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ABSTRACT

This thesis developed a domain independent “shell system for routine mechanical de­

sign”. This shell is used to produce domain specific design systems by simply placing domain- 

related knowledge into it. A general “design model”, which is an informal description of the 

mechanisms behind the design process, has been implemented. The design model is estab­

lished based on the “characteristics and mechanisms common in routine mechanical design

activities”.

By examining particular design examples, it is concluded that the routine design activi­

ties have: 1) a “common design procedure” from specification recognition to detailed design; 

2) “common mechanisms” to determine parameters and the like; and 3) “common knowledge 

formats” to express design knowledge. Only “detailed design knowledge” is specific to each 

domain, but can be represented in common knowledge formats.

The “model” and its implementation, the shell system, describe the design process in 

four stages: specification development, synthesis, analysis and non-functional consider­

ations. The synthesis achieves rough structural configurations by following the “configuration 

decomposition approach” which is derived from the well-developed configuration decompo­

sition patterns in the routine design, and which uses function-to-configuration, configuration 

decomposition and function-checking relations. In the analysis stage, configuration parame­

ters are determined by design relations which are represented by “design slices” written in 

the form of “basic description elements”. The analysis knowledge is organized in a multilevel 

structure from lower levels of basic description elements, design slices, to upper levels of “de­

sign procedures” and “knowledgeable configuration units”. Design slices are classified as 

“solving slices” and “checking slices” responsible respectively for determining parameters
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and ensuring that checking criteria among parameters are met. A design procedure is a pile 

of design slices and determines a set of parameters since design relations are used in groups. 

The uppermost level consists of knowledgeable configuration units. They organize design 

procedures, parameter sets and configuration decomposition patterns under a configuration. 

The reasoning process in analysis is decentralized through a number of “interpreters” which 

handle various tasks such as choosing a design procedure. The non-functional design aspects 

are considered in the design relations and are incorporated into the analysis.

The shell system provides general design knowledge representation formats and gener­

al reasoning mechanisms. It is implemented on a SUN workstation using KEE which provides 

object-oriented programming and rule reasoning facilities. Connection between design com­

ponents is dealt with using partial configurations and constraints which define the relation­

ships between configurations and partial configurations involved in a connection. The itera­

tion process caused by dependency among parameters is handled using the failure design 

procedures, that is, if a checking relation is not satisfied, a failure design procedure is called 

to modify some parameters at the early design stage. The geometry aspect is implemented 

parametrically based on an existing feature-based modelling system (IPDM).

Two specific design systems: a cam system and a bolted flange system, have been devel­

oped based on the shell. Both accept given specifications, and output configurations with pa­

rameters and graphic display. The development process of these two systems is simple and 

efficient; and design results are satisfactory. These examples illustrated the versatility and ef­

fectiveness of the developed approach to routine mechanical engineering design activities.

The major feature of this work is the explicit descriptive style in representing the design 

knowledge. The domain independent shell approach enhanced by this feature greatly simpli­

fies the development of domain specific knowledge bases.
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CHAPTER 1 :
INTRODUCTION

The sole purpose of this introduction is to give a clear description of the research topic in 

this thesis by elaborating on its origin or its historical development, explaining its feasibility and 

anticipating the possible benefits. To further enhance this description, a brief overview of the 

current research status, the thesis objective and scope and a preview of the thesis work are also 

presented.

1.1 THE RESEARCH TOPIC

The research topic can be defined as finding a general model of a variety of design 

activities and, based on this model, developing a computer based tool to automate these design

activities.

There are two issues in this topic : 1) modelling design activities in a general manner; 2) 

developing a computer based tool to automate these activities. A model refers to a theory 

regarding the mechanisms of the design process which is expressed by formal modelling 

techniques or informal descriptions. A general model deals with the common mechanisms of a 

number of design activities, and is also called a “domain independent” model. In this thesis, 

“design processes” and “design activities” are used interchangeably; similarly, “domain 

independent” and “general”. This domain independence is achieved by capturing common 

mechanisms from a number of design processes. A computer based tool is a system which 

facilitates the automation of these processes.

The first step is to find a general model, while the final objective is to implement this 

model into a computer based tool. The computer based tool is like an “empty box” with the 

frame constructed from the common mechanisms extracted from various design activities, but
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excluding those special features linked to any particular domain. Later, by placing domain 

specifics into this “empty box”, a specific system can be developed to automate the design in this 

domain. This process actually splits each design activity into two parts: common characteristics 

which are shared with a number of other activities, and special features of this particular activity. 

Thus, it speeds up the development of design systems and saves the cost. In order to do this, 

common mechanisms must be extracted from a number of design processes, which can be done 

by understanding and modelling design processes.

This computer based tool is intended for two kinds of users. One is the “knowledge 

engineer” who is responsible for placing special domain-related materials into the general 

frame which is also referred to as the “shell system”, to develop specific systems. The other is the 

“end user” who actually uses specific systems for design (Figure 1.1).

r
-------------------------------------------------------------!
Thesis work |

General Design Model General Computer Based Tool

INPUT
specific des^ 

knowledge^/

d±
empty box

experienced designers 
and other experts

I

knowledge engineer

J

Figure 1.1 : Basic ideas of the research topic

Briefly, this serves to describe the research topic and the basic ideas behind it. The 

following elaboration on related materials will further explain this research.



3

1.2 ORIGIN

1.2.1 CAD Technique Development

Although the CAD techniques and analysis methodologies have been developed for 

years, the design activity itself has not been thoroughly studied from the computer 

implementation point of view. Most of the present CAD systems provide only assistant tools for 

human designers to design, such as computer drawings, finite element analysis, optimization 

and the like. The design activity itself still has to be done by human designers [49].

“Is it possible to go one step further — asking the computer to design?”

Yes, some CAD systems do design. For example, a punch die system designs according to 

the specifications given by the user [11]. This system was programmed based on the procedure 

experienced designers followed in their work. The results achieved by the system were as good 

as the ones from the human experienced designer; some aspects were even better. But the 

problem is that these systems have to be developed one by one corresponding to various design 

domains. This means critical demand for the experienced programmers, and large expenditures 

of both money and time. Especially, when there are changes in the design processes, these 

specific design systems have to be modified accordingly. In one word, the development and the 

modification will cause a severe problem. Thus, another question arises:

“Is it possible to create a general computer based tool for a number of design activities, 

so that specific systems can be developed simply by filling domain specifics into this tool?”, 

thereby making the development and the modification efficient and economical. Thus, the 

research goal becomes evident: a general computer based tool based on a general model. The 

answer to the question posed is “yes”, because there does exist domain independence among 

various design activities [85, 86]. This point will be explained in the later “Feasibility” section.
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1.2.2 Design Activity Study

For some time, the topic of whether “Design is a science or an art” has been debated. 

Some people think that design is an art. It is the intuition of the designers and, thus, it is nearly 

impossible to study it. Other researchers believe that design is like other science disciplines, and 

can be studied [17].

Those researchers who believe that design is a science have studied the design activities 

in various engineering areas such as mechanical, civil, electrical and so on. Some of them 

worked on a particular design activity, while others focused on the design process common to all 

areas. Researchers have used various techniques, like protocol study and cognitive model, to 

create a design theory or methodology. The study of design activity will be described in the next 

chapter. Here, some ideas about design are presented based on the work of others to give a brief 

impression of what they have achieved and are doing. However, these ideas do not necessarily 

represent the stand taken in this thesis.

Design is a transformation or mapping process from the functional domain to the 

physical domain which satisfies the stated functional requirements within identified constraints. 

The term, function, refers to the general input/output relationship of a system (or subsystem 

component) whose purpose is to perform a given task. It describes the expected behavior of a 

component or a system [27]. Design is a multi-faceted and multi-disciplinary activity. 

Contemporary theories attempt to formalize strategies for developing design solutions and 

systematize the design activity [67]. There have also been efforts to develop a generalized set of 

design axioms to help systematize the design methodology [83]. Designers have always sought to 

develop systematic approaches to design that allow a step by step progression from qualitative 

to quantitative phases. It has been widely accepted that a design process follows several steps, 

from specification recognition, to conceptual design, to detailed design [45].
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The design study achieves the understanding of its process and provides theories about 

how design activities proceed and what characteristics they have. Such understanding and 

theories should be general to a number of design activities. To date, no universally accepted 

theories have been developed.

However, this study lays some foundation for the achievement of the general computer 

based tool, although some researchers originally may not work for this purpose; they may simply 

pursue the theories about design. It is simply a natural progression whereby the topic arises: 

modelling the design activities, then creating computer based tools based on the modelling.

Thus far, the research topic has been discussed through two aspects: the design study 

provides the foundation for modelling and urges the development of computer based tools; and 

the development of the CAD techniques promotes the design automation research and 

demands a general design tool, due to the inefficiency and cost of developing specific systems.

Now from the explanation of the origin of the research topic, the basic stand of this thesis 

is evident; that is, design can be studied. The question now is whether it is possible to achieve the 

general design model and the tool. The following section deals with this dilemma.

1.3 FEASIBILITY

Design processes exist in various areas. In engineering, there are electrical circuit design, 

civil structure design, mechanical component and mechanism design, and so on. Certainly, they 

each have different characteristics. For instance, the circuit design can usually be decomposed 

into a group of basic standard components, such as diodes and transistors, with standard inputs 

and outputs. Their design seems to be much different from a motion transmission design, which 

can be realized by many mechanisms such as gears, cams and linkages. Furthermore, the 

variation of component attributes is much broader than those of electrical components. This 

does not mean that the mechanical design process is more sophisticated than the electrical
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design, it only shows the difference among areas. Despite this, differences also exist among 

various design processes in one area. A mechanical component design does not share all 

characteristics of a mechanical system design, which needs a group of experts specializing in 

several areas; the coordination among them is critical.

The existence of the above differences does not mean that the achievement of common 

characteristics or that domain independence is impossible; it simply shows the diversity and 

complexity of design activities. Since they are all design processes, they must have something in 

common. If it is difficult to identify common elements among all design processes, it is possible 

to do so within a number of them. For instance, the design processes of standard mechanical 

products such as gears, cams and linkages share similar procedures, excluding domain specifics. 

Here, the decomposition idea is used to divide the whole complicated design activity into groups 

of processes, so that some common characteristics can be extracted from each group.

Here, a very important concept is introduced: “the coverage of domain independence”. 

A domain independent model captures the common characteristics of a certain number of 

design activities and, thus, covers them. Since there are so many activities, it may be impractical 

to find a model independent of all of them, either because it is impossible to analyze them within 

a certain time limit, or they may be so diverse that it is not worth achieving such a general model 

for the whole area. However, it is certainly possible to achieve a model with certain coverage, 

within which the model is general. This model contributes a small block to a more general and 

broader model for all design processes. In this way, a number of these small models with their 

coverages may cover the overall design area. This idea is illustrated in Figure 1.2, in which the 

whole design area W is divided into small areas A, B, C, D and E and covered separately by 

model A, B, C, D and E. For instance, when a lathe is to be designed, the task is handled by an 

overall model which divides the design into a number of smaller domain-oriented tasks and 

distributes them to corresponding models, among which there will be one model for the 

mechanical component design.
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Figure 1.2 : Coverage of domain independence

Model A 

Model В

Model C 

Model D 

Model E

To demonstrate the possibility of domain independence, the design processes of two 

examples:

АСАМ

Figure 1.3 : A cam and a desk lamp

a desk lamp and a cam (Figure 1.3) are listed in Figure 1.4. In order to demonstrate the common 

characteristics, two processes are listed under four categories: “design procedure”, “how to 

design”, “design knowledge format” and “detailed design knowledge”. Individually, they 

represent the steps the designers follow; the way the designers achieve their results; the 

representation formats for specific knowledge; and the specifics related to the particular 

example.
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A Cam

Step 1: configuration design

. design procedure:

- consider functions and specifications to 

generate the initial conceptual product —

cam.

- obtain all configurations.

. how to design:

- choose a product (cam) from function, 

then decompose it into components.

- or choose a cam from a similar design, 

then change it to suit new specifications.

. design knowledge format:

- strings for functions and specifications.

For example, (initial-function , rotation- 

translation), (pressure-angle , < 30.0). The 

general format is (function/specification, 

value).

. detailed design knowledge:

- a cam must perform motion transmis­

sion: rotation to translation.

- no steps in acceleration, steps in jerk are 

acceptable.

- pressure angle is less than 30.

A Desk Lamp 

Step 1: configuration design 

. design procedure:

- consider functions and specifications to 

generate the initial conceptual product — 

desk lamp.

- obtain all configurations.

. how to design:

- choose a product (desk lamp) from func­

tion, then decompose it into components.

- or choose a similar desk lamp design and 

change it to meet new specifications.

. design knowledge format:

- strings for functions and specifications. 

For example, (initial-function , lighting-a- 

desk), (volt, 110) etc. The general format is 

(function/specification, value).

. detailed design knowledge:

- a desk lamp must light a desk.

- under 110 volts.

- etc.

Figure 1.4: Comparison of two design examples
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Step 2: detailed design

. design procedure:

- obtain values for all configurations’ 

attributes.

. how to design: achieve attributes by design 

relations:

- iteration procedure;

- dependency among attributes;

- design every configuration;

- design every attribute.

. design knowledge format

- design relations for attributes.

- a collection of basic elements such as 

calculation, looking-up-a-table, etc.

. detailed design knowledge

- pressure-angle = (a formula).

- cam factors (a data table).

- (for more, refer to section 3.6).

Step 2: detailed design

. design procedure:

- obtain values for all configurations’ 

attributes.

. how to design: achieve attributes by design 

relations:

- iteration procedure.

- dependency.

- design every configuration.

- design every attribute.

. design knowledge format

- design relations for attributes.

- a collection of basic elements such as 

calculation, looking-up-a-table, etc.

. detailed design knowledge

- support base weight should balance the 

whole lamp.

- etc.

Figure 1.4 (cont’d): Comparison of two design examples
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By examining these two examples, it can be concluded that the “design procedure”, “how 

to design” and “design knowledge format” are common to both. Only the “detailed design 

knowledge” is specific to each particular example, but can be described by the “design 

knowledge format”. A model for these two design processes is achievable.

Even broadly, the design processes of standard mechanical components and mechanisms 

classified under the “routine mechanical design” category have much in common: they all follow 

a certain procedure; and comply with codes, standards and formulas which are various but 

sharing similar formats. In other words, the mechanisms underlying these activities are similar. 

Therefore, a model for the routine mechanical design activities is feasible. Nevertheless, “a 

certain range” is still imposed, because of the impracticality of examining all of them, though it is 

probable that these activities can be covered by one model or by the continuing development of 

this model. Hence, the concrete objective of this thesis is brought out, that is: finding a general 

model for a certain range of the routine mechanical design activities, and based on it, developing 

a computer based tool.

Thus far, by introducing the coverage of domain independence and examining two 

particular design examples, the feasibility and the significance of the domain independent 

model with certain coverage has been established. Moreover, the objective of this thesis has 

been specified within the research topic. The next question is why this topic has been studied and 

why this thesis research was launched.

1.4 MOTIVATION

1.4.1 Potential Benefits

Some people may argue that even though a model for a certain range of design processes 

is achievable and specific design systems can be developed efficiently, the results from these 

systems are at most as good as those from designers who contribute their knowledge to these 

systems. This is not the case, as will be explained later.

What is then the use of this general model and computer based tool? To answer this
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question, the potential benefits from this topic have to be analyzed from different perspectives, 

according to various kinds of users.

For experienced designers, the specific design system can provide considerations of other 

aspects related to design, such as manufacturability, cost, maintenance and so on, with which 

these designers may not be familiar. Because the specific design systems are developed from the 

general computer based tool, it is very easy to incorporate multiple experts’ knowledge into the 

design stage, and not only multiple designers, but also experts at other stages in the product life 

cycle. As a result, the design quality is improved (and the earlier question has been answered). 

Moreover, this kind of general tool can be integrated with current CAD packages conveniently, 

thus simplifying the process of utilizing available CAD software.

Considering the spreading of design knowledge, the available number of experienced 

designers is usually limited. If such a computer based tool is available, it will simplify the process 

of spreading the experienced designers’ knowledge. Non-experts can benefit from this. This is 

also very helpful in teaching novice designers.

From the human resource aspect, if the mature design problems can be solved by these 

systems, many engineers can be relieved from this basically repetitive work and concentrate on 

more creative design.

1.4.2 Expert System Technology

People may argue that commercial expert system shells should be utilized as the general 

computer based tools for the design process. The reason of not using them is that these expert 

system shells do not fit the design activities very well [3].

Most of the commercial shells only provide knowledge representation methods for the 

classification problems, characterized as having premises, conclusions and relations connecting 

them. The design processes do not belong to this category. Thus, some of their features can not
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be covered. For example: the whole design process is a transformation from functions to 

physical parts, identified as a progression of stages; the design knowledge is so diverse that the 

conventional knowledge representation, typified as the rule representation, is not powerful 

enough to handle it; the design process is iterative, there is dependency among attributes and 

stages; geometry aspect plays a very important role in design which does not happen in 

classification problems. Therefore, further work on the design process representation is 

certainly necessary. However, this does not mean that the results from the expert system 

research can not be utilized at all. In fact, the present expert system shells can be used as the 

supporting software, which is an efficient development method utilizing the useful parts and 

developing those parts not available from the commercial shells.

Besides the supporting tool, the ideas from the expert system technology also influence 

this research, since design is the performance of human knowledge, which is just what expert 

system is dealing with. On the other hand, the work under this research topic can certainly enrich 

and broaden the original expert system area. From this point of view, this work can be viewed as 

a branch of the expert system research, which covers a new domain — the design process. 

Benefits inherited from the expert system work include knowledge representation methods 

developed so far, typically the rule and its reasoning methods, and an concept — the “shell 

system”, which plays a key role in forming the general computer based tool idea in this thesis.

1.4.3 Current Research Status

The current literature shows that the work on this topic is still in its infancy. Two critical 

problems are: understanding and modelling the design process; and developing a computer

based tool.

Researchers who believe that better understanding and modelling can lead to a better 

computer based tool have been using various techniques to pursue a model truly reflecting the
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design activities. So far, no generally accepted theories have been achieved yet.

In the computer based tool work, the focus is mainly on three problems: the conceptual 

and configuration design, the parametric design, and the geometry aspect. The difficulties in the 

conceptual and configuration design are how to achieve configurations from functions and how 

to evaluate configurations without values being assigned. Two kinds of design processes have to 

be distinguished and dealt with in different strategies: the “new design” and “mature design”. 

Usually, a design task is either a mature design which more or less follows some lines or patterns 

developed by experienced designers (this point is the basis of a part of this thesis work), or a 

small portion of new design which requires the designer’s intuition. These problems have not

been well studied.

Some researchers have realized that “features” play an important role in the geometry 

design process [28]. Other researchers have been trying to find the mechanisms underlying the 

spatial and geometric reasoning. Thus far, no satisfactory results have been achieved yet.

In the parametric design, researchers have developed iterative models using 

optimization algorithms, dependency strategies based on graph theory, and so on. Although, the 

work in this branch is the most advanced of all in this area, one apparent limitation is that it is 

not easy or natural to express the design knowledge in the current representation schemes. Thus, 

it makes the spreading of specific design systems difficult, which happens to be one of the major 

purposes of this research.

Most researchers have studied the above problems separately, and thus, their results may 

not cover all aspects of the design process.

Among the various engineering design activities, the electrical circuit design is the most 

advanced, probably because of the limited number of components with relatively obvious 

function-configuration relations. The work in the mechanical design is just beginning, caused by
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some domain-related difficulties such as: the broad selection of configurations, the complicated 

function-configuration relations, and so on.

In summary, further work on the above topics about mechanical design process is 

certainly necessary.

1.5 THESIS OBJECTIVE, SCOPE AND PREVIEW

1.5.1 Objective And Scope

As stated earlier, the objective of this thesis is to find a general model for a certain range 

of routine mechanical component and mechanism design activities, and to develop an 

experimental shell system.

The “model” means an informal description of the mechanisms behind the design 

process and the representation formats for design knowledge.

The design activities studied here are those in the “mechanical design” domain. They are 

limited to the “routine design” or the mature design. Within the routine mechanical design 

activities, the scope is further narrowed down to the “component and mechanism design”. 

Although the model can potentially cover all routine component and mechanism design 

activities, the “certain range” is imposed because it is obviously impossible to practise every 

activity. Moreover, the model and the shell system are devised in such a way that further 

development can be easily made.

The term “experimental shell system” is used because it is difficult to achieve a complete 

commercial system at this stage, and the purpose is just to show the feasibility of the ideas 

presented here.

1.5.2 Preview

The work consists of two parts corresponding to the objective: a general model and a 

shell system. The understanding is based on an informal observance of some design examples,
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from which common characteristics are extracted. Based on this understanding, certain theories 

about the design are formed which constitute the model. Two major parts of the model and the 

shell are the “synthesis” and “analysis”: one follows the “Configuration Decomposition 

Approach” which basically complies with the well-developed configuration decomposition 

patterns in the routine design; the other emphasizes the explicit descriptive style in representing 

the design knowledge by creating a group of “basic description elements”. This shell is first 

created conceptually without considering any specific computer implementation environment, 

and then implemented on a specific machine, in order to maintain the machine-independence. 

Later on, two domain specific design systems are developed to prove the feasibility of the 

approach in this thesis (Figure 1.5 illustrates all parts in this work).

Figure 1.5 : Research strategy and concrete parts in this thesis

1.6 SUMMARY

In this chapter, the thesis research topic was stated first. Its origin was explained by 

reviewing the development of CAD techniques and the study of design activity. Then, the 

feasibility of this topic was established by introducing “domain independence with certain 

coverage”. The motivation for this research was exposed from the perspectives of potential
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benefits, shortfalls of current expert system shells and the demand of current research status. 

Then, the objective and scope of the thesis work were defined, followed by a preview of the 

work.

1.7 THESIS ORGANIZATION

Chapter T. “Introduction” is the current chapter.

Chapter 2: “Literature Survey” gives an overview of current literature on the topic. 

Chapter 3: “Understanding of Design Activities” analyses the design activities based on

some examples.

Chapter 4: “General Design Model” creates a domain independent model based on the 

understanding.

Chapter 5: “Implementation” executes the model and achieves an experimental shell 

system.

Chapter 6: “Specific Design Systems” develops two domain specific design systems based 

on the shell: the cam system and the flange system.

Chapter 7: “Conclusions and Discussion” summarizes the contributions from this thesis, 

as well as the potentials for future development.

References are listed in the Bibliography.

The Appendix includes a list of knowledge base items and design examples from the cam 

system and the flange system.
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CHAPTER 2:
LITERATURE SURVEY

2.1 SURVEY SCOPE

This survey only covers the literature about this thesis topic — the modelling of design 

processes and the computer based tool to automate these processes. It is a summary of the 

reference work during the whole research period. Effort has been made to get as large coverage 

of this area as possible.

The survey is limited to the mechanical engineering domain, which may include design of 

components, mechanisms, machines, structures, and so on. Research in other engineering 

domains is cited only when it has influence on or is related to the work in the mechanical 

domain.

This survey is only concerned with the domain independent work, which means that the 

work in one design process can be extended to other design processes. Domain dependent work 

is not cited, although some work is very good.

2.2 OVERVIEW

There are two major branches in this area: 1) the understanding and modelling of design 

processes; 2) the computer based tools based on the model to develop domain specific design 

systems. While the ultimate purpose is to create a domain independent computer based tool, the 

nature of design or how designers design has to be understood to some extent. Then, based on 

this understanding, the development of the computer based tool is possible.

The design process is very sophisticated, and its understanding and modelling has been a
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challenge to researchers. This branch can be classified by research approaches developed so far. 

Some researchers use various techniques to create a descriptive model of the design processes. 

They believe that better understanding results from careful study and accurate perception of the 

design processes and, thus, will lead to better modelling and more satisfactory computer based 

tools. Contrary to studying what characteristics the design process “has”, some people prescribe 

how the design process “ought” to proceed and what attributes the design artifact “ought” to 

have. Other researchers are much more realistic. They believe that the design is so complicated 

that an accurate understanding may not be practical in a short term. Considering the final 

purpose — a computer based tool, a workable understanding (which may or may not be 

accurate) may serve the purpose well, so that they can concentrate on the computer based tool, 

and further improvements can be made according to its performance. Thus, it brings out three 

sub-branches accordingly: descriptive model, prescriptive model and “practice-oriented”

model.

Under the computer based tool, there are four sub-branches: 1) the conceptual and 

configuration design; 2) the parametric design; 3) geometry aspect in design; and 4) some 

miscellaneous research topics. They are classified according to the stages in a design process or 

their features. The conceptual design achieves rough structural information about products 

from functional requirements, while the configuration design is slightly different from the 

conceptual design in the sense that functions are not mainly considered. The parametric design 

acquires the detailed structure. The geometry aspect, along with the parametric aspect, are two 

fundamental features in design. It distinguishes design from other types of problems. Finally, 

some new research topics are emerging, such as the study of distributed design (Figure 2.1 

illustrates this classification).

The survey briefly goes through the “understanding and modelling” branch. Then the
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Modelling and Computer Based Tools

Understanding & Modelling Computer Based Tools to Develop
of Design Processes Specific Design Systems

Descriptive Prescriptive “Practice-Oriented 
Model Model Model

Conceptual & Parametric Geometry New
Configuration Design Aspect Topics
Design

Figure 2.1 : Classification of the research area

“computer based tool” branch is mainly focused with citations of various researchers’ work. 

Some researchers work may appear in several branches, because these branches are not 

absolutely mutually exclusive. Finally, achievements and potential improvements in this area 

are summarized as the foundation of this thesis work.

2.3 UNDERSTANDING AND MODELLING OF DESIGN PROCESSES

All researchers agree that the understanding and the modelling of the design process is the 

first step toward the creation of the general computer based tool. However, they have different 

opinions and methods in reaching this understanding and modelling.

Since this thesis takes the “practice-oriented” stand in the understanding and modelling, 

and focuses on the computer based tool development, the survey for this branch is not a detailed 

one. The following text outlines various researchers’ work in a brief manner. Finger and Dixon 

[30] have done an excellent survey in this area and their paper being cited in several places.

