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ABSTRACT

This thesis investigates the application of Knowledge 
Based systems and Fuzzy Logic to automatic control. The 
knowledge used by a human operator is put in a computer 
usable form and applied to a control problem. The idea is 
not to attempt to enhance the stability or response of the 
system but given a basically stable and controllable system 
we apply human type control methods via a computer
controller.

A system can never be modelled exactly and therefore 
a controller design must allow for the uncertainty in the 
model. With fuzzy logic, the system inputs, outputs, 
parameters, reactions and cross coupling are represented in 
fuzzy or inexact variables, knowledge and reasoning. An 
exact (or nearly exact) model of the system is not
necessary.

A simple aircraft is the process to which this 
control method is applied. Knowledge, reasoning and feedback 
similar to what a human pilot utilizes are applied in the 
control of the process.
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CHAPTER 1
INTRODUCTION

Attempting to model a system accurately enough to be 
able to design an efficient and reliable controller can be a 
daunting task. As the number of inputs and outputs increase
it becomes even more difficult to develop a model due to the 
cross coupling between inputs and outputs. Humans 
demonstrate the ability to cope with such complex systems 
and effectively control their operation without explicit 
knowledge of the inner workings and construction of the 
system. A human operator will have a collection of 
heuristics and facts gained through practice and experience 
which enable him or her to vary the system inputs to achieve 
the desired outputs. The largest failing of a human operator 
is wandering attention, boredom and inconsistent application 
of performance criteria.

A computer does not get bored or forget facts, yet
it deals with the world in tedious detail. Much of the
appearance of this tedious detail can be removed with a well 
designed man-machine interface. Still, the computer will 
present some small number as zero when all that is needed is
to know if the result is close or not, as defined in the
context of the problem.
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This thesis addresses the application of a human 
operator's knowledge and methods in a computer based 
automatic controller. The controller is implemented using 
expert or knowledge-based systems techniques combined with 
fuzzy logic for reasoning with uncertainty and linguistic
variables.

1•1 Solution and Direction
With a knowledge-based system, a knowledge base is 

navigated by an inference mechanism to find solutions to 
questions posed of the system. In applying knowledge-based 
systems to control, the operator's knowledge of how to 
control the system is entered into the knowledge base. This 
knowledge will be a collection of rules, heuristics and 
facts represented in a form usable by the computer through 
an inference mechanism. An accurate model of the system is 
not required, and in fact, if the knowledge base can lead to 

the control of a specific example of a system, then it 
should be able to control all examples within the same 
general type. For special situations within this class, new 
knowledge may have to be added to meet performance 
requirements, but basically the controller should be
transferable.

If the knowledge-based system is combined with an 
implementation of fuzzy logic the computer can attempt to 
emulate the human operator with tireless repetition. The use
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of fuzzy logic allows the controller to cope with the 
uncertainty that the operator may express about the 
operation of the system as well as use some of the 
linguistic terms the human operator uses to express his
heuristics.

With knowledge based control systems it is hoped that 
a more adaptable and flexible controller can be developed
that mimics some of the more desirable traits of a human
operator, possibly to include self-learning about the system 
operation, failures and development of new knowledge. 
Knowledge-based systems have found application where a 
system is large and complicated and the human operator, with 
many years of experience, is leaving the work force. With a 
knowledge based system, it will also be possible for the 
system to relax performance criteria if the system is 
highly stressed in order to prevent damage to the system.
For example, it is at times necessary to turn off an 
aircraft autopilot in heavy turbulence in order to prevent 
damaging the aircraft. The controller is attempting to 
maintain the performance criteria in the presence of an 
extreme operating environment. The human operator, the 
pilot, relaxes the performance criteria in order to maintain 
the criterion of aircraft integrity.

1.2 Goal
The foremost goal of this thesis was to build a
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prototype knowledge-based controller incorporating fuzzy 
logic to investigate the application of such a controller 
(or system) to control applications, especially to a multi­
variable system.

1.3 Scope
The system to be used in developing this prototype 

will be the control of power and the pitch axis of a light 
aircraft. An aircraft is a multi-variable system requiring a 
skilled operator, yet a pilot is licenced to fly a whole 
class of aircraft. This recognizes the fact that the 
expertise is transferable, even though the aircraft may be 
quite different in physical appearance.

1.4 Sequence of Presentation
Chapter 2 presents background information on 

knowledge-based systems, giving a short discussion on 
knowledge representation schemes and inferencing methods.
In Chapter 3 a similar presentation of fuzzy logic is 
given.

Chapter 4 presents the criteria for selecting an 
example system for developing and testing the prototype 
controller. The aircraft parameters and the simulator 
derivation are given. Chapter 5 describes the criteria for 
selecting development tools for this thesis. It also
discusses the tools evaluated and used in this thesis.
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Chapter 6 presents the design of the controller, a 
discussion of the knowledge representation, the control 
strategy and the instrument reading scheme. In addition the 
fuzzy set and defuzzifier used in this thesis are presented.

Chapter 7 presents some results from test runs of 
the system. Neural networks exhibit some desirable 
properties even in conventional computers. Chapter 8 
discusses these properties along with applying neural
networks to automatic control. Their use is demonstrated
with a few examples related to different aspects of the 
control application in this thesis. Chapter 9 summarizes the 
thesis, presents some conclusions and suggestions for future
research.

Chapter 10 looks at the ethics and the engineers 
responsibility in researching and developing automated 
systems. The discussion is centred on the work done in this 
thesis and therefore its main theme is the development of 
sophisticated autopilots. Important questions are asked 
about the direction of this technology with emphasis on 
considering the impetus for it as well as the benefits and 
costs to society. Not all the questions are directly
answered, but two main conclusions are drawn.



CHAPTER 2
KNOWLEDGE-BASED SYSTEMS

2.1 Introduction
A knowledge-based system is constructed of three 

major components. One is the group of application modules 
which provide an interface between the user and the system. 
The remaining two, the inference engine and the knowledge­
base, are the main components for the system. The inference 
engine provides a means of navigating through the domain 
knowledge which is stored separately in the knowledge-base. 
It is important to note that the knowledge for the system is 
stored separately from the structure of the program. With a 
conventional program the knowledge of how to solve the 
problem is coded into the program's algorithm. In a 
knowledge-based system the program, essentially the 
inference engine, contains only enough information or 
knowledge in the algorithm for using the knowledge-base but 
no knowledge of the specific problem domain on which it is 
working.

2.2 Background
Knowledge-based or expert systems are computer 

programs which deal with problems usually requiring a 
certain amount of human expertise. Expert systems have

6
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recently become very popular for application to many tasks 
and may be regarded as the most recent and largest success 
of the artificial intelligence field. Artificial
intelligence can be loosely defined as systems that exhibit 
the characteristics we associate with intelligence in human 
behaviour [JAC86].

Expert systems developed as researchers began to 
realize that knowledge representation was the pivotal 
problem in AI. This occurred in the early 1970's as a shift 
in attention away from general principles for problem 
solving toward ’’task specific” principles. Since the early 
1970's work has concentrated on techniques and paradigms and 
their application to reasonable problem domains. The source 
of the reasoning power in an expert system is in the 
knowledge it contains, not in the reasoning mechanism used 
[ARC87].

The main points to emerge from this period about 
knowledge-based systems were that humans and why not the 
computer, deal with knowledge in an explicit, declarative 
and piecemeal fashion. In addition, there emerged the 
understanding that programming in this fashion allows for 
fast and incremental system prototyping and development. The 
program should not have to solve the whole problem, or 
indeed always be correct to be useful.

As already mentioned, a knowledge-based system is 
constructed of three major components. The system interface
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or application modules present information to and receive 
input from, the user or other sources such as files or 
processes. The second component, the inference engine, 
provides a means of working with the knowledge the system 
contains in the knowledge-base. This is a relatively simple 
program for tracing a path through the knowledge-base of the 
system to find a conclusion. The third section, the 
knowledge-base, contains the domain specific knowledge in a 
format which best suits the domain. Figure 2.1 summarizes 
the layout of a typical knowledge-based system.

2.3 Knowledge Representation Schemes
Knowledge representation is a set of syntactic and

semantic conventions that make it possible to describe 
things. The syntax is made up of rules on how to combine 
symbols into expressions. It describes the how of creating 
the knowledge-base in the representation language, given 
that you already have the knowledge. The semantics is the 
interpretation of these expressions, or the meaning.

There are currently three main formalisms for 
knowledge representation in knowledge-based systems. These
are :

1)
2)
3)

All three

Production Rules
Structured Objects
Predicate Logic.
representation schemes are an implementation
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Figure 2.1 Knowledge-based System Block Diagram
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of pattern directed inference.

2-3.1 Production Rules
A production system consists of a rule set, a rule 

interpreter and working memory. A rule has a premise or left 
hand side condition(s) and one or more action(s) or
conclusion(s). For example consider the following:

Rule: if Pl and ... and Pn then Cl and ... and Cm.

Working memory is simply data storage. It holds data 
needed to evaluate the premise and may be updated by the 
conclusion. The interpreter (inference engine) attempts to 
match the premise of each rule against the information in 
working memory, provides conflict resolution if more than 
one rule is eligible to fire and fires the rule by executing 
the actions in the conclusion part of the rule. In a 
production system the order of the rules is unimportant as 
the conclusions are derived through the use of the 
inferencing mechanism or rule interpreter.

2.3.2 Structured Objects
Structured objects attempt to exploit some property 

in the knowledge being represented. Relationships within the 
knowledge are maintained and then exploited during
inferencing to give more power to the system. The
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structures most commonly used are simple graphs, trees and 
networks. Simple graphs are used .mostly for spatial and 
temporal relations and causal relationships. Trees allow for 
the exploitation of hierarchies in the domain while 
semantic networks are used to represent concepts and 
relationships between them.

Within these structures, further breakdowns of the 
knowledge can exist. A frame representation is a data 
structure to represent a stereotypical element, either real
or abstract, or an event. Within the frame, there are slots
which contain data to describe the element. Also within the
frame there can be rules or instructions, sometimes called 
methods, on how the frame or object acts in the system.
These frames can be linked together in a hierarchical 
fashion with each child being a more specific instance of 
the parent. The siblings inherit all the properties, data 
and rules, of the parent and implement new ones to describe 
their particular instance.

2.3.3 Predicate Logic
Predicate logic is derived from propositional logic. 

Propositional logic deals with simple statements such as "a 
computer is a tool" and "tools are useful", and is therefore 
not very expressive. For instance, statements such as "all 
animals are alive" cannot be expressed in propositional 
logic. Predicate logic is more expressive and inherits the
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qualities of propositional calculus. It is complete, meaning 
that for every well formed formula (wff), P which is true, P 
can be derived using only the rules of inference. It is 
sound, meaning that it is impossible to derive a
contradiction, ie. for any wff P you cannot derive P and not 
P. It is decidable, meaning that for every wff there is a 
means with which to prove or disprove it.

