
KNOWLEDGE-BASED SYSTEMS
AND FUZZY LOGIC FOR
AUTOMATIC CONTROL

APPLICATION OF KNOWLEDGE - BASED SYSTEMS
AND FUZZY LOGIC TO
AUTOMATIC CONTROL

by
GREGORY P. FARISH, B.A.Sc.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements

for the Degree
Master of Engineering

McMaster University
April 1989

MASTER OF ENGINEERING (1989)
(Electrical and Computer Engineering)

McMaster University
Hamilton, Ontario

TITLE : Application of Knowledge-Based Systems
and Fuzzy Logic to Automatic Control

AUTHOR : Gregory Paul Farish
B.A.Sc. (University of Waterloo)

SUPERVISOR : Professor N.K. Sinha
NUMBER OF PAGES : xii, 115

ii

ABSTRACT

This thesis investigates the application of Knowledge
Based systems and Fuzzy Logic to automatic control. The
knowledge used by a human operator is put in a computer
usable form and applied to a control problem. The idea is
not to attempt to enhance the stability or response of the
system but given a basically stable and controllable system
we apply human type control methods via a computer
controller.

A system can never be modelled exactly and therefore
a controller design must allow for the uncertainty in the
model. With fuzzy logic, the system inputs, outputs,
parameters, reactions and cross coupling are represented in
fuzzy or inexact variables, knowledge and reasoning. An
exact (or nearly exact) model of the system is not
necessary.

A simple aircraft is the process to which this
control method is applied. Knowledge, reasoning and feedback
similar to what a human pilot utilizes are applied in the
control of the process.

i i i

ACKNOWLEDGEMENTS

The author is greatly appreciative of Dr. N.K. Sinha
for his guidance, supervision, and assistance throughout the
course of this work and in the preparation of this thesis.

The author also wishes to acknowledge with thanks the
useful discussions he had with Dr. C. Weaver and colleagues
R. Lingarkar and L. Liu.

The financial assistance provided by the Department
of Electrical and Computer Engineering, McMaster University
is gratefully acknowledged.

iv

TABLE OF CONTENTS

Page

CHAPTER 1 INTRODUCTION 1
1.1 Solution and Direction 2
1.2 Goal 3
1.3 Scope 4
1.4 Sequence of Presentation 5

CHAPTER 2 KNOWLEDGE-BASED SYSTEMS 6
2.1 Introduction 6
2.2 Background 6
2.3 Knowledge Representation Schemes 8

2.3.1 Production Rules 8
2.3.2 Structured Objects 10
2.3.3 Predicate Logic 11

2.4 Inferencing Methodologies 12
2.5 Suitability of a Knowledge-based

System
13

CHAPTER 3 FUZZY LOGIC 18
3.1 Introduction 18
3.2 Fuzzy Set Theory 19
3.3 Building a Fuzzy Set 21

CHAPTER 4 CHOICE OF PROCESS FOR TESTING 28
4.1 Introduction 28
4.2 Criteria 28
4.3 Description of Process 30
4.4 Simulator Development 33

4.4.1 Simulation of Engine Thrust 33
4.4.2 Simulation of Longitudinal 35

Motion of the Aircraft
4.5 Summary 40

CHAPTER 5 CHOICE OF DEVELOPMENT TOOLS 42
5.1 Introduction 42
5.2 Software Criteria 42

5.2.1 Simulator Criteria 43
5.2.2 Knowledge-based System Criteria 43

5.3 Personal Consultant Plus 45
5.4 Smalltalk/V and Prolog/V 46

v

CHAPTER 6 CONTROL SYSTEM DESIGN 49
6.1 Introduction
6.2 Control Method
6.3 Instrument Reading Scheme
6.4 Fuzzy Set

6.4.1 Fuzzifier
6.4.2 Defuzzification

6.5 Structure of the Controller
6.6 Rules

49
49
53
54
54
60
61
65

CHAPTER 7 SIMULATION RESULTS 67
7.1 Introduction
7.2 Power Control
7.3 Pitch Control
7.4 Conclusion

67
67
71
81

CHAPTER 8 APPLICATION OF NEURAL NETWORKS 82
8.1 Introduction 82
8.2 Neural Network Approach 83
8.3 Neural Network Implementation Trials 85

8.3.1 Estimation of Intermediate Goals 86
8.3.2 Engine Speed Control 87

8.4 Conclusions 95
CHAPTER 9 CONCLUSION AND DISCUSSIONS 97
CHAPTER 10 EPILOGUE 104

10.1 Introduction 104
10.2 Current Autopilots 104
10.3 Robot Pilots 106
10.4 Benefits and Costs 108
10.5 Conclusion 110

APPENDIX A PARAMETER VALUES FOR PA-28 112

BIBLIOGRAPHY 114

vi

LIST OF FIGURES
Page

Figure 2.1 Knowledge-based System 9
Figure 2.2 When is Expert System Development Possible 15
Figure 2.3 When is Expert System Development Justified 16
Figure 2.4 When is Expert System Development

Appropriate
17

Figure 3.1 Membership Functions Corresponding to
"x is Large"

24

Figure 3.2 Membership Functions Corresponding to
"x is Small"

25

Figure 3.3 Membership Functions Corresponding to
"|x| is Small"

26

Figure 3.4 Membership Functions Corresponding to
"|x| is Large"

27

Figure 4.1 PA-28-140 Cherokee Cruiser 31
Figure 4.2 Fuselage Moment Factor 39
Figure 4.3 Approximate Interference Factors 39
Figure 6.1 Flight Instruments 51
Figure 6.2 Fuzzy Set for PC Plus Prototypes 56
Figure 6.3 Fuzzy Set used with Prolog/V 59
Figure 6.4 System Structure 63
Figure 7.1 Tachometer Set Point Change 68
Figure 7.2 Airspeed Set Point Change 69
Figure 7.3 Large Airspeed Set Point Change 72
Figure 7.4 Pitch Angle Set Point Change 75
Figure 7.5 Vertical Speed Set Point Change 77
Figure 7.6 Altitude Set Point Change 79
Figure 8.1 Neural Network 88

vii

LIST OF FIGURES (cont'd)

Figure 8.2 Tachometer Set Point Change
Page
93

viii

LIST OF TABLES
Page

Table 6.1 Fuzzy Set Functions - Prolog/V 58
Table 6.2 Mapping Ranges for Fuzzy Set 59
Table 6 . 3 Table of Output Conversions 62
Table 8.1 Neural Network Training and Test Data 89

ix

LIST OF SYMBOLS

G down-wash factor
a angle of attack

awo angle between flight direction and zero lift
line

a angle between thrust vector and zero lift line
T thrust coefficient
S flight angle

«e elevator zero lift angle

aw wing slope-of-lift-curve
B moment of inertia
bhp brake horsepower
c mean aerodynamic chord

CD drag coefficient

cL lift coefficient

cm pitching moment coefficient
Cma f fuselage longitudinal static stability

coefficient

Cmac wing pitching moment coefficient
Cmf fuselage pitching moment coefficient

Cmi t stabilizer effectivness
Cmt tail pitching moment coefficient

Cmy a total pitching moment coefficient
D drag
damp thrust damping, inversely proportional; to

velocity
delta! simulation time step

x

e propeller efficiency factor
exp exponential to base e
fpm feet per minute

g gravitational constant
h aircraft altitude

it tail incidence

1 w wing incidence
K ratio of pitching moment to moment of

Kf fuselage moment factor
1 tail moment arm
m mass

Mc pitching moment
mK throttle control input signal

My, total pitching moment

nt tail efficiency

P air density
pitch propeller pitch in inches

q pitch rate
rhp rated horsepower
rpm revolutions per minute
rpmDamp rpm damping, propeller loading
S wing area

st tail surface area
T thrus t
t time
thrus tCoe f f thrust coefficient, thrust divided by

weight
xi

V current velocity

Vat tail volume
Vdiff difference between V and Vnom
Vnom nominal cruise velocity
Volf fuselage volume

wi fuselage station width

*a lift vector moment arm

zr distance of thrust vector from the centre of
gravity in z-axis

xii

CHAPTER 1
INTRODUCTION

Attempting to model a system accurately enough to be
able to design an efficient and reliable controller can be a
daunting task. As the number of inputs and outputs increase
it becomes even more difficult to develop a model due to the
cross coupling between inputs and outputs. Humans
demonstrate the ability to cope with such complex systems
and effectively control their operation without explicit
knowledge of the inner workings and construction of the
system. A human operator will have a collection of
heuristics and facts gained through practice and experience
which enable him or her to vary the system inputs to achieve
the desired outputs. The largest failing of a human operator
is wandering attention, boredom and inconsistent application
of performance criteria.

A computer does not get bored or forget facts, yet
it deals with the world in tedious detail. Much of the
appearance of this tedious detail can be removed with a well
designed man-machine interface. Still, the computer will
present some small number as zero when all that is needed is
to know if the result is close or not, as defined in the
context of the problem.

1

2

This thesis addresses the application of a human
operator's knowledge and methods in a computer based
automatic controller. The controller is implemented using
expert or knowledge-based systems techniques combined with
fuzzy logic for reasoning with uncertainty and linguistic
variables.

1•1 Solution and Direction
With a knowledge-based system, a knowledge base is

navigated by an inference mechanism to find solutions to
questions posed of the system. In applying knowledge-based
systems to control, the operator's knowledge of how to
control the system is entered into the knowledge base. This
knowledge will be a collection of rules, heuristics and
facts represented in a form usable by the computer through
an inference mechanism. An accurate model of the system is
not required, and in fact, if the knowledge base can lead to

the control of a specific example of a system, then it
should be able to control all examples within the same
general type. For special situations within this class, new
knowledge may have to be added to meet performance
requirements, but basically the controller should be
transferable.

If the knowledge-based system is combined with an
implementation of fuzzy logic the computer can attempt to
emulate the human operator with tireless repetition. The use

3

of fuzzy logic allows the controller to cope with the
uncertainty that the operator may express about the
operation of the system as well as use some of the
linguistic terms the human operator uses to express his
heuristics.

With knowledge based control systems it is hoped that
a more adaptable and flexible controller can be developed
that mimics some of the more desirable traits of a human
operator, possibly to include self-learning about the system
operation, failures and development of new knowledge.
Knowledge-based systems have found application where a
system is large and complicated and the human operator, with
many years of experience, is leaving the work force. With a
knowledge based system, it will also be possible for the
system to relax performance criteria if the system is
highly stressed in order to prevent damage to the system.
For example, it is at times necessary to turn off an
aircraft autopilot in heavy turbulence in order to prevent
damaging the aircraft. The controller is attempting to
maintain the performance criteria in the presence of an
extreme operating environment. The human operator, the
pilot, relaxes the performance criteria in order to maintain
the criterion of aircraft integrity.

1.2 Goal
The foremost goal of this thesis was to build a

a

prototype knowledge-based controller incorporating fuzzy
logic to investigate the application of such a controller
(or system) to control applications, especially to a multi­
variable system.

1.3 Scope
The system to be used in developing this prototype

will be the control of power and the pitch axis of a light
aircraft. An aircraft is a multi-variable system requiring a
skilled operator, yet a pilot is licenced to fly a whole
class of aircraft. This recognizes the fact that the
expertise is transferable, even though the aircraft may be
quite different in physical appearance.

1.4 Sequence of Presentation
Chapter 2 presents background information on

knowledge-based systems, giving a short discussion on
knowledge representation schemes and inferencing methods.
In Chapter 3 a similar presentation of fuzzy logic is
given.

Chapter 4 presents the criteria for selecting an
example system for developing and testing the prototype
controller. The aircraft parameters and the simulator
derivation are given. Chapter 5 describes the criteria for
selecting development tools for this thesis. It also
discusses the tools evaluated and used in this thesis.

5

Chapter 6 presents the design of the controller, a
discussion of the knowledge representation, the control
strategy and the instrument reading scheme. In addition the
fuzzy set and defuzzifier used in this thesis are presented.

Chapter 7 presents some results from test runs of
the system. Neural networks exhibit some desirable
properties even in conventional computers. Chapter 8
discusses these properties along with applying neural
networks to automatic control. Their use is demonstrated
with a few examples related to different aspects of the
control application in this thesis. Chapter 9 summarizes the
thesis, presents some conclusions and suggestions for future
research.

Chapter 10 looks at the ethics and the engineers
responsibility in researching and developing automated
systems. The discussion is centred on the work done in this
thesis and therefore its main theme is the development of
sophisticated autopilots. Important questions are asked
about the direction of this technology with emphasis on
considering the impetus for it as well as the benefits and
costs to society. Not all the questions are directly
answered, but two main conclusions are drawn.

CHAPTER 2
KNOWLEDGE-BASED SYSTEMS

2.1 Introduction
A knowledge-based system is constructed of three

major components. One is the group of application modules
which provide an interface between the user and the system.
The remaining two, the inference engine and the knowledge­
base, are the main components for the system. The inference
engine provides a means of navigating through the domain
knowledge which is stored separately in the knowledge-base.
It is important to note that the knowledge for the system is
stored separately from the structure of the program. With a
conventional program the knowledge of how to solve the
problem is coded into the program's algorithm. In a
knowledge-based system the program, essentially the
inference engine, contains only enough information or
knowledge in the algorithm for using the knowledge-base but
no knowledge of the specific problem domain on which it is
working.

