
A STANDARD COMPUTER GRAPHICS PACKAGE - GKS

THE IMPLEMENTATION

OF A STANDARD

COMPUTER GRAPHICS PACKAGE

- GRAPHICAL KERNEL SYSTEM

By

DEH-CHANG CHEN, B.Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster Universty

March 1984

MASTER OF SCIENCE (1984)
(Computation)

McMASTER UNIVERSITY
Hamilton, Ontario

TITLE: The Implementation of a Standard Computer Graphics Package
- Graphical Kernel System

AUTHOR: Deh-Chang Chen, B.Sc. (Chemistry,
Fu-Jen University, Taiwan)

SUPERVISOR: Professor W.H. Fleming

NUMBER OF PAGES: viii, 84

ii

ABSTRACT

Computer graphics is a field whose time has come. In the past,

it was an esoteric specialty involving expensive display hardware and

idiosyncratic software. Recently, hardware has become more readily

available, and efforts have been made to develop graphics software stan­

dards, which help make graphics programming rational and straightfor­

ward.

The Graphical Kernel System (GKS) is rapidly gaining acceptance

as a worldwide standard for computer graphics. The International Stan­

dards Organization (ISO) is in the final stages of converting GKS from

its current status as a Draft International Standard (DIS) to an Inter­

national Standard.

This report presents an overview of GKS and also discusses a

subroutine library, that has been developed for use at McMaster Univer­

sity and is equivalent to ”0a" GKS (the lowest level of GKS). This

library, called GKSLIB, is written in FORTRAN 77, and could be used by a

programmer to support a wide range of two-dimensional, passive graphics

applications.

iii

ACKNOWLEDGEMENTS

My acknowledgements begin with a sincere thank to Professor W.

H. Fleming for his direction, encouragement, and patience during the

preparation of this project. I also wish to express my appreciation to

the members of the McMaster University Unit for Computer Science for the

many forms of help provided during my studies with them. Finally, my

family has been behind me all the way on this project, and I dedicate it

to them.

iv

TABLE OF CONTENTS

CHAPTER 1 Introduction

What is Computer Graphics?
Some Representative Uses of Computer Graphics
Classification of Applications

1

1
1
3

1.1
1.2
1.3

CHAPTER 2 Overview of a Graphics System 5

2.1 A Programmer's Model of a Computer Graphics System 5
2.2 Graphics Hardware 7
2.3 What is a Graphics Package? 9
2.4 Viewing Operation Processor 11
2.5 DPU Code Generator 15
2.6 Input Handler 17

CHAPTER 3 Graphics Standardization 20

3.1 Device Independence 21
3.2 Standardization Aspects 22

3.2.1 Why is the Standardization Necessary? 23
3.2.2 Standardization Requirements 24
3.2.3 The Development of Graphics Standards 25
3.2.4 GKS vs GSPC-Core 26

CHAPTER 4 An Overview of GKS 28

4.1 Layer Model of GKS 29
4.2 GKS Workstation 29
4.3 GKS Attribute Bundles 31
4.4 Output Primitives 33
4.5 Attributes 35
4.6 Segments 37
4.7 Viewing 38
4.8 Input 40
4.9 GKS Levels 41

v

CHAPTER 5 Implementation 42

5.1 Language Consideration 43
5.2 Level Oa 44
5.3 Device Drivers 45
5.4 Other Decisions 47

CHAPTER 6 Graphics Metafile 49

6.1 Metafile Elements 49
6.2 Character Coded Graphics 50
6.3 Code Extension 51
6.4 Encoding of the Metafile Elements 53

6.4.1 The Descriptor and Control Elements 53
6.4.2 Graphical and Attribute Elements 58

CHAPTER 7 Conclusions 64

APPENDIX: i Conceptual Differences between GKS and the GSPC-Core 66

APPENDIX; ii Oa Level GKS Functions 69

APPENDIX; hi Oa Level GKS Data Structures 74

APPENDIX IV Oa Level GKS Error List 79

REFERENCES 83

vi

LIST OF FIGURES

Figure 1: Hardware View of a Graphics System 5

Figure 2: Software and Data Modules of a Graphics System 6

Figure 3: Detailed View of a Graphics System 10

Figure 4: Function Calls to the Graphics Package 12

Figure 5: Conversion from the World to the Device Coordinates 13

Figure 6: Mapping the Window onto Some Portion of the Screen 14

Figure 7: Mapping, then Clipping 16

Figure 8: Clipping, then Mapping 16

Figure 9: Core System with Application and Device Interfaces 25

Figure 10: Layer Model of GKS 30

Figure 11: Picture Generation by Using <a Device Driver 45

Figure 12: Metafile Generation Capability 45

Figure 13: Indirect Metafile Interpretation 46

vii

47Figure 14: Direct Metafile Interpretation

Figure 15: 7-bit In-use Table

Figure 16: The Format for Integer Coordinate Operands

Figure 17: CORE Transformation

Figure 18: GKS Transformation

viii

CHAPTER 1

INTRODUCTION

1.I What is Computer Graphics?

Computer graphics may be defined as the creation, storage, and

manipulation of models of objects and their pictures via computer

[FOL82]. It is an extremely effective medium for communication between

man and computer. Most people enjoy interacting graphically more than

they do the more traditional and more limited alphanumeric communication

techniques. With computer graphics, we are largely liberated- from the

tedium and frustration of looking for patterns and trends by scanning

many pages of linear text on line printer listings or alphanumeric ter­

minals .

In the past, however, the high cost of computer graphics tech­

nology has prevented its widespread use. Recently, the cost is dropping

rapidly, and computer graphics is becoming available to more and more

people.

1.2 Some Representative Uses of Computer Graphics

Computer graphics is used today in many different areas of

industry, business, government, education, entertainment, and, most

recently, in the home. The following list gives an idea of the areas of

1

2

use to which graphics has already been put [FOL82].

- Plotting in business, science, and technology. This describes

probably three-quarters of graphics application programs. Exam­

ples include graphs of mathematical, physical, and economic

functions, histograms, bar and pie charts, task scheduling

charts, inventory and production charts, and a profusion of

other plots. All are used to present trends and patterns in data

in a meaningful and concise fashion in order to increase under­

standing of complex phenomena and to facilitate informed deci­

sion making.

- Cartography. Computer graphics is used for the production of

highly accurate representations on paper or film of geographical

and other natural phenomena. Exmaples include geographic maps,

weather maps, and population density maps.

- Computer-aided drafting and design. In computer-aided design

(CAD), computer graphics is used to design components and sys­

tems of mechanical, electrical, and electromechanical devices.

These systems include structures (such as buildings, automobile

bodies, and chemical plants), and telephone and computer net­

works. The engineer can interact with a computer-based model of

the component or system being designed in order to test, for

example, its mechanical, electrical, or thermal properties.

- Simulation and animation. The most familiar example in this area

is the flight simulator, in which computer graphics helps train

3

. the pilots of our airplanes on the ground. It has many advan­

tages over real aircraft for training purposes, including fuel

savings and safety.

- Process control. In some industrial applications, the user can

interact with some aspects of the real world itself, rather than

a simulation of the real world. Status displays for refineries,

power plants, and computer networks display data values from

sensors attached to critical components in the system; the

operator then responds to exceptional conditions.

- Office automation. In the office and even the home, people now

use the alphanumeric and graphic terminals to create and dissem­

inate information which contains not just text but also tables

and graphs.

- Art and commerce. Computer art and advertising have the common

goal of expressing a "message’’ and attracting the attention of

the public with aesthetically pleasing pictures.

1.3 Classification of Applications

The areas listed above can be categorized in a variety of ways.

An obvious one is based on the type of picture generated: for example,

whether two- or three-dimensional, or whether portraying an abstract or

a real entity.

4

A categorization that is less drawing-oriented and more

programming-oriented divides the application areas into three distinct

ones in a spectrum: offline plotting with a predefined data base pro­

duced by other application programs, where an observer has little con­

trol over the appearance of the images; interactive plotting in which

the user dynamically controls the pictures' content, format, size, or

colors on a display surface by means of interaction devices such as a

keyboard, lever, or joystick; and interactive design in which the user,

starting from a blank screen, defines an object, typically from prede­

fined components, and then alters it at will, panning and zooming to get

the desired view [FOL82].

CHAPTER 2

OVERVIEW OF A GRAPHICS SYSTEM

2.1 A Programmer's Model of a Computer Graphics System

A graphics system consists of hardware and software components.

HARDWARE. Figure 1 symbolizes the hardware view of a graphics

system. Two major hardware components are the host computer and the

display unit. The display unit itself consists of a display processor

(or DPU) and a CRT. It may contain some other input devices such as key­

board or joystick for interactive purpose.

Figure 1 Hardware view of a graphics system

5

6

SOFTWARE and DATA MODULES. Figure 2 shows two important software

components - application program and graphics package, and two data

modules. The first data module is the DPU display program which is writ­

ten by the graphics package and read by the DPU. The second data module

is the application data structure which contains, among other things, a

description of the objects whose images are to be displayed.

data modules

Figure 2 Software and data modules of a graphics system

Therefore, the application program retrieves data from the

application data structure, and sends graphics commands to the graphics

package, which, in turn, produces a display program for DPU to draw pic­

ture on CRT

7

2.2 Graphics Hardware

From Figure 1, there are four major subsystems in a typical

graphics system: computer, DPU, display device, and input devices. The

computer is the heart of the system. The display device is usually a

cathode ray tube (CRT). The DPU can be viewed as a special purpose CPU,

with its own set of commands, data formats, and an instruction counter.

It executes a sequence of display Instructions (the display program), to

create a drawing on the display device. Individual DPU instructions

typically draw a point, line, or character string. Input devices, with

which the user inputs commands and other information, are attached to

the DPU.

There are two basic types of CRTs: refresh and storage. With a

refresh CRT, the DPU interprets the display instructions and converts

digital values to analog voltages which displace an electron beam writ­

ing on the phosphor coating of the CRT. Since the light output of the

phosphor decays in tens or at most hundreds of microseconds, the DPU

must cycle through this display program to refresh the phosphor at least

30 times per second to avoid flicker. In a storage CRT (also known as

DVST), the image is stored (until erased) as an internal charge distri­

bution, and thus a refresh cycle is not necessary.

