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ABSTRACT

Computer graphics is a field whose time has come. In the past, 

it was an esoteric specialty involving expensive display hardware and 

idiosyncratic software. Recently, hardware has become more readily 

available, and efforts have been made to develop graphics software stan­

dards, which help make graphics programming rational and straightfor­

ward.

The Graphical Kernel System (GKS) is rapidly gaining acceptance 

as a worldwide standard for computer graphics. The International Stan­

dards Organization (ISO) is in the final stages of converting GKS from 

its current status as a Draft International Standard (DIS) to an Inter­

national Standard.

This report presents an overview of GKS and also discusses a 

subroutine library, that has been developed for use at McMaster Univer­

sity and is equivalent to ”0a" GKS (the lowest level of GKS). This 

library, called GKSLIB, is written in FORTRAN 77, and could be used by a 

programmer to support a wide range of two-dimensional, passive graphics

applications.
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CHAPTER 1

INTRODUCTION

1.I What is Computer Graphics?

Computer graphics may be defined as the creation, storage, and 

manipulation of models of objects and their pictures via computer 

[FOL82]. It is an extremely effective medium for communication between 

man and computer. Most people enjoy interacting graphically more than

they do the more traditional and more limited alphanumeric communication

techniques. With computer graphics, we are largely liberated- from the 

tedium and frustration of looking for patterns and trends by scanning 

many pages of linear text on line printer listings or alphanumeric ter­

minals .

In the past, however, the high cost of computer graphics tech­

nology has prevented its widespread use. Recently, the cost is dropping 

rapidly, and computer graphics is becoming available to more and more 

people.

1.2 Some Representative Uses of Computer Graphics

Computer graphics is used today in many different areas of 

industry, business, government, education, entertainment, and, most 

recently, in the home. The following list gives an idea of the areas of
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use to which graphics has already been put [FOL82].

- Plotting in business, science, and technology. This describes 

probably three-quarters of graphics application programs. Exam­

ples include graphs of mathematical, physical, and economic 

functions, histograms, bar and pie charts, task scheduling 

charts, inventory and production charts, and a profusion of 

other plots. All are used to present trends and patterns in data 

in a meaningful and concise fashion in order to increase under­

standing of complex phenomena and to facilitate informed deci­

sion making.

- Cartography. Computer graphics is used for the production of 

highly accurate representations on paper or film of geographical 

and other natural phenomena. Exmaples include geographic maps, 

weather maps, and population density maps.

- Computer-aided drafting and design. In computer-aided design 

(CAD), computer graphics is used to design components and sys­

tems of mechanical, electrical, and electromechanical devices. 

These systems include structures (such as buildings, automobile 

bodies, and chemical plants), and telephone and computer net­

works. The engineer can interact with a computer-based model of 

the component or system being designed in order to test, for 

example, its mechanical, electrical, or thermal properties.

- Simulation and animation. The most familiar example in this area

is the flight simulator, in which computer graphics helps train



3

. the pilots of our airplanes on the ground. It has many advan­

tages over real aircraft for training purposes, including fuel 

savings and safety.

- Process control. In some industrial applications, the user can

interact with some aspects of the real world itself, rather than 

a simulation of the real world. Status displays for refineries, 

power plants, and computer networks display data values from 

sensors attached to critical components in the system; the

operator then responds to exceptional conditions.

- Office automation. In the office and even the home, people now

use the alphanumeric and graphic terminals to create and dissem­

inate information which contains not just text but also tables 

and graphs.

- Art and commerce. Computer art and advertising have the common 

goal of expressing a "message’’ and attracting the attention of 

the public with aesthetically pleasing pictures.

1.3 Classification of Applications

The areas listed above can be categorized in a variety of ways. 

An obvious one is based on the type of picture generated: for example, 

whether two- or three-dimensional, or whether portraying an abstract or

a real entity.
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A categorization that is less drawing-oriented and more 

programming-oriented divides the application areas into three distinct 

ones in a spectrum: offline plotting with a predefined data base pro­

duced by other application programs, where an observer has little con­

trol over the appearance of the images; interactive plotting in which 

the user dynamically controls the pictures' content, format, size, or 

colors on a display surface by means of interaction devices such as a 

keyboard, lever, or joystick; and interactive design in which the user,

starting from a blank screen, defines an object, typically from prede­

fined components, and then alters it at will, panning and zooming to get 

the desired view [FOL82].



CHAPTER 2

OVERVIEW OF A GRAPHICS SYSTEM

2.1 A Programmer's Model of a Computer Graphics System

A graphics system consists of hardware and software components.

HARDWARE. Figure 1 symbolizes the hardware view of a graphics 

system. Two major hardware components are the host computer and the

display unit. The display unit itself consists of a display processor 

(or DPU) and a CRT. It may contain some other input devices such as key­

board or joystick for interactive purpose.

Figure 1 Hardware view of a graphics system

5
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SOFTWARE and DATA MODULES. Figure 2 shows two important software 

components - application program and graphics package, and two data 

modules. The first data module is the DPU display program which is writ­

ten by the graphics package and read by the DPU. The second data module 

is the application data structure which contains, among other things, a 

description of the objects whose images are to be displayed.

data modules

Figure 2 Software and data modules of a graphics system

Therefore, the application program retrieves data from the 

application data structure, and sends graphics commands to the graphics 

package, which, in turn, produces a display program for DPU to draw pic­

ture on CRT
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2.2 Graphics Hardware

From Figure 1, there are four major subsystems in a typical 

graphics system: computer, DPU, display device, and input devices. The 

computer is the heart of the system. The display device is usually a 

cathode ray tube (CRT). The DPU can be viewed as a special purpose CPU, 

with its own set of commands, data formats, and an instruction counter. 

It executes a sequence of display Instructions (the display program), to 

create a drawing on the display device. Individual DPU instructions 

typically draw a point, line, or character string. Input devices, with 

which the user inputs commands and other information, are attached to

the DPU.

There are two basic types of CRTs: refresh and storage. With a

refresh CRT, the DPU interprets the display instructions and converts 

digital values to analog voltages which displace an electron beam writ­

ing on the phosphor coating of the CRT. Since the light output of the 

phosphor decays in tens or at most hundreds of microseconds, the DPU 

must cycle through this display program to refresh the phosphor at least 

30 times per second to avoid flicker. In a storage CRT (also known as 

DVST), the image is stored (until erased) as an internal charge distri­

bution, and thus a refresh cycle is not necessary.

The DPU can be organized to create a drawing either by random 

scan or raster scan. In a random-scan (or vector) system, parts of the 

drawing can be depicted on the display in any order. In a raster-scan 

system, the display primitives, such as lines, characters, and solid
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areas are stored in a refresh buffer in terns of their component points, 

called pixels (short for picture elements). The image is formed from 

the raster, a set of horizontal raster lines each made up of individual

pixels. The raster is thus simply a matrix of pixels covering the entire 

screen area. The entire image is scanned out sequentially, 30 times per 

second, one raster line at a time top to bottom, by varying only the 

intensity of the electron beam for each pixel on a line. The storage 

needed is thus greatly increased in that the entire image of, say 512 

lines of 512 pixels, must be stored explicitly in a bit map containing 

only points that map one-for-one to points on the screen. The more fam­

iliar hard-copy devices also operate with either a random or raster 

scan. The printer is a simple raster-scan hard-copy device. The print 

head moves from left to right, top to bottom. The pen plotter, in which 

a pen can be moved in any direction over a piece of paper, is a random- 

scan device. A raster system makes possible the display of solid areas, 

typically in color, which is an especially rich means for communicating

information.

Input devices attached to the DPU are for the user to interact 

with the application program. Some more common examples include 

alphanumeric keyboard for entering text, programmable function keyboard 

(PFK) for invoking predefined options or functions, light pen for point­

ing at information displayed on the screen, data tablet with stylus for 

specifying screen coordinates, and control dials for entering the scalar 

values. The DPU contains a number of registers in which input devices 

store the appropriate values. Event (interrupt-) generating devices
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load their device registers and interrupt the CPU. The sampled devices 

load their register with data whenever they are interrogated by the CPU; 

the CPU then reads the associated registers.

2.3 What is a Graphics Package?

From Figure 2, a graphics package may be defined as a high-level 

programming interface between the application program and the graphics 

devices. The application program uses the graphics package much as it 

uses the I/O subsystem of the operating system to read and write records 

in file. The graphics package offers the application programmer a range 

of functions to use within his program and hides some less important 

details of the display's construction from the programmer, such as 

specific low-level architecture of the DPU and the xy coordinate system

of the physical screen. By this way, the graphics package can simplify

the writing of the graphics application program.