Predicate logic introduces sets of variables, 
constants, predicates and functions. Predicates represent 
properties and relations of things. Functions represent 
operations with things, such as math operations where the 
things are numbers.

The language Prolog utilizes predicate logic with 
Horn clauses and a backward chaining inference engine. Horn 
clauses have a single conclusion and any number of premises. 
Programming in Logic (PROLOG) may not solve all your 
problems though. The inferencing method, pattern matching 
and conflict resolution provided may not fulfill your needs. 
These must be taken into consideration when writing rules 
for a rule based program, or the program may not perform 
anything like you expected it to.

2.4 Inferencing Methodologies
Rules for a knowledge-based system can be driven 

forward or backward, which relates to the terms forward 
chaining and backward chaining respectively. Both methods
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are equally powerful methods of reasoning, but one may be 
more useful than the other for the particular application
at hand.

Forward chaining is a data driven method of 
reasoning. Here, the inferencing mechanism attempts to match 
the premise of each rule to the contents of working memory 
and thus determine if the premise is true, false or unknown. 
If the premise is unknown, the data in working memory is as 
yet incomplete for this rule, the next rule is tried. If the 
premise is false, the rule is ignored and may be removed 
from further inference. If the premise is true, the rule is
fired and whatever actions are in the conclusion are taken,
and the rule is removed from further inference. Inferencing
continues until a conclusion is drawn or until no further
rules can be fired and no conclusion is drawn. To come to a
final conclusion it may not be necessary to fire all rules 
that are eligible, this depends on the setup of the system
and whether more than one conclusion is desired.

Backward chaining on the other hand, is a goal driven 
inferencing technique. The system assumes a final goal and 
then attempts to prove it with the data available. The 
conclusions of rules are matched, then the conditions 
(premises) needed to be satisfied in order for the rule to 
fire are matched against the conclusions of other rules or 
data in working memory. The inferencing may stop with the 
first goal satisfied, or multiple goals may be derived
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depending again on the nature of the problem.

2.5 Suitability of a Knowledge - Based System
Knowledge-based systems have limits and will not

solve all problems. Although a problem may be solvable by a 
knowledge-based system, its application to this problem may 
not be suitable or feasible. When considering their
application to the domain of automatic control, a knowledge- 
based system may be suitable where the complete 
mathematical specification or modeling of the process is 
not feasible [SHI87]. Figures 2.2, 2.3 and 2.4 depict 
further items which should be satisfied for the development 
of a knowledge-based system to be possible, justified and 
appropriate [ARC87].
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EXPERT SYSTEM 
DEVELOPMENT 

POSSIBLE

Figure 2.2 When is Expert System Development Possible
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EXPERT SYSTEM 
> DEVELOPMENT 

JUSTIFIED

Figure 2.3 When is Expert System Development Justified
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EXPERT SYSTEM 
> APPROACH 

APPROPRIATE

Figure 2.4 When is Expert System Development Appropriate



CHAPTER 3
FUZZY LOGIC

3.1 Introduction
A knowledge-based system has the ability to emulate 

the method of reasoning a human uses. The variables and 
constants are all set to just one value, either a numerical 
value, a string or just true or false. The ability to deal 
with vagueness and uncertainty which may be expressed in the 
subject may also be needed. More than one statement may have 
some truth (or falsehood) to it, yet none is completely 
correct (or false). With fuzzy logic a partial truth or 
vague relation or membership can be expressed.

A classical example is the degree to which someone 
belongs to the set of "young" people. A person 20 years old 
may be considered 90 percent young, while a 60 year old 
person may be considered as only 30 percent young. There is 
no finite dividing line in the set, only some predefined 
gradual shift in the degree of membership in a class or set. 
Usually the degree of membership in a fuzzy set ranges 
between 0 and 1, 1 indicating absolute certainty. Depending
on the use and definition, the range of -1 to 1 may be used. 
This allows for a degree of membership of 1 to indicate 
absolute certainty of membership, -1 for absolute certainty

18
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of non-membership and 0 to indicate unknown. The actual 
numerical values for the degree of membership may also be 
scaled depending on how they are to be dealt with, but they 
will still indicate the same idea. The advantage of using 
the scale of 0 to 1 is that fuzzy operators can be used in 
conjunction with probability operators. Probability 
operators can be used when the fuzzy operators do not 
provide a satisfactory means of combining evidence of, or 
confidence in, a value.

Fuzzy logic defines a minimum set of operations for 
dealing with certainty of membership in a set. These basic 
building blocks should fill the needs of most applications 
and using this as a standard, they can be built upon for 
unusual applications. Fuzzy logic is a super-set of 
predicate logic, therefore non-fuzzy information can be 
handled with the same operators as used to handle fuzzy
information.

The three basic operators used in this thesis are the 
fuzzy AND, the fuzzy OR and the unary operator NOT.

3•2 Fuzzy Set Theory
Fuzzy set theory allows an element to exhibit a 

degree of membership in a given set. Conventional set theory 
only allows an element to be a member of a set or not.
Because of this difference, the three basic set operators,
union, intersection and complement are defined somewhat
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differently. The following paragraphs define these
operations and how they are applied to fuzzy logic.

The union operator, when applied to two fuzzy sets 
with elements of differing degrees of membership, takes the 
respective elements with the greater degree of membership as 
the union of the two sets. If there are two sets, A and B, 
with the elements a^ and b^ respectively, then the union of 
the two sets can be defined as;

A U B - {c£ |ax G A, b± G B, c£ - max(ai, bt)} (3.1)

where the max operator looks at the value of membership of
the element.

With non-fuzzy values this is equivalent to the 
predicate logic OR. As an example, if a car is 80 percent 
slow and 20 percent accelerating, then it is 80 percent slow 
OR accelerating.

The intersection operator applied to two fuzzy sets 
with elements of differing degrees of membership, takes the 
respective elements with the lesser degree of membership as 
the intersection of the two sets. Again, using the two fuzzy
sets A and B, the intersection of the two sets can be
defined as;

A n B - | ax G A, bt G B, c£ - min^, b£ ) } (3.2)



21
where the min operator looks at the value of membership of 
the element. This operation defines the fuzzy AND operator. 
Using the above example, the car would be 20 percent slow 
and accelerating.

The degree of membership of an element in the 
complement of a fuzzy set is 1 minus the degree of 
membership in the original set. Therefore, a car that is 80 
percent slow, is only 20 percent not slow (or fast). This 
operation then, is equivalent to the predicate logic NOT and 
is the basis for the NOT operator in fuzzy logic. The 
complement of a set can be defined as;

NOT A - {ct |a£ € A, ct - 1 - a£} (3.3)

where the minus operator looks at the value of membership of
the element in the set.

3.3 Building a Fuzzy Set
Now that the basic operations of fuzzy logic have 

been defined, the fuzzy sets must be constructed. For the 
given domain the parameters to be used to characterize its 
state must be defined. Each parameter must first be 
identified, then the set of linguistic variables used for 
qualitative or quantitative description of its value must be
defined.

Here it will be assumed that the parameters are
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identified by some conventional means, and will carry on 
from there to characterize them for use with fuzzy logic.

To characterize a parameter for fuzzy logic, it must 
be assigned membership values in a set, or sets. In general,
these sets must be defined in advance and defined in the
computer's vocabulary for the problem. Each parameter need 
not be assigned membership in all sets, as its absence will 
indicate a default membership value of zero. Using the range 
of -1 to 1 has an advantage here because non-membership 
indicates the parameter's value is unknown, equivalent to a
value of zero.

For each parameter two things need to be known of it. 
First, as already mentioned, the range of values or 
linguistic terms it is to be mapped into and second, the 
nominal range of values it is to be mapped from, need to be 
specified. For example, if the height of a person is to be 
mapped to some fuzzy sets, both the fuzzy values and the 
range of heights that will be mapped into the sets must be 
defined. For the fuzzy sets the values short and tall might 
be selected. If the system is to deal with adults, tall may 
be people in the area of, or greater than, 6 feet, where as 
for children the height of 4 feet might be used.

The number of quantization levels selected, ie. the 
number of fuzzy sets, will depend on how accurately a 
designer wishes to describe a parameter. Some designers have 
used 15 or more levels, some as few as 3 [TON77]. The
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values to be mapped to these sets will also depend on the 
designer and the system they relate to.

Once these are known the method of quantization must
be chosen and the rate at which each set rolls off between
the nominal values of quantization. There are many examples 
of functions that can be used, some are shown in Figures 3.1 
to 3.4 [KAU75]. In addition, a unique mapping may be 
selected for any particular set or parameter. The shape of 
the mapping function should first suit the assumptions of 
how the membership values for a set change between the 
nominal values for each set. Second, an appropriate function 
can be chosen for the convenience of coding and
implementation. If, as in the case of this thesis the
parameters are to be used in a knowledge-based system, the 
fuzzy sets should try to encompass the full flavour of the 
knowledge and linguistic terms to be encoded.
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Figure 3.1 Membership Functions Corresponding to
"x is Large"
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Figure 3.3 Membership Functions Corresponding to
"|x| is Small"
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Figure 3.4 Membership Functions Corresponding to
"|x| is Large"



CHAPTER 4
CHOICE OF PROCESS FOR TESTING

4.1 Introduction
The intent of this thesis has been to study the 

application of knowledge-based systems and fuzzy logic to 
control problems. In order to test the ideas, they must be 
applied to at least one system. This chapter describes the 
criteria for selecting a test process, the process that was
selected and the model derivation for simulation.

4•2 Criteria
The process selected had to satisfy a few simple 

criteria. First, it had to be a system with some 
recognizable interest to the study of automatic control. 
Second, the problem of controlling the process had to be 
solvable with a knowledge-based system and reasonably 
appropriate for the application of a knowledge-based system 
as presented in Chapter 2. Finally, it had to be a problem 
to which the author could apply himself with a minimum of 
outside assistance in gathering the knowledge and building a
model for simulation.

Multiple Input Multiple Output (MIMO) processes can 
be difficult to model and therefore designing controllers 
for them can be an arduous task. In part this is due to the
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increase in the size of the process, and therefore an 
increase in the complexity. It can also be due to cross 
coupling between the inputs of the process and its outputs. 
This provides an interesting area for the application of a 
knowledge-based controller where the heuristic's of an 
experienced human controller can be applied to handle this
situation.

Also of interest to the author, for the field of 
automatic control, is the design of a generic controller. Of 
interest here is the ability to control a class of
processes, not just a specific process, or even just one 
example of a process. For example any human experienced with 
one automatic coffee maker can operate pretty well any 
automatic coffee maker. There are a general set of rules for 
operating such a device and in addition some specific facts 
may need to be known, or they may be induced. All processes 
in a class are intended to achieve the same end result, yet 
internally they may go about it in slightly different ways.