The DPU can be organized to create a drawing either by random

scan or raster scan. In a random-scan (or vector) system, parts of the

drawing can be depicted on the display in any order. In a raster-scan

system, the display primitives, such as lines, characters, and solid

8

areas are stored in a refresh buffer in terns of their component points,

called pixels (short for picture elements). The image is formed from

the raster, a set of horizontal raster lines each made up of individual

pixels. The raster is thus simply a matrix of pixels covering the entire

screen area. The entire image is scanned out sequentially, 30 times per

second, one raster line at a time top to bottom, by varying only the

intensity of the electron beam for each pixel on a line. The storage

needed is thus greatly increased in that the entire image of, say 512

lines of 512 pixels, must be stored explicitly in a bit map containing

only points that map one-for-one to points on the screen. The more fam­

iliar hard-copy devices also operate with either a random or raster

scan. The printer is a simple raster-scan hard-copy device. The print

head moves from left to right, top to bottom. The pen plotter, in which

a pen can be moved in any direction over a piece of paper, is a random-

scan device. A raster system makes possible the display of solid areas,

typically in color, which is an especially rich means for communicating

information.

Input devices attached to the DPU are for the user to interact

with the application program. Some more common examples include

alphanumeric keyboard for entering text, programmable function keyboard

(PFK) for invoking predefined options or functions, light pen for point­

ing at information displayed on the screen, data tablet with stylus for

specifying screen coordinates, and control dials for entering the scalar

values. The DPU contains a number of registers in which input devices

store the appropriate values. Event (interrupt-) generating devices

9

load their device registers and interrupt the CPU. The sampled devices

load their register with data whenever they are interrogated by the CPU;

the CPU then reads the associated registers.

2.3 What is a Graphics Package?

From Figure 2, a graphics package may be defined as a high-level

programming interface between the application program and the graphics

devices. The application program uses the graphics package much as it

uses the I/O subsystem of the operating system to read and write records

in file. The graphics package offers the application programmer a range

of functions to use within his program and hides some less important

details of the display's construction from the programmer, such as

specific low-level architecture of the DPU and the xy coordinate system

of the physical screen. By this way, the graphics package can simplify

the writing of the graphics application program.

The functional facilities of a graphics package available to the

application programmer can usually be divided into some distinct

classes. Below is a typical classification:

1. graphic output primitives,

2. viewing specification,

3. attribute-setting,

4. segment control,

5. input,

6. control.

10

Figure 3 is an expanded version of Figure 2, and gives a more

detailed view of the structure of a graphics system. It shows three

major processors of a graphics package:

1. viewing operation processor,

2. DPU code generator,

3. input handler.

graphics package

Figure 3 Detailed view of a graphics system

11

With this diagram, it should become easier to explain how the

six classes of functions provided in a typical graphics package can be

invoked and used in an application program. There are two data flows

going in opposite directions within the graphics system: one is from the

object description in an application data structure to an image (or pic­

ture) on the screen, the so-called output pipeline, and the other is

from the user-supplied input to the data structure and/or display pro­

gram, the so-called input pipeline.

2.4 Viewing Operation Processor

At the first stage in the output pipeline, the application pro­

gram retrieves a piece of data from an application data structure. The

geometric data andapplication data structure contains

connectivity relationship data. The former defines the shape of com­

ponents of the object, the latter defines how the components fit

together. The application programmer must first construct this data

structure before he can use it and describe it to the graphics package

for viewing purposes.

The application program describes the data structure to the

graphics system by transforming it to a sequence of function calls to

the graphics subroutine package as Figure 4 shows. One of the most

important function classes is the graphic output primitives. They are

the functions an application programmer can use to display straight

lines, text strings, and other simple graphical items. For example, we

can use a function in this class called POLYGON to draw a triangle on

12

the screen:

POLYGON(x_array,y_array, n),

where x array and y_array contain the coordinates of the vertices of the

polygon, and n gives the number of vertices.

app!icat ion
data

structure

to
DPU

Figure 4 Function calls to the graphics package

13

One very important concept here is that the vertices of the

polygon are specified in the user's world coordinate system. That means,

we can define objects in terms of units that are natural to the applica­

tion and to the user. These world coordinates must be converted into the

appropriate coordinates-of the physical display device. To make this

conversion, we have to tell the graphics system what portion of the

essentially unbounded world coordinate space contains the information we

want to display at this time. Figure 5 shows an example.

wor I d
coord i na+e

device
coord i na+e

Figure 5 Conversion from the world to the device coordinates

14

The rectangular region in the world coordinate space is called a

window. It can be specified to the graphics system by calling one of

the viewing specification functions:

SETWINDOW(xl,yl,x2,y2),

where (xl,yl) is the lower left corner and (x2,y2) is the upper right

corner.

In addition to displaying the picture on the entire screen, we

can also map a window onto some portion of the screen. This rectangular

portion is called a viewport, which can be defined by invoking another

viewing specification function:

SETVIEWPORT(xl,y1,x2,y2).

Figure 6 gives an example.

Figure 6 Mapping the window onto some portion of the screen

15

With these two viewing specification functions, SETWINDOW and

SETVIEWPORT, we can choose any portion in the world coordinate space to

be displayed on any portion of the screen. The viewing operation proces­

sor of the graphics package will do the necessary transformation to all

graphic output primitives it receives.

From Figure 4, there is one other important task the viewing

operation processor must perform beside window-to-viewport mapping,

namely clipping. Clipping is a technique used to make any parts of the

object outside the window invisible. Figure 5 shows one case where clip­

ping is needed. If this is not done, the results on the screen would not

be well-defined, because we try to display points that overflow the

coordinate addressing scheme of the display.

Clipping can be done after mapping as shown in Figure 7. In

this case, pictures (or graphic output primitives) are clipped against

the viewport. That means, the viewport is used as clipping rectangle.

The disadvantage of this method is that all the primitives must be

transformed whether they are visible or not.

One alternative way is ’’clipping before mapping" as shown in

Figure 8. Here, pictures are clipped against the window.

2.5 DPU Code Generator

The function of this processor is to produce a display program

for DPU. The DPU display program is a sequence of point and line plot­

ting commands and character plotting commands which are encoded in a

16

world device
coordinate coordinate

to
DPU

Figure 7 Mapping, then clipping

worl d

coord i nate
worl d

coord i nate
device

coord i nate

to
DPU

Figure 8 Clipping, then mapping

specific format suitable for DPU to interpret in order to draw points,

lines, and character strings on the screen. Actually, it can be compared

17

to the "machine code" from the normal compilation. Then, the graphics

package can be thought of as a "display program compiler". Two signifi­

cant differences between the compilation of the DPU code and the normal

compilation are: (1) The compilation of the DPU code takes place at the

run time of the application program, while normal compilation is usually

finished before application program starts executing; (2) The ordinary

source code is compiled to equivalent target code in its entirety, while

graphics package's "source" code may be clipped to a subset before being

compiled to equivalent DPU "target" code.

From Figure 4, two classes of functions provided in a graphics

subroutine package are relevant to DPU code generation. They are

attribute-setting and segment control. Attribute-setting functions con­

trol the appearance of the graphic output primitives. For example, line

style and line colour can be set for all following primitives until

reset. Segment control functions are used to group logically related

output primitives into segments. Segments are the units of selective

modification of the display program. Functions are also available to

delete, rename, or change the visibility of segments.

2.6 Input Handler

While picture plotting is handled by the graphics package's out­

put routines, input handling is controlled by its input routines that

pass user-supplied input data to the application program as part of an

interaction sequence. The input data is first collected from the DPU by

the input handler, which typically then passes it to the application

18

program. The data changes the state or flow of control of the applica­

tion program. It may also cause the application program to modify either

the data structure or to change the viewing operation parameters. The

input may also be used directly by the code generator to perform segment

manipulation operations.

A major goal of the input facilities of a graphics package, as

of output devices, is device-independence. This is achieved by organiz­

ing all the physical input devices into five basic logical devices:

1. button, to select an option;

2. pick, to point to a displayed entity;

3. keyboard, to enter a character string;

4. valuator, to input a scalar value;

5. locater, to specify screen coordinates.

Program requests for input functions specify a logical device

name which the input handler maps to the available physical device with

the most naturally corresponding characteristics. This mapping of logi­

cal to physical devices is analogous to an operating system's mapping of

logical unit numbers or logical file names to appropriate physical file

storage devices.

Each logical device has a natural prototype in a specific physi­

cal device or class of devices. However, any of these logical devices

can be simulated by any input device. This concept again is rather like

that of logical files in an operating system. A sequential input file

may be implemented physically by means of a card reader, a magnetic tape

19

drive, a disk drive, or a terminal keyboard. The application programmer

doesn't care which one it is - the operating system makes them all ’’look

alike" functionally, despite their physical differences.

CHAPTER 3

GRAPHICS STANDARDIZATION

The aim of graphics system design is to simplify the writing of

graphic application programs. The earliest applications were written

without the benefit of graphics systems, and were very difficult to

write. Nowadays it is universal practice to use a graphics package as

the basis for applications development. With this approach, applica­

tions take less time to write, and their development demands less skill

on the part of the programmer [NEW79].

However, almost all of the eralier graphics systems were res­

tricted to certain mainframe computers, to a given host language, and to

specific graphics devices. Moreover, most of the systems addressed a

single application area. These graphics subroutine packages were usu­

ally supplied by manufacturers for their unique display devices, and

varied from the very simple package for two-dimensional pictures on a

storage display, up to the most complex systems supporting three­

dimensional graphic data structures. Since each of these systems sup­

ports a different set of functions and requires the use of different

programming conventions, they are all very low-level and machine and

device dependent. The result is that if an application program is writ­

ten to use one of these systems, the chances are very remote that it can

be run in conjunction with another system. This is the problem of pro­

20

21

gram portability. Another disadvantage is the need to retrain the pro­

grammers to use different graphics systems. This problem concerns pro­

grammer portability [NEW79].