2.2 Background
Knowledge-based or expert systems are computer

programs which deal with problems usually requiring a
certain amount of human expertise. Expert systems have

6

7

recently become very popular for application to many tasks
and may be regarded as the most recent and largest success
of the artificial intelligence field. Artificial
intelligence can be loosely defined as systems that exhibit
the characteristics we associate with intelligence in human
behaviour [JAC86].

Expert systems developed as researchers began to
realize that knowledge representation was the pivotal
problem in AI. This occurred in the early 1970's as a shift
in attention away from general principles for problem
solving toward ’’task specific” principles. Since the early
1970's work has concentrated on techniques and paradigms and
their application to reasonable problem domains. The source
of the reasoning power in an expert system is in the
knowledge it contains, not in the reasoning mechanism used
[ARC87].

The main points to emerge from this period about
knowledge-based systems were that humans and why not the
computer, deal with knowledge in an explicit, declarative
and piecemeal fashion. In addition, there emerged the
understanding that programming in this fashion allows for
fast and incremental system prototyping and development. The
program should not have to solve the whole problem, or
indeed always be correct to be useful.

As already mentioned, a knowledge-based system is
constructed of three major components. The system interface

8

or application modules present information to and receive
input from, the user or other sources such as files or
processes. The second component, the inference engine,
provides a means of working with the knowledge the system
contains in the knowledge-base. This is a relatively simple
program for tracing a path through the knowledge-base of the
system to find a conclusion. The third section, the
knowledge-base, contains the domain specific knowledge in a
format which best suits the domain. Figure 2.1 summarizes
the layout of a typical knowledge-based system.

2.3 Knowledge Representation Schemes
Knowledge representation is a set of syntactic and

semantic conventions that make it possible to describe
things. The syntax is made up of rules on how to combine
symbols into expressions. It describes the how of creating
the knowledge-base in the representation language, given
that you already have the knowledge. The semantics is the
interpretation of these expressions, or the meaning.

There are currently three main formalisms for
knowledge representation in knowledge-based systems. These
are :

1)
2)
3)

All three

Production Rules
Structured Objects
Predicate Logic.
representation schemes are an implementation

9

Figure 2.1 Knowledge-based System Block Diagram

10

of pattern directed inference.

2-3.1 Production Rules
A production system consists of a rule set, a rule

interpreter and working memory. A rule has a premise or left
hand side condition(s) and one or more action(s) or
conclusion(s). For example consider the following:

Rule: if Pl and ... and Pn then Cl and ... and Cm.

Working memory is simply data storage. It holds data
needed to evaluate the premise and may be updated by the
conclusion. The interpreter (inference engine) attempts to
match the premise of each rule against the information in
working memory, provides conflict resolution if more than
one rule is eligible to fire and fires the rule by executing
the actions in the conclusion part of the rule. In a
production system the order of the rules is unimportant as
the conclusions are derived through the use of the
inferencing mechanism or rule interpreter.

2.3.2 Structured Objects
Structured objects attempt to exploit some property

in the knowledge being represented. Relationships within the
knowledge are maintained and then exploited during
inferencing to give more power to the system. The

11

structures most commonly used are simple graphs, trees and
networks. Simple graphs are used .mostly for spatial and
temporal relations and causal relationships. Trees allow for
the exploitation of hierarchies in the domain while
semantic networks are used to represent concepts and
relationships between them.

Within these structures, further breakdowns of the
knowledge can exist. A frame representation is a data
structure to represent a stereotypical element, either real
or abstract, or an event. Within the frame, there are slots
which contain data to describe the element. Also within the
frame there can be rules or instructions, sometimes called
methods, on how the frame or object acts in the system.
These frames can be linked together in a hierarchical
fashion with each child being a more specific instance of
the parent. The siblings inherit all the properties, data
and rules, of the parent and implement new ones to describe
their particular instance.

2.3.3 Predicate Logic
Predicate logic is derived from propositional logic.

Propositional logic deals with simple statements such as "a
computer is a tool" and "tools are useful", and is therefore
not very expressive. For instance, statements such as "all
animals are alive" cannot be expressed in propositional
logic. Predicate logic is more expressive and inherits the

12

qualities of propositional calculus. It is complete, meaning
that for every well formed formula (wff), P which is true, P
can be derived using only the rules of inference. It is
sound, meaning that it is impossible to derive a
contradiction, ie. for any wff P you cannot derive P and not
P. It is decidable, meaning that for every wff there is a
means with which to prove or disprove it.

Predicate logic introduces sets of variables,
constants, predicates and functions. Predicates represent
properties and relations of things. Functions represent
operations with things, such as math operations where the
things are numbers.

The language Prolog utilizes predicate logic with
Horn clauses and a backward chaining inference engine. Horn
clauses have a single conclusion and any number of premises.
Programming in Logic (PROLOG) may not solve all your
problems though. The inferencing method, pattern matching
and conflict resolution provided may not fulfill your needs.
These must be taken into consideration when writing rules
for a rule based program, or the program may not perform
anything like you expected it to.

2.4 Inferencing Methodologies
Rules for a knowledge-based system can be driven

forward or backward, which relates to the terms forward
chaining and backward chaining respectively. Both methods

13

are equally powerful methods of reasoning, but one may be
more useful than the other for the particular application
at hand.

Forward chaining is a data driven method of
reasoning. Here, the inferencing mechanism attempts to match
the premise of each rule to the contents of working memory
and thus determine if the premise is true, false or unknown.
If the premise is unknown, the data in working memory is as
yet incomplete for this rule, the next rule is tried. If the
premise is false, the rule is ignored and may be removed
from further inference. If the premise is true, the rule is
fired and whatever actions are in the conclusion are taken,
and the rule is removed from further inference. Inferencing
continues until a conclusion is drawn or until no further
rules can be fired and no conclusion is drawn. To come to a
final conclusion it may not be necessary to fire all rules
that are eligible, this depends on the setup of the system
and whether more than one conclusion is desired.

Backward chaining on the other hand, is a goal driven
inferencing technique. The system assumes a final goal and
then attempts to prove it with the data available. The
conclusions of rules are matched, then the conditions
(premises) needed to be satisfied in order for the rule to
fire are matched against the conclusions of other rules or
data in working memory. The inferencing may stop with the
first goal satisfied, or multiple goals may be derived

14

depending again on the nature of the problem.

2.5 Suitability of a Knowledge - Based System
Knowledge-based systems have limits and will not

solve all problems. Although a problem may be solvable by a
knowledge-based system, its application to this problem may
not be suitable or feasible. When considering their
application to the domain of automatic control, a knowledge-
based system may be suitable where the complete
mathematical specification or modeling of the process is
not feasible [SHI87]. Figures 2.2, 2.3 and 2.4 depict
further items which should be satisfied for the development
of a knowledge-based system to be possible, justified and
appropriate [ARC87].

15

EXPERT SYSTEM
DEVELOPMENT

POSSIBLE

Figure 2.2 When is Expert System Development Possible

16

EXPERT SYSTEM
> DEVELOPMENT

JUSTIFIED

Figure 2.3 When is Expert System Development Justified

17

EXPERT SYSTEM
> APPROACH

APPROPRIATE

Figure 2.4 When is Expert System Development Appropriate

CHAPTER 3
FUZZY LOGIC

3.1 Introduction
A knowledge-based system has the ability to emulate

the method of reasoning a human uses. The variables and
constants are all set to just one value, either a numerical
value, a string or just true or false. The ability to deal
with vagueness and uncertainty which may be expressed in the
subject may also be needed. More than one statement may have
some truth (or falsehood) to it, yet none is completely
correct (or false). With fuzzy logic a partial truth or
vague relation or membership can be expressed.

A classical example is the degree to which someone
belongs to the set of "young" people. A person 20 years old
may be considered 90 percent young, while a 60 year old
person may be considered as only 30 percent young. There is
no finite dividing line in the set, only some predefined
gradual shift in the degree of membership in a class or set.
Usually the degree of membership in a fuzzy set ranges
between 0 and 1, 1 indicating absolute certainty. Depending
on the use and definition, the range of -1 to 1 may be used.
This allows for a degree of membership of 1 to indicate
absolute certainty of membership, -1 for absolute certainty

18

19

of non-membership and 0 to indicate unknown. The actual
numerical values for the degree of membership may also be
scaled depending on how they are to be dealt with, but they
will still indicate the same idea. The advantage of using
the scale of 0 to 1 is that fuzzy operators can be used in
conjunction with probability operators. Probability
operators can be used when the fuzzy operators do not
provide a satisfactory means of combining evidence of, or
confidence in, a value.

Fuzzy logic defines a minimum set of operations for
dealing with certainty of membership in a set. These basic
building blocks should fill the needs of most applications
and using this as a standard, they can be built upon for
unusual applications. Fuzzy logic is a super-set of
predicate logic, therefore non-fuzzy information can be
handled with the same operators as used to handle fuzzy
information.

The three basic operators used in this thesis are the
fuzzy AND, the fuzzy OR and the unary operator NOT.

3•2 Fuzzy Set Theory
Fuzzy set theory allows an element to exhibit a

degree of membership in a given set. Conventional set theory
only allows an element to be a member of a set or not.
Because of this difference, the three basic set operators,
union, intersection and complement are defined somewhat

20

differently. The following paragraphs define these
operations and how they are applied to fuzzy logic.

The union operator, when applied to two fuzzy sets
with elements of differing degrees of membership, takes the
respective elements with the greater degree of membership as
the union of the two sets. If there are two sets, A and B,
with the elements a^ and b^ respectively, then the union of
the two sets can be defined as;

A U B - {c£ |ax G A, b± G B, c£ - max(ai, bt)} (3.1)

where the max operator looks at the value of membership of
the element.

With non-fuzzy values this is equivalent to the
predicate logic OR. As an example, if a car is 80 percent
slow and 20 percent accelerating, then it is 80 percent slow
OR accelerating.

The intersection operator applied to two fuzzy sets
with elements of differing degrees of membership, takes the
respective elements with the lesser degree of membership as
the intersection of the two sets. Again, using the two fuzzy
sets A and B, the intersection of the two sets can be
defined as;

A n B - | ax G A, bt G B, c£ - min^, b£) } (3.2)

21
where the min operator looks at the value of membership of
the element. This operation defines the fuzzy AND operator.
Using the above example, the car would be 20 percent slow
and accelerating.

The degree of membership of an element in the
complement of a fuzzy set is 1 minus the degree of
membership in the original set. Therefore, a car that is 80
percent slow, is only 20 percent not slow (or fast). This
operation then, is equivalent to the predicate logic NOT and
is the basis for the NOT operator in fuzzy logic. The
complement of a set can be defined as;

NOT A - {ct |a£ € A, ct - 1 - a£} (3.3)

where the minus operator looks at the value of membership of
the element in the set.

3.3 Building a Fuzzy Set
Now that the basic operations of fuzzy logic have

been defined, the fuzzy sets must be constructed. For the
given domain the parameters to be used to characterize its
state must be defined. Each parameter must first be
identified, then the set of linguistic variables used for
qualitative or quantitative description of its value must be
defined.

Here it will be assumed that the parameters are

22

identified by some conventional means, and will carry on
from there to characterize them for use with fuzzy logic.

To characterize a parameter for fuzzy logic, it must
be assigned membership values in a set, or sets. In general,
these sets must be defined in advance and defined in the
computer's vocabulary for the problem. Each parameter need
not be assigned membership in all sets, as its absence will
indicate a default membership value of zero. Using the range
of -1 to 1 has an advantage here because non-membership
indicates the parameter's value is unknown, equivalent to a
value of zero.

For each parameter two things need to be known of it.
First, as already mentioned, the range of values or
linguistic terms it is to be mapped into and second, the
nominal range of values it is to be mapped from, need to be
specified. For example, if the height of a person is to be
mapped to some fuzzy sets, both the fuzzy values and the
range of heights that will be mapped into the sets must be
defined. For the fuzzy sets the values short and tall might
be selected. If the system is to deal with adults, tall may
be people in the area of, or greater than, 6 feet, where as
for children the height of 4 feet might be used.

The number of quantization levels selected, ie. the
number of fuzzy sets, will depend on how accurately a
designer wishes to describe a parameter. Some designers have
used 15 or more levels, some as few as 3 [TON77]. The

23
values to be mapped to these sets will also depend on the
designer and the system they relate to.

Once these are known the method of quantization must
be chosen and the rate at which each set rolls off between
the nominal values of quantization. There are many examples
of functions that can be used, some are shown in Figures 3.1
to 3.4 [KAU75]. In addition, a unique mapping may be
selected for any particular set or parameter. The shape of
the mapping function should first suit the assumptions of
how the membership values for a set change between the
nominal values for each set. Second, an appropriate function
can be chosen for the convenience of coding and
implementation. If, as in the case of this thesis the
parameters are to be used in a knowledge-based system, the
fuzzy sets should try to encompass the full flavour of the
knowledge and linguistic terms to be encoded.

