 

server at queue j.

Figures 2.1 and 2.2, drawn after giving notation illustrate some of the definitions.

2.3 NOTATION

Following notation and system parameter definitions are referred to through out

the thesis.

• 4 : arrival rate to queue j.

j
: total arrival rate to the system.

: service time distribution of type-y customer.

: Laplace-Stieltjes transform of service time distribution of type-y

customer.

• bj : mean of service time distribution of type-/ customer.

: finite second moment of service time distribution of type-/' customer.

• P = lLPj ■ total system load where p, = A} b}
j

• r/ : mean of switch over time distribution from queue j.

. r(2)J : finite second moment of switch over time distribution from queue j.
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• RCj : residual j-cycle, the time from the arrival of an arbitrary type- j customer 

until the server returns to queue j.

• Cj : station j cycle time, is the time interval between two consecutive polling

instants by any server at queue j.

• Cj'k : station-server cycle, the time between two consecutive polling instants at

queue j by server k.

• Ij : intervisit time, the time between the two consecutive arrival instants of

any server at queue j.

• Ijjc : server-intervisit time, the time between the consecutive arrival instants of

server k at queue j.

• : interarrival time of server k at queue j in nth intervisit of server k.

In our system since each time a server arrives at a queue it servers at most one unit, if any 

waiting in the queue therefore, h* Cjk and Ij Cy.

• Rj : switch over time, the time needed by the server to physically move from

queue j to queue/+1.

• R = Rm : total switch over time in nth intervisit cycle.

• Wj : waiting time in queue j.

Figure 2.1 illustrates the above mentioned definitions for queue 1 which is served 

by only one server, server 1. (Since queues 1 and 2 are identical, the diagram is exactly 

same for queue 2).
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Figure 2.1: Sequence of events at queue 1.

Figure 2.2 illustrates the above mentioned definitions for queue 3 which is served

by both the servers, server j,j =1,2.
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2.4 LITERATURE REVIEW

There has been a tremendous increase in literature on polling models in the recent 

years. The main reason for the increase in literature is the fact that multi queue system 

can be used to model many real life situations with varying degrees of assumptions. The 

latest development of polling models is multi queue multi server system that can 

represent a lot of real life and interesting situations including the service sector. Initially 

the polling models with only two queues and single server were investigated (Takacs, 

1968; and Eisenberg, 1971) because it was easier to study such systems. As the 

knowledge proliferated, attempts were made to study more generalized systems, i.e., 

polling systems with more than two stations (Cooper and Murray, 1969; and Cooper, 

1970). Recently polling systems with multiple servers has started getting some attention 

but because of the complicated structure of the resultant mathematical model only 

approximate methods have been proposed so far (Morris and Wang, 1984; Marsan et al., 

1990; Mei and Borst, 1997). Although, many kinds of generalized systems have been 

developed over period of time, still even today, two queue systems are studied more often 

than general ones. The reason for this can be attributed to the fact that the two queue 

systems are simpler to analyze. A comprehensive literature survey on Polling Models has 

been carried out by Takagi (1990,1997).

The 1-limited service discipline, often referred to as alternating service discipline, 

received attention as early as in late 70s. This kind of system attracted the attention of 

researchers because of its ability to give equal opportunity to all queues to be served as 

opposed to exhaustive system where the server empties the queue before moving on to
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the next queue. This results in an increase in the weighted sum of mean waiting times, 

pseudo conservation law, in queue for the 1-limited service as compared to the exhaustive 

service. 1-limited service finds most of its application in the service sector (and is 

preferred over other disciplines) as opposed to the manufacturing, because it attaches 

weight to the fairness, i.e. it gives opportunity to all the queues, which is important in 

case of human customers. But still very little work has been done in this area, especially 

in the case of asymmetric systems - the main reason being the difficulty in solving 

mathematical problems it gives rise to. The computation of exact analysis in two-queue 

case requires either solving singular integral equations, (Eisenberg, 1979) or boundary 

value problems (Boxma and Groenendijk, 1988; Boxma, 1984; Boxma and Cohen, 1983) 

from mathematical physics. It is still not generalized to the case with more than two

queues.

We now review some of the work that has been done on more than one kind of

customer class with cyclic and non-cyclic service discipline in detail.

The model discussed by Green (1985) was described in chapter 1. In order to

describe the state of the system following five components are needed.

(i) the number of type R units waiting in queue,

(ii) number of type G customers waiting in queue,

(iii) the number of busy type R servers,

(iv) the number of busy type G servers, and

(v) the number of type G customers who have been passed into service by a 

type R customer
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She reduced the above mentioned five-dimensional state space to two-dimensional 

Markovian state space -

(i) number of type R customers in service plus the number of customers of 

either type in the restricted queue (consisting of both type ot customers in 

FCFS), and

(ii) the number of type G customers in service plus the number of customers 

in the general queue (consisting of only type G customers who have been 

passed by a type R customer).

She then approximated the two-dimensional system, infinite in both dimensions, by a 

two-dimensional Markov process with finite second state variable. She also gave another 

approximation where she exploited the fact that the queues that have a matrix geometric 

steady state probability distribution can be solved by iterative techniques (Neuts, 1978).

Stanford and Grassmann (1993), as described in chapter 1, modeled the system as 

the continuous time Markov chain using matrix-geometric model given by Neuts (1981). 

They observed that the transition rate matrix had the structure of quasi-birth-and-death 

process and proposed its solution using iterative procedure as well as by state reduction

method of Grassmann.

Eisenberg (1979) studied a two queue, single server model with alternating 

service discipline and zero switch over times. He transformed the problem of determining 

the joint queue length distribution at the two queues into the problem of solving a 

complex Fredholm integral equation of second kind. Boxma and Groenendijk (1988), 

Boxma (1984), Boxma and Cohen (1983) studied the same model as Eisenberg (1979)
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did, but they took switch over times into consideration. To determine the joint queue 

length distribution at the two queues, they all transformed the problem to that of 

Riemann-Hilbert boundary value problem.

Since it was not very easy to obtain the expressions for the system performance 

measures, Blanc (1990) proposed an iterative numerical technique based on power series 

for evaluating queue length distributions of polling systems. He assumed the service 

times to be exponentially distributed and a Bernoulli service schedule. The Power Series 

method involves power-series expansion of the state probabilities as functions of one 

parameter, the traffic intensity, of the system. The coefficients of the power series are 

calculated iteratively therefore, it is easy to compute additional terms to increase 

accuracy of the performance measure. Also it requires little effort to obtain performance 

measures for various values of traffic intensity from the coefficients of the power series. 

The only limitation this method has is the large amount of computer memory space it 

requires to store the coefficients of the power series.

Boxma and Meister (1987) obtained approximations for mean waiting time for a 

single server multi queue symmetric system with non zero switch over times. Assuming 

that the mean residual cycle lengths E(RCj) are independent of j (and therefore we drop

b;+E(R)
the subscript j) and that E(CS)«—---------- , and using pseudo-conservation law ofJ 1 _

Watson (1984):

IPj(l-aj)E(Wj) = (2)

2(1 -P) j 2E(R)
Z0f)-r> E(R) 

2(1-P)
(2.1)

IPj(l + Pj),
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where otj is the probability of finding at least one customer waiting in the queue j and is

XjE(R)
approximated by: ctj * they obtained the mean residual cycle as:

E(RC) = 1-P — W?-- P E(R)

(l-p)p+Zp;l2(l-p)j ’ ‘ 2E(R)j
£<ri +ri

2(1-P)i

(2-2)

and mean waiting time in queue j as:

l-p + Pj 1-p
[l-p-X,E(R)J

(i-p)p+Zp5 
j j

P ,2 . P V>z (2) . 2

2(1 -p) j 2E(R) j

„> z E(R)
EOj +rj) + ;n..^gpj(i-pj)

2(1-p) j
w; +

(2-3)

Their approximation does not work that well for high arrival rate or asymmetric 

traffic. They also suggested a modification in case of high traffic in a queue - remove the 

queue with high traffic and compensate for its service time by increasing the switch over

times.

Since it was hard to solve two queue single server systems with 1-limited service 

discipline, only approximate expressions were proposed for estimating the mean waiting 

time in queue for the multi queue multi server systems with 1-limited service policy. 

Morris and Wang (1984) were one of the first to study the polling model with multiple 

servers. Assuming m independent servers, they obtained the mean cycle time for bulk 

arrivals and 1-limited service discipline as:



22

E(R)+ f Gjbj
j-y+i
y

E(C) = (2.4)
IPj

m

where Gj is the bulk size at y-7st queue and y is the largest integer such that 

XyE(C) < mGy. Then the queues J throughy are stable and y+1 through n are unstable.

And mean intervisit time for alternating service time discipline as:

E(C)
E(I) = ———. (2.5)

m

They approximated the mean waiting time in system, E(S^(Gj>), sojourn time in 

the bulk service model for 1-limited service discipline as:

(2-6)

where is the limiting probability that the queue length just before an arbitrary service 

epoch. The distribution of the intervisit time was approximated by Gamma-distribution 

with mean E(C)/m and coefficient of variation as .J(m-l)/(m + l) . The results show

that the approximations do not work that well when the server utilization is very high or 

the switch over time from one queue to other is very small. They gave the justification 

that the intervisit time intervals were assumed to be independent identically distributed 

(iid) while in reality there is a significant negative correlation of consecutive intervisit 

times in case of queues near saturation. When the switch over times are small, the cycle
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times of the servers were no longer independent. They also observed that the servers have 

tendency to congregate if they follow the same schedule.

Marsan, Moraes, Donatelli and Neri (1990) analyzed multi queue multi server 

system with non zero switch over times. They gave approximate closed form expressions 

for the estimation of average customer waiting time for two different cases where

1. at most one server (1 X Q), and

2. any number of servers (S X Q)

can simultaneously attend a queue. They independently derived the following expression 

to compute the mean waiting time in a queue which coincides with the one used by 

Boxma and Meister (1987)

E(C2)

E(W) =
2E(Cj)

l-XE^)’
(2-7)

where E(Cj) and E(C-)are the first two moments of the station cycle Cj. The E(Cj)

was given by:

mr
(2-8)E(Cj) = -

S-mXb

But using the same approximation for E(Cj) as Boxma and Meister (1987), they 

approximated the ratio E(C- )/E(Cj) as:

E(C2) _ S 
E(Cj) ” S-(m-l)Ab

mXb (2) mr / mAb^
4" 1+— + 1-

S-(S-l)p I S; s J
(r(2)-r2)

r(S-(S-l)p)

(2.9)



24

Thus equations (2.7), (2.8) and (2.9) together giving the mean waiting time in a queue for 

SXQ policy. The same expressions can easily be obtained for the 1XQ policy by 

substituting S = 1 in the expressions for SXQ policy.

Unlike Boxma and Meister (1987), and Marsan et al. (1990), Mei and Borst 

(1997) considered a polling model with multiple servers, where at each queue the servers 

followed a Bernoulli service strategy. They extended the idea of expressing the state 

probabilities as power series in the load as proposed by Blanc (1990) for single server to 

multiple servers. They also faced the problem of large memory requirement to store the 

coefficients of the power series that increase exponentially with the number of queues as 

well as number of servers. But, as pointed out by them, it can be resolved by removing 

the coefficients of the state probabilities that would not be needed for further 

computations and storing those of the relevant performance measures in relatively small

arrays.

The analysis of multi queue system with 1-limited service discipline involves 

mathematical physics, and only approximate solutions are available for multi server 

systems. Therefore, in this thesis we propose some approximate expressions for the 

mean waiting time in queue for a system consisting of 2 servers, 3 queues and 1-limited 

service discipline with non-zero switch over times.



CHAPTER 3

MODEL DISCUSSION

The system under consideration was described in the previous chapter along with 

the definitions of various terms and notation. In this chapter, we make the mathematical 

model of the system under study. Generating function technique is a standard technique 

used to find the exact queue length distribution in polling models and has been widely 

discussed in the literature since the beginning e g., see Cooper and Murray (1969). In the 

next section we formulate the imbedded Markov chain flow balance equations and in the 

section following that, we develop their generating function equations. The chain is 

imbedded at instants at which either server finishes serving a customer at any one of the 

three queues and at the instants at which either server finishes switching to any one of the 

three queues.

Since the units arrive to queue j (j = 1,2,3) according to the Poisson process with 

rate Xj, the probability, Qj(u,t), that u units arrive at theyth queue in an interval of length t 

is given by:

Qj(u,t) = ^-e’Xjt, j=l,2,3; u=l,2,... (3.1)
U!
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3.1 FORMULATION OF STEADY STATE FLOW EQUATIONS

We observe the system at a service completion by either server at any one of the 

three queues and at a switch over completion by either server at any one of the three 

queues. Let (j,ni,ri2,n3,Xk) denote the state of the system at an arbitrary observation epoch 

where j is the index of the associated queue, is the number of units in queue j,j - 1,2,3, 

including the ones under service and x* is a vector of size 4, first two entries represents 

the queue index attached to server 1 and server 2 respectively and the last two entries 

represent the status of server 1 and server 2 respectively. The status of the server is 

represented by either 0 or 1; 0 denoting the server is switching and 1, serving. Figures 

3.1 and 3.2 depict the status of the each server.

<
Queue 1

Serving (status 1)

Server 1

Queue 3

Switching (status 0)

To queue 1

To queue 3

Figure 3.1: Status of server 1
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Queue 3

To queue 2

Figure 3.2: Status of server 2

Queue 2

To queue 3

There are 16 possibilities of x;-and are defined as follows:

Xk Represe
ntation Explanation

Xl 1211 Server 1 is serving in queue 1 and server 2 is serving in queue 2
X2 1201 Server 1 is switching to queue 1 and server 2 is serving in queue 2
X3 1210 Server 1 is serving in queue 1 and server 2 is switching to queue 2
X4 1200 Server 1 is switching to queue 1 and server 2 is switching to queue 2
X5 1311 Server 1 is serving in queue 1 and server 2 is serving in queue 3
X6 1301 Server 1 is switching to queue 1 and server 2 is serving in queue 3
X? 1310 Server 1 is serving in queue 1 and server 2 is switching to queue 3
Xs 1300 Server 1 is switching to queue 1 and server 2 is switching to queue 3
x9 3211 Server 1 is serving in queue 3 and server 2 is serving in queue 2
Xio 3210 Server 1 is serving in queue 3 and server 2 is switching to queue 2
Xll 3201 Server 1 is switching to queue 3 and server 2 is serving in queue 2
Xl2 3200 Server 1 is switching to queue 3 and server 2 is switching to queue 2
Xl3 3311 Server 1 is serving in queue 3 and server 2 is serving in queue 3
Xl4 3310 Server 1 is serving in queue 3 and server 2 is switching to queue 3
X15 3301 Server 1 is switching to queue 3 and server 2 is serving in queue 3
Xl6 3300 Server 1 is switching to queue 3 and server 2 is switching to queue 3

Table 3.1: explanation and representation of xr.
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The server serves at most one waiting customer (if any present) upon arrival to a 

queue therefore, the system is sub-critical (stable) if and only if the mean number of 

arrivals at each queue during a cycle is less than 1 (Takagi, 1990). Suppose that 

equilibrium exists. Let Pj(ni,n2,n3,Xk) be the steady state probability of state (j,ni,n2,n3,Xk), 

i.e., p^ni,n2,n3,Xk) is the steady state joint probability that at queue j event, the status and 

position of two servers is given by vector x^and there are n2, n3 customers in queues 1, 

2 and 3 respectively including the unit under service. We use n to denote (ni,n2,n3). 

There are 32 possibilities ofp}(n,Xk)and are defined as follows:

Pj(n,xk) EXPLANATION

PiO^xJ
Probability that at the instant when server 1 finished serving a type-1 unit 

there are m, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 2 is serving in queue 2.

Pi(n,x2)
Probability that at the instant when server 1 finished switching to queue 1 

there are ni, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 2 is serving in queue 2.

p,(n,x3)
Probability that at the instant when server 1 finished serving a type-1 unit 

there are ni, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 2 is switching to queue 2.

Pi(n,x4)
Probability that at the instant when server 1 finished switching to queue 1 

there are m, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 2 is switching to queue 2.

P,(n,x5)
Probability that at the instant when server 1 finished serving a type-1 unit 

there are m, n2 and m customers in queue 1, queue 2 and queue 3 
respectively and server 2 is serving in queue 3.

Pi(«,x6)
Probability that at the instant when server 1 finished switching to queue 1 

there are nj, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 2 is serving in queue 3.

Pi(n,x7)
Probability that at the instant when server 1 finished serving a type-1 unit 

there are m, n2 and m customers in queue 1, queue 2 and queue 3 
respectively and server 2 is switching to queue 3.

Pi(n,x8)
Probability that at the instant when server 1 finished switching to queue 1 

there are m, n2 and n3 customers in queue 1, queue 2 and queue 3
respectively and server 2 is switching to queue 3. |
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P2(n>xj)
Probability that at the instant when server 2 finished serving a type-2 unit 

there are m, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 1 is serving in queue 1.

P2(n>x2)
Probability that at the instant when server 2 finished serving a type-2 unit 

there are ni, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 1 is switching to queue 1.

P2(n,x3)
Probability that at the instant when server 2 finished switching to queue 2 

there are ni, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 1 is serving in queue 1.

P2(n,x4)
Probability that at the instant when server 2 finished switching to queue 2 

there are ni, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 1 is switching to queue 1.

p2(n,x9)
Probability that at the instant when Server 2 finished serving a type-2 unit 

there are ni, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 1 is serving in queue 3.

P2(n,x10)
Probability that at the instant when server 2 finished serving a type-2 unit 

there are ni, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 1 is switching to queue 3.

P2(n,xn)
Probability that at the instant when server 2 finished switching to queue 2 

there are ni, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 1 is serving in queue 3.

P2(n,x,2)
Probability that at the instant when server 2 finished switching to queue 2 

there are ni, n2 and m customers in queue 1, queue 2 and queue 3 
respectively and server 1 is switching to queue 3.

P3(n,x5)
Probability that at the instant when server 2 finished serving a type-3 unit 

there are m, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 1 is serving in queue 1.

P3(n,x6)
Probability that at the instant when server 2 finished serving a type-3 unit 

there are ni, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 1 is switching to queue 1.

P3(n,x7)
Probability that at the instant when server 2 finished switching to queue 3 

there are n2 and m customers in queue 1, queue 2 and queue 3 
respectively and server 1 is serving in queue 1.

PsCn.xJ
Probability that at the instant when server 2 finished switching to queue 3 

there are nj, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 1 is switching to queue 1.

p3(n,x9)
Probability that at the instant when server 1 finished serving a type-3 unit 

there are m, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 2 is serving in queue 2.

P3(n,x10)
Probability that at the instant when server 1 finished serving a type-3 unit 

there are ni, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 2 is switching to queue 2.
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p3(s>xll)
Probability that at the instant when server 1 finished switching to queue 3 

there are m, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 2 is serving in queue 2.

p3(n,Xi2)
Probability that at the instant when server 1 finished switching to queue 3 

there are m, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 2 is switching to queue 2.