The functional facilities of a graphics package available to the

application programmer can usually be divided into some distinct

classes. Below is a typical classification:

1. graphic output primitives,

2. viewing specification,

3. attribute-setting,

4. segment control,

5. input,

6. control.
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Figure 3 is an expanded version of Figure 2, and gives a more 

detailed view of the structure of a graphics system. It shows three 

major processors of a graphics package:

1. viewing operation processor,

2. DPU code generator,

3. input handler.

graphics package

Figure 3 Detailed view of a graphics system
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With this diagram, it should become easier to explain how the 

six classes of functions provided in a typical graphics package can be 

invoked and used in an application program. There are two data flows 

going in opposite directions within the graphics system: one is from the 

object description in an application data structure to an image (or pic­

ture) on the screen, the so-called output pipeline, and the other is 

from the user-supplied input to the data structure and/or display pro­

gram, the so-called input pipeline.

2.4 Viewing Operation Processor

At the first stage in the output pipeline, the application pro­

gram retrieves a piece of data from an application data structure. The

geometric data andapplication data structure contains 

connectivity relationship data. The former defines the shape of com­

ponents of the object, the latter defines how the components fit 

together. The application programmer must first construct this data 

structure before he can use it and describe it to the graphics package 

for viewing purposes.

The application program describes the data structure to the 

graphics system by transforming it to a sequence of function calls to 

the graphics subroutine package as Figure 4 shows. One of the most 

important function classes is the graphic output primitives. They are 

the functions an application programmer can use to display straight 

lines, text strings, and other simple graphical items. For example, we 

can use a function in this class called POLYGON to draw a triangle on
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the screen:

POLYGON(x_array,y_array, n ),

where x array and y_array contain the coordinates of the vertices of the 

polygon, and n gives the number of vertices.

app!icat ion 
data

structure

to
DPU

Figure 4 Function calls to the graphics package
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One very important concept here is that the vertices of the 

polygon are specified in the user's world coordinate system. That means, 

we can define objects in terms of units that are natural to the applica­

tion and to the user. These world coordinates must be converted into the

appropriate coordinates-of the physical display device. To make this

conversion, we have to tell the graphics system what portion of the 

essentially unbounded world coordinate space contains the information we 

want to display at this time. Figure 5 shows an example.

wor I d
coord i na+e

device 
coord i na+e

Figure 5 Conversion from the world to the device coordinates
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The rectangular region in the world coordinate space is called a 

window. It can be specified to the graphics system by calling one of 

the viewing specification functions:

SETWINDOW(xl,yl,x2,y2),

where (xl,yl) is the lower left corner and (x2,y2) is the upper right

corner.

In addition to displaying the picture on the entire screen, we 

can also map a window onto some portion of the screen. This rectangular 

portion is called a viewport, which can be defined by invoking another 

viewing specification function:

SETVIEWPORT(xl,y1,x2,y2).

Figure 6 gives an example.

Figure 6 Mapping the window onto some portion of the screen
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With these two viewing specification functions, SETWINDOW and 

SETVIEWPORT, we can choose any portion in the world coordinate space to 

be displayed on any portion of the screen. The viewing operation proces­

sor of the graphics package will do the necessary transformation to all

graphic output primitives it receives.

From Figure 4, there is one other important task the viewing 

operation processor must perform beside window-to-viewport mapping, 

namely clipping. Clipping is a technique used to make any parts of the 

object outside the window invisible. Figure 5 shows one case where clip­

ping is needed. If this is not done, the results on the screen would not 

be well-defined, because we try to display points that overflow the 

coordinate addressing scheme of the display.

Clipping can be done after mapping as shown in Figure 7. In 

this case, pictures (or graphic output primitives) are clipped against 

the viewport. That means, the viewport is used as clipping rectangle. 

The disadvantage of this method is that all the primitives must be 

transformed whether they are visible or not.

One alternative way is ’’clipping before mapping" as shown in 

Figure 8. Here, pictures are clipped against the window.

2.5 DPU Code Generator

The function of this processor is to produce a display program 

for DPU. The DPU display program is a sequence of point and line plot­

ting commands and character plotting commands which are encoded in a
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world device
coordinate coordinate

to
DPU

Figure 7 Mapping, then clipping

worl d

coord i nate
worl d

coord i nate
device 

coord i nate

to
DPU

Figure 8 Clipping, then mapping

specific format suitable for DPU to interpret in order to draw points, 

lines, and character strings on the screen. Actually, it can be compared
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to the "machine code" from the normal compilation. Then, the graphics 

package can be thought of as a "display program compiler". Two signifi­

cant differences between the compilation of the DPU code and the normal 

compilation are: (1) The compilation of the DPU code takes place at the 

run time of the application program, while normal compilation is usually 

finished before application program starts executing; (2) The ordinary 

source code is compiled to equivalent target code in its entirety, while 

graphics package's "source" code may be clipped to a subset before being 

compiled to equivalent DPU "target" code.

From Figure 4, two classes of functions provided in a graphics 

subroutine package are relevant to DPU code generation. They are 

attribute-setting and segment control. Attribute-setting functions con­

trol the appearance of the graphic output primitives. For example, line 

style and line colour can be set for all following primitives until 

reset. Segment control functions are used to group logically related 

output primitives into segments. Segments are the units of selective 

modification of the display program. Functions are also available to 

delete, rename, or change the visibility of segments.

2.6 Input Handler

While picture plotting is handled by the graphics package's out­

put routines, input handling is controlled by its input routines that 

pass user-supplied input data to the application program as part of an 

interaction sequence. The input data is first collected from the DPU by 

the input handler, which typically then passes it to the application
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program. The data changes the state or flow of control of the applica­

tion program. It may also cause the application program to modify either 

the data structure or to change the viewing operation parameters. The 

input may also be used directly by the code generator to perform segment 

manipulation operations.

A major goal of the input facilities of a graphics package, as 

of output devices, is device-independence. This is achieved by organiz­

ing all the physical input devices into five basic logical devices:

1. button, to select an option;

2. pick, to point to a displayed entity;

3. keyboard, to enter a character string;

4. valuator, to input a scalar value;

5. locater, to specify screen coordinates.

Program requests for input functions specify a logical device 

name which the input handler maps to the available physical device with 

the most naturally corresponding characteristics. This mapping of logi­

cal to physical devices is analogous to an operating system's mapping of 

logical unit numbers or logical file names to appropriate physical file 

storage devices.

Each logical device has a natural prototype in a specific physi­

cal device or class of devices. However, any of these logical devices 

can be simulated by any input device. This concept again is rather like 

that of logical files in an operating system. A sequential input file 

may be implemented physically by means of a card reader, a magnetic tape
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drive, a disk drive, or a terminal keyboard. The application programmer 

doesn't care which one it is - the operating system makes them all ’’look 

alike" functionally, despite their physical differences.



CHAPTER 3

GRAPHICS STANDARDIZATION

The aim of graphics system design is to simplify the writing of 

graphic application programs. The earliest applications were written 

without the benefit of graphics systems, and were very difficult to 

write. Nowadays it is universal practice to use a graphics package as 

the basis for applications development. With this approach, applica­

tions take less time to write, and their development demands less skill 

on the part of the programmer [NEW79].

However, almost all of the eralier graphics systems were res­

tricted to certain mainframe computers, to a given host language, and to 

specific graphics devices. Moreover, most of the systems addressed a 

single application area. These graphics subroutine packages were usu­

ally supplied by manufacturers for their unique display devices, and 

varied from the very simple package for two-dimensional pictures on a

storage display, up to the most complex systems supporting three­

dimensional graphic data structures. Since each of these systems sup­

ports a different set of functions and requires the use of different 

programming conventions, they are all very low-level and machine and 

device dependent. The result is that if an application program is writ­

ten to use one of these systems, the chances are very remote that it can 

be run in conjunction with another system. This is the problem of pro­

20
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gram portability. Another disadvantage is the need to retrain the pro­

grammers to use different graphics systems. This problem concerns pro­

grammer portability [NEW79].

3.1 Device Independence

In order to achieve application program (and programmer) porta­

bility, the graphics packages must present a uniform interface to the 

application programmer, no matter what equipment is being used. Whether 

the output device is a plotter, a storage display, or a high-performance 

refresh display, the programmer should be able to use the same set of 

graphics functions to generate images. These packages are thus device 

independent at the level of the programmer's interface.

One other form of device independence also needs consideration: 

device independence within the package. This permits the package to

drive different devices with the minimum of modification for each new

device. Device independence in a graphics package can be achieved by 

carefully separating those components of the graphics system that are 

inherently device-dependent from the remaining common software, and by 

giving equally careful attention to the interface between the two parts. 

Large sections of the package, including transformation and clipping 

software, can usually be included in the common software. The most 

device-dependent parts of the package are likely to lie in the input 

device polling routines and in the DPU code generator. They can be par­

titioned in a module and called the logical device driver. Device 

dependence can be kept to a minimum, if interfaces from the common
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software to these routines are well-designed.