3.1 Device Independence

In order to achieve application program (and programmer) porta­

bility, the graphics packages must present a uniform interface to the

application programmer, no matter what equipment is being used. Whether

the output device is a plotter, a storage display, or a high-performance

refresh display, the programmer should be able to use the same set of

graphics functions to generate images. These packages are thus device

independent at the level of the programmer's interface.

One other form of device independence also needs consideration:

device independence within the package. This permits the package to

drive different devices with the minimum of modification for each new

device. Device independence in a graphics package can be achieved by

carefully separating those components of the graphics system that are

inherently device-dependent from the remaining common software, and by

giving equally careful attention to the interface between the two parts.

Large sections of the package, including transformation and clipping

software, can usually be included in the common software. The most

device-dependent parts of the package are likely to lie in the input

device polling routines and in the DPU code generator. They can be par­

titioned in a module and called the logical device driver. Device

dependence can be kept to a minimum, if interfaces from the common

22

software to these routines are well-designed.

The interface to the DPU code generator may take the form of

either an intermediate data structure, or a set of functions within the

display code generator, called by the common software. Many plotter-

oriented graphics packages use an intermediate data structure, in which

the entire image for plotting is stored in a device-independent format

by using normalized device coordinates (NDC); the data structure is then

translated to the format required by the device. NDC can be thought of

as a logical coordinate system used for describing the view surface of a

logical output device. They are real numbers in the range from 0 to 1

in both x and y, with the origin in the bottom left corner of the view

surface. In an interactive environment, the use of an intermediate data

structure amounts to an extra buffering step, impacting response and

requiring additional memory. It is therefore rarely used in interactive

graphics package, except as "pseudo display files" for off-line plot­

ting, or for storage of images for later re-use. A pseudo display file

is often referred to as a metafile.

3.2 Standardization Aspects

A significant development that started in the mid-seventies was

a general awareness of the need for standards in such device-independent

graphics packages. Anyone who has been involved in building graphics

system knows that the lack of unity and maturity in the field has been a

source of discourgement to many potential users, and has slowed progress

towards wide acceptance of computer graphics. Although standards in

23

programming languages were common very early on, Che standards In com­

puter graphics are long overdue. The lack of standards is not due to

the youth of the technology. By 1965, most hardware technologies used

today were already in existence. One clue to the delay is the wide

diversity among graphics hardware devices and among graphics packages

developed for them [BON82].

3.2.1 Why is the Standardization Necessary?

The single strongest justification for standardization in com­

puter graphics is the promotion of program portability and programmer

portability [NEW78]. Portability, in turn, reduces software costs and

personnel training costs. It was also found that standardization

improved communications from the user's point of view.

From the manufacturer's viewpoint, improved portability

increases the size of the market. The standard itself gives guidance as

to the right directions for hardware innovation.

Moreover, a standard that encourages machine and device indepen­

dence also protects the hardware and software investment of the end

user. New computer systems and new hardware devices may be added as

technology advances and as the demands of the application change.

In short, a standard serves as the base for a common understand­

ing and a common terminology for creating computer graphics systems, for

using computer graphics, for talking about computer graphics, and for

educating students in computer graphics methods, concepts, and

24

applications.

3.2.2 Standardization Requirements

In order to meet the needs of most users, a computer graphics

system should separate the basic graphical capabilities from those func­

tions that are related to a specific application area. A system realiz­

ing the basic graphical capabilities is called a "core system”, the

application dependent systems using the functions of a core system are

referred to as "modelling system". For example, in a geometric model­

ling system, the handling (definition, transformations, calculations,

storage) of the geometrical models of the design parts Is done by the

modelling system, whereas the graphical presentation of the models and

the interactions with an operator is the task of the core system. A

core system should have the following properties [END83]:

- independence of a specific computer,

- independence of specific graphical devices,

- independence of a specific programming language,

- independence of a specific application area.

Thus, a standardized computer graphics system should define a

standard functional interface for all kinds of applications, a standard

device interface to all kinds of graphics devices, and a standard inter­

face for storage and transfer of graphical information ("graphics

metafile"). Figure 9 shows a graphical core system with the application

interface and the device interface.

25

appIication
i nterface

device/
workstation

Figure 9 Core system with application and device interfaces

3.2.3 The Development of Graphics Standards

The development of graphics standards began in 1976 following an

extremely successful international "Workshop on Graphics Standards

Methodology" in Seillac, France. In the US, the results of this

workshop stimulated ACM SIGGRAPH's Graphics Standards Planning Committee

(GSPC). This committee designed a proposal for a 3D graphics core sys­

tem. Two versions of this proposal were published in 1977 and 1979.

The GSPC's proposal has become known as GSPC-Core or just "the Core".

26

Efforts to develop graphics standards were also underway in a

number of other countries. In particular, the German Standardization

Institute, DIN (Deutsches Institut fuer Normung), established a group

aimed at designing a graphics core system. This group produced several

versions of the Graphical Kernel System (GKS) [B0N82].

In 1979, GKS was selected as the base for the international

standardization effort in the computer graphics field by the working

group Technical Committee 97 (Information System)/Sub Committee 5 (Pro­

gramming Languages)/Working Group 2 (Graphics), normally abbreviated

TC97/SC5/WG2, of ISO (International Standardization Organization). Up

to 1982, GKS was subject to an extensive international reviewing pro­

cess. In several revisions it finally reached a state that agreement

could be reached that GKS should be an international standard. It

presently has the status of a DIS (Draft International Standard). ANSI,

the American National Standards Institute, is also in the process of

adopting the Graphical Kernel System as an ANSI standard [STR83].

3.2.4 GKS vs GSPC-Core

Whereas GSPC-Core was intended to be a comprehensive and com­

fortable 3D standard, GKS, a 2D system, was aimed at the basic graphical

functions. This was one of the reasons why the ISO, after evaluating

both GSPC-Core and GKS, decided to use GKS as the base for an interna­

tional graphics standard [END83]. A basic system is also referred to as

a "basic core", in contrast to a "rich core" which contains a broader

spectrum of functionality. A more detailed comparison between GKS and

27

GSPC-Core will be given in Appendix I

CHAPTER 4

AN OVERVIEW OF GKS

The GKS standard specifies a set of functions for computer

graphics programming in a way that is independent of particular graphics

devices, computers, programming languages, or applications. A fundamen­

tal concept in GKS is the workstation, consisting of a number of input

devices and a single output device. The workstation concept is impor­

tant for achieving device independence, while still allowing full con­

trol of physical device characteristics. The capabilities provided by

GKS include the following [IS082]:

* two-dimensional line and raster graphics,

* graphics input and output at one or more graphics workstations

s imultaneously,

* provision for storage and dynamic modification of pictures,

* storage and retrieval of graphics information from a long-term,

external graphics file (metafile),

* means for adapting application program behaviour to suit works­

tation capabilities,

* several upwardly compatible levels of the standard with increas­

ing functional capabilities.

28

29

4.1 Layer Model of GKS

GKS defines a language independent nucleus of a graphics system.

However, in an implementation of the system, these functions have to be

realized as subroutines (or procedures) in a given programming language.

Such a language specific realization, in which the language-independent

system nucleus is embedded, is called a language layer. The functions

provided by the language layer can be used by the application program­

mer, together with operating system functions. Special application

dependent layers can be built on top of the GKS language layer (e.g. a

layer for data representation graphics). The layer model represented in

Figure 10 illustrates the role of GKS in an application. Each layer may

call the functions of the adjoining lower layers. So an application

program will have access to a number of application oriented layers, the

language dependent GKS layer, and operating system resources.

4.2 GKS Workstation

A GKS workstation consists of a single display area and a number

of input devices. The whole workstation is treated in GKS as one logi­

cal unit and operated in a coordinated fashion by an operator at a given

site. An operator can have a number of GKS workstations under his con­

trol at the same time. For example, he may be interacting at a refresh

display while taking occasional copies of output at a plotter. Dif­

ferent workstations may be set to view different parts of the complete

virtual picture.

30

application program

application oriented layer

language dependent layer

GKS

operati ng system

other resources graphical resouces
workstations

Figure 10 Layer model of GKS

Each workstation has a type. Workstation types are similar to

the facilities that would be available at a plotter, storage tube, or

refresh display. Each workstation type falls into one of six

categories:

OUTPUT Output,

INPUT Input,

OUTIN Output and input,

WISS Workstation Independent Segment Storage,

MO GKS Metafile (GKSM) output,

MI GKSM input.

For every type of workstation present in a given GKS implementation, an

entry exists in a workstation description table. It describes the capa­

31

bilities and characteristics of the workstation. The workstations are

identified by the application program by use of a workstation identif­

ier. Whenever the application program wants to use a workstation, it

must first request the opening of this workstation by GKS, which associ­

ates the workstation to the corresponding graphical terminal and gives

the application access to all its capabilities except output of graphic

primitives. For output the workstation must be explicitly activated.

Output primitives are sent to all active workstations. Segment manipu­

lation and input can be performed with any open workstation.

4.3 GKS Attribute Bundles

Graphics primitives such as line drawing can have associated

attributes such as color, thickness, and line style. There are basi­

cally two approaches to specifying such attributes. The first is to

have a set of modal attributes that are in effect until the next setting

of the attribute. For example:

COLOR (RED)

WIDTH (THICK)

STYLE (SOLID)

DRAW LINE

COLOR (GREEN)

STYLE (DASHED)

DRAW LINE

This would draw a thick, red, solid line followed by a thick, green,

32

dashed line. Each modal attribute remains in effect until reset. Thus,

thickness is an attribute to both lines. A disadvantage of this

approach is the need to map this attribute specification onto a number

of devices that may not be able to implement a particular attribute.

How can we draw red lines on a storage tube? Usually the implementor of

the device driver makes an arbitrary decision. A second disadvantage of

this approach is the specification of library routines where particular

lines must be differentiated but the application programmer is left to

specify the particular attribute to use. For example, a contour routine

might need every third contour to be highlighted. The application pro­

grammer might wish to use color, thickness, or broken lines to highlight

the effect. With modal attributes, the body of the algorithm becomes

complex, with many attribute settings depending on user's requirements.