Probability that at the instant when server 1 finished serving a type-3 unit 
there are m, n2 and n3 customers in queue 1, queue 2 and queue 3 

respectively and server 2 is serving in queue 3.

P^faXjJ
Probability that at the instant when server 1 finished serving a type-3 unit 

there are nj, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 2 is switching to queue 3.

p^(n,x15)
Probability that at the instant when server 1 finished switching to queue 3 

there are ni, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 2 is serving in queue 3.

P^foXld)
Probability that at the instant when server 1 finished switching to queue 3 

there are m, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 2 is switching to queue 3.

P(32)(n,x13)
Probability that at the instant when server 2 finished serving a type-3 unit 

there are n3, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 1 is serving in queue 3.

P32)(n,x14)
Probability that at the instant when server 2 finished serving a type-3 unit 

there are ni, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 1 is switching to queue 3.

P(32)(n,x15)
Probability that at the instant when server 2 finished switching to queue 3 

there are n3, n2 and n3 customers in queue 1, queue 2 and queue 3 
respectively and server 1 is serving in queue 3.

P32)(s>x16) Probability that at the instant when server 2 finished switching to queue 3 
there are m, n2 and n3 customers in queue 1, queue 2 and queue 3 

respectively and server 1 is switching to queue 3.

Table 3.2: Explanation of probability p}(n ,Xk)

The state (7, rt ,xj), ni > 0, n2 > 1, n3 > 0 follows the following states:

1. server 1 finishes switching to queue 1 and finds >1 units in queue 1 and thus

spends a length of time equal to service time of a type-1 unit, server 2 is serving in 

queue2, i.e., the state(l,f,x2), > 1,^2 > 1,€3 > 0, or
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2. server 2 finishes switching to queue 2 and finds €2 >1 units in queue 2 and thus

spends a length of time equal to service time of a type-2 unit, server 1 is serving in 

queue 1, i.e. the state (2,7,x3), > 1,^2 > 1,^3 >0.

The state with ni = 0, n2 > 1, n3 > 0, also follows the state (l,0,n2,n3,x2), i.e., the server

1 finishes switching to queue 1 and finds an empty and, therefore, immediately records a 

service completion instant, server 2 is serving in queue 2.

Figure 3.4: State-transition diagram for ni = 0
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Let I0*1=0} denote the indicator function, I{ni=0>
1, if n, =0 

0, otherwise
V. '

Thus,

Pj (n,x,) = Pr{there are n,, n2, n 3units in queues 1,2 and 3 respectively, server 2 is 

serving a unit in queue 2 |server 1 finished serving a type -1 unit in time t}

nj+1 ii2 n3 _
p,(n,x,) = £ £Pi(^x2)

jQl(ni ~(^l ““ 1)3^2 0*2 “ ^2?0Qs(n3 ~ ^3 3)(1 — FS2 (t))dFSl(t) 
0

ni+1 n2 H3 _

+ z2 Zp2«x3)/1=U2=1Z3=O

JQ(n, - (I, -1), t)Q(n, -1,, t)Q(ns - i,, tje ^'dF,, (t)
0

+ Pi(0,n2,n3,x2)I{lll=0j,

ni > 0, n2 > 1, n3 > 0.

Or,

Pl(n>Xl)= £ 2 Z(Pl(^X2) + P2(^X3))

/1=i/2=1/3=0

(M)
ni-(Zi-l)

-lit (M)
n2-Z2

-X2t (M)
113-/3

-X3t -b2t

o(n,-(^-1))! (n2-Z2)!

+ p1(O,n2,n3,x2)I{ni=o},

e-^b.e’^dt

ni > 0, n2 > 1, n3 > 0.

or,
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nj+l n2 n3 _ _
p,(n,x,)=£2 X(Pi(4x2) + Pz(4x3))

/1=1Z2=U3=O

- (M)*2'* b e-<A.M„2„dt
J(n,-(I,-l))!(n2-Z,)! (n,-23)l ,e 

+ Pl ^2’®3’X2 )^{nj=O} ’

ni > 0, n2 > 1,113 > 0.

Similarly,

Pi(n,x2)= Z E E(p2(^,x4) + p3(^,x9))
^1=0Z2=H3=0

(x2t)“2"'2 (V)”3’*3 
U,-/,)! (n2-€2)! (n3-€3>!

-(A+b2+«3)t
r3C dt,

ni > 0,112 > 1,113 > 0.

nj+1 n2 n3 _  —Pi(n,x3)= J £ 2(P3G,xj) + PiG,x4))
^1=1Z2=OZ3=O

■ (M)-'-*'1-'’ mi--" t e
o(n,-(/,-1))! (n2-<,)!(»,-<,)! ,6 

+ p,(0,n2,n3,x4)I{ol0},

ni > 0, n2 > 0,113 > 0.

p,(n,x4)=5 2 Z(P3(Xxio) + P3(%x6))
^=0^2=0^3=0

-(X,!)--*' <X2Q-* (A,!/'’ r e_
J(n,-€,)! (n.-<.)! (n, -1,)!

ni > 0, n2 > 0,113 > 0.
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”1+1 "2 »3 _ _
Pl(n>X5)=ZX L (P3 (4 X7 ) + Pl (^X6 ))

Zl=«2=0 /3=1

■ (M--K'") M“‘2 (M)-3"3 e-<A.h^„d 
!(n,-(<, -l))!(n2-<2)! (n,-/3)l ,6 

"*■ Pl ^2 >n3 ■> X6 )^{nj=O} ■>

ni>0, n2>0, n3> 1.

Pi(n,x6)=X 2 2(p31)(^xi3) + p3(^x8))
Zj=O Z2—0 ^3=1

J(x,t)--'' (V)-^ r _,A^„

ni > 0, n2 > 0, n3 > 1.

nj+1 02 n3 _ _
Pi(n>x7)-22 2(pi(^x8)+p2(^xi))

/1=1Z2=OZ3=o

- (a.,t)--K'-i) (x2tr-,z (Mr~,a b eW„„dt 
l(n,-(€, -l))!(n2-€2)! (n3-<3)! ,e 

+ Pj(O,n2,n3,xg)I{nj=o},

ni > 0, n2 > 0,113 > 0.

Pi(n,x«)= 2 2 2(p3,)(^xi4) + P2(^x2))
Z1=0Z2=0Z3=0

«(x1t)n,~Zl (M”2"'2 (X3t)”3^3 
!(n1-^1)!(n2-^2)! (n3-€3)! r3e-(A+I2+r3)tdtj

ni > 0, n2 > 0,113 > 0.

Clearly,

Pi(niAn3»xi) = 0; n,>0,n3>0,

p1(n,,0,n3,x2) = 0; n, >0,n3>0,
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p,(ni,n2,O,x5) = O; n, >0,n2 >0,

p,(n,,n2,0,x6) = 0, n!>0,n2>0.

The imbedded Markov chain state equations for queue 2 can be written by 

symmetry and those for queue 3 are as follows:

ni n2 n3+* _ _
p3(m5)=ZI £(p3(f,x7)+p,(f,x6))

Zl=l/2=0Z3=l

"(M)”1-'1 (M”2"'2 (X3t)"3'(Z3_,) 
J(ni-€,)» (n2-€2)» (n3-<X3-1))!

b3e-(A+b1+b3)tdt

+ p3(n1,n2,O,x7)I{n3=o},

ni > 1, n2 > 0, n3 > 0.

ni n2 n3+l _ _p3(h,x6)=£ X £ (p31)(^x13) + p3(€,x1!))
/!=0Z2=0 *3=1

o(n,-<,)! (n2-t2)l (n,-(<3-1))!

+ P3 (ni ’ n2 »0» Xj )I{n3=0} ■>

ni > 0, n2 > 0, n3 > 0.

p3(n,x7)=XX ZCpiCXxJ + p^^x,))
^=1/2=0 Z3=0

___ j. g-(A+bj+i2)tdt
i(ni-€,)! (n2-€2)! (n3-£3)! 2 ’

ni > 1, n2 > 0, n3 > 0.

p3(n,x3)=£ 2 X(P3n(£x,4) + p2(f,x2))
Z] =0^2=0-^3=0

r
0 (n,-£,)! (n2-f2)! (n33)ir,e ’
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ni > 0, ti2 > 0, n3 > 0.

_ a, 52, "ij;1 - -
p3(n,x9) = X Z Z(p3(Ax,,) + p2(^x10))

Z,=0Z2=U3=l

(X2t)n2'*2 (X3t)”3‘(Z3_,) 

o(nj-^j)! (n2-^2)! (n3-(^3-1))!
b3e-(A+b2+b3).dt

+ p3(n1,n2,O,xn)I{ll3=Oj,

ni > 0, n2 > 1, n3 > 0.

n] no 113+I _ _
P3(n,x10)=Z L Z (P32>(^x13) + p3(7,x12))

Z,=O/2=O/3=1

vnj-Z,»(X1t)n,‘tl (M”2'*2 (M)”34*3"1’ 

o(nj-^j)! (n2-/2)! (n3 -(^3 -1))!

+ P3 (ni,n2’0’X12 )l{n3=0}>

(A+i3+b3)t
dt

ni > 0, n2 > 0,n3 > 0.

P3<XXll) = J 2 Z(Pl(^Xl) + P2(^Xl2))

(M)’H2 (Mn

o(n,-.Q! (n2-€2)! (n3-f3)!
rie-(A+b2+n)tdtj

ni > 0, ti2 > 1,113 > 0.

P3(n,X12)= 2 2 Z(P32) (^X15 ) + Pi (4 X3 )) 
Z|=0

J
02-^2(M)"1"'1 (/-..t)"”2 (xst)\n3~^3

r,e (A+ri+i3)t
Un,-€,)! (n2-€2)! (n3-^)! 1 dt,

ni > 0, n2 > 0, n3 > 0.
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ni no n3+l _ __
P31)(S,X13)= L L L(p32)(^X14) + p3,)(^Xl5))

Z1=0Z2=0Z3=2

j(M)ni <i (mp-Z2 e-(A+2b3),dt

{ (n,-Z,)! (n2-^2)! (n3 -(Z3-1))! 3®

+ p3° (ni > n2 4, X15 )I{„3=1},

ni > 0,112 > 0, ti3 > 1.

P3n(n,X14)= 2 Z (P31)(^X16) + P2(^X9))
Z1=0Z2=0^3=l

,J (A'l)- e-,A^.„,dt

o(n,-^,)!(n2-^2)!(n3-(^3-l))! 36 

+ p<1)(n,n,O,x16)I{n3=o},

ni > 0,112 > 0,113 > 0.

P31)(nJxi5)= Z Z Z(PlXJ) + p32)(^X16))
£]=Q t2=Q £3=1

»(X,t)ni_Zl (X2t)“2’Z2 (M)”3-'3 
{(n,-^)!(n2-/2)! (n3-/3)> -(A+b3+n)‘

Iic dt,

ni > 0, n2 > 0, ns > 1.

P31)(n>xi6)= Z Z Z(Pi(^x7) + p2(4xn))
/1=0/2 =0Z3=0

(M)”2-'2 (M)”3’*3

0 (n,-€,)! (n2-€2)! (n3-£3)!
r^^^dt,

ni > 0, n2 > 0, n3 > 0.
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p32>(n>X13)= X Z(P32)(^X14) + P3,)«X1J))

o(n,-^i)!(n2-Z2)!(n3-(^3-l))! 3 

+ P32)(nl5n2,l,x14)I{n3=1},

ni - 0, n2 > 0,113 > 1.

p32)(n,x14) = J § 2(p2 (£,x9) + p<n(€, x16))
Z1=0£2=0 *3=1

-(A,!)- '' (X2t)-^,z li# - _,A,b„)t

o(n, (n2 -€2)! (n3

ni > 0,112 > 0,113 > 1.

P32)(n’Xl5)= 2 2 2 (P32)(^X16) + Pl(^Xs))
Z1=0Z2=0 *3=1

»(Mn,“/1 (M)”2’*2
{(n,-€,)! (n2-^2)! (n3-(^3 -1))!

+ P32)(ni,n2Ax,<;)I{B3=op

b3e-(A+b3+n)tdt

ni > 0, n2 > 0,113 > 0.

Ps2)(n,xi6)= 2 2 2(Pi<XX7) + P2(£,X10))
*1=0*2=0*3=0

!(n1-Z1)!(n!-<2)!(n,-2!)!r!’ :

ni > 0,112 > 0,113 > 0.

It is evident that,

P3(°>n2,n3>X5) = 0; n3>0,n2>0,

P3(0,n2,n3,x7) = 0; n2>0,n3>0,
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p3(n,,0,n3,x9) = 0; n3 >0,n, >0,

p3(n,,0,n3,x„) = 0; n, >0,n3 >0,

P3I)(n1n2,0,x13) = 0; n, >0,n2 >0, 

p31)(n,,n2,0,x15) = 0; n2 >0,n2 >0. 

P32)(ni>n2>°,x13) = 0; n, > 0,n2 > 0, 

P32)(ni>«2Ax14) = 0; nj>0,n2>0.

3.2 FUNCTIONAL EQUATIONS FOR GENERATING FUNCTIONS

Define the probability generating function g/z ,Xk) as:

gj(z,xk)= Z Z Z Pj(n,xk)z”1z22z33 , j = 1,2,3; k=l,...,16
ni=0 n2=0113=0

Therefore, gi(z ,xi) is given by:

gi(z,x,)=Z Z ZPiC^xJz^z^z"3
nj=0112=0113=0

00 00 00

gi(z,x,)= Y ZPiC^xJzj’z^z’3 
nj=0 112=1 n3~0

00 00

+ Z ZPi(niAi^xjzj’z”3
nj=0113=0

00 00 00 nj+1112 n3 _ _
gi(z,x,)=£ Z Z(XZ Z(Pi(^x2) + p2<7,x3))

n|=0n2-l 113=0 ^1=1/2-^3-0

J(n,-(<,-l))'(n,-<2)l 1 ' ' 2 3

00 00

+ Z Zp(°,n2,n3,x2)z"2z”3
n2=l 113=0

because pi (ni,0,n3) = 0.

Changing the order of summation, we get:
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00 CO 00 __ __

gl(Z,Xl) = ZZ E(Pl(^X2) + p2(^X3))Zl,Z22Z33
Z1=l/2=1^3=0

•; i - (Mat)"’-'3

o ni=/i-l (n! — (€: — 1)! n2=/2 (B 2 ~ 2 ) ’ n3=z3

—e_(A+bl+b2 )4dt) + g, (0, z2, z3, x 2)
Z1

CO 00 co __ __
gl(z,xi) = g1(0,Z2,Z3,X2) + (£ £ Z(Pi«X2) + P2(^X3))Zl’Z22z33

Zl=0 €2=0^3=0

co co

- Z Z(Pl(^lA^3,X2) + P2(^lA^3,X3))Zllz33
Z1=0Z3=0

+ Z (Pl (0,0,I3, X 2 ) + p2 (0,0,13, x3 »Z J3
z3=o

- Z Z(Pl(0^2^3.X2) + P2(0^2^3,X3))Zl2zS3
z2=oz3=o

+ Z (Pl (0,0, 3 , X2 ) + p2 (0,0, i 3 , x3 ))z33
€3=0

3
00 {j -(A+bj +b2 Xjzj )t

- Z(P.(0,0,^3,X2) + P2(°,0,^3,Xs))^3)/-^ 3=1 dt
Z2=o 0 Zj

Since V n3 > 0, pi(ni,0,n3,x2) = 0 V ni > 0, n3 > 0; p2(0,n2,n3,x3) = 0 V n2 > 0, n3 >

3
00 b -(A+b1+b2-2Xjzj)t j,

0;and J—'-e 3=1 dt =----------------- ------ 5-------- , therefore on rearrangement of
°Zl z/A + bj +b2-ZX/P

>1

terms we get:

http:z1(A+b1+b2-2:A.jz
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8l (Z> X1) =---------------- 1------ 5-------- (gl (Z> X2 ) + g2 (Z> X3 ) ~ g2 (Z1 A Z3 ,X3 )
zi (A + b j + b2 —Xjz j)

j=i

zi(A + b,+b2-^Xjzj)
- g, (0, z2, z3, x 2 )(1------------------ ---------------- )).

*>,

The above equation relates the state end of service completion at queue 1 to the 

state at the end of previous state. The state end of service completion at queue 1 follows 

one of the three possibilities:

1. previous state is (1,7, x 2), £ j *0;

2. previous state is (2,7, x3), f 2 - 0,

3. previous state is (l,0,n2,n3,x2). Since queue 1 is empty at the moment server 1

finished switching to queue 1, a service completion event is immediately recorded.

The factor---------------—5-------  accounts for the customers that arrive during the service
A + bj +b2

j=i

of type-1 customer, and the factor l/z3 accounts for the departure of the served customer 

from queue 1.

Similarly,

_ r3 - _
g, (z, x 2 ) =------------------ -------- (g2 (z, x4 ) + g3 (z, x9 ) - g2 (z, ,0, z3, x4 )).

A + r3+b2-£XjZj 
j=l
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g, (z, x3) =--------------- i--------------- (g3 (z, X J) + g, (z, x4 )
ZiCA + bj+rj-JljZj)

z^A + bj+rj-XXjZj)
- g, (0, z2, z3, x4 )(1---------------- - ----- ---------)).

b,

- r3 - -gl (z, X4 ) =------------- --------(g3 (z, x10) + g3 (z,x6)) .
A + 2r3 -2>jZj 

j=l

g, (z, x,) =----------------!------ 5--------(g3 (z,x7 ) + gt (z, x6) - g3 (Zj, z2,0, x7)
z,(A + b, +b3 -LXjZj)

j=l

Zj(A + b, +b3-LXjZj)
- g, (0, z2, z3, x 6 )(1------------------ ----- ---------- )).

b,

r
gl (z, X6) =------------- -—j------ (g<n (z, x13) + g3 (z, x8) - g3 (z,, z2,0, x8)).

A + r3 + b3 —
j=i

gl (z, x7) =---------------- ?----- --------- (g1 (z, x8) + g2 (z? x1)
ZiCA + bj+^-^XjZp 

j=i

3
Zj(A+b,+r2-XVj)

- g, (0, z2, z3, x, )(1---------------- - ----- ---------- )).
b,

f
gl (z, X,) =------------ -—5-------(g^ (z, x14 ) + g2 (z, x 2)).

A + r2 +r3 -2>jZj
>1

Equations follow by symmetry for queue 2, therefore are not mentioned here and 

for queue 3,
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g3 (z,x5) =----------------------- 3-------- (g3 (z,x7) + g, (z,x6) - g, (0,z2 ,z3, x6)
z3(A + b, + b3 -£XjZj)

z3(A + b, +b3
- g3 (z,, z2,0, x 7 )(1------------------ ---------------- )).

b3

g3 (z> *6) =--------------- !-------3-------- (g30 (z, x13) + g3 (z, x g)
z3(A + r3 +b3 — XAjZj)

3
z3(A + r3+b3-^XjZj)

- g3 (zj, z2,0, x, )(1---------------- - ----- ---------- )).
b3

_ r2 _ _
g3 (z, x7) =---------------- 3------- (g2 (z, X,) + g, (z, x8) - g, (0, z2, z3, X, )).