The interface to the DPU code generator may take the form of 

either an intermediate data structure, or a set of functions within the 

display code generator, called by the common software. Many plotter- 

oriented graphics packages use an intermediate data structure, in which 

the entire image for plotting is stored in a device-independent format 

by using normalized device coordinates (NDC); the data structure is then 

translated to the format required by the device. NDC can be thought of 

as a logical coordinate system used for describing the view surface of a 

logical output device. They are real numbers in the range from 0 to 1 

in both x and y, with the origin in the bottom left corner of the view 

surface. In an interactive environment, the use of an intermediate data

structure amounts to an extra buffering step, impacting response and 

requiring additional memory. It is therefore rarely used in interactive 

graphics package, except as "pseudo display files" for off-line plot­

ting, or for storage of images for later re-use. A pseudo display file

is often referred to as a metafile.

3.2 Standardization Aspects

A significant development that started in the mid-seventies was

a general awareness of the need for standards in such device-independent

graphics packages. Anyone who has been involved in building graphics 

system knows that the lack of unity and maturity in the field has been a 

source of discourgement to many potential users, and has slowed progress 

towards wide acceptance of computer graphics. Although standards in
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programming languages were common very early on, Che standards In com­

puter graphics are long overdue. The lack of standards is not due to 

the youth of the technology. By 1965, most hardware technologies used 

today were already in existence. One clue to the delay is the wide 

diversity among graphics hardware devices and among graphics packages 

developed for them [BON82].

3.2.1 Why is the Standardization Necessary?

The single strongest justification for standardization in com­

puter graphics is the promotion of program portability and programmer 

portability [NEW78]. Portability, in turn, reduces software costs and 

personnel training costs. It was also found that standardization 

improved communications from the user's point of view.

From the manufacturer's viewpoint, improved portability 

increases the size of the market. The standard itself gives guidance as 

to the right directions for hardware innovation.

Moreover, a standard that encourages machine and device indepen­

dence also protects the hardware and software investment of the end 

user. New computer systems and new hardware devices may be added as 

technology advances and as the demands of the application change.

In short, a standard serves as the base for a common understand­

ing and a common terminology for creating computer graphics systems, for 

using computer graphics, for talking about computer graphics, and for 

educating students in computer graphics methods, concepts, and
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applications.

3.2.2 Standardization Requirements

In order to meet the needs of most users, a computer graphics 

system should separate the basic graphical capabilities from those func­

tions that are related to a specific application area. A system realiz­

ing the basic graphical capabilities is called a "core system”, the 

application dependent systems using the functions of a core system are 

referred to as "modelling system". For example, in a geometric model­

ling system, the handling (definition, transformations, calculations, 

storage) of the geometrical models of the design parts Is done by the 

modelling system, whereas the graphical presentation of the models and 

the interactions with an operator is the task of the core system. A 

core system should have the following properties [END83]:

- independence of a specific computer,

- independence of specific graphical devices,

- independence of a specific programming language,

- independence of a specific application area.

Thus, a standardized computer graphics system should define a 

standard functional interface for all kinds of applications, a standard 

device interface to all kinds of graphics devices, and a standard inter­

face for storage and transfer of graphical information ("graphics 

metafile"). Figure 9 shows a graphical core system with the application 

interface and the device interface.
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appIication 
i nterface

device/
workstation

Figure 9 Core system with application and device interfaces

3.2.3 The Development of Graphics Standards

The development of graphics standards began in 1976 following an 

extremely successful international "Workshop on Graphics Standards 

Methodology" in Seillac, France. In the US, the results of this 

workshop stimulated ACM SIGGRAPH's Graphics Standards Planning Committee 

(GSPC). This committee designed a proposal for a 3D graphics core sys­

tem. Two versions of this proposal were published in 1977 and 1979. 

The GSPC's proposal has become known as GSPC-Core or just "the Core".
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Efforts to develop graphics standards were also underway in a 

number of other countries. In particular, the German Standardization 

Institute, DIN (Deutsches Institut fuer Normung), established a group 

aimed at designing a graphics core system. This group produced several 

versions of the Graphical Kernel System (GKS) [B0N82].

In 1979, GKS was selected as the base for the international 

standardization effort in the computer graphics field by the working 

group Technical Committee 97 (Information System)/Sub Committee 5 (Pro­

gramming Languages)/Working Group 2 (Graphics), normally abbreviated 

TC97/SC5/WG2, of ISO (International Standardization Organization). Up 

to 1982, GKS was subject to an extensive international reviewing pro­

cess. In several revisions it finally reached a state that agreement

could be reached that GKS should be an international standard. It

presently has the status of a DIS (Draft International Standard). ANSI, 

the American National Standards Institute, is also in the process of 

adopting the Graphical Kernel System as an ANSI standard [STR83].

3.2.4 GKS vs GSPC-Core

Whereas GSPC-Core was intended to be a comprehensive and com­

fortable 3D standard, GKS, a 2D system, was aimed at the basic graphical 

functions. This was one of the reasons why the ISO, after evaluating 

both GSPC-Core and GKS, decided to use GKS as the base for an interna­

tional graphics standard [END83]. A basic system is also referred to as 

a "basic core", in contrast to a "rich core" which contains a broader 

spectrum of functionality. A more detailed comparison between GKS and
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GSPC-Core will be given in Appendix I



CHAPTER 4

AN OVERVIEW OF GKS

The GKS standard specifies a set of functions for computer 

graphics programming in a way that is independent of particular graphics 

devices, computers, programming languages, or applications. A fundamen­

tal concept in GKS is the workstation, consisting of a number of input 

devices and a single output device. The workstation concept is impor­

tant for achieving device independence, while still allowing full con­

trol of physical device characteristics. The capabilities provided by 

GKS include the following [IS082]:

* two-dimensional line and raster graphics,

* graphics input and output at one or more graphics workstations

s imultaneously,

* provision for storage and dynamic modification of pictures,

* storage and retrieval of graphics information from a long-term, 

external graphics file (metafile),

* means for adapting application program behaviour to suit works­

tation capabilities,

* several upwardly compatible levels of the standard with increas­

ing functional capabilities.

28
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4.1 Layer Model of GKS

GKS defines a language independent nucleus of a graphics system. 

However, in an implementation of the system, these functions have to be 

realized as subroutines (or procedures) in a given programming language. 

Such a language specific realization, in which the language-independent 

system nucleus is embedded, is called a language layer. The functions 

provided by the language layer can be used by the application program­

mer, together with operating system functions. Special application 

dependent layers can be built on top of the GKS language layer (e.g. a 

layer for data representation graphics). The layer model represented in 

Figure 10 illustrates the role of GKS in an application. Each layer may

call the functions of the adjoining lower layers. So an application

program will have access to a number of application oriented layers, the 

language dependent GKS layer, and operating system resources.

4.2 GKS Workstation

A GKS workstation consists of a single display area and a number 

of input devices. The whole workstation is treated in GKS as one logi­

cal unit and operated in a coordinated fashion by an operator at a given 

site. An operator can have a number of GKS workstations under his con­

trol at the same time. For example, he may be interacting at a refresh 

display while taking occasional copies of output at a plotter. Dif­

ferent workstations may be set to view different parts of the complete 

virtual picture.
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application oriented layer
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other resources graphical resouces 
workstations

Figure 10 Layer model of GKS

Each workstation has a type. Workstation types are similar to 

the facilities that would be available at a plotter, storage tube, or 

refresh display. Each workstation type falls into one of six 

categories:

OUTPUT Output,

INPUT Input,

OUTIN Output and input,

WISS Workstation Independent Segment Storage,

MO GKS Metafile (GKSM) output,

MI GKSM input.

For every type of workstation present in a given GKS implementation, an 

entry exists in a workstation description table. It describes the capa­
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bilities and characteristics of the workstation. The workstations are

identified by the application program by use of a workstation identif­

ier. Whenever the application program wants to use a workstation, it

must first request the opening of this workstation by GKS, which associ­

ates the workstation to the corresponding graphical terminal and gives 

the application access to all its capabilities except output of graphic

primitives. For output the workstation must be explicitly activated. 

Output primitives are sent to all active workstations. Segment manipu­

lation and input can be performed with any open workstation.

4.3 GKS Attribute Bundles

Graphics primitives such as line drawing can have associated 

attributes such as color, thickness, and line style. There are basi­

cally two approaches to specifying such attributes. The first is to

have a set of modal attributes that are in effect until the next setting

of the attribute. For example:

COLOR (RED)

WIDTH (THICK)

STYLE (SOLID)

DRAW LINE

COLOR (GREEN)

STYLE (DASHED)

DRAW LINE

This would draw a thick, red, solid line followed by a thick, green,
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dashed line. Each modal attribute remains in effect until reset. Thus, 

thickness is an attribute to both lines. A disadvantage of this 

approach is the need to map this attribute specification onto a number 

of devices that may not be able to implement a particular attribute.