The solution adopted in GKS is to have one workstation-

independent attribute per primitive designated as the primitive index.

Each primitive may have one of a number of representations associated

with it, running from 1 up to an implementation maximum. The equivalent

GKS program to the one above would look like this:

SET POLYLINE INDEX (1)

POLYLINE

SET POLYLINE INDEX (2)

POLYLINE

The first line would be drawn with the bundle corresponding to index 1

and the second with the bundle corresponding to index 2. The represen­

33

tations of bundles 1 and 2 are workstation-dependent and can be set by

the application programmer. Thus, he can set representation 1 as red,

thick, and solid, while representation 2 is green, thick, and dashed.

The advantage of making the pen specification workstation-dependent is

that the characteristics of representation 1 can be quite different on

two workstations. Many of today's application programs suffer greatly

from the problems associated with producing appropriate output on works­

tations with diverse capabilities. GKS workstation model makes it easy

to use different graphics devices, and particularly easy to use the best

features of each device. However, for the single workstation environ­

ment, GKS has given up the simpler, more direct approach of

workstation-independent, unbundled primitive attributes in exchange for

increased flexibility. A set of indicators, called Aspect Source Flags

(ASFs), can be used for this purpose. They control whether the values

of the associated attributes are obtained from a bundle table or from

individual specifications.

4.4 Output Primitives

GKS has defined six output primitives:

POLYLINE,

POLYMARKER,

TEXT,

FILL AREA,

CELL ARRAY,

GENERALIZED DRAWING PRIMITIVE.

34

However, unlike many present-day systems, GKS does not use the concept

of current position. Each primitive has its coordinates fully defined

internally. Furthermore, for line drawing, a polyline, which generates

a set of connected lines given an array of points as a parameter, is the

fundamental line drawing primitive. A polyline primitive is more prac­

tical than a single line, since a set of lines is more useful in forming

a shape. Given that polyline rather than line is the basic primitive,

attributes such as linestyle apply to the complete polyline rather than

a single line segment. Thus, dotted or dashed curves are easily drawn.

A mechanism must also be defined for identifying points. GKS

extends the point primitive to that of a marker that can output one of

possible forms centered on a specified position. The basic primitive is

a polymarker that output a sequence of markers and is the obvious primi­

tive to choose, once polyline has been defined.

Text similarly produces a string of characters rather than a

single character, to ensure some equivalence of level among the three

main output primitives.

The remaining three primitives show the increasing importance of

raster graphics and the need to allow hardware facilities to be used

even within a device-independent standard. Fill area defines a boundary

whose interior can be hollow, filled in solidly, or filled with either a
> I ,

pixel pattern or a hatching pattern. The cell array primitive is a

means of specifying an array of colors or intensities and is particu­

larly useful in image processing applications. The final primitive,

35

GDP, is an escape function to allow special geometric primitives such as

circle or curve to be defined in a well-defined, implementation-

specified way - a standard way of being nonstandard.

4.5 Attributes

Polyline and polymarker have a single attribute, which selects a

bundle as follows:

polyline : linetype, linewidth scale factor, color index;

polymarker : marker type, marker size scale factor, color index.

The color index selects an entry in a workstation-dependent color table,

which specifies the RGB values to be used when drawing the primitive.

Text differs from the other primitives in splitting the attri­

butes into two classes:

geometric attributes : character height, character up vector,

text path, text alignment;

nongeometric attributes : text font and precision, character

expansion factor, character spacing,

text color index.

The first class controls the geometric aspects of the text. These

attributes are workstation-independent and are expressed in world coor­

dinates where appropriate (eg character height). The second class con­

trols the nongeometric aspects of text such as font, precision, and

color. The motivation for this split is that the overall form and shape

36

of the text must fit with the graphic output on all devices and so

should be device-independent. However, the particular character forms

and quality of characters drawn may differ among workstations and

should, therefore, be part of the bundle table. Workstation independent

attributes are set modally. There is a current value for each worksta­

tion independent attribute.

Fill area also has two sets of attributes. The first comprises

the following:

(1) Interior style defines the mode of filling: hollow, solid, pat­

tern, or hatch;

(2) Style index specifies for pattern an entry in a pattern table,

which is used for filling. If the interior style is hatch, the

index is used to determine which of the predefined hatch styles

is used;

(3) Color index is used for hollow and solid and is a reference to

the color table.

The second set comprises two workstation-independent attributes: pattern

size and pattern reference point. They define the size and position of

the start of the pattern.

GDP has no separate bundle table, but uses the one most

appropriate to the type of primitive it most closely resembles. Cell

array has also no separate bundle table, but its definition includes an

array of color indices.

37

4.6 Segments

It is possible to generate output primitives so that they are

displayed on all active workstations. However, in an interactive

environment the complete picture frequently needs to be split into a

number of objects or segments that can be manipulated independently.

For example, highlighting a particular part of the picture, or removing

it for some reason. In working with a refresh display, a user must

often move parts of a picture around. This is achieved via a segment

transformation matrix, which may be altered after the segment is

defined.

Segments are stored on only those workstations that are active

when the segment is defined. This is adequate for most purpose, but

occasionally we need to see a segment on a workstation that was not

activated when the segment was created. For example, the user may be

defining a picture made up of segments on a refresh display and then at

some stage may wish to copy the current display to a plotter. GKS

allows this through a workstation-independent segment storage (WISS),

which can keep copies of segments as they are formed. When a copy is

required, the segments can be sent from WISS to a specified workstation.

In the more complex implementation levels of GKS, a segment can also be

inserted into another segment.

38

4.7 Viewing

The typical graphical package has a single window/viewport

transformation that allows the application programmer to define his own

coordinate system, some part of which is mapped onto an area of the

display screen. The situation is complicated in GKS by having several

workstations active at the same time. Should all workstations, then, be

forced to use the same viewport? An application might require one

display to give an overall view of the picture being displayed, while

another looks at the detail of the picture.

GKS achieves this flexibility through three different two­

dimensional Cartesian coordinate systems and two distinct

window/viewport mappings. The applications programmer defines his out­

put in terms of a world coordinate (WC) system mapped onto some part of

the normalized device coordinate (NDC) plane. This first-stage mapping

is called normalization transformation. The set of active workstations

can then take separate views of the NDC space and map these onto

workstation-dependent parts of the display, expressed in device coordi­

nates (DC). This second-stage mapping is called workstation transforma­

tion.

Any complex picture probably consists of several distinct parts,

which are most appropriately defined in different coordinate systems. A

conventional package would do this by allowing the user to continually

redefine the window/viewport mapping from WC to NDC. For example,

SET WINDOW(XMIN,XMAX,YMIN,YMAX)

39

DRAW PICTUREA

SET WINDOW(X2MIN,X2MAX,Y2MIN,Y2MAX)

DRAW PICTUREB

In this hypothetical package, PICTUREA is drawn with the first coordi­

nate system, whereas PICTUREB is drawn with the second coordinate sys­

tem. The user effectively sees a display made up of two parts with dif­

ferent coordinate systems. The user's view of the system is that both

coordinate systems must be known to the system as pictures. However, in

reality only the second coordinate system is known in a conventional

package. When the user needs to point to a particular position in

either coordinate system, the system cannot deliver the position in the

correct coordinate system.

To ensure that the user's view of the system is correct, GXS

allows the definition of multiple window/viewports, all existing simul­

taneously. The GKS equivalent of the above program would look like

this:

DEF WINDOW(1,XMIN,XMAX,YMIN,YMAX)

DEF WINDOW(2,X2MIN,X2MAX,Y2MIN, Y2MAX)

SECLECT WINDOW (1)

DRAW PICTUREA

SECLECT WINDOW (2)

DRAW PICTUREB

The form of the program in GKS has a tendency to define all the coordi­

nate systems at the start of execution and then select the particular

40

transformation when required. The other program form has transformation

definitions scattered throughout.

4.8 Input

GKS input is defined in terms of a set of logical devices:

choice,

locator,

pick,

string,

valuator.

A logical device may be implemented on a workstation in a variety of

ways. For example, a string may be input using a keyboard, by freehand

drawing on a tablet, or by hitting a set of light buttons indicating

particular characters on a display. The exact form of the implementa­

tion is up to the workstation.

Input can be obtained in three distinct ways:

(1) Request. This is rather like a Fortran READ. The system waits

until the input event has taken place and then returns the

appropriate values.

(2) Sample. The current value of a GKS input device is examined.

This input mode is most frequently used for devices that have a

continuous readout of their value. For example, the current

position of the stylus on the digitizer can be sampled.

41

(3) Event. This mode allows a user to generate input data asynchro­

nously. He may adjust input devices to special values and hit

specific '’triggers'* so that the system can take over the

adjusted values. For example, a light-pen hit normally gen­

erates an event.

4.9 GKS Levels

GKS has a level structure, which defines three input levels and

three output levels, such that one implementation can choose any input

level and any output level and combine the functions in each to define a

valid level of GKS. By this way, the GKS system can be implemented to

be usable by a wide range of applications, from static plotting to

dynamic motion and real time interaction.

The output level axis has the three possibilities:

0: Minimal output,

1: Basic segmentation with full output,

2: Workstation Independent Segment Storage (WISS).

The input level axis has the three possibilities:

a: No input,

b: REQUEST input,

c: Full input.

CHAPTER 5

IMPLEMENTATION

The primary objective of this project was to develop a graphics

subroutine package, based on the capabilities described in the GKS

specification, that could be used by a programmer to support a wide

range of 2-D passive graphics applications. The McMaster University

Cyber 170/730, running NOS 2, was used for developing this GKS implemen­

tation. The language chosen for this purpose is FORTRAN 77. At

present, the library includes nearly 85% of functions provided in the

level ”0a”, which is the lowest level of GKS. Moreover, Instead of gen­

erating pictures directly on a graphics device by using a device driver,

the current status of the GKS implementation uses a metafile generator

to produce a metafile for off-line plotting, or for storing graphic

images.

The metafile produced from an application program on the Cyber

can be transported to the Digital Equipment Corporation PDP 11/23 mini­

computer, running UNIX. There a metafile reader, written in C, has been

developed to interpret the graphical information stored in the metafile,

and then draw the pictures on an AED raster display. The modification

and expansion of this metafile reader is still in progress.