24

Figure 3.1 Membership Functions Corresponding to
"x is Large"

25

Curve Function

1 J
I p(x) =1 , 0 < x < a ,
1I
i

= 0 , x > a

0 X

4

i

u(x) = e"*x , k > 0 .

• 1/ X

1

M(x) = . k > 0 .

0 X

1 U(x) « 1 , 0 <x <a, ,
i X i Xi x i xI X a2 - a,

a, < x < a2 ,

i Xi Xi X = 0 , flj < x .

0 *1 «a X

1
.*> I 11

“ 1
M(x) = 1 - axk , 0<x<—j ,

\a

1 = 0 , t--

0 X

1 , x 1
**<X) _ 1 + Jkx2 '

» > ;

0 X

- i

Jtl(x) = 1 ,
1 1

= ---*n

0 < x < a.

v / a + b \
b - a V 2~ / ’

2 ! U.
a < x < b .

:? < x .0 * £yfi k X
= 0 >

Figure 3.2 Membership Functions Corresponding to
"x is Small"

26

Figure 3.3 Membership Functions Corresponding to
"|x| is Small"

2 7

Figure 3.4 Membership Functions Corresponding to
"|x| is Large"

CHAPTER 4
CHOICE OF PROCESS FOR TESTING

4.1 Introduction
The intent of this thesis has been to study the

application of knowledge-based systems and fuzzy logic to
control problems. In order to test the ideas, they must be
applied to at least one system. This chapter describes the
criteria for selecting a test process, the process that was
selected and the model derivation for simulation.

4•2 Criteria
The process selected had to satisfy a few simple

criteria. First, it had to be a system with some
recognizable interest to the study of automatic control.
Second, the problem of controlling the process had to be
solvable with a knowledge-based system and reasonably
appropriate for the application of a knowledge-based system
as presented in Chapter 2. Finally, it had to be a problem
to which the author could apply himself with a minimum of
outside assistance in gathering the knowledge and building a
model for simulation.

Multiple Input Multiple Output (MIMO) processes can
be difficult to model and therefore designing controllers
for them can be an arduous task. In part this is due to the

28

29
increase in the size of the process, and therefore an
increase in the complexity. It can also be due to cross
coupling between the inputs of the process and its outputs.
This provides an interesting area for the application of a
knowledge-based controller where the heuristic's of an
experienced human controller can be applied to handle this
situation.

Also of interest to the author, for the field of
automatic control, is the design of a generic controller. Of
interest here is the ability to control a class of
processes, not just a specific process, or even just one
example of a process. For example any human experienced with
one automatic coffee maker can operate pretty well any
automatic coffee maker. There are a general set of rules for
operating such a device and in addition some specific facts
may need to be known, or they may be induced. All processes
in a class are intended to achieve the same end result, yet
internally they may go about it in slightly different ways.

The criteria to be used when deciding whether or not
a problem is a candidate for the application of a knowledge-
based system were introduced in Chapter 2. For the purposes
of study for this thesis, some of the criteria were
considered to be more important than others. Most important
was selecting a process for which recognized "experts" are
needed to control it and for which a set of rules could be
gathered which would be generally accepted as correct. It

30
also had to be complex enough so that it wasn't just the
implementation of a simple proportional controller. The
interest is to encounter the problems and advantages
associated with the development of a knowledge-based
controller.

In order to make the acquisition of knowledge easier
and faster, it would be advantageous if a process could be
selected for which the author could act as the expert, as
well as knowledge engineer, coder and tester. Possibly most
important, was the selection of a process which would hold
the interest of the author for as long as possible.

4.3 Description of Process Chosen
The process chosen for this application test was a

light aircraft. The aircraft on which the simulation is
based is a Piper Cherokee, Model PA-28, manufactured by the
Piper Aircraft Corp, shown in Figure 4.1. This is a four
place personal / training aircraft which is stable and not
difficult to fly. It does require all the basic pilot skills
and knowledge for flying (controlling) an aircraft and is
easily modeled for the purpose of simulation to the
requirements of this study. Configuration and performance
data are available [CHE76] and the capabilities and
performance of the aircraft are well understood by the
author.

For this thesis, the problem considered is the

31

I

Figure 4.1 PA-28-140 Cherokee Cruiser
Piper Aircraft Corporation

32

control of power and the pitch axis of the aircraft. There
are two inputs, throttle and elevator position, to control
five aspects of the aircraft's flight. Normally two of the
following are primary instruments for controlling the
aircraft. These are the engine rpm or power output,
airspeed, altitude, rate of climb and angle of pitch. Rpm
and airspeed are candidates for power control while
altitude, angle of climb, airspeed and angle of pitch are
candidates for pitch control.

This problem satisfies all the criteria specified
above to some extent. It is a MIMO process with some cross
coupling of the inputs to the outputs. It also holds that
any licensed pilot can fly any light airplane once he is
given basic facts on the aircraft's performance and
capabilities. Pilots are essentially recognized experts at a
skill and the rules which apply to controlling an airplane
can be expressed.

The author has been involved with aircraft for many
years and is a licenced commercial pilot. This process then
obviously should satisfy the criteria of interest. To
supplement the author's flying knowledge many training
manuals are available which express the knowledge required
for flying [FRO63], [FLI79], [PRI80].

The process was limited to the control of power and
pitch to limit the complexity of simulating the process, to
keep to a time frame acceptable for a Master's thesis, to

33

keep the problem tractable in a limited development
environment, ie. hardware and software, and to leave room
for experimentation.

4.4 S imulator Development
This section presents the development of the

equations used for simulating the aircraft. Simplifying
assumptions and the final equations are represented while
the actual parameter values used are given in Appendix A.

4.4.1 Simulation Of Engine Thrust
A very simple equation was first developed to

simulate the speed of rotation of the propeller, engine
for an early prototype controller. The equation assumed
simple first order model with a one second time constant
The equation used was

rpm,

a

RPM (s) - __ 1___ (4.1)
s + 1

which in the discrete time domain is
rpm(kt) - deltaT * mK(kt)

+ rpm((k-l) t) * exp (-deltaT). (4.2)
This model was used to test a simple knowledge-based
controller and evaluate some concepts.

This model has remained, except for the addition of a
factor to simulate induced and parasitic drag of the
propeller on the engine rpm. The factor is multiplied by
input signal (mK) to account for the observed relationship

34
of decreased rpm for a given power setting when the airspeed
of the aircraft is below the nominal cruise value and an
increase in rpm (unloading of the engine) when the airspeed
is high. The nominal cruise velocity is a simple equation
relating rpm, propeller pitch and an efficiency factor for
the propeller [AER86]. This was done instead of calculating
the actual drag on the propeller and therefore the engine
loading because the engine torque was not being modeled and
rpm was a required value. These equations have provided a
satisfactory simulation for the purposes of this study. For
calculating engine rpm the following equations are used,

nominal cruise - Vnom(t) - pitch * rpm(t) * e (4.3)
Vdiff(t) - V(t) - Vnom(t) (4.4)
rpmDamp(kt) - 1.0 + (signof Vdiff(t) * 0.075

* (1.0 - exp(-0.01 * Vdiff(t))) (4.5)
rpm(kt) - deltaT * mK(kt) * rpmDamp(kt)

-I- rpm((k-l) t) * exp (-deltaT) (4.6)

Using the rpm value calculated above the brake
horsepower (bhp) is calculated using a simple relationship
between rpm and bhp. A quadratic relationship is used and
the following equation was derived from two known values,

bhp(t) - (1.68E-7 * (rpm(t))2
- 8.4E-5 * rpm(t)) * rhp (4.7)

Using a relationship between bhp and thrust [AER86],
the propeller thrust can be calculated in cruise flight.
Adding a term to account for decreasing thrust with

35
increasing airspeed for a constant rpm, the following
equations are used to give a thrust coefficient,

damp(t) - 1.0 - ((V(t) / 182) * 0.53) / V(t) (4.8)
thrustCoeff(t) -

bhp(t) * 550 * 0.85 * damp / weight (4.9)

The above equations provide an rpm value needed for
the simulator output and in a "fuzzy way", a thrust
coefficient needed in the following section in the equations
of flight.

4.4.2 Simulation Of Longitudinal Motion Of Aircraft
For those readers feeling a little faint due to the

last sections presentation, the equations of motion
presented here have a much more rigorous basis than the
equations for the derivation of the thrust and rpm. In a
reference frame with its origin at the centre of mass
related to the flight path, the motion equations for the
longitudinal axis will be;

m dV - - D
dt

- mg sin 8 + T cos (a - a) (4.10)

d« - -dg
dt dt

+ q (4.11)

m V dg - L
dt

- mg cos 8 + T sin (a - o') (4.12)

B dq — M - T ZT + Mc (4.13)
dt

where m, D, L, M are known functions of the state variables

36

and of t [HAC70], [SEC64].
The aerodynamic forces D and L and the longitudinal

aerodynamic moment M, can be expressed in terms of non­
dimensional coefficients which is the usual form,

D - pV2SCD/2 (4.14)
L - pV2SCL/2 (4.15)
M - pV2SlCM/2 (4.16)

After substituting the non-dimensional terms into the
equations of motion, the constants can be collected and the
equations simplified. The following equations can be derived
for an aircraft with the thrust vector fixed parallel to the
zero-lift reference axis of the aircraft. Thus using Y and K
as the control variables, the following are obtained

note: T - mgr, and Mc/B - K ,
dh - V sin S - fx(V, 5) (4.17)
dt
dV - -(k2 + k3a2)V2 - g sin 5 + gr cos a
dt

- f2 (V , 5, «, r) (4.18)
d£ - k.Va - e cos 6 + er sin a ■ f., (V, 6, a, r) (4.19)
dt V V '
d« - -d£ + q - fA(V, 5, a, q, r) (4.20)
dt dt
da. - V2(k8« + k9V + k10«f4) + K(V, a, se , sx)
dt

■ f5(V, S , «, q , r, Se , 6r) (4.21)
^2 “ P S..Pp » ^*3 * ElSlG-Loc > ^5 “ E-S-2.L « »

2m 2x2m 2m

37

k8 - pScCm , k9 - pSc2Cmq , k10 - pSc_2 Cm* ,
8B 8BVcrlt 8BVcrit [HAC70].

Data was unavailable in the form necessary for
equation (4.21) so another expression for acceleration in
pitch was used. This equation uses the sum of moments
contributing to the overall pitching moment of the aircraft.
These effects are from the displacement of the lift vector
relative to the centre of gravity, the aerodynamic pitching
moment of the wing, the pitching moment of the fuselage and
the pitching moment due to elevator deflection. The new
equation is as follows,

B da. - My a - pV2CcCmya /2 (4.22)
dt

where

Cmya “ CL S-a + Cma c + Cmt + Cmf (4.23)
[SEC64].

CL and Cmac are obvious coefficients and easy to
determine. The coefficients Cmf and Cmt need further
explanation. First, Cmf the fuselage coefficient is
expressed as follows

Cmf - Cmaf * (a - iw) (4.24)
where

Cmaf - 2Kf Volf (4.25)
Sc

Kf is a fuselage moment factor, see Figure 4.2, and

38
Volf is the fuselage volume. An estimation for the fuselage
volume is given in [SEC64] and is shown below,

Volf - 0.25* [w2/24 * (lf - 13) fl,
+ 2.3w2 * (12 - lx) + 1.2* w2 dl] (4.26)

JO

The various dimensions are illustrated in Figure 4.3.
The pitching moment coefficient due to the tail is

approximated with the following equation.

Cmt - Cmit (CL/a„ + «w0 + (it - i„) - e + rSe) (4.27)

The last term represents the change in the tails zero lift
angle due to elevator deflection. The PA-28 aircraft has a
flying stabilizer and therefore no elevator so this term is
dropped. The pitching moment for the tail incidence is
calculated as follows

Cmit - - nt Vat (4.28)

nt is the tail efficiency, while Vat is the tail volume
which is determined by

vat - lt_st (4.29)
c S

e is the down-wash effect of the airflow from the wing.

39

Station

Figure 4.3 Approximate Interference Factors

40

An approximate and sufficient solution to the above
differential equations are given below, assuming a

.ently small time step is used.

h - h1 + dh
dt

* deltaT (4.30)

V - V1 + dV
dt

* deltaT (4.31)

8 - 61 + d£
dt

* deltaT (4.32)

a — a1 + da
dt

* deltaT (4.33)

q - ql + dq
dt

* deltaT (4.34)

4.5 Summary
This chapter has given a complete presentation of the

process to be used in the development and evolution of the
knowledge-based controller. The criteria for the process
selection were presented, followed by the selection of a
suitable process and the derivation of a set of equations
such that a satisfactory simulation of the process could be
done .

The simulator was coded as a separate class in
Smalltalk/V. This allows for easy creation of an object, a
simulated aircraft, to which messages can be sent to affect
simulation parameters, process inputs and the length of time
the simulation is to be run until the next sensor reading. A
time step of 0.05 seconds was chosen. This is small enough

41
that the simulator does not behave erratically and allows
for reasonable execution time. Although the simulation is
based on the PA-28-140, due to its simplicity it is not
highly accurate, however its performance is representative
of this class of aircraft as was desired.