How can we draw red lines on a storage tube? Usually the implementor of 

the device driver makes an arbitrary decision. A second disadvantage of 

this approach is the specification of library routines where particular

lines must be differentiated but the application programmer is left to 

specify the particular attribute to use. For example, a contour routine 

might need every third contour to be highlighted. The application pro­

grammer might wish to use color, thickness, or broken lines to highlight 

the effect. With modal attributes, the body of the algorithm becomes 

complex, with many attribute settings depending on user's requirements.

The solution adopted in GKS is to have one workstation- 

independent attribute per primitive designated as the primitive index. 

Each primitive may have one of a number of representations associated 

with it, running from 1 up to an implementation maximum. The equivalent 

GKS program to the one above would look like this:

SET POLYLINE INDEX (1)

POLYLINE

SET POLYLINE INDEX (2)

POLYLINE

The first line would be drawn with the bundle corresponding to index 1 

and the second with the bundle corresponding to index 2. The represen­
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tations of bundles 1 and 2 are workstation-dependent and can be set by 

the application programmer. Thus, he can set representation 1 as red, 

thick, and solid, while representation 2 is green, thick, and dashed. 

The advantage of making the pen specification workstation-dependent is 

that the characteristics of representation 1 can be quite different on 

two workstations. Many of today's application programs suffer greatly 

from the problems associated with producing appropriate output on works­

tations with diverse capabilities. GKS workstation model makes it easy

to use different graphics devices, and particularly easy to use the best 

features of each device. However, for the single workstation environ­

ment, GKS has given up the simpler, more direct approach of 

workstation-independent, unbundled primitive attributes in exchange for 

increased flexibility. A set of indicators, called Aspect Source Flags 

(ASFs), can be used for this purpose. They control whether the values

of the associated attributes are obtained from a bundle table or from

individual specifications.

4.4 Output Primitives

GKS has defined six output primitives:

POLYLINE,

POLYMARKER,

TEXT,

FILL AREA,

CELL ARRAY,

GENERALIZED DRAWING PRIMITIVE.
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However, unlike many present-day systems, GKS does not use the concept 

of current position. Each primitive has its coordinates fully defined 

internally. Furthermore, for line drawing, a polyline, which generates

a set of connected lines given an array of points as a parameter, is the 

fundamental line drawing primitive. A polyline primitive is more prac­

tical than a single line, since a set of lines is more useful in forming

a shape. Given that polyline rather than line is the basic primitive,

attributes such as linestyle apply to the complete polyline rather than

a single line segment. Thus, dotted or dashed curves are easily drawn.

A mechanism must also be defined for identifying points. GKS

extends the point primitive to that of a marker that can output one of

possible forms centered on a specified position. The basic primitive is

a polymarker that output a sequence of markers and is the obvious primi­

tive to choose, once polyline has been defined.

Text similarly produces a string of characters rather than a 

single character, to ensure some equivalence of level among the three 

main output primitives.

The remaining three primitives show the increasing importance of 

raster graphics and the need to allow hardware facilities to be used

even within a device-independent standard. Fill area defines a boundary

whose interior can be hollow, filled in solidly, or filled with either a
> I ,

pixel pattern or a hatching pattern. The cell array primitive is a 

means of specifying an array of colors or intensities and is particu­

larly useful in image processing applications. The final primitive,
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GDP, is an escape function to allow special geometric primitives such as 

circle or curve to be defined in a well-defined, implementation-

specified way - a standard way of being nonstandard.

4.5 Attributes

Polyline and polymarker have a single attribute, which selects a

bundle as follows:

polyline : linetype, linewidth scale factor, color index; 

polymarker : marker type, marker size scale factor, color index.

The color index selects an entry in a workstation-dependent color table, 

which specifies the RGB values to be used when drawing the primitive.

Text differs from the other primitives in splitting the attri­

butes into two classes:

geometric attributes : character height, character up vector, 

text path, text alignment;

nongeometric attributes : text font and precision, character

expansion factor, character spacing,

text color index.

The first class controls the geometric aspects of the text. These 

attributes are workstation-independent and are expressed in world coor­

dinates where appropriate (eg character height). The second class con­

trols the nongeometric aspects of text such as font, precision, and 

color. The motivation for this split is that the overall form and shape
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of the text must fit with the graphic output on all devices and so 

should be device-independent. However, the particular character forms 

and quality of characters drawn may differ among workstations and 

should, therefore, be part of the bundle table. Workstation independent 

attributes are set modally. There is a current value for each worksta­

tion independent attribute.

Fill area also has two sets of attributes. The first comprises

the following:

(1) Interior style defines the mode of filling: hollow, solid, pat­

tern, or hatch;

(2) Style index specifies for pattern an entry in a pattern table, 

which is used for filling. If the interior style is hatch, the 

index is used to determine which of the predefined hatch styles

is used;

(3) Color index is used for hollow and solid and is a reference to

the color table.

The second set comprises two workstation-independent attributes: pattern 

size and pattern reference point. They define the size and position of 

the start of the pattern.

GDP has no separate bundle table, but uses the one most 

appropriate to the type of primitive it most closely resembles. Cell 

array has also no separate bundle table, but its definition includes an

array of color indices.
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4.6 Segments

It is possible to generate output primitives so that they are 

displayed on all active workstations. However, in an interactive 

environment the complete picture frequently needs to be split into a 

number of objects or segments that can be manipulated independently. 

For example, highlighting a particular part of the picture, or removing 

it for some reason. In working with a refresh display, a user must 

often move parts of a picture around. This is achieved via a segment 

transformation matrix, which may be altered after the segment is

defined.

Segments are stored on only those workstations that are active

when the segment is defined. This is adequate for most purpose, but

occasionally we need to see a segment on a workstation that was not 

activated when the segment was created. For example, the user may be

defining a picture made up of segments on a refresh display and then at 

some stage may wish to copy the current display to a plotter. GKS 

allows this through a workstation-independent segment storage (WISS), 

which can keep copies of segments as they are formed. When a copy is 

required, the segments can be sent from WISS to a specified workstation.

In the more complex implementation levels of GKS, a segment can also be

inserted into another segment.
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4.7 Viewing

The typical graphical package has a single window/viewport 

transformation that allows the application programmer to define his own

coordinate system, some part of which is mapped onto an area of the 

display screen. The situation is complicated in GKS by having several 

workstations active at the same time. Should all workstations, then, be 

forced to use the same viewport? An application might require one 

display to give an overall view of the picture being displayed, while 

another looks at the detail of the picture.

GKS achieves this flexibility through three different two­

dimensional Cartesian coordinate systems and two distinct 

window/viewport mappings. The applications programmer defines his out­

put in terms of a world coordinate (WC) system mapped onto some part of 

the normalized device coordinate (NDC) plane. This first-stage mapping

is called normalization transformation. The set of active workstations

can then take separate views of the NDC space and map these onto 

workstation-dependent parts of the display, expressed in device coordi­

nates (DC). This second-stage mapping is called workstation transforma­

tion.

Any complex picture probably consists of several distinct parts, 

which are most appropriately defined in different coordinate systems. A 

conventional package would do this by allowing the user to continually 

redefine the window/viewport mapping from WC to NDC. For example,

SET WINDOW(XMIN,XMAX,YMIN,YMAX)
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DRAW PICTUREA

SET WINDOW(X2MIN,X2MAX,Y2MIN,Y2MAX)

DRAW PICTUREB

In this hypothetical package, PICTUREA is drawn with the first coordi­

nate system, whereas PICTUREB is drawn with the second coordinate sys­

tem. The user effectively sees a display made up of two parts with dif­

ferent coordinate systems. The user's view of the system is that both 

coordinate systems must be known to the system as pictures. However, in

reality only the second coordinate system is known in a conventional 

package. When the user needs to point to a particular position in 

either coordinate system, the system cannot deliver the position in the 

correct coordinate system.

To ensure that the user's view of the system is correct, GXS 

allows the definition of multiple window/viewports, all existing simul­

taneously. The GKS equivalent of the above program would look like

this:

DEF WINDOW(1,XMIN,XMAX,YMIN,YMAX)

DEF WINDOW(2,X2MIN,X2MAX,Y2MIN, Y2MAX)

SECLECT WINDOW (1)

DRAW PICTUREA

SECLECT WINDOW (2)

DRAW PICTUREB

The form of the program in GKS has a tendency to define all the coordi­

nate systems at the start of execution and then select the particular
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transformation when required. The other program form has transformation 

definitions scattered throughout.

4.8 Input

GKS input is defined in terms of a set of logical devices:

choice,

locator,

pick,

string,

valuator.

A logical device may be implemented on a workstation in a variety of 

ways. For example, a string may be input using a keyboard, by freehand 

drawing on a tablet, or by hitting a set of light buttons indicating 

particular characters on a display. The exact form of the implementa­

tion is up to the workstation.