The criteria to be used when deciding whether or not 
a problem is a candidate for the application of a knowledge- 
based system were introduced in Chapter 2. For the purposes 
of study for this thesis, some of the criteria were
considered to be more important than others. Most important 
was selecting a process for which recognized "experts" are
needed to control it and for which a set of rules could be
gathered which would be generally accepted as correct. It
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also had to be complex enough so that it wasn't just the 
implementation of a simple proportional controller. The 
interest is to encounter the problems and advantages 
associated with the development of a knowledge-based
controller.

In order to make the acquisition of knowledge easier 
and faster, it would be advantageous if a process could be 
selected for which the author could act as the expert, as 
well as knowledge engineer, coder and tester. Possibly most 
important, was the selection of a process which would hold 
the interest of the author for as long as possible.

4.3 Description of Process Chosen
The process chosen for this application test was a 

light aircraft. The aircraft on which the simulation is 
based is a Piper Cherokee, Model PA-28, manufactured by the 
Piper Aircraft Corp, shown in Figure 4.1. This is a four 
place personal / training aircraft which is stable and not 
difficult to fly. It does require all the basic pilot skills 
and knowledge for flying (controlling) an aircraft and is 
easily modeled for the purpose of simulation to the 
requirements of this study. Configuration and performance 
data are available [CHE76] and the capabilities and 
performance of the aircraft are well understood by the
author.

For this thesis, the problem considered is the



31

I

Figure 4.1 PA-28-140 Cherokee Cruiser 
Piper Aircraft Corporation
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control of power and the pitch axis of the aircraft. There 
are two inputs, throttle and elevator position, to control 
five aspects of the aircraft's flight. Normally two of the 
following are primary instruments for controlling the 
aircraft. These are the engine rpm or power output, 
airspeed, altitude, rate of climb and angle of pitch. Rpm 
and airspeed are candidates for power control while 
altitude, angle of climb, airspeed and angle of pitch are 
candidates for pitch control.

This problem satisfies all the criteria specified 
above to some extent. It is a MIMO process with some cross 
coupling of the inputs to the outputs. It also holds that 
any licensed pilot can fly any light airplane once he is 
given basic facts on the aircraft's performance and 
capabilities. Pilots are essentially recognized experts at a 
skill and the rules which apply to controlling an airplane 
can be expressed.

The author has been involved with aircraft for many 
years and is a licenced commercial pilot. This process then 
obviously should satisfy the criteria of interest. To 
supplement the author's flying knowledge many training 
manuals are available which express the knowledge required 
for flying [FRO63], [FLI79], [PRI80].

The process was limited to the control of power and 
pitch to limit the complexity of simulating the process, to 
keep to a time frame acceptable for a Master's thesis, to
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keep the problem tractable in a limited development
environment, ie. hardware and software, and to leave room
for experimentation.

4.4 S imulator Development
This section presents the development of the 

equations used for simulating the aircraft. Simplifying 
assumptions and the final equations are represented while 
the actual parameter values used are given in Appendix A.

4.4.1 Simulation Of Engine Thrust
A very simple equation was first developed to 

simulate the speed of rotation of the propeller, engine 
for an early prototype controller. The equation assumed 
simple first order model with a one second time constant 
The equation used was

rpm,

a

RPM (s) - __ 1___ (4.1)
s + 1

which in the discrete time domain is
rpm(kt) - deltaT * mK(kt)

+ rpm((k-l) t) * exp (-deltaT). (4.2)
This model was used to test a simple knowledge-based
controller and evaluate some concepts.

This model has remained, except for the addition of a
factor to simulate induced and parasitic drag of the
propeller on the engine rpm. The factor is multiplied by 
input signal (mK) to account for the observed relationship
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of decreased rpm for a given power setting when the airspeed
of the aircraft is below the nominal cruise value and an
increase in rpm (unloading of the engine) when the airspeed 
is high. The nominal cruise velocity is a simple equation 
relating rpm, propeller pitch and an efficiency factor for 
the propeller [AER86]. This was done instead of calculating 
the actual drag on the propeller and therefore the engine 
loading because the engine torque was not being modeled and 
rpm was a required value. These equations have provided a 
satisfactory simulation for the purposes of this study. For 
calculating engine rpm the following equations are used,

nominal cruise - Vnom(t) - pitch * rpm(t) * e (4.3)
Vdiff(t) - V(t) - Vnom(t) (4.4)
rpmDamp(kt) - 1.0 + (signof Vdiff(t) * 0.075

* (1.0 - exp(-0.01 * Vdiff(t))) (4.5)
rpm(kt) - deltaT * mK(kt) * rpmDamp(kt)

-I- rpm((k-l) t) * exp (-deltaT) (4.6)

Using the rpm value calculated above the brake 
horsepower (bhp) is calculated using a simple relationship 
between rpm and bhp. A quadratic relationship is used and 
the following equation was derived from two known values,

bhp(t) - (1.68E-7 * (rpm(t))2
- 8.4E-5 * rpm(t)) * rhp (4.7)

Using a relationship between bhp and thrust [AER86], 
the propeller thrust can be calculated in cruise flight. 
Adding a term to account for decreasing thrust with
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increasing airspeed for a constant rpm, the following 
equations are used to give a thrust coefficient,

damp(t) - 1.0 - ((V(t) / 182) * 0.53) / V(t) (4.8)
thrustCoeff(t) -

bhp(t) * 550 * 0.85 * damp / weight (4.9)

The above equations provide an rpm value needed for 
the simulator output and in a "fuzzy way", a thrust 
coefficient needed in the following section in the equations 
of flight.

4.4.2 Simulation Of Longitudinal Motion Of Aircraft
For those readers feeling a little faint due to the 

last sections presentation, the equations of motion 
presented here have a much more rigorous basis than the 
equations for the derivation of the thrust and rpm. In a 
reference frame with its origin at the centre of mass 
related to the flight path, the motion equations for the
longitudinal axis will be;

m dV - - D 
dt

- mg sin 8 + T cos (a - a) (4.10)

d« - -dg 
dt dt

+ q (4.11)

m V dg - L 
dt

- mg cos 8 + T sin (a - o') (4.12)

B dq — M - T ZT + Mc (4.13)
dt

where m, D, L, M are known functions of the state variables
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and of t [HAC70], [SEC64].
The aerodynamic forces D and L and the longitudinal

aerodynamic moment M, can be expressed in terms of non­
dimensional coefficients which is the usual form,

D - pV2SCD/2 (4.14)
L - pV2SCL/2 (4.15)
M - pV2SlCM/2 (4.16)

After substituting the non-dimensional terms into the 
equations of motion, the constants can be collected and the 
equations simplified. The following equations can be derived 
for an aircraft with the thrust vector fixed parallel to the 
zero-lift reference axis of the aircraft. Thus using Y and K 
as the control variables, the following are obtained

note: T - mgr, and Mc/B - K ,
dh - V sin S - fx(V, 5) (4.17)
dt
dV - -(k2 + k3a2)V2 - g sin 5 + gr cos a
dt

- f2 (V , 5, «, r) (4.18)
d£ - k.Va - e cos 6 + er sin a ■ f., (V, 6, a, r) (4.19)
dt V V '
d« - -d£ + q - fA(V, 5, a, q, r) (4.20)
dt dt
da. - V2(k8« + k9V + k10«f4) + K(V, a, se , sx )
dt

■ f5(V, S , «, q , r, Se , 6r ) (4.21)
^2 “ P S..Pp » ^*3 * ElSlG-Loc > ^5 “ E-S-2.L « »

2m 2x2m 2m
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k8 - pScCm , k9 - pSc2Cmq , k10 - pSc_2 Cm* ,
8B 8BVcrlt 8BVcrit [HAC70].

Data was unavailable in the form necessary for 
equation (4.21) so another expression for acceleration in 
pitch was used. This equation uses the sum of moments 
contributing to the overall pitching moment of the aircraft. 
These effects are from the displacement of the lift vector 
relative to the centre of gravity, the aerodynamic pitching 
moment of the wing, the pitching moment of the fuselage and 
the pitching moment due to elevator deflection. The new 
equation is as follows,

B da. - My a - pV2CcCmya /2 (4.22)
dt

where

Cmya “ CL S-a + Cma c + Cmt + Cmf (4.23)
[SEC64].

CL and Cmac are obvious coefficients and easy to 
determine. The coefficients Cmf and Cmt need further 
explanation. First, Cmf the fuselage coefficient is 
expressed as follows

Cmf - Cmaf * (a - iw) (4.24)
where

Cmaf - 2Kf Volf (4.25)
Sc

Kf is a fuselage moment factor, see Figure 4.2, and
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Volf is the fuselage volume. An estimation for the fuselage 
volume is given in [SEC64] and is shown below,

Volf - 0.25* [w2/24 * (lf - 13) fl,
+ 2.3w2 * (12 - lx) + 1.2* w2 dl] (4.26)

JO

The various dimensions are illustrated in Figure 4.3.
The pitching moment coefficient due to the tail is

approximated with the following equation.

Cmt - Cmit (CL/a„ + «w0 + (it - i„) - e + rSe) (4.27)

The last term represents the change in the tails zero lift 
angle due to elevator deflection. The PA-28 aircraft has a 
flying stabilizer and therefore no elevator so this term is 
dropped. The pitching moment for the tail incidence is
calculated as follows

Cmit - - nt Vat (4.28)

nt is the tail efficiency, while Vat is the tail volume 
which is determined by

vat - lt_st (4.29)
c S

e is the down-wash effect of the airflow from the wing.
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Station

Figure 4.3 Approximate Interference Factors
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An approximate and sufficient solution to the above 
differential equations are given below, assuming a

.ently small time step is used.

h - h1 + dh 
dt

* deltaT (4.30)

V - V1 + dV 
dt

* deltaT (4.31)

8 - 61 + d£ 
dt

* deltaT (4.32)

a — a1 + da 
dt

* deltaT (4.33)

q - ql + dq 
dt

* deltaT (4.34)

4.5 Summary
This chapter has given a complete presentation of the 

process to be used in the development and evolution of the 
knowledge-based controller. The criteria for the process 
selection were presented, followed by the selection of a 
suitable process and the derivation of a set of equations 
such that a satisfactory simulation of the process could be
done .

The simulator was coded as a separate class in 
Smalltalk/V. This allows for easy creation of an object, a 
simulated aircraft, to which messages can be sent to affect 
simulation parameters, process inputs and the length of time
the simulation is to be run until the next sensor reading. A 
time step of 0.05 seconds was chosen. This is small enough
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that the simulator does not behave erratically and allows 
for reasonable execution time. Although the simulation is 
based on the PA-28-140, due to its simplicity it is not 
highly accurate, however its performance is representative
of this class of aircraft as was desired.