A + bi+r2-£XjZj

r
g3 (z, Xg) =------------ 2—-------- (g^ (z, x14 ) + g2 (z, x2)) .

A + r3+r2-£xjZj 
j=i

g3 (z, X9 ) =--------------------------------- (g3 (z, xn ) + g2 (z, x10) - g2 (z, ,0, z3, xI0 )
z3(A + b2 +b3 — 2^A,jZj)

z3(A + b2 +b3 -XXjZj)
- g3 (zi, z2,0, xn )(1----------------- - -------- --------)).

b3

g3 (z, X1O) =---------------- ------ 5--------(g<2) (z, x13) + g3 (z, x12)
z3(A + r3 +b3 -IXjZj)

j=l
3

z3(A + r3 + b3 -JXjZj)
g3 (Z1, z2 X12 )(1

http:b3-_LA.jz
http:b3-_LA.jz
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- ri - _g3 (z, xn ) =------------------ 1-------(gi (z,x!) + g2 (z, x12 ) - g2 (z, ,0, z3, x12 )).
A + b2 +Tj -£A,jZj

J*
g3 (z, X12 ) =------------ ------------ (g<2) (z,x15) + g, (z, x3)) .

A + r3+ii-£XjZj

Ij
g3n (z,x13) =-------------- 3—3-------- (g*2) (z, x14 ) + g<J) (z, x J5) + g<2) (z, z2,1, x14 )

z3(A + 2b3

z3(A + 2b3 -XXjZj)
- g3° (z,, z2,1, x15 )(1--------------—-------- )).

b3

g3° (z,x14 ) =---------------- ------ --------- (g3° (z, x16) + g2 (z, x9)
z3(A + r2+b3-£Xjzj)

z^A + r.+^-jXjZj)
" g3° (z,, z2,0, x16 )(1------------------ ----- -------- )).

b3

g3° (z, X„ ) =------------ - — ------- (gj (z,x J) + g‘2) (z, x16) - g<2) (z, , z2,0, x16)).
A + b3 +r, -JXjZj

g3n (z, x16) =------------- —--------(gj (z, x7) + g2 (z, xn )).
A + ^+r.-JXjZj

|j
g32) (z, X13) =-------------- 3—-------- (g *2) (z, X14 ) + g™ (z, x 15) + g<° (z, z 2,1, x13)

z3(A + 2b3 -LXjZj)

z3(A + 2b3 -XXjZj)
- g32) (z,, z2,1, xI4 )(1---------------- —------- )).

b3
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gs2) (Z, X14 ) =------------ - —3------- (§2 (z, X9 ) + g^ (z, X16) - g<n (z,, z2,0, x16)) .
A + b3 + r2 -£XjZj

j=l

gs2) (z, x15) =---------------- --------------- (g32) (z, x16) + gj (z, X J )
z3(A + r, + b3 -IXjZj) 

j=l

3
ZsCA + rj+^-XXjZj)

- ga2) (Zi, Z2,0, x16 )(1---------------- - ----- ---------- )).
^3

gs2) (z, x,6) =-----------^—3------- (gj (z, x7) + g2 (z, xn )).
A + ii+r2-£xjZj 

j=i

It is difficult to solve the above set of equations because of the presence of terms

like: gj(0,z2,z3,x2). Therefore, we look at the symmetric system as we expect it to be

less complicated than the asymmetric system.

3.3 SYMMETRIC SYSTEM

We consider a symmetric system, i.e., we assume that Xi = X2 = X, bi = b2 = b, and 

H = r2 = r. This implies that = g32)(z,x16). Therefore, we drop the

superscripts (1) and (2) from now on. Also, A = 2X + X3 and ^XjZj = X(zt +z2) + X3z3.
j=i

Then the above set of equations reduce to the following:
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gi(z,x,)=----------------- 3--------(gi (z,X2) + §2(z>X3 ) - g2 (Z1Az3, x3)
z,(A + 2b-IXjZj)

>1

z,(A + 2b-£Xjzj)
- g, (0, z2, z3, x 2 )(1-----------------------------)).

b

r3
gi (z, x2) =---------------- -------- (g2 (z,x4 ) + g3 (z, x9) - g2 (z, ,0, z3, x4 )).

A + r3 +b-£Xjzj 
j=i

gl (z, X3) =------------------------------ (g3 (z, X, ) + g, (z, x4 )
z,(A + b + r3 - JXjZj)

j=i

z,(A + b + r3-£XjZj)
- gi (0,z2, z3, x4 )(1---------------- -—------- )).

b

gi (z, x4 ) =--------------5------- (g3 (z, x10) + g3 (z, x6)).
A + 2r3 -EXjZj 

j=i

gl (z, x5) =-----------------------3--------(g3 (z,x7 ) + g, (z, x6 ) - g3 (Zj , z2,0, x7 )
Zj(A + b + b3 - JXjZj)

Zj(A + b + b3 -EXjZj)
- g, (0, z2, z3, x6 )(1------------------ —------- )).

b

gl (z, X6) =------------------ 5-------(g3 (z,x13) + g3 (z, x8) - g3 (z,,z2,0,X,)).
A + r3 +b3 -EXjZj
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Si (Z, X 7) =-------------------5--------- (g, (z, xg) + g2 (z,x,)
zi (A + b + r - ^2 jZj)

j=i

z,(A + b + r-£Xjzj)
- gi (0, z2, z3, xg )(1------------------------------- ))•

b

- r3__gj (z, X,) =---------------- -------- (g3 (z, x14 ) + g2 (z, x2)) .
A + r + r3 - JXjZj

Equations follow by symmetry for queue 2, therefore are not mentioned here and 

for queue 3,

g3 (z, x 5) =  --------------------3---------(g3 (z, x 7) + g, (z, x 6) - g, (0, z2, z3, x 6)
z3(A + b + b3 -^A.jZj)

z3(A + b + b3-^Xjzj)
- g3 (z,, z2,0, x 7 )(1---------------- - ----- ----------)).

t>3

g3 (z, x6) =----------------------3-------- (g3 (z, x13) + g3 (z, x„)
z3(A + r3+b3-^Xjzj)

z^A + rj+^-^XjZj)
- g3 (z„z2,0,xg )(1---------------- - ----- -------- )).

t>3

g3 (z, x7) =--------------- -------- (g2 (z,x,) + g, (z, xg) - gj (0, z2 ,z3, xs)).
A + b + r-^XjZj 

j=i

_ r__
g3 (z, x8) =---------------- -3------- (g3 (z, x14 ) + g2 (z, X 2)).

A + r + r3 -ZXjZj 
j=i
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g3 (z,x9) =------------------------------- (g3 (z,xn ) + g2 (z, X1O ) - g2 (Zj ,0, z3, x,0 )
z3(A + b +b3 -£Xjzj) 

j=i

z3(A + b + b3-XA,jZj)
~ §3 (Z1 > Z2 ,0, X,j )(1 7 ' ))•

b3

b3
g3 (z, x10) — - (g3 (z, x13) + g3 (z, x12)

z3(A + r3+b3-X^jzj)

Z3(A + r3+b3-Z^jZj)

- g3 (Z1 , z2,0, x12 )(1---------------- - ----- ---------- )).
b3

_ r _ __
g3 (Z, X11 ) =--------------------------3-----------(g 1 (Z, X1) + g2 (Z> X12 ) - g2 (Z1 Z3 > X12 )) •

A + b2 + r-£AjZj 
j=i

g3 (Z>X12 ) =------------------------ 3-----------(g3 (Z,X15 ) + gl (Z, X3 ))•

A + r + r3 -^XjZj 
j=i

g3° (Z> X13 ) =---------------------—3---------(g^ (Z?X14 ) + g3° (Z, X15 ) + g32) (Z, Z2 ,1, X,4 )
z3(A + 2b3 -SXjZj) 

j=i

z3(A + 2b3-£Xjzj)
- gs0 <Zi, z2,1, x15 )(1---------------- —------- )).

b3

g3n (z, X14 ) =--------------------- 5-------- (g3 (z, x16) + g2 (z, x9)
z3(A + r + b3 - JXjZj) 

j=l

z3(A + r + b3 -
-g3(z,,z2,0,x16)(l-

http:b3-,LA.jz
http:z3(A+2b3-,LA.jz
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(i) - r - -
g3 (Z,X15 ) =---------------- -3------- (gi (z, x 5) + g3 (z, x16) - g3 (z,, z2,0, x16)).

A + b3 +r-£Xjzj 
j=l

g32) (z, x13) =--------------—----------(g<2) (z, x14 ) + g™ (z, x„ ) + g*0 (z, z2,1, x15)
z3(A + 2b3 -SX/J

z3(A + 2b3 - JXjZj)
— g3 \z,, z2,1, X14 )(1 - - )).

b3

g32) (z, X,4) =----------- T~—3------- (g2 (z,x9) + g3 (z, x16) - g3 (z,,z2,0,x16)).

A + b3 +r-£A,jZj 
j=i

g32) (z, x,5) =--------------------- --------- (g3 (z, x16)+gj (z, x,)
z3(A + r + b3-^XjZj) 

j=l

z3(A + r + b3 -ZXjZj)
- g3 (z, ,z2,0, xI6 )(1---------------- - ------- ------- )).

^3

_ F _ _
g3 (z, X16) =------------5------- (g, (z, x 7) + g2 (z, x„ )) .

A + 2r-£Xjzj
j=i

But once again we get the terms like g2 (z, ,0, z3 ,x3) which are difficult to solve for. We

also face problem of cycling, i.e., for example, if substitute the expressions for g,(z,x2)

and g2(z,x3) in gj(z,Xj); and, g3(z,x5)and g1(z,x4) in g2(z,x3)and so on, we

again get the term g2(z,x3), from where we had started. Since even the symmetric

system, identical specialized queues, is also difficult to solve for, our next step is, 

therefore, to consider model approximations. We seek the model approximations instead

http:z3(A+r+b3-LA.jz
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of numerical since the goal of this research is to find optimal degree of skills overlap 

between the two servers, we need to obtain closed form expressions for system 

performance. We discuss such approximations in the next chapter. In chapter 5 and 

chapter 6 we do the numerical analysis of the different methods proposed in the next 

chapter along with the conclusions and scope for further study.



CHAPTER 4

THE APPROXIMATIONS

In the last chapter we formulated the imbedded Markov chain state equations and 

the functional equations for queue length probability generating functions. Because of 

the difficulty in solving the resulting functional equations, we propose approximations for 

obtaining the mean waiting time in the system. Since the exact expression for mean 

waiting time in queue is not known even for a single server system, we follow the 

approach used by Boxma and Meister (1987), and Marsan et al. (1990). Both Boxma and 

Meister’s (1987), and Marsan et al. (1990) approximations work best for the symmetric 

system. Therefore, in order to use their results, we initially assume the two specialized 

queues to be symmetric, though later we relax this assumption.

We approximate our three queues and two servers system by a two queues single 

server system. The server in the approximate system is considered to be either twice as 

fast or of the same speed as the server in the original system. The arrival rates in the 

single server system is assumed to be either half of the arrival rate, or the same, or twice 

of the arrival rate in the two servers system. The combination of arrival rate and the 

service rate in the two queues of the approximating single server system is picked in such

51
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a way that the total load carried by each server remains the same as in the original two

servers system.

4.1 NOTATION

p(1): the proportion of time server 1 is attending to customers

p(2): the proportion of time server 1 is attending to customers

In case of the symmetric system, p(1) = p(2). Let p(1) = p(2) = P. P is the same as p used 

by Boxma and Meister (1987) and Marsan et al. (1990).

4.2 MEAN WAITING TIME ANALYSIS

An arbitrary arrival of type-y has to wait until the server returns to queue j and 

until all the customers in front of him have been served (Boxma and Meister, 1987). 

Therefore, mean waiting time is the sum of remaining cycle time (residual y-cycle) and 

the time it has to wait until all units in front of it are served. Since at most one type-y 

customer is served in a complete server cycle, we have mean waiting time in queue j as:

E(Wj) = E(RC j) + E(Xj )E(C j), j = 1,2,3. (4.1)

Since the poisson arrivals see time averages (Wollf, 1982), the queue length at queue j 

just before the arrival of a type- j customer equals the mean queue length at the queue at 

any arbitrary instant of time. Therefore, E(Xj) is given by:

E(Xj) = XjE(Wj), j = 1,2,3. (4.2)

Substituting for E(Xj) from equation (4.2) in equation (4.1) we get:
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E(RCj) 
E(Wj) =------—3

l-XjECCj)
j = 1,2,3. (4.3)

4.3 SYMMETRIC SYSTEM

4.3.1 CYCLE ANALYSIS

The proportion of the time a server spends switching in first N cycles is given by 

(Marsan et. al, 1990):

N , . N /
£R(n) £R(n) /N
n=l n=l

N . . N . /zi’V zi'V/n
n=l n=l

Taking limit as N —»oo, we get:

E(R) _ 2r 
E(IJ t) ~ E(I„)

Since Ij,k = Cjjc, Ij = Cj, therefore, the proportion of time server k spends switching 

is given by:

E(R) 2r 2r
E(Ijk) E(Ijk) E(Cjk)’

j = 1,2,3.

This implies that proportion of time server k spends serving customers is:

2r
1-

E(Cj>k)’
j = 1,2,3.

Average arrival rate of work in the system is 2Xb + Since the system is 

symmetric, i.e., the queues 1 and 2 are identical in terms of the arrival and the service



54

rates, and the service rate for both the servers in queue 3 is same, therefore, in the long 

run both the servers get an equal amount of work, on average. That is, each server’s 

average rate of arrival of work is Xb + Xjb3/2. This is also the average proportion of time 

each server is serving the customers, P. Since for a system to be stable, the average 

arrival rate of work must equal the average rate at which work is completed, we have,

2r
1------------ = P.

E(Cj;k)

Or,

E(Cj>k) =
2r

1-P

The time between consecutive arrival/polling instants of a server k at queue j is:

M . ,
CW=II-’,

j=l

where M is the number of servers different from server k that poll station j between two 

consecutive polling instants of server k, time between the start and end of the station- 

server cycle. Since E(Cj) = E(Ij) and since M is a stopping time for the point process 

defined by the sequence of server arrivals at a station, Wald's equation (Cinlar, 1975) 

gives:

E(Cjl) = E(M)E(Cj).

For queue j, j= 1, 2, number of severs different from server k, k = 1, 2 

respectively, that poll the stations between two consecutive polling instants of server k is 

zero (as these are the two specialized queues). Clearly from figure 2.1 it follows that
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E(Cj J = E(C,)?

E(C12) = 0,

E(C2>1) = 0,

E(C22) = E(C2).

For queue 3, only one more different server from server k,k= 1,2, polls it (figure 2.2) 

therefore,

E(C31) = E(C32) = 2E(C3).

And hence,

2r

1-P’

and

r
E(C3)

E(R) 

2(1-P)

(4-4)

(4.5)

Using Boxma and Meister’s (1987) approach we get a different approximate 

expression for the cycle length. Define

a.jk= Pr(/-cycle contains a type-A service)

or a.jk= E(number of type-A services in a /-cycle) (because, a /-cycle contains at 

most one type-A service)

= XkE(Cj), j * k; (4.6)

Since ay-cycle consists of a type-A service, services of customers of other types and the 

sum of N switch-over times, therefore,
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ECCp^bj+EW+ZoA
>k

substituting for otjk from equation (4.6) in the above equation and rearranging the terms, 

we get:

E(Cj) =
bj+E(R) 
1-P + Pj ’

(4-7)

4.3.2 STABILITY CONDITIONS

The necessary and sufficient conditions for stability of a system are given as follows 

(Kuhen, 1979):

P + XjE(R) < 1, j = 1,2;

and since queue 3 is served by 2 servers therefore, we have 2 equations corresponding

with each server as:

P + X3pE(R)< 1

and P + A,3 (1-3) E(R) < 1

where a is the proportion of time server 1 spends serving a customer at queue 3. Since 

the system is symmetric, in the long run both the servers get an equal amount of work, on 

average therefore, 3 = V2 and therefore the stability condition for queue 3 is: X3r + P < 1.

Hence the conditions for the system to be sub-critical (stable) are:

Xr + P<l, (4.8)

and X3r + P<l. (4.9)
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These are the conditions for having finite mean waiting time at a queue. The stability 

conditions can be interpreted in terms of feasible range of X3 for a specific range of b as

follows.

Range ofb Feasible range of X3 Additional condition

0 <b <b3-2r
( 2-2r-b 2-b

X, <min 1,-------------- ,---------------
b3-2r-b b3+2r-bj b + 2r < min(2, b3)

b3 - 2r < b < b3 max
( b-2 + 2r^

0,
< b-b3+2rj

f
< X3 < min

\

2-b
1,

b3 + 2r — b
b<2

b3<b<b3 + 2r max
( b-2 + 2r>

0,
< b-b3+2r;

/
< X3 < min

\

\ 2-b >

b3 + 2r — b j
b3<2

b3 + 2r < b
( b-2 b-2 + 2r^

max 0,-------------- ,--------------- <X3
b-2r-b3 b + 2r-b3J b3 + 2r<2

0<b
( 2>

max 0,1 —
I bJ

< X3 < min
2>

b3,>

0<b
( 2>

max 0,1 —
I r,

V
Ico

V
I

( 2^ 
1 1,- 
l rJ

Table 4.1: Feasible range of X3 for a specified range ofb

4.3.3 MEAN RESIDUAL CYCLE LENGTH ANALYSIS

The mean residual cycle is computed using the Watson’s pseudo conservation law

given by equation (2.1).
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We assume that E(RCj) is independent of j (Boxma and Meister, 1987). 

Substituting E(Wj) from equation (4.3) in Watson’s pseudo conservation law, equation 

(2 .1), on simplification and rearrangement of terms we get:

E(RC) =
(1-P)

pj(l-P-E(R)Xj)
1’W

P W+_L-Sr»+ E(R) >
2(1-P)i

2E(R)“J 2(l-P)?Pi<1 + Pl)y

(4.10)

Since queues 1 and 2 are identical, only one of them can be considered. With out 

loss of generality, we consider queue 1 only and the corresponding results for queue 2 are 

exactly the same.

We use the following combinations of Xi, X3; bi, b3, E(Cj) to obtain E(RCi) and 

also assume that the switch over times between each queue is exponentially identically

distributed with first two moments as r and r(2) respectively. Therefore, E(R) = 2r.

E(Cj) Xi — X, X3 — X3 /2. 
bi = b, b3 = b3.

Xi — 2X, X3 — X3. 
bi = b/2, b3 = b3/2.

Xi — X, X3 — X3. 
bi = b, b3 = b3/2.