Input can be obtained in three distinct ways:

(1) Request. This is rather like a Fortran READ. The system waits 

until the input event has taken place and then returns the

appropriate values.

(2) Sample. The current value of a GKS input device is examined. 

This input mode is most frequently used for devices that have a 

continuous readout of their value. For example, the current 

position of the stylus on the digitizer can be sampled.
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(3) Event. This mode allows a user to generate input data asynchro­

nously. He may adjust input devices to special values and hit 

specific '’triggers'* so that the system can take over the 

adjusted values. For example, a light-pen hit normally gen­

erates an event.

4.9 GKS Levels

GKS has a level structure, which defines three input levels and 

three output levels, such that one implementation can choose any input 

level and any output level and combine the functions in each to define a 

valid level of GKS. By this way, the GKS system can be implemented to 

be usable by a wide range of applications, from static plotting to 

dynamic motion and real time interaction.

The output level axis has the three possibilities:

0: Minimal output,

1: Basic segmentation with full output,

2: Workstation Independent Segment Storage (WISS).

The input level axis has the three possibilities:

a: No input,

b: REQUEST input,

c: Full input.



CHAPTER 5

IMPLEMENTATION

The primary objective of this project was to develop a graphics 

subroutine package, based on the capabilities described in the GKS 

specification, that could be used by a programmer to support a wide 

range of 2-D passive graphics applications. The McMaster University 

Cyber 170/730, running NOS 2, was used for developing this GKS implemen­

tation. The language chosen for this purpose is FORTRAN 77. At 

present, the library includes nearly 85% of functions provided in the 

level ”0a”, which is the lowest level of GKS. Moreover, Instead of gen­

erating pictures directly on a graphics device by using a device driver, 

the current status of the GKS implementation uses a metafile generator 

to produce a metafile for off-line plotting, or for storing graphic 

images.

The metafile produced from an application program on the Cyber 

can be transported to the Digital Equipment Corporation PDP 11/23 mini­

computer, running UNIX. There a metafile reader, written in C, has been 

developed to interpret the graphical information stored in the metafile, 

and then draw the pictures on an AED raster display. The modification 

and expansion of this metafile reader is still in progress.

42
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5.1 Language Consideration

GKS is defined independently of any particular programming 

language, so it is necessary to bind the abstract functions and data 

types of GKS to actual functions and data types in the language to be 

used for implementation. The language chosen for this project is FOR­

TRAN 77, partly because it is a suitable, widely-used language for 

scientific programming. A FORTRAN implementation is suitable for a 

larger number of users, because an interface between FORTRAN subroutines 

and programs in higher languages like PASCAL may be provided rather

easily - in contrast to the reverse direction, which was never solved in

a satisfactory manner.

GKS has a published binding to FORTRAN. This binding specifies 

the actual names and argument sequences for graphics functions, and can 

thus promote application program portability. If an application is 

written for one vendor's GKS package, and another vendor's version is 

substituted later (perhaps to run on a different host computer, or to 

use a new device not supported by the first vendor's GKS), the original 

code has an excellent chance of being able to run without any modifica­

tion. Although the current GKS implementation doesn't employ this FOR­

TRAN binding, it should be easy to perform the necessary conversion in

the future.

FORTRAN 77, however, presents some problems for the language 

binder. First, FORTRAN naming conventions restrict all the variable and 

subroutine names to a maximum length of 6 characters (7 on Cyber). This
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prevents maintaining mnemonic content in the names. Second, the data 

abstraction facilities in FORTRAN are not very sophisticated. For exam­

ple, it does not support enumerated data types, although this can be 

fixed by using integer data type and defining constants with integer 

values, so the GKS programmer can use the same nice names he would have

had with an enumerated data type.

5.2 Level Oa

The ISO GKS document is 285 pages long. Because the entire sec­

tions on segment functions and input functions are not needed by "Oa'* 

GKS, the majority of those pages can be ignored.

Full GKS (the highest input and output levels combined) includes 

110 functions plus 75 inquiry functions. The lowest level ("Oa") 

requires 53 functions plus 38 inquiry functions, of which 44 functions 

plus 33 inquiry functions have been included in this project. They are 

listed in Appendix II, together with their actual names used in this

FORTRAN implementation of GKS.

The data structures required by "Oa" GKS are also significantly

smaller than those defined for full GKS in the ISO GKS document. The

segment state lists and input queue disappear completely. What "Oa" GKS 

requires for GKS state list, workstation state list, and workstation 

description table are given in Appendix III, together with the variable 

and array names used. The list of errors that can be generated by "Oa" 

GKS is given in Appendix IX.



5.3 Device Drivers

In most computing environments an application program generates 

pictures on a graphics device as shown in Figure 11 [GSP79].

Figure 11 Picture generation by using a device driver

Metafile generation capabilities could be included in such a system as 

shown in Figure 12.

Figure 12 Metafile generation capability

The metafile generator can be thought of simply as another device driver
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for a virtual device. However, it should be stressed that the metafile

generator can assume nothing about the graphics devices onto which 

metafile pictures will eventually be output.

Each computing facility that wishes to generate graphics output 

from a metafile input must provide a Metafile Reader to interpret the 

device independent metafile commands and either invoke routines in the 

Device Independent Graphics System (Figure 13) or directly call routines 

in a Device Driver (Figure 14).

Figure 13 Indirect metafile interpretation

At the present stage of implementing "Oa" GKS in this project, 

the graphics package only includes a virtual device driver (metafile 

generator) for writing graphical information on the metafile as depicted 

in Figure 12. Then, a metafile reader, developed on another computing 

facility, PDP 11/23, can be used to interpret the metafile, to call rou­

tines in a device driver, and to generate pictures on the graphics dev­

ice as depicted in Figure 14. •
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Figure 14 direct metafile interpretation

The metafile format employed in this implementation stems from a 

working document of the ANSI X3H33 Virtual Device Interface Task Group, 

published in December 1982. It is not the final draft proposal and is 

subject to change. A detailed description of the metafile format is the

subject of next chapter.

5.4 Other Decisions

The number of simultaneously open workstations and the number of

normalization transformations are constants that have to be chosen for

each GKS implementation, regardless of level. Choosing the minimum in 

either case can result in a smaller, simpler implementation.

Supporting only one open workstation at a time can affect an 

implementation in many ways. The loops that check whether a specified 

workstation is open or active degenerate to a single if test. Likewise, 

the loops that send commands to each active workstation are no longer
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needed. Arrays of open and active workstations become single variables.

Despite all these advantages of a single workstation implementa­

tion, this project includes multiple simultaneous workstation capabili­

ties by setting the entry "maximum number of simultaneously open works­

tations" in GKS Description Table to 2. The purpose of this is to 

accommodate future expansion more easily.

GKS requires a minimum of two normalization transformations, one 

of which is the unity transformation and can't be changed. By support­

ing this minimum, only a single settable transformation needs to be 

saved. Explaining to the programmer becomes easier, too. He has the 

simple choice of using NDC (transformation 0), or setting up his own 

arbitrary world coordinates (transformation 1).

Currently, this GKS minimum requirement of two normalization 

transformations (0 and 1) is employed in this project, but we can easily 

add more later if that requirement should arise.
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GRAPHICS METAFILE

A graphics metafile is a device-independent representation of a 

picture intended for subsequent display on a graphics output device. 

Two important concepts are contained in this definition. First, the 

metafile is a device-independent representation of a picture that can be 

displayed on a wide variety of graphics devices. Second, the metafile 

is intended for subsequent display; thus, it is passive in nature.

The specification of the format and content of a metafile is not 

part of GKS. At present, an ISO metafile standard does not exist. 

ANSI, however, has been working on this area with the encouragement of

ISO's WG2 and this could lead to another international standard. In

1980, the ANSI X3H3 Computer Graphics Technical Committee formed the 

X3H33 Virtual Device Interface Task Group to standardize a computer 

graphics metafile. This task group published a draft proposal in 

December 1982 [ANS82], on which the metafile generator of this GKS 

implementation was based.

6.1 Metafile Elements

In order to provide for the description, storage, and communica­

tion of graphical information in a device-independent manner, this X3H33 

proposal defines the syntax and semantics of a set of elements that may

49
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occur in a metafile. These elements are:

- Descriptor Elements: describe the functional content, default

conditions, identification, and characteristics of a metafile;

- Control Elements: control initialization, termination, defini­

tion of address space, picture initialization, and format 

descriptions of the metafile elements;

- Graphical Elements: describe images in a metafile;

- Attribute Elements: describe the appearance of a graphical ele­

ment;

- Escape Elements: used to construct a picture, but not otherwise

standardized;

- External Elements: communicate information not directly related

to the generation of a graphical image.

A metafile is a collection of elements from this standardized set and

must be interpreted or translated in order to present its pictorial con­

tent on a graphics device.

