
3D Surface Reconstruction from Multi-Camera Stereo with Distributed Processing

3D SURFACE RECONSTRUCTION FROM MULTI-CAMERA STEREO WITH

DISTRIBUTED PROCESSING

By

GORAV ARORA, B. Eng.

McMaster University, Hamilton, Ontario, Canada

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Engineering

McMaster University

© Copyright by Gorav Arora, March 2001

MASTER OF ENGINEERING (2001)

(Electrical and Computer Engineering)

MCMASTER UNIVERSITY

Hamilton, Ontario

TITLE: 3D Surface Reconstruction from Multi-Camera

Stereo with Distributed Processing

AUTHOR: Gorav Arora

B. Eng.

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Dr. David W. Capson

NUMBER OF PAGES: xi,118

ii

Abstract

In this thesis a system which extracts 3D surfaces of arbitrary scenes under natu­

ral illumination is constructed using low-cost, off-the-shelf components. The system

is implemented over a network of workstations using standardized distributed soft­

ware technology. The architecture of the system is highly influenced by the perfor­

mance requirements of multimedia applications which require 3D computer vision.

Visible scene surfaces are extracted using a passive multi-baseline stereo technique.

The implementation efficiently supports any number of cameras in arbitrary positions

through an effective rectification strategy. The distributed software components inter­

act through CORBA and work cooperatively in parallel. Experiments are performed

to assess the effects of various parameters on the performance of the system and to

demonstrate the feasibility of this approach.

iii

Acknowledgements

I would like to extend my deep gratitude to my supervisor Dr. David Capson for

his patience, support and for providing me with this research opportunity. Without

the love, support and understanding of my family, this would not have been possible.

I would also like to thank the other members of the Machine Vision and Image

Analysis Laboratory, David Woo, Jason Stavnitzky, Phil Quick and Jeff Fortuna for

their insightful discussions, companionship and laughs. I owe special thanks to the

staff of the Electrical and Computer Engineering Department, especially to Cheryl

Gies and Barb MacDonald for their exceptional care and resourcefulness. Last but

not least, I would like to thank Christine Yang for everything she has provided me.

iv

Contents

1 Introduction 1

1.1 Computer Vision.. 1

1.2 Existing Systems.. 4

1.3 Objective and Approach.. 7

1.4 Thesis Organization... 9

2 Multiple View 3D Surface Reconstruction 10

2.1 Basic Stereo Geometry... 10

2.2 Theoretical limitation.. 13

2.3 Camera Calibration... 14

2.4 Image Pair Rectification.. 23

2.5 3D Surface Reconstruction... 28

2.5.1 Stereo Matching... 28

2.6 Multiple Baseline Stereo (MBS).. 32

3 System Architecture 37

3.1 Distributed Computing... 37

3.1.1 Common Object Request Broker Architecture......................... 39

3.2 System Overview.. 41

3.2.1 Vision Application CORBA Framework (VACF)...................... 45

3.2.2 Camera Calibration... 52

v

3.2.3 Image Capture and Processing... 57

3.2.4 Depth Map Extractor.. '................... 60

3.2.5 Information Management Server.. 60

3.2.6 User Interface.. 61

4 System Performance 63

4.1 VACF Performance... 63

4.2 Rectification Results.. 65

4.3 3D Surface Extraction... 66

4.3.1 3D Surface Extraction Accuracy... 82

5 Final Thoughts 94

5.1 Towards Distributed Vision Systems .. 94

5.2 Future Work.. 95

5.2.1 Scene Capture.. 96

5.2.2 3D surface reconstruction ... 97

5.2.3 Distributed Computing... 98

A Camera Model 99

A.l Pinhole Camera Model... 99

A.2 Central Projection ... 101

B VACF Wizard Screenshots 102

C Sample application using VACF 104

References 113

vi

List of Tables

3.1 Camera Parameters... 45

4.2 Computation time using varying number of DMEs (Image Size = 320 x

240, Mask Size = 3x3, Number of Depths — 128, Number of Stereo

Pairs = 4)... 67

4.3 Computation time using varying number of DMEs (Image Size = 320 x

240, Mask Size = 9x9, Number of Depths = 128, Number of Stereo

Pairs = 4)... 69

4.4 Computation time using varying number of DMEs (Image Size = 320 x

240, Mask Size = 15 x 15, Number of Depths = 128, Number of Stereo

Pairs = 4)... 69

4.5 System performance for different mask sizes (Image Size = 320 x 240,

Number of DMEs = 3, Number of Depths = 32, Number of Stereo

Pairs = 4)... 73

4.6 Computation time for varying depth ranges (Image Size = 320 x 240,

Mask Size = 3x3, Number of DMEs = 3, Number of Stereo Pairs = 4) 77

4.7 Computation time for different number of stereo pairs (Image Size =

320 x 240, Mask Size = 9x9, Number of Depths = 128, Number of

DMEs = 3).. 80

4.8 Computation time for different image sizes (Mask Size = 9x9, Number

of Depths = 128, Number of DMEs = 3, Number of Stereo Pairs = 4) 80

vii

List of Figures

1.1 A random-dot stereogram of a square [26]... 2

1.2 A depth map of a synthetic scene. Surfaces with at greater distance

from the camera are shown with darker grey-level intensities............ 3

2.1 Coplanar Stereo Geometry... 11

2.2 Perfect Pinhole camera with a GCD sensor matrix............................... 13

2.3 Coplanar Rectification... 24

3.1 Traditional Monolithic computing architecture....................................... 38

3.2 Distributed computing architecture... 38

3.3 Common Object Request Broker Architecture..................................... 40

3.4 General vision system architecture... 41

3.5 General 3D surface extraction system architecture................................. 42

3.6 Presented system architecture... 43

3.7 Experimental setup used in the project.. 44

3.8 Component architecture overview... 45

3.9 VACF Server Class Diagram.. 47

3.10 VACF Client Class Diagram.. 51

3.11 Original image of the calibration object... 53

3.12 Calculation of local regions... 54

3.13 Sobel operator output ... 54

3.14 Binary thresholding of local regions.. 55

3.15 Moment calculation of binary regions... 55

viii

3.16 A screenshot of 3D Explorer.. 62

4.1 Performance measurement of VACF.. 64

4.2 Original (a)Reference Camera Image (b)Non-Reference Camera Image 65

4.3 Rectified (a)Reference Camera Image (b)Non-Reference Camera Image 66

4.4 System performance for a varying number of Depth Map Extractors

(DMEs).. 68

4.5 Timing breakdown for system employing 1 DME (9x9 mask) 70

4.6 Timing breakdown for system employing 2 DMEs (9x9 mask) ... 70

4.7 Timing breakdown for system employing 3 DMEs (9x9 mask) ... 71

4.8 Data gathering and exchange overhead for 1 DME (9x9 mask) ... 71

4.9 Data gathering and exchange overhead for 2 DME (9x9 mask) ... 72

4.10 Data gathering and exchange overhead for 3 DME (9x9 mask) ... 72

4.11 Computation time for varying Mask Size... 74

4.12 Timing breakdown for 3x3 mask ... 75

4.13 Timing breakdown for 19x19 mask .. 75

4.14 Data gathering and exchange overhead for 3x3 mask............................ 76

4.15 Data gathering and exchange overhead for 19x19 mask...................... 76

4.16 System performance for different number of searched depths............ 78

4.17 System performance for different stereo pairs 79

4.18 System performance for different Image Sizes (Mask Size = 9x9,

Number of Depths = 128, Number of DMEs = 3, Number of Stereo

Pairs = 4)... 81

4.19 Testing object used to measure the surface extraction accuracy of the

system... 82

4.20 Depth map of the plane using five cameras... 87

4.21 3D plot of depth map of the plane using five cameras......................... 87

4.22 Depth map of the plane in rectified Camera0 coordinate system (using

Camera2) ... 88

ix

4.23 3D plot of depth map of the plane in rectified Camerao coordinate

system (using Camera2) .. 88

4.24 Depth map of the plane in unrectified Camera0 coordinate system (us­

ing Cameras)............ .. 89

4.25 3D plot of depth map of the plane in unrectified Camerao (using Cameras) 89

4.26 Arbitrary scene as viewed by reference Camera0.......................... 90

4.27 Depth map of the arbitrary scene... 90

4.28 Cylinder scene viewed by Camerao .. 91

4.29 Depth map of the cylinder from reference Camerao and Cameras . . 92

4.30 3D plot of depth map of the cylinder from reference Camerao and

Cameras.. 92

4.31 Depth map of the cylinder from all five cameras.......................... 93

4.32 3D plot of depth map of the cylinder from all five cameras....... 93

A.l Pinhole Camera.. 99

A. 2 Pinhole camera geometry... 100

B. l Step 1 of the VACF Wizard... 102

B.2 Step 2 of the VACF Wizard... 103

x

List of Symbols and Abbreviations

CORBA Common Object Request Broker Architecture

DME Depth Map Extractor

FBSM Feature Based Stereo Matching

fps frames per second

#n->r Homography from plane II to plane T

IBRM Image-Based Rendering and Modeling

IBSM Intensity Based Stereo Matching

IDL Interface Definition Language

IMS Information Management Server

MBS Multi Baseline Stereo

NOW Network of Workstations

00 Object Oriented

ORB Object Request Broker

P Homogeneous camera projection matrix

Rxi Ryi R-z
SSD

Euler rotation angles

Sum of Squared Differences

SSSD Sum of SSD

VACF Vision Application CORBA Framework

X 2D (x, y)T or 3D (rr, y, z)T vector

X homogeneous coordinate representation of vector x.

xi

Chapter 1

Introduction

1.1 Computer Vision

“Vision is a process that produces from images of the external world a description

that is useful to the viewer and not cluttered with irrelevant information. ”

- D. Marr and H.K. Nishihara

The projection of light rays upon the retina presents our visual system with an

image of the three dimensional environment, that is inherently two dimensional. How­

ever, our interactions with the environment incorporate an understanding of the 3D

structure contained within it, suggesting that our visual system reconstructs a 3D

representation of the scene from the 2D binocular images. The human visual system

recovers depth of objects from their small positional differences (or disparities) in

the images on the retina. This remarkable ability of 3D perception is clearly demon­

strated through random-dot stereograms developed by Bela Julez, an example of

which is shown in Fig. (1.1). Although each monocular view consists of random dot

patterns, when fused binocularly, the images yield the impression of a square floating

above a background.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: A random-dot stereogram of a square[26]. t

The random dot stereograms propound that our sense of depth perception relies

heavily upon the disparity between stereo images. This simplistic notion has fueled

decades of research in computer vision to have computers imitate this innate ability

of humans.

Initially the research was motivated by autonomous robot navigation, aeriel pho-

togrammetry and to further understand the human visual cognition system. In such

applications, a complete model of the underlying 3D surface structure is not necessary.

For example, in autonomous robot navigation, the scene need not be represented with

complete 3D models, but rather with depth estimates of surfaces facing the robot.

Such information is incorporated in a depth map which is a 2 jD representation of the

scene, i.e. depth estimates for all or some pixels in an image of the scene. Figure (1.2)

shows an example of a depth map, where darker regions represent surfaces farther

away from the camera.

Over the years, the range of applications requiring 3D scene information has grown

to include medical imaging, object measurement and object inspection. In recent

years, there has been an increasing demand for 3D surface information of a scene in

multimedia applications such as telepresence, virtual reality, computer-aided-design

(CAD), cinematography and console/computer games. In such applications, real and

virtual worlds are often combined to create a new augmented reality and require novel

CHAPTER 1. INTRODUCTION 3

Figure 1.2: A depth map of a synthetic scene. Surfaces with at greater distance from
the camera are shown with darker grey-level intensities

views of a real world scene to be synthesized. To provide a truly immersive experience

in augmented reality, it is necessary that accurate depth information of the real world

scene be known to allow for flawless merging with synthetic data. These applications

not only require dense depth information of the real world scenes, but also require

surface properties, such as texture and opacity, to facilitate the rendering of realistic

visual environments.

In general, multimedia applications requiring 3D computer vision can be broken

down into four primary processes: scene capture, 3D surface extraction, 3D model

generation and model rendering. Scene capture digitizes the real world scene, while

the 3D surface extraction process builds depth estimates of the scene based on the

digitized images. This depth data is used to construct 3D models of the scene in the

next process. Finally model rendering concerns itself with the photorealistic rendering

of these constructed models for the application.

Three-dimensional surface extraction of the scene is the principal component of

such 3D multimedia applications. Although the latter processes of 3D model gener­

ation and rendering are important to complete the illusion of realism, the perception

CHAPTER 1. INTRODUCTION 4

of reality will largely depend upon the performance of the 3D surface estimation.

1.2 Existing Systems

The task of extracting the 3D scene geometry in computer vision can be solved using

active or passive techniques. In the active vision techniques, controllable energy

(e.g. laser, ultrasound waves) may be projected within the scene, and the differences

between the sender and receiver are used to calculate depth maps [38], [27]. Other

methods involve direct measuring techniques (e.g. Coordinate Measuring Machine)

which provide sparse, yet very accurate depth maps.

Some active vision techniques use controlled lighting to create known surface de­

scriptors (e.g. grids, patterns) and infer the depth of surfaces by triangulating the

position of the projected features [23]. Other active techniques include the analysis of

illumination variation (photometric stereo analysis'), variations of focus (shape from

focus/defocus) and sequence of images (video) (temporal stereo analysis). Active vi­

sion systems may incorporate a combination of approaches that work cooperatively

to determine scene depth [42]. However, active vision techniques for the extraction

of 3D scene geometry cannot be used in environments where lighting cannot be con­

trolled (e.g. outdoor scenes) and in environments where the projection of energy is

not feasible (e.g. military applications). In such circumstances, passive techniques

must be used to gather depth information.

Passive techniques use two or more images of the scene illuminated with ambient

lighting to extract the underlying 3D scene geometry. This property is highly desir­

able in augmented reality applications where the actual scene properties are crucial

and must be preserved. A complete overview of passive techniques for 3D surface

reconstruction is provided in §2.5.1. In the following section, an overview of existing

passive vision systems that are used in multimedia applications is presented.

CHAPTER 1. INTRODUCTION 5

The Vision and Autonomous System Center at Carnegie Mellon University, Pitts­

burgh has built an excellent example of such a system [34], [40]. The system uti­

lizes numerous omni-directionally distributed cameras to capture dynamic, real-world

events. The arrays of cameras are mounted along the perimeter of the room [19] or

geodesic dome [35] to view the scene from all directions. The cameras are calibrated

to provide accurate pose information, and the multiple-baseline stereo (MBS) algo­

rithm [32] is used to extract dense depth maps of the scene from each camera. The

depth maps calculated from each camera are merged to provide a complete volumet­

ric model of the scene. This is further converted into a 3D model (polygonal mesh)

through iso-surface extraction. To improve the depth estimation, the model is re­

projected into virtual cameras corresponding to the original physical cameras. From

this, object silhouettes and initial depth estimates for each pixel in each camera are

calculated. Using these initial depth estimates to limit the range of the searched

disparity and ensuring edges obtained from the silhouettes (which are modified by

a human operator to improve visual accuracy) are preserved, the MBS algorithm is

executed again to obtain the final depth maps. These error-reduced depth maps are

once again combined and tessellated as before to provide a refined 3D model of the

scene. Finally, these models are texture mapped to provide a complete, photoreal­

istic, 3D representation of the real world scene, which can be combined with other

virtual or real scenes.

From the above discussion, it is evident that system is extremely computationally

intensive. It is due to this reason, that the system analyzes pre-recorded, dynamic,

real-world events using special recording hardware [29], [19]. The system also requires

large storage media for the digitized images and intermediate processing.

The MBS algorithm [32], (§2.6) has been used in various systems to provide depth

maps [22], [37], [8], [23], [44] and has been developed into systems capable of producing

depth maps at 30Hz. Oda et. al. [30] demonstrated a system capable of producing

depth maps at 30Hz with 6 cameras, while it merged synthetic and real world at a

CHAPTER 1. INTRODUCTION 6

rate of 15Hz. The system employs special hardware (such as C40 DSP arrays, ALUs

and pipeline registers) to accomplish this task. The system imposes limits on the

arrangement of the cameras, the size of the images and disparity range to simplify

the computational complexity of depth maps.

Similarly the system described by Kang et. al. in [23] produces depth maps at

video rate (30Hz). The system utilizes 4 cameras in a converging configuration to

maximize the viewpoint overlap among the cameras. However, due to approxima­

tions used to simplify the calculations, the vergence angles between the cameras are

assumed to be small. It utilizes an 8 x 8 matrix of iWarp cells, each containing 20

MFLOPS computation engine, low latency communication engine and 16 MB DRAM.

Furthermore, to recover accurate and dense depth maps, a sinusoidally varying pat­

tern is projected onto the scene to increase local intensity variation. This limits the

extension of the existing system to augmented reality applications, since the artificial

lighting masks the true texture of the surfaces in the scene.

To overcome some of the computational requirements for creating depth maps for

large scenes Kang et al. in [22] describes an omnidirectional MBS algorithm. The

panoramic view of the scene is obtained by constructing cylindrical images from se­

quences of images taken with a camera rotated 360° about the vertical axis. Depth

extraction is carried out using multiple cylindrical panoramic images through simple

stereo techniques. This allows the entire depth map of the entire scene to be con­

structed without the need to merge multiple depth maps from different view points.

The complete model of the scene is constructed and texture mapped with the cylin­

drical images as a final step. The system is limited by the method of acquiring images

of the scene which may not also be possible in all circumstances (such as dynamic

events).

Due the increasing interest in videoconferencing, many 3D computer vision sys­

tems geared towards these applications have arisen [17], [31]. Due to the specifics of

the application, the systems make certain assumptions (e.g. uniform backgrounds,

CHAPTER 1. INTRODUCTION 7

human subjects) and use a priori knowledge (e.g. 3D humanoid models, tracking of

facial features) about the scene to guide it in the depth extraction process.

Recently the convergence of computer vision and computer graphics has produced

a new subfield known as Image-Based Rendering and Modeling (IBRM) [21], [20],

[24], [5]. IBRM methods render new views of a scene based on the photometric and

geometric information recovered from a number of images of a static scene. Using

classical computer vision techniques (e.g. stereo, structure from motion, projective

geometry) such methods reproject or interpolate the existing images to synthesize

new views. The photorealism of the synthesized views largely depend on the quantity

of input images and can thereby become computationally expensive. The quality of

the novel views is acutely related to the number of cameras and their placement in

the scene. The pre-processing of images required to generate novel views may limit

these methods to static scenes.