E(R)/(l-p) METHOD 1 METHOD 2 METHOD 3

(bj+E(R))/(l-p+bjXj) METHOD 4 METHOD 5 METHOD 6

Table 4.2: Combinations of Xi, X3; bi, b3 and E(Cj) to obtain E(RCi)

The justification for above approximations is as follows: Methods 1 and 4 look at

the system from server l's perspective. For it, queue 2 does not exist and in long run, it 

serves approximately half the load in queue 3, The rate of switching between two queues 

remains the same, r. Methods 2 and 5 assume the total load in the system as same but 

server as twice as fast in serving the customers but, the mean switch over time remaining
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the same, r. Methods 3 and 6 assume that the load in queue 1 and 3 remains the same but 

the server is twice as fast in serving customers in queue 3 and the mean switch over time 

remain the same, r. The methods 1, 2 and 3 differ from methods 4, 5 and 6 respectively 

only in E(Cj). Methods 1, 2 and 3 use the E(Cj) as given by equation (4.4) and (4.5) 

while methods 4, 5 and 6 use E(Cj) as given equation (4.7). We use the same

r
combinations of Xi, Z,3; bi, b3; E(Cj) to obtain E(RC3) but with E(R) =--------- instead

(2 —P)

of E(R) = 2r.

We need to make this modification in the switch over times since in high traffic 

the servers tend to coalesce, and thus stations see batches of servers rather than a uniform 

distribution of servers along the cycle (Boxma and Meister, 1987). The switch over times 

are reduced by a factor of 2 in low traffic, but remains the same for P —» 1.

Once E(RCj) is computed, it is substituted back into equation (4.3) along with the 

corresponding E(Cj) to get E(Wj) for each queue,/ = 1,2,3.

METHOD 7: SINGLE QUEUE WITH VACATIONS METHOD:

In order to approximate E(W3), we consider a system with single server, Poisson 

arrivals with rate X3/2 and the exponential service with mean b3. The service times are 

independent of the arrival times. The server goes on vacation with mean equal to the sum

of:
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1. sum of mean of three exponential distributions - two switch over times each with 

mean r, and service time with mean b/2 with probability a (probability that the server 

finds at least one customer waiting in queue) and

2. 2r with probability 1 - a (probability that no customer is waiting in queue), 

i.e.,

E(V) = E(R) + ba (4.11)

E(R)X 
where a =--------- ,

1-P

E(R) = 2r

and second moment:

E(V2) = E(R2) + 2a(b2 + bE(R)), (4-12)

E(R2) = 6r2.

E(W) is then computed by substituting in the following formula (Takagi, (1991), 

page 228, equation (6.1b)):

E(W) =
E(V2) _ X(b(2) + 2bE(V) + E(V2) 
2E(V)+ 2(1-P-XE(V)) (4-13)

where E(V) and E(V2) are the first two moments of the vacation times. The justification 

for using this method is that if we look at the system from queue 3’s perspective, it is 

served by 2 identical servers who go away on vacation for the time period equal to either 

total switch over time in that cycle, with probability a or for the sum of mean of three 

exponential distributions - two switch over times and one service time at queue 1 or 2 -

with probability 1- a. Since both the servers are identical, each server on an average gets
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half the load of queue 3, therefore, we consider the system with Poisson arrivals with rate 

W2 and the exponential service with mean b3 where the server goes on vacation to serve 

queue 1.

Then mean number in queue j, y=l,2,3, E(Lj), is computed using Little’s Formula:

E(Lj) = XjE(Wj), j = 1,2,3 (4.12)

4.4 ASYMMETRIC SYSTEM

Consider the system where the arrival and the service rates are not identical in the 

two specialized queues but the total load in both queues is same, 

i.e., Pj = Xjbj = p2 = X2b2,

and p3 = X3b3 = p, +p2.

We also assume that the total proportion of time each server is busy serving customers in 

its specialized queue and the common queue is same, i.e., we assume that p(1) = p(2) = P. 

The load in the common queue is considered as the sum of the loads in the side queues. 

Clearly the proportion of time each server spends in queue 3 is not the same.

The total amount of time server 1 spends switching to and from queue 1 and 

queue 3 is: E(Ri) = n + n. Similarly, the total switch over time for server 2 switching to 

and from queue 2 and 3 is: E(R2) = r2 + r3. Looking at the switch over times from queue 

3’s perspective we get the switch over time as: E(R.3) = (ri + r2) / 2 + r3.
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4.4.1 CYCLE ANALYSIS

Define

a.jk= Pr(/-cycle contains a type-7: service)

= E(number of type-i services in a /-cycle) (because, ay-cycle contains at 
most one type-A service)

= AkE(Cj), j # k;

(Boxma and Meister (1987)). Since a /-cycle consists of a type-7 service, services of 

customers of other types and the sum of N switchover times, therefore,

E(Cj) = bj +E(R,) + £ajkb[

substituting for otjk from equation (4.6) in the above equation and rearranging the terms,

we get:

E(Cj) =
bj+E(Rj)
i-p+Pj

4.4.2 STABILITY CONDITIONS

The necessary and sufficient conditions for stability of a system are given as follows 

(Kuhen, 1979):

P + XjE(Rj) < 1, j = 1,2;

and since queue 3 is served by 2 servers therefore, we have 2 equations corresponding

with each server as:

P + X3 3 E(R3) < 1

and P + X3(l-3) E(R3) < 1
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where P is the proportion of time server 1 spends serving a customer at queue 3.

Therefore the necessary and sufficient conditions for the system to be sub-critical are: 

X,E(R,) + P < 1, (4.15)

X2E(R2) + P<1, (4.16)

and P + max(p, 1-P) X3 E(R3) < 1 (4.17)

4.4.3 MEAN RESIDUAL CYCLE LENGTH ANALYSIS

For the asymmetric system, we propose following approximations:

The average amount of time server 1 is not serving at queue 1 is: 1 - X,b, and

amount of time both servers are not serving in their respective specialized queues is: 

(1 - X,b,) + (1 - X2b 2). Therefore, amount of load offered at queue 3 to server 1, X31, is

given by:

x yi-W
31 2-Xjb, -X2b2

Similarly, the amount of load offered to server 2 at queue 3, X32, is given by:

^2^2)
32 - 2-X,b,-X2b2 '

To approximate mean residual cycle length, we substitute following combination 

of Xi, X3 and 13; and, E(R) in equation (4.10).

QUEUE Xi bi ^3 b3 E(R)
1 Xi bi X3i b3 E(Ri)
2 x2 b2 x32 b3 E(R2)

Table 4.3: Combinations of Xi, X3; bi, b3to obtain E(RCi) and E(RC2)
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For approximating the mean residual cycle time for queue 3, we have 3 methods 

with following combination of Xi, X3.

Xi — (X, + X2 )/2, 
u _X,b,+X2b2

Xi — Xj + X2, 
b _X1b1+X2b2

Xi — (X, + X2)/2,
 Xjb, + X2b2

Ai + A2
X3 = X3/2, b3 = b3.

1 2(X,+X2)’

X3 = A,3? b3 = b3/2.

1_ X,+X2 ’

X3= X3, b3 — b3/2.

METHOD 1 METHOD 2 METHOD 3

Table 4.4: Combinations of Xi, X3; bi, b3 to obtain E(RC3)

Where E(R) = r3 /(2 - P) + (r, + r2 )/(2(2 - P)).

The justification for these methods is same as those for the symmetric case. 

Substituting the different combinations of Xi, X3 in equation (4.10) we get different 

values of E(RC). Then once E(RCj) is computed, it is substituted back into equation (4.3) 

along with the corresponding E(Cj) to get E(Wj) for each queue j, j = 1,2,3.

In addition to these 3 methods, we also have method 4 which is the single sever 

model with multiple server vacations. In order to approximate E(W3), we consider a 

system with single server, Poisson arrivals with rate X3/2 and the exponential service with 

mean b3. The service times are independent of the arrival times. The server goes on 

vacation with mean and second moment given by equations (4.11) and (4.12) respectively

with

E(R)

and E(R2) = 2((^-)2 + (^-)r, + r2).
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E(W) is then computed by substituting in equation (4.13). The justification for using this 

method remains same as earlier but with different length of vacation period.

Once mean waiting time in queue is known then mean number in queue 

E(Lj), is computed using Little’s Formula, equation (4.14).

The numerical analysis of the approximation methods for the symmetric system 

mentioned here is discussed in chapter 5 and those for asymmetric system in chapter 6.



CHAPTER 5

DISCUSSION OF RESULTS FOR SYMMETRIC 
SYSTEMS

In the previous chapter we proposed a few approximation methods to compute 

mean waiting time in queue. In this chapter we discuss their numerical analysis and 

make a few recommendations for the symmetric system.

The approximate values for the mean waiting time in queue are computed using 

Microsoft EXCEL 97 spread sheet (1997) and are compared with the simulated estimates 

computed by a program written in Microsoft FORTRAN (version 5.1) with SLAM II 

(version 4.6 (1986)) subroutines (Appendix A). A sample output of the FORTRAN 

program with SLAM II subroutines has been attached as Appendix D. The program was 

run on Compaq Presario 4504 - Pentium 200.

Before using any program, it is very important to test its validity. We tested our 

program by comparing the simulated values against the mean waiting time in a M/M/l 

system with vacations. Having arrival rate of A, and service rate b in the specialized 

queues and no traffic in the common queue results in two independent M/M/l systems. 

The sum of the exponential switch over times is considered as the vacation. The server 

goes on multiple vacation on finding the queue empty on its return from a vacation. We

66
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used the equation (4.10) to compute the mean waiting time in queue for the M/M/l 

system with vacations.

The results - exact mean computed using the equation (4.10), simulated mean, 

standard deviation, 95% confidence interval and the relative error - have been

summarized below.

X b P r Exact
mean

Simulated
mean

Standard
deviation

95% confidence 
interval % error

0.5 0.5 0.25 0.0001 0.0835 0.0816 0.3549 (0.0783,0.0850) -2.276
0.5 1.0 0.5 0.0001 0.5003 0.5198 1.108 (0.4980,0.5416) 3.898
0.5 1.5 0.75 0.0001 2.251 2.218 3.117 (2.157,2.279) -1.466
0.5 1.8 0.9 0.01 9.108 9.188 9.887 (9.101,9.276) 0.8784
0.5 1.9 0.95 0.01 22.81 22.54 19.29 (22.37,22.71) -1.184

Table 5.1: Exact mean, simulated mean, standard deviation and 95% confidence interval 
for the mean, and the relative error for testing the FORTRAN program with SLAM II 
subroutines.

The percent error is calculated as:

(simulated mean - exact mean)100
% error = - ------------------------------------------- .

exact mean

Table 5.1 shows that the exact mean does not differ significantly from the 

simulated one at 5% level of significance, except for p = 0.95 even though it is being 

underestimated by only 1.18%. This can be attributed to very slow convergence to steady 

state in heavily loaded queues. Therefore, the program can be used to test the 

approximate results.

SLAM II (Pritsker, 1986), Simulation Language for Alternative Modeling, is an 

advanced FORTAN based simulation language. Instead of writing numerous lines of 

codes, SLAM II furnishes the network symbols for the composition of graphical models

http:22.37,22.71
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that can be easily converted into input statements for direct computer processing. It 

contains subprograms that support both discrete event and continuous model 

developments. A discrete change system can be modeled with in either an event 

orientation or process orientation or both. SLAM II provides a set of standard 

subprograms to perform common discrete event functions such as event scheduling, file 

manipulations, statistics collection, and random sample generation.

The process orientation uses network structure that consists of specialized 

symbols called nodes and branches, which represent elements in process like queues, 

servers, and decision points. These symbols are combined into a network model that 

represents the required system.

In the event orientation, it is necessary to define all the events and the possible 

changes to the system when an event occurs, which are coded as FORTRAN subroutines. 

SLAM II itself controls the sequence of the codes to be executed.

A continuous model in SLAM II is coded by specifying the differential or 

difference equations that describe the dynamic behavior of the state variables. The 

equations are coded in FORTRAN by using a set of special SLAM II storage arrays. 

SLAM II automatically integrates to calculate the values of state variables within 

accuracy provided by the modeler. (Pritsker, 1986).

All of the simulated results through out the thesis are sensible to the number of 

runs and the run length used. The program ran for almost 4 hours before giving the 

results for p = 0.25 and r = 0.0001 when it was set for 5000 time units. Simulation run 

length was chosen to be as large as possible under the time and resource constraints.
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OBSERVATION: Table 5.2 shows the simulated mean values as well as the

corresponding 95% confidence interval for queue 1, p =0.5 and pi of 0.05 (Xi = 0.05, bi = 

1) and for different values of r. Clearly, asr-»0, i.e., as switch over times become

very small, even a ten fold change in r has little effect on the mean waiting time. 

Therefore, for analysis, we look at a reasonable range of r - min 10% of b.

r Simulated mean Standard deviation 95% confidence interval
0.0001 0.0263 0.1714 (0.0155,0.0372)
0.001 0.0274 0.1778 (0.0161,0.0387)
0.01 0.0291 0.1819 (0.0175,0.0406)

Table 5.2: Comparison of the simulated mean for different values of r.

The results - the approximate value of mean waiting time in queue 1 using 6

different methods proposed on page number 58, the simulated mean (SIM), standard 

deviation (S.D.) and the corresponding 95% confidence interval (LCL, UCL) have been 

summarized in the table below for the server utilization of 0.25,0.5 and 0.75.

Xi bi ^3 b3 p
Approximate mean using method SIM S.D. LCL UCL

1 2 3 4 5 6
0.45 0.5 0.1 0.5 0.25 0.1422 0.2185 0.1382 0.1487 0.2306 0.1446 0.1300 0.4278 0.1269 0.1332
0.35 0.5 0.3 0.5 0.25 0.1076 0.1619 0.0984 0.1045 0.1869 0.1110 0.0954 0.3539 0.0925 0.0983
0.25 0.5 0.5 0.5 0.25 0.0754 0.1116 0.0647 0.0873 0.1362 0.0765 0.0641 0.2786 0.0614 0.0669
0.15 0.5 0.7 0.5 0.25 0.0448 0.0655 0.0359 0.0592 0.0809 0.0432 0.0352 0.1966 0.0327 0.0377
0.05 0.5 0.9 0.5 0.25 0.0149 0.0217 0.0112 0.0216 0.0258 0.0132 0.0109 0.1065 0.0085 0.0132

0.45 1.0 0.1 1.0 0.5 0.7584 1.240 0.7310 0.8049 1.329 0.7763 0.7311 1.246 0.7220 0.7402
0.35 1.0 0.3 1.0 0.5 0.5527 0.8342 0.4916 0.4427 0.9885 0.5671 0.5159 1.041 0.5073 0.5245
0.25 1.0 0.5 1.0 0.5 0.3750 0.5313 0.3056 0.4236 0.6406 0.3542 0.3122 0.7165 0.3051 0.3192
0.15 1.0 0.7 1.0 0.5 0.2167 0.2925 0.1609 0.3087 0.3212 0.1700 0.1509 0.4461 0.1452 0.1565
0.05 1.0 0.9 1.0 0.5 0.0705 0.0919 0.0476 0.1149 0.0822 0.0418 0.0390 0.2056 0.0345 0.0436

0.35 1.5 0.3 1.5 0.75 3.326 14.27 2.918 1.720 17.63 3.508 3.121 4.053 3.088 3.155
0.25 1.0 0.5 2.0 0.75 2.149 4.396 1.435 2.819 4.234 1.344 1.369 2.230 1.347 1.391
0.15 1.5 0.7 1.5 0.75 1.008 1.529 0.7200 1.929 1.412 0.6365 0.4801 0.9076 0.4686 0.4916

Table 5.3: Comparison of different methods for queue 1
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Below are the graphs depicting the approximate and simulated mean waiting

times in queue 1 for different values of p along with 95% confidence interval.

0.25 -i -METHOD 1
METHOD 2 
METHOD 3 
METHOD 4 

-METHOD 5 
-METHOD 6 
SIMULATED 
LCIL 
UCIL

queue 1 rho = 0.25

0.05 015 lambda 10.25 0.35 0.45

Figure 5.1: mean waiting time in queue 1 for p= 0.25.
t ■

Figure 5.2: mean waiting time in queue 1 for p= 0.5.
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Figure 5.3: mean waiting time in queue 1 for p= 0.75.

Table 5.4 gives the percent error of all the 6 methods discussed in chapter 4 for

different values of p. The Percent error is computed as:

%error =
(approximate value - simulated value)100 

simulated value

* I,
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Xi bi ^3 b3 P
% Error between the simulated mean and approximate 

mean using method
1 2 3 4 5 6

0.45 0.5 0.1 0.5 0.25 9.336 68.04 6.268 14.32 77.32 11.19
0.35 0.5 0.3 0.5 0.25 12.75 69.66 3.126 9.554 95.84 16.33
0.25 0.5 0.5 0.5 0.25 17.59 73.99 0.793 36.07 112.3 19.27
0.15 0.5 0.7 0.5 0.25 27.29 85.97 1.947 68.08 129.6 22.47
0.05 0.5 0.9 0.5 0.25 37.73 99.52 2.953 98.88 138.1 21.37

0.45 1 0.1 1 0.5 3.737 69.65 -0.0160 10.10 81.73 6.181
0.35 1 0.3 1 0.5 7.127 61.69 -4.706 -14.19 91.61 9.916
0.25 1 0.5 1 0.5 20.13 70.19 -2.116 35.70 105.2 13.46
0.15 1 0.7 1 0.5 43.65 93.89 6.623 104.6 112.9 12.71
0.05 1 0.9 1 0.5 80.66 135.4 21.83 194.4 110.5 7.057

0.35 1.5 0.3 1.5 0.75 6.540 357.1 -6.509 -44.89 464.9 12.37
0.25 1 0.5 2 0.75 56.93 221.0 4.767 105.9 209.2 -1.862
0.15 1.5 0.7 1.5 0.75 110.0 218.4 49.98 301.8 194.0 32.58

Table 5.4: Relative error between the simulated mean and different methods for queue 1 

Below are the graphs for the relative error corresponding to Table 5.4.
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Figure 5.5: Relative error for queue 1, p = 0.5

Figure 5.6: Relative error for queue 1, p = 0.75



74

Most of the methods overestimate the mean waiting time in the queue 1. But, the 

percent error of methods 2 and 5 is very large. Out of methods 1, 3, 4 and 6, clearly 

method 3 gives the least relative error. Method 3 gives approximations reasonably well 

for the mean except when p is moderate or large and the arrival rate in the other queue is 

high. When p is not moderate or large and the arrival rate in queue 1 is not very small, 

the relative error is at the most 7% for method 3. Therefore, we use this method for 

further analysis of queue 1.