42

43

5.1 Language Consideration

GKS is defined independently of any particular programming

language, so it is necessary to bind the abstract functions and data

types of GKS to actual functions and data types in the language to be

used for implementation. The language chosen for this project is FOR­

TRAN 77, partly because it is a suitable, widely-used language for

scientific programming. A FORTRAN implementation is suitable for a

larger number of users, because an interface between FORTRAN subroutines

and programs in higher languages like PASCAL may be provided rather

easily - in contrast to the reverse direction, which was never solved in

a satisfactory manner.

GKS has a published binding to FORTRAN. This binding specifies

the actual names and argument sequences for graphics functions, and can

thus promote application program portability. If an application is

written for one vendor's GKS package, and another vendor's version is

substituted later (perhaps to run on a different host computer, or to

use a new device not supported by the first vendor's GKS), the original

code has an excellent chance of being able to run without any modifica­

tion. Although the current GKS implementation doesn't employ this FOR­

TRAN binding, it should be easy to perform the necessary conversion in

the future.

FORTRAN 77, however, presents some problems for the language

binder. First, FORTRAN naming conventions restrict all the variable and

subroutine names to a maximum length of 6 characters (7 on Cyber). This

44

prevents maintaining mnemonic content in the names. Second, the data

abstraction facilities in FORTRAN are not very sophisticated. For exam­

ple, it does not support enumerated data types, although this can be

fixed by using integer data type and defining constants with integer

values, so the GKS programmer can use the same nice names he would have

had with an enumerated data type.

5.2 Level Oa

The ISO GKS document is 285 pages long. Because the entire sec­

tions on segment functions and input functions are not needed by "Oa'*

GKS, the majority of those pages can be ignored.

Full GKS (the highest input and output levels combined) includes

110 functions plus 75 inquiry functions. The lowest level ("Oa")

requires 53 functions plus 38 inquiry functions, of which 44 functions

plus 33 inquiry functions have been included in this project. They are

listed in Appendix II, together with their actual names used in this

FORTRAN implementation of GKS.

The data structures required by "Oa" GKS are also significantly

smaller than those defined for full GKS in the ISO GKS document. The

segment state lists and input queue disappear completely. What "Oa" GKS

requires for GKS state list, workstation state list, and workstation

description table are given in Appendix III, together with the variable

and array names used. The list of errors that can be generated by "Oa"

GKS is given in Appendix IX.

5.3 Device Drivers

In most computing environments an application program generates

pictures on a graphics device as shown in Figure 11 [GSP79].

Figure 11 Picture generation by using a device driver

Metafile generation capabilities could be included in such a system as

shown in Figure 12.

Figure 12 Metafile generation capability

The metafile generator can be thought of simply as another device driver

46

for a virtual device. However, it should be stressed that the metafile

generator can assume nothing about the graphics devices onto which

metafile pictures will eventually be output.

Each computing facility that wishes to generate graphics output

from a metafile input must provide a Metafile Reader to interpret the

device independent metafile commands and either invoke routines in the

Device Independent Graphics System (Figure 13) or directly call routines

in a Device Driver (Figure 14).

Figure 13 Indirect metafile interpretation

At the present stage of implementing "Oa" GKS in this project,

the graphics package only includes a virtual device driver (metafile

generator) for writing graphical information on the metafile as depicted

in Figure 12. Then, a metafile reader, developed on another computing

facility, PDP 11/23, can be used to interpret the metafile, to call rou­

tines in a device driver, and to generate pictures on the graphics dev­

ice as depicted in Figure 14. •

Dev i ce
Driver

Rou+i nes
Graph i cs
Devices

Figure 14 direct metafile interpretation

The metafile format employed in this implementation stems from a

working document of the ANSI X3H33 Virtual Device Interface Task Group,

published in December 1982. It is not the final draft proposal and is

subject to change. A detailed description of the metafile format is the

subject of next chapter.

5.4 Other Decisions

The number of simultaneously open workstations and the number of

normalization transformations are constants that have to be chosen for

each GKS implementation, regardless of level. Choosing the minimum in

either case can result in a smaller, simpler implementation.

Supporting only one open workstation at a time can affect an

implementation in many ways. The loops that check whether a specified

workstation is open or active degenerate to a single if test. Likewise,

the loops that send commands to each active workstation are no longer

48

needed. Arrays of open and active workstations become single variables.

Despite all these advantages of a single workstation implementa­

tion, this project includes multiple simultaneous workstation capabili­

ties by setting the entry "maximum number of simultaneously open works­

tations" in GKS Description Table to 2. The purpose of this is to

accommodate future expansion more easily.

GKS requires a minimum of two normalization transformations, one

of which is the unity transformation and can't be changed. By support­

ing this minimum, only a single settable transformation needs to be

saved. Explaining to the programmer becomes easier, too. He has the

simple choice of using NDC (transformation 0), or setting up his own

arbitrary world coordinates (transformation 1).

Currently, this GKS minimum requirement of two normalization

transformations (0 and 1) is employed in this project, but we can easily

add more later if that requirement should arise.

CHAPTER 6

GRAPHICS METAFILE

A graphics metafile is a device-independent representation of a

picture intended for subsequent display on a graphics output device.

Two important concepts are contained in this definition. First, the

metafile is a device-independent representation of a picture that can be

displayed on a wide variety of graphics devices. Second, the metafile

is intended for subsequent display; thus, it is passive in nature.

The specification of the format and content of a metafile is not

part of GKS. At present, an ISO metafile standard does not exist.

ANSI, however, has been working on this area with the encouragement of

ISO's WG2 and this could lead to another international standard. In

1980, the ANSI X3H3 Computer Graphics Technical Committee formed the

X3H33 Virtual Device Interface Task Group to standardize a computer

graphics metafile. This task group published a draft proposal in

December 1982 [ANS82], on which the metafile generator of this GKS

implementation was based.

6.1 Metafile Elements

In order to provide for the description, storage, and communica­

tion of graphical information in a device-independent manner, this X3H33

proposal defines the syntax and semantics of a set of elements that may

49

50

occur in a metafile. These elements are:

- Descriptor Elements: describe the functional content, default

conditions, identification, and characteristics of a metafile;

- Control Elements: control initialization, termination, defini­

tion of address space, picture initialization, and format

descriptions of the metafile elements;

- Graphical Elements: describe images in a metafile;

- Attribute Elements: describe the appearance of a graphical ele­

ment;

- Escape Elements: used to construct a picture, but not otherwise

standardized;

- External Elements: communicate information not directly related

to the generation of a graphical image.

A metafile is a collection of elements from this standardized set and

must be interpreted or translated in order to present its pictorial con­

tent on a graphics device.

6.2 Character Coded Graphics

The encoding scheme for the metafile used in this proposal is

called character coded graphics. In the 7-bit character coded method of

describing alphanumeric characters and pictorial information, particular

character codes are identified by an 8-bit code sequence in which seven

of the bits are used as an index into a 128-character code table and the

eighth bit is used as parity or for extension to another code table of

51

128 characters.

The character code table is normally represented as a table of

eight columns and sixteen rows with b7, b6, and b5 addressing the

columns and bits b4, b3, b2, and bl addressing the rows. This code

table is also called in-use table and is structured into 32-code posi­

tion C-set and 94- or 96-code position G-set as shown in Figure 15.

6.3 Code Extension

In most applications, there are not enough characters available

in the in-use table, so code extension techniques are needed to permit

C- or G-sets to be switched, and thus providing a virtual address space

larger than the 128-code positions available in a 7-bit environment.

There are four G-sets and two C-sets that are designated at any

one time; that is, any one of the four sets GO, Gl, G2, or G3 could be

invoked into the in-use table by an invocation sequence. In the default

state, GO contains the primary character code set, Gl contains the

Metafile code set, G2 contains the supplementary character set, G3 is

reserved for future standardization. Furthermore, in the 7-bit environ­

ment, the default state has Gl as the current in-use G-set. The CO set

is always in-use since it contains the code extension control codes.

Each incoming bit combination is either decoded according to the

current contents of this table or is used to change the content of this

table. The in-use table contains, in columns 0 and 1, the CO set.

Three characters of this set, ESCAPE (ESC or 1/11, that is, column 1,

52

Figure 15 7-bit in-use table

row 11), SHIFT IN (SI or 0/15), and SHIFT OUT (SO or 0/14), are used to

control the contents of the remaining six columns of the in-use table.

The SI character is used to invoke the current GO set into the

in-use table where it remains until further control action is taken

(that is, it is invoked in a locking manner). The SO character is used

to invoke the current G1 set into the in-use table in a locking manner.

53

The sequences, ESC 6/14 and ESC 6/15, are used to invoke the G2 set and

G3 set, respectively, into the in-use table in a locking manner.

A single additional control set, the Cl set, is defined. In a

7-bit environment, it is never invoked into the in-use table in a lock­

ing manner. Rather, single characters from the Cl set are accessed via

two-character escape sequences and are treated as a single control char­

acter. These sequences take the form, ESC Fe, where Fe represents the

desired character from the Cl set. This character, by definition, must

have a bit combination corresponding to column 4 or 5 of the 7-bit in-

use table. The in-use table automatically reverts to its former state

after the Cl command is executed and is thus not changed by these two

character escape sequences.

6.4 Encoding of the Metafile Elements

6.4.1 The Descriptor and Control Elements

The Metafile descriptor and control elements are encoded in the

Cl character set. If a Cl control function is represented by a 2-

character escape sequence in a 7-bit code, this combination of the final

character is specified by taking A=4 and B=»5 in the following

A/0 Reserved B/0 VDM escape

A/l Begin metafile B/l Reserved

A/2 End metafile B/2 Reserved

A/3 Begin picture B/3 Reserved

54

A/4 End picture B/4 Reserved

A/5 Message B/5 Reserved

A/6 Clear view surface B/6 Reserved

A/7 Clip on B/7 Reserved

A/8 Clip off B/8 Reserved

A/9 Begin VDM Elements/Defaults B/9 Reserved

A/10 End VDM Elements/Defaults B/10 Reserved

A/ll Reserved B/ll MCSI

A/12 Reserved B/12 ST

A/13 Reserved B/13 VDM description

A/14 SS2 B/14 VDM version

A/15 SS3 B/15 Application data

The elements VDM VERSION, VDM DESCRIPTION, APPLICATION DATA,

MESSAGE, and ESCAPE consist of a control string that may occur in the

data stream as a logical entity for control purposes. The control

string consists of an opening delimiter and a command string, and is

terminated by STRING TERMINATOR (ST). The opening delimiter indicates

which control element is being specified. The command string consists

of a sequence of bit combinations in the range of 0/8 through 0/13 and

2/0 through 7/14.