1.3 Objective and Approach

The visual rendering of 3D surface geometry of real-world scenes is a complex task

with stringent requirements. The scene capturing process must adequately capture

the dynamics and features within the scene. The estimation of depth within the scene,

3D model generation and finally texture mapped rendering of the these models must

provide the degree of accuracy required to convey the illusion of photorealism neces­

sary in the application. These processes require prodigious amounts of computational

power. Multimedia applications utilizing 3D computer vision have the further con­

straint of having to perform in real-time. The exact definition of real-time would vary

upon the timing requirements of each application. As with traditional approaches in

computer vision, the norm in building such systems is to utilize specialized hardware.

Such an approach is not only cost prohibitive, but the resulting systems are predom­

inantly incapable of adapting to new environments due to the inherent assumptions

CHAPTER 1. INTRODUCTION 8

made during their design and construction. Furthermore, there is a large cost of time,

energy and finances to evolve such systems over time.

As predicted by Moore’s Law, the computing power of standard workstations has

made remarkable gains over the recent years. Following suit, networks connecting

these workstations have become commonplace and capable of transmitting gigabytes

in seconds. Accompanied by their greater affordability, these two resources can pro­

vide a practical alternative to specialized hardware solutions in computer vision. The

adoption of such general purpose resources inevitably increases the complexity of

the software components in the system. However, software components are easier to

maintain and evolve and thereby increase the agility of the final system to adapt to

changing environments. Furthermore, such systems simplify the evaluation of differ­

ent techniques.

The networks of workstations (NOW) [1] has given rise to a new paradigm of

distributed computing. Such software systems comprise of individual components

that work in parallel to solve a complex task. Since such systems can aggregate the

power of millions of computers (e.g. SETI project at University of Berkeley), they

provide an attractive alternative to massively-parallel processor (MPP) architectures

that would be traditionally employed in these environments.

The motivation for the project presented in this thesis stems from these obser­

vations. By the novel and unique pairing of ordinary hardware components with

distributed software, the project aims to provide insight on the functionality and

feasibility of the use of such systems in computer vision. Due to the high demands

of resources in 3D scene reconstruction, such an application is a prime candidate

for testing such a system. As a result, a system to extract dense depth maps has

been built whose architecture has been guided by the strict timing requirements of

multimedia applications.

To allow for the conclusions drawn from the project to be valid for a broad range

multimedia systems, it is important to build a system with very few constraints. The

CHAPTER 1. INTRODUCTION 9

system is designed to accommodate real world scenes containing arbitrary objects,

without any knowledge regarding object genus. To allow for future adaptations for

novel view rendering, the system was limited to employing passive stereo techniques

(discussed further in §2.5.1). To avoid training and learning, knowledge based or

fuzzy logic systems are not employed since they would potentially limit the scope of

the system.

Standard off-the-shelf frame grabbers and cameras are utilized. These cameras

do not have any enhancements such as zoom, auto iris and pan/tilt. The cameras

are arbitrarily placed within the scene and strongly calibrated. This eliminates the

need for expensive stereo rigs, and allows the scene to be viewed omnidirectionally

from arbitrary viewpoints. Any two cameras having overlapping views can be chosen

as a stereo pair, allowing for a single camera to be used in multiple stereo pair

configurations to provide dense depth maps for all regions.

The proposed system lays the groundwork for future study and development of

distributed computer vision systems.

1.4 Thesis Organization

Chapter 2 details the multi-view geometry of 3D scenes and describes the techniques

used within the various components of the system. Included are the discussions

for camera calibration, image rectification and depth map generation. Justification

for the each approach is provided in context of the project motivation and goals.

Chapter 3 describes the software developed for the system. This includes an overview

of the underlying distributed software framework and discussion of all the software

components that the comprise the system. Chapter 4 provides performance results of

the system, providing insight onto its bottlenecks and capabilities. Finally, Chapter

5 draws conclusions based on the presented information and provides possible future

directions of research in the area.

Chapter 2

Multiple View 3D Surface

Reconstruction

The extrapolation of depth of a scene viewed from two or more views is possible due

to the inherent proportional differences in the mappings of common scene points onto

the spatially separated projective surfaces. This chapter explores and analyzes this

relationship, establishing notation and algorithms.

2.1 Basic Stereo Geometry

To develop the methodology for calculating depth maps from multiple arbitrary views,

a simple stereo view setup is first presented. Consider a scene viewed by two perfect

pinhole cameras as shown in Fig. (2.1). The world coordinate system is aligned with

Camerai, with Ci as the origin, and the z-axis as the principal axis of Camerai. The

optical center C2 of Camera2 is translated along the x-axis by the B, defining the

baseline. The principal axes of the cameras are directed towards the scene and are

parallel to each other. The cameras have the same focal length f and their image

planes are coplanar and parallel. Under such constrained conditions, the epipolar lines

of the images coincide with the horizontal scan lines, with the epipoles at infinity.

10

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 11

Scene point

center center

Figure 2.1: Coplanar Stereo Geometry

Thus, a scene point X = (X, Y, Z)T is projected onto two corresponding image points

Xi and x2 given by:

x2 (2-1)
U

The distance between the corresponding image points, or disparity D, is:

(2.2)

Consequently, the distance Z or depth from Ci to the scene point X is defined by:

Z=T (2-3)

As a result, to obtain a complete depth map, the disparity D must be measured

for each pair of corresponding points in a stereo pair image. Due to the discrete

nature of digital images, the disparity values are limited to integers, unless disparity

calculations are computed to sub-pixel accuracy using special algorithms. It should

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 12

be noted from Eq. (2.3) that the calculated depth is directly proportional to the

baseline of the cameras. Hence, a large baseline would provide a higher degree of

accuracy in the measurement of Z. However, a larger baseline increases the likelihood

of false matches, since the overlapping regions of the stereo pair decrease. Additional

error in the depth estimation is also introduced by the change in perspective of each

camera and occlusion. Wide-baselines also increase the computational load, since

greater number of disparities must be searched. Shorter baselines make the search for

corresponding points more robust, however the depth estimates are not very accurate.

The various depth estimation techniques as a result differ in the way they deal with

this fundamental tradeoff between ease of matching and accuracy of depth estimation.

The calculation of depth maps using coplanar views simplifies the task of finding

corresponding pixels to a ID search. However, such a configuration imposes gross

limitations on the placement of cameras and thus the flexibility and practicality of

the use of such a system. Arbitrarily placed cameras expand the correspondence

search from ID to 2D. This increases the complexity of the system, making matching

more difficult, time consuming and error prone. In order to avoid these issues, stereo

images taken from arbitrary orientations are rectified i.e., resampled in order to pro­

duce a pair of images that have epipolar lines corresponding to image rows. In order

to perform rectification, the internal and external camera parameters must be known

to define the new homography. Homography defines the relationship (in homoge­

neous coordinates) between two images by an eight parameter perspective equation.

The camera parameters can be found through either strong or weak camera calibra­

tion, from which the homography between the original and rectified image can be

calculated. The aforementioned processes are described in the following sections.

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 13

Figure 2.2: Perfect Pinhole camera with a CCD sensor matrix

2.2 Theoretical limitation

The accuracy of 3D surface reconstruction via image acquisition is fundamentally

limited by the properties of the cameras. In particular, the spatial resolution of an

extracted object surface is directly dependent upon the physical distance between the

object and the cameras as well as the focal lengths of the cameras. Furthermore, the

pixel resolution of the CCD sensor matrix limits the detail captured of the object

surface.

The maximum resolution of the surface reconstruction can be calculated under

the assumption of a perfect pinhole camera, with a CCD sensor matrix, as shown in

Fig. (2.2). Figure (2.2) depicts a single row of the CCD camera with focal length

f, comprising of individual CCD elements of width Dcoiumn. Given a point on the

object surface which is a distance z from the optical center, it holds that:

RD, column feas

f z
Thus, the theoretical limit of the maximum resolution Rmax is given by:

(2.4)

R,
Dcoiumn ' Z

F (2.5)

For the cameras used within the setup, f = 16 mm and Dcoiumn = 7.6pm, Rmax =

0.475 mm for objects 1 m away from the optical center of the camera.

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 14

The theoretical limit of surface reconstruction from images can be improved

through sub-pixel techniques, such as the iterative technique described by Okutomi

and Kanade [32]. However, such an approach inevitably increases the computational

requirements.

2.3 Camera Calibration

Since the system presented in this thesis places no restrictions on camera pose and

characteristics, the multi-camera setup must be calibrated. Camera calibration es­

tablishes the projection of the 3D world coordinates to the 2D image coordinates,

allowing 3D information to be inferred from the 2D images. Depending upon the

accuracy required by application, a model of the camera is assumed which describes

image formation within the camera. Since these parameters are usually technically

impossible or not feasible to be measured directly, the calibration problem is thus

to compute the numerical parameters for a given camera model. Camera calibration

techniques can be classified roughly into two categories: photogrammetric calibration

and self-calibration.

Photogrammetric calibration (or “strong” calibration) of a camera is performed

with the aid of a special calibration object whose 3D geometric measurements are

known very precisely. The calibration object is usually planar, which undergoes

precise translation and rotation, or a well defined 3D object. Such methods recover

the complete Euclidean structure of the scene [39], [28], [43].

Self calibration (or “weak” calibration) methods do not use any special calibration

objects. Images of a static scene taken from multiple viewpoints are used to calculate

the parameters of the camera [25], [9]. Such methods recover the camera properties

and projective scene geometry, however the exact Euclidean space is not extracted

without additional scene or camera information. Due to the numerous parameters

that need to be estimated, reliable results may not be always found. Moreover, all

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 15

depth measurements are relative, which introduces complexity when combining the

depth data from different viewpoints.

The cameras used in the system are strongly calibrated since there exist numerous

robust methods for strong camera calibration. Furthermore, this approach is neces­

sary in order to combine the depth estimates from multiple stereo camera pairs and

viewpoints into a common depth map. The calibration feature detection is simplified

in strong calibration since a calibration target is used. Moreover, the complexity

involved in the estimation of the camera parameters in strong and weak calibration

is relatively similar, leaving little to be gained through weak calibration.

Both intrinsic and extrinsic parameters of a camera must be computed. The

intrinsic parameters of the camera define how a point in the camera coordinate system

is mapped to the image. This is dependent on the internal geometric and optical

characteristics of the camera (e.g. effective focal length). The extrinsic parameters of

the camera however, define the mapping between the points in the world coordinate

system and the camera coordinate system. The extrinsic parameters of the camera

model thus describe the pose of the camera relative to another coordinate system

(such as the world coordinate system) in 3D space.

The cameras used in the experimental setup are characterized by the Tsai camera

model [39]. The Tsai camera model describes the camera as a perfect pinhole camera

combined with the radial lens distortion and image scanning parameters. The camera

model contains eleven parameters that are obtained through direct calibration to

explicitly define the camera, namely:

Intrinsic Parameters

f : effective focal length in mm.

Ki : 1st order radial lens distortion.

(Cx, Cy) : the row and column image coordinates respectively

for the radial lens distortion center (in pixels).

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 16

sx : horizontal uncertainty scale factor introduced by the

timing error of the acquisition hardware.

Extrinsic Parameters

ri r2 r3
R = r4 r5 re : rotation of the camera axes.

r7 r8 rg

T = [Tx,Ty, Tz]t : translation of the camera origin.

(2.6)

The calibration technique by Tsai [39] was used in the implemented system be­

cause of its frequent application in computer vision applications and mature software

tools [41]. The method requires at least seven non-coplanar calibration points which

have been accurately determined in an arbitrary but known geometric configuration.

The Tsai camera model can be described with the following equations. The rigid

body transformation of a point Xw = Yw, Zw)T in the object world coordinate

system to point Xc = (Xc, Yc, Zc)T in the camera coordinate system is:

1----------

1

= R

1

.Zc. Zw

(2-7)

where R and T are the rotation and translation matrices respectively. The point

Xc in the 3D camera coordinate system is transformed to the undistorted image

coordinate xu = (xu,yu)T by pinhole camera model perspective projection:

Xu

yu
=

1----------
1

(2-8)

The radial distortion is modeled by:

Xd T Dx

Ud + Dy

Xu

yu

(2.9)

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 17

where xa — (xd, yd)T are the true distorted image coordinates and:

1--

-1

t) tJ
I__

__
__

1

=
Xd(jAr2 + + ...)

2/d(«U2 + + ...)

The distorted (or real) image point xa = yd)T is transformed into the actual

image buffer coordinates Xb = (x&, by:

xb SxXd. _|- <7
d’x

. Vb . + Cdy^^V J
(2-11)

where

(xb, Vb) : row and column numbers of the pixel in the image buffer in memory,

(Cx, Cy) : row and column numbers of the center of the image buffer (principal point),
Nif __ 1 1NCX

x - dxN^

dx : center to center distance between adjacent sensor elements in X direction,

dy : center to center distance between adjacent sensor elements in Y direction,

Ncx : number of sensor elements in the X direction, and

Nfx : number of pixels in a line as sampled by the computer.

The last four of these parameters are usually obtained from the specifications of the

imaging device provided by the manufacturer. The following 7 steps describe the

calibration procedure in [39] for non-coplanar calibration points.

Step 1: Calculation of the distorted coordinates from the image buffer

coordinates

Initially the calibration object containing non-coplanar calibration features are cap­

tured to an image buffer. Next, the row and column positions (xb) for all visible

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 18

calibration features are determined to sub-pixel accuracy. The calibration object and

mark extraction procedure is described in §3.2.2. Assuming that the principal point

(Cx, Cy) is identical to the image buffer center and scaling factor sx is set to one, x<j

is determined for each extracted feature point in the image buffer using Eq. (2.11).

These assumptions are later removed.

Step 2: Calculation of seven parameters for the transformation of sensor

coordinates into world coordinates

A calibration point Xw in the world coordinate system is imaged to the distorted

image coordinate xj characterized by the following equation:

xd =

where

yaXw VdYw Vd^w Vd ~XdXw —XdYw —xdZw

TjSx T2Sx T3Sx TxSx T4 T5 Tq
lT

for Ty 0 0.

(2.12)

(2.13)L =

Here Tx and Ty are components of the translation vector T, and represent elements

of the rotation matrix R. With the number of feature points much larger than seven,

an overdetermined system of linear equations can be established and solved for the

elements of L.

Step 3: Calculation of \Ty\

Let:

Ol risx a* =
1y

di = Np,
1y

a5 —
1y a7 Z&.

Ty

(2-14)

Using Eq. (2.14) and orthonormality property of R, the value of Ty is determined

from:
|T,| — \]ai + a§ + a7- (2.15)

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 19

To determine the sign of Ty, an imaged calibration point P = (XW,YW, ZW)T

is chosen such that the corresponding image point lies far away from the

principal point (Cx,Cy)T. Assuming Ty is positive, sx = 1 and using Eq. (2.14) the

following equations are solved:

ri rn ==- • Ty ,
1y

_r2 rr,
r2 ~rp 'Ty

1y

_r± or— rp ' Ty ,
1y

— rp ’ Ty ,
1y

Txrp _ Jo rp
1x ' -*-y ?

1y

(2.16)

x —r-tXw + t2E1V + Tx , and

y — r^Xw + f’Ww + Ty

If the parameters x and x^ as well as y and yd have the same sign then sgn(Ty) = +1,

else sgn(Ty) = — 1.

Step 4: Calculating the value of scaling factor sx

Since R is orthonormal and sx is positive sx is determined using the equation:

sx — |Tj,| • yja%. (2-17)

Step 5: Calculation of R and Tx

The elements of the 3D rotation matrix R is given by:

D -- ' Ty/sxi T2 0,2 ’ Ty/S x , T3 -- O3 • Ty / SXJ
(2-18)

^4 O§ * Ty, V 5 Oq * Tyy Tg (Z7 ‘ Ty .

where are the elements of R and Oi are defined in Eq. (2.14).

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 20

The last row of R, namely r7, r8 and r9 can be calculated by the cross product

the first two rows of R and using the orthonormal property r7 + — 1. Tx can

be determined by:

(2.19)

Step 6: Calculation of approximate values for f and Tz

By ignoring the lens distortion, the linear equation:

= wdyyb , (2.20)

can be formulated for every calibration point where

r- q f
y ~dyyb

Tz

y — riXw + rAw + • 0 + Ty,

w r7Xw + r8Yw + r9 • 0 .
(2.21)

More that two calibration points, yields an overdetermined set of linear equations

which can be solved for the unknowns f and Tz.

Step 7: Calculation of exact solutions for /, Tz and K[

The use of standard optimization techniques allow for the accurate calculation of f,

Tz and k7. The values of f and Tz calculated in the previous step act as starting

values, while is assumed to be zero initially. The undistorted image coordinates of

world coordinate point X can be given by the perspective projection equations:

_ ,r+ qYw + r7,Zw + Tx _ ,r<iXw + r$Yw + rgZw + Ty . .
ul f7Xw + f8Y\y + tqZw + Tz ^ul r7Xw + r8Yw + rgZw + Tz

Furthermore, they can also be obtained by the radial rectification of the actual

projected points by using Eq. (2.9), namely:

xU2 = ^d(l + «hr2) and

yU2 = + «ir2), with

r= ^d + Vd

(2.23)

(2.24)

(2.25)

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 21

Thus, an error function s(ni,f,Tz) = h(xui,yui, xU2,yU2) can be formulated using

the set of equations above, and optimized using standard techniques (e.g. steepest

descent). The principal point assumption in the first step can be removed by using

Eq. (2.11) for the image point and repeating the whole process with the updated

(Cx, Cy) to improve the calibration accuracy. A solution can also be obtained by

solving the non-linear equation:

r = V(sxld'xybV + (dyyb)2
(2.26)

Camera Perspective Projection Matrix

A point Xw = (X\y, Yw, Z\y)T in the world coordinates is transformed into an image

buffer point (pixel) xb = (xb,yb)T through the linear perspective projective matrix P

(given in homogeneous coordinates):

xb = PXw (2.27)

where

Xb =

xb

yb (2.28)

s

if s / 0,X6 = s

s
(2.29)

(2.30)

The matrix P can be decomposed into:

P = P,P£ (2.31)

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 22

where Pj is the projection matrix which transforms the points in camera coordinate

system to image pixels and is given by (assuming that the radial distortion of the

camera has already been removed and that the camera pixels are square):

P/ =

Sx f
d'x

0

0

o cx
J. c
dy

0 1

(2.32)

and P# is the projection matrix which transforms the points in the world coordinate

system to the camera coordinate system given by:

PE = (2.33)

where R and T are the rotation and translation matrices respectively, defined in Eq.