2.3.1 Descriptive Models

Many researchers are working on a descriptive model of the design process. They have 

been studying how human designers create designs; that is, what processes, strategies, and
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problem solving methods are involved. Most of the research is based on techniques from 

artificial intelligence such as protocol analysis in which data is systematically gathered from 

human subjects. The work can be divided into two categories: one that gathers data on how 

designers design and the other that builds models of the cognitive process [30].

One technique used by some researchers is Protocol Studies by individual designers. In a 

design protocol, the actions of a person performing a design task are recorded as the design 

evolves. Usually, the designer is encouraged to think aloud and is questioned when information 

seems to be incomplete.

Most of the protocol studies have been done during the preliminary design stage. One of 

the major criticisms of design protocols is that a designer’s words cannot reveal those processes 

that are inherently nonverbal, for example, geometric reasoning. Moreover, the requirement to 

verbalize may interfere with the design process itself. Finally, all protocol studies must address 

the problem that even though subjects may not have any reason to withhold information, they 

may do so unconsciously. All of these factors must be taken into account when studying the 

results of the design protocols.

Ullman and Dietterich [88] have performed such a study of novice and expert designers 

designing mass-produced and one-off products. They attempted to improve the efficiency of 

the mechanical design process, and to use their results to support the development of computer 

based tools. One of their conclusions is that designers pursue a single design concept rather than 

generate new alternatives.

Another technique is the Cognitive Modelling [1]. The goal of much of the research in 

cognitive science is to build computer-based models that describe, simulate, or emulate the 

skills that humans use as they solve problems. A cognitive model describes the processes that 

underlie the set of behaviors that constitute a skill. For example, a cognitive model could be
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created to describe the skill of remembering a name. The model is specified as a set of 

mechanisms with defined functionality; each mechanism is described as a process that can 

transform classes of input into classes of output. The model also specifies the interactions 

among the mechanisms. Because the model describes a cognitive system at the level of its 

functional mechanisms, it generates explanations and predictions about the skill being studied 

[30]. Developing cognitive models to support the process of design is a relatively recent research 

topic. Few papers have yet been published.

Researchers have been studying the design process by Case Studies, some of which have 

been performed on large design projects. Some interesting results have been achieved from 

their observance. This is a common-sense approach to studying the design process: studying a 

problem from its original status. Their research work varies in the sense of formality and issues 

addressed in the design process. After all, the model generated from this observance more or 

less depends on researchers’ opinions.

Many descriptive models exist which are not based on formal observance of the design 

process, but make intuitive sense to many designers.

To date, much of the work has focused on generating hypotheses based on observances 

without designing experiments to test these hypotheses.

2.3.2 Prescriptive Models

The Prescriptive Model prescribes what mechanisms and characteristics the design 

process should have. Prescriptive models can be divided into two categories: those that 

prescribe how the design process ought to proceed, and those that prescribe the attributes that 

the design artifact ought to have. Some of these prescriptive models can be found from design 

textbooks [30].

Instead of studying what the design process “is”, some researchers focus on the process the
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designers “ought to be following”, described as the Canonical Design Process. A standard 

description of what the design process should be recurs in much of the design literature, 

especially in design textbooks[4, 45]. Some examples are:

• The design can be classified as three classes: 1) creative design; 2) innovative design; 

and 3) routine design.

• The design process is an iterating progression through the following stages: recognition 

of need; specification of requirement; concept formulation and concept selection; 

embodiment of design details; production, sales and maintenance.

• A design is strongly influenced by the life style, training, and experience of designers.

Some researchers use Morphological Analysis [67] to develop design methodologies for

the design process. This technique is a highly evolved methodology prescribed to generate and 

select alternatives. The other aspect of prescriptive model is the prescription of attributes the 

design artifact ought to have, instead of describing the procedure by which the design artifact 

should be generated. Some researchers have created the axiomatic systems to describe the 

attributes that the designed artifact should have as opposed to describing the process by which 

the design should be generated [83].

One critical problem about the prescriptive models is the difficulty in verifying them. For 

instance, the Canonical Design Process has existed for many years, but there is no way to verify if 

this prescription is appropriate. Maybe the descriptive model can eventually show the exact 

procedure designers follow. Some researchers studied some design cases in practice and they 

pointed out that the real design procedure does not follow exactly those lines prescribed above. 

But it is hard to say whether it is because of the systematization of designers or the unrealistic 

nature of the above theory.
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2.3.3 “Practice-Oriented” Model

The work in the descriptive and the prescriptive models has shown that it may not be 

feasible to reach any accurate modelling in a short term. With the final purpose of this research 

in mind, the “practice-oriented” model focuses on the computer based tool implementation 

instead of the accurate modelling. The basic idea is that a model of the design process is 

developed based on whatever theories or observances that reflect the design process to some 

extent. Then, a computer based tool is developed based on this model, and at the same time, the 

model can be improved according to the computer based tool’s performance. This iterative 

process continues until the computer based tool performs satisfactorily, and a workable model 

is achieved, although it may not be a “true” reflection of the design process. This idea lies behind 

the well-known fact that the direct imitation of natural mechanisms or rules may not necessarily 

create better results compared with the modified imitation of them. For example, the aeroplane 

was invented not by directly imitating birds’ vibrant flying wings, but as a modified imitation: 

“fixed wings”.

Based on the above idea, the understanding and modelling is not the major focus, while 

the computer based too, plays a major role. Therefore, there could be various 

“practice-oriented” models depending on individual researchers. It might be more appropriate 

to use the term, the “practice-oriented” approach, that is, researchers use this approach to 

develop their own models.

The development of the “practice-oriented” model may benefit from or be influenced by 

descriptive or prescriptive models. But the connection between them is not mandatory. It can 

also be based on the informal observance, researchers experience and opinions.

On the other hand, the “practice-oriented” model may not be the “accurate” 

understanding and modelling of the design processes, but it can certainly enrich the research in
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the descriptive and prescriptive models, if the computer based tool performs satisfactorily.

The approach used in this thesis can be classified under this category. Briefly, it can be 

described as:

- informal observance and analysis of specific design examples;

- influenced by prescriptive models from design theories in textbooks or other documents;

- benefited from the author’s own design experience.

Many researchers are working in this branch. As a matter of fact, most of the research 

work on the computer based tool can be classified under this branch. This is the matter referred 

to in the next section.

2.4 GENERAL COMPUTER BASED TOOLS

The general computer based tool for developing specific design systems is the ultimate 

purpose of this research. Although the approaches of generating models vary, the basic 

problems are the same, which are mainly the conceptual and configuration design, and the 

parametric design.

The conceptual design and the configuration design are put under the same category, 

despite their differences in considering functional requirements, because they both achieve 

configurations, and the research in these two areas sometimes is difficult to separate. At this 

stage, the configuration attributes have not been assigned values.

The parametric design assigns values to those attributes of configurations achieved at the 

conceptual and configuration design stage.

The geometry aspect is typical of design processes. Since its characteristics are quite 

distinct from those of the parametric aspect, different techniques may be required for it.

Some new research problems are at their initial stage, not very well classified. They are 

listed under a separate branch.
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2.4.1 The Conceptual and Configuration Design

In the conceptual and configuration design, functional requirements are transformed into 

physical configurations with a defined set of attributes, but with no particular values assigned. 

For example, if the expected function is to light an office desk, then a possible embodiment can 

be a desk lamp. Research in this area can be placed in two categories: development of an 

assembly from a set of standard components (e.g., gears, shafts, bearings, and motors); and 

development of a non-standard form (e.g., an extrusion, bracket, and truss) by redesign or 

directly from the functional requirements.

Freeman and Newell [32] launched an earlier study of the relationship between functions 

and configurations (structures) in this area. Their “design” was in a general sense. They 

developed a model with two stages, attempting to capture the human functional reasoning

process.

Rinderle, et al. [73] has been working on the design of assemblies from components. 

Emphasis is placed on the function and configuration relations. They use bond graphs to 

represent configurations in a network of parameters (nodes) and constraints (links). Parameters 

include both design variables and behavioral characteristics. Constraints express physical 

principles, spatial relations, specified requirements, and material limitations. The network can 

be used to determine the important form-function relationships implicit in the configurations, 

and thus to evaluate the configurations. They further developed a transformational approach to 

design using a bond graph grammar.

Maher, Sriram, Fenves, et al. [53, 54, 72 & 80] have developed three dimensional 

structure design systems: HI-RISE and ALL-RISE. The programs generate different 

structures, made up of standard structural subsystems, based on user defined constraints of size 

and applied load. The rules guiding the generation are based both on heuristic knowledge and
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knowledge about basic physical principles.

Struss [82] has created a model to represent the function and structure relationships. 

Based on this model, configurations could be generated to satisfy specific functions or 

behaviors. His system provides for connectivity among components, although he does not 

address the geometric and spatial relationship. His representation points to ways of providing 

designers with levels of abstraction.

Ullrich and Seering [90] define conceptual design as the transformations from functional 

or behavioral requirements to structural descriptions. They describe a program which, given a 

functional description, creates new mechanical fasteners from novel combinations of existing 

designs. In this work, the embodiment is given; that is, the system can design only something with 

a drive, head, body, tail, and tip. They have extended this approach to dynamic systems and have 

created a system that generates a schematic description of functional components which meet 

the behavioral specifications.

Schmekel [75] has studied the representation of functional models (functional objects) 

and the design solutions (part objects), and the derivation of design solutions from functional 

models. By maintaining the independence between functional requirements, a design solution 

can be derived through many-to-many function objects to part objects relations.

Shah [76, 77] presented his work on structural configuration design, and discussed the 

need for formal synthesis of structural parts rather than arbitrary selection at the preliminary 

design stage. He has developed a method using a shape algebra to generate structures of slender 

and polygonal elements.

Duffey [24] has developed a system for the automated design of non-standard extruded 

shapes of beams. The system accepts problem specifications and produces a configuration and 

installation automatically.
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Joskowicz [42] also addressed the function and shape relations. He proposed a two-stage 

algorithm for the qualitative analysis of kinematic mechanisms; first analyzing the possible 

relative motion from the configurations to obtain functional description, then generating a 

motion diagram using constraint propagation and label inference techniques.

Lai and Wilson [47] have developed an English-syntax language FDL to describe the 

structure and function relations of the mechanical elements, which provides basic 

representation for further incorporation and application of design knowledge bases.

2.4.2 Geometry Aspect

Geometry is the typical feature in design [78]. Some people argue that the design process 

followed by designers may be a non-verbal process, especially at the preliminary design stage. In 

other words, designers can express their design knowledge geometrically. Unfortunately, this 

process has not been well understood and the work is just beginning. The research in this branch 

could be placed under the “conceptual and configuration design” category. The reason for not 

doing this is that the geometry aspect in this thesis leans more towards the spatial and geometric 

reasoning without considering functions. It has unique features and, thus, requires special 

techniques and attention.

One fact that has been realized by many researchers is that “features” can play an 

important role in the geometric reasoning or design. This research can benefit from the work in 

feature extraction research [16, 69, 84 & 87].

Dixon’s group [15, 21, 23 & 52] has developed an approach to geometry design called 

“Design with Features”. Basically, they provide a feature library, so designers can use these 

features to design interactively. They are continuing their work toward the incorporation of 

design knowledge.

Fenves and Baker [29] proposed a geometry representation for structural design which
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uses shape grammars as a representation to perform the spatial and functional reasoning. The 

representation needs to serve all disciplines involved in the design process, where different 

semantics of each discipline are associated with the same spatial information about design 

objects. The representation is demonstrated in the building design environment.

Nevill, et al. [63 64] discussed the spatial and geometric reasoning in the mechanical 

design activities. They selected the preliminary design of configurations for supporting 

inspection or high precision machining. Multiple level representation was used in a top down 

abstract refinement model. Relations between objects are represented in semantic terms and 

high order features facilitate the spatial reasoning.

2.4.3 Parametric Design

At the parametric design stage, the structure or attributes of configurations have been 

obtained by the conceptual and configuration design. Parametric design is then the process of 

determining attribute values, which can be numeric, or non-numerical (e.g., a material choice 

or a motor type).

One point should be clarified that the optimization technique can be used to achieve 

parameters once the criterion functions can be set up. However, there is a fundamental 

difference between the optimization technique and the expert system. One is data-oriented, the 

other is knowledge-oriented. Other differences are: 1) new design strategies can be easily coded 

into the expert design system, while an optimization model may need major changes to 

incorporate the new design cases; 2) most optimization models are limited in their ability to 

handle discrete variables, which are involved in many design problems. In conclusion, these two 

techniques are developed to handle two kinds of problems. They are not excluding each other. 

Expert system can provide a descriptive approach to design, and thus, is useful at achieving the 

initial solutions. The optimization technique supplies the well-established theories to optimize
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a set of variables, therefore, it can be used together with expert design system to optimize the 

initial solutions.

Dixon [18,19,20,37, 57, 79 & 94] is leading a group at the University of Massachusetts, 

mainly along two lines: parametric design and the geometric aspect in design. In their 

parametric design work, they have developed a parametric design model called DOMINIC that 

uses a method based on iterative redesign. DOMINIC uses a hill-climbing algorithm that 

guides redesign by using explicit, but domain-independent, knowledge of dependencies 

between design variables. Meta-control [66] has been implemented in their later development, 

which enables the program to monitor its progress in order to select more productive strategies 

from a library of strategies. This model has been demonstrated in a number of design domains, 

including V-belts, rectangular beams and extruded heat sinks.

Brown and Chandrasekaran [5,6,7,8,9 & 10] have been working on the computer based 

modelling of design processes. They have developed a language, DSPL, to model the routine 

design process in a top down layered fashion. Specialists choose from existing plans, make 

commitments and then instruct lower level specialists to refine the plan. Their work has a 

computer science research flavor, and maybe due to that, they have done excellent work 

advocating the descriptive style in representing the design knowledge.

Langrana, et al. [48,70] are developing a domain independent parametric design model, 

DPMED, which is based on the model VEXED [81] for circuit design. They use a hill-climbing 

algorithm for parametric design. It evaluates its performance within a design domain based on 

information about the goals and the design criteria, along with a dependency graph based on 

analysis equations. They tested their work on gear pairs design.

Mittal, et al. [58, 59 & 60] chose the design of paper transport mechanisms in a copier as 

their example for developing a domain independent approach. They have produced a system,
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PRIDE, which uses a knowledge base to generate, evaluate, and redesign configurations of 

rollers to guide the paper along a smooth path based on design constraints. They structure 

design knowledge into plans and use “advice” for any modifications to the previous design, 

which is derived from the evaluation information. This evaluation is important in reducing the 

amount of design space searched in order to achieve an acceptable design.

Agogino, et al. [2, 13] have applied monotonicity to parametric design to facilitate the 

design solution once evaluation criteria and constraints are set up. This kind of qualitative 

analysis has also been used by other researchers, and shows interesting results.

Ishii and Barkan [40, 41] have produced a framework in the mechanical design, 

representing relations between design variables and performance levels in a rule-based format. 

This framework facilitates the reasoning process in interactive design and handling 

dependencies. They have also studied the design compatibility in a mechanical system using 

fuzzy theory.

Some researchers studied the incorporation of the optimization and knowledge 

engineering techniques. Gero and Balachandran [33] compared both techniques in the design 

process and presented a prototype system. Chieng and Hoeltzel [12] proposed a hybrid 

approach to the mechanical component design using both techniques.

2.4.4 New or Miscellaneous Topics

Some miscellaneous research topics are emerging. One of them is the distributed design. 

Most large product designs involve the integration of components and sub-assemblies into 

larger assemblies. To keep size and complexity at manageable levels, they are often designed 

independently. But complete independence is rare. Interaction among sub-assemblies is 

inevitable and, thus, the solving of distributed problems arises. Verrilli, Meunier, et al. [91] 

described a computer program for hierarchical distributed problem solving that was based on
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the iterative re-specification. Zarefar et al. [95] have developed their parallel axis gear drive 

system called PAGES. The whole product is divided and designed by several subsystems. The 

interaction between them is controlled by a “system coordinator”. Lu, et al. [51] studied the 

distributed design in product development using a simultaneous engineering concept.

As the research in this area continues, the requirement for a taxonomy of design problems 

emerges. Dixon, et al. [22] proposed a taxonomy for the domain of mechanical components and 

assemblies. Their taxonomy defines a problem in terms of six initial and final states of 

knowledge. Ullman [89] also proposed a taxonomy for mechanical design. His taxonomy was 

developed to form a basis for classification of all mechanical design research branches ranging 

from specific programmes using Al techniques, to general computer based tools and cognitive

models.

Some researchers have studied the whole design process in a general way [44]. They have 

proposed two models of the design process: decompositional and transformational models. 

Their research delivered an important message that the whole design process could not be 

forgotten while most researchers were focusing on separate stages. Eventually, a model of the 

whole design process with sound theoretical foundation is needed.

Factors at other stages in a product life cycle should also be addressed in this design 

research. The ideal situation is that those factors are considered at the early design stage. Kroll, 

et al. [46] developed a knowledge based system to assist engineers in the process of designing 

products for easier assembly. They did their research at the conceptual design stage, since at this 

stage the whole structure of the product is being considered. They presented the product 

representation and design for assembly methodology.

As stated earlier, there are the creative design process and the innovative design process. 

Most of the research in this area has not considerably addressed these two design processes,
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because of their complexity. However, some researchers are trying to capture the mechanisms 

of creation in the human design processes. They argue that design is about creation and, thus, it 

is essential to understand its process [25, 38 & 62]. So far, this is a widely open area of future 

research.

2.5 SURVEY CONCLUSIONS

The work in the understanding and modelling branch has shown some interesting results, 

as well as difficulties. No generally accepted theories or models have been created. The 

computer based tool work has achieved some successful first-step results. Among them, the 

parametric design is the most mature, though no single theoretical approach has yet evolved. 

The configuration and conceptual design is starting to appear. The major issue here is the 

understanding of the links between functions and configurations.

The following summary of achievements and potential improvements is solely about the 

work on the computer based tool.

1. Some fundamental research work in the configuration and conceptual design has been 

started. It has been realized that the main issue is the function and configuration 

relation. Various techniques have been developed or used. The research in this branch 

is in its infancy.

2. The unique characteristics of the geometric design process have been realized and 

researchers have launched their work in this area. Features have been recognized as 

playing an important role in achieving appropriate approaches in this research. Some 

initial results have been obtained in the “pure” geometric and spatial reasoning.

As the case in the conceptual and configuration design, the geometry aspect is not well 

understood. Some techniques may be needed if some breakthrough is to be expected.

3. Some successful results have been achieved in parametric design. The iterative model of
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design processes has been realized through different perspectives by various 

researchers. Dependency among design parameters has been studied. The research 

work in this aspect has been demonstrated in various design domains.

Descriptive representation in parametric design is very important. The purpose of 

facilitating the spreading of design knowledge can be well served only when the design 

knowledge can be expressed descriptively and explicitly. More effort should be directed 

to this issue.

4. The whole design process has not been paid enough attention. Most researchers 

addressed those problems or stages individually. Some problems might not be realized 

if they were studied separately.

5. Some new research topics have been initiated, among them are the distributed design 

and the taxonomy of the design problems. Further research work is certainly needed.
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CHAPTER 3 :
UNDERSTANDING OF 
DESIGN ACTIVITIES

The understanding of design activities is the foundation for the model and the computer

based tool. This understanding is so interesting that it could be a research topic in itself, as

the dispute has continued over the past decades as to whether design is a science or an art.

A brief understanding is conducted in this chapter. First, the purpose of such an under­

standing is explained, with its scope derived from the thesis objective. The basic strategy for 

it is determined after reviewing all possible approaches. Some general characteristics are 

listed from existing theories. Then a simple desk lamp design is analyzed step-by-step to ob­

tain features in a design process, some of which are general, called “common characteristics”.

Finally, a cam design is examined briefly to show the generality of these characteristics.

3.1 PURPOSE AND SCOPE

This understanding is to extract facts from the design process for the later establishment 

of theories. Facts are gathered from the common characteristics. (Figure 3.1)

Facts / Characteristics
Understanding

Theories
Model & Computer Based Tool

Figure 3.1 : The purpose of understanding the design activities

To date, the design process has not been well studied by researchers. No generally ac­

cepted theories have yet been established. This is the reason that this understanding is under­

taken in order to get first hand experience of the original problem: the design process, before
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continuing to further work.

The understanding of design activities may be slightly different in terms of the scope. 

Some researchers are interested in the understanding of design in a general sense, which cov­

ers the most fundamental nature of design and, thus, is quite sophisticated. The understand­

ing in this work is much more practical and intends to serve the specific objective. It only cov­

ers the routine mechanical component and mechanism design processes.

It is believed that if the understanding of all design activities is difficult, then the under­

standing of some of them is meaningful. The more such understanding with certain scope is 

achieved, the more completely the whole design area will be covered.

3.2 BASIC STRATEGY

To date, three methodologies have been developed to understand the design activities: 

the descriptive model, the prescriptive model and the “practice-oriented” model. As ex­

plained in the last chapter, the “practice-oriented” strategy is practical and has been chosen 

for this work, taking into consideration the complexity of the design activities, the current 

research status in design theory and the basic computer implementation-oriented stand tak­

en in this thesis.

The idea of “design case studies” is emphasized in this strategy from the point of view 

that the work should be based on the study of the original problem — the design activities. 

So far, the desk lamp and the cam have been chosen as the examples to be analyzed. These 

examples are considered typical in a certain range of routine mechanical design activities.

The understanding process is also based on the author’s own design experience, and 

is also influenced by some prescriptive theories available in many engineering design text­

books and documents related to the design study (discussed in the following “General Char­
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acteristics” section), which are thought to be reflecting the results from the observance of the 

chosen examples.

3.3 GENERAL CHARACTERISTICS

Various versions of design features have been prescribed by researchers in this area. 

Some of them have influence on the later observance of the design examples, and it is neces­

sary to cite them.

The design process is characterized as a series of transformations leading from specifi­

cations to physical components. Each transformation implements a component or decom­

poses it into sub-components [61]. In other words, each part or component is replaced with 

a more detailed part or component in each transformation. A more general process can hap­

pen when transformation is implemented each time on the complete description of the de­

sign, instead of on one single component. The coupling between parts or components in de­

sign could be handled based on constraint propagation.

The mechanical design process usually follows a sequence of steps from the recognition 

of requirements and specifications, to the concept formulation and conceptual design, to the 

embodiment of design details, finally to production, sales, maintenance and other stages in 

the product life cycle. Each step is a refinement or transformation from one abstraction level 

to a lower one. Eventually, a product is transformed from the original requirements. The 

functions and configurations are important terms in this functional to physical domain trans­

formation process. Coupling or dependency between various parts or components in design 

should be specially noted.

Design is a highly experience-oriented activity with enormous and diverse knowledge. 

This feature should be kept in mind when devising representation schemes for design knowl­

edge. It also contributes to the large design solution space. There might be many products
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fulfilling a function, and many possible components constituting a product. Finally, the evalu­

ation of design is very difficult. Since a design is achieved largely from “experience”, it is hard 

to tell whether this design is good or not. Also, it means that it is difficult to achieve a good 

design.

3.4 OBSERVANCE OF A LAMP DESIGN

Two points should be explained before continuing to the following observance. First, 

the desk lamp may not be exactly classified as a mechanical product. Such a common device 

is chosen as an example for its simplicity and for the convenience of explanation. Second, this 

understanding is supposed to be in the routine mechanical design area. In the later imple­

mentation, typical mechanical products: the cam and the bolted flange, are selected to devel­

op their specific design systems.

The understanding process is described in such a way that when the design process in 

the chosen example is followed step by step, the facts in this process are exposed. Based on 

these facts, the common characteristics are summarized. Terms used in the understanding will 

be explained as they appear.

Two examples will be examined: a desk lamp and a cam. There is slight difference be­

tween the description style of these two examples. The desk lamp design is followed closely 

in terms of the designer’s thinking process, while the concrete design procedures and knowl­

edge may not be listed. Such a common device is chosen precisely for the convenience that 

its design knowledge is so obvious that it does not need to be detailed. The purpose of this 

observance is to expose the major stages and the features of each stage in its design process. 

While in the cam example, the true design procedure or “facts” are exposed first without any 

opinions being imposed. After that, these facts are “cross-examined” by those features sum­

marized from the desk lamp observance, in order to prove that the features from the desk
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lamp design also exist in the cam design. Thus, they are common to both design examples. 

It is further assumed that they should be common to a number of design activities which share

similarity with these two examples.

A desk lamp may consist of several parts: bulb, bulb holder, switch, adjustable neck, 

base, wire and plug, and connections between these parts. Figure 3.2 shows an example.

connections :
. bulb & bulb holder 
. bulb holder & neck 
. neck & base

In order to get a close look at the whole design process, the observance starts from the 

very beginning.

D- The following requirements are given to the designer by the client

. A lighting equipment is needed for an office desk;

. This equipment must be portable;

. It will work under 110 volts;

. The equipment must be adjustable for the user to get comfortable lighting;

. The cost is around $50.

The designer considers these specifications and regards these items as feasible to start
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the design process. In some cases, he may have disagreement about the given specifications, 

and both parties have to discuss and reach an accepted specification list.

o The following stage will achieve all configurations:

Now the designer thinks about what the prospective product could be. At this stage, a 

very important concept should be introduced, “function”. The term refers to the general in- 

put/output relationship of a system (or subsystem component) whose purpose is to perform 

a given task. It describes the expected behavior of a component or a system. In this case, the 

function of the prospective product is “lighting an office desk”.

By his knowledge or from accumulated knowledge, he realizes that a desk lamp could 

serve the purpose. However, it must be pointed out that not only a desk lamp can light an 

office desk, other kinds of illuminating sources could serve the purpose too. Nevertheless, 

the desk lamp is the most common one. It must be also realized that there are many possible 

types of desk lamps available in this commercial world. The point made here is that many 

possible products could serve the same function. Conversely, one product could also serve 

multiple functions. In this case, a desk lamp can light not only a desk, but also a part of a room.

Another term introduced here is “configuration”. It is an aggregation of physical com­

ponents, which can serve certain functions. A configuration can consist of a number of sub­

configurations. What has been obtained just now is a multiple-to-multiple relationship be­

tween functions and configurations. A “principal configuration” is the final product which 

serves the original purpose or “principal function”, and consists of a number of small configu­

rations or components.

