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Abstract

In this thesis a system which extracts 3D surfaces of arbitrary scenes under natu­

ral illumination is constructed using low-cost, off-the-shelf components. The system 

is implemented over a network of workstations using standardized distributed soft­

ware technology. The architecture of the system is highly influenced by the perfor­

mance requirements of multimedia applications which require 3D computer vision. 

Visible scene surfaces are extracted using a passive multi-baseline stereo technique. 

The implementation efficiently supports any number of cameras in arbitrary positions 

through an effective rectification strategy. The distributed software components inter­

act through CORBA and work cooperatively in parallel. Experiments are performed 

to assess the effects of various parameters on the performance of the system and to 

demonstrate the feasibility of this approach.
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Chapter 1

Introduction

1.1 Computer Vision

“Vision is a process that produces from images of the external world a description 

that is useful to the viewer and not cluttered with irrelevant information. ”

- D. Marr and H.K. Nishihara

The projection of light rays upon the retina presents our visual system with an 

image of the three dimensional environment, that is inherently two dimensional. How­

ever, our interactions with the environment incorporate an understanding of the 3D 

structure contained within it, suggesting that our visual system reconstructs a 3D 

representation of the scene from the 2D binocular images. The human visual system 

recovers depth of objects from their small positional differences (or disparities) in 

the images on the retina. This remarkable ability of 3D perception is clearly demon­

strated through random-dot stereograms developed by Bela Julez, an example of 

which is shown in Fig. (1.1). Although each monocular view consists of random dot 

patterns, when fused binocularly, the images yield the impression of a square floating 

above a background.

1
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Figure 1.1: A random-dot stereogram of a square[26]. t

The random dot stereograms propound that our sense of depth perception relies 

heavily upon the disparity between stereo images. This simplistic notion has fueled 

decades of research in computer vision to have computers imitate this innate ability 

of humans.

Initially the research was motivated by autonomous robot navigation, aeriel pho- 

togrammetry and to further understand the human visual cognition system. In such 

applications, a complete model of the underlying 3D surface structure is not necessary. 

For example, in autonomous robot navigation, the scene need not be represented with 

complete 3D models, but rather with depth estimates of surfaces facing the robot. 

Such information is incorporated in a depth map which is a 2 jD representation of the 

scene, i.e. depth estimates for all or some pixels in an image of the scene. Figure (1.2) 

shows an example of a depth map, where darker regions represent surfaces farther 

away from the camera.

Over the years, the range of applications requiring 3D scene information has grown 

to include medical imaging, object measurement and object inspection. In recent 

years, there has been an increasing demand for 3D surface information of a scene in 

multimedia applications such as telepresence, virtual reality, computer-aided-design 

(CAD), cinematography and console/computer games. In such applications, real and 

virtual worlds are often combined to create a new augmented reality and require novel
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Figure 1.2: A depth map of a synthetic scene. Surfaces with at greater distance from 
the camera are shown with darker grey-level intensities

views of a real world scene to be synthesized. To provide a truly immersive experience 

in augmented reality, it is necessary that accurate depth information of the real world 

scene be known to allow for flawless merging with synthetic data. These applications 

not only require dense depth information of the real world scenes, but also require 

surface properties, such as texture and opacity, to facilitate the rendering of realistic 

visual environments.

In general, multimedia applications requiring 3D computer vision can be broken 

down into four primary processes: scene capture, 3D surface extraction, 3D model 

generation and model rendering. Scene capture digitizes the real world scene, while 

the 3D surface extraction process builds depth estimates of the scene based on the 

digitized images. This depth data is used to construct 3D models of the scene in the 

next process. Finally model rendering concerns itself with the photorealistic rendering 

of these constructed models for the application.

Three-dimensional surface extraction of the scene is the principal component of 

such 3D multimedia applications. Although the latter processes of 3D model gener­

ation and rendering are important to complete the illusion of realism, the perception
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of reality will largely depend upon the performance of the 3D surface estimation.

1.2 Existing Systems

The task of extracting the 3D scene geometry in computer vision can be solved using 

active or passive techniques. In the active vision techniques, controllable energy 

(e.g. laser, ultrasound waves) may be projected within the scene, and the differences 

between the sender and receiver are used to calculate depth maps [38], [27]. Other 

methods involve direct measuring techniques (e.g. Coordinate Measuring Machine) 

which provide sparse, yet very accurate depth maps.

Some active vision techniques use controlled lighting to create known surface de­

scriptors (e.g. grids, patterns) and infer the depth of surfaces by triangulating the 

position of the projected features [23]. Other active techniques include the analysis of 

illumination variation (photometric stereo analysis'), variations of focus (shape from 

focus/defocus) and sequence of images (video) (temporal stereo analysis). Active vi­

sion systems may incorporate a combination of approaches that work cooperatively 

to determine scene depth [42]. However, active vision techniques for the extraction 

of 3D scene geometry cannot be used in environments where lighting cannot be con­

trolled (e.g. outdoor scenes) and in environments where the projection of energy is 

not feasible (e.g. military applications). In such circumstances, passive techniques 

must be used to gather depth information.

Passive techniques use two or more images of the scene illuminated with ambient 

lighting to extract the underlying 3D scene geometry. This property is highly desir­

able in augmented reality applications where the actual scene properties are crucial 

and must be preserved. A complete overview of passive techniques for 3D surface 

reconstruction is provided in §2.5.1. In the following section, an overview of existing 

passive vision systems that are used in multimedia applications is presented.
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The Vision and Autonomous System Center at Carnegie Mellon University, Pitts­

burgh has built an excellent example of such a system [34], [40]. The system uti­

lizes numerous omni-directionally distributed cameras to capture dynamic, real-world 

events. The arrays of cameras are mounted along the perimeter of the room [19] or 

geodesic dome [35] to view the scene from all directions. The cameras are calibrated 

to provide accurate pose information, and the multiple-baseline stereo (MBS) algo­

rithm [32] is used to extract dense depth maps of the scene from each camera. The 

depth maps calculated from each camera are merged to provide a complete volumet­

ric model of the scene. This is further converted into a 3D model (polygonal mesh) 

through iso-surface extraction. To improve the depth estimation, the model is re­

projected into virtual cameras corresponding to the original physical cameras. From 

this, object silhouettes and initial depth estimates for each pixel in each camera are 

calculated. Using these initial depth estimates to limit the range of the searched 

disparity and ensuring edges obtained from the silhouettes (which are modified by 

a human operator to improve visual accuracy) are preserved, the MBS algorithm is 

executed again to obtain the final depth maps. These error-reduced depth maps are 

once again combined and tessellated as before to provide a refined 3D model of the 

scene. Finally, these models are texture mapped to provide a complete, photoreal­

istic, 3D representation of the real world scene, which can be combined with other 

virtual or real scenes.

From the above discussion, it is evident that system is extremely computationally 

intensive. It is due to this reason, that the system analyzes pre-recorded, dynamic, 

real-world events using special recording hardware [29], [19]. The system also requires 

large storage media for the digitized images and intermediate processing.

The MBS algorithm [32], (§2.6) has been used in various systems to provide depth 

maps [22], [37], [8], [23], [44] and has been developed into systems capable of producing 

depth maps at 30Hz. Oda et. al. [30] demonstrated a system capable of producing 

depth maps at 30Hz with 6 cameras, while it merged synthetic and real world at a
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rate of 15Hz. The system employs special hardware (such as C40 DSP arrays, ALUs 

and pipeline registers) to accomplish this task. The system imposes limits on the 

arrangement of the cameras, the size of the images and disparity range to simplify 

the computational complexity of depth maps.

Similarly the system described by Kang et. al. in [23] produces depth maps at 

video rate (30Hz). The system utilizes 4 cameras in a converging configuration to 

maximize the viewpoint overlap among the cameras. However, due to approxima­

tions used to simplify the calculations, the vergence angles between the cameras are 

assumed to be small. It utilizes an 8 x 8 matrix of iWarp cells, each containing 20 

MFLOPS computation engine, low latency communication engine and 16 MB DRAM. 

Furthermore, to recover accurate and dense depth maps, a sinusoidally varying pat­

tern is projected onto the scene to increase local intensity variation. This limits the 

extension of the existing system to augmented reality applications, since the artificial 

lighting masks the true texture of the surfaces in the scene.

To overcome some of the computational requirements for creating depth maps for 

large scenes Kang et al. in [22] describes an omnidirectional MBS algorithm. The 

panoramic view of the scene is obtained by constructing cylindrical images from se­

quences of images taken with a camera rotated 360° about the vertical axis. Depth 

extraction is carried out using multiple cylindrical panoramic images through simple 

stereo techniques. This allows the entire depth map of the entire scene to be con­

structed without the need to merge multiple depth maps from different view points. 

The complete model of the scene is constructed and texture mapped with the cylin­

drical images as a final step. The system is limited by the method of acquiring images 

of the scene which may not also be possible in all circumstances (such as dynamic 

events).

Due the increasing interest in videoconferencing, many 3D computer vision sys­

tems geared towards these applications have arisen [17], [31]. Due to the specifics of 

the application, the systems make certain assumptions (e.g. uniform backgrounds,
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human subjects) and use a priori knowledge (e.g. 3D humanoid models, tracking of 

facial features) about the scene to guide it in the depth extraction process.

Recently the convergence of computer vision and computer graphics has produced 

a new subfield known as Image-Based Rendering and Modeling (IBRM) [21], [20], 

[24], [5]. IBRM methods render new views of a scene based on the photometric and 

geometric information recovered from a number of images of a static scene. Using 

classical computer vision techniques (e.g. stereo, structure from motion, projective 

geometry) such methods reproject or interpolate the existing images to synthesize 

new views. The photorealism of the synthesized views largely depend on the quantity 

of input images and can thereby become computationally expensive. The quality of 

the novel views is acutely related to the number of cameras and their placement in 

the scene. The pre-processing of images required to generate novel views may limit 

these methods to static scenes.

1.3 Objective and Approach

The visual rendering of 3D surface geometry of real-world scenes is a complex task 

with stringent requirements. The scene capturing process must adequately capture 

the dynamics and features within the scene. The estimation of depth within the scene, 

3D model generation and finally texture mapped rendering of the these models must 

provide the degree of accuracy required to convey the illusion of photorealism neces­

sary in the application. These processes require prodigious amounts of computational 

power. Multimedia applications utilizing 3D computer vision have the further con­

straint of having to perform in real-time. The exact definition of real-time would vary 

upon the timing requirements of each application. As with traditional approaches in 

computer vision, the norm in building such systems is to utilize specialized hardware. 

Such an approach is not only cost prohibitive, but the resulting systems are predom­

inantly incapable of adapting to new environments due to the inherent assumptions
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made during their design and construction. Furthermore, there is a large cost of time, 

energy and finances to evolve such systems over time.

As predicted by Moore’s Law, the computing power of standard workstations has 

made remarkable gains over the recent years. Following suit, networks connecting 

these workstations have become commonplace and capable of transmitting gigabytes 

in seconds. Accompanied by their greater affordability, these two resources can pro­

vide a practical alternative to specialized hardware solutions in computer vision. The 

adoption of such general purpose resources inevitably increases the complexity of 

the software components in the system. However, software components are easier to 

maintain and evolve and thereby increase the agility of the final system to adapt to 

changing environments. Furthermore, such systems simplify the evaluation of differ­

ent techniques.

The networks of workstations (NOW) [1] has given rise to a new paradigm of 

distributed computing. Such software systems comprise of individual components 

that work in parallel to solve a complex task. Since such systems can aggregate the 

power of millions of computers (e.g. SETI project at University of Berkeley), they 

provide an attractive alternative to massively-parallel processor (MPP) architectures 

that would be traditionally employed in these environments.

The motivation for the project presented in this thesis stems from these obser­

vations. By the novel and unique pairing of ordinary hardware components with 

distributed software, the project aims to provide insight on the functionality and 

feasibility of the use of such systems in computer vision. Due to the high demands 

of resources in 3D scene reconstruction, such an application is a prime candidate 

for testing such a system. As a result, a system to extract dense depth maps has 

been built whose architecture has been guided by the strict timing requirements of 

multimedia applications.

To allow for the conclusions drawn from the project to be valid for a broad range 

multimedia systems, it is important to build a system with very few constraints. The
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system is designed to accommodate real world scenes containing arbitrary objects, 

without any knowledge regarding object genus. To allow for future adaptations for 

novel view rendering, the system was limited to employing passive stereo techniques 

(discussed further in §2.5.1). To avoid training and learning, knowledge based or 

fuzzy logic systems are not employed since they would potentially limit the scope of 

the system.

Standard off-the-shelf frame grabbers and cameras are utilized. These cameras 

do not have any enhancements such as zoom, auto iris and pan/tilt. The cameras 

are arbitrarily placed within the scene and strongly calibrated. This eliminates the 

need for expensive stereo rigs, and allows the scene to be viewed omnidirectionally 

from arbitrary viewpoints. Any two cameras having overlapping views can be chosen 

as a stereo pair, allowing for a single camera to be used in multiple stereo pair 

configurations to provide dense depth maps for all regions.

The proposed system lays the groundwork for future study and development of 

distributed computer vision systems.

1.4 Thesis Organization

Chapter 2 details the multi-view geometry of 3D scenes and describes the techniques 

used within the various components of the system. Included are the discussions 

for camera calibration, image rectification and depth map generation. Justification 

for the each approach is provided in context of the project motivation and goals. 

Chapter 3 describes the software developed for the system. This includes an overview 

of the underlying distributed software framework and discussion of all the software 

components that the comprise the system. Chapter 4 provides performance results of 

the system, providing insight onto its bottlenecks and capabilities. Finally, Chapter 

5 draws conclusions based on the presented information and provides possible future 

directions of research in the area.



Chapter 2

Multiple View 3D Surface 

Reconstruction

The extrapolation of depth of a scene viewed from two or more views is possible due 

to the inherent proportional differences in the mappings of common scene points onto 

the spatially separated projective surfaces. This chapter explores and analyzes this 

relationship, establishing notation and algorithms.

2.1 Basic Stereo Geometry

To develop the methodology for calculating depth maps from multiple arbitrary views, 

a simple stereo view setup is first presented. Consider a scene viewed by two perfect 

pinhole cameras as shown in Fig. (2.1). The world coordinate system is aligned with 

Camerai, with Ci as the origin, and the z-axis as the principal axis of Camerai. The 

optical center C2 of Camera2 is translated along the x-axis by the B, defining the 

baseline. The principal axes of the cameras are directed towards the scene and are 

parallel to each other. The cameras have the same focal length f and their image 

planes are coplanar and parallel. Under such constrained conditions, the epipolar lines 

of the images coincide with the horizontal scan lines, with the epipoles at infinity.