(2.6). Equation 2.32 defines the horizontal and vertical focal lengths:

fh = (Horizontal focal length in pixels),

fv = ■£- (Vertical focal length in pixels).

The 3x4 projection matrix P can be written as:

(2.34)

1

Pl4

p = pj P24

pj P24

[P|P]- (2.35)

p is the homogeneous image coordinate of the origin. The one-dimensional right null

space of P represents the camera center C. Therefore:

(2.36)

and

C = -P_1p. (2.37)

R T

0 1

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 23

2.4 Image Pair Rectification

Image Pair Rectification is the process of resampling stereo image pairs to produce

a pair of images with matched epipolar projections. These projections are such that

the conjugate epipolar lines of the images are collinear and run parallel to the x-

axis, thereby limiting the disparities between matching points of the images in the

rc-direction only. This epipolar constraint is of great benefit to stereo matching algo­

rithms, since the correspondence search space is reduced to one dimension, namely

the corresponding rows of the rectified images. The rectified images can be thought of

as obtained by a new coplanar stereo camera setup, obtained by rotating the original

cameras about their optical centers.

In order to produce a rectified pair of stereo images, the rectification procedure by

Fusiello et. al [12] is used. This rectification scheme is well suited for multi-camera

configurations since the reference camera is rectified in each stereo pair. Image rec­

tification causes the projection of original images on a new common retinal plane.

As a result, rectification of images from cameras that have large vergence angles

between their optical axes, can suffer from quantization effects if an ill-suited recti­

fication plane is chosen. This would occur if all the multi-camera stereo image pairs

are rectified to a common plane such as the plane containing the reference camera

image. Under such conditions, the image of the non-reference camera can undergo

severe transformation during rectification thereby decreasing the accuracy of stereo

matching.

In the approach outlined in [12], the rectifying projection matrices are calculated

by the original perspective projection matrices of the camera obtained through strong

calibration. The image planes obtained by rectification are coplanar and parallel to

the baseline as shown in Fig. (2.3). The operation can be thought of as physically

rotating the two cameras about their optical centers such that their optical axes are

parallel and perpendicular to their baseline. All constraints necessary to guarantee

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 24

Rectified Image Plane

X

Figure 2.3: Coplanar Rectification

a unique solution are explicitly enforced, resulting in a linear, homogeneous system

of equations incorporating explicit quadratic constraints. Furthermore, the camera

stereo pair geometry is unrestricted, allowing for arbitrarily placed cameras.

Given that the original projection matrices for a stereo camera pair are given by

Poi and Pq2) while the new rectifying projecting matrices are given by:

Pni =

"a?‘
AJ —

Tai

a2

Ui4

024 PN2 = BJ —

'b?

bj

£>14

£>24 (2.38)

1--

co
 H

i__
_ T

0,34

1--
--- td

1__
_ bi £>34

the following constraints can be formulated.

Since the rectified projections must share a common focal plane, it follows:

a3 = b3 and a34 = 634. (2.39)

Furthermore, the orientation of the common rectified focal plane is chosen to lie

parallel to the intersection of the two original focal planes:

a3(AgABj)=0, (2.40)

where A is the intersection operator. The conjugate equation bj (A J A Bj) = 0 is

redundant due to Eq. (2.39).

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 25

The position of the optical centers Ci and C2 of the stereo camera pair must

remain unchanged:

(2.41)

where Ci and C2 can be calculated using Eq. (2.37). Equation (2.41) provides the

following six linear constraints:

aj1 Ci + O14 — 0

aj C1 + U24 = 0

a3 Ci + (Z34 — 0

bJC2 + &14 = 0

bjc2 + &24 = 0

(2.42)

bJC2 +634 = 0.

Since the purpose of rectification is to align conjugate epipolar lines, the vertical

coordinate of a 3D point Xw must be equal under both transformations Pni and

Pn2, he.:

aJXw + Q24 _
aJXw + <334

This constraint can be simplified using Eq.

b2 Xw + 624
b£X

(2.39)

+ b.'34
(2.43)

w

(2.44)

The rectified image planes must have orthogonal x— and y—axes, thus the corre­

sponding planes (given by the first and second rows of the camera projection matrix)

must also be orthogonal. Using Eq. 2.44, the constraint can be written as:

(2.45)

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 26

The principal point (Cx,Cy) is set to (0,0) for each of the rectified image planes

and using Eq. (2.39) and (2.44) the following equations are obtained:
z

afa3 = 0

* aja3 = 0 (2-46)

bja3 = 0.

By keeping the horizontal and vertical focal lengths unchanged and using Eq.

(2.34) and (2.46) the focal lengths can be obtained by:
z

||ai A a3]|2 = ||ai||2||a3||2 = fh2

< ||a2 A a3||2 = ||a2||2||a3||2 = fv2 (2-47)

||bi A a3||2 = ||bi||2||a3||2 = fh2.
\

Finally, the rectification matrices are defined to a scale factor of 1:

||a3|| = 1 and ||b3|| = l (2.48)

All the constraints can be organized to provide four system of equations:

z
a3 Ci + U34 = 0

a? C2 + Q34 = 0
< (2.49)

aJ(Aj A Bj) = 0

IM = 1

z

a^Ci + G24 — 0

aj C2 + <224 = 0

aja3 = 0
(2.50)

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 27

aJ'Cj + cti4 — 0

&? C2 + O14 = 0
< (2.51)

= 0

, l|ai|| = fh

bfC2 + 614 = 0

b^a2 = 0

bfa3 = 0

llbiU = fh

with the added equalities:

(2.52)

z

a2 — b2

«24 = ^24
<

a3 = b3

034 - ^34

(2.53)

Each system of linear homogeneous set of equations can be solved under a quadratic

constraint written as:

Ax = 0 subject to ||x'|| = k, (2.54)

where x' is a vector comprising of the first three components of x, while k is a real

valued numeric.

Once the rectifying perspective projection matrices are known, then the homog-

raphy between the original and rectified image planes can be computed as:

xn = PnPc/xq — Ho-\X0 (2.55)

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 28

where

xpj : New rectified image coordinate

xo • Original image coordinate

Pn = [Pn|pn] • Rectifying perspective projection matrix

Po = [PolPo] : Original perspective projection matrix

The homography Hohn is applied to every pixel in the original image to synthesize

the rectified image. Since the integer coordinate values of the rectified image will

correspond in general to non-integer values of the original image, the intensity values

of the rectified image are therefore computed through bilinear interpolation.

2.5 3D Surface Reconstruction

To accomplish the final task of 3D surface reconstruction, correspondence between ele­

ments that are the projections of the same physical entity among stereo views must be

determined (stereo matching). Once correspondence has been established, the depth

can be computed (depth estimation) for each element using the camera configura­

tion geometry. The depth values can be represented as depth maps or extrapolated

to 3D models using mesh structures incorporating boundary or object recognition

techniques, which may further be enhanced using texture maps and lighting. In the

presented system, the depth values are visually represented using 255 level greyscale

depth maps.

2.5.1 Stereo Matching

The process of detecting corresponding image elements that are projections of the

same real world surface point between stereo images is commonly known as stereo

matching. Stereo matching algorithms, differing in their method of image element

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 29

extraction, can be classified into two general categories. These are feature based and

intensity based techniques.

Principles of Feature Based Stereo Matching

In feature based stereo matching (FBSM), first an operator is used to preprocess the

images to extract salient features that are stable under different viewpoints of the

scene. The matching process then determines correspondence between the detected

features in the stereo image pairs based on their attributes. Edges, corners and

contours are commonly selected as features to be extracted. Higher level primitives

such as ellipses and polygonal regions can also be selected as features in certain

controlled scenes. Usually a collection of features are employed in order to increase

the regions for which depth can be computed.

A few of the FBSM from the vast literature on such methods are discussed below to

illustrate their properties, while a current survey is presented in [16]. Barnard et. al [3]

selected centers of highly variable areas in the stereo images as features. A network of

nodes corresponding to possible matches is constructed by pairing up each candidate

point in one image to all candidate points in the second image within a disparity

range. Initial probability estimates of correspondence, based on sum of squares of

intensity differences are used to label each possible match. These probabilities are

iteratively refined by attributing probabilities which enforce surface consistency (i.e.

are associated with nearly the same disparity) with higher weights. The method

does not require camera calibration information which is a significant advantage. M.

Pilu [33] discusses in a method to determine correspondence among points using the

singular value decomposition without using camera calibration information. Although

the algorithm does not depend on the selected feature, the author provides examples

where “corners” in images were detected and subsequently matched. However the

method is very sensitive to errors during the feature extraction process.

Bensrhair et. al [4] define a feature called “declivity” as a cluster of contiguous

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 30

pixels, limited by two end-points which correspond to two consecutive local extrema

of grey-level intensity . The matching algorithm determines correspondence between

declivities by evaluating their sum of neighborhood intensity differences and maxi­

mizing a non-linear global gain along the entire epipolar line. This can be regarded

as finding an optimal path on a 2D search plane defined by the epipolar lines of the

stereo pair which maximizes the global gain.

From the above discussion it is evident that FBSM methods generally involve a

high degree of complexity in feature extraction and matching. FBSM approaches do

not produce dense surface estimates since the extracted features generate a coarse

representation of the scene. This however, can increase the speed and accuracy in

correspondence analysis due to the significant reduction in ambiguity arising from the

diminished number of possible candidates. The correspondence analysis have a high

degree of immunity to photometric variations between stereo image pairs since the

extracted features represent prominent details of the scene, and their attributes are

generally not altered by photometric variations during imaging.

Principles of Intensity Based Stereo Matching

An alternative technique to FBSM is to directly utilize all the grey levels of the pix­

els to determine correspondence in stereo pair images, consequently called intensity

based stereo matching (IBSM). Since pixels share individual intensity values, corre­

spondence is determined by a similarity measure of blocks, i.e. neighborhoods around

the pixels (e.g. using n x n windows), on various values of disparity along the epipo­

lar line. The similarity measure is based on the intensity attributes of the blocks (e.g.

mean squared differences (MSD), cross correlation) and various assumptions and con­

straints (e.g. smooth surfaces, continuity constraints). Each pixel is compared with

a number of pixels along the epipolar line, and the disparity providing the optimum

similarity measure value is selected. The difference among various IBSM techniques

is their similarity measure and a recent survey is contained in [16].

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 31

Since the corresponding pixels are determined on the basis of their neighborhoods,

the accuracy of the disparity in IBSM approaches innately depend upon the size of

the blocks. The larger blocks potentially have a larger variance of intensity, reducing

the potential for false matches. However, increasing the size of the window decreases

the accuracy of depth estimates since the windows can potentially contain pixels

from multiple depths. Therefore, a common technique employed is hierarchical based

stereo matching, where disparity estimates from larger blocks is used to guide the

estimates for smaller blocks [6], [8].

Another approach is to increase the robustness of the disparity estimates by con­

sidering global attributes rather than local ones. A technique described by Cox et al.

[18] produces robust results by simultaneously estimating all disparities in a scan line

considering the monotonic ordering of the pixels in the stereo image pair and conti­

nuity of the disparity estimates. This technique was improved upon by Falkenhagen

[7] by performing matching over small blocks instead of pixels and thereby apply­

ing a more sophisticated continuity constraint for neighborhoods. Similarly, Roy et

al. [36] solve the stereo correspondence problem by formulating it into a finding the

maximum flow in a graph. The depth estimation is performed by considering inter-

and intra-epipolar line constraints, while explicitly modeling occlusion and surface

discontinuities. By evaluating the minimum cut associated with the maximum flow,

the disparity surface of the entire scene is evaluated. The theoretical and actual ex­

ecution times reported by the authors suggest that the approach is computationally

intensive.

Pascal Fua [11] describes a fast stereo algorithm in where a normalized MSD of

pixels is used to calculate the optimal disparity to sub-pixel accuracy. The corre­

spondence search is performed for each pixel in both images of the stereo pairs and

the match between pixels is considered valid if and only if both searches yield the

same match. The density of the depth maps were increased by a special hierarchical

approach and by the use of multiple images. When calculating depth maps with

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 32

multiple images, the first image is regarded as the reference frame, and the depth

map calculated from each pair is combined in the final step. Consequently, the major

drawback in the algorithm is the high computational load.

There are many other approaches to solve the stereo matching problem such as

temporal stereo, focus and defocus and shape from shading among others. The system

presented in this thesis uses a multiple baseline stereo developed by Okutomi and

Kanade [32] and discussed in §2.6.

2.6 Multiple Baseline Stereo (MBS)

The multiple baseline stereo (MBS) [32] is an intensity based stereo matching tech­

nique that improves robustness of disparity estimates by computing correspondences

between multiple pairs of stereo images with varying baselines. The motivation of

the approach is derived from Eq. (2.3) which can be re-written as:

= < <2-56’

Disparity calculations from each stereo image pair differ among stereo camera

pairs due to the change in camera parameters and hence cannot be directly used

across multiple images. Subsequently, Eq. (2.3) is reformulated into Eq. (2.56) to

provide a measure that can be performed across multiple image pairs. According to

Eq. (2.56), the stereo matching can be performed with respect to the inverse depth

< which has an immutable definition across all stereo pairs formed with a common

reference image. The parameter £ is independent of different disparities, baselines and

focal lengths of the cameras. Thus, similarity measures for a pixel in the reference

image can be computed across multiple stereo image pairs, with varying baselines,

and combined according to inverse depth. The MBS algorithm uses sum of squared

difference (SSD) values as a similarity measure between pixels defined as:

edi(xi Vi di) = ^2 y~^(-^fie/(a: + Q) y + b) — Ib„ (x + a+di, y + b))2, i = {0,1,2...} (2.57)
a,b£W

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 33

where

(x, y) : pixel coordinate in reference image for which

correspondence is being searched

di : zth candidate disparity

e^x, y, di) : SSD value of reference pixel coordinate (x,y)

at disparity di

EE : summation over the window W
a,b£W

IRef(x,y) ■ Intensity function of reference image

IBn(x,y) : Intensity function of nth stereo pair image

Since disparity d — BfC, the SSD with respect to the inverse distance C is given

by:

e<j(x,y,Ci) = + a,y + b) - IBn(x + a + BnfQ,y + b))2,i = {0,1,2...}
a,b£W

(2.58)

where

e<i (xi V, Ci) : SSD value with respect to inverse depth Ci

Ci = : zth candidate inverse depth
Zi

Bn : Baseline between the reference image and

nth stereo pair image

f : focal length

The estimates from N stereo pairs are combined to produced the sum of SSDs

(SSSD) for each inverse depth C-

N

SSSD(x,y,C) = EEE(J« ef(x + a,y + b) - IBi(x + a + BJC, y + 6))2 (2.59)
2=1 a,bEW

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 34

The optimal inverse depth estimate £ at position (x, y) is given by the £ value from

a defined range which minimizes the SSSD function:

f = MIN(SSSD(x, y, &)) Vi (2.60)

The SSSD has the property of exhibiting an unambiguous and a more pronounced

minimum at the correct inverse distance compared to the SSD. This is due to the

fact that stereo matching along epipolar lines (using the inverse depth) using SSD

may yield multiple matches. However, using SSSD to combine the error values across

multiple images would accentuate the correct depth estimate.

The MBS algorithm effectively minimizes the global error by integrating the ac­

curacy of depth calculations obtained by stereo pairs with wide-baselines, with the

robustness of stereo matching with stereo pairs of smaller baselines. This contrasts

other methods that produce estimates based on consistency checks or filtering of in­

termediate values. It avoids the need for sophisticated intermediate decisions and

the compounding of errors introduced by the propagation of estimates through mul­

tiple levels. The technique has the further advantage of handling areas that might

be occluded in one or more views and to repetitive patterns to a certain degree. The

algorithm is a fast and linear approach that has been implemented by in real-time

[30] [23]. The algorithm readily lends itself to a parallel realization since the stereo

matching of the each pixel is independent of the rest. As a result, the algorithm can

be adapted quite readily in the proposed distributed software architecture.

Since the cameras are allowed to be in arbitrary positions and orientations, the

images are rectified (§2.4) before stereo matching via the MBS algorithm. Due to

the image rectification, the optical axis of the reference camera is rotated and thus,

all measurements of depth are computed parallel to the optical axis of the rectified

reference camera. Consequently, in order to use £ to search across multiple images,

depths from the reference camera coordinate system must be transformed to the rec­

tified reference camera coordinate system. Since the rectification method only causes

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 35

a rotation of the reference camera about the optical center, the rectified coordinates

can be written as:

Yr = MPo

\ Zr

where PRect is the rectified coordinates of the point Porig = (No, Yo, Zo)T in the

non-rectified (original) reference camera coordinate system . M is the rotation matrix

that transforms points in the original reference camera coordinate system to the

rectified reference camera coordinate system. Recall that the measurements of depth

are performed in the original reference camera coordinate system. From the pinhole

camera model:

Rect ng (2-61)

P Orig —
Zo

Xq

(2.62)yo

\fo J

where (xo,yo) is the pixel of the original reference image, and fo is the focal length

of the original reference camera. Thus, using Eq. (2.3) the disparity in the rectified

image stereo pair is given by:

fo

dR =
Br/r

jr
(2.63)

Using Eq. (2.62) this can be written as:

dp — Br/r/o (2-64)
m3(xo,yo,/o')T

where m3 is the third row of M and £ = Zq1. Since the rectification procedure does

not change the optical centers, Br = Bo- For a fully parameterized camera, Eq.

(2.64) can be written as:

Br/r
dR = Kra, 1)T

(2.65)
fh ’ fv

Equation (2.65) relates the depth Zo in the unrectified reference camera to the

disparity in the rectified image pair. This allows for formulation of disparity search

space for a given depth across multiple stereo image pairs.

CHAPTER 2. MULTIPLE VIEW 3D SURFACE RECONSTRUCTION 36

Constraints and Assumptions

Since MBS is an IBSM approach two important assumptions are made about the

scene being extracted. First, it inherently assumes that the surfaces in the scene

are Lambertian and highly textured, allowing matching to be reliably made from the

intensity statistics within a window of the scene. As a result, the algorithm produces

depth estimates with low precision for regions of the scene with little texture. In

these regions, the constructed windows correspond equally well over a wide range of

depths.