The designer selects the desk lamp shown in Figure 3.2 as the principal configuration 

in this case. Sometimes, the choice under the circumstances that multiple configurations are 

available can be made by other specifications, while in other cases, it is simply decided by 

the designer’s preference as in this example. So far, a principal configuration has been ob­
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tained by considering the functional requirements.

Now, it is time to determine all components of the principal configuration. The designer 

has two possibilities at this moment. He may find a similar desk lamp designed before, but 

it is not adjustable. Therefore, he decides to simply change the old design to meet the “adjust­

able” requirement. The other possibility is to design from scratch. In this work, the first design 

approach is not considered, which may be called the “retrieve & change” approach. This ap­

proach has quite different features from, and must be based on the “design from scratch”. 

This thesis focuses on the “design from scratch” approach.

At this time, the designer already has a rough principal configuration in his mind, which 

consists of a “lighting part”, a “support part” and an “electricity connection part”. They serve 

the “lighting function”, “supporting function” and “connecting electricity function”. These 

functions combined serve the principal function of “lighting a desk”.

Now, the designer decomposes each part into sub-parts. For instance, a lighting part 

may consist of a cylindrical bulb holder, a bulb and the connection between them. In fact, 

he handles the lighting part in the same way as he deals with the rough principal configuration: 

decomposing it into several parts. Here, an important concept, “decomposition”, is intro­

duced, which describes a refinement process in design. The decomposition of the desk lamp 

is illustrated in Figure 3.3.

A “connection” is a configuration used to link two parts or more together. A connection 

can consist of several sub-parts, like an ordinary configuration. But unlike an ordinary con­

figuration, it can consist of “partial configurations”. Figure 3.4 shows a screw connection 

between the base and the neck, which consists of two partial configurations — a thread on 

the neck and a hole on the base, and an ordinary configuration — a screw nut.
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the desk lamp

lighting part supporting part connecting electricity part

/ connectiony connection / connection^ connection

\ t ♦
bulb bulb holder neck base switch plug wire

Figure 3.3 : The decomposition of the desk lamp, with all configurations

adjustable connections : neck & base

Figure 3.4 : A screw connection between the base and the neck

Thus far, the following facts have been revealed:

1. Considering the principal function, a principal configuration can be obtained;

2. The decomposition process is applied to the acquirement of all configurations. Each 

decomposition process produces a group of sub-configurations with their sub-func­

tions fulfilling the original configuration’s function. This decomposition process con­

tinues until all sub-configurations can not be further decomposed, such as the bulb. 

These undecomposed configurations are defined as the “basic configurations”.
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O’ All detailed values are to be obtained from now on:

The above decomposition process achieves all conceptual configurations, which have 

not been assigned attribute values yet. For instance, no dimensions, materials and the like 

have been determined.

Detailed information about configurations can be expressed in attributes or parame­

ters. For example, the base is expressed as a set of parameters (Figure 3.5).

parameters :
structural - H,D,dl,hl,d2,h2
relational - xO,yO,zO,rotx,roty,rotz
material - steel 
etc....

Figure 3.5 : Parameters of the lamp base

Generally, the parameters can be classified under two categories: numerical and non-numer- 

ical. The dimensions are typically numerical parameters, while the material is non-numerical.

The parameters can be organized according to the configurations. This is obvious in 

the dimension and the material case. Relational dimensions of two or more configurations 

can be attached to their upper configurations or a configuration with an overall coordinate 

system, depending on the convenience of the design or the designer’s preference.

Basically, there are two aspects in a product design: geometric aspect and parametric 

aspect. One covers the geometry information such as drawings, and especially, the geometric 

and spatial reasoning process. The other provides information in parameters, and is not re­

lated to non-verbal geometry design process. It should be noted that the parameters provide 

geometry information also, such as dimensions.

Up until now, the detailed information can be expressed in parameters and organized 

according to configurations. The next question is how to assign values to these parameters.
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The parameters are determined by “design relations”. A design relation is a relation­

ship among a group of parameters. “The neck should be strong enough to stand the bending 

moment” is a relation involving the yielding strength of the neck, the neck diameter, the neck 

length, and some other parameters. This relation can be used to achieve the minimum neck 

diameter, or to check the neck strength.

The detailed design is an iterative process. The designer makes certain assumptions to 

get some initial parameters. Then, when enough information is obtained, the assumptions 

are checked and redesigned, if necessary, according to the designers’ experience and the cur­

rent circumstances. For instance, if the neck diameter is checked to be too small to support 

the bulb holder after the bulb holder has been redesigned, the designer decides to increase 

the diameter according to the strength calculation. This iteration can happen many times.

The iterative process is also related to the dependency among parameters. The term, 

“dependency”, means the direct relation among parameters.

Besides using design relations, the designer also assigns values to some parameters by 

experience, when relations are not available. This kind of parameters may be called the “as­

sumed parameters”, and they have to be checked, once the design proceeds to a certain stage. 

For example, there is no obvious relation to determine the desk lamp overall dimensions, 

and thus, they are assigned according to the designer’s preference and the portability require­

ment. Later, these dimensions are checked to ensure that they meet the strength requirement.

Therefore, there exist some principles behind the parameters and design relations:

1. if number of design relations > number of unknown parameters, some relations

are used for checking ( "design-by-relations” )

2. if number of design relations < number of unknown parameters, some parameters

are assigned by the designer ( "design-by-experience” )
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3. if number of design relations = number of unknown parameters, all relations are

used to obtain a unique set of parameter values ( “unique case” )

There are many ways to use design relations and assumptions to achieve the same pa­

rameters. For instance, the dimensions of the base could be determined by considering the 

size of the possible desk lamp, or could be designed from the maximum weight of all parts 

if they have been decided. The designer’s experience plays an important role in deciding what 

design relations are to be used, and at what circumstances. Therefore, the design relations 

should be organized in groups. The introduction of design relation groups from one perspec­

tive shows the diversity and large amount of knowledge in the detailed design.

C5= Non-functional considerations:

Although the major concern at the design stage is functional, the designer has to consid­

er other factors at various stages of the product life cycle, such as the desk lamp cost. The 

contemporary trend in design is to cover these factors at the early design stage.

Now the detailed parameters of all configurations of the desk lamp have been achieved. 

The whole design process is ended.

3.5 COMMON CHARACTERISTICS

The following is a summary of facts from the above observance and analysis. There are 

four stages in the design process:

or Given Specification Stage:

. Given specifications are processed by the designer to obtain an agreeable set of specifi­

cation items.

itt Configuration Achievement Stage:

. The decomposition process obtains the sub-configurations of the product. This de­

composition continues until the basic configurations which can not be decomposed
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further.

. There is a multiple-to-multiple relationship between functions and configurations.

The configuration decomposition is also a multiple-to-multiple relation. A configura­

tion could be decomposed in more than one way.

. Once the prospective product (“principal configuration”) is determined from the origi­

nal functions (“principal functions”), the functional considerations no longer play an 

important role in the decomposition process, since the possible configuration combi­

nations are known in mature design activities.

. The product consists of configurations and connections in a layered graph structure. 

The connections may be comprised of partial configurations, which are parts of nor­

mal configurations.

rr Detailed Design Stage:

. This stage is responsible for assigning values to the configurations’ attributes. Parame­

ters are organized according to configurations. Lower level configurations can access 

parameters of the upper level configurations.

. The parameters are achieved by either design relations or assumptions, depending on 

whether there are enough relations.

. Since there may be various ways to use the same design relations to achieve certain 

parameters, or different design relations to achieve the same set of parameters, and 

the design relations are in large amount and great diversity, it is necessary to organize 

them in groups.

. The iteration happens frequently at this stage. Whenever a checking fails, it is advis­

able to redesign some parameters. These advices come from the designer’s experi­

ence. Furthermore, the dependent parameters have to be checked and modified, due 

to the dependency among parameters.
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U3= Non-functional Considerations Stage:

. Some non-functional considerations affecting other stages of the product cycle can 

be expressed in design relations.

If any one of these stages fails, the message is sent to the previous stage, with suggestions 

for the redesign of the previous stage. So far, the redesign of parameters has been handled, 

but the mechanism of how to redesign conceptual configurations and re-specification due 

to any failure in the detailed design has not been well understood. This case is rare in mature 

design activities.

To prove the generality of these summarized features, a cam design is shown below in 

such a way that the designer’s real working process is described first (an excerpt), then a brief 

explanation points out the stages and common features at each stage.

3.6 ANALYSIS OF A CAM DESIGN

tr Problem statement

- a required motion transformation from rotation to translation in a sewing machine

- 2.00" rise per 0.05 seconds

- then dwell 0.015 seconds

- a small dwell at the bottom of the motion is required

- because of space limitation, radius of base circle is no more than 1.25"

- pressure angle is no more than 30°

- smooth acceleration, no steps in acceleration are allowed

- steps in jerk are acceptable

irr Start

The motion pattern will be a “DRD” — dwell rise dwell return dwell.

Since in the rise part, no steps in acceleration are allowed and steps in jerk are accept­
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able, the cycloidal motion is chosen.

Since there are no specific requirements for the return, SHM (simple harmonic motion) 

is selected.

A commonly used disc follower is selected, 

o Continue

Angular velocity is 2tt/0.05 or 40tt (rad/sec). 

o Program

Dwell at the top of rise: 0.015 X 40-ir = 108° (approximately).

Allow 10° for lower dwell. Total angle for rise and return is: 360-108-10=242° . 

Cam factors for rise and return: f-SHM= 2.72, f-cycloidal = 3.46 .

Rise program: 3.46/(3.46 + 2.72) X 242 = 136°. Return program: 242-136 = 106°. 

o Maximum velocity and acceleration

Rise — cycloidal:

When 0 = p/2,

Return — SHM :

y - di-T^ t

,<o Z1 o 0 v = ¿j(l-cos2jr-)

„ &>2 . _ a = 2jt—rsmzjr—
P P

vmax = 211.7 ips; and, amax = 35221 ips2

y = y(l-COS7T—)

co 0 
v = rtd——sinjr-—

d . (O.2 0

When 0 = (3/2, vmax = 213.4 ips; and, amax = 27662 ips2 . 

o Pressure angle

Pitch radius : Rp = Rb+Rf +1/2 X rise=2.75

Cam factor: f = Rp X (3/rise = 3.264

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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pressure.angle : 0 = 01 + ^Cam^—c^^-(02 - 01) ( 3.9 )
(cam.fl - cam.fi)

= 30 + (3.46-3.264)/0.6 x 5 = 31.6°

(These are two nearest cam factors and pressure angles from the cam factor table in [65]. 

An excerpt is shown in Table 6.10)

Another way to obtain the pressure angle is:

tan<|>=(Vfmax) / (Rb+yP) w (3.10)

Checking pressure angle, which should be less than 30.0

But, now 31.6 >30.0. Try to reduce the pressure angle by offset. 

icT Reducing pressure angle by offset

tan0 = (Vfmax-ewVyw, y=(Rb2 - e2)V2+yp ( 3.11)

trye=0.5", 0=30.64, increase e by 0.1", ..., until 0 < 30.0

cr Check the undercutting, the minimum radius of curvature should be greater than the 

follower radius. The radius of curvature :

[№ + y)2 + (W/2
(Ao + y)2 + 2(^^)2-(A0 +

(3.12)

Pmin usually occurs at the point of maximum negative acceleration.

At Amax, 0 = 3/4 3, pmin = 2.23 > Rfoiiower (0.5), Checking satisfactory !

The following is a brief explanation of the features exposed in the above design process 

excerpt, compared with the common characteristics summarized earlier.

0^ The “problem statement” is the specification development stage. Some specification 

items are derived from the original specifications. No process is needed to reach an agreeable 

specification list.

03= In “Start”, the conceptual product was determined as a cam with four sub-configura­
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tions and a follower. These sub-components were obtained by decomposition and functional 

considerations. The connections between the sub-components in the cam are partial configu­

rations: plane geometry features, which deliver constraints which require that the two adja­

cent parts have equal length and height.

03“ From “Continue” to the end, all parameter values were achieved. These parameters 

can be organized under each configuration.

The parameters were achieved by design relations (e.g., rise program), or assumptions 

(e.g., lower dwell is assigned 10°). There are various ways to use design relations to get param­

eters, as in the case of pressure angle. The designer has to express his knowledge about how 

to use these relations.

The iteration happened in checking the pressure angle. When it exceeds 30°, the offset 

is advised, and the pressure angle is redesigned, as well as all dependent parameters. This 

iteration process continues until the pressure angle is reduced to less than 30°.

The design relations were in diverse formats, such as equations, tables, constraints and 

so on. Even this very small piece of design process excerpt has shown the large amount of 

design knowledge.

The above stages and features at each stage coincide with the common characteristics 

presented in section 3.5. These summarized features are common to both cases. It is further 

assumed that these features are basic and common to a number of routine mechanical com­

ponent and mechanism design processes. This assumption is the basic foundation of further 

work in this thesis.
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CHAPTER 4 :
GENERAL DESIGN MODEL

This chapter describes a general model for the routine mechanical design activities. This 

general model is developed from the common characteristics extracted from the understand­

ing of routine mechanical design activities. Since these characteristics are basic and common 

to a certain range of design processes, the model developed this way is general to these pro­

cesses.

The model only covers the “design from scratch” approach in the routine mechanical 

design. It is an informal description of the design process which means that it is not bound 

by any formal modelling techniques. It is like a method for organizing exposed facts from the 

design process according to certain points of view.

The purpose of achieving such a model is to develop its computer implementation, 

which will serve as a shell system with general reasoning mechanisms and knowledge repre­

sentation formats. Thus, specific design systems can be developed efficiently by simply filling 

domain knowledge into this shell.

The model is described according to the whole design process and individual stages 

including Specification Development, Synthesis, Analysis and Non-functional Consider­

ations. The key issue in the model is the knowledge representation scheme which consists of 

the Mechanisms underlying the design process and the Knowledge Representation Formats.

4.1 THE WHOLE DESIGN PROCEDURE

According to the Chapter 3, the whole design process consists of four stages : “Given 

Specification”, “Configuration Achievement”, “Detailed Design” and “Non-functional 

Considerations”. In the model, they are called “Specification Development”, “Synthesis”,
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“Analysis” and “Non-functional Considerations” correspondingly. There is feedback be­

tween these stages, which may be used to guide the redesign process in the upper level design 

stages (Figure 4.1). These major stages roughly describe a common procedure to all design 

activities.

Specification Development

jr f feedback
Synthesis

^feedback

Analysis
^feedback

Non-functional Considerations

I
End

Figure 4.1 : Design stages in the whole design process

In the following sections, each stage will be described by addressing three issues: 1) the 

mechanisms underlying the design activities; 2) the knowledge representation formats; and 

3) the examples from specific design knowledge. The first two issues are common to all design 

activities which make the general model possible. They constitute the “knowledge represen­

tation scheme”, of which the first contributes to the reasoning process, and the second to the 

formats of representation.

4.2 SPECIFICATION DEVELOPMENT

The specification development is a very complicated process. A number of activities are 

involved: discussion between the designer and the client to reach a mutually acceptable speci­

fication list, to eliminate conflicts, and the like. It is not necessary to put much effort into such 

mechanisms at this moment, if the major focus is on the achievement of design from a given
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specification set. In this work, the above issues are not addressed, and a workable specifica­

tion set is assumed to be provided by the user.

The application environment of a mechanical product or system can vary greatly. Thus, 

the specifications for given applications can be very diverse. It is necessary to reduce the 

application requirements into the commonly used standard specifications, when the comput­

er implementation is concerned. For example, a cam may be used in a sheet metal transfer 

mechanism for a punching machine with specifications like punch cycle, maximum accelera­

tion and so on, or it may be used in a sewing machine with specified angular velocity, sug­

gested motion patterns and space requirements. Despite their differences, these application 

requirements can be transformed into items like angular velocity, basic motion constraints, 

maximum acceleration, pressure angle and so on. By simplifying the above complicated pro­

cess into a transformation of the requirements from a particular application to a standard 

set of specifications, the modelling of its mechanism can be quite straight forward. Figure

4.2 shows this simplified process.

Original Applications 
^extraction

Commonly Used Specifications 

Figure 4.2 : Specification development

Specifications are organized into a group of items. Each item is represented descriptive­

ly by a string pair, where the first element is the item name, and the second a string of arbitrary 

length for the value of this item. For instance, the following specification excerpt:

(angular.velocity, 136.0)

(motion constraint, no steps in acceleration, steps in jerk acceptable) 

is a part of the specifications for the cam design.
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4.3 SYNTHESIS

The synthesis stage achieves all structural information about configurations without any 

values assigned to their parameters. The description of this stage follows first the basic rela­

tions, then the mechanisms underlying the synthesis process, and finally the knowledge repre­

sentation formats.

o Basic Relations

In the routine mechanical design, a multitude of relations between functions and config­

urations and various configuration combinations are known. For example, a desk lamp has 

the function of “lighting a desk”, and it can be decomposed into “lighting part”, “supporting 

part” and “electrical power connection” parts. There are two types of relations in the above 

description: the “function-to-configuration” and the “configuration-decomposition” rela­

tion.

Both types are multiple-to-multiple relations. A number of configurations may fulfil 

one function and various functions may be achieved by a single configuration. A configura­

tion may be decomposed in a number of ways, producing different groups of sub-configura­

tions.

Either function-to-configuration relations or configuration-decomposition relations 

can carry conditions and constraints. Conditions must be satisfied to execute the relation. 

Constraints are the side effects which occur once the relation is in effect. For instance, Table 

4.1 shows a function-to-configuration relation in the cam design.

The function “rise” combined with the motion condition implies a “cycloidal wedge” 

configuration plus the motion pattern constraints.

It should be noted that although the focus of the synthesis stage is the configuration 

decomposition, the “principal function” is essential in determining the prospective product.
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Table 4.1: Function-to-configuration relation

Condition Function Configuration

No steps in acceleration, rise cycloidal wedge
steps in jerk acceptable

Constraints

motion-pattern:
cycloidal-motion

Thus far, the two most important kinds of relations have been described. The third type 

is the “function-checking” relation which describes a group of functions combined to per­

form a certain function. The function-checking relations can be used to ensure that the func­

tions of sub-configurations fulfill the function of the decomposed configuration. However, 

this is not the major focus in this work, since the possible patterns of decomposition already 

exist in the routine design. It is used as a secondary checking line in the reasoning process. 

One example of this kind of relation looks like :

Table 4.2: Function-checking relation

Function Sub-functions Conditions
Rotation-to-translation Rise, Dwell, Return Motion-pattern : RDR

Functions “me”, “dwell” and “return” combined together fulfil the motion transmission 

function from “rotation to translation”, with the condition of motion pattern “RDR”.

o The Mechanism Underlying The Synthesis Process

The basic mechanism of this stage is defined as the “Configuration Decomposition Ap­

proach” (C. D. A.), and can be described as follows:

. Define the principal function / a function;

. Find the principal configuration / a configuration, which fulfils this principal function 

/ the function;
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. Decompose the principal configuration / the configuration into a set of configurations;

. Continue this decomposition process until the basic configurations (“basic functional 

design units”) are reached, which can not be decomposed further.

This mechanism is further illustrated in Figure 4.3. The solid line shows the major con­

cerns at the synthesis stage. This is where the term “configuration decomposition” comes 

from. The dash line implies the checking process by using function-to-configuration rela­

tions and function-checking relations.

Principal Function --------------------► Principal Configuration

* I
Sub-functions ..........................Sub-configurations & Connections

t {
Sub-sub-functions ..........................Sub-sub-configurations & Connections

f
Basic Configurations I Basic Functional 

Design Units & Connections

Figure 4.3 : Configuration Decomposition Approach (C. D. A.)

Special attention is paid to the interaction or “connections” among configurations. A 

connection is represented almost in the same way as normal configurations. The only differ­

ence is that a connection may consist of a “partial configuration”, which is a part of another 

configuration (either ordinary or partial).

To make clearer the C. D. A. mechanism at the synthesis stage, an example of the desk 

lamp synthesis is shown in Figure 4.4.

Thus far, the mechanism of the synthesis stage has been described. The next key issue 

is the knowledge representation formats.
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lighting-desk
A
l

desk-lamp

l
lighting, supporting, connecting

1l

-------- lighting-part, supporting-part, 
connecting-part

l
lighting

4
lighting-part

1
1
1

lighting-source, lighting-support
A
i

*—
T

bulb, bulb-holder

i
lighting-source bulb
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Figure 4.4 : A portion of synthesis in desk lamp design

o Knowledge Representation Formats

Basically, there are two types of representations required at the synthesis stage: for the 

basic relations and for the configurations and functions. No matter what kind of basic rela­

tions are concerned, they all consist of four parts: “(condition, objectl, object2, constraints)". 

Under the “conditions"the relation between “objectl" and “object2" is effected, along with 

the generated “constraints". These four parts are represented in string list.

The functions and configurations are simply represented in strings, since at this stage, 

no detailed information about the configuration is necessary.

Afunction-to-configuration and a function-checking relation have been given earlier 

(Ihble 4.1 and 4.2). Here, a configuration-decomposition relation is shown in Table 4.3.
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Table 4.3: Configuration-decomposition relation

Conditions Configuration Sub-configurations Constraints

(Motion-pattem: RDR) (cam) (rise, conn.of.rise.dwell, 
dwell, conn.of.dwell.retum, 
return, conn.of.retum.rise)

(nil)

Another representation issue is how to organize configurations. Since the configura­

tions produced at the synthesis stage will be the basis for the analysis, an organization for 

these configurations is essential. Considering the decomposition approach in the generation 

of these configurations, it is natural to come out with a layered graph structure, which is de­

fined as the “configuration tree”. One configuration is represented by a node in a given level 

with its sub-configurations represented by nodes attached to it in a lower level. This configu­

ration tree stretches to the lowest level in which basic configurations are leaf nodes. A connec­

tion lies one level higher than the configurations of which it consists. Figure 4.5 is a part of 

the configuration tree from the cam design.

Figure 4.5 : A portion of a sample configuration tree

This tree will be passed to and used in the analysis. The difference between the two trees 

is that the synthesis one is a tree without any values for parameters, while the analysis one
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is full of values.

There is a function tree with the same structure as the configuration tree. Each function 

is associated with a configuration. A group of sub-functions in a lower level can fulfil a func­

tion in an upper level. It is the product of the function checking during the reasoning process. 

This function tree keeps track of the synthesis process, and can be used for subsequent retriev­

al, checking and explanation.

Although the configurations and functions are represented in string lists, basic defini­

tions of them are necessary for explanation and conflict avoidance, when the development 

moves on to a large scale. Thus, a dictionary structure is devised, called the “Configuration 

and Function Dictionary”. Every configuration or function has an entry in the dictionary with 

its name, explanation and optional items. A configuration “cam” is defined in Table 4.4.

Ihble 4.4: Configuration item in the dictionary

Name Explanation Optional items, such as “type”

cam a cam in a cam system . . type : non-basic

o In summary, the following issues in the synthesis model have been described:

- Reasoning Mechanism: Configuration Decomposition Approach achieves configura­

tions by using function-to-configuration, configuration-decomposition, and function­

checking relations.

- Knowledge Representation Formats: Basic relations are represented in the form of 

“(conditions, objectl, object2, constraints)” ; configurations and functions are formatted in 

strings and stored in the configuration and function dictionary: partial configurations are 

created for the connections; configurations and functions are organized in the configuration
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tree and the function tree: basic functional design units form the basic level of the configura­

tion tree.

4.4 ANALYSIS

The input to the analysis from the synthesis is the configuration tree, full of rough struc­

tures. The output will be a similar configuration tree with parameters and their values.

The same description style is used for the analysis: first, the mechanisms underlying the 

analysis process, and then the knowledge representation formats.

o The Mechanisms Underlying The Analysis Process

■ The Basic Mechanism And The Fundamental Principle

The basic mechanism in solving these parameters is by the use of design relations. A

design relation is a relationship among certain parameters, which is a different concept from 

the “basic relation” in the synthesis. Once given some parameters, this relation can be used 

for solving unknown parameters. For example, a design relation given in the cam design 

reads:

pressure.angle)
QX(maXimum-velociiy)

(Rbl(base-mdius)
+ ^Pio^^piacement^iansular-velocity)

(4.1)

Given Vfmax, Rb, Yp and w, the pressure angle 0 can be determined, or 

given the pressure angle 0, Vfmax, Yp and u>, Rb can be calculated.

The design relation is not limited to equations. It can be inequalities such as :

^(pressure-angle) <30.0° ( 4.2 )

This relation can be used to determine parameters by constraining the pressure angle

not to exceed 30.0.

A design relation can also be expressed in words. For example, a design relation in de-
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signing the offset of a cam is:

. if the pressure angle is more than 30.0

and the cam size (Rf) can not be changed due to space limitation,

. then one way to reduce the pressure angle is to set an offset e

This design relation expresses a relationship among pressure angle, Rb, and offset e.

The design relations can be classified under two categories: numerical relations which 

can be expressed in equations, inequalities, tables, figures, default values and so on; and non- 

numerical relations which can be expressed in words with conditions, or constraints, and cer­

tain consequences. But generally, both numerical and non-numerical relations express rela­

tionships among parameters.

The fundamental principle of achieving parameters by relations has been described by:

if number of design relations > number of unknown parameters, some relations are 

used for checking ( "design-by-relations” )

if number of design relations < number of unknown parameters, some parameters are 

assigned by the designer ( "design-by-experience” )

if number of design relations — number of unknown parameters, all relations are used 

to obtain a unique set of parameter values ( “unique case” )

This principle seems very simple. It becomes very sophisticated once it comes to its realiza­

tion, because this principle lies deep beneath the designer’s real working process. The follow­

ing is the modelling of the designer’s analysis process based on the above principle.

■ Analysis Process Mechanism

To simplify the description, two kinds of design knowledge classified earlier: “design 

relations” and “design-by-experience”, are listed under one category — design relations,
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since the “design-by-experience” can be represented by design relations in the form of “the 

parameter P is assigned value V”.

At the analysis stage, the number of design relations is very large. More than one design 

relation may lead to the determination of one parameter. Conversely, one design relation 

could be used to solve different parameters. For example, besides the equation (4.1), another 

relation can also be chosen to decide the cam pressure angle:

Q(pressure-an$e) @1 4"
(cam.factor - cam.factor) 
(cam.factor2 - cam.factori)v

(4.3)

It is necessary for the designers to decide under what circumstances, certain design relations 

are to be used and in what order. To solve this problem, certain organization on design rela­

tions has to be devised.