10
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Scene point

center center

Figure 2.1: Coplanar Stereo Geometry

Thus, a scene point X = (X, Y, Z)T is projected onto two corresponding image points 

Xi and x2 given by:

x2 (2-1)
U

The distance between the corresponding image points, or disparity D, is:

(2.2)

Consequently, the distance Z or depth from Ci to the scene point X is defined by:

Z=T (2-3)

As a result, to obtain a complete depth map, the disparity D must be measured 

for each pair of corresponding points in a stereo pair image. Due to the discrete 

nature of digital images, the disparity values are limited to integers, unless disparity 

calculations are computed to sub-pixel accuracy using special algorithms. It should
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be noted from Eq. (2.3) that the calculated depth is directly proportional to the 

baseline of the cameras. Hence, a large baseline would provide a higher degree of 

accuracy in the measurement of Z. However, a larger baseline increases the likelihood 

of false matches, since the overlapping regions of the stereo pair decrease. Additional 

error in the depth estimation is also introduced by the change in perspective of each 

camera and occlusion. Wide-baselines also increase the computational load, since 

greater number of disparities must be searched. Shorter baselines make the search for 

corresponding points more robust, however the depth estimates are not very accurate. 

The various depth estimation techniques as a result differ in the way they deal with 

this fundamental tradeoff between ease of matching and accuracy of depth estimation.

The calculation of depth maps using coplanar views simplifies the task of finding 

corresponding pixels to a ID search. However, such a configuration imposes gross 

limitations on the placement of cameras and thus the flexibility and practicality of 

the use of such a system. Arbitrarily placed cameras expand the correspondence 

search from ID to 2D. This increases the complexity of the system, making matching 

more difficult, time consuming and error prone. In order to avoid these issues, stereo 

images taken from arbitrary orientations are rectified i.e., resampled in order to pro­

duce a pair of images that have epipolar lines corresponding to image rows. In order 

to perform rectification, the internal and external camera parameters must be known 

to define the new homography. Homography defines the relationship (in homoge­

neous coordinates) between two images by an eight parameter perspective equation. 

The camera parameters can be found through either strong or weak camera calibra­

tion, from which the homography between the original and rectified image can be 

calculated. The aforementioned processes are described in the following sections.
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Figure 2.2: Perfect Pinhole camera with a CCD sensor matrix

2.2 Theoretical limitation

The accuracy of 3D surface reconstruction via image acquisition is fundamentally 

limited by the properties of the cameras. In particular, the spatial resolution of an 

extracted object surface is directly dependent upon the physical distance between the 

object and the cameras as well as the focal lengths of the cameras. Furthermore, the 

pixel resolution of the CCD sensor matrix limits the detail captured of the object 

surface.

The maximum resolution of the surface reconstruction can be calculated under 

the assumption of a perfect pinhole camera, with a CCD sensor matrix, as shown in 

Fig. (2.2). Figure (2.2) depicts a single row of the CCD camera with focal length 

f, comprising of individual CCD elements of width Dcoiumn. Given a point on the 

object surface which is a distance z from the optical center, it holds that:

RD, column feas

f z
Thus, the theoretical limit of the maximum resolution Rmax is given by:

(2.4)

R,
Dcoiumn ' Z

F (2.5)

For the cameras used within the setup, f = 16 mm and Dcoiumn = 7.6pm, Rmax = 

0.475 mm for objects 1 m away from the optical center of the camera.
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The theoretical limit of surface reconstruction from images can be improved 

through sub-pixel techniques, such as the iterative technique described by Okutomi 

and Kanade [32]. However, such an approach inevitably increases the computational 

requirements.

2.3 Camera Calibration

Since the system presented in this thesis places no restrictions on camera pose and 

characteristics, the multi-camera setup must be calibrated. Camera calibration es­

tablishes the projection of the 3D world coordinates to the 2D image coordinates, 

allowing 3D information to be inferred from the 2D images. Depending upon the 

accuracy required by application, a model of the camera is assumed which describes 

image formation within the camera. Since these parameters are usually technically 

impossible or not feasible to be measured directly, the calibration problem is thus 

to compute the numerical parameters for a given camera model. Camera calibration 

techniques can be classified roughly into two categories: photogrammetric calibration 

and self-calibration.

Photogrammetric calibration (or “strong” calibration) of a camera is performed 

with the aid of a special calibration object whose 3D geometric measurements are 

known very precisely. The calibration object is usually planar, which undergoes 

precise translation and rotation, or a well defined 3D object. Such methods recover 

the complete Euclidean structure of the scene [39], [28], [43].

Self calibration (or “weak” calibration) methods do not use any special calibration 

objects. Images of a static scene taken from multiple viewpoints are used to calculate 

the parameters of the camera [25], [9]. Such methods recover the camera properties 

and projective scene geometry, however the exact Euclidean space is not extracted 

without additional scene or camera information. Due to the numerous parameters 

that need to be estimated, reliable results may not be always found. Moreover, all
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depth measurements are relative, which introduces complexity when combining the 

depth data from different viewpoints.

The cameras used in the system are strongly calibrated since there exist numerous 

robust methods for strong camera calibration. Furthermore, this approach is neces­

sary in order to combine the depth estimates from multiple stereo camera pairs and 

viewpoints into a common depth map. The calibration feature detection is simplified 

in strong calibration since a calibration target is used. Moreover, the complexity 

involved in the estimation of the camera parameters in strong and weak calibration 

is relatively similar, leaving little to be gained through weak calibration.

Both intrinsic and extrinsic parameters of a camera must be computed. The 

intrinsic parameters of the camera define how a point in the camera coordinate system 

is mapped to the image. This is dependent on the internal geometric and optical 

characteristics of the camera (e.g. effective focal length). The extrinsic parameters of 

the camera however, define the mapping between the points in the world coordinate 

system and the camera coordinate system. The extrinsic parameters of the camera 

model thus describe the pose of the camera relative to another coordinate system 

(such as the world coordinate system) in 3D space.

The cameras used in the experimental setup are characterized by the Tsai camera 

model [39]. The Tsai camera model describes the camera as a perfect pinhole camera 

combined with the radial lens distortion and image scanning parameters. The camera 

model contains eleven parameters that are obtained through direct calibration to 

explicitly define the camera, namely:

Intrinsic Parameters

f : effective focal length in mm.

Ki : 1st order radial lens distortion.

(Cx, Cy) : the row and column image coordinates respectively 

for the radial lens distortion center (in pixels).
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sx : horizontal uncertainty scale factor introduced by the 

timing error of the acquisition hardware.

Extrinsic Parameters

ri r2 r3
R = r4 r5 re : rotation of the camera axes.

r7 r8 rg

T = [Tx,Ty, Tz]t : translation of the camera origin.

(2.6)

The calibration technique by Tsai [39] was used in the implemented system be­

cause of its frequent application in computer vision applications and mature software 

tools [41]. The method requires at least seven non-coplanar calibration points which 

have been accurately determined in an arbitrary but known geometric configuration.

The Tsai camera model can be described with the following equations. The rigid 

body transformation of a point Xw = Yw, Zw)T in the object world coordinate 

system to point Xc = (Xc, Yc, Zc)T in the camera coordinate system is:

1----------

1

= R

1

.Zc. Zw

(2-7)

where R and T are the rotation and translation matrices respectively. The point 

Xc in the 3D camera coordinate system is transformed to the undistorted image 

coordinate xu = (xu,yu)T by pinhole camera model perspective projection:

Xu

yu
=

1----------
1

(2-8)

The radial distortion is modeled by:

Xd T Dx 

Ud + Dy

Xu

yu

(2.9)
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where xa — (xd, yd)T are the true distorted image coordinates and:

1--
---

---
-1

t) tJ
I__

__
__

1

=
Xd(jAr2 + + ...)

2/d(«U2 + + ...)

The distorted (or real) image point xa = yd)T is transformed into the actual 

image buffer coordinates Xb = (x&, by:

xb SxXd. _|- <7 
d’x

. Vb . + Cdy^^V J
(2-11)

where

(xb, Vb) : row and column numbers of the pixel in the image buffer in memory,

(Cx, Cy) : row and column numbers of the center of the image buffer (principal point), 
Nif __ 1 1NCX

x - dxN^

dx : center to center distance between adjacent sensor elements in X direction, 

dy : center to center distance between adjacent sensor elements in Y direction,

Ncx : number of sensor elements in the X direction, and 

Nfx : number of pixels in a line as sampled by the computer.

The last four of these parameters are usually obtained from the specifications of the 

imaging device provided by the manufacturer. The following 7 steps describe the 

calibration procedure in [39] for non-coplanar calibration points.

Step 1: Calculation of the distorted coordinates from the image buffer 

coordinates

Initially the calibration object containing non-coplanar calibration features are cap­

tured to an image buffer. Next, the row and column positions (xb) for all visible
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calibration features are determined to sub-pixel accuracy. The calibration object and 

mark extraction procedure is described in §3.2.2. Assuming that the principal point 

(Cx, Cy) is identical to the image buffer center and scaling factor sx is set to one, x<j 

is determined for each extracted feature point in the image buffer using Eq. (2.11). 

These assumptions are later removed.

Step 2: Calculation of seven parameters for the transformation of sensor 

coordinates into world coordinates

A calibration point Xw in the world coordinate system is imaged to the distorted 

image coordinate xj characterized by the following equation:

xd =

where

yaXw VdYw Vd^w Vd ~XdXw —XdYw —xdZw

TjSx T2Sx T3Sx TxSx T4 T5 Tq
lT

for Ty 0 0.

(2.12)

(2.13)L =

Here Tx and Ty are components of the translation vector T, and represent elements 

of the rotation matrix R. With the number of feature points much larger than seven, 

an overdetermined system of linear equations can be established and solved for the 

elements of L.

Step 3: Calculation of \Ty\

Let:

Ol risx a* =
1y

di = Np, 
1y

a5 —
1y a7 Z&.

Ty

(2-14)

Using Eq. (2.14) and orthonormality property of R, the value of Ty is determined 

from:
|T,| — \]ai + a§ + a7- (2.15)
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To determine the sign of Ty, an imaged calibration point P = (XW,YW, ZW)T 

is chosen such that the corresponding image point lies far away from the

principal point (Cx,Cy)T. Assuming Ty is positive, sx = 1 and using Eq. (2.14) the 

following equations are solved:

ri rn ==- • Ty , 
1y

_r2 rr, 
r2 ~rp 'Ty

1y

_r± or— rp ' Ty ,
1y

— rp ’ Ty ,
1y

Txrp _  Jo rp
1x ' -*-y ?

1y

(2.16)

x —r-tXw + t2E1V + Tx , and

y — r^Xw + f’Ww + Ty

If the parameters x and x^ as well as y and yd have the same sign then sgn(Ty) = +1, 

else sgn(Ty) = — 1.

Step 4: Calculating the value of scaling factor sx

Since R is orthonormal and sx is positive sx is determined using the equation:

sx — |Tj,| • yja%. (2-17)

Step 5: Calculation of R and Tx

The elements of the 3D rotation matrix R is given by:

D -- ' Ty/sxi T2 0,2 ’ Ty/S x , T3 -- O3 • Ty / SXJ
(2-18)

^4   O§ * Ty, V 5 Oq * Tyy Tg   (Z7 ‘ Ty .

where are the elements of R and Oi are defined in Eq. (2.14).
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The last row of R, namely r7, r8 and r9 can be calculated by the cross product 

the first two rows of R and using the orthonormal property r7 + — 1. Tx can

be determined by:

(2.19)

Step 6: Calculation of approximate values for f and Tz

By ignoring the lens distortion, the linear equation:

= wdyyb , (2.20)

can be formulated for every calibration point where

r- q f
y ~dyyb

Tz

y — riXw + rAw + • 0 + Ty,

w r7Xw + r8Yw + r9 • 0 .
(2.21)

More that two calibration points, yields an overdetermined set of linear equations 

which can be solved for the unknowns f and Tz.

Step 7: Calculation of exact solutions for /, Tz and K[

The use of standard optimization techniques allow for the accurate calculation of f,

Tz and k7. The values of f and Tz calculated in the previous step act as starting

values, while is assumed to be zero initially. The undistorted image coordinates of

world coordinate point X can be given by the perspective projection equations:

_ ,r+ qYw + r7,Zw + Tx _ ,r<iXw + r$Yw + rgZw + Ty . .
ul f7Xw + f8Y\y + tqZw + Tz ^ul r7Xw + r8Yw + rgZw + Tz

Furthermore, they can also be obtained by the radial rectification of the actual 

projected points by using Eq. (2.9), namely:

xU2 = ^d(l + «hr2) and 

yU2 = + «ir2), with

r= ^d + Vd

(2.23)

(2.24)

(2.25)
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Thus, an error function s(ni,f,Tz) = h(xui,yui, xU2,yU2) can be formulated using 

the set of equations above, and optimized using standard techniques (e.g. steepest 

descent). The principal point assumption in the first step can be removed by using 

Eq. (2.11) for the image point and repeating the whole process with the updated 

(Cx, Cy) to improve the calibration accuracy. A solution can also be obtained by 

solving the non-linear equation:

r = V(sxld'xybV + (dyyb)2
(2.26)

Camera Perspective Projection Matrix

A point Xw = (X\y, Yw, Z\y)T in the world coordinates is transformed into an image 

buffer point (pixel) xb = (xb,yb)T through the linear perspective projective matrix P 

(given in homogeneous coordinates):

xb = PXw (2.27)

where

Xb =

xb

yb (2.28)

s

if s / 0,X6 = s

s
(2.29)

(2.30)

The matrix P can be decomposed into:

P = P,P£ (2.31)
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where Pj is the projection matrix which transforms the points in camera coordinate 

system to image pixels and is given by (assuming that the radial distortion of the 

camera has already been removed and that the camera pixels are square):

P/ =

Sx f
d'x

0

0

o cx 
J. c
dy

0 1

(2.32)

and P# is the projection matrix which transforms the points in the world coordinate 

system to the camera coordinate system given by:

PE = (2.33)

where R and T are the rotation and translation matrices respectively, defined in Eq. 

(2.6). Equation 2.32 defines the horizontal and vertical focal lengths:

fh = (Horizontal focal length in pixels),

fv = ■£- (Vertical focal length in pixels).