Secondly, the MBS technique assumes the scene surfaces are planar and parallel

to the coplanar stereo camera pair. This is direct consequence of representing the

measure of depth as the perpendicular distance (with respect to the image plane) of

an object from the optical center of the camera. This assumption fails when windows

are constructed within an image that contain pixels from multiple depths. Due to the

variation in camera pose, corresponding windows constructed in images from other

viewpoints may not have the same intensity value properties due to the perspective

distortion. Consequently, the SSSD function may not have the global minimum at

the correct depth, and instead the minimum may lie at an arbitrary depth for which

random alignment of textures produces the lowest error. This limitation has been

successfully overcome in [34], although with extensive complex computational load.

Chapter 3

System Architecture

3.1 Distributed Computing

The increasing affordability and capability of workstations and computer networks

have given rise to notion of a Network of Workstations (NOW) [1]. NOW can be em­

ployed to solve complex and tedious tasks that were traditionally solved with expen­

sive, monolithic systems. Monolithic systems extensively (and almost exclusively) use

special hardware and software architectures to perform parallel processing, or meet

computational load requirements. As shown in Fig. (3.1), this rigid monolithic appli­

cation architecture is justified, since no processing is done on the terminals accessing

the central system responsible for the workload. Over the course of technological

evolution, these monolithic applications have been broken into a 2-tier client/server

architecture, where some processing is done on the access terminals. NOW on the

other hand have given rise to a new computing paradigm, namely a distributed or

cooperative computing, that can be regarded as a multi-tier client/server architecture

(Fig. (3.2)).

In the distributed computing architecture, the application is broken into func­

tional objects, each of which can use the services provided by other objects in the

37

CHAPTER 3. SYSTEM ARCHITECTURE 38

Figure 3.1: Traditional Monolithic computing architecture.

Figure 3.2: Distributed computing architecture.

CHAPTER 3. SYSTEM ARCHITECTURE 39

system. Therefore, an object can act both as a client and server. Distributed comput­

ing solves a complex task through the notion of “divide and conquer”. The complex

task is broken into smaller pieces, that can be solved individually. By distributing

these smaller tasks over an array of functional units on individual workstations, paral­

lelism is achieved. Due to the decomposition of applications into specific components,

the approach encourages (or enforces) the use of Object Oriented software construc­

tion techniques, thereby increasing the flexibility, scalability and robustness of the

application.

The main advantage to distributed computing is that it allows complex tasks to be

solved quickly with affordable resources, while maintaining a scalable platform. The

tasks however, are limited to a class of that can be decomposed into smaller units, and

solved independently (e.g. calculation of prime numbers, testing of protein strains

for drug research and cryptography). Numerous computer vision techniques such as

image filtering, segmentation and pattern recognition lie in this class of problems,

including methods 3D scene extraction. This property arises from the fact that many

algorithms in computer vision are based on the of processing image characteristics

that are local and independent.

3.1.1 Common Object Request Broker Architecture

In the distributed computing paradigm, software applications are broken into multiple

components (or objects) and distributed over a heterogeneous NOW. Consequently,

the efficient exchange of information among these components becomes of primary sig­

nificance. The Common Object Request Broker Architecture (CORBA) is a reference

model that facilitates the communication and inter-operation of distributed compo­

nents in heterogeneous computing environments. A complete review of CORBA is

beyond the scope of this work, and a thus a brief overview follows.

CORBA provides a standard mechanism for defining interfaces between compo­

nents as well as tools to facilitate the implementation of those interfaces for the

CHAPTER 3. SYSTEM ARCHITECTURE 40

Figure 3.3: Common Object Request Broker Architecture

developer. CORBA defines a structural architecture for the system, based on the

client/server paradigm, and is a standard specified by the consortium of over 800

organizations known as the Object Management Group (OMG). The standard allows

software vendors to create Object Request Brokers (ORBs) which allow software de­

velopers to write distributed software systems. The ORB makes the communication

between components transparent with regard to the location on the network, their

programming language, operating systems and ultimately their internal implemen­

tations. The adherence to a strict standard allows inter-communication of CORBA

objects from different vendors and an inter-portability.

CORBA is an example of object oriented (00) architecture. Through the use of

00 mechanisms, it is able to achieve its primary characteristics of reusability and

information hiding (through abstraction and encapsulation). This however, does not

limit its use to object oriented languages, although CORBA maps particularly well

to them. The general characteristics of CORBA are shown in Fig. (3.3). Although

CORBA does not have any inherent features for real-time application development,

recent developments in CORBA have included the specification of real-time ORBs

[14]. CORBA objects can communicate through the ORB with a variety of net­

work protocols, including custom protocols. However, due to the CORBA standard

CHAPTER 3. SYSTEM ARCHITECTURE 41

specifications, each ORB inherently supports the TCP/IP network protocol suite.

CORBA was chosen over other alternatives (such as Sockets, DCOM, Java RMI

and RPC) since it elegantly extends to a multitude of computing platforms and soft­

ware languages. It provides a consistent level of abstraction for the interaction of

distributed objects, allowing the programmer to solely concentrate on the behaviour

of the objects. It is not limited to a certain programming language, operating system

or communication protocol. This adds flexibility and adaptability to the presented

system, and allows for collaborative research, including across the Internet. Further­

more, the use of an industry standard as the primary infrastructure allows for the

research to be applicable to a broad category of practical systems.

3.2 System Overview

Figure 3.4: General vision system architecture

« >,

Vision systems in general utilize a number of interacting, well-defined processes,

which can be realized as individual distributed components. This multitier client/server

architecture of general vision systems is shown in Fig. (3.4). Here each physical or

CHAPTER 3. SYSTEM ARCHITECTURE 42

Figure 3.5: General 3D surface extraction system architecture.

logical construct in the vision system (e.g. camera, image display, median filter) has

been abstracted as a component, and allowed to arbitrarily utilize the service of other

components in the system.

Using this architecture, the extraction of 3D surfaces from 2D images can be bro­

ken down into the general components shown in Fig. (3.5). This general architecture

can be decomposed into actual distributed components shown in Fig. (3.6).

The Image Servers provide images of the scene that are captured in real-time

or have been previously stored. Images from a common viewpoint, along with perti­

nent camera information are retrieved by the Information Management Server (IMS),

which sends this information to the Depth Map Extractors (DMEs). Each DME ex­

tracts the 3D surface of a portion of the scene specified by the IMS. This partial

3D surface is collected by the IMS from each DME, combined and sent to the 3D

Explorer which provides the interface to the user. These components are described

in following sections.

. 1.

. 1-

CHAPTER 3. SYSTEM ARCHITECTURE 43

Figure 3.6: Presented system architecture

t,

CHAPTER 3. SYSTEM ARCHITECTURE 44

Figure 3.7: Experimental setup used in the project

The current system consists of a number of Intel Pentium II (333/400/450 MHz)

and AMD Athlon (500 MHz) workstations running Windows NT (SP6) or Windows

2000 with 128 MB of RAM. The workstations are connected through a 100 MB,

switched network through a Cisco 3548XL switch, under general port configuration.

Sanyo VCB 3374 and Panasonic WVPB 332 cameras are connected to Matrox Meteor

II/MC frame grabber cards. The system utilizes the CORBA ORB (version 3.3.2)

provided by Orbacus. The image of the setup is shown in Fig. (3.7). The cameras

calibrated parameters are provided in Table (3.2) where the rotation matrix R is

represented by its Euler angles Rx, Ry and Rz. The measurement B is the baseline

with respect to Camerao- Any of the cameras viewing the scene can be used as a

reference camera, and can be changed dynamically. The cameras are clustered in

a general scene due to the limitations of the calibration procedure. It is necessary

during calibration for all cameras to have a large overlapping viewable regions. Due

to the size of the calibration object characteristics and its movement in space (see

§3.2.2), the cameras have a limited volume of placement.

CHAPTER 3. SYSTEM ARCHITECTURE 45

Camera0 Camerai Camera2 Camera3 Camera4
f (mm) 16.56 16.49 16.53 16.54 16.27

«i 3.79 x 10~4 5.14 x 10“4 4.41 x 10“4 6.99 x 10“4 3.23 x IO"4
sx 1.02 1.02 1.02 1.02 1.03

Cx (pix) 287.89 301.62 293.69 300.93 325.26
Cy (pix) 254.09 282.82 258.73 218.32 240.30
Tx (mm) -66.02 -102.91 -56.97 -40.87 -48,49
Ty (mm) -76.66 -91.28 -63.52 -54.97 -85.27
Tz (mm) 763.44 779.91 776.88 783.16 786.23
Rx (deg) 0.93 1.79 5.76 4.54 ' 1.73
Ry (deg) 1.18 7.33 -0.42 -5.54 6.82
Rz (deg) -0.44 0.13 1.89 1.53 -0.33
B (mm) 0 -120.78 87.54 137.66 -61.57

Table 3.1: Camera Parameters

3.2.1 Vision Application CORBA Framework (VACF)

Component
Specific Behaviour

CORBA Communication
Layer

'--------------------Network

Figure 3.8: Component architecture overview

The system architecture uses multiple components, each of which can be broken

into the general architecture shown in Fig. (3.8). Each component has a CORBA

communication layer which is responsible for the inter-communication between the

objects. The processing layer is the component specific behaviour necessary for pro­

viding certain services. Since the communication layer has a common behaviour in

all components, a software framework was created to efficiently and effectively deploy

the distributed components.

The Vision Application CORBA Framework (VACF) is an 00 framework that

CHAPTER 3. SYSTEM ARCHITECTURE 46

allows the rapid development of CORBA based software components and for au­

tonomous interactions between distributed components. The design of the frame­

work was influenced by the features commonly found in vision systems. Due to the

inherent complexity found in most vision systems, the framework allows for a unique,

independent instance of a server for each client, allowing the server to have complex

state behaviour. This is in contrast to the common stateless server architecture (such

as an HTTP server), which can only support simple client requests, or restricted to

limited state behaviour by having the client store state information. Components in

vision systems may have multiple behaviours and using the Object-Oriented design

methodology for software construction, it is common to encapsulate a behaviour in

a unique class. Consequently, the framework contains multi-object support for the

components. Finally, the framework provides minimal implementation overhead and

component behaviour restrictions.

The client-server architecture used by the framework is described below in detail,

providing insight into how the chosen architecture is well suited for distributed vision

applications. Each component that uses the VACF includes the framework support

classes (linked through a standalone library), and the behaviour implementation pro­

vided by the user. The user implementation is assembled into the framework with the

aid of a code generating “wizard” written for Microsoft Visual C+-I- Studio® (screen­

shots provided in Appendix B). A complete example of an application developed

with the VACF is also included in Appendix C.

Server Architecture

Each server component written with the framework exhibits the architecture shown

in Fig. (3.9). The basic functionality of the CORBA ORB and related services are

encapsulated in the COrb utility class. Central to the design are the CServer and

CServerFactory.impl classes that allow for the construction of server components

CHAPTER 3. SYSTEM ARCHITECTURE 47

Figure 3.9: VACF Server Class Diagram

with complex state and multiple services. CServer is a template class which encap­

sulates the COrb class to provide a higher level of abstraction for the ORB related

services specific to servers. For each user object of type (e.g. CUser_impl) that is to be

exported by the server, a specific CServer class is derived. The CServerFactory_impl
class is an object factory based on the design pattern of the same name[13j. It creates

and destroys new instances of all user implementation objects in a component. The

use of an object factory avoids coupling of each component to a common commu­

nication class through inheritance. Upon instantiation, the server exports only one

service, the object factory. Therefore, the library includes a CServer derived class

of type CServerFactory_impl. On the client startup, it connects to the server and

invokes the Create () method of the factory, subsequently getting references to unique

object instances on the server. It can thus invoke the specific methods for these ob­

jects to accomplish its task. Since unique instances of user objects are provided to

each client, the state of each object can be maintained independently allowing for

CHAPTER 3. SYSTEM ARCHITECTURE 48

complex vision processes to be realized easily with the framework. Note that only

one object factory persists for the life of the server, while the user objects are created

and destroyed as per the requests of the clients.

CComponent and CComponentServer provide a bridge between the framework li­

brary and the server behaviour implementation by the user. Since it was desirable

to have the user link to a pre-compiled library, these classes were designed and im­

plemented to handle arbitrary user types used in the implementation of the server

behaviour. The object factory CServerFactory_impl manages multiple instances of

the user objects for each client through a list of CComponents. A generic CComponent
class definition is provided to allow the framework to be compiled into a library , while

the actual implementation is generated by the VACF wizard. The wizard also derives

a CComponent Server from CComponent, that includes each of the user objects as mem­

ber variables. Thus a call to CServerFactory_impl::Create() by the client adds a

new instance of CComponent to the list, and CComponent: :Run() is subsequently called.

Since the library is compiled with a virtual CComponent: :Run() method, at run time

the VACF wizard generated CComponent: :Run() is called. This in turn calls the VACF

wizard generated CComponentServer: :Run() which actually creates the user objects

and exports them to the CORBA service directory managed by the Name Server. It

is the service of these objects that the client subsequently employs. Similarly, when

the client invokes CServerFactory_impl: :Destroy() , the user objects are deleted and

removed from the service directory, and the specific instance of CComponent is removed

from the list.

CHAPTER 3. SYSTEM ARCHITECTURE 49

The creation process of objects is shown in the pseudo-code below:

//Pre-compiled in the library,
char *CServerFactory_impl::Create()

CComponent *pComponentInstance;

//maintain the local list of creations
AddComponentToList(pComponentInstance);
//call the generic object creation
pComponentInstance->Run();

//Called from the library through polymorphism.
//Generated by the VACF Wizard,
bool CComponent::Run()

CComponetServer *m_pComponent;

//call the specific object creation
m_pComponent->Run();

//Called from static link at compile time in
//the application code of the user.
//Generated by the VACF Wizard,
bool CComponentServer::Run()

CServer<CUserO_impl> *m_UserO;
CServer<CUserl_impl> *m_Userl;

//create the first user’s object
m_UserO->new CServer<CUser_impl>(m_pOrb);
//connect first object to the name server
m_UserO~>Connect(m_sInstance.data(), "UserO");
//create the second object
m_Userl->new CServer<CUser_impl>(m_pOrb);
//connect it to the name server
m_Userl->Connect(m_slnstance.data() , "Userl");

Pseudo-code of object creation process on the server through VACF

Here, the services of the server are implemented by the user in the classes CUserO.impl
and CUserl_impl. They are exported under the name of UserO and Userl respectively.

To allow the objects of the user objects in the component to interact autonomously

as both clients and servers, the ORB message loop is started in a separate thread. This

allows the component to service requests for the user defined services, while allowing

for other simultaneous processes. The component can also interact with itself through

CHAPTER 3. SYSTEM ARCHITECTURE 50

another process, providing server side control without client intervention. This multi­

threaded architecture of the framework therefore allows for vision components capable

of timely interactivity, which may be necessary for higher speed response and the

simultaneous response to multiple requests.

Using the VACF wizard, the user can build a complete server application by simply

including their implementations in the build. Upon execution, the component will

register with the name server, awaiting client requests. The user however, can modify

the generated code to add any additional behaviour. The simplicity of this process is

illustrated code below, which is auto-generated by the wizard (a complete example is

given in Appendix C).

//Example of a VACF wizard generated code for an image server application
//which serves images from a local camera to clients across the network.
//Clients gain access to the object by requesting the ORB to connect to
//‘‘RemoteCamera".
void mainO

//Create object factory server
CServer<CServerFactory_impl> Server;

//initialize the CORBA layer as required by a server
Server.Init();

//Make the object factory service available through the ORB
//via the name ‘‘RemoteCamera"
Server.ConnectFactory("RemoteCamera");

//wait for user controlled shutdown.
cout « "Server Running... press any key to shut down";
getch();

//disconnect the factory from the name server
Server.DisconnectFactory("RemoteCamera");

//Tear down the CORBA layer for the server
Server.Stop();

Auto-generated server startup code by VACF wizard

CHAPTER 3. SYSTEM ARCHITECTURE 51

Client Architecture

Figure 3.10: VACF Client Class Diagram

There is no “wizard” provided for the client creation since there is no suitable

default behaviour of a client. The VACF however does provide abstraction for the

CORBA services and automatic connection to the factory. The client architecture is

shown in Fig. (3.10). Each client contains a CClient derived object and IDL generated

stubs, for each server component that the client will connect to. CClient provides

two important methods Create() and Destroy() , that call the respective object

factory methods to a particular server. The client uses DII (dynamic invocation

interface) provided by CORBA to access these services and thus does not require

linking across other components. Also provided on the client side of the framework

is a GetRemoteObjectO template function. This function retrieves a specific object

reference from the Name Server by name. As mentioned earlier, the name used by

each client for an object actually refers to unique instance of the object created by

the object factory. The CServerFactory_impl::Create() call to the object factory

returns a unique name for each newly created server object to the client. This name

is maintained internally in CClient. This allows multiple clients to use the same

name to connect to unique instances of the server classes. To access the server from

the client, the following code example illustrates invoking the GetFrame() method of

the previously described camera server:

CHAPTER 3. SYSTEM ARCHITECTURE 52

CClient *pClient;
CameraServer.var CameraServer_REF;
//Create a new client, initializing the CORBA layer
//as required for a client
pClient = new CClient();
//Connect to the server named "RemoteCamera"
//and have the object factory create a new
//instance of server objects
m_Client->Create("RemoteCamera”);

//Get the reference to a "Camera" object from the component
//This actually refers to the newly created object instance.
CClient_GetRemoteObject<CameraServer_var, CameraServer>\
(*pClient, CameraServer_REF, "Camera");

//Get a captured image from the remote server
CameraServer_REF->GetFrame();

Excerpt of client code for connecting to the image server

A complete listing of a client/server application created with the VACF is provided

in Appendix C.

3.2.2 Camera Calibration

The cameras used with the setup are modeled using the Tsai camera model [39] as

described in §2.3. A freeware implementation Tsai’s algorithm has been provided

by Wilson [41] for a number of years. However, this tool does not extract the im­

age and world coordinates of calibration features, but rather calculates the camera

parameters given this data. As a result, an application was created to handle basic

image processing (such as filtering, histogram equalization and blob analysis) as well

as a convenient off-the-shelf camera calibration software tool to extract calibration

features from images.

Since the non-coplanar camera calibration algorithm by Tsai is used to determine

the camera model, a planar calibration object is moved along an optical rail at discrete

depths during the calibration procedure. The origin of the world coordinate system

is arbitrarily chosen and is such that the world z-axis is normal to the calibration

object.