Table 5.5 summarizes the results - the approximate value of mean waiting time in 

queue 3 using 7 different methods of approximations proposed on pages 58 and 59, 

average, (average of the values computed using method 1 and single queue method), the 

simulated mean (SIM), standard deviation (S.D.) and the corresponding 95% confidence 

interval (LCL,UCL) for p of 0.25, 0.5 and 0.75.

bi X3 b3 P
Approximate mean using method

SIM S.D. LCL UCLSingle 
.. q

1 2 3 4 5 6 averag
e

0.45 0.5 0.1 0.5 0.25 0.0013 0.0123 0.0164 0.0238 0.0100 0.0132 0.0194 0.0068 0.0075 0.0873 0.0055 0.0094
0.35 0.5 0.3 0.5 0.25 0.0106 0.0364 0.0483 0.0657 0.0354 0.0480 0.0645 0.0235 0.0245 0.1631 0.0225 0.0266
0.25 0.5 0.5 0.5 0.25 0.0288 0.0607 0.0804 0.1016 0.0674 0.0941 0.1157 0.0447 0.0448 0.2273 0.0426 0.0471
0.15 0.5 0.7 0.5 0.25 0.0554 0.0857 0.1144 0.1326 0.1039 0.1499 0.1690 0.0705 0.0685 0.2947 0.0661 0.0710
0.05 0.5 0.9 0.5 0.25 0.0900 0.1122 0.1520 0.1600 0.1420 0.2123 0.2206 0.1011 0.0921 0.3502 0.0896 0.0947

0.45 1 0.1 1 0.5 0.0131 0.0671 0.0873 0.1297 0.0389 0.0478 0.0758 0.0401 0.0300 0.1815 0.0257 0.0343
0.35 1 0.3 1 0.5 0.0872 0.1976 0.2522 0.3569 0.1667 0.2137 0.3076 0.1424 0.1189 0.3965 0.1139 0.1239
0.25 1 0.5 1 0.5 0.2245 0.3304 0.4231 0.5562 0.3616 0.4904 0.6346 0.2774 0.2674 0.6883 0.2606 0.2742
0.15 1 0.7 1 0.5 0.4172 0.4739 0.6230 0.7443 0.5939 0.8612 1.000 0.4456 0.4525 1.047 0.4439 0.4612
0.05 1 0.9 1 0.5 0.6487 0.6377 0.8812 0.9388 0.8203 1.282 1.343 0.6432 0.6242 1.269 0.6150 0.6335

0.35 1.5 0.3 1.5 0.75 1.154 1.027 1.801 2.009 0.6744 0.9642 1.424 1.091 0.4201 0.8473 0.4094 0.4309
0.25 1 05 2 0.75 3.607 1.912 3.186 3.372 2.447 4.450 4.990 2.759 1.811 2.687 1.784 1.837
0.15 1.5 0.7 1.5 0.75 8.985 2.673 5.417 6.323 3.682 9.475 11.10 5.829 3.506 4.870 3.466 3.547

Table 5.5: Comparison of different methods for queue 3
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Following are the graphs corresponding to the table 5.5.
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Figure 5.7: mean waiting time in queue 3 for p= 0.25.
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Figure 5.8: mean waiting time in queue 3 for p= 0.5.
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Figure 5.9: mean waiting time in queue 3 for p= 0.75.

Table 5.6 gives the percent error of the different methods for computing the mean

waiting time in queue 3.

Xi bi x3 b3 P
% Error between the simulated mean and approximate mean 

using method
Single q 1 2 3 4 5 6 average

0.45 0.5 0.1 0.5 0.25 -82.44 64.50 119.4 218.3 33.86 77.43 159.6 -8.966
0.35 0.5 0.3 0.5 0.25 -56.62 48.50 96.78 167.9 44.12 95.50 162.8 -4.059
0.25 0.5 0.5 0.5 0.25 -35.83 35.38 79.48 126.7 50.27 109.9 158.2 -0.2253
0.15 0.5 0.7 0.5 0.25 -19.24 25.01 66.95 93.44 51.55 118.7 146.6 2.881
0.05 0.5 0.9 0.5 0.25 -2.303 21.77 64.96 73.64 54.17 130.5 139.4 9.733

0.45 1.0 0.1 1.0 0.5 -56.26 123.4 191.0 332.3 29.61 59.32 152.4 33.58
0.35 1.0 0.3 1.0 0.5 -26.69 66.17 112.1 200.2 40.20 79.77 158.7 19.74
0.25 1.0 0.5 1.0 0.5 -16.05 23.54 58.21 108.0 35.22 83.38 137.3 3.742
0.15 1.0 0.7 1.0 0.5 -7.808 4.717 37.66 64.47 31.24 90.30 121.0 -1.546
0.05 1.0 0.9 1.0 0.5 3.917 2.155 41.15 50.39 31.41 105.3 115.2 3.036

0.35 1.5 0.3 1.5 0.75 174.8 144.5 328.6 378.3 60.52 129.5 239.0 159.6
0.25 1.0 0.5 2.0 0.75 99.17 5.61 75.94 86.22 35.16 145.7 175.6 52.39
0.15 1.5 0.7 1.5 0.75 156.3 -23.75 54.49 80.34 5.012 170.2 216.7 66.25

Table 5.6: Relative Error between the simulated mean and different methods for queue 3.



77

Figure 5.10 through Figure 5.12 give the relative error for different methods and

different p corresponding to Table 5.6.

Figure 5.10: Relative error for queue 3, p = 0.25
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Figure 5.11: Relative error for queue 3, p = 0.5
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Figure 5.12: Relative error for queue 3, p = 0.75 

All methods except the single queue with multiple vacations method over
A’ ’’

estimate the mean waiting time in the queue 3. But, the percent error of methods 3 and 6

is very large. In methods 3 and 6, we assume the arrival rates as A, and X3 and the server

to be twice as fast in the second queue. Out of the rest of the methods, it is evident that 

taking average of the single queue method and method 1 gives the least relative error. 

This method (average of the two) gives reasonably good approximation for the mean 

except when p is moderate or large and the arrival rate in the queue 3 is high. When p is

not moderate or large and the arrival rate in queue 3 is not high, the relative error is at the 

most 10% in case of the proposed average method. Therefore, we use this method for 

further analysis of queue 3.
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Table 5.7 gives the results for queue 1 as the switch over time and p is varied.

The last column shows whether the approximated mean falls in the 95% confidence 

interval or not.

bi ^3 b3
r as
%

ofb
p APPROX SIM S.D LCL UCL % error

0.45 1 0.1 1 1 0.5 0.4528 0.4762 1.0475 0.4544 0.4979 -4.897
0.35 1 0.3 1 1 0.5 0.3144 0.3314 0.7926 0.3128 0.3500 -5.126
0.25 1 0.5 1 1 0.5 0.1982 0.2266 0.6281 0.2092 0.2440 -12.53
0.15 1 0.7 1 1 0.5 0.1035 0.1080 0.3715 0.0947 0.1213 -4.182
0.05 1 0.9 1 1 0.5 0.0295 0.0291 0.1819 0.0175 0.0406 1.370

0.45 1 0.1 3 1 0.6 0.8393 0.9945 1.931 0.9746 1.015 -15.61
0.25 1.2 0.5 1.2 1 0.6 0.3556 0.3745 0.8566 0.3626 0.3864 -5.054
0.05 3 0.9 1 1 0.6 0.0895 0.0592 0.2694 0.0507 0.0677 51.11

0.45 1 0.1 5 1 0.7 1.862 2.454 4.071 2.411 2.496 -24.13
0.05 5 0.9 1 1 0.7 0.2575 0.1365 0.4436 0.1226 0.1503 88.6

0.45 1 0.1 6 1 0.75 2.908 3.932 5.869 3.872 3.993 -26.06
0.35 1.5 0.3 1.5 1 0.75 1.434 1.497 2.330 1.469 1.524 -4.161
0.25 1 0.5 2 1 0.75 0.7994 0.8521 1.4598 0.8318 0.8724 -6.184
0.15 1.5 0.7 1.5 1 0.75 0.4622 0.3401 0.7716 0.3262 0.3539 35.93
0.05 6 0.9 1 1 0.75 0.4233 0.1720 0.5152 0.1558 0.1883 146.1

0.45 1.5 0.1 4.5 1 0.9 9.674 9.841 11.44 9.722 9.959 -1.692
0.35 1.5 0.3 2.5 1 0.9 5.240 6.257 7.944 6.163 6.350 -16.24
0.25 1.5 0.5 2.1 1 0.9 3.137 2.758 3.497 2.709 2.807 13.74
0.15 2.5 0.7 1.5 1 0.9 2.174 0.8223 1.407 0.7970 0.8477 164.4
0.05 4.5 0.9 1.5 1 0.9 0.8090 0.1749 0.486 0.16 0.19 362.6

0.45 0.5 0.1 0.5 10 0.25 0.1382 0.1300 0.4278 0.1269 0.1332 6.268
0.35 0.5 0.3 0.5 10 0.25 0.0984 0.0954 0.3539 0.0925 0.0983 3.126
0.25 0.5 0.5 0.5 10 0.25 0.0647 0.0641 0.2786 0.0614 0.0669 0.7928
0.15 0.5 0.7 0.5 10 0.25 0.0359 0.0352 0.1966 0.0327 0.0377 1.947
0.05 0.5 0.9 0.5 10 0.25 0.0112 0.0109 0.1065 0.0085 0.0132 2.953

0.45 0.5 0.1 1.5 10 0.3 0.2766 0.2743 0.6770 0.2673 0.2813 0.8599
0.35 0.6 0.3 0.6 10 0.3 0.1412 0.1383 0.4434 0.1331 0.1435 2.102
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0.25 0.6 0.5 0.6 10 0.3 0.0918 0.0927 0.3484 0.0879 0.0976 -1.004
0.15 0.6 0.7 0.6 10 0.3 0.0505 0.0496 0.2345 0.0453 0.0538 1.832
0.05 1.5 0.9 0.5 10 0.3 0.0272 0.0218 0.1510 0.0171 0.0266 24.48

0.45 0.5 0.1 3.5 10 0.4 0.9074 1.038 1.980 1.018 1.059 -12.60
0.35 0.5 0.3 1.5 10 0.4 0.2982 0.3272 0.7693 0.3182 0.3363 -8.868
0.25 0.8 0.5 0.8 10 0.4 0.1714 0.1759 0.5068 0.1689 0.1830 -2.553
0.15 1.5 0.7 0.5 10 0.4 0.1517 0.1360 0.4362 0.1281 0.1438 11.60
0.05 3.5 0.9 0.5 10 0.4 0.0946 0.0667 0.2860 0.0577 0.0757 41.78

0.45 1 0.1 1 10 0.5 0.7310 0.7311 1.246 0.7220 0.7402 -0.0160
0.35 1 0.3 1 10 0.5 0.4916 0.5159 1.041 0.5073 0.5245 -4.706
0.25 1 0.5 1 10 0.5 0.3056 0.3122 0.7165 0.3051 0.3192 -2.116
0.15 1 0.7 1 10 0.5 0.1609 0.1509 0.4461 0.1452 0.1565 6.623
0.05 1 0.9 1 10 0.5 0.0476 0.0390 0.2056 0.0345 0.0436 21.83 I

|

0.45 1 0.1 3 10 0.6 2.148 2.335 3.230 2.302 2.369 -8.037
0.35 0.3 0.3 3.3 10 0.6 1.567 2.089 3.314 2.050 2.128 -24.97
0.25 1.2 0.5 1.2 10 0.6 0.5471 0.5437 1.029 0.5294 0.5580 0.613
0.15 3.3 0.7 0.3 10 0.6 0.8792 0.7702 1.437 0.7444 0.7960 14.15
0.05 3 0.9 1 10 0.6 0.1382 0.0830 0.3162 0.0731 0.0930 66.42

0.45 1 0.1 5 10 0.7 24.28 22.43 21.87 22.20 22.65 8.252
0.35 05 0.3 3.5 10 0.7 3.035 4.495 6.223 4.422 4.568 -32.48
0.25 1.4 0.5 1.4 10 0.7 1.050 1.045 1.676 1.022 1.068 0.4790

0.35 1.5 0.3 1.5 10 0.75 2.918 3.121 4.053 3.088 3.155 -6.509 I

0.25 1 0.5 2 10 0.75 1.435 1.369 2.230 1.347 1.391 4.767 |

0.15 1.5 0.7 1.5 10 0.75 0.7200 0.4801 0.9076 0.4686 0.4916 49.98 I

Table 5.7: Approximate and simulated average mean waiting time; standard deviation of 
the mean; 95% confidence interval of the mean; and relative error for queue 1.

Table 5.8 gives the results for queue 3 as the switch over time and p is varied.
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Xi bi x3 b3
r as
%

ofb
p APPROX SIM S.D LCL UCL % error

0.45 1 0.1 1 1 0.5 0.0285 0.0181 0.1439 0.0089 0.0273 57.54
0.35 1 0.3 1 1 0.5 0.1011 0.0716 0.3241 0.0598 0.0835 41.13
0.25 1 0.5 1 1 0.5 0.1948 0.1491 0.5168 0.1346 0.1636 30.68
0.15 1 0.7 1 1 0.5 0.3096 0.2477 0.7271 0.2305 0.2648 25.00
0.05 1 0.9 1 1 0.5 0.4450 0.3240 0.8842 0.3057 0.3424 37.34

0.45 1 0.1 3 1 0.6 0.0883 0.0369 0.2087 0.0303 0.0434 139.4
0.25 1.2 0.5 1.2 1 0.6 0.3535 0.3087 0.8260 0.2972 0.3202 14.54
0.05 3 0.9 1 1 0.6 0.8345 0.7891 1.748 0.7710 0.8072 5.759

0.45 1 0.1 5 1 0.7 0.2602 0.0815 0.3351 0.0710 0.0921 219.1
0.05 5 0.9 1 1 0.7 1.9456 2.314 4.111 2.271 2.356 -15.91

0.45 1 0.1 6 1 0.75 0.4343 0.1231 0.4405 0.1092 0.1370 252.8
0.35 1.5 0.3 1.5 1 0.75 0.4702 0.2825 0.7303 0.2694 0.2956 66.45
0.25 1 0.5 2 1 0.75 1.2031 1.038 1.870 1.0120 1.064 15.91
0.15 1.5 0.7 1.5 1 0.75 1.4605 1.586 2.709 1.5538 1.618 -7.896
0.05 6 0.9 1 1 0.75 3.2089 3.894 6.413 3.8278 3.961 -17.60

0.45 1.5 0.1 4.5 1 0.9 0.9703 0.1251 0.3970 0.1126 0.1376 675.4
0.35 1.5 0.3 2.5 1 0.9 2.727 0.7266 1.334 0.7027 0.7506 275.3
0.25 1.5 0.5 2.1 1 0.9 5.023 3.682 4.995 3.613 3.752 36.41
0.15 2.5 0.7 1.5 1 0.9 8.801 9.370 12.92 9.218 9.522 -6.071
0.05 4.5 0.9 1.5 1 0.9 32.11 13.01 13.66 12.87 13.15 146.8

0.45 0.5 0.1 0.5 10 0.25 0.0068 0.0075 0.0873 0.0055 0.0094 -8.966
0.35 0.5 0.3 0.5 10 0.25 0.0235 0.0245 0.1631 0.0225 0.0266 -4.059
0.25 0.5 0.5 0.5 10 0.25 0.0447 0.0448 0.2273 0.0426 0.0471 -0.225
0.15 0.5 0.7 0.5 10 0.25 0.0705 0.0685 0.2947 0.0661 0.0710 2.881
0.05 0.5 0.9 0.5 10 0.25 0.1011 0.0921 0.3502 0.0896 0.0947 9.733

0.45 0.5 0.1 1.5 10 0.3 0.0183 0.0163 0.1311 0.0122 0.0205 11.98
0.35 0.6 0.3 0.6 10 0.3 0.0356 0.0354 0.1989 0.0318 0.0390 0.4199
0.25 0.6 0.5 0.6 10 0.3 0.0679 0.0672 0.2909 0.0632 0.0713 1.011
0.15 0.6 0.7 0.6 10 0.3 0.1076 0.1030 0.3775 0.0986 0.1074 4.445 |
0.05 1.5 0.9 0.5 10 0.3 0.1952 0.2192 0.5988 0.2130 0.2254 -10.941

1
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0.45 0.5 0.1 3.5 10 0.4 0.0800 0.0471 0.2323 0.0398 0.0544 69.76
0.35 0.5 0.3 1.5 10 0.4 0.1270 0.1002 0.3838 0.0933 0.1071 26.77
0.25 0.8 0.5 0.8 10 0.4 0.1414 0.1377 0.4463 0.1315 0.1439 2.638
0.15 1.5 0.7 0.5 10 0.4 0.2442 0.2668 0.7192 0.2584 0.2753 -8.477
0.05 3.5 0.9 0.5 10 0.4 0.8124 0.8428 1.674 0.8255 0.8601 -3.611

0.45 1 0.1 1 10 0.5 0.0401 0.0300 0.1815 0.0257 0.0343 33.58
0.35 1 0.3 1 10 0.5 0.1424 0.1189 0.3965 0.1139 0.1239 19.74
0.25 1 0.5 1 10 0.5 0.2774 0.2674 0.6883 0.2606 0.2742 3.742
0.15 1 0.7 1 10 0.5 0.4456 0.4525 1.047 0.4439 0.4612 -1.546
0.05 1 0.9 1 10 0.5 0.6432 0.6242 1.269 0.6150 0.6335 3.036

0.45 1 0.1 3 10 0.6 0.1464 0.0691 0.2805 0.0602 0.0779 112.0
0.35 0.3 0.3 3.3 10 0.6 0.8398 0.6096 1.323 0.5858 0.6334 37.76
0.25 1.2 0.5 1.2 10 0.6 0.5568 0.5141 1.064 0.4993 0.5289 8.313
0.15 3.3 0.7 0.3 10 0.6 2.3460 2.248 4.342 2.197 2.299 4.348
0.05 3 0.9 1 10 0.6 2.4521 2.273 3.2600 2.2388 2.306 7.902

0.45 1 0.1 5 10 0.7 0.5403 0.1353 0.4204 0.1220 0.1485 299.5
0.35 0.5 0.3 3.5 10 0.7 1.5105 0.9049 1.690 0.8745 0.9352 66.93
0.25 1.4 0.5 1.4 10 0.7 1.3538 1.009 1.710 0.9856 1.033 34.13

0.35 1.5 0.3 1.5 10 0.75 1.0908 0.4201 0.8473 0.4094 0.4309 159.6
0.25 1 0.5 2 10 0.75 2.7594 1.811 2.687 1.784 1.837 52.39
0.15 1.5 0.7 1.5 10 0.75 5.8292 3.506 4.870 3.466 3.547 66.25

Table 5.8: Approximate and simulated average mean waiting time, standard deviation of 
the mean, 95% confidence interval of the mean and relative error for queue 3.

OBSERVATIONS: For small switch over time, large p and low arrival rate in the 

queue, the proposed approximation methods do not give good results. The reason for the 

high relative error in these cases is high degree of asymmetry between the two queues. 