Parameters can be organized according to configurations. Each configuration is at­

tached to a number of parameters. When configurations are handled one by one, their param­

eters are solved simultaneously.

To determine parameters, a group of design relations have to be chosen from the whole 

relation set as the “usable design relations”. It is critical to develop a method to choose these 

“usable design relations”. The basic idea is to select the usable set of relations according to 

the “solved parameters” and “to-be-solved parameters”. Thus, it is required that parameters 

of configurations be always classified into two sets : “solved” and “to-be-solved”. In addition, 

the design relations have to be organized in a certain order, since there may be many ways 

to use them to determine the same parameter(s). The details will be contained in the next 

chapter. Here, it is simply described as choosing the “usable design relations” from the 

“known” situation in the design process.

The solving process of configurations and parameters is an iterative process. While con-
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figurations are handled one by one, parameters of one configuration may not be completely 

solved at once. Therefore, later iteration is inevitable.

Figure 4.6 gives an overall illustration of the mechanisms described above.

Figure 4.6 : The mechanism of the whole analysis process

■ Dependency / Iteration Process

Iteration happens frequently in solving parameters. Unlike the iteration process ex­

plained earlier, this iteration may be best described as “dependency / iteration process”. This 

occurs when a checking relation is executed and not satisfied. Then some design relations are 

called in to change the earlier design. Once some parameters are changed, parameters which 

“depend” on those changed parameters may need modifying. The dependency means that 

the solving of some parameters is related to others. For example, in relation (4.1), the pres­

sure angle 0 depends on Vfmax, Rb, Yp and co. If Rb is modified due to some checking rela­

tions, the pressure angle 0 has to be changed too.
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In a real design process, the designer assumes some parameters at the very beginning, 

because of the lack of known parameters. Later, when the design continues and enough pa­

rameters have been obtained, he has to check his previous assumptions. If the checking fails, 

he has to modify the parameters according to his knowledge (certain design relations) toward 

the satisfactory direction. He may also have to change the parameters based on earlier as­

sumptions. The dependency / iteration mechanism is illustrated in Figure 4.7.

checking a parameter relations used for modification

I

I

c END

Figure 4.7 : The dependency / iteration mechanism

modifying all dependent parameters

■ Geometry Aspect

Thus far, only the parametric aspect at the analysis stage has been described, while the 

geometry aspect has not been mentioned yet. The geometry aspect in the routine mechanical 

design consists of relational geometry information and structural geometry information. Fig­

ure 4.8 illustrates the typical geometry information about a cube, which includes translational 

and rotational coordinates and three basic structure parameters.

Since the rough geometric structures of configurations have been decided at the synthe­

sis stage, the geometry aspect in the routine mechanical design can be handled parametrical­

ly, provided that all basic functional design units are available. For instance, in the cam de-
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structural information : 
height, width, length

relational information :
trans-xO, trans-yO, trans-zO, 
rot-xO, rot-yO, rot-zO

Figure 4.8 : Geometry information of a cube

sign, if all motion types and followers are stored in a library as basic design units, then they 

can be accessed by the parameters. In this work, these basic functional design units are stored 

in a library supported by a feature-based modelling system. This organization is illustrated 

in Figure 4.9.

Design Systems

Basic Functional Design Units Library

Feature Based Modelling System

Geometry Modelling System

Figure 4.9 : An organization for the geometry aspect in the analysis

o Knowledge Representation Formats

The knowledge representation formats can be classified into four types: the basic pa­

rameter representation; the design relation representation; the organization of parameters 

according to configurations; and the representation of knowledge about the reasoning pro­

cess, such as how to select the usable design relations, and the like.

The basic parameter representation can be handled by a string pair with two elements 

representing the name and the value. For example, “(pressure.angle . 28.6)" indicates a pres­
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sure angle.

The parameters are organized as the parameter set under each configuration. The fol­

lowing is a part of the cam parameter set:

(pressure.angle . 28.6)

(Rb ■ 5.0)

( to . 40tt)

One important aspect in the design process needs to be mentioned here: the inheritance 

in the design process. The design of lower level sub-configurations can use parameters 

achieved in the upper level configurations. In this analysis model, the inheritance is realized 

naturally by the configuration tree.

Between the two kinds of design relations, numerical and non-numerical, the numerical 

category is further divided into various types of relations: equations, inequalities, tables, fig­

ures, and so forth. No matter what type it might be, a relation can be generally expressed as 

a “method” to obtain “unknown parameters” from “known parameters”. This is obvious in 

the case of equations. For instance, the pressure angle relation (4.1) can be represented as:

Table 4.5: Equation in method

the known the unknown the method to get it
Vfmax, Rb,Yp,w press, angle tan(press.angle) = Vfmax / (Rb + Yp) w

Other types may not be as obvious as equations, but they certainly can be organized 

into this general format, provided that some changes are made in the “method” part. A natu­

ral idea is to create a number of “basic elements” corresponding to these various types. Later 

on, the “method” can be represented by organizing these basic elements in a certain order. 

For example, the design relation to determine the “rise program: pri” in the cam design can
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be expressed as:

“Find the cam factors for the rise part and the return part according to their motion types; 

Calculate “pri” by the equation:

pri = (rise, factor! (rise, factor+return, factor)) x total.program. ” ( 4.4 )

This design relation can be represented by two basic elements: finding a value from a 

table; and calculating a variable from an equation (Table 4.6).

Table 4.6: Another method

the known the unknown the method to get it
rise.motion.type pri 1. rise.factor and retum.factor
return, motion, type 
tatal.program

from cam factor table;
2. pri = (shown in equation (4.4))

The non-numerical design relations can also be described as a method in this format. 

For instance, the rule relation can be represented as one “basic element”, so that the method 

simply incorporates this element whenever the rule is used.

A more complicated case occurs in the cam offset design:

“if the pressure angle is > 30.0, then reduce it by setting offset starting from 0.5, and use

0.1 increase each time until the requirement is met.”

It has to be represented by two methods (Table 4.7).

On the other hand, this is also the representation of knowledge about the reasoning 

process, since the checking is invoked and some reasoning is involved. This cam offset is an 

example of the dependency / iteration process. Here, only the representation aspect is con­

cerned, while the control mechanism has been explained previously.

Another issue is the representation of usable design relations. Now some formats have
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Table 4.7: A more complicated case in two methods

method 1: checking relation

the known the unknown the method to get it
press, angle nil press.angle < 30.0

method 2: assigns the offset value if the checking fails

the known the unknown the method to get it
nil offset, e start offset, e from 0.5

increase 0.1 each time

been established for the design relations. The next issue is how to organize these relations 

into groups of usable design relations, and how to choose them. A simple sequential “group­

ing” organization can handle this well. All relations are organized in “groups”, with their 

“goal” parameters indicated. The mechanism to choose usable relations works by checking 

the current design status and the goal parameters.

The above several points have already been involved with the knowledge representa­

tion of controlling the reasoning process. Generally, the best possible effort should be made 

toward formatting the reasoning process control into methods, in order that more knowledge 

can be expressed explicitly.

The basic functional design units are supported by a basic design units library, which 

contains a number of standard units with their frames. Each frame has a number of parame­

ters. The geometry modelling of these units will be handled by a feature-based modelling 

system.

4.5 NON-FUNCTIONAL CONSIDERATIONS

Basically, non-functional considerations can be expressed as design relations, and can 

be handled in the same way as those design relations used at the analysis stage. In other words,
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non-functional relations can be handled at a separate stage by using these relations as check­

ing, or integrated into the analysis, which is an ideal situation of incorporating considerations 

at other stages of the product life cycle into the early design stage.

4.6 SUMMARY

Thus far, the whole design procedure and its major stages have been modelled. This 

model is general based on the common characteristics. Each stage consists of reasoning 

mechanisms and knowledge representation formats. The domain specific design knowledge 

is separated from these general mechanisms and formats, and thus, domain independence 

has been achieved. Furthermore, this model has potential to obtain the explicitly descriptive 

representation of design knowledge to facilitate the spreading of specific design systems.

As explained in the last chapter, the iteration between major stages, that is, the synthesis 

and the analysis, and the synthesis and the specification development, has not been dealt with 

here. Instead, a message is reported if such a case occurs. However, the iteration within the 

analysis stage occurs frequently, and is dealt with by using suggested design relations to 

modify the earlier designed parameters toward satisfactory direction.
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CHAPTER 5.
IMPLEMENTATION

The implementation of the general model presented in the Chapter 4 will create a shell 

system. The main issue in this implementation is the “knowledge representation scheme”.

which consists of two basic parts: the general “reasoning machines” and the general “knowl­

edge representation formats”. The reasoning machines are responsible for the control of the 

design processes, and are implemented from the “underlying mechanisms of the design activi­

ties” established in the model. The knowledge representation formats are forms for express­

ing design knowledge, and are implemented according to the “knowledge representation for­

mats” in the model. These two parts are inseparable, combined to form the knowledge 

representation scheme.

The model implementation is divided into two stages: the “conceptual implementation” 

and the “machine implementation”. One deals with the implementation without considering 

the specific machine environment, the other implements the conceptual version on a particu­

lar machine. The advantages of so doing are: the achievement of machine independence of 

the implementation, and the simplification of the description of key ideas without the tire­

some machine level details involved. In this chapter, the conceptual implementation is de­

scribed first; then, the machine implementation.

The descriptive style for the development of the knowledge bases is emphasized during 

the implementation. The descriptive style is a methodology for knowledge base development 

which allows the knowledge to be represented in an explicit and descriptive manner, not in 

any algorithmic or programming style. For example, the knowledge regarding weather pre­

diction can be expressed in the form of rules. It can also be described in an algorithm based
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on the calculation of a number of factors. The first case is presented in the descriptive style, 

and the latter in the algorithmic style. The purpose of achieving such a style is to minimize 

the cost and the time involved in the development, modification and maintenance of the 

knowledge bases. The descriptive style is the basic idea of expert system technology, which 

is also the best part adopted from it into this work. Although the reasoning machines cannot 

be totally realized descriptively, the effort toward it is still made so that changes and further 

development can be made quite easily.

One point that should be explained is that this implementation does not cover com­

pletely the whole model. The model is developed to pursue the understanding of design activi­

ties and to attempt to cover all aspects, while the shell is implemented to serve the practical 

application purposes. Thus, it may not be necessary to implement some parts of the model. 

In the following description, the parts not implemented will be mentioned with reasons. Fig­

ure 5.1 shows the relations between the understanding, the model and the implementation.

The Understanding The Model
The Conceptual 
Implementation

The Machine 
Implementation

perception not 100% covered changes according 
to specific machine

Figure 5.1: Relations bewteen understanding, model and implementation

5.1 CONCEPTUAL IMPLEMENTATION

5.1.1 The Whole Design Procedure

Although the whole design procedure has been divided into four stages in the model, 

the implementation deals with only three stages: Specification Development, Synthesis and 

Analysis. The fourth stage — Non-functional considerations which are represented in design
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relations are incorporated into the analysis stage.

The organization of these three stages is in a loose form. The connection between them

is realized by file transferring. This loose organization reflects the features of the design pro­

cess to a certain degree and can be realized easily. Since the design problem is large and very 

complicated, the separation of major parts helps to simplify the problem (Figure 5.2).

Figure 5.2: Organization of the whole design process — file transfer

An important issue which should be mentioned is the feedback between stages. For ex­

ample, the feedback from the analysis can be “design succeeds” or “design fails” with failure 

information provided. This kind of feedback is inevitable because the design is an iteration 

process. The feedback from the analysis may guide the redesign of the synthesis. Even the 

feedback from the synthesis stage may cause the re-specification. If the general design activi­

ties are considered, this feedback and its utilization are essential. However, since the scope 

of this work is the routine mechanical design activities, the re-structuring of all configura­

tions from the failure of the detailed analysis is relatively unlikely. Moreover, this work is the 

first step toward the modelling of the design activities. Therefore, at this moment, the feed­

back from the lower stages is simply reported, but not utilized to guide the redesign of the 

upper stages. This is an example which shows that not all parts in the model are covered in 

the implementation.

The inputs and outputs of each stage are listed below, supplementing Figure 5.2: 

Specification Development:

- input: the client original specification list
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- output: the standardized specification list and the principal function 

Synthesis:

- input: the standard specification list and functions

- output: the configuration tree 

Analysis:

- input: the configuration tree from the synthesis

- output: the configuration tree with parameter values, and drawings of the final product

5.1.2 Specification Development

The specification development could be very sophisticated. However, as explained be­

fore, instead of the implementation of the complicated mechanisms behind its process, a sim­

ple alternative serves the purpose: creating a standard list of specification items and principal 

function items. Considerations are taken carefully at the time these standard items are se­

lected, to ensure that the agreement between the client and the designer can be achieved, 

and that conflicts are unlikely to happen.

The extraction of standard specification and principal function items in a domain is 

done by the knowledge engineer consulting the experienced designers at the time of the do­

main design system development. Therefore, the first task in developing a specific system is 

to create such a standard list. The principal function items are filled with standard functions 

which are available in the knowledge bases. These standard functions have corresponding 

configurations to perform them.

After the standard list has been generated and the specific design system has been devel­

oped, it is the end user’s responsibility to fit his specification items and principal functions 

into this list. Thus, certain “pre-specification” work is necessary. For example, if one of the 

original requirements for a cam in a sewing machine is 2.0 " per 0.05 seconds, it has to be con­
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verted to the standard items: angular velocity 2tîI0.05 (40tt) and a rise of 2.0".

In summary, the implementation of the specification development stage does not create 

any physical parts to the prospective shell system. Instead, it simply provides an approach to 

the specification development: a standard list of specification and principal function items.

5.1.3 Synthesis

Once the standard list of specifications and the principal functions is created, the design 

proceeds to the synthesis stage. Based on the “synthesis design relations” which have three 

types: function-to-configuration relations; configuration-decomposition relations; and 

function-checking relations, all configurations are to be achieved. These configurations con­

tain only structural information, without any values assigned to the structure attributes. For 

example, a cylinder may have two attributes: height and diameter. At this stage, no values 

for these two attributes are available, whether they should be (50,40) or (200,10). It appears 

to be an empty frame.

According to the model, the synthesis stage follows the Configuration Decomposition 

Approach (C.D.A.) considering the functional requirements. The C.D.A works by a basic 

“four-step-cycle”:

7. recognize a function;

2. select a configuration according to this function;

3. decompose this configuration into sub-configurations;

4. find the functions of these sub-configurations, and ensure that these sub-functions fulfil

the original function.

This is illustrated in Figure 5.3.

The entire synthesis process consists of a number of these basic “four-step-cycle” pat­

terns. This process continues until all the lowest level of configurations are basic functional
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Function --------------------Configuration

? I
Sub . functions ..........................Sub. configurations

Figure 5.3: The basic “four-step-cycle” of C.D.A.

design units, which cannot be decomposed further.

The full description of the implementation should also include the organization of all 

configurations as well as functions, the basic functional design units and some other detailed 

issues.

The following description is organized under two major categories : the “reasoning ma­

chine” and the “knowledge representation formats”. The “knowledge representation for­

mat” is further divided into the representation of relations; the representation and organiza­

tion of configurations and functions; and the organization of basic functional design units.

o The Reasoning Machine

» The Reasoning Machine is an algorithm following the C.D.A. It can be informally de­

scribed as:

. Recognize the principal function or a function;

. Obtain a configuration according to the function, based on the function-to-configuration 

relations;

‘ ‘iterative.point

. Decompose this configuration into sub-configurations, based on the function-decomposi­

tion relations;

. Obtain all sub-junctions of the sub-configurations, based on the function-to-configura­

tion relations;

. Check whether these sub-junctions can fulfil the orignal function, based on the function­
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checking relations;

. If all above steps return “success”, then the design continues. Otherwise, it reports which 

step fails and other related information. For example, the failure can be caused by the “knowledge 

base being incomplete”. The current basic four-step-cycle is abandoned, and a new four-step- 

cycle starts. If no new cycle is possible, then report failure of the synthesis and indicate the current 

configuration and function;

. If all above steps succeed, configurations are achieved and stored in the “configuration 

tree” which organizes them in a layered graph structure according to the decomposition process; 

and functions are in the “function tree” with a similar structure;

. Choose the next to-be-decomposed configuration guided by the width-first search. Find 

its function from the “function tree”. Go back to “iterative.point”;

. If no more configurations can be selected from the tree, in other words, all leaf nodes at 

this time are basic functional design units, the whole synthesis stage ends.

o Knowledge Representation Formats

The knowledge representation formats are comprised of descriptive representation for: 

three basic relations; configurations and functions; and basic functional design units.

■ The function-to-configuration relation:

Name: (ID of the relation)

Domain: (which domain this relation is in)

Function: (function string)

Configuration: (configuration string)

Conditions: (condition string)

Constraints: (constrain string)

For example, one function-to-configuration relation reads like:
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Name: (cam-relll.ftc)

Domain: (K.B.: caml)

Function: (a-part-of-rising)

Configuration: (cycloidal-wedge)

Conditions: (no steps in acceleration, steps in jerk acceptable)

Constraints: (motion-pattern: cycloidal-motion)

■ The configuration-decomposition relation:

Name: (ID of the relation)

Domain: (which domain this relation is in)

Configuration: (configuration string)

Sub-configurations: (configuration string)

Conditions: (condition string)

Constraints: (constrain string)

One example is:

Name: (cam-rel23.cts)

Domain: (K.B.: caml)

Configuration: (cam)

Sub-configurations: (rise, conn.ofrise.dwell, dwell, conn.of.dwell.retum, return, 

conn, of return, rise)

Conditions: (motion-pattern: RDR)

Constraints: (nil)

■ The function-checking relation :

Name: (ID of the relation)

Domain: (which domain this relation is in)
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Function: (function string)

Sub-functions: (function string)

Conditions: (condition string)

Constraints: (constrain string)

For instance, a relation in the cam design :

Name: (cam-rel5.fts)

Domain: (K.B.: caml)

Function: (rotation-to-translation)

Sub-functions: (rise, dwell, return)

Conditions: (motion-pattern: RDR)

Constraints: (nil)

It should be noted that it is convenient for these representation formats to handle the 

multiple-to-multiple relationship demonstrated in design relations. Since one object could 

correspond to several objects, the representation format must be flexible enough to incorpo­

rate as many and diverse relations as the real design domains can have. The “conditions” and 

“constraints” in these relations define the circumstances under which these relations are val­

id, and the corresponding side effects these relations bring in. They are optional which further 

enhances the flexibility of these representation formats.

■ Representation and organization of functions and configurations

The basic definition of configurations and functions is necessary for the unification of 

these terms since there may be possible conflicts among these terms, and for the explanation 

which may be expected later. All these basic terms are organized in a dictionary with the struc­

ture:

Name: (a function or a configuration)
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Domain: (specific design domain)

Text: (full explanation of this function or configuration)

Type: (one of “non-basic”, “basic” and “both”, meaning whether it can be further 

decomposed)

Following are some examples:

a configuration — (cam, K.B.:caml, “cam in a cam system”, non-basic) 

a function — (rotation-to-translation, K.B.:caml, “function fora cam-system”, nil)

The configurations obtained during the synthesis will form a layered graph structure 

called the “configuration tree”. Each configuration is a node in this graph structure. The basic 

structure of a node is as follows:

Node: (a configuration)

Super-nodes: (nodes in the upper level)

Sub-nodes: (nodes in the lower level)

Constraints: (generated in the synthesis stage and attached to this node)

Figure 5.4 is a sample configuration tree. One node from this tree: cam, is illustrated below:

Node: (cam)

Super-nodes: (cam-system)

Sub-nodes: (rise, conn.ofrise.dwell, dwell, conn.ofdwell.retum, return, 

conn, of return, rise)

Constraints: (Motion-pattern: RDR)

The “function tree” stores all functions generated in the synthesis process, and has the 

same structure as the configuration tree, excluding the “constraint” item. One function tree 

example is given in Figure 6.1.

Node: (a function)
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Super-nodes: (nodes in the upper level) 

Sub-nodes: (nodes in the lower level)

cam-system
1

Figure 5.4: A portion of a sample configuration tree

■ Representation of basic functional design units

The leaf nodes of the configuration tree are basic functional design units which cannot

be decomposed further. They are organized in a library, like standard components, with basic 

functions they can perform. This library is supported by a feature-based modelling system. 

Corresponding to these basic functional design units in this library, there are “basic geometry 

features” in the feature modelling system. These basic geometry features have default frames 

of relational and structural geometry parameters. Once a basic functional design unit is se­

lected from the library, a corresponding basic geometry feature is chosen from the feature- 

based modelling system, whose parameters will be filled when the analysis process is com­

pleted. For example, a basic functional design unit, cycloidal wedge, has the default frame 

shown in Figure 5.5.

In one of the example systems developed later, the cam design system, the basic geome-
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name : cycloidal wedge

H
structural parameters : 

H, LI, L2, ß

relational parameters :
trans-xO, trans-yO, trans-zO, 
rot-xO, rot-yO, rot-zO

Figure 5.5: Default frame for a geometry feature — cycloidal wedge

try feature library includes a cycloidal wedge, a simple harmonic wedge, and other types of 

wedges, as well as some common features such as a cylinder.

o Summary Of Synthesis

Thus far, the representation scheme at the synthesis stage can be summarized as follows:

. Reasoning machine: Configuration Decomposition Approach

. Knowledge representation formats include:

- Representation of relations;

- Representation of configurations and functions, organized in a dictionary;

- Organization of configurations and functions in a layered graph structure;

- Organization of basic functional design units in a library, supported by a feature 

based modelling system.

5.1.4 Analysis

At the analysis stage, all configurations with structural information have been achieved 

and transferred from the synthesis. The task now is to assign values to parameters in these 

“empty” structural frames. The parameters include dimensions, relational geometry dimen­

sions, materials and so on.
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Before the implementation of the analysis is explained, it is necessary to review the char­

acteristics of the analysis summarized in the Chapter 4.

. Parameters are determined by design relations;

. A design relation is a relationship among a number of parameters, which could be a 

numerical relation or a text relation. Furthermore, a numerical design relation could 

be an equation, an inequality, a table, a figure, a default value and so on. A textual 

design relation usually can be expressed with conditions, constraints and certain con­

sequences. Frequently, these two basic types are combined together; that is, numerical 

information in a textual design relation;

. The fundamental principal of the parameter solving process is the comparison of the 

number of unknown parameters and the number of design relations;

. Design relations are very large and greatly diverse, and certain organization is neces­

sary;

. Parameters are organized according to configurations, and are handled along with the 

processing of configurations;

. It is critical to choose the “usable design relations” according to “solved parameters” 

and “to-be-solved” parameters;

. Design relations can be represented in “methods” and comprised of basic elements; 

. Design relations are organized in “groups” in a certain order to be applied to the pa­

rameter solving process. There may be many ways to organize certain design relations

to achieve the same set of parameters;

. The determination of parameters is an iterative process. Parameters of a configuration 

may be handled partially at the beginning and later iteration may be needed to com­

plete them. The dependency / iteration process is a very important feature in the analy­
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sis stage;

. The geometry aspect is handled parametrically based on a library of basic functional 

design units;

. The descriptive style of representation should be emphasized.

The implementation of the analysis stage is based on the above points. The key issue 

here is how to organize these large and diverse design relations, so that they can be used effi­

ciently and at the same time, most importantly, they can be expressed descriptively.

Considering the fact that the design relations are comprised of basic elements with a 

limited number of types, such as equations, tables and so on, it is quite natural to reach the 

idea that a design relation may be expressed by a group of “basic description elements”, such 

as the calculation of a value from an equation, the retrieval of a value from a table, and the 

like.

By expressing design relations through basic description elements, it is convenient to 

organize one design relation from a pile of basic description elements to achieve one parame­

ter, called a “design slice”. Therefore, one design slice can determine one parameter through 

a procedure or method expressed in a set of basic description elements. This kind of design 

slice is very flexible to use, and serves the purpose of the descriptive style of knowledge repre­

sentation. The design slices are the basic units needed to solve parameters, and later on, they 

will be grouped together to solve a set of parameters.

Based on the fact that design relations are used in groups and that there are many ways 

to form these groups, the concept of “design procedure” is formed. A design procedure is 

a pile of design slices. Because there are many ways to organize the design slices and this orga­

nization is an essential part of design knowledge, it is necessary to devise the design procedure 

as one level of knowledge organization. For instance, there are two groups of design slices,
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both of which can determine a group of parameters. It is necessary to make both of them 

available for selection according to the current circumstances. Moreover, it may be possible 

that one of them may apply to other groups of parameters.

Since the parameters are organized under configurations and the solving process of pa­

rameters advances by configurations, it is natural to organize the design procedures under 

configurations. Each configuration is attached to a group of design procedures with their 

application conditions. Moreover, the variation in the decomposition of configurations re­

sults in various sets of parameters. Therefore, it is quite reasonable to set up a configuration 

organization level. These configurations are termed “knowledgeable configuration units”, 

meaning they are attached to design knowledge.

Thus far, four basic knowledge representation levels have been created. Figure 5.6 

shows the relations between them, where the lower levels support the upper levels.

Knowledgeable Configuration Units

I
Design Procedures

t
Design Slices

1
Basic Description Elements

Figure 5.6: Organization of analysis knowledge representation formats

Thus far, the basic ideas of the implementation of the analysis stage have been de­

scribed. The entire representation scheme is descriptive, down to a standard set of basic de­

scription elements. These standard basic description elements can be organized easily to form 

various design slices, design procedures and knowledgeable configuration units. The stan­

dard basic description elements can be general to all design domains, or they can be orga­



84

nized according to specific domains. In this case, each domain has its own set of basic descrip­

tion elements. Furthermore, standard methods to develop these basic description elements 

should be provided, so that the set of these elements can be enlarged easily to cover possible 

new cases in some design activities. These new cases could be new design knowledge types, 

which are not covered so far. This way, the entire design knowledge scheme is not only de­

scriptive for facilitating the spreading of knowledge, but is also flexible for further develop­

ment.