CHAPTER 3. SYSTEM ARCHITECTURE 53

The calibration object used within the setup is shown in Fig. (3.11). The object

consists of 10 x 10 grid of circles. The circles have a diameter of 15mm and are

20mm apart (center to center). The black grid of circles is printed on a 1200 dpi laser

printer on white card-stock paper and mounted on a flat steel plate. The centroid of

the circles are selected as the calibration features.

The calculation of the centroid of the circles is performed through local image

analysis and each stage is shown in Fig. (3.11 through 3.15). Given a pixel S that lies

within the circle (either through algorithm estimation, or by user input), the algo­

rithm first traverses vertically and horizontally along pixels with grey level absolute

differences < 6 compared to pixel S . To accommodate for the inaccuracies in the

initial starting position, these four bofinds are increased by a certain percentage a

to provide a rectangular region that contains only a whole calibration marker (circle)

and surrounding whitespace. The gradient of this region is calculated using the Sobel

CHAPTER 3. SYSTEM ARCHITECTURE 54

Figure 3.12: Calculation of local regions

Figure 3.13: Sobel operator output

CHAPTER 3. SYSTEM ARCHITECTURE 55

Figure 3.14: Binary thresholding of local regions

Figure 3.15: Moment calculation of binary regions

CHAPTER 3. SYSTEM ARCHITECTURE 56

operator and converted to a binary image using threshold (3. The end effect of this

process is the extraction of a local region which only contains edge pixels of the cir­

cle. By calculating the moment of this region, the center of the circle is estimated in

sub-pixels. 6 = 127, a = 9% and /3 = 127 were chosen experimentally. This process

is shown in the Figs. (3.11), (3.12), (3.13), (3.14), (3.15). Given an acquired image

of the calibration object, only circles fully visible in the image are used to extract a

grid of circle centers. This will result in a partial calibration feature grid if the entire

calibration object is not visible. This grid of calibration features is extracted in two

stages.

In the first stage, the orientation of the grid within the image is determined with

the assistance of the user. Since the circles on the calibration object are uniformly

spaced horizontally and vertically, the orientation of the calibration grid is completely

determined by its origin and the direction of its rows and columns in the image. The

origin is selected to be the C(O>o), the centroid of the circle positioned at the top-left

corner (in the world coordinate system) of the calibration grid. The user is asked to

click within the image of the top-left corner circle. Note this may not be the top-left

fully visible circle in the image, it is however the top-leftmost circle of the physical

calibration object that is viewed by the camera. Next, the user clicks within the

horizontal and vertical neighbors of the origin. Upon each click, the centers of the

selected circles, namely C(o,i)andC(i>O) are calculated. The extraction of these three

calibration features allows for the complete estimation of the grid layout.

In the second stage the remaining visible calibration features are automatically

extracted. This is done by calculating initial estimates for feature centers, and passing

this as a starting position to the aforementioned centroid calculation algorithm. Since

it is known that the circles lie uniformly in parallel rows and columns, the initial

estimates are calculated by adding the horizontal (ch) and vertical (ey) displacements

CHAPTER 3. SYSTEM ARCHITECTURE 57

between the previously calculated calibration features using equations:

(3.1)

Therefore, calculation of the approximate centers for circles on adjacent columns can

be done by:

(3.2)

and initial estimates for the first circle on each row is given by

(3-3)

This recursive technique compensates for the skewing of the calibration markers to

provide robust local region estimates of their position. To simplify the search for full

calibration markers without the loss of generality, the number of calibration features

to be extracted is provided by the user.

Furthermore, the user specifies the location of the 3D world origin, the row and

column number for C(o,o) on the physical grid, the depth of the calibration object

begin viewed and the spacing between adjacent circle centers. This information al­

lows the calculation of world coordinates for all extracted features. Once the grid

of calibration features have been extracted, their image position, as well as world

coordinates are written to a file, suitable for input into Wilson’s [41] implementation

of Tsai’s algorithm. The calibrated camera parameters calculated by [41] are saved

to a file for later use.

3.2.3 Image Capture and Processing

Generally, image capturing facilities are limited to be used by one application. How­

ever, in a distributed environment there is an opportunity (or requirement) for the

sharing of these resources. In order to accomplish this, the camera and the frame

CHAPTER 3. SYSTEM ARCHITECTURE 58

grabber must be encapsulated within a CORBA aware component, exposing the ba­

sic functionality (capturing of images) to other components. Since this requires that

a camera be coupled with a workstation and be treated as a single entity, a host of

new possibilities emerge. Image processing can be performed by the workstation upon

the captured raw image, and this processed image can be sent across the network.

Consequently a smart camera can be designed.

A smart camera provides increased functionality over a traditional camera that

provides a raw video stream. Instead, a smart camera transmits information more

relevant to the application. For example, raw images could be compressed before

transmission over the network, which may be desired to reduce the network load.

Similarly, a smart camera could only transmit location information of a object being

tracked, eliminating the need for image transmission altogether. Smart cameras elim­

inate the need for specialized hardware in many applications, since their behaviour

can be programmed in software. Furthermore, in a distributed computing environ­

ment, it allows for the possibility of multiple applications sharing camera resources,

even across different computing platforms and network protocols. In general, this

concept can be applied to any sensor used within a vision system to create a smart

sensor.

In the presented system, smart cameras are built with the application named

Image Server. The Image Server provides the basic functionality of cameras such as

transmitting raw image frames from the online camera, but also provides additional

functionality by allowing foveal patch extraction, streaming of image sequences, and

image rectification.

Foveal patch extraction was added as a camera feature to allow for the reduction

of network load by sending smaller images. The external components communicating

to the Image Server can thereby request an image of the desired portion of the scene.

This feature is not utilized in the construction of 3D surfaces, it was however used to

test the performance of the system, as outlined in §4.1. The Image Server can also

CHAPTER 3. SYSTEM ARCHITECTURE 59

stream stored images whose sequence is defined in a file. This allows synthetic images

and images captured earlier in time or from different environments to be used by an

application. This feature is especially useful during the testing and construction of

components, when the same images are to be processed.

The rectification of images is provided to aid the stereo pair image analysis (§2.5).

The smart camera is capable of providing rectified images, for both reference and

normal views, such that their epipolar geometry lies on the horizontal scanlines (as

detailed in §2.4). Using the direct calibration information for each camera, the server

precomputes a reverse rectification table for each reference camera, that maps each

pixel in the rectified image to a pixel in the original image. Due to the “many to one”

correspondence between the rectified image and original image, the table actually

stores the bilinear interpolation parameters for each rectified pixel. These tables are

computed and stored on disk before the server comes online, and cached in memory at

runtime to improve performance. To further enhance the smart camera capability, the

camera can rectify images with respect to cameras serviced by other Image Servers.

The Image Server is also capable of supplying camera specific information that is

needed during stereo image analysis such as baseline, focal length and transformation

matrices for a given stereo pair. Since the mapping of the original pixel to the rectified

image pixel is needed in the implemented algorithm, the server also precomputes and

stores these forward rectification tables. The server also supports the rectification of

the offline images.

The configuration of the Image Server is controlled through command line options

and configuration files. Through the command line options, the camera can be re­

quested to compute the reverse and forward rectification tables and stream offline or

online images. The reference camera for the Image Server can be changed dynami­

cally by the request of any client. This is crucial in situations where a camera is part

of more than one stereo pair in the multi-camera stereo pair setup.

CHAPTER 3. SYSTEM ARCHITECTURE 60

Hence, the Image Server successfully fabricates a smart camera by efficiently en­

capsulating of the actual image capturing hardware, and providing elegant extensions

that alleviate the computional/information load on the client components. The be­

haviour of the server can be easily controlled through configuration files, allowing it

to adapt to many environments.

3.2.4 Depth Map Extractor

The Depth Map Extractor (DME) component implements the MBS algorithm out­

lined in §2.6. Given a set of stereo pairs and camera parameters, the DME provides

the depth map for any specified portion of the image. The DME assumes that the

camera stereo pairs satisfy coplanar stereo geometry, and hence is provided with recti­

fied images. The DME provides depth estimation with respect to the reference camera

coordinate system. Consequently, it requires the forward rectification tables that map

the original reference camera image to each of the provided rectified reference images.

The DME extracts provides depth from a specified m x n region of the image, and

returns an m x n array of depth values. This is done to allow for parallel computation

of the same scene across multiple DMEs and limit the network load. Finally, the mask

size, depth range and depth sampling size are controlled by the user. This allows the

DME to be used in systems with varying requirements.

3.2.5 Information Management Server

The Information Management Server (IMS) coordinates the exchange of information

among the different components as per the requirements of the end user. Upon

receiving the request and configuration information from the end user, the IMS first

requests the necessary Image Servers for the required images and camera parameters.

Accordingly, the IMS requests the user specified DMEs to work on portions of the

scene using separate threads. Currently, the IMS divides the image into N equal

CHAPTER 3. SYSTEM ARCHITECTURE 61

sections, where N is the number of DMEs. However, the IMS could potentially

perform load balancing by distributing portions of the image proportional to the

performance of each DME. Upon the completion of processing by all DMEs, the IMS

assembles the individual depth maps provided by each DME into a complete depth

map of the imaged scene and transmits it to the client. Thus, in the current system

architecture, the 3D surface from each “viewpoint” of the scene (viewed from a group

of stereo pairs) is extracted through unique IMSs. These IMSs however, may share

DMEs and Image Servers.

The task of the IMS substantially reduces the network traffic by limiting the in­

teraction of the components within the system. For example, in a fully connected

architecture, the end user would need to send a request to each DME to process a

specified portion of the image, which in turn, would request images from the Image

Servers. Consequently, the Image Servers would have to process the same request for

each of the DMEs. For dynamic scene environments, this would impose considerable

limitations. The IMS encapsulates the interaction specifics between each of the com­

ponents in the presented system, allowing the behaviour of the other components to

remain general and thus adaptable to other systems.

3.2.6 User Interface

The application 3D Explorer provides the user interface whereby the user can config­

ure a the extraction of surfaces from a scene. It passes the request from the user to

an IMS server and currently displays the computed 3d surface as a 8 bpp greyscale

image (depth maps). It can also request foveal patches and rectified/non-rectified

images from multiple Image Servers. A screenshot of the application is shown in Fig.

(3.16).

CHAPTER 3. SYSTEM ARCHITECTURE 62

--- -

□jxjligasaag
IMS Server: jlMSI

Depth Search

Min: [500 Max:ji500

Window Size:fTi

Every: 1

Camera Servers

I* CameraServerl Channel 0
P CameraServerl Channel 1
I* CameraServerl Channel 2

CameraServerl Channel 3

DME Servers (seperate each name by space)

|DME1 DME2 OTHER DME

Number of Runs: fl

(289, 9) 193

OK

NUM

n x

Xj

Figure 3.16: A screenshot of 3D Explorer

< I,

» h

Chapter 4

System Performance

4.1 VACF Performance

Since the system incorporates the notion of NOW as the primary building block for

vision systems, the performance of this building block is first measured [2]. The

proposed test application extracts and displays foveal patches from cameras viewing

an arbitrary scene. The application consists of two components, namely a Image

Server (§3.2.3) and client(s) which request images from the Image Server and provide

the user interface. The components are situated on separate workstations connected

through the network (§3.2).

To stress the load on the network and server, the clients request images from

the Image Server repeatedly and as quickly as possible (the use of a non real-time,

multi-threaded operating system does not allow the client call to be deterministic).

This allows for the identification and quantification of the bottlenecks in the system.

The overhead associated with retrieving a single frame (8 bpp) by the client is shown

in Fig. (4.1). Figure (4.1) depicts the overhead associated with each of the under­

lying components, namely the physical medium of the network, the TCP/IP stack

in WindowsNT® and the VACF. The overhead associated to the TCP/IP stack in

the operating system was measured by transferring the same amount of data using

63

CHAPTER 4. SYSTEM PERFORMANCE 64

Graph of Average Overhead Delay vs. Data Transferred

Figure 4.1: Performance measurement of VACF

socket calls. The overhead due to the physical medium is calculated assuming only

the image data is transferred (i.e. minimum overhead ignoring packet header data).

Each overhead measurement is obtained from the average of 10,000 image requests.

Under single client load conditions, the system is able to achieve a frame rate

21.9Hz. The overhead due to CORBA and VACF under heavy load conditions (images

of 640x480@8bpp) is approximately 50% over the network transfer using TCP/IP. The

overhead drastically increases for very small data transfers due to the peculiarities

of TCP/IP (such as the backoff algorithm). This test consolidates the feasibility

of smart cameras, since if real-time operating systems and ORBs are employed the

system should be able to transmit another 2MBs to achieve 30Hz frame rate. The

upgrading to faster networks and real-time network protocols will also improve system

CHAPTER 4. SYSTEM PERFORMANCE 65

performance. However the CORBA processing overhead is more closely coupled to

the computer hardware performance than network data throughput in the current

system since peak inferred network utilization is ~ 55% in the above test.

4.2 Rectification Results

The rectification is an indirect method to test the camera calibration accuracy. Given

two arbitrary scenes and the camera parameters determined through calibration, the

images should be rectified such that their epipolar geometry lies on the horizontal

scanlines. Figure (4.2) shows two original images, while Fig. (4.3) depicts the rectified

versions. The epipolar geometry has been calculated by calculating the fundamental

matrix parameter F using the projection matrices of the cameras. As seen from the

presented figures, the epipolar geometry is indeed horizontal and lies on the scanlines

of the images.

Figure 4.2: Original (a)Reference Camera Image (b)Non-Reference Camera Image

» ».

CHAPTER 4. SYSTEM PERFORMANCE 66

Figure 4.3: Rectified (a)Reference Camera Image (b)Non-Reference Camera Image

4.3 3D Surface Extraction

In this section the performance of the complete system is presented. In the presented

sections, one Image Server is used which services 5 arbitrarily placed cameras (refer to

Fig. (3.7) for details). These cameras are placed such that they all have overlapping

viewpoints, forming 4 stereo image pairs with a specified reference camera. In the

following tests, the reference camera is kept the same to ensure uniformity.

Since the radial distortion parameters are under constrained in the camera cal­

ibration process, they are largely inaccurate and ignored. The system employs a

maximum of three DMEs, each running on identical workstations. Similarly, one

IMS and one 3D Explorer are used, each running on separate workstations. All the

component threads run under normal process/thread environments. The performance

of the system is assessed in both timing and accuracy.

CHAPTER 4. SYSTEM PERFORMANCE 67

Timing Analysis

For the proposed architecture to be viable for vision systems, it is necessary to eval­

uate the timing characteristics of the system. The timing performance of the system

was measured under various conditions using arbitrary scenes (the properties of the

scene do not affect the performance of the algorithm). The presented results have

been averaged over 30 runs. On the following graphs depicting the individual timing

breakdowns for a certain system configuration, the “Miscellaneous” category predom­

inantly represents the time taken to transmit information to between the IMS, 3D

Explorer and Image Server (s).

Varying Number of DMEs

In the proposed architecture for vision systems, parallelism is achieved through the

distributed computing software paradigm. In the given setup, parallelism is realized

by distributing the extraction of depth maps over multiple DMEs. Thus, to measure

the performance, the 3D surface extraction process was performed varying only the

number of DMEs. Tables (4.2), (4.3) and (4.4) list the times taken for computation

(with different mask sizes) and are graphed in Fig. (4.4).

Figures (4.5, 4.6 and 4.7) depict the percentage breakdown of time per individual

task for the 9x9 mask. These figures illustrate that over 90% of the time is spent

in the processing of images to extract depth maps. Figures(4.8, 4.9 and 4.10) further

No. of DMEs Computation Time (ms) (J Performance Gain
1 38202.93 119.28 -
2 20421.70 30.02 46.54%
3 14464.50 182.81 62.14%

Table 4.2: Computation time using varying number of DMEs (Image Size = 320 x 240,
Mask Size = 3x3, Number of Depths = 128, Number of Stereo Pairs = 4)

CHAPTER 4. SYSTEM PERFORMANCE 68
Ti

m
e (

m
s)

Graph of Average Computation Time for Different Mask Sizes vs. Number of DMEs

Figure 4.4: System performance for a varying number of Depth Map Extractors
(DMEs)

CHAPTER 4. SYSTEM PERFORMANCE 69

No. of DMEs Computation Time (ms) a Performance Gain
1 120996.73 317.21 -
2 47676.37 99.57 60.60%
3 32764.77 159.33 72.92%

Table 4.3: Computation time using varying number of DMEs (Image Size = 320 x 240,
Mask Size = 9x9. Number of Depths = 128, Number of Stereo Pairs = 4)

No. of DMEs Computation Time (ms) (J Performance Gain
1 178067.33 345.81 -
2 90885.33 154.54 48.96%
3 61668.17 251.70 65.37%

Table 4.4: Computation time using varying number of DMEs (Image Size = 320 x 240,
Mask Size = 15 x 15, Number of Depths = 128, Number of Stereo Pairs = 4)

show a consistent overhead for the other tasks in all the three systems. They only

differ in the amount of time spent in the exchange of information (IMS data packing).

From the above results, it is evident that substantial gains can be made through

the adoption of the distributed computing architecture. However, the increase in the

number of components increases the flow of information. Thus, eventually the coor­

dination and exchange of information over a large number of components will become

the dominating factor in the total computation time, limiting the feasible number of

components that can be employed. This trend is illustrated by the incremental per­

formance gain of 15% by adding a third DME and the increased time spent packing

the data by the IMS. Although the gains are incremental, they are significant from

the total time spent perspective. The time spent performing the calculations suggest

that the optimization of the DME software component is necessary, both from the

algorithm implementation and operating system point of views.