The high arrival rate in a queue makes it nearly unstable and hence the approximation 

method breaks down. The approximation method, otherwise, works very well, giving 

relative error on an average of 3.02% for p = 0.25, 5.66% for p = 0.3, 5.87% for p = 0.4,

4.32% for p = 0.5, 9.64% for p = 0.6, 7.92% for p = 0.7, and 16% for p = 0.75 for queue



83

1 and 0.13% for p = 0.25, 1.38% for p = 0.3,17.42% for p = 0.4,11.7% for p = 0.5, 8.3% 

for p = 0.6, 34% for p = 0.7 and 66.3% for p = 0.75 for queue 3. As compared to the 

approximations proposed by Boxma and Meister (1987), our approximations perform 

quite good for asymmetric system considering the degree of complexity involved in our 

model as compared to theirs.

RECOMMENDATIONS

We conclude by proposing method 3 for estimating mean in queue 1, average of 

single queue model with multiple server vacations and method 1 for queue 3 in case of 

symmetric system. These methods can be used when either the switch over times are not 

too small, or p is not too large, or the arrival rate in the other queue is not too high, 

leading to asymmetry. Our approximations perform quite well for symmetric system 

keeping in mind the degree of complexity involved in our model as compared to Boxma 

and Meister’s single server polling model. Although not included in this study, our 

methods can be used to determine the optimal allocation of load to the three queues. This 

will provide an efficient method to perform analysis of design of service systems.

In the next chapter, we report a numerical analysis for the asymmetric system.



CHAPTER 6

DISCUSSION OF RESULTS FOR ASYMMETRIC 
SYSTEMS

In chapter 5 we analyzed the symmetric system where the two specialized queues 

are identical. We propose method 3 for estimating mean waiting time in queue 1, and 

average of method 1 and single queue model for queue 3. In this chapter we consider a 

system where the two specialized queues are not identical but still have the same load. 

We conclude the chapter by making the recommendations and suggest topics for further

research.

We analyze the system by varying p from 0.25 to 0.6 and considering r as 10% of 

b. We do not consider p higher than 0.6 since for higher p, r as 10% of b is not feasible 

(it violates the stability conditions) and, the results for p of 0.6 are not so promising.

Table 6.1 summarizes the results - approximate mean waiting time in queuel 

using the equation (4.10) and the combination of Xi, bi, X3 and b3 as given in table 4.2 on 

page 58 (APPROX), the simulated mean waiting time in queuel (SIM), the standard 

deviation of the mean (S.D.) and the 95% confidence interval (LCL,UCL) of the mean 

and the relative error (% error) for queue 1 over a range of p from 0.25 to 0.6.

84
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bi ^2 b2 k 3 b3 P APPROX SIM S.D. LCL UCL
%

error
0.05 2.5 0.45 0.2778 0.5 0.5 0.25 0.0146 0.0458 0.2445 0.0310 0.0606 -68.04
0.15 0.8333 0.35 0.3571 0.5 0.5 0.25 0.0575 0.0486 0.2386 0.0401 0.0571 18.31
0.25 0.5 0.25 0.5 0.5 0.5 0.25 0.0775 0.0664 0.2896 0.0607 0.0721 16.68
0.35 0.3571 0.15 0.8333 0.5 0.5 0.25 0.0970 0.0801 0.3108 0.0728 0.0874 21.08
0.45 0.2778 0.05 2.5 0.5 0.5 0.25 0.1169 0.1117 0.3886 0.1037 0.1197 4.640

0.15 1.0 0.35 0.4286 0.5 0.6 0.3 0.0808 0.0688 0.2908 0.0584 0.0792 17.34
0.25 0.6 0.25 0.6 0.5 0.6 0.3 0.1128 0.0966 0.3582 0.0895 0.1036 16.83
0.35 0.4286 0.15 1.0 0.5 0.6 0.3 0.1429 0.1213 0.3986 0.1119 0.1306 17.81
0.45 0.3333 0.05 3.0 0.5 0.6 0.3 0.1732 0.1676 0.5079 0.1571 0.1781 3.314

0.15 1.333 0.35 0.5714 0.5 0.8 0.4 0.1413 0.1324 0.4258 0.1172 0.1476 6.722
0.25 0.8 0.25 0.8 0.5 0.8 0.4 0.2222 0.1813 0.5208 0.1711 0.1915 22.54
0.35 0.5714 0.15 1.333 0.5 0.8 0.4 0.2907 0.2443 0.5977 0.2303 0.2583 19.02
0.45 0.4444 0.05 4.0 0.5 0.8 0.4 0.3584 0.3316 0.7453 0.3162 0.3470 8.081

0.05 5.0 0.45 0.5556 0.5 1.0 0.5 0.1947 0.6600 1.222 0.6348 0.6853 -6.92
0.15 1.667 0.35 0.7143 0.5 1.0 0.5 0.4229 0.3520 0.7943 0.3388 0.3652 27.42
0.25 1.0 0.25 1.0 0.5 1.0 0.5 0.5862 0.3319 0.7537 0.3171 0.3467 66.52
0.35 0.7143 0.15 1.667 0.5 1.0 0.5 0.7428 0.2092 0.5476 0.1932 0.2251 12.54

0.25 1.2 0.25 1.2 0.5 1.2 0.6 0.8371 0.5733 1.077 0.5522 0.5943 46.02
0.35 0.8571 0.15 2.0 0.5 1.2 0.6 1.313 0.8445 1.428 0.8171 0.8718 55.44
0.45 0.6667 0.05 6.0 0.5 1.2 0.6 1.749 1.563 2.307 1.515 1.610 11.93

Table 6.1: Approximate and simulated average mean waiting time; standard deviation 
and 95% confidence interval of the mean; and relative error for queue 1.

Observations: The relative error decreases with the increase in the arrival rate in

the queue 1, when the arrival rate in the two specialized queues is made approximately 

equal and for small p - the average percent error being approximately -2% for p = 0.25,

14% for p = 0.3, 14% for p = 0.4, 25% for p = 0.5, and 38% for p = 0.6. However, our
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results are not bad as compared with the results of Boxma and Meister (1987) keeping in 

mind the degree of complexity involved in our model as compared to theirs.

Table 6.2 summarizes the results for queue 2 over a range of p from 0.25 to 0.6.

Xi bi x2 b2 x3 b3 P
APPR

OX SIM S.D. LCL UCL % error

0.45 0.2778 0.05 2.5 0.5 0.5 0.25 0.0146 0.0412 0.2089 0.0285 0.0539 -64.44
0.35 0.3571 0.15 0.8333 0.5 0.5 0.25 0.0575 0.0553 0.2631 0.0460 0.0646 3.966
0.25 0.5 0.25 0.5 0.5 0.5 0.25 0.0775 0.0664 0.2896 0.0607 0.0721 16.67
0.15 0.8333 0.35 0.3571 0.5 0.5 0.25 0.0970 0.0859 0.3229 0.0784 0.0935 12.86
0.05 2.5 0.45 0.2778 0.5 0.5 0.25 0.1169 0.1149 0.3899 0.1069 0.1230 1.69

0.35 0.4286 0.15 1.0 0.5 0.6 0.3 0.0808 0.0813 0.3266 0.0697 0.0929 -0.6083
0.25 0.6 0.25 0.6 0.5 0.6 0.3 0.1128 0.0966 0.3582 0.0895 0.1036 16.83
0.15 1.0 0.35 0.4286 0.5 0.6 0.3 0.1429 0.1274 0.4094 0.1178 0.1369 12.17
0.05 3.0 0.45 0.3333 0.5 0.6 0.3 0.1732 0.1735 0.5007 0.1631 0.1838 -0.1875

0.35 0.5714 0.15 1.3333 0.5 0.8 0.4 0.1413 0.1466 0.4618 0.1303 0.1630 -3.641
0.25 0.80 0.25 0.8 0.5 0.8 0.4 0.2222 0.1813 0.5208 0.1711 0.1915 22.54
0.15 1.3333 0.35 0.5714 0.5 0.8 0.4 0.2907 0.2516 0.6312 0.2368 0.2663 15.56
0.05 4.0 0.45 0.4444 0.5 0.8 0.4 0.3584 0.3413 0.7644 0.3255 0.3571 5.015

0.35 0.7143 0.15 1.667 0.5 1.0 0.5 0.1947 0.1994 0.5398 0.1857 0.2131 -2.368
0.25 1.0 0.25 1.0 0.5 1.0 0.5 0.4229 0.3319 0.7537 0.3171 0.3467 27.42
0.15 1.667 0.35 0.7143 0.5 1.0 0.5 0.5862 0.3835 0.8556 0.3672 0.3999 52.84
0.05 5.0 0.45 0.5556 0.5 1.0 0.5 0.7428 0.5923 1.154 0.5684 0.6161 25.42

0.25 1.2 0.25 1.2 0.5 1.2 0.6 0.8371 0.5733 1.077 0.5522 0.5943 46.02
0.15 2.0 0.35 0.8571 0.5 1.2 0.6 1.312 0.8661 1.439 0.8386 0.8936 51.54
0.05 6.0 0.45 0.6667 0.5 1.2 0.6 1.749 1.578 2.260 1.531 1.624 10.87

Table 6.2: Approximate and simulated average mean waiting time; standard deviation 
and 95% confidence interval of the mean; and relative error for queue 2.

Once again we observe that the relative error increases with the decrease in the

arrival rate in queue 2 - average percent error being approximately -6% for p = 0.25, 7%

for p = 0.3, 10% for p = 0.4, 26% for p = 0.5, and 36% for p = 0.6. Like in the
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symmetric case, here also the approximation gets worse with the increase in asymmetry. 

As compared with the results of Boxma and Meister (1987), our results are not bad taking 

into account the degree of complexity involved in our model as compared to theirs.

Table 6.3 summarizes the results for queue 3 for p of 0.25 and 0.5.

Xi bi X2 bj X 3 bs P
Approximate mean using method SIM S.D LCIL UCIL

single q 1 2 3 average
0.05 2.5 0.45 0.278 0.5 0.5 0.25 0.0473 0.1280 0.2211 0.2436 0.0877 0.0691 0.2881 0.0634 0.0748
0.15 0.833 0.35 0.357 0.5 0.5 0.25 0.0303 0.0744 0.1086 0.1304 0.0524 0.0460 0.2286 0.0414 0.0505
0.25 0.5 0.25 0.5 0.5 0.5 0.25 0.0288 0.0674 0.0941 0.1157 0.0481 0.0455 0.2302 0.0423 0.0487
0.35 0.357 0.15 0.833 0.5 0.5 0.25 0.0293 0.0669 0.0932 0.1150 0.0481 0.0486 0.2363 0.0439 0.0533
0.45 0.278 0.05 2.5 0.5 0.5 0.25 0.0357 0.0796 0.1205 0.1429 0.0577 0.0661 0.2787 0.0606 0.0717

0.05 5.0 0.45 0.567 0.5 1.0 0.5 0.4738 0.5735 1.002 1.173 0.5236 0.3396 0.8277 0.3281 0.3511
0.15 1.667 0.35 0.714 0.5 1.0 0.5 0.2435 0.3844 0.5418 0.6882 0.3139 0.2460 0.6839 0.2365 0.2556
0.25 1.0 0.25 1.0 0.5 1.0 0.5 0.2245 0.3616 0.4904 0.6346 0.2930 0.2695 0.6867 0.2600 0.2790
0.35 0.714 0.15 1.667 0.5 1.0 0.5 0.2336 0.3658 0.5014 0.6477 0.2997 0.2308 0.6464 0.2218 0.2398

Table 6.3: Approximate mean waiting time using 5 different methods; simulated mean 
waiting time; standard deviation and 95% confidence interval of the mean for queue 3.

Below are the graphs for the simulated and the approximate mean waiting time in

queue 3 along with 95% confidence interval.
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Figure 6.1: Mean waiting time in queue 3, p = 0.25.

Figure 6.2: Mean waiting time in queue 3, p = 0.5.

Table 6.4 gives the relative error of all the methods of approximation.

a.
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Xi bi x2 b2 A 3 b3 P
% Error between the simulated mean and 

approximate mean using method
single q 1 2 3 Average

0.05 2.5 0.45 0.2778 0.5 0.5 0.25 -31.54 85.37 220.1 252.6 26.92
0.15 0.8333 0.35 0.3571 0.5 0.5 0.25 -34.04 61.98 136.4 183.7 13.97
0.25 0.5 0.25 0.5 0.5 0.5 0.25 -36.83 47.94 106.6 154.2 5.55
0.35 0.3571 0.15 0.8333 0.5 0.5 0.25 -39.80 37.66 91.83 136.6 -1.07
0.45 0.2778 0.05 2.5 0.5 0.5 0.25 -46.02 20.35 82.16 116.1 -12.83

0.05 5.0 0.45 0.5666 0.5 1.0 0.5 39.51 68.85 195.1 245.41 54.18
0.15 1.667 0.35 0.7143 0.5 1.0 0.5 -1.036 56.24 120.2 179.70 27.60
0.25 1.0 0.25 1.0 0.5 1.0 0.5 -16.70 34.18 81.96 135.48 8.74
0.35 0.7143 0.15 1.667 0.5 1.0 0.5 1.200 58.46 117.2 180.61 29.83

Table 6.4: Relative Error between the simulated mean and approximate mean using 5 
different methods for queue 3.

Following are the graphs for the relative error for queue 3 for different 

approximation methods.

Figure 6.3: Relative error for queue 3, p = 0.25.
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Figure 6.4: Relative error for queue 3, p = 0.5.

Since the relative error of the average of the method 4 and single queue with 

multiple vacation gives the least error, therefore, we use this method for further analysis 

of queue 3.

Table 6.5 summarizes the results for queue 3 over a range of p from 0.25 to 0.6.

Xl bi A-2 b2 ^3 b3 P APPROX SIM S.D LCIL UCIL %
Error

0.05 2.5 0.45 0.2778 0.5 0.5 0.25 0.0877 0.0691 0.2881 0.0634 0.0748 26.92
0.15 0.8333 0.35 0.3571 0.5 0.5 0.25 0.0524 0.0460 0.2286 0.0414 0.0505 13.97
0.25 0.5000 0.25 0.5000 0.5 0.5 0.25 0.0481 0.0455 0.2302 0.0423 0.0487 5.55
0.35 0.3571 0.15 0.8333 0.5 0.5 0.25 0.0481 0.0486 0.2363 0.0439 0.0533 -1.07
0.45 0.2778 0.05 2.5 0.5 0.5 0.25 0.0577 0.0661 0.2787 0.0606 0.0717 -12.83

0.05 3.0 0.45 0.3333 0.5 0.6 0.3 0.1283 0.1065 0.3778 0.0990 0.1139 20.55
0.15 1.0 0.35 0.4286 0.5 0.6 0.3 0.0785 0.0701 0.2902 0.0644 0.0759 12.00
0.25 0.6 0.25 0.6 0.5 0.6 0.3 0.0726 0.0672 0.2909 0.0632 0.0713 7.98
0.35 0.4286 0.15 1.0 0.5 0.6 0.3 0.0729 0.0704 0.2921 0.0646 0.0762 3.61

I.
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0.05 4.0 0.45 0.4444 0.5 0.8 0.4 0.2590 0.2184 0.5959 0.2067 0.2302 18.56
0.15 1.333 0.35 0.5714 0.5 0.8 0.4 0.1609 0.1424 0.4463 0.1336 0.1512 13.02
0.25 0.8 0.25 0.8 0.5 0.8 0.4 0.1501 0.1377 0.4463 0.1315 0.1439 8.95
0.35 0.5714 0.15 1.333 0.5 0.8 0.4 0.1520 0.1481 0.4601 0.1390 0.1572 2.64

0.05 5.0 0.45 0.5667 0.5 1.0 0.5 0.5236 0.3396 0.8277 0.3281 0.3511 54.18
0.15 1.667 0.35 0.7143 0.5 1.0 05 0.3139 0.2460 0.6839 0.2365 0.2556 27.60
0.25 1.0 0.25 1.0 0.5 1.0 0.5 0.2930 0.2695 0.6867 0.2600 0.2790 8.74
0.35 0.7143 0.15 1.667 0.5 1.0 0.5 0.2997 0.2308 0.6464 0.2218 0.2398 29.83

0.05 6.0 0.45 0.6667 0.5 1.2 0.6 1.167 1.021 1.692 0.9873 1.054 14.36
0.15 2.0 0.35 0.8571 0.5 1.2 0.6 0.6322 0.5690 1.139 0.5507 0.5873 1112
0.25 1.2 0.25 1.2 0.5 1.2 0.6 0.5853 0.5141 1.064 0.4993 0.5289 13.86 I

Table 6.5: Approximate and simulated average mean waiting time; standard deviation 
and 95% confidence interval of the mean; and relative error for queue 3.

We again observe that the relative error increases with the increase in asymmetry 

in the specialized queues - the average percent error being approximately 7% for p =

0.25, 11% for p = 0.3, 11% for p = 0.4, 30% for p = 0.5, 13% for p = 0.6. But once 

again, this method is better than the one proposed by Boxma and Meister (1987) 

considering the degree of complexity involved in our model as compared to theirs.

RECOMMENDATIONS

We conclude that in case of asymmetric system the only proposed method for 

approximating mean waiting time in queues 1 and 2 give approximations reasonably 

well. The average of the single queue with multiple server vacations model and the 

method 1 gives reasonable estimates for the mean waiting time in the queue 3. Therefore 

these methods can be used to determine the optimal allocation of load to the three queues.



CHAPTER 7

CONCLUSION

7.1 CONCLUSION

The main idea of carrying out this study is to find the optimal degree of overlap 

between the two servers so as to minimize the mean waiting time in three queues. We 

formulated the steady state equations. They resulted in a complicated boundary value 

problem. Therefore, we resorted to the model approximations as discussed in chapter 4.

The numerical analysis of the approximation methods (proposed in chapter 4) for 

the symmetric system in chapter 5 show that the approximation method 3 and the average 

of method 1 and the single server with multiple vacations is the best method for 

approximating the mean waiting time in queues 1 and 2 and queue 3 respectively. The 

approximations are reasonably well (% error within +15% to -15%) when either the 

switch over times are not too small, or p is not too large, or the arrival rate in the queue is 

not too small. The following table summarizes the approximate (APPROX) and the 

simulated (SIM) mean for queues 1 and 2; confidence interval (LCL, UCL); and the 

relative error for different values of p when all the three queues are identical.

92
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p APPROX SIM LCL UCL % ERROR
0.25 0.0647 0.0641 0.0614 0.0669 0.733
0.30 0.0918 0.0927 0.0879 0.0976 -1.004
0.40 0.1714 0.1759 0.1686 0.1830 -2.553
0.50 0.3056 0.3122 0.3051 0.3192 -2.116
0.60 0.5471 0.5437 0.5294 0.5580 0.613

Table 7.1: Summary for queues 1 and 2

The following table summarizes the approximate (APPROX) and the simulated 

(SIM) mean for queue 3; confidence interval (LCL, UCL); and the relative error for 

different values of p when all the three queues are identical.