The above sections handled only the knowledge representation formats, which can be 

developed quite simply based on the above ideas. However, the reasoning machine needs 

some organization, since the whole reasoning process is quite complicated. An efficient way 

to deal with this kind of problem is to decentralize the control or reasoning process into a 

number of reasoning machines, called “interpreters”. Each interpreter deals with “a local 

problem”, under the guidance of a general interpreter. For instance, there are interpreters 

for various types of basic description elements, an interpreter for design procedures and so

on.

So far, the basic ideas about the knowledge representation scheme in analysis have been 

explained. The following is a description of the detailed implementation under the two basic 

aspects of knowledge representation scheme: reasoning machine and knowledge representa­

tion formats.

o Reasoning Machine

The reasoning process control is fulfilled by a set of multiple level, distributed reasoning 

mechanisms, called “interpreters”.

. The “general interpreter” performs the basic iterative cycle of choosing a configura­

tion and determining its parameters;
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. The “configuration selection interpreter” chooses a configuration for design by con­

sidering the unsolved configurations in the configuration tree, and matching a knowledgeable 

configuration unit in the analysis knowledge base. A knowledgeable configuration unit con­

tains design procedures and possible patterns of decomposition;

. Since the solving process of parameters is performed by design relations which are ex­

pressed in design slices and organized in design procedures, it is necessary to devise a “design 

procedure selection interpreter” to select a suitable design procedure according to the 

“known” and “unknown” situations in the parameter set and up-to-date design status;

. There are two types of design slices: “solving slice” and “checking slice”. A solving 

slice is used to determine a parameter, while a checking slice verifies parameters according 

to the dependency / iteration model. Correspondingly, there are two interpreters for them: 

the “solving interpreter” and the “checking interpreter”;

. Each basic description element has an interpreter. For example, a “calculation” inter­

preter handles the “calculation” element for determining a value from an equation, a “rule 

reasoning” interpreter deals with the “rule” element. The whole set of elements is described 

later in Knowledge Representation Formats section;

. When a checking fails, the “modification interpreter” is called on to change some pa­

rameters, which is in fact a dependency/ iteration process. It follows a “failure design proce­

dure” which consists of a number of design slices to modify some parameters to satisfy the 

checking, and to change dependent parameters as well.

This set of multilevel, distributed control mechanisms reflects the complexity of design 

analysis process. Thus, it is powerful enough to handle the whole analysis process, and at the 

same time, it incorporates the flexibility for further development.
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o Knowledge Representation Formats

As described above and shown in Figure 5.6, there are basically four levels of knowl­

edge representation formats:

■ The Basic Description Elements so far have the following types with their standard formats, 

(key words are underlined):

O search a solution from an equation (or calculation)

(cal goal expression)

O look up a table for a parameter 

(look-up-table table-name known goal)

O choose a parameter according to some premises 

(rule goal known rule-set)

while in the rule sets, there are a number of rules in the form of: 

if: premises

then: conclusions

O determine a parameter by experience 

(default goal value)

O round off a number using some strategies, e.g. round a calculated rise program 

“pri = 108.43” into an integer 108° .

(round goal round-strategy)

O solve a parameter using a constraint 

(by.constraint goal constraint.name)

while constraints are in the form of:

(constraint.name goal known relation)

O determine a parameter from an initial value by an increase
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(inc parameter initial.value increase)

O find a parameter’s two nearest values from a data table

(interpolate table.name object.parameter.list the.parameter key.item conditional.items)

For example, a calculated cam factor 3.246 with cycloidal motion type determines two 

nearest cam factors from Table 6.10 as 3.46 and 2.86 at 30° and 35° pressure angles, through:

(interpolate ’cam.factors ’(cam.factor) 3.246press.angle ’(motion.type cycloidal))

This Basic Description Element set can be easily extended. At each expansion, a new 

format is created and a corresponding interpreter is developed accordingly. No change to the 

other parts is required. This gives great flexibility for further development.

Some examples of Basic Description Elements are:

(cal (rise.c.f / (rise.c.f+retum.c.f)) x remaining.prog)

(look-up-table ’cam.factors ’((pressure.angle. (motion.type. rise.motion)) ’cam.factor)

(round pri (strategy. nil))

(by.constrain re.11 constraint.d.re)

(constraint.d.re (re.ll re.hl) (dwl.12 dwl.h2) ((dwl.12=re.ll) (dwl.h2=re.hl)))

(rule pdl (nil) rule-setl)

in “rule-setl ”, there is one rule:

if: (a small dwell is required), and 

(this is at the beginning);

then : give it a (10)° program

(inc offset.e 0.5 0.1)

■ Each Design Slice defines a “goal” parameter and a design relation to solve it. There are 

two types of design slices: “solving” slices determine parameters and “checking” slices verify 

some goal parameters to ensure that these parameters meet certain relations. If the checking
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succeeds, the design continues. Otherwise, a failure design procedure is called in to modify 

the previous design, including dependent parameters. Their formats are:

O Solving Slice:

Name : name of this slice

Goal: the parameter to be designed

Known : circumstances under which this slice works

How-to-get-it: a sequential collection of basic elements to achieve the goal.

For instance,

Name: solving-ri.ss

Goal: pri (program of rise part in a cam)

Known : f<J> rise.motion, retum.motion, remainingprog)

How-to-get-it: 1. rise.c.f= (for-table ’cam.factors ’((pressure.angle . <t>) (motion.type . 

rise.motion)) ’cam.factor)

2. return.c.f= (for-table ’cam.factors ’((pressure.angle. 4>) (motion.type

. retum.motion)) ’cam.factor)

3. pri — (cal (rise.c.f / (rise.c.f+retum.c.f)) x remaining.prog)

4. pri = (round pri (strategy. nil))

O Checking Slice :

Name : name of this slice

Check.goal: the parameter to be verified

Known : circumstances under which this slice works

Checking relation : a design relation the parameter is supposed to comply with 

Failure design procedure : the design procedure called in when failure happens

For example,
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Name : checking-fy.cs 

Check.goal : 4> {pressure.angle)

Known : nil

Checkingrelation : 4> < 30.0°

Failure.design.procedure : check. dp

■ The “Design Procedure” defines the order of design slices used. Since there may be a num­

ber of design procedures to solve the same set of parameters, or the same design procedure 

might be used for different configurations and their parameters, it is devised as a representa­

tion level instead of being attached to the “knowledgeable configuration units”. Its format 

is designed as:

Name : name of the procedure

Domain : (which design domain it belongs)

Text-of-slice : a collection of design slices

For instance, a design procedure in the cam design case :

Name : program.dp 

Domain : (K.B.: caml)

Text-of-procedure : (solving-dl.ss solving-d2.ss solving-ri.ss solving-re.ss solving-r.p.ss 

solving-q.ss checking-q.cs)

■ The “knowledgeable Configuration Unit” is the uppermost level in this representation. It 

includes a configuration and its possible patterns of decomposition, the parameter set and 

a number of design procedures. The following structure is devised:

Name : the name of the knowledgeable configuration unit 

Configuration : configuration name 

Sub-configurations : list of sub-configurations
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Parameters : parameter set

Design procedure : the name of the design procedure 

An example of a knowledgeable configuration unit:

Name: cam

Configuration: (cam)

Sub-configurations: (dwelll conn.d.ri rise conn.ri.d dwell2 conn.d.re return conn.re.d)

Parameters: (pdl pd2 pri pre offset, e r.p)

Design-procedure: (((angular.velocity dwell.time rise.motion.type retum.motion.type ra- 

dius.base d.rise radius.follower) . program.dp) . . .)

The configuration tree of the analysis inherits the structure from the synthesis stage. 

It stores the values of all parameters achieved in the analysis. Thus, the transformation from 

an “empty” tree to a “full” tree is completed. This tree is the output from the analysis stage. 

Final printout and graphics output are extracted from this configuration tree.

The iterative process characterizes the design process at the analysis stage. This occurs 

when parameters of some configurations cannot be determined at once. It occurs more fre­

quently when some parameters are verified and the dependency / iteration model is called 

in. In this case, if a checking is not satisfied, the failure design procedure modifies the earlier 

design and dependent parameters. Each modification may cost several iterative processes.

The inheritance is intensively used in the achievement of parameters. When determin­

ing the “known” situation for solving a configuration in a certain level, the system uses pa­

rameters in its upper level configurations by inheritance.

The leaf nodes or the basic functional design units in the configuration tree are orga­

nized in a library, and supported by basic geometry features in a feature-based modelling
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system. Once the analysis process and the values of parameters are completed, graphic display 

of the product can be easily generated.

o Summary Of Analysis

The reasoning machines and knowledge representation formats presented so far form 

a multilevel representation method which is powerful enough to handle the large and diverse 

amount of analysis knowledge. The descriptive way to represent knowledge and develop spe­

cific design knowledge bases has been stressed and realized. The extendibility of the types 

of design knowledge formats is obtained by adding new interpreters and new formats in this 

distributed representation scheme. Therefore, this descriptive representation approach to 

design knowledge is effective in handling the complicated analysis process, and at the same 

time, is flexible enough to allow for further development.

5.2 MACHINE IMPLEMENTATION

First, the machine environment is briefly introduced. Then, the implementation at the 

machine level is described, covering issues like the concrete representation formats, feature 

modelling and the user interface, which were skipped in the conceptual implementation. Fi­

nally, the procedure to develop specific design systems from the shell is presented.

5.2.1 The Software And Hardware Environment

In this work , the Knowledge Engineering Environment shell — KEE and Common 

LISP on a SUN workstation were chosen as the software and hardware environment. KEE 

is an object-oriented programming tool with rule reasoning facilities. It is a very powerful 

supporting environment for knowledge engineering research. However, this does not mean 

that KEE can be used solely for developing expert systems.

Before further description proceeds, a brief introduction of KEE is necessary to lay
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some ground for the machine implementation description. Detailed KEE introduction can 

be found in the KEE manuals [39].

A Brief Introduction To KEE

KEE is an object-oriented expert system development tool. It is an integrated set of 

programming facilities (Figure 5.7) [71] that helps software developers to build knowledge

Objects ' 
Attributes

KEE pictures 
Active Images

TellAndAsk 
Mouse & Menu

Figure 5.7: The KEE programming facilities

based systems in many application domains. Of this variety of programming facilities, the 

knowledge representation is the core. The object-oriented programming and rule-based 

reasoning are two major tools for applications. The KEE software is written in Common LISP 

programming language which is a conventional Artificial Intelligence and Expert System de­

velopment language.

о Knowledge Representation:

Information from any application is organized into objects called “units” in KEE. There 

are two kinds of connections among units: “class-subclass” and “class-member”. Each unit
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has a number of attributes called “slots” which store values for these attributes. A slot has 

a number of properties called “facets”, such as an inheritance facet, a value class facet, and 

so on. This knowledge representation structure is the core of KEE. It is proven to be conve­

nient for knowledge base development.

o Object-Oriented Programming:

Object-oriented programming is an effective programming technique for application 

problems. It is fully supported by KEE. The “Method” is a piece of program about the behav­

ior of a unit, and is attached as a slot. By passing “Messages” among units, methods can be 

invoked to achieve problem solving. These messages ultimately control the behavior of ob­

jects and, thus, two types of control are possible: “centralized” and “distributed” control.

o Rule-Based Reasoning:

Another important tool in KEE is the rule-based reasoning. Rules offer a mode of rea­

soning in knowledge-based systems, which is typical of an expert system shell. They are effec­

tive in handling dependencies among facts. Rules are represented as IF — THEN format, 

meaning certain actions take place under specified conditions, and are organized under “rule 

classes” in KEE. There are a number of reasoning methods. KEE offers basic forward-chain­

ing and backward-chaining, and further development of reasoning is possible.

o Other Features:

There are three ways of interacting with KEE: “the mouse-and-menu interface” which 

is commonly used at the development and debugging stage; “programmatic KEE user func­

tions” which are similar in form and style of use to the commands in Common LISP, and thus 

can be integrated and executed in programs; “TellAndAsk language” provides an English- 

like syntax language to interact with KEE.

KEE provides a variety of tools for user interface development. The “Window System”
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is the basic ground of all user interface tools. “Active Images” provide a convenient and vivid 

means of indicating the reasoning status of knowledge bases.

“Active Values” are another way of giving objects behavior, commonly referred to as 

“Watchdogs” or “Demons”. When using an active value, a behavior is made an inherent part 

of the slot and this behavior executes automatically under pre-specified conditions.

“KEE Worlds” are a set of facilities provided by KEE for modelling and exploring dif­

ferent hypothetical situations that might arise in a knowledge base. A world represents an 

alternative state of a knowledge base or knowledge bases.

The “Truth Maintenance System (TMS)” is a facility provided by KEE for setting up 

and maintaining dependencies between facts. It is also called the “Assumption-based Ihith 

Maintenance System (ATMS)”.

Summary

From the machine environment point of view, the organization of this implementation 

can be illustrated as Figure 5.8. KEE supports the shell system, which further supports the 

specific design systems.

Specific Domain Design Systems

t
General Design Shell System

t
KEE & Common LISP

Figure 5.8 : Organization of the machine implementation

One issue that needs to be addressed here is that the machine implementation does not 

have to be based on KEE or any other expert system development tools. The conceptual im­

plementation could be realized by any programming facility, such as C language. Neverthe­
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less, KEE provides some features that facilitate the expert system development. Following 

are some of them which have been used in this work: 

o KEE has the rule format and corresponding reasoning facilities;

o KEE provides the object-oriented programming style, which organizes the knowledge base 

in objects and connects them by sending messages;

o Despite the above two major features, KEE also supports:

- Active Value, which is a convenient tool for implementing the “watchdogs” functions, 

which are usually used in the expert system development;

- Active Images and graphics plus the window system, which helps the user interface 

design.

5.2.2 Description Of Machine Implementation

The machine implementation basically follows the approach presented in the conceptu­

al implementation. Nevertheless, it is adapted to the specific KEE and LISP environment. 

Changes due to the machine level issues will be mentioned, together with the KEE and LISP 

features which cause these changes.

The machine implementation description is organized in the same way as the conceptu­

al implementation. Only those parts concerned with how to implement the proposed concep­

tual version on KEE are briefly described, while the repeating parts already explained in the 

conceptual version are skipped. Detailed implementation examples such as specifications, 

three basic synthesis relations, various design procedures and slices can be found in the Ap­

pendix.

The Whole Design Procedure and Specification Development

All specification items are stored in the slots of a special unit — “specification”. The 

synthesis accepts this specification unit, and outputs the configuration tree which is repre­
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sented in a number of units with unit-subclass structure. This configuration tree is transferred 

to the analysis stage. Then, the design proceeds to the end, until the analysis stage outputs 

its configuration tree which can be directed to a file and used for graphics output.

Synthesis

In both synthesis and analysis, the machine implementation of the knowledge represen­

tation scheme follows the scheme proposed in the conceptual implementation, consisting of 

two parts: the reasoning process and the knowledge representation formats.

o The Reasoning Process is implemented in LISP using methods, which roughly follows the 

algorithm presented in the section 5.1.3: the C.D.A.

o Knowledge Representation Formats are devised in similar formats presented in the last 

chapter.

■ Function-to-configuration relations are organized into units with slots described in the sec­

tion 5.1.3.

■ Configuration-decomposition relations are organized into rules supported by KEE rule 

facilities:

Name-of-rule : ID of the rule

Domain : defined by rule class

Premises : conditions + configuration

Consequences : constraints + sub-configurations

■ Function-checking relations are organized into rules:

Name-of-rule : ID of the rule

Domain : defined by rule class

Premises: conditions + sub-functions

Consequences : constraints + function
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■ The function and configuration dictionary is organized into a unit with sub-units as many 

as configurations and functions can have. Each unit has slots accommodating items such as 

name, type, explanation and some optional properties (refer to the section 5.1.3).

■ The configuration tree and the function tree are represented by a unit-subclass structure. 

Inheritance is realized by defining the proper inheritance properties.

■ The basic functional design units are organized in a pool of units. Each unit has its name, 

and its unique slots. (Sometimes there might be common slots among units). These slots rep­

resent their parameters.

Analysis

o The Reasoning Process:

Interpreters are programmed in LISP following the requirements for every interpreter 

listed in the section 5.1.4. Methods and active values are extensively used to realize the distri­

bution of the control process, in order to achieve the multiple level distributed control mecha­

nisms in the analysis.

o Knowledge Representation Formats:

■ “Knowledgeable Configuration Units”, “Design Procedures” and two types of design slices 

are represented in units with slots for the items described in the section 5.1.4.

■ “Basic Description Elements” are implemented directly from those described in the section 

5.1.4.

Basic Functional Design Units and “IPDM”

The basic design units are organized in a library and supported by a feature-based mod­

elling system. This feature-based modelling system is a part of a system called IPDM which 

has been developed by McMaster University FMRD (Flexible Manufacturing Research and 

Development) Centre. IPDM stands for Intelligent Product Design and Manufacture. It in­
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tends to facilitate the integration of mechanical product design and manufacturing, design 

for manufacturing, generative task planning, assembly planning and so on. A detailed intro­

duction can be referred to in references [26,34 & 43]. Here, only parts relevant to this project 

are described.

The feature-based modelling system provides a geometry features library and a Product 

Description language (PDL). A product is described by PDL which calls geometry features 

in the library to model the product. PDL provides a three level description: product, compo­

nent and feature; and a number of feature attributes, such as specifications, constraints, mate­

rial, operation and so on. The geometry feature library has a number of geometry features 

extracted from various mechanical product design domains. This feature library can be easily 

extended to cover new domains. For instance, it has been expanded, for the purpose of this 

project, to incorporate wedges used for various motion types in the cam design domain.

The basic functional design units are organized in a library with slots for default frames. 

For each basic design unit, the IPDM system provides a corresponding geometry feature. For 

example, a cycloidal wedge in the basic functional design unit library has a corresponding 

geometry feature in the IPDM with the same or similar structure.

The interaction between the basic design units library and the IPDM is achieved by an 

interface program. Therefore, when a basic design unit is generated with its parameters in 

the design system, its corresponding geometry feature is produced by the interface program. 

This is illustrated as Figure 5.9. The output file of all basic functional design units from the 

design system is transferred to an input file for IPDM in PDL format (Product Description 

Language) by the interface program.

For example, two files from the cam design system are shown in Figure 5.10 (Only parts 

of the files are illustrated, and the complete ones are attached in the Appendix). It should
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Figure 5.9 : Basic Functional Design Units Library and IPDM

be noted that non-geometric parameters are not transferred to the PDL file, and the hierar­

chy of configurations in the PDL file is derived from the configuration tree in the analysis.

User Interface

User interface of the shell system is developed by using active images and the window 

system. The screen is split into several parts with windows showing the design status. Figure 

6.4 and 6.11 show a synthesis window and an analysis window from the cam design system. 

Besides some general icons, the synthesis window mainly includes the “current function”, 

“current configuration”, “sub-functions” and “sub-configurations”, illustrating the basic 

four-step synthesis cycle; and the analysis window consists of “current configuration”, “cur­

rent configuration parameters”, “current design procedure”, “current design slice” and 

checking-related information, exposing the current ongoing analysis details.

Summary

A prototype shell system for the routine mechanical design activities has been devel­

oped based on the general design model and the conceptual implementation. It does not con­

tain any specific domain knowledge. Features of this shell system can be summarized as:

. The shell system is mechanical design process-oriented;

. Design knowledge bases can be developed descriptively;
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. The whole design process is characterized by three stages, loosely linked by file transfer; 

. The shell system is based on KEE and Common LISP, and supported by a feature-based

modelling system.

File output by the basic functional 
design units library PDL file

configuration: CAM-SYSTEM 
pressure.angle: 28.9 
angular.velocity: 125.66

PRODUCT cam-system 
{

component: cam; 
component: follower;

configuration: CAM 
pal: 10.0 
pd2: 108.0 
pri: 135.0 
pre: 107.0 
offsete: 0.5

}

COMONENT cam

feature: dwell 1; 
feature: rise; 
feature: dwell2; 
feature: return;
operation: (dwell 1 + rise + dwell2 

+ return)

configuration: SHM.retum 
s: 3.25 
beta: 108.0 
d: -2.0 
h: 5.0 
xO : 0.0 
yO : 0.0 
zO : 0.0
a: 0.0 
b : 0.0 
c: 243.0

FEATURE return

type: SHM 
orientation: {

movx=0;
movy=0;
movz=0;
rotx=0;
roty=0;
rotz=243;

parameter: {
11 =-2.0;
12 = 5.0;
13 = 3.25; 
al = 108.0;

Figure 5.10 : Comparison of a basic design unit file from the design system and IPDM
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5.2.3 How To Develop A Specific Design System

The procedure to develop a specific design system can be illustrated in the following 

points:

□cr Obtain an original “designer’s version” of design knowledge in a specific domain in 

which a specific design system is to be developed. It is a good idea to get this version based 

on some design examples. This version should be obtained from or verified by experienced 

designers, based on standards, codes and other documents.

[2] it? Re-organize and rearrange the knowledge in the designer’s version according to the 

shell knowledge representation scheme to make it easier to express. This results in the “shell 

scheme version” of design knowledge.

[3] tr Make copies of the “synthesis shell” and the “analysis shell”. Based on these two shells, 

the specific synthesis knowledge base and the analysis knowledge base are developed.

Create a “list of specification items and principal functions” based on the synthesis and 

the analysis knowledge bases.

[5] ir^ According to the synthesis knowledge representation formats, develop the synthesis 

knowledge base from the “shell scheme version”.

[6] ̂  According to the analysis knowledge representation formats, develop the analysis 

knowledge base from the “shell scheme version”.

[7] it3“ Debug the two knowledge bases, by loading the “shell knowledge base”, which con­

tains some general facilities for conducting the running process.

This procedure shows rough steps in developing a specific design system from the shell 

system. (In Figure 5.11, the numbers together with the arrows show the sequential steps in 

the development procedure listed above.)
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CHAPTER 6:
SPECIFIC DESIGN SYSTEMS

In this chapter, two domain specific design systems developed based on the shell, the 

cam system and the bolted flange system, are described. The purpose is, of course, not only 

to develop two design packages, but also to show that the shell does help to construct domain 

specific systems, by implementing the above two examples in totally different design domains.

To compromise between proving the feasibility of the shell approach by real design 

cases and avoiding the time consuming details at this experimental stage, the scope of these 

design processes is imposed (Table 6.1 and 6.11 illustrate the scopes of both systems). It 

should be noted that this knowledge base scope does not mean the representation scheme 

is limited. Once the typical features in the design process have been included, further develop­

ment of the system is a simple knowledge accumulation process without any change in the 

representation scheme.

6.1 CAM DESIGN SYSTEM

6.1.1 Development

Objective and Scope

A typical routine mechanical design process, the cam design, is chosen as the first exam­

ple (Figure 6.1). The decision is made based on the fact that the cam design process is not 

too involved in details, but has relatively complete features which characterize the overall 

mechanical design process. (Here, a cam is regarded as consisting of several sections: rise, 

dwell, return and the like, and a special connection between them comprised of line partial 

configurations. Each section is selected based on a variety of motion types). Nevertheless,
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CONFIGURATIONS :

cam-system, consists of 
follower 
cam, consists of

rise section 
dwell 1 section 
return section 
dwell2 section
connection between dwell 1 & rise 
connection between rise & dwell2 
connection between dwell2 & return 
connection between return & dwell 1

PARAMETERS :

pdl: dwell 1 program
pri: rise program
pd2 : dwell2 program
pre: return program
offset.e: offset
R.P : radius of pitch circle
x0,y0,z0 : translation of x, y, z
A,B,C : rotation of x, y, z
press.angle : pressure angle
S : starting length of one part
beta : total degree of one part
d : total rise of one part
start.lxy : connection edge length 

e.g. start.112 is part2 length of 
connectionl(between dwelll&rise)

H : cam width
R.F : radius of follower
H.F: follower width

Figure 6.1 : A cam sketch

there is a broad variation in specifications, motion types, possible configurations, selection 

from data tables and so on, even in a small piece of the design process. Further restriction 

of this knowledge abundance is necessary. Table 6.1 shows the current system scope. Beyond 

this capacity, the system will display: “knowledge base incomplete”.

The design knowledge is based on references [55,65 & 74]. From now on, the develop­

ment follows step by step the procedure proposed in the Chapter 5.
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Table 6.1 : Scope of Cam Design System
bold — implemented 
italic — not implemented

motion types:
cycloidal, simple harmonic, parabolic and uniform
modified trapezoidal, polinomial, double harmonic and the like 

one part:
consisting of single motion type
consisting of sub-parts of various motion types

follower type : 
roller type, not detailed
other types; no standard follower is selected

data tables & multiple choices :
a portion of them 
not complete

For example: only a few rows of the cam factor table (Table 6.10) are implemented

‘ ‘Designer’s Version”

An efficient way to describe the design knowledge is to follow some examples and write 

down all “steps” that designers go through and “means” that designers use to achieve the 

results. The cam “designer’s version” has been listed in the section 3.6 (from “problem state­

ment” to “checking undercutting”), which is summarized from an example given in [65].

‘‘Scheme Version”

The above “designer’s version” is the written form of the human designer’s working 

process. Arrangements are necessary to fit it into the knowledge bases formatted by the pro­

posed representation scheme. It can be better understood as “trying to think in the represen­

tation scheme way”. The three stages are as follows:

o Specification Development

The following specification list is created to incorporate all items encountered so far. 

Nevertheless, it is expandable (Table 6.2).
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Table 6.2 : Cam Specification List

item : CYCLE.TIME (the time for a cycle) ;
item : R.B (radius of base circle) ;
item : ANGULAR.VELOCITY (angular velocity) ;
item : RISE.SUGG.MOTION (suggested rise motion) ;
item : R.FOLLOWER (radius of the follower) ;
item : RISE.TIME (the time for rise motion) ;
item : RISE.REQ (the requirements for rise motion) ;
item : RISE (the rise, e.g. 2") ;
item : DWELL2.SUGG.MOTION (suggested motion for upper dwell) ; 
item : DWELL1.SUGG.MOTION (suggested motion for lower dwell) ; 
item : DWELL1.TIME (the time for lower dwell) ;
item : DWELL1.REQ (the requirement for lower dwell) ;
item : DWELL2.REQ (the requirement for upper dwell) ;
item : DWELL2.TIME (the time for upper dwell) ;
item : RETURN.TIME (the time for return) ;
item : RETURN.REQ (the requirement for return) ;
item : RETURN.SUGG.MOTION (suggested motion for return) ;
item : PRESS.ANGLE (pressure angle) ;
item : MOTION.PATTERN (motion pattern, e.g. DRD) .

o Synthesis

The principal function can be defined as converting motion from “rotation to transla­

tion”.