The processing of the images to extract depth maps is directly various parameters

CHAPTER 4. SYSTEM PERFORMANCE 70

Rectification
(Camera2 to
CameraO*

0.18%

DMEs
98.39%

Rectification
(Camera4 to
CameraO*)

0.15%
IMS Data Packing

0.02%
Miscellaneous

0.11%
Rectification
(CameraO* to '

Cameral)
0.17%

Rectification
(CameraO* to

Camera2)
0.22%

Rectification
(Camera3 to
CameraO*)

0.20%

Rectification
(Cameral to
CameraO*)

0.14%

Rectificatii
(CameraO* to

Camera4)
0.17%

Rectification
(CameraO* to

Camera3)
0.24%

Figure 4.5: Timing breakdown for system employing 1 DME (9x9 mask)

Wait by IMS on
DMEs

95.93%

Rectification
(Camera2 to
CameraO*)

r. ■ 0.45%Rectification
(Cameral to
CameraO*)

0.37%

Other
4.07%

Rectification

Rectification
(Camera3 to
CameraO*)

0.51%

Rectification
(Camera4 to
CameraO*)

0.37%

IMS Data Packing
0.10%

Miscellaneous
0.23%

(CameraO* to
Camera4)

0.42% Rectification
(CameraO* to

Camera3)
0.62%

Rectification
(CameraO* to

Cameral)
0.45%

Rectification
(CameraO* to

Camera2)
0.55%

Figure 4.6: Timing breakdown for system employing 2 DMEs (9x9 mask)

CHAPTER 4. SYSTEM PERFORMANCE 71

Other
6.04%

Wait by IMS on
DMEs

93.96%

Rectification
(Cameral to
CameraO*)

0.55%

Rectification
(CameraO* to

Camera4)
0.63%

Rectification
(Camera2 to
CameraO*)

0.68%

Rectification
(Camera3 to
CameraO*) Rectification

0.74% (Camera4 to
> A CameraO*)

_/ / 0.54%

IMS Data Packing
/ 0.21%

Miscellaneous
0.34%

Rectification 4
(CameraO* to

Cameral)
0.65%

Rectification
(CameraO* to

Camera3)
0.90%

Rectification
(CameraO* to

Camera2)
0.81%

Figure 4.7: Timing breakdown for system employing 3 DMEs (9x9 mask)

Miscellaneous
IMS Data Packing 7.04%

1.17%
Rectification

. (Camera4 to
CameraO

9.15%

Rectification
(Camera3 to
CameraO*)

12.21%

Rectification
(CameraO* to

Cameral)
10.88%

Rectification
(Cameral to
CameraO*)

8.87% |

Rectification
(CameraO* to

Camera2)
13.70%

Rectification
(CameraO* to

Camera3)
15.19%

Rectification
(CameraO* to

Camera4)
10.62%

Rectification
(Camera2 to
CameraO*)

11.17%

Figure 4.8: Data gathering and exchange overhead for 1 DME (9x9 mask)

CHAPTER 4. SYSTEM PERFORMANCE 72

Rectification
(Camera4 to
CameraO*)

9.14%

Rectification
(Camera2 to
CameraO*)

11.06%
Rectification
(Cameral to
CameraO*)

Rectification
(Camera3 to
CameraO*)

12.48%

Rectification
(CameraO* to

Cameral)
10.97%

Miscellaneous

IMS Data Packing
2.37%

Rectification
(CameraO* to

Camera3)
15.14%

Rectification
(CameraO* to

Camera4)

Rectification
(CameraO* to

Camera2)
13.61%

9.21% 10.39%

Figure 4.9: Data gathering and exchange overhead for 2 DME (9x9 mask)

Miscellaneous
IMS Data Packing_ 5.69%

3.50%
Rectification
(Camera4 to
CameraO’

9.02%

Rectification
(Camera3 to
CameraO*)

12.18%

Rectification
(Camera2 to
CameraO*)

11.23%

Rectification
(CameraO* to

Cameral)
10.72%

Rectification
(Cameral to
CameraO*,)

9.07%

Rectification
(CameraO* to

Camera2)
13.36%

Rectification
(CameraO* to

Camera3)
14.83%

Rectification
(CameraO* to

Camera4)
10.41%

Figure 4.10: Data gathering and exchange overhead for 3 DME (9x9 mask)

CHAPTER 4. SYSTEM PERFORMANCE 73

such as mask size, image sizes, etc. The relationship etc. The relationship between

these parameters and the overall computation time is studied in the following sections

Varying mask size

The mask is the size of window W (or block) created around each pixel for which

the SSSD is computed (§2.6). The size of the mask directly dictates the number of

operations that need to be performed for a given image of the scene. To extract the

relationship between the mask size and performance timing measurements were taken

for different mask sizes. Figure mask sizes. Figure (4.11) graphs the values in Table

(4.5) that list the time required to compute the depth of a scene with varying mask

size.

A linear relationship relates the increase cost of computation with respect to the

mask size. The depth map calculation dominates the required computation time,

with 63% for the smallest mask size of 3 x 3 requiring 2304 computations (9 pixels x

8 images x 32 depths) while increasing to 92% for the mask size of 19 x 19, requiring

92416 computations per pixel as shown in Figs. (4.12, 4.13). The overall overheads

of each of the other components remain consistent throughout each run of different

mask size, as shown in Figs. (4.14, 4.15). Interestingly, although the computations

increased 40 fold, the time required to process the images only increased 7 fold. This

Mask Size Computation Time (ms) a
3x3 5366.33 103.85
7x7 7611.70 96.58

11 x 11 12176.76 33.71
15 x 15 17799.50 106.79
19 x 19 248383.00 61.18

Table 4.5: System performance for different mask sizes (Image Size = 320 x 240,
Number of DMEs = 3, Number of Depths — 32, Number of Stereo Pairs = 4)

CHAPTER 4. SYSTEM PERFORMANCE 74

Graph of Average Computation Time vs. Mask Size

Figure 4.11: Computation time for varying Mask Size

is due to the initial setup overhead by the DME (i.e. the gathering of data, and

collection of forward camera rectification tables) dominates the process for smaller

mask sizes. This is not true for larger mask sizes, where the performance penalty is

proportional to the increase in computation per pixel.

CHAPTER 4. SYSTEM PERFORMANCE 75

Rectification
(CameraO* to

Camera4)
3.74%

Rectification
(Cameral to
CameraO*)

3.42%

Other
37.11%

Rectification
(CameraO* to

Camera3)
5.40%

Rectification
(CameraO* to

Camera2)
4 88% (CameraO* to

Cameral)

Rectification

Rectification
(Camera2 to
CameraO*)

4.20%
Rectification
(Camera3 to

/~ CameraO*)
4.70%

Rectification
(Camera4 tox
CameraO*)

3.31%
IMS Data Packing

1.41%
Miscellaneous

2.22%

3.84%

Figure 4.12: Timing breakdown for 3x3 mask

Rectification Rectification
(Camera2 to (Camera3 to
CameraO*) CameraO*) Rectification

0.91% 1.01% (Camera4 to
CameraO*)

0.71%

Rectification

Wait by IMS on
DMEs

92.03%

IMS Data Packing
0.28%

Miscellaneous
0.45%

Camera4)
0.81% Rectification

(CameraO* to
Camera3)

1.17%

Rectification
(CameraO* to

Cameral)
0.83%

Rectification
(CameraO* to

Camera2)
1.05%

» 1 .

Figure 4.13: Timing breakdown for 19x19 mask

CHAPTER 4. SYSTEM PERFORMANCE 76

IMS Data Packing
3.79%

Rectification
(Camera3 to
CameraO*)

12.66%

Miscellaneous

Rectification
(Camera4 to
CameraO*)

8.92%

Rectification
(CameraO* to

Camerai)
10.34%

Rectification
(Camerai to
CameraO*)

Rectification
(CameraO* to

Camera2)
13.14%

Rectification
(CameraO* to

Camera4)
10.07%

Rectification
(CameraO* to

Camera3)
14.55%

X

Rectification
(Camera2 to
CameraO*)

11.33%

9.23%

Figure 4.14: Data gathering and exchange overhead for 3x3 mask

Rectification
(Camera3 to
CameraO*

12.74%

Miscellaneous
5.66%

Rectification
(CameraO* to

Camerai)
10.41%

Rectification
(CameraO* to

Camera2)
13.23%

Rectification
(CameraO* to

Camera3)
14.64%

IMS Data Packing
3.53%

Rectification
(Camera4 to
CameraO*)

8.98%

Rectification
(Camera2 to
CameraO*)

11.40% Rectification
(Camerai to
CameraO*)

9.29K

Rectification
(CameraO* to

Camera4)
10.14%

Figure 4.15: Data gathering and exchange overhead for 19x19 mask

CHAPTER 4. SYSTEM PERFORMANCE 77

Varying number of depths searched

Since the number of depths searched varies the computation required per pixel, the

results are similar to those of those obtained in the previous section. Table (4.6) shows

the results of varying the depths searched, and is plotted in Fig. (4.16). During the

course of the experiment it was ensured that the range of depths lay in all the camera

viewpoints.

No. of Depths Searched Computation Time (ms) (7
16 3806.36 90.77
32 5278.50 88.16
64 8303.13 41.14
128 14407.97 89.67
256 26684.57 77.51
513 51554.20 151.77

Table 4.6: Computation time for varying depth ranges (Image Size = 320 x 240, Mask
Size = 3x3, Number of DMEs = 3, Number of Stereo Pairs = 4)

Varying number of stereo pairs

The varying of the number of stereo pairs shows changes the data that needs to be

transported, as well as searched by the MBS algorithm. Here, the relationship is

linear and directly proportional to the number of images. This is to be expected,

since under the tested configuration the processing of images still dominates the

computation time, while the acquiring and transporting of images is comparatively

smaller. Table (4.7) lists the computation times, while Figure (4.17) depicts the linear

relationship.

http:51554.20
http:26684.57
http:14407.97

CHAPTER 4. SYSTEM PERFORMANCE 78
Ti

m
e (

m
s)

Graph of Average Computation Time vs. Number of Depths Searched

Figure 4.16: System performance for different number of searched depths

CHAPTER 4. SYSTEM PERFORMANCE 79
Ti

m
e (

m
s)

Graph of Average Computation Time vs. Number of Stereo Pairs

Figure 4.17: System performance for different stereo pairs

CHAPTER 4. SYSTEM PERFORMANCE 80

No. of Stereo Pairs Computation Time (ms) G
1 8673.37 20.27
2 16706.37 33.03
3 24943.03 86.33
4 32764.77 159.33

Table 4.7: Computation time for different number of stereo pairs (Image Size =
320 x 240, Mask Size = 9x9, Number of Depths = 128, Number of DMEs = 3)

Varying image size

Figure 4.18 shows the total time taken to compute extract 3D surfaces using different

image sizes. The values are listed in Table (4.8). As indicated by Fig. (4.18), there

is a linear relationship between the time required for the computation of 3D surfaces

and the image size. As expected, the performance increases four fold for the halving

of large images. However for small images, the performance bottleneck lies in the

actual imaging devices rather than in the extraction of 3D surfaces. For example,

nearly 81% of the overall time is spent acquiring and rectifying 80 x 60 images in

contrast to 30% for 640 x 480 images.

The smart cameras operate (best case for online images) at 2.43Hz for rectifying

Image Size No. of Pixels Computation Time (ms) G
80 x 60 4800 1101.20 24.17

160 x 120 19200 1941.5 48.75
224 x 168 37362 2990.37 26.95
320 x 240 76800 5345.07 98.93
640 x 480 307200 22551.03 2534.95

Table 4.8: Computation time for different image sizes (Mask Size = 9x9, Number
of Depths = 128, Number of DMEs = 3, Number of Stereo Pairs = 4)

http:22551.03

CHAPTER 4. SYSTEM PERFORMANCE 81
Ti

m
e (

m
s)

Graph of Average Computation Time vs. Image Size

Figure 4.18: System performance for different Image Sizes (Mask Size = 9x9, Number
of Depths = 128, Number of DMEs = 3, Number of Stereo Pairs = 4)

CHAPTER 4. SYSTEM PERFORMANCE 82

640 x 480 images while increasing to 4.97Hz and 9.71Hz for 50% and 25% shrink­

ing of image size respectively. Image rectification for online images experience the

overhead of the actual image acquisition, which varies from vendor to vendor. In the

presented system, due to limitations in the actual hardware, image acquisition can

take upto 3 times longer than the specified operating frequency of 30Hz, operating at

approximately at 11.11Hz on average. ■

It should be noted that the above temporal performance of the system is directly

dependent upon the pose of the camera. Rectification causes the image sizes to

enlarge from their original image size. Hence, the greater the divergence of views

among the cameras, the greater the severity of their image rectification. Therefore,

the rectified images can drastically enlarge, even for very small images. However the

overall relationship between the original image size and computing time would still

remain.

4.3.1 3D Surface Extraction Accuracy

Figure 4.19: Testing object used to measure the surface extraction accuracy of the
system

CHAPTER 4. SYSTEM PERFORMANCE 83

To convey a complete illusion of virtual or augmented reality, it is necessary that

the 3D surface extraction process measures the real world scene with sufficient ac­

curacy. The accuracy of the presented system is determined by extracting the 3D

surface of a plane. From the computed depth map of the plane, the degree of mea­

sured “flatness” provides a gauge for the accuracy of the system. The actual physical

plane shown in Fig. (4.19) consists of a rectangle cardboard that is covered with

random dots to allow for accurate stereo matching. Given the arrangement of cam­

eras shown in Fig. (3.7), the plane is mounted on the optical rail at a distance of

approximately 1040mm from Camerao-

The depth map computed using all five cameras, with Camera0 as the reference

camera, is shown in Fig. (4.20). For clarity, the 3D plot of this depth map is shown

in Fig. (4.21). These figures depict the calculated surface of the plane to contain

widespread error on the order of 5mm. They also show that the camera is oriented

on a slight angle with respect to the plane, with the top-left corner of the plane being

closer to the camera than the bottom-right.

The errors in the 3D surface of the plane are produced from the aggregation of

inaccuracies in the pose estimation of each camera. The depth map calculated from

the rectified stereo pair of Camerao and Camera2 (with Camerao as the reference

camera) is shown in Fig. (4.22) and Fig. (4.23). These figures show that indeed a

plane is measured from such a camera setup, and the pose of the rectified reference

camera is such that the bottom-right of the plane is closer to the camera than the

upper-left.

The depth map calculations of the plane from the unrectified reference camera

(using the same camera pair) is shown in Fig. (4.24) and graphed in Fig. (4.25).

These figures depict the plane comprising of small saw-tooth like ridges that are ap­

proximately 5mm high. Recall that the depth (or Zo) in the unrectified reference

camera coordinate system is related to the rectified reference coordinate system (Zr)

by Eq. (2.65). As each pixel is transformed into the world coordinate system form the

CHAPTER 4. SYSTEM PERFORMANCE 84

rectified camera coordinate system, a uniform error is introduced, whereby the pose

of Camerao is erroneously determined to have gradual inclination (from the bottom-

right to the top-left). This error is linear with respect to the rows and columns of the

image, thereby forming a the saw-tooth like appearance when applied to the discrete

depth map calculated from the rectified reference camera. Due to the inaccuracies in

determining the pose of each camera used within the system, the MBS algorithm con­

sequently provides “best-fit” estimation (within 5mm) when searching across multiple

images using inverse depth.

The discrete depth measurements of the plane surface are a direct consequence

of the integer pixel disparity calculations. The relationship between change of depth

(Z) with respect to the change in disparity (d) is given by (using Eq. (2.3)):

dd_ B£
dZ ~ (4-1)

For the given setup, baseline between Camera0 and Camera2 B=87.54mm, focal

length of Camerao /=16.56mm and the average plane distance from Camera0 Z —

1040mm, thus providing a resolution of 1.34 x 10“3mm disparity measurement per

1mm change in depth. Since the camera pixels are 7.6//m, 1 pixel disparity corre­

sponds to Zmin = 5.67mm change in depth. This minimum measurement of depth

due to the integer disparity measurements is evident in the previous plots. Further­

more, it is due to Zmin that the saw-tooth like ridges in Fig. (4.23) peak at 5mm

before the depth changes.

For every rectified camera pair, the measured plane varies in orientation. Hence

when they are all combined to form a unified depth map via the MBS algorithm,

they produce a result that retains the macro properties of the plane (as seen from

Fig. (4.21)), however micro properties contain errors on the order of 5mm.

These small surface errors are omissible for scenes with large arbitrary objects.

An example of such a depth map is shown in Fig. (4.27) of the arbitrary scene shown

in Fig. (4.26). The depth captures the significant features of all objects in the scene

CHAPTER 4. SYSTEM PERFORMANCE 85

with sufficient detail. The areas of gross errors are due to insufficient texture, or

viewpoint occlusion.

The advantage of using the MBS algorithm is to harness the advantages of small

and large baselines. To illustrate this feature explicitly, the 3D surface of a cylinder

with diameter 100mm placed approximately 935mm from reference camera (Camera0)

(shown in Fig. (4.28)) is extracted. Figure (4.29) shows the depth map of the scene

using Camera0 and Camera3. The 3D plot of this depth map in Fig. (4.30) shows

the maximum depth of the cylinder is determined to be approximately 25mm and

comprised of a number of discrete planar depths obeying Eq. (4.1). The extreme

errors in matching or “noise” (due to occlusion) can also be seen on the right side of

the object in Fig. (4.29).

Figure (4.31) shows the depth map of the cylinder extracted using all camera pairs,

and is graphed in Fig. (4.32). These figures portray the cylinder to have a maximum

depth of 40mm which is approximately the viewable surface of the cylinder. Although

discrete planes may be distinguished in the depth map, the region between them is

interpolated, producing a more accurate representation of the object. Furthermore,

there is a large reduction in noise in the extracted 3D surface. These gains are a

direct consequence of combining different viewpoints via the MBS algorithm.

Sources of Error

Various sources contribute to error of depth maps acquired from this technique.

Firstly, the camera calibration technique although provides accurate data for rec­

tification, the inaccuracies play a larger role during 3D surface extraction. This is

due to the fact that camera pose errors are absorbed in projective transformation to

produce correct rectified images. However, they provide erroneous disparity measure­

ments when performing the SSSD calculations. The effect of these errors decreases as

measurements are made at greater distance from the camera due to the spatial quan­

tization. The calibration errors are due to limited resolution of measuring tools and

CHAPTER 4. SYSTEM PERFORMANCE 86

human error in reading amidst calibration. This source of error can be statistically

reduced through extensive measurements. Largely however, the calibration errors lie

in the detection of the calibration features in images.

Secondly, the cameras do not capture the scene synchronously. Thus they not

only differ from each other due to the camera internal characteristics (thermal noise,

etc.), but also due to slight change in lighting. Furthermore, each of the cameras have

a manual iris and auto-gain functions, which cause the images of the same scene to

differ in greyscale value. The use of SSSD theoretically would still yield the correct

result under normal circumstances. However it is likely that the camera gain is non­

linear, which may cause saturation of the CCD and aberrations in the histogram.

The effect of these sources can be minimized through histogram equalization.

Thirdly, errors are introduced numerically due to the conversion of numbers to and

from pixels (such as during depth search). The effect is minimal, but does advocate

that detectable features must be at least one pixel wide.

Finally, the performance measurement of the system over time provides a estimate

at best, due to the timing inaccuracies introduced by the non-real time operating

system and the limited resolution of the timer (1ms). The network switch is configured

for normal operation, which does not isolate the workstations from the normal network

operations such as broadcasts, ARP requests and browse requests.