The 3x4 projection matrix P can be written as:

(2.34)

---
---

---
1

Pl4

p = pj P24

pj P24

[P|P]- (2.35)

p is the homogeneous image coordinate of the origin. The one-dimensional right null 

space of P represents the camera center C. Therefore:

(2.36)

and

C = -P_1p. (2.37)

R T

0 1
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2.4 Image Pair Rectification

Image Pair Rectification is the process of resampling stereo image pairs to produce 

a pair of images with matched epipolar projections. These projections are such that 

the conjugate epipolar lines of the images are collinear and run parallel to the x- 

axis, thereby limiting the disparities between matching points of the images in the 

rc-direction only. This epipolar constraint is of great benefit to stereo matching algo­

rithms, since the correspondence search space is reduced to one dimension, namely 

the corresponding rows of the rectified images. The rectified images can be thought of 

as obtained by a new coplanar stereo camera setup, obtained by rotating the original 

cameras about their optical centers.

In order to produce a rectified pair of stereo images, the rectification procedure by 

Fusiello et. al [12] is used. This rectification scheme is well suited for multi-camera 

configurations since the reference camera is rectified in each stereo pair. Image rec­

tification causes the projection of original images on a new common retinal plane. 

As a result, rectification of images from cameras that have large vergence angles 

between their optical axes, can suffer from quantization effects if an ill-suited recti­

fication plane is chosen. This would occur if all the multi-camera stereo image pairs 

are rectified to a common plane such as the plane containing the reference camera 

image. Under such conditions, the image of the non-reference camera can undergo 

severe transformation during rectification thereby decreasing the accuracy of stereo 

matching.

In the approach outlined in [12], the rectifying projection matrices are calculated 

by the original perspective projection matrices of the camera obtained through strong 

calibration. The image planes obtained by rectification are coplanar and parallel to 

the baseline as shown in Fig. (2.3). The operation can be thought of as physically 

rotating the two cameras about their optical centers such that their optical axes are 

parallel and perpendicular to their baseline. All constraints necessary to guarantee
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Rectified Image Plane

X

Figure 2.3: Coplanar Rectification

a unique solution are explicitly enforced, resulting in a linear, homogeneous system 

of equations incorporating explicit quadratic constraints. Furthermore, the camera 

stereo pair geometry is unrestricted, allowing for arbitrarily placed cameras.

Given that the original projection matrices for a stereo camera pair are given by 

Poi and Pq2) while the new rectifying projecting matrices are given by:

Pni =

"a?‘
AJ —

Tai

a2

Ui4

024 PN2 = BJ —

'b?

bj

£>14

£>24 (2.38)

1--
---

co
 H

i__
_ T

0,34

1--
--- td

1__
_ bi £>34

the following constraints can be formulated.

Since the rectified projections must share a common focal plane, it follows:

a3 = b3 and a34 = 634. (2.39)

Furthermore, the orientation of the common rectified focal plane is chosen to lie 

parallel to the intersection of the two original focal planes:

a3(AgABj)=0, (2.40)

where A is the intersection operator. The conjugate equation bj (A J A Bj) = 0 is 

redundant due to Eq. (2.39).



CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 25

The position of the optical centers Ci and C2 of the stereo camera pair must 

remain unchanged:

(2.41)

where Ci and C2 can be calculated using Eq. (2.37). Equation (2.41) provides the 

following six linear constraints:

aj1 Ci + O14 — 0 

aj C1 + U24 = 0 

a3 Ci + (Z34 — 0 

bJC2 + &14 = 0 

bjc2 + &24 = 0

(2.42)

bJC2 +634 = 0.

Since the purpose of rectification is to align conjugate epipolar lines, the vertical 

coordinate of a 3D point Xw must be equal under both transformations Pni and 

Pn2, he.:

aJXw + Q24 _ 
aJXw + <334

This constraint can be simplified using Eq.

b2 Xw + 624
b£X

(2.39)

+ b.'34
(2.43)

w

(2.44)

The rectified image planes must have orthogonal x— and y—axes, thus the corre­

sponding planes (given by the first and second rows of the camera projection matrix) 

must also be orthogonal. Using Eq. 2.44, the constraint can be written as:

(2.45)



CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 26

The principal point (Cx,Cy) is set to (0,0) for each of the rectified image planes 

and using Eq. (2.39) and (2.44) the following equations are obtained:
z

afa3 = 0

* aja3 = 0 (2-46)

bja3 = 0.

By keeping the horizontal and vertical focal lengths unchanged and using Eq. 

(2.34) and (2.46) the focal lengths can be obtained by:
z

||ai A a3]|2 = ||ai||2||a3||2 = fh2 

< ||a2 A a3||2 = ||a2||2||a3||2 = fv2 (2-47)

||bi A a3||2 = ||bi||2||a3||2 = fh2.
\

Finally, the rectification matrices are defined to a scale factor of 1:

||a3|| = 1 and ||b3|| = l (2.48)

All the constraints can be organized to provide four system of equations:

z
a3 Ci + U34 = 0 

a? C2 + Q34 = 0
< (2.49)

aJ(Aj A Bj) = 0 

IM = 1

z

a^Ci + G24 — 0 

aj C2 + <224 = 0 

aja3 = 0
(2.50)
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aJ'Cj + cti4 — 0 

&? C2 + O14 = 0
< (2.51)

= 0

, l|ai|| = fh

bfC2 + 614 = 0 

b^a2 = 0 

bfa3 = 0 

llbiU = fh

with the added equalities:

(2.52)

z

a2 — b2

«24 = ^24
<

a3 = b3

034 - ^34

(2.53)

Each system of linear homogeneous set of equations can be solved under a quadratic 

constraint written as:

Ax = 0 subject to ||x'|| = k, (2.54)

where x' is a vector comprising of the first three components of x, while k is a real 

valued numeric.

Once the rectifying perspective projection matrices are known, then the homog- 

raphy between the original and rectified image planes can be computed as:

xn = PnPc/xq — Ho-\X0 (2.55)
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where

xpj : New rectified image coordinate 

xo • Original image coordinate

Pn = [Pn|pn] • Rectifying perspective projection matrix 

Po = [PolPo] : Original perspective projection matrix

The homography Hohn is applied to every pixel in the original image to synthesize 

the rectified image. Since the integer coordinate values of the rectified image will 

correspond in general to non-integer values of the original image, the intensity values 

of the rectified image are therefore computed through bilinear interpolation.

2.5 3D Surface Reconstruction

To accomplish the final task of 3D surface reconstruction, correspondence between ele­

ments that are the projections of the same physical entity among stereo views must be 

determined (stereo matching). Once correspondence has been established, the depth 

can be computed (depth estimation) for each element using the camera configura­

tion geometry. The depth values can be represented as depth maps or extrapolated 

to 3D models using mesh structures incorporating boundary or object recognition 

techniques, which may further be enhanced using texture maps and lighting. In the 

presented system, the depth values are visually represented using 255 level greyscale 

depth maps.

2.5.1 Stereo Matching

The process of detecting corresponding image elements that are projections of the 

same real world surface point between stereo images is commonly known as stereo 

matching. Stereo matching algorithms, differing in their method of image element
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extraction, can be classified into two general categories. These are feature based and 

intensity based techniques.

Principles of Feature Based Stereo Matching

In feature based stereo matching (FBSM), first an operator is used to preprocess the 

images to extract salient features that are stable under different viewpoints of the 

scene. The matching process then determines correspondence between the detected 

features in the stereo image pairs based on their attributes. Edges, corners and 

contours are commonly selected as features to be extracted. Higher level primitives 

such as ellipses and polygonal regions can also be selected as features in certain 

controlled scenes. Usually a collection of features are employed in order to increase 

the regions for which depth can be computed.

A few of the FBSM from the vast literature on such methods are discussed below to 

illustrate their properties, while a current survey is presented in [16]. Barnard et. al [3] 

selected centers of highly variable areas in the stereo images as features. A network of 

nodes corresponding to possible matches is constructed by pairing up each candidate 

point in one image to all candidate points in the second image within a disparity 

range. Initial probability estimates of correspondence, based on sum of squares of 

intensity differences are used to label each possible match. These probabilities are 

iteratively refined by attributing probabilities which enforce surface consistency (i.e. 

are associated with nearly the same disparity) with higher weights. The method 

does not require camera calibration information which is a significant advantage. M. 

Pilu [33] discusses in a method to determine correspondence among points using the 

singular value decomposition without using camera calibration information. Although 

the algorithm does not depend on the selected feature, the author provides examples 

where “corners” in images were detected and subsequently matched. However the 

method is very sensitive to errors during the feature extraction process.

Bensrhair et. al [4] define a feature called “declivity” as a cluster of contiguous



CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 30

pixels, limited by two end-points which correspond to two consecutive local extrema 

of grey-level intensity . The matching algorithm determines correspondence between 

declivities by evaluating their sum of neighborhood intensity differences and maxi­

mizing a non-linear global gain along the entire epipolar line. This can be regarded 

as finding an optimal path on a 2D search plane defined by the epipolar lines of the 

stereo pair which maximizes the global gain.

From the above discussion it is evident that FBSM methods generally involve a 

high degree of complexity in feature extraction and matching. FBSM approaches do 

not produce dense surface estimates since the extracted features generate a coarse 

representation of the scene. This however, can increase the speed and accuracy in 

correspondence analysis due to the significant reduction in ambiguity arising from the 

diminished number of possible candidates. The correspondence analysis have a high 

degree of immunity to photometric variations between stereo image pairs since the 

extracted features represent prominent details of the scene, and their attributes are 

generally not altered by photometric variations during imaging.

Principles of Intensity Based Stereo Matching

An alternative technique to FBSM is to directly utilize all the grey levels of the pix­

els to determine correspondence in stereo pair images, consequently called intensity 

based stereo matching (IBSM). Since pixels share individual intensity values, corre­

spondence is determined by a similarity measure of blocks, i.e. neighborhoods around 

the pixels (e.g. using n x n windows), on various values of disparity along the epipo­

lar line. The similarity measure is based on the intensity attributes of the blocks (e.g. 

mean squared differences (MSD), cross correlation) and various assumptions and con­

straints (e.g. smooth surfaces, continuity constraints). Each pixel is compared with 

a number of pixels along the epipolar line, and the disparity providing the optimum 

similarity measure value is selected. The difference among various IBSM techniques 

is their similarity measure and a recent survey is contained in [16].
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Since the corresponding pixels are determined on the basis of their neighborhoods, 

the accuracy of the disparity in IBSM approaches innately depend upon the size of 

the blocks. The larger blocks potentially have a larger variance of intensity, reducing 

the potential for false matches. However, increasing the size of the window decreases 

the accuracy of depth estimates since the windows can potentially contain pixels 

from multiple depths. Therefore, a common technique employed is hierarchical based 

stereo matching, where disparity estimates from larger blocks is used to guide the 

estimates for smaller blocks [6], [8].

Another approach is to increase the robustness of the disparity estimates by con­

sidering global attributes rather than local ones. A technique described by Cox et al. 

[18] produces robust results by simultaneously estimating all disparities in a scan line 

considering the monotonic ordering of the pixels in the stereo image pair and conti­

nuity of the disparity estimates. This technique was improved upon by Falkenhagen 

[7] by performing matching over small blocks instead of pixels and thereby apply­

ing a more sophisticated continuity constraint for neighborhoods. Similarly, Roy et 

al. [36] solve the stereo correspondence problem by formulating it into a finding the 

maximum flow in a graph. The depth estimation is performed by considering inter- 

and intra-epipolar line constraints, while explicitly modeling occlusion and surface 

discontinuities. By evaluating the minimum cut associated with the maximum flow, 

the disparity surface of the entire scene is evaluated. The theoretical and actual ex­

ecution times reported by the authors suggest that the approach is computationally 

intensive.

Pascal Fua [11] describes a fast stereo algorithm in where a normalized MSD of 

pixels is used to calculate the optimal disparity to sub-pixel accuracy. The corre­

spondence search is performed for each pixel in both images of the stereo pairs and 

the match between pixels is considered valid if and only if both searches yield the 

same match. The density of the depth maps were increased by a special hierarchical 

approach and by the use of multiple images. When calculating depth maps with
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multiple images, the first image is regarded as the reference frame, and the depth 

map calculated from each pair is combined in the final step. Consequently, the major 

drawback in the algorithm is the high computational load.

There are many other approaches to solve the stereo matching problem such as 

temporal stereo, focus and defocus and shape from shading among others. The system 

presented in this thesis uses a multiple baseline stereo developed by Okutomi and 

Kanade [32] and discussed in §2.6.

2.6 Multiple Baseline Stereo (MBS)

The multiple baseline stereo (MBS) [32] is an intensity based stereo matching tech­

nique that improves robustness of disparity estimates by computing correspondences 

between multiple pairs of stereo images with varying baselines. The motivation of 

the approach is derived from Eq. (2.3) which can be re-written as:

= < <2-56’

Disparity calculations from each stereo image pair differ among stereo camera 

pairs due to the change in camera parameters and hence cannot be directly used 

across multiple images. Subsequently, Eq. (2.3) is reformulated into Eq. (2.56) to 

provide a measure that can be performed across multiple image pairs. According to 

Eq. (2.56), the stereo matching can be performed with respect to the inverse depth 

< which has an immutable definition across all stereo pairs formed with a common 

reference image. The parameter £ is independent of different disparities, baselines and 

focal lengths of the cameras. Thus, similarity measures for a pixel in the reference 

image can be computed across multiple stereo image pairs, with varying baselines, 

and combined according to inverse depth. The MBS algorithm uses sum of squared 

difference (SSD) values as a similarity measure between pixels defined as:

edi(xi Vi di) = ^2 y~^(-^fie/(a: + Q) y + b) — Ib„ (x + a+di, y + b))2, i = {0,1,2...} (2.57) 
a,b£W
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where

(x, y) : pixel coordinate in reference image for which 

correspondence is being searched

di : zth candidate disparity

e^x, y, di) : SSD value of reference pixel coordinate (x,y) 

at disparity di

EE : summation over the window W
a,b£W

IRef(x,y) ■ Intensity function of reference image 

IBn(x,y) : Intensity function of nth stereo pair image

Since disparity d — BfC, the SSD with respect to the inverse distance C is given 

by:

e<j(x,y,Ci) = + a,y + b) - IBn(x + a + BnfQ,y + b))2,i = {0,1,2...}
a,b£W

(2.58)

where

e<i (xi V, Ci) : SSD value with respect to inverse depth Ci

Ci = : zth candidate inverse depth
Zi

Bn : Baseline between the reference image and 

nth stereo pair image

f : focal length

The estimates from N stereo pairs are combined to produced the sum of SSDs 

(SSSD) for each inverse depth C-

N

SSSD(x,y,C) = EEE(J« ef(x + a,y + b) - IBi(x + a + BJC, y + 6))2 (2.59)
2=1 a,bEW
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The optimal inverse depth estimate £ at position (x, y) is given by the £ value from 

a defined range which minimizes the SSSD function:

f = MIN(SSSD(x, y, &)) Vi (2.60)

The SSSD has the property of exhibiting an unambiguous and a more pronounced 

minimum at the correct inverse distance compared to the SSD. This is due to the 

fact that stereo matching along epipolar lines (using the inverse depth) using SSD 

may yield multiple matches. However, using SSSD to combine the error values across 

multiple images would accentuate the correct depth estimate.