CHAPTER 5
CHOICE OF DEVELOPMENT TOOLS

5.1 Introduction
This chapter presents the criteria for selecting the 

software development tools for this thesis. The software 
tools used are discussed based on their power,
expressiveness and suitability to the tasks they were 
applied to. An expert systems shell by Texas Instruments 
called PC Plus was used for some early prototypes and later 
abandoned for PROLOG/V, a class in Smalltalk/V by digitalk
Inc .

5.2 Software Criteria
The architecture the software was to run on was the

first limiting factor. The software chosen had to run on an 
IBM compatible machine. An 80386 based machine with 4 
megabytes of RAM was available. It was also intended that 
some development be done on a XT clone with 640 kilobytes 
of RAM. Therefore the first criterion was stipulated by the
available hardware, it had to run on an IBM or compatible
machine.

With hardware limitations in mind, a development 
environment or set of tools was needed conducive to building

42
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knowledge-based systems and of being able to perform tests 
using a simulator implemented in software. For the simulator 
a procedural language was considered to be desirable, yet 
for the knowledge-based controller a declarative language 
was needed. For the knowledge-based controller an expert 
systems shell would also suit and possibly offer other 
advantages.

5.2.1 S imulator Criteria
The selection of a tool for the simulator was not a

large obstacle. It was preferred that a procedural language 
such as C, Pascal or Smalltalk be chosen as they are well 
suited to this type of task. In the simulator there is no 
requirement for manipulating symbolic data and the input and 
output would be straight forward and well defined. The main 
concern here was the ability for the language chosen to 
interface with the knowledge-based controller.

5.2.2 Knowledge-based System Criteria
For the knowledge-based system a language or tool 

that can deal with symbolic information and could 
incorporate fuzzy logic into it was required. The speed at 
which it executed was of secondary concern to these 
requirements as it would only be controlling a simulated 
process. Of greater concern than execution time was the 
development effort that would be required. Starting from



scratch with a language such as LISP would require the 
development of the knowledge representation scheme and the 
inferencing mechanism. An expert system shell would provide 
these, but it may not suit the needs of the system correctly 
and could require that too many tradeoffs be made.

It was desirable to keep the inferencing method and 
the knowledge representation scheme flexible. For 
inferencing, both backward and forward chaining were 
desirable because each may fit a particular sub-problem 
better than the other. For the knowledge representation, 
frames allow the exploitation and use of any naturally 
occurring structure in the problem domain, yet rules are a 
simple and quite natural way to express knowledge.

The availability and support of the tool selected was 
the next concern. The purchase of a development tool for one 
specific project may not be justifiable. Also the purchase 
of a language compiler or interpreter can save money over a 
shell, but may increase the cost dramatically in development 
time. The availability of complete and informative support 
can greatly ease development, and can therefore be a major
concern.

In summary, the criteria are the expressiveness and 
flexibility of the tool, the amount of development time 
anticipated, the support available and the availability of
the tool itself.
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5.3 Personal Consultant Plus
PC Plus is an expert system development shell for 

which McMaster University obtained a site licence from Texas 
Instruments. That solved the problem of availability and 
along with the site licence came support, both on campus and
from Texas Instruments. This turned out to be difficult to
get at times and the documentation was difficult to follow.
PC Plus is written in TI Scheme, a dialect of LISP, and 
provides many aides to expert system developers as well as 
external language interface well suited to use with C. 
Knowledge is represented in PC Plus in a combination of 
frames and rules and PC Plus supposedly supports both 
backward and forward inferencing. All parameters in PC Plus 
have a certainty factor attached to them and they are used 
in a fashion not incompatible with the fuzzy logic described
earlier.

The first prototype contained fewer than 30 rules in 
3 frames and seemed to work well. It merely had questions 
posed to it, to which it would give an answer based on a 
simple subset of rules for controlling an aircraft. The 
second prototype had about 150 rules in 19 frames, 
incorporated a fuzzifier to create fuzzy sets and was 
therefore much more complex but presented many problems. 
Forward chaining was attempted in the majority of the system 
but it was found that PC Plus did not support this in an 
acceptable fashion. The inheritance in the frames was found
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to be very awkward. Instead of searching for and resolving 
parameters in the current frame, it would look to the parent 
frames first. These problems could have been dealt with, but 
there were additional problems related to hardware.

PC Plus required at least 2 megabytes of expensive 
memory and the speed of an 80386 based machine to be 
workable. There was only one such machine available which
had to be time shared with other users and it was out of
service too often to keep the work progressing smoothly. It 
was becoming apparent that the development of the knowledge- 
based controller was requiring the monopolization of the 
development system with the amount of prototype and test 
iteration required in entering and verifying the rules. The
decision was made to look for an alternate tool.

5.4 Smalltalk/V and Prolog/V
After the trouble with PC Plus it was decided to try 

and stay away from shells and go with a more basic set of 
tools. The alternatives were to go with C as the procedural 
language, as it would have been with PC Plus, and then 
either LISP or Prolog for the knowledge-based controller.
For these two languages, the original alternatives were TI 
Scheme or Turbo Prolog. Turbo Prolog was preferred in order 
to help save some development time but it had the draw backs 
of not supporting modular programming which helps to keep a 
large system organized nor did it easily support frames. TI



Scheme supported an object oriented environment which was 
interesting mainly due to its similarity to frames.

The other major concern was to be able to do most, if 
not all, of the development on an XT class computer to which
there was unfettered access available. At this time a site
licence was obtained from digitalk Inc. for Smalltalk/V. The 
shipped software contained an implementation of Prolog 
complete with source code and documentation. This combined 
two powerful programming paradigms, logic programming and 
object oriented programming. It appeared that the necessary 
development tools had been found.

There exists a very simple means of posing a Prolog 
question from Smalltalk/V and in Prolog/V a predicate is 
available so that messages may be sent to Smalltalk/V 
objects. The object oriented environment can be exploited in 
Prolog/V to provide a frame construct. The knowledge can be 
grouped by function into objects, which inherit the 
knowledge and data of their parents as well as contain their
own.

This environment allowed more freedom in setting up 
the knowledge based controller and in the knowledge 
representation used. Fuzzy logic was easily implemented by 
defining special predicates in a parent class to the 
controller. A very big plus of this environment is the ease 
of testing. Any expression can be evaluated at any time in 
the Smalltalk/V environment, including Prolog questions.
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This made testing and verification of the code very easy. 
The debugger and inspectors provided allow tracing of a 
problem with great ease. Prolog/V is not a full
implementation of Prolog, but whatever is lacking can be 
easily added by modifying the class or whatever is needed 
may already be provided in Smalltalk/V.



CHAPTER 6
CONTROL SYSTEM DESIGN

6.1 Introduction
This chapter discusses the knowledge-based controller 

and its associated components. The ideology behind the 
control system is discussed introducing the methods of a 
human controller, a pilot, in controlling the process, an 
airplane. Next the instrument reading scheme is introduced 
which leads into the following section covering the 
implementation of fuzzy logic in this thesis. The 
fuzzification of the sensor readings is discussed as well as 
defuzzifying the output set. Lastly the structure used for 
the controller, including the knowledge representation and 
the layout of the objects or frames in the system and their
interaction is discussed.

6.2 Control Method
This controller implements the knowledge used by a 

human operator to control a simulated process. The 
controller is designed to emulate what is perceived to be 
the methods employed by a human operator to enact this 
control. For this thesis the controller is essentially 
trying to control the flight path of an aircraft. The inputs
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to the controller specify a power set point and a pitch set 
point. The controller then decides, based on the aircraft's 
current state, how to achieve these set points and then 
proceeds to accomplish the task. Thus two main tasks are 
identified here, one is planning and the other is the
execution of control.

There were originally five values being used to 
convey the state of the aircraft which corresponded to 
instruments a pilot uses. These five instruments can be 
grouped as to the type of information a pilot can get from 
them. The instruments which provide information about power 
are the tachometer and the airspeed indicator. The 
instruments which provide pitch information are the 
altimeter, the vertical speed indicator, pitch from the 
horizon (real or artificial) and the airspeed indicator as 
shown in Figure 6.1 [FLI79]. To these, acceleration and 
pitch rate were added because adequate control could not be 
realized without them. The pilot can sense this information 
either through feeling the motion or through the rate of
indicator movement.

Within each of these groups one of the instruments 
will be considered primary for control purposes while the 
other(s) will provide backup information. In normal, steady 
state cruise flight the airspeed is primary for power 
control and altitude is primary for pitch control. The 
instrument that is primary depends on the flight condition
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Figure 6.1 Flight Instruments
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to be maintained, or achieved. If a fixed airspeed is to be 
maintained then the airspeed is normally primary for power, 
but it may also be used as the primary indicator for pitch 
control. As an example, in a descent it is often desirable 
to maintain a given airspeed for a given power setting, such 
as descending from altitude or on final approach to land.

Normally as long as the errors in the set points are 
not too large, the instrument related to the set point to be 
maintained can remain as the primary instrument. However, if 
the set point is changed by a large amount, or if the error 
should become large, then it is necessary to temporarily use 
another instrument as the primary control instrument to 
establish the aircraft at the desired set point. An example 
is in controlling power. If a large change in airspeed is 
necessary, the pilot will first make an estimate of the new 
power setting required and then establish the power at that 
value. The tachometer is now primary for power until the new 
power setting is established. When the tachometer is
correct, the pilot will switch to the airspeed as primary 
and make corrections as necessary. This works similarly for 
control of pitch. It is obvious that there is a basic level 
of control below which the pilot cannot recurse, for power 
it is the engine speed from the tachometer and for pitch, 
the pitch reading from the horizon.

The pilot must plan how to achieve a new goal by 
creating sub-goals and deciding what instruments to use for



53
deciding on and enacting control such that the sub-goal and 
ultimately the major goal is achieved. A knowledge-based 
controller is well suited to this type of control 
methodology and this controller exploits it.

6.3 Instrument Reading Scheme
While flying, a pilot scans the aircraft's 

instruments as opposed to taking a snapshot of all the
instruments at one instant. The controller for this thesis
attempts to emulate this procedure when getting the values 
which correspond to the instrument readings. Some values are 
read at a higher rate than others, corresponding to the 
speed at which they change as the aircraft reacts to inputs 
or the environment, or to how fast it is desired that the
aircraft react.

Using fixed sample times in a scan fashion is only a 
partial implementation of what is ultimately desired. If the 
aircraft's state is at the desired set points and in its 
recent history the aircraft has been well behaved, then the 
sample time could be lengthened. A pilot does this when 
performing other duties in the aircraft, and if an error 
develops, it will receive the appropriate amount of
attention for its correction. It is obvious then, that if 
the sample times are allowed to float, then the output gains 
may also have to be changed to suit. This is the type of 
task a knowledge-based controller can be applied to. It
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remains to be seen if this provides any real advantages, 
although it may for complicated multi-level controllers.