CHAPTER 4. SYSTEM PERFORMANCE 87

Figure 4.20: Depth map of the plane using five cameras

m
m

Figure 4.21: 3D plot of depth map of the plane using five cameras

CHAPTER 4. SYSTEM PERFORMANCE

Figure 4.22: Depth map of the plane in rectified Camera0 coordinate system (using
Carney)

100

200

300

400

500150
200 250

300 350 400Z 600
Image rows (pixels)

Image
columns
(pixels)

Figure 4.23: 3D plot of depth map of the plane in rectified Camera0 coordinate system
(using Camera2)

CHAPTER 4. SYSTEM PERFORMANCE

Figure 4.24: Depth map of the plane in unrectified Camerao coordinate system (using
Cameras)

’ I , (pixels)
Image rows (pixels)

Figure 4.25: 3D plot of depth map of the plane in unrectified Camera0 (using
Cameras)

CHAPTER 4. SYSTEM PERFORMANCE 90

Figure 4.26: Arbitrary scene as viewed by reference Camerao

Figure 4.27: Depth map of the arbitrary scene

CHAPTER 4. SYSTEM PERFORMANCE 91

Figure 4.28: Cylinder scene viewed by Camerao

gsss

SSS^W

WWs

-r^
.®Sg®8&fifeifes

' ».

• 1>

CHAPTER 4. SYSTEM PERFORMANCE 92

(pixels)
Image Columns (pixels)

Figure 4.30: 3D plot of depth map of the cylinder from reference Camerao and
Camera3

CHAPTER 4. SYSTEM PERFORMANCE 93

Figure 4.31: Depth map of the cylinder from all five cameras

Ill
 III

Image Rows
(pixels)

Image Columns (pixels)

Figure 4.32: 3D plot of depth map of the cylinder from all five cameras

&

Chapter 5

Final Thoughts

5.1 Towards Distributed Vision Systems

In this thesis, it has been shown that 3D surfaces of an arbitrary scene can be ex­

tracted through passive multi-baseline stereo techniques over a network of worksta­

tions. Moreover, a software system was built using standardized distributed object

technology (CORBA) which clearly demonstrates the feasibility and flexibility of the

adopted software architecture. Although the cameras can be placed arbitrarily, they

are assumed to be stationary with respect to the world coordinate system. Most

scenarios requiring 3D surface estimation of a scene generally meet this requirement.

The placement of arbitrary cameras eliminates the need for expensive and custom

stereo rigs, while allowing the scene to be viewed omnidirectionally. The accuracy

of the system is shown to closely approximate the theoretical limit dependent on the

physical camera resolution. The accuracy is directly related to the correspondence

detection and consequently highly sensitive to camera calibration errors. Moreover,

the use of distributed object technology allowed for the creation of smart cameras

which are capable of performing complex tasks in addition to image capture. This

also allows multiple applications to share imaging resources when feasible. The smart

cameras are shown to operate at acceptable (and predictable) levels.

94

CHAPTER 5. FINAL THOUGHTS 95

The system uses standard off-the-shelf hardware, which not only reduces the cost

of the final system, but also eliminates the need for any special software considerations

(such as special parallel processing architectures and communication protocols).

The built system can only be employed in non-real time environments, primarily

due to the non-real time operating systems and ORBs that comprise the system. The

performance of the system is dominated by the non-optimized implementation of the

MBS algorithm and linearly dependent upon the system configuration parameters.

The large scale deployment of network of workstations (forming the Internet) has

offered ubiquitous connectivity and economies of scale. As shown in this thesis, this

has provided a practical alternative to expensive, specialized hardware solutions in

computer vision by moving the solution into the software domain. This allows the

solution to gain the advantages of software solutions, namely re-usability, flexibility,

adaptability and manageability. This does come at the cost of performance. However,

from the analysis of the presented system, it is evident that current technologies make

it feasible to implement vision systems where hardware performance gains may be

unnecessary and the elegance and simplicity of a distributed software solution would

suffice.

5.2 Future Work

This study has successfully shown the application of distributed computing concept

to computer vision, however there are many practical considerations which warrant

further research.

In general, the use of real-time operating systems and ORBs would improve the

performance of the overall system significantly. Much of the code adheres to ANSI

C++ standards and thus would port to other platforms readily. System performance

gains may also be achieved by simply upgrading to faster workstations.

CHAPTER 5. FINAL THOUGHTS 96

5.2.1 Scene Capture

The current technique for camera calibration requires that all cameras view a large

volume of space. This imposes some limitations on the camera placement within the

scene. The remedy could be to adopt another calibration object that is visible from

all directions (such as an LED light source, or a calibration cube) or via another

calibration technique. Furthermore, weak calibration may be used in the system if

relative measurements among cameras can be integrated.

The calibration object detection algorithm currently relies on a simple method

which is highly susceptible to errors due to lighting conditions and noise. Although

the results are accurate enough to perform proper image rectification, these calibration

errors propagate into the final 3D surface estimates. Greater accuracy could be

achieved through more robust detection of calibration features, such as the ellipse

extraction method described in [15] and [10]. The feature extraction process can also

be extended to extract features autonomously.

At present, stationary cameras are used within the system. The system could be

extended to use cameras with motorized zoom, pan/tilt capabilities to enhance the

resolution in desired regions. Although this may be seen as the use of specialized hard­

ware, these features have become inexpensive and commonplace for standard CCD

cameras due to their high demand in surveillance. The use of zoom or pan/tilt cam­

eras would increase the viewable scene area without the need for additional cameras.

Furthermore, baselines could be dynamically adjusted based on environment sensing.

The groupings of cameras into stereo pairs is currently performed by the user along

with the selection of the reference camera. This could be automated based on the

calibrated parameters of the cameras to optimize the benefits gained from cameras

with varying baselines. Mobile cameras may require online calibration techniques.

Although the thesis is largely motivated by the requirements for 3D surface ex­

traction of dynamic events, the major issue of synchronous capture of such a scene

over a distributed network has been left unaddressed. This is a complex issue, with

CHAPTER 5. FINAL THOUGHTS 97

no simple solution in sight. As vision systems adopt the distributed computing envi­

ronment, this will become of greater importance.

The enhancements for smart cameras could include histogram equalization and

LoG filtering. These would aid in the reduction of errors during correspondence of

errors during correspondence search.

5.2.2 3D surface reconstruction

The software implementation of the MBS algorithm could be optimized for faster

performance. The current implementation was generated by “ease-of-coding” model,

with little attention to performance.

To improve the MBS algorithm itself, dynamic window selection methods could

be adopted to reduce the blurring of object boundaries. This could be based on

the variance local region analysis to detect texture or edges. A coarse-to-fine strategy

would also help to reduce the number of false matches and preserve object boundaries.

The depth estimates can be improved through interpolation and noise may be reduced

through median filtering.

The performance of the system suggests that it may possibly be better suited

for algorithms with fewer computation requirements, such as model based 3d sur­

face estimation. Given certain assumptions of structures in the scene, faster stereo

techniques may be employed. For example, a scene primarily consisting of cubes can

be decomposed to a edge map, and multiple components could simultaneously track

separate cubes. These models may be may be dynamically updated (such as through

Kalman filtering).

Pre-processing of images could be performed, whereby textureless regions could

be identified, and consequently avoided by the correlation based stereo techniques.

Other estimation techniques (such as shape from shading, shape from focus/defocus)

could be applied in these regions and the combined with the results from MBS.

CHAPTER 5. FINAL THOUGHTS 98

Since the system is distributed and parallel, 3D surface extraction can be per­

formed by several different techniques simultaneously, and then combined through

discrete or fuzzy logic.

Currently the system displays the 3D surfaces for one viewpoint in a form of a grey

scale depth map. This could be enhanced to extract a 3D mesh model for the scene

and render it using shading or texture mapping. Due to the peculiarities of human

vision, inaccuracies of a 3D model to a certain extent can be hidden through correct

texture-mapping to a certain degree. Furthermore, a complete voxel representation

of the scene can be built by stitching depth maps from different viewpoints together.

These enhancements would allow for novel view generation and virtual/augmented

reality applications.

5.2.3 Distributed Computing

Currently, the VACF does not provide for a convenient method for objects residing on

the same server to interact locally. If used to build more complex systems, this would

surely be required. As mentioned earlier, the adoption of a real-time implementation

of CORBA would reduce the overhead and increase the quality of service.

Multiple Image Servers could be used to distribute the capturing and rectification

of the images over several workstations. This would reduce the overall overhead and

moves the system one step closer to synchronous capture of dynamic events.

Appendix A

Camera Model

A.l Pinhole Camera Model

A camera captures a 3D scene in 2D, and thus represents a mapping between the 3D

world space and a 2D image. This mapping is derived under the assumption that the

camera is a perfect pinhole camera. The pinhole camera model assumes that light

rays pass through an infinitesimal aperture at the front of the camera, to form a

proportional image of scene on the image plane as shown in figure A. 1(a). In such a

configuration, the image captured on the image plane is inverted vertically, and thus

99

APPENDIX A. CAMERA MODEL 100

Figure A.2: Pinhole camera geometry

it is customary to avoid this inversion by positioning the image plane in front of the

camera center (as shown in figure A. 1(b)). This model is a substantial simplification

of the actual cameras, since it ignores their property of variable aperture sizes and use

of lenses which allow them to work under different lighting conditions. However, these

features do not violate any of the assumptions defined by the ideal pinhole camera

model and describe the CCD cameras used in the system with sufficient accuracy.

The pinhole camera geometry is shown in figure A.2, where the camera is modeled

with an optical center C and image plane R. C coincides with the origin of the 3D

coordinate system, with R parallel to the XY plane at a distance f from the camera

center. The z — axis (also called the optical axis or principal axis') perpendicular to

R, intersecting it at the principal point p.

APPENDIX A. CAMERA MODEL 101

A.2 Central Projection

According to the law of collinearity, the scene point X, the corresponding image point

x and the camera center C all lie on the same line (figure A.2). Using similar triangles

X = (A, Y, Z)T is mapped to x = (u, v)T by

(A.1)

which describes the central projection mapping from world to image coordinates.

Equation (A.l) can be described as a linear mapping using homogeneous coordinates

as

Y

Z

1 7

fy

z /

f 1 1 0

0/10

0 0 10

Y

Z

1 7

(A-2)

Appendix B

VACF Wizard Screenshots

The VACF Wizard screenshots are presented. Note that the “Step 1 of 3” in the

wizard is a greeting to the user. In the first step, the information for each object

being exported is supplied. This includes the class name and the name the object

that will be supplied to the name server. In the final step, the user provides the

default name of the server.

VACF Wizard 1.0 - Step 2 of 3 Xj

Please enterthe class and object names of your implementations:

Class Name: ~ (usually ends in "Jmpl")

Exported Object Name: |

Implementation Header
File location Browse

Delete H Z?dd

Impl. Class | Object Name | Directory
CCameraServer_impl Re mote Cam era c:\CameraServer\

< Back -PNext > Finish 1 Cancel Help
.-----________________________ _______________ ____

Figure B.l: Step 1 of the VACF Wizard

102

APPENDIX B. VACF WIZARD SCREENSHOTS 103

New Project Information
VACF Wi ! > . V.

_Xj

VACF Wizard 1.0 will create a new skeleton project with the following specifications:

Your requested configuration project will be created.

Server with default name "CameraServerl" will be created.

Class CCameraServerJmpl exported as RemoteCamera in factory.

Enter the default CORBA name given to server object

JCameraServerl

Cancel

Project Directory:
c:\CameraServer

OK

Figure B.2: Step 2 of the VACF Wizard

< *,

Appendix C

Sample application using VACF

Presented is an example of a complete application (both client and server) built

through VACF. In the example, an image server is built which transmits a sequence

of images as listed in a file. The client simply makes a number of calls to retrieve the

images from the remote server. The IDL generated class definitions and code stubs

have been omitted for brevity.

typedef sequence<char> UnboundCharSeq;

interface CImageSeqServer {
//called to initialize the server
boolean Init();
//get an image from the server
boolean GetNextImage(out UnboundCharSeq ImageBuf, out long ImageWidth, out long ImageHeight);

ImageSeqServer.idl: Interface of the image server defined in IDL

104

APPENDIX C. SAMPLE APPLICATION USING VACF 105

/********* VACF Auto Generated File *******/
// Component.cpp: implementation of the CComponent class
//

♦include "Component.h" //part of VACF library
♦include <string.h>
♦include <assert.h>
♦include "ComponentServer.h"

CComponent::CComponent() { }

CComponent::CComponent(COrb* pOrb)

// check preconditions
assert(pOrb != NULL);

// start up the user’s object
m.pApp = new CComponentServer(pOrb);

// flag to indicate not to call the base class destructor twice
bBaseClassDestructorCalled = false;

CComponent::“CComponent()

// m_pApp is a subclass of CComponent, so CComponent
// destructor will get called twice,
if(bBaseClassDestructorCalled == false)

bBaseClassDestructorCalled = true;
delete m_pApp;

void CComponent::SetApplnstance(const char* IpszApplication)

// check preconditions
assert(IpszApplication != NULL);

//remember the "client" we are associated with
m_pApp->SetAppInstance(IpszApplication);

void CComponent::Run()

// check preconditions
assert(m_pApp != NULL);

//execute
m_pApp->Run();

Component.cpp: Source Code

APPENDIX C. SAMPLE APPLICATION USING VACF 106

/********* VACF Auto Generated File *******/

♦include "Component.h"
♦include "Server.h"
♦include "ImageSeqServer_impl.h"

class CComponentServer : public CComponent

public:

CComponentServer(COrb*);
~CComponentServer();

void Run();

void SetAppInstance(const char*);

CServer<CImageSeqServer_impl>* m_UserO; //user type

ComponentServer.h: Source Code

/********* VACF Auto Generated File *******/
// ComponentServer.cpp: implementation of the user application
//
♦include "ComponentServer.h"
♦include <string.h>
♦include <assert.h>

CComponentServer::CComponentServer(COrb* pOrb)

// check preconditions
assert(pOrb != NULL);
// assign the reference to the orb object
m_p0rb = pOrb;

CComponentServer::"CComponentServer()

//each user type needs to be disconnected
m_UserO->Disconnect(m_sInstance.data() , "ImageSeqServer");
delete m_UserO;

>

void CComponentServer::SetAppInstance(const char* IpszApplication)

// check preconditions
assert(IpszApplication ’= NULL);

m_slnstance = IpszApplication;

ComponentServer.cpp: Source Code (Server Side)

APPENDIX C. SAMPLE APPLICATION USING VACF 107

void CComponentServer::Run()

// check preconditions
assert(m_p0rb != NULL);

//startup all user types
m.UserO = new CServer<CImageSeqServer_impl>(m_pOrb);
m_UserO->Connect(m_sInstance.data(), "ImageServer");

ComponentServer.cpp: Source Code (continued)

♦ifndef IMAGE_SEQ_SERVER_H_INCLUDED
♦define IMAGE_SEQ_SERVER_H_INCLUDED

♦include <0B\Corba.h>
♦include "idl\ImageSeqServer_skel.h"
♦include "PGM.h"

♦define MAX.IMAGE.SIZE 307200 //640x480

//user defined implementation
class CImageSeqServer.impl : public CImageSeqServer_skel {
private:

FILE *m_pImageFile; //file pointer to the image file
FILE *m_pSequenceFile; //file pointer to the sequence file
long m_nImageNumber; //the number of images served
CPGM m_Image; //image data (CPGM is a user helper class to read

//and write PGM files).

bool NextFileName(char *FileName); //private function to determine the next image
//file to be served as listed in the sequence file.

public:
CImageSeqServer.impl();
~CImageSeqServer_impl();

//idl interface
CORBA.Boolean Init();
CORBA.Boolean GetNextImage(UnboundCharSeq*& Image, C0RBA_Long felmageWidth, C0RBA_Long felmageHeight)

};

♦endif

ImageSeqServer impl.h: Source Code (Server Side)

APPENDIX C. SAMPLE APPLICATION USING VACF 108

#include <conio.h>
tinclude <stdio.h>
tinclude "ImageSeqServer_impl.h"

CImageSeqServer.impl::CImageSeqServer.impl()

//initialize variables
m_pImageFile = NULL;
m.pSequenceFile = NULL;
m_nImageNumber = 0;

CImageSeqServer_impl::~CImageSeqServer_impl()

if (m_pImageFile) fclose(m_pImageFile);
if (m.pSequenceFile) fclose(m_pSequenceFile);

C0RBA_Boolean CImageSeqServer_impl::Init()

//open the sequence file
if ((m.pSequenceFile = fopen("ImageSeq.seq", "rt")) == NULL)
{

printf("\nCannot Open Sequence File\n"); return false;

return true;

C0RBA_Boolean CImageSeqServer_impl::GetNextImage(UnboundCharSeq*&
Image, C0RBA_Long felmageWidth, C0RBA_Long felmageHeight)

char ImageFileName[_MAX_PATH];

//read the next filename
if (NextFileName(ImageFileName) == false)

printf("Error determining next file from sequence file"); return false;

if (m_Image.Load(ImageFileName)) //load the image from the file

//set the array to be passed to the requesting object
Image = new UnboundCharSeq(MAX_IMAGE_SIZE, m_ Image .GetWidthO * m_Image.GetHeightO, \

m_Image.m_pImageData->GetPtr());
//copy the image stats
ImageWidth = m_Image .GetWidthO ;
ImageHeight = m_ Image .GetHeightO ;
//print out statistics
m_nImageNumber++;
printf ("Images Served °/,d C/«s)\n", m.nlmageNumber, ImageFileName);
return true;

else
return false;

ImageSeqServer impl.cpp: Source Code (Server Side)

APPENDIX C. SAMPLE APPLICATION USING VACF 109

bool CImageSeqServer.impl::NextFileName(char *FileName)

//sanity checks
if (FileName == NULL)

printf("Invalid filename passed.\n");
return false;

if (m.pSequenceFile == NULL) //sequence file must be open

printf("No sequence file open (file pointer == NULL)\n");
return false;

//read the next filename,
if (feof(m.pSequenceFile))

fseek(m_pSequenceFile, 0, SEEK.SET); //rewind to the beginning

fscanf(m.pSequenceFile, "7,s\n" , FileName);

return true;

ImageSeqServer impl.cpp: Source Code (continued)

APPENDIX C. SAMPLE APPLICATION USING VACF 110

/********* VACF Auto Generated File *******/

// This file is the MAIN entry point of the server. It will offer these services:
//BEGIN EXPORT
/*

Class CImageSeqServer_impl exported as ImageServer in
factory.