P APPROX SIM LCL UCL % ERROR
0.25 0.0447 0.0448 0.0423 0.0471 -0.225
0.30 0.0679 0.0672 0.0632 0.0713 1.011
0.40 0.1414 0.1377 0.1315 0.1439 2.638
0.50 0.2774 0.2674 0.2606 0.2742 3.742
0.60 0.5568 0.5141 0.4993 0.5289 8.313

Table 7.2: Summary for queue 3

The numerical analysis of the approximation methods for the asymmetric system 

in chapter 6 show that the only approximation method for queues 1 and 2; and the 

average of method 1 and the single server with multiple vacations for queue 3 gives the 

approximations that are reasonably well once again when either the switch over times are 

not too small, or p is not too large, or the arrival rate in the queue is not too small.

The recommended methods for approximating the mean waiting time in three 

queues for both symmetric and asymmetric cases perform reasonably well as compared to 

the results of Boxma and Meiser (1987) which are for single server polling model, a
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much simpler system compared to ours. Although we conclude our study with the 

recommendations and feasible range for M for symmetric system, the recommended 

methods can be used to obtain an optimal allocation of load to the three queues for both 

symmetric as well as asymmetric cases.

7.2 TOPICS FOR FURTHER RESEARCH

It would be interesting to extend the model, for example, increasing the number of 

queues from 3 to 4 and number of servers to 3. Where server 1 is specialized to serve 

queues 1 and 2 only; server 2, queues 2 and 3 only; and server 3, queues 3 and 4 only,

i.e.,

f J. '!■ f

♦ ♦ t ♦

Figure 7.1: Four queues and three servers model 

But, since our model - two servers, three queues - itself is not easy to handle, the degree 

of difficulty in extending it can be enormous. One can generalize our model to n queues 

and m servers where each server is capable of handling j different kinds of customer
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classes. But, once again, the degree of complexity involved here will be enormous. It 

will be interesting to explore the possibility of the application of the mathematical 

physics to solve the functional equations like Eisenberg (1979), Boxma and Groenendijk 

(1988), Boxma (1984), and Boxma and Cohen (1983) have done.

We investigated only the 1-limited service type protocol. It would be interesting 

to study other service protocols, for the two servers three queues system, as mentioned

below.

1. Exhaustive service. The server serves the queue until there are no more customers left 

in that queue and only then leaves for next queue in the sequence.

2. Gated service. The server serves only those customers who were present in the queue 

at the server’s arrival epoch, then moves to the next queue in the sequence.

3. Globally Gated service'. The server serves only those customers that were present in 

queue j, j=l,...,n, at the most recent server’s arrival epoch to queue 1 (which is 

chosen arbitrarily, without loss of generality).

1. K-Limited service. The server serves up to K, K > 1, customers on each visit to the 

queue. It can further be classified as:

i. K- gated: It serves either K customers or the number of customers those were 

present in the queue at the server’s arrival epoch, which ever is smaller, then moves 

to the next queue in the sequence.

ii. K- exhaustive: It serves either K customers or exhausts the queue, then moves to the 

next queue in the sequence.
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iii. Decrementing service'. The server moves to next queue in the sequence only if the 

number of customers left in queue is K customers less than what it found on the 

arrival epoch. But, if the number of customers at the arrival epoch of the server was 

less than K, then server exhausts the queue before moving to the next queue in the

sequence.

5. Timer Limited. The server stays at a queue for a pre-specified length of time or until it 

empties the queue, which ever occurs first before moving to the next queue in the

sequence.
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SUBROUTINE EVENT(I)
C **** SUBROUTINE EVENT(I), 1=1 ORDERS ARRIVAL OF CUSTOMERS 
C **** SUBROUTINE EVENT(I), 1=2,3 ORDERS SERVICE COMPLETION 
C **** FOR SERVER 1 AND 2 RESPECTIVELY.
C **** SUBROUTINE EVENT(I), 1=4,5 ORDERS SWITCH OVER 
C **** COMPLETION FOR SERVER 1 AND 2 RESPECTIVELY.
C **** SUBROUTINE EVENT(I), 1=6 ORDERS CLEARING OF 
C **** STATISTICS
C
$INCLUDE:'PARAM.INC’
$INCLUDE:’SCOM1.COM'

GO TO (1,2, 3, 4, 5, 6) ,1
1 CALL ARVL 

RETURN
2 CALL ENDSV1 

RETURN
3 CALL ENDSV2 

RETURN
4 CALL SWITCH1 

RETURN
5 CALL SWITCH2 

RETURN
6 CALL CLLEAR 

RETURN
END

o 
o

SUBROUTINE CLLEAR 
CALL CLEAR 
RETURN 
END

C
C
C *** RL: INTER ARRIVAL TIME IN THE SYSTEM
C *** RMA: MEAN SERVICE TIME FOR QUEUE 1
C *** RMB: MEAN SERVICE TIME FOR QUEUE 2
C *** RMC: MEAN SERVICE TIME FOR QUEUE 3
C *** l-p: PROBABILITY THAT INCOMING CUSTOMER JOINS QUEUE 3 
C *** Q: PROBABILITY THAT INCOMING CUSTOMER JOINS QUEUE 1
C *** STT1: MEAN SWITCH OVER TIME TO QUEUE 3 FROM QUEUE 1
C *** STT2: MEAN SWITCH OVER TIME TO QUEUE 3 FROM QUEUE 2
C *** STT3: MEAN SWITCH OVER TIME TO QUEUE 1 OR 2 FROM
C **** QUEUE 3
C *** TCLR: TIME AT WHICH STATISTICS IS CLEARED

http:INCLUDE:'SCOM1.COM
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C
c
c ***** XX(1)=1: SERVER 1 IS BUSY SERVING
c ***** XX(l)=0: SERVER 1 IS SWITCHING
c ***** XX(2)=1: SERVER 2 IS BUSY SERVING
c 'k XX(2)=0: SERVER 2 IS SWITCHING
c ***** XX(3)=1: SERVER 1 IS IN QUEUE 1
c ***** XX(3)=3: SERVER 1 IS IN QUEUE 3
c ***** XX(4)=2: SERVER 2 IS IN QUEUE 2
c ***** XX(4)=3: SERVER 2 IS IN QUEUE 3
C ***** XX(5): UNIFORM RANDOM NUMBER DECIDING THE TYPE OF
C **** ARRIVAL: 1,2 OR 3
C *r *r XX(6)=1: SERVER 1 IS BUSY SERVING IN QUEUE 1
C ***** XX(7)=1: SERVER 1 IS BUSY SERVING IN QUEUE 3
C *• 'k ■*• XX(8)=1: SERVER 2 IS BUSY SERVING IN QUEUE 2
C ***** XX(9)=1: SERVER 2 IS BUSY SERVING IN QUEUE 3
C ***** XX(10)=l: SERVER 1 IS SWITCHING FROM QUEUE 1 TO
C * * * * QUEUE 3
c ***** XX(11)=1: SERVER 1 IS SWITCHING FROM QUEUE 3 TO
c **** QUEUE 1
c ***** XX(12)=1: SERVER 2 IS SWITCHING FROM QUEUE 2 TO
c **** QUEUE 3
c ***** XX(13)=1: SERVER 2 IS SWITCHING FROM QUEUE 3 TO

O 
Q

C **** QUEUE 2
C
C

SUBROUTINE ARVL
**** SUBROUTINE ARRVL SCHEDULES ARRIVAL EVENTS

$INCLUDE:'PARAM.INC'
$INCLUDE:’SCOM1.COM'

COMMON/UCOM1/NTJ,NJl,NJ2,NJ3,TLAST1,TLAST2,TNSY
1, TSYS1,TBD1,RL,RMA,RMB,RMC,P,Q,ST,NJ3S1,NJ3S2,TSYS2
2, TBD2,STT1,STT2,STT3,TSYS13,TBD13,TLAST13
3, TSYS23,TBD23,TLAST23,NS13,NS31,NS23,NS32

C *** RL: INTER ARRIVAL TIME IN THE SYSTEM
C *** RMA: MEAN SERVICE TIME FOR QUEUE 1
C *** RMB: MEAN SERVICE TIME FOR QUEUE 2
C *** RMC: MEAN SERVICE TIME FOR QUEUE 3
C *** 1-P: PROBABILITY THAT INCOMING CUSTOMER JOINS QUEUE 3 
C *** Q: PROBABILITY THAT INCOMING CUSTOMER JOINS QUEUE 1 
C **** EVENT NEXT ARRIVAL, MARK ARRIVAL TIME AND INCREMENT 
C **** NTJ

CALL SCHDL(1,EXPON(RL,1),ATRIB)
ATRIB(1)=TNOW
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C **** NJT COUNTS TOTAL # OF ARRIVALS 
NTJ=NTJ+1
SY=UNFRM(0.0,1.0,5)

C **** IF (SY. LT. Q), IT IS A TYPE 1 ARRIVAL, GO TO 3 
C **** IF (SY. GT. Q) BUT IF(SY. LT. P), IT IS A TYPE 2 
C **** ARRIVAL, GO TO 5
C **** IF (SY. GT. P), IT IS A TYPE 3 ARRIVAL, GO TO 10 

IF(SY.GT.Q) GO TO 2
C ***** INCREMENT NJ1, MARK JOB TYPE, AND GENERATE SERVICE 
C **** TIME

NJ1=NJ1+1
C **** FILE THE ARRIVING CUSTOMER 

CALL FILEM (1, ATRIB)
RETURN

C **** IF THE JOB IS TYPE 3 THEN
2 IF(SY.GT.P) GO TO 10
C ***** OTHERWISE INCREMENT NJ2, MARK JOB TYPE, AND 
C **** GENERATE SERVICE TIME 
5 NJ2=NJ2+1
C **** FILE THE ARRIVING CUSTOMER 

CALL FILEM(2,ATRIB)
RETURN

C **** INCREMENT NJ3, MARK JOB TYPE, AND GENERATE SERVICE 
C **** TIME 
10 NJ3=NJ3+1
C **** file THE ARRIVING CUSTOMER 

CALL FILEM (3, ATRIB)
RETURN
END

Q 
O

SUBROUTINE ENDSV1 
C **** SUBROUTINE ENDSV1 SCHEDULES END OF SERVICE BY SERVER
Q * * * * I
$INCLUDE:'PARAM.INC'
$INCLUDE:'SCOM1.COM’

COMMON/UCOM1/NTJ,NJ1,NJ2,NJ3,TLAST1,TLAST2,TNSY
1, TSYS1,TBD1,RL,RMA,RMB,RMC,P,Q,ST,NJ3S1,NJ3S2,TSYS2
2, TBD2,STT1,STT2,STT3,TSYS13,TBD13,TLAST13
3, TSYS23,TBD23,TLAST23,NS13,NS31,NS23,NS32 
XX(l)=0
IF(XX(3) .EQ. 1) GO TO 5 
GO TO 10 
XX(6)=0
TSYS1=TNOW-ATRIB(1)

5
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TBD1=TNOW-TLAST1
TLAST1=TNOW
CALL COLCT(TSYS1,1)
CALL COLCT(TBD1,2)
XX(10)=l
NS13=NS13+1
CALL SCHDL(4,EXPON(STT1,8),ATRIB) 
RETURN

10 XX(7)=0
TSYS13=TNOW-ATRIB(1)
TBD13=TNOW-TLAST13
TLAST13=TN0W
CALL COLCT(TSYS13,3)
CALL COLCT(TBD13, 4)
XX(11)=1
NS31=NS31+1
CALL SCHDL(4,EXPON(STT3,8),ATRIB)
RETURN
END

O 
Q

SUBROUTINE ENDSV2 
C **** SUBROUTINE ENDSV2 SCHEDULES END OF SERVICE BY SERVER 
Q * * * * 2
$INCLUDE:'PARAM.INC’
$INCLUDE:'SCOM1.COM’

C0MM0N/UC0M1/NTJ,NJ1,NJ2,NJ3,TLAST1,TLAST2,TNSY
1, TSYS1,TBD1,RL,RMA,RMB,RMC,P,Q,ST,NJ3S1,NJ3S2,TSYS2
2, TBD2,STT1,STT2,STT3,TSYS13,TBD13,TLAST13
3, TSYS23,TBD23,TLAST23,NS13,NS31,NS23,NS32
XX(2)=0
IF(XX(4) .EQ. 2) GO TO 5
GO TO 10 

5 XX(8)=0
TSYS2=TNOW-ATRIB(1)
TBD2=TNOW-TLAST2
TLAST2=TNOW
CALL COLCT(TSYS2,5)
CAUL COLCT(TBD2,6)
XX(12)=1
NS23=NS23+1
CALL SCHDL(5,EXPON(STT2,9),ATRIB)
RETURN
XX(9)=0
TSYS23=TNOW-ATRIB(1)

10
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TBD2 3=TNOW-TLAST2 3
TLAST23=TNOW
CALL COLCT(TSYS2,7)
CALL COLCT(TBD2,8)
XX(13)=1
NS32=NS32+1
CALL SCHDL(5,EXPON(STT3,9), ATRIB)
RETURN
END

Q 
O

SUBROUTINE SWITCH1
C **** SUBROUTINE SWITCH1 SCHEDULES END OF SWITCH OVER BY 
C **** SERVER 1 
$INCLUDE:’PARAM.INC'
$INCLUDE:'SCOM1.COM’

COMMON/UCOM1/NTJ,NJ1,NJ2,NJ3,TLAST1, TLAST2, TNSY
1, TSYS1,TBD1,RL,RMA,RMB,RMC,P,Q,ST,NJ3S1,NJ3S2,TSYS2
2, TBD2,STT1,STT2,STT3,TSYS13,TBD13,TLAST13
3, TSYS23,TBD23,TLAST23,NS13,NS31,NS23,NS32

4 IF(XX(3) .EQ. 3) GO TO 6
XX(3)=3 
IFILE=3 
XX(10)=0
IF(NNQ(3) .EQ. 0) GO TO 10
XX(1)=1
XX(7)=1
TNSY=EXPON(RMC,4)
NJ3S1=NJ3S1+1
CALL RMOVE(1,IFILE,ATRIB)
CALL SCHDL(2,TNSY,ATRIB)
RETURN

6 XX(3)=1
IFILE=1 
XX(11)=0
IF(NNQ(1) .EQ. 0) GO TO 11
XX(1)=1
XX(6)=1

C XX(7)=0
TNSY=EXPON(RMA, 2)
CALL RMOVE(1,IFILE,ATRIB)
CALL SCHDL(2,TNSY,ATRIB)
RETURN

10 XX(11)=1
NS31=NS31+1
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CALL SCHDL(4,EXPON(STT3,8), ATRIB) 
RETURN

11 XX(10)=l
NS13=NS13+1
CALL SCHDL(4,EXPON(STT1,8), ATRIB)
RETURN
END

O 
Q

SUBROUTINE SWITCH2
C **** SUBROUTINE SWITCH2 SCHEDULES END OF SWITCH OVER BY 
C **** SERVER 2 
$INCLUDE:’PARAM.INC’
$INCLUDE:’SCOM1.COM'

COMMON/UCOM1/NTJ,NJ1,NJ2,NJ3,TLAST1,TLAST2,TNSY
1, TSYS1,TBD1,RL, RMA,RMB,RMC,P,Q,ST,NJ3S1,NJ3S2,TSYS2
2, TBD2,STT1,STT2,STT3,TSYS13,TBD13,TLAST13
3, TSYS23,TBD23,TLAST23,NS13,NS31,NS23,NS32

4 IF(XX(4) .EQ. 3) GO TO 25
XX(4)=3 
IFILE=3 
XX(12)=0
IF(NNQ(3) .EQ. 0) GO TO 30 
XX(2)=1

C XX(8)=0
XX(9)=1
TNSY=EXPON(RMC,4)
NJ3S2=NJ3S2+1
CALL RMOVE(1,IFILE,ATRIB)
CALL SCHDL(3,TNSY,ATRIB)
RETURN

25 XX(4)=2 
IFILE=2 
XX(13)=0
IF(NNQ(2) .EQ. 0) GO TO 35
XX(2)=1
XX(8)=1

C XX(9)=0
TNSY=EXPON(RMB,3)
CALL RMOVE(1,IFILE,ATRIB)
CALL SCHDL(3,TNSY,ATRIB)
RETURN

30 XX(13)=1
NS32=NS32+1
CALL SCHDL(5,EXPON(STT3,9),ATRIB)
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RETURN
35 XX(12)=1

NS23=NS23+1
CALL SCHDL(5,EXPON(STT2,9),ATRIB)
RETURN
END

o 
o

SUBROUTINE INTLC
C **** SUBROUTINE INTLC INITIALISES THE VARIABLES AND READS 
C **** THE DATA 
$INCLUDE:'PARAM.INC'
$INCLUDE:'SC0M1.COM’

C0MM0N/UC0M1/NT J,NJ1,NJ2,NJ3,TLAST1,TLAST2,TNSY
1, TSYS1,TBD1,RL,RMA,RMB,RMC,P,Q,ST,NJ3S1,NJ3S2,TSYS2
2, TBD2,STT1,STT2,STT3,TSYS13,TBD13,TLAST13
3, TSYS23,TBD23,TLAST23,NS13,NS31,NS23,NS32 
NTJ=0
NJ1=O
NJ2=0
NJ3=0
NJ3S1=O
NJ3S2=0
NS13=0
NS31=0
NS23=0
NS32=0
TLAST1=O.0
TSYS1=O.O
TBD1=O.0
TLAST2=0.0
TSYS2=0.0
TBD2=0.0
TLAST13=0.0
TSYS13=0.0TBD13=O.O
TLAST23=0.0
TSYS23=0.0
TBD23=0.0
OPEN (53,FILE= ’ DATA. DAT ’)
READ (53,*) P,Q,RL,RMA,RMB,RMC,STT1,STT2,STT3,TCLR 
CLOSE (53)
XX(l)=0 
XX(2)=0 
XX(3)=1
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XX(4)=2
XX(6)=0
XX (7)=0
XX(8)=0
XX(9)=0
XX(10)=l
XX(ll)=0
XX(12)=1XX(13)=0
ATRIB (1) =0.0
CALL SCHDL(1,EXPON(RL,1) , ATRIB) 
CALL SCHDL(4,0.,ATRIB)
CALL SCHDL(5,0.,ATRIB)
CALL SCHDL(6,TCLR,ATRIB)

RETURN
END

Q
Q

 
-O

> -t
/>

 Q
 Q Q O SUBROUTINE OTPUT

*** SUBROUTINE OTPUT PRINTS THE DESIRED OUT PUT OF THE 
**** PROGRAM 
INCLUDE:’PARAM.INC'
INCLUDE:'SCOM1.COM’

COMMON/UCOM1/NTJ,NJ1,NJ2,NJ3,TLAST1,TLAST2,TNSY
1, TSYS1, TBD1, RL,RMA,RMB,RMC,P,Q,ST,NJ3S1,NJ3S2,TSYS2
2, TBD2,STT1,STT2,STT3,TSYS13,TBD13,TLAST13
3, TSYS23, TBD23,TLAST23,NS13,NS31,NS23,NS32 
EXTERNAL TTAVG,TTSTD,TTPRD,CCAVG,CCSTD,CCNUM
1,FFAVG,FFSTD,FFAWT
CLOSE(54)
WRITE (NPRNT,*) 'CURRENT TIME', GETTIM 
WRITE(NPRNT,*) 'THE QUEUE DISCIPLINE IS .ALTERNATING 