The MBS algorithm effectively minimizes the global error by integrating the ac­

curacy of depth calculations obtained by stereo pairs with wide-baselines, with the 

robustness of stereo matching with stereo pairs of smaller baselines. This contrasts 

other methods that produce estimates based on consistency checks or filtering of in­

termediate values. It avoids the need for sophisticated intermediate decisions and 

the compounding of errors introduced by the propagation of estimates through mul­

tiple levels. The technique has the further advantage of handling areas that might 

be occluded in one or more views and to repetitive patterns to a certain degree. The 

algorithm is a fast and linear approach that has been implemented by in real-time 

[30] [23]. The algorithm readily lends itself to a parallel realization since the stereo 

matching of the each pixel is independent of the rest. As a result, the algorithm can 

be adapted quite readily in the proposed distributed software architecture.

Since the cameras are allowed to be in arbitrary positions and orientations, the 

images are rectified (§2.4) before stereo matching via the MBS algorithm. Due to 

the image rectification, the optical axis of the reference camera is rotated and thus, 

all measurements of depth are computed parallel to the optical axis of the rectified 

reference camera. Consequently, in order to use £ to search across multiple images, 

depths from the reference camera coordinate system must be transformed to the rec­

tified reference camera coordinate system. Since the rectification method only causes
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a rotation of the reference camera about the optical center, the rectified coordinates 

can be written as:

Yr = MPo 

\ Zr

where PRect is the rectified coordinates of the point Porig = (No, Yo, Zo)T in the 

non-rectified (original) reference camera coordinate system . M is the rotation matrix 

that transforms points in the original reference camera coordinate system to the 

rectified reference camera coordinate system. Recall that the measurements of depth 

are performed in the original reference camera coordinate system. From the pinhole 

camera model:

Rect ng (2-61)

P Orig —
Zo

Xq

(2.62)yo

\fo J

where (xo,yo) is the pixel of the original reference image, and fo is the focal length 

of the original reference camera. Thus, using Eq. (2.3) the disparity in the rectified 

image stereo pair is given by:

fo

dR =
Br/r

jr
(2.63)

Using Eq. (2.62) this can be written as:

dp — Br/r/o (2-64)
m3(xo,yo,/o')T

where m3 is the third row of M and £ = Zq1. Since the rectification procedure does 

not change the optical centers, Br = Bo- For a fully parameterized camera, Eq. 

(2.64) can be written as:

Br/r
dR = Kra, 1)T

(2.65)
fh ’ fv

Equation (2.65) relates the depth Zo in the unrectified reference camera to the 

disparity in the rectified image pair. This allows for formulation of disparity search 

space for a given depth across multiple stereo image pairs.
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Constraints and Assumptions

Since MBS is an IBSM approach two important assumptions are made about the 

scene being extracted. First, it inherently assumes that the surfaces in the scene 

are Lambertian and highly textured, allowing matching to be reliably made from the 

intensity statistics within a window of the scene. As a result, the algorithm produces 

depth estimates with low precision for regions of the scene with little texture. In 

these regions, the constructed windows correspond equally well over a wide range of 

depths.

Secondly, the MBS technique assumes the scene surfaces are planar and parallel 

to the coplanar stereo camera pair. This is direct consequence of representing the 

measure of depth as the perpendicular distance (with respect to the image plane) of 

an object from the optical center of the camera. This assumption fails when windows 

are constructed within an image that contain pixels from multiple depths. Due to the 

variation in camera pose, corresponding windows constructed in images from other 

viewpoints may not have the same intensity value properties due to the perspective 

distortion. Consequently, the SSSD function may not have the global minimum at 

the correct depth, and instead the minimum may lie at an arbitrary depth for which 

random alignment of textures produces the lowest error. This limitation has been 

successfully overcome in [34], although with extensive complex computational load.



Chapter 3

System Architecture

3.1 Distributed Computing

The increasing affordability and capability of workstations and computer networks 

have given rise to notion of a Network of Workstations (NOW) [1]. NOW can be em­

ployed to solve complex and tedious tasks that were traditionally solved with expen­

sive, monolithic systems. Monolithic systems extensively (and almost exclusively) use 

special hardware and software architectures to perform parallel processing, or meet 

computational load requirements. As shown in Fig. (3.1), this rigid monolithic appli­

cation architecture is justified, since no processing is done on the terminals accessing 

the central system responsible for the workload. Over the course of technological 

evolution, these monolithic applications have been broken into a 2-tier client/server 

architecture, where some processing is done on the access terminals. NOW on the 

other hand have given rise to a new computing paradigm, namely a distributed or 

cooperative computing, that can be regarded as a multi-tier client/server architecture 

(Fig. (3.2)).

In the distributed computing architecture, the application is broken into func­

tional objects, each of which can use the services provided by other objects in the

37
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Figure 3.1: Traditional Monolithic computing architecture.

Figure 3.2: Distributed computing architecture.
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system. Therefore, an object can act both as a client and server. Distributed comput­

ing solves a complex task through the notion of “divide and conquer”. The complex 

task is broken into smaller pieces, that can be solved individually. By distributing 

these smaller tasks over an array of functional units on individual workstations, paral­

lelism is achieved. Due to the decomposition of applications into specific components, 

the approach encourages (or enforces) the use of Object Oriented software construc­

tion techniques, thereby increasing the flexibility, scalability and robustness of the 

application.

The main advantage to distributed computing is that it allows complex tasks to be 

solved quickly with affordable resources, while maintaining a scalable platform. The 

tasks however, are limited to a class of that can be decomposed into smaller units, and 

solved independently (e.g. calculation of prime numbers, testing of protein strains 

for drug research and cryptography). Numerous computer vision techniques such as 

image filtering, segmentation and pattern recognition lie in this class of problems, 

including methods 3D scene extraction. This property arises from the fact that many 

algorithms in computer vision are based on the of processing image characteristics 

that are local and independent.

3.1.1 Common Object Request Broker Architecture

In the distributed computing paradigm, software applications are broken into multiple 

components (or objects) and distributed over a heterogeneous NOW. Consequently, 

the efficient exchange of information among these components becomes of primary sig­

nificance. The Common Object Request Broker Architecture (CORBA) is a reference 

model that facilitates the communication and inter-operation of distributed compo­

nents in heterogeneous computing environments. A complete review of CORBA is 

beyond the scope of this work, and a thus a brief overview follows.

CORBA provides a standard mechanism for defining interfaces between compo­

nents as well as tools to facilitate the implementation of those interfaces for the
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Figure 3.3: Common Object Request Broker Architecture

developer. CORBA defines a structural architecture for the system, based on the 

client/server paradigm, and is a standard specified by the consortium of over 800 

organizations known as the Object Management Group (OMG). The standard allows 

software vendors to create Object Request Brokers (ORBs) which allow software de­

velopers to write distributed software systems. The ORB makes the communication 

between components transparent with regard to the location on the network, their 

programming language, operating systems and ultimately their internal implemen­

tations. The adherence to a strict standard allows inter-communication of CORBA 

objects from different vendors and an inter-portability.

CORBA is an example of object oriented (00) architecture. Through the use of 

00 mechanisms, it is able to achieve its primary characteristics of reusability and 

information hiding (through abstraction and encapsulation). This however, does not 

limit its use to object oriented languages, although CORBA maps particularly well 

to them. The general characteristics of CORBA are shown in Fig. (3.3). Although 

CORBA does not have any inherent features for real-time application development, 

recent developments in CORBA have included the specification of real-time ORBs 

[14]. CORBA objects can communicate through the ORB with a variety of net­

work protocols, including custom protocols. However, due to the CORBA standard
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specifications, each ORB inherently supports the TCP/IP network protocol suite. 

CORBA was chosen over other alternatives (such as Sockets, DCOM, Java RMI

and RPC) since it elegantly extends to a multitude of computing platforms and soft­

ware languages. It provides a consistent level of abstraction for the interaction of 

distributed objects, allowing the programmer to solely concentrate on the behaviour 

of the objects. It is not limited to a certain programming language, operating system 

or communication protocol. This adds flexibility and adaptability to the presented 

system, and allows for collaborative research, including across the Internet. Further­

more, the use of an industry standard as the primary infrastructure allows for the 

research to be applicable to a broad category of practical systems.

3.2 System Overview

Figure 3.4: General vision system architecture

« >,

Vision systems in general utilize a number of interacting, well-defined processes, 

which can be realized as individual distributed components. This multitier client/server 

architecture of general vision systems is shown in Fig. (3.4). Here each physical or
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Figure 3.5: General 3D surface extraction system architecture.

logical construct in the vision system (e.g. camera, image display, median filter) has 

been abstracted as a component, and allowed to arbitrarily utilize the service of other 

components in the system.

Using this architecture, the extraction of 3D surfaces from 2D images can be bro­

ken down into the general components shown in Fig. (3.5). This general architecture 

can be decomposed into actual distributed components shown in Fig. (3.6).

The Image Servers provide images of the scene that are captured in real-time 

or have been previously stored. Images from a common viewpoint, along with perti­

nent camera information are retrieved by the Information Management Server (IMS), 

which sends this information to the Depth Map Extractors (DMEs). Each DME ex­

tracts the 3D surface of a portion of the scene specified by the IMS. This partial 

3D surface is collected by the IMS from each DME, combined and sent to the 3D 

Explorer which provides the interface to the user. These components are described 

in following sections.

. 1.

. 1-
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Figure 3.6: Presented system architecture

t,
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Figure 3.7: Experimental setup used in the project

The current system consists of a number of Intel Pentium II (333/400/450 MHz) 

and AMD Athlon (500 MHz) workstations running Windows NT (SP6) or Windows 

2000 with 128 MB of RAM. The workstations are connected through a 100 MB, 

switched network through a Cisco 3548XL switch, under general port configuration. 

Sanyo VCB 3374 and Panasonic WVPB 332 cameras are connected to Matrox Meteor 

II/MC frame grabber cards. The system utilizes the CORBA ORB (version 3.3.2) 

provided by Orbacus. The image of the setup is shown in Fig. (3.7). The cameras 

calibrated parameters are provided in Table (3.2) where the rotation matrix R is 

represented by its Euler angles Rx, Ry and Rz. The measurement B is the baseline 

with respect to Camerao- Any of the cameras viewing the scene can be used as a 

reference camera, and can be changed dynamically. The cameras are clustered in 

a general scene due to the limitations of the calibration procedure. It is necessary 

during calibration for all cameras to have a large overlapping viewable regions. Due 

to the size of the calibration object characteristics and its movement in space (see 

§3.2.2), the cameras have a limited volume of placement.
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Camera0 Camerai Camera2 Camera3 Camera4
f (mm) 16.56 16.49 16.53 16.54 16.27

«i 3.79 x 10~4 5.14 x 10“4 4.41 x 10“4 6.99 x 10“4 3.23 x IO"4
sx 1.02 1.02 1.02 1.02 1.03

Cx (pix) 287.89 301.62 293.69 300.93 325.26
Cy (pix) 254.09 282.82 258.73 218.32 240.30
Tx (mm) -66.02 -102.91 -56.97 -40.87 -48,49
Ty (mm) -76.66 -91.28 -63.52 -54.97 -85.27
Tz (mm) 763.44 779.91 776.88 783.16 786.23
Rx (deg) 0.93 1.79 5.76 4.54 ' 1.73
Ry (deg) 1.18 7.33 -0.42 -5.54 6.82
Rz (deg) -0.44 0.13 1.89 1.53 -0.33
B (mm) 0 -120.78 87.54 137.66 -61.57

Table 3.1: Camera Parameters

3.2.1 Vision Application CORBA Framework (VACF)

Component 
Specific Behaviour

CORBA Communication 
Layer

'--------------------Network

Figure 3.8: Component architecture overview

The system architecture uses multiple components, each of which can be broken 

into the general architecture shown in Fig. (3.8). Each component has a CORBA 

communication layer which is responsible for the inter-communication between the 

objects. The processing layer is the component specific behaviour necessary for pro­

viding certain services. Since the communication layer has a common behaviour in 

all components, a software framework was created to efficiently and effectively deploy 

the distributed components.

The Vision Application CORBA Framework (VACF) is an 00 framework that
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allows the rapid development of CORBA based software components and for au­

tonomous interactions between distributed components. The design of the frame­

work was influenced by the features commonly found in vision systems. Due to the 

inherent complexity found in most vision systems, the framework allows for a unique, 

independent instance of a server for each client, allowing the server to have complex 

state behaviour. This is in contrast to the common stateless server architecture (such 

as an HTTP server), which can only support simple client requests, or restricted to 

limited state behaviour by having the client store state information. Components in 

vision systems may have multiple behaviours and using the Object-Oriented design 

methodology for software construction, it is common to encapsulate a behaviour in 

a unique class. Consequently, the framework contains multi-object support for the 

components. Finally, the framework provides minimal implementation overhead and 

component behaviour restrictions.

The client-server architecture used by the framework is described below in detail, 

providing insight into how the chosen architecture is well suited for distributed vision 

applications. Each component that uses the VACF includes the framework support 

classes (linked through a standalone library), and the behaviour implementation pro­

vided by the user. The user implementation is assembled into the framework with the 

aid of a code generating “wizard” written for Microsoft Visual C+-I- Studio® (screen­

shots provided in Appendix B). A complete example of an application developed 

with the VACF is also included in Appendix C.