*/
//END EXPORT

♦include
#include
♦include
♦include
♦include

<process.h>
<conio.h>
"ServerFactory.impl.h"
"Server.h"
"ErrorHandler.h"

♦define DEFAULT.SERVER.NAME "MyImageServer"

bool ProcessCommandLine(int argc, char *argv[]);
void LowerCase(char *string);

char ServerName[80];

void main(int argc, char *argv[])

if (!ProcessCommandLine(argc, argv))
return;

// start up the factory and make services available
CServer<CServerFactory_ impl> Server;
Server.Init();
Server.ConnectFactory(ServerName);
Server.Start();

printf ("ServerName: */»s\nPress Any Key to shutdown. \n" , ServerName);

getch(); //wait for user to shutdown

Server.Stop();

// disconnect the factory from the servers
Server.DisconnectFactory(ServerName);

void LowerCase(char *string)

for (int i=0; i<strlen(string);i++)

tolower(string[i]);

ServerApp.cpp: Source Code (Server Side)

APPENDIX C. SAMPLE APPLICATION USING VACF 111

bool ProcessCommandLine(int argc, char *argv[])

argc—; //get rid of the program name

if (argc == 1)

exit:
printf("Incorrect Parameters!\n");
printf ("Usage: */,s -name ServerName\n", argv[0]);
printf("No command line parameters starts up default server.\n");
exit(1);

else if (argc > 1) //we have at least one option

for (int i = 1; i < argc; i++)

LowerCase(argv[i]);
if (strcmp(argv[i], "-name") == 0)

strcpy(ServerName, argv[i+1]);

if ((strlen(ServerName) == 0))

goto exit;

else // no command line options
sprintf (ServerName, "7.s\0" , DEFAULT_SERVER_NAME) ;

return true;

ServerApp.cpp: Source Code (continued)

APPENDIX C. SAMPLE APPLICATION USING VACF 112

tinclude
#include
#include
tinclude
tinclude
♦include
#include

<stdio.h>
<conio.h>
<stdlib.h>
<OB/Corba.h>
"ImageSeqServer.h"
"Client.h"
"PGM.h"

♦define MAX_IMAGE_SIZE 307200 //640x480
♦define NUM_IMAGES 4

void main(void)

CClient *ImgSeqClient=NULL;
CImageSeqServer_var ImageSeqServer;
UnboundCharSeq_var InputImages[NUM_IMAGES];
CORBA_Long CRBImageWidth[NUM_IMAGES], CRBImageHeight[NUM_IMAGES];
int i;

printf("Creating ImageSeqServer CORBA Client...");
ImgSeqClient = new CClientO;

ImgSeqClient->Create("MylmageServer");

printf("Getting ImageSeqServer...") ;
CClient_GetRemoteObject<CImageSeqServer_var, CImageSeqServer>

(*ImgSeqClient, ImageSeqServer,"ImageServer");

printf("Initialzing Remote Server....");
if (!ImageSeqServer->Init())

printf("\n*****Remote server failed to initialize, cannot continue....\n");
printf("Shutting Down...");
ImgSeqClient->Destroy();
printf("Done.\n\nPress any key to exit.\n");
getch();

};

printf("Getting Images...");
for(i=0; i < NUM_IMAGES; i++)

ImageSeqServer->GetNextImage(InputImages[i].out(), CRBImageWidth[i], CRBImageHeight[i]);

printf("Done.\n");
return;

Main.cpp: Source Code (Client Side)

References

[1] T. Anderson, D. Culler, and D. Patterson. A Case for NOW (Networks of

Workstations). IEEE Micro, 15:54-64, February 1995.

[2] Gorav Arora, Jeff Fortuna, and David W. Capson. A Framework for Distributed,

Image-Based Measurement Systems. In IEEE Instrumentation and Measurement

Technology Conference, May 2000.

[3] Stephen T. Barnard and William B. Thompson. Disparity Analysis of Im­

ages. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-

2(4):333-340, July 1980.

[4] Bensrhair, A., Miche, P., and R. Debrie. Fast and Automatic Stereo Vision

Matching Algorithm-Based on Dynamic-Programming Method. Pattern Recog­

nition Letters, 17(5):457-466, May 1996.

[5] Qien Chen. Multi-View Image-Based Rendering and Modeling. PhD thesis, Uni­

versity of Southern California, 2000.

[6] L. Falkenhagen. Hierarchical Block-Based Disparity Estimation Considering

Neighborhood Constraints. In International workshop on SNHC and 3D Imag­

ing, 1997.

113

REFERENCES 114

[7] Lutz Falkenhagen. Depth Estimation from Stereoscopic Image Pairs Assuming

Piecewise Continuous Surfaces. In Proceedings of European Workshop on com­

bined Real and Synthetic Image Processing for Broadcast and Video Production,

1994.

[8] H. Farid, S. W. Lee, and R. Bajcsy. View Selection Strategies for Multi-View,

Wide-Baseline Stereo. Technical Report MS-CIS-94-18, Department of Informa­

tion Science, University of Pennsylvania, Philadelphia, PA, 1994.

[9] 0. Faugeras, D. Luong, and Q. Maybank. ECCV’92, Lecture notes in Computer

Science, Vol. 588, chapter Camera Self-Calibration: Theory and Experiments,

pages 321-334. Springer-Verlag, New York, 1992.

[10] A. Fitzgibbon, M. Pilu, and R. Fisher. Direct Least Squares Fitting of Ellipses.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(5), May

1996.

[11] Pascal Fua. A parallel stereo algorithm that produces dense depth maps and

preserves image features. Machine Vision and Applications, 6(l):35-49, 1993.

[12] Andrea Fusiello, Emanuele Trucco, and Alessandro Verri. Rectification with

Unconstrained Stereo Geometry. In British Machine Vision Conference, 1997.

[13] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G.Booch. Design Patterns

CD. Addison Wesley Longman, New York, 1995.

[14] Object Management Group. Real-Time CORBA Specification.

http://www.omg.org/ cgi-bin/doc?orbos/99-02-12, December 2000.

[15] J. Heikkil. Geometric Camera Calibration Using Circular Control Points. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(10):1066-1077,

2000.

http:www.omg.org

REFERENCES 115

[16] E.E. Hemayed, A. Sandbek, A.G. Wassal, and A.A. Farag. Investigation of

stereo-based 3D surface reconstruction. Proceedings of SPIE, 3023, February

1997.

[17] S. Weik J. Wingbermiihle. Highly Realistic Modeling of Persons for 3D Video­

conferencing systems. In IEEE Signal Processing Society 1997 Workshop on

Multimedia Signal Processing, June 1997.

[18] Ingemar J.Cox, Sunity L. Hingorani, and Satish B. Rao. A Maximum Likelihood

Stereo Algorithm. Computer Vision and Image Understanding, 63(3):542-567,

May 1996.

[19] Takeo Kanade, Hideo Saito, and Sundar Vendula. The 3D Room: Digitizing

Time-varying 3D Events by Synchronized Multiple Video Streams. Technical

Report CMU-RI-TR-98-34, Carnegie Mellon University, Pittsburgh, Pennsylva­

nia 15213-3890 USA, December 1998.

[20] S.B. Kang. A survey of image-based rendering techniques. Technical Report CRL

97/4, Digital Equipment Corporation, Cambridge Research Lab, Cambridge,

Massachusetts, 1997.

[21] S.B. Kang and H.Q. Dinh. Multi-layered Image-Based Rendering. Graphics

Interface, pages 98-106, 1999.

[22] S.B. Kang and R. Szeliski. 3-D Scene Data Recovery Using Omnidirectional

Multibaseline Stereo. Technical Report CRL 95/6, Digital Equipment Corpora­

tion, Cambridge Research Lab, Cambridge, Massachusetts, 1995.

[23] Sing Bing Kang, J.A. Webb, Charles Zitnick, and Takeo Kanade. A Multibaseline

Stereo System with Active Illumination and Real-time Image Acquisition. In The

Fifth International Conference on Computer Vision, pages 88-93, June 1995.

REFERENCES 116

[24] Makoto Kimura, Hideo Saito, and Takeo Kanade. 3D Voxel Construction based

on Epipolar Geometry. In ICIP99, 1999.

[25] Q.T. Luong and O. Faugeras. Camera calibration, scene motion, and structure

recovery from point correspondences and fundamental matrices. International

Journal of Computer Vision, 22(3) :261—289, 1997.

[26] David Marr. Vision. W.H. Freeman and Company, San Francisco, 1982.

[27] D. K. McAllister, L. Nyland, V. Popescu, A. Lastra, and C. McCue. Real-Time

Rendering of Real World Environments. Technical Report UNCCH TR99-019,

North Carolina University, North Carolina, NC, 1999.

[28] J. Mellor. Realtime Camera Calibration for Enhanced Reality Visualization. In

First International Conference on Computer Vision, Virtual Reality and Robotics

in Medicine, pages 471-475, April 1995.

[29] P. J. Narayanan, Peter Rander, and Takeo Kanade. Synchronous Capture of

Image Sequences from Multiple Cameras. Technical Report CMU-RI-TR-95-25,

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, December 1995.

[30] K. Oda, M. Tanaka, A. Yoshida, H. Kano, and Takeo Kanade. A Video-Rate

Stereo Machine and Its Application to Virtual Reality. In Proceedings of ISPRS

’99, 1999.

[31] J.R. Ohm, K. Grneberg, E. Hendriks, E.M. Izquierdo, D. Kalivas, M. Karl,

D. Papadimatos, and A. Redert. A Realtime Hardware System for Stereoscopic

Videoconferencing with Viewpoint Adaption. In Image Communication, special

issue on 3D technology, November 1998.

[32] Masatoshi Okutomi and Takeo Kanade. A Multiple Baseline Stereo. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 15(4):353-363, April

1993.

REFERENCES 117

[33] Maurizio Pilu. Uncalibrated Stereo Correspondence by Singular Value Decompo­

sition. Technical Report HPL-97-96, Digital Media Department, Hewlett Packard

Labs, Bristol, August 1997.

[34] Peter Rander. A multi-camera method for 3D digitization of dynamic, real-world

events. PhD thesis, Carnegie Mellon University, 1998.

[35] Peter Rander, P.J. Narayanan, and Takeo Kanade. Virtualized Reality: Con­

structing Time-varying Virtual Worlds from Real World Events. In Proceedings

of IEEE Visualization 1997, pages 277-283, October 1997.

[36] Sebastien Roy and Ingemar J. Cox. A Maximum-flow Formulation of the N-

camera Stereo Correspondence Problem. In Proceedings of International Con­

ference on Computer Vision, 1998.

[37] Hideo Saito, Shigeyuki Baba, Makoto Kimura, Sundar Vedula, and Takeo

Kanade. Appearance-Based Virtual View Generation of Temporally-Varying

Events from Multi-Camera Images in the 3D Room. In Proceedings of Second

International Conference on 3-D Digital Imaging and Modeling, October 1999.

[38] Ioannis Stamos and Peter K. Allen. 3D Model Construction Using Range and

Image Data. In IEEE Conference on Computer Vision and Pattern Recognition,

June 2000.

[39] R. Tsai. A versatile camera calibration technique using off-the-shelf TV cameras

and lenses. IEEE Journal of Robotics and Automation, RA-3(4):323-344, August

1987.

[40] Sundar Vedula, Peter Rander, Hideo Saito, and Takeo Kanade. Modeling, Com­

bining, and Rendering Dynamic Real-World Events from Image Sequences. In

Proceedings of Virtual Systems and Multimedia (VSMM98), pages 326 - 332,

November 1998.

REFERENCES 118

[41] Reg Wilson. Tsai Camera Calibration Software, http://www.cs.cmu.edu/afs/

cs.cmu.edu/user/rgw/www/TsaiCode.html, December 2000.

[42] T. Yuan and M. Subbarao. Integration of Multiple-Baseline Color Stereo Vision

with Focus and Defocus Analysis for 3D Shape Measurement. In Proceedings of

SPIE, volume 3520, pages 44-51, December 1998.

[43] Zhengyou Zhang. A Flexible New Technique for Camera Calibration. Technical

Report MSR-TR-98-71, Microsoft Research, Microsoft Corporation, Redmond,

WA, December 1998.

[44] C. Lawrence Zitnick and Jon A. Webb. Multi-Baseline Stereo Using Surface

Extraction. Technical Report CMU/CS-96-196, School of Computer Science,

Carnegie Mellon University, Pittsburgh, Pennsylvania, November 1996.

www.cs.cmu.edu/afs

	arora_gorav_2001Mar_masters0001
	arora_gorav_2001Mar_masters0002
	arora_gorav_2001Mar_masters0003
	arora_gorav_2001Mar_masters0004
	arora_gorav_2001Mar_masters0005
	arora_gorav_2001Mar_masters0006
	arora_gorav_2001Mar_masters0007
	arora_gorav_2001Mar_masters0008
	arora_gorav_2001Mar_masters0009
	arora_gorav_2001Mar_masters0010
	arora_gorav_2001Mar_masters0011
	arora_gorav_2001Mar_masters0012
	arora_gorav_2001Mar_masters0013
	arora_gorav_2001Mar_masters0014
	arora_gorav_2001Mar_masters0015
	arora_gorav_2001Mar_masters0016
	arora_gorav_2001Mar_masters0017
	arora_gorav_2001Mar_masters0018
	arora_gorav_2001Mar_masters0019
	arora_gorav_2001Mar_masters0020
	arora_gorav_2001Mar_masters0021
	arora_gorav_2001Mar_masters0022
	arora_gorav_2001Mar_masters0023
	arora_gorav_2001Mar_masters0024
	arora_gorav_2001Mar_masters0025
	arora_gorav_2001Mar_masters0026
	arora_gorav_2001Mar_masters0027
	arora_gorav_2001Mar_masters0028
	arora_gorav_2001Mar_masters0029
	arora_gorav_2001Mar_masters0030
	arora_gorav_2001Mar_masters0031
	arora_gorav_2001Mar_masters0032
	arora_gorav_2001Mar_masters0033
	arora_gorav_2001Mar_masters0034
	arora_gorav_2001Mar_masters0035
	arora_gorav_2001Mar_masters0036
	arora_gorav_2001Mar_masters0037
	arora_gorav_2001Mar_masters0038
	arora_gorav_2001Mar_masters0039
	arora_gorav_2001Mar_masters0040
	arora_gorav_2001Mar_masters0041
	arora_gorav_2001Mar_masters0042
	arora_gorav_2001Mar_masters0043
	arora_gorav_2001Mar_masters0044
	arora_gorav_2001Mar_masters0045
	arora_gorav_2001Mar_masters0046
	arora_gorav_2001Mar_masters0047
	arora_gorav_2001Mar_masters0048
	arora_gorav_2001Mar_masters0049
	arora_gorav_2001Mar_masters0050
	arora_gorav_2001Mar_masters0051
	arora_gorav_2001Mar_masters0052
	arora_gorav_2001Mar_masters0053
	arora_gorav_2001Mar_masters0054
	arora_gorav_2001Mar_masters0055
	arora_gorav_2001Mar_masters0056
	arora_gorav_2001Mar_masters0057
	arora_gorav_2001Mar_masters0058
	arora_gorav_2001Mar_masters0059
	arora_gorav_2001Mar_masters0060
	arora_gorav_2001Mar_masters0061
	arora_gorav_2001Mar_masters0062
	arora_gorav_2001Mar_masters0063
	arora_gorav_2001Mar_masters0064
	arora_gorav_2001Mar_masters0065
	arora_gorav_2001Mar_masters0066
	arora_gorav_2001Mar_masters0067
	arora_gorav_2001Mar_masters0068
	arora_gorav_2001Mar_masters0069
	arora_gorav_2001Mar_masters0070
	arora_gorav_2001Mar_masters0071
	arora_gorav_2001Mar_masters0072
	arora_gorav_2001Mar_masters0073
	arora_gorav_2001Mar_masters0074
	arora_gorav_2001Mar_masters0075
	arora_gorav_2001Mar_masters0076
	arora_gorav_2001Mar_masters0077
	arora_gorav_2001Mar_masters0078
	arora_gorav_2001Mar_masters0079
	arora_gorav_2001Mar_masters0080
	arora_gorav_2001Mar_masters0081
	arora_gorav_2001Mar_masters0082
	arora_gorav_2001Mar_masters0083
	arora_gorav_2001Mar_masters0084
	arora_gorav_2001Mar_masters0085
	arora_gorav_2001Mar_masters0086
	arora_gorav_2001Mar_masters0087
	arora_gorav_2001Mar_masters0088
	arora_gorav_2001Mar_masters0089
	arora_gorav_2001Mar_masters0090
	arora_gorav_2001Mar_masters0091
	arora_gorav_2001Mar_masters0092
	arora_gorav_2001Mar_masters0093
	arora_gorav_2001Mar_masters0094
	arora_gorav_2001Mar_masters0095
	arora_gorav_2001Mar_masters0096
	arora_gorav_2001Mar_masters0097
	arora_gorav_2001Mar_masters0098
	arora_gorav_2001Mar_masters0099
	arora_gorav_2001Mar_masters0100
	arora_gorav_2001Mar_masters0101
	arora_gorav_2001Mar_masters0102
	arora_gorav_2001Mar_masters0103
	arora_gorav_2001Mar_masters0104
	arora_gorav_2001Mar_masters0105
	arora_gorav_2001Mar_masters0106
	arora_gorav_2001Mar_masters0107
	arora_gorav_2001Mar_masters0108
	arora_gorav_2001Mar_masters0109
	arora_gorav_2001Mar_masters0110
	arora_gorav_2001Mar_masters0111
	arora_gorav_2001Mar_masters0112
	arora_gorav_2001Mar_masters0113
	arora_gorav_2001Mar_masters0114
	arora_gorav_2001Mar_masters0115
	arora_gorav_2001Mar_masters0116
	arora_gorav_2001Mar_masters0117
	arora_gorav_2001Mar_masters0118
	arora_gorav_2001Mar_masters0119
	arora_gorav_2001Mar_masters0120
	arora_gorav_2001Mar_masters0121
	arora_gorav_2001Mar_masters0122
	arora_gorav_2001Mar_masters0123
	arora_gorav_2001Mar_masters0124
	arora_gorav_2001Mar_masters0125
	arora_gorav_2001Mar_masters0126
	arora_gorav_2001Mar_masters0127
	arora_gorav_2001Mar_masters0128
	arora_gorav_2001Mar_masters0129
	arora_gorav_2001Mar_masters0130