6.4 Fuzzy Set
Two problems present themselves when using fuzzy 

sets. First, how to create the fuzzy set and second how to 
convert a fuzzy set back to a discrete value for output. 
Within each of these, other problems exist such as the 
number of elements the set is to contain, how the mapping to
the elements of the set is to be done and if the set is
always going to be complete (ie. contain all the possible 
elements with a certainty factor). This section discusses 
how these problems were solved for this thesis.

6.4.1 Fuzzifier
The fuzzy set used for this thesis has the equivalent 

of seven quantization levels. This is realized by the use of 
four elements to indicate magnitude and two to indicate 
direction. The linguistic variables were chosen to relate as 
closely as possible to terms used by a pilot to describe the 
rules for flying. The name of each set created corresponded 
to the value read, such as altitude, pitch rate, airspeed,
etc. The names of the sets elements indicate the error in
the reading from the desired value and are as follows; 
correct, small, medium and large for magnitude and low or 
high for direction.
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The fuzzy set used for the PC Plus prototypes used a 

trapezoidal shape with straight line segments for mapping 
the error value to the certainty factor for each element of 
the set (Figure 6.2). This fuzzy set and fuzzifier was
sufficient but a smooth function was chosen for the
Smalltalk/V implementation in order to simplify coding. The 
fuzzy ranges of the elements were also changed slightly. The 
correct and small ranges are narrower and the small error 
range is shifted towards correct slightly as is the range 
for medium relative to the original set. Figure 6.3 depicts 
the fuzzy set used. The direction elements correspond to the 
side of correct the error corresponds to. Table 6.1 lists 
the fuzzy set elements and the general functions that apply
to them.

For each value, the range mapped into the fuzzy set 
varies. These ranges were picked based on the requirements 
to which the instrument readings must be maintained on an 
actual Department of Transport flight test [FLI85]. Those 
not stipulated were given an estimated value to begin with. 
Some of the mapping ranges were later modified to achieve 
better controller performance as shown in Table 6.2.

If one of the basic instruments, ie. the tachometer 
or pitch, are primary for control, and the error is beyond 
the current mapping range, the range can be modified by the 
system. This also necessitates changing either the sample 
time (extending it) or preferably modifying the output gain
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Table of Fuzzy Set Functions

Element Function ;x is the scaled error value

Correct f(x) = 1/(1 + x2)

Small f(x) = 1/(1 + 0.5(x - 2/)

Medium f(x) = 1/(1 + 0.3(x - 5/)

Large f(x) = 1/(1 + 0.3(x - 8/); x^8 

f(x) = 1; x > 8

Low f(x) = 1 - 1/(1 + x2); x 0 

f(x) = 0; x > 0

High f(x) = 1 - 1/(1 + x2); x^O 

f(x) = 0; x < 0

Table 6.1 Fuzzy Set Functions - Prolog/V
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Mapping Ranges for Fuzzy Set

Value initial final

tachometer
(rpm)

100 500

airspeed
(mph) 10 5

acceieration
(mph/s) n.a. 5.0 ♦ 0.2 

(airspeed/5)

altitude
(ft) 100 100

pitch
(degrees) 15 2

pitch rate 
(degrees/s) n.a. 2.0 • 0.2 

(pitch/5)

vertical speed 
(ft/m) 100 100

Table 6.2 Mapping Ranges for Fuzzy Set
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by increasing it. The mapping range and gain can then be
decreased or returned to the nominal values when the error
has decreased sufficiently. It is only for the basic
instruments that this is necessary. With this fuzzy set, the 
error is maintained within the correct range which is about 
0.08 to 0.1 of the mapping or error range.

6.4.2 Defuzzification
The solution derived by the knowledge-based system is 

in the form of a fuzzy set. The question now is how to 
derive an output value which can be used to change the 
process inputs. The process will require a value which will 
indicate the direction and magnitude of change for the 
input. The defuzzifier must use some method of going from 
the fuzzy output set to a single discrete value.

A very simple conversion method was chosen for this 
thesis. Each fuzzy element is assigned a magnitude value for 
the output change. The output selected is the fuzzy element 
with highest certainty factor. The corresponding magnitude 
value is then multiplied by a gain which is related to the 
current error range mapping for the current primary
instrument and given a positive or negative direction
depending on which direction element has the maximum
certainty factor. In this thesis the output has different 
magnitudes and gains assigned corresponding to the current 
primary instrument to allow for experimentation and tuning.
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The output gain is also adjusted as the error range for the 
instrument changes. This is most valuable for the basic 
instruments, allowing the controller to operate
satisfactorily for large errors. Table 6.3 shows the output 
magnitudes and gain calculations at the time of writing.

There are other schemes which could have been used to
defuzzify the output set, as there are many choices to 
create the input fuzzy set. Some methods try to combine all 
the information contained in each set and the certainty 
factors. These allow for a more continuous range of output 
values. Thus the controller could distinguish between an 
output set with medium as the maximum element yet with small 
having a larger certainty factor than large and therefore 
the output value will reflect this in its magnitude. The 
current method allows the designer to vary the
aggressiveness of the controller depending on the magnitude 
of the error and the individual primary instrument.

6.5 Structure of the Controller
The control system was designed to exploit the 

natural hierarchy and segmentation inherent in the process, 
this is shown in Figure 6.4. Also note in the bottom leaves 
of the tree like structure, the figure is arranged to 
display the hierarchy of the instruments in the chain of 
control for the corresponding output. Control using the 
higher instruments as primary requires rules that refer to



Magnitudes and Gains 

Output Conversion

Table 
6.3 Table 

of Output Conversions

Controlled Par. Primary Inst. Correct Small Medium Large Gain

Power tachometer 0 0.8 3.3 6.5 0.1

Power airspeed 0 1.0 5.0 10.0 4.0

Pitch vertical speed 0 1.0 4.0 8.0 8.33E-04

Pitch altitude 0 0.8 2.5 4.7 5.56E-04

Pitch pitch 0 1.0 4.0 8.0 2.25

Pitch airspeed 0 1.0 4.0 8.0 -1.96E-04

ro
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the lower instruments for adequate and correct control.
The Planner or Pilot frame oversees and coordinates

the knowledge-based controller. It contains rules to
initialize and clear the system databases as well as rules 
that are generic to the overall system and required in the 
child frames. This frame is responsible for coordinating 
sensor (instrument) reading by invoking the rules in the 
SensorUpdate frame, requesting a control action or solution 
from the Controller frame and then having the solution 
converted to a discrete output by the Output frame. The 
output value and time until the next sensor reading are then
returned to the process.

The frame UpdateSensor, obtains the sensor reading, 
has it converted to a fuzzy set and modifies the output 
gains and fuzzy mapping if necessary.

The Controller frame invokes the appropriate child 
frame depending on whether the control action required is 
for the pitch axis or for power control. If the sensor just 
read is primary for pitch or power then the appropriate 
child frame is consulted, otherwise no action is taken and 
it returns to the parent frame. Rules generic to all the 
child frames for control are also present in this frame.

The PitchController and PowerController frame merely 
decide which specific child to consult based on the primary 
instrument. They also contain rules generic to Pitch or 
Power control respectively.



6 5

The bottom leaf frames decide what control action is
best to correct an error in the primary instrument reading 
using information from other sensors as needed in the rules
for effective control.

Figure 6.4 also shows the inheritance of predicates 
from Prolog/V and the Fuzzy frame.

6.6 Rules
The system rules are in the form of Prolog/V 

predicates. As the fuzzy set operations are an add on to 
Prolog/V, the certainty factors are calculated using the 
fuzzy predicates utilizing reverse polish notation [RIC88].
A predicate is then used to decide if the rule has succeeded 
or failed and therefore if backtracking to another rule and 
possible solution is necessary. This is unfortunate because 
it transfers part of the control mechanism into the rules 
and therefore the knowledge-base. This was necessary due to 
this implementation of fuzzy logic. Two solutions to this 
problem are possible. One, a different knowledge
representation scheme can be used and create an inference 
engine in Prolog/V to deal with fuzzy logic. This however 
may make it very difficult to take advantage of the object 
oriented programming paradigm for implementation of frames. 
Second, a Fuzzy Prolog could be implemented as in [RIC86].

The following is an example predicate from the 
PitchAltitude frame for controlling the pitch axis with
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altitude as the primary information. 
checkClimb() :-

errorln (#pitchRate, #low), fNOT(), 
errorln (#verticalSpeed, #medium), fAND(), 
errorln (#altitude, #small), fAND(), 
fuzzy (cf),
makeOutput (#pitch, [#small, cf]), 
goWith (cf), !.

which translates to;
IF the pitch rate error is not low and the vertical speed 

error is medium and the altitude error is small
THEN checkClimb succeeds by adding the control magnitude 

of small to the output set for pitch 
This rule decides the magnitude of the control

deflection and another rule would decide the direction in
order to check or slow the climb of the aircraft. There are
over one hundred rules in the system, the majority of which
are in the bottom control frames.



CHAPTER 7
SIMULATION RESULTS

7.1 Introduction
This chapter contains a small number of simulation 

runs to demonstrate the knowledge-based controller's 
performance. Different sensors are selected as primary and a 
set point change, within the fuzzy error range, is made. For 
the control of power, an example of a large set point change 
of the airspeed is presented. Here the controller must 
switch to a new primary instrument for a short time.

7.2 Power Control
The response to a commanded change in the power 

output or engine speed is shown in Figure 7.1. The system is 
over-damped and quite easy to control. With the fuzzy error 
range set at 500 rpm the error can be quite large at plus or 
minus 40 rpm, but this relates to an approximate airspeed 
difference of plus or minus 2 mph.

Figure 7.2 (a & b) shows the aircraft response to a 
small commanded change in airspeed. The controller strives 
to achieve an acceptable acceleration for the magnitude of 
the airspeed change which it will maintain until the 
airspeed error decreases. The controller output depends on

67
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the airspeed error and the acceleration both in magnitude
and direction.

A larger commanded change in the airspeed is shown in 
Figures 7.3 (a-c). Here a commanded deceleration of 20 mph 
is made. The commanded change is larger than can be dealt 
with by using the airspeed indicator alone. The controller
therefore calculates an estimate for a new tachometer
setting based on a ’’rule of thumb” and temporarily assigns 
the tachometer as the primary instrument for power control. 
When the needle movement (acceleration) is sufficiently slow 
the controller switches back to the airspeed as primary.
This occurs at approximately 50 seconds in Figure 7.3. At 
this point, if the airspeed error was still too large, a new 
tachometer setting would have been found and this instrument 
again assigned as primary for power control. In this 
example, the airspeed error was within an acceptable range 
and the airspeed indicator remained as primary.