Server Architecture

Each server component written with the framework exhibits the architecture shown 

in Fig. (3.9). The basic functionality of the CORBA ORB and related services are 

encapsulated in the COrb utility class. Central to the design are the CServer and 

CServerFactory.impl classes that allow for the construction of server components
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Figure 3.9: VACF Server Class Diagram

with complex state and multiple services. CServer is a template class which encap­

sulates the COrb class to provide a higher level of abstraction for the ORB related 

services specific to servers. For each user object of type (e.g. CUser_impl) that is to be 

exported by the server, a specific CServer class is derived. The CServerFactory_impl 
class is an object factory based on the design pattern of the same name[13j. It creates 

and destroys new instances of all user implementation objects in a component. The 

use of an object factory avoids coupling of each component to a common commu­

nication class through inheritance. Upon instantiation, the server exports only one 

service, the object factory. Therefore, the library includes a CServer derived class 

of type CServerFactory_impl. On the client startup, it connects to the server and 

invokes the Create () method of the factory, subsequently getting references to unique 

object instances on the server. It can thus invoke the specific methods for these ob­

jects to accomplish its task. Since unique instances of user objects are provided to 

each client, the state of each object can be maintained independently allowing for
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complex vision processes to be realized easily with the framework. Note that only 

one object factory persists for the life of the server, while the user objects are created 

and destroyed as per the requests of the clients.

CComponent and CComponentServer provide a bridge between the framework li­

brary and the server behaviour implementation by the user. Since it was desirable 

to have the user link to a pre-compiled library, these classes were designed and im­

plemented to handle arbitrary user types used in the implementation of the server 

behaviour. The object factory CServerFactory_impl manages multiple instances of 

the user objects for each client through a list of CComponents. A generic CComponent 
class definition is provided to allow the framework to be compiled into a library , while 

the actual implementation is generated by the VACF wizard. The wizard also derives 

a CComponent Server from CComponent, that includes each of the user objects as mem­

ber variables. Thus a call to CServerFactory_impl::Create() by the client adds a 

new instance of CComponent to the list, and CComponent: :Run() is subsequently called. 

Since the library is compiled with a virtual CComponent: :Run() method, at run time 

the VACF wizard generated CComponent: :Run() is called. This in turn calls the VACF 

wizard generated CComponentServer: :Run() which actually creates the user objects 

and exports them to the CORBA service directory managed by the Name Server. It 

is the service of these objects that the client subsequently employs. Similarly, when 

the client invokes CServerFactory_impl: :Destroy() , the user objects are deleted and 

removed from the service directory, and the specific instance of CComponent is removed 

from the list.
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The creation process of objects is shown in the pseudo-code below:

//Pre-compiled in the library, 
char *CServerFactory_impl::Create()

CComponent *pComponentInstance;

//maintain the local list of creations 
AddComponentToList(pComponentInstance);
//call the generic object creation 
pComponentInstance->Run();

//Called from the library through polymorphism. 
//Generated by the VACF Wizard, 
bool CComponent::Run()

CComponetServer *m_pComponent;

//call the specific object creation 
m_pComponent->Run();

//Called from static link at compile time in 
//the application code of the user.
//Generated by the VACF Wizard, 
bool CComponentServer::Run()

CServer<CUserO_impl> *m_UserO; 
CServer<CUserl_impl> *m_Userl;

//create the first user’s object 
m_UserO->new CServer<CUser_impl>(m_pOrb); 
//connect first object to the name server 
m_UserO~>Connect(m_sInstance.data(), "UserO"); 
//create the second object
m_Userl->new CServer<CUser_impl>(m_pOrb); 
//connect it to the name server 
m_Userl->Connect(m_slnstance.data() , "Userl");

Pseudo-code of object creation process on the server through VACF

Here, the services of the server are implemented by the user in the classes CUserO.impl 
and CUserl_impl. They are exported under the name of UserO and Userl respectively.

To allow the objects of the user objects in the component to interact autonomously 

as both clients and servers, the ORB message loop is started in a separate thread. This 

allows the component to service requests for the user defined services, while allowing 

for other simultaneous processes. The component can also interact with itself through
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another process, providing server side control without client intervention. This multi­

threaded architecture of the framework therefore allows for vision components capable 

of timely interactivity, which may be necessary for higher speed response and the 

simultaneous response to multiple requests.

Using the VACF wizard, the user can build a complete server application by simply 

including their implementations in the build. Upon execution, the component will 

register with the name server, awaiting client requests. The user however, can modify 

the generated code to add any additional behaviour. The simplicity of this process is 

illustrated code below, which is auto-generated by the wizard (a complete example is 

given in Appendix C).

//Example of a VACF wizard generated code for an image server application 
//which serves images from a local camera to clients across the network. 
//Clients gain access to the object by requesting the ORB to connect to 
//‘‘RemoteCamera".
void mainO

//Create object factory server 
CServer<CServerFactory_impl> Server;

//initialize the CORBA layer as required by a server 
Server.Init();

//Make the object factory service available through the ORB 
//via the name ‘‘RemoteCamera"
Server.ConnectFactory("RemoteCamera");

//wait for user controlled shutdown.
cout « "Server Running... press any key to shut down"; 
getch();

//disconnect the factory from the name server 
Server.DisconnectFactory("RemoteCamera");

//Tear down the CORBA layer for the server 
Server.Stop();

Auto-generated server startup code by VACF wizard
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Client Architecture

Figure 3.10: VACF Client Class Diagram

There is no “wizard” provided for the client creation since there is no suitable 

default behaviour of a client. The VACF however does provide abstraction for the 

CORBA services and automatic connection to the factory. The client architecture is 

shown in Fig. (3.10). Each client contains a CClient derived object and IDL generated 

stubs, for each server component that the client will connect to. CClient provides 

two important methods Create() and Destroy() , that call the respective object 

factory methods to a particular server. The client uses DII (dynamic invocation 

interface) provided by CORBA to access these services and thus does not require 

linking across other components. Also provided on the client side of the framework 

is a GetRemoteObjectO template function. This function retrieves a specific object 

reference from the Name Server by name. As mentioned earlier, the name used by 

each client for an object actually refers to unique instance of the object created by 

the object factory. The CServerFactory_impl::Create() call to the object factory 

returns a unique name for each newly created server object to the client. This name 

is maintained internally in CClient. This allows multiple clients to use the same 

name to connect to unique instances of the server classes. To access the server from 

the client, the following code example illustrates invoking the GetFrame() method of 

the previously described camera server:
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CClient *pClient;
CameraServer.var CameraServer_REF;
//Create a new client, initializing the CORBA layer 
//as required for a client
pClient = new CClient();
//Connect to the server named "RemoteCamera"
//and have the object factory create a new 
//instance of server objects
m_Client->Create("RemoteCamera”);

//Get the reference to a "Camera" object from the component 
//This actually refers to the newly created object instance. 
CClient_GetRemoteObject<CameraServer_var, CameraServer>\ 
(*pClient, CameraServer_REF, "Camera");

//Get a captured image from the remote server 
CameraServer_REF->GetFrame();

Excerpt of client code for connecting to the image server

A complete listing of a client/server application created with the VACF is provided 

in Appendix C.

3.2.2 Camera Calibration

The cameras used with the setup are modeled using the Tsai camera model [39] as 

described in §2.3. A freeware implementation Tsai’s algorithm has been provided 

by Wilson [41] for a number of years. However, this tool does not extract the im­

age and world coordinates of calibration features, but rather calculates the camera 

parameters given this data. As a result, an application was created to handle basic 

image processing (such as filtering, histogram equalization and blob analysis) as well 

as a convenient off-the-shelf camera calibration software tool to extract calibration 

features from images.

Since the non-coplanar camera calibration algorithm by Tsai is used to determine 

the camera model, a planar calibration object is moved along an optical rail at discrete 

depths during the calibration procedure. The origin of the world coordinate system 

is arbitrarily chosen and is such that the world z-axis is normal to the calibration 

object.
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The calibration object used within the setup is shown in Fig. (3.11). The object 

consists of 10 x 10 grid of circles. The circles have a diameter of 15mm and are 

20mm apart (center to center). The black grid of circles is printed on a 1200 dpi laser 

printer on white card-stock paper and mounted on a flat steel plate. The centroid of 

the circles are selected as the calibration features.

The calculation of the centroid of the circles is performed through local image 

analysis and each stage is shown in Fig. (3.11 through 3.15). Given a pixel S that lies 

within the circle (either through algorithm estimation, or by user input), the algo­

rithm first traverses vertically and horizontally along pixels with grey level absolute 

differences < 6 compared to pixel S . To accommodate for the inaccuracies in the 

initial starting position, these four bofinds are increased by a certain percentage a 

to provide a rectangular region that contains only a whole calibration marker (circle) 

and surrounding whitespace. The gradient of this region is calculated using the Sobel
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Figure 3.12: Calculation of local regions

Figure 3.13: Sobel operator output
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Figure 3.14: Binary thresholding of local regions

Figure 3.15: Moment calculation of binary regions
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operator and converted to a binary image using threshold (3. The end effect of this 

process is the extraction of a local region which only contains edge pixels of the cir­

cle. By calculating the moment of this region, the center of the circle is estimated in 

sub-pixels. 6 = 127, a = 9% and /3 = 127 were chosen experimentally. This process 

is shown in the Figs. (3.11), (3.12), (3.13), (3.14), (3.15). Given an acquired image 

of the calibration object, only circles fully visible in the image are used to extract a 

grid of circle centers. This will result in a partial calibration feature grid if the entire 

calibration object is not visible. This grid of calibration features is extracted in two 

stages.

In the first stage, the orientation of the grid within the image is determined with 

the assistance of the user. Since the circles on the calibration object are uniformly 

spaced horizontally and vertically, the orientation of the calibration grid is completely 

determined by its origin and the direction of its rows and columns in the image. The 

origin is selected to be the C(O>o), the centroid of the circle positioned at the top-left 

corner (in the world coordinate system) of the calibration grid. The user is asked to 

click within the image of the top-left corner circle. Note this may not be the top-left 

fully visible circle in the image, it is however the top-leftmost circle of the physical 

calibration object that is viewed by the camera. Next, the user clicks within the 

horizontal and vertical neighbors of the origin. Upon each click, the centers of the 

selected circles, namely C(o,i)andC(i>O) are calculated. The extraction of these three 

calibration features allows for the complete estimation of the grid layout.

In the second stage the remaining visible calibration features are automatically 

extracted. This is done by calculating initial estimates for feature centers, and passing 

this as a starting position to the aforementioned centroid calculation algorithm. Since 

it is known that the circles lie uniformly in parallel rows and columns, the initial 

estimates are calculated by adding the horizontal (ch) and vertical (ey) displacements
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between the previously calculated calibration features using equations:

(3.1)

Therefore, calculation of the approximate centers for circles on adjacent columns can 

be done by:

(3.2)

and initial estimates for the first circle on each row is given by

(3-3)

This recursive technique compensates for the skewing of the calibration markers to 

provide robust local region estimates of their position. To simplify the search for full 

calibration markers without the loss of generality, the number of calibration features 

to be extracted is provided by the user.

Furthermore, the user specifies the location of the 3D world origin, the row and 

column number for C(o,o) on the physical grid, the depth of the calibration object 

begin viewed and the spacing between adjacent circle centers. This information al­

lows the calculation of world coordinates for all extracted features. Once the grid 

of calibration features have been extracted, their image position, as well as world 

coordinates are written to a file, suitable for input into Wilson’s [41] implementation 

of Tsai’s algorithm. The calibrated camera parameters calculated by [41] are saved 

to a file for later use.

3.2.3 Image Capture and Processing

Generally, image capturing facilities are limited to be used by one application. How­

ever, in a distributed environment there is an opportunity (or requirement) for the 

sharing of these resources. In order to accomplish this, the camera and the frame
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grabber must be encapsulated within a CORBA aware component, exposing the ba­

sic functionality (capturing of images) to other components. Since this requires that 

a camera be coupled with a workstation and be treated as a single entity, a host of 

new possibilities emerge. Image processing can be performed by the workstation upon 

the captured raw image, and this processed image can be sent across the network. 

Consequently a smart camera can be designed.

A smart camera provides increased functionality over a traditional camera that 

provides a raw video stream. Instead, a smart camera transmits information more 

relevant to the application. For example, raw images could be compressed before 

transmission over the network, which may be desired to reduce the network load. 

Similarly, a smart camera could only transmit location information of a object being 

tracked, eliminating the need for image transmission altogether. Smart cameras elim­

inate the need for specialized hardware in many applications, since their behaviour 

can be programmed in software. Furthermore, in a distributed computing environ­

ment, it allows for the possibility of multiple applications sharing camera resources, 

even across different computing platforms and network protocols. In general, this 

concept can be applied to any sensor used within a vision system to create a smart

sensor.

In the presented system, smart cameras are built with the application named 

Image Server. The Image Server provides the basic functionality of cameras such as 

transmitting raw image frames from the online camera, but also provides additional 

functionality by allowing foveal patch extraction, streaming of image sequences, and 

image rectification.

Foveal patch extraction was added as a camera feature to allow for the reduction 

of network load by sending smaller images. The external components communicating 

to the Image Server can thereby request an image of the desired portion of the scene. 

This feature is not utilized in the construction of 3D surfaces, it was however used to 

test the performance of the system, as outlined in §4.1. The Image Server can also
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stream stored images whose sequence is defined in a file. This allows synthetic images 

and images captured earlier in time or from different environments to be used by an 

application. This feature is especially useful during the testing and construction of 

components, when the same images are to be processed.

The rectification of images is provided to aid the stereo pair image analysis (§2.5). 

The smart camera is capable of providing rectified images, for both reference and 

normal views, such that their epipolar geometry lies on the horizontal scanlines (as 

detailed in §2.4). Using the direct calibration information for each camera, the server 

precomputes a reverse rectification table for each reference camera, that maps each 

pixel in the rectified image to a pixel in the original image. Due to the “many to one” 

correspondence between the rectified image and original image, the table actually 

stores the bilinear interpolation parameters for each rectified pixel. These tables are 

computed and stored on disk before the server comes online, and cached in memory at 

runtime to improve performance. To further enhance the smart camera capability, the 

camera can rectify images with respect to cameras serviced by other Image Servers.

The Image Server is also capable of supplying camera specific information that is 

needed during stereo image analysis such as baseline, focal length and transformation 

matrices for a given stereo pair. Since the mapping of the original pixel to the rectified 

image pixel is needed in the implemented algorithm, the server also precomputes and 

stores these forward rectification tables. The server also supports the rectification of 

the offline images.