CHAPTER 5
CHOICE OF DEVELOPMENT TOOLS

5.1 Introduction
This chapter presents the criteria for selecting the

software development tools for this thesis. The software
tools used are discussed based on their power,
expressiveness and suitability to the tasks they were
applied to. An expert systems shell by Texas Instruments
called PC Plus was used for some early prototypes and later
abandoned for PROLOG/V, a class in Smalltalk/V by digitalk
Inc .

5.2 Software Criteria
The architecture the software was to run on was the

first limiting factor. The software chosen had to run on an
IBM compatible machine. An 80386 based machine with 4
megabytes of RAM was available. It was also intended that
some development be done on a XT clone with 640 kilobytes
of RAM. Therefore the first criterion was stipulated by the
available hardware, it had to run on an IBM or compatible
machine.

With hardware limitations in mind, a development
environment or set of tools was needed conducive to building

42

43

knowledge-based systems and of being able to perform tests
using a simulator implemented in software. For the simulator
a procedural language was considered to be desirable, yet
for the knowledge-based controller a declarative language
was needed. For the knowledge-based controller an expert
systems shell would also suit and possibly offer other
advantages.

5.2.1 S imulator Criteria
The selection of a tool for the simulator was not a

large obstacle. It was preferred that a procedural language
such as C, Pascal or Smalltalk be chosen as they are well
suited to this type of task. In the simulator there is no
requirement for manipulating symbolic data and the input and
output would be straight forward and well defined. The main
concern here was the ability for the language chosen to
interface with the knowledge-based controller.

5.2.2 Knowledge-based System Criteria
For the knowledge-based system a language or tool

that can deal with symbolic information and could
incorporate fuzzy logic into it was required. The speed at
which it executed was of secondary concern to these
requirements as it would only be controlling a simulated
process. Of greater concern than execution time was the
development effort that would be required. Starting from

scratch with a language such as LISP would require the
development of the knowledge representation scheme and the
inferencing mechanism. An expert system shell would provide
these, but it may not suit the needs of the system correctly
and could require that too many tradeoffs be made.

It was desirable to keep the inferencing method and
the knowledge representation scheme flexible. For
inferencing, both backward and forward chaining were
desirable because each may fit a particular sub-problem
better than the other. For the knowledge representation,
frames allow the exploitation and use of any naturally
occurring structure in the problem domain, yet rules are a
simple and quite natural way to express knowledge.

The availability and support of the tool selected was
the next concern. The purchase of a development tool for one
specific project may not be justifiable. Also the purchase
of a language compiler or interpreter can save money over a
shell, but may increase the cost dramatically in development
time. The availability of complete and informative support
can greatly ease development, and can therefore be a major
concern.

In summary, the criteria are the expressiveness and
flexibility of the tool, the amount of development time
anticipated, the support available and the availability of
the tool itself.

45

5.3 Personal Consultant Plus
PC Plus is an expert system development shell for

which McMaster University obtained a site licence from Texas
Instruments. That solved the problem of availability and
along with the site licence came support, both on campus and
from Texas Instruments. This turned out to be difficult to
get at times and the documentation was difficult to follow.
PC Plus is written in TI Scheme, a dialect of LISP, and
provides many aides to expert system developers as well as
external language interface well suited to use with C.
Knowledge is represented in PC Plus in a combination of
frames and rules and PC Plus supposedly supports both
backward and forward inferencing. All parameters in PC Plus
have a certainty factor attached to them and they are used
in a fashion not incompatible with the fuzzy logic described
earlier.

The first prototype contained fewer than 30 rules in
3 frames and seemed to work well. It merely had questions
posed to it, to which it would give an answer based on a
simple subset of rules for controlling an aircraft. The
second prototype had about 150 rules in 19 frames,
incorporated a fuzzifier to create fuzzy sets and was
therefore much more complex but presented many problems.
Forward chaining was attempted in the majority of the system
but it was found that PC Plus did not support this in an
acceptable fashion. The inheritance in the frames was found

46

to be very awkward. Instead of searching for and resolving
parameters in the current frame, it would look to the parent
frames first. These problems could have been dealt with, but
there were additional problems related to hardware.

PC Plus required at least 2 megabytes of expensive
memory and the speed of an 80386 based machine to be
workable. There was only one such machine available which
had to be time shared with other users and it was out of
service too often to keep the work progressing smoothly. It
was becoming apparent that the development of the knowledge-
based controller was requiring the monopolization of the
development system with the amount of prototype and test
iteration required in entering and verifying the rules. The
decision was made to look for an alternate tool.

5.4 Smalltalk/V and Prolog/V
After the trouble with PC Plus it was decided to try

and stay away from shells and go with a more basic set of
tools. The alternatives were to go with C as the procedural
language, as it would have been with PC Plus, and then
either LISP or Prolog for the knowledge-based controller.
For these two languages, the original alternatives were TI
Scheme or Turbo Prolog. Turbo Prolog was preferred in order
to help save some development time but it had the draw backs
of not supporting modular programming which helps to keep a
large system organized nor did it easily support frames. TI

Scheme supported an object oriented environment which was
interesting mainly due to its similarity to frames.

The other major concern was to be able to do most, if
not all, of the development on an XT class computer to which
there was unfettered access available. At this time a site
licence was obtained from digitalk Inc. for Smalltalk/V. The
shipped software contained an implementation of Prolog
complete with source code and documentation. This combined
two powerful programming paradigms, logic programming and
object oriented programming. It appeared that the necessary
development tools had been found.

There exists a very simple means of posing a Prolog
question from Smalltalk/V and in Prolog/V a predicate is
available so that messages may be sent to Smalltalk/V
objects. The object oriented environment can be exploited in
Prolog/V to provide a frame construct. The knowledge can be
grouped by function into objects, which inherit the
knowledge and data of their parents as well as contain their
own.

This environment allowed more freedom in setting up
the knowledge based controller and in the knowledge
representation used. Fuzzy logic was easily implemented by
defining special predicates in a parent class to the
controller. A very big plus of this environment is the ease
of testing. Any expression can be evaluated at any time in
the Smalltalk/V environment, including Prolog questions.

48

This made testing and verification of the code very easy.
The debugger and inspectors provided allow tracing of a
problem with great ease. Prolog/V is not a full
implementation of Prolog, but whatever is lacking can be
easily added by modifying the class or whatever is needed
may already be provided in Smalltalk/V.

CHAPTER 6
CONTROL SYSTEM DESIGN

6.1 Introduction
This chapter discusses the knowledge-based controller

and its associated components. The ideology behind the
control system is discussed introducing the methods of a
human controller, a pilot, in controlling the process, an
airplane. Next the instrument reading scheme is introduced
which leads into the following section covering the
implementation of fuzzy logic in this thesis. The
fuzzification of the sensor readings is discussed as well as
defuzzifying the output set. Lastly the structure used for
the controller, including the knowledge representation and
the layout of the objects or frames in the system and their
interaction is discussed.

6.2 Control Method
This controller implements the knowledge used by a

human operator to control a simulated process. The
controller is designed to emulate what is perceived to be
the methods employed by a human operator to enact this
control. For this thesis the controller is essentially
trying to control the flight path of an aircraft. The inputs

49

50

to the controller specify a power set point and a pitch set
point. The controller then decides, based on the aircraft's
current state, how to achieve these set points and then
proceeds to accomplish the task. Thus two main tasks are
identified here, one is planning and the other is the
execution of control.

There were originally five values being used to
convey the state of the aircraft which corresponded to
instruments a pilot uses. These five instruments can be
grouped as to the type of information a pilot can get from
them. The instruments which provide information about power
are the tachometer and the airspeed indicator. The
instruments which provide pitch information are the
altimeter, the vertical speed indicator, pitch from the
horizon (real or artificial) and the airspeed indicator as
shown in Figure 6.1 [FLI79]. To these, acceleration and
pitch rate were added because adequate control could not be
realized without them. The pilot can sense this information
either through feeling the motion or through the rate of
indicator movement.

Within each of these groups one of the instruments
will be considered primary for control purposes while the
other(s) will provide backup information. In normal, steady
state cruise flight the airspeed is primary for power
control and altitude is primary for pitch control. The
instrument that is primary depends on the flight condition

51

Pitch Instruments

Attitude indicator Altimeter

Airspeed indicator Vertical speed indicator

Power Instruments

Tachometer Airspeed indicator

1 ,

Figure 6.1 Flight Instruments

i

52

to be maintained, or achieved. If a fixed airspeed is to be
maintained then the airspeed is normally primary for power,
but it may also be used as the primary indicator for pitch
control. As an example, in a descent it is often desirable
to maintain a given airspeed for a given power setting, such
as descending from altitude or on final approach to land.

Normally as long as the errors in the set points are
not too large, the instrument related to the set point to be
maintained can remain as the primary instrument. However, if
the set point is changed by a large amount, or if the error
should become large, then it is necessary to temporarily use
another instrument as the primary control instrument to
establish the aircraft at the desired set point. An example
is in controlling power. If a large change in airspeed is
necessary, the pilot will first make an estimate of the new
power setting required and then establish the power at that
value. The tachometer is now primary for power until the new
power setting is established. When the tachometer is
correct, the pilot will switch to the airspeed as primary
and make corrections as necessary. This works similarly for
control of pitch. It is obvious that there is a basic level
of control below which the pilot cannot recurse, for power
it is the engine speed from the tachometer and for pitch,
the pitch reading from the horizon.

The pilot must plan how to achieve a new goal by
creating sub-goals and deciding what instruments to use for

53
deciding on and enacting control such that the sub-goal and
ultimately the major goal is achieved. A knowledge-based
controller is well suited to this type of control
methodology and this controller exploits it.

6.3 Instrument Reading Scheme
While flying, a pilot scans the aircraft's

instruments as opposed to taking a snapshot of all the
instruments at one instant. The controller for this thesis
attempts to emulate this procedure when getting the values
which correspond to the instrument readings. Some values are
read at a higher rate than others, corresponding to the
speed at which they change as the aircraft reacts to inputs
or the environment, or to how fast it is desired that the
aircraft react.

Using fixed sample times in a scan fashion is only a
partial implementation of what is ultimately desired. If the
aircraft's state is at the desired set points and in its
recent history the aircraft has been well behaved, then the
sample time could be lengthened. A pilot does this when
performing other duties in the aircraft, and if an error
develops, it will receive the appropriate amount of
attention for its correction. It is obvious then, that if
the sample times are allowed to float, then the output gains
may also have to be changed to suit. This is the type of
task a knowledge-based controller can be applied to. It

54
remains to be seen if this provides any real advantages,
although it may for complicated multi-level controllers.

6.4 Fuzzy Set
Two problems present themselves when using fuzzy

sets. First, how to create the fuzzy set and second how to
convert a fuzzy set back to a discrete value for output.
Within each of these, other problems exist such as the
number of elements the set is to contain, how the mapping to
the elements of the set is to be done and if the set is
always going to be complete (ie. contain all the possible
elements with a certainty factor). This section discusses
how these problems were solved for this thesis.

6.4.1 Fuzzifier
The fuzzy set used for this thesis has the equivalent

of seven quantization levels. This is realized by the use of
four elements to indicate magnitude and two to indicate
direction. The linguistic variables were chosen to relate as
closely as possible to terms used by a pilot to describe the
rules for flying. The name of each set created corresponded
to the value read, such as altitude, pitch rate, airspeed,
etc. The names of the sets elements indicate the error in
the reading from the desired value and are as follows;
correct, small, medium and large for magnitude and low or
high for direction.

55
The fuzzy set used for the PC Plus prototypes used a

trapezoidal shape with straight line segments for mapping
the error value to the certainty factor for each element of
the set (Figure 6.2). This fuzzy set and fuzzifier was
sufficient but a smooth function was chosen for the
Smalltalk/V implementation in order to simplify coding. The
fuzzy ranges of the elements were also changed slightly. The
correct and small ranges are narrower and the small error
range is shifted towards correct slightly as is the range
for medium relative to the original set. Figure 6.3 depicts
the fuzzy set used. The direction elements correspond to the
side of correct the error corresponds to. Table 6.1 lists
the fuzzy set elements and the general functions that apply
to them.

For each value, the range mapped into the fuzzy set
varies. These ranges were picked based on the requirements
to which the instrument readings must be maintained on an
actual Department of Transport flight test [FLI85]. Those
not stipulated were given an estimated value to begin with.
Some of the mapping ranges were later modified to achieve
better controller performance as shown in Table 6.2.