7.3 Pitch Control
The three main values controlled with pitch are 

presented in this section, beginning with the basic pitch 
control. Figure 7.4 shows the response of the system to a 
change of pitch angle command. Pitch position is controlled 
by a combination of position and rate error similar to 
airspeed control.

A set point change for vertical speed is shown in
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Figure 7.3-c Large Airspeed Set Point Change
Vertical Speed Constant at 0 fpm
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Figure 7.5 (a & b). The control of vertical speed has been 

set to be quite aggressive with a resultant large overshoot.
Part of this overshoot error is also attributed to
simultaneous airspeed and power changes taking place.
However, it can be seen that the response settles quite well 
to a small error for the vertical speed.

A set point change in the altitude is the slowest and 
most difficult to control. The plots in Figure 7.6 (a & b) 
show the response of the aircraft and the pitch control 
action. To control the altitude, a vertical speed that is
commensurate with the altitude error must be achieved, but
to do this care must be taken not to over control the pitch 
angle and pitch rate. This control is achieved with 
reference only to the fuzzy values, ie. for a medium error,
a medium rate of climb is used. This is continued for the
pitch angle and rate to achieve the desired climb. As the 
altitude error decreases, so must the rate of climb be
decreased, ie. small altitude error, then use a small rate
of climb. Therefore for altitude control there are rules for
starting, checking and stopping a climb as well as
controlling pitching of the aircraft. Similar rules are used 
elsewhere, but altitude is the most complicated and complete
example of the interaction.
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7.4 Conelus ion
The controller uses a relatively small set of values 

to achieve control of the system and relies instead on the 
knowledge contained in the system to accomplish acceptable 
performance. The gains and sample times can also be juggled 
to tune the response but this is no substitute for a correct 
knowledge-base for the control of the process. In fact rules 
can also be written to adjust the gains, sample times and 
fuzzy mapping ranges as necessary for different situations 
and requirements.

This section has demonstrated that a process can be 
controlled with a knowledge-based controller utilizing fuzzy 
logic. The controller is realized with out explicit
knowledge of the system, but using only operator knowledge 
and a knowledge representation scheme to best exploit that 
knowledge.



CHAPTER 8
APPLICATION OF NEURAL NETWORKS

8.1 Introduction
This thesis has so far presented knowledge-based 

systems as a method of emulating human thought and then 
using human rules and reasoning methods in a control 
application. A recent resurgence of interest in neural 
networks has researchers claiming their applicability to 
many problems including automatic control [JOS88]. The 
neural network is an attempt to model the basic structure 
and operation of the human brain and therefore emulate the 
way intelligent information processing occurs within the 
brain [TRE88]. Implementations of neural networks have 
existed since the beginning of the computer age. The current 
wave of excitement seems to be a product of recent hardware 
advances in the construction of massively parallel machines
and theoretical advances which even increase the
computational power of neural networks in conventional Von
Neuman machines.

Neural systems are a pattern directed reasoning 
mechanism and have been shown to develop internal 
representations, through self-organization, of real or 
abstract classes in the external environment [JON87]. From

82
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this self-organization, collective properties emerge which 
include association, categories of generalization, 
differentiation, preferential learning, optimization, fault 
tolerance and hyperacuity [JOS88].

This chapter gives a short explanation of the 
construction of a neural network, then three implementation
trials are discussed.

8•2 Neural Network Approach
Intelligent behaviour and computational power of the 

human brain seems to come from interactions involving large 
numbers of neurons that are connected together by a complex 
network of synapses. Each neuron is quite limited in its 
processing capabilities compared to a computer, but it is 
the combined ability of many connected neurons which is the
power of a neural network. A simulated neuron has four 
important components; input connections or synapses through
which it receives activation from other units, a summation
function that combines the various input activations into a 
single activation, a threshold function that converts this 
summation of input activations into an output activation and 
finally, output connections or axonal paths by which a 
unit's output activation arrives as the input activation at 
other units in the system [JON87].

Inter - connections between computer simulated neurons 
are typically assigned a weighting factor to modulate the
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activation passing between the units. The absence of a 
connection can be represented by a weight of zero, and an 
inhibitory relation by a negative connection weight.

In a neural network the knowledge lies in the 
connection weights between the units. In contrast, the 
knowledge of a knowledge-based system lies in the rules and 
the relationship of the frames. Additionally, a neural 
network is driven by the activation that passes between 
units. An expert system is driven by the firing of rules 
using an inference engine.

Much of the current resurgence of interest in neural 
networks is due to the development of a powerful learning 
rule that can determine inter-connection weights for multi­
layered systems. This learning rule is the back-propagation 
rule and is well explained in [JON87]. It takes the error 
from a desired output for a given set of inputs and 
propagates it back through the network to adjust the 
interconnection weights and thresholds at each neuron.

Neural networks can learn the behaviour of a system 
or domain expert from observation or a specified training 
set. This could provide substantial saving in effort 
required in comparison with an equivalent rule or frame 
based expert system. A set of example inputs and the 
required outputs from a system may already exist or be 
easily specified. These could be used to train a neural 
network quite easily, but it may take considerable effort
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and guess work to distill the knowledge from these and put 
it in a form usable by an expert system. The rules must be 
developed, entered into the knowledge base (which must be 
designed to suit the current problem) and checked for 
compatibility and consistency with the existing knowledge
base .

The back-propagation learning rule can require large 
amounts of computational resources, the demand for which 
increases dramatically with increases in the size of the 
network (the number of neurons and the number of layers), 
the size of the training set and decreases in the error
tolerance to which the network is to be trained. With
current implementations a single new rule cannot be just 
added to the neural system. The network must be retrained 
with the complete training set with the new example(s) 
included. This process should be quicker than the original 
training as the network need only assimilate the new
information.

8.3 Neural Network Implementation Trials
Three small neural networks were implemented to 

investigate their application directly or indirectly to the 
controller implemented for this thesis. The first example 
was a stand alone experiment for using a neural network to 
estimate intermediate goals and was not incorporated into 
the controller. The second implementation required the
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coding of a neural network simulation in Smalltalk/V so that 
the resulting trained network(s) could be incorporated into 
the controller. Two networks were created for the simple 
task of engine speed control.

8.3.1 Estimation of Intermediate Goals
The knowledge-based controller presented in this 

thesis must determine an intermediate goal for pitch angle 
when the vertical speed set point error becomes large. These 
intermediate goals do not need to be very accurate as the
aircraft attitude will be modified when the controller
returns to the super goal. Some intermediate goals can be 
inferred quickly by the knowledge-based system, yet others 
may require a rule base too complicated to be practical. One 
such case exists for the setting of a pitch attitude in
order to establish a desired rate of climb.

Of interest here is the ability of a neural network 
to learn a feature space from a relatively small training 
set and generalize to other features in the domain. The rate 
of climb of an aircraft is affected by a number of things, 
including air density, aircraft weight, airspeed and the 
angle of attack. The simulated aircraft in this thesis has a 
fixed weight and the air is a fixed density. Thus the only
effects on the rate of climb to be considered are the
airspeed and the angle of attack. The power level can affect
the rate of climb as well but for normal climb attitudes the
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airspeed will suffice. For a given airspeed in a normal 
climb the pitch angle is proportional to the angle of attack 
of the wing.

A two input (airspeed and desired rate of climb), 
single output (pitch angle), neural network was required for 
testing. The range of rate of climb used was from -500 fpm 
to +500 fpm. The airspeed range is from 60 mph to 100 mph. A 
set of steady state data from test runs of the system was 
collected to be used for a training set and testing. Table
8.1 shows the data used and the results. The network was
trained on a set of six values to a tolerance of 0.05. The
network's inputs and output are all in the range from 0 to 1 
therefore the aircraft data was mapped into this range with 
simple linear functions.

The example network used is from an instructional aid 
called "AWARENESS" and developed by Neural Systems Inc. of 
Vancouver B.C. The network is shown in Figure 8.1 with the 
training complete and an example input set. As can be seen 
from Table 8.1, the network performs quite well in this case 
predicting a pitch angle that should put the aircraft in a 
climb at a rate well within the error range for the vertical 
speed to be used as the primary instrument for pitch
control.

8.3.2 Engine Speed Control
To further experiment with neural networks, the
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Table 
8.1 Neural Network Training and Test Dat

Example Data for Neural Network Test of Network

Airspeed
(mph)

Vertical Speed 
(ft/a)

Pitch Angle 
(degrees)

Network Output 
(degrees)

Difference
(degrees)

♦ 70 (0.25) 500 (1.0) 14.3 (0.95) 13.5 (0.90) -0.8 (-0.05)
70 (0.25) 0 (0.5) 10.1 (0.68) 10.5 (0.70) 0.4 (0.02)

♦ 70 (0.25) -500 (0.0) 5.8 (0.39) 5.4 (0.36) -0.4 (-0.03)

* 80 (0.5) 500 (1.0) 11.0 (0.73) 11.7 (0.78) 0.7 (0.05)
80 (0.5) 0 (0.5) 7.0 (0.47) 7.2 (0.48) 0.3 (0.0l)

♦ 80 (0.5) -500 (0.0) 2.9 (0.19) 3.0 (0.20) 0.1 (0.0l)

♦ 87 (0.68) 460 (0.96) 8.7 (0.58) 9.4 (0.62) 0.7 (0.04)
90 (0.75) 0 (0.5) 4.7 (0.31) 4.4 (0.30) -0.3 (-0.01)

♦ 90 (0.75) -500 (0.0) 1.3 (0.08) 1.9 (0.13) 0.6 (0.05)

Note:
1 Data is for a given altitude and aircraft weight.
2 Data marked with * is the training set.
3 Equivalent values for network are in brackets.

oovO
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section of the knowledge-based controlling the engine speed 
with the tachometer as the primary instrument was replaced
with a neural network. In addition, a neural network was 
trained to give a smoother, continuous defuzzification of 
the output fuzzy set. This provided insight into their 
function in the presence of incomplete information. A 
further test was planned that called for the application of 
a neural network to a more complicated task in the 
controller. A serious computer resource problem was 
encountered here and the plan had to be abandoned as it was 
beyond the scope of this thesis to try and broach this 
problem. A more detailed description of these experiments
now follows.

The back-propagation algorithm was implemented in 
Smalltalk/V for these tests. The implementation allowed any 
combination of neurons and layers to be specified, trained
and evaluated.