Begin VDM Elements/Defaults initiates a list of parameters, the

value of each equaling one of the opcodes used in the Metafile. Default

values immediately follow the appropriate opcode values. The parameter

list is terminated with the bit combination representing End VDM

Elements/Defaults.

55

Control functions that include numeric parameters are encoded

using the Metafile Control Sequence Introducer (MCSI). Multibyte con­

trol functions are represented by control sequences. A control sequence

consists of the coded representation of MCSI followed by one or more bit

combinations that identify the control function and represent the param­

eters of the control function. The format of a control sequence is:

MCSI Pl...Pn I F

where:

- MCSI is represented by ESC 5/11 in a 7-bit code;

- Pl...Pn are bit combinations representing one or more parameters

to complete the control function specification. The parameters

are either real or integer, or enumerated type. Each parameter

sub-string is separated from other parameter sub-strings by the

3/11 character. The parameter string for all three cases con­

sists of the ASCII characters representing the decimal digits 0

to 9. The whole portion of a real number is separated from the

fractional portion by the 2/14 character.

If the parameter string starts with the bit combination 3/11, an

empty parameter sub-string is assumed preceding the separator;

if the parameter string terminates with 3/11, an empty parameter

sub-string is assumed following the separator; if the parameter

string contains successive bit combinations 3/11, empty parame­

ter sub-strings are assumed between the separators. An empty

parameter sub-string or a parameter sub-string that consists of

bit combination 3/0 only, represents a default value that

56

depends on the control function;

- I is a bit combination 2/1, which, togther with the final bit

combination F, identify the control function;

- F is a bit combination chosen from Columns 4, 5, 6, or 7 which

terminates the control sequence.

The following table describes the allocation of final bit combi­

nations of elements that use MCSI with 2/1 as a single intermediate.

Element Final Bit Combination

VDC DIMENSIONALITY 4/1

VDC TYPE 4/2

VDC EXTENT 4/3

CLIP RECTANGLE 4/4

TEXT ASPECT SOURCE FLAGS 4/5

POLYLINE ASPECT SOURCE FLAGS 4/6

POLYMARKER ASPECT SOURCE FLAGS 4/7

FILL AREA ASPECT SOURCE FLAGS 4/8

INTEGER PRECISION 4/9

REAL PRECISION 4/10

COLOR PRECISION 4/11

COLOR INDEX PRECISION 4/12

INDEX PRECISION 4/13

ENUMERATED PRECISION 4/14

COORDINATE PRECISION FOR INTEGERS 4/15

COORDINATE PRECISION FOR REALS 4/0

57

POLYLINE BUNDLE INDEX 5/0

POLYMARKER BUNDLE INDEX 5/1

FILL AREA BUNDLE INDEX 5/2

TEXT BUNDLE INDEX 5/3

The following table specifies how the parameters of the commands

using MCSI should be interpreted.

Element Parameter Interpretation

VDC DIMENSIONALITY Pl=0 if 2D; Pl=l if 3D

VDC TYPE Pl=0 if integer; 1 if real

VDC EXTENT Pl=coordinate data type;

CLIP RECTANGLE

P2sscoordinate data type

PIncoordinate data type;

All ASPECT SOURCE FLAGS

P2»coordinate data type

Pl=0 if individual;

Pl=l if bundled

INTEGER PRECISION Pl=number of bits

REAL PRECISION Pl=number of bits for

COLOR PRECISION

Integer portion;

P2=number of bits for

fractional portion

Pl=number of bits for the

red, green, and blue

components

COLOR INDEX PRECISION Pl=number of bits for color

58

INDEX PRECISION

ENUMERATED PRECISION

COORDINATE PRECISION FOR INTEGERS

COORDINATE PRECISION FOR REALS

All BUNDLE INDEXes

index data type

Pl=*number of bits for index

data type

Pl=number of bits for

enumerated data types

Pl=number of bits for VDC

Pl^Tiumber of bits for

integer portion;

P2=*number of bits for

fractional portion

Pl=»bundle index

6.4.2 Graphical and Attribute Elements

A Metafile graphical or attribute element is encoded in the Gl

set and is comprised of an opcode followed by one or more bytes of

numeric data. If bit 7 is 0, an opcode is indicated. If bit 7 is 1,

numeric data is defined.

Coordinate operand can be either real or integer. There are two

precision elements associated with it. Coordinate operands are used in

conjunction with graphical elements. The format, when VDC type is

integer, is shown in Figure 16. The operands are interpreted as signed

two's complement numbers.

The color index, index, and enumeration operands are all inter­

preted as unsigned integers composed of the sequence of concatenated

59

Figure 16 The format for integer coordinate operands

bits taken consecutively (high order bits to low order bits) from the

numeric data bytes.

Integer operands are interpreted as signed, two's complement

numbers. Real operands are interpreted as signed, two's complement

numbers when the binary coordinate is determined from the COORDINATE

PRECISION FOR REALS element.

The precision for VDC operands is determined from the COORDINATE

PRECISION FOR REALS or COORDINATE PRECISION FOR INTEGERS element. The

format for the VDC operand (VDC type is integer) is that of the integer

operand. The format for the VDC operand (VDC type is real) is that of

the real operand.

60

The following table describes the default G1 set.

Element Code Position Operand Type

POLYMARKER 2/0 nC

MARKER SIZE 2/1 VDC

MARKER TYPE 2/2 E

MARKER COLOR 2/3 CI or 3R

POLYLINE 2/4 nC

LINE WIDTH 2/5 VDC

LINE TYPE 2/6 E

LINE COLOR 2/7 CI or 3R

ARC 2/8 3C

PIXELS 2/9 4C,2I,mnCI

CIRCLE 2/10 C,VDC

ARC CLOSE 2/11 3C,E

POLYGON 2/12 nC

INTERIOR STYLE 2/13 C,2E

HATCH INDEX 2/14 IX

PATTERN INDEX 2/15 IX

PATTERN TABLE 3/0 IX,I,mnIX,mn3R

PATTERN SIZE 3/1 2VDC

FILL COLOR 3/2 CI or 3R

TEXT 3/3 C,S

CHARACTER HEIGHT 3/4 VDC

CHARACTER EXPANSION FACTOR 3/5 R

61

CHARACTER PATH 3/6 E

CHARACTER UP VECTOR 3/7 2VDC

CHARACTER SPACING 3/8 R

TEXT COLOR 3/9 CI or 3R

TEXT FONT INDEX 3/10 IX

TEXT ALIGNMENT 3/11 2E,2R

TEXT PRECISION 3/12 E

COLOR TABLE 3/13 IX,n3R

BACKGROUND COLOR 3/14 CI or 3R

Reserved for future 3/15

standardization

The data types used in the table have the following meanings:

data types Meaning

C Coordinate

CI Color index

E Enumerated

I Integer

ID Identifier

IX Index

R Real

Coordinate pair or triple in VDC space.

Pointer into a table of color values.

Set of standardized values. The set is

defined by enumerating the identifiers

that denote the values.

Number with integer portion.

String or integer.

Pointer into a table of values

other than color values.

Number with integer and fractional

portion, only one of which need exist

62

S String Sequence of characters.

VDC VDC values Single real or integer values (as

determined by VDC type) in VDC space.

Bit specification of the enumerated data values is as follows:

1. INTERIOR STYLE

b6b5 - interior style bl - perimeter visibility

b6b5 = 00 hollow bl ■ 0 invisible

= 01 solid = 1 visible

= 10 hatch

= 11 pattern

2. TEXT ALIGNMENT

b6b5 - horizontal alignment b3b2bl - vertical alignment

b6b5 = 00 left b3b2bl = 000 top

= 01 center =001 cap

= 10 right = 010 half

=11 continuous horizontal =011 base

= 100 bottom

= 101 continuous vertical

3. TEXT PRECISION

b6b5 = 00 string

= 01 character

= 10 stroke

4. CHARACTER PATH

b6b5 = 00 right

= 01 left

63

= 10 up

=11 down

5. MARKER TYPE

b6b5b4b3 = 0000 dot

0001 plus

= 0010 asterisk

0011 circle

a 0100 X

LINE TYPE

b6b5b4 = 000 solid

=001 dashed

= 010 dotted

=011 dashed-dotted

CHAPTER 7

CONCLUSIONS

The primary objective of this project was to develop a graphics

subroutine package, based on the capabilities described in the GKS

specification, that could be used by an application programmer to pro­

duce a metafile for storing graphical information and for off-line, pas­

sive plotting.

Because GKS is by design device-independent and because a

metafile is a device-independent representation of a picture, any appli­

cation programmer who understands the conceptual model underlying GKS

can use this GKSLIB library to support a wide range of 2-D passive

graphics applications with little knowledge of the capabilities and

characteristics of the physical graphics devices, to which the stored

graphical information will eventually be sent.

The device independence is achieved in GKS through the concept

of workstation. The current implementation of the GKSLIB library fully

supports this fundamental concept and two other important features,

two-stage transformation and two-stage attribute handling. Because of

this, it should be much easier to add a device driver to this library

and to perform on-line plotting in the future.

64

65

GKSLIB currently contains about 85% of functions provided in

"Oa" GKS. Obviously, it would be desirable to include precisely all of

the functional capabilities defined in level Oa, and thus to complete a

valid implementation of GKS.