A cam system can serve the purpose of converting rotation to translation, which consists 

of a cam and a follower.

The motion pattern can be decided as “DRD” or Dwell-Rise-Dwell-return-dwell 

from the specifications. There are four parts in a cam with “DRD” pattern: dwelll, rise, 

dwell2, return.

Since no steps in acceleration are allowed in the rise, but steps in jerk are acceptable,



107

the cycloidal motion can be chosen for the rise motion. Since there are no specific require­

ments for the return, SHM (Simple Harmonic Motion) can be selected for the return.

A disc follower is selected by the designer; this is the type commonly used if there are 

no special requirements.

o Analysis

Unlike synthesis, the analysis part (from “icy continue” to the end ) in the “designer’s 

version” basically follows the design process step by step, which can be represented naturally 

by the representation scheme. Therefore, no further arrangements are necessary.

Synthesis Knowledge Base Development

o Make a copy of the “synthesis shell” and rename it as “cam synthesis knowledge 

base”. This shell includes some general structures, such as the three basic relations. These 

structures will be illustrated by later examples; a list of them is given in Table 6.3.

o Define the terms for configurations and functions, and create the tree structures for 

them. This is a key part in the knowledge base development. These terms are the basis of 

the knowledge representation, while the trees set the configuration decomposition pattern 

and help organize the parameters.

It should be noted that the trees in Figure 6.2 only describe one configuration aggrega­

tion pattern. Other patterns can be added to the knowledge base, as the implementation con­

tinues and the system scope is broadened.

Configuration and function terms are saved in the “configuration dictionary” and 

“function dictionary”, which may be referred to in later development. Figure 6.6 illustrates 

the complete configuration dictionary.

o Develop three basic relations: “f-to-c”, “c-subc” and “subf-f”. Sample pieces are 

shown in Figure 6.3 (left portion), Table 6.4, Table 6.5 and Table 6.6.
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Thble 6.3 : Synthesis shell general units 

c-suc.rules
configuration.dictionaiy
configuration.tree
current-synthesis-cycle
error.message
f-c.pairs
function.dictionary
function.required
function.tree
keepicture.instances
specification
stack------configuration.stack

------possible.configuration.stack
sub-f.rules
syn-cycle-display
syn.running.memory

Attention should be paid to the constraints used in the connection design. Constraints 

usually come with the “c-subc” rules in the synthesis process. Table 6.6 illustrates an example, 

which brings a constraint: “cons.l”, stating “start.ll2 = start.lll” between lower dwell part 

and rise part.

After the above steps, the synthesis knowledge base should be complete. Figure 6.4 

shows its various units.

o Load the shell knowledge base, which contains some general control structures to 

conduct the running of specific knowledge bases. There are two modes to be selected to de­

bug the synthesis knowledge base (Figure 6.5). One is simply going through all the design 

process without any intervention, the other proceeds with stops at every basic synthesis cycle.



109

The Graph of the CONFIGURATION.TREE Unit in the CAM1 Knowledge Base

CONFIGURATION.TREE- -CAM-SYST1

lRisq
'FOLLOWER-- -- -- -- CYLINDER.GEOMF

.CONN

__IWELlft
—4.TNE31
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.ri.r<5ÏÏ] ^-CONN.22

LINE31.GEOMF 
UNE32.GE0MF seturni—s
[WELLl]-- -- -- -- 1
LINE11.GEOMF 
UNE12.GEOMF

-DVELL2.GEOMF

SEM.RETURN.GEOMF 
DYELL1.GEOMF

LINE41.GEOMF
-CYCLOIB.RISE.GEOMF

LINE42.GEOMF 
LINE21.GEOMF

LINE22.GEOMF

(Output) The Graph of the FUNCTION.TREE Unit in the CÀM1 Knowledge Base

FUNCTION.TREE- -ROTATION-TRANSLATII

DRIYINI

CONNECTING.B. RE­

CONNECTING. R.RI*

ONNECTING.il.

FOLLOWING-

CONNECTING. 
CONNECTING. 

CTING. 
CTING. 
CTING. 

CONNECTING. 
CONNECTING. 
CONNECTING.

OTELUNG1-- -- -- -- hasicm
IVELLING2-- -- -- -- iasic!95
RETURNING-- -- -- -- 4asic892

‘RISING-- -- -- -- iasic898
basic889

. _^CONNEC 
^^CONNEC

a»aiiw.K.»<2S

-Iasicl94
0F.RETURN1-- -- -- -- kasicltt
0F.DWELL1-- -- -- - R«ic988
OF.RISE-- -- -- -- kasic«99
0F.WELL12- 
0F.RETUBN2- 
0F.WELL21- 
0F.RISE2—
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-haslctSO
-iasic«91
-basic««

-hasic«97

Figure 6.2 : The configuration tree and the function tree 

It is suggested that the “step by cycle” mode be selected at this moment, so that any failure 

can be easily located.

The output of synthesis consists of two trees: a configuration tree and a function tree. 

They should be identical to the ones created “manually” at the very beginning of the imple­

mentation (Figure 6.2).

It should be explained that the above development process solely depends on the KEE

environment. No effort is made to improve the user interface.

ONNECTING.il
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; Jii(ûivtput)nieROTA^ ÏB35SB3S3S38SS85S333SS5SS358588S8S858333385833S8838S555535533385!

ROTATION-TRANSLATION.P in knowledg Unit: CAM2.S in Knowledge base
e base SYNTHESIS.KB ANALYSIS.KB

1 Created by chen on 7-9-89 13:51:45 Created by chen on 8-29-89 16:33:08
¡Modified by chen on 8-3-89 11:40:51 Modified by chen on 11-13-89 16:26:19
i Member Of: F-C.PAIRS Member Of: C.STATIC

Own slot: C.F.MATCH from F-C.PAIRS Own slot: CONFIGURATION from CAM2.S
Inheritance: METHOD Inheritance: OVERRIDE.VALUES
Value Class: METHOD Comment: "configuration on which design
Comment: "match, conf iguration. with, funcii Knowledge is attached"

on" Values: CAM
Values: C-F-MATCH

Own slot: CONN.SUBC from C.STATIC
1 Own slot: CONFIGURATION from ROTATION-T] Inheritance: OVERRIDE.VALUES

Inheritance: OVERRIDE.VALUES Comment: "connection among subconfigura
Values: CAM-SYSTEM tions"

Values: UNKNOWN
¡Own slot: CONSTRAINTS from F-C.PAIRS

Inheritance: OVERRIDE.VALUES Own slot: PARAMETERS from CAM2.S
Comment: "constraints of this f-c pair" Inheritance: OVERRIDE.VALUES
Values: UNKNOWN Comment: "parameters of this configurat 

ion"
i Own slot: DOMAIN from F-C.PAIRS Values:

Inheritance: OVERRIDE.VALUES (PD1 PD2
i Comment: "Knowledge.in.this.domain" PRI

Values: CAM1.DESIGN PRE
OFFSET.E

j Own slot: F.C.MATCH from F-C.PAIRS R.P)
Inheritance: METHOD
ValueClass: METHOD Own slot: PROCEDURE from CAM2.S

i Comment: "method.for.F-C.matching" Inheritance: OVERRIDE.VALUES
Values: F-C-MATCH Comment: “design procedure to design th 

is configuration"
Own slot: FUNCTION from ROTATION-TRANSU Values:

Inheritance: OVERRIDE.VALUES (((ANGULAR. VELOCITY
Comment: “function.of.this.F-C.pair" DWELL2.TIME
Values: ROTATION-TRANSLATION RISE.MOTION.TYPE

RETURN.MOTION.TYPE R.B
Own slot: SUDC-SUDF from F-C.PAIRS R.FOLLOWER RISE RISE)

Inheritance: METHOD . PROGRAM.DP))
ValueClass: METHOD

i; Comment: "method, of .matching, all. subconf: Own slot: SUBCONFIGURATION from CAM2.S
1 guration.with. all. subfunctions" Inheritance: OVERRIDE.VALUES

Values: SUBC-SUBF-MATCH

y

:•

Comment: "sub conf iguration of this conf 
iguration"

Values:
(DWELL1 CQNN.D.RI

CONN.RI.D
DWELL2
CONN.D.RE
RETURN
CONN.RE.D)

Figure 6.3 : A “f-to-c” relation (left) and a knowledgeable configuration unit (right)
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Table 6.4 : A “c-subc” rule

(risel.cs
(if (the rise.req of all specification is (no steps in acceleration steps in jerk)) 

(the configuration of current-synthesis-cycle is rise)
then
(the subconfiguration of current-synthesis-cycle is (cycloid.rise.geomf))
(the constraints of current-synthesis-cycle is ((rise.motion.type . cycloidal))))).

Table 6.5 : A “f-subf” rule

(driving3.sf
(if (the subfunction of current-synthesis-cycle is (dwellingl connecting.d.ri rising 

connecting.ri.d dwelling2 connecting.d.re returning connecting.re.d))
(the motion.pattem of all specification is DRD)

then
(the function of current-synthesis-cycle is driving)))

Table 6.6 : A “c-subc” rule with constraints

(conn.d.ri.cs
(if (the configuration of current-synthesis-cycle is conn.d.ri) 
then
(the subconfiguration of current-synthesis-cycle is ’((conn. 11 partial dwell 1) 

(conn. 12 partial rise)))
(the constraints of current-synthesis-cycle is

’((cons.l (start.112) (start.lll) start.112 start.111 equal)))))
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KHä The Graph of the CAM1 Knowledge Base
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Figure 6.4 : Portion of cam synthesis knowledge base
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Analysis Knowledge Base Development

o Make a copy of the “analysis shell” and rename it as “cam analysis knowledge base”, 

which consists of general structures shown in Table 6.7. These structures will be illustrated 

by later examples.

Tàble 6.7 : Analysis shell general units 

c.static
checking.slice
configuration.tree
design.procedures
display.av
keepicture.instances
monitor.para.av
parameter.dictionary
parameter.nomenclature
r.m
solving.slice

o Define parameters and organize them according to configurations. This is an impor­

tant step in the knowledge base development. Once the parameters are defined in “parame­

ter nomenclature”, confusion is unlikely for later implementation (Table 6.8).

Table 6.8 : Parameter nomenclature

Parameter In “Designer’s Version” Parameter in K.B. Brief Explanation

top-dwell pdl program of dwell 
at the top of rise

press.angle pressure angle

A configuration is attached to a number of parameters conveniently and naturally. This 

attachment is more or less subjective, depending on the knowledge engineer’s understanding 

and organizational style. This is also the content of the knowledgeable configuration units.
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o Knowledgeable configuration units (called “c.static”s in the knowledge base)

There is a one-to-one relation between a configuration and its “astatic”. One configu­

ration must have at least one “c.static”. Figure 6.3 (right portion) shows a cam “c.static” ex­

ample with six parameters, the decomposition pattern and a design procedure, “program.dp” 

attached to it.

o Design procedures in knowledgeable configuration units

These procedures are created by a program in the form of ((conditions. procedure) | 

more), once the content of a procedure is available. Every “c.static” has at least one design 

procedure for its parameters. Otherwise, a default design procedure “no.action” should be 

attached to it, which omits this configuration. Figure 6.6 shows two examples.

As the implementation has shown so far, the solving and checking slices should be 

created by the time the design procedure is being developed. Furthermore, both should be 

available when a “c.static” is generated. However, this procedure is not exactly sequential. 

All of them may need to be considered at the same time. Therefore, the actual development 

procedure is an iterative process, starting from slices to procedures to “c.static”s.

o Solving and checking slices

Corresponding to each parameter, there will be at least one solving slice. Solving slices 

are written by using the basic description elements and following the “scheme version”. No 

special organizational effort is needed. Figure 6.7 shows a solving slice.

Whenever there is a checking relation in the design process, there is a checking slice. 

In Figure 6.8, the “failure.procedure” is activated, when the “checking.criteria” fails. The 

“fire.status” indicates whether or not the dependent parameters should be modified, since 

sometimes, the designer may wish them not to be modified. This item simply gives one more 

option. The failure iteration process can be best illustrated by an example shown in Table 6.9.
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The PROGRAM.DP Unit in ANALYSIS .KB Ki Í ! ! The NO.ACTION.DP Unit in ANALYSUnit: PROGRAM.DP in Knowledge BaseANALYSIS .KBCreated by chen on 8-29-89 16:43:57Modified by chen on 9-9-89 17:56:31Member Of: DESIGN.PROCEDURES
Unit: NO.ACTION.DP in Knowledge base ANALYSIS .KBCreated by chen on 9-9-89 11:51:35 Modified by chen on 8-30-90 23:41:02Member Of: DESIGN.PROCEDURESOwn slot: TEXT from PROGRAM.DPInheritance: OVERRIDE.VALUESComment: "the text of the procedure"Values: (SOLVING-D1.SS SOLVING-D2.SS SOLVING-RI. SS SOLVING-RE.SS SOLVING-R.P.SS SOLVING-PHI.SS CHECKING-PHI.CS)

Own slot: TEXT from NO.ACTION.DP Inheritance: OVERRIDE.VALUESComment: "the text of the procedure" Values: (NOTHING.HAPPEN.SLICE)

J1Í "(Output) îhe CÄ41.D Unit in SŸNTHÈSÏÎï.KB Knowledge BaseOwn slot: TEXT from CÄM1.DInheritance: OVERRIDE.VALUES Comment: "text.of.the.configuration"Values: ((CAM-SYSTEM . NQNBASIC) (CAM . NONBASIC)(FOLLOWER . NONBASIC)(DWELL1 . NONBASIC)(DWELL2 . NONBASIC)(RISE . NONBASIC)(RETURN . NONBASIC)(DWELL1.GEOMF . BASIC)(DWELL2.GEOMF . BASIC) (SHM.RISE.GEOMF . BASIC)(SHM.RETURN.GEOMF . BASIC) (CYCLOID.RISE.GEOMF . BASIC) (CYCLOID.RETURN.GEOMF . BASIC) (CYLINDER.GEOMF . BASIC) (CONN.D.RI . NONBASIC) (CQNN.RI.D . NONBASIC)(CONN.D.RE . NONBASIC)(CONN.RE.D . NONBASIC)(CONN.11 . NONBASIC)(CONN.12 . NONBASIC)(CONN.21 . NONBASIC)(CONN.22 . NONBASIC)(CONN.31 . NONBASIC)(CONN.32 . NQNBASIC)(CONN.41 . NONBASIC)(CONN.42 . NONBASIC)(LINE11.GEOMF . BASIC)(LINE12.GEOMF . BASIC)(LINE21.GEOMF . BASIC)(LINE22.GEOMF . BASIC)(LINE31.GEOMF . BASIC)(LINE32.GEOMF . BASIC)(L3NE41.GEOMF . BASIC)(LINE42.GEOMF . BASIC))
Figure 6.6 : A normal design procedure (upper left), a “no.action” procedure (upper right) 

and the configuration dictionary (lower)
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Output) The SOLVING-RI.SS Unit in CAM1.ANA Knowledge Base¡Unit: SOLVING-RI.SS in Knowledge base CAM1.ANA ¡¡Created by chen on 8-29-89 16:50:38 ¡¡Modified by chen on 9-5-89 14:29:47 I Member Of: SOLVING.SLICE
¡ Own slot: GOAL from SOLVING-RI.SS Inheritance: OVERRIDE.VALUES Comment: "the goal of this solving design slice"

Values: PRI= Own slot: HOV.TO.GET.IT from S0LV1NG-RI.SS Inheritance: OVERRIDE.VALUES| Comment: "the design method to achieve the goal"
; Values:

((SETQ RISE.C.F
(FOR-TABLE.GNE 'CAN.FACTORS

'((PRESS.ANGLE . PRESS.ANGLE)
(MOTION.TYPE . RISE.MOTION.TYPE))

'(CAM.FACTOR)))
(SETQ RETURN.C.F (FOR-TABLE.ONE 'CAM.FACTORS

'((PRESS.ANGLE . PRESS.ANGLE)
(MOTION.TYPE . RETURN.MOTION.TYPE)) 

'(CAM.FACTOR)))
(SETQ PRI (CAL (/ (* (- 360 PB1 PD2) RISE.C.F)

(+ RISE.C.F RETURN.C.F))))
(SETQ PRI (ROUND.N PRI)) 

i PRI)¡Own slot: INTERPRETER from SOLVING.SLICE Inheritance: METHOD ValueClass: METHODComment: "interpreter for solving slice"
Values: SOLVING-INTERPRETER¡ Own slot: KNOWN from SOLYING-RI.SS Inheritance: OVERRIDE.VALUESComment: "Known parameters or premises for solving this parameter"

= Values:
((SETQ RISE.MOTION.TYPE

(GET.PARA 'RISE 'RISE.MOTION.TYPE))
¡; (SETQ PRESS.ANGLE (GET.PARA 'SPECIFICATION

'PRESS. ANGLE))
(SETQ RETURN.MOTION.TYPE (GET.PARA 'RETURN

'RETURN.MOTION.TYPE))
(SETQ FBI (GET.PARA NIL 'PD1))

I (SETQ PD2 (GET.PARA NIL 'PD2)))

Figure 6.7 : A solving slice

HOV.TO.GET.IT
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Output) The CHECKING-PHI.CS Unit in CAM1.ANA Knowledge Base
¡iUhit: CHECKING-PHI.CS In knowledge base CAM1.ANA 
| Created by chen on 9-8-89 14:25:59 
¡Modified by chen on 11-11-89 15:30:03 
li Member Of: CHECKING.SLICE

I Own slot: CHECK.CRITERIA from CHECKING-PHI.CS 
Inheritance: OVERRIDE.VALUES

i Comment: "criteria for checking" iii
i Values: ih

((<= PRESS.ANGLE 30.0))

¡ Own slot: CHECK.GOAL from CHECKING-PHI.CS 
Inheritance: OVERRIDE.VALUES
Comment: "the object of checking" I

| Values: PRESS.ANGLE J

¡Own slot: FAILURE.PROCEDURE from CHECKING-PHI.CS 
Inheritance: OVERRIDE.VALUES
Comment: "the design procedure of failure handling" |
Values: CHECK.PHI.DP i|f

¡Own slot: FIRE.STATUS from CHECKING-PHI.CS 
Inheritance: OVERRIDE.VALUES

ii Value Class: iii
i (ONE. OF LAZY ACTIVE) ii|

Comment: "modification status of all related parameters, whether "active" c ii 
i r "lazy“" ¡0

Values: ACTIVE j

¡ Own slot: INTERPRETER from CHECKING.SLICE 
Inheritance: METHOD 
Value Class: METHOD
Comment: "the interpreter for checking" iii
Values: CHECKING-INTERPRETER

¡Own slot: KNOWN from CHECKING-PHI.CS 
Inheritance: OVERRIDE.VALUES

i Comment: "all knowns for checking" i|i
ii Values: ii|

((SETQ PRESS.ANGLE iii
(GET. PARA NIL JPRESS.ANGLE) ) ) ii|

Figure 6.8 : A checking slice
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Ihble 6.9 : ILLUSTRATION OF RUNNING PROCESS

The following frames are a part of a cam design process with step-by-step informa-

tion (one frame is a design step), which mainly illustrates the iterative process due to the 

pressure angle checking relation: (pressure angle < given limit). There are three columns 

in the following piece: “kb.items” and “parameter.status” are obtained from the analysis 

running windows shown in Figure 6.11 which include current.configuration, current.proce-

dure, current.design.slice, current.design.goal, checking.slice, current.parameters; and “ex-

planation” gives comments on the running process.

KB.ITEMS PARASTATUS EXPLANATION

current, configuration: (pd1 nil) ; a configuration is selected
cam (pd2 nil)

(pri nil)
(pre nil)
(offset, e nil)
(r.p nil)

; its parameters set is shown 
automatically, which includes 
programs for cam portions:
dwelU, dwell2, rise, return 
and offset, pitch circle radius

KB.ITEMS PARA.STATUS EXPLANATION

current, procedure: 
prog ram.dp 

.solving-d1 .ss 

.solving-d2.ss 

.solving-ri.ss 

.solving-re.ss 

.solving-r.p.ss 

.solving-phi.ss 

. checking-phi. cs

; a design procedure is selected

KB.ITEMS PARA.STATUS EXPLANATION

current, design, slice: 
solving-dl.ss 

.goal: PD1 

.how-to:
1. rule reasoning: 

if: a small dwell is

(pd1 10)
(pd2 nil)
(pri nil)
(pre nil)
(offset.e nil)
(r.p nil)

; the slice searches rules, 
this rule is selected due to 
the “small dwell” in specification

; notice the parameter status 
change

required;
then: assign it 10°
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KB.ITEMS PARA.STATUS EXPLANATION

current, design.slice: (pd1 10) ; the slice first calculates pd2,
solving-d2.ss (pd2 108) then rounds it up.

.goal: PD2 (pri nil)

.how-to: (pre nil)
1.pd2=angular.v * (offset.e nil)

dwelfe.time
2. round pd2

(r.p nil)

KB.TTEMS PARASTATUS EXPLANATION

(current.design, slice: (pd1 10) ; slices: solving-ri.ss,
solving-ri.ss (pd2 108) solving-re.ss,
• • • (pri 135) solving-r.p.ss

(pre 107) are not detailed here
solving-re.ss (offset.e nil) ; the new parameter status

(r.p 2.75) is shown

solving-r.p.ss
)

KB.ITEMS PARASTATUS EXPLANATION

current.d esign. slice: 
solving-phi.ss 
.goal: press.angle 
.how-to:

1. f.rise=r.p*pri I rise
2. ((press.a1 cam.f1) 

(press.a2 cam.f2)) = 
interpolate(’cam. factors 
f.rise ’press.angle 
’motion.type)

3. press.angle=press.al + 
(press.a2 - press.al) * 
(f.rise-cam.fl) I (cam.f2 - 
cam.f1)

(pd1 10)
(pd2 108)
(pri 135)
(pre 107)
(offset.e nil)
(r.p 2.75)

OTHER.PARA 
(press.angle 33.16)

; the second step obtains 
two nearest cam factors 
from the cam factor 
table according to f.rise

; press.angle is a cam-system 
parameter. Previously, it was 
assumed according to limit 
given in specification (30). 
Now, it’s changed to 33.16.
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KB.ITEMS PARA. STATUS EXPLANATION

current, design.slice: 
checking-phi.ss 

.goal: press.angle 

.criteria: 
press.angle < 
press.angle.limit 

. failure.procedure: 
check-phi.dp

(pd1 10) 
(pd2 108) 
(pri 135) 
(pre 107) 
(offset.e nil) 
(r.p 2.75)

OTHER.PARA 
(press.angle 33.16)

; this checking relation fails, 
because 33.16 not < 30.
The failure procedure is 
invoked.

; the “checking.interpreter” 
is called, which executes 
the failure procedure and 
modifies dependent parameters, 
then the interpreter verifies 
the checking relation again.
This iteration continues, until 
the checking criteria are met.

KB.ITEMS PARASTATUS EXPLANATION

current.procedure: ; a failure design procedure
check-phi.dp is invoked.

.solving-e.ss

.solving-e.phi.ss

KB.ITEMS PARASTATUS EXPLANATION

current.design.slice: (pd1 10) ; set offset.e at 0.5,
solving-e.ss (pd2 108) if later iteration occurs, 

offset increases by 0.1.goal: offset.e (pri 135)
.how-to: (pre 107) each time

1. increase offset.e (offset.e 0.5)
from 0.5 by 0.1 
each time.

(r.p 2.75)

OTHER.PARA
(press.angle 33.16)

KB.ITEMS PARA.STATUS EXPLANATION

current.design.slice: (pd1 10) ; after offset.e, this slice obtains
solving-e.phi.ss (pd2 108) press.angle 28.09.

.goal: press.angle 

.how-to: */o
1. y=(r.b2-e2) +yp
2. press.angle =

(pri 135)
(pre 107)

; parameters Vfmax, w, r.b, y 
are already determined in p

(offset.e 0.5)
(r.p 2.75)

earlier stage.

(Vfmax-ew)iyw OTHER.PARA
(press.angle 28.09)
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KB.ITEMS

current, design, slice: 
checking-phi.ss 

.goal: press.angle 

.criteria: 
press.angle < 
press.angle.limit 

. failure.procedure: 
check-phi.dp

PARA.STATUS

(pd1 10)
(pd2 108)
(pri 135)
(pre 107)
(offset.e 0.5)
(r.p 2.75)

OTHER.PARA 
(press.angle 28.09)

EXPLAN ARON

; the press.angle is rechecked, 
and criteria are met.
Thus, the failure procedure 
has successfully modified 
the design.

; all dependent parameters 
have to be checked.
The dependent parameters 
are: pri, pre.
(In this case, pri and pre are 
obtained through the pressure 
angle limit (according to the 
designer’s knowledge version) 
so even these two parameters 
are recalculated, the same 
results remain.)

KB.ITEMS PARA.STATUS EXPLANATION

(current.design.slice: (pd1 10) ; slices for parameters: pri & pre
solving-ri.ss (pd2 108) are reinvoked. But as explained,

solving-re.ss
)

(pri 135)
(pre 107)
(offset.e 0.5)
(r.p 2.75)

OTHER.PARA
(press.angle 28.09)

results remain the same.

The design process for the cam using procedure “program.dp” has ended.

Two basic description types: data tables and rules, are given some detailed explanation 

here. The rule facility in KEE is used for the data tables, which basically represents one row 

in a rule with all columns as rule items. Two special units need to be created for each table. 

One is the “table header”, which includes all items (table columns) appearing in the table, 

the other is the rule class, which clusters all rules or rows in the table. One example about
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the cam factor table is given in Table 6.10.

Table 6.10 :The cam factor table

Pressure.Angle Uniform Modified.Uniform SHM Parabolic/Cycloida
10 5.67 5.84 8.91 11.34
15 3.73 3.99 5.85 7.46

30 1.73 2.27 2.72 3.46

35 1.43 2.06 2.24 2.86

Shown in Figure 6.9 are units for the table header and the rule class.

The rules can also be represented in this manner: a rule header and a rule class, with 

the same basic element format. However, it is also possible to write rules in a free format 

within rule classes.