If one of the basic instruments, ie. the tachometer
or pitch, are primary for control, and the error is beyond
the current mapping range, the range can be modified by the
system. This also necessitates changing either the sample
time (extending it) or preferably modifying the output gain

FUZZY SET
assignment of certainty factors

(correct high, low, small, medium, large)

Figure
6.2 Fuzzy Set

for
PC Plus Prototypes -10 -50 5 10

Error Range

cn

57
Fu

zz
y S

et

Figure 6.3 Fuzzy Set used with Prolog/V

58

Table of Fuzzy Set Functions

Element Function ;x is the scaled error value

Correct f(x) = 1/(1 + x2)

Small f(x) = 1/(1 + 0.5(x - 2/)

Medium f(x) = 1/(1 + 0.3(x - 5/)

Large f(x) = 1/(1 + 0.3(x - 8/); x^8

f(x) = 1; x > 8

Low f(x) = 1 - 1/(1 + x2); x 0

f(x) = 0; x > 0

High f(x) = 1 - 1/(1 + x2); x^O

f(x) = 0; x < 0

Table 6.1 Fuzzy Set Functions - Prolog/V

59

Mapping Ranges for Fuzzy Set

Value initial final

tachometer
(rpm)

100 500

airspeed
(mph) 10 5

acceieration
(mph/s) n.a. 5.0 ♦ 0.2

(airspeed/5)

altitude
(ft) 100 100

pitch
(degrees) 15 2

pitch rate
(degrees/s) n.a. 2.0 • 0.2

(pitch/5)

vertical speed
(ft/m) 100 100

Table 6.2 Mapping Ranges for Fuzzy Set

60

by increasing it. The mapping range and gain can then be
decreased or returned to the nominal values when the error
has decreased sufficiently. It is only for the basic
instruments that this is necessary. With this fuzzy set, the
error is maintained within the correct range which is about
0.08 to 0.1 of the mapping or error range.

6.4.2 Defuzzification
The solution derived by the knowledge-based system is

in the form of a fuzzy set. The question now is how to
derive an output value which can be used to change the
process inputs. The process will require a value which will
indicate the direction and magnitude of change for the
input. The defuzzifier must use some method of going from
the fuzzy output set to a single discrete value.

A very simple conversion method was chosen for this
thesis. Each fuzzy element is assigned a magnitude value for
the output change. The output selected is the fuzzy element
with highest certainty factor. The corresponding magnitude
value is then multiplied by a gain which is related to the
current error range mapping for the current primary
instrument and given a positive or negative direction
depending on which direction element has the maximum
certainty factor. In this thesis the output has different
magnitudes and gains assigned corresponding to the current
primary instrument to allow for experimentation and tuning.

61
The output gain is also adjusted as the error range for the
instrument changes. This is most valuable for the basic
instruments, allowing the controller to operate
satisfactorily for large errors. Table 6.3 shows the output
magnitudes and gain calculations at the time of writing.

There are other schemes which could have been used to
defuzzify the output set, as there are many choices to
create the input fuzzy set. Some methods try to combine all
the information contained in each set and the certainty
factors. These allow for a more continuous range of output
values. Thus the controller could distinguish between an
output set with medium as the maximum element yet with small
having a larger certainty factor than large and therefore
the output value will reflect this in its magnitude. The
current method allows the designer to vary the
aggressiveness of the controller depending on the magnitude
of the error and the individual primary instrument.

6.5 Structure of the Controller
The control system was designed to exploit the

natural hierarchy and segmentation inherent in the process,
this is shown in Figure 6.4. Also note in the bottom leaves
of the tree like structure, the figure is arranged to
display the hierarchy of the instruments in the chain of
control for the corresponding output. Control using the
higher instruments as primary requires rules that refer to

Magnitudes and Gains

Output Conversion

Table
6.3 Table

of Output Conversions

Controlled Par. Primary Inst. Correct Small Medium Large Gain

Power tachometer 0 0.8 3.3 6.5 0.1

Power airspeed 0 1.0 5.0 10.0 4.0

Pitch vertical speed 0 1.0 4.0 8.0 8.33E-04

Pitch altitude 0 0.8 2.5 4.7 5.56E-04

Pitch pitch 0 1.0 4.0 8.0 2.25

Pitch airspeed 0 1.0 4.0 8.0 -1.96E-04

ro

Prolog/V

Figure
6.4 System Structure

Output

PowerController

Airspeed

Fuzzy
I

Planner (Pilot)

Controller

Altitude
Tachometer

Sensorllpdate

PitchController

Airspeed
Vertical Speed

Pitch

Structure and Inheritance of Knowledge-based Controller

o\co

64

the lower instruments for adequate and correct control.
The Planner or Pilot frame oversees and coordinates

the knowledge-based controller. It contains rules to
initialize and clear the system databases as well as rules
that are generic to the overall system and required in the
child frames. This frame is responsible for coordinating
sensor (instrument) reading by invoking the rules in the
SensorUpdate frame, requesting a control action or solution
from the Controller frame and then having the solution
converted to a discrete output by the Output frame. The
output value and time until the next sensor reading are then
returned to the process.

The frame UpdateSensor, obtains the sensor reading,
has it converted to a fuzzy set and modifies the output
gains and fuzzy mapping if necessary.

The Controller frame invokes the appropriate child
frame depending on whether the control action required is
for the pitch axis or for power control. If the sensor just
read is primary for pitch or power then the appropriate
child frame is consulted, otherwise no action is taken and
it returns to the parent frame. Rules generic to all the
child frames for control are also present in this frame.

The PitchController and PowerController frame merely
decide which specific child to consult based on the primary
instrument. They also contain rules generic to Pitch or
Power control respectively.

6 5

The bottom leaf frames decide what control action is
best to correct an error in the primary instrument reading
using information from other sensors as needed in the rules
for effective control.

Figure 6.4 also shows the inheritance of predicates
from Prolog/V and the Fuzzy frame.

6.6 Rules
The system rules are in the form of Prolog/V

predicates. As the fuzzy set operations are an add on to
Prolog/V, the certainty factors are calculated using the
fuzzy predicates utilizing reverse polish notation [RIC88].
A predicate is then used to decide if the rule has succeeded
or failed and therefore if backtracking to another rule and
possible solution is necessary. This is unfortunate because
it transfers part of the control mechanism into the rules
and therefore the knowledge-base. This was necessary due to
this implementation of fuzzy logic. Two solutions to this
problem are possible. One, a different knowledge
representation scheme can be used and create an inference
engine in Prolog/V to deal with fuzzy logic. This however
may make it very difficult to take advantage of the object
oriented programming paradigm for implementation of frames.
Second, a Fuzzy Prolog could be implemented as in [RIC86].

The following is an example predicate from the
PitchAltitude frame for controlling the pitch axis with

66

altitude as the primary information.
checkClimb() :-

errorln (#pitchRate, #low), fNOT(),
errorln (#verticalSpeed, #medium), fAND(),
errorln (#altitude, #small), fAND(),
fuzzy (cf),
makeOutput (#pitch, [#small, cf]),
goWith (cf), !.

which translates to;
IF the pitch rate error is not low and the vertical speed

error is medium and the altitude error is small
THEN checkClimb succeeds by adding the control magnitude

of small to the output set for pitch
This rule decides the magnitude of the control

deflection and another rule would decide the direction in
order to check or slow the climb of the aircraft. There are
over one hundred rules in the system, the majority of which
are in the bottom control frames.

CHAPTER 7
SIMULATION RESULTS

7.1 Introduction
This chapter contains a small number of simulation

runs to demonstrate the knowledge-based controller's
performance. Different sensors are selected as primary and a
set point change, within the fuzzy error range, is made. For
the control of power, an example of a large set point change
of the airspeed is presented. Here the controller must
switch to a new primary instrument for a short time.

7.2 Power Control
The response to a commanded change in the power

output or engine speed is shown in Figure 7.1. The system is
over-damped and quite easy to control. With the fuzzy error
range set at 500 rpm the error can be quite large at plus or
minus 40 rpm, but this relates to an approximate airspeed
difference of plus or minus 2 mph.

Figure 7.2 (a & b) shows the aircraft response to a
small commanded change in airspeed. The controller strives
to achieve an acceptable acceleration for the magnitude of
the airspeed change which it will maintain until the
airspeed error decreases. The controller output depends on

67

68
Th

ro
ttl

e P
os

iti
on

Ta

ch
om

et
er

 (r
pm

)

Figure 7.1 Tachometer Set Point Change
Vertical Speed constant at 0 fpm

69
A

cc
el

er
at

io
n (

m
ph

/se
c)

A

ir
sp

ee
d (

m
ph

)

Figure 7.2-a Airspeed Set Point Change
Vertical Speed Constant at 0 fpm

70
Th

ro
ttl

e P
os

iti
on

Ta

ch
om

et
er

 (r
pm

)

a

Figure 7.2-b Airspeed Set Point Change
Vertical Speed Constant at 0 fpm

71

the airspeed error and the acceleration both in magnitude
and direction.

A larger commanded change in the airspeed is shown in
Figures 7.3 (a-c). Here a commanded deceleration of 20 mph
is made. The commanded change is larger than can be dealt
with by using the airspeed indicator alone. The controller
therefore calculates an estimate for a new tachometer
setting based on a ’’rule of thumb” and temporarily assigns
the tachometer as the primary instrument for power control.
When the needle movement (acceleration) is sufficiently slow
the controller switches back to the airspeed as primary.
This occurs at approximately 50 seconds in Figure 7.3. At
this point, if the airspeed error was still too large, a new
tachometer setting would have been found and this instrument
again assigned as primary for power control. In this
example, the airspeed error was within an acceptable range
and the airspeed indicator remained as primary.

7.3 Pitch Control
The three main values controlled with pitch are

presented in this section, beginning with the basic pitch
control. Figure 7.4 shows the response of the system to a
change of pitch angle command. Pitch position is controlled
by a combination of position and rate error similar to
airspeed control.

A set point change for vertical speed is shown in

72

Airspeed Set Point Change
A

cc
el

er
at

io
n (

m
ph

/se
c)

A

ir
sp

ee
d (

m
ph

)

0 5 10 15 20 25 30 35 40 45 50.55 60 65 70 75 80 85 90
Time (sec)

a

Figure 7.3-a Large Airspeed Set Point Change
Vertical Speed Constant at 0 fpm

73
Th

ro
ttl

e P
os

iti
on

Ta

ch
om

et
er

 (r
pm

)

a

0 5 10 15 20 25 30 35 40 45 50,55 60 65 70 75 80 85 90
Time (sec)

Figure 7.3-b Large Airspeed Set Point Change
Vertical Speed Constant at 0 fpm

74

Figure 7.3-c Large Airspeed Set Point Change
Vertical Speed Constant at 0 fpm

75
Pi

tc
h R

at
e 4

 Pi
tc

h I
np

ut

Pi
tc

h t
og

le
 (d

eg
re

es
)

Figure 7.4 Pitch Angle Set Point Change
Airspeed Constant

76
Figure 7.5 (a & b). The control of vertical speed has been

set to be quite aggressive with a resultant large overshoot.
Part of this overshoot error is also attributed to
simultaneous airspeed and power changes taking place.
However, it can be seen that the response settles quite well
to a small error for the vertical speed.

A set point change in the altitude is the slowest and
most difficult to control. The plots in Figure 7.6 (a & b)
show the response of the aircraft and the pitch control
action. To control the altitude, a vertical speed that is
commensurate with the altitude error must be achieved, but
to do this care must be taken not to over control the pitch
angle and pitch rate. This control is achieved with
reference only to the fuzzy values, ie. for a medium error,
a medium rate of climb is used. This is continued for the
pitch angle and rate to achieve the desired climb. As the
altitude error decreases, so must the rate of climb be
decreased, ie. small altitude error, then use a small rate
of climb. Therefore for altitude control there are rules for
starting, checking and stopping a climb as well as
controlling pitching of the aircraft. Similar rules are used
elsewhere, but altitude is the most complicated and complete
example of the interaction.

77
Pi

tc
h A

ng
le (

de
gr

ee
s)

V

er
tic

al
 Sp

ee
d (

ft/
s)

Figure 7.5-a Vertical Speed Set Point Change
Airspeed Constant

78
Pi

tc
h I

np
ut

 (d
eg

re
es

)
Pi

tc
h R

at
e (d

eg
re

es
/s)

Figure 7.5-b Vertical Speed Set Point Change
Airspeed Constant

79

Altitude Set Point Change
4100 -i--2_

V
er

tic
al

 Sp
ee

d (
ft/

s)

A
lti

tu
de

 (ft
)

0 10 20 30 40 50 6Q 70 80 90 100 110 120
Time (sec)

Figure 7.6-a Altitude Set Point Change
Engine Speed Constant

80

Pitch Angle Response
13.5 q

Figure 7.6-b Altitude Set Point Change
Engine Speed Constant

81

7.4 Conelus ion
The controller uses a relatively small set of values

to achieve control of the system and relies instead on the
knowledge contained in the system to accomplish acceptable
performance. The gains and sample times can also be juggled
to tune the response but this is no substitute for a correct
knowledge-base for the control of the process. In fact rules
can also be written to adjust the gains, sample times and
fuzzy mapping ranges as necessary for different situations
and requirements.

This section has demonstrated that a process can be
controlled with a knowledge-based controller utilizing fuzzy
logic. The controller is realized with out explicit
knowledge of the system, but using only operator knowledge
and a knowledge representation scheme to best exploit that
knowledge.

CHAPTER 8
APPLICATION OF NEURAL NETWORKS

8.1 Introduction
This thesis has so far presented knowledge-based

systems as a method of emulating human thought and then
using human rules and reasoning methods in a control
application. A recent resurgence of interest in neural
networks has researchers claiming their applicability to
many problems including automatic control [JOS88]. The
neural network is an attempt to model the basic structure
and operation of the human brain and therefore emulate the
way intelligent information processing occurs within the
brain [TRE88]. Implementations of neural networks have
existed since the beginning of the computer age. The current
wave of excitement seems to be a product of recent hardware
advances in the construction of massively parallel machines
and theoretical advances which even increase the
computational power of neural networks in conventional Von
Neuman machines.