1 PRIORITY'
THRU= FLOAT(NTJ)/TNOW
WRITE(NPRNT,*) NTJ, NJ1, NJ2, NJ3
PTYP1=100.*FLOAT(NJ1)/FLOAT(NTJ)
PTYP2=100.*FLOAT(NJ2)/FLOAT(NTJ)
PTYP3=100.*FLOAT(NJ3)/FLOAT(NTJ)
IF(NJ3 .EQ. 0) GO TO 10
TYP3Sl=100.*FLOAT(NJ3S1)/FLOAT(NJ3)
TYP3S2=100.*FLOAT(NJ3S2)/FLOAT(NJ3)
TNUM3=CCNUM(7)+CCNUM(3)
CILL31=FFAVG(3)-1.959961*FFSTD(3)/SQRT(FLOAT(TNUM3)) 
CIUL31=FFAVG(3)+1.959961*FFSTD(3)/SQRT(FLOAT(TNUM3))
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10 WRITE(NPRNT,*) ’PROPORTION OF TYPE 3 AND TYPE 1 JOBS=
L', P,Q
WRITE(NPRNT, *) 'NUMBER OF ARRIVING JOBS IS . f , NTJ
WRITE(NPRNT, *) 'NUMBER OF TYPE 1 JOBS IS I

r NJ1
WRITE(NPRNT, *) 'NUMBER OF TYPE 2 JOBS IS i z NJ2
WRITE(NPRNT, *) 'NUMBER OF TYPE 3 JOBS IS V

r NJ3
WRITE(NPRNT, *) 'PERCENT ' OF TYPE 1 JOBS IS : i

r PTYP1
WRITE(NPRNT, *) 'PERCENT' OF TYPE 2 JOBS IS : i

r PTYP2
WRITE(NPRNT, *) 'PERCENT1 OF TYPE 3 JOBS IS : i z PTYP3
WRITE(NPRNT, *) 'NUMBER OF SWITCHES FROM Q1 TO Q3 IS :
', NS13
WRITE(NPRNT, *) 'NUMBER OF SWITCHES FROM Q3 TO Q1 IS :
.', NS31
WRITE(NPRNT, *) 'NUMBER OF SWITCHES FROM Q2 TO Q3 IS :
.', NS23
WRITE(NPRNT, *) 'NUMBER OF SWITCHES FROM Q3 TO Q2 IS :
.', NS32
NS1=NS13+NS31 
NS2=NS23+NS32
WRITE(NPRNT,*) 'TOTAL NUMBER 01
IIS : NS1
WRITE(NPRNT, *) ’TOTAL NUMBER 0:
IIS : ', NS2
WRITE(NPRNT,*) 'PERCENT OF SWI'

1: ', NS13/FLOAT(NS1)
WRITE(NPRNT,*) 'PERCENT OF SWI'

1: ', NS31/FLOAT(NS1)
WRITE (NPRNT, *) 'PERCENT OF SWI'

1 • '
1NS23/FLOAT (NS2)
WRITE(NPRNT,*) 'PERCENT OF SWITCHES FROM Q3 TO Q2 

1: ', NS32/FLOAT(NS2)
IF(NJ3 .EQ. 0) GO TO 20 
WRITE(NPRNT,*) 'NUMBER OF TYPE 
1SERVER 1 : ', NJ3S1
WRITE(NPRNT,*) 'NUMBER OF TYPE 
1SERVER 2 ', NJ3S2
WRITE(NPRNT,*) 'PERCENT OF TYPE 3 JOBS SERVED BY 
1SERVER 1 ', TYP3S1
WRITE(NPRNT,*) 'PERCENT OF TYPE 3 JOBS SERVED BY 
1SERVER 2 : ', TYP3S2
WRITE(NPRNT,*) 'AVERAGE THROUGHPUT IS 
WRITE(NPRNT,101)
WRITE(NPRNT,*)
FORMAT('1',IX,'THE PERFORMANCE STATISTICS,')

BY SERVER 1

BY SERVER 2

Q1 TO Q3 IS

Q3 TO Q1 IS

Q2 TO Q3 IS

JOBS SERVED BY

JOBS SERVED BY

IS

20

101

',THRU
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WRITE(NPRNT, *)
WRITE(NPRNT,*) 'AVERAGE NUMBER, STANDARD DEVIATION OF 
1LENGTH AND AVERAGE WAITING TIME IN THE THREE QUEUES 
2IS: ’

110

WRITE(NPRNT,*)
WRITE(NPRNT,110) FFAVG(l),FFSTD(l),FFAWT(1)
WRITE(NPRNT,110) FFAVG(2),FFSTD(2),FFAWT(2)
WRITE(NPRNT,110) FFAVG(3),FFSTD(3),FFAWT(2)
FORMAT(/,5X,E10.4,5X,E10.4,5X,E10.4)
CILL11=FFAVG(1)-1.959961*FFSTD(1) /
1SQRT(FLOAT(CCNUM(1)))
CIUL11=FFAVG(1)+1.959961*FFSTD(1)/
1SQRT(FLOAT(CCNUM(1)))
CILL21=FFAVG(2)-1.959961*FFSTD(2)/
1SQRT(FLOAT(CCNUM(5)))
CIUL21=FFAVG(2)+1.959961*FFSTD(2)/
1SQRT(FLOAT(CCNUM (5)))
WRITE(NPRNT,*)
WRITE(NPRNT,*) 'TIME INTEGRATED AVERAGE, STANDARD 
1DEVIATION AND TIME PERIOD FOR STATISTICS ON:’
WRITE(NPRNT,*)
WRITE(NPRNT,*) 'TOTAL SEREVER 1 UTILISATION'
WRITE(NPRNT,*)
WRITE(NPRNT,150) TTAVG(l),TTSTD(l),TTPRD(l)
WRITE(NPRNT,*)
WRITE(NPRNT,*) 'TOTAL SEREVER 2 UTILISATION'
WRITE(NPRNT,*)
WRITE(NPRNT,150) TTAVG(2),TTSTD(2),TTPRD(2)
WRITE(NPRNT,*)
WRITE(NPRNT,*) 'SERVER 1 UTILISATION IN QUEUE 1' 
WRITE(NPRNT,*)
WRITE(NPRNT,150) TTAVG(3),TTSTD(3),TTPRD(3)
WRITE(NPRNT,*)
WRITE(NPRNT,*) 'SERVER 1 UTILISATION IN QUEUE 3' 
WRITE(NPRNT,*)
WRITE(NPRNT,150) TTAVG(4),TTSTD(4),TTPRD(4)
WRITE(NPRNT,*)
WRITE(NPRNT,*) 'SERVER 2 UTILISATION IN QUEUE 2' 
WRITE(NPRNT,*)
WRITE(NPRNT,150) TTAVG(5),TTSTD(5),TTPRD(5)
WRITE(NPRNT,*)
WRITE(NPRNT,*) 'SERVER 2 UTILISATION IN QUEUE 3' 
WRITE(NPRNT,*)
WRITE(NPRNT,150) TTAVG(6),TTSTD(6),TTPRD(6)
WRITE(NPRNT,*)
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WRITE(NPRNT,*) ’SERVER 1 SWITCHING FROM QUEUE 1 TO 
1QUEUE 3’
WRITE(NPRNT,*)
WRITE(NPRNT,150) TTAVG(7),TTSTD(7),TTPRD(7)
WRITE(NPRNT,*)
WRITE(NPRNT,*) 'SERVER 1 SWITCHING FROM QUEUE 3 TO 
1QUEUE 1'
WRITE(NPRNT,*)
WRITE(NPRNT,150) TTAVG(8),TTSTD(8),TTPRD(8)
WRITE(NPRNT,*)
WRITE(NPRNT,*) ’SERVER 2 SWITCHING FROM QUEUE 2 TO 
1QUEUE 3'
WRITE(NPRNT,*)
WRITE(NPRNT,150) TTAVG(9),TTSTD(9),TTPRD(9)
WRITE(NPRNT,*)
WRITE(NPRNT,*) 'SERVER 2 SWITCHING FROM QUEUE 3 TO 
1QUEUE 2'
WRITE(NPRNT,*)
WRITE(NPRNT,150) TTAVG(IO),TTSTD(10),TTPRD(10)

150 FORMAT(5X,E10.4,5X,E10.4,5X,E10.4)
WRITE(NPRNT,*)
WRITE(NPRNT,*) 'AVERAGE VALUE, STANDARD DEVIATION AND 
INUMBER OF OBSERVATIONS FOR'
WRITE(NPRNT,*)
WRITE(NPRNT,*) 'TIME IN SYSTEM FOR TYPE 1:'
WRITE(NPRNT,*)
WRITE(NPRNT,140) CCAVG(1),CCSTD(1),CCNUM(1)
WRITE(NPRNT,*)
WRITE(NPRNT,*) 'TIME BETWEEN DEPARTURES FOR TYPE 1:' 
WRITE(NPRNT,*)
WRITE(NPRNT,140) CCAVG(2),CCSTD(2),CCNUM(2)
WRITE(NPRNT,*)
WRITE(NPRNT,*)'TIME IN SYSTEM FOR TYPE 3 WHEN SERVED 
1BY SI:'
WRITE(NPRNT,*)
WRITE(NPRNT,140) CCAVG(3),CCSTD(3),CCNUM(3)
WRITE(NPRNT,*)
WRITE(NPRNT,*)'TIME BETWEEN DEPARTURES FOR TYPE 3 
1WHEN QUEUE 3 IS SERVED BY SERVER 1:'
WRITE(NPRNT,*)
WRITE(NPRNT,140) CCAVG(4),CCSTD(4),CCNUM(4)
WRITE(NPRNT,*)
WRITE(NPRNT,*) 'TIME IN SYSTEM IN QUEUE 2:'
WRITE(NPRNT,*)
WRITE(NPRNT,140) CCAVG(5),CCSTD(5),CCNUM(5)
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140

WRITE(NPRNT,*)
WRITE(NPRNT,*)'TIME BETWEEN DEPARTURES FOR TYPE 2:’ 
WRITE(NPRNT,*)
WRITE(NPRNT,140) CCAVG(6),CCSTD(6),CCNUM(6)
WRITE(NPRNT,*)
WRITE(NPRNT,*)’TIME IN SYSTEM FOR TYPE 3 WHEN SERVED 
1BY S2:'
WRITE(NPRNT,*)
WRITE(NPRNT,140) CCAVG(7),CCSTD(7),CCNUM(7)
WRITE(NPRNT,*)
WRITE(NPRNT,*)’TIME BETWEEN DEPARTURES FOR TYPE 3 
1WHEN QUEUE 3 IS SERVED BY SERVER 2:’
WRITE(NPRNT,*)
WRITE(NPRNT,140) CCAVG(8),CCSTD(8) ,CCNUM(8)
WRITE(NPRNT,*)
FORMAT(/,5X,E10.4,5X,E10.4,5X,E10.4)
WRITE(NPRNT,*)*)

*) '95% CONFIDENCE INTERVALS ARE
*) ' ( ',CILL11, ' , ’,CIUL11,’ )'
*) ’( ’,CILL21,' , ',CIUL21,' )'
*) ' ( ’,CILL31, ' , ’,CIUL31,' )’

RETURN
END
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GEN,VANEETA,ONE LIMITED,06/04/1998,1,Y,Y,Y/Y,Y,Y/l,72; 
LIMITS,3,2,10000;
SEEDS,12345(1),23457(2),34567(3);
SEEDS,45679(4),56789(5) , 67891(6) ;
SEEDS, 78913(7), 89123(8) , 91235(9) ;
STAT,1,TSYS1;
STAT,2,TBD1;
STAT,3,TSYS13;
STAT,4,TBD13;
STAT,5,TSYS2;
STAT,6,TBD2;
STAT,7,TSYS23;
STAT,8,TBD23;
TIMST,XX(1),UTILISATION 1;
TIMST,XX(2),UTILISATION 2;
TIMST,XX(6),UTILISATION Ql;
TIMST,XX(7),UTILISATION Q3S1;
TIMST,XX(8),UTILISATION Q2;
TIMST,XX(9),UTILISATION Q3S2;
TIMST,XX(10),SWITCH FQ1TQ3;
TIMST,XX(11),SWITCH FQ3TQ1;
TIMST,XX(12),SWITCH FQ2TQ3;
TIMST,XX(13),SWITCH FQ3TQ2;
TIMST,NNQ(1),NO. IN QUEUE 1,10/0/1;
TIMST,NNQ(2),NO. IN QUEUE 2,10/0/1;
TIMST,NNQ(3),NO. IN QUEUE 3,10/0/1;
INITIALIZE, , 20000, Y/50;
FIN;
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0.9
0.45
1.0
1.0
1.0
1.0
0.1
0.1
0.1
100.0
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1

SLAM II SUMMARY REPORT

SIMULATION PROJECT ONE LIMITED

DATE 6/ 4/1998 
1 OF 1

BY VANEETA

RUN NUMBER

CURRENT TIME .2000E+05
STATISTICAL ARRAYS CLEARED AT TIME .1000E+03

**STATISTICS FOR VARIABLES BASED ON OBSERVATION**

MEAN STANDARD COEFF. OF MINIMUM MAXIMUM NO. OF
VALUE DEVIATION VARIATION VALUE VALUE OBS

TSYS1 .262E+01 .243E+01 .927E+00 .586E-02 .205E+02 8967
TBD1 .222E+01 .213E+01 .958E+00 .215E-01 .200E+02 8967
TSYS13 .131E+01 .111E+01 . 853E+00 .273E-01 .772E+01 951
TBD13 .209E+02 .201E+02 .960E+00 .192E+00 .160E+03 951
TSYS2 .253E+01 .223E+01 .881E+00 .182E-01 .162E+02 8982
TBD2 .222E+01 .213E+01 .961E+00 .273E-01 .220E+02 8982
TSYS23 .189E+01 .177E+01 •935E+00 .313E-01 .117E+02 956
TBD23 .236E+01 .218E+01 .924E+00 .125E+00 .163E+02 956

**STATISTICS FOR TIME-PERSISTENT VARIABLES**

MEAN
VALUE

STANDARD
DEVIATION

MINIMUM MAXIMUM TIME (
INTERVAL

CURRENT
VALUEVALUE VALUE

UTILISATION 1 .500 .500 .00 1.00 19900.000 .00
UTILISATION 2 .503 .500 .00 1.00 19900.000 .00
UTILISATION Q1 .452 .498 .00 1.00 19900.000 .00
UTILISATION Q3S1 .048 .214 .00 1.00 19900.000 .00
UTILISATION Q2 .455 .498 .00 1.00 19900.000 .00
UTILISATION Q3S2 .048 .213 .00 1.00 19900.000 .00
SWITCH FQ1TQ3 .252 .434 .00 1.00 19900.000 1.00
SWITCH FQ3TQ1 .249 .432 .00 1.00 19900.000 .00
SWITCH FQ2TQ3 .248 .432 .00 1.00 19900.000 .00
SWITCH FQ3TQ2 .249 .433 .00 1.00 19900.000 1.00
NO. IN QUEUE 1 .728 1.295 .00 10.00 19900.000 .00
NO. IN QUEUE 2 .688 1.211 .00 11.00 19900.000 1.00
NO. IN QUEUE 3 .030 .180 .00 3.00 19900.000 .00
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**FILE STATISTICS**

FILE
NUMBER LABEL/TYPE

AVERAGE
LENGTH

STANDARD
DEVIATION

MAXIMUM
LENGTH

CURRENT
LENGTH

AVERAGE 
WAIT TIME

1 .728 1.295 10 0 1.616
2 .688 1.211 11 1 1.525
3 .030 .180 3 0 .309
4 CALENDAR 3.000 .000 3 3 .250

**TIME-PERSISTENT HISTOGRAM NUMBER11** 
NO. IN QUEUE 1

CELL RELA UPPER
TIME FREQ CELL LIM 0 20 40 60 80 100

+ + + + + + + + + + +
**** .64 .000E+00 4_******************************** +
if** .18 .100E+01 4.********* C +
**** .08 .200E+01 C +
887. .04 .300E+01 4.** c +
476. .02 .400E+01 + * c+
260. .01 .500E+01 + * c+
144. .01 .600E+01 + c
75. .00 .700E+01 + c
27. .00 .800E+01 + c
10. .00 .900E+01 + c
2. .00 .100E+02 + c
0. .00 INF + c

— + + + + + + + + + + +
**** 0 20 40 60 80 100

**STATISTICS FOR TIME-PERSISTENT VARIABLES**

MEAN
VALUE

STANDARD
DEVIATION

MINIMUM MAXIMUM TIME
INTERVAL

CURRENT
VALUEVALUE VALUE

NO. IN QUEUE 1 .728 1.295 .00 10.00 19900.000 .00
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**TIME-PERSISTENT HISTOGRAM NUMBER12** 
NO. IN QUEUE 2

CELL RELA UPPER
TIME FREQ CELL LIM 0 20 40 60 80 100

+ + + + + + + + + + +
**** .64 .000E+00 +
*** * .19 .100E+01 C +
**** .08 .200E+01 4.** ** C +
886. .04 .300E+01 4.** c +
440. .02 .400E+01 + * c+
207. .01 .500E+01 + * c

96. .00 .600E+01 + c
43. .00 .700E+01 + c
18. .00 .800E+01 + c

8. .00 .900E+01 + c
4. .00 .100E+02 + c
2. .00 INF + c

— + + + + + + + + + + +
* * * * 0 20 40 60 80 100

**STATISTICS FOR TIME-PERSISTENT VARIABLES**

MEAN STANDARD MINIMUM MAXIMUM TIME CURRENT
VALUE DEVIATION VALUE VALUE INTERVAL VALUE

NO. IN QUEUE 2 .688 1.211 00 11.00 19900.000 1.00

**TIME-PERSISTENT HISTOGRAM 
QUEUE 3

NUMBER13**
NO. IN

CELL RELA UPPER
TIME FREQ CELL LIM 0 20 40 60 80 100

+ + + + + + + + + + +
**** .97 .000E+00 4. ************************************************* 4.
522. .03 .100E+01 +* c

31. .00 .200E+01 + c
2. .00 .300E+01 + c
0. .00 .400E+01 + c
0. .00 .500E+01 + c
0. .00 .600E+01 + c
0. .00 .700E+01 + c
0. .00 .800E+01 + c
0. .00 .900E+01 + c
0. .00 .100E+02 + c
0. .00 INF + c

— 4- + + + + + + + + + +
**** 0 20 40 60 80 100
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**STATISTICS FOR TIME-PERSISTENT VARIABLES**

MEAN
VALUE

STANDARD
DEVIATION

MINIMUM MAXIMUM TIME CURRENT
VALUEVALUE VALUE INTERVAL

NO. IN QUEUE 3 .030 .180 .00 3.00 19900.000 .00
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