APPENDIX I

CONCEPTUAL DIFFERENCES BETWEEN GKS AND THE GSPC-CORE

As mentioned in earlier chapter, whereas GSPC-Core is a proposal

for a 3D graphical core system, designed by ACM-SIGGRAPH's GSPC in US,

GKS is a proposal for a 2D graphical system and is designed by the sub­

committee "Computer Graphics" of German standards-making body. GSPC-

Core is much richer than GKS in functionality. Two other important con­

ceptual differences between these two proposals lie in the transforma­

tion processing and attribute handling.

In GSPC-Core, the transformation from WC to DC is also performed

by a two-stage process. But, it embodies only a single normalization

transformation, and the application must laboriously re-create the

correct normalization transformation for the part of the display it

wishes to modify (Figure 17).

There are almost no graphical applications in which the only

pictures generated consist of a single view of a single object occupying

the whole view surface. Thus, pictures will really be generated using

several "world" coordinate systems. Further, a single transformation

system places the burden of retransforming locator input coordinates

from NDC space to the space used by the application entirely on the

application. These requirements led GKS to include multiple normaliza­

tion transformations (Figure 18).

66

67

Figure 17 CORE Transformation

Figure 18 GKS Transformation

68

In GSPC-Core, the appearance of a primitive is controlled by a

set of modal attributes and is associated with the primitive itself. In

GKS, the appearance of a primitive is defined by two-stages (in a simi­

lar way to the transformation). In the first stage a symbolic attribute

is associated with the primitive, while in the second stage the symbolic

attribute is mapped on the capabilities of the workstation, thus deter­

mining the usual appearance on the graphical terminal.

APPENDIX II

Oa LEVEL GKS FUNCTIONS

* not implemented in GKSLIB yet

FORTRAN names Functions

Control Functions

OPNGKS OPEN GKS

CLSGKS CLOSE GKS

OPENW OPEN WORKSTATION

CLOSEW CLOSE WORKSTATION

ACTWS ACTIVATE WORKSTATION

DEAWS DEACTIVATE WORKSTATION

CLEAR CLEAR WORKSTATION

* UPDATE WORKSTATION

* ESCAPE

Output Functions

PLLINE POLYLINE

PLMARK POLYMARKER

TEXT TEXT

FAREA FILL AREA

* CELL ARRAY

69

70

* GENERALIZED DRAWING PRIMITIVE (GDP)

Output Attributes

SETPLX SET POLYLINE INDEX

SETLNT SET LINETYPE

SETLNW SET LINEWIDTH SCALE FACTOR

SETPLC SET POLYLINE COLOUR INDEX

SETPMX SET POLYMARKER INDEX

SETMKT SET MARKER TYPE

SETMKS SET MARKER SIZE SCALE FACTOR

SETPMC SET POLYMARKER COLOUR INDEX

SETTXX SET TEXT INDEX

SETTFP SET TEXT FONT AND PRECISION

SETCHE SET CHARACTER EXPANSION FACTOR

SETCHS SET CHARACTER SPACING

SETTXC SET TEXT COLOUR INDEX

SETCHH SET CHARACTER HEIGHT

SETCHU SET CHARACTER UP VECTOR

SETTXP SET TEXT PATH

SETTXA SET TEXT ALIGNMENT

SETFAX SET FILL AREA INDEX

SETFAI SET FILL AREA INTERIOR STYLE

SETFAS SET FILL AREA STYLE INDEX

SETFAC SET FILE AREA COLOUR INDEX

SETPTS SET PATTERN SIZE

SETPTR SET PATTERN REFERENCE POINT

71

SETASF SET ASPECT SOURCE FLAGS

SETCLR SET COLOUR REPRESENTATION

Transformation Functions

SETW SET WINDOW

SETV SET VIEWPORT

SELNT SELECT NORMALIZATION TRANSFORMATION

SETCLI SET CLIPPING INDICATOR

SETWW SET WORKSTATION WINDOW

SETWV SET WORKSTATION VIEWPORT

Metafile Functions

* WRITE ITEM TO GKSM

* GET ITEM TYPE FROM GKSM

* READ ITEM FROM GKSM

* INTERPRET ITEM

Inquiry Functions

IQOPST INQUIRE OPERATING STATE VALUE

IQLVL INQUIRE LEVEL OF GKS

IQWLST INQUIRE LIST OF AVAILABLE WORKSTATION TYPES

IQMNT INQUIRE MAXIMUN NORMALIZATION TRANSFORMATION NUMBER

IQWKOP INQUIRE SET OF OPEN WORKSTATION

IQPATT INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

IQATT INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

IQNTNO INQUIRE CURRENT NORMALIZATION TRANSFORMATION NUMBER

72

IQNTLT INQUIRE

IQNT INQUIRE

IQCLIP INQUIRE

IQCNTY INQUIRE

IQWKST INQUIRE

IQDFUP INQUIRE

* INQUIRE

IQCLST INQUIRE

IQCLR INQUIRE

IQWT INQUIRE

IQCATE INQUIRE

IQCLAS INQUIRE

IQDSIZ INQUIRE

IQPLFC INQUIRE

IQPPL INQUIRE

IQPMFC INQUIRE

IQPPM INQUIRE

IQTXFC INQUIRE

IQPTX INQUIRE

IQFAFC INQUIRE

IQPFA INQUIRE

IQPTFC INQUIRE

IQPPT INQUIRE

IQCLFC INQUIRE

IQPCLR INQUIRE

IQGLST INQUIRE

LIST OF NORMALIZATION TRANSFORMATION NUMBERS

NORMALIZATION TRANSFORMATION

CLIPPING INDICATOR

WORKSTATION CONNECTION AND TYPE

WORKSTATION STATE

WORKSTATION DEFERRAL AND UPDATE STATES

TEXT EXTENT

LIST OF COLOUR INDICES

COLOUR REPRESENTATION

WORKSTATION TRANSFORMATION

WORKSTATION CATEGORY

WORKSTATION CLASSIFICATION

MAXIMUM DISPLAY SURFACE SIZE

POLYLINE FACILITIES

PREDEFINED POLYLINE REPRESENTATION

POLYMARKER FACILITIES

PREDEFINED POLYMARKER REPRESENTATION

TEXT FACILITIES

PREDEFINED TEXT REPRESENTATION

FILL AREA FACILITIES

PREDEFINED FILL AREA REPRESENTATION

PATTERN FACILITIES

PREDEFINED PATTERN REPRESENTATION

COLOUR FACILITIES

PREDEFINED COLOUR REPRESENTATION

LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES

73

IQGDP INQUIRE GENERALIZED DRAWING PRIMITIVE

* INQUIRE PIXEL ARRAY DIMENSIONS

* INQUIRE PIXEL ARRAY

* INQUIRE PIXEL

Error Handling

* EMERGENCY CLOSE GKS

ERRORH ERROR HANDLING

ERRORL ERROR LOGGING

APPENDIX III

Oa LEVEL GKS DATA STRUCTURES

FORTRAN names Data structure

Operating State

OPSTAT operating state value

GKS Description Table

GLEVEL level of GKS

WKNUM number of available workstation types

WKLIST list of available workstation types

OPNNUM maximum number of simultaneously open workstations

ACTNUM maximum number of simultaneously active workstations

MNTNUM maximum normalization transformation number

GKS State List

OPNWKS set of open workstations

ACTWKS set of active workstations

PLNIND current polyline index

LNTYPE current linetype

LNWIDT current linewidth scale factor

LCOLOR current polyline colour index

LTASF current linetype ASF

74

75

LWASF current linewidth scale factor ASF

LCASF current polyline colour index ASF

PMKIND current polymarker index

MKTYPE current marker type

MKSIZE current marker size scale factor

MCOLOR current polymarker colour index

MT ASF current marker type ASF

MSASF current marker size scale factor ASF

MGASF current polymarker colour index ASF

TXTIND current text index

TFONT current text font

TPRECI current text precision

CEXPAN current character expansion factor

CSPACE current character spacing

TCOLOR current text colour index

FPASF current text font and precision ASF

CEASF current character expansion factot ASF

CSASF current character spacing ASF

TCASF current text colour index ASF

CHHIGH current character height

CHARUP current character up vector

TPATH current text path

TALIGN current text alignment (horizontal and vertical)

FAIND current fill area index

FINTER current fill area interior style

FSTYLE current fill area style index

76

FCOLOR current fill area colour index

FIASF current fill area interior style ASF

FSASF current fill area style index ASF

FCASF current fill area colour index ASF

PTSIZE current pattern size

PTPNT current pattern reference point

CNTNUM current normalization transformation number

NTNUMS list of normalization transformation numbers

NTLIST list of normalization transformations (window & viewport)

CLIPIN clipping indicator

Workstation Description Table

WKTYPE workstation type

WKCATE workstation category

Workstation State List

WKID workstation identifier

CONNID connection identifier

WTYPE workstation type

WSTATE workstation state

DFMODE deferral mode

IRMODE implicit regeneration mode

DEMPTY display surface empty

NFRAME new frame action necessary at update

DPLNUM number of polyline bundle table entries

77

table of defined polyline bundles

DPLINX polyline index

DLTTBL linetype

DLWTBL linewidth scale factor

DLCTBL polyline colour index

DPMNUM number of polymarker bundle table entries

table of defined polymarker bundles

DPMINX polymarker index

DMTTBL marker type

DMSTBL marker size scale factor

DMCTBL polymarker colour index

DTXNUM number of text bundle table entries

table of defined text bundles

DTXINX text index

DFNTBL text font

DPRTBL text precision

DCETBL character expansion factor

DCSTBL character spacing

DTCTBL text colour index

DFANUM number of fill area bundle table entries

table of defined fill area bundles

DFAINX fill area index

DFITBL fill area interior style

78

DFSTBL fill area style index

DFCTBL fill area colour index

DPTNUM number of pattern table entries

table of pattern representations

DPTINX pattern index

DPARRD pattern array dimensions

DPARR pattern array

DCLNUM number of colour table entries

table of colour representations

DCLINX colour index

DCLTBL colour (red, green, blue intensities)