After the above steps, the analysis knowledge base has been completed with units 

shown in Figure 6.10.

o Load the shell knowledge base (if it has not been loaded), run and debug the analysis 

knowledge base. As is the case in the synthesis, there are several modes (shown in Figure 

6.11). “By configuration” is recommended at this stage.

The user interface of the above analysis development solely depends on the KEE facili­

ties, as is the case in the synthesis process.

So far, the knowledge bases (both synthesis and analysis) for the cam design system have 

been developed.
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Hfl The Graph of the CAM1.ANA Kn

CAM.FACTORS 
CAM.FACTORS RULES-z : CAMF1.R

-CAMF2.R

TUnit: 1
[Create«
|Modifi<I J

Output) The CAM.FACTORS Unit in CAM1.ANA

KEE Window

CAM.FACTOBS in knowledge base CAM1.ANA 
¡Created by chen on 8-31-89 16:51:30 
Modified by chen on 11-29-89 23:08:52 

Member Of: ENTITIES in GENEBICUNITS

cam factors

Own slot: CAM.FACTOB from CAM.FACTOBS 
Inheritance: OVERRIDE .VALUES 
Comment: " cam factor"
Values: UNKNOWN

Own slot: MOTION.TYPE from CAM.FACTOBS 
Inheritance: OVERBIDE .VALUES 
Comment: "type of motion"
Values: UNKNOWN

Own slot: PRESS .ANGLE from CAM.FACTOBS 
Inheritance: OVERRIDE.VALUES 
Comment: "pressure angle"
Values: UNKNOWN

Own slot: RULES .NAME from CAM.FACTORS 
Inheritance: OVERRIDE .VALUES It

Kedit #1
Comment: "the name of rule class for this table 
Values: CAM.FACTORS.ROLES

((CAMF1.R ------------------------
(IF (THE MOTION.TYPE OF CAM.FACTORS IS|CYCLOIDAL)

(THE PRESS.ANGLE OF CAM.FACTORS IS 30.0)
THEN
(THE CAM.FACTOR OF CAM.FACTORS IS 3.46))) 

(CAMF2.R
(IF (THE MOTION.TYPE OF CAM.FACTORS IS SHM)

(THE PRESS.ANGLE OF CAM.FACTORS IS 30.0)
THEN
(THE CAM.FACTOR OF CAM.FACTORS IS 2.72)))\

Figure 6.9 : Cam factor table, table header structure and rule structure
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Figure 6.10 : Cam analysis knowledge base
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6.1.2 A Cam Design Example

To show the performance of the developed system, one design example is given with 

the following specifications (an excerpt). Two examples are given in the Appendix with the 

complete listings.

item .CYCLE.TIME; value : 0.05;
item : R.B; value : 1.25;
item : R.FOLLOWER; value : 0.5;
item : RISE.REQ; value : (NO STEPS IN ACCELERATION STEPS IN 

JERK);
item : RISE; value : 2.0;
item : DWELL1.REQ; value : (A SMALL DWELL);
item : DWELL2.T1ME; value : 0.015;
item : RETURN.SUGG.MOTION; value : SHM;
item : PRESS.ANGLE; value : 30;
item : MOTIONPATTERN; value : DRD;

Apart of parameters and a graphics output (Figure 6.12) are shown below (the com­

plete parameters are given in the Appendix) :

Configuration: CAM-SYSTEM 
ANGULAR. VELOCITY: 125.663605 
PRESS.ANGLE: 28.904034

Configuration: CAM 
PD1: 10.0 
PD2: 108.0 
PRI: 135.0 
PRE: 107.0 
R.P: 2.75
OFFSET.E : 0.5
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Viewports: 0 1 Perspective: 0 off Hidden line removal...done 
Recalculating view...done.

Raster Hodel (hide) (SHADE) (LASE) (ERASE)

Object Pick Hode 0 PRODUCT 

Object Operations (ms) (DATUM) COLOR 0 1 (COLORMA

Figure 6.12 : Cam geometry model produced by the IPDM display interface
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6.1.3 Comments

The knowledge base size is hard to quantify, since there are various types of representa­

tion, not only rules. However, if each item of these types is roughly considered as one rule, 

the current system has about 159 rules (48 in synthesis and 111 in analysis). New knowledge 

can be added to the knowledge base quite simply, due to the explicit descriptive representa­

tion scheme. Some knowledge items have been shown in the earlier figures and tables.

The result from the above design example is the same as the one from the human expert. 

This happens when the coded design process is obtained from a single designer. This may not 

be the case if multiple experts’ knowledge from manufacturing, maintenance, and so on, is 

provided. The fact that the result is a “copy” of human designers’ reflects the nature of the 

basic idea of this thesis — the explicit descriptive style of expressing design knowledge.

The implementation of the cam system occurred along with the development of the 

shell; therefore, it is difficult to say how long it takes to create the cam knowledge bases. In 

the next example, the bolted flange system, the time can be specified, since at that stage, the 

shell has been completed and the development of the knowledge bases is a separate process.

Thus far, a domain specific design system, the cam system, has been developed based

on the shell.

6.2 BOLTED FLANGE DESIGN SYSTEM

6.2.1 Development

Objective and Scope

The purpose of developing the bolted flange system is to demonstrate, along with the 

cam system, that the shell system does incorporate the common characteristics of a certain 

number of design processes, and that it is quite simple to develop a very different design sys­

tem based on the same shell (Figure 6.13 illustrates a flange example). For this purpose, this
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design system tries to incorporate the knowledge as simple as possible. The scope is defined 

in Table 6.11.

The following design knowledge is summarized based on references [14, 56, 92 & 93] 

and on the consultation with an expert in this area [50].

“Designer’s Version”

The “designer’s version” is listed below by following an example:

or Problem Statement

A pipe connecting device,

Pipe pressure: 6 bar (87 lb/in2),

Temperature: 60°c,

Pipe Diameter: 5",

Process Fluid: hot water,

Economic Consideration: minimizing cost,

Working Environment: used for pipe work, service condition is general, not se­

vere.

nr Select Flange Type

Because it is pipe work, cost is to be minimized, and the service condition is general, 

not severe, a slip-on flange is chosen.

nr Choose Gasket Material

Because the pressure is less than 20 bar and the temperature is lower than 100°c, a gas­

ket made of vegetable fibre serves the purpose, with gasket factor, minimum design seating 

stress and minimum gasket width as follows: 1.75, 7.6 N/mm2 and 10 mm.

or Select Flange Face Type

Because the flange is inexpensive, simple and used at low pressure (< 10 bar), full- 

faced type is selected.

or Choose a standard flange
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PARAMETERS :

B: bore diameter

D: length through hub
G: hub diameter at base
H: flange outside diameter
J : flange thickness
K: outside diameter of raised face
length of raised face
diameter of bolt circle
diameter of bolts
number of bolt holes
length of bolts
nominal pipe size
flange material
flange type
gasket material
nominal pressure
temperature

CONFIGURATIONS :

bolted flange, consists of 
gasket 
two flanges:

flange1 
flange2

bolt connection, consists of 
bolt & nut 
holes on flanges

Figure 6.13 : A flange sketch (figures from [14])
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Table 6.11 : Flange System Scope (figures from [14])

bold — implemented 
italic — not implemented

bolted flange cases:
standard flanges 
non-standard flanges

flange types :
slip-on
welding-neck, lap-joint and screwed

(d) Screwed(o) Welding —neck (b) Slip —on (c) Lop joint

flange face types:
full-face
gasket within bolt circle, spigot and socket, and ring type joint

(o) Full-face (d) Ring type joint

pressure & temperature
low pressure, temperature from low to medium
other ranges

data tables & multiple choices :
a portion of them 
not complete

For example: only a few cases from the large number of gasket choices;
only a few flanges from the standard flange handbook 
are implemented
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icr Choose a standard flange

According to the pipe diameter ( 5"), the pressure ( 87 lb/in2 ) < 150, and the slip-on 

flange type with full-faced gasket, a standard flange is selected from the handbook [56] with 

the following parameters: B = 5.66; D = 1 7/i6; G = 6 7/i6i H = 10; J = 15/i6; K=7 No.of 

holes = 8; Dia.of bolts=3/4; Bolt circle dia. = 8 V2; Length of bolts=3 2/4.

tr Strength Calculation (only an excerpt)

Formulas: (from [14])

longitudinal hub stress: Ohb = FlM (6-1)
radial flange stress: ord = F2M (6.2)
tangential flange stress: Otg=F3M-F4Ord (6.3)

the bigger one of:

Mop=Hdhd+Htht+Hghg • (6.4)

Matm = Wm2hg=y'irGdbhg (6.5)

where Hg = gasket reaction,

Ht = pressure force on the flange face,

Hd = pressure force on the area inside the flange, 

hd, ht, hg as shown in Figure 6.14,

G, mean diometer 
of gasket

Figure 6.14 : Forces acting on an integral flange (from [14])
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y= minimum design seating stress,

2b = effective gasket pressure width,

Gd = mean diameter of the gasket.

Fi, F2, F3 and F4 are factors (refer to [93]) :

Fi = Wa-,2 (6.6)
F2 - [1 + 1.33F {^L]X/J2 

, <IB/g0
(6-7)

Fi = K//2 (6.8)
f4 = z (6-9)

where f= stress correction factor, 

go = shell thickness, 

gi = maximum hub thickness,

X, Y, Z and F are factors.

All these factors are determined by retrieving all parameter values from tables, figures, 

multiple choices with criteria, formulas, and the like.

Finally, check the above stresses with maximum allowable design stress ffO:

Ohb <1.5 ffO (6.10)

Ord <• ffo (6.11)
0.5( Ohb + Ord ) < ffo (6.12)

0.5( Ohb + atg ) < ffo ( 6.13 )

If strength checking fails, try a larger flange from the handbook.

“Scheme Version”

o Specification Development

The specification list in Table 6.12 is believed to be a basic collection of the design re­

quirements from the user.

o Synthesis

The principal function can be defined as “connecting pipes”.
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Tàble 6.12 : Flange specification list

item : Pipe pressure (the pressure under which the flange operates, e.g. 6 bar), 

item : Temperature (the temperature at which the flange works, e.g. 60°c), 

item : Pipe Diameter (the diameter of pipes the flange connects), 

item : Process Fluid (the substance transmitted in the pipe line), 

item : Economic Consideration (whether the flange should be designed economically), 

item : Working Environment (some general description about the environment under 

which the flange works, e.g. corrosiveness of the process fluid, whether the re­

peated assembly and disassembly of the flange is required).

A bolted flange is chosen as the device to connect pipes.

Generally, a bolted flange is comprised of two pieces of the flange, a gasket and a num­

ber of bolts and nuts.

Since it is used for pipe work, cost is to be minimized, and the service condition is gener­

al, not severe, a slip-on type of flange is selected.

The full-faced type is also determined, due to low pressure and minimum cost, 

o Analysis

Since the “steps” and “means” in the “designer’s version” are quite clear, no further 

arrangement is necessary and only the major steps are listed: gasket material selection; choos­

ing a standard flange; strength calculation.

Synthesis Knowledge Base Development

o Make a copy of the “synthesis shell”, and rename it as “flange synthesis knowledge 

base”.

o Define the terms for configurations and functions, and create tree structures for con­

figurations and functions (Figure 6.15).
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Figure 6.15 : Configuration tree and function tree

o Develop “f-to-c”, “c-subc” and “subf-f” relations. Figure 6.16 shows three exam­

ples. The “c-subc” rule is a connection configuration decomposition relation, to which a con­

straint is attached.

o Load the shell knowledge base, run and debug the synthesis knowledge base.

Thus far, the synthesis knowledge base has been implemented (Figure 6.17). The run­

ning windows are the same as Figure 6.5 with the two trees shown in Figure 6.15.

Analysis Knowledge Base Development

o Make a copy of the “analysis shell”, and rename it as “flange analysis knowledge 

base”.

o Define parameters and organize them according to the configurations.
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Output) The PIPE-CONNECTION.P Unit ill

Kedit #2

it: PIPE-CONNECTION.P in knowledge base CAM1 
¡Created by chen on 5-17-90 11:33:53 

OIjModified by chen on 5-17-90 11:33:53
Member O£: F-C.PAIRS

©OLT. NUT. CONNECTING. SF 
(IF (THE SUBFUNCTION

OF
CURRENT-SYNTHES!S

IS-CYCLE
IS
'(BOLT.CONNECTI!G 

NG NUT.CONNECTING))
THEN
(THE FUNCTION 

OF
CURRENT-SYNTHES!S

IS-CYCLE
IS
BOLT.NUT.CONNEC!I

TING)))
jKedit #1

Own slot: C.F.MATCH from F-C.PAIRS 
Inheritance: METHOD 
ValueClass: METHOD
Comment: "ma t ch. c onf igur at ion. with. func it on " 
Values: C-F-MATCH

Own slot: CONFIGURATION from PIPE-CONNECTION.P 
Inheritance: OVERRIDE.VALUES 
Values: BOLTED.FLANGE

Own slot: CONSTRAINTS from F-C.PAIRS \ 
Inheritance: OVERRIDE.VALUES 
Comment: "constraints of this £-c pair"
Values: UNKNOWN

Own slot: DOMAIN from PIPE-CONNECTION.P 
Inheritance: OVEBBIDE.VALUES 
Comment: "knowledge.in.this.domain"
Values: FLANGE.DESIGN

Own slot: F.C.MATCH from F-C.PAIRS 
Inheritance: METHOD 
ValueClass: METHOD 
Comment: "method.for.F-C.matching"
Values: F-C-l^TCH

((BOLT.CONN.CS
(IF (THE CONFIGURATION 

OF
CURRENT-SYNTHE1 
IS
BOLT.CONN)

THEN
(THE SUBCONFIGURATII 

OF
CURRENT-SYNTHE1 
IS
■'((HOLE.FI PARTIAL FLANGE1) (H0LE.F2 PARTIAL FLANGE2) 

(HOLE.G PARTIAL GASKET) BOLT.NUT))
(THE CONSTRAINTS 

OF
CURRENT-SYNTHESIS-CYCLE
IS
'((CONS.l (DIA.F1) (DIA.BOLT) DIA.F1 DIA.BOLT EQUAL) 

(CONS.2 (DIA.F2) (DIA.F1) DIA.F2 DIA.F1 EQUAL) 
(C0NS.3 (DIA.G) (DIA.F1) DIA.G DIA.F1 EQUAL)
(CONS.4 (LENGTH.BOLT) (LENGTH.FI LENGTH.F2 LENGTH.!)

Own slot: FUNCTION from PIPE-CONNECTION.P 
Inheritance: OVERRIDE.VALUES 
Comment: "function.of.this.F-C.pair"
Values: PIPE-CONNECTION

Own slot: SUBC-SUBF from F-C.PAIRS 
Inheritance: METHOD ValueClass: METHOD
Comment: "method, of .matching, all. sub configuration 

with. all. sub func t ions"Values: SUBC-SUBF-MATCH

G) LENGTH.BOLT
(+ LENGTH.FI LENGTH.F2 LENGTH.G) EQUAL)))))

Figure 6.16 : A “f-to-c” relation (upper right), a c-subc rule (lower) 
and a subf-f rule (upper left)

HOLE.FI
LENGTH.FI
LENGTH.FI
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íUl The Graph of the SYNTHESIS.KB Knowledge Bas Output) The FLANGE.DESIGN Unit

BOLT.CONH.CS

< / 
f/ r

> /B0LT.CS 
/BOLT.NUT.CS
/BOLTED.FLANGE1.CS

Unit: FLANGE.DESIGN in knowledge base 
SYNTHESIS.KB

Created by chen on 5-17-90 11:36:41 
Modified by chen on 5-17-90 11:36:41

Member Of: CONFIGURATION.DICTIONARY
4 ", ; ' „ "FLÄNGE1.CS

C-SUBC.RULES! IE-- -- -- - FLÄNGE2.CS
' 'GASKET.CS

H0LE.F1.CS
H0LE.F2.CS

w '■ 
w ' 
s'

X 'HOLE.G.CS
'nut.cs

CONFIGURATION.DICTIONARY*=' nrcTru
CURRENT-SYNTHESIS-CYCLE 'FLANGE.DESIGN

ERROR .MESSAGE
ZBOLT.CONN.P 

t /BOLT.NUT.P
/BOLT.P 
"FLANGE1.P

1'"FLANGE2.P
F-C.PAIRS! h ~ ’ -GASKET.P 

''K0LE.F1.P 
H0LE.F2.P 
HOLE.G.P

Own slot: DOMAIN from FLANGE.DESIGN 
Inhe ritanc e : OVERRIDE .VALUES 
Cornent: "knowledge.in.domain"Values: FLANGE.DESIGN

Own slot: GET.CONFIG.TYPE from CONFIGUR 
Inheritance: METHOD 
ValueClass: METHOD
Comment: "method to get configuration's 

type"Values: GET.CONFIG.TYPE
Own slot: TEXT from FLANGE.DESIGN 

Inheritance: OVERRIDE.VALUES
// 

// /

" % - w "•

X 'NUT.P
'PIPE-CONNECTION.P

F p ritt fs - " ” 'DRIVING. R
r-c.iiuixa* - , _ ,pQjjTI(gj_jjy^sLATION.R 
F-SUBF- - - - -ROT.TRAN.
FUNCTION.DICTIONARY 
FUNCTION.REQUIRED
GENERAL MANAGEJK^^1^15 MECHflNISM GtNtlWL.MANAbt№^^S7NTHESIS MEalffliISM

KEEPICTURE. INSTANCES
SPECIFICATION

"CONFIGURATION.STACK
SlAUt- - , . .p03SIBLE-C0NriGURATI0N.stack 

, /BOLT.NUT.CONNECTING.SF
SUBF-F. RULES- = - - - CONNECTING. Pl. P2. GAS .SF 

' ' 'PIPE-CONNECTION.SF
SYN-CYCLE-DISPLAY
SYN.RUNNING.MEMORY

Comment:Values: "text.of.the.configuration"

((BOLTED.FLANGE . NONBASIC) (FLANGE1 . NONBASIC) (FLANGE2 . NONBASIC) (GASKET . NONBASIC)(BOLT.CONN . NONBASIC) (BOLT.NUT . NONBASIC) (FLANGE1.GEOMF . BASIC) (FLANGE2.GEOMF . BASIC) (GASKET.GEOMF . BASIC) (HOLE.FI.GEOMF . BASIC) (HOLE.F2.GEOMF . BASIC) (HOLE.G.GEOMF . BASIC) (BOLT.GEOMF . BASIC)(NUT-GEOMF . BASIC)(HOLE.FI . NONBASIC) (H0LE.F2 . NONBASIC)(HOLE.G . NONBASIC)(BOLT . NONBASIC)(NUT . NONBASIC))

Figure 6.17 :The synthesis knowledge base (left) and the configuration dictionary (right)

HOLE.FI
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o The solving and checking slices are listed in Figure 6.20. Two examples are given in 

Figures 6.18 and 6.19 (right portion).

o Design procedures: the list of procedures is shown in Figure 6.20. 

o Knowledgeable Configuration Units (“c.static”s): one example is shown in Figure

6.19 (left portion).

o Load the shell knowledge base (if it has not been loaded), run and debug the analysis 

knowledge base. Thus, the analysis knowledge base has been developed (Figure 6.20). The 

running facilities are identical to those in Figure 6.11.

The bolted flange knowledge bases are, therefore, complete.

6.2.2 A Bolted Flange Design Example

Given specifications:

Pipe pressure: 6 bar;

Temperature: 60°;

Pipe Diameter: 5";

Process Fluid: hot water;

Economic Consideration: designed economically;

Working Environment: used for pipe work, minimum cost, service condition general, 

not severe.

A number of the parameters and a graphics output (Figure 6.21) are shown as follows 

(the complete parameters are given in the Appendix) :

Configuration: BOLTED.FLANGE

FLANGE.FACE.TYPE: FULL-FACED

B.UC: 5.66

D.UC: 1.4375

G. UC: 6.4375

H. UC: 10.0

J.UC: 0.9375
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i»i ANALYSIS .KB Knowledgebase[Unit: SOLVING-F.MATEBIAL.SS in knowledge base ANALYSIS.KB [Created by chen on 5-24-90 16:01:59 Modified by chen on 5-25-90 10:52:10Member Of: SOLVING.SLICE
Own slot: GOAL from SOLVING-F.MATEBIAL.SS 

Inheritance: OVEBBIDE.VALUES 
Comment: "the goal of this solving design slice"
Values: FLANGE.MATERIAL

Own slot: EOV.TO.GET.IT from SOLVING-F.MATEBIAL.SS 
Inheritance: OVEBBIDE.VALUES Comment: "the design method to achieve the goal"Values:

((SETQ STANDF.LIST
(FOB-TABLE.LIST 'STANDARD.FLANGE

'((PRESSURE . PRESSURE) (FLANGE.TYPE . FLANGE.TYPE) 
(FLANGE.FACE.TYPE . FLANGE.FACE.TYPE)
(PIPE.DIAMETER . PIPE.DIAMETER))

'(B.UC D.UC G.UC H.UC J.UC NO.BOLTS BOLT.DIA 
BOLT.CIRCLE.DIA BOLT.LENGTH FLANGE.MATERIAL E.UC MU))

(SETQ FLANGE.MATERIAL (NTH 9 STANDF.LIST))
FLANGE.MATERIAL)Own slot: INTEBPBETEB from SOLVING.SLICE Inheritance: METHOD Value Class: METHOD

Comment: "interpreter for solving slice"
Values: SOLVING-INTERPRETER

Own slot: KNOWN from SOLVING-F.MATEBIAL.SS 
Inheritance: OVEBBIDE.VALUESComment: "known parameters or premises for solving this parameter"
Values:

((SETQ PRESSURE
(GET.PARA NIL 'PRESSURE))

(SETQ FLANGE.TYPE (GET.PARA NIL 'FLANGE.TYPE))
(SETQ FLANGE.FACE.TYPE (GET.PARA NIL 'FLANGE.FACE.TYPE))
(SETQ PIPE.DIAMETER (GET.PARA NIL 'PIPE.DIAMETER)))

Figure 6.18 : A solving slice

EOV.TO.GET.IT
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.Output) The GASKET.S Unit in ANALYSIS
nit: GASKET.S in knowledge base ANALYSIS .KB

|Created by chen on 5-24-90 15:57:36 
lodified by chen on 5-24-90 15:57:36
Member Of: C.STATIC

111_______________________
Unit: CHECKING-SIG.HB.TG.CS in knowledge 

base ANALYSIS .KB
Created by chen on 5-30-90 23:45:42 
Modified by chen on 5-30-90 23:57:08

Member Of: CHECKING.SLICE

The CHECKING-SIG.HB.TG.CS Unit in

Own slot: CONFIGURATION from GASKET.S 
Inheritance: OVERRIDE.VALUES 
Comment: "configuration on which design knowle< 

ge is attached"
Values: GASKET

Own slot: CONN.SUBC from C.STATIC 
Inheritance: OVERRIDE.VALUES 
Comment: "connection among sub configurât ions* 
Values: UNKNOWN

Own slot: PARAMETERS from GASKET.S 
Inheritance: OVERRIDE.VALUES 
Comment: "parameters of this configuration" 
Values :

(GASKET.MATERIAL M.LC 
Y.LCg’.min.width)

Own slot: PROCEDURE from GASKET.S 
Inheritance: OVERRIDE.VALUES 
Comment: "design procedure to design this conf: 

guration"
Values :

(((PRESSURE TEMPERATURE) . GASKET.DP) 
(NIL . NOTHING.HAPPEN.DP)
((PRESSURE TEMPERATURE) . GASKET.DP),

Own slot: CHECK.CRITERIA from CHECKING-S: 
Inheritance: OVERRIDE.VALUES 
Comment: "criteria for checking"
Values:

((< (* 0.5
(+ SIG.HB 

SIG.TG))
F.FO))

Own slot: CHECK.GOAL from CHECKING.SLICE
Inheritance: OVERRIDE.VALUES 
Comment: "the object of checking"
Values: UNKNOWN

Own slot: FAILURE.PROCEDURE from CHECKING
Inheritance: OVERRIDE.VALUES 
Comment: "the design procedure of failure 

handling"
Values: CHECK.SIG.HB.TG.DP

Own slot: FIRE.STATUS from CHECKING-SIG.]
Inheritance: OVERRIDE.VALUES 
ValueClass:

(ONE.OF LAZY ACTIVE)
Comment: "modification status of all relaJ 

ed parameters, whether "active' 
r "lazy""

Values: LAZYOwn slot: SUBCONFIGURATION from GASKET.S 
Inheritance: OVERRIDE .VALUES
Comment: "subconfiguration of this configuratidOwn slot: INTERPRETER from CHECKING.SLIC n" ..... -
Values:

(GASKET.GEOMF)
Inheritance: METHOD 
ValueClass: METHOD
Comment: "the interpreter for checking" 
Values: CHECKING-INTERPRETER

Own slot: KNOWN from CHECKING-SIG.HB.TG. 
Inheritance: OVERRIDE.VALUES 
Comment: "all knowns for checking"
Values:

((SETQ SIG.HB
(GET.PARA NIL

'SIG.HB))
(SETQ SIG.TG (GET.PARA NIL

'SIG.TG)
(SETQ F.FO (GET.PARA NIL

'F.FO)))

Figure 6.19 : A knowledgeable configuration unit (left) and a checking slice (right)
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ÜÖThe Graph of the ANALYSIS.KB Knowledge Base Output) The Graph of the ANALYST
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Figure 6.20 : Flange analysis knowledge base



143

II

Figure 6.21 : Flange geometry model produced by the IPDM display interface
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NO.BOLTS: 8.0

BOLT.DIA: 0.75

BOLT.CIRCLE.DIA: 8.5
BOLT.LENGTH: 3.75

FLANGE.MATERIAL: FORGED.STEEL.SA181 

Configuration: GASKET

GASKET.MATERIAL: VEGETABLE.FIBRE 

M.LC: 1.75 
Y.LC: 7.6 
G.MIN.WIDTH: 10

6.2.3 Comments

The bolted flange design differs considerably from the cam design, yet it is very easy 

to develop both systems based on the same shell system. This fact proves the feasibility and 

advantage of this design shell approach.

The system is constructed as simply as possible, but is relatively complete with approxi­

mately 124 items (25 in synthesis and 99 in analysis). The knowledge bases can be easily ex­

tended to cover more design cases.