Neural systems are a pattern directed reasoning
mechanism and have been shown to develop internal
representations, through self-organization, of real or
abstract classes in the external environment [JON87]. From

82

83

this self-organization, collective properties emerge which
include association, categories of generalization,
differentiation, preferential learning, optimization, fault
tolerance and hyperacuity [JOS88].

This chapter gives a short explanation of the
construction of a neural network, then three implementation
trials are discussed.

8•2 Neural Network Approach
Intelligent behaviour and computational power of the

human brain seems to come from interactions involving large
numbers of neurons that are connected together by a complex
network of synapses. Each neuron is quite limited in its
processing capabilities compared to a computer, but it is
the combined ability of many connected neurons which is the
power of a neural network. A simulated neuron has four
important components; input connections or synapses through
which it receives activation from other units, a summation
function that combines the various input activations into a
single activation, a threshold function that converts this
summation of input activations into an output activation and
finally, output connections or axonal paths by which a
unit's output activation arrives as the input activation at
other units in the system [JON87].

Inter - connections between computer simulated neurons
are typically assigned a weighting factor to modulate the

84

activation passing between the units. The absence of a
connection can be represented by a weight of zero, and an
inhibitory relation by a negative connection weight.

In a neural network the knowledge lies in the
connection weights between the units. In contrast, the
knowledge of a knowledge-based system lies in the rules and
the relationship of the frames. Additionally, a neural
network is driven by the activation that passes between
units. An expert system is driven by the firing of rules
using an inference engine.

Much of the current resurgence of interest in neural
networks is due to the development of a powerful learning
rule that can determine inter-connection weights for multi­
layered systems. This learning rule is the back-propagation
rule and is well explained in [JON87]. It takes the error
from a desired output for a given set of inputs and
propagates it back through the network to adjust the
interconnection weights and thresholds at each neuron.

Neural networks can learn the behaviour of a system
or domain expert from observation or a specified training
set. This could provide substantial saving in effort
required in comparison with an equivalent rule or frame
based expert system. A set of example inputs and the
required outputs from a system may already exist or be
easily specified. These could be used to train a neural
network quite easily, but it may take considerable effort

85

and guess work to distill the knowledge from these and put
it in a form usable by an expert system. The rules must be
developed, entered into the knowledge base (which must be
designed to suit the current problem) and checked for
compatibility and consistency with the existing knowledge
base .

The back-propagation learning rule can require large
amounts of computational resources, the demand for which
increases dramatically with increases in the size of the
network (the number of neurons and the number of layers),
the size of the training set and decreases in the error
tolerance to which the network is to be trained. With
current implementations a single new rule cannot be just
added to the neural system. The network must be retrained
with the complete training set with the new example(s)
included. This process should be quicker than the original
training as the network need only assimilate the new
information.

8.3 Neural Network Implementation Trials
Three small neural networks were implemented to

investigate their application directly or indirectly to the
controller implemented for this thesis. The first example
was a stand alone experiment for using a neural network to
estimate intermediate goals and was not incorporated into
the controller. The second implementation required the

86

coding of a neural network simulation in Smalltalk/V so that
the resulting trained network(s) could be incorporated into
the controller. Two networks were created for the simple
task of engine speed control.

8.3.1 Estimation of Intermediate Goals
The knowledge-based controller presented in this

thesis must determine an intermediate goal for pitch angle
when the vertical speed set point error becomes large. These
intermediate goals do not need to be very accurate as the
aircraft attitude will be modified when the controller
returns to the super goal. Some intermediate goals can be
inferred quickly by the knowledge-based system, yet others
may require a rule base too complicated to be practical. One
such case exists for the setting of a pitch attitude in
order to establish a desired rate of climb.

Of interest here is the ability of a neural network
to learn a feature space from a relatively small training
set and generalize to other features in the domain. The rate
of climb of an aircraft is affected by a number of things,
including air density, aircraft weight, airspeed and the
angle of attack. The simulated aircraft in this thesis has a
fixed weight and the air is a fixed density. Thus the only
effects on the rate of climb to be considered are the
airspeed and the angle of attack. The power level can affect
the rate of climb as well but for normal climb attitudes the

87
airspeed will suffice. For a given airspeed in a normal
climb the pitch angle is proportional to the angle of attack
of the wing.

A two input (airspeed and desired rate of climb),
single output (pitch angle), neural network was required for
testing. The range of rate of climb used was from -500 fpm
to +500 fpm. The airspeed range is from 60 mph to 100 mph. A
set of steady state data from test runs of the system was
collected to be used for a training set and testing. Table
8.1 shows the data used and the results. The network was
trained on a set of six values to a tolerance of 0.05. The
network's inputs and output are all in the range from 0 to 1
therefore the aircraft data was mapped into this range with
simple linear functions.

The example network used is from an instructional aid
called "AWARENESS" and developed by Neural Systems Inc. of
Vancouver B.C. The network is shown in Figure 8.1 with the
training complete and an example input set. As can be seen
from Table 8.1, the network performs quite well in this case
predicting a pitch angle that should put the aircraft in a
climb at a rate well within the error range for the vertical
speed to be used as the primary instrument for pitch
control.

8.3.2 Engine Speed Control
To further experiment with neural networks, the

Figure
8.1 Neural Network

Input Layer
T(IJ)=fl,53

Hidden Layer Output Layer
1<I,2):-1,45£C\
1(2,1)4,22 "h<4ft\
I(2,2)=-0.414^®4II<\
1(3,1)4,61 ~
1(3,2)
I(4,l):-1,l
1(4,2)4,52 4.
K5,l)=-3,
T(5,2)=I,4I
1(6,1)4,36
1(6,2):-0,9
1(7,1)4,40
I(7,2)=-0.61
1(8,1)4,42 -Ka
T(8,2):-l,2H><k

,2):-1,204^1Z_x1(1,2)=-0.154
,3):-U34
,4)=1.45 4
,5)4.95 4
,6):-0.6?4
,7)=-0,424
,8):-0.994

,47734

Current target : 0
Tolerance : 0,850

lest of input pattern
Press any key to get the nenu, VI.0 (0 NSI 1987,

00
00

http:2):-9.61
http:1,1):8.49
http:J(6,2):-9.9~'~T<1,8):-9.99
http:T<1,7):-9.42
http:6,1):9.36
http:T(1,6):-9.67
http:TC5,2):1.41
http:T(1,5):3.95
http:T<1,4):1.45
http:1(4,2):9.52
http:3).-1.13
http:T<t,2):-9.15
http:T<1,1):�1.29
http:TC3,1):9.SI
http:1(2,2):-9.41
http:2!1):9.22
http:1(1,1):9.53

Table
8.1 Neural Network Training and Test Dat

Example Data for Neural Network Test of Network

Airspeed
(mph)

Vertical Speed
(ft/a)

Pitch Angle
(degrees)

Network Output
(degrees)

Difference
(degrees)

♦ 70 (0.25) 500 (1.0) 14.3 (0.95) 13.5 (0.90) -0.8 (-0.05)
70 (0.25) 0 (0.5) 10.1 (0.68) 10.5 (0.70) 0.4 (0.02)

♦ 70 (0.25) -500 (0.0) 5.8 (0.39) 5.4 (0.36) -0.4 (-0.03)

* 80 (0.5) 500 (1.0) 11.0 (0.73) 11.7 (0.78) 0.7 (0.05)
80 (0.5) 0 (0.5) 7.0 (0.47) 7.2 (0.48) 0.3 (0.0l)

♦ 80 (0.5) -500 (0.0) 2.9 (0.19) 3.0 (0.20) 0.1 (0.0l)

♦ 87 (0.68) 460 (0.96) 8.7 (0.58) 9.4 (0.62) 0.7 (0.04)
90 (0.75) 0 (0.5) 4.7 (0.31) 4.4 (0.30) -0.3 (-0.01)

♦ 90 (0.75) -500 (0.0) 1.3 (0.08) 1.9 (0.13) 0.6 (0.05)

Note:
1 Data is for a given altitude and aircraft weight.
2 Data marked with * is the training set.
3 Equivalent values for network are in brackets.

oovO

90

section of the knowledge-based controlling the engine speed
with the tachometer as the primary instrument was replaced
with a neural network. In addition, a neural network was
trained to give a smoother, continuous defuzzification of
the output fuzzy set. This provided insight into their
function in the presence of incomplete information. A
further test was planned that called for the application of
a neural network to a more complicated task in the
controller. A serious computer resource problem was
encountered here and the plan had to be abandoned as it was
beyond the scope of this thesis to try and broach this
problem. A more detailed description of these experiments
now follows.

The back-propagation algorithm was implemented in
Smalltalk/V for these tests. The implementation allowed any
combination of neurons and layers to be specified, trained
and evaluated.

The engine speed controller required a network with
six input neurons and six output neurons. Thus its inputs
and outputs are a complete set of certainty factors gleaned
from or applied to a fuzzy set. There was one hidden layer
specified which contained six neurons as well. Each input
and output neuron corresponds to a fuzzy value. For input,
the certainty factor of a fuzzy value is applied to its
corresponding neuron. Likewise, the potential of an output
neuron is the certainty factor for its corresponding element

91

in the output fuzzy set. The neural network implementation
contains a class for 'fuzzy nets' so that the matching of
the input and output neuron potentials to their
corresponding fuzzy values in the input and output fuzzy
sets is automatically handled. Therefore the neural network
implementation is virtually transparent to the knowledge
based controller.

The training set consisted of seven example input and
output pairs. Training was done to a tolerance of 0.2 on all
the output neurons for all the pairs in the training set.
This required approximately 4,000 iterations to accomplish,
which translated to approximately 4 hours on an 80386 based
machine.

The performance of the control system utilizing the
neural network was identical to those from the strictly
rule-based controller. This was expected as the training set
was based directly on the knowledge contained in the rules
for controlling the engine speed with the tachometer as the
primary instrument.

The strategy for defuzzifing the output set was
briefly discussed in Chapter 6. The method selected for the
controller for this thesis consisted of simply setting the
final output to the value corresponding to the fuzzy value
with the greatest certainty factor. This has worked well as
the output set is often incomplete. A neural network with
four input neurons, eight neurons in one hidden layer and

92
one output neuron was created and trained to defuzzify the
output set.

At first the network was trained assuming a complete
fuzzy set for the output. The training set contained ten
examples. Figure 8.2 shows the result for a tachometer set
point change using the neural network controller and
defuzzifier. Comparing this with the result shown in Figure
7.1, the reader will notice the presence of slightly more
overshoot in the new result but also a smoother response.
This is due to a continuous discreetization of the output
set. The difference in steady state error is insignificant
as both are within the range of the fuzzy value 'correct'.

A significant problem was encountered with
defuzzifying output sets that were incomplete. All fuzzy
values that were missing were given a certainty factor value
of zero. It turned out that when the fuzzy output set
contained values on the low end of the scale and therefore
the fuzzy values on the high end of the scale were assigned
certainty factors of zero, the output value was over
estimated. Conversely, when the fuzzy values on the low end
of the scale were missing, the output value was grossly
underestimated. The result was under - control when large
errors were present and over-control for small errors and
therefore unstable response to a step input change.

Upon closer examination of the response of the
network to various inputs it was decided that this was an

93
Th

ro
ttl

e P
os

iti
on

Ta

ch
om

et
er

 (r
pm

)

Figure 8.2 Tachometer Set Point Change
Vertical Speed constant at 0 fpm

94

example of over training. The network was trying to account
for too many attributes of the output fuzzy set. A
simplified training set was derived consisting of only four
special cases. In each training pair one input neuron is
set to one, the remaining three were set to zero, and an
appropriate output example was provided. The resulting
network performed better on incomplete sets however the
performance with complete sets was degraded.

As long as the output fuzzy set was complete, the
neural network defuzzifier gave a neat and continuous
output, otherwise this implementation was useless. Two
possibilities are now apparent, either a larger and more
intelligently trained network is required, or this is simply
a misapplication of the technology. For the knowledge-based
controller implemented for this thesis, this has been a
misapplication of a neural network. The original, simple
defuzzifier gave a more satisfactory response (Figure 7.1)
than did this example (Figure 8.2). Although some tuning may
improve the response for the case when a complete output
fuzzy set is available, there still exists the more serious
problem of defuzzifying the incomplete sets.

With the success of the engine speed controller for
implementing the knowledge-based control, an implementation
of a neural network controller for the vertical speed was
conceived. This would require a network with twelve input
neurons, six neurons on one hidden layer and six neurons on

95

the output layer. The training set consisted of forty-nine
input / output pairs. This network has seven times as many
training examples and 50% more weights to be adjusted than
the engine speed controller network. From experience gained
with the preceding tests, the number of training cycles that
would be required would probably be at least 10,000 and each
would take seven times longer than for the engine speed
controller. It would therefore take on the order of twenty
times as long to train this network. A conservative estimate
then puts the training time on the 80386 based machine in
the neighborhood of 100 hours (or one month on an 8 Mhz XT).