WTUPDT workstation transformation update state

RWWIND requested workstation window

CWWIND current workstation window

RWVIEW requested workstation viewport

CWVIEW current workstation viewport

GKS Error State List

ERSTAT error state

ERFILE error file

APPENDIX IV

Oa LEVEL GKS ERROR LIST

States

1 GKS not in proper state: GKS shall be in the state GKCL

2 GKS not in proper state: GKS shall be in the state GKOP

3 GKS not in proper state: GKS shall be in the state WSAC

5 GKS not in proper state: GKS shall be either in the state WSAC or

in the state SGOP

6 GKS not in proper state: GKS shall be either in the state WSOP or

in the state WSAC

7 GKS not in proper state: GKS shall be in one of the states WSOP,

WSAC or SGOP

8 GKS not in proper state: GKS shall be in one of the states GKOP,

WSOP, WSAC or SGOP

Workstations

20 Specified workstation identifier is invalid

21 Specified connection identifier is invalid

22 Specified workstation type is invalid

23 Specified workstation type does not exist

24 Specified workstation is open

25 Specified workstation is not open

79

80

26 Specified workstation cannot be opened

29 Specified workstation is active

30 Specified workstation is not active

32 Specified workstation is not of category MO

33 Specified workstation is of category MI

34 Specified workstation is not of category MI

35 Specified workstation is of category INPUT

36 Specified workstation is Workstation Independent Segment Storage

Transformations

50 Transformation number is invalid

51 Rectangle definition is invalid

52 Viewport is not within the Normalized Device Coordinate unit

square

53 Workstation window is not within the Normalized Device Coordinate

unit square

54 Workstation viewport is not within the display space

Output Attributes

60 Polyline index is invalid

62 Linetype is less than or equal to zero

64 Polymarker index is invalid

66 Marker type is less than or equal to zero

68 Text index is invalid •

70 Text font is less than or equal to zero

72 Character expansion factor is less than or equal to zero

73 Character height is less than or equal to zero

74 Length of character up vector is zero

75 Fill area index is invalid

78 Style (pattern or hatch) index is less than or equal to zero

81 Pattern size value is not positive

84 Dimensions of colour array are invalid

85 Colour index is less than zero

86 Colour index is invalid

88 Colour is outside range [0,1]

Output Primitives

100 Number of points is invalid

101 Invalid code in string

102 Generalized drawing primitive identifier is invalid

103 Content of generalized drawing primitive data record is invalid

104 At least one active workstation is not able to generate the sped

fied generalized drawing primitive

Metafile

160 Item type is not allowed for user items

161 Item length is invalid

162 No item is left in GKS metafile input

163 Metafile item is invalid

164 Item type is not a valid GKS item

82

165 Content of item data record is invalid for the specified item type

166 Maximum item data record length is invalid

167 User item cannot be interpreted

Escape

180 Specified function is not supported

181 Contents of escape data record are invalid

REFERENCES

[ANS82] "Draft Proposed American National Standard for the Virtual Dev­
ice Metafile", X3H33 82-15 R5, X3H3 82-33 R5, (December 1982).

[B0N82] Bono P.R. et al, "GKS - The First Graphics Standard", IEEE
Computer Graphics & Applications, (July 1982), pp. 9-23.

[ENC80] Encarnacao J. et al, "The Workstation Concept of GKS and the
Resulting Conceptual Differences to the GSPC Core System", Com­
puter Graphics, Proc. Siggraph 80, Vol. 14, No. 3, (1980), pp.
226-230.

[ENC81] Encarnacao J., "Graphical Kernel System", IBM SYST J, Vol. 20,
No. 4, (1981), pp. 438-440.

[END83] Enderle G., "Core Systems", Computers & Graphics, Vol. 7, No.
1, (1983), pp. 87-90.

[F0L82] Foley J.D. and van Dam A., Fundamentals of Interactive Computer
Graphics, Addison Wesley, (1982).

[GSP79] "Status Report of the Graphics Standards Planning Committee",
published as Computer Graphics, Vol. 13, No. 3, (August 1979).

[IS082] ISO. "Graphical Kernel System (GKS) - Functional Description",
Draft International Standard ISO/DIS 7942, (November 1982).

[NEW78] Newman W.M. and van Dam A., "Recent Efforts Towards Graphics

83

84

Standardization”, Computing Surveys, Vol. 10, No. 4, (December
1978), pp. 365-380.

[NEW79] Newman W.M. and Sproull R.F., Principles of Interactive Com­
puter Graphics, 2nd Edition, McGraw-Hill, (1979).

[REE82] Reed T.N., "A Metafile for Efficient Sequential and Random
Display of Graphics", Computer Graphics, Vol. 16, No. 3, (July
1982), pp. 39-43.

[ROS82] Rosenthal D.S.H., "GKS in C", Eurographics 82, Greenaway D.S.
and Warman E.A. (eds), North-Holland, (1982), pp. 359-369.

[SIM83] Simons R.W., "Minimal GKS", Computer Graphics, Vol. 17, No. 3,
(July 1983), pp. 183-189.

[STR83] Straayer D.H., "Adapting Applications to the Graphical Kernel
System", Computer Design, (July 1983), pp. 167-172.

[SUT82] Sutcliffe D.C., "Attribute Handling in GKS", Eurographics 82,
Greenaway D.S. and Warman E.A. (eds), North-Holland, (1982),
pp. 103—110.

[TEN82] ten Hagen P.J.W., "Graphics Standardization", Computer Graph­
ics, Vol. 16, No. 3, (July 1982), pp. 45-46.

[WAG80] Wagener J.L., FORTRAN 77 Principles of Programming, Wiley,
(1980).

	chen_deh-chang_1984Mar_masters0001
	chen_deh-chang_1984Mar_masters0002
	chen_deh-chang_1984Mar_masters0003
	chen_deh-chang_1984Mar_masters0004
	chen_deh-chang_1984Mar_masters0005
	chen_deh-chang_1984Mar_masters0006
	chen_deh-chang_1984Mar_masters0007
	chen_deh-chang_1984Mar_masters0008
	chen_deh-chang_1984Mar_masters0009
	chen_deh-chang_1984Mar_masters0010
	chen_deh-chang_1984Mar_masters0011
	chen_deh-chang_1984Mar_masters0012
	chen_deh-chang_1984Mar_masters0013
	chen_deh-chang_1984Mar_masters0014
	chen_deh-chang_1984Mar_masters0015
	chen_deh-chang_1984Mar_masters0016
	chen_deh-chang_1984Mar_masters0017
	chen_deh-chang_1984Mar_masters0018
	chen_deh-chang_1984Mar_masters0019
	chen_deh-chang_1984Mar_masters0020
	chen_deh-chang_1984Mar_masters0021
	chen_deh-chang_1984Mar_masters0022
	chen_deh-chang_1984Mar_masters0023
	chen_deh-chang_1984Mar_masters0024
	chen_deh-chang_1984Mar_masters0025
	chen_deh-chang_1984Mar_masters0026
	chen_deh-chang_1984Mar_masters0027
	chen_deh-chang_1984Mar_masters0028
	chen_deh-chang_1984Mar_masters0029
	chen_deh-chang_1984Mar_masters0030
	chen_deh-chang_1984Mar_masters0031
	chen_deh-chang_1984Mar_masters0032
	chen_deh-chang_1984Mar_masters0033
	chen_deh-chang_1984Mar_masters0034
	chen_deh-chang_1984Mar_masters0035
	chen_deh-chang_1984Mar_masters0036
	chen_deh-chang_1984Mar_masters0037
	chen_deh-chang_1984Mar_masters0038
	chen_deh-chang_1984Mar_masters0039
	chen_deh-chang_1984Mar_masters0040
	chen_deh-chang_1984Mar_masters0041
	chen_deh-chang_1984Mar_masters0042
	chen_deh-chang_1984Mar_masters0043
	chen_deh-chang_1984Mar_masters0044
	chen_deh-chang_1984Mar_masters0045
	chen_deh-chang_1984Mar_masters0046
	chen_deh-chang_1984Mar_masters0047
	chen_deh-chang_1984Mar_masters0048
	chen_deh-chang_1984Mar_masters0049
	chen_deh-chang_1984Mar_masters0050
	chen_deh-chang_1984Mar_masters0051
	chen_deh-chang_1984Mar_masters0052
	chen_deh-chang_1984Mar_masters0053
	chen_deh-chang_1984Mar_masters0054
	chen_deh-chang_1984Mar_masters0055
	chen_deh-chang_1984Mar_masters0056
	chen_deh-chang_1984Mar_masters0057
	chen_deh-chang_1984Mar_masters0058
	chen_deh-chang_1984Mar_masters0059
	chen_deh-chang_1984Mar_masters0060
	chen_deh-chang_1984Mar_masters0061
	chen_deh-chang_1984Mar_masters0062
	chen_deh-chang_1984Mar_masters0063
	chen_deh-chang_1984Mar_masters0064
	chen_deh-chang_1984Mar_masters0065
	chen_deh-chang_1984Mar_masters0066
	chen_deh-chang_1984Mar_masters0067
	chen_deh-chang_1984Mar_masters0068
	chen_deh-chang_1984Mar_masters0069
	chen_deh-chang_1984Mar_masters0070
	chen_deh-chang_1984Mar_masters0071
	chen_deh-chang_1984Mar_masters0072
	chen_deh-chang_1984Mar_masters0073
	chen_deh-chang_1984Mar_masters0074
	chen_deh-chang_1984Mar_masters0075
	chen_deh-chang_1984Mar_masters0076
	chen_deh-chang_1984Mar_masters0077
	chen_deh-chang_1984Mar_masters0078
	chen_deh-chang_1984Mar_masters0079
	chen_deh-chang_1984Mar_masters0080
	chen_deh-chang_1984Mar_masters0081
	chen_deh-chang_1984Mar_masters0082
	chen_deh-chang_1984Mar_masters0083
	chen_deh-chang_1984Mar_masters0084
	chen_deh-chang_1984Mar_masters0085
	chen_deh-chang_1984Mar_masters0086
	chen_deh-chang_1984Mar_masters0087
	chen_deh-chang_1984Mar_masters0088
	chen_deh-chang_1984Mar_masters0089
	chen_deh-chang_1984Mar_masters0090
	chen_deh-chang_1984Mar_masters0091
	chen_deh-chang_1984Mar_masters0092