The engine speed controller required a network with 
six input neurons and six output neurons. Thus its inputs 
and outputs are a complete set of certainty factors gleaned 
from or applied to a fuzzy set. There was one hidden layer 
specified which contained six neurons as well. Each input 
and output neuron corresponds to a fuzzy value. For input, 
the certainty factor of a fuzzy value is applied to its 
corresponding neuron. Likewise, the potential of an output 
neuron is the certainty factor for its corresponding element
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in the output fuzzy set. The neural network implementation 
contains a class for 'fuzzy nets' so that the matching of 
the input and output neuron potentials to their
corresponding fuzzy values in the input and output fuzzy 
sets is automatically handled. Therefore the neural network 
implementation is virtually transparent to the knowledge
based controller.

The training set consisted of seven example input and 
output pairs. Training was done to a tolerance of 0.2 on all 
the output neurons for all the pairs in the training set. 
This required approximately 4,000 iterations to accomplish, 
which translated to approximately 4 hours on an 80386 based
machine.

The performance of the control system utilizing the 
neural network was identical to those from the strictly 
rule-based controller. This was expected as the training set 
was based directly on the knowledge contained in the rules 
for controlling the engine speed with the tachometer as the 
primary instrument.

The strategy for defuzzifing the output set was 
briefly discussed in Chapter 6. The method selected for the 
controller for this thesis consisted of simply setting the 
final output to the value corresponding to the fuzzy value 
with the greatest certainty factor. This has worked well as 
the output set is often incomplete. A neural network with 
four input neurons, eight neurons in one hidden layer and
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one output neuron was created and trained to defuzzify the 
output set.

At first the network was trained assuming a complete 
fuzzy set for the output. The training set contained ten 
examples. Figure 8.2 shows the result for a tachometer set 
point change using the neural network controller and 
defuzzifier. Comparing this with the result shown in Figure 
7.1, the reader will notice the presence of slightly more 
overshoot in the new result but also a smoother response.
This is due to a continuous discreetization of the output 
set. The difference in steady state error is insignificant 
as both are within the range of the fuzzy value 'correct'.

A significant problem was encountered with 
defuzzifying output sets that were incomplete. All fuzzy 
values that were missing were given a certainty factor value 
of zero. It turned out that when the fuzzy output set
contained values on the low end of the scale and therefore
the fuzzy values on the high end of the scale were assigned 
certainty factors of zero, the output value was over 
estimated. Conversely, when the fuzzy values on the low end 
of the scale were missing, the output value was grossly 
underestimated. The result was under - control when large 
errors were present and over-control for small errors and 
therefore unstable response to a step input change.

Upon closer examination of the response of the 
network to various inputs it was decided that this was an
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example of over training. The network was trying to account 
for too many attributes of the output fuzzy set. A 
simplified training set was derived consisting of only four 
special cases. In each training pair one input neuron is 
set to one, the remaining three were set to zero, and an 
appropriate output example was provided. The resulting 
network performed better on incomplete sets however the 
performance with complete sets was degraded.

As long as the output fuzzy set was complete, the 
neural network defuzzifier gave a neat and continuous 
output, otherwise this implementation was useless. Two 
possibilities are now apparent, either a larger and more 
intelligently trained network is required, or this is simply 
a misapplication of the technology. For the knowledge-based 
controller implemented for this thesis, this has been a 
misapplication of a neural network. The original, simple 
defuzzifier gave a more satisfactory response (Figure 7.1) 
than did this example (Figure 8.2). Although some tuning may 
improve the response for the case when a complete output 
fuzzy set is available, there still exists the more serious 
problem of defuzzifying the incomplete sets.

With the success of the engine speed controller for 
implementing the knowledge-based control, an implementation 
of a neural network controller for the vertical speed was 
conceived. This would require a network with twelve input 
neurons, six neurons on one hidden layer and six neurons on
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the output layer. The training set consisted of forty-nine 
input / output pairs. This network has seven times as many 
training examples and 50% more weights to be adjusted than 
the engine speed controller network. From experience gained 
with the preceding tests, the number of training cycles that 
would be required would probably be at least 10,000 and each 
would take seven times longer than for the engine speed 
controller. It would therefore take on the order of twenty 
times as long to train this network. A conservative estimate 
then puts the training time on the 80386 based machine in 
the neighborhood of 100 hours (or one month on an 8 Mhz XT).

8.4 Conclusions
For the first trial the interest was in simplifying 

the specification of intermediate goals for the knowledge- 
based controller in the form of new set points. It appears 
that a neural network would function quite well in that
role .

It is obvious that for the estimation of intermediate
goals that the network could be extended to include further 
inputs and handle a greater range of conditions. The example 
used herein used purely numerical data to arrive at a 
numerical output. The network could also be extended to 
handle symbolic data [JON87] and even to mix the two. So it 
is possible to replace significant portions of the
knowledge-based controller with a neural network.
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For the second set of trials the purpose was to 
replace parts of the knowledge-based controller with a 
neural network. Neural networks can implement fuzzy logic 
with each input neuron representing a variable with a 
certainty factor assigned, and each output neuron likewise 
representing a variable with its potential representing the 
certainty factor. A major problem in utilizing a neural 
network is specifying the training set. It may not be 
possible to collect a complete training set which 
characterizes the particular problem domain. As 
demonstrated, the training time required quickly becomes 
prohibitively large as the network and the training set
increase in size.

These trials have shown that simulating neural 
networks can provide some interesting alternatives to 
conventional programming and expert systems. The usefulness 
of neural network simulations is severely restricted in the 
micro - computer environment, however for small, specialized 
problems a micro - computer can be used to train them.

This investigation has only referred to the use of 
the back-propagation training algorithm. Other alternatives 
exist but this one appears to be the most general and easily
realized.



CHAPTER 9
CONCLUSION AND DISCUSSIONS

This thesis has presented an application of 
knowledge-based systems to automatic control. The knowledge- 
based controller has incorporated fuzzy logic to be able to 
deal with some uncertainty, but mostly to allow the
knowledge to incorporate linguistic terms. The controller 
was not based on a model of the system in a classical sense, 
but instead on the knowledge in the form of rules used by a 
human operator to make control action decisions.

Knowledge-based systems and fuzzy logic were briefly 
introduced to the reader. The knowledge-based system is a 
flexible and unique form of programming information for use 
by a computer. In their full realization including, 
explanation facilities, they are quite powerful and useful 
to human users. Explanation facilities were not incorporated 
into the controller in this thesis as the enquiring process 
did not require it. In addition, supporting such a facility 
would have made an already slow system even slower. The 
large amount of symbolic processing and logic tracing makes 
the knowledge-based system very slow. With the demand for 
ever faster controllers, knowledge-based controllers are at 
a large disadvantage.
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The process used in this presentation was a simple 
training/personal aircraft. This aircraft is quite stable by 
industry standards and its response to control inputs and 
disturbances is quite slow. Even so, with the way the 
controller was setup, the controller was working much slower 
than real time on a 80386 based computer. The sample
frequency could be lowered in the system to allow more time 
for decisions to be reached, but there is also a large 
amount of overhead in the Smalltalk/V-Prolog/V
implementation. This environment allows dynamic typing and 
memory allocation. Implementation in a conventional, 
strongly typed software environment would greatly improve 
performance. The Smalltalk/V-Prolog/V environment's strong 
point is that it provides a very powerful and flexible 
development environment and was therefore the right tool for 
this study.

The knowledge-based system's strength in this 
controller was in the higher level decision making, the 
setting of intermediate goals, directing the overall 
operation plus the ability to adjust gains and sample times.
These are the tasks more associated with conscience decision
making for the human operator, in this case the pilot. The 
system seemed to get bogged down in the lower level control 
where the decision of output magnitude and direction is 
made. Many of the rules are repetitive yet with small 
variations for each primary instrument and require a fair
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amount of backtracking to find the most appropriate fuzzy 
output value. The lower level decisions become quite 
automatic with practice and require little or no conscience 
reasoning of an experienced pilot. Recognizing these reflex 
like control actions suggested that another solution may be 
more suitable here, such as neural networks.

In the knowledge-based controller a major problem 
encountered was incomplete specification of the controller 
rules. It must be clear that the rules were not necessarily 
incorrect, but incomplete, mostly due to the fact that most 
of the decision making in the reflex control actions was not 
recognized in the beginning. A problem also arose because 
some of the information a pilot uses in flying an aircraft 
comes from his own senses, flying by the seat of his pants 
if you will. The rules had to be modified and encoded to 
allow for this, as well a couple of sensors, pitch rate and 
acceleration, had to be added to the system to provide some
of the additional information.

The pilots decision making and control is also much 
more fluid and flexible than could be captured in this 
knowledge-based controller. The computer's tireless 
attention and repetition compensates somewhat for this and 
therefore this failing is masked to some degree.

Neural networks were incorporated into the thesis at 
a very late date. The resurgence in interest had been 
gaining momentum over the past year and the author was
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introduced to them in a seminar just as the problem of 
finding set points for intermediate goals was being 
investigated. The problem of getting a pitch angle to
establish a desired rate of climb was the most troublesome.
A function could have been derived to provide the solution, 
but this would not have been in keeping with the philosophy 
of this thesis. At first the ability of a neural network to 
generalize after being trained on a relatively small 
training set was of the greatest interest. Subsequently, the 
ability of neural systems to deal with fuzzy logic was of 
interest and incorporated into the control of the engine 
speed. Neural networks also make the decision making seem 
more automatic as the solution is found quite quickly with a 
trained neural network, even in a machine with conventional 
architecture. The knowledge is stored implicitly in the 
system via the synapse or connection weights and does not 
have to be reasoned through for each solution. If neural 
networks do prove to be generally useful enough to warrant 
development of hardware to exploit them, they should provide 
some great advantages in speed of processing as well.

Knowledge-based controllers provide some powerful 
tools which used in the correct application will be 
advantageous for the control engineer. One clue to their use 
seems to be to apply them where a human would use conscience 
reasoning to solve the problem. Mixed with neural network 
technology and classical control, some powerful solutions
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are available to the control engineer.
With the above discussion in mind a number of areas

where more specific research should be done can be selected. 
If knowledge-based systems are to be applied to automatic 
control then the practical aspects of their use should be 
approached. The methodology of selecting the most
advantageous area for the application of a knowledge-based
controller has not been addressed in detail. More
importantly a systematic approach to designing such a 
controller has not been presented. It would be advantageous 
to an engineer considering the application of this type of 
controller to have a solid, acceptable approach to design 
which he could follow and be relatively certain of success. 
This would be a difficult area, as there still exists many 
questions concerning the design and construction of 
knowledge-based (expert) systems in general.

Neural computing is a field, which just being 
essentially reborn, is wide open for work. A major problem 
here is finding appropriate training sets for a given 
application. Another problem is weeding out the rhetoric and 
selecting appropriate and advantageous applications of the 
technology. Indeed, neural networks may only be a passing 
fad once again. In areas where it is not possible to put 
together a training set a knowledge-based system may be 
developed to use in the initial implementation of a
controller and have it act as a teacher for a neural
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network. Eventually the knowledge-based controller would be 
discarded and replaced entirely by the neural network. This 
would be similar to a person practicing a task which he must 
think about, all the while the brain is learning to do the
task in a more automatic and efficient fashion.