6.2 Character Coded Graphics

The encoding scheme for the metafile used in this proposal is 

called character coded graphics. In the 7-bit character coded method of 

describing alphanumeric characters and pictorial information, particular 

character codes are identified by an 8-bit code sequence in which seven

of the bits are used as an index into a 128-character code table and the

eighth bit is used as parity or for extension to another code table of
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128 characters.

The character code table is normally represented as a table of 

eight columns and sixteen rows with b7, b6, and b5 addressing the

columns and bits b4, b3, b2, and bl addressing the rows. This code 

table is also called in-use table and is structured into 32-code posi­

tion C-set and 94- or 96-code position G-set as shown in Figure 15.

6.3 Code Extension

In most applications, there are not enough characters available 

in the in-use table, so code extension techniques are needed to permit

C- or G-sets to be switched, and thus providing a virtual address space 

larger than the 128-code positions available in a 7-bit environment.

There are four G-sets and two C-sets that are designated at any 

one time; that is, any one of the four sets GO, Gl, G2, or G3 could be 

invoked into the in-use table by an invocation sequence. In the default 

state, GO contains the primary character code set, Gl contains the 

Metafile code set, G2 contains the supplementary character set, G3 is 

reserved for future standardization. Furthermore, in the 7-bit environ­

ment, the default state has Gl as the current in-use G-set. The CO set 

is always in-use since it contains the code extension control codes.

Each incoming bit combination is either decoded according to the 

current contents of this table or is used to change the content of this 

table. The in-use table contains, in columns 0 and 1, the CO set. 

Three characters of this set, ESCAPE (ESC or 1/11, that is, column 1,
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Figure 15 7-bit in-use table

row 11), SHIFT IN (SI or 0/15), and SHIFT OUT (SO or 0/14), are used to 

control the contents of the remaining six columns of the in-use table.

The SI character is used to invoke the current GO set into the

in-use table where it remains until further control action is taken

(that is, it is invoked in a locking manner). The SO character is used 

to invoke the current G1 set into the in-use table in a locking manner.
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The sequences, ESC 6/14 and ESC 6/15, are used to invoke the G2 set and 

G3 set, respectively, into the in-use table in a locking manner.

A single additional control set, the Cl set, is defined. In a 

7-bit environment, it is never invoked into the in-use table in a lock­

ing manner. Rather, single characters from the Cl set are accessed via 

two-character escape sequences and are treated as a single control char­

acter. These sequences take the form, ESC Fe, where Fe represents the 

desired character from the Cl set. This character, by definition, must 

have a bit combination corresponding to column 4 or 5 of the 7-bit in- 

use table. The in-use table automatically reverts to its former state 

after the Cl command is executed and is thus not changed by these two 

character escape sequences.

6.4 Encoding of the Metafile Elements

6.4.1 The Descriptor and Control Elements

The Metafile descriptor and control elements are encoded in the 

Cl character set. If a Cl control function is represented by a 2- 

character escape sequence in a 7-bit code, this combination of the final

character is specified by taking A=4 and B=»5 in the following

A/0 Reserved B/0 VDM escape

A/l Begin metafile B/l Reserved

A/2 End metafile B/2 Reserved

A/3 Begin picture B/3 Reserved
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A/4 End picture B/4 Reserved

A/5 Message B/5 Reserved

A/6 Clear view surface B/6 Reserved

A/7 Clip on B/7 Reserved

A/8 Clip off B/8 Reserved

A/9 Begin VDM Elements/Defaults B/9 Reserved

A/10 End VDM Elements/Defaults B/10 Reserved

A/ll Reserved B/ll MCSI

A/12 Reserved B/12 ST

A/13 Reserved B/13 VDM description

A/14 SS2 B/14 VDM version

A/15 SS3 B/15 Application data

The elements VDM VERSION, VDM DESCRIPTION, APPLICATION DATA, 

MESSAGE, and ESCAPE consist of a control string that may occur in the 

data stream as a logical entity for control purposes. The control 

string consists of an opening delimiter and a command string, and is 

terminated by STRING TERMINATOR (ST). The opening delimiter indicates 

which control element is being specified. The command string consists 

of a sequence of bit combinations in the range of 0/8 through 0/13 and 

2/0 through 7/14.

Begin VDM Elements/Defaults initiates a list of parameters, the 

value of each equaling one of the opcodes used in the Metafile. Default 

values immediately follow the appropriate opcode values. The parameter 

list is terminated with the bit combination representing End VDM 

Elements/Defaults.
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Control functions that include numeric parameters are encoded 

using the Metafile Control Sequence Introducer (MCSI). Multibyte con­

trol functions are represented by control sequences. A control sequence 

consists of the coded representation of MCSI followed by one or more bit 

combinations that identify the control function and represent the param­

eters of the control function. The format of a control sequence is:

MCSI Pl...Pn I F

where:

- MCSI is represented by ESC 5/11 in a 7-bit code;

- Pl...Pn are bit combinations representing one or more parameters 

to complete the control function specification. The parameters

are either real or integer, or enumerated type. Each parameter 

sub-string is separated from other parameter sub-strings by the 

3/11 character. The parameter string for all three cases con­

sists of the ASCII characters representing the decimal digits 0 

to 9. The whole portion of a real number is separated from the 

fractional portion by the 2/14 character.

If the parameter string starts with the bit combination 3/11, an 

empty parameter sub-string is assumed preceding the separator; 

if the parameter string terminates with 3/11, an empty parameter 

sub-string is assumed following the separator; if the parameter 

string contains successive bit combinations 3/11, empty parame­

ter sub-strings are assumed between the separators. An empty

parameter sub-string or a parameter sub-string that consists of 

bit combination 3/0 only, represents a default value that
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depends on the control function;

- I is a bit combination 2/1, which, togther with the final bit 

combination F, identify the control function;

- F is a bit combination chosen from Columns 4, 5, 6, or 7 which 

terminates the control sequence.

The following table describes the allocation of final bit combi­

nations of elements that use MCSI with 2/1 as a single intermediate.

Element Final Bit Combination

VDC DIMENSIONALITY 4/1

VDC TYPE 4/2

VDC EXTENT 4/3

CLIP RECTANGLE 4/4

TEXT ASPECT SOURCE FLAGS 4/5

POLYLINE ASPECT SOURCE FLAGS 4/6

POLYMARKER ASPECT SOURCE FLAGS 4/7

FILL AREA ASPECT SOURCE FLAGS 4/8

INTEGER PRECISION 4/9

REAL PRECISION 4/10

COLOR PRECISION 4/11

COLOR INDEX PRECISION 4/12

INDEX PRECISION 4/13

ENUMERATED PRECISION 4/14

COORDINATE PRECISION FOR INTEGERS 4/15

COORDINATE PRECISION FOR REALS 4/0
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POLYLINE BUNDLE INDEX 5/0

POLYMARKER BUNDLE INDEX 5/1

FILL AREA BUNDLE INDEX 5/2

TEXT BUNDLE INDEX 5/3

The following table specifies how the parameters of the commands 

using MCSI should be interpreted.

Element Parameter Interpretation

VDC DIMENSIONALITY Pl=0 if 2D; Pl=l if 3D

VDC TYPE Pl=0 if integer; 1 if real

VDC EXTENT Pl=coordinate data type;

CLIP RECTANGLE

P2sscoordinate data type

PIncoordinate data type;

All ASPECT SOURCE FLAGS

P2»coordinate data type

Pl=0 if individual;

Pl=l if bundled

INTEGER PRECISION Pl=number of bits

REAL PRECISION Pl=number of bits for

COLOR PRECISION

Integer portion;

P2=number of bits for

fractional portion

Pl=number of bits for the

red, green, and blue

components

COLOR INDEX PRECISION Pl=number of bits for color
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INDEX PRECISION

ENUMERATED PRECISION

COORDINATE PRECISION FOR INTEGERS

COORDINATE PRECISION FOR REALS

All BUNDLE INDEXes

index data type

Pl=*number of bits for index

data type

Pl=number of bits for

enumerated data types

Pl=number of bits for VDC

Pl^Tiumber of bits for

integer portion;

P2=*number of bits for

fractional portion

Pl=»bundle index

6.4.2 Graphical and Attribute Elements

A Metafile graphical or attribute element is encoded in the Gl 

set and is comprised of an opcode followed by one or more bytes of 

numeric data. If bit 7 is 0, an opcode is indicated. If bit 7 is 1,

numeric data is defined.

Coordinate operand can be either real or integer. There are two 

precision elements associated with it. Coordinate operands are used in 

conjunction with graphical elements. The format, when VDC type is 

integer, is shown in Figure 16. The operands are interpreted as signed 

two's complement numbers.

The color index, index, and enumeration operands are all inter­

preted as unsigned integers composed of the sequence of concatenated



59

Figure 16 The format for integer coordinate operands

bits taken consecutively (high order bits to low order bits) from the 

numeric data bytes.