The configuration of the Image Server is controlled through command line options 

and configuration files. Through the command line options, the camera can be re­

quested to compute the reverse and forward rectification tables and stream offline or 

online images. The reference camera for the Image Server can be changed dynami­

cally by the request of any client. This is crucial in situations where a camera is part 

of more than one stereo pair in the multi-camera stereo pair setup.
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Hence, the Image Server successfully fabricates a smart camera by efficiently en­

capsulating of the actual image capturing hardware, and providing elegant extensions 

that alleviate the computional/information load on the client components. The be­

haviour of the server can be easily controlled through configuration files, allowing it 

to adapt to many environments.

3.2.4 Depth Map Extractor

The Depth Map Extractor (DME) component implements the MBS algorithm out­

lined in §2.6. Given a set of stereo pairs and camera parameters, the DME provides 

the depth map for any specified portion of the image. The DME assumes that the 

camera stereo pairs satisfy coplanar stereo geometry, and hence is provided with recti­

fied images. The DME provides depth estimation with respect to the reference camera 

coordinate system. Consequently, it requires the forward rectification tables that map 

the original reference camera image to each of the provided rectified reference images.

The DME extracts provides depth from a specified m x n region of the image, and 

returns an m x n array of depth values. This is done to allow for parallel computation 

of the same scene across multiple DMEs and limit the network load. Finally, the mask 

size, depth range and depth sampling size are controlled by the user. This allows the 

DME to be used in systems with varying requirements.

3.2.5 Information Management Server

The Information Management Server (IMS) coordinates the exchange of information 

among the different components as per the requirements of the end user. Upon 

receiving the request and configuration information from the end user, the IMS first 

requests the necessary Image Servers for the required images and camera parameters. 

Accordingly, the IMS requests the user specified DMEs to work on portions of the 

scene using separate threads. Currently, the IMS divides the image into N equal
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sections, where N is the number of DMEs. However, the IMS could potentially 

perform load balancing by distributing portions of the image proportional to the 

performance of each DME. Upon the completion of processing by all DMEs, the IMS 

assembles the individual depth maps provided by each DME into a complete depth 

map of the imaged scene and transmits it to the client. Thus, in the current system 

architecture, the 3D surface from each “viewpoint” of the scene (viewed from a group 

of stereo pairs) is extracted through unique IMSs. These IMSs however, may share 

DMEs and Image Servers.

The task of the IMS substantially reduces the network traffic by limiting the in­

teraction of the components within the system. For example, in a fully connected 

architecture, the end user would need to send a request to each DME to process a 

specified portion of the image, which in turn, would request images from the Image 

Servers. Consequently, the Image Servers would have to process the same request for 

each of the DMEs. For dynamic scene environments, this would impose considerable 

limitations. The IMS encapsulates the interaction specifics between each of the com­

ponents in the presented system, allowing the behaviour of the other components to 

remain general and thus adaptable to other systems.

3.2.6 User Interface

The application 3D Explorer provides the user interface whereby the user can config­

ure a the extraction of surfaces from a scene. It passes the request from the user to 

an IMS server and currently displays the computed 3d surface as a 8 bpp greyscale 

image (depth maps). It can also request foveal patches and rectified/non-rectified 

images from multiple Image Servers. A screenshot of the application is shown in Fig. 

(3.16).
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Chapter 4

System Performance

4.1 VACF Performance

Since the system incorporates the notion of NOW as the primary building block for 

vision systems, the performance of this building block is first measured [2]. The 

proposed test application extracts and displays foveal patches from cameras viewing 

an arbitrary scene. The application consists of two components, namely a Image 

Server (§3.2.3) and client(s) which request images from the Image Server and provide 

the user interface. The components are situated on separate workstations connected 

through the network (§3.2).

To stress the load on the network and server, the clients request images from 

the Image Server repeatedly and as quickly as possible (the use of a non real-time, 

multi-threaded operating system does not allow the client call to be deterministic). 

This allows for the identification and quantification of the bottlenecks in the system. 

The overhead associated with retrieving a single frame (8 bpp) by the client is shown 

in Fig. (4.1). Figure (4.1) depicts the overhead associated with each of the under­

lying components, namely the physical medium of the network, the TCP/IP stack 

in WindowsNT® and the VACF. The overhead associated to the TCP/IP stack in 

the operating system was measured by transferring the same amount of data using

63
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Graph of Average Overhead Delay vs. Data Transferred

Figure 4.1: Performance measurement of VACF

socket calls. The overhead due to the physical medium is calculated assuming only 

the image data is transferred (i.e. minimum overhead ignoring packet header data). 

Each overhead measurement is obtained from the average of 10,000 image requests.

Under single client load conditions, the system is able to achieve a frame rate 

21.9Hz. The overhead due to CORBA and VACF under heavy load conditions (images 

of 640x480@8bpp) is approximately 50% over the network transfer using TCP/IP. The 

overhead drastically increases for very small data transfers due to the peculiarities 

of TCP/IP (such as the backoff algorithm). This test consolidates the feasibility 

of smart cameras, since if real-time operating systems and ORBs are employed the 

system should be able to transmit another 2MBs to achieve 30Hz frame rate. The 

upgrading to faster networks and real-time network protocols will also improve system
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performance. However the CORBA processing overhead is more closely coupled to 

the computer hardware performance than network data throughput in the current 

system since peak inferred network utilization is ~ 55% in the above test.

4.2 Rectification Results

The rectification is an indirect method to test the camera calibration accuracy. Given 

two arbitrary scenes and the camera parameters determined through calibration, the 

images should be rectified such that their epipolar geometry lies on the horizontal 

scanlines. Figure (4.2) shows two original images, while Fig. (4.3) depicts the rectified 

versions. The epipolar geometry has been calculated by calculating the fundamental 

matrix parameter F using the projection matrices of the cameras. As seen from the 

presented figures, the epipolar geometry is indeed horizontal and lies on the scanlines 

of the images.

Figure 4.2: Original (a)Reference Camera Image (b)Non-Reference Camera Image

» ».
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Figure 4.3: Rectified (a)Reference Camera Image (b)Non-Reference Camera Image

4.3 3D Surface Extraction

In this section the performance of the complete system is presented. In the presented 

sections, one Image Server is used which services 5 arbitrarily placed cameras (refer to 

Fig. (3.7) for details). These cameras are placed such that they all have overlapping 

viewpoints, forming 4 stereo image pairs with a specified reference camera. In the 

following tests, the reference camera is kept the same to ensure uniformity.

Since the radial distortion parameters are under constrained in the camera cal­

ibration process, they are largely inaccurate and ignored. The system employs a 

maximum of three DMEs, each running on identical workstations. Similarly, one 

IMS and one 3D Explorer are used, each running on separate workstations. All the 

component threads run under normal process/thread environments. The performance 

of the system is assessed in both timing and accuracy.
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Timing Analysis

For the proposed architecture to be viable for vision systems, it is necessary to eval­

uate the timing characteristics of the system. The timing performance of the system 

was measured under various conditions using arbitrary scenes (the properties of the 

scene do not affect the performance of the algorithm). The presented results have 

been averaged over 30 runs. On the following graphs depicting the individual timing 

breakdowns for a certain system configuration, the “Miscellaneous” category predom­

inantly represents the time taken to transmit information to between the IMS, 3D 

Explorer and Image Server (s).

Varying Number of DMEs

In the proposed architecture for vision systems, parallelism is achieved through the 

distributed computing software paradigm. In the given setup, parallelism is realized 

by distributing the extraction of depth maps over multiple DMEs. Thus, to measure 

the performance, the 3D surface extraction process was performed varying only the 

number of DMEs. Tables (4.2), (4.3) and (4.4) list the times taken for computation 

(with different mask sizes) and are graphed in Fig. (4.4).

Figures (4.5, 4.6 and 4.7) depict the percentage breakdown of time per individual 

task for the 9x9 mask. These figures illustrate that over 90% of the time is spent 

in the processing of images to extract depth maps. Figures(4.8, 4.9 and 4.10) further

No. of DMEs Computation Time (ms) (J Performance Gain
1 38202.93 119.28 -
2 20421.70 30.02 46.54%
3 14464.50 182.81 62.14%

Table 4.2: Computation time using varying number of DMEs (Image Size = 320 x 240,
Mask Size = 3x3, Number of Depths = 128, Number of Stereo Pairs = 4)
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Figure 4.4: System performance for a varying number of Depth Map Extractors 
(DMEs)
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No. of DMEs Computation Time (ms) a Performance Gain
1 120996.73 317.21 -
2 47676.37 99.57 60.60%
3 32764.77 159.33 72.92%

Table 4.3: Computation time using varying number of DMEs (Image Size = 320 x 240, 
Mask Size = 9x9. Number of Depths = 128, Number of Stereo Pairs = 4)

No. of DMEs Computation Time (ms) (J Performance Gain
1 178067.33 345.81 -
2 90885.33 154.54 48.96%
3 61668.17 251.70 65.37%

Table 4.4: Computation time using varying number of DMEs (Image Size = 320 x 240, 
Mask Size = 15 x 15, Number of Depths = 128, Number of Stereo Pairs = 4)

show a consistent overhead for the other tasks in all the three systems. They only 

differ in the amount of time spent in the exchange of information (IMS data packing).

From the above results, it is evident that substantial gains can be made through 

the adoption of the distributed computing architecture. However, the increase in the 

number of components increases the flow of information. Thus, eventually the coor­

dination and exchange of information over a large number of components will become 

the dominating factor in the total computation time, limiting the feasible number of 

components that can be employed. This trend is illustrated by the incremental per­

formance gain of 15% by adding a third DME and the increased time spent packing 

the data by the IMS. Although the gains are incremental, they are significant from 

the total time spent perspective. The time spent performing the calculations suggest 

that the optimization of the DME software component is necessary, both from the 

algorithm implementation and operating system point of views.

The processing of the images to extract depth maps is directly various parameters
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such as mask size, image sizes, etc. The relationship etc. The relationship between 

these parameters and the overall computation time is studied in the following sections

Varying mask size

The mask is the size of window W (or block) created around each pixel for which 

the SSSD is computed (§2.6). The size of the mask directly dictates the number of 

operations that need to be performed for a given image of the scene. To extract the 

relationship between the mask size and performance timing measurements were taken 

for different mask sizes. Figure mask sizes. Figure (4.11) graphs the values in Table 

(4.5) that list the time required to compute the depth of a scene with varying mask 

size.

A linear relationship relates the increase cost of computation with respect to the 

mask size. The depth map calculation dominates the required computation time, 

with 63% for the smallest mask size of 3 x 3 requiring 2304 computations (9 pixels x 

8 images x 32 depths) while increasing to 92% for the mask size of 19 x 19, requiring 

92416 computations per pixel as shown in Figs. (4.12, 4.13). The overall overheads 

of each of the other components remain consistent throughout each run of different 

mask size, as shown in Figs. (4.14, 4.15). Interestingly, although the computations 

increased 40 fold, the time required to process the images only increased 7 fold. This

Mask Size Computation Time (ms) a
3x3 5366.33 103.85
7x7 7611.70 96.58

11 x 11 12176.76 33.71
15 x 15 17799.50 106.79
19 x 19 248383.00 61.18

Table 4.5: System performance for different mask sizes (Image Size = 320 x 240,
Number of DMEs = 3, Number of Depths — 32, Number of Stereo Pairs = 4)
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Graph of Average Computation Time vs. Mask Size

Figure 4.11: Computation time for varying Mask Size

is due to the initial setup overhead by the DME (i.e. the gathering of data, and 

collection of forward camera rectification tables) dominates the process for smaller 

mask sizes. This is not true for larger mask sizes, where the performance penalty is 

proportional to the increase in computation per pixel.
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Varying number of depths searched

Since the number of depths searched varies the computation required per pixel, the 

results are similar to those of those obtained in the previous section. Table (4.6) shows 

the results of varying the depths searched, and is plotted in Fig. (4.16). During the 

course of the experiment it was ensured that the range of depths lay in all the camera 

viewpoints.

No. of Depths Searched Computation Time (ms) (7
16 3806.36 90.77
32 5278.50 88.16
64 8303.13 41.14
128 14407.97 89.67
256 26684.57 77.51
513 51554.20 151.77

Table 4.6: Computation time for varying depth ranges (Image Size = 320 x 240, Mask 
Size = 3x3, Number of DMEs = 3, Number of Stereo Pairs = 4)

Varying number of stereo pairs

The varying of the number of stereo pairs shows changes the data that needs to be 

transported, as well as searched by the MBS algorithm. Here, the relationship is 

linear and directly proportional to the number of images. This is to be expected, 

since under the tested configuration the processing of images still dominates the 

computation time, while the acquiring and transporting of images is comparatively 

smaller. Table (4.7) lists the computation times, while Figure (4.17) depicts the linear 

relationship.

http:51554.20
http:26684.57
http:14407.97
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Graph of Average Computation Time vs. Number of Depths Searched

Figure 4.16: System performance for different number of searched depths
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Graph of Average Computation Time vs. Number of Stereo Pairs

Figure 4.17: System performance for different stereo pairs
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No. of Stereo Pairs Computation Time (ms) G
1 8673.37 20.27
2 16706.37 33.03
3 24943.03 86.33
4 32764.77 159.33

Table 4.7: Computation time for different number of stereo pairs (Image Size = 
320 x 240, Mask Size = 9x9, Number of Depths = 128, Number of DMEs = 3)

Varying image size

Figure 4.18 shows the total time taken to compute extract 3D surfaces using different 

image sizes. The values are listed in Table (4.8). As indicated by Fig. (4.18), there 

is a linear relationship between the time required for the computation of 3D surfaces 

and the image size. As expected, the performance increases four fold for the halving 

of large images. However for small images, the performance bottleneck lies in the 

actual imaging devices rather than in the extraction of 3D surfaces. For example, 

nearly 81% of the overall time is spent acquiring and rectifying 80 x 60 images in 

contrast to 30% for 640 x 480 images.