As in the case of the cam system, the system performance is as good as the designer(s).

It takes the author approximately one month to implement this flange system. From this 

point of view, this work is successful.

Besides the simplicity of the knowledge accumulation, it is also flexible enough to ex­

tend the representation scheme by creating new basic elements once new knowledge types 

appear. For example, fetching parameters from a figure emerged as a type during the flange 

system implementation. A new basic element, perhaps named “figure”, should be con­

structed. However, considering the fact that the “figure” is mainly represented in mathemati­

cal formulae and, thus, the task is left to create a user interface for deriving these formulas
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from the figure inputted, a temporary alternative is utilized by representing a figure in the 

same way as a data table.

Thus far, another domain specific design system, the bolted flange system, has been de­

veloped.
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CHAPTER 7:
CONCLUSIONS AND DISCUSSION

7.1 SUMMARY OF THE THESIS WORK

The objective established for this work, a general approach to facilitate design automa­

tion in a certain range of routine mechanical design activities, has been achieved. This ap­

proach consists of a general model and a shell system. By filling domain knowledge into this 

shell system, specific design systems can be developed efficiently.

This general approach was achieved by following a clear, logical line of research:

1. Conduct a literature survey of this research area;

2. Understand the problem, the design process, by observing some design cases completed 

by experienced designers and referring to some prescriptive design theories, in order 

to get insight into the common characteristics of the design activities;

3. Propose a general model, based on the common characteristics from the understanding, 

and aim at laying some foundation for further computer implementation;

4. Implement this model without considering any specific machine environment;

5. Develop an experimental shell system based on the above conceptual implementation, 

using KEE and Common LISP on a SUN workstation;

6. Develop two specific design systems to prove the feasibility of this general approach.

The following evaluation of this work shows the comparison with current research work 

in this area. The contributions from this work are pointed out, as well as the limitations and 

possible future developments.

First, a brief review of some conclusions from the Literature Survey chapter is reiter­

ated here.
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7.2 REVIEW OF CURRENT RESEARCH WORK

The current research work in this topic is primarily concerned with three issues: 1) para­

metric design; 2) conceptual and configuration design; and 3) geometric aspect in design. The 

limitations in current research in these areas are listed as follows:

• The design process has not yet been well understood;

• Processes for the achievement of configurations from functions and the evaluation of 

configurations without assigning values remain open research topics;

• Design knowledge is large and diverse. The current representation tools are not powerful 

enough to handle it;

• The description tool for design knowledge is the key issue in the expert system application 

to this area, because the purpose of this application is to facilitate the spreading of knowl­

edge;

• The geometry and parameters are two inseparable aspects in design processes. The geo­

metric aspect in design has not yet been well studied;

• The design process has not been well studied as an integrated process. The above three 

issues: parametric design, conceptual and configuration design, and the geometric aspect 

in design, have been researched primarily on an individual basis. Some new features 

might be exposed if they are viewed as one process.

These problems partially contributed to the motivation of this thesis work.

7.3 CONTRIBUTIONS

The following thesis contributions can be identified:

• The whole design process has been studied, which is divided into four stages: specifica­

tion development, synthesis, analysis and non-functional considerations;

• The approach developed in this work, which consists of a model, a shell system and a
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procedure to develop domain specific design systems, is domain independent of certain 

routine mechanical component and mechanism design processes;

• The descriptive style for knowledge representation has been emphasized for the ease of 

developing domain specific design systems based on the shell system;

• The Configuration Decomposition Approach has been developed for the synthesis stage. 

It is effective in the routine mechanical design;

• The multilevel control mechanisms and general knowledge representation formats 

achieve the descriptive approach to implementing of the analysis stage, which is charac­

terized as having diverse and large amounts of design knowledge;

• The geometric aspect is handled parametrically based on a feature-based modelling sys­

tem;

• Other problems studied include dependency in design, which refers to the relationship 

among parameters and which causes the iteration process; and connection design, which 

brings in a basic knowledge type, the constraint;

• Although the work focuses on the routine mechanical design, it certainly has the potential 

for the expansion of further research work in this area.

7.4 COMPARISON WITH SOME RESEARCHERS’ WORK

To further enhance the description of the contributions from this thesis, a comparison

of this thesis work with other researchers’ work follows. These researchers have been intro­

duced in the Literature Survey chapter in a general sense. Now the difference between this 

thesis work and their work is to be clearly pointed out.

Dixon and his group focus on the algorithmic determination of design parameters. 

Their DOMINIC is similar to an optimization program in terms of the algorithm or reasoning 

process. The designer’s knowledge is not obvious in their system. On the contrary, this thesis
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work is directed toward the descriptive style of design knowledge expression. The design pro­

cess is described by explicit elements following the experienced human designer’s procedure, 

not “programmed”. In other words, the design process is handled in an explicit, “visible” style 

in this thesis work, while it is dealt with in a less visible manner by DOMINIC.

The “design with features” work from Dixon’s group which deals with the interactive 

design of non-standard components is not addressed in this work. This thesis topic is the auto­

matic implementation of the whole design process from synthesis to analysis, which differs 

from the issue of “design with features”. However, a features modeller — IPDM has been 

used in this work as a basic support tool for the design process.

The characteristics of Langrana’s group at Rutgers are similar to Dixon’s group in terms 

of the manner in which they express the design knowledge. Both DPMED and DOMINIC 

describe the design process in a more algorithmic style. The difference between their work 

and this thesis work is obvious and fundamental: one is algorithmic and less “visible”, the 

other is explicit. There are advantages and disadvantages of each style. The algorithmic style 

achieves the design results according to both designers’ experience and optimization guid­

ance. Thus, the design results may be better than the explicit style. The explicit style follows 

the experienced designers’ “steps” in their design process straightforwardly. This explicit de­

scription style makes the development and modification of knowledge bases quite simple, 

but it limits the design quality to be at most as good as those produced by experienced design­

ers (not a single designer, but multiple experts). A better approach could be a combination 

of both: the explicit descriptive style for the initial solution, and the algorithmic style for opti­

mizing the solution.

Brown and Chandrasekaran’s work (DSPL) has great similarity with the work of Mittal, 

et al. (PRIDE) from the Xerox Research Group (as concluded from the papers listed in the
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Bibliography). Although the design problems addressed by these two groups are different, 

their basic ideas are similar. That is, both of them implement the explicit descriptive style in 

expressing design knowledge. From this point of view, this thesis work falls into the same cate­

gory as theirs. All promote the explicit descriptive style in expressing design knowledge. The 

major difference between this thesis and their work, or the distinct work from this thesis, 

which is not shown in any previous work, is the idea of creating a group of basic description 

elements. The design knowledge can be described and represented by this group of basic ele­

ments. These elements are general to a number of design activities, and can be easily modified 

and expanded. Thus, the development and modification of knowledge bases is quite simple.

In addition to the above difference, this thesis addresses the whole design process which 

begins with specification development, goes through the configuration decomposition syn­

thesis, and ends with solving of all parameters and graphics output of all configurations. In 

other words, the complete design process is covered in this thesis.

The conceptual and configuration design in this thesis follows a distinct approach from 

other researchers’ work: Configuration Decomposition considering functional requirements. 

This approach is a combination of function considerations and the decomposition of configu­

rations. It originated from the nature of this research problem: the routine mechanical design. 

Unlike researchers such as Rinderle, Struss and others, who are trying to develop a “deep” 

model of function and configuration relations, this work implements the explicit function to 

configuration relations and places the functions on the secondary level after the “principal 

function” has been considered.

Regarding the geometry issue, the geometry and spatial reasoning is not dealt with in 

this thesis, as it is in the work of Fenves and Baker, Nevill and others. The reason for this 

omission also arises from the nature of the problem. This reasoning process in the routine
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mechanical design activities is not as complicated as in creative and new design. Thus, a sim­

ple approach serves the purpose in this case. Therefore, the geometry issue in this work is 

handled parametrically based on a feature-based modelling system — the IPDM.

In summary, the work of the conceptual and configuration design in this thesis does not 

address the “deep” issues, such as function driven design and the spatial and geometry reason­

ing, as some researchers are trying to do. Because of the routine mechanical design nature, 

the work of achieving a model is guided by the idea that the model should reflect the charac­

teristics of this kind of design process and achieve satisfactory results in its implementation.

After the above comparison, the distinct features of this thesis can be clearly summa­

rized as follows:

• The design knowledge is represented in the explicit descriptive style, which is based on 

a group of basic description elements and organized in a four level hierarchy structure;

• The whole design process is covered;

• Because of the nature of the routine mechanical design problem, the conceptual and con­

figuration design is handled by a configuration decomposition approach while the func­

tional requirements are also considered, and the geometry aspect is dealt with parametri­

cally based on a feature-based modelling system.

7.5 FUTURE DEVELOPMENTS

Some limitations of this thesis work and possible further developments are summarized 

as follows:

• Feedback information from the synthesis or the analysis stages has not been used to guide 

the re-specification or re-synthesis. The characteristics of this iterative process should 

be studied and implemented, as it certainly occurs in some kinds of design activities;

• The geometric aspect is handled parametrically based on a feature-based modelling sys-
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tem, which characterizes the routine mechanical design, but not the “pure” geometric 

reasoning process which may occur in non-standard component design activities and 

others;

• In the conceptual design, the “pure” function driven design process has not been fully 

studied in the present work.
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SPECIFICATIONS

item : CYCLE.TTME;
value : 0.05;

item ; R.B;
value : 1.25;

item : ANGULAR.VELOCITY;
value ; NIL;

item : RISE.SUGG.MOTION;
value : NIL;

item : R.FOLLOWER;
value : 0.5;

item : RISE.TTME;
value ; NIL;

item ; RISE.REQ;
value : (NO STEPS IN ACCELERATION STEPS IN JERK);

item : RISE;
value : 2.0;

item : DWELL2.SUGG.MOTION;
value : NIL;

item : DWELL1.SUGG.MOTTON;
value : NIL;

item : DWELL1.TIME;
value : NIL;

item : DWELL1.REQ;
value : (A SMALL DWELL);

item : DWELL2.REQ;
value : NIL;

item : DWELL2.TIME;
value : 0.015;

item : RETURN.TTME;
value : NIL;

item : RETURN.REQ;
value : NIL;

item : RETURN.SUGG.MOTION;
value ; SHM;

item : PRESS.ANGLE;
value : 30;

item : MOTION.PATTERN;
value ; DRD;
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RESULTS

Configuration : CAM-SYSTEM
ANGULAR.VELOCITY : 125.663605 
PRESS.ANGLE : 28.904034

Configuration : CAM 
PD1: 10.0 
PD2: 108.0 
PRI: 135.0 
PRE: 107.0 
R.P: 2.75 
OFFSET.E: 0.5

Configuration : FOLLOWER 
R.F: NIL 
D.CYLINDER: 1.0 
H.CYLINDER: 5.0 
X0 : 1.25 
Y0: 0 
Z0 : 0 
A: 0.0 
B: 0.0 
C: 0.0

Configuration : DWELL1 
S: 1.25 
BETA: 10.0 
D: 0.0 
H: 5.0 
X0: 0 
Y0: 0 
Z0 : 0 
A: 0.0 
B: 0.0 
C: 350.0

Configuration : RISE 
S: 1.25 
BETA: 135.0 
D: 2.0 
H: 5.0 
X0: 0 
Y0 : 0 
Z0: 0 
A: 0.0 
B: 0.0 
C: 0.0

Configuration : CONN.D.RI 
START.L11: 1.25 
START.L12: 1.25
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Configuration : DWELL2 
S: 3.25 
BETA: 108.0 
D: 0.0 
X0 : 0 
Y0: 0 
Z0 : 0 
H: 5.0 
A: 0.0 
B : 0.0 
C: 135.0

Configuration : RETURN 
S: 3.25 
BETA: 107.0 
D: -2.0 
X0: 0 
Y0: 0 
Z0 : 0 
A: 0.0 
B : 0.0 
C: 243.0 
H : 5.0

Configuration : CONN.RI.D 
START.L21: 3.25 
START.L22: 3.25

Configuration : CONN.D.RE 
START.L31: 3.25 
START.L32: 3.25

Configuration : CONN.RE.D 
START.L41: 1.25 
START.L42: 1.25
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PDL FILE

product camsystem
{

component cam 
{

feature dwelll ’’dwell”
{

11 = 0.0
12 = 4.0
13 = 1.25 
al = 10.0

rotz 350.0
}

feature return ”shm”
{

11 = -2.0
12 = 4.0
13 = 3.25 
al = 107.0

rotz 243.0
}

feature dwell2 ’’dwell”
{

11 = 0.0
12 = 4.0
13 = 3.25 
al = 108.0

rotz 135.0
}

feature rise ’’cycloidal”
{

11 = 2.0
12 = 4.0
13 = 1.25 
al = 135.0

}

} $ end component

component follower 
{

feature followerl ’’cylinder” 
{

11 = 1.5 
dl = 1.0

roty -90 
movx 1.75

}
} $ end component

} $ end product
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SPECIFICATIONS

item : CYCLE.TIME;
value : 0.05;

item : R.B;
value : 1.25;

item : ANGULAR.VELOCITY;
value : NIL;

item : RISE.SUGG.MOTION;
value : NIL;

item : R.FOLLOWER;
value : 0.5;

item ; RISE.TIME;
value : NIL;

item : RISE.REQ;
value ; (NO STEPS IN ACCELERATION STEPS IN JERK);

item : RISE;
value : 1.5;

item : DWELL2.SUGG.MOTION;
value : NIL;

item : DWELL1.SUGG.MOTION;
value : NIL;

item : DWELL1.TIME;
value ; NIL;

item : DWELL1.REQ;
value : (A SMALL DWELL);

item : DWELL2.REQ;
value : NIL;

item : DWELL2.TIME;
value : 0.02;

item : RETURN.TIME;
value : NIL;

item : RETURN.REQ;
value : NIL;

item : RETURN.SUGG.MOHON;
value : SHM;

item : PRESS.ANGLE;
value : 25;

item : MOTION.PATTERN;
value : DRD;
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RESULTS

Configuration : CAM-SYSTEM
ANGULAR.VELOCITY : 125.66359999999999 
PRESS.ANGLE : 22.79075388899968

Configuration : FOLLOWER 
R.F: 0.5
D.CYLINDER: 1.0 
H.CYLINDER: 5.0 
X0 : 1.25 
Y0: 0
Z0: 0 
A: 0.0 
B : 0.0 
C: 0.0

Configuration : CAM 
PD1: 10.0 
PD2: 144.0 
PRI: 115.0 
PRE : 91.0 
R.P: 2.5
OFFSET.E : 0.8999999999999999

Configuration : CONN.RE.D 
START.L41: 1.25 
START.L42: 1.25

Configuration : CONN.D.RE 
START.L31: 2.75 
START.L32: 2.75

Configuration : RETURN 
S: 2.75 
BETA: 91.0 
D : -1.5 
X0: 0 
Y0: 0 
Z0: 0 
A: 0.0 
B : 0.0 
C: 259.0 
H: 5.0

Configuration : CONN.RI.D 
START.L21: 2.75 
START.L22: 2.75

Configuration : DWELL2 
S: 2.75 
BETA: 144.0
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D : 0.0 
X0 : 0 
YO : 0 
ZO : 0 
H: 5.0 
A: 0.0 
B : 0.0 
C: 115.0

Configuration : CONN.D.RI 
START.L11 : 1.25 
START.L12: 1.25

Configuration : RISE 
S: 1.25 
BETA: 115.0 
D: 1.5 
H: 5.0 
X0: 0 
Y0: 0 
Z0: 0 
A: 0.0 
B : 0.0 
C: 0.0
RHO: 1.8143702526467154

Configuration : DWELL1 
S: 1.25 
BETA: 10.0 
D: 0.0 
H: 5.0 
X0: 0 
Y0: 0 
Z0: 0 
A: 0.0 
B : 0.0 
C: 350.0
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SPECIFICATIONS

item : PIPE.DIAMETER;
value : 5;

item : PRESSURE;
value : 6;

item : TEMPERATURE;
value : 60;

item : FLUID;
value : HOT.WATER;

item : WORK.ENVIRONMENT;
value : (USED FOR PIPE WORK SERVICE-CONDITION GENERAL NOT SEVERE);

item : ECONOMIC.CONSIDERATION;
value : ECONOMICAL

item : VACCUM.SERVICE;
value : NIL
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RESULTS

Configuration : BOLTED.FLANGE
FLANGE.FACE.TYPE : FULL-FACED 
B.UC : 5.66
D. UC: 1.4375
G. UC: 6.4375
H. UC: 10.0
J. UC : 0.9375 
NO.BOLTS : 8.0 
BOLT.DIA: 0.75 
BOLT.CIRCLE.DIA : 8.5 
BOLT.LENGTH : 3.75
FLANGE.MATERIAL : FORGED.STEEL.SA181
E. UC: 3.0E7 
MU: 0.31
K. UC: 1.7667844522968197 
Z.UC : 1.9427170695246334
T. UC: 1.7
U. UC: 4.0 
Y.UC: 3.7
G0.LC: 0.38874999999999993 
G1.LC: 0.38874999999999993 
G10.LC: 1.0
H.LC : 0.5
HBG0 : 0.3370750345632861
F. LC: 1.0
F. UC: 0.90892
V. UC: 0.550103 
T.LC : 0.9375
X.UC: 0.6984999665249465 
FI: 4.621953645805625 
F2: 1.272578096095082

F4: 1.9427170695246334 
HD.UC: 2188.981022090171 
HD.LC: 0.8975
G. DIA: 7.83 
B.LC: 1.42
HG.UC : 10636.219127812958
HG. LC: 0.8975
HH. UC: 4189.21507901285 
HT.UC : 2000.234056922679 
HT.LC : 1.42
M.OP: 14350.94949536826 
M.ATM : 34556.983032166165 
M.BIG : 34556.983032166165 
SIG.HB : 28219.217970594265 
SIG.RD : 7769.6925218841125 
SIG.TG : 10608.374623706612 
F.FO : 38000

Configuration : GASKET
GASKET.MATERIAL : VEGETABLE.FIBRE 
M.LC: 1.75
Y.LC: 7.6 
G.MIN.WIDTH : 10

(PARAMETER.NOMENCLATURE
(FLANGE.MATERIAL FLANGE MATERIAL)
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(F4 STRESS FACTOR F4)
(M.OP TOTAL MOMENT)
(HD.UC PRESSURE FORCE ON THE AREA INSIDE THE FLANGE)
(F.LC RATIO OF SIG.HB)
(V.UC RATIO OF SIG.HB)
(X.UC FACTOR IN SIG.HB)
(Y.UC FACTOR)
(T.UC FACTOR)
(U.UC FACTOR)
(Z.UC FACTOR)
(K.UC RATIO OF OUTSIDE DIA H AND INSIDE DIA B)
(MU POISSON RATIO)
(H.LC HUB LENGTH)
(M.LC GASKET FACTOR)
(Gl.LC MAXIMUM HUB THICKNESS)
(GO.LC SHELL THICKNESS OR MINIMUM HUB THICKNESS)
(G10.LC RATIO OF Gl.LC OVER GO.LC)
(HBGO RATIO OF H OVER B GO)
(F.LC RING THICKNESS SHOULD BE THE SAME AS J.UC)
(F.UC FACTOR IN SIG.RD)
(HD.LC DISTANCE OF HD.UC)
(HT.UC PRESSURE FORCE ON THE FLANGE FACE)
(HT.LC DISTANCE OF HT.UC)
(HG.UC GASKET REACTION PRESSURE FORCE)
(HG.LC DISTANCE OF HG.UC)
(M.ATM MOMENT REQUIRED FOR BOLT LOAD)
(W.M2 BOLT LOAD REQUIRED TO SEAT THE GASKET)
(Y.LC GASKET SEATING PRESSURE)
(G.DIA GASKET MEAN DIAMETER)
(G.MIN.WIDTH GASKET MINIMUM WIDTH)
(B.LC 2B IS EFFECTIVE GASKET PRESSURE WIDTH B IS EFFECTIVE 

GASKET SEATING WIDTH)
(FI STRENGTH FACTOR FI)
(F2 STRENGTH FACTOR F2)
(F3 STRENGTH FACTOR F3)
(SIG.HB LONGITUDINAL NUB STRESS)
(SIG.RD RADIAL FLANGE STRESS)
(SIG.TG TANGENTIAL FLANGE STRESS)
(NO.BOLTS NUMBER OF BOLTS)
(BOLT.DIA BOLT DIAMETER INCH)
(BOLT.CIRCLE.DIA BOLT CIRCLE DIAMETER)
(BOLT.LENGTH BOLT LENGTH INCH)
(B.UC INSIDE DIAMETER INCH)
(D.UC FLANGE THICKNESS INCH)
(G.UC HUB INTERMEDIATE DIAMETER INCH)
(H.UC OUTSIDE DIAMETER)
(J.UC RING THICKNESS INCH)
(KK.UC FLANGE BASE DIAMETER INCH)
(GAS.MATERIAL GASKET MATERIAL)
(FLANGE.FACE.TYPE FLANGE FACE TYPE)
(FLANGE.TYPE FLANGE TYPE)
(E.UC YOUNG S MODULUS)
(PIPE.DIAMETER PIPE DIAMETER)
(F.FO MAXIMUM ALLOWABLE DESIGN STRESS)
(HH.UC TOTAL PRESSURE FORCE)
(M.BIG BIGGER ONE OF M.OP AND M.ATM))
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product boltedflangel
{

component flangel 
{

feature flangelgeomfl ’’cylinder”
{

11 = 0.9375 
dl = 10.0

feature flangelborel ”bore” 
{

11 = 0.9375 
dl = 5.66

}
}

feature flangelgeomf2 ’’cylinder”
{

11 = 0.5 
dl = 6.4375

movx 0.9375

feature flangelbore2 ”bore” 
{

11 = 0.5 
dl = 5.66

movx 0.9375
}

}

} $ end component

component flange2
{

movx -1.5

feature flange2geoml ’’cylinder”
{

11 = 0.9375 
dl = 10.0

feature flange2borel ”bore” 
{

11 = 0.9375 
dl = 5.66

}
}

feature flange2geomf 1 ’’cylinder”
{

11 = 0.5 
dl = 6.4375

movx -0.5



174

feature flange2bore2 ”bore” 
{

11 = 0.5 
dl = 5.66

}

}

} $ end component

component boltl
{

movx -2.1 
movy 4.25

feature boltlgeomfl ’’cylinder” 
{

11 = 3.75 
dl = 0.75

}
} $ end component

component bolt2
{

movx -2.1 
movy -4.25

feature boltlgeomfl ’’cylinder” 
{

11 = 3.75 
dl = 0.75

}
} $ end component

component bolt3
{

movx -2.1 
movz 4.25

feature boltlgeomfl ’’cylinder” 
{

11 = 3.75 
dl = 0.75

}
} $ end component

component bolt4
{

movx -2.1 
movz -4.25

feature boltlgeomfl ’’cylinder” 
{

11 = 3.75 
dl = 0.75

}
} $ end component
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component bolt5
{

movx -2.1 
movy 3.01 
movz 3.01

feature boltlgeomfl ’’cylinder” 
{

11 = 3.75 
dl = 0.75

}
} $ end component

component bolt6
{

movx -2.1 
movy -3.01 
movz 3.01

feature boltlgeomfl ’’cylinder” 
{

11 = 3.75 
dl = 0.75

}
} $ end component

component bolt7
{

movx -2.1 
movy 3.01 
movz -3.01

feature boltlgeomfl ’’cylinder” 
{

11 = 3.75 
dl = 0.75

}
} $ end component

component bolt8
{

movx -2.1 
movy -3.01 
movz -3.01

feature boltlgeomfl ’’cylinder” 
{

11 = 3.75 
dl = 0.75

}
} $ end component

} $ end product
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SPECIFICATIONS

item : FLUID;
value : STEAM;

item : PRESSURE;
value : 12;

item : PIPE.DIAMETER;
value : 4;

item : TEMPERATURE;
value : 150;

item : WORK.ENVIRONMENT;
value : (USE PIPE WORK SERVICE-CONDITION GENERAL NOT SEVERE);

item : ECONOMY.CONSIDERATION;
value : GENERAL;

item : VACUUM.SERVICE;
value : NIL;
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RESULTS

Configuration : BOLTED.FLANGE
FLANGE.FACE.TYPE : GASKET.WITHIN.BOLT.CIRCLE 
B.UC: 4.57
D. UC: 1.88
G. UC: 5.75
H. UC: 10.0
J. UC: 1.25 
NO.BOLTS: 8.0 
BOLT.DIA: 0.75 
BOLT.CIRCLE.DIA : 7.88 
BOLT.LENGTH : 4.25
FLANGE.MATERIAL : FORGED.STEEL.SA181
E. UC: 3.0E7 
MU: 0.31
K. UC : 2.1881838074398248 
Z.UC: 1.5279624243665244
T. UC : 1.4392131610303625
U. UC : 2.8910193176013963 
Y.UC: 2.630833671120552 
G0.LC: 0.5899999999999999 
Gl.LC: 0.5899999999999999 
G10.LC: 1.0
H.LC: 0.6299999999999999 
HBG0 : 0.38366876453101706
F. LC: 1.0
F. UC: 0.90892
V. UC: 0.550103 
T.LC: 1.25
X.UC : 0.5477159132288923 
FI: 1.5734441632545033 
F2 : 0.9407124061802918 
F3: 1.6837335495171533 
F4: 1.5279624243665244 
HD.UC: 2854.11540587665 
HD.LC: 1.0149999999999997
G. DIA: 7.285
B.LC: 1.9649999999999999 
HG.UC: 31300.49625366414
HG. LC: 1.0149999999999997
HH. UC : 7252.675420099978 
HT.UC : 4398.560014223327 
HT.LC : 1.6549999999999998 
M.OP: 41946.5476579735 
M.ATM : 72826.34295846276 
M.BIG: 72826.34295846276 
SIG.HB : 25074.00093198335 
SIG.RD : 14990.950616579135 
SIG.TG: 3925.934937848444 
F.FO: 38000

Configuration : GASKET
GASKET.MATERIAL : COMPRESSED.ASBESTOS 
M.LC: 2.0 
Y.LC: 11.0 
G.MIN.WIDTH : 10