Integer operands are interpreted as signed, two's complement 

numbers. Real operands are interpreted as signed, two's complement 

numbers when the binary coordinate is determined from the COORDINATE

PRECISION FOR REALS element.

The precision for VDC operands is determined from the COORDINATE

PRECISION FOR REALS or COORDINATE PRECISION FOR INTEGERS element. The

format for the VDC operand (VDC type is integer) is that of the integer 

operand. The format for the VDC operand (VDC type is real) is that of 

the real operand.
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The following table describes the default G1 set.

Element Code Position Operand Type

POLYMARKER 2/0 nC

MARKER SIZE 2/1 VDC

MARKER TYPE 2/2 E

MARKER COLOR 2/3 CI or 3R

POLYLINE 2/4 nC

LINE WIDTH 2/5 VDC

LINE TYPE 2/6 E

LINE COLOR 2/7 CI or 3R

ARC 2/8 3C

PIXELS 2/9 4C,2I,mnCI

CIRCLE 2/10 C,VDC

ARC CLOSE 2/11 3C,E

POLYGON 2/12 nC

INTERIOR STYLE 2/13 C,2E

HATCH INDEX 2/14 IX

PATTERN INDEX 2/15 IX

PATTERN TABLE 3/0 IX,I,mnIX,mn3R

PATTERN SIZE 3/1 2VDC

FILL COLOR 3/2 CI or 3R

TEXT 3/3 C,S

CHARACTER HEIGHT 3/4 VDC

CHARACTER EXPANSION FACTOR 3/5 R
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CHARACTER PATH 3/6 E

CHARACTER UP VECTOR 3/7 2VDC

CHARACTER SPACING 3/8 R

TEXT COLOR 3/9 CI or 3R

TEXT FONT INDEX 3/10 IX

TEXT ALIGNMENT 3/11 2E,2R

TEXT PRECISION 3/12 E

COLOR TABLE 3/13 IX,n3R

BACKGROUND COLOR 3/14 CI or 3R

Reserved for future 3/15

standardization

The data types used in the table have the following meanings:

data types Meaning

C Coordinate

CI Color index

E Enumerated

I Integer

ID Identifier

IX Index

R Real

Coordinate pair or triple in VDC space.

Pointer into a table of color values.

Set of standardized values. The set is

defined by enumerating the identifiers

that denote the values.

Number with integer portion.

String or integer.

Pointer into a table of values

other than color values.

Number with integer and fractional

portion, only one of which need exist
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S String Sequence of characters.

VDC VDC values Single real or integer values (as

determined by VDC type) in VDC space.

Bit specification of the enumerated data values is as follows:

1. INTERIOR STYLE

b6b5 - interior style bl - perimeter visibility

b6b5 = 00 hollow bl ■ 0 invisible

= 01 solid = 1 visible

= 10 hatch

= 11 pattern

2. TEXT ALIGNMENT

b6b5 - horizontal alignment b3b2bl - vertical alignment

b6b5 = 00 left b3b2bl = 000 top

= 01 center =001 cap

= 10 right = 010 half

=11 continuous horizontal =011 base

= 100 bottom

= 101 continuous vertical

3. TEXT PRECISION

b6b5 = 00 string

= 01 character

= 10 stroke

4. CHARACTER PATH

b6b5 = 00 right

= 01 left
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= 10 up

=11 down

5. MARKER TYPE

b6b5b4b3 = 0000 dot

0001 plus

= 0010 asterisk

0011 circle

a 0100 X

LINE TYPE

b6b5b4 = 000 solid

=001 dashed

= 010 dotted

=011 dashed-dotted



CHAPTER 7

CONCLUSIONS

The primary objective of this project was to develop a graphics 

subroutine package, based on the capabilities described in the GKS 

specification, that could be used by an application programmer to pro­

duce a metafile for storing graphical information and for off-line, pas­

sive plotting.

Because GKS is by design device-independent and because a 

metafile is a device-independent representation of a picture, any appli­

cation programmer who understands the conceptual model underlying GKS 

can use this GKSLIB library to support a wide range of 2-D passive 

graphics applications with little knowledge of the capabilities and 

characteristics of the physical graphics devices, to which the stored 

graphical information will eventually be sent.

The device independence is achieved in GKS through the concept 

of workstation. The current implementation of the GKSLIB library fully 

supports this fundamental concept and two other important features, 

two-stage transformation and two-stage attribute handling. Because of 

this, it should be much easier to add a device driver to this library 

and to perform on-line plotting in the future.
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GKSLIB currently contains about 85% of functions provided in 

"Oa" GKS. Obviously, it would be desirable to include precisely all of 

the functional capabilities defined in level Oa, and thus to complete a 

valid implementation of GKS.



APPENDIX I

CONCEPTUAL DIFFERENCES BETWEEN GKS AND THE GSPC-CORE

As mentioned in earlier chapter, whereas GSPC-Core is a proposal 

for a 3D graphical core system, designed by ACM-SIGGRAPH's GSPC in US, 

GKS is a proposal for a 2D graphical system and is designed by the sub­

committee "Computer Graphics" of German standards-making body. GSPC- 

Core is much richer than GKS in functionality. Two other important con­

ceptual differences between these two proposals lie in the transforma­

tion processing and attribute handling.

In GSPC-Core, the transformation from WC to DC is also performed

by a two-stage process. But, it embodies only a single normalization 

transformation, and the application must laboriously re-create the 

correct normalization transformation for the part of the display it 

wishes to modify (Figure 17).

There are almost no graphical applications in which the only 

pictures generated consist of a single view of a single object occupying 

the whole view surface. Thus, pictures will really be generated using 

several "world" coordinate systems. Further, a single transformation 

system places the burden of retransforming locator input coordinates 

from NDC space to the space used by the application entirely on the 

application. These requirements led GKS to include multiple normaliza­

tion transformations (Figure 18).
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Figure 17 CORE Transformation

Figure 18 GKS Transformation
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In GSPC-Core, the appearance of a primitive is controlled by a 

set of modal attributes and is associated with the primitive itself. In 

GKS, the appearance of a primitive is defined by two-stages (in a simi­

lar way to the transformation). In the first stage a symbolic attribute 

is associated with the primitive, while in the second stage the symbolic 

attribute is mapped on the capabilities of the workstation, thus deter­

mining the usual appearance on the graphical terminal.



APPENDIX II

Oa LEVEL GKS FUNCTIONS

* not implemented in GKSLIB yet

FORTRAN names Functions

Control Functions

OPNGKS OPEN GKS

CLSGKS CLOSE GKS

OPENW OPEN WORKSTATION

CLOSEW CLOSE WORKSTATION

ACTWS ACTIVATE WORKSTATION

DEAWS DEACTIVATE WORKSTATION

CLEAR CLEAR WORKSTATION

* UPDATE WORKSTATION

* ESCAPE

Output Functions

PLLINE POLYLINE

PLMARK POLYMARKER

TEXT TEXT

FAREA FILL AREA

* CELL ARRAY
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* GENERALIZED DRAWING PRIMITIVE (GDP)

Output Attributes

SETPLX SET POLYLINE INDEX

SETLNT SET LINETYPE

SETLNW SET LINEWIDTH SCALE FACTOR

SETPLC SET POLYLINE COLOUR INDEX

SETPMX SET POLYMARKER INDEX

SETMKT SET MARKER TYPE

SETMKS SET MARKER SIZE SCALE FACTOR

SETPMC SET POLYMARKER COLOUR INDEX

SETTXX SET TEXT INDEX

SETTFP SET TEXT FONT AND PRECISION

SETCHE SET CHARACTER EXPANSION FACTOR

SETCHS SET CHARACTER SPACING

SETTXC SET TEXT COLOUR INDEX

SETCHH SET CHARACTER HEIGHT

SETCHU SET CHARACTER UP VECTOR

SETTXP SET TEXT PATH

SETTXA SET TEXT ALIGNMENT

SETFAX SET FILL AREA INDEX

SETFAI SET FILL AREA INTERIOR STYLE

SETFAS SET FILL AREA STYLE INDEX

SETFAC SET FILE AREA COLOUR INDEX

SETPTS SET PATTERN SIZE

SETPTR SET PATTERN REFERENCE POINT
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SETASF SET ASPECT SOURCE FLAGS

SETCLR SET COLOUR REPRESENTATION

Transformation Functions

SETW SET WINDOW

SETV SET VIEWPORT

SELNT SELECT NORMALIZATION TRANSFORMATION

SETCLI SET CLIPPING INDICATOR

SETWW SET WORKSTATION WINDOW

SETWV SET WORKSTATION VIEWPORT

Metafile Functions

* WRITE ITEM TO GKSM

* GET ITEM TYPE FROM GKSM

* READ ITEM FROM GKSM

* INTERPRET ITEM

Inquiry Functions

IQOPST INQUIRE OPERATING STATE VALUE

IQLVL INQUIRE LEVEL OF GKS

IQWLST INQUIRE LIST OF AVAILABLE WORKSTATION TYPES

IQMNT INQUIRE MAXIMUN NORMALIZATION TRANSFORMATION NUMBER

IQWKOP INQUIRE SET OF OPEN WORKSTATION

IQPATT INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

IQATT INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

IQNTNO INQUIRE CURRENT NORMALIZATION TRANSFORMATION NUMBER
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IQNTLT INQUIRE