The smart cameras operate (best case for online images) at 2.43Hz for rectifying

Image Size No. of Pixels Computation Time (ms) G
80 x 60 4800 1101.20 24.17

160 x 120 19200 1941.5 48.75
224 x 168 37362 2990.37 26.95
320 x 240 76800 5345.07 98.93
640 x 480 307200 22551.03 2534.95

Table 4.8: Computation time for different image sizes (Mask Size = 9x9, Number 
of Depths = 128, Number of DMEs = 3, Number of Stereo Pairs = 4)

http:22551.03
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Figure 4.18: System performance for different Image Sizes (Mask Size = 9x9, Number 
of Depths = 128, Number of DMEs = 3, Number of Stereo Pairs = 4)
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640 x 480 images while increasing to 4.97Hz and 9.71Hz for 50% and 25% shrink­

ing of image size respectively. Image rectification for online images experience the 

overhead of the actual image acquisition, which varies from vendor to vendor. In the 

presented system, due to limitations in the actual hardware, image acquisition can 

take upto 3 times longer than the specified operating frequency of 30Hz, operating at 

approximately at 11.11Hz on average. ■

It should be noted that the above temporal performance of the system is directly 

dependent upon the pose of the camera. Rectification causes the image sizes to 

enlarge from their original image size. Hence, the greater the divergence of views 

among the cameras, the greater the severity of their image rectification. Therefore, 

the rectified images can drastically enlarge, even for very small images. However the 

overall relationship between the original image size and computing time would still 

remain.

4.3.1 3D Surface Extraction Accuracy

Figure 4.19: Testing object used to measure the surface extraction accuracy of the 
system
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To convey a complete illusion of virtual or augmented reality, it is necessary that 

the 3D surface extraction process measures the real world scene with sufficient ac­

curacy. The accuracy of the presented system is determined by extracting the 3D 

surface of a plane. From the computed depth map of the plane, the degree of mea­

sured “flatness” provides a gauge for the accuracy of the system. The actual physical 

plane shown in Fig. (4.19) consists of a rectangle cardboard that is covered with 

random dots to allow for accurate stereo matching. Given the arrangement of cam­

eras shown in Fig. (3.7), the plane is mounted on the optical rail at a distance of 

approximately 1040mm from Camerao-

The depth map computed using all five cameras, with Camera0 as the reference 

camera, is shown in Fig. (4.20). For clarity, the 3D plot of this depth map is shown 

in Fig. (4.21). These figures depict the calculated surface of the plane to contain 

widespread error on the order of 5mm. They also show that the camera is oriented 

on a slight angle with respect to the plane, with the top-left corner of the plane being 

closer to the camera than the bottom-right.

The errors in the 3D surface of the plane are produced from the aggregation of 

inaccuracies in the pose estimation of each camera. The depth map calculated from 

the rectified stereo pair of Camerao and Camera2 (with Camerao as the reference 

camera) is shown in Fig. (4.22) and Fig. (4.23). These figures show that indeed a 

plane is measured from such a camera setup, and the pose of the rectified reference 

camera is such that the bottom-right of the plane is closer to the camera than the 

upper-left.

The depth map calculations of the plane from the unrectified reference camera 

(using the same camera pair) is shown in Fig. (4.24) and graphed in Fig. (4.25). 

These figures depict the plane comprising of small saw-tooth like ridges that are ap­

proximately 5mm high. Recall that the depth (or Zo) in the unrectified reference 

camera coordinate system is related to the rectified reference coordinate system (Zr) 

by Eq. (2.65). As each pixel is transformed into the world coordinate system form the
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rectified camera coordinate system, a uniform error is introduced, whereby the pose 

of Camerao is erroneously determined to have gradual inclination (from the bottom- 

right to the top-left). This error is linear with respect to the rows and columns of the 

image, thereby forming a the saw-tooth like appearance when applied to the discrete 

depth map calculated from the rectified reference camera. Due to the inaccuracies in 

determining the pose of each camera used within the system, the MBS algorithm con­

sequently provides “best-fit” estimation (within 5mm) when searching across multiple 

images using inverse depth.

The discrete depth measurements of the plane surface are a direct consequence 

of the integer pixel disparity calculations. The relationship between change of depth 

(Z) with respect to the change in disparity (d) is given by (using Eq. (2.3)):

dd_ B£ 
dZ ~ (4-1)

For the given setup, baseline between Camera0 and Camera2 B=87.54mm, focal 

length of Camerao /=16.56mm and the average plane distance from Camera0 Z — 

1040mm, thus providing a resolution of 1.34 x 10“3mm disparity measurement per 

1mm change in depth. Since the camera pixels are 7.6//m, 1 pixel disparity corre­

sponds to Zmin = 5.67mm change in depth. This minimum measurement of depth 

due to the integer disparity measurements is evident in the previous plots. Further­

more, it is due to Zmin that the saw-tooth like ridges in Fig. (4.23) peak at 5mm 

before the depth changes.

For every rectified camera pair, the measured plane varies in orientation. Hence 

when they are all combined to form a unified depth map via the MBS algorithm, 

they produce a result that retains the macro properties of the plane (as seen from 

Fig. (4.21)), however micro properties contain errors on the order of 5mm.

These small surface errors are omissible for scenes with large arbitrary objects. 

An example of such a depth map is shown in Fig. (4.27) of the arbitrary scene shown 

in Fig. (4.26). The depth captures the significant features of all objects in the scene
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with sufficient detail. The areas of gross errors are due to insufficient texture, or 

viewpoint occlusion.

The advantage of using the MBS algorithm is to harness the advantages of small 

and large baselines. To illustrate this feature explicitly, the 3D surface of a cylinder 

with diameter 100mm placed approximately 935mm from reference camera (Camera0) 

(shown in Fig. (4.28)) is extracted. Figure (4.29) shows the depth map of the scene 

using Camera0 and Camera3. The 3D plot of this depth map in Fig. (4.30) shows 

the maximum depth of the cylinder is determined to be approximately 25mm and 

comprised of a number of discrete planar depths obeying Eq. (4.1). The extreme 

errors in matching or “noise” (due to occlusion) can also be seen on the right side of 

the object in Fig. (4.29).

Figure (4.31) shows the depth map of the cylinder extracted using all camera pairs, 

and is graphed in Fig. (4.32). These figures portray the cylinder to have a maximum 

depth of 40mm which is approximately the viewable surface of the cylinder. Although 

discrete planes may be distinguished in the depth map, the region between them is 

interpolated, producing a more accurate representation of the object. Furthermore, 

there is a large reduction in noise in the extracted 3D surface. These gains are a 

direct consequence of combining different viewpoints via the MBS algorithm.

Sources of Error

Various sources contribute to error of depth maps acquired from this technique. 

Firstly, the camera calibration technique although provides accurate data for rec­

tification, the inaccuracies play a larger role during 3D surface extraction. This is 

due to the fact that camera pose errors are absorbed in projective transformation to 

produce correct rectified images. However, they provide erroneous disparity measure­

ments when performing the SSSD calculations. The effect of these errors decreases as 

measurements are made at greater distance from the camera due to the spatial quan­

tization. The calibration errors are due to limited resolution of measuring tools and
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human error in reading amidst calibration. This source of error can be statistically 

reduced through extensive measurements. Largely however, the calibration errors lie 

in the detection of the calibration features in images.

Secondly, the cameras do not capture the scene synchronously. Thus they not 

only differ from each other due to the camera internal characteristics (thermal noise, 

etc.), but also due to slight change in lighting. Furthermore, each of the cameras have 

a manual iris and auto-gain functions, which cause the images of the same scene to 

differ in greyscale value. The use of SSSD theoretically would still yield the correct 

result under normal circumstances. However it is likely that the camera gain is non­

linear, which may cause saturation of the CCD and aberrations in the histogram. 

The effect of these sources can be minimized through histogram equalization.

Thirdly, errors are introduced numerically due to the conversion of numbers to and 

from pixels (such as during depth search). The effect is minimal, but does advocate 

that detectable features must be at least one pixel wide.

Finally, the performance measurement of the system over time provides a estimate 

at best, due to the timing inaccuracies introduced by the non-real time operating 

system and the limited resolution of the timer (1ms). The network switch is configured 

for normal operation, which does not isolate the workstations from the normal network 

operations such as broadcasts, ARP requests and browse requests.
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Figure 4.20: Depth map of the plane using five cameras
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Figure 4.21: 3D plot of depth map of the plane using five cameras
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Figure 4.22: Depth map of the plane in rectified Camera0 coordinate system (using 
Carney)
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Figure 4.23: 3D plot of depth map of the plane in rectified Camera0 coordinate system
(using Camera2)
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Figure 4.24: Depth map of the plane in unrectified Camerao coordinate system (using 
Cameras)
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Figure 4.25: 3D plot of depth map of the plane in unrectified Camera0 (using
Cameras)
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Figure 4.26: Arbitrary scene as viewed by reference Camerao

Figure 4.27: Depth map of the arbitrary scene
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Figure 4.28: Cylinder scene viewed by Camerao

gsss

SSS^W

WWs

-r^
.®Sg®8&fifeifes

' ».

• 1>



CHAPTER 4. SYSTEM PERFORMANCE 92

(pixels)
Image Columns (pixels)

Figure 4.30: 3D plot of depth map of the cylinder from reference Camerao and 
Camera3
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Figure 4.31: Depth map of the cylinder from all five cameras

Ill
 III

Image Rows 
(pixels)

Image Columns (pixels)

Figure 4.32: 3D plot of depth map of the cylinder from all five cameras
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Chapter 5

Final Thoughts

5.1 Towards Distributed Vision Systems

In this thesis, it has been shown that 3D surfaces of an arbitrary scene can be ex­

tracted through passive multi-baseline stereo techniques over a network of worksta­

tions. Moreover, a software system was built using standardized distributed object 

technology (CORBA) which clearly demonstrates the feasibility and flexibility of the 

adopted software architecture. Although the cameras can be placed arbitrarily, they 

are assumed to be stationary with respect to the world coordinate system. Most 

scenarios requiring 3D surface estimation of a scene generally meet this requirement.

The placement of arbitrary cameras eliminates the need for expensive and custom 

stereo rigs, while allowing the scene to be viewed omnidirectionally. The accuracy 

of the system is shown to closely approximate the theoretical limit dependent on the 

physical camera resolution. The accuracy is directly related to the correspondence 

detection and consequently highly sensitive to camera calibration errors. Moreover, 

the use of distributed object technology allowed for the creation of smart cameras 

which are capable of performing complex tasks in addition to image capture. This 

also allows multiple applications to share imaging resources when feasible. The smart 

cameras are shown to operate at acceptable (and predictable) levels.

94
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The system uses standard off-the-shelf hardware, which not only reduces the cost 

of the final system, but also eliminates the need for any special software considerations 

(such as special parallel processing architectures and communication protocols).

The built system can only be employed in non-real time environments, primarily 

due to the non-real time operating systems and ORBs that comprise the system. The 

performance of the system is dominated by the non-optimized implementation of the 

MBS algorithm and linearly dependent upon the system configuration parameters.

The large scale deployment of network of workstations (forming the Internet) has 

offered ubiquitous connectivity and economies of scale. As shown in this thesis, this 

has provided a practical alternative to expensive, specialized hardware solutions in 

computer vision by moving the solution into the software domain. This allows the 

solution to gain the advantages of software solutions, namely re-usability, flexibility, 

adaptability and manageability. This does come at the cost of performance. However, 

from the analysis of the presented system, it is evident that current technologies make 

it feasible to implement vision systems where hardware performance gains may be 

unnecessary and the elegance and simplicity of a distributed software solution would 

suffice.

5.2 Future Work

This study has successfully shown the application of distributed computing concept 

to computer vision, however there are many practical considerations which warrant 

further research.

In general, the use of real-time operating systems and ORBs would improve the 

performance of the overall system significantly. Much of the code adheres to ANSI 

C++ standards and thus would port to other platforms readily. System performance 

gains may also be achieved by simply upgrading to faster workstations.
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5.2.1 Scene Capture

The current technique for camera calibration requires that all cameras view a large 

volume of space. This imposes some limitations on the camera placement within the 

scene. The remedy could be to adopt another calibration object that is visible from 

all directions (such as an LED light source, or a calibration cube) or via another 

calibration technique. Furthermore, weak calibration may be used in the system if 

relative measurements among cameras can be integrated.

The calibration object detection algorithm currently relies on a simple method 

which is highly susceptible to errors due to lighting conditions and noise. Although 

the results are accurate enough to perform proper image rectification, these calibration 

errors propagate into the final 3D surface estimates. Greater accuracy could be 

achieved through more robust detection of calibration features, such as the ellipse 

extraction method described in [15] and [10]. The feature extraction process can also 

be extended to extract features autonomously.

At present, stationary cameras are used within the system. The system could be 

extended to use cameras with motorized zoom, pan/tilt capabilities to enhance the 

resolution in desired regions. Although this may be seen as the use of specialized hard­

ware, these features have become inexpensive and commonplace for standard CCD 

cameras due to their high demand in surveillance. The use of zoom or pan/tilt cam­

eras would increase the viewable scene area without the need for additional cameras. 

Furthermore, baselines could be dynamically adjusted based on environment sensing. 

The groupings of cameras into stereo pairs is currently performed by the user along 

with the selection of the reference camera. This could be automated based on the 

calibrated parameters of the cameras to optimize the benefits gained from cameras 

with varying baselines. Mobile cameras may require online calibration techniques.

Although the thesis is largely motivated by the requirements for 3D surface ex­

traction of dynamic events, the major issue of synchronous capture of such a scene 

over a distributed network has been left unaddressed. This is a complex issue, with



CHAPTER 5. FINAL THOUGHTS 97

no simple solution in sight. As vision systems adopt the distributed computing envi­

ronment, this will become of greater importance.

The enhancements for smart cameras could include histogram equalization and 

LoG filtering. These would aid in the reduction of errors during correspondence of 

errors during correspondence search.

5.2.2 3D surface reconstruction

The software implementation of the MBS algorithm could be optimized for faster 

performance. The current implementation was generated by “ease-of-coding” model, 

with little attention to performance.

To improve the MBS algorithm itself, dynamic window selection methods could 

be adopted to reduce the blurring of object boundaries. This could be based on 

the variance local region analysis to detect texture or edges. A coarse-to-fine strategy 

would also help to reduce the number of false matches and preserve object boundaries. 

The depth estimates can be improved through interpolation and noise may be reduced 

through median filtering.

The performance of the system suggests that it may possibly be better suited 

for algorithms with fewer computation requirements, such as model based 3d sur­

face estimation. Given certain assumptions of structures in the scene, faster stereo 

techniques may be employed. For example, a scene primarily consisting of cubes can 

be decomposed to a edge map, and multiple components could simultaneously track 

separate cubes. These models may be may be dynamically updated (such as through 

Kalman filtering).

Pre-processing of images could be performed, whereby textureless regions could 

be identified, and consequently avoided by the correlation based stereo techniques. 