8.4 Conclusions
For the first trial the interest was in simplifying

the specification of intermediate goals for the knowledge-
based controller in the form of new set points. It appears
that a neural network would function quite well in that
role .

It is obvious that for the estimation of intermediate
goals that the network could be extended to include further
inputs and handle a greater range of conditions. The example
used herein used purely numerical data to arrive at a
numerical output. The network could also be extended to
handle symbolic data [JON87] and even to mix the two. So it
is possible to replace significant portions of the
knowledge-based controller with a neural network.

96

For the second set of trials the purpose was to
replace parts of the knowledge-based controller with a
neural network. Neural networks can implement fuzzy logic
with each input neuron representing a variable with a
certainty factor assigned, and each output neuron likewise
representing a variable with its potential representing the
certainty factor. A major problem in utilizing a neural
network is specifying the training set. It may not be
possible to collect a complete training set which
characterizes the particular problem domain. As
demonstrated, the training time required quickly becomes
prohibitively large as the network and the training set
increase in size.

These trials have shown that simulating neural
networks can provide some interesting alternatives to
conventional programming and expert systems. The usefulness
of neural network simulations is severely restricted in the
micro - computer environment, however for small, specialized
problems a micro - computer can be used to train them.

This investigation has only referred to the use of
the back-propagation training algorithm. Other alternatives
exist but this one appears to be the most general and easily
realized.

CHAPTER 9
CONCLUSION AND DISCUSSIONS

This thesis has presented an application of
knowledge-based systems to automatic control. The knowledge-
based controller has incorporated fuzzy logic to be able to
deal with some uncertainty, but mostly to allow the
knowledge to incorporate linguistic terms. The controller
was not based on a model of the system in a classical sense,
but instead on the knowledge in the form of rules used by a
human operator to make control action decisions.

Knowledge-based systems and fuzzy logic were briefly
introduced to the reader. The knowledge-based system is a
flexible and unique form of programming information for use
by a computer. In their full realization including,
explanation facilities, they are quite powerful and useful
to human users. Explanation facilities were not incorporated
into the controller in this thesis as the enquiring process
did not require it. In addition, supporting such a facility
would have made an already slow system even slower. The
large amount of symbolic processing and logic tracing makes
the knowledge-based system very slow. With the demand for
ever faster controllers, knowledge-based controllers are at
a large disadvantage.

97

98

The process used in this presentation was a simple
training/personal aircraft. This aircraft is quite stable by
industry standards and its response to control inputs and
disturbances is quite slow. Even so, with the way the
controller was setup, the controller was working much slower
than real time on a 80386 based computer. The sample
frequency could be lowered in the system to allow more time
for decisions to be reached, but there is also a large
amount of overhead in the Smalltalk/V-Prolog/V
implementation. This environment allows dynamic typing and
memory allocation. Implementation in a conventional,
strongly typed software environment would greatly improve
performance. The Smalltalk/V-Prolog/V environment's strong
point is that it provides a very powerful and flexible
development environment and was therefore the right tool for
this study.

The knowledge-based system's strength in this
controller was in the higher level decision making, the
setting of intermediate goals, directing the overall
operation plus the ability to adjust gains and sample times.
These are the tasks more associated with conscience decision
making for the human operator, in this case the pilot. The
system seemed to get bogged down in the lower level control
where the decision of output magnitude and direction is
made. Many of the rules are repetitive yet with small
variations for each primary instrument and require a fair

99

amount of backtracking to find the most appropriate fuzzy
output value. The lower level decisions become quite
automatic with practice and require little or no conscience
reasoning of an experienced pilot. Recognizing these reflex
like control actions suggested that another solution may be
more suitable here, such as neural networks.

In the knowledge-based controller a major problem
encountered was incomplete specification of the controller
rules. It must be clear that the rules were not necessarily
incorrect, but incomplete, mostly due to the fact that most
of the decision making in the reflex control actions was not
recognized in the beginning. A problem also arose because
some of the information a pilot uses in flying an aircraft
comes from his own senses, flying by the seat of his pants
if you will. The rules had to be modified and encoded to
allow for this, as well a couple of sensors, pitch rate and
acceleration, had to be added to the system to provide some
of the additional information.

The pilots decision making and control is also much
more fluid and flexible than could be captured in this
knowledge-based controller. The computer's tireless
attention and repetition compensates somewhat for this and
therefore this failing is masked to some degree.

Neural networks were incorporated into the thesis at
a very late date. The resurgence in interest had been
gaining momentum over the past year and the author was

100

introduced to them in a seminar just as the problem of
finding set points for intermediate goals was being
investigated. The problem of getting a pitch angle to
establish a desired rate of climb was the most troublesome.
A function could have been derived to provide the solution,
but this would not have been in keeping with the philosophy
of this thesis. At first the ability of a neural network to
generalize after being trained on a relatively small
training set was of the greatest interest. Subsequently, the
ability of neural systems to deal with fuzzy logic was of
interest and incorporated into the control of the engine
speed. Neural networks also make the decision making seem
more automatic as the solution is found quite quickly with a
trained neural network, even in a machine with conventional
architecture. The knowledge is stored implicitly in the
system via the synapse or connection weights and does not
have to be reasoned through for each solution. If neural
networks do prove to be generally useful enough to warrant
development of hardware to exploit them, they should provide
some great advantages in speed of processing as well.

Knowledge-based controllers provide some powerful
tools which used in the correct application will be
advantageous for the control engineer. One clue to their use
seems to be to apply them where a human would use conscience
reasoning to solve the problem. Mixed with neural network
technology and classical control, some powerful solutions

101

are available to the control engineer.
With the above discussion in mind a number of areas

where more specific research should be done can be selected.
If knowledge-based systems are to be applied to automatic
control then the practical aspects of their use should be
approached. The methodology of selecting the most
advantageous area for the application of a knowledge-based
controller has not been addressed in detail. More
importantly a systematic approach to designing such a
controller has not been presented. It would be advantageous
to an engineer considering the application of this type of
controller to have a solid, acceptable approach to design
which he could follow and be relatively certain of success.
This would be a difficult area, as there still exists many
questions concerning the design and construction of
knowledge-based (expert) systems in general.

Neural computing is a field, which just being
essentially reborn, is wide open for work. A major problem
here is finding appropriate training sets for a given
application. Another problem is weeding out the rhetoric and
selecting appropriate and advantageous applications of the
technology. Indeed, neural networks may only be a passing
fad once again. In areas where it is not possible to put
together a training set a knowledge-based system may be
developed to use in the initial implementation of a
controller and have it act as a teacher for a neural

102

network. Eventually the knowledge-based controller would be
discarded and replaced entirely by the neural network. This
would be similar to a person practicing a task which he must
think about, all the while the brain is learning to do the
task in a more automatic and efficient fashion.

Assuming that practical hardware to take full
advantage of the neural network structure is forth coming,
there is the possibility of neural network controllers being
trained or adapted on-line in real time control
applications. Departing for a moment from the knowledge-
based and fuzzy logic control, a neural network may be
applied as a controller in a more conventional form. Future
investigation could try to implement this technology by
training a network to provide proper control values to a
process based on some characterization of the process's
current state and the desired state.

This thesis has broached the subject which might best
be termed flexible intelligent control. The constraints put
on a computer by a fixed sample time can be relaxed and the
sample time is allowed to float. This is linked with using
knowledge, reasoning and experience to create a controller.
Situations of greater importance receive more attention from
the controller in terms of computer resources needed to find
an effective solution. Instead of relying on the speed of
the computer, the emphasis is on intelligent control and the
application of resources by creating a controller that can

103

adapt itself to the overall situation, not just to parameter
variations of the process. Work is therefore required in
designing controllers with floating sample times and the
knowledge and actions to accomplish this.

CHAPTER 10
EPILOGUE

10.1 Introduction
Should robotic pilots replace human pilots in the

cockpit of tomorrow's aircraft? This chapter addresses the
issues of developing sophisticated autopilots, in essence
intelligent robots, to replace human operators. Directly
related to the first question are the following:

1) For who's benefit would this technology be
applied?

2) What costs would be associated with its
implementation?

Aircraft accidents are very dramatic and news worthy
items. Air travel is no less safe than any other means of
travel, yet it has had a great amount of attention given to
it for safety and concern over accidents [PER84]. Most
often the probable cause of the accidents that occur is
assessed to pilot error somewhere in the chain of events.
Is it possible to create the perfect pilot, one that never
forgets and always follows the correct procedure; whose
attention never wanders from the task at hand and thereby
eliminate most of the accidents?

10-2 Current Autopilots
Autopilots range in complexity in today's aircraft

104

105

from simple wing levelers in small private aircraft to
autopilots that can perform the complete flight from takeoff
to landing in a jumbo jet. On long cross country flights
these machines can save a pilot from much tedious work
therefore allowing him to be more alert and rested for the
final stage of flight, the landing. It has been argued,
particularly by pilots, that the automation of the front
office in an aircraft has gone the wrong route. The wrong
assignments have been given to the machine and to the human.
In today's aircraft, the machine does the flying while the
human is there to monitor the aircraft's condition and
progress. Continuing in the name of safety, more and more
of the directing of an aircraft's flight is being
transferred to the ground and away from the cockpit. The
philosophy that is demonstrated by these actions is "To get
rid of the human error, get rid of the human pilot".

With the increasing complexity of today's aircraft
systems could you give a more ill-suited task to a human
pilot than to monitor these systems? Flying the aircraft is
a constantly changing task filled with new challenges which
will keep a human pilot's attention. Since there currently
exists autopilots that can fly the aircraft, might it not be
best to replace the human completely with a computer? But
what of the tasks a pilot has not seen before or has not
been specifically trained to handle?

In today's cockpit, a phenomenon referred to as

106

automation complacency has arisen. The pilot becomes so
used to his automated environment always working correctly
that errors in the system go unnoticed and have led to
disastrous results [TV289]. Can it be expected that a human
being can take over from a machine in an emergency after
sitting for hours quietly monitoring a cockpit full of
information? It is going to take time for him to just get
into the pilot mode, interpret the error ennunciators and
indications before taking action.

10.3 Robot Pilots
If we lose the man, in any environment, we lose the

ability to be creative and to deal with ambiguous and new
situations. Artificial intelligence promises to provide
these to us in the future. Is this really possible, or is
this more the pursuit of technology for its own benefit
instead of an improved environment for human beings. If
this direction is continued we will end up with an
incompetent culture, one containing competence for a task
(the machines) but no real expertise. An European Economic
Community (EEC) sponsored program is pursuing "human-
machine symbiosis" and the development of a human centred
manufacturing program. They want to reintegrate the skilled
craftsman into the manufacturing process and utilize the
full skills of the human operator. This makes commercial
sense as there is far more potential available than is being

107

used. We have all around us the human mind which is only
being used to a fraction of its ability, so perhaps much of
the artificial intelligence and expert system research is
wasted effort. A man has the ability to imagine what is in
the material and understand and adapt to the qualities of
the material [TV189].

For flying, the pilot must have an understanding of
the aircraft, its flying qualities, its idiosyncracies and
the general laws of flight. In an incident involving a
three engine jet, pitch control was lost due to a jammed
elevator. The pilot used the adverse characteristic of
pitching moment changes due to differential power
application and centre of gravity adjustment by shifting the
passengers in order to control the aircraft and accomplish a
safe landing. Up until this last year, no one had
experienced the loss of such a substantial portion of a
commercial aircraft's structure as in the Aloha incident in
Hawaii. These are incidents for which a robot pilot would
not have been specifically trained to handle and raises the
question of would it have dealt with the situation
adequately and saved the flight?

If the human is removed from the cockpit (or any
operator position), human error can creep in, in other ways.
The situation worth considering is an airplane which flies
into the side of a mountain while the computer programmer is
off quietly sipping a martini in some bar [TV289]. At least

108

the human pilot's fallings are offset by his will to
survive. With robotic pilots you will have the situation of
one pilot, repeated many times, flying many aircraft and
potentially repeating the same mistake many times. Each of
these examples of this pilot can only draw on the experience
it was trained with. It cannot draw on a lifetime of
diverse experiences, it cannot modify itself based on its
own experiences nor those of others. Would a machine
designed to fly airplanes be designed to interact with other
pilots, human and machine, and learn from the experience of
others?

10.4 Benefits and Costs
To who's benefit is this automation to be performed?

For aircraft, it would be sold to the public as a safety
feature. In manufacturing it is sold as cost cutting and
efficiency. It can certainly be a boost to an engineers ego
to design a complicated system, incorporating the latest
technology and in the end save his employer money in salary
and benefits. For the corporation comes the benefit of
prestige, possible off shoot business and maybe increased
difficulty of assessing responsibility for mistakes.

In Charles Perrow's book [PER84], he examines the
occurrence of what he terms normal accidents. These are
incidents caused by multiple system failures with unforeseen
inter-dependencies and causal relationships which lead to

109

catastrophic ends. When these failures do occur, technology
is looked to for the solution. Thus a system prone to
failure is put on top of another creating the potential for
further unseen interactions and masking of other seemingly
unconnected failures. In aviation, both industry and
government officials are pressing for more automation in
their respective systems, thus reducing the number of
personnel. "Both of these, I would suspect, will lead to
much tighter coupling - that is, less resources for recovery
from incidents" [PER84, pgl61]. In essence what is being
said here is the reason there has not been more catastrophes
(in aviation and elsewhere), is due to the fact that the
human being is in the system.

Society today increasingly depends on experts, fast
service and disposable items. How often has the story been
told of people discarding, at times expensive items, when a
simple repair would have returned the item to service.
Increasing dependence on machines through making them the
experts will continue the slide to an incompetent society.

The question was put to a group of machinists, what
they would prefer in their home workshop - a NC machine
(lathe) or a manual one - overwhelmingly the answer was a
manual machine. One of the most well-liked aircraft is the
venerable Piper J-3 Cub and that general class. These
aircraft are simple flying machines without electrics of any
kind. Obviously not all people will feel the same, but then

110

automation to various extents has its support and uses. The
engineering profession should make special effort to
understand how the environment is to be oriented and how
responsibility may be reassigned in the workplace.

10-5 Conclusion
The research from this thesis should not be continued

to the implementation of a computerized pilot. Indeed it
should not be implemented toward the robotic replacement of
any skilled task where the long term costs to society may
well outweigh the short term gains in profit and prestige.
The skills of any trade or profession, if not continued to
be practiced and improved upon will in the end be lost. The
EEC project toward a human centred manufacturing program and
the development of a "human-machine symbiosis" is a
promising approach. Here the machine will continue as the
tool with a human being directly involved in the process as
opposed to the provision of a human material. The ability
of human beings to think and reason for ourselves is a
resource to be used instead of an attribute to be controlled
and circumvented [TV189].

As a further recommendation, graduate study should
require an analysis of the student's research based on its
possible use and misuse. The ethics of their research and
their responsibility for it should be an integral part of a
graduate students research requirements. As technology

Ill

grows and its application proliferates, it becomes harder
for elected representatives of the society to implement safe
guards to protect today's and tomorrow's society. Study of
ethics and moral responsibility is becoming a requirement in
undergraduate years and should be a requirement of every
graduate students research as well in order to raise their
awareness of this issue. It will be to the individual's and
society's advantage for the future.

APPENDIX A
Parameter Values for PA-28

Calculation of the Moment of Inertia - the aircraft
was modeled as three cubes. Moments of inertia were
calculated for each and they were then combined.

IT - B - 1387.06 lb-ft-s2
Other values used;

CD0 - 0.037
S - 160 ft2

P4000 “ 0.002054
lt “ 58"
St - 25 ft2 .
(ax) - 7.0 /degree - 401 /rad.
efficiency factor - e - 3.375
c - 5.25 ft
Cma - 0
Cmac - -0.025 /rad [BERTIN & SMITH]
CG @ 0.33c
ac @ 0.25c
CLa « a„ - 2x A/(A + 2) - 4.635 /rad [SECKEL]
at - irAi / (1 + /(I + (Ax/2)2)) - 3.88 /rad
de - 4 /(Aw +2) - 0.5246 /rad
dt
Volf - 113.0 cu.ft.

112

113

fineness ratio - 1/D - 5.9
fuselage moment factor - Kf - 0.88
Cm#f - 0.233 /rad
Cn^ t - -1.15236 /rad
“wo “ 0 ; symmetrical wing, therefore zero lift @ a - 0
iw - 3 degrees; a nominal value for most light aircraft
m - W /g - 1850 / 32.2 - 57.5 lb-s2/ft
k2 - 1.0583E-4
k3 - 5.7953E-3
k5 - 1.3257E-2

propeller pitch - 58"
efficiency - e - 0.84
rated horsepower @ 2700 rpm - 160 hp

All aircraft data, ie. lengths, weights etc, were
taken from the Cherokee manual and scaled from the diagram
of the aircraft.

BIBLIOGRAPHY

[AER86] Aerodynamics. Class Notes. University of Waterloo.
1986.

[ARC87] Architecture of Expert Systems. The. Class Notes.
McMaster University, 1987.

[CHE76] Cherokee Cruiser Information Manual. Pioer Aircraft
Corporation, 1976.

[FLI79] Flight Training Manual. 3rd Edition. Gage
Publishing Ltd., Toronto, Canada, 1979.

[FLI85] Flight Test Guide. Private and Commercial Pilot
Licences. Aeroplanes. Ninth Edition. Transport
Canada, March 1985.

[FRO63] From The Ground Up. 22nd Edition. Aviation
Publishers Co. Ltd., Ottawa, Canada, 1963.

[HAC70] Hacker. T.. Flight Stability and Control. American
Elsevier Publishing Company Inc., New York, 1970.

[JAC86] Jackson. P.. Introduction to Expert Systems.
Addison-Wesley Publishing Company, Great Britian,
1986 .

[JON87] Jones, W.P., Hoskins, J., "Back-Propagation, A <
generalized delta learning rule". BYTE. October >
1987, pp. 155-162. j;

[JOS88] Josin, G., "Neural Networks for Electrical and
Computer Engineering". Proceedings Canadian
Conference on Electrical and Computer EnRineerins.
Vancouver, Canada, Nov. 1988, pp. 97-100.

[KAU75] Kaufmann. A.. Introduction to the Theorv of Fuzzv
Subsets. Volume 1. Academic Press. New York. 1975.

[PER84] Perrow. C.. Normal Accidents. Basic Books Inc..
New York, 1984.

[PRI80] Private Pilot Manual. Jeppeson Sanderson Inc..
U.S.A., 1980.

[RIC86] Richards. B.L.. Programming in Fuzzv Logic: Fuzzv
Prolog. Master of Science thesis. Air Force of
Technology Air University, 1986.

114

115

[RIC88] Richards, B.L., "When Facts Get Fuzzy", BYTE. April
1988, pp. 285-290.

[S E C 6 4] Seckel, E., Stability and Control of Airplanes and
Helicopters. Academic Press, New York, 1964.

[SHI87] Shirley, R.S., "Some Lessons Learned Using Expert
Systems for Process Control", IEEE Control Systems.
Vol. 7, No. 6, Dec. 1987, pp. 11-15.

[TON77] Tong, R.M., "A Control Engineering Review of Fuzzy
Systems", Automatica. Vol. 13, 1977, pp. 559-569.

[TRE88] Trelease, R.B., "Connectionism, Cybernetics and the
Cerebellum", AI Expert. August 1988, pp. 30-36.

[TV189] Vista Presents, March 20, 1989, TVO Broadcasting
Toronto.

[TV289] Vista Presents, March 27, 1989, TVO Broadcasting,
Toronto.

	farish_gregory_p_1989Apr_masters0001
	farish_gregory_p_1989Apr_masters0002
	farish_gregory_p_1989Apr_masters0003
	farish_gregory_p_1989Apr_masters0004
	farish_gregory_p_1989Apr_masters0005
	farish_gregory_p_1989Apr_masters0006
	farish_gregory_p_1989Apr_masters0007
	farish_gregory_p_1989Apr_masters0008
	farish_gregory_p_1989Apr_masters0009
	farish_gregory_p_1989Apr_masters0010
	farish_gregory_p_1989Apr_masters0011
	farish_gregory_p_1989Apr_masters0012
	farish_gregory_p_1989Apr_masters0013
	farish_gregory_p_1989Apr_masters0014
	farish_gregory_p_1989Apr_masters0015
	farish_gregory_p_1989Apr_masters0016
	farish_gregory_p_1989Apr_masters0017
	farish_gregory_p_1989Apr_masters0018
	farish_gregory_p_1989Apr_masters0019
	farish_gregory_p_1989Apr_masters0020
	farish_gregory_p_1989Apr_masters0021
	farish_gregory_p_1989Apr_masters0022
	farish_gregory_p_1989Apr_masters0023
	farish_gregory_p_1989Apr_masters0024
	farish_gregory_p_1989Apr_masters0025
	farish_gregory_p_1989Apr_masters0026
	farish_gregory_p_1989Apr_masters0027
	farish_gregory_p_1989Apr_masters0028
	farish_gregory_p_1989Apr_masters0029
	farish_gregory_p_1989Apr_masters0030
	farish_gregory_p_1989Apr_masters0031
	farish_gregory_p_1989Apr_masters0032
	farish_gregory_p_1989Apr_masters0033
	farish_gregory_p_1989Apr_masters0034
	farish_gregory_p_1989Apr_masters0035
	farish_gregory_p_1989Apr_masters0036
	farish_gregory_p_1989Apr_masters0037
	farish_gregory_p_1989Apr_masters0038
	farish_gregory_p_1989Apr_masters0039
	farish_gregory_p_1989Apr_masters0040
	farish_gregory_p_1989Apr_masters0041
	farish_gregory_p_1989Apr_masters0042
	farish_gregory_p_1989Apr_masters0043
	farish_gregory_p_1989Apr_masters0044
	farish_gregory_p_1989Apr_masters0045
	farish_gregory_p_1989Apr_masters0046
	farish_gregory_p_1989Apr_masters0047
	farish_gregory_p_1989Apr_masters0048
	farish_gregory_p_1989Apr_masters0049
	farish_gregory_p_1989Apr_masters0050
	farish_gregory_p_1989Apr_masters0051
	farish_gregory_p_1989Apr_masters0052
	farish_gregory_p_1989Apr_masters0053
	farish_gregory_p_1989Apr_masters0054
	farish_gregory_p_1989Apr_masters0055
	farish_gregory_p_1989Apr_masters0056
	farish_gregory_p_1989Apr_masters0057
	farish_gregory_p_1989Apr_masters0058
	farish_gregory_p_1989Apr_masters0059
	farish_gregory_p_1989Apr_masters0060
	farish_gregory_p_1989Apr_masters0061
	farish_gregory_p_1989Apr_masters0062
	farish_gregory_p_1989Apr_masters0063
	farish_gregory_p_1989Apr_masters0064
	farish_gregory_p_1989Apr_masters0065
	farish_gregory_p_1989Apr_masters0066
	farish_gregory_p_1989Apr_masters0067
	farish_gregory_p_1989Apr_masters0068
	farish_gregory_p_1989Apr_masters0069
	farish_gregory_p_1989Apr_masters0070
	farish_gregory_p_1989Apr_masters0071
	farish_gregory_p_1989Apr_masters0072
	farish_gregory_p_1989Apr_masters0073
	farish_gregory_p_1989Apr_masters0074
	farish_gregory_p_1989Apr_masters0075
	farish_gregory_p_1989Apr_masters0076
	farish_gregory_p_1989Apr_masters0077
	farish_gregory_p_1989Apr_masters0078
	farish_gregory_p_1989Apr_masters0079
	farish_gregory_p_1989Apr_masters0080
	farish_gregory_p_1989Apr_masters0081
	farish_gregory_p_1989Apr_masters0082
	farish_gregory_p_1989Apr_masters0083
	farish_gregory_p_1989Apr_masters0084
	farish_gregory_p_1989Apr_masters0085
	farish_gregory_p_1989Apr_masters0086
	farish_gregory_p_1989Apr_masters0087
	farish_gregory_p_1989Apr_masters0088
	farish_gregory_p_1989Apr_masters0089
	farish_gregory_p_1989Apr_masters0090
	farish_gregory_p_1989Apr_masters0091
	farish_gregory_p_1989Apr_masters0092
	farish_gregory_p_1989Apr_masters0093
	farish_gregory_p_1989Apr_masters0094
	farish_gregory_p_1989Apr_masters0095
	farish_gregory_p_1989Apr_masters0096
	farish_gregory_p_1989Apr_masters0097
	farish_gregory_p_1989Apr_masters0098
	farish_gregory_p_1989Apr_masters0099
	farish_gregory_p_1989Apr_masters0100
	farish_gregory_p_1989Apr_masters0101
	farish_gregory_p_1989Apr_masters0102
	farish_gregory_p_1989Apr_masters0103
	farish_gregory_p_1989Apr_masters0104
	farish_gregory_p_1989Apr_masters0105
	farish_gregory_p_1989Apr_masters0106
	farish_gregory_p_1989Apr_masters0107
	farish_gregory_p_1989Apr_masters0108
	farish_gregory_p_1989Apr_masters0109
	farish_gregory_p_1989Apr_masters0110
	farish_gregory_p_1989Apr_masters0111
	farish_gregory_p_1989Apr_masters0112
	farish_gregory_p_1989Apr_masters0113
	farish_gregory_p_1989Apr_masters0114
	farish_gregory_p_1989Apr_masters0115
	farish_gregory_p_1989Apr_masters0116
	farish_gregory_p_1989Apr_masters0117
	farish_gregory_p_1989Apr_masters0118
	farish_gregory_p_1989Apr_masters0119
	farish_gregory_p_1989Apr_masters0120
	farish_gregory_p_1989Apr_masters0121
	farish_gregory_p_1989Apr_masters0122
	farish_gregory_p_1989Apr_masters0123
	farish_gregory_p_1989Apr_masters0124
	farish_gregory_p_1989Apr_masters0125
	farish_gregory_p_1989Apr_masters0126
	farish_gregory_p_1989Apr_masters0127
	farish_gregory_p_1989Apr_masters0128