IQNT INQUIRE

IQCLIP INQUIRE

IQCNTY INQUIRE

IQWKST INQUIRE

IQDFUP INQUIRE

* INQUIRE

IQCLST INQUIRE

IQCLR INQUIRE

IQWT INQUIRE

IQCATE INQUIRE

IQCLAS INQUIRE

IQDSIZ INQUIRE

IQPLFC INQUIRE

IQPPL INQUIRE

IQPMFC INQUIRE

IQPPM INQUIRE

IQTXFC INQUIRE

IQPTX INQUIRE

IQFAFC INQUIRE

IQPFA INQUIRE

IQPTFC INQUIRE

IQPPT INQUIRE

IQCLFC INQUIRE

IQPCLR INQUIRE

IQGLST INQUIRE

LIST OF NORMALIZATION TRANSFORMATION NUMBERS

NORMALIZATION TRANSFORMATION

CLIPPING INDICATOR

WORKSTATION CONNECTION AND TYPE

WORKSTATION STATE

WORKSTATION DEFERRAL AND UPDATE STATES

TEXT EXTENT

LIST OF COLOUR INDICES

COLOUR REPRESENTATION

WORKSTATION TRANSFORMATION

WORKSTATION CATEGORY

WORKSTATION CLASSIFICATION

MAXIMUM DISPLAY SURFACE SIZE

POLYLINE FACILITIES

PREDEFINED POLYLINE REPRESENTATION

POLYMARKER FACILITIES

PREDEFINED POLYMARKER REPRESENTATION

TEXT FACILITIES

PREDEFINED TEXT REPRESENTATION

FILL AREA FACILITIES

PREDEFINED FILL AREA REPRESENTATION

PATTERN FACILITIES

PREDEFINED PATTERN REPRESENTATION

COLOUR FACILITIES

PREDEFINED COLOUR REPRESENTATION

LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES
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IQGDP INQUIRE GENERALIZED DRAWING PRIMITIVE

* INQUIRE PIXEL ARRAY DIMENSIONS

* INQUIRE PIXEL ARRAY

* INQUIRE PIXEL

Error Handling

* EMERGENCY CLOSE GKS

ERRORH ERROR HANDLING

ERRORL ERROR LOGGING



APPENDIX III

Oa LEVEL GKS DATA STRUCTURES

FORTRAN names Data structure

Operating State

OPSTAT operating state value

GKS Description Table

GLEVEL level of GKS

WKNUM number of available workstation types

WKLIST list of available workstation types

OPNNUM maximum number of simultaneously open workstations

ACTNUM maximum number of simultaneously active workstations

MNTNUM maximum normalization transformation number

GKS State List

OPNWKS set of open workstations

ACTWKS set of active workstations

PLNIND current polyline index

LNTYPE current linetype

LNWIDT current linewidth scale factor

LCOLOR current polyline colour index

LTASF current linetype ASF
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LWASF current linewidth scale factor ASF

LCASF current polyline colour index ASF

PMKIND current polymarker index

MKTYPE current marker type

MKSIZE current marker size scale factor

MCOLOR current polymarker colour index

MT  ASF current marker type ASF

MSASF current marker size scale factor ASF

MGASF current polymarker colour index ASF

TXTIND current text index

TFONT current text font

TPRECI current text precision

CEXPAN current character expansion factor

CSPACE current character spacing

TCOLOR current text colour index

FPASF current text font and precision ASF

CEASF current character expansion factot ASF

CSASF current character spacing ASF

TCASF current text colour index ASF

CHHIGH current character height

CHARUP current character up vector

TPATH current text path

TALIGN current text alignment (horizontal and vertical)

FAIND current fill area index

FINTER current fill area interior style

FSTYLE current fill area style index
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FCOLOR current fill area colour index

FIASF current fill area interior style ASF

FSASF current fill area style index ASF

FCASF current fill area colour index ASF

PTSIZE current pattern size

PTPNT current pattern reference point

CNTNUM current normalization transformation number

NTNUMS list of normalization transformation numbers

NTLIST list of normalization transformations (window & viewport)

CLIPIN clipping indicator

Workstation Description Table

WKTYPE workstation type

WKCATE workstation category

Workstation State List

WKID workstation identifier

CONNID connection identifier

WTYPE workstation type

WSTATE workstation state

DFMODE deferral mode

IRMODE implicit regeneration mode

DEMPTY display surface empty

NFRAME new frame action necessary at update

DPLNUM number of polyline bundle table entries
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table of defined polyline bundles

DPLINX polyline index

DLTTBL linetype

DLWTBL linewidth scale factor

DLCTBL polyline colour index

DPMNUM number of polymarker bundle table entries

table of defined polymarker bundles

DPMINX polymarker index

DMTTBL marker type

DMSTBL marker size scale factor

DMCTBL polymarker colour index

DTXNUM number of text bundle table entries

table of defined text bundles

DTXINX text index

DFNTBL text font

DPRTBL text precision

DCETBL character expansion factor

DCSTBL character spacing

DTCTBL text colour index

DFANUM number of fill area bundle table entries

table of defined fill area bundles

DFAINX fill area index

DFITBL fill area interior style
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DFSTBL fill area style index

DFCTBL fill area colour index

DPTNUM number of pattern table entries

table of pattern representations 

DPTINX pattern index

DPARRD pattern array dimensions

DPARR pattern array

DCLNUM number of colour table entries

table of colour representations

DCLINX colour index

DCLTBL colour (red, green, blue intensities)

WTUPDT workstation transformation update state

RWWIND requested workstation window

CWWIND current workstation window

RWVIEW requested workstation viewport

CWVIEW current workstation viewport

GKS Error State List

ERSTAT error state

ERFILE error file
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Oa LEVEL GKS ERROR LIST

States

1 GKS not in proper state: GKS shall be in the state GKCL

2 GKS not in proper state: GKS shall be in the state GKOP

3 GKS not in proper state: GKS shall be in the state WSAC

5 GKS not in proper state: GKS shall be either in the state WSAC or

in the state SGOP

6 GKS not in proper state: GKS shall be either in the state WSOP or

in the state WSAC

7 GKS not in proper state: GKS shall be in one of the states WSOP,

WSAC or SGOP

8 GKS not in proper state: GKS shall be in one of the states GKOP,

WSOP, WSAC or SGOP

Workstations

20 Specified workstation identifier is invalid

21 Specified connection identifier is invalid

22 Specified workstation type is invalid

23 Specified workstation type does not exist

24 Specified workstation is open

25 Specified workstation is not open
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26 Specified workstation cannot be opened

29 Specified workstation is active

30 Specified workstation is not active

32 Specified workstation is not of category MO

33 Specified workstation is of category MI

34 Specified workstation is not of category MI

35 Specified workstation is of category INPUT

36 Specified workstation is Workstation Independent Segment Storage

Transformations

50 Transformation number is invalid

51 Rectangle definition is invalid

52 Viewport is not within the Normalized Device Coordinate unit

square

53 Workstation window is not within the Normalized Device Coordinate

unit square

54 Workstation viewport is not within the display space

Output Attributes

60 Polyline index is invalid 

62 Linetype is less than or equal to zero 

64 Polymarker index is invalid

66 Marker type is less than or equal to zero

68 Text index is invalid •

70 Text font is less than or equal to zero



72 Character expansion factor is less than or equal to zero

73 Character height is less than or equal to zero

74 Length of character up vector is zero

75 Fill area index is invalid

78 Style (pattern or hatch) index is less than or equal to zero 

81 Pattern size value is not positive

84 Dimensions of colour array are invalid

85 Colour index is less than zero

86 Colour index is invalid

88 Colour is outside range [0,1]

Output Primitives

100 Number of points is invalid

101 Invalid code in string

102 Generalized drawing primitive identifier is invalid

103 Content of generalized drawing primitive data record is invalid

104 At least one active workstation is not able to generate the sped 

fied generalized drawing primitive

Metafile

160 Item type is not allowed for user items

161 Item length is invalid

162 No item is left in GKS metafile input

163 Metafile item is invalid

164 Item type is not a valid GKS item
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165 Content of item data record is invalid for the specified item type

166 Maximum item data record length is invalid

167 User item cannot be interpreted

Escape

180 Specified function is not supported

181 Contents of escape data record are invalid
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