Other estimation techniques (such as shape from shading, shape from focus/defocus) 

could be applied in these regions and the combined with the results from MBS.
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Since the system is distributed and parallel, 3D surface extraction can be per­

formed by several different techniques simultaneously, and then combined through 

discrete or fuzzy logic.

Currently the system displays the 3D surfaces for one viewpoint in a form of a grey 

scale depth map. This could be enhanced to extract a 3D mesh model for the scene 

and render it using shading or texture mapping. Due to the peculiarities of human 

vision, inaccuracies of a 3D model to a certain extent can be hidden through correct 

texture-mapping to a certain degree. Furthermore, a complete voxel representation 

of the scene can be built by stitching depth maps from different viewpoints together. 

These enhancements would allow for novel view generation and virtual/augmented 

reality applications.

5.2.3 Distributed Computing

Currently, the VACF does not provide for a convenient method for objects residing on 

the same server to interact locally. If used to build more complex systems, this would 

surely be required. As mentioned earlier, the adoption of a real-time implementation 

of CORBA would reduce the overhead and increase the quality of service.

Multiple Image Servers could be used to distribute the capturing and rectification 

of the images over several workstations. This would reduce the overall overhead and 

moves the system one step closer to synchronous capture of dynamic events.



Appendix A

Camera Model

A.l Pinhole Camera Model

A camera captures a 3D scene in 2D, and thus represents a mapping between the 3D 

world space and a 2D image. This mapping is derived under the assumption that the 

camera is a perfect pinhole camera. The pinhole camera model assumes that light 

rays pass through an infinitesimal aperture at the front of the camera, to form a 

proportional image of scene on the image plane as shown in figure A. 1(a). In such a 

configuration, the image captured on the image plane is inverted vertically, and thus
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Figure A.2: Pinhole camera geometry

it is customary to avoid this inversion by positioning the image plane in front of the 

camera center (as shown in figure A. 1(b)). This model is a substantial simplification 

of the actual cameras, since it ignores their property of variable aperture sizes and use 

of lenses which allow them to work under different lighting conditions. However, these 

features do not violate any of the assumptions defined by the ideal pinhole camera 

model and describe the CCD cameras used in the system with sufficient accuracy.

The pinhole camera geometry is shown in figure A.2, where the camera is modeled 

with an optical center C and image plane R. C coincides with the origin of the 3D 

coordinate system, with R parallel to the XY plane at a distance f from the camera 

center. The z — axis (also called the optical axis or principal axis') perpendicular to 

R, intersecting it at the principal point p.
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A.2 Central Projection

According to the law of collinearity, the scene point X, the corresponding image point 

x and the camera center C all lie on the same line (figure A.2). Using similar triangles 

X = (A, Y, Z)T is mapped to x = (u, v)T by

(A.1)

which describes the central projection mapping from world to image coordinates. 

Equation (A.l) can be described as a linear mapping using homogeneous coordinates 

as
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Appendix B

VACF Wizard Screenshots

The VACF Wizard screenshots are presented. Note that the “Step 1 of 3” in the 

wizard is a greeting to the user. In the first step, the information for each object 

being exported is supplied. This includes the class name and the name the object 

that will be supplied to the name server. In the final step, the user provides the 

default name of the server.

VACF Wizard 1.0 - Step 2 of 3 Xj

Please enterthe class and object names of your implementations:

Class Name: .......... ~ (usually ends in "Jmpl")

Exported Object Name: |

Implementation Header 
File location Browse

Delete H Z?dd

Impl. Class | Object Name | Directory
CCameraServer_impl Re mote Cam era c:\CameraServer\

< Back -PNext > Finish 1 Cancel Help
. ... ............. .----- .............________________________ .........  _______________ ____ ..... ........... .......

Figure B.l: Step 1 of the VACF Wizard
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New Project Information
VACF Wi ! > . V.

_Xj

VACF Wizard 1.0 will create a new skeleton project with the following specifications:

Your requested configuration project will be created.

Server with default name "CameraServerl" will be created.

Class CCameraServerJmpl exported as RemoteCamera in factory.

Enter the default CORBA name given to server object 

JCameraServerl

Cancel

Project Directory: 
c:\CameraServer

OK

Figure B.2: Step 2 of the VACF Wizard

< *,



Appendix C

Sample application using VACF

Presented is an example of a complete application (both client and server) built 

through VACF. In the example, an image server is built which transmits a sequence 

of images as listed in a file. The client simply makes a number of calls to retrieve the 

images from the remote server. The IDL generated class definitions and code stubs 

have been omitted for brevity.

typedef sequence<char> UnboundCharSeq;

interface CImageSeqServer {
//called to initialize the server 
boolean Init();
//get an image from the server
boolean GetNextImage(out UnboundCharSeq ImageBuf, out long ImageWidth, out long ImageHeight);

ImageSeqServer.idl: Interface of the image server defined in IDL

104
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/********* VACF Auto Generated File *******/
// Component.cpp: implementation of the CComponent class 
//////////////////////////////////////////////////////////////////////

♦include "Component.h" //part of VACF library 
♦include <string.h>
♦include <assert.h>
♦include "ComponentServer.h"

CComponent::CComponent() { }

CComponent::CComponent(COrb* pOrb)

// check preconditions 
assert(pOrb != NULL);

// start up the user’s object 
m.pApp = new CComponentServer(pOrb);

// flag to indicate not to call the base class destructor twice 
bBaseClassDestructorCalled = false;

CComponent::“CComponent()

// m_pApp is a subclass of CComponent, so CComponent 
// destructor will get called twice, 
if(bBaseClassDestructorCalled == false)

bBaseClassDestructorCalled = true; 
delete m_pApp;

void CComponent::SetApplnstance(const char* IpszApplication)

// check preconditions
assert(IpszApplication != NULL);

//remember the "client" we are associated with 
m_pApp->SetAppInstance(IpszApplication);

void CComponent::Run()

// check preconditions 
assert(m_pApp != NULL);

//execute 
m_pApp->Run();

Component.cpp: Source Code



APPENDIX C. SAMPLE APPLICATION USING VACF 106

/********* VACF Auto Generated File *******/

♦include "Component.h"
♦include "Server.h"
♦include "ImageSeqServer_impl.h"

class CComponentServer : public CComponent

public:

CComponentServer(COrb*);
~CComponentServer();

void Run();

void SetAppInstance(const char*);

CServer<CImageSeqServer_impl>* m_UserO; //user type

ComponentServer.h: Source Code

/********* VACF Auto Generated File *******/
// ComponentServer.cpp: implementation of the user application 
////////////////////////////////////////////////////////////////////// 
♦include "ComponentServer.h"
♦include <string.h>
♦include <assert.h>

CComponentServer::CComponentServer(COrb* pOrb)

// check preconditions 
assert(pOrb != NULL);
// assign the reference to the orb object 
m_p0rb = pOrb;

CComponentServer::"CComponentServer()

//each user type needs to be disconnected 
m_UserO->Disconnect(m_sInstance.data() , "ImageSeqServer"); 
delete m_UserO;

>

void CComponentServer::SetAppInstance(const char* IpszApplication)

// check preconditions
assert(IpszApplication ’= NULL);

m_slnstance = IpszApplication;

ComponentServer.cpp: Source Code (Server Side)
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void CComponentServer::Run()

// check preconditions 
assert(m_p0rb != NULL);

//startup all user types
m.UserO = new CServer<CImageSeqServer_impl>(m_pOrb); 
m_UserO->Connect(m_sInstance.data(), "ImageServer");

ComponentServer.cpp: Source Code (continued)

♦ifndef IMAGE_SEQ_SERVER_H_INCLUDED 
♦define IMAGE_SEQ_SERVER_H_INCLUDED

♦include <0B\Corba.h>
♦include "idl\ImageSeqServer_skel.h"
♦include "PGM.h"

♦define MAX.IMAGE.SIZE 307200 //640x480

//user defined implementation
class CImageSeqServer.impl : public CImageSeqServer_skel { 
private:

FILE *m_pImageFile; //file pointer to the image file
FILE *m_pSequenceFile; //file pointer to the sequence file
long m_nImageNumber; //the number of images served
CPGM m_Image; //image data (CPGM is a user helper class to read

//and write PGM files).

bool NextFileName(char *FileName); //private function to determine the next image
//file to be served as listed in the sequence file.

public:
CImageSeqServer.impl();
~CImageSeqServer_impl();

//idl interface 
CORBA.Boolean Init();
CORBA.Boolean GetNextImage(UnboundCharSeq*& Image, C0RBA_Long felmageWidth, C0RBA_Long felmageHeight)

};

♦endif

ImageSeqServer impl.h: Source Code (Server Side)
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#include <conio.h> 
tinclude <stdio.h> 
tinclude "ImageSeqServer_impl.h"

CImageSeqServer.impl::CImageSeqServer.impl()

//initialize variables 
m_pImageFile = NULL; 
m.pSequenceFile = NULL; 
m_nImageNumber = 0;

CImageSeqServer_impl::~CImageSeqServer_impl()

if (m_pImageFile) fclose(m_pImageFile);
if (m.pSequenceFile) fclose(m_pSequenceFile);

C0RBA_Boolean CImageSeqServer_impl::Init()

//open the sequence file
if ((m.pSequenceFile = fopen("ImageSeq.seq", "rt")) == NULL)
{

printf("\nCannot Open Sequence File\n"); return false;

return true;

C0RBA_Boolean CImageSeqServer_impl::GetNextImage(UnboundCharSeq*&
Image, C0RBA_Long felmageWidth, C0RBA_Long felmageHeight) 

char ImageFileName[_MAX_PATH];

//read the next filename 
if (NextFileName(ImageFileName) == false)

printf("Error determining next file from sequence file"); return false;

if (m_Image.Load(ImageFileName)) //load the image from the file 

//set the array to be passed to the requesting object
Image = new UnboundCharSeq(MAX_IMAGE_SIZE, m_ Image .GetWidthO * m_Image.GetHeightO, \ 

m_Image.m_pImageData->GetPtr());
//copy the image stats 
ImageWidth = m_Image .GetWidthO ;
ImageHeight = m_ Image .GetHeightO ;
//print out statistics 
m_nImageNumber++;
printf ("Images Served °/,d C/«s)\n", m.nlmageNumber, ImageFileName); 
return true;

else
return false;

ImageSeqServer impl.cpp: Source Code (Server Side)
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bool CImageSeqServer.impl::NextFileName(char *FileName)

//sanity checks 
if (FileName == NULL)

printf("Invalid filename passed.\n"); 
return false;

if (m.pSequenceFile == NULL) //sequence file must be open

printf("No sequence file open (file pointer == NULL)\n"); 
return false;

//read the next filename, 
if (feof(m.pSequenceFile))

fseek(m_pSequenceFile, 0, SEEK.SET); //rewind to the beginning

fscanf(m.pSequenceFile, "7,s\n" , FileName);

return true;

ImageSeqServer impl.cpp: Source Code (continued)
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/********* VACF Auto Generated File *******/

// This file is the MAIN entry point of the server. It will offer these services: 
//BEGIN EXPORT 
/*

Class CImageSeqServer_impl exported as ImageServer in 
factory.

*/
//END EXPORT

♦include
#include
♦include
♦include
♦include

<process.h>
<conio.h>
"ServerFactory.impl.h" 
"Server.h" 
"ErrorHandler.h"

♦define DEFAULT.SERVER.NAME "MyImageServer"

bool ProcessCommandLine(int argc, char *argv[]); 
void LowerCase(char *string);

char ServerName[80];

void main(int argc, char *argv[])

if (!ProcessCommandLine(argc, argv)) 
return;

// start up the factory and make services available 
CServer<CServerFactory_ impl> Server;
Server.Init();
Server.ConnectFactory(ServerName);
Server.Start();

printf ("ServerName: */»s\nPress Any Key to shutdown. \n" , ServerName);

getch(); //wait for user to shutdown

Server.Stop();

// disconnect the factory from the servers 
Server.DisconnectFactory(ServerName);

void LowerCase(char *string)

for (int i=0; i<strlen(string);i++) 

tolower(string[i]);

ServerApp.cpp: Source Code (Server Side)
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bool ProcessCommandLine(int argc, char *argv[]) 

argc—; //get rid of the program name

if (argc == 1)

exit:
printf("Incorrect Parameters!\n");
printf ("Usage: */,s -name ServerName\n", argv[0]);
printf("No command line parameters starts up default server.\n");
exit(1);

else if (argc > 1) //we have at least one option

for (int i = 1; i < argc; i++)

LowerCase(argv[i]); 
if (strcmp(argv[i], "-name") == 0)

strcpy(ServerName, argv[i+1] );

if ((strlen(ServerName) == 0))

goto exit;

else // no command line options
sprintf (ServerName, "7.s\0" , DEFAULT_SERVER_NAME) ;

return true;

ServerApp.cpp: Source Code (continued)
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tinclude 
#include 
#include 
tinclude 
tinclude 
♦include 
#include

<stdio.h>
<conio.h>
<stdlib.h> 
<OB/Corba.h>
"ImageSeqServer.h" 
"Client.h"
"PGM.h"

♦define MAX_IMAGE_SIZE 307200 //640x480 
♦define NUM_IMAGES 4

void main(void)

CClient *ImgSeqClient=NULL;
CImageSeqServer_var ImageSeqServer;
UnboundCharSeq_var InputImages[NUM_IMAGES];
CORBA_Long CRBImageWidth[NUM_IMAGES], CRBImageHeight[NUM_IMAGES]; 
int i;

printf("Creating ImageSeqServer CORBA Client...");
ImgSeqClient = new CClientO;

ImgSeqClient->Create("MylmageServer");

printf("Getting ImageSeqServer...") ;
CClient_GetRemoteObject<CImageSeqServer_var, CImageSeqServer>

(*ImgSeqClient, ImageSeqServer,"ImageServer");

printf("Initialzing Remote Server...."); 
if (!ImageSeqServer->Init())

printf("\n*****Remote server failed to initialize, cannot continue....\n"); 
printf("Shutting Down...");
ImgSeqClient->Destroy();
printf("Done.\n\nPress any key to exit.\n"); 
getch();

};

printf("Getting Images..."); 
for(i=0; i < NUM_IMAGES; i++)

ImageSeqServer->GetNextImage(InputImages[i].out(), CRBImageWidth[i], CRBImageHeight[i]);

printf("Done.\n"); 
return;

Main.cpp: Source Code (Client Side)
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