Assuming that practical hardware to take full 
advantage of the neural network structure is forth coming, 
there is the possibility of neural network controllers being 
trained or adapted on-line in real time control
applications. Departing for a moment from the knowledge- 
based and fuzzy logic control, a neural network may be 
applied as a controller in a more conventional form. Future 
investigation could try to implement this technology by 
training a network to provide proper control values to a 
process based on some characterization of the process's
current state and the desired state.

This thesis has broached the subject which might best 
be termed flexible intelligent control. The constraints put 
on a computer by a fixed sample time can be relaxed and the 
sample time is allowed to float. This is linked with using 
knowledge, reasoning and experience to create a controller. 
Situations of greater importance receive more attention from 
the controller in terms of computer resources needed to find 
an effective solution. Instead of relying on the speed of 
the computer, the emphasis is on intelligent control and the 
application of resources by creating a controller that can
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adapt itself to the overall situation, not just to parameter 
variations of the process. Work is therefore required in 
designing controllers with floating sample times and the 
knowledge and actions to accomplish this.



CHAPTER 10
EPILOGUE

10.1 Introduction
Should robotic pilots replace human pilots in the 

cockpit of tomorrow's aircraft? This chapter addresses the 
issues of developing sophisticated autopilots, in essence 
intelligent robots, to replace human operators. Directly 
related to the first question are the following:

1) For who's benefit would this technology be 
applied?

2) What costs would be associated with its 
implementation?

Aircraft accidents are very dramatic and news worthy 
items. Air travel is no less safe than any other means of 
travel, yet it has had a great amount of attention given to 
it for safety and concern over accidents [PER84]. Most 
often the probable cause of the accidents that occur is 
assessed to pilot error somewhere in the chain of events.
Is it possible to create the perfect pilot, one that never 
forgets and always follows the correct procedure; whose 
attention never wanders from the task at hand and thereby
eliminate most of the accidents?

10-2 Current Autopilots
Autopilots range in complexity in today's aircraft
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from simple wing levelers in small private aircraft to 
autopilots that can perform the complete flight from takeoff 
to landing in a jumbo jet. On long cross country flights 
these machines can save a pilot from much tedious work 
therefore allowing him to be more alert and rested for the 
final stage of flight, the landing. It has been argued, 
particularly by pilots, that the automation of the front 
office in an aircraft has gone the wrong route. The wrong 
assignments have been given to the machine and to the human. 
In today's aircraft, the machine does the flying while the
human is there to monitor the aircraft's condition and
progress. Continuing in the name of safety, more and more 
of the directing of an aircraft's flight is being 
transferred to the ground and away from the cockpit. The 
philosophy that is demonstrated by these actions is "To get 
rid of the human error, get rid of the human pilot".

With the increasing complexity of today's aircraft 
systems could you give a more ill-suited task to a human 
pilot than to monitor these systems? Flying the aircraft is 
a constantly changing task filled with new challenges which 
will keep a human pilot's attention. Since there currently 
exists autopilots that can fly the aircraft, might it not be 
best to replace the human completely with a computer? But 
what of the tasks a pilot has not seen before or has not 
been specifically trained to handle?

In today's cockpit, a phenomenon referred to as
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automation complacency has arisen. The pilot becomes so 
used to his automated environment always working correctly 
that errors in the system go unnoticed and have led to 
disastrous results [TV289]. Can it be expected that a human 
being can take over from a machine in an emergency after 
sitting for hours quietly monitoring a cockpit full of 
information? It is going to take time for him to just get 
into the pilot mode, interpret the error ennunciators and 
indications before taking action.

10.3 Robot Pilots
If we lose the man, in any environment, we lose the 

ability to be creative and to deal with ambiguous and new 
situations. Artificial intelligence promises to provide 
these to us in the future. Is this really possible, or is 
this more the pursuit of technology for its own benefit 
instead of an improved environment for human beings. If 
this direction is continued we will end up with an 
incompetent culture, one containing competence for a task 
(the machines) but no real expertise. An European Economic 
Community (EEC) sponsored program is pursuing "human- 
machine symbiosis" and the development of a human centred 
manufacturing program. They want to reintegrate the skilled 
craftsman into the manufacturing process and utilize the 
full skills of the human operator. This makes commercial 
sense as there is far more potential available than is being
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used. We have all around us the human mind which is only 
being used to a fraction of its ability, so perhaps much of 
the artificial intelligence and expert system research is 
wasted effort. A man has the ability to imagine what is in 
the material and understand and adapt to the qualities of 
the material [TV189].

For flying, the pilot must have an understanding of 
the aircraft, its flying qualities, its idiosyncracies and 
the general laws of flight. In an incident involving a 
three engine jet, pitch control was lost due to a jammed 
elevator. The pilot used the adverse characteristic of 
pitching moment changes due to differential power
application and centre of gravity adjustment by shifting the 
passengers in order to control the aircraft and accomplish a 
safe landing. Up until this last year, no one had
experienced the loss of such a substantial portion of a
commercial aircraft's structure as in the Aloha incident in
Hawaii. These are incidents for which a robot pilot would 
not have been specifically trained to handle and raises the 
question of would it have dealt with the situation
adequately and saved the flight?

If the human is removed from the cockpit (or any 
operator position), human error can creep in, in other ways. 
The situation worth considering is an airplane which flies 
into the side of a mountain while the computer programmer is
off quietly sipping a martini in some bar [TV289]. At least
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the human pilot's fallings are offset by his will to
survive. With robotic pilots you will have the situation of 
one pilot, repeated many times, flying many aircraft and 
potentially repeating the same mistake many times. Each of 
these examples of this pilot can only draw on the experience
it was trained with. It cannot draw on a lifetime of
diverse experiences, it cannot modify itself based on its 
own experiences nor those of others. Would a machine 
designed to fly airplanes be designed to interact with other 
pilots, human and machine, and learn from the experience of
others?

10.4 Benefits and Costs
To who's benefit is this automation to be performed?

For aircraft, it would be sold to the public as a safety 
feature. In manufacturing it is sold as cost cutting and 
efficiency. It can certainly be a boost to an engineers ego 
to design a complicated system, incorporating the latest 
technology and in the end save his employer money in salary 
and benefits. For the corporation comes the benefit of 
prestige, possible off shoot business and maybe increased 
difficulty of assessing responsibility for mistakes.

In Charles Perrow's book [PER84], he examines the
occurrence of what he terms normal accidents. These are
incidents caused by multiple system failures with unforeseen 
inter-dependencies and causal relationships which lead to



109

catastrophic ends. When these failures do occur, technology 
is looked to for the solution. Thus a system prone to 
failure is put on top of another creating the potential for 
further unseen interactions and masking of other seemingly 
unconnected failures. In aviation, both industry and 
government officials are pressing for more automation in 
their respective systems, thus reducing the number of 
personnel. "Both of these, I would suspect, will lead to 
much tighter coupling - that is, less resources for recovery 
from incidents" [PER84, pgl61]. In essence what is being 
said here is the reason there has not been more catastrophes 
(in aviation and elsewhere), is due to the fact that the 
human being is in the system.

Society today increasingly depends on experts, fast 
service and disposable items. How often has the story been 
told of people discarding, at times expensive items, when a 
simple repair would have returned the item to service. 
Increasing dependence on machines through making them the 
experts will continue the slide to an incompetent society.

The question was put to a group of machinists, what 
they would prefer in their home workshop - a NC machine 
(lathe) or a manual one - overwhelmingly the answer was a
manual machine. One of the most well-liked aircraft is the
venerable Piper J-3 Cub and that general class. These 
aircraft are simple flying machines without electrics of any 
kind. Obviously not all people will feel the same, but then
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automation to various extents has its support and uses. The 
engineering profession should make special effort to
understand how the environment is to be oriented and how
responsibility may be reassigned in the workplace.

10-5 Conclusion
The research from this thesis should not be continued

to the implementation of a computerized pilot. Indeed it 
should not be implemented toward the robotic replacement of 
any skilled task where the long term costs to society may 
well outweigh the short term gains in profit and prestige. 
The skills of any trade or profession, if not continued to 
be practiced and improved upon will in the end be lost. The 
EEC project toward a human centred manufacturing program and 
the development of a "human-machine symbiosis" is a
promising approach. Here the machine will continue as the 
tool with a human being directly involved in the process as 
opposed to the provision of a human material. The ability 
of human beings to think and reason for ourselves is a
resource to be used instead of an attribute to be controlled
and circumvented [TV189].

As a further recommendation, graduate study should 
require an analysis of the student's research based on its 
possible use and misuse. The ethics of their research and 
their responsibility for it should be an integral part of a 
graduate students research requirements. As technology
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grows and its application proliferates, it becomes harder 
for elected representatives of the society to implement safe 
guards to protect today's and tomorrow's society. Study of 
ethics and moral responsibility is becoming a requirement in 
undergraduate years and should be a requirement of every 
graduate students research as well in order to raise their
awareness of this issue. It will be to the individual's and
society's advantage for the future.



APPENDIX A
Parameter Values for PA-28

Calculation of the Moment of Inertia - the aircraft
was modeled as three cubes. Moments of inertia were
calculated for each and they were then combined.

IT - B - 1387.06 lb-ft-s2 
Other values used;

CD0 - 0.037 
S - 160 ft2

P4000 “ 0.002054 
lt “ 58"
St - 25 ft2 .
(ax) - 7.0 /degree - 401 /rad. 
efficiency factor - e - 3.375
c - 5.25 ft
Cma - 0
Cmac - -0.025 /rad [BERTIN & SMITH]
CG @ 0.33c 
ac @ 0.25c
CLa « a„ - 2x A/(A + 2) - 4.635 /rad [SECKEL]
at - irAi / (1 + /(I + (Ax/2)2)) - 3.88 /rad
de - 4 /(Aw +2) - 0.5246 /rad
dt
Volf - 113.0 cu.ft.
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fineness ratio - 1/D - 5.9 
fuselage moment factor - Kf - 0.88 
Cm#f - 0.233 /rad
Cn^ t - -1.15236 /rad
“wo “ 0 ; symmetrical wing, therefore zero lift @ a - 0
iw - 3 degrees; a nominal value for most light aircraft 
m - W /g - 1850 / 32.2 - 57.5 lb-s2/ft
k2 - 1.0583E-4 
k3 - 5.7953E-3 
k5 - 1.3257E-2

propeller pitch - 58" 
efficiency - e - 0.84
rated horsepower @ 2700 rpm - 160 hp

All aircraft data, ie. lengths, weights etc, were
taken from the Cherokee manual and scaled from the diagram
of the aircraft